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Predicting trajectories of symptom change during and following treatment in adolescents 

with Unipolar Major Depression. 

Siân Emma Davies 

 

Summary/Abstract 

Objective: Definitions of treatment response used in randomised controlled trials for 

unipolar major depression are non-standardised and arbitrary. Proportion of non-responders 

has been estimated as ranging from 20%-40% across such trials. I aimed to classify depressed 

adolescents recruited to the UK IMPACT trial into different trajectories of depression 

symptom response using a longitudinal data-driven approach: growth mixture modelling 

(GMM) and investigate potential predictors of trajectory classes in this cohort.  

Method: 465 depressed adolescents received manualised psychological therapies in the 

IMPACT trial. GMM was used to plot the trajectories of self-reported depressive symptoms 

measured at 6 nominal time points over 86 weeks from randomisation, and categorise 

patients into their most likely trajectory class. Chapters 2-4 investigated the prognostic value 

of a number of variables. Chapter 2 investigated a battery of demographic and clinical 

variables including subclinical psychotic symptoms. Chapter 3 focused on a subsample of 

patients: 109 of the 465 with structural magnetic resonance imaging (MRI) data. FreeSurfer 

was used to extract cortical thickness (CT) and surface area (SA) measures from 4 regions of 

interest (ROI; rostral anterior cingulate, dorsolateral prefrontal cortex, orbitofrontal cortex, 

and insular cortex). Chapter 4 focused on another subsample of patients: 166 of the 465 

with salivary basal cortisol data at both waking and evening. Logistic regressions were used 

in Chapters 2-4 to investigate whether these variables were associated with increased 

likelihood of membership to a certain GMM class. 

Results: A piecewise GMM categorised patients into two classes with initially similar and 

subsequently distinct trajectories.  Both groups had a significant decline in depressive 

symptoms over the first 18 weeks.   Eighty-four per cent of patients were classed as 

“continued-improvers” through reporting an improvement in symptoms over the full 

duration of the study.  A further class of 15.9% of patients were termed “halted-improvers” 

who had higher depression scores at baseline, faster recovery but no further improvement 

after 18 weeks. This data-driven method of classification showed only moderate agreement 

with a priori classification methods, and suggested misclassification rate could be as great as 

31%. Co-morbid psychiatric disorders at baseline moderately increased the liability of being 
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a member of the halted-improvers class (OR = 1.40, CI 1.00-1.96).  No other clinical, 

neurological or cortisol variable reached statistical significance for predicting trajectory class.  

Conclusion: A fast reduction in depressive symptoms in the first few weeks of treatment 

may not indicate a good prognosis.  Further, halted-improvement may not be apparent until 

after 18 weeks of treatment. Capitalizing on repeated symptom assessments with 

longitudinal data driven modelling may improve the precision of revealing patient groups 

with differential responses to treatment. Further work should seek to validate these 

trajectories in a separate sample of adolescents.  
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Abstract 

Objective: Definitions of treatment response used in randomised controlled trials for 

unipolar major depression are non-standardised and arbitrary. Proportion of non-responders 

has been estimated as ranging from 20%-40% across such trials. I aimed to classify depressed 

adolescents recruited to the UK IMPACT trial into different trajectories of depression 

symptom response using a longitudinal data-driven approach: growth mixture modelling 

(GMM) and investigate potential predictors of trajectory classes in this cohort.  

Method: 465 depressed adolescents received manualised psychological therapies in the 

IMPACT trial. GMM was used to plot the trajectories of self-reported depressive symptoms 

measured at 6 nominal time points over 86 weeks from randomisation, and categorise 

patients into their most likely trajectory class. Chapters 2-4 investigated the prognostic value 

of a number of variables. Chapter 2 investigated a battery of demographic and clinical 

variables including subclinical psychotic symptoms. Chapter 3 focused on a subsample of 

patients: 109 of the 465 with structural magnetic resonance imaging (MRI) data. FreeSurfer 

was used to extract cortical thickness (CT) and surface area (SA) measures from 4 regions of 

interest (ROI; rostral anterior cingulate, dorsolateral prefrontal cortex, orbitofrontal cortex, 

and insular cortex). Chapter 4 focused on another subsample of patients: 166 of the 465 

with salivary basal cortisol data at both waking and evening. Logistic regressions were used 

in Chapters 2-4 to investigate whether these variables were associated with increased 

likelihood of membership to a certain GMM class. 

Results: A piecewise GMM categorised patients into two classes with initially similar and 

subsequently distinct trajectories.  Both groups had a significant decline in depressive 

symptoms over the first 18 weeks.   Eighty-four per cent of patients were classed as 

“continued-improvers” through reporting an improvement in symptoms over the full 

duration of the study.  A further class of 15.9% of patients were termed “halted-improvers” 

who had higher depression scores at baseline, faster recovery but no further improvement 

after 18 weeks. This data-driven method of classification showed only moderate agreement 

with a priori classification methods, and suggested misclassification rate could be as great as 

31%. Co-morbid psychiatric disorders at baseline moderately increased the liability of being 

a member of the halted-improvers class (OR = 1.40, CI 1.00-1.96).  No other clinical, 

neurological or cortisol variable reached statistical significance for predicting trajectory class.  

Conclusion: A fast reduction in depressive symptoms in the first few weeks of treatment 

may not indicate a good prognosis.  Further, halted-improvement may not be apparent until 
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after 18 weeks of treatment. Capitalizing on repeated symptom assessments with 

longitudinal data driven modelling may improve the precision of revealing patient groups 

with differential responses to treatment. Further work should seek to validate these 

trajectories in a separate sample of adolescents.  
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Depression and treatment response in adolescence: where do we currently stand? 

 

Importance 

Major depressive disorder (MDD) is one of the most common mental health disorders in the 

world (Alonso et al., 2004; Kessler et al., 2003; Wittchen et al., 2011). Lifetime prevalence 

rates have been reported between 14 and 16% of the population in Europe (Alonso et al., 

2004) and the United States (Kessler et al., 2003) respectively. These may even be an 

underestimate: for example within the European Union (EU), it has been shown that from 5 

years of age around 38% of the population suffer a mental health disorder each year 

(Wittchen et al., 2011). Of these, 7% are attributable to major depression (Wittchen et al., 

2011). Furthermore, the UK Biobank study reported that the prevalence rates of probable 

recurrent major depression were 12.2% (Smith et al., 2013). Such high prevalence rates 

indicate a significant disease burden (Wittchen et al., 2011). Indeed Murray and colleagues 

(2013) highlighted that within the UK, the major cause of years lived with disability were 

mental health disorders, and depression has been reported responsible for the largest 

amount of non-fatal disease burden in the world (Üstün, Ayuso-Mateos, Chatterji, Mathers, 

& Murray, 2004). Depression is currently the fourth leading cause of disease burden 

worldwide (Üstün et al., 2004), and only expected to increase in rank by 2030 (Mathers & 

Loncar, 2006). Consequently, this poses a substantial economic cost to society. Depression 

has been ranked one of the top 5 most costly brain disorders in the UK (Fineberg et al., 

2013), and in the year 2000, the UK spent £370 million on treatment of adult depression, 

with the total cost of the illness estimated at over £9 billion (Thomas & Morris, 2003a).  

 

Beyond contributing to such global and economic burden, the suffering experienced by the 

individual patient is substantial (Cuijpers, 2017). Major depression significantly reduces a 

patient’s quality of life (Pyne, Patterson, Kaplan, Gillin, Koch, & Grant, 1997; Saarni et al., 

2007), and has an impact on future work, social function, and personal relationships 

(Weissman et al., 1999). Patients with depression have also been shown to exhibit higher 

incidences of physical illness (Farmer et al., 2008). Despite such systemic implications of 

major depression, Wittchen and colleagues (2011) reported that there was no evidence that 

the treatment of mental health disorders has improved since 2005, and statistical modelling 

has suggested that 60% of the current burden of mental health disorders is due to the 

inadequacies of current treatment (Andrews, Issakidis, Sanderson, Corry, & Lapsley, 2004). 
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Adequate treatment of MDD has been reported as low as 42% (Kessler et al., 2003), with the 

percentage of patients failing to experience a significant therapeutic response and classed as 

resistant to treatment ranging from 20% to 55% (Goodyer et al., 2008; Thomas et al., 2013). 

 

Why does treatment of major depression show such mediocre response rates? It is not 

insignificant that a quarter of adults suffering depression report that their illness began 

during adolescence (Zisook et al., 2007), and the mean age of onset is reportedly around 15 

years of age (Lewinsohn, Clarke, Seeley, & Rohde, 1994). Rates of new onset of depression at 

this age bracket increase from 3% to 7% (Merikangas, Nakamura, & Kessler, 2009), such that 

adolescence denotes the time of highest incidence risk rate for the emergence of major 

depression over the life course (Avenevoli, Knight, Kessler, & Merikangas, 2008). Onset in 

this second decade is a risk factor for subsequent relapse and recurrence in adulthood 

(Fombonne, Wostear, Cooper, Harrington, & Rutter, 2001; Lewinsohn, Clarke, Seeley, & 

Rohde, 1994) and impairment in adult life (Zisook et al., 2007). Moreover, the adult 

literature suggests that in clinical samples, factors relating to chronicity of illness often 

associate with treatment resistance, recurrence and relapse including duration and number 

of episodes (Mueller et al., 1999), early age of onset (Lewinsohn, Rohde, Seeley, & Fischer, 

1993) and first episode versus chronic depression (Cuijpers, Andersson, Donker, & van 

Straten, 2011). Consequently, by the time patients enter treatment as adults, their condition 

may be too chronic to show favourable responses to current treatment.  

 

To optimise outcome for patients, it is imperative that we advance our understanding of 

depression in adolescence, and investigate the efficacy of current treatment at this delicate 

stage of neural, psychological and social development. However, the number of treatment 

trials for adolescent depression is markedly less than those for adult depression (Cipriani et 

al., 2018). Current guidelines for adolescent depression have developed from adapting 

treatments that have shown success first in adult populations (Weersing, Jeffreys, Do, 

Schwartz, & Bolano, 2017). As such, I shall begin with a discussion of the current state of the 

treatment of adult depression. 

 

Treatment of adult depression 

The recommended guidelines for the treatment of adult depression consist of either 

pharmacological or psychological treatment, or a combination of both (NICE, 2015, NICE, 
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2016). Pharmacological treatment is typically second-generation antidepressants, such as 

selective serotonin reuptake inhibitors (SSRIs). SSRIs are more commonly prescribed as a 

first-line treatment, often because of resource availability rather than patient preference or 

treatment efficacy (Cipriani et al., 2018). However, a significant proportion of patients voice 

a preference for non-pharmacological options where possible (Gartlehner et al., 2017), due 

to an awareness of risks and side-effects associated with antidepressants (Gartlehner et al., 

2008) and established evidence base for psychological therapies (NICE, 2015, NICE, 2016). 

 

Measuring the effectiveness of the treatment of depression seems simple: do patients get 

better? Do they no longer suffer from depression? However, these questions require clinical 

researchers to measure the change in a patient’s depressive condition objectively. Typically, 

this is achieved through the documentation of a change in the presence, and/or severity of 

symptoms over a given time period (Nierenberg & DeCecco, 2001). Treatment efficacy 

results can therefore be viewed as how much support there is for the claim that a given 

treatment significantly reduces a patient’s symptoms, more so than they would without the 

treatment.  

 

The efficacies of both pharmacological and psychological therapies in adult depression have 

been extensively investigated (Cipriani et al., 2018; Cuijpers, 2017). For instance, a recent 

network meta-analysis showed that a wide range of second-generation antidepressants 

demonstrate significant efficacy rates above placebo in treating MDD (Cipriani et al., 2018). 

The authors noted that while differences between antidepressants were much smaller than 

between drug versus placebo, a number of SSRIs (including escitalopram, paroxetine and 

sertraline) had higher response and lower dropout rates than other antidepressants. This 

helps inform clinical practice of more favourable first-line treatment options for patients. 

Prior to this review, the field has been associated with significant publication bias, with the 

percentage of studies showing a positive outcome decreasing by approximately 40% when 

unpublished data were considered (Turner, Matthews, Linardatos, Tell, & Rosenthal, 2008). 

Cipriani and colleagues (2018) however, included a large amount of unpublished work in 

their analysis of adult depression, making their efficacy findings quite robust.  

 

In terms of psychological therapies, Cuijpers (2017) reviewed a series of meta-analyses on a 

variety of psychological treatment modalities in adult depression. He concluded that all were 
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equally effective at treatment MDD, with very few differences between treatments 

(Cuijpers, 2017). Psychological therapies were also associated with improvement in a 

number of quality-of-life measures, including social support (Park, Cuijpers, van Straten, & 

Reynolds, 2014) and dysfunctional thinking (Cristea et al., 2015). Moreover, a number of 

meta-analyses have found that the difference in efficacy between antidepressant 

medications and psychotherapies is of little clinical relevance (Cuijpers, Straten, Oppen, & 

Andersson, 2008; Cuijpers, Sijbrandij, et al., 2013). Combined treatment however, generally 

out-performs monotherapies (Cuijpers, 2017; Cuijpers, Sijbrandij, et al., 2014; Cuijpers, van 

Straten, Warmerdam, & Andersson, 2009a), in both the acute-phase of treatment and 

maintenance phase (Karyotaki, Smit, Holdt Henningsen, et al., 2016). Taken together, the 

literature to date provides some reassurance that currently prescribed treatments for adult 

depression show a degree of effectiveness, in that they appear to significantly improve the 

rate of patient’s symptom reduction over time. Moreover, extreme deterioration following 

treatment of either modality is uncommon; occurring in only 1% of cases (Vittengl et al., 

2016).  

 

Problems with research in the treatment of adult depression 

While short-term treatment outcomes appear promising, our understanding of longer-term 

effects is less clear. There is some evidence of the effects of psychological therapies lasting 6 

months or more, and more likely if “maintenance” sessions are offered beyond the acute 

treatment phase (Karyotaki, Smit, de Beurs, et al., 2016). However, the long-term effects of 

antidepressant medication are uncertain (Cipriani et al., 2018). One meta-analysis directly 

compared efficacy rates between cognitive-behavioural therapy (CBT) and 

pharmacotherapies for 6-18 months post-treatment (Moncrieff, 2018). The authors found 

that despite comparable efficacies during acute-treatment, pharmacotherapy required 

continuation to maintain efficacies matching CBT. Conversely, CBT was more likely to have 

continued effects post-treatment even if terminated at the acute-phase, with reduced risk of 

relapse for patients compared with the termination of pharmacotherapies (Moncrieff, 2018).  

 

Some authors have also questioned the reliability of the effect-sizes reported in meta-

analytic data, particularly for anti-depressant trials (Cuijpers, 2017; Moncrieff, 2018). The 

effectiveness reported by Cipriani and colleagues (2018) must be considered in a short-term 

context, and may be an overestimation for longer-term follow-ups. Moreover, side-effects of 
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the drugs themselves could allow for patients to become un-blinded to their treatment 

condition in placebo trials, and consequently result in inflated effect-sizes (Moncrieff, 2018). 

Psychotherapies have also faced similar questions of effect-size reliability due to the 

influence of study quality and publication bias (Cuijpers, 2017; Cuijpers et al., 2011).  

 

Perhaps more critical to this current thesis is the argument of relevance. Patients receiving 

treatment may indeed show a greater reduction in severity above placebo, but if the size of 

reduction is not meaningful, then treatments can be efficacious without really having any 

impact on disease burden. There is some debate over how large a statistical effect is 

necessary to translate to clinically observable improvement in symptom reduction and 

patient recovery. Moncrieff (2018) argued that the mean difference reported in Cipriani’s 

(2018) review equated to an improvement of only 2 points on the Hamilton Rating Scale for 

Depression (HRSD); a minimum difference of 8 has been suggested necessary for a patient-

perceived improvement (Moncrieff & Kirsch, 2015). Indeed, one the largest longitudinal 

studies investigating the long-term effects of antidepressant medications found that 

remission, defined as <7 on the HRSD, was only achieved by 28% of patients (Trivedi et al., 

2006). Moreover, despite further multiply-staged treatments for unremitted patients 

(Vittengl et al., 2016), remission became increasingly unlikely for patients requiring more 

treatment steps, and relapse rates also increased (Rush et al., 2006; Pigott, Leventhal, Alter, 

& Boren, 2010). This is perhaps unsurprising given that the evidence for efficacy differences 

between second-generation antidepressants is small (Cipriani et al., 2018), and that no 

augmentation option offered in this study was psychologically-based (Rush et al., 2006).  

While treatments may show better outcomes compared with placebo, the exact extent of 

their ability to provide a clinically meaningful reduction in symptoms remains uncertain.  

A number of studies have investigated the effectiveness of psychotherapies as a prevention 

(rather than intervention) method, in patients with subclinical depressive symptoms (van 

Zoonen et al., 2014). The meta-analytic results of such studies are encouraging, showing that 

preventive interventions were associated with an average 21% reduction in the number of 

new cases of clinical depression over long-term follow-ups (typically 6-12 months), 

compared with control conditions (van Zoonen et al., 2014). Catching and treating 

depressive symptomatology early, before the onset of clinical levels of severity, may 

therefore be the optimal time at which our current treatments can be most effective 
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(Cuijpers, 2017). Consequently, it is perhaps more imperative for us to investigate treatment 

effects when the condition typically begins to manifest: adolescence. 

 

Treatment of adolescent depression 

Clinicians have found that appropriate treatment during adolescence can result in rapid 

improvements in depressive symptoms and functioning in first-episode patients (Goodyer & 

Wilkinson, 2018). As mentioned above, the field of research for the treatment of adolescent 

is small but continuously growing (Weersing et al., 2017). Current guidelines for the 

treatment of adolescent depression, similar to adults, typically involve psychotherapy, alone 

or in combination with SSRIs (NICE, 2015).  While developed from adapting adult treatments 

(Weersing et al., 2017), two of the largest randomised controlled trials of antidepressants 

and psychotherapies conducted in depressed adolescents supported these current advised 

practices (Brent et al., 2008; March et al., 2004). They concluded that combination 

treatment (SSRIs plus CBT) were superior to either medication or psychotherapy alone 

(Brent et al., 2008; March et al., 2004).  It is important to note however that despite 

promising support for combination treatment, more research is required. The effect-size 

reported for combination treatment above SSRIs alone in those trials were not large 

differences, and were only true for some outcome measures (Brent et al., 2008; March et al., 

2004). Moreover, the use of antidepressant medication in adolescents has had some debate. 

For instance, meta-analytic results of medication trials have suggested that only fluoxetine 

showed a significant difference to placebo (Cipriani et al., 2016). Other antidepressants have 

shown much higher intolerance rates and a greater number of adverse events compared 

with fluoxetine (Cipriani et al., 2016). SSRIs have also been reported to carry a higher risk of 

suicidality (Goodyer & Wilkinson, 2018) and aggressive behaviour (Sharma, Guski, Freund, & 

Gøtzsche, 2016) in adolescents. Consequently, the risk-benefit ratio for antidepressant 

medication in adolescents means that their prescription should be considered with caution 

(Cipriani et al., 2016).   

 

Conversely, the evidence base for psychological treatments in adolescent depression is 

largely supportive. Firstly, the study upon which this thesis draws its data (outlined later), 

showed that 77% of patients randomised to one of three psychological treatments, achieved 

remission at long-term follow-up (86 weeks) (Goodyer et al., 2017). This was a rise from 48% 

at 12 weeks, which demonstrates improving effects following psychotherapies in this 
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population. While this study lacked a control group for adequate comparison, two recent 

reviews (one incorporating a network meta-analysis) have strongly supported the efficacy of 

psychological treatments in adolescents (Weersing et al., 2017; Zhou et al., 2015). From the 

evidence of 42 randomised controlled trials of CBT and interpersonal psychotherapy (IPT), 

most studies found that CBT or IPT outperformed control groups across studies. Moreover, 

no study found either treatment faired worse than active controls (Weersing et al., 2017). 

Although the authors acknowledged the small database for IPT studies, they concluded that 

both treatments were well established interventions for adolescent populations and equally 

efficacious (Weersing et al., 2017). In addition, CBT has been found to have substantial 

effects on specifically reducing suicidality (March et al., 2004), which is not without clinical 

significance.  

 

Problems with research in the treatment of adolescent depression 

As the literature stands, current specialist treatments on the whole appear to reduce 

symptoms of depression in adolescents above routine care, but a number of discrepancies 

still exist. Firstly, as with the adult literature, the long-term effects of combination 

treatments are not clear (Goodyer et al., 2007). Goodyer and colleagues (2007) investigated 

the effects of SSRI alone or in combination with CBT at 28, rather than the 12 week period of 

previous studies. They concluded that there was no beneficial effect of combined SSRI plus 

CBT treatment over SSRIs plus routine specialist care in adolescent depression. However, 

that may be because of higher-than-expected effectiveness of the control intervention 

rather than lack of effectiveness of the additional CBT. Moreover, while the Treatment for 

Adolescent Depression Study (TADS) found a superiority effect for combination treatment, 

CBT alone failed to show significantly better short-term responses than pill-placebo in their 

trial (March et al., 2004).  

 

Similar to the observations of the adult literature (Cipriani et al., 2018; Cuijpers, 2017), the 

effect size of treatment in adolescent depression has also demonstrated a decline over time 

(Weisz, McCarty, & Valeri, 2006). The overall reported effect sizes in adolescent depression 

are moderate at best (March et al., 2004; Weisz et al., 2017, 2006) and compared with other 

mental health conditions, are the smallest in the literature (Weisz et al., 2017). The effect 

sizes also do not seem to improve over increased duration of follow-up (Weisz et al., 2006). 

Relapse and recurrence rates remain undesirably high, occurring in at least 25% of patients 
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(Kennard et al., 2009; B. Vitiello et al., 2011). Consequently, some have suggested that we 

have reached a ceiling with the effectiveness of our current strategies in adolescence 

(Weersing et al., 2017; Weisz et al., 2006). 

 

Recent reviews of the field commented on the trend of declining effect size, suggesting that 

factors relating to study quality and population criteria may have contributed to these 

changes (Goodyer & Wilkinson, 2018; Weersing et al., 2017). Interestingly, studies that have 

contributed to raising caution over efficacy reports in adolescent depression have been 

those that have employed the use of active control conditions (Brent et al., 1997; Goodyer et 

al., 2017) and recruitment of more clinically severe samples, with significant comorbidities 

(Goodyer et al., 2007; Goodyer et al., 2017; March et al., 2004; Shirk, Deprince, Crisostomo, 

& Labus, 2013). Studies of more complex cohorts were more likely to report null effects 

(Goodyer et al., 2007; Shirk et al., 2013), and a recent multilevel meta-analysis actually failed 

to show a significant benefit of psychotherapies in cases of multiple comorbidities (Weisz et 

al., 2017). Taken together, the results suggest that while current treatments may benefit 

some patients (Goodyer & Wilkinson, 2018; Weersing et al., 2017), the extent to which they 

help reduce symptoms, particularly in those more complex cases (which in turn, are those 

cases more likely to be seen in real-world clinics), is still unclear.  

 

Many questions regarding current treatments modalities for adult and adolescent 

depression are still outstanding. Cuijpers (2017) advocated that given the equivalency of 

treatments available, our efforts should not focus on designing novel treatments, because it 

is unlikely that these will substantially differ. We need to understand why these treatments 

are not more effective for patients and what specific characteristics of both the patient, their 

depressive condition and current treatment modalities are not matching up to give an 

optimal response. Our focus needs to be on targeting these questions (Cuijpers, 2017). This 

more precise approach to treatment choice is more likely to guide research in understanding 

what treatment works best for which depressed patient. 

 

It is possible that the cause of modest effect sizes in the treatment of adolescent depression 

is clinical heterogeneity. In group comparisons, the inclusion of patients for whom treatment 

fails completely may lower the overall effect size of the study, thus masking the effect size in 

those for which treatment is extremely effective. This is not insignificant, considering that at 
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least 20% of adolescents show no response to available treatments (Goodyer et al., 2008; 

March et al., 2004). This is why some authors have advocated that to understand treatment 

effectiveness fully, we must investigate individual differences in response (Goodyer & 

Wilkinson, 2018). Who is the treatment particularly effective for, and why? Identifying these 

characteristics that could predict such response in adolescent depression would be 

beneficial for advancing our treatment of this condition, and reducing the overall disease 

burden.  

 

However, before these questions can be addressed, we must ask ourselves what does 

treatment response look like? This question is of critical importance. The misclassification of 

patients as responsive can have substantial influence on the outcomes of clinical trials, 

affecting prescribing guidelines and subsequently, impacting the treatment any individual 

patient receives. Despite this, the current literature is a long way from agreeing upon a gold 

standard definition (Berlim & Turecki, 2007). Is a simple pre-defined reduction in symptoms 

sufficient to classify an individual as responsive, or does such a definition omit important 

information of clinical relevance? Without clarity in the definition of an unfavourable 

outcome, investigations of patients defined as such will be meaningless (Thibodeau et al., 

2015).  

 

Thesis Outline 

This doctoral work aims to focus in on questions relating to individual differences in 

symptom change and predictors of such change. My first objective however, will be to take a 

step back and evaluate whether our current methods for measuring symptom change over 

time are the most effective for accurately differentiating patients who show unfavourable 

responses. In doing so I shall investigate alternative empirical methods previously used in 

depressed adults, to define subgroups of patients, based on their trajectory of symptom 

change over time. I will do this in a group that have been receiving psychological treatment 

(Goodyer et al., 2011), and thus are expected to observe a downward trajectory of symptom 

change, at least in the majority of patients. The evaluation of this approach to defining 

symptom change in adolescent depression will be the focus of my first chapter of work.  

 

From the foundation set out in Chapter 1, Chapters 2-4 will provide novel perspectives on 

questions relating to prognosis in adolescent depression. I shall utilise the categories defined 
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in Chapter 1 to investigate predictors of symptom change trajectories. Chapter 2 will 

specifically focus on a battery of demographic and clinical predictors of these trajectories, 

with a specific a priori interest in subclinical psychotic symptoms.  

 

Empirical approaches are yet to investigate biological predictors of trajectory classes. Thus, 

Chapters 3 and 4 will provide a preliminary investigation of these questions, by using specific 

subsamples of the Improving Mood with Psychoanalytic and Cognitive Therapies (IMPACT) 

cohort. Chapter 3 will utilise the Magnetic Resonance-IMPACT (MR-IMPACT) cohort; a 

sample of 109 adolescents for whom structural magnetic resonance imaging (MRI) were 

collected (Hagan et al., 2013). This chapter will focus on two neurological measures of 

cortical thickness and cortical surface area of 4 specific cortical regions that have 

demonstrated associations with treatment response in depression by a priori methods. 

Chapter 4 will utilise the IMPACT-Genes and Hormones (IMPACT-GH) cohort: a sample of 

166 adolescents for whom salivary cortisol samples were collected. This chapter will focus 

on peak morning and evening cortisol, which have been shown to differentially relate to 

treatment response.  

 

Finally, Chapter 5 will discuss the theoretical implications of the findings, and provide a 

reflective discussion of the methodology used in this thesis and its potential utility in 

advancing this field. 
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Chapter 1: Measuring change. 

 

Why do we need to measure change? 

It is common practice in medical research for the proportions of responders and non-

responders to be considered a measure of efficacy and effectiveness for current and novel 

treatments (Thibodeau et al., 2015). It is an easily understandable statistic for patients and 

clinicians. Moreover, classifying individuals into response types could offer great economic 

and public health advantages through personalized treatment strategies (Gueorguieva, 

Mallinckrodt, & Krystal, 2011; Thibodeau et al., 2015). For example, rapid responders could 

receive a short course of treatment, and resistant subtypes could be offered more 

aggressive treatment at outset (Thibodeau et al., 2015). This could help reduce relapse and 

recurrence rates and also the cost and strain that mental health services currently face 

(Thomas & Morris, 2003). Furthermore, it would be highly useful to know which variables 

influence this probability of response for all patients (‘predictors’) and which variables 

influence the response to treatment differently in patients receiving different treatments 

(‘moderators’). All of these questions require a measurement of symptom change in 

depressed patients.  

 

However being depressed or well is not a binary entity.  Depressive symptoms actually lie on 

a continuous spectrum, and, in common with a lot of diseases (e.g. hypertension (Chobanian 

et al., 2003) and diabetes mellitus (American Diabetes Association, 2003)), an arbitrary cut-

point has been chosen for diagnosis (Malhi & Byrow, 2016). Therefore to define ‘response’, 

researchers must firstly use an accurate measure of depression severity; and secondly 

operationally quantify the symptom change in depression that would be considered a 

reasonable ‘response’ to treatment. At present, both these tasks in depression research are 

executed inconsistently. The variation that exists across studies in choice of assessment tool 

and definition of response makes it impossible to achieve a coherent consensus that can 

guide research and clinical practice (Berlim & Turecki, 2007).  

 

The main focus of my first piece of work will be addressing the latter of these tasks: 

operationally defining what is a reasonable response to treatment. Analyses of treatment 

efficacy and effectiveness, or predictors and moderators of change, are all dependent on the 

choice in the definition of response. As eloquently stated by Thibodeau and colleagues 
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(2015), “…the utility of classifying nonresponders is only proportional to the validity of how a 

nonresponder is defined” (p.214). This definition has the potential to be an influential factor 

in the outcome of clinical trials, and consequently affect protocols in medical practice. It is 

therefore imperative for the definition to reflect patient experience accurately. 

  

Defining a clinical response to treatment: a continuous approach 

Some efficacy studies report mean change in depression severity, rather than reporting 

percentage of patients meeting pre-defined categories of responders and non-responders 

(Emslie et al., 2002; Greeson et al., 2015; Wang et al., 2015). Continuous measures have the 

advantage of retaining more information regarding absolute change, as the data are not 

reduced into a small number of groups (Jureidini et al., 2004; Joanna Moncrieff & Kirsch, 

2005). This increases the power of the study to detect subtle changes that may be present 

over time (Altman & Royston, 2006; Royston, Altman, & Sauerbrei, 2006). A study of 

adolescent depression by Emslie and colleagues, (2002) nicely illustrates this concept: in 

their placebo-controlled trial their primary efficacy measure was categorical (response; 

defined as at least a 30% reduction in symptoms), and showed no significant difference 

between treatment and placebo. However, the authors found that on a continuous scale, 

patients treated with fluoxetine experienced a significantly greater reduction in depression 

symptoms than those treated with placebo, and this allowed the authors to report that 

fluoxetine is efficacious in adolescents with depression.   

 

Many studies investigating predictors of response on a continuous scale use correlations or 

regressions to uncover associations between improved symptoms and patient 

characteristics. These studies have illustrated that a constellation of patient characteristics 

can predict outcomes to a certain treatment including; baseline severity (Tedlow et al., 

1998), length of current episode (Perugi, Medda, Zanello, Toni, & Cassano, 2012), gender 

(Walker & Druss, 2015), comorbidity (Bock, Bukh, Vinberg, Gether, & Kessing, 2010), 

structural deficits of the brain (Li et al., 2010), social support (Walker & Druss, 2015) and 

cortisol levels (Zobel, Yassouridis, Frieboes, & Holsboer, 1999), all with varying effect sizes 

and power. However, while informative, there are two substantial issues with this approach. 

Firstly, subtle effects and moderators may be academically interesting, but may not be 

clinically useful. For instance, the effect sizes of the change reported by Emslie and 

colleagues (2002) were small to moderate at best, and were not sufficient for patients to 
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experience an improvement that felt meaningful to them. Secondly, the decision to 

administer treatment is fundamentally binary. It is delivered in a step-wise manner, often 

starting with one treatment (psychological or medication), then switching treatment or 

adding augmentation therapies if response is inadequate (NICE, 2015, NICE, 2016). Unless 

predictors of response can inform the categorical decision-making of clinical practice, they 

will struggle to influence patient care directly (Uher et al., 2010). 

 

Defining a clinical response to treatment: a priori approaches 

For research to inform clinical practice, it has become necessary to adhere to a categorical 

framework (Uher et al., 2010). Consequently, standard reporting of clinical outcomes tend to 

dichotomize individuals into responders and non-responders (Uher et al., 2010). However, 

dichotomizing patient response is complicated, because two key questions need to be asked. 

Firstly, what is a reasonable response to treatment? Secondly, over what timescale does 

improvement need to come? I shall discuss each in turn below.  

 

At a clinical level, there is a universal agreement that the ideal response to treatment is 

sustained remission of depression (Nierenberg & DeCecco, 2001). For this reason, Berlim and 

Turecki (2007) argued that “remission” should be used as a “gold standard” definition for 

responders. However, defining remission itself is complicated. If remission is taken to mean 

“free from diagnosis” then theoretically patients could still retain up to 4 symptoms that 

meet clinical threshold, without meeting a threshold for depression (American Psychiatric 

Association [APA], 2000). This definition would ignore the substantial influence of residual 

symptoms on functional status (Keller, 2003, 2005; Zimmerman et al., 2012) and long-term 

disease course, as residual symptoms are repeatedly shown to be risk factors for relapse and 

recurrence (Nierenberg et al., 2010; Paykel et al., 1995).  

 

Conversely, if remission is agreed to mean, “free from depressive symptoms” (Nierenberg & 

DeCecco, 2001) then full remission would be rare in depression (Nierenberg et al., 2010). As 

many as 90% of patients have been found to retain at least 1 residual symptom (Nierenberg 

et al., 2010) and the high incidence of comorbidity present in the depressed population 

(Rohde, Lewinsohn, & Seeley, 1991) would make it unlikely for many patients to be 

completely free of symptoms. Such a high threshold for a responder is unrealistic; it would 

ignore the substantial improvement made by some patients, but also it would label the 
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majority of patients in clinical trials as non-responders (Nierenberg & DeCecco, 2001). This 

would clearly impact the outcome of clinical trials and interpretations of efficacy (Tedlow et 

al., 1998). Consequently, some studies adopt a middle ground for their definition; such as 

“no more than 1 clinically significant symptom and no associated functional impairment” 

(Vitiello et al., 2011, p389-390). Incorporating a measure of psychosocial functioning into the 

definition allows flexibility with residual symptoms without compromising on functional 

recovery: a vital aspect for the clinical meaning of remission (Malhi & Byrow, 2016). 

 

To avoid criticism associated with such harsh cut-offs, trials will often report “response 

rates” alongside “remission rates” to measure treatment efficacy (Trivedi et al., 2006; 

Vitiello et al., 2011). This allows studies to capture the complexity and individual variability 

of recovery from depression. Response is often classified by a percentage reduction in 

symptom score on standardized depressive scales (Montgomery, 1994); most commonly 

taken as at least a 50% reduction in depressive scores (Berlim & Turecki, 2007; Montgomery, 

1994). This approach allows response to be individualized to each patient, and allows for 

patients who make a significant improvement to be represented adequately in the research 

findings. However there are two issues with this approach. Firstly, there is still substantial 

variation across studies in what constitutes a response (Berlim & Turecki, 2007), with vast 

disagreement between experts. Empirical studies suggest that a cut-off of 60% is more valid 

(Mulder, Joyce, & Frampton, 2003) while some authors argue a 30% reduction is clinically 

meaningful (Shelton et al., 2005). Often, cut-offs are chosen to provide equal group numbers 

(Uher et al., 2010) and some articles lack an operational definition completely (Berlim & 

Turecki, 2007). Indecision over how to define this outcome within this literature has already 

led to some serious consequences. Studies by Emslie and colleagues (2002; 1997), and Keller 

and colleagues (2001) faced legal review over altering protocol-defined cut-offs in later 

published work, to make differences between treatments seem larger than reality, or to fit 

with the authors’ belief of treatment efficacy (Jureidini et al., 2004; Jureidini, Mchenry, & 

Mansfield, 2008). They failed to report with clarity the null results of their original primary 

outcomes between drug and placebo, highlighting instead the positive results of post-hoc 

comparisons that were not previously included in the study design (Jureidini et al., 2004, 

2008).  
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The second issue with the adoption of a percentage reduction to indicate response is that 

the reasons for cut-off selection remain quite arbitrary (Uher et al., 2010).  One must 

remember that despite the advantage of categorical approaches in a clinical setting, 

categorical approaches face criticisms of data reduction. Researchers suggest that 

dichotomizing individuals loses up to a third of information about the present variation in 

response patterns (Cohen, 1983), which substantially reduces one’s power to detect 

significant differences (Altman & Royston, 2006). Therefore, with categorisation coming at 

such a cost, the boundaries chosen must, at the very least, strive to relate to clinical 

experience. In using a simple 50% percentage reduction in symptoms to define response, 

individuals who experience a 49% reduction in symptoms and those who experience a 2% 

reduction in symptoms are considered equivalent. Intuitively, these patients are likely to 

have very different attitudes towards their illness at the end of trial (Zimmerman et al., 

2012), and may experience differential treatment effects that are masked by taking a group 

mean (Cuijpers, van Lier, van Straten, & Donker, 2005; Stulz, Thase, Klein, Manber, & Crits-

Christoph, 2010).  

 

Temporal considerations 

Regardless of choice of definition for response, most clinical trials assess this outcome at the 

end of treatment (Emslie et al., 1997; Goodyer et al., 2007; March et al., 2009) and in 

situations of percentage reduction, compare it to a baseline assessment.  Comparisons of 

response across only two time-points is argued inadequate to discern true treatment effects 

for a number of reasons. Firstly, despite a need to conserve data due to the aforementioned 

data reduction issue of categorical approaches, a large amount of longitudinal data remains 

unutilised in this method. Secondly, the researchers have made several assumptions 

regarding the speed at which the treatment will work, the effect size it will have and the 

trajectory shape it will follow (Montgomery, 1994; Nierenberg & DeCecco, 2001; Rush et al., 

2006; Uher et al., 2010). However, to date little is definitively known about any of these 

components in the treatment of depression (Berlim & Turecki, 2007; Uher et al., 2010). 

Firstly, the choice of final assessment time-point could dramatically influence the category 

within which a patient would fall. One study discovered that remission cumulatively 

increased from 17% of patients at the end of the 12-week blinded treatment, to 61% at a 72-

week follow-up (Vitiello et al., 2011), and other authors have also suggested chronic 

depression may take significantly longer to reach remission (Kornstein & Psychiatry, 2001). 
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There is therefore an inherent danger in short-term clinical trials of prematurely categorizing 

patients and underestimating the efficacy of treatment and their mechanisms of action 

(Shelton et al., 2007). Moreover, depressive symptomatology fluctuates over time, making it 

particularly difficult to discriminate treatment effects from other confounding factors that 

would affect any single isolated measurement (Nierenberg & DeCecco, 2001; Uher et al., 

2010).  

 

In addition, assessing symptomatology over two time-points assumes a linear trajectory 

exists between beginning and end of treatment, which is an incorrect assumption, given 

non-linear patterns have been reported to better fit trial data (Keller et al., 2000). Including 

data on the temporal pattern of symptom course could advance our understanding of how 

antidepressants or psychological therapies operate (Uher et al., 2010). Furthermore, one 

should question the interpretation of findings from clinical trials that use only before and 

after time-points as reporting true remission rates. Remission implies a time-period where 

an improvement has not only been achieved but sustained, yet many studies do not 

reference a timeframe as a requirement (Nierenberg & DeCecco, 2001). Operationally 

defining the length of time for remission to be confidently declared is highly debated, and 

ranges from as little as 3 to as much as 8 weeks across studies (Berlim & Turecki, 2007; 

Vitiello et al., 2011).  

 

Defining a clinical response to treatment: an empirical approach 

In order to consider heterogeneity in symptom change in defining response, categorization 

methods must allow for an assessment of longitudinal data. Studies have begun to measure 

symptom severity systematically following the treatment phases of trials in a naturalistic 

manner (Goodyer et al., 2008; Keller et al., 2000; March et al., 2009). While this provides a 

rich dataset for investigating change over time, end-point analyses are still used and the 

detailed longitudinal information is rarely utilized to its potential (Uher et al., 2010).  

Empirical modelling techniques differ from this approach in two ways. Firstly, they define 

their groups post-hoc (Ram & Grimm, 2009), meaning that the data define the subgroups. 

Secondly, they utilise multiple time-point assessments, which is a major strength of this type 

of approach. The additional data allow for a further description of the developmental shape 

of change over time, and the extent of inter-individual difference in this change (Ram & 

Grimm, 2009). The improved ability to characterize complex trajectory patterns could also 
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inform our mechanistic understanding of treatment action and consequently the 

development of new treatments. 

 

Growth curve modelling is one empirical technique, and describes symptom change over 

time using a regression function. The intercept represents baseline severity and slope 

describes the change in severity over time (Cuijpers et al., 2005). Provided an adequate 

number of time points are present, there is flexibility for linear, quadratic, cubic or piecewise 

shapes to be investigated. Piecewise shapes are particularly useful for hypotheses of clinical 

trials, as they allow for a break and change in the trajectory, which can capture different 

rates of change at particular stages in clinical trials (Gueorguieva et al., 2011; Uher et al., 

2010). However, growth curve modelling assumes that all individuals are drawn from the 

same population; that one growth curve adequately fits and describes all individuals in the 

sample (Ram & Grimm, 2009). As mentioned above, this may not be the best representation 

of a depressive population.  

 

It is plausible that depression is better characterized in multiple, dissimilar subgroups of 

patients, each with a distinct phenotype (Thibodeau et al., 2015). However, one issue in 

depression research is that these subgroups are unknown. For known groupings, such as 

gender or ethnicity, significant inter-individual differences in change over time can be 

modelled using multiple-group growth curve modelling: an extension of single growth curve 

modelling. This allows groups to differ on all three aspects of the growth curve model (Ram 

& Grimm, 2009). Growth mixture modelling (GMM) is a further extension that allows 

subgroups to be “unobserved”, meaning that groups cannot be distinguished based on 

something that is overtly measurable (Muthén & Muthén, 2017; Ram & Grimm, 2009; 

Wickrama, Lee, O’Neal, & Lorenz, 2016), making it a promising tool for studying treatment 

response in depression. GMMs utilize the heterogeneity in longitudinal data to categorize 

patients into particular unobserved classes that follow a similar trajectory (Uher et al., 2010). 

A mean growth curve is then estimated for each class, and information on the probability 

that a given individual belongs to a certain class is often reported to provide an indication of 

goodness of fit (Ram & Grimm, 2009; Wickrama et al., 2016). The allocation of patients to 

groups is therefore decided by the modelling process, based on model fit, and cannot be 

influenced by the researcher.  
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In practice, GMM is an exploratory approach in which a series of models are run, based on 

theoretical hypotheses regarding the shape of the overall trajectory, the number of 

expected subgroups and how these subgroups are expected to differ (Ram & Grimm, 2009). 

It is standard practice to run models up to and including at least one more latent group than 

is expected by theory (Ram & Grimm, 2009). Testing more complex models than 

hypothesised allows for a more rigorous comparison of changes in fit and convergence 

between possible models and consequently, better confidence that the chosen model is the 

best fitting and not overly simplistic (Ram & Grimm, 2009). A final model is selected based 

on a number of considerations relating to how well the model fits the data, the model’s 

ability to classify individuals correctly into subgroups, class size and the clinical relevance of 

the different classes and their corresponding trajectories (Cuijpers et al., 2005; Uher et al., 

2010; Wickrama et al., 2016). Parsimony is favoured in these models so the addition of an 

extra subgroup or more complex trajectory shape must add explanatory value to the 

previous model (Uher et al., 2010). Furthermore, models can be simplified whereby the 

variance within classes is assumed to be zero if convergence presents a significant issue, 

providing more flexible options to explore trajectory shape. This type of modelling is termed 

latent class growth analysis (LCGA).  

 

There are multiple benefits to defining treatment response in depression post-hoc. Firstly, 

this approach still retains the categorical nature necessary to complement and inform 

clinical practice (Uher et al., 2010). However, it does so without assumptions on what score, 

or percentage decrease, will constitute a response, which is a major shortcoming of a priori 

definitions. Categories instead refer to favourable or unfavourable trajectories, rather than 

responders and non-responders (Gueorguieva et al., 2011). These are arguably more 

appropriate terms for patient populations where treatment mechanisms are not well 

understood. The information provided on trajectory shape can also be useful for clinicians to 

manage expectations and improve patient compliance and motivation (Stulz et al., 2010). In 

GMM, as categories are based on what naturally occurs in the data, categorization is less 

arbitrary, and subgroups of patients more homogenous (Thibodeau et al., 2015). When 

inter-individual differences are subtle, and the anticipated effect sizes are small, a 

categorization method that minimizes within-group heterogeneity would be advantageous.   
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Growth mixture modelling to measure treatment efficacy in depression. 

A small number of studies have used growth mixture modelling to study depression 

symptom change over time (Rhebergen et al., 2012), and treatment effects in patients with 

major depression (Brière, Rohde, Stice, & Morizot, 2016; Cuijpers et al., 2005; Gueorguieva 

et al., 2011; Stulz et al., 2010; Thibodeau et al., 2015; Uher et al., 2010). A naturalistic study 

of 804 patients with depression modelled symptom trajectories over two years (Rhebergen 

et al., 2012). Employing a LCGA model, five distinct classes of patients emerged from their 

sample, each with a distinct linear trajectory over time. One group displayed a rapid 

improvement in depressive symptoms over time; two further groups showed a gradual 

improvement, differing only on baseline severity. Two smaller groupings represented a 

minority of the sample (20%), showing trajectories indicative of chronic and unchanging 

depression, again differing on severity levels. Interestingly, this study illustrated that 

diagnoses often associated with more chronic forms of depression (dysthymia and double 

depression) actually showed poor correspondence to the chronic classes identified 

empirically. These findings suggest that diagnostic criteria alone may be insufficient to 

explain the heterogeneity of patients with depression adequately. A unique aspect of this 

study was that it provided an insight into how depressive symptoms change over time in a 

clinical population, without direct effects of a treatment intervention. Consequently, it 

provided valuable, clinically relevant data on the characteristics of patients who may 

spontaneously respond without intervention. 

 

Two studies investigating trajectories of symptom change in clinical trial data of 

antidepressant medications produced comparable findings (Gueorguieva et al., 2011; Uher 

et al., 2010). These studies had a strong research design with a good number of time-points. 

This rich amount of information allowed for the shape of symptom change over time to be 

interrogated. Encouragingly, both studies found symptom change for patients across the 

trial followed trajectories with a distinct break point marking two different rates of change. 

Moreover, across both studies, these piece-wise functions showed significant variation 

between individuals and further model testing revealed that two subclasses of patients best 

described the data, each with their own distinct trajectory. The findings from these empirical 

studies have provided support for the effectiveness of antidepressant medications. Firstly, 

treatment increased the likelihood of membership to a responding class (Gueorguieva et al., 
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2011), but also, symptom reduction in the responding classes appeared evident and most 

rapid during the first 3 weeks of treatment (Gueorguieva et al., 2011; Uher et al., 2010).  

 

Both studies mentioned above also agreed that classes showed a 3:1 percentage split of 

patients (Gueorguieva et al., 2011; Uher et al., 2010). Such imbalance in groupings may 

explain contradictory results seen in other studies, where categorical definitions fail to reach 

significance thresholds achieved by continuous outcomes (Emslie et al., 2002). However 

despite such strong agreement between the two datasets in response shape and number of 

subgroups, they differed markedly in the reported rates of change of the larger versus 

smaller groups. Uher and colleagues (2010) stated that their majority group was best 

defined as gradual responders, while their minority group appeared to respond rapidly, 

showing a sharp initial decrease in symptoms during the first three weeks of the trial. 

Conversely, Gueorguieva and colleagues (2011) stated that their groups were best described 

as a majority class of responders and a minority class of non-responders that failed to show 

a significant change in their trajectory over the 9-week trial.  

 

Uher (2010) and Gueorguieva and colleagues’ (2011) work provided good support for the 

notion that multiple subgroups of patients (as defined by the association between symptom 

change and treatment) exist within depression, however the lack of agreement in clinical 

interpretability implores for more empirical work to be conducted. In addition, both studies 

only investigated pharmacological intervention. While SSRIs are often prescribed as a first 

line of action, it is common and best recommended practice for them to be combined with a 

form of psychotherapy (NICE, 2015, NICE, 2016). Consequently, studies have begun to 

investigate symptom change trajectories across other treatment modalities, including 

pharmacological-psychological combination treatment. Two studies have investigated such 

combination treatments over 12 weeks, in two differing samples of depressed patients (Stulz 

et al., 2010; Thibodeau et al., 2015). These studies found corresponding results: that 

patients’ symptom change over time appeared to group into three distinct trajectories. In 

addition, both studies found that baseline severity was a significant factor for group 

differentiation, and that the majority of patients improve gradually; only the smallest classes 

showed steeper declining slope values indicative of rapid response. However, both studies 

applied only a linear function to their models. As described above, investigation of non-

linear trajectories would more accurately define trajectory shape in depressive symptom 
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change (Gueorguieva et al., 2011; Uher et al., 2010), and indeed, evidence from the original 

trial data for one study (Stulz et al., 2010) supported the presence of non-linear trends 

(Keller et al., 2000). Restricting models to a simplistic function may bias the models to favour 

more classes in order to represent true nonlinear functions as linear trends (“Topic 6: Mplus 

Short Course Videos and Handouts,” n.d.; Wickrama et al., 2016) . Consequently, without a 

thorough investigation of trajectory shape, interpretation of these results is limited.  

 

One strength of one of the above studies mentioned here was that the treatment modality 

of Thibodeau and colleagues’ (2015) research included combination treatments of two 

antidepressants and three psychotherapies that are commonly prescribed in clinical settings. 

However, to date, very little research has been conducted using GMM in trials of solely 

psychotherapy treatments. Only one study known to the current author has investigated this 

in a clinical population (Cuijpers et al., 2005). Cuijpers and colleagues (2005) randomized 

patients to either CBT, or treatment as usual (TAU), which consisted of a tailored therapy to 

the individual’s needs. Four trajectory classes emerged from their analysis, distinguished by 

baseline severity and differential slope values depending on treatment allocation. The two 

classes with the lowest baseline severity contained the majority of patients. A unique 

strength of this study was that the authors collected data every 3 months for 1.5 years. Such 

detailed investigation of long-term trajectories is currently under-studied in this particular 

research field. Indeed, authors have argued that trends that emerge after 12 weeks cannot 

be assumed to continue in the same way; the duration of follow-up plays a contributory role 

in determining response classes (Brière et al., 2016; Thibodeau et al., 2015). Therefore, 

short-term clinical trials at best provide an incomplete picture of response patterns in 

depression.  

 

Impact on clinical trial interpretations 

One of the main advantages to the employment of GMM in clinical trials is the ability to 

investigate differential treatment effects between subgroups of patients with depression. A 

number of studies have found that treatment increases the likelihood of patient 

membership to favourable trajectory classes (Brière et al., 2016; Gueorguieva et al., 2011). 

Other studies have taken this a step further and demonstrated that certain treatments are 

more beneficial for particular classes of patients (Cuijpers et al., 2005; Stulz et al., 2010). 

Stulz and colleagues(2010) found that only within the moderately depressed patient group 
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was there a significantly benefit of combination treatment compared to monotherapy. The 

size of this subgroup was likely driving the effect seen in the original clinical trial for the 

superiority of combination treatment (Keller et al., 2000; Stulz et al., 2010). This study 

highlights the limitations of end-point analyses. Cautious interpretation must be taken when 

generalizing group means; the effect may not be true for all patients.  

 

A more detailed clarification of clinical trial results by empirical approaches has led to the 

question of validity for clinical trial conclusions that dichotomise patients without 

consideration of trajectory over time. For instance, Uher and colleagues (2010) reported 

opposing results depending on their choice of categorization method. When patients were 

classified using GMM, patients in more favourable trajectory classes were more likely to be 

randomized to nortriptyline than escitalopram, even following sensitivity analyses to 

account for classification uncertainty. However, when categorizing based on percentage 

reduction, patients treated with escitalopram were more likely to be classified as a 

responder. Gueorguieva and colleagues (2011) suggested that the extent of misclassification 

could be as high as 35%, erroneously classifying good responding patients as false negatives 

to treatment. Theoretical definitions may therefore be too strict (Gueorguieva et al., 2011) 

and the choice of methodology to determine outcome is particularly important if 

homogeneity is a goal for revealing the best group of non-responding individuals. 

 

Some studies have reported that not only can treatment influence trajectory membership, 

but also trajectory course. Cuijpers and colleagues (2005) fitted separate GMMs to each 

treatment group and, while finding that the number and division of patients between their 4 

trajectories were equivalent for both treatments, the shapes of those trajectories were 

significantly different. Patients in the highest depressive symptomatology class receiving 

TAU had no significant improvement in their symptoms over 18 months, while those treated 

with CBT experienced a clinically significant decline. Furthermore, the class with the second 

highest baseline symptomatology experienced a more rapid reduction in symptom severity 

with CBT. However, it is not typical for studies to divide their sample into treatment groups. 

GMMs are large sample techniques. False impressions of poor model fit could occur when 

the smaller samples don’t contain enough variance to converge properly (Ram & Grimm, 

2009; Wickrama et al., 2016). Consequently, very few studies have conducted separate 

trajectory analyses for treatment groups, with one other known to the current author and 
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indeed, those authors did not find treatment to affect the nature of trajectory, but only 

trajectory membership (Brière et al., 2016).  

 

Moving forwards 

To date, the majority of studies that have implemented empirical techniques such as GMM 

in MDD have been in adults (Cuijpers et al., 2005; Gueorguieva et al., 2011; Rhebergen et al., 

2012; Stulz et al., 2010; Thibodeau et al., 2015; Uher et al., 2010), and trial data has been of 

primarily pharmacological (Gueorguieva et al., 2011; Uher et al., 2010), or combination 

interventions (Stulz et al., 2010; Thibodeau et al., 2015). Regardless of treatment modality, 

all studies supported the presence of multiple, qualitatively distinct classes of symptom 

trajectories over a single population, not necessarily distinguishable on baseline severity 

alone. However, studies disagreed on their interpretation of trajectory shape and 

nomenclature. While psychotherapies are beginning to be investigated (Brière et al., 2016; 

Cuijpers et al., 2005), there is insufficient research in this treatment sector and a major 

shortcoming of the current field is the lack of longer-term follow-up trials. However, perhaps 

the biggest gap in the literature resides in the lack of studies using GMM in clinical samples 

of adolescents, particularly considering the importance of this developmental group in 

depression outline in the introduction to this thesis (p8). While treatment effects of clinical 

depression in adolescence have been investigated, all studies (with one exception (Scott, 

Lewis, & Marti, 2019)), have used traditional approaches to define treatment response 

(Goodyer et al., 2008; March et al., 2009).  

 

GMM however, has been used to describe the development of depressive symptomatology 

in general populations of adolescents in a number of studies (Brendgen, Wanner, Morin, & 

Vitaro, 2005; Brière, Janosz, Fallu, & Morizot, 2015; Costello, Swendsen, Rose, & Dierker, 

2008; Wickrama & Wickrama, 2010). In the absence of intervention, all studies found 

support for the existence of qualitatively distinct trajectories of symptom change over time 

in adolescence. These trajectories typically included a group with persistently high 

symptoms, a group with persistently low symptoms, and a group of increasing symptoms. 

Brière and colleagues (2016) extended this work in a prevention trial, investigating how a 

cognitive-behavioural preventative intervention related to trajectories of subclinical 

depressive symptoms in adolescence. They found that 4 distinct trajectories were present in 

their adolescent sample over their two-year study, which agrees with naturalistic study 
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findings (Brendgen et al., 2005; Costello et al., 2008; Wickrama & Wickrama, 2010). Two 

trajectories possessed similar traits to those reported in clinical adult samples (Stulz et al., 

2010; Thibodeau et al., 2015; Uher et al., 2010); they accounted for the majority of the 

sample and followed a gradual declining trajectory, differing on baseline severity. One group 

also showed persistent symptoms, which agrees with some adult literature (Cuijpers et al., 

2005; Gueorguieva et al., 2011; Thibodeau et al., 2015), and general population adolescent 

literature (Brendgen et al., 2005; Brière et al., 2015; Wickrama & Wickrama, 2010). However, 

the final grouping markedly differed from those trajectories reported in adult samples. It 

was characterized by a strong initial decline in symptoms up to 6 months; the most rapid of 

all 4 trajectories, however these patients appeared to relapse, experiencing a spike in 

symptom severity at 12 months that persisted for the remainder of the trial. It is possible 

this relapsing class was able to emerge due to the length of follow-up, highlighting the 

danger that can occur when interpreting data from short-term trials.  

 

It would be of interest to establish whether the trajectories highlighted in Briere and 

colleagues’ (2016) paper can be replicated in a clinical sample of adolescents receiving 

specialist care. Only one study, published this year, has employed such methods in a 

treatment trial of adolescent depression (Scott et al., 2019). In a re-analysis of the TADS data 

(March et al., 2009), Scott and colleagues (2019) found that over a 12 week period, three 

unique trajectory classes were present in their adolescent sample receiving antidepressant, 

psychological or combination treatment. Two classes mirrored the rapid (minority; 9.2%) and 

gradual (majority; 75.3%) responder classes discussed in a number of adult trials (Thibodeau 

et al., 2015; Uher et al., 2010), and a further class showed limited improvement over the trial 

(15.5% of their sample). In agreement with adult trials, patients allocated to pharmacological 

treatment were more likely to follow a favourable trajectory of improvement (Gueorguieva 

et al., 2011).  

 

Unlike Briere and colleagues(2016), no relapsing class emerged in the TADS re-analysis (Scott 

et al., 2019). However, Briere and colleagues’ (2016) relapsing class only emerged after a 6-

month period. It is possible that the short duration of the TADS study precluded the 

emergence of such a class, or indeed, may have even misrepresented some patients. As 

previously discussed, duration of trial has a significant impact on the emergent classes and 
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their interpretation (Brière et al., 2016; Thibodeau et al., 2015), therefore future work would 

benefit from extending these findings in adolescent depression, with longer-term follow up.  

 

The number of time points used in the TADS trial was also a significant limitation. Only three 

time points meant that only linear trajectories could be investigated. A fuller investigation of 

alternative trajectory shapes over this developmental age could provide further insight into 

the dynamics of symptom change during and after treatment for adolescent patients.  

 

Objectives and Hypotheses 

Consequently, the primary objective of this first piece of work was to conduct a secondary 

analysis of the IMPACT trial (Goodyer et al., 2011), to investigate trajectories of depressive 

symptom change in a clinical sample of adolescents, from randomisation to the final 

assessment one year following end of treatment. The specific aims were to:   

1. define the number of longitudinal classes revealed from depression symptoms only 

and describe the shape of the trajectories for each group;  

2. compare the defined groups with standard priori definitions of response/non-

response.  

 

Prior literature would suggest that 4 classes could emerge from the data, with favourable 

trajectories showing rapid and gradual improvement in symptoms(Uher et al., 2010), and 

unfavourable trajectories showing either no improvement, or a relapsing trajectory shape 

(Brière et al., 2016).  

 

Chapter 2 is dedicated to describing the demographic and clinical characteristics of the 

emerging classes from this first piece of work.  
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Methods 

Study Design 

This study was a re-analysis of the IMPACT trial (Goodyer et al., 2011). The IMPACT study 

was a multicentre, pragmatic, observer-blind, randomised controlled trial investigating 

whether there was a superior effect for two specialist psychological treatments (cognitive 

behavioural therapy; CBT, short-term psychoanalytic psychotherapy; STPP) compared with a 

reference treatment of brief psychosocial intervention (BPI) on reducing self-reported 

depressive symptoms by end of follow up 12 months after end of treatment (Goodyer et al., 

2017). Participants were randomly assigned to one of the three treatment arms, with 

stochastic minimisation by age, sex, self-reported depression sum score, and region, as per 

study protocol (Goodyer et al., 2011). The primary findings from the trial demonstrated no 

differences in depression symptoms sum scores between treatment groups over the course 

and by the end of the study (Goodyer et al., 2017). Consequently, treatment group was 

collapsed for the present study, to investigate the symptom trajectories in this whole 

population. Self-reported depressive symptomatology was measured at 6 nominal time 

points:  baseline, 6, 12, 36, 52 and 86 weeks post-randomisation. The last 2 time points were 

post-treatment; treatment was completed by 36 weeks in >95% of the cohort (Goodyer et 

al., 2017). Based on each individual’s sum score symptom change over the trial, a series of 

growth mixture models were conducted to determine the best fitting model, and the 

number of classes of individuals present within the dataset.  

 

Setting 

The IMPACT trial (Goodyer et al., 2011) recruited patients from 15 National Health Service 

child and adolescent mental health service (CAMHS) clinics across 3 geographical regions in 

the UK: East Anglia, North London and North-West England covering an estimated 1,000,000 

adolescents aged 11-17 years. The study recruited, assessed and followed up all participants 

between June 29, 2010 and Jan 17, 2013 (Goodyer et al., 2017).  

 

Participants 

Adolescents aged between 11 and 17 years, with a current diagnosis of major depression 

(DSM-IV(APA, 2000)) with moderate to severe impairment were enrolled in the IMPACT trial. 

Exclusion criteria included generalised learning difficulties or a Pervasive Developmental 

Disorder, pregnancy, substance abuse, or a primary diagnosis of bipolar type 1, 
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schizophrenia or an eating disorder. Patients were also excluded if they were currently 

taking medication that would interact with an SSRI and were unable to stop this medication. 

Full details of the study protocol can be found in the study protocol (Goodyer et al., 2011). 

Patients were randomized to CBT, STPP or the reference treatment of BPI, as per study 

protocol.  

 

Variables 

Symptom trajectory class membership was defined through GMM (see below) using the self-

reported Mood and Feelings Questionnaire (MFQ) score across all time-points.  This is a 33-

item Questionnaire of depressive symptomatology covering the past 2 weeks (Burleson 

Daviss et al., 2006). MFQ items were measured on a 3-point scale (almost never, sometimes, 

often/almost always). Total scores (range of 0-66) were used in GMMs. Higher scores 

indicated more severe depressive symptoms and were positively correlated with greater 

psychosocial impairment (Goodyer et al., 2017).  

 

Bias 

The recruitment sites were dependent on referrals from primary care sources including 

family physicians, community mental health teams and self-referral. Clinics who participated 

were invited and not selected randomly. Therefore, we cannot be certain that the sample is 

necessarily representative of major depression in the adolescent population at large nor of 

cases usually referred to child and adolescent mental health clinics in the UK. However, 

there are no other referral options for the primary care services other than their local NHS 

services and therefore the clinics are likely to be receiving the majority of referrals for major 

depression. Finally these clinics are part of routine NHS mental health services and not set 

up solely for the purposes of the IMPACT study.  

 

Study size 

Of 557 participants screened for eligibility into the IMPACT trial, 87 were excluded (73 did 

not meet criteria for major depression, 4 had mania as their primary diagnosis, 4 had a 

primary substance use disorder, 2 had received previous treatment used in the trial, 1 had 

autism, 1 was pregnant, 1 would not engage and 1 was unable to read or understand 

information). 470 adolescents were therefore randomised to 3 treatment arms. 
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Subsequently, 5 withdrew consent to use their data, leaving 465 patients included and in the 

current analysis (Goodyer et al., 2017). 

 

Statistical analyses 

Missing Data 

Multiple imputation was the chosen method to deal with cases of missing data, in order to 

maximise sample size and achieve convergence for the GMM. Eleonore van Sprang (visiting 

Masters student) and Sharon Neufeld (Research Associate employed in the Department of 

Psychiatry, University of Cambridge) created the imputed dataset. The dataset was made 

available in the IMPACT trial data. A description of the imputation method written by van 

Sprang and Neufeld can be found in the publication manuscript of this chapter, currently 

submitted for peer review (See Supplement). It states:  

 

“Despite excellent follow-up rates (80% at 86-weeks(Goodyer et al., 2017)), multiple 

imputation was required in order to maximize sample size and achieve convergence for the 

GMM. Due to a wealth of auxiliary variables predicting missingness, data was [sic] presumed 

to be missing at random. Also due to these auxiliary variables, multiple imputation was 

favoured over Full Information Maximum Likelihood as auxiliary variables can easily be 

incorporated into a multiple imputation model and help decrease bias and increase efficiency 

(Graham, 2003). Variables at all time points were assessed for inclusion in the imputation 

model in addition to MFQ items. Those related to outcome (p<0.05 or r>=0.3) and/or 

missingness in outcome, and variables used in final analyses, were included in the model 

(White, Royston, & Wood, 2011). Additional non-missing variables were also included to 

improve model prediction. This resulted in imputation of 24 variables plus the 33 MFQ items, 

repeated over six assessments, yielding a dataset too large to impute in wide format. Thus, 

time-varying data was imputed in long format, a method which is less biased under 

conditions of less missing data, more repeated measures, and a reliable outcome measure 

(Gottfredson, Sterba, & Jackson, 2017), as is the case in the present data. For each model, 

fifty datasets were multiply imputed using chained equations (White et al., 2011). As it is not 

possible to obtain the VLMR and LMR fit statistics for model comparison in a multiply 

imputed dataset, multiple imputations were averaged prior to estimation of GMM. While we 

acknowledge it is more optimal to obtain model estimates from each of the multiply imputed 
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datasets and then combine estimates (White et al., 2011), our approach allowed us to obtain 

these fit statistics which are crucial for determining the most optimal model.”  

 

Latent growth curve modelling (LGCM) 

Latent growth curve modelling (LGCM) is a type of modelling that allows for the analysis of 

the change in MFQ score over time, which in our case is the duration of the IMPACT trial. For 

growth curve modelling to be viable, the data must suggest that significant variability exists 

in slope values, and that the slope variance is non-negative. This means that the covariance 

between adjacent time points must be higher than the covariance between non-adjacent 

time points (Wickrama et al., 2016). Consequently, the longitudinal correlation patterns of 

the repeated measures of MFQ score were investigated, to examine the feasibility of 

estimating growth curves. Results are shown in Table 1.  

 

Table 1. Correlation matrix among MFQ scores included in the model 

Assessment 0 
(baseline) 

1 (6 
weeks) 

2 (12 
weeks) 

3 (36 
weeks) 

4 (52 
weeks) 

5 (86 
weeks) 

0 (baseline) 1.000      
1 (6 weeks) .463 1.000     
2 (12 
weeks) 

.344 .609 1.000    

3 (36 
weeks) 

.307 .414 .554 1.000   

4 (52 
weeks)  

.224 .294 .416 .659 1.000  

5 (86 
weeks) 

.221 .272 .335 .535 .613 1.000 

MFQ= Mood and Feelings Questionnaire. All correlations were significant at p<.001.  

 

The observed correlation between two adjacent occasions equal .463, .609, .554, .659, and 

.613. The adjacent correlations are higher than correlations between two non-adjacent time 

points. This presents preliminary evidence for a non-negative variance of slope parameter. 

As such, a LGCM will likely fit well with the data structure.  

 

Step 1: Specify a traditional latent growth curve model (LGCM). 

The trajectory of change in depressive symptoms over the trial was modelled on imputed 

data from all 465 individuals in the original IMPACT trial. We used MFQ scores to estimate 
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the latent growth curve, at planned assessment intervals of 0, 6, 12, 36, 52 and 86 weeks 

post-randomisation. MFQ was treated as a continuous variable. As an aim of this research 

was to test whether age and gender were predictive of class membership, this information 

was not included in the models.  

 

The first stage of the analysis began with a growth curve model with one latent class: a 

conventional latent growth curve model (LGCM). A LGCM describes the average course of 

depressive symptoms using continuous latent growth factors of intercept, linear and 

quadratic slopes. The intercept describes the level of depressive symptoms at baseline, a 

linear slope describes how the symptoms change over time and a quadratic factor describes 

any curvature in that slope. It is necessary to identify a common mean growth curve to 

determine the model fit of a single class model. Then successively more classes will be added 

to determine the best fitting model. LGCMs with linear and quadratic trends over time were 

considered and tested in the Mplus program version 8.0 (Muthén & Muthén, 2017). We also 

hypothesised that a change in symptom trajectory might occur when treatment ended for 

patients. While treatment cessation was planned to end around the fourth assessment for 

patients (nominally 36 weeks), the average length of treatment was 27 weeks in the IMPACT 

trial. This falls between the mean of the third assessment (18 weeks from baseline) and the 

mean of the fourth assessment (43 weeks from baseline; see Table 2). Therefore, two 

piecewise models with one transition point were considered, one with the transition point at 

the third assessment, and one at the fourth. These models expressed the separate growth 

curves as two linear trends. Collectively, the four models tested allowed for a variety of 

straight and curved trajectories with up to one sharp transition point to capture different 

rates of improvement at different stages of the trial.  

 

Time consideration  

The means, standard deviations (SD), medians and inter-quartile ranges for assessment 

timings are presented in Table 2. As is clear from these values, the timing that each 

assessment took place varied substantially across individuals. Consequently, three models 

were tested to assess the degree to which variation in time of assessment would affect 

model fit. In the first unconditional models, time-points were fixed at the mean time of that 

assessment from the whole sample. Then two further series of models were tested. The first 

included time of assessment as a covariate in the models. Finally, a third series of models 
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were run which allowed for assessment time-point to individually vary across individuals 

(TSCORES). The rationale for testing both methods of controlling for time was because the 

option of TSCORES makes models substantially more complex, which can affect model 

convergence in later stages of GMM.   

 

Maximum Likelihood (Robust) was used as the model estimator for all models. This was 

chosen because it is robust against deviations of multivariate normality. A large number of 

start values (5,000 with 100 optimisations) were used to avoid solutions of local maxima 

(Brière et al., 2016; Hipp & Bauer, 2006). 

 

Table 2. Descriptive statistics for desired and actual time-point of each assessment 

Desired 
assessment 
time-point 
(weeks) 

 Actual assessment time-point (weeks) 
Mean SD Median IQR Min Max 

Baseline 0 0 0 0 0 0 
6 weeks 12.0 3.86 11.1 3.9 6.1 41.0 
12 weeks 18.4 4.04 17.7 4.0 11.6 38.0 
36 weeks 42.7 4.09 42.0 4.2 30.6 63.1 
52 weeks 60.1 5.02 59.0 5.1 48.3 92.1 
86 weeks 95.3 9.18 93.6 6.7 69.0 149.0 
 

Step 1: Results 

Tables 3, 4 and 5 show the model fit information for the unconditional, conditional and time-

varying LGCMs, respectively. Table 6 denotes all intercepts, linear and quadratic trajectories 

for each model. As TSCORES did not prove to provide a substantially better fit of the data, 

we took forward for discussion only models where time was included as a covariate  (Table 

4). Assessment time-points will herein be referred to as the average number of weeks that 

that assessment took place: 0, 12, 18, 43, 60 and 95 weeks, post-randomisation.  

As can been seen in Table 4, and observed in the graphical representation of Figure 1, both 

quadratic and linear-piecewise models provided a better representation of the data than a 

simple linear trajectory, suggesting symptom change was not a simple linear function. A 

piecewise model that separately modelled the change in depressive symptoms, linearly, over 

the first 18 weeks of treatment (on average; assessments 0-2), and then the remaining 

period of the trial (assessments 3-5), was identified as the optimal function for the common 
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mean growth curve of depressive symptoms over the trial (X2(37)= 66.570, p=.002, 

CFI/TLI=.964/.956, RMSEA=.041 and SRMR=.037, BIC=21098.832, AIC=21015.992).  

 

Table 3: Fit indices for unconditional LCGMs. 

Model Fit 
Information 

Linear Quadratic Piecewise(43 week 
break) 

Piecewise(18 week 
break) 

Information 
Criteria 

    

Akaike (AIC) 21445.476 21151.320 21213.256 21045.437 
Bayesian (BIC) 21491.038 21213.450 21275.386 21107.568 
     
Chi-square Test 
of Model Fit  

    

Value 425.078 176.219 230.755 80.244 
Degrees of 
Freedom 

16 12 12 12 

P-Value <.001 <.001 <.001 <.001 
     
RMSEA (Root 
Mean Square of 
Approximation) 

    

Estimate 0.234 0.172 0.198  0.111 
90 Percent C.I. N/A N/A N/A N/A 
Probability 
RMSEA <=.05 

N/A N/A N/A N/A 

     
CFI/TLI     
CFI 0.475 0.789 0.719 0.912 
TLI 0.508 0.737 0.649 0.891 
     
SRMR 
(Standardised 
Root Square 
Residual) 

    

Value 0.064 0.048 0.051 0.039 
CFI: Comparative Fit Index; TLI: Tucker-Lewis Index 
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Table 4: Fit indices for conditional LCGMs. 

Model Fit 
Information 

Linear Quadratic Piecewise(43 week 
break) 

Piecewise(18 week 
break) 

Information 
Criteria 

    

Akaike (AIC) 21125.041 21024.495 21027.396 21015.992 
Bayesian (BIC) 21191.314 21107.335 21110.237 21098.832 
     
Chi-square Test 
of Model Fit 

    

Value 164.718 73.620 75.929 66.570 
Degrees of 
Freedom 

41 37 37 37 

P-Value <.001 <.001 <.001 .002 
     
RMSEA (Root 
Mean Square of 
Approximation) 

    

Estimate 0.081 0.046 0.048 0.041 
90 Percent C.I. N/A N/A N/A N/A 
Probability 
RMSEA <=.05 

N/A N/A N/A N/A 

     
CFI/TLI     
CFI 0.849 0.955 0.952 0.964  
TLI 0.834 0.946 0.942 0.956 
     
SRMR 
(Standardised 
Root Square 
Residual) 

    

Value 0.063 0.035 0.037 0.037  
CFI: Comparative Fit Index; TLI: Tucker-Lewis Index 

 

Table 5: Fit indices for time-varying LCGMs. 

Model Fit 
Information 

Linear Quadratic Piecewise(43 week 
break) 

Piecewise(18 week 
break) 

Information 
Criteria 

    

Log-likelihood -10716.420 -10572.385 -10596.524 -10541.635 
Akaike (AIC) 21454.840 21174.769 21223.048 21113.269 
Bayesian (BIC) 21500.403 21236.900 21285.178 21175.400 
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Table 6: Intercept and Slope values for each Model.  

 Intercept Slope1 Quadratic1 Slope2 
Linear     

Unconditional 38.219*** -1.887***   
Conditional 45.538*** -3.686***   

TSCORES 38.146*** -1.872***   
Quadratic     

Unconditional 43.276*** -5.073*** 0.302***  
Conditional 45.913*** -7.676*** 0.590***  

TSCORES 42.964*** -4.915*** 0.290***  
Piecewise(43 
week break) 

    

Unconditional 41.892*** -3.433***  -0.471** 
Conditional 45.809*** -5.973***  0.230*** 

TSCORES 41.820*** -3.458***  -0.470** 
Piecewise(18 
week break) 

    

Unconditional 45.650*** -7.328***  -1.101*** 
Conditional 45.941*** -6.982***  -1.088*** 

TSCORES 45.091*** -7.004***  -1.111*** 
*Variances were significant at p<.05 

**Variances significant at p<.01 

***Variances significant at p<.001 
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Table 7 shows the Akaike information criterion (AIC) and Bayesian information criterion (BIC) 

values, along with the and AIC and BIC weights of all competing models (Wagenmakers & 

Farrell, 2004). Comparisons of the AIC and BIC weights allow these values to be interpreted 

as conditional probabilities (Wagenmakers & Farrell, 2004). This therefore allows us to judge 

the statistical importance of the differences observed in these values (Wagenmakers & 

Farrell, 2004). Based on the AIC, the piecewise model described above shows a 98.3% 

probability that it is the best model. It can further be shown that this model is 75.6 times 

more likely to be the best model in terms of Kullback-Leibler discrepancy than the next best 

model (calculated from dividing the AIC weight of best model by the next best model; 

(Wagenmakers & Farrell, 2004)). Based on the BIC, the piecewise model described above 

shows a 97.1% probability that it is the best model. It can further be shown that this model is 

69.4 times more likely to be the best model in terms of Kullback-Leibler discrepancy than the 

next best model. Consequently, we can be confident that this is the most optimal trajectory 

shape.  

 

On inspection of the optimal model (linear-piecewise model with a break point at 18-weeks), 

we can see that the average intercept, and linear trajectory for the first period were 

statistically significant (45.941, p<.001 and -6.982, p<.001 respectively), meaning that the 

trajectory of depressive symptoms decreased over the first 18 weeks of the trial. The linear 

trajectory of the remaining period was insignificant (-1.088, p= .140) suggesting that 

depressive symptoms over this part of the trajectory showed no average change and were 

stable over the follow-up period of the trial.  

The results from this model further indicated that there were significant inter-individual 

differences in all growth factors (intercept: 80.737, p<.001; first linear trajectory: 30.642, 

p<.001; and second linear trajectory: 1.557, p<.001). This suggests variation exists around 

baseline levels of depression and rates of change in depressive symptoms over both sections 

of the model. In addition, a negative covariance was present between the intercept and first 

linear trajectory (-21.533, p=.014), indicating that on average, individuals with a high 

baseline level of depression were more likely to experience declining symptoms over time 

compared to other individuals. A negative covariance was also present between the first and 

second linear trajectories (-2.039, p=.003) suggesting that on average, individuals with a 

steeper decline in their depressive symptoms over the first 18 weeks of the trial were less 
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likely to have a steep decline in the second part of the trial. No other covariances were 

statistically significant.  

In conclusion, the data suggest that a single class solution provides a good representation of 

the data, but significant variation exists on all aspects of the trajectory. Consequently, 

multiple class models were tested to determine the optimal number of classes for this 

dataset.
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Table 7: AIC and BIC values and w
eights for all com

peting m
odels. 

 
M

odel 
No. Param

eters. 
Log-likelihood 

AIC 
AIC 
difference 

AIC 
w

eights 
BIC 

BIC 
difference 

BIC 
w

eights 
Linear 

 
 

 
 

 
 

 
 

U
nconditional 

11 
-10711.738 

21445.476 
429.484 

<.001 
21491.038 

302.206 
<.001 

Conditional 
16 

-10546.521 
21125.041 

109.049 
<.001 

21191.314 
92.482 

<.001 
TSCO

RES 
11 

-10716.420 
21454.840 

438.848 
<.001 

21500.403 
401.571 

<.001 
Q

uadratic 
 

 
 

 
 

 
 

 
U

nconditional 
15 

-10560.660 
21151.320 

135.328 
<.001 

21213.450 
114.618 

<.001 
Conditional 

20 
-10492.247 

21024.495 
8.503 

.013 
21107.335 

8.503 
.014 

TSCO
RES 

15 
-10572.385 

21174.769 
158.777 

<.001 
21236.900 

138.068 
<.001 

Piecew
ise(43 

w
eek break) 

 
 

 
 

 
 

 
 

U
nconditional 

15 
-10591.628 

21213.256 
197.264 

<.001 
21275.386 

176.554 
<.001 

Conditional 
20 

-10493.698 
21027.396 

11.404 
.003 

21110.237 
11.405 

.003 
TSCO

RES 
15 

-10596.524 
21223.048 

207.056 
<.001 

21285.178 
186.346 

<.001 
Piecew

ise(18 
w

eek break) 
 

 
 

 
 

 
 

 

U
nconditional 

15 
-10507.719 

21045.437 
29.445 

<.001 
21107.568 

8.736 
.012 

Conditional 
20 

-10487.996 
21015.992 

0 
.983 

21098.832 
0 

.971 
TSCO

RES 
15 

-10541.635 
21113.269 

97.277 
<.001 

21175.400 
76.568 

<.001 
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Step 2: Specify a Growth Mixture Model (GMM).  

Analyses thus far suggested that a single class solution provides a good representation of the 

data. In the second stage, multiple class models were considered to test whether a single 

class is the optimal number of classes for this dataset. We used GMM to identify distinct 

classes with different trajectories, allowing for within-class variation. For the best fitting 

class model, the variance between classes for each growth factor was tested individually. No 

evidence of significant variation was found (Table 1, Appendix 1A). This means that the 

variation around each group mean was not significantly different for the respective classes. 

This suggests that allowing between-class variation in growth factors would not improve the 

model fit, thus between-class variances were held equal across classes for all growth factors. 

Only solutions that were replicated with different starting values were accepted.  

 

Classes were incrementally added to the single class model to determine the best fit. We 

considered models with 1 to 5 trajectory classes due to our a priori hypothesis; that we 

would expect 4 classes to emerge from the data. The objective was to select the most 

parsimonious model, based on a number of criteria. First, we examined information criteria 

to compare the relative fit of trajectory solutions. These included the Akaike information 

criterion (AIC) and the Bayesian information criterion (BIC). The model with the lowest AIC 

and BIC was retained, as low values indicate better model fit. BIC values were given priority 

in cases of discrepancy between indices. As BIC adjusts for sample size, balancing goodness 

of fit and parsimony, it often performs better (Nylund, Asparouhov, & Muthén, 2007). 

Models were only considered as favourable over another if the BIC difference was 10 or 

more (Uher et al., 2010). In addition to fit indices, the uncertainty of the model in the 

classification of subjects into the correct class was considered, and assessed using the 

entropy values. These range between 0 and 1 and indicate the probability of correct 

classification; 0 indicates everyone has an equal posterior probability of membership to all 

classes and 1 indicates that each individual has a posterior probability of 1 of membership to 

a single class, and probability of 0 to the remaining classes. As such, values closer to 1 are 

preferred. Finally, clinical interpretability and relevance of the class trajectories, as well as 

class size, were taken into account. Models where classes contained less than 10% of the 

sample were rejected as these were not considered stable numerically given our modest 

sample size (Rhebergen et al., 2012; Uher et al., 2010; Wickrama et al., 2016). Patients were 

assigned to their most likely class based on model probabilities. 
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Step 2: Results 

The model fit information for all GMMs is shown in Table 8. No convergence problems were 

detected across the class models for the GMMs. Overall, it was decided that the best fit was 

achieved with a two-class solution, illustrated in Figure 2. The BIC showed a favourable 

decrease of approximately 42 with the addition of a second class from the single class 

solution. In addition, the two-class solution showed the best quality of classification of 

individuals into trajectory classes with an entropy of 0.844. The model estimates were stable 

across different sets of random starting values and all 100 final optimisations converged to 

the same solution. 

 

Table 8. Model fit information for GMMs  

 

 

 

 

 

 

 

 

 

Fit Statistics  1 Class 2 Classes 3 Classes 4 Classes 5 Classes 
Log-
Likelihood  

 -10487.996 -10454.836 -10440.533 -10431.253 -10423.269 

AIC  21015.992 20957.672 20937.065 20926.506 20918.538 
BIC  21098.832 21057.081 21053.042 21059.051 21067.651 
Entropy  1 .844 .734 .718 .729 
Group size 
(%)  

C1 465(100%) 74(15.9%) 329(70.7%) 56(12.0%) 109(23.5%) 

 C2 - 391(84.1%) 77(16.6%) 161(34.6%) 56(12.0%) 
 C3 - - 59(12.7%) 57(12.3%) 219(47.1%) 
 C4 - - - 191(41.1%) 54(11.6%) 
 C5 - - - - 27(5.8%) 
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Figure 2: Sample and estimated means for the 2-class piecewise growth mixture model.  

Behind plots every individual patient’s trajectory over time, colour coded to his or her 

respective classes.  

 

The overlap between classes in their posterior probabilities of membership to class 1 and 

class 2 is shown in Figure 3. Values around 0.5 are where most uncertainty in class allocation 

lies. 17.6% of class 1 have a posterior probability below 0.75 of being allocated to class 1, 

and only 4.1% of class 2 have a posterior probability below 0.75 of being allocated to class 2. 

Overall, class 1 showed an 85.6% probability of correct membership in this class, and class 2 

showed a 97.7% probability of correct class membership. This investigation into the 

posterior probabilities therefore provides additional support for the strength of this model. 

The Mplus code for the two-class model is provided in the Appendix 1B.  
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Figure 3. Posterior probabilities of membership to the two-class model. Red bars indicate 

patients who were allocated to class 1, and blue bars indicate patients who were allocated to 

class 2.  
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The two-class piecewise GMM divided subjects into a small class of 74 patients (class 1, 

15.9% of patients), and a comparatively large class of 391 patients (class 2, 84.1% of 

patients). Class 1 on average showed a significantly higher baseline level of MFQ scores than 

class 2 (Wald X2(1)=25.577, p<.001). Both class 1 and class 2 showed a significant decrease in 

MFQ score over the first 18 weeks of the trial (-8.794, p<.001, and -6.466, p<.001 

respectively) however, class 1 showed significantly faster rate of MFQ reduction compared 

with class 2 (Wald X2(1)=5.446, p=.0196). That is, the class who had a higher initial baseline 

MFQ improved faster.  

 

However, these two classes appeared to depart more markedly from each other only after 

this 18-week break point. Class 1 showed a significantly faster rate of improvement over the 

first 18 weeks of the trial, then showed no further improvement and remained stable over 

the rest of the trial (0.899, p=.183). Class 2 on average, showed a significant continued, but 

slower decline in MFQ score than in the initial 18 weeks (-1.639, p=.014). This difference 

between the second linear slopes was statistically significant (Wald X2(1)=167.075, p<.001).  

 

The mean depression scores and the percentage change between time-points are shown in 

Table 9. By the end of the trial, Class 2 showed a 60.5% improvement in depressive 

symptoms, compared with 11.0% in class 1. Given the emerging trajectory shapes, we 

labelled patients in class 1 as “halted-improvers” and patients in class 2 as “continued-

improvers”. 
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 Table 9. Estim
ated and observed m

ean values for M
FQ

 scores and observed m
ean percentage im

provem
ent in M

FQ
 scores for both latent classes. 

  
Class 1: Halted-im

provers 
(n=74) 

Class 2: Continual im
provers 

(n=391) 
 

M
FQ

 scores 
M

FQ
 scores 

Assessm
ent 

Point in 
average w

eeks 
from

 baseline 

Estim
ated 

W
eighted 

Estim
ates 

O
bserved 

%
 observed 

im
provem

ent 
from

 baseline 

Estim
ated 

W
eighted 

Estim
ates 

O
bserved 

%
 observed 

im
provem

ent 
from

 baseline 

0 
51.638 

51.721 
52.096 

 
44.828 

44.810 
44.774 

 
12 

41.090 
38.191 

38.420 
26.252 

37.073 
34.649 

34.623 
22.672 

18 
35.390 

36.134 
36.558 

29.826 
32.881 

32.752 
32.689 

26.991 
43 

39.232 
38.243 

38.669 
25.774 

25.877 
23.938 

25.920 
42.109 

60 
40.789 

39.034 
39.835 

23.535 
23.039 

22.291 
22.224 

50.364 
95 

43.966 
44.978 

46.357 
11.016 

17.247 
17.797 

17.673 
60.528 
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Consideration of the three-class model 

In the three-class piecewise GMM, a smaller third class separated out with relatively lower 

baseline depressive symptoms (MFQ=30.9). Furthermore, this class did not show a 

significant decrease in depressive symptoms in the first 18 weeks, unlike the other two 

classes (-2.467, p=.096), nor showed a significant change in the second part of the trial (-

0.797, p=.278, Figure 4). While this class is of clinical interest, the addition of this third class 

did not meet the required reduction in BIC values to be regarded favourable, and the quality 

of classification suffered (.734). The overlap between classes in their posterior probabilities 

of membership to class 1, class 2 and class 3 are shown in Figure 5. While only 16% of class 1 

had a posterior probability below 0.75 of being allocated to class 1 in the 3-class model, the 

posterior probabilities of classes 2 and 3 suffered. Twenty-three per cent of class 2 showed a 

posterior probability of less than 0.75 of being allocated to class 2, and 20% of class 3 

showed a posterior probability of less than 0.75 of being allocated to class 3. Overall, class 1 

showed a 93.7% probability of correct membership in this class, however class 2 showed 

only a 73.7% probability of correct membership, and class 3 a 79.7% probability of correct 

class membership. This investigation of the posterior probabilities highlights the weakness of 

the three-class model when compared with the two-class model.  
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Figure 4: Sample and estimated means for the 3-class piecewise growth mixture model.  

Behind plots every individual patient’s trajectory over time, colour coded to his or her 

respective classes. 
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The two-class model offered the most parsimonious model, with a good description of the 

data and fewer parameters. Therefore, we primarily explored the classification based on a 

two-class piecewise growth mixture model.  

 

Predictive Validity 

To provide support for the validity of the two trajectory classes, we examined total scores of 

the Health of the Nation Outcome Scales for Children and Adolescents (HoNOSCA). 

HoNOSCA is a putative measure of mental health that includes assessment of symptoms of 

multiple disorders and functioning. We would expect similarity in trajectory shape, resulting 

in significant differences between classes at baseline and final time-point, and an 

insignificant HoNOSCA difference between classes at the breaking point of 18 weeks. In 

addition, we compared the percentage decline in HoNOSCA score at their final assessment. 

 

Figure 6 plots the mean trajectory of HoNOSCA scores across trajectory classes. Visual 

inspection suggests general agreement in depressive symptom trajectories and mean scores 

of impairment across the two classes.  As expected, class 1 showed a significantly higher 

baseline HoNOSCA score (19.9), than class 2 (18.3, t= -2.02, p=.047). In addition, class 1 

showed a significantly higher HoNOSCA score at 95 weeks (14.7) compared with class 2 (6.5, 

t=-8.15, p<.001). Following the pattern shown in the MFQ trajectories, the difference 

between HONOSCA scores at the third assessment (18 weeks) was insignificant (class 1: 

14.3, class 2: 12.8; t=-1.25, p=.215). Class 1 showed a 26% improvement in HoNOSCA score 

by the end of the trial, whereas Class 2 experienced a 64% improvement. Overall, HoNOSCA 

scores appear to follow similar trajectories to MFQ. Furthermore, linear regression showed 

that class membership significantly predicted HoNOSCA score at 95 weeks (Table 10). Class 1 

on average have a higher HoNOSCA score by 0.5 standard deviations at 95 weeks than class 

2. Together, this offers support that the two-class model has a level of predictive validity and 

is measuring clinically relevant changes.  

 

 



 57 

 

Figure 6: HONOSCA sample means for the 2-class piecewise growth mixture model, derived 

from MFQ.  Behind plots every individual patient’s trajectory over time, colour coded to his or 

her respective classes.  

 

Table 10: Regression results for class membership on HONOSCA scores at 95 weeks.  

 R2 B SE B β p 

Class1 0.249 8.180 0.861 0.499 <.001 

 

Agreement between alternative categorical outcomes 

As a two-class model was the best fitting model for our data, it offers a strong comparison 

for a priori dichotomous outcome measures. Therefore, the agreement between traditional 

definitions of response/non-response and these trajectory classes was investigated, using 

the Cohen’s Kappa coefficient of agreement (Cohen, 1960). Two of the most widely used 

definitions for clinical response were compared to the empirically derived trajectory classes 

described above. The continued-improvers were considered the comparative for “clinical 

responders”, and halted-improvers were considered the comparative for “clinical non-

responders”.   
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The first traditional definition categorises patients based on whether they have experienced 

at least 50% improvement in depressive symptoms (measured by MFQ score here), by the 

end of trial (in our case, 95 weeks; Nierenberg & DeCecco, 2001). The correspondence 

between trajectory classes and clinical response categories indicated that 100% of halted-

improvers were also clinical non-responders. However, only 269 of 391 (69%) of continued-

improvers were also clinical responders. The remaining continued-improvers (122 of 391; 

31%) were classified as clinical non-responders. There was moderate agreement between 

trajectory membership and clinical categorical outcomes (k=0.412, p<.001).  

 

The second traditional definition categorises patients based on whether they have reached a 

clinical cut-off below a score considered to indicate free from diagnosis at the end of trial. 

This was taken as an MFQ score of less than 27 at 95 weeks (Kent, Vostanis, & Feehan, 

1997). The correspondence between trajectory classes and clinical cut-off response 

categories indicated that 100% of halted-improvers were also clinical cut-off non-

responders. However, only 332 of 391 (85%) of continued-improvers were also clinical cut-

off responders. The remaining trajectory continued-improvers (59 of 391; 15%) were 

classified as clinical cut-off non-responders. There was stronger, albeit still moderate 

agreement between trajectory membership and clinical categorical outcomes when defined 

by a cut-off score at 95 weeks (k=0.642, p<.001).  

 

Graphical comparison of these three approaches is shown in Figure 7. 
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Discussion 

Key Results and Interpretation 

This empirical work has highlighted that significant heterogeneity exists in patients’ patterns 

of symptom change over time, in a cohort of depressed adolescents. This is consistent with 

the findings from clinical adult (Cuijpers et al., 2005; Gueorguieva et al., 2011; Rhebergen et 

al., 2012; Stulz et al., 2010; Thibodeau et al., 2015; Uher et al., 2010) and adolescent studies 

(Scott et al., 2019), and general population studies of adolescents (Brendgen et al., 2005; 

Brière et al., 2015, 2016; Costello et al., 2008; Wickrama & Wickrama, 2010). Trajectories of 

symptom change in this sample agreed with previous literature that suggests symptom 

change is not a simple linear function over time (Brière et al., 2016; Gueorguieva et al., 2011; 

Keller et al., 2000; Uher et al., 2010). Here, symptom change followed a piecewise function, 

with two separate linear trajectories. We identified two classes of individuals that differed 

on specific characteristics of this piecewise function: a large majority (84.1%) group of 

continued-improvers and a small minority (15.9%) group of halted-improvers. The halted-

improvers demonstrated significantly higher baseline symptom score and therefore illness 

severity and a faster initial rate of improvement compared with continued-improvers. 

However, unlike the continued-improvers, who showed a slowed, but significant continual 

decrease in depressive symptoms to 95 weeks, the halted-improvers showed desistance in 

improvement from approximately 18 weeks after the beginning of treatment. At the end of 

the follow up phases of the trial, the percentage reduction in symptoms was markedly 

different between the continued and halted-improvers, at 60.5% and 11% respectively. 

Interestingly we did not find support for a class that demonstrated no improvement, as has 

been reported in other studies (Brière et al., 2016; Gueorguieva et al., 2011; Thibodeau et 

al., 2015). This suggests that for most adolescent patients, the effects of the treatments used 

in the IMPACT trial were positive to at least some degree.  

 

We did not observe the emergence of 4 classes in our data as we had hypothesised. This 

contrasts with previous empirical studies in adolescents (Brendgen et al., 2005; Brière et al., 

2016; Costello et al., 2008; Wickrama & Wickrama, 2010). However, these studies were not 

clinical samples, but samples of the general population. Consequently, those studies covered 

a wider range of the depressive spectrum, which provides GM models with more variance to 

explain. Moreover, although there are a number of clinical adult studies which support the 

existence of more than two classes, these studies applied constraints on investigated 
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trajectory shape (Stulz et al., 2010; Thibodeau et al., 2015), and eliminated within-class 

variation from their models (Brière et al., 2015; Rhebergen et al., 2012). These 

methodological choices are often necessary when models struggle to fit the data, or when 

there are limited time-points available, and both lead models to favour more classes 

(Wickrama et al., 2016). Furthermore, the clinical adolescent GMM study also faced 

constraints over trajectory shape which may have led to favouring more classes (Scott et al., 

2019). I discuss this in more detail below, but our results were stable across different sets of 

random starting values without these constraints, offering a much more representative 

model of patient experience of depressive symptom change.  

 

It is interesting that the best fitting shape was a piecewise function. Previous studies 

reporting two classes have also described their trajectory groups as expressing a piecewise 

function (Gueorguieva et al., 2011; Uher et al., 2010). Quadratic and linear shapes imply 

smooth change over time, whereas piecewise functions are defined by a sharp change in 

trajectory. For the present study, this change occurred at 18 weeks, whereby symptom 

reduction significantly slowed from 18 weeks onwards regardless of class membership. 

Moreover, the group of halted-improvers actually showed significantly more rapid 

improvement between the start of treatment and 18-week assessment, but plateaued 

thereafter. We believe the significance of the 18-week break point might reflect treatment 

cessation, as the 18-week assessment was the closest time-point to the average length of 

treatment in the trial (27 weeks). This suggests that therapy may be acting on different 

mechanisms in the two groups. For the halted-improvers, longer-term clinician involvement 

might be beneficial to allow these patients time to improve to a point of remission, before 

stopping active treatment. However, it is important to note that as this group also exhibited 

a significantly higher baseline level of severity, the rapid initial reduction in symptoms may 

simply reflect a regression to the mean.  

 

The halted-improver trajectory pattern is a novel finding in the literature. One lesson from 

this finding is that if only the first 18 weeks were considered in our work, the halted-

improvers would show an identical profile to Scott and colleague’s rapid responder group 

(Scott et al., 2019). However, it was found that patients who showed more favourable 

improvement within the first 18 weeks of treatment actually exhibited a less favourable 

trajectory pattern over 18 months. This is a stark contrast to Uher and colleagues (2010), 
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who supported the assertion that improvement within the initial stages of treatment is 

predictive of favourable long-term outcomes (Szegedi et al., 2009; Uher et al., 2010). 

However, their trial was limited to a 12 weeks duration, which underscores that to 

disentangle group trajectory patterns accurately, long-term follow-up in clinical trials is 

crucial. The early phase of treatment might not be the ideal time to assess treatment 

response and clinicians should be cautious of their interpretation of patients that appear 

particularly responsive during this phase of treatment. Indeed, as the greatest percentage 

reduction for this group was observed at 18 weeks (Table 9), followed by a worsening to only 

an 11% reduction at 18 months, a descriptive view of the data suggest that these patients 

may have begun to relapse following the end of their treatment phase. However, it is 

important to emphasise that the statistical value of the increase in this slope was 

insignificant. Nevertheless this current work supports the need for at least medium-term 

follow-up when designing future treatment trials to fully understand the trajectory of 

symptom change over time. 

 

We considered whether our 2-class solution as a dichotomous outcome agreed with 

currently used outcomes. The findings showed only moderate agreement between empirical 

and a priori definitions of symptom change, similar to those of previous studies 

(Gueorguieva et al., 2011; Uher et al., 2010). The difference resides in between 15% or 31% 

of improvers (depending on definition) identified through GMM being misclassified as non-

responders by a priori methods. This agrees with other authors who suggest that current 

clinical response definitions may be too strict (Gueorguieva et al., 2011). These differences 

demonstrate that the choice of methodology to determine outcome is particularly important 

if homogeneity is a goal for revealing the best group of non-responding individuals. This 

current work would caution researchers interested in such a sub-population from using cut-

off or percentage change measures; it is possible that a significant percentage of potentially 

good responding patients might be misclassified as false negatives to treatment. The impact 

of this misclassification in clinical trials has been highlighted in previous GMM work (Cuijpers 

et al., 2005; Thibodeau et al., 2015; Uher et al., 2010) and as mentioned in the introduction 

to this chapter, the potential for the choice of definition to overturn conclusions of clinical 

trials emphasises that the level of correspondence between traditional measures of 

response and empirically-defined classes is inadequate (Gueorguieva et al., 2011; Uher et al., 

2010). Until more is definitively known about response-based sub-classes of depression, 
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researchers must take care in their choice of outcome measure with respect to their 

research questions, and in particular try to minimise a false negative result. 

 

Study Limitations 

There are a number of limitations of the current study. Firstly, it is important to note that 

GMM are large-sample statistical techniques. While a sample of 465 is sufficient (Nylund et 

al., 2007), it is modest and many studies possess a sample of 600 or more (Brière et al., 

2016; Gueorguieva et al., 2011; Rhebergen et al., 2012; Thibodeau et al., 2015; Uher et al., 

2010). Sample size is therefore a limitation of this current work. Indeed, there is a danger of 

rejecting models with a potentially clinically relevant class purely due to insufficient sample 

size of the overall clinical trial, and a larger sample in the present study may have seen the 

emergence of a more stable and clinically relevant 3-class model. The smaller third class 

separated with significantly lower baseline severity, but no significant change in their 

depressive symptoms over either part of the model. Consequently, this describes the a 

group that might be unaffected by treatment, in agreement with other clinical samples in 

adults (Thibodeau et al., 2015; Uher et al., 2010). The 3-class solution did demonstrate a 

reduction in BIC, however it did not meet our a priori cut-off and entropy values suffered 

with the addition of another class. Indeed, our 3-class model was not rejected on insufficient 

class size, but failure to meet acceptable fit improvement while maintaining adequate class 

differentiation. This supports the assertion that our two-class model was not erroneously led 

by a modest sample size. However the possibility that a larger sample may have allowed for 

fit and entropy criteria of a 3-class model to improve to a point of acceptance remains to be 

determined.  

 

The low-severity, unchanging group of the three-class model is also significant in the debate 

over heterogeneity within subgroups of depression. Firstly, it appears that this class is a 

result of a split of the continued-improvers class in the two-class model. This supports the 

stability and homogeneity of the halted-improvers class. Secondly, this additional class could 

help explain why the definition of 50% reduction shows the poorest correspondence with 

trajectory approaches; when defined through a percentage reduction, halted-improvers and 

this third group would merge. However, these patients display strikingly different patterns of 

symptom change over time, and likely illustrate differential underlying mechanisms.  
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Crucially, end-point symptoms are low in this third group, but high in the halted-improvers 

group. 

 

A second limitation of this work is the lack of a non-symptom driven end-of-trial (nominally 

86 but averaged 95 weeks) outcome validator, such as interpersonal function. However, the 

investigation of HoNOSCA, a measure of general psychiatric symptomatology and function, 

showed a certain level of predictive validity. The two classes’ HoNSOCA scores showed 

similar trends to MFQ, with significant differences in baseline severity and end-point scores 

between the two classes. Furthermore, the two classes did not significantly differ in 

HoNOSCA scores at the 18-week break point, suggesting that HoNOSCA trajectories for these 

two classes mirror those of MFQ. Class membership was also a significant predictor of 

HoNOSCA score at the final assessment, in the expected direction. However, it is important 

to note that HoNOSCA has been shown to display multidimensionality. It is suggested that its 

sensitivity to change is better investigated as two subscales for emotional and behavioural 

symptoms for this scale, rather than total scores (Tiffin & Rolling, 2012). Without a pure 

singular measure of patient functionality, the extent of predictive validity our HoNOSCA 

assessment can provide for our work is limited. Unfortunately, data were not available from 

a separate cohort of sufficient similarity for validation, and our sample size was not large 

enough to divide into training and test sets. While less optimal, other resampling techniques 

that use the available data (such as leave-one-out cross validation) would provide an 

alternative way to investigate how well our model generalises. Future research should focus 

on validating this model either through these resampling techniques, or ideally, with the 

collection of a new adolescent cohort. By fixing the parameters of a model on a new dataset, 

to those of the model described here, one can test the reliability of the model to predict 

most likely class membership of new patients.   

 

While this study is suggestive of differential underlying mechanisms, both within and 

between trajectory classes, it is important to note that there was no no-treatment control 

group used in this study, for ethical reasons. Consequently, the precise psychological 

treatment implications cannot be conclusively determined. The reference trajectory in those 

who may show spontaneous remission, or an active “placebo” effect, but have not received 

the ‘active agent’ is unknown. While placebos for psychological treatments are theoretically 
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complicated, the possibility that the effects observed here were not related to treatment 

must remain an alternative explanation.  

 

Future studies would benefit from the collection of more time-points to allow for a more 

detailed investigation of trajectory shape both during and following treatment. In addition, 

an interesting extension of this work would be a latent transition analysis (LTA) (Muthén & 

Muthén, 2017). LTA would allow for the investigation of the extent of movement of 

individuals between classes, and predictors of such movement. Understanding the extent to 

which these classes are fixed provides an understanding of the usefulness of baseline 

predictors of membership. Moreover, it allows for the investigation of whether intervention 

can help alter a person’s trajectory. For example, it would have been of interest in this 

current work to investigate whether subsequent SSRI prescription during follow-up 

increased the likelihood of halted-improvers to change trajectory. However, data collected 

after psychological treatment cessation was limited and did not allow for this type of 

exploration.  

 

Reflection on Methodology 

In longitudinal clinical trials such as IMPACT, an important and vital consideration is the 

adequate handling of missing data. For missing data handling, end-point analyses in clinical 

trials often use the last observation carried forward method (LOCF) (Gueorguieva et al., 

2011; Lane, 2008). However, this method assumes that patients with missing data have 

either remained at the same level of severity, or ignores the difference in time between one 

patient’s last assessment and another (Gibbons et al., 1993). Given our understanding of the 

complexity of drop-out in clinical care (O’Keeffe et al., 2018), these assumptions are short-

sighted. Indeed, including length of time in study as a covariate has been shown to diminish 

previously significant treatment effects (Uher et al., 2010). LOCF methods in treatment 

studies therefore could bias results in favour of the treatment with less attrition (Lane, 

2008). Attrition in longitudinal studies, particularly in mentally unwell populations is 

expected (O’Keeffe et al., 2018), so methods that are most robust in the presence of missing 

data should be favoured.   

 

GM modelling itself is statistically stronger than typical end-point analyses that use LOCF, 

because they are themselves more robust in the presence of missing data (Uher et al., 2010). 
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However, despite this, and despite the promising retention rate of the study (80% of MFQ 

outcome data available at 86-weeks), model convergence struggled when using only the 

available data. Consequently, the imputed dataset available in the study database was used 

to produce the models (van Sprang, Neufeld & Goodyer; unpublished work). Multiple 

imputation (MI) differs from LOCF because it uses the observed data to make predictions 

regarding the likely value for the missing data (Sterne et al., 2009). MI does this multiple 

times, creating multiple imputed datasets. Consequently, more valid predictions are 

obtained because the multiple imputed values are averaged over the distribution of missing 

data, allowing for a measure of uncertainty (Dong & Peng, 2013).  

 

One of the main assumptions of MI is that the data are missing at random (MAR) (Sterne et 

al., 2009). This means that observed data can explain adequately any systematic differences 

that exist between the missing and observed values (Sterne et al., 2009). Studies where 

there is a substantial amount of data missing, or an inadequate amount of supporting data 

to aid the imputations, would therefore struggle to support this assumption of MI. The 

IMPACT trial was able to utilise 24 different variables repeated over the 6 time points. Given 

this wealth of available data, MAR was a plausible assumption for these data, and 

consequently offers confidence in the validity of the imputed dataset. Moreover, although 5 

imputed datasets are arguably sufficient (Schafer & Olsen, 1998), more recent research 

suggests that larger numbers of imputed datasets are necessary to reduce the potential 

variability of the MI process and maintain power (Graham, Olchowski, & Gilreath, 2007). 

Consequently, our study produced 50 imputed datasets, further supporting the validity of 

the data. Taken together, the MI dataset in IMPACT provided a robust method to address 

issues of missing data for our GMM models.  

 

Growth mixture modelling is a powerful statistical technique that allows for a great deal of 

exploration in a dataset (Ram & Grimm, 2009). This flexibility is remarkably useful in 

developmental and clinical psychology, however it is not without assumptions or constraints 

(Ram & Grimm, 2009). Firstly, the adoption of GMM methodology inherently assumes a 

priori that categorically distinct trajectories exist (Bauer, 2007; Bauer & Curran, 2003; Tarpey 

& Petkova, 2010). This is because GMM assumes non-normality in data is a representation of 

a mixture of normal distributions (“Topic 6: Mplus Short Course Videos and Handouts,” n.d.). 

However, this is one of a number of explanations for non-normal distributions. There is 
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therefore a danger of overestimating trajectory classes, and forcing descriptively 

meaningless classes out of a dataset that is truly one class, but non-normal (Bauer & Curran, 

2003). Indeed, many have suggested that disease severity is best represented as a 

continuous latent predictor (Tarpey & Petkova, 2010). However, the limitation of these 

models is that they are yet to extend to incorporate longitudinal data (Tarpey & Petkova, 

2010), and thus would be inappropriate for our specific research questions. In addition, it is 

not unheard of in depression literature for single class solutions to emerge through GMM 

(Gueorguieva et al., 2011). The two-classes solution in this current work is a fairly modest 

outcome compared to some studies (Brière et al., 2016; Thibodeau et al., 2015). Moreover, 

the growth functions in this current work make theoretical sense given the design of the 

clinical trial (Goodyer et al., 2011), and the emergent trajectories and differences between 

them agree with our current knowledge of response and relapse in adolescent depression 

(Birmaher et al., 2000; Goodyer & Wilkinson, 2018; Goodyer et al., 2017; Weersing et al., 

2017).  Furthermore, an investigation of the cross-sectional distribution of MFQ scores 

revealed that the data did not display significant skew or kurtosis at any time point 

(Appendix 1C), suggesting that our findings are not a misrepresentation of non-normal data.  

 

Secondly, while GMM is an exploratory approach, it is a constrained one (Ram & Grimm, 

2009). That is, GMM will search for unobserved classes, but only classes that fit the criteria 

of the model specification (Ram & Grimm, 2009). This means that the choices made by 

researchers and aspects of the clinical trial itself have a pivotal influence over the resultant 

model and extracted classes. For instance, during the first step of specifying a GM model, 

the researcher must identify the optimal trajectory shape in a single growth curve. More 

complex single growth curves will explain more variance in the model and result in the 

subsequent extraction of fewer classes. Researchers must therefore adequately consider 

what are plausible trajectory patterns for their data, based on theory, previous empirical 

findings and the design of the clinical trial itself (Ram & Grimm, 2009). For our work, four 

models were tested. We saw theoretical justification for investigating linear and quadratic 

trends based on previous work (Gueorguieva et al., 2011; Keller et al., 2000; Stulz et al., 

2010; Thibodeau et al., 2015; Uher et al., 2010), and trial design gave justification for 

piecewise functions; treatment cessation suggested reasoning for the presence of a sharp 

break point, and as the average time at which treatment ended in our study fell between 

two time points of the trial, an investigation of two piecewise models was warranted. There 
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have been no reports of cubic functions in clinical trials of depression, nor was there reason 

to believe another sharp change would occur during the trial. More complex piecewise 

models (such as with quadratic functions) would not have been stable with the number of 

time points we had available and would risk over-fitting a single growth curve. We therefore 

investigated a number of growth functions of varying complexity, but those that were 

theoretically plausible given the study design and population, and reasonable given the 

available number of measurements.   

 

An addition unique to our study at this stage was the investigation of including time of 

assessment as a covariate in the models. While GM models are robust against variation in 

time (“Topic 6: Mplus Short Course Videos and Handouts,” n.d.), the extent of variation 

observed in this particular trial (Table 2) warranted testing models with time of assessment 

as a covariate. Inclusion of this covariate significantly improved the fit of the growth curve 

model, and was therefore beneficial in ensuring that additional classes in subsequent steps 

would not emerge that were erroneously capturing this variation. 

 

Step two involved defining the number of classes present in the dataset, which can be 

achieved in a number of ways. Latent class growth analysis (LCGA) is a simplification of 

GMM, whereby the within-class variation is fixed at zero. Consequently, LCGA has a 

tendency to favour more complex models with more classes, because the models are trying 

to force individuals into identical trajectories; there is no allowance for flexibility around a 

particular trajectory class (Wickrama et al., 2016). Where substantial inter-individual 

variation exists, more classes are necessary to fit the data adequately. LCGA does allow for 

easier interpretation, and is often favoured when there are instability or convergence 

problems in GM models (Brière et al., 2016; Rhebergen et al., 2012). However, we decided 

that, firstly for our analyses, a technique that biased towards favouring more classes would 

not have been ideal, considering the relatively good fit of the single class solution. Secondly, 

to assume that no individual variation exists within classes in depressive patients is not 

representative of real data. We therefore favoured a GMM analysis at outset, which would 

allow for within-class variation, and our results were stable enough to accept these models. 

We did not however allow for between-class variation, which is another possibility for 

defining classes in trajectory modelling. As there was no evidence of significant variation 

between classes in any growth factors (Appendix 1A), freeing these parameters would have 
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made the models unnecessarily complex without justification, and confuse interpretation. In 

addition, there is a lack of sufficient evidence to suggest a theoretical reason for why classes 

would experience different amounts of variation.  

 

A number of factors that relate to the specific design of the trial itself can also influence both 

the number of classes that emerge, but also their interpretation. As GMM are often 

secondary analyses (Gueorguieva et al., 2011; Uher et al., 2010), these factors are usually 

outside of the researcher’s control. However, it is important to consider when interpreting 

the findings from GMM studies. I have already touched upon sample size, but in clinical trials 

of adult depression, the length of study has also shown to influence not only the number of 

classes that emerge from the data, but also their pattern of change over time (Brière et al., 

2016; Thibodeau et al., 2015). For instance, Gueorguieva and colleagues (2011) 

acknowledged that given a longer follow-up period, their “non-responding” patients may 

actually follow a slow-responding trajectory. Furthermore, Thibodeau and colleagues (2015) 

showed that the response classes that emerged from their data actually differed depending 

on the length of follow-up. While over a 12-week period, 3 classes were specified, when this 

was extended to 6 months, a fourth class emerged from the data. This additional class 

followed a trajectory pattern that illustrated non-response, which was not present during 

initial stages of the trial. These findings agree with our assertion that the initial stages of 

treatment might not be the ideal time to adequately assess treatment response and that 

short-term trials provide an incomplete picture of response patterns in depression. 

However, the sensitivity of GM models to trial length means that it is imperative that the 

context of the trial is retained in interpretation of classification labels, and is why the 

present author has reframed from labelling their groups beyond a description of the 

trajectories.  

 

A final point on interpretation considers the measurement tool. As mentioned in the 

introduction to this chapter, prior to defining what is a reasonable response to treatment, 

researchers must firstly quantify the symptom change in depression that is associated with 

the treatment received. As is the case with this current work, symptom change is typically 

quantified through self-reported outcomes like the MFQ. A reflection on the extent to which 

self-report measures accurately describe symptom change is a separate research question to 

the questions addressed in this current thesis. However, for interpretation, one must firstly 
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remember that in depression these outcomes are typically susceptible to bias from the very 

illness that they are attempting to measure (Nierenberg & DeCecco, 2001). Secondly, 

symptom items in these measures are often given equal weighting, but qualitatively, there is 

a substantial clinical difference in the significance of a reduction of suicidality and the 

reduction of fatigue, for example (Malhi & Byrow, 2016). Taking sum scores therefore 

precludes the investigation of whether treatment is differentially sensitive for specific 

symptoms (Bagby, Ryder, Schuller, & Marshall, 2004), particularly if instruments have shown 

to possess multidimensionality (Pancheri, Picardi, Pasquini, Gaetano, & Biondi, 2002). 

However, multidimensionality does not appear to be an issue with the MFQ. The internal 

construct validity has received support through both item response theory and categorical 

data factor analysis in measuring a single continuum of depression severity (Sharp, Goodyer, 

& Croudace, 2006). Nevertheness, the outcome of GMM must be viewed with the 

consideration of the limitations of the assessment tool used to define the model.  

 

To conclude these reflections, model design and selection in GMM is not clear-cut. It 

requires a holistic consideration and interpretation of a number of factors, as well as an 

adequate description of trajectories with respect to the model specifications and the trial 

design, to ensure the model corresponds with the underlying theory (Curran, Obeidat, & 

Losardo, 2011; Curran & Willoughby, 2003). As eloquently stated by Ram and Grimm(2009); 

“model selection is an art; informed by theory, past findings, past experience and a variety of 

statistical fit indices”(p.8). “There is no substitute for careful definition of the research 

problem” (Ram & Grimm, 2009, p.11).    
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Appendix 1A 

Table 1: Wald chi-square test statistics for testing significance of the variances of growth 

factors between classes for the 2-class model. 

 Wald X2 df p 
I 0.144 1 .7043 
S1 0.012 1 .9144 
S2 1.113 1 .2914 
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Appendix 1B 

Mplus code.  

 

INPUT INSTRUCTIONS 

 

Title: Two_class_GMM 

Data: file is 'Mean_Wide_Imputed_MFQ_FINAL.dat'; 

Variable: 

    Names are 

         ID gender ageBase arm region time0 randTime adhere famMed imd ethni 

         dura0 mfq0 bc0 loi0 rcmas0 rses0 rrs0 rtshR0 rtshSH0 nssi0 attem0 

         tho0 sleep0 BehavD0 ComorD0 AnxD0 AnxOth0 MDD0 ssri0 time6 dura6 mfq6 

         bc6 loi6 rcmas6 rses6 rrs6 rtshR6 rtshSH6 nssi6 attem6 tho6 sleep6 

         BehavD6 ComorD6 AnxD6 AnxOth6 MDD6 ssri6 time12 dura12 mfq12 bc12 

         loi12 rcmas12 rses12 rrs12 rtshR12 rtshSH12 nssi12 attem12 tho12 sleep12 

         BehavD12 ComorD12 AnxD12 AnxOth12 MDD12 ssri12 time36 dura36 mfq36 

         bc36 loi36 rcmas36 rses36 rrs36 rtshR36 rtshSH36 nssi36 attem36 tho36 

         sleep36 BehavD36 ComorD36 AnxD36 AnxOth36 MDD36 ssri36 time52 dura52 

         mfq52 bc52 loi52 rcmas52 rses52 rrs52 rtshR52 rtshSH52 nssi52 attem52 

         tho52 sleep52 BehavD52 ComorD52 AnxD52 AnxOth52 MDD52 ssri52 time86 

         dura86 mfq86 bc86 loi86 rcmas86 rses86 rrs86 rtshR86 rtshSH86 nssi86 

         attem86 tho86 sleep86 BehavD86 ComorD86 AnxD86 AnxOth86 MDD86 ssri86 

         lgTime6 lgTime12 lgTime36 lgTime52 lgTime86; 

 

USEVAR= mfq0 mfq6 mfq12 mfq36 mfq52 

              mfq86 time6 time12 time36 

              time52 time86; 

 

IDVARIABLE= ID 

 

Class=c(2); 

 

Analysis: 
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       Estimator = MLR; 

      Processors=4; 

      STARTS=5000 100; 

      TYPE=MIXTURE RANDOM; 

 

Model: 

  %Overall% 

   i s1 | mfq0@0 mfq6@1.2 mfq12@1.8 mfq36@1.8 mfq52@1.8 mfq86@1.8; 

              i s2 | mfq0@0 mfq6@0 mfq12@0 mfq36@4.3 mfq52@6 mfq86@9.5; 

      i WITH s1; 

      i WITH s2; 

      s1 WITH s2; 

 

      mfq6 ON time6; 

      mfq12 ON time12; 

      mfq36 ON time36; 

      mfq52 ON time52; 

      mfq86 ON time86; 

   

Output: 

      sampstat; 

      Tech7; 

      

  PLOT: 

      TYPE=PLOT3; 

      SERIES = mfq0(0) mfq6(1.2) mfq12(1.8) 

      mfq36(4.3) mfq52(6) mfq86(9.5); 

    

  SAVEDATA: 

  File="C:\Users\sed48\GMM_CI_2_cprob.csv"; 

  SAVE=CPROB; 
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Appendix 1C 

Table 1 shows skewness and kurtosis values for MFQ scores at each time point. Skewness is 

a measure of symmetry, whereby 0 represents that the mean and median are equal: a 

normal distribution. Negative values indicate that the mean is less than the median, and 

positive values indicate that the mean is greater than the median. A skewness value greater 

than ± 1 indicates a significant problem (Bulmer, 1979). No time-point in our data raised 

concern for skewness.  

 

Kurtosis is a measure of whether the tails of the distributions are over-represented, or 

under-represented, compared to a normal distribution. Positive kurtosis scores indicate that 

the data possess more outliers than expected in a normal distribution, whereas negative 

kurtosis scores indicate that the data possess fewer outliers than expected in a normal 

distribution. Kurtosis values greater than ± 3 indicate a significant problem (Bulmer, 1979). 

No time-point in our data raised concern for kurtosis.  

 

Table 1: Skewness and kurtosis for MFQ scores at each time point  

MFQ Mean SD Skew Kurtosis 
Baseline 45.939 10.553 -0.565 -0.205 
12 week 35.228 10.925 -0.196 0.269 
18 week 33.305 11.953 -0.414 0.211 
43 week 27.949 13.331 0.060 -0.252 
60 week 25.026 14.167 0.392 -0.218 
95 week 22.238 13.827 0.798 0.353 
 
MFQ: Mood and Feelings Questionnaire 
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Chapter 2: Behavioural predictors of trajectory classes. 

 

Introduction 

To meet DSM5 diagnostic criteria (APA, 2013) for major depressive disorder, endorsement of 

any 5 of a potential 9 symptoms is necessary, with one being either persistent low mood (or 

irritability, for children/adolescents), or anhedonia (reduced interest or pleasure). These 

symptoms, once meeting a threshold level, are then evaluated for level of severity. 

Consequently, a wide range of phenotypic presentations is possible with depression, and a 

broad scope of illness severity. This makes depression a condition that is clinically 

heterogeneous. Patients differ in patterning of symptomatology, duration of illness, 

comorbidities, coping styles, cognitive abilities and demographics (Katon, Unützer, & Russo, 

2010). It is therefore perhaps not surprising that as yet there is little precision in treatment 

and that any single therapy is only moderately successful (Cuijpers, 2017; Cuijpers et al., 

2011; Kessler et al., 2003; Moncrieff, 2018; Trivedi et al., 2016). A substantial amount of 

research has therefore focused on attempting to identify more specifically which aspects of 

this heterogenous condition are associated with predicting or moderating clinical response 

(Bagby, Ryder, & Cristi, 2002; Kemp, Gordon, Rush, & Williams, 2008).  

 

The previous chapter described an empirical method of categorising our adolescent 

depressive patient sample into trajectories of symptom change over time, following 

psychological treatment. We saw that agreement between this data-driven approach and a 

priori categorical methods of defining good and poor responders were moderate at best. 

The consideration of multiple time-points into the categorisation process for GMM provides 

a much less arbitrary approach to defining groups relating to treatment outcome, and the 

results demonstrated a particularly homogenous group of halted-improvers. This places the 

empirical method at an advantage for investigating potential clinical predictors of this 

grouping, and this will be the focus of this next chapter’s work. A particular interest of this 

work (discussed below) was the contribution of subclinical psychotic features to treatment 

prognosis; a currently understudied factor in this field of research. However, I endeavoured 

to investigate these features within a broader clinical model, allowing adequate 

consideration of potentially overlapping contributors, such as severity and clinical 

complexity. The IMPACT trial (Goodyer et al., 2011) was well-suited to investigate such 

predictors, as the trial collected a large battery of clinical data, including self-reported 
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symptomatology and clinician-led diagnostic interviews. My model focussed on demographic 

and clinical characteristics, which I have summarised into three broad categories for this 

work, following categories outlined by previous authors (Jensen, Hoagwood, & Petti, 1996; 

Kemp et al., 2008). Predominantly, these will fall into aspects relating to: i) demographics; ii) 

severity of illness; and iii) clinical complexity of the patient. Psychotic features (iv) will be 

discussed separately as a distinct area of interest. The introductory review presented below 

was limited to those variables that were available in the IMPACT cohort. I note the impact 

this has on interpretation in the discussion.  

 

Demographics 

Our first demographic consideration was gender. The incidence of depression is known to 

differ substantially between males and females. During adolescence and adulthood, the 

prevalence of depression is much higher in females (Goodyer et al., 2017; Sramek, Murphy, 

& Cutler, 2016; Weissman et al., 1993; Wilkinson, Dubicka, Kelvin, Roberts, & Goodyer, 

2009), yet males appear to experience more severe depression and are at a higher risk of 

developing persistent depression (Dunn & Goodyer, 2006). It was thought that females 

respond better than males to treatment (Braun, Gregor, & Tran, 2013), yet meta-analytic 

studies and reviews present conflicting findings on this matter. For instance, one meta-

analysis showed that the higher the proportion of females within clinical trials of cognitive-

behavioural therapy (CBT), the better the response rates of those trials (Braun, Gregor, & 

Tran, 2013) and one growth mixture modelling (GMM) study found that males were 

associated with the poorest symptom courses (Rhebergen et al., 2012). However, reviews of 

both antidepressant medication and CBT studies have failed to show convincing support that 

gender is a predictor or moderator of treatment outcome (Cuijpers, Weitz, et al., 2014; 

Sramek et al., 2016). Moreover, a recent review of this literature in adolescent depression 

suggested that demographic characteristics have marginal effects compared with clinical 

characteristics for treatment response (Weersing et al., 2017). Taken together, these results 

suggest that, despite the large discrepancy in prevalence of depression, gender does not 

have a substantial influence on treatment outcome. The majority of studies however, 

investigated gender differences in a post-hoc design, which limits our understanding of the 

true effect of gender on treatment response.  

Following this, a second demographic characteristic for consideration is the influence of age 

on treatment outcome. A few adolescent studies have supported the finding that younger 
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age may be associated with more favourable outcomes (Clarke et al., 1992; Curry et al., 

2006; Goodyer, Herbert, Secher, & Pearson, 1997; Jayson, Wood, Kroll, Fraser, & Harrington, 

1998; Scott et al., 2019), but the literature is small and hindered by the same problem as 

those studies reporting gender differences; studies were not designed to investigate age 

effects on treatment response a priori.  

 

Taken together, there is currently little evidence that either of these demographic variables 

operate as clear-cut predictors of treatment response, but their value is still to be 

determined appropriately. Consequently, models should still consider their potential 

influence in analyses, yet their prognostic value is likely to be modest at best (Weersing et 

al., 2017). 

 

Severity of illness 

Variability in severity; (a higher number of, and/or an increased intensity of symptoms) is 

one of the most consistently reported associations with non-response in the treatment of 

depression, across age ranges (Curry et al., 2006; Goodyer et al., 1997; Katon et al., 2010; 

Wilkinson et al., 2009), and is considered one of the most reliable predictors of treatment 

outcome (Kemp et al., 2008). Indeed, a study of 702 adults with depression, half of which 

were already resistant to two antidepressant treatments, showed that severity was 

associated with a 1.7 times increased risk of being categorised as resistant to another 

antidepressant (Souery et al., 2007). Furthermore, an exploratory study of adults found that, 

among other predictors discussed later, severity predicted non-remission, regardless of 

treatment modality (Frank et al., 2011). Severity also appears important in predicting 

response in late-life depression (Katon et al., 2010). A study of 871 patients aged over 60 

found that patients with higher initial levels of severity, despite receiving more intense and 

longer treatment, still experienced a poorer outcome both at the end of trial, and during the 

12 month intervention period (Katon et al., 2010). The authors concluded that severity is a 

robust predictor of non-remission that strongly associated with other variables indicative of 

non-response (Katon et al., 2010).  

 

Empirical studies of treatment response, such as that outlined in Chapter 1, have also 

invariably found that baseline severity is a significant driver of trajectory groupings (Brière et 

al., 2016; Cuijpers et al., 2005; Gueorguieva et al., 2011; Rhebergen et al., 2012; Stulz et al., 
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2010; Thibodeau et al., 2015). Moreover, studies have further associated these differential 

severity classes with differential responses to treatments (Brière et al., 2016; Cuijpers et al., 

2005; Gueorguieva et al., 2011; Rhebergen et al., 2012; Stulz et al., 2010). For example, 

Gueorguieva and colleagues (2011) reported that higher baseline depression severity was 

associated with an increased likelihood of membership to their non-responder (as opposed 

to responder) trajectory class. This finding across both traditional and empirical studies of 

treatment response highlights the prognostic value of initial severity in the treatment of 

adult depression.   

 

While the majority of empirical studies have thus far been conducted on adults, a number of 

traditional studies have associated greater initial severity with poorer outcome to CBT in 

adolescent depression (Brent et al., 1998; Clarke et al., 1992; Goodyer et al., 1997; Jayson et 

al., 1998). Authors have suggested that these more severely-ill patients may require more 

intensive treatment or additional pharmacological interventions at outset to aid their 

recovery (Brent et al., 1998). However, the TADS study reported that illness severity itself 

demonstrated a moderating, rather than predictive effect (Curry et al., 2006). While the 

presence of a more chronic form of depression at baseline showed to be a predictor of a 

poor response, patients with mild or moderate depression benefitted more from 

combination treatment, while severely depressed individuals saw no benefit of the addition 

of psychotherapy to pharmacological treatment. The authors hypothesised that severely 

depressed adolescents may require pharmacological treatment to improve to a level where 

psychological therapies can prove effective. Indeed, this fits with personal discussions the 

current author has had with patients about their experience of treatment efficacy. For 

studies investigating psychological interventions alone in adolescents, such as the IMPACT 

study, the literature would suggest that severity would play a key role in a predictive model 

of outcome and indeed, this is what the findings of Chapter 1 demonstrated; baseline 

severity as measured by self-report MFQ differentiated trajectory classes in this cohort. 

 

Typically considered one of the most severe symptoms of depression is suicidal ideation, and 

many studies have suggested associations between this specific symptom and treatment 

non-response is independent of severity (Curry et al., 2006; Frank et al., 2011; Scott et al., 

2019; Souery et al., 2007; Wilkinson et al., 2009). For example, Souery and colleagues (2007) 

found that suicidal risk demonstrated a stronger association with treatment resistance than 
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general severity, showing a 2.2 fold increase in risk of resistance. Frank and colleagues 

(2011) also associated suicidality with increased likelihood of resistance to monotherapy. 

This association has been replicated in adolescent samples as well. The TADS study reported 

that adolescents with more severe suicidal ideation benefitted less from any treatment 

(Curry et al., 2006) and Wilkinson and colleagues (2009) found that in the Adolescent 

Depression Antidepressants and Psychotherapy Trial ((ADAPT); Goodyer et al., 2007), 

severity, comorbid obsessive-compulsive disorder and suicidal ideation together predicted 

continued depression in adolescents after 28 weeks of treatment with SSRIs, a brief 

psychosocial intervention plus/minus CBT. ADAPT also reported that adolescents presenting 

with non-suicidal self-harming behaviours showed a three-fold increased risk of suicidal 

attempts (Wilkinson, Kelvin, Roberts, Dubicka, & Goodyer, 2011); this was later replicated in 

an adolescent sample of treatment resistant depression (Asarnow et al., 2011). Both 

suicidality and self-harm may therefore index unique moderating influences on treatment 

response, which is potentially independent of overall severity and personal impairment of 

the depression.  

 

While symptomatology is an easily collectable indicator of illness severity, in clinical 

assessments of depressed cases clinicians often gauge severity on the extent to which their 

illness is impacting their daily function. A number of studies have consequently investigated 

the effects of non-symptom driven functional impairment on prognosis as a separate 

indicator relating to severity, such as The National Institute for Mental Health Treatment of 

Depression Collaborative Research Program (Sotsky et al., 1991). These authors highlighted 

the importance of function in their multi-treatment placebo-controlled trial, finding that 

social, cognitive and workplace function all differentially predicted outcome of specific 

treatments. In addition, Frank and colleagues (2011) found that in adults, greater severity of 

work and social dysfunction predicted a more prolonged illness duration before remission 

was achieved. In adolescents, the TADS study reported that poorer initial levels of global 

functioning resulted in a less favourable outcome to all treatment modalities (Curry et al., 

2006). Levels of function are therefore likely related to severity of symptoms.  Overall these 

findings show that potential indicators of poor prognosis may extend beyond symptomatic 

variables, to impairment of daily function and these should be considered as potential 

predictors or moderators of symptom change and treatment response.  
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Clinical Complexity 

As we have already discussed, depressed patients can exhibit a wide range of phenotypic 

heterogeneity in depressive symptoms. However, these symptoms are not necessarily 

limited to symptoms of depression. Indeed, Goodyer and colleagues (1997) found that 93% 

of their sample of depressed adolescents were diagnosed with at least 1 other psychiatric 

disorder and conversely, depression is one of the most common comorbid disorders in 

patients with other mental health disorders as their primary diagnosis (Braun, Sunday, & 

Halmi, 1994; Buckley, Miller, Lehrer, & Castle, 2009; Garber & Weersing, 2010). 

Consequently, the level of clinical complexity a patient presents with may complicate 

treatment procedures and serve as a marker for vulnerability to treatment resistance (Brent 

et al., 1998; Curry et al., 2006; Frank et al., 2011). Indeed, the TADS study showed that 

adolescents with more than 1 comorbid disorder were less likely to benefit from treatment 

(Curry et al., 2006), as was also reported in the open-treatment trial; the Sequenced 

Treatment Alternatives to Relieve Depression (STAR*D) study of adults (Trivedi et al., 2006). 

Furthermore, a number of review articles that attempt to categorise these predictive 

characteristics of non-response invariability produce a grouping related to clinical complexity 

or comorbidity (Bagby, Ryder, & Cristi, 2002; Brent et al., 1998; Curry et al., 2006; Kemp et 

al., 2008). As such, clinical complexity, as indexed by comorbidity, is an important patient 

characteristic that could affect trajectory membership of patients in the IMPACT study.   

 

The most common comorbidity associated with depression is generalised anxiety disorder 

together with panic and social phobia (Kessler et al., 2003); and in adolescents separation 

anxiety (Avenevoli, Swendsen, He, Burstein, & Merikangas, 2015). Unsurprisingly therefore, 

the presentation of comorbid anxiety specifically has been reported as either a predictor of 

poorer treatment outcome (Clarke et al., 1992; Curry et al., 2006; Frank et al., 2011), or 

moderator of differential outcome (Brent et al., 1998; Jensen et al., 1996; March et al., 2009) 

in depressed patients. For instance, a multicentre study found that comorbid panic or 

anxiety disorder showed a greater increased risk of resistance to treatment than either 

suicidality or depression severity (Souery et al., 2007). Two studies of adults by Frank and 

colleagues (2011; 2000) have also supported these findings. Both studies found longer 

remission times for patients with comorbid panic disorder or phobias, social phobia in 

particular (Frank et al., 2011). The link with social phobia is interesting as it may relate to the 

significance of social function on treatment outcome discussed earlier (Jayson et al., 1998; 
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Sotsky et al., 1991). The authors highlighted that these effects were not specific to any 

treatment and suggested that this complexity at baseline presentation may indicate that 

multiple treatment modalities are required to provide more adequate response rate than 

was achieved with the monotherapeutic approaches used in their studies (Frank et al., 2011; 

Frank et al., 2000).  

 

Indeed investigations of adolescent populations have also yielded similar results with 

respect to anxiety. Curry and colleagues (2006) found that adolescents who were diagnosed 

with an anxiety disorder in particular benefitted less from either pharmacological, 

psychological or combination treatment. Brent and colleagues (1998) also found that the 

presence of comorbid anxiety disorder in depressed adolescents predicted a higher 

likelihood of a depression diagnosis after 16 weeks of treatment, to any of the three 

different psychosocial treatments utilised in their study. Interestingly, within this group of 

anxious-depressed teens, differential treatment effects were observed. Adolescents with 

anxious-depression responded better to CBT than systemic-behavioural family therapy or 

non-directive supportive therapy. This supports the assertion that comorbid conditions may 

require more tailored treatment approaches than cases of single diagnoses, resulting in 

poorer outcomes in studies that investigate a single type of treatment approach. The 

relationship between comorbid anxiety and treatment resistance in adolescent depression 

has also been supported in longitudinal studies (Sanford et al., 1995). Adolescents with 

persistent depression one-year post-treatment were more likely to have a comorbid anxiety 

or substance use disorder diagnosed at baseline (among other prognostic factors, such as 

older age and family relationship difficulties; (Sanford et al., 1995)). Interestingly, baseline 

severity and functioning did not influence the power of these relationships in this study, 

highlighting that comorbidity, while related, is a distinct factor that has its own influence on 

longer-term treatment response (Sanford et al., 1995). The UK pragmatic trials however 

show no specific moderator effects of anxiety disorders on any specific treatment suggesting 

that whatever the effects of anxiety on depression treatment it is unlikely to be 

differentiated by the type of therapy given (Goodyer et al., 2017). 

 

Although less consistently, other comorbid disorders have been associated with difficulties 

to achieve remission in depression. Firstly, a naturalistic study of adolescent depression 

associated comorbid obsessive compulsive disorder (OCD) with persistence of depression at 
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36 weeks (Goodyer et al., 1997), along with depression severity and age. These findings have 

been supported in larger samples of adolescent depression as well (Wilkinson et al., 2009). 

Interestingly, without OCD, the predictive effects of age and severity were noticeably 

weakened. Moreover, without these factors together, adolescents were highly likely to 

respond to their given treatment (Goodyer et al., 1997). This illustrates the need for a 

multifactorial approach to the question of treatment resistance, as effects may be additive.  

 

A number of studies have also associated comorbid bipolar disorder or bipolar 

symptomatology with a delay in treatment response to both medication and 

psychotherapies (Dudek et al., 2010; Frank et al., 2011). Frank and colleagues (2011) found 

that, along with panic disorder and social phobia, aspects relating to sub-threshold 

bipolarity, such as psychotic features, psychomotor retardation, lifetime suicidality and 

neurovegetative symptoms, were all associated with a longer time to remission in adult 

outpatients with depression. In addition, patients with bipolar symptoms appeared to show 

differential treatment effects, favouring SSRIs over psychological treatment (Frank et al., 

2011). Indeed, Dudek and colleagues (2010) proposed that undetected bipolar features 

might explain treatment resistance in some cases. Their work found that, even after 

exclusion of patients with diagnosed bipolar disorder, higher scores of bipolarity were 

associated with an increased likelihood of failing to achieve remission with multiple 

antidepressant medications in depressed adults. The presentation of symptoms that do not 

necessarily meet threshold for diagnosis may therefore still serve as indicators of clinical 

complexity, and thus influence treatment response to therapies optimised for 

predominantly depression. 

Overall, comorbidity, whether symptomatic or diagnostic, has emerged as a relatively 

consistent indicator of poor response, however inconsistencies do exist. For instance, Clarke 

and colleagues (1992) compared the agreement of continuous and diagnostic outcomes. 

They found that lower trait anxiety emerged as a predictor of better outcome to group CBT 

on continuous measures of depression, but conversely, an increasing number of comorbid 

diagnoses were associated with a better outcome on a diagnostic level. This contradiction 

underscores the importance of accurately defining recovery, as the authors further found 

that not one predictor was consistent across dichotomous and continuous outcome 

measures (Clarke et al., 1992). Empirical methods of defining treatment response have, 

however, largely supported the assertion that clinical complexity, as described through 
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measures of comorbid conditions, often hold prognostic value for unfavourable outcomes 

(Cuijpers et al., 2005; Gueorguieva et al., 2011; Scott et al., 2019; Stulz et al., 2010; 

Thibodeau et al., 2015). Along with severity, a commonality in GMM studies has been that 

higher baseline anxious traits, either measured by diagnostic (Cuijpers et al., 2005) or self-

report scales (Gueorguieva et al., 2011; Stulz et al., 2010), associated with the undesirable 

trajectories across studies. These trajectories were often those most severe (Stulz et al., 

2010), or those showing little (Cuijpers et al., 2005) or no symptom improvement over time 

(Gueorguieva et al., 2011). Although one study did not find any baseline differences in axis 1 

disorder diagnoses (which includes anxious disorders) between their responder groups 

(Thibodeau et al., 2015), patients with diagnosed personality disorders showed almost a 

two-fold increased likelihood of membership to the non-responder class, compared with 

rapid responders (Thibodeau et al., 2015). Taken together, empirical work largely supports 

the notion that comorbid conditions or subclinical symptomatology of other psychiatric 

disorders are factors that can negatively influence a patient’s trajectory during and after 

treatment.  

 

Psychotic features 

As touched upon above, there is a growing belief that subclinical symptoms have an 

influential effect on treatment effectiveness. Subclinical psychotic features, or psychotic 

experiences (PEs) in particular, have gained increasing attention in the context of depression 

in recent years and were of particular interest for this current work due to a number of 

sample characteristics. Firstly, PEs are generally associated with younger age (Kelleher et al., 

2012; Wigman et al., 2012). Indeed, the incidence of PEs in adolescence populations is found 

to be higher than in adult samples (Kelleher et al., 2012). Moreover, PEs are found to co-

occur with sleep disturbance (Jeppesen et al., 2015), which was one of the highest reported 

symptoms of the IMPACT cohort (Goodyer et al., 2017), even above low mood. Taken 

together, investigating the presence of PEs may be an important consideration when 

discussing prognostic questions of outcome for this sample of depressed adolescents.  

 

The prevalence of PEs in depressed populations is remarkably high; presenting in as much as 

30% of depression cases (Perlis et al., 2010; Wigman et al., 2012). Perez and colleagues 

(2018) also found an increased likelihood of PEs in 30% of a clinical sample of patients 

presenting with anxiety and depressive disorders to UK Improving Access to Psychological 
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Therapies (IAPT) services. Conversely, studies have shown that up to 80% of adolescents 

presenting with PEs (termed “at-risk-mental-state” (ARMS) patients) exhibit at least one 

diagnosis of mental illness (Kelleher et al., 2012); often anxiety or depression (Hui et al., 

2013). MDD and clinical psychosis are known to share predisposing risk factors 

(Björkenstam, Burström, Vinnerljung, & Kosidou, 2016; Egan et al., 2001; Massat et al., 2005; 

Sundquist, Frank, & Sundquist, 2004) and the relationship between PEs and mental illness is 

as strong for emotional disorders (Jeppesen et al., 2015) as it is for psychotic disorders 

(Dominguez, Wichers, Lieb, Wittchen, & van Os, 2011).   

 

In line with these findings, Stochl and colleagues’ (2015) further advocated that PEs should 

be considered as existing on a single continuum of depression severity, marking the upper 

extreme. In their latent class analysis of two community cohorts, a single dimension of 

general distress emerged, rather than two separate dimensions of depression and psychosis. 

The study by Perez and colleagues (2018) mentioned above supports this view of PEs, as do 

a number of studies of ARMS patients (Fusar-Poli, Nelson, Valmaggia, Yung, & McGuire, 

2014; Hui et al., 2013). Comorbid depression and anxiety in these ARMS patients was often 

associated with indicators of depression severity, such as increased suicidal ideation, self-

harm and more impaired global functioning (Fusar-Poli et al., 2014; Hui et al., 2013). Current 

diagnostic tools however, do not relate the presence of PEs to depression or anxiety 

disorders (APA, 2013; World Health Organisation [WHO], 1992). Moreover, at least in the 

UK, IAPT services do not make any formal assessment of PEs in their depressed or anxious 

patients; thus rendering PEs a potentially untreated aspect of patients’ illness (Perez et al., 

2018). 

 

The notion that PEs could indicate severity is appealing in the context of treatment 

response, as the most consistently found predictor for non-response in MDD is severity 

(Curry et al., 2006; Goodyer et al., 1997; Wilkinson et al., 2009). Indeed, Perez and 

colleagues (2018) found that both the frequency and distress of PEs were significantly and 

highly correlated with depression and anxiety scores. The authors found that these 

correlations remained strong even after an initial period of treatment, which was taken as 

indicative of a poorer long-term prognosis. Moreover, subclinical PEs in patients with MDD 

have been found to be strong indicators of relapse and resistance to both pharmacological 

and psychological interventions (Perlis et al., 2010; Wigman et al., 2014). Wigman and 
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colleagues (2014) found that even after controlling for baseline severity of depression, 

patients who more often endorsed experiencing PEs (without meeting criteria for psychotic 

depression) were 7 times less likely to achieve remission, and almost 4 times more likely to 

relapse. Perlis and colleagues (2010) also found that the endorsement of as little as one PE 

was sufficient to associate with non-response to 4 different types of antidepressants. The 

authors highlight the subtlety of these findings; while a single PE is not sufficient for a 

diagnosis of psychotic depression, it has a strong association with treatment outcome (Perlis 

et al., 2010). Interestingly, and in contrast to previous studies (Dudek et al., 2010; Frank et 

al., 2011), both studies here found that symptoms of bipolar spectrum disorder, or manic-

like symptoms, failed to show such strong associations with resistance and relapse as those 

of psychotic symptoms (Perlis et al., 2010; Wigman et al., 2014). This subtle difference may 

be important for guiding therapeutic choice. 

 

Taken together, these results demonstrate the importance of appropriate recognition of PEs 

in treating depression, and their potential affect on treatment efficacy. PEs may require 

tailored treatment to incorporate aspects of psychosis or trauma treatment to augment 

therapeutic response, which are currently unavailable in IAPT clinics (Perez et al., 2018). The 

distress associated with untreated PEs could result in a worsening of a patient’s depressive 

condition, despite adequate treatment for this primary condition (Perez et al., 2018), thus 

rendering improvement limited. No study to date has, however, investigated the prognostic 

potential of subclinical PEs in clinical samples of depressed adults or adolescents, where 

response has been defined empirically. 

 

Objectives and Hypotheses 

The objective of this next piece of work was therefore to conduct a secondary analysis on 

the full IMPACT sample, investigating the prognostic ability of a battery of baseline 

demographic and clinical characteristics on empirically-derived trajectory class membership 

of this clinical sample of adolescents, as outlined in chapter 1. Prior literature would suggest 

that a number of demographic and clinical variables discussed above should be included in 

the model and may differ between classes in prevalence. Subclinical PEs were a predictor of 

interest above the battery of clinical variables noted for importance. We specifically 

hypothesised that subclinical PEs at baseline would be associated with unfavourable 

trajectory classes. 
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Methods 

Study Design and Size 

In chapter 1, the best fitting trajectory model was selected and the information on most 

likely class membership was saved for all patients. This chapter builds on this work, by 

investigating a battery of baseline demographic and clinical characteristics of trajectory class 

membership. Consequently, full details of the study design, setting and participant criteria 

are outlined in chapter 1. 

 

Variables 

Symptom trajectory class membership was defined through growth mixture modelling using 

the self-reported Mood and Feelings Questionnaire (MFQ) score across all time-points, as 

outlined in chapter 1. This is a 33-item Questionnaire (Burleson Daviss et al., 2006) of 

depressive symptomatology covering the past 2 weeks. MFQ items were measured on a 3-

point scale (almost never, sometimes, often/almost always). Total scores with a theoretical 

range of 0-66 were used in GMMs. Higher scores indicated more severe depressive 

symptoms and were positively correlated with greater psychosocial impairment (Goodyer et 

al., 2017). As depression severity was the variable with which the two groupings were 

defined, MFQ was not a variable of interest for these predictor analyses. 

 

A number of baseline clinical variables available in the IMPACT cohort were investigated for 

their potential predictive value over class membership. These included measures of anxiety, 

obsessional traits, overall psychiatric symptomatology/function, lifetime suicidal attempts, 

non-suicidal self-injury, and psychotic symptoms. Derived sum scores from self-report 

measures were used for anxiety (the Revised Children’s Manifest Anxiety Scale, [RCMAS]; 

Reynolds & Richmond, 1978), obsessionality (the short Leyton Obsessional Inventory for 

adolescents, [LOI]; Bamber, Tamplin, Park, Kyte, & Goodyer, 2002) and overall psychiatric 

symptomatology/function (the Health of the Nation Outcome Scales for Children and 

Adolescents, [HoNOSCA]; Gowers et al., 1999). Lifetime suicide attempts were defined as a 

binary variable (yes, no) from data derived from the Columbia Suicide Severity Rating Scale 

[CSSRS]; Posner et al., 2011). Lifetime non-suicidal self-injury (NSSI) was measured using the 

self-report Risk and Self Harm Inventory (Vrouva, Fonagy, Fearon, & Roussow, 2010). The 

Kiddie-Schedule for Affective Disorders and Schizophrenia [k-SADS-PL]; Kaufman et al., 1997) 

interview was used to assess the presence of psychiatric diagnoses and psychotic symptoms 
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at baseline. Comorbidity was defined on an ordinal scale, as the number of additional mental 

illnesses other than depression that met threshold criteria during interview. Psychotic 

symptoms were also defined on an ordinal scale (absent, present: subthreshold, or present: 

threshold), as answering positively to either of the two screening questions for psychosis 

present in the k-SADS-PL interview. 

 

Statistical analyses 

The class allocations from chapter 1 were saved and then used to conduct analyses of 

associations in a separate step. This prevented predictors from modifying trajectory 

solutions.  

 

The first goal was to explain how the classes differed on demographics and baseline clinical 

characteristics. For this, a series of univariate analyses were conducted (chi-square, or t-

tests) to determine whether there were significant differences between classes on a battery 

of variables.  

 

A second goal of this analysis was to determine whether baseline clinical characteristics 

could predict whether a patient would belong to class 1 or class 2. For this, a logistic 

regression was conducted to determine how well the baseline clinical variables collectively 

predicted class membership and assess the relative contribution of psychotic symptoms. 

Gender and age were also included to control for any variation associated with these factors. 

A chi-square test was used to determine whether the model was significantly better than the 

null at predicting class membership, and the R-squared statistic indicated how much 

variance the model explained. Logistic regressions involve comparison to a specific reference 

class. We took class 2 as the reference class, which was the most likely class allocation for 

patients.  

 

Receiver-operating characteristics (ROC) curve analysis was conducted to calculate the area 

under the curve (AUC) and evaluate the discriminatory ability of the model.  
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Results 

The characteristics of patients following each trajectory of the best-fitting two-class 

piecewise model are described in Table 1.  

 

Table 1: Characteristics of patients following the two latent trajectories  

 Class 1: Halted-
improvers 

Class 2: Continued-
improvers 

Comparison 

 Mean(n) S.D(%) Mean(n) S.D(%) X2/t p 
Demographics       
   Female 63 85.1% 285 72.8% 4.955 .026 
   Age 15.7 1.3 15.6 1.4 0.459 .647 
   Region - - - - 2.035 .361 
       East Anglia 24 32.4% 161 41.2% - - 
       North London 22 29.7% 105 26.9% - - 
       North-West England 28 37.8% 125 32.0% - - 
Ethnicity(white) 65 87.8% 325 83.1% 1.024 .312 
IMD 29.2 19.3 26.2 16.9 1.250 .214 
Baseline clinical 
characteristics 

      

   RCMAS 42.3 6.7 40.7 7.3 1.863 .065 
   LOI 11.8 5.6 9.6 5.1 3.124 .002 
   Suicidal thoughts 69 93.2% 345 88.2% 1.600 .206 
   Suicidal attempts 28 37.8% 131 33.5% 0.519 .471 
   NSSI 53 71.6% 218 55.8% 6.443 .011 
   HoNOSCA 19.9 6.3 18.3 6.0 2.018 .046 
   Comorbidity - - - - 15.46 .004 
      1 26 35.1% 121 30.9% - - 
      2 18 24.3% 59 15.1% - - 
      3 3 4.1% 5 1.3% - - 
      4 1 1.4% 0 0% - - 
   Psychotic symptoms - - - - 2.024 .363 
       Subthreshold 16 22.5% 87 23.6% - - 
       Threshold 10 14.1% 32 8.8% - - 
Treatment 
characteristics 

      

   Treatment arm:  - - - - 2.463 .292 
       BPI 28 37.8% 127 32.5% - - 
       CBT 27 36.5% 127 32.5% - - 
       STPP 19 25.7% 137 35.0% - - 
   Baseline SSRI 
prescription 

10 13.5% 87 22.3% 2.877 .090 

 
IMD; Index of Multiple Deprivation, RCMAS; Revised Children’s Manifest Anxiety Scale, LOI; 
Leyton Obsessional Inventory, NSSI; Non-suicidal self-injury, HoNOSCA; Health of the Nation 
Outcome Scales for Children and Adolescents, BPI; Brief Psychological Intervention, CBT; 
Cognitive Behavioural Therapy, STPP; Short-Term Psychoanalytic Psychotherapy, SSRI; 
Selective Serotonin Reuptake Inhibitors 
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Demographic characteristics showed that the distribution of males and females was 

significantly different between the classes. Eight-Five percent of class 1 were female, 

compared with only 73% of class 2. Conversely, 15% of class 1 were male, compared with 

27% of class 2. No other demographic characteristics were significantly different between 

groups.  

 

In terms of baseline clinical characteristics, class 1 on average showed higher LOI and 

HoNOSCA scores, indicating more obsessional traits and more severe overall psychiatric 

symptomatology and function than class 2 at baseline. Furthermore, 72% of patients in class 

1 reported non-suicidal self-injury at baseline, compared with only 56% of class 2, and 

significantly more of class 1 were diagnosed with one or more additional comorbidities, 

compared with class 2. The two classes did not significantly differ on treatment arm or SSRI 

prescription at baseline.  

 

Predictors of Trajectory Class Membership 

Investigation of the correlations between clinical variables included in the model revealed 

the strength of collinearity between variables. Results are shown in Table 2. Variance 

inflation factor scores however, indicated that multicollinearity for these data was not a 

concern (all VIF values <10, all tolerance values >.2, see Table 1 in Appendix 2A). Further, the 

data also met the assumption of independent errors (Durbin-Watson value= 2.08, p=.42), 

and linearity of the logit using the Box-Tidwell test, indicating that logistic regression is 

appropriate.  

 

Results from the logistic regression are shown in Table 3. This model produced a significant 

improvement in the fit of the model over the constant (X2(4)=46.03, p<.001). This model 

explained 5.4% of the total variance in class membership allocation (Cox and Snell R2= 

0.054). It was found that the presence of one or more co-morbid diagnoses significantly 

predicted a higher probability of membership to class 1 (halted-improvers) compared with 

class 2 (continued-improvers; Table 3). With each increasing number of co-morbid 

diagnoses, the odds of a patient belonging to the “halted-improvers” class compared to the 

“continued-improvers” class increased by a factor of 1.4.  
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Table 2: Correlation m
atrix of relationships betw

een clinical variables. 

 
Age 

RCM
AS 

LO
I 

HO
NO

SCA 
Gender 

Suicide 
Attem

pts 
NSSI 

Com
orbidity 

Psychotic 
Sym

ptom
s 

Age 
- 

0.01 
-0.01 

0.07 
-0.14** 

0.05 
0.05 

0.04 
-0.03 

RCM
AS 

- 
- 

0.51*** 
0.11* 

-0.16*** 
0.07 

0.18*** 
0.14** 

0.13** 
LO

I 
- 

- 
- 

0.12* 
-0.07 

0.04 
0.12** 

0.26*** 
0.13** 

HO
NO

SCA 
- 

- 
- 

- 
0.04 

0.15** 
0.20*** 

0.20*** 
0.14** 

Gender 
- 

- 
- 

- 
- 

0.13** 
0.07 

0.04 
0.05 

Attem
pts 

- 
- 

- 
- 

- 
- 

0.35*** 
0.05 

0.17*** 
NSSI 

- 
- 

- 
- 

- 
- 

- 
0.05 

0.21*** 
Com

orbidity 
- 

- 
- 

- 
- 

- 
- 

- 
0.15** 

Psychotic 
Sym

ptom
s 

- 
- 

- 
- 

- 
- 

- 
- 

- 

 RCM
AS; Revised Children’s M

anifest Anxiety Scale, LO
I; Leyton O

bsessional Inventory, N
SSI; N

on-suicidal self-injury, HoN
O

SCA; Health of the N
ation 

O
utcom

e Scales for Children and Adolescents 
Pearson correlation and Spearm

an’s rank correlation w
ere used w

here appropriate.  

 *p<.05 

** p<.01 

*** p<.001 
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Table 3: Baseline predictors of trajectory class membership: clinical characteristics. 

 Class 1: Halted-improvers 
 OR 95%CI 
Gender 0.50 0.23-1.02 
Age 1.02 0.84-1.26 
RCMAS 0.98 0.94-1.03 
LOI 1.06 0.99-1.12 
HONOSCA 1.03 0.98-1.08 
Attempts 0.98 0.53-1.79 
NSSI 1.77 0.95-3.41 
Psychotic Symptoms 0.97 0.64-1.45 
Comorbidity 1.40* 1.00-1.96* 
RCMAS; Revised Children’s Manifest Anxiety Scale, LOI; Leyton Obsessional Inventory, NSSI; 
Non-suicidal self-injury, HoNOSCA; Health of the Nation Outcome Scales for Children and 
Adolescents 
Class 2 is taken as the reference class.  

*<.05 

 

Standardised residuals of the final model were inspected to assess for whether the model 

contained any outliers of concern. There were no cases in this sample of residuals larger 

than ±2.58, and fewer than 5% (21 cases) of the total sample showed residuals greater than 

±1.96. Therefore the model can be viewed as a good representation of the actual data.  

 

Leverage was investigated to assess whether any cases are exerting undue influence over 

the model. It has been recommended to investigate cases where leverage values are greater 

than twice (Hoaglin & Welsch, 1978) or three times (Stevens, 2009) the average. Four cases 

in the final model indicated a potential problem with 3 times greater than average leverage 

for the model, and a further 32 cases showed double the average leverage. However, the 

Cook’s distance of each case was also inspected to assess whether removal of each case 

would significantly change the fit of a model. There were no cases in the final model with a 

Cook’s distance greater than 1 (Cook & Weisberg, 1982), indicating that the fit would not 

significantly change upon removal of these cases.  
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Receiver-operating characteristics 

Receiver-operating characteristics (ROC) curve analysis was conducted to calculate the area 

under the curve (AUC), to evaluate the discriminatory ability of the regression model. The 

AUC for the full model was 0.69 (95% CI, 0.62-0.76), with a mean sensitivity of 66% and 

mean specificity of 53%. (Figure 1).  Conventionally it is accepted that the AUC in a ROC 

analysis should be >0.75 to be of potential clinical value (Fan, Upadhye, & Worster, 2006). 

The AUC falls short of this threshold. Therefore sensitivity and specificity of this model is not 

sufficient to provide a valid predictive model of class membership.   

 

 
Figure 1. ROC Curve. 
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Discussion 

Key Results and Interpretation 

This work extended that of Chapter 1, by describing the characteristics of trajectory classes, 

and investigating potential baseline predictors of class membership. In addition to baseline 

depression severity, which was a defining feature of the class trajectories discussed in 

Chapter 1, univariate analyses showed that the group of halted-improvers were 

disproportionately female, had higher current obsessionality, self-harming behaviours, more 

psychiatric symptomatology and impairment and experienced greater comorbidity at 

baseline than continued-improvers. These findings are consistent with prior reports (Curry et 

al., 2006; Goodyer et al., 1997; Wilkinson et al., 2009) suggesting that indicators relating to 

severity and clinical complexity are associated with poorer outcome. However, the gender 

finding reported here contrasts some prior research that found either a positive association 

with female gender and better outcomes (Braun, Gregor, & Tran, 2013) or no relationship at 

all (Cuijpers, Weitz, et al., 2014; Sramek et al., 2016). Interestingly, and in contrast to 

previous reports (Curry et al., 2006; Frank et al., 2011; Perez et al., 2018; Perlis et al., 2010; 

Scott et al., 2019; Souery et al., 2007; Wigman et al., 2014; Wilkinson et al., 2009), suicide 

attempts and psychotic symptoms were not significantly different between classes at the 

univariate level. The reason for dissonance with prior research may be methodological; 

relating to the difference in defining response classes, or the significantly shorter follow-up 

of those studies, especially terminating before 18 weeks, as this denotes a distinct 

divergence in outcome in this clinical cohort.  

 

Given meaningful correlations between the univariate predictors, it is possible that some 

‘significant’ predictors of poor outcome were due to confounding.  A multivariate predictive 

model of demographic and clinical characteristics showed that only the presence of 

comorbidities provided a significant independent predictor. This is quite an interesting 

result, given that the continuous measures of anxious and obsessional traits were 

insignificant. Dichotomous variables like comorbidity are often criticised for reducing the 

power of effect, and so it would have been more likely for us to find insignificance with the 

comorbidity variable. However, it is likely that the variance associated with both RCMAS and 

LOI outcomes were explained by a comorbid diagnosis. Reaching diagnostic criteria for a 

second illness marks the upper extreme of these continuous measures, so it is possible that 

this allowed for a distinction between classes to occur with this variable. These results 
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support previous findings that suggest that depressed patients with comorbid conditions 

struggle to achieve adequate remission with these therapies (Bagby, Ryder, & Cristi, 2002; 

Brent et al., 1998; Curry et al., 2006; Kemp et al., 2008). Treatment plans too focussed on 

depressive symptoms alone may therefore limit the effectiveness of treatment in the longer 

term. A plateauing effect in symptom trajectories like those observed in this study may 

result, and increase the risk of relapse. Future work may benefit from designing randomised 

controlled trials investigating the effectiveness of adjunctive therapies (versus depression 

treatment alone) for patients with comorbidities over time.  

 

Alternative explanations 

An important facet of this study was the collapsing of treatment arms in the IMPACT trial, to 

create a single group of patients receiving psychological treatment. There is evidence from 

empirical studies that different treatments have proved more effective for different 

trajectory classes (Cuijpers et al., 2005; Gueorguieva et al., 2011; Uher et al., 2010). 

Furthermore, some studies have associated certain demographic and clinical characteristics 

with moderating response to different treatment modalities. For example, the severity of a 

patient’s illness was found to moderate the efficacy of combination treatment in 

adolescents (Curry et al., 2006) and adolescents with comorbid anxiety have shown 

differential efficacy rates to psychological treatments (Brent et al., 1998). Consequently, we 

cannot exclude the possibility that our null results for predictors other than comorbidity 

might be due to differential treatment effects within trajectory groupings moderating 

outcome. However, a number of studies into predictors and moderators of treatment 

outcome have concluded that the majority of demographic and clinical variables that 

associate with treatment outcome tend to act as non-specific predictors, rather than 

treatment-specific moderators of outcome (Curry et al., 2006; Frank et al., 2011). There is a 

great difficulty in recruiting sample sizes large enough to detect significant differences for 

moderation analyses (Frank et al., 2011), and the sample size per treatment arm in IMPACT 

was not sufficient to carry out such analyses with adequate reliability.  

 

Limitations 

Our results must be viewed in the context of several limitations of this work. Firstly, our 

specific hypothesis that subclinical psychotic symptoms would independently predict poorer 

outcome was unsupported. This suggests that in adolescent depression, symptoms of 
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psychosis do not have an overriding, unique effect on the trajectory of depressive symptoms 

during and after psychological treatment. However, as our analysis was secondary, our 

measurement of psychotic features was limited to the two questions posed in the k-SADS-PL 

screening interview relating to hallucinations and delusions. A more in-depth measure of 

psychotic experiences was not available in this current work. While research has 

demonstrated that endorsing as little as one single psychotic symptom is enough to observe 

a difference in remission rates (Perlis et al., 2010), thus providing support for our 

methodology, it is possible that our null results are a reflection of a lack of power of the 

measurement tool to detect differences between classes. Indeed, while Perlis and colleagues 

(2010) used a similarly simplistic method in their work, theirs still included assessment of 

symptoms beyond hallucinations and delusions (Perlis et al., 2010). The inclusion of a scale 

such as the Community Assessment of Psychic Experiences (CAPE-P15; (Perez et al., 2018) or 

the Psychotic-like Experiences Semi-Structured Interview (PLIKSi; Niarchou, Zammit, & Lewis, 

2015) may have allowed a more in-depth investigation of subclinical psychotic 

symptomatology and subtle differences that might exist between the two trajectory classes. 

Perez and colleagues’ (2018) work has advocated the ease with which the CAPE-P15 can be 

administered in a clinical setting. As such, we would encourage future primary work to utilise 

such instruments to allow for a fuller investigation of psychotic symptoms in depressed 

adolescents. Related to measurement limitations, it is important to note that both suicide 

attempts and non-suicidal self-injury were measured on lifetime scales. It might be that 

these variables only show a distinct association with response trajectories if they are 

experienced near the beginning of treatment.  

 

While our sample size was relatively large for clinical trials in adolescent depression, 

compared with other studies (Brent et al., 1997; Emslie et al., 2002; Goodyer et al., 2008), as 

noted in chapter 1, it was quite modest for growth mixture modelling. When discussing 

markers of a minority group in this respect, the frequency of those markers, even in a large 

overall sample, becomes notably reduced. Thus, one must mention sample size as a 

limitation of this research. For instance, our sample size reduced by half when considering 

patients with comorbid disorders, and these disorders ranged from behavioural (29% of 

those with at least 1 comorbidty), anxiety-related (77% of those with at least 1 comorbidity) 

or other conditions such as eating disorders or full psychosis (12% of those with at least 1 

comorbidity). Given the small percentages associated with each disorder category, it would 
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not have been good practice to further divide comorbidity into its respective conditions or 

categories, thus all comorbidities were grouped into a single variable. Our approach for this 

variable worked to maximise power while retaining clinical relevance for the variable. 

However, we cannot draw conclusions over which specific conditions associated with halted-

improvement, only that with increasing clinical complexity, as defined by the presence of an 

increasing number of comorbid conditions, the greater the likelihood to follow that 

trajectory. That said, we could speculate that anxiety may have been driving this effect, 

given that the majority of comorbid disorders were anxiety-related (77% of those with at 

least 1 comorbidity). However, further research that is adequately powered to address this 

question is needed before definitive conclusions can be made. At an individual study level, 

this scale of clinical research presents a significant barrier. Realistically, this is likely to 

require large-scale international collaboration in order to gain sufficient numbers, but such 

collaborations are very much a focus of current efforts to advance our understanding of 

mental health disorders (Schmaal et al., 2016, 2017a).  

 

Reflections on Methodology 

It is important to consider the robustness of our results, in light of a number of 

methodological choices. Firstly, comorbidity was assessed using the Schedule for Affective 

Disorders and Schizophrenia for School Aged Children (k-SADS-PL), which uses the Diagnostic 

and Statistical Manual version 4 (DSM-IV) criteria for diagnosis (APA, 2000), rather than the 

International Classification of Diseases (ICD)(World Health Organisation, 1992). It has been 

suggested that the use of the DSM often leads to an increased number of comorbidities 

reported than when using the ICD (Goodyer et al., 1997; Tyrer, 2014). It is therefore possible 

that the number of comorbidities in our sample is an overestimation of prevalence rates that 

would be normally reported in clinic. However, these diagnostic tools are optimised for 

different purposes: the ICD is preferred in clinical settings, as its definitions of conditions are 

more descriptive, and thus allow flexibility for clinical discretion (Tyrer, 2014). Conversely, 

the DSM has a distinct advantage in research settings, as it relies on operational criteria for 

diagnosis. Consequently, the use of DSM would minimise any clinician-related bias that 

might have emerged from an overreliance on clinical discretion using the ICD. Furthermore, 

while actual diagnoses may be overrepresented, we would argue that these numbers are 

still reflective of clinical complexity even if they did not meet threshold under another 

diagnostic tool, and thus represent a reliable marker of unfavourable trajectories.  
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Secondly, the analytical methods employed in this current work were conducted at the 

group-level; that is, we did not test the accuracy at which the model can categorise new 

patients. As stated in Chapter 1, our sample size was not large enough to divide into training 

and test sets for GMM, and data from a separate yet comparative cohort was unavailable. 

However, one previous GMM study has shown the potential for empirical approaches to 

predict outcome at an individual level (Stulz et al., 2010). The authors found that a predictive 

model of characteristics, including consideration of baseline measure of anxiety, history of 

antidepressant medication, patient reported depression severity and family function, was 

able to provide an accuracy of 61% in categorising new patients (Stulz et al., 2010). This 

accuracy level is not sufficient to give confidence in clinical application, but more studies are 

needed that incorporate such approaches to validate the trajectory classes described in 

chapter 1, and further test the accuracy of our clinical model to categorise new patients.  

 

Finally, it is important to note that the model produced here is comprehensive only in 

respect to the demographic and clinical characteristics that were available for secondary 

analysis from the IMPACT trial. There are a number of aspects of behaviour that were not 

measured in IMPACT, but have been found to significantly contribute to a persons’ ability to 

engage in and respond to treatment. These include, but are not limited to, personality traits 

and coping styles (Thibodeau et al., 2015), cognitive distortions and family-related factors 

(Curry et al., 2006) and treatment expectations (Curry et al., 2006). A much fuller inclusion of 

social and environmental factors should be considered in future primary investigations of 

predictors and moderators of response. The results however do suggest that including non-

depressive symptoms in a more multidimensional longitudinal analysis to further 

disaggregate the behavioural phenotypes over time may be of value. Such an analysis may 

improve the signal of putative predictors for treatment response. 

 

Overall, this current work has shown that the greater the clinical complexity of the patient, 

as measured by the presence of comorbidity, the more likely that patient is to experience 

halted-improvement trajectory of symptom change during and following a course of 

psychological treatment. It is important for future work to replicate these findings in primary 

datasets designed for this purpose, and provide an assessment of model accuracy at an 

individual level. However, the predictive model itself explained very little of the variance 
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between these two classes (5.4%), with poor sensitivity and specificity. This small percentage 

of explained variance suggests that, despite the methodological limitations of this work, it is 

likely that demographic and clinical observations alone are insufficient for fully predicting 

symptom change over time. Indeed, it is possible that the mere self-report nature of these 

measures limits their reliability as predictors (Nierenberg & DeCecco, 2001). In line with the 

Research Domain Criteria (RDoC) framework (Insel et al., 2010), future work should 

investigate the significance of biological predictors of such trajectories, and incorporate a 

multidimensional approach to fully assess factors that influence trajectory membership 

(Kennedy et al., 2012; Kemp et al., 2008).  
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Appendix 2A 

Table 1. Variance inflation factor and tolerance scores for logistic regression models. 

 VIF Tolerance 
Gender 1.06 0.94 
Age 1.03 0.97 
RCMAS 1.36 0.74 
LOI 1.38 0.73 
HoNOSCA 1.15 0.87 
Suicidal attempts 1.18 0.85 
NSSI 1.19 0.84 
Psychotic symptoms 1.09 0.92 
Comorbidity 1.17 0.86 
RCMAS; Revised Children’s Manifest Anxiety Scale, LOI; Leyton Obsessional Inventory, NSSI; 
Non-suicidal self-injury, HoNOSCA; Health of the Nation Outcome Scales for Children and 
Adolescents. 
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Chapter 3: Neurological predictors of trajectory classes. 

 

The analyses conducted thus far have illustrated that clinical observations are insufficient in 

predicting likely class membership of a patient’s symptom change over time. Clinical 

characteristics only explained 5% of the variance between trajectory classes in adolescent 

MDD. Our results agree with the Research Domain Criteria, that posit that symptoms alone 

may not reflect underlying disease processes with enough accuracy to act as predictors of 

overall response (Insel et al., 2010). These authors call for diagnostic and prognostic work to 

look beyond symptom classifications and consider the role of various biological components 

that affect mental health.  

 

Maladaptive thoughts, feelings and behaviours are all governed by brain circuitry. 

Consequently, neural systems that generate the core symptoms of depression are a clear 

target for investigation. Over a decade of studies, reviews and prominent meta-analytic 

papers such as the ENIGMA-MDD consortium (Schmaal et al., 2016, 2017a) have shown that 

in depressed cases, significant structural and functional differences exist in regions that 

regulate disease-relevant functions such as emotion, reward processing and cognitive biases 

(Belzung, Willner, & Philippot, 2015; Gong & He, 2015; Miller, Hamilton, Sacchet, & Gotlib, 

2015). Variability within these regions has also shown promise in differentiating between 

those who respond well and poorly to treatment (Fu, Steiner, & Costafreda, 2013; Lener & 

Iosifescu, 2015; Phillips et al., 2015). Therefore, my next line of work will investigate whether 

trajectory classes demonstrate neurological differences in specific regions of interest, and 

whether these differences possess predictive value. While I will focus on the investigation of 

brain structure in this chapter, I acknowledge that altered structure is likely only one of a 

multitude of biological abnormalities present in depression, including aberrancies in brain 

function (Forbes et al., 2010; Fu et al., 2013; Gong & He, 2015; Miller et al., 2015). 

Consequently, I have drawn on functional imaging studies for supportive evidence. My 

investigations will also focus on the cortical regions emerging as important from prior work, 

and I discuss each region of interest in turn below.   

 

Anterior Cingulate Cortex (ACC) 

The network that governs emotion incorporates an intricate group of regions in the brain, 

including different sub-regions of the ACC (Boes, McCormick, Coryell, & Nopoulos, 2008; 
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Kross, Davidson, Weber, & Ochsner, 2009; Yoshimura et al., 2010) and the medial prefrontal 

cortex (mPFC; Lemogne et al., 2009; Yoshimura et al., 2010), governing emotional stability, 

internal self-referential processes and rumination (defined as deep, considered thought of 

cause and consequence; usually about one’s own feelings or distress). The ACC in particular 

has a diverse range of functions, involving emotion processing, but also reward processing 

and cognitive control (Bush, Luu, & Posner, 2000; Devinsky, Morrell, & Vogt, 1995; Mohanty 

et al., 2007). Various subdivisions of the ACC have been documented as aberrant in MDD 

and moreover, specific regions have been associated with different symptomatology (Grimm 

et al., 2009). For instance, the pregenual ACC is known as the “affective division”. Activation 

of this region has been suggested to induce sadness, resulting in associations with 

depression and its severity (Bush et al., 2000; Grimm et al., 2009). On the other hand, the 

dorsal ACC is known as the “cognitive division”. Reduced blood flow in this region has been 

linked to impairments in attention and executive functioning in depression (Fossati, Ergis, & 

Allilaire, 2002), and control over the affective subdivision (Mayberg et al., 1999). Taken 

together, the ACC appears to function in the regulation of emotional and cognitive 

processes, which are specifically implicated in depressive symptomatology.  

 

Structurally, reductions of the ACC grey matter volume (GMV) in depressed cases have been 

largely supported by a number of meta-analytic studies to date (Arnone, McIntosh, Ebmeier, 

Munafò, & Anderson, 2012; Bora, Fornito, Pantelis, & Yücel, 2012; Koolschijn, van Haren, 

Lensvelt-Mulders, Hulshoff Pol, & Kahn, 2009; Lai, 2013). In particular, these meta-analytic 

studies have collectively interrogated the reliability of these findings, showing that 

reductions in ACC volume are apparent across different analytical approaches (Bora et al., 

2012), and are not a result of data duplication or specific age of patients (Arnone et al., 

2012). However, the magnitude of affect did vary by these variables. Abnormalities in ACC 

regions appear to be a trait-related feature (van Eijndhoven et al., 2013) and also a 

predisposing factor to depression rather than a pathological consequence of the illness 

itself. For example, the ACC showed a strong contribution to models that differentiated 

adolescents who later developed depression from those who remained well (Foland-Ross et 

al., 2015). However, some authors have suggested ACC differences may be a result of 

medication, as there was a failure to replicate the reduced ACC volumes in one meta-

analysis of medication-naïve patients (Zhao et al., 2014). 
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Surface-based investigations of brain structure have largely supported the literature of ACC 

GMV in depressed cases. The major difference between surface-based and voxel-based 

methods is that the former map brain structure to the cortical surface, while the latter map 

structures based on the intensity of a given voxel. Consequently, agreement between the 

two imaging methods is encouraging, because it validates voxel-based findings with more 

anatomically accurate methods (Fischl & Dale, 2000). The ENIGMA consortium conducted a 

meta-analytical investigation of cortical thickness and surface area differences, using 

surface-based methods (Schmaal et al., 2017a). They found that adult patients displayed 

cortical thinning in the orbitofrontal cortex (OFC), anterior (ACC) and posterior cingulate 

(PCC), insular cortex and temporal lobes. While the OFC demonstrated the largest effect size 

in this study, their parcellation method meant that the medial wall of the OFC contained the 

subgenual ACC. Furthermore, cortical thinning in prefrontal and ACC regions have been 

found to associate with specific symptomatology, including irritability, fatigue (Lener et al., 

2016), and suicidal behaviour (Wagner et al., 2012). However, the direction of effect is 

somewhat debated. While the ENIGMA consortium reported that cortical thinning was 

apparent even in first episode patients (Schmaal et al., 2017a), other studies have reported 

that first-episode depression is associated with cortical thickening in the ACC (van 

Eijndhoven et al., 2013). It is possible that thicker cortices might predispose individuals to 

depression, while over the course of the illness, physiological processes of the disease state 

result in accelerated cortical thinning (Foland-Ross et al., 2015). Nevertheless, the ACC 

appears to be an important biological substrate for the experience of depression and it is 

likely to be a viable region for further investigation in treatment response. 

 

A number of functional imaging studies have provided support for the prognostic ability of 

the fronto-cingulate pathways in predicting treatment outcome for patients (Fu et al., 2013; 

Pizzagalli, 2011). A meta-analysis of 23 studies advocated that hyperactivity of the rostral 

ACC is a robust predictor of treatment response in depression (Pizzagalli, 2011). The effect 

was evident across a range of functional imaging (EEG/MEG, fMRI, PET and SPECT), and also 

generalized to a number of depressive treatments including pharmacological, rTMS and 

sleep deprivation. However, one of the difficulties of this field is that there is a great deal of 

methodological variability across studies. These include brain parameters, imaging 

technique, study design and type of therapy. Indeed, findings of whether ACC activity is 

predictive of response to CBT have been mixed; with disagreement on whether hyper or 
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hypo-activation within the ACC is predictive of a positive CBT response (Fu et al., 2008; 

Konarski et al., 2009; Siegle, Carter, & Thase, 2006). Also, some other studies found that the 

ACC did not show predictive value (Ritchey, Dolcos, Eddington, Strauman, & Cabeza, 2011). 

It is plausible that predicting clinical response to less physical treatments with fMRI may 

require more power (Costafreda, Chu, Ashburner, & Fu, 2009), but more research in 

psychological therapies is necessary before definitive conclusions can be drawn.  

 

The field of research investigating structural neurological predictors of response to 

treatment is small. However, there is a pattern emerging that responsive patients tend to 

display qualitatively different neural structure to those who are unresponsive (Liu et al., 

2012). For example, the extent of ACC GMV reductions observed in depressed patients has 

been shown to associate with resistance to treatment (Chen et al., 2007). Faster 

improvement was observed in those patients with greater ACC volume and greater ACC task-

based activation (Chen et al., 2007). Interestingly, this study found dissociation between 

subregions of the ACC. The affective division showed predictive value for treatment 

response to antidepressants, while the midcingulate regions related to baseline severity 

(Chen et al., 2007). However, for their functional work, the prognostic value of the 

subgenual ACC was only observed through ROI analyses. When stricter corrections for 

multiple comparisons were applied, no differences in function between good and poor 

responders were reported (Chen et al., 2007), suggesting that structural investigations may 

be a more promising avenue in this field. White matter volume in the ACC has also been 

shown to discriminate between treatment-resistant and treatment-sensitive depression with 

comparable accuracy to GMV (Liu et al., 2012).  

 

Other structural work employing whole-brain analyses have supported the significance of 

the ACC in predicting response (Costafreda et al., 2009). Costafreda and colleagues (2009) 

found that ACC neuroanatomy provided the strongest weighting in prediction models, 

although it was noted that the posterior cingulate was also a prominent structure for the 

prediction model. Their models reported 88.9% accuracy in correctly predicting clinical 

remission to antidepressants. In contrast, the accuracy of whole-brain structure in diagnosis 

was only 67.6%, prompting the authors to suggest that structural neuroanatomy may have 

better utility as a prognostic, rather than diagnostic marker for depression (Costafreda et al., 

2009). This assertion was supported by inpatient research (Frodl et al., 2008). These authors 
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found no difference between patients and healthy controls in the ACC volume but a 

significant negative correlation between ACC volume and number of hospitalizations was 

observed. It is important to note however, that the number of hospitalizations is a 

somewhat crude measure for clinical response. Furthermore, in echo of the functional 

literature (Pizzagalli, 2011), Costafreda and colleagues (2009) stated that their sample may 

have been too small to have adequate power to detect whether structural differences 

predict response to psychological treatments, so our understanding of this line of treatment 

remains incomplete.  

 

There is a growing body of research investigating the link between structure and function in 

the brain (Honey, Thivierge, & Sporns, 2010). However, the dearth of literature of the 

prognostic potential of brain structure to psychological therapies makes generating 

hypotheses regarding the direction of the expected influence that brain structure would 

have on treatment efficacy difficult. However, one study theorized that regional cortical 

thinning could impair a patient’s ability of adaptive rumination, and thus ability to engage in 

psychological therapies that utilize such skills (Späti et al., 2015). These authors found that 

functional connectivity of the subgenual ACC correlated with thickness of the PFC (Späti et 

al., 2015) and moreover, this increased connectivity was associated with higher scores on 

adaptive rumination. Cortical thinning of the ACC present prior to psychological treatment 

may therefore predict a poor outcome to treatment in adult patients.  

 

Prefrontal Cortices 

While the ACC has a large corpus of work supporting its involvement in MDD, many studies 

emphasise that alterations in depression span further than a single region (Grieve, 

Korgaonkar, Koslow, Gordon, & Williams, 2013; Schmaal et al., 2017a; Zhao et al., 2014). 

Three key regions of the prefrontal cortex (PFC) also appear important in MDD and 

treatment response; namely, the medial PFC (mPFC), dorso-lateral PFC (dlPFC) and the 

orbitofrontal cortex (OFC) (Kaiser, Andrews-Hanna, Wager, & Pizzagalli, 2015; Zheng et al., 

2015). These regions play different roles within the affective network, acting as moderators 

over areas that generate emotion, directing cognition and processing reward (Ochsner et al., 

2004). Consequently, these regions show different aberrancies in MDD.  
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The mPFC has been associated with up-regulation of negative emotion, and is particularly 

involved in internal processing (Ochsner et al., 2004). Hyperconnectivity demonstrated in 

this region in MDD could, along with aberrancies in the OFC, contribute to low mood and 

increased self-referential symptoms in MDD (Kaiser et al., 2015; Zheng et al., 2015). The 

degree of aberrant functional connectivity was further found to directly correlate with 

cortical thickness of the dorso-mPFC in MDD (van Tol et al., 2014). However, studies have 

illustrated functional changes occur in prefrontal regions following treatment (Chuang et al., 

2016), and medication status of patients at the time of scanning in this trial was a confound 

(van Tol et al., 2014). In this context, care must be taken to consider medication status of 

patients when research question concern aetiology or prediction (van Tol et al., 2014). 

 

The OFC and dlPFC have also exhibited reduced connectivity in depression (Kaiser et al., 

2015; Zheng et al., 2015). The activations of the OFC have been associated with the down-

regulation of amygdala response to negative emotions (Ochsner et al., 2004), and the dlPFC 

is particularly involved in the control over network that process external stimuli (Seeley et 

al., 2007). Therefore, reduced activity in these regions could underpin attentional biases and 

low mood observed in depression (Kaiser et al., 2015; Zheng et al., 2015). Furthermore, the 

intricate involvement of the OFC in reward processing (Elliott, Dolan, & Frith, 2000) may 

provide a plausible substrate underlying anhedonia (Gorwood, 2008), one of the core 

symptoms of depression (APA, 2013).  

 

Structural imaging modalities have provided complements for the aberrant functioning of 

prefrontal regions in MDD. As previously mentioned, the ENIGMA consortium found 

compelling evidence for the importance of the OFC in MDD, whether first episode or 

recurrent (Schmaal et al., 2017a). The largest effect sizes between depressed cases and 

healthy controls were reported for thinning of the OFC (Schmaal et al., 2017a). Foland-Ross 

and colleagues (2015) also found that, while ACC thickness contributed to the classification 

of adolescent girls who went on to develop depression, it was thinning of the OFC that 

provided the strongest weighting to these machine learning algorithms. These findings 

concur with effect sizes reported in volumetric meta-analyses (Koolschijn et al., 2009). Meta-

analytic findings have also shown reports of robust GMV reductions in the dlPFC in 

medication-naïve patients (Zhao et al., 2014) as well as cortical thinning of this region (Späti 

et al., 2015; van Tol et al., 2014). Morphometric studies have associated this thinning of the 
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dlPFC and the OFC with reductions in neuronal size, and neuronal and glial cell densities 

(Rajkowska et al., 1999). Furthermore, one study found that OFC thinning correlated with 

serum cortisol levels in first-episode drug-naïve patients, suggesting a possible mechanism of 

observed atrophy (Liu et al., 2015). However, these structural findings are not wholly 

consistent; a study of familial risk concluded that thickening of the OFC and ACC regions 

identified high-risk individuals (Peterson et al., 2009). No longitudinal follow-up was 

conducted on these participants, so it is unknown if high-risk individuals subsequently 

developed the illness, which consequently, may explain the disparity between studies. 

Nevertheless, abnormalities in these prefrontal systems may provide significant contribution 

to the development of the depressive state (Kaiser et al., 2015).  

 

Further variation within already abnormal structure might explain the heterogeneity we see 

between patients, and relate to their response to treatment. For instance, volume 

reductions in the dlPFC, along with reductions in the mid-cingulate, have been shown to 

correlate with depression severity (Chen et al., 2007; Li et al., 2010); the most consistently 

found behavioural predictor of non-response (Curry et al., 2006; Goodyer et al., 1997; 

Wilkinson et al., 2009). Volumetric analyses have also showed that greater OFC volumes 

associated with symptom improvement (Chen et al., 2007). Moreover, the extent of cortical 

thinning in the dlPFC has differentiated patients with and without risk of suicide (Wagner et 

al., 2012). This thinning in suicidal patients has been associated with observed decreases in 

the density of serotonin axons in this region (Austin, Whitehead, Edgar, & JE Janosky, 2002).  

Although, the small numbers of studies and the inclusion of patients who have already 

begun treatment within those studies, have limited meta-analytic conclusions of prognostic 

studies of structure (Fu et al., 2013). Fu and colleagues (2013) found only a trend towards 

significance of decreased grey matter volume in the dlPFC, associating with a poorer 

outcome to antidepressant treatment. The effect was also not strong enough to survive 

corrections for multiple comparisons. However, functionally, meta analytic results found 

that the positive association between subgenual ACC activation and clinical response to 

antidepressants extended to include the mPFC and OFC (Fu et al., 2013).  

 

At an individual study level, grey matter volume reductions in the dlPFC have been noted in 

patients who fail to remit after 6-week antidepressant treatment (Li et al., 2010). 

Furthermore, predictive models of whole-brain structure were found to discriminate 
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between patients with treatment-resistant and treatment-sensitive depression with 82.9% 

accuracy, and that the most important frontal regions discriminating between these groups 

corresponded to the dlPFC (Liu et al., 2012). This finding appears relatively robust, as it has 

been replicated in a larger study of drug-naïve patients, albeit with a lower prognostic 

accuracy (69.6%) (Gong et al., 2011). However, for some studies, it appears that it is patients 

with treatment-sensitive depression who display the greatest differences compared to 

controls (Li et al., 2010; Liu et al., 2012; Lui et al., 2011). For instance, Gong and colleagues 

(2011) found that the accuracy of predicting responsive patients with brain structure was 

higher than predicting non-responsive patients. It might be that patients with these brain 

abnormalities are those for which these treatments are effective. Indeed, some functional 

work appears to support this theory. Patients with the strongest negativity bias in one 

functional study, and strongest activity in the dlPFC, ventro-lateral PFC and anterior 

temporal lobe, showed the greatest symptomatic improvement with CBT (Ritchey et al., 

2011). It is argued that this increased activation may serve to help combat anhedonic 

symptoms of the depressive state, due to the role of these areas in reward processing (Fu et 

al., 2013; Keedwell et al., 2010). Those labelled as resistant may therefore have other 

abnormalities beyond the brain that require a different treatment process. Alternatively, 

those with the greatest deviations have greater improvements to make with treatment 

(Ritchey et al., 2011). Mechanistic theories cannot be investigated until the direction of 

effect in these data becomes clearer and less reliant on correlational data.  

 

Insular Cortex 

The anterior region of the insula has a prominent role in monitoring the salience of internal 

and external stimuli (Seeley et al., 2007), processing reward (Zhang, Chang, Guo, Zhang, & 

Wang, 2013), and is intricately involved in social emotions such as empathy, compassion and 

guilt (Lamm & Singer, 2010). Consequently, this region has been referred to as a centre for 

interoception (Lee & Siegle, 2012). However, the insular cortex as a whole is extremely 

multifunctional; with subdivisions involved in everything from pain, chemosensation, 

auditory processing, executive control (Chang, Yarkoni, Khaw, & Sanfey, 2013) and even the 

experience of conscious awareness (Craig, 2009). This multi-functionality makes the insula a 

significant hub for interfacing between thoughts, feelings (including physical arousal and 

mental states) and behaviour (Chang et al., 2013). Considering that these features are of key 
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interest in depression aetiology, this makes the insula a neural structure of considerable 

interest when designing imaging psychopathology studies.  

 

A number of review articles implicate the anterior subdivision of the insula in the depressive 

state (Dunlop & Mayberg, 2014; Lamm & Singer, 2010), due to its extensive connections 

with the ACC and OFC (Augustine, 1996). One of the largest and most recent meta-analytic 

studies on neural markers for depression found that the insular cortex showed significant 

reductions in cortical thickness between patients and controls, with effect sizes comparable 

to the ACC (Schmaal et al., 2017a). These findings, as with the ACC and OFC, were present in 

both first-episode and recurrent patients in the ENIGMA sample. Indeed, abnormalities of 

the insula are argued to be a trait-related feature of depression across both structural and 

functional neuroimaging (Liu et al., 2014; Takahashi et al., 2010). Two studies have reported 

that reduced anterior insula volume was present both in patients with past and current 

depression (Liu et al., 2014; Takahashi et al., 2010), and further, Liu and colleagues (2010) 

have found that both medication-free, first-episode patients and first-degree relatives 

showed decreased regional homogeneity in the insula in resting-state fMRI. Regional 

homogeneity of the anterior insula was also found as one of seven regions that 

differentiated cases of unipolar from bipolar depression (Liu et al., 2012). The insula 

demonstrated one of the highest AUC values of these regions, prompting authors to suggest 

it as a distinguishing feature of MDD. Interestingly, the other key regions mentioned as 

significant for MDD were those of the PFC and cingulate cortex, mentioned previously in this 

chapter (Liu et al., 2012). However, it is important to note that discrepancies do exist in the 

literature. Firstly, one VBM study showed that it was decreased insula volume in the 

posterior, not anterior, subdivision that associated with melancholic depression, and that 

these reductions were predictive of slower treatment response (Soriano-Mas et al., 2011). In 

addition, Foland-Ross and colleagues (2015) reported that thickening of the insula that was 

predictive of later developing depression in adolescent girls. This discrepancy of thicker 

cortices in at-risk individuals is similar to that previously discuss with regard to the ACC (van 

Eijndhoven et al., 2013), and as previously noted, may not necessarily conflict per se, but 

rather reflect different time-points in the course of disease.  

 

To date it appears the insula plays some contributory role in depression aetiology, but as 

with other regions, the details require further clarity. Dunlop and Mayberg (2014) argued 
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that it is precisely this inconsistency in depressive aetiology that suggests the insula may be 

important for differentiating within a group of depressed patients, rather than between a 

heterogenous group of patients and controls. As with other brain regions discussed here, 

there is limited data investigating how structural abnormalities of the insula relate to 

treatment outcome. Fu and colleagues’ (2013) meta-analysis highlighted this: only 9 studies 

were found investigating structure in medication-free patients, 3 of which were ROI studies 

focusing on the hippocampus. However, functionally, increased baseline activation of the 

insula and striatum have associated with poorer response (Fu et al., 2013; Rizvi et al., 2013). 

Abnormal metabolism of the insula has also been associated with treatment response and 

remission in a number of PET studies (McGrath et al., 2013; Paillè Re Martinot et al., 2011). 

Furthermore, this region has been suggested to exhibit the most robust discriminatory 

power for treatment-specific differentiation (McGrath et al., 2013). A variety of treatments 

have shown to alter insula activity, including antidepressants (Kennedy et al., 2001), 

mindfulness (Farb et al., 2007) and deep brain stimulation (Mayberg et al., 2005). 

Collectively, this suggests that aberrancies of the insula, and their correction, may be key to 

recovery across therapeutic methods. However, Rizvi and colleagues (2013) emphasised that 

discrepancies in the outcome of task-based functional studies do still exist, and might well 

be due to task-based differences in function of that region. Consequently, the utility of fMRI 

as a biomarker for treatment response in depression continues to be debated (Bullmore, 

2012).  

 

Work by Chen and colleagues discussed earlier has demonstrated that there was a strong 

correspondence between those regions that displayed functional aberrancies and those 

regions that displayed altered structure (Chen et al., 2007). Symptom improvement 

following antidepressant medication showed a strong association with GMV in the insula 

cortex, in addition to those discussed previously (Chen et al., 2007). In line with these 

findings, a longitudinal study has found that decreased GMV in the left insula was predictive 

of a slower response to treatment (Soriano-Mas et al., 2011). This reduced GMV further 

correlated with the number of relapses experienced by depressed patients over two years 

(Soriano-Mas et al., 2011). However, there are a number of exceptions in the literature. For 

instance, while depression severity is usually associated with poorer treatment outcome 

(Curry et al., 2006; Goodyer et al., 1997; Wilkinson et al., 2009), one study found a positive 

correlation with severity and insula volume (Liu et al., 2014). Given the above, this is 
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somewhat unexpected. However the correlation between volume and severity is not 

consistently reported (Takahashi et al., 2010), and one must keep in mind that severity and 

symptom change are two dissociable concepts.  Nevertheless, abnormal structure of the 

insula cortex marks an important avenue of further investigation.  

 

Adolescence 

Thus far, unless otherwise stated, all studies discussed here have been conducted on adult 

samples of patients with depression. However, neurologically, adolescent depression could 

be an entirely different beast (Kaufman, Martin, King, & Charney, 2001). Neuroimaging 

studies have shown that throughout development, neurological systems that control certain 

behaviours become more and more refined. For instance, Casey and colleagues (2000) found 

that in studies of younger participants, much more diverse patterns of activation were 

present in cognitive tasks compared with adult samples. In addition, not all brain regions 

develop at the same time (Gogtay et al., 2004). Indeed, prefrontal regions that regulate 

emotion and reward processing are the latest to mature (Giedd, 2008; Gogtay et al., 2004; 

Spear, 2000), which are the very systems implicated in adult depression (Kaufman et al., 

2001). Consequently, neurological studies in adolescence require careful consideration when 

investigating disease processes. One cannot simply extrapolate findings from adult studies 

onto a developing brain (Kaufman et al., 2001). Furthermore, it cannot be assumed that the 

mechanistic action of treatment is the same for adolescents, as studies have illustrated 

differences in sensitivities to antidepressants across development (Bylund & Reed, 2007). As 

such, predictors of response might also differ in adolescence from adult samples.   

 

There is a scarcity of studies investigating the neural architecture of depression during 

adolescence, and even fewer investigating neural predictors of response. Of those that have, 

whether one can say that the depressed adolescent brain resembles that of adult depression 

is still debatable. For example, in line with adult findings, correlations have been observed 

between depressive symptoms and increased activity of the rostral ACC and ventral medial 

PFC (William & Yurgelun-Todd, 2006). Cullen and colleagues (2009) also found similarities 

with adult studies, reporting decreased functional connectivity between the subgenual ACC 

and areas of the cortex, including the mPFC and insula in depressed adolescents. 

Interestingly, most patients in this study had moderate to severe depression despite 
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receiving antidepressant medication, so these areas may have additional importance as a 

biomarker of risk for disorder or predicting treatment resistance.  

 

Structurally however, the adolescent literature appears to depart somewhat from adult 

studies, with a number of inconsistencies. For instance, one longitudinal study suggested 

that subcortical abnormalities may play a more prominent role in adolescent depression 

than cortical abnormalities (Whittle et al., 2014). The authors found that altered growth 

patterns of the hippocampus, amygdala and putamen associated with depression onset in 

adolescence between 12 and 16 years, but found no association in cortical regions (Whittle 

et al., 2014). However, other studies have supported the significance of cortical structural 

abnormalities in depressed adolescents (Ducharme et al., 2014; Foland-Ross et al., 2015; 

Hagan et al., 2015; Reynolds et al., 2014). Cross-sectional work has suggested that age-

related changes in GMV in the ACC differ for adolescents with depression compared to 

healthy controls (Hagan et al., 2015). Together, these studies suggest that pathology may 

interfere with the way in which the adolescent brain matures, and this development may 

impact the differences we observe between adult and adolescent depression (Koenig et al., 

2018). Indeed, in contrast to the adult literature, a number of studies have found that 

depressed adolescents exhibited thicker cortices in prefrontal, cingulate and insula regions 

compared with controls (Koenig et al., 2018; Reynolds et al., 2014). Longitudinal studies 

have also found associations between cortical thickness and depression (Ducharme et al., 

2014; Foland-Ross et al., 2015). Ducharme and colleagues (2014) found a slower rate of 

thinning in the ventral medial PFC related to depressive symptomatology in their healthy 

adolescent sample. This study also reported that cortical thickness of the ACC and OFC 

positively correlated with depressive symptoms, although not all studies support the 

direction of effect for these regions (Foland-Ross et al., 2015). Increased thickness of the 

insular cortex has been found to associate with depression onset (Foland-Ross et al., 2015) 

and the interaction between depressive symptomatology and cortical thickness of this 

region has additionally been shown to predict autonomic function (Koenig et al., 2018). 

Koenig and colleagues (2018) found that for depressed adolescents (and controls) with lower 

levels of depression, increased insular thickness associated with lower regional resting-state 

vagal activity. Conversely, for those with more severe depression, increased insular thickness 

associated with higher resting-state vagal activity (Koenig et al., 2018). This suggests that 

depressive pathology can influence the relationships between neurological parameters. The 
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authors postulate that the abnormal cortical thickness observed in adolescent depression 

might be a compensation to maintain appropriate levels of autonomic function (Koenig et 

al., 2018).  

 

The literature discussed thus far suggests that, while the direction of effect may contrast 

with adult depression, cortical thickness of prefrontal and cingulate regions appear 

important in the pathology of adolescent depression. However, robust meta-analytic data in 

this field is lacking, and results from the ENIGMA consortium cause further debate (Schmaal 

et al., 2017a). Contrary to adult studies included in their analysis, and previous adolescent 

research, their analysis suggested that cortical thickness did not illustrate case-control 

differences in adolescence. Adolescents in this study showed no differences in cortical 

thickness when compared to controls, but instead had lower total surface area, and regional 

reductions in surface areas in the OFC and superior frontal gyrus (an area that forms part of 

the dlPFC) (Schmaal et al., 2017a). However, their adolescent sample were not of the typical 

age-range associated with the term “adolescence”: 70% of their adolescent sample was over 

18 years of age (Schmaal et al., 2017a). Very few studies have investigated surface area as 

their parameter of interest in depression, with only one in the typical adolescent age range 

(Schmaal et al., 2017b). This study investigated this relationship between depressive 

symptom trajectories and cortical structural parameters longitudinally, in adolescents aged 

between 12 and 19 years (Schmaal et al., 2017b). Furthermore, a unique characteristic of 

this study was their employment of GMM to define their comparison groups. The authors 

found three types of patients emerged in their cohort: a group reporting early onset 

depressive symptoms which decline over time, a group with low and stable depressive 

symptoms over time, and a group reporting depressive symptoms, although later in 

adolescence. Interestingly, and in line with the ENIGMA consortium, the authors found no 

evidence of cortical thickness differences between different symptom trajectories, but there 

were significant differences in surface area (Schmaal et al., 2017b). Females who reported 

symptoms of depression early in adolescence displayed significantly reduced ACC and OFC 

surface area across development, compared to the other two groups. Furthermore, males in 

this early-onset group showed a lower rate of expansion in cortical surface area of the OFC 

compared to the other two groups. These findings emphasise that early onset of depressive 

conditions might show different relationships with brain structure than if the condition 
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occurred later in development. More research is necessary to understand how neurological 

parameters differ in depression and across development.  

 

A major strength of Schmaal and colleagues’ work (2017b) is their incorporation of empirical 

approaches to defining their groups for comparison. As noted in chapter 1, defining 

subgroups of individuals based on percentage reduction at a single time point, the common 

method of most studies discussed here is arbitrary and allows for heterogeneity to exist 

within groupings. This could easily cloud significant differences on an individual study level 

and may be a contributing factor to the lack of consensus of the field. It is imperative that 

response groups are categorised as homogenously as possible, based on the experiences of 

the patient, and GMM nicely allows for this type of grouping. However, this is the only study 

to date to incorporate GMM in neuroimaging research in depression, and there is a lack of 

structural studies extending this into clinical samples receiving treatment. On the other 

hand, one study has investigated associations between brain function and treatment 

response in adolescents, using a similar approach of growth curve modelling (a full 

description of these approaches was outlined in chapter 1). Forbes and colleagues (2010) 

found that the activity of reward-related brain function in the striatum and mPFC prior to 

treatment predicted both final depression levels, and the change in anxiety symptoms over 

time in adolescents. Specifically, greater activity in the mPFC is associated with a poorer rate 

of symptom reduction. Unfortunately, this study is limited by its small sample size: with only 

13 patients, statistical modelling to investigate the presence of sub-trajectories was not 

possible. Larger studies are needed if neuroimaging research is to adopt more meaningful 

approaches to defining groups based on symptom change. 

 

In conclusion, there appears a network of cortical regions that are implicated in depression 

aetiology and treatment response, most consistently including the ACC, dlPFC, OFC and 

insular cortex. These regions also appear significant for adolescent depression. However, the 

field of adolescent depression is currently in equipoise regarding the direction of effect in its 

structural investigations, and there is a scarcity of studies investigating the prognostic 

potential of pre-treatment brain structure in this population.  
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Objectives and Hypotheses 

The objective of this next piece of work was to conduct a secondary analysis of a subsample 

of adolescents enrolled into the IMPACT trial. The Magnetic-Resonance-IMPACT (MR-

IMPACT) subsample contained 109 patients who had additional structural MRI scan data 

collected at treatment randomisation. The specific aim was to investigate the relationship 

between empirically-derived trajectory classes, as defined in Chapter 1, and baseline cortical 

thickness and surface area, as measured using the surface-based analysis software 

(FreeSurfer). Prior literature is currently inconclusive to predict a direction of effect with 

confidence, however we hypothesise that the two trajectory classes would show 

significantly different cortical thickness and surface area in specific regions of the ACC, OFC, 

dlPFC and insular cortices.  
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Methods 

Study Design and Size 

This study was a re-analysis of the MR-IMPACT trial (Hagan et al., 2013). MR-IMPACT 

consisted of a subgroup of patients who, in addition to the data of the IMPACT trial, also 

underwent structural MRI scans. Full details of the protocol are outlined by Hagan and 

colleagues (2013) and eligibility criteria for IMPACT is outlined in Chapter 1.  

 

Setting 

The MR-IMPACT trial (Hagan et al., 2013) recruited 128 patients from the IMPACT trial. One 

hundred and ten of these patients were recruited from East Anglia, and a remaining 18 were 

recruited from North London. 

 

Bias 

Bias associated with the main IMPACT sample is outlined in Chapter 1. The sample used for 

this study was primarily collected from only one of the three geographical regions of 

recruitment for IMPACT. Therefore, we cannot be certain that the sample is necessarily 

representative of the full IMPACT sample. However, comparisons between the sub-sample 

and main sample were conducted and discrepancies reported below.  

 

Participants 

Of the 128 patients recruited to MR-IMPACT, 11 patients were excluded for brace or 

retaining wire MRI artefacts, 2 for brain abnormalities and 6 because their scans occurred 

after psychological treatment had commenced. Thus, 109 patient scans were available for 

MRI analysis. Full details of the demographic characteristics of these 109 patients can be 

found in prior work by Hagan and colleagues (2015).  

 

The GMM longitudinal classes described in Chapter 1 were used as a binomial variable to 

examine imaging characteristics between continued and halted-improvers. Of the 109 

patients, 19 (17.4%) were allocated to class 1 and 90 patients were allocated to class 2 

(82.5%). While class 1 contained a slightly higher proportion of patients and class 2 a slightly 

lower proportion of patients than observed in the full IMPACT sample (15.9% and 84.1% 

respectively), this difference was non-significant (X2(1)= 0.244, p=.621) .  
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Analyses of associations were conducted in a separate step. Table 1 presents the 

demographic and clinical data of each trajectory class in the MR-IMPACT cohort. 

Independent sample t-tests were performed to explore differences between the trajectory 

classes on all continuous demographic and clinical variables. Chi-square tests were 

performed on all categorical variables. Mann-Whitney-Wilcoxon tests were performed 

where data were non-normal.  
 

No significant differences were present between classes on any demographic characteristics 

investigated in the MR-IMPACT sample. This differs slightly from the full IMPACT sample, 

which found a significant difference between the proportion of males and females allocated 

to their respective classes (See Chapter 2). This difference between samples is likely due to 

the small sample size of MR-IMPACT.  

 

In terms of clinical characteristics, firstly, class 1 showed on average higher depression 

severity (MFQ). This however, was expected, as MFQ was the variable used to define the 

two classes (See Chapter 1). Class 1 also showed higher LOI scores, indicating more 

obsessional traits than class 2 at baseline. This was also true for the full IMPACT sample, 

however the MR-IMPACT sample did not demonstrate any other significant differences on 

clinical measures measured in the full IMPACT sample. Measures of state and trait anxiety 

were additionally investigated in the MR-IMPACT subsample, using the State-Trait Anxiety 

Inventory (STAI). Here, class 1 displayed higher STAI trait scores, indicating that patients in 

class 1 display higher trait anxiety than patients in class 2.  
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Table 1: Demographic and clinical characteristics of trajectory classes in MR-IMPACT 

 Class 1: Halted-
improvers (n=19) 

Class 2: Continued-
improvers (n=90) 

Comparison 

 N % N % X2/OR p 
   Female% 15 73% 66 79% 0.74 .78 
  Ethnicity(white) % 18 95% 81 90% 1.99 .99 
   Suicidal attempts 6 32% 28 31% 0.002 .97 
   Suicidal thoughts% 18 95% 82 91% 1.75 .99 
   NSSI% 15 79% 62 69% 1.69 .58 
   Comorbidity+ - - - - 1.09 .30 
      1 7 37% 33 37% - - 
      2 4 21% 12 13% - - 
      3 1 5% 0 0% - - 
   Treatment arm:  - - - - 1.81 .40 
       BPI 8 42% 24 27% - - 
       CBT 6 32% 37 41% - - 
       STPP 5 26% 29 32% - - 
 Mean SD Mean SD t p 
   Age 15.3 1.3 15.6 1.3 0.96 .35 
   IQ (available for 5 
in class 1 and 17 in 
class 2) 

99.6 10.7 95.7 11.8 -0.70 .51 

   MFQ 51.8 10.2 44.7 10.3 -2.77 .01 
   RCMAS 42.7 6.1 41.2 6.1 -0.95 .35 
   LOI 13.4 5.2 9.5 4.8 -3.00 .006 
   HONOSCA (available 
for 16 in class 1 and 82 
in class 2) 

18.3 6.7 19.1 5.5 0.45 .66 

   STAI state score 49.5 10.0 44.8 11.0 -1.81 .08 
   STAI trait score 64.3 8.1 59.5 7.9 -2.35 .03 
 Median IQR Median IQR W p 
   Handedness 60 140 80 30 1083.5 .07 
  IMD 17.5 18.4 13.8 13.0 732 .328 
%Fishers exact test conducted on variables with insufficient cell size for chi-square test.  
+Variable recorded as binary to meet assumptions of chi-square test.  

IMD; Index of Multiple Deprivation, RCMAS; Revised Children’s Manifest Anxiety Scale, LOI; 

Leyton Obsessional Inventory, NSSI; Non-suicidal self-injury, HoNOSCA; Health of the Nation 

Outcome Scales for Children and Adolescents, BPI; Brief Psychological Intervention, CBT; 

Cognitive Behavioural Therapy, STPP; Short-Term Psychoanalytic Psychotherapy, IQ; 

Intellegence Quotent, STAI; State-Trait Anxiety Inventory. 
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The two classes did not significantly differ in their treatment arm allocation within the MR-

IMPACT subsample. However, 34% patients were taking a selective serotonin re-uptake 

inhibitor (SSRI) antidepressant medication at the time of scanning. The numbers per 

trajectory class is detailed in Table 2. Fluoxetine was the most commonly prescribed SSRI in 

these patients (32 patients, 86% of those taking SSRIs). Of those taking anti-depressant 

medication at the time of scanning, the majority followed the continued-improvers 

trajectory (36, 97%). This difference was statistically significant (X2(1)=8.44, p=.004). Of note, 

there was no significant difference in SSRI prescription rate between latent classes across 

the whole IMPACT sample (halted-improvers: 14%, continued-improvers: 22%, p = 0.09). 

Consequently, we are confident that this difference is due to a sampling bias, rather than 

any other underlying association, as it is known that SSRI prescription varied between study 

sites in IMPACT (Cousins et al., 2016). However, additional analyses were run to investigate 

the main effect of SSRI prescription (described below). If any main effects of SSRIs emerged, 

analyses would be repeated excluding those patients, as a sensitivity check.    

 

Table 2: Medication use at time of scan of trajectory classes in MR-IMPACT 

 Class 1: Halted-
improvers (n=19) 

Class 2: Continued-
improvers (n=90) 

Comparison 

 N % N % OR p 
   SSRI at scan% 1 5% 36 40% 0.08 .002 
SSRI medication 
use: 

      

Fluoxetine 1 5% 31 34% - - 
Citalopram - - 4 4% - - 
Sertraline - - 1 1% - - 
Other neuroactive 
medication use: 

      

Propanolol 1 5% 1 1% - - 
Risperidone 0 0% 3 3% - - 
Gabapentin 0 0% 1 1% - - 
Lamotrigine 0 0% 1 1% - - 
Zolpidem 0 0% 1 1% - - 
Circadin 0 0% 1 1% - - 
Diazepam 0 0% 1 1% - - 
SSRI; Selective Serotonin Reuptake Inhibitor 
%Fishers exact test conducted on variables with insufficient cell size for chi-square test.  
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Structural MRI (sMRI) data acquisition 

All patients were scanned at the Wolfson Brain Imaging Centre, University of Cambridge, UK. 

The study was conducted on a 3.0 Tesla Magnetom Trio Tim scanner (Siemens, Surrey, 

England) fitted with a quadrature birdcage head coil. High-resolution T1-weighted images 

were acquired in the sagittal plane using a 3-dimensional magnetically-prepared rapid 

acquisition gradient echo sequence (3D-MPRAGE). Acquisition parameters were: 176 slices 

of 1.00mm thickness, echo time =2.98ms, repetition time =2.30s, inversion time=900ms, flip 

angle =9°, field of view =240 x 256mm2, isometric voxel-size =1.0mm3 with an interleaved 

slice acquisition). Brain abnormalities were screened with a high-resolution dual echo-proton 

density and T2-weighted sequence, by a consultant radiologist specialising in neuroanatomy 

(Hagan et al., 2013).  

 

Pre-processing of sMRI data 

The pre-processing and quality checks of the sMRI data were conducted by a researcher 

blind to class allocations. Automated parcellation of the cortex and segmentation of sub-

volumes were performed using the FreeSurfer software package (Fischl, 2012). This image 

reconstruction of the cortical surface involves several stages. Firstly, the intensity variations 

caused from inhomogeneities in the magnetic field during scanning are corrected, images 

are affine registered to the Talairach atlas (Talairach & Tournoux, 1988) and voxels that 

contain the skull and dura are removed (Dale, Fischl, & Sereno, 1999). In the segmentation 

step, white matter voxels are classified based on intensity differences, and hemispheres are 

separated for preliminary segmentation. The grey-white matter boundary is constructed by 

the application of a triangular surface tessellation to each hemisphere, and smoothed with a 

Gaussian kernel. The pial surface is then constructed from expanding the white matter 

surface outwards to the edge of the brain; defined by intensity gradients between grey 

matter and CSF (Dale et al., 1999; Fischl, 2012). Finally, this surface is then inflated to 

provide a parameterizable surface for inter-subject registration. Inflation of the cortical 

surface removes the interference of cortical folding so that the cortical area within sulci can 

be appropriately represented and accurately matched to a reference template (Fischl, 

Sereno, & Dale, 1999). FSaverage was used as the reference brain template (“FsAverage - 

Free Surfer Wiki,” n.d.), and images are non-linearly transformed to align with this template 

based on the positioning of gyri and sulci along two dimensions (latitude and longitude) 

(Fischl et al., 1999). Sulci and gyri that have low inter-individual variability, such as the 
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central sulcus and slyvian fissure, are given stronger weighting in the registration algorithm 

than those that are known to have greater inter-individual variability. Each image is then 

parcellated into 34 cortical regions per hemisphere, based in the Desikan-Killiany atlas 

(Desikan et al., 2006), and mapped back onto each individual subject’s surface. Cortical 

thickness measurements were taken as the smallest distance between the pial surface and 

white matter surface. Thickness values were generated at each vertex and measured twice, 

once from grey-white matter boundary to pial, and then reversed. No subjects were 

excluded following quality-checks. Minimal editing of white matter and non-brain tissue was 

conducted where necessary.  

 

Statistical analysis of sMRI data: vertex-wise analysis 

Comparisons between patients in class 1 and class 2 were carried out, controlling for 

differences in gender and age.  As total brain surface area is related to morphometric 

measures like thickness, white matter surface area was also added as a covariate of no 

interest. 

 

Imaging analyses followed the pipeline created by Dr Kirstie Whitaker (Whitaker, 2015). 

Briefly, images were first resampled to fsaverage, and then concatenated into one file using 

the mris_preproc command in FreeSurfer. A general linear model (GLM) analysis was 

conducted on the surface using mri_glmfit command. This command runs the model at each 

individual vertex. Correction for multiple comparisons was conducted using cluster 

correction. This calculates the significance of clusters based on the number of contiguous 

significant vertices, and the chosen amount of smoothing. We used a 15mm Full Width at 

Half Maximum (FWHM).  Cluster forming threshold was set at 0.01 and significance 

threshold for clusters was set at 0.05. The –2spaces flag was also used in the mri_glmfit-sim 

command to correct for doing tests on both the left and right hemispheres.  

 

Sensitivity analysis for SSRIs: vertex-wise analysis 

Due to insufficient numbers within each cell of a 3-factor model, it was not possible to enter 

SSRI prescription as another categorical covariate in the whole-brain model, and an 

appropriate continuous variable was not available. Therefore, the difference in thickness and 

surface area, controlling for gender, age and white matter total surface area, between those 

who were and were not taking SSRIs at baseline was tested separately per hemisphere. No 
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whole-brain differences were found in cortical thickness or surface area, between those who 

were taking SSRIs at the time of scanning and those who were not. Therefore, as there was 

no main effect of SSRI prescription on whole-brain results, patients taking SSRIs (n=37, 34%) 

at the time of scanning remained in the analysis (total n=109).  

 

Statistical analysis of sMRI data: region of Interest (ROI) analyses  

Regions of interest (ROIs) were defined for each hemisphere, by FreeSurfer’s automated 

cortical parcellation procedure (Fischl et al., 2004), using the Desikan-Killiany atlas (Desikan 

et al., 2006). The insula cortex and rostral ACC, are parcellated individually per hemisphere. 

The OFC is subdivided into medial and lateral components. There is not sufficient evidence 

to date to exclude either component from the analyses, and some studies combine these 

divisions to create one single value (Dotson et al., 2016). However, as averaging across the 

two regions might wash out any significant, more specific effects, we decided to include 

both as separate regions of interest. Similarly, the dlPFC has been defined as the 

combination of the rostral and caudal middle frontal gyrus (Garber & Weersing, 2010) and 

superior frontal gyrus (Yamagishi et al., 2016). As there was no compelling evidence in 

favour of a single subdivision, each of these regions were also treated as separate ROIs.  

Consequently, 7 ROIs were tested in total, per hemisphere. These are shown in Figure 1.  

 

 
Figure 1: Cortical regions of interest (ROIs) mapped onto inflated brain. 

 

Logistic regressions were conducted to investigate whether measures at each of the ROIs 

could predict class membership, controlling for age, gender and white matter total surface 

area.  Regressions were conducted using the glm() function in the core stats package in R, 
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version 3.3.3 (“R: The R Project for Statistical Computing,” n.d.). Both cortical thickness and 

surface area were investigated separately as variables of interest. The assumptions of 

multicollinearity, independent errors and linearity of logit were tested for each ROI. In cases 

of violations, permutation testing at the class level was also conducted. Permutation testing 

reshuffles the true class allocation across patients and produces a null distribution of the 

dataset through 10,000 iterations (Ge, Yeo, & Winkler, 2018). Assumptions of logistic 

regressions therefore no longer apply. If the observed p-value and the p-value obtained 

through permutation testing agree, the results can be trusted in the presence of the 

violation (Ge et al., 2018).   

 

A false discovery rate (FDR) threshold of <.05 was used to account for multiple comparisons 

in ROI analyses (Benjamini & Hochberg, 1995). Unlike family-wise error rate corrections 

(such as the Bonferroni adjustment) that control for the possibility of at least 1 false positive, 

FDR procedures control for the expected proportion of false positives. FDR corrections are 

therefore less stringent. However, Bonferroni correction in analyses that require large 

numbers of multiple tests would result in too strict a threshold and risk rejection of true 

positives. Consequently, in such cases FDR correction is preferred (Genovese, Lazar, & 

Nichols, 2002). FDR correction was conducted using the p.adjust() function of the stats 

package in R, version 3.3.3.  

 

Sensitivity analysis for SSRIs: ROI analyses 

Similar to the vertex-wise analyses, the effect of SSRI prescription on thickness and surface 

area, controlling for gender, age and white matter total surface area was tested separately 

for each ROI, per hemisphere, correcting for multiple comparisons with FDR. After 

correction, there was no significant effect of SSRIs on cortical thickness or surface area of 

any ROI (details found in Appendix 3A). Consequently, as there was no main effect of SSRI 

prescription on any ROI for either brain structural variables of interest, patients taking SSRIs 

at the time of scanning remained in the analyses (n=109).  
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Results 

Group differences across the whole-brain 

Vertex-wise analyses revealed no significant differences between trajectory classes of 

symptom change in cortical thickness or surface area, in any region of the cortex in both 

hemispheres. This was apparent before and after cluster correction for multiple 

comparisons.  

 

Region of Interest 

Means and SDs for cortical thickness and surface area of each region of interest (ROI), per 

class are shown in Table 3.  

 

Table 3: Mean cortical thickness and surface area of each ROI per class. 

 Cortical Thickness (mm) Surface Area (mm2) 
 Class 1 Class 2 Class 1 Class 2 

Region Mean SD Mean SD Mean SD Mean SD 
Medial 
OFC 

        

     Left  2.60 0.19 2.58 0.14 1943.32 265.57 1916.34 279.49 
     Right 2.66 0.16 2.56 0.16 1839.53 199.43 1838.12 205.90 
Lateral 
OFC 

        

     Left  2.87 0.17 2.84 0.14 2817.90 212.35 2775.91 252.41 
     Right 2.83 0.15 2.80 0.15 2573.11 259.29 2623.5 262.91 
SFG         
     Left  2.91 0.13 2.91 0.14 7186.63 766.11 7485.68 889.29 
     Right 2.81 0.13 2.80 0.14 6862.26 831.78 7272.88 760.41 
rMFG         
     Left  2.49 0.12 2.44 0.14 5714.26 670.88 6094.40 703.46 
     Right 2.36 0.12 2.36 0.13 6153.32 566.33 6322.06 919.78 
cMFG         
     Left  2.69 0.14 2.67 0.15 2334.11 430.23 2383.96 407.15 
     Right 2.58 0.16 2.62 0.14 2228.63 503.50 2192.01 375.84 
 rACC         
     Left  3.11 0.20 3.08 0.24 873.94 196.42 880.19 177.47 
     Right 3.08 0.16 3.06 0.21 631.00 115.04 677.72 111.15 
Insula         
     Left  3.27 0.09 3.27 0.13 2154.31 207.88 2215.17 251.12 
     Right 3.29 0.10 3.27 0.12 2175.68 236.15 2237.73 262.70 
OFC: Orbitofrontal Cortex; SFG: Superior Frontal Gyrus; rMFG: Rostral Middle Frontal Gyrus; 

cMFG: Caudal Middle Frontal Gyrus; rACC: Rostral Anterior Cingulate Cortex 
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No region of interest raised concerns of multicollinearity or independent errors for either 

variable of brain structure, supporting the use of logistic regressions with these data. All 

regression models also met the linearity of logit assumption for cortical thickness analyses. 

While two regions (right rMFG and right cMFG) failed this assumption for surface area 

analyses, permutation testing results did not differ from those reported below (Table 1; 

Appendix 3B). 

 

Results from each logistic regression (FDR corrected) are shown in Table 4.  

After controlling for white matter total surface area, age and gender, the odds of being in 

class 1 decreased with increasing cortical thickness in the right mOFC, however this did not 

survive FDR correction (Table 4). Similarly, the odds of being in class 1 decreased with 

increasing surface area in the right SFG but this also did not survive FDR correction. After 

applying the appropriate multiple comparison corrections, no ROI significantly predicted 

trajectory class membership, in either variable of brain structure.  

 

Standardised residuals of the final model were inspected to assess for whether the model 

contained any outliers of concern. Less than 1% of this sample had residuals larger than 

±2.58. For the majority of regions, the percentage of the total sample of cases showing 

residuals greater than ±1.96 was less than 5%, and never exceeded 8% for either structural 

variable. Therefore the models can be viewed as a good representation of the actual data. 

 

Leverage was investigated to assess whether any cases are exerting undue influence over 

the models. It has been recommended to investigate cases where leverage values are 

greater than twice (Hoaglin & Welsch, 1978) or three time (Stevens, 2009) the average. 

While there were a number of cases per regions and structure variables that suggested a 

potential problem with 2 or 3 times greater than average leverage, the Cook’s distance 

never exceeded 1 (Cook & Weisberg, 1982), indicating that the fit would not significantly 

change upon removal of these cases. 
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Table 4: ROI predictors of trajectory class membership, adjusted for age, gender and total 

white matter surface area.  

 Cortical Thickness (mm) Surface area (mm2) 
Region OR 95%CI p p(FDR) OR 95%CI p p(FDR) 
Medial 
OFC 

        

   Left 2.90 0.07-108.93 .56 .96 1.00 0.99-1.00 .24 .56 
   Right 4.49 1.57-1852.74 .03 .46 1.00 0.99-1.00 .40 .61 
Lateral 
OFC 

        

   Left 2.32 0.06-87.42 .64 .96 1.00 0.99-1.00 .15 .43 
   Right 3.24 0.10-120.58 .51 .96 1.00 0.99-1.00 .74 .83 
SFG         
   Left 0.31 <.01-16.59 .57 .96 1.00 0.99-1.00 .13 .43 
   Right 1.30 0.02-75.81 .90 .96 1.00 0.99-1.00 .02 .18 
rMFG         
   Left 8.86 0.18-518.16 .28 .96 1.00 0.99-1.00 .03 .18 
   Right 0.55 0.01-34.59 .78 .96 1.00 0.99-1.00 .77 .83 
cMFG         
   Left 1.84 0.05-79.02 .75 .96 1.00 0.99-1.00 .98 .98 
   Right 0.16 <.01-5.40 .31 .96 1.00 0.99-1.00 .36 .61 
rACC         
   Left 1.53 0.15-16.91 .72 .96 1.00 1.00-1.01 .58 .74 
   Right 1.23 0.10-15.33 .87 .96 1.00 0.99-1.00 .15 .43 
Insula         
   Left 0.90 0.01-56.68 .96 .96 1.00 0.99-1.00 .44 .62 
   Right 3.95 0.04-435.80 .56 .96 1.00 0.99-1.00 .37  .61 
 OFC: Orbitofrontal Cortex; SFG: Superior Frontal Gyrus; rMFG: Rostral Middle Frontal Gyrus; 

cMFG: Caudal Middle Frontal Gyrus; rACC: Rostral Anterior Cingulate Cortex 
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Discussion 

Key Results and Interpretation  

This piece of work was the first to our knowledge to investigate the relationships between 

structural brain variables and empirically-derived trajectory classes of symptom change over 

time, in a cohort of clinically depressed adolescents receiving treatment. Vertex-wise 

analyses of the whole-brain failed to show any significant differences in cortical thickness or 

surface area between trajectory classes, when controlling for gender, age and total white 

matter surface area. Furthermore, neither cortical thickness nor surface area of any region 

of interest demonstrated predictive value for identification of class membership when 

controlling for the aforementioned variables. This is contrary what was expected in an 

adolescent sample, given our understanding of the neurobiology of adolescent depression 

(Ducharme et al., 2014; Foland-Ross et al., 2015; Hagan et al., 2015; Reynolds et al., 2014). 

Our results also oppose a number of previous studies of treatment response in adults which 

suggest that structural abnormalities, particularly in these areas, can identify between 

favourable and unfavourable outcomes (Costafreda et al., 2009; Dunlop & Mayberg, 2014; 

Fu et al., 2013; Gong et al., 2011; Liu et al., 2012; Pizzagalli, 2011; Soriano-Mas et al., 2011). 

As our groups were derived from longitudinal data modelling, these findings tentatively 

suggest that when groups are defined in a data-driven but more clinically meaningful way, 

the structural differences between outcome-related subgroups may become reduced. It is 

possible that the measures of brain structure used in this study may not serve a strong role 

in differentiating between adolescent patients’ symptom trajectories.  

 

This current analysis demonstrated a good amount of internal validity with respect to the full 

IMPACT sample. Firstly, no significant differences were reported between the proportions of 

patients in trajectory classes of the full IMPACT sample and the MR-IMPACT subsample. 

Furthermore, the depiction of classes in the main sample suggests that halted-improvers 

were overall clinically more severe at baseline. While the MR-IMPACT sample showed fewer 

differences between classes in terms of demographic and clinical characteristics, the sample 

did demonstrate agreement with this premise. Obsessional traits and trait anxiety were 

found to be higher in halted-improvers than in continued-improvers in the MR-IMPACT 

cohort. It is likely that the fewer significant differences are a result of the significantly 

smaller sample size in this cohort. Overall, we are confident that the findings here can 

generalise to the main IMPACT cohort. 



 127 

The MR-IMPACT sample also found no differences in treatment arm allocation between 

classes. However, a significant difference did emerge between classes on their SSRI 

prescription rate at baseline. The majority of patients (97%) prescribed antidepressants at 

baseline subsequently followed a continued-improver trajectory. Intuitively, this might 

suggest that actually SSRI prescription alongside psychological treatment is a driving factor in 

determining a favourable symptom trajectory, and indeed, a number of studies have 

supported the benefits of combination treatment over monotherapy (Cuijpers, van Straten, 

Warmerdam, & Andersson, 2009b; Khan, Faucett, Lichtenberg, Kirsch, & Brown, 2012; 

March et al., 2004). However, such a conclusion cannot be drawn from these current results. 

Firstly, we did not find any main effect of SSRIs on any structural parameter investigated, 

suggesting that SSRIs cannot account for the results we report here. Secondly, it is important 

to note that a unique characteristic of this sample was that they were almost solely recruited 

from the East Anglia clinics of the trial (N=92). Previous authors have published works on the 

discrepancies that emerged in the trial between SSRI prescription in East Anglia and other 

regions (Cousins et al., 2016), advising that associations between this East Anglia sample and 

SSRI prescription rates should be taken with caution. Indeed, we did not observe this class 

difference in SSRI prescription in the full, substantially larger, IMPACT sample (reported in 

Chapter 2). We therefore believe these effects are likely a result of chance or the regional 

selection bias of MR-IMPACT and not illustrative of a real effect of SSRIs on trajectory class 

membership.  

 

Alternative explanations 

Our study did not hypothesise a direction of effect for our particular research questions. This 

is because prior literature is inconclusive. Research has both supported findings of cortical 

thickness differences between depressed adolescents and healthy controls (Foland-Ross et 

al., 2015; Koenig et al., 2018; Reynolds et al., 2014), and also rejected these claims, stating 

that surface area shows more promising prognostic value (Schmaal et al., 2017a; Schmaal et 

al., 2017b). Moreover, studies supporting cortical thickness differences in our regions of 

interest further disagree over whether increased or decreased thickness is observed in 

adolescent depression (Ducharme et al., 2014; Foland-Ross et al., 2015; Koenig et al., 2018; 

Reynolds et al., 2014). These discrepancies in prior work, coupled with our null results 

highlight the complexity of investigating brain structure in a developing sample. This sample 

is characterised by large changes in cortical development, which are not uniform across the 
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brain, nor between individuals (Tamnes et al., 2017). Investigating trajectories of symptom 

change on top of trajectories of neurological change, therefore means that it is possible that 

individual differences in neurological development may have masked significant differences 

between our groups. This point is discussed in more detail in Chapter 5.   

 

However, this is unlikely to fully account for our null results, given that our classes did not 

significantly differ in age, and further, we appropriately controlled for age in both vertex-

wise and ROI analyses. Our sample size was not sufficient to allow for additional 

investigations of interaction effects between age, brain structure and class membership. 

However, it would be an important avenue to consider in future adequately powered 

research, given our extensive knowledge of neurological development at this age (Giedd, 

2008; Gogtay et al., 2004; Kaufman et al., 2001; Spear, 2000). 

 

Another important distinction between this work and others of the field is that we only 

investigated pre-treatment differences in brain structure. While the investigation of 

treatment-related effects on brain structure is a different question to the one investigated 

here, it is possible that structural alterations between halted and continued-improvers may 

only become apparent once the intervention is introduced. Subsequently, early 

identification of such changes could act as a predictor of longer-term response. There have 

been a number of functional studies that have illustrated changes in the activity of 

prefrontal and cingulate regions following treatment with both pharmacological and 

psychological therapies (Keedwell et al., 2010; Kennedy et al., 2001, 2007; Ruhé, Booij, 

Veltman, Michel, & Schene, 2008). For example, Keedwell and colleagues (2010) found that 

greater increases in activation of the subgenual cingulate gyrus, among other regions, after 

12 weeks of antidepressant treatment was correlated with increasing response rates. 

Metabolic studies have also supported these findings (Kennedy et al., 2001, 2007). 

Antidepressant response was associated with increased glucose metabolism of the dlPFC, 

ACC and other regions of the prefrontal cortex, and decreased metabolism of the insular 

cortex and subcortical regions after 6 weeks of treatment (Kennedy et al., 2001). 

Furthermore, differential functional alterations have been observed across treatments. 

Kennedy and colleagues (2007) found that a reduction in glucose metabolism in the OFC and 

mPFC associated with general response after 16 weeks of any treatment, whereas the 

direction of change in the posterior cingulate differentiated between response to 
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medication and CBT. Non-response was also differentially associated with changes in insula 

and thalamic metabolism. Finally, Ruhe and colleagues (2008) showed that while final 

responders and non-responders did not differ in their baseline amygdala activation levels, 

only responders showed an activation decrease in this region. However, for adolescent 

depression, there is a lack of literature investigating whether treatment affects cortical 

thickness and surface area. Future work would benefit from identifying whether structural 

change accompanies functional alterations, and whether these changes might act as a better 

predictor of longer-term response than pre-treatment measurement alone.  

 

It is possible that the lack of positive results may be in part due to the inclusion of patients 

with comorbidities in both groups. In agreement with the full IMPACT sample, approximately 

50% of the MR-IMPACT sample presented with at least 1 comorbid mental illness, meeting 

clinical threshold for diagnosis. Comorbid anxiety presented as the most common diagnosis. 

Anxiety disorders have been associated with altered brain structure and function from what 

is typical in healthy controls (Etkin & Wager, 2007; Protopopescu et al., 2006; Uchida et al., 

2008). A meta-analysis of functional work in anxiety disorders showed evidence of greater 

activity in the amygdala and insular cortex across anxious conditions (Etkin & Wager, 2007). 

Furthermore, structural studies have found GMV reductions in prefrontal (Protopopescu et 

al., 2006), ACC and insular regions in panic disorder (Uchida et al., 2008). In terms of patients 

with depression, those presenting with anxious symptoms have also demonstrated 

additional structural anomalies than depressed patients without anxious symptoms, 

particularly in the caudate nucleus (Zhao et al., 2017). Abnormalities have also associated 

with treatment response in anxiety disorders (Shin, Davis, VanElzakker, Dahlgren, & Dubois, 

2013; Whitfield-Gabrieli et al., 2015). Greater functional connectivity between the amygdala 

and prefrontal/ACC regions was predictive of a better outcome to CBT for social anxiety 

(Whitfield-Gabrieli et al., 2015). Furthermore, a review on this subject found that lower grey 

matter density in the vlPFC predicted better response to SSRIs for OCD, while increased grey 

matter density in the rACC correlated with better improvement in PTSD symptoms (Shin et 

al., 2013).  

 

Taken together, the literature suggests that there are overlapping areas of the brain involved 

in the manifestation of both depression and anxiety. Consequently, one could argue that 

comorbidity may actually serve to enhance any structural differences between classes, 
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rather than diminish them. Indeed, some authors have stated that it is possible that 

comorbid anxiety could represent more severe psychopathology (Forbes et al., 2010), and 

our previous results would support this; halted-improvers demonstrated more severe 

depressive symptoms at outset and throughout the trial, and comorbidity predicted 

likelihood of membership to this class (See Chapter 2). Moreover, trait anxiety was 

significantly higher in halted-improvers in MR-IMPACT. However, much like the 

neuroimaging literature on depression, studies of anxiety disorders often present mixed 

results, which is in part dependent on the specific anxiety disorder under investigation 

(Duval, Javanbakht, & Liberzon, 2015). Consequently, we cannot discount the possibility that 

the unequal presence of trait anxiety and comorbid conditions across our classes may have 

disproportionately introduced heterogeneity to our sample and affected the results. 

However, the small sample size precluded further investigation; excluding such a large 

number of patients would have resulted in too small a group of halted-improvers without 

comorbidity to provide meaningful analyses. Moreover, given that such a large percentage 

of patients presented with at least one comorbid disorder, the exclusion of patients with 

comorbidities would question the generalisability of the results to clinical settings.  

 

Limitations 

One of the biggest limitations of this current work is our sample size. Imaging data were not 

available on the full IMPACT sample, such that the MR-IMPACT sample represented a 

significantly smaller subgroup. Our study may have therefore lacked sufficient power to 

detect true differences between classes. However, a large proportion of imaging studies to 

date have reported results in much smaller overall samples (Costafreda et al., 2009; Foland-

Ross et al., 2015; Gong et al., 2011; Liu et al., 2012; Reynolds et al., 2014). Our small sample 

therefore may not be the only reason for our null effects. Furthermore, given that the 

empirical modelling of 465 patients resulted in a separation of our sample into two 

substantially different sized classes, a further reduction of this sample to 109 resulted in only 

19 patients present in the halted-improvers class. Consequently, it is possible that these 

proportions were too imbalanced to elicit predictive differences in neuronal structure. 

However, our halted-improvers class was identical in size to the smallest class produced in 

Schmaal and colleagues’ GMM work (Schmaal et al., 2017b). Nevertheless, we caution 

conclusive interpretations from this work, and ask for the findings to be interpreted as 

exploratory, with predominantly hypothesis-informing implications. It will be important for 
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future work to recruit much larger samples to increase power for these specific research 

questions.  

 

There is second difficulty with the interpretation of this work relating to sample size. That is; 

the subsequent impact of large inter-individual variability in brain variables clouding 

significant differences. For example, there is a great deal of variability in gyrification of the 

brain, and variation in gyrification has been significantly associated with both cortical 

thickness (negatively) and surface area measures (positively) (Gautam, Anstey, Wen, 

Sachdev, & Cherbuin, 2015; Hogstrom, Westlye, Walhovd, & Fjell, 2013). In particular, the 

presence or absence of the paracingulate sulcus varies greatly across individuals, and even 

within individuals per hemisphere (Fornito et al., 2008). The presence of this sulcus has been 

associated with differences in cortical thickness and surface area of the anterior cingulate 

(Fornito et al., 2008), one of the regions of interest in this work. This was not controlled for 

in our study. Consequently, it is likely that there was additional variance between 

individuals’ cortical morphometry that may have impacted our results. Our sample size here 

limited the extent we could investigate and control for such large individual variability.  

However, this exploratory work highlights the importance for future work to adequately 

control for these factors in study design. 

 

Finally, the investigation of structure in this present chapter served to identify an easily 

observable target that could differentiate patient trajectories at outset. Investigations of 

brain structure in this context cannot inform questions regarding the mechanisms of action 

underlying how any potential difference might result in symptom change for patients. While 

this is a critical question, it is a very different one, which IMPACT was not designed to 

answer. However, future work should prioritise understanding these mechanisms.  

 

Reflections on Methodology 

Our work decided to focus specifically on brain structure of the cortex. Within the 

neurological literature, there is a large corpus of work on functional magnetic resonance 

imaging (fMRI) in depression that show a number of illustrations of cognitive and attentional 

biases associating with the condition (Hamilton et al., 2012; Kaiser et al., 2015; Miller et al., 

2015). There is also a growing field of fMRI studies investigating treatment response (Fu et 

al., 2013; Pizzagalli, 2011) and treatment effects in depression (Keedwell et al., 2010; 
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Kennedy et al., 2001, 2007; Ruhé et al., 2008). However, the interpretation of fMRI is still 

highly debated (Lener et al., 2016; van Eijndhoven et al., 2013). Particularly for task-based 

imaging, detection of group differences relies the test’s ability to accurately challenge the 

desired function, and also on the chosen function eliciting a difference between groups 

(Duncan & Owen, 2000). Furthermore, many diverse cognitive tasks appear to recruit the 

same brain areas (Duncan & Owen, 2000), so the extent to which one can claim that 

differences relate to specific tasks is limited. More specifically, the depressive state itself is 

also highly variable (Lener et al., 2016; van Eijndhoven et al., 2013) so whether fMRI findings 

are a state-dependent feature is also unknown (Lener et al., 2016; van Eijndhoven et al., 

2013). The extrapolation of reliable functional markers that are predictive of treatment 

response in a clinical setting is therefore quite limited (Bullmore, 2012), and argued will 

unlikely reach the levels of specificity and sensitivity required in clinical practice (Ritchey et 

al., 2011). Anatomical investigations, however, are argued a more stable avenue of 

investigation (Lener et al., 2016) and can be validated with histological studies (Cotter, 2002; 

Ongur, Drevets, & Price, 1998; Rajkowska, 2000). Consequently, results are more 

interpretable and can more readily apply to clinical settings (Bullmore, 2012). For this 

reason, I chose to focus my investigation on brain structure.  

 

A further a priori decision was to investigate cortical thickness and surface area over GMV. 

There are a number of studies that have investigated the association between depression 

and GMV (Arnone et al., 2012; Bora et al., 2012; Koolschijn et al., 2009; Lai, 2013), as well as 

the relationship between GMV and treatment response (Chen et al., 2007; Fu et al., 2013; Li 

et al., 2010; Liu et al., 2012; Soriano-Mas et al., 2011). However, the interpretation of GMV is 

somewhat ambiguous (Liu et al., 2014). GMV is a mixture of folding, surface area and cortical 

thickness (Fischl & Dale, 2000), and authors have argued that these measures not only 

possess different underlying mechanisms, but are also governed by different genetic 

influences (Rakic, 1995; Winkler et al., 2010). The lack of specificity in this context means 

that it is yet unclear as to what exactly GMV differences represent in depressed patients. 

Indeed, Lui and colleagues (2012) stated that their null results might be explained by the lack 

of sensitivity in traditional methods of measuring GMV (Salvadore et al., 2011) to detect 

subtle variations in brain structure between treatment-sensitive and treatment-resistant 

depression. Conflicting results between studies therefore, could be due to the differential 

mechanisms of action of the disease on folding, thickness and surface-area independently.  
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However, recent developments in surface-based methods have allowed submillimeter 

differences to be detected that can differentiate between cortical thickness, surface area 

and folding (Fischl & Dale, 2000). This allows for a higher sensitivity to more subtle variations 

that may exist in psychiatric illnesses (Kuperberg et al., 2003), and a more detailed 

explanation of what reductions in structural brain parameters represent. For instance, 

histological studies in MDD found evidence of cortical thinning, and have further related this 

thinning to reductions in neuronal size, and neuronal and glial cell densities (Rajkowska et 

al., 1999). Consequently, we favoured a surface-based approach to our imaging analysis, to 

allow us to distinguish between these parameters of GMV and produce a more interpretable 

result. However, while cortical surface-based methods provide a more precise definition of 

brain alterations, it is important to note that the relationship between thinning and glial cell 

density is not straightforward. One study found that the density of glutamate receptor 

agonist cells was actually increased in depressed patients (Steiner et al., 2011), which has 

further been linked to an abolished modulatory effect of glutamate in depressed cases (Li et 

al., 2014). Consequently, thinning is not necessarily indicative of cell loss and may relate to 

other types of glial cells within the cortex. One must therefore, be careful not to extrapolate 

our findings to suggest a lack of group differences at a cellular level.   

 

A final a priori decision of this current work was to focus our investigations to specific 

regions of the cortex, due to limited sample size and hence power. However, there is strong 

evidence for the role of a number of subcortical regions in depression and treatment 

response. These include the amygdala (Whittle et al., 2014), thalamus (Hagan et al., 2015), 

striatum (Forbes et al., 2010) and, most importantly, the hippocampus (Fu et al., 2013; 

Schmaal et al., 2016; Videbech & Ravnkilde, 2004; Whittle et al., 2014).  Hippocampal 

abnormalities in MDD are one of the most replicated findings across structural imaging 

(Arnone et al., 2012; Koolschijn et al., 2009). The ENIGMA-consortium in particular, found 

that the hippocampus was the only subcortical structure showing significant volume 

reductions (1.24%) in adult MDD compared to controls, of the 9 subcortical areas 

investigated. Moreover, meta-analytic findings have also supported the predictive value of 

the hippocampus in treatment outcome (Fu et al., 2013), and some studies have shown that 

these findings of reduced hippocampal volume associating with poorer response are robust 

even against differences in the definition of response (MacQueen, Yucel, Taylor, Macdonald, 

& Joffe, 2008), which is of particular relevance to this current thesis. The decision to focus on 
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cortical structure was taken to balance such a large investigation against our small sample; 

we prioritised the investigation of cortical regions because prior work suggested that their 

influence exceeds that of subcortical regions in whole-brain predictive models of depression 

and treatment response (Costafreda et al., 2009; Liu et al., 2012). Nevertheless, one cannot 

exclude the possibility that structural differences exist between classes in subcortical regions 

of the brain. An investigation of subcortical structures would be an important avenue to 

further this work.  

 

We chose to conduct ROI analyses to identify predictors of class membership. However, we 

also felt it important to conduct an additional vertex-wise, whole-brain analysis. It is crucial 

to note that studies of predictive models of treatment response have almost unanimously 

highlighted the widespread nature of neurological differences. Prior studies have 

emphasised that frontal, temporal, parietal, occipital regions and the cerebellum all 

provided large contributions to the overall predictive model of treatment response (Foland-

Ross et al., 2015; Gong et al., 2011; Liu et al., 2012). Consequently, their authors advocated 

that, due to the nature of their methodology, their results be interpreted as discriminative 

networks rather than specific regions (Gong et al., 2011; Liu et al., 2012). For this reason, our 

whole-brain analysis allowed us a conservative investigation of the presence of potential 

differences in other regions of the cortex, without unnecessary inflation of type 1 errors.   

 

A further point on our work is that our analyses were at the group-level. This was due to the 

exploratory nature of this work. As was discussed in Chapter 2, a limitation of this approach 

is that the technique is unable to predict outcomes at the individual level. That is, we did not 

test the accuracy at which the thickness or area of a given region can categorise new 

patients. Advanced analytical methods exist that can achieve this individual-level 

categorisation with imaging data (Zeng et al., 2012). These multivariate pattern analysis 

(MVPA) techniques, such as support vector machine (SVM) learning, assess the contribution 

of multiple voxels (or vertices) simultaneously. Studies have employed these methods in 

voxel-based work for diagnosing depression, and reached 94.3% accuracy with resting-state 

data (Zeng et al., 2012). Further, SVM analysis for treatment responsiveness showed 89% 

accuracy of whole-brain GMV in predicting treatment responsiveness to fluoxetine 

(Costafreda et al., 2009). Liu and colleagues(2012) extended these findings by showing that 

grey and white matter density had comparable accuracy in elucidating medication-sensitive 
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and resistant subtypes (both 82.9%). However, a study conducted with a larger, yet still 

modest sample (n=61) reported a somewhat lower predictive accuracy of grey matter 

density on treatment outcome, at 69.57% (Gong et al., 2011). At present, the accuracy of 

these models in predicting treatment response classes is not sufficient for clinical utility. In 

addition, there is no treatment-response study known to the current author that 

incorporates such approaches with surface-based methods. While MVPA methods make a 

necessary step towards clinical practice for prognostic MRI research, it will be important for 

clinical application that these methods to further incorporate an assessment of prognostic 

error (Nouretdinov et al., 2011). Preliminary work has described methods where prediction 

algorithms can maintain the level of accuracy achieved with SVM methods, but add a valid 

measure of confidence (Nouretdinov et al., 2011). Future prognostic imaging should 

prioritise adopting such methods for imaging to be used beyond research purposes in this 

field.  

 

Finally, our hypotheses were driven by the findings of prior literature, which suggested that 

the brain regions investigated here are important structures for differentiating between 

response-related outcomes in depression. However, abnormalities in these regions may not 

necessarily be specific to the depressive condition. Many other psychiatric conditions also 

implicate these regions as structurally or functionally maladaptive (Goodkind et al., 2015; 

Menon, 2011). For instance, a recent meta analysis of 193 studies showed that GMV 

reduction in the ACC and insula is observed across schizophrenia, bipolar disorder, 

depression, anxiety, obsessive-compulsive disorder and addiction (Goodkind et al., 2015). 

Moreover, the authors noted that very few diagnosis-specific abnormalities were found. The 

wider implication of the lack of specificity of these brain regions to depression is that: either 

neurological abnormalities are a more general symptom of mental illness, and consequently, 

neuroimaging is limited in its utility to advance our understanding of condition-specific 

differences; or that our current, symptom-driven diagnostic approach does not adequately 

translate into biological constructs (in this case, brain structure). Consequently, to really 

progress our understanding of mental illness, classifications must begin to incorporate our 

growing understanding of neuroscience and genetics (Insel et al., 2010). This topic is 

discussed in more detail in Chapter 5. 

 

In conclusion, this current work suggests that baseline cortical structure is not 
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associated with trajectories of symptom change. However, it is possible that our sample size 

precluded the detection of significant differences, so it is imperative for these results to be 

replicated in larger samples. Future work should prioritise adopting analytical approaches 

that can predict outcome at an individual level, and produce a measure of confidence in this 

prediction for these techniques to be more applicable in clinic. The neuroscientific field as a 

whole is currently at a crossroads where it must decide whether our current diagnostic 

system is sufficient, given our advancing knowledge of the brain in health and disease.   
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Appendix 3A  

The effect of SSRI prescription on cortical thickness and surface area.  

Means and SDs for cortical thickness and surface area of each region of interest (ROI) of 

patients who were and were not taking SSRIs at the time of scanning are shown in Table 1.  

Results from each logistic regression (FDR corrected) are shown in Table 2.  

 

Table 1: Mean cortical thickness and surface area of each ROI in patients who were and were 

not taking SSRIs at the time of scanning. 

 Cortical Thickness (mm) Surface Area (mm2) 
 No SSRIs SSRIs No SSRIs SSRIs 

Region Mean SD Mean SD Mean SD Mean SD 
Medial 
OFC 

        

     Left  2.58 0.15 2.59 0.15 1871.65 255.56 2017.16 292.43 
     Right 2.60 0.17 2.52 0.16 1803.10 179.71 1907.00 231.68 
Lateral 
OFC 

        

     Left  2.86 0.15 2.82 0.14 2744.61 215.43 2858.38 283.73 
     Right 2.81 0.15 2.79 0.14 2559.11 227.36 2722.92 292.30 
SFG         
     Left  2.91 0.14 2.91 0.14 7334.75 786.84 7625.81 1004.50 
     Right 2.80 0.14 2.81 0.13 7021.42 677.65 7551.35 867.52 
rMFG         
     Left  2.45 0.15 2.45 0.12 5887.99 667.51 6300.87 718.98 
     Right 2.36 0.13 2.37 0.12 6255.93 898.89 6364.08 814.10 
cMFG         
     Left  2.67 0.15 2.69 0.12 2373.72 394.04 2378.27 444.10 
     Right 2.60 0.14 2.64 0.15 2192.89 401.00 2209.11 399.05 
 rACC         
     Left  3.07 0.23 3.11 0.24 864.31 175.02 907.89 188.33 
     Right 3.06 0.21 3.07 0.19 657.25 108.40 693.57 118.51 
Insula         
     Left  3.27 0.12 3.28 0.13 2164.75 207.21 2282.03 291.71 
     Right 3.27 0.11 3.28 0.13 2214.24 271.49 2251.60 232.09 
OFC: Orbitofrontal Cortex; SFG: Superior Frontal Gyrus; rMFG: Rostral Middle Frontal Gyrus; 

cMFG: Caudal Middle Frontal Gyrus; rACC: Rostral Anterior Cingulate Cortex 

 

Linear regressions were conducted to investigate whether SSRI prescription at baseline 

predicts cortical thickness or surface area, controlling for age, gender and white matter total 

surface area.  Regressions were conducted using the lm() function in the core stats package 

in R, version version 3.3.3 (“R: The R Project for Statistical Computing,” n.d.). Both cortical 

thickness and surface area were investigated separately as variables of interest. 
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Results from the linear regressions are shown in Table 2 and 3 of this Appendix below.  

No region of interest raised concerns of multicollinearity for either variable of brain 

structure. All ROIs also met the assumption of independent errors and normality for cortical 

thickness, supporting the use of linear regressions with these data. While five regions (left 

SFG, left cMFG, left insula and bilateral rMFG) failed the Shapiro-Wilks test for normality for 

surface area, and the left SFG additionally failed the Durbin-Watson test for independent 

errors, permutation testing results did not substantially differ from those reported and 

directionality of significance remained the same (Table 4).  

 

Table 2: Multiple regression results for SSRI prescription on cortical thickness, adjusted for 

age, gender and total white matter surface area. 

Region R2 B SE B β p p(FDR) 
Medial OFC       
   Left 0.140 0.016 0.029 0.059 .594 .756 
   Right 0.161 -0.064 0.032 -0.182 .050 .422 
Lateral OFC       
   Left 0.084 -0.032 0.030 -0.104 .282 .563 
   Right 0.080 -0.001 0.030 -0.004 .970 .993 
SFG       
   Left 0.198 -0.003 0.027 0.106 .240 .560 
   Right 0.136 0.037 0.026 0.132 .160 .492 
rMFG       
   Left 0.133 0.024 0.027 0.082 .387 .566 
   Right 0.122 0.023 0.025 0.088 .354 .566 
cMFG       
   Left 0.111 0.044 0.029 0.145 .129 .492 
   Right 0.059 0.057 0.030 0.185 .060 .422 
rACC       
   Left 0.146 0.061 0.045 0.127 0.176 .492 
   Right 0.057 0.035 0.042 0.082 .404 .566 
Insula       
   Left 0.022 <0.001 0.026 <.001 .993 .993 
   Right 0.028 0.010 0.024 0.041 .681 .795 
OFC: Orbitofrontal Cortex; SFG: Superior Frontal Gyrus; rMFG: Rostral Middle Frontal Gyrus; 

cMFG: Caudal Middle Frontal Gyrus; rACC: Rostral Anterior Cingulate Cortex 
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Table 3: Multiple regression results for SSRI prescription on surface area, adjusted for age, 

gender and total white matter surface area. 

Region R2 B SE B β p p(FDR) 
Medial OFC       
   Left 0.456 63.36 43.12 0.109 .145 .337 
   Right 0.462 41.49 31.65 0.097 .193 .337 
Lateral OFC       
   Left 0.439 42.977 38.926 0.083 .272 .346 
   Right 0.499 86.318 39.201 0.157 .030 .209 
SFG       
   Left 0.657 -26.253 108.233 -0.014 .809 .857 
   Right 0.550 296.8 111.4 0.180 .009 .125 
rMFG       
   Left 0.554 178.1 100.3 0.119 .079 .220 
   Right 0.588 -210.0 118.0 -0.115 .078  .220 
cMFG       
   Left 0.455 -116.8 64.02 -0.136 .071 .220 
   Right 0.420 -78.55 64.21 -0.094 .224 .346 
rACC       
   Left 0.489 -10.99 27.24 -0.029 .687 .802 
   Right 0.411 3.308 18.31 0.014 .857 .857 
Insula       
   Left 0.488 42.93 37.01 0.084 .249 .346 
   Right 0.558 -47.857 36.355 -0.088 .191 .337 
OFC: Orbitofrontal Cortex; SFG: Superior Frontal Gyrus; rMFG: Rostral Middle Frontal Gyrus; 

cMFG: Caudal Middle Frontal Gyrus; rACC: Rostral Anterior Cingulate Cortex 

 

Standardised residuals of the final model were inspected to assess for whether the model 

contained any outliers of concern. For the majority of regions, the percentage of the total 

sample of cases showing residuals greater than ±2.58 was less than 1%, and in exceptions, 

never exceeded 2%. Similarly, for the majority of regions, the percentage of the total sample 

of cases showing residuals greater than ±1.96 was less than 5%, and in exceptions, never 

exceeded 7% for either structural variable. Therefore the models can be viewed as a good 

representation of the actual data. 

 

Leverage was investigated to assess whether any cases were exerting undue influence over 

the models. While there were a number of cases per regions and structure variables that 

suggested a potential problem with 2 or 3 times greater than average leverage, the Cook’s 

distance never exceeded 1 (Cook & Weisberg, 1982), indicating that the fit would not 

significantly change upon removal of these cases. 
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There were no main effects of SSRI prescription on any ROI for both structural variables of 

interest. As such patients taking SSRIs at the time of scanning remained in the main analysis 

(n=109).  

 

Permutation testing for SSRI predictor of surface area. 

Linear regressions with permutation testing were conducted using the lmp() function in the 

core lmPerm package in R version 3.3.3. Results from the permutation tests, for regions that 

violated assumptions are shown in Table 2.  

 

Table 4: Permutation testing results for SSRI predictor of surface area. 

Region R2 B SE B  β P(permuted) 
Superior Frontal Gyrus      
   Left 0.657 -26.253 108.233 -0.014 .824 
Rostral Middle Frontal 
Gyrus 

     

   Left 0.554 178.1 100.3 0.119 .322 
   Right 0.588 -210.0 118.0 -0.115 .106 
Caudal Middle Frontal 
Gyrus 

     

   Left 0.455 -116.8 64.02 -0.136 .085 
Insula      
   Left 0.488 42.93 37.01 0.084 .540 
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Appendix 3B 

Permutation testing for surface area ROI predictors of class membership. 

Results from the permutation tests, for regions that violated assumptions are shown in Table 

1. 

 

Table 1: Permutation test results for surface area ROI predictors of class membership.  

 Surface area (mm2) 
Region OR 95%CI P(permuted) 
Right Rostral Middle 
Frontal Gyrus 

1.00 0.99-1.00 .235 

Right Caudal Middle 
Frontal Gyrus 

1.00 0.99-1.00 .369 
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Chapter 4: Physiological predictors of trajectory classes: the role of cortisol 

 

Introduction 

Cortisol is an endogenous steroid hormone and has a multitude of functions including being 

a critical component of the body’s stress response. It increases blood sugar levels, stimulates 

the metabolism of fats, carbohydrates and protein, and also acts as an immunosuppressant 

with anti-inflammatory properties (Seifter, Sloane, & Ratner, 2005). The cortisol release at 

times of extrinsic or intrinsic demands on metabolism enables the body to respond 

adaptively to environmental challenge. The depressed patient however may exhibit 

behaviours indicative of maladaptive stress responses. For instance, depressed medical 

students have reported higher incidences of frustration and emotional reactions to stressors 

than non-depressed students (Saravanan & Wilks, 2014), and there is substantial overlap 

between symptoms of depression and chronic stress (APA, 2013). Consequently, it is 

unsurprising that elevated circulating cortisol is one of the most consistently reported 

physiological abnormalities in depressed cases (Ehlert, Gaab, & Heinrichs, 2001a; Guerry & 

Hastings, 2011; Pruessner, Hellhammer, Pruessner, & Lupien, 2003). A meta-analysis of 40 

years of research showed that as many as 73% of patients displayed cortisol values greater 

than the median of non-depressed controls (Stetler & Miller, 2011). However, the release of 

cortisol occurs through a complex series of biological actions governed by the hypothalamic-

pituitary-adrenal (HPA) axis (Pariante & Lightman, 2008). Currently however it is not entirely 

clear exactly where specific abnormalities in the HPA system might reside in depressed 

patients. Nevertheless, it is clear that at least for some patients (Rush et al., 1996; Cinnamon 

Stetler & Miller, 2011), dysfunction in this endocrine system may play a contributory role in 

the development of their illness (Ehlert, Gaab, & Heinrichs, 2001b; Varghese & Brown, 2001) 

and warrants further investigation.  

 

The HPA-axis stress response 

Briefly, the cortisol response begins at the hypothalamus, which receives stress information 

from a number of neuronal inputs, such as the locus coeruleus-norepinephrine system 

(which promotes immediate action to environmental challenges (Cunningham & Sawchenko, 

1988)), as well as the amygdala (Gray, Carney, & Magnuson, 1989) and hippocampal 

(Herman & Cullinan, 1997) regions of the brain. Projections from these systems travel to the 

hypothalamus, where they stimulate the secretion of corticotrophin-releasing hormone 
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(CRH) from the parvocellular neurons in the paraventricular nucleus. CRH then triggers the 

anterior pituitary to secrete adrenocorticotropic hormone (ACTH) into the blood, which 

upon reaching the adrenal gland, initiates the synthesis and secretion of cortisol from the 

zona fasciculata layer of the adrenal cortex (Nicolson, 2008). Once cortisol enters the 

circulatory system, it acts on target tissues by binding to corticosteroid receptors that are 

present throughout the body and in many parts of the brain, with various consequential 

outcomes (Gold, 2014; Nicolson, 2008).  

 

Cortisol and depression 

There is a corpus of evidence showing that depressed patients express abnormalities at 

many of the HPA-axis stages, which could all contribute to elevated cortisol seen in 

depression (Ehlert et al., 2001a; Guerry & Hastings, 2011; Pruessner et al., 2003). Firstly, the 

amygdala and hippocampus govern many behaviours associated with depression, such as 

fear conditioning (Knight, Smith, Cheng, Stein, & Helmstetter, 2004) and episodic memory 

(Burgess, Maguire, & O’Keefe, 2002). Both have been shown to exhibit structural deficits, as 

well as abnormal functional activity, in depressed patients (Fu et al., 2013; Schmaal et al., 

2016; Videbech & Ravnkilde, 2004; Whittle et al., 2014). This could imbalance this system at 

the very start of the chain. The hypothalamus itself has also demonstrated a number of 

anatomical and functional abnormalities in depressed cases. Firstly, depressed patients have 

been shown to exhibit a four-fold increase in the number of CRH-expressing neurons in the 

hypothalamus, which is known to correlate positively with CRH secretory activity 

(Raadsheer, Hoogendijk, Stam, Tilders, & Swaab, 1994). Basal plasma levels of CRH were 

found to be significantly higher in depressed cases (Galard, Catalán, Castellanos, & Gallart, 

2002), suggesting that hypothalamic hyper-activity might significantly contribute to elevated 

cortisol. Perhaps as a consequence, elevated levels of circulating ACTH have been 

documented (Cinnamon Stetler & Miller, 2011), which in itself could lead to higher levels of 

cortisol secretion. However, many studies actually report blunted ACTH-response to CRH 

(Gold et al., 1984; Holsboer, Bardeleben, Gerken, Stella, & Muller, 1984; Schüle, Baghai, Eser, 

& Rupprecht, 2009), which is argued a result of chronically elevated levels of CRH causing a 

down-regulation of CRH-receptors in the anterior pituitary (Schüle et al., 2009). Indeed, 

reduced CRH1-receptor binding has been illustrated in cases of suicide (Nemeroff, Owens, 

Bissette, Andorn, & Stanley, 1988). Excess plasma cortisol, therefore, may be a potential 

consequence of increased sensitivity of the adrenal cortex to ACTH in depressed cases 
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(Jaeckle, Kathol, Lopez, Meller, & Krummel, 1987), as a compensation for this blunted ACTH 

response earlier in the system.  The adrenal glands themselves have also shown up to a 70% 

increase in volume during depressive episodes (Kahl et al., 2015; Nemeroff et al., 1992; 

Rubin, Phillips, Sadow, & McCracken, 1995). Interestingly, this appears to return to normal in 

remission (Rubin et al., 1995). However, while increased adrenal volume has been associated 

with increased cortisol secretion (Golden et al., 2007), it is not a consistent finding 

(Nemeroff et al., 1992; Rubin et al., 1995).  

 

Taken together, there are many aspects of the HPA-axis functioning that may be 

dysfunctional in depression, resulting in hypercortisolaemia. Hypercortisolaemia can have 

detrimental effects on the body, including impaired cardiovascular and immune functioning 

(Jyotsna, Naseer, Sreenivas, Gupta, & Deepak, 2011; Ntali, Grossman, & Karavitaki, 2015), as 

well as neural atrophy (Resmini, Santos, & Webb, 2016). Moreover, hypercortisolaemia has 

been found to have a causal relationship with symptoms that resemble MDD (Sher, 2004). 

These include tiredness (Melamed et al., 1999), anhedonia (Putnam, Pizzagalli, Gooding, 

Kalin, & Davidson, 2008), irritability (Melamed et al., 1999), and impaired cognitive and 

decision-making abilities (Dias-Ferreira et al., 2009).  

 

Another distinctive, yet critical, characteristic of the HPA-axis is its ability to self-regulate. A 

negative feedback loop exists, such that once an appropriate dose of cortisol has reached 

the target tissues, further cortisol inhibits the secretion of CRH by the hypothalamus and 

reduces pituitary sensitivity to CRH (Nicolson, 2008). Self-regulation of the HPA-axis primarily 

functions through the action of cortisol binding to glucocorticoid (GR) receptors (as opposed 

to mineralocorticoid (MR) receptors) in target tissues. GR receptors only activate under 

higher concentrations of cortisol, to restore homeostasis following an acute imbalance 

(Nicolson, 2008; Reul & De KLoet, 1985). However, impaired negative feedback is a widely 

supported theory of abnormal cortisol levels in depression (Lopez-Duran, Kovacs, & George, 

2009; Mokhtari, Arfken, & Boutros, 2013; Nicolson, 2008). Firstly, depressed cases reliably 

exhibit reduced functionality of GR receptors (Pariante & Miller, 2001; Rohleder, Wolf, & 

Wolf, 2010), as well as a reduction in GR receptor numbers in some (Sallee, Nesbitt, 

Dougherty, & Hilal, 1995), but not all, studies (Rupprecht et al., 1991). Authors have also 

hypothesised that the strength of negative feedback elicited from GR receptors could be 

related to the degree of heritability in the cortisol response (Bartels, de Geus, Kirschbaum, 
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Sluyter, & Boomsma, 2003). Furthermore, animal models have shown that antidepressant 

medications have a positive and direct effect on GR receptors, through restoring 

functionality and expression (Pariante & Miller, 2001). These antidepressant effects on GR 

receptors have subsequently been suggested to underlie the induced neurogenesis observed 

in the human hippocampus following treatment (Anacker et al., 2011). All of these 

contributory factors fundamentally suggest impairments in depression exist in the system’s 

ability to self-regulate, resulting in hypercortisolaemia.  

 

For clinical research, the self-regulatory mechanism of cortisol is often tested using the 

dexamethasone (DST) suppression test (Rush et al., 1996), which involves the administration 

of a synthetic glucocorticoid, dexamethasone, before sleep. This drug acts to suppress CRH 

release, akin to normal endogenous cortisol resulting in a post-administration decrease in 

morning cortisol levels under normative HPA-functionality (i.e. a suppression effect on 

cortisol) (Nicolson, 2008). This test has now been superseded by the 

dexamethasone/corticotrophin-releasing-hormone (DEX-CRH) test, which additionally 

investigates the functionality of CRH on ACTH and cortisol, under the influence of 

dexamethasone (Mokhtari et al., 2013). Under normative function, CRH would counteract 

dexamethasone, and reinstate secretion of ACTH and consequently, cortisol (Mokhtari et al., 

2013). The DEX-CRH test therefore has an added benefit for delineating at which point in the 

pathway an abnormality lies (Mokhtari et al., 2013). A consistent finding in depression is that 

depressed cases exhibit non-suppression in the DST test(Rush et al., 1996), and cortisol 

hypersecretion with the DEX-CRH test (Mokhtari et al., 2013). Both findings are suggestive of 

hypercortisolaemia, via reduced sensitivity to the negative feedback response to high levels 

of corticosteroids (Lopez-Duran et al., 2009; Mokhtari et al., 2013).  

 

It is important to note that another relevant, yet complicated, characteristic of the HPA axis 

is that it expresses both a basal activity pattern of cortisol release and a phasic activity 

pattern, and it is possible that they have influential roles on one-another (Dickstein et al., 

1991; Young, Abelson, & Lightman, 2004). Alterations in a diurnal pattern of cortisol release 

may affect phasic responses to external stressors and conversely, should an acute stressor 

become more chronic, these phasic responses could affect diurnal rhythms (Young, Abelson, 

et al., 2004). During a typical circadian cycle, the HPA-axis’ basal activity follows a diurnal 

pattern of cortisol release. Levels begin to rise towards waking, and reach a peak usually 



 146 

between 30-40 minutes after waking (Lovallo & Thomas, 2000). This is known as the Cortisol 

Awakening Response (CAR). Following this, cortisol levels gradually decline through the day 

to reach a low point before sleep (Lovallo & Thomas, 2000). This diurnal pattern may help 

the body to transition appropriately between activity levels of sleep and waking (Edwards, 

Evans, Hucklebridge, & Clow, 2001).  

 

A number of different methodologies have been used to investigate basal levels of cortisol in 

depressed cases, which makes gaining a coherent narrative challenging (Guerry & Hastings, 

2011). This includes variation in the biological type of assay (blood, saliva, urine) and the 

cortisol index itself (waking, evening, 24hour, CAR) (Fischer, Macare, & Cleare, 2017; Fischer, 

Strawbridge, Vives, & Cleare, 2017; Guerry & Hastings, 2011). However despite 

methodological heterogeneity, there is a general convergence that disturbances in this 

rhythm are both a risk factor for, and feature of current depression (Herbert, 2013; Lopez-

Duran et al., 2009). There is also tentative evidence that morning and evening cortisol may 

be driven by separate mechanisms. Morning cortisol levels have demonstrated a significant 

degree of heritability, which was not observed for evening measures (Bartels et al., 2003; 

Wüst, Federenko, Hellhammer, & Kirschbaum, 2000). Indeed, the authors postulated that 

variation in evening cortisol may be more strongly influenced by environmental factors than 

genetic components (Wüst et al., 2000).  In line with these findings, elevated morning 

cortisol has more consistently been described as a vulnerability marker for depression onset 

(Goodyer, 2000; Harris et al., 2000; Owens et al., 2014), rather than a characteristic of a 

current pathological state. However, this assertion may be more nuanced. Owens and 

colleagues (2014) used a large population based adolescent cohort (n=~1800) to show that 

morning (but not evening) cortisol in the adolescent population was associated with a 14 

fold increase in the presence of clinical depression only in males with higher levels of pre-

existing depressive symptoms. Replication of these findings remains to be firmly established. 

In contrast, elevated evening cortisol has been reported in patients across the life-course 

with current depression (Dahl et al., 1991; Van den Bergh & Van Calster, 2009; Vreeburg et 

al., 2009), along with blunted CAR response (Huber, Issa, Schik, & Wolf, 2006; C Stetler & 

Miller, 2005), such that the overall diurnal rhythm is flatter (Van den Bergh et al., 2009; Van 

den Bergh, Van Calster, Pinna Puissant, & Van Huffel, 2008). Interestingly however, this 

flattening was found to be predominantly driven by elevated evening cortisol (Van den 

Bergh & Van Calster, 2009). Similar patterns of a reduced CAR and elevated evening cortisol 
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have also been found in people with high ruminative tendencies (Cropley, Rydstedt, 

Devereux, & Middleton, 2015), a common feature of depression (Nolen-Hoeksema, 1991). 

However, not all studies found a blunted CAR to be present in depressed cases (Schmidt, 

Laessle, & Hellhammer, 2013; Vreeburg et al., 2009).  

 

On top of this basal activity, phasic cortisol secretions function to respond appropriately to 

external stressors (Smyth et al., 1998). In depression, there has been a wealth of research 

highlighting the potentially causal relationship between stressful life events and illness onset 

(Guerry & Hastings, 2011; Hammen, 2005; Kendler, Karkowski, & Prescott, 1999). Mazure’s 

review(1998) of the literature estimated that a severe life event preceded a depressive 

episode in up to 80% of cases in community samples. The stress caused from daily hassles is 

also often noted as a significant contributor to the development and maintenance of 

depressive illness (Sher, 2004). Furthermore, and more so than the nature of the event itself, 

individual differences in response to these stressors, both physiologically and 

psychologically, can impact the risk of developing depression (Guerry & Hastings, 2011). 

Physiologically, meta-analytic findings have shown that depressed individuals exhibit an 

abnormal rise in cortisol in response to psychological stress, but also a slower recovery to 

baseline (Burke, Davis, Otte, & Mohr, 2005). Taken together, this suggests that phasic 

cortisol responses are also disturbed in people with depression.  

 

Overall, it is clear that many functions of the HPA-axis may be disturbed in depression. 

Whether the aspects are part of the generation of the cortisol response, its appropriate 

suppression, or a dynamic interplay between basal and phasic responses remains unclear. It 

is quite likely that they all play some role to varying degrees, and teasing these mechanisms 

will be a major work of this field. However, irrespective of mechanism, elevated circulatory 

cortisol appears a significant characteristic for some patients, and may itself provide a viable, 

convenient marker to investigate variations in response to treatment within a depressed 

cohort.  

 

Cortisol and treatment response in depression 

Studies of disrupted HPA mechanisms in depression have noted that there is a great deal of 

variability between patients (Chida & Steptoe, 2009; Dedovic & Ngiam, 2015; Stetler & 

Miller, 2011). Some authors have argued that this heterogeneity might be a consequence of 
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differing levels of symptom severity in patient samples (Chida & Steptoe, 2009). Indeed, it is 

a common finding that cortisol levels positively correlate with the severity of depressive 

symptoms, as well as perception of stress (Pruessner et al., 2003). In one meta-analysis, the 

observed effect sizes of elevated cortisol markedly decreased when studies of hospitalised 

patients were removed (Stetler & Miller, 2011). Furthermore, comorbidity (an index often 

associated with clinical severity (Shelli Avenevoli et al., 2015)) has been associated with 

elevated waking cortisol (Vreeburg et al., 2009). Hypercortisolaemia therefore, might be a 

specific feature of severe, or clinically complex, cases of depression. These in turn, as 

previously stated, are the most consistent behavioural predictors of non-response (Curry et 

al., 2006; Goodyer et al., 1997; Wilkinson et al., 2009). Indeed, our previous work outlined in 

Chapter 2 illustrated the significance of comorbidity and baseline severity in both the 

characterisation and prediction of unfavourable symptom trajectories following treatment. 

Consequently, the utility of cortisol as a biological marker of response has gained growing 

attention over recent years (Fischer & Cleare, 2017; Fischer, Macare, et al., 2017; Fischer, 

Strawbridge, et al., 2017; Horstmann & Binder, 2011).  

 

There is a greater amount of work in the field of treatment response for pharmacological 

interventions, as theories of the interactions between antidepressants and the HPA-axis are 

more developed (Pariante et al., 2001). For instance, it is known that a dynamic interplay 

between the HPA-axis and serotonergic (5-HT) systems exists (the serotonin system is the 

primary target for the most common antidepressants, SSRIs) (Diaz et al., 2012; Wong & 

Licinio, 2004). CRH and 5-HT receptors occupy similar areas in the brain (Hammack et al., 

2003; Joëls, Hesen, & de Kloet, 1991), and under stress, CRH, as well as MR/GR expression, 

can have modulatory effects on 5-HT function in these areas (Beck, Choi, List, Okuhara, & 

Birnstiel, 1996; Joëls et al., 1991; Valentino & Commons, 2005). Consequently, some argue 

that antidepressants exert their therapeutic effect, at least in part, on restoring HPA-axis 

regulation (Barden, Reul, & Holsboer, 1995). Indeed, studies have found that antidepressant 

medications lower the CAR, measured through salivary samples (Ruhé et al., 2015). It is also 

hypothesised that this process occurs through up-regulation of MR and GR receptor 

expression by antidepressants, restoring their sensitivity to cortisol and the consequent 

negative feedback functionality (Raison & Miller, 2003; Schüle, 2007). Ising and colleagues 

(2007) found that an early normalisation of elevated cortisol response to the DEX-CRH test 

within the first two weeks of treatment was associated with increased remission rates at 5 
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weeks. Taken together, this suggests that standard antidepressants might facilitate HPA-axis 

rebalancing and thus, response to treatment (Schüle, 2007).  

 

From the perspective outlined above, it is plausible that patients with the greatest 

deviations in baseline cortisol might struggle to rebalance their HPA-axis dysfunction 

sufficiently to the extent necessary for therapeutic effect, and consequently, would 

demonstrate resistance to antidepressants (Horstmann & Binder, 2011; Young, Altemus, et 

al., 2004). Indeed, a number of studies that employed the DST or DEX-CRH test have found 

that patients who demonstrated DST non-suppression before admission, had significantly 

poorer clinical outcomes than those who elicited a more normative response to DST 

(Juruena et al., 2009; McKnight, Nelson-Gray, & Barnhill, 1992).The predictive value of 

cortisol non-suppression was even evident in patients who were already classified as 

resistant to two or more antidepressants (Juruena et al., 2009). Abnormal HPA-axis 

functioning through DST testing has also been associated with risk of relapse in a number of 

studies (Schüle, 2007; Zobel et al., 2001, 1999). For instance, patients demonstrating cortisol 

non-suppression to the DEX-CRH test at either pre or post-treatment were more likely to 

relapse within the next 6 months (Zobel et al., 1999), and moreover, sustained cortisol 

elevation in response to DEX-CRH in remitted patients was found to have an estimated 4 to 6 

fold increased risk of relapse at 6 months (Zobel et al., 2001). A meta-analytic study 

concluded that in high quality studies, DST non-suppression associated with non-response to 

antidepressants (Fischer, Macare, et al., 2017), however, not all studies support this 

direction of effect (Binder et al., 2009). 

 

The relationship between basal levels of cortisol and non-response to pharmacological 

interventions have been less well-studied, and consequently, shows a lack of consensus. 

Elevated pre-treatment basal cortisol levels have been found in patients who had relapsed, 

measured by evening blood sampling, and this identified patients that required continued 

treatment to maintain remission (O’Toole, Sekula, & Rubin, 1997). Hypercortisolaemia may 

therefore exist across various methodologies of cortisol measurement, and act as a robust 

indicator of a resistant subtype of depression. However, inconsistencies exist in the 

literature (Klimes-Dougan et al., 2018) and meta-analytic findings call for more controlled 

research to be conducted in basal measures (Fischer, Macare, et al., 2017). While the 

authors of this review found that high levels of basal cortisol reported from non-invasive 
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measures (saliva or urine) discriminated non-responders from responders to antidepressant 

medication, unadjusted statistical analyses were associated with these positive results 

(Fischer, Macare, et al., 2017). Moreover, some authors suggest that the prognostic utility of 

cortisol may be gender specific (Binder et al., 2009). 

 

Psychotherapies are the most commonly prescribed treatments for depression (NICE, 2015, 

NICE, 2016), and there is a large evidence base supporting their effectiveness (Compton et 

al., 2004; Hofmann, Asnaani, Vonk, Sawyer, & Fang, 2012; Midgley & Kennedy, 2011). These 

treatments often report similar efficacy to pharmacological therapies (Cuijpers, Berking, et 

al., 2013; Khan et al., 2012), and some authors have suggested models of SSRI action that 

reflect similar mechanisms to psychological therapies (Harmer & Cowen, 2013). 

Consequently, hypotheses regarding cortisol dysfunction from pharmacological studies could 

feasibly extend to those investigating response to psychological treatments. Indeed, 

McKnight and colleagues (1992) concluded that abnormal HPA function measured by the 

DST test predicted poorer response to both types of treatment, but failed to find any 

differential treatment effects. Furthermore, they found that these abnormalities normalised 

following treatment with both psychological and pharmacological modalities, supporting the 

hypotheses that medications and psychotherapies target similar mechanisms, and that 

abnormal cortisol levels influence their effectiveness.  

 

The field of research investigating cortisol as a predictor of response to psychological 

therapies is small, and complicated by a number of factors. A recent meta-analysis only 

identified 8 articles meeting selection criteria (Fischer, Strawbridge, et al., 2017), and as well 

as investigating a range of cortisol methodologies (Robbins, Alessi, & Colfer, 1989; Thase et 

al., 1996; Thase, Simons, & Reynolds, 1993), these studies investigated a range of 

psychological therapies, including psychosocial (Robbins et al., 1989), CBT (Thase et al., 1996, 

1993) and interpersonal therapy (Gunlicks-Stoessel, Mufson, Cullen, & Klimes-Dougan, 

2013). However, in line with the findings from the pharmacological literature, the results of 

the meta-analysis found that overall, elevated pre-treatment cortisol levels were associated 

with unfavourable treatment outcome (Fischer, Strawbridge, et al., 2017). The effect was 

apparent for both basal cortisol levels (Thase et al., 1996, 1993), and cortisol levels in 

response to a stressor or challenge tests (Robbins et al., 1989), although the evidence for 

basal measures were less assertive (Fischer, Strawbridge, et al., 2017). Furthermore, not all 
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studies in this review fully supported the direction of effect (Gunlicks-Stoessel et al., 2013). 

Gunlicks-Stoessel and colleagues (2013) for example, reported that higher salivary cortisol 

levels in response to a stressful conflict-negotiation task were predictive of a better clinical 

outcome to interpersonal psychotherapy. Interpersonal therapy has been shown to be 

particularly beneficial for patients whose sense of self is reliant on their social relationships 

(Horowitz, Garber, Ciesla, Young, & Mufson, 2007). The authors suggested that elevated 

cortisol to tasks that target this specific preference could identify those patients who would 

benefit from treatment that specifically targets interpersonal relationships (Gunlicks-

Stoessel et al., 2013). However, when Fischer and colleagues (2017) adjusted for the small 

sample size used in this study (n=15) in their meta-analysis, the effect-size was 0. 

 

Another factor complicating the investigation of psychological treatment response is that 

different psychosocial factors have been found to associate with differential cortisol 

alterations (Chida & Steptoe, 2009). Some stressors relate to increased cortisol levels, while 

others relate to decreased levels (Chida & Steptoe, 2009). Considering the wide variety of 

psychotherapies that exist, it is possible, therefore, that depressed patients with elevated 

cortisol may respond positively to one type of therapy and negatively to another, depending 

on the target of the treatment modality in the psychological work. For cognitive-based 

therapies, elevated cortisol might hinder patients engaging in therapeutic tasks, due to the 

negative effect of cortisol on cognitive abilities, such as concentration and memory (Dias-

Ferreira et al., 2009; Schlosser, Wolf, & Wingenfeld, 2011). It would follow that these 

patients would exhibit a greater degree of this cognitive impairment and thus find this type 

of therapy more challenging (Fischer, Strawbridge, et al., 2017; Thase et al., 1996). Indeed, 

when the treatment modality places a strong emphasis on cognition (such as CBT), studies 

have indicated that those with abnormal cortisol functioning often show a poorer response 

to treatment (Bockting et al., 2006; Holland, Schatzberg, O’Hara, Marquett, & Gallagher-

Thompson, 2013). This effect was observed in both elevated morning salivary cortisol 

(Bockting et al., 2006), and in flatter diurnal curves; whereby morning salivary cortisol were 

elevated and additionally, failed to lower sufficiently by evening (Holland et al., 2013). CBT 

alone has also been found to have a poorer response rate in those with elevated urinary free 

cortisol (Thase et al., 1996, 1993) and elevated levels following DST challenge (Robbins et al., 

1989). Treatment often requires augmentation with medications in these patients (Robbins 

et al., 1989), suggesting that elevated cortisol might index a particularly resistant subgroup 
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of depressed cases to cognitive therapies that require a higher intensity of treatment. 

However, it is worth noting that one study had a number of methodological limitations, 

including only defining a favourable response based on improvement in mood and 

anhedonia alone (Robbins et al., 1989). Considering the aforementioned associations 

between hypercortisolaemic conditions and cognitive impairment in depression (Dias-

Ferreira et al., 2009; Schlosser et al., 2011), it would have been beneficial for this aspect of 

depressive symptomatology to be included in assessment of response. Moreover, Thase and 

colleagues (1993) highlighted that other factors, such as gender, comorbidity and anomalous 

sleep profiles also associated with poorer response. All these factors have also been 

associated with differential cortisol functioning (Horstmann & Binder, 2011; Oquendo et al., 

2003; Rodenbeck, Huether, Rüther, & Hajak, 2002; Verma, Balhara, & Gupta, 2011; Zorn et 

al., 2017).  

 

Cortisol in adolescent depression 

Considering the population of my sample of investigation, it is important to consider the 

impact of the development of HPA-axis function on depression aetiology. It would be 

premature to assume a simple extension from the above literature, which has been 

predominantly adult studies, would apply to adolescent depression. Adolescence is 

characterised by a significance rise in basal cortisol levels from childhood, and is also a 

developmental stage where HPA-reactivity to stressors markedly increases (Gunnar & 

Quevedo, 2007; Gunnar, Wewerka, Frenn, Long, & Griggs, 2009). Indeed, stressors of 

objectively similar magnitude appear to affect the HPA-axis to a greater degree in 

adolescence than adults (Lupien, McEwen, Gunnar, & Heim, 2009). Adolescence is also 

known as a period of development where there is a notable increase in frequency of 

stressful life events (Larson & Ham, 1993). These events are often interpersonal in nature 

(Rudolph & Hammen, 1999), and the extent of such stressors, like peer victimisation, 

positively associates with HPA-axis dysfunction (Knack, Jensen-Campbell, & Baum, 2011). 

Together, this suggests that adolescence is a period where the HPA-axis may be particularly 

vulnerable to pathology.  Simultaneously, the risk for depression also markedly increases 

during pubertal age (Avenevoli et al., 2008).  

 

Some authors have advocated that the theory of abnormal HPA-axis function in pre-pubertal 

depression is unconvincing (Birmaher et al., 1996), as this stage of development is 
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characterised by very low cortisol reactivity to stressors (Gunnar & Quevedo, 2007). 

However, the relationship between cortisol and depression strengthens with age (Guerry & 

Hastings, 2011), and for adolescent depression, the developmental physiology and 

environmental interplay noted above suggests that cortisol dysregulation in adolescence 

should be further investigated. There is evidence across methodologies (Adam et al., 2010; 

Goodyer, Herbert, & Tamplin, 2003; Halligan, Herbert, Goodyer, & Murray, 2007; Lopez-

Duran et al., 2009; Rao, Hammen, Ortiz, Chen, & Poland, 2008), particularly from studies of 

more vigorously controlled basal measures (Adam et al., 2010; Goodyer et al., 2003; Mathew 

et al., 2003), suggesting that cortisol dysregulation is a presenting characteristic for at least 

some adolescent patients. A meta-analytic review supported these findings, stating that 

depressed youths display symptoms of hypercortisolemia across both DST challenge test and 

measures of basal cortisol (Lopez-Duran et al., 2009). The authors concluded that cortisol 

dysregulation in youth appears to relate specifically to negative feedback mechanisms and 

may affect the entire diurnal pattern (Lopez-Duran et al., 2009).  

 

Two of the most recent meta-analyses investigating the relationship between cortisol and 

treatment response in depression highlighted the scarcity of research in adolescent 

populations (Fischer, Macare, et al., 2017; Fischer, Strawbridge, et al., 2017). Of the studies 

that do exist, all are limited by small samples (Gunlicks-Stoessel et al., 2013; Klimes-Dougan 

et al., 2018; Robbins et al., 1989). Only two (Gunlicks-Stoessel et al., 2013; Robbins et al., 

1989) of the eight studies included in Fischer and colleagues’ (2017) meta-analysis 

investigating response to psychological therapies were conducted in adolescent samples. 

Furthermore, no pharmacological study included in the meta-analysis focused specifically on 

this age bracket (Fischer, Macare, et al., 2017). However, for pharmacological treatments, 

the authors found that studies that failed to control for age were more likely to report 

significant differences in cortisol between responders and non-responders. This suggests 

that age (and its underlying maturational components) may be an important moderator in 

the relationship between cortisol and antidepressant response, particularly as independent 

relationships exist between older age and elevated cortisol (Guerry & Hastings, 2011), and 

older age and poorer treatment outcome (Corey-Lisle, Nash, Stang, & Swindle, 2004; Uher et 

al., 2010).  
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Only one study to date, published after the meta-analysis (Fischer, Macare, et al., 2017), 

investigated neuroendocrine predictors of response to SSRIs in a specifically adolescent 

sample (Klimes-Dougan et al., 2018). This study, while limited by sample size, found that 

elevated cortisol levels at the peak of the stressor-induced cortisol response function, was 

actually associated with a more favourable outcome. This finding was supported by a study 

investigating cortisol levels as predictors of response to interpersonal therapy in adolescence 

(Gunlicks-Stoessel et al., 2013), and conflicts with the direction of effect reported in adult 

studies (Fischer, Macare, et al., 2017; Fischer, Strawbridge, et al., 2017). However, in another 

study, DST non-suppression, which is suggestive of elevated cortisol, was linked to poorer 

response to psychosocial treatment (Robbins et al., 1989). It remains unclear whether these 

conflicting findings between the adult and adolescent literature are a reflection of the 

developmental age of the sample, or of unique and differential effects of the different types 

of treatment, as discussed previously (Gunlicks-Stoessel et al., 2013). Coupled with the small 

number of studies available to date, the field is currently in a state of ambiguity. More 

research is necessary to understand the prognostic value of cortisol in the treatment of 

adolescent depression.  

 

Evening cortisol 

Some studies have suggested that the period before sleep onset is of particular importance 

for mood disorders in adolescence (Dahl et al., 1991; Forbes et al., 2006; Van den Bergh & 

Van Calster, 2009). For instance, adolescents with depression demonstrated higher plasma 

cortisol levels prior to sleep onset than controls (Forbes et al., 2006). Van den Bergh and 

colleagues (2009) also found that high depressive symptoms were related to a flatter diurnal 

rhythm and elevated evening cortisol. Moreover, they concluded that only elevated evening 

cortisol showed predictive utility for identifying symptom severity. In line with these 

findings, Dahl and colleagues (1991) found that plasma cortisol levels were similar between 

depressed adolescents and controls across the 24 hour period, except for just prior to sleep 

onset. Here, elevated cortisol was observed in the depressed group. Interestingly, this effect 

was driven by the most severe cases. There is currently a lack of studies investigating how 

cortisol levels at this particular time of day might relate to treatment response in 

adolescence, but case-control data would suggest that elevated evening cortisol may be of 

particular importance in differentiating the more severe cases of depression in adolescence, 

which in turn, may link to treatment non-response.  
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A final important observation of this field to date is that all studies have defined response a 

priori. A number of studies have taken remission (O’Toole et al., 1997), or a percentage 

decrease in symptoms (Holland et al., 2013; Juruena et al., 2009) to identify a favourable 

end-of-treatment outcome, while others have investigated response on a continuous scale 

(Gunlicks-Stoessel et al., 2013; Thase et al., 1996). Chapter 1 of this thesis details the 

limitations of such approaches. No study has yet investigated associations with cortisol and 

response in empirically-derived trajectory classes. GMM and latent class studies to date limit 

themselves to the investigation of behavioural measures and have not extended their work 

into biological variables. Doing so would mark a significant step forward in both fields of 

research.  

 

Objectives and Hypotheses 

The objective of this next piece of work was to conduct a secondary analysis of another 

subsample of adolescents enrolled in the IMPACT trial (Goodyer et al., 2011). This subsample 

was recruited into the hormonal study associated with IMPACT (IMPACT-Genes and 

Hormones (IMPACT-GH)), providing saliva samples to assess cortisol levels. The specific aim 

of this piece of work was to investigate the relationship between empirically derived 

trajectory classes, as defined in Chapter 1, and basal cortisol levels, as measured in salivary 

samples. Prior literature would suggest that elevated evening cortisol in this adolescent 

cohort might associate with the unfavourable trajectory class.   
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Materials and Methods 

Study Design 

This study was a re-analysis of the IMPACT-GH trial. IMPACT-GH consisted of a subgroup of 

patients who, in addition to the data of the IMPACT trial, also provided salivary cortisol data. 

All patients enrolled into the IMPACT study were asked to take part in IMPACT-GH. 

Consequently, details of the study design, setting, bias and participant criteria can be found 

in Chapter 1. In total, 300 patients of the 465 IMPACT sample supplied cortisol data, and 

were thus recruited into IMPACT-GH. 

 

Study Size 

Of the 300 patients recruited to IMPACT-GH, 21 patients were excluded due to medications 

that would alter cortisol mechanisms (19 corticosteroids, and 2 antipsychotics). Thus, 279 

patients provided at least one cortisol variable that were available for analysis. These were 

subdivided into two sub-samples of interest for the present study; one of 112 patients 

providing data on peak cortisol, and another of 166 patients providing data on evening 

cortisol for both days (see description below). Preliminary analyses showed that these sub-

samples were representative of the full IMPACT sample (see Appendix 4A), and thus patients 

were allocated to trajectory classes following the analysis of the full IMPACT sample outlined 

in Chapter 1.  

 

Cortisol Measurement  

Patients were asked to collect 3 saliva samples on two consecutive school or working days. 

Participants were instructed to provide the first sample as soon as they woke up, which 

acted as their “waking” cortisol measure. The second sample was collected 30 minutes after 

waking to capture the cortisol waking response. The final “evening” sample was provided at 

10pm. Participants were asked to note the exact time cortisol measures were provided, in 

relation to them waking. This allowed us to assess compliance with study protocol, in 

addition to increasing the accuracy of finding the peak cortisol value of the CAR curve for 

patients. Patients also noted any medication taken in the previous week. Participants were 

asked to avoid collecting saliva samples within 20 minutes of eating, smoking or brushing 

teeth, and to avoid collecting samples within 8 hours of alcohol consumption or the use of 

recreational drugs. This study was primarily interested in peak-morning and evening cortisol 

measures.  
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Laboratory Measurements 

Saliva was collected by a Salimetrics SOS cotton swab, which was left under the tongue for at 

least one minute. Salivary cortisol levels were measured by competitive enzyme 

immunoassay (EIA) using a Salimetrics Europe Ltd kit. Cortisol was measured in micrograms 

per deciliter.  Intra-assay precision was 9.6% at 0.106 μg/dL and 9.8% at 1.058 μg/dL. Inter-

assay precision was 3.7% at 0.097 μg/dL and 3.4% at 0.999 μg/dL. 

 

Inclusion criteria 

For inclusion in analyses, a number of steps were taken to ensure the cortisol data after 

collection was accurate, in addition to the participant instructions noted above. Firstly, a 

number of patients had provided cortisol samples following the instructions above, but only 

for a single day. Thirty-seven patients were found to have provided peak cortisol samples on 

one of two days only, and 13 provided evening cortisol samples on one of two days only (see 

Table 1). Basal cortisol measurements are known to show significant within-subject 

fluctuation such that it is standard practice to derive an average cortisol value for each 

individual over a number of time-points (Harris et al., 2000; Pruessner et al., 1997). We 

therefore investigated the relationship between day 1 and day 2 scores, to determine the 

reliability of a single time point measurement in our data (Appendix 4B). We decided that 

there was insufficient agreement in cortisol scores between the two days to warrant 

inclusion of patients with cortisol for only one day.  Therefore, for any given cortisol variable, 

patients must have provided a cortisol sample on both days to be included in our analyses. 

The means, standard deviations (SD), medians and inter-quartile ranges across day 1 and 2 

are presented in Table 1, as well as the two-day average.  
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Table 1: Descriptive statistics for cortisol data present on day 1 and day 2 

 N Mean SD Median IQR 
Peak morning      
Day 1 129 0.64 0.30 0.63 0.37 
Day 2 132 0.60 0.24 0.59 0.31 
Two-day 
average 

112 0.61 0.24 0.59 0.31 

Evening      
Day 1 172 0.12 0.24 0.05 0.06 
Day 2 173 0.11 0.22 0.06 0.06 
Two-day 
average 

166 0.11 0.21 0.07 0.07 

 

In addition, both peak-morning and evening cortisol variables had their own inclusion 

criteria. In most cases, peak cortisol values were taken as their 30-minute morning sample. 

This was valid if across both days, saliva was collected between 20 and 40 minutes from their 

documented waking time, and between the hours of 0400 and 1159. However, in cases 

where patients provided a second morning sample (between the hours of 0400 and 1159) 

that was higher than their 30-minute value, this value was recorded as their peak cortisol 

value. Evening cortisol values were considered valid if across both days, saliva was collected 

between 1900 and 0100. The average of the two days was taken for both peak-morning and 

evening cortisol values.  

 

Statistical Analyses 

Univariate analyses of associations between classes were conducted on each of the two 

subsamples, to explore differences between the trajectory classes on demographic and 

clinical characteristics. Independent sample t-tests were performed on all continuous 

demographic variables. Chi-square tests were performed on all categorical variables. Mann-

Whitney-Wilcoxon tests were performed where data were non-normal. 

 

Two logistic regressions were conducted to investigate whether specific cortisol levels 

predict class membership, controlling for age and gender (see reasons below) and 

bonferroni corrected. Peak-morning and evening cortisol measures were investigated 

separately. Regressions were conducted using the glm() function in the core stats package in 

R, version 3.3.3(“R: The R Project for Statistical Computing,” n.d.). 

 

 



 159 

Sensitivity analyses 

A number of considerations were necessary prior to the main analysis detailed above. Firstly, 

cortisol levels are known to increase with age, particularly through adolescence (Guerry & 

Hastings, 2011). In addition, failing to control for age has shown an increased likelihood of 

positive results (Fischer, Macare, et al., 2017). Therefore, to control for type 1 errors, age 

was included as a fixed covariate in regression models.  

 

Secondly, marked gender differences exist in HPA-activity between males and females 

(Horstmann & Binder, 2011; Verma et al., 2011). While less consistently reported in 

adolescents (Bouma, Riese, Ormel, Verhulst, & Oldehinkel, 2009), gender differences have 

been observed in stress-induced plasma cortisol levels (Uhart, Chong, Oswald, Lin, & Wand, 

2006), females have greater sensitivity to ACTH than males (Roelfsema et al., 1993), and 

greater HPA-axis non-suppression (Heuser et al., 1994). Indeed, we observed a gender 

difference in our data for peak-morning cortisol at the univariate level (see Table 2). 

Consequently, we controlled for gender in our regression models. However due to the small 

number of males present in class 1 for each regression, we also repeated analyses on 

females only. 

 

Table 2: Gender differences in cortisol levels 

Cortisol 
measures 

Females Males Statistics 

 Median Median W p 
 Peak-morning 0.65 0.49 1752 <.001 
Evening 0.07 0.06 3007 .096 
 

Related to gender, studies have shown that women taking oral contraceptives actually 

display blunted CAR measured by saliva, in both basal (Pruessner et al., 1997) and stress-

induced cortisol responses (Bouma et al., 2009; Kirschbaum, Pirke, & Hellhammer, 1995) 

than women not taking contraceptives. Consequently, to determine if this was a necessary 

variable to include in our regression models, we initially investigated the effect of oral 

contraceptives on each cortisol variable in females, controlling for age and baseline MFQ 

score. No significant effects of oral contraceptives were found for any cortisol variable (peak-

morning: β=-0.000, p=>.999, evening: β=-0.037, p=.612, Bonferroni corrected, details found 

in Appendix 4C). Therefore, oral contraceptive prescription was not entered as an additional 

covariate in the final regression model.  
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Finally, we conducted a similar preliminary analysis for SSRI prescription. As outlined in the 

introduction, SSRIs have been shown to reduce salivary cortisol levels (Ruhé et al., 2015). 

Therefore, to determine if this was a necessary variable to include in our regression models, 

we investigated the effect of baseline SSRIs prescription on each cortisol variable, controlling 

for age, gender and baseline MFQ score. No significant effects of SSRIs were found for any 

cortisol variable (peak-morning: β=-0.023, p=>.999, evening: β=0.050, p=.477, Bonferroni 

corrected, details found in Appendix 4D). Consequently, SSRI prescription was not entered as 

an additional covariate in the final regression model. Medication data for both oral 

contraceptives and SSRIs were available for all patients (n=279). 

 

While baseline depression severity is known to correlate with cortisol (Pruessner et al., 

2003), baseline MFQ was used to derive the trajectory classes. Therefore, baseline MFQ was 

not entered as a covariate in the model.  
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Results 

Patient Characteristics 

Of the 279 patients, 112 patients provided peak-morning cortisol samples that met 

requirements on two days (Table 1). Eighteen (16.0%) were allocated to class 1 and 94 

patients were allocated to class 2 (84.0%). Classes contained a similar proportion of patients 

to the full IMPACT sample (15.9% and 84.1% respectively) and these two samples did not 

significantly differ in class membership proportions (X2(1)< 0.001, p=.958).  

 

Of the 279, 166 patients provided evening cortisol samples that met requirements on two 

days (Table 1). Twenty-nine (17.5%) were allocated to class 1 and 137 patients were 

allocated to class 2 (82.5%). While class 1 contained a slightly higher proportion of patients 

and class 2 a slightly lower proportion of patients than the full IMPACT sample (15.9% and 

84.1% respectively), this difference was not significant (X2(1)= 0.467, p=.494).  

 

Class Characteristics 

Table 3 presents the descriptive statistics and univariate tests for each cortisol variable.  

No significant differences were present between the classes on peak cortisol levels. 

However, class 1 on average showed significantly higher evening cortisol values than class 2 

at baseline.  

 

Tables 4 presents the demographic and clinical data of each trajectory class for the peak-

morning cortisol subsample. In contrast to the full IMPACT sample, no demographic or 

clinical characteristics showed significant class differences, with the exception of region. This 

is likely a chance finding due to the small sample size in this cohort.  

 

Table 5 presents the demographic and clinical data of each trajectory class for the evening 

cortisol subsample. For demographic characteristics, and in line with the findings from the 

full IMPACT sample, the evening cortisol subsample found that the distribution of males and 

females was significantly different between classes. 93.1% of class 1 were female, whereas 

only 71.5% of class 2 were female. No other demographic characteristics were significantly 

different between classes in the evening cortisol subsample. In terms of clinical 

characteristics, and in line with the findings from the full IMPACT sample, the evening 

cortisol subsample found that class 1 on average, showed higher LOI and HoNOSCA scores 
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indicating more obsessional traits and more severe psychiatric symptomatology and function 

than class 2 at baseline. No other clinical characteristics across cortisol variables were 

significantly different between classes.  

 

Finally, no differences were found between classes in either cortisol sub-sample, on 

treatment arm allocation or SSRI prescription at baseline. 
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Table 4: Demographic and clinical characteristics of trajectory classes in IMPACT-GH with 

peak-morning cortisol data 

 Class 1: Halted-
improvers (n=18) 

Class 2: Continued-
improvers (n=94) 

Comparison 

 N % N % X2/OR p 
Female% 16 88.9 67 71.3 0.31% .149 
Region% - - - - N/A% .017 
   East Anglia 3 16.7 49 52.1 - - 
   North London 7 38.9 20 21.3 - - 
   North-West  
England 

8 44.4 25 26.6 - - 

 Ethnicity(white) % 18 100.0 85 90.0 N/A% .350 
Suicidal attempts 7 38.9 29 30.9 0.45 .504 
Suicidal thoughts% 17 94.4 81 86.2 2.71% .461 
NSSI 9 50.0 57 60.6 0.71 .401 
Comorbidity* - - - - 1.24 .266 
      1 5 27.8 23 24.5 - - 
      2 5 27.8 20 21.3 - - 
      3 1 5.6 1 1.1 - - 
Treatment arm%  - - - - N/A% .553 
       BPI 7 38.9 24 25.6 - - 
       CBT 5 27.8 35 37.2 - - 
       STPP 6 33.3 35 37.2 - - 
Baseline SSRI% 2 11.1 18 19.1 0.53% .521 
Oestrogen 
medication% + 

1 6.3 4 6.0 1.05% >.999 

 Mean S.D Mean S.D t p 
Age 15.8 1.7 15.5 1.5 -0.51 .617 
RCMAS 40.9 7.9 39.6 6.6 -0.65 .521 
LOI 11.3 5.8 9.5 4.7 -1.25 .226 
HONOSCA (available 
for 17 in class 1 and 
90 in class 2) 

20.2 6.1 18.0 5.7 -1.36 .187 

 Median IQR Median IQR W p 
IMD 21.0 17.6 19.4 26.1 803.5 .765 
IMD; Index of Multiple Deprivation, RCMAS; Revised Children’s Manifest Anxiety Scale, LOI; 
Leyton Obsessional Inventory, NSSI; Non-suicidal self-injury, HoNOSCA; Health of the Nation 
Outcome Scales for Children and Adolescents, BPI; Brief Psychological Intervention, CBT; 
Cognitive Behavioural Therapy, STPP; Short-Term Psychoanalytic Psychotherapy, SSRI; 
Selective Serotonin Reuptake Inhibitors 
+ conducted on females only.  
% Fishers exact test conducted on variables with insufficient cell size for chi-square test. 

*Variable was recoded as binary to meet assumptions of chi-square test. 
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Table 5: Demographic and clinical characteristics of trajectory classes in IMPACT-GH with 

evening cortisol data 

 Class 1: Halted-
improvers (n=29) 

Class 2: Continued-
improvers (n=137) 

Comparison 

 N % N % X2OR p 
Female% 27 93.1 98 71.5 0.19% .014 
Region - - - - 4.97 .083 
   East Anglia 10 34.5 63 46.0 - - 
   North London 11 37.9 26 19.0 - - 
   North-West 
England 

8 27.6 48 35.0 - - 

Ethnicity(white)% 27 93.1 122 89.1 1.66% .740 
Suicidal attempts 14 33.6 46 48.3 2.24 .134 
Suicidal thoughts% 25 86.2 119 86.7 0.95 >.999 
NSSI 20 69.0 81 59.1 0.97 .324 
Comorbidity* - - - - 2.21 .137 
      1 10 34.5 43 31.4 - - 
      2 8 27.6 25 18.2 - - 
      3 1 3.4 1 0.7 - - 
Treatment arm:  - - - - 0.68 .714 
       BPI 11 37.9 44 32.1 - - 
       CBT 11 37.9 50 36.5 - - 
       STPP 7 24.2 43 31.4 - - 
Baseline SSRI% 2 6.9 21 15.3 0.41% .374 
Oestrogen 
medication% + 

2 7.4 7 7.1 1.04% >.999 

 Mean S.D Mean S.D t p 
Age 15.9 1.3 15.5 1.4 -1.53 .134 
RCMAS 40.5 7.9 39.9 7.1 -0.34 .737 
LOI 11.5 5.3 9.3 4.8 -2.11 .042 
HONOSCA (available 
for 26 in class 1 and 
131 in class 2) 

20.8 6.3 17.7 6.0 -2.29 .028 

 Median IQR Median IQR W p 
IMD 21.8 20.9 19.9 27.3 2024 .875 
IMD; Index of Multiple Deprivation, RCMAS; Revised Children’s Manifest Anxiety Scale, LOI; 
Leyton Obsessional Inventory, NSSI; Non-suicidal self-injury, HoNOSCA; Health of the Nation 
Outcome Scales for Children and Adolescents, BPI; Brief Psychological Intervention, CBT; 
Cognitive Behavioural Therapy, STPP; Short-Term Psychoanalytic Psychotherapy, SSRI; 
Selective Serotonin Reuptake Inhibitors 
+ conducted on females only.  
% Fishers exact test conducted on variables with insufficient cell size for chi-square test. 

*Variable was recoded as binary to meet assumptions of chi-square test.  
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Predictors of trajectory class membership 

Investigation of the correlations between cortisol measures and variables entered into the 

regression models revealed the strength of collinearity between variables. Results are shown 

in Table 6 and 7. Variance inflation factor scores however, indicated that multicollinearity for 

these data was not a concern (all VIF values <10, all tolerance values >.2, See Table 1, 

Appendix 4E). Further, both models also met the assumption of independent errors (Tables 

2, Appendix 4E), and linearity of logit using the Box-Tidwell test, supporting the use of 

logistic regressions with these data. 

 

Table 6: Correlation matrix for relationships between variables in peak morning cortisol 

model 

 Peak morning MFQ Age Gender 
Peak morning - 0.03 0.01 -0.36* 
MFQ - - 0.20* -0.17 
Age - - - -0.36* 
Gender - - - - 
MFQ; Mood and Feelings Questionnaire 

*p<.05 

 

Table 7: Correlation matrix for relationships between variables in evening cortisol model 

 Evening  MFQ Age Gender 
Evening  - 0.02 0.14 -0.10 
MFQ - - 0.18* -0.24* 
Age - - - -0.03 
Gender - - - - 
MFQ; Moode and Feelings Questionnaire 

*p<.05 

 

Results from each logistic regression are shown in Table 8. Gender emerged as the only 

significant predictor of class membership when age and cortisol levels were controlled for, in 

the evening cortisol regression model. However, this did not survive Bonferroni correction 

for multiple comparisons. Removal of males from the analyses did not alter the significance 

of other variables in the model (See Appendix 4F).  

 

Standardised residuals of the models were inspected to assess for whether the models 

contained any outliers of concern. There were no cases in any cortisol sample of residuals 
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larger than ±2.58, and less than 5% of the total sample for each model showed residuals 

greater than ±1.96. Therefore, the models can be viewed as a good representation of the 

actual data. 

 

Leverage was investigated to assess whether any cases are exerting undue influence over 

the models. It has been recommended to investigate cases where leverage values are 

greater than twice (Hoaglin & Welsch, 1978) or three times the average (Stevens, 2009). 

While there were a number of cases in each regression model that suggested a potential 

problem with 2 or 3 times greater than average leverage, the Cook’s distance never 

exceeded 1 (Cook & Weisberg, 1982), indicating that the fit would not significantly change 

upon removal of these cases.  

 

Table 8: Cortisol predictors of trajectory class membership, adjusted for gender and age. 

 OR 95%CI p p(bonferroni) 
Peak morning cortisol     
     Gender 0.318 0.046-1.323 .161 .483 
     Age 1.109 0.776-1.620 .576 1.000 
    Peak morning cortisol 1.129 0.109-10.712 .916 1.000 
Evening cortisol     
     Gender 0.206 0.032-0.748 .039* 0.117 
     Age 1.202 0.871-1.685 .272 0.816 
    Evening cortisol 15.36 1.576-355.075 .058 .174 
*Significant predictors 
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Discussion 

Key Results and Interpretation 

This piece of work was the first to our knowledge to investigate the relationship between 

basal cortisol levels and empirically-derived trajectories of symptom change over time, in a 

cohort of depressed adolescents receiving treatment. Our hypothesis that elevated evening 

cortisol was predictive of class membership was not supported. While halted-improvers on 

average showed significantly higher levels of evening cortisol than the continued-improvers 

at a univariate level, when controlling for gender and age, this effect disappeared. Neither 

evening nor peak morning cortisol significantly predicted class membership in these models.  

This is contrary to prior work, which has suggested that variations in cortisol levels are 

associated with variation in symptom improvement (Fischer, Strawbridge, et al., 2017; 

Gunlicks-Stoessel et al., 2013; Klimes-Dougan et al., 2018; Robbins et al., 1989). However, it 

is important to note that the literature on basal cortisol as a predictor of treatment response 

to psychological therapies is in its infancy. Indeed, the sample size of this study alone 

exceeded that of all studies of basal measures combined in Fischer and colleague’s (2017) 

meta-analytic work. Furthermore, the number of studies in favour of a significant effect of 

basal cortisol in this meta-analysis was small and the authors comment on the 

inconsistencies in the reporting of confounds across studies. It is therefore possible that 

study specific effects account for the inconclusive literature to date. With these limitations 

of prior work in mind, our findings may tentatively suggest that variation in basal cortisol 

may not have a prominent role in differentiating patients’ symptom trajectories in 

adolescent depression.  

 

A strength of the current analysis was that it demonstrated internal validity with regards to 

the full IMPACT sample. No significant differences were reported between the proportions 

of patients in trajectory classes between the full IMPACT sample and both IMPACT-GH 

subsamples. Furthermore, the demographic and clinical characteristics of each these classes 

within each IMPACT-GH subsample mirrored those of the main sample. Gender, obsessional 

traits and psychiatry symptomatology and function were the only reported differences at 

the univariate level in both subsamples, which were also observed in the full IMPACT 

sample. Consequently, we are confident that the findings here can generalise to the main 

IMPACT cohort.  
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We did observe significant gender differences in peak morning cortisol at a univariate level, 

which would be expected. Females on average exhibited higher cortisol levels at waking, 

which agrees with the previous literature that found increased stress hormone secretion in 

females (Goel, Workman, Lee, Innala, & Viau, 2014; Heuser et al., 1994). Conversely, no 

gender difference was observed in evening cortisol. There are a number of possible reasons 

for this. Evening cortisol has been favoured in meta-analyses as they are suggested to exhibit 

smaller inter-individual variability (Fischer, Macare, et al., 2017; Fischer, Strawbridge, et al., 

2017). While providing greater reliability, it is possible that the effect size might be 

consequently smaller in evening measures. In addition, gender differences in cortisol in 

adolescence are not consistently reported, suggesting that they also may be of smaller 

magnitude (Bouma et al., 2009). Consequently, our small sample (discussed later) may have 

precluded us from observing an expectedly smaller effect size for gender differences in 

evening cortisol in adolescents. Indeed, gender did emerge as the only significant predictor 

of class membership in the evening cortisol regression models, although this disappeared 

upon correction. It may be that the interaction between gender, cortisol and an affinity to a 

particular symptom trajectory over time may be more complex, and not adequately 

represented in this particular sample. For instance, while the prevalence of depression itself 

shows a large gender bias towards females (Kuehner, 2003; Piccinelli & Wilkinson, 2000), 

and females are often associated with elevated cortisol in various measures (Goel et al., 

2014), Owens and colleagues (2014) found that only in males did elevated morning cortisol 

associate with an increased likelihood of being clinically depressed. Studies have also found 

that different types of stressors elicit differential gender biases in cortisol responses; greater 

cortisol responses are seen in males to psychological stress, whereas greater cortisol 

responses are seen in females to pharmacological challenge (Uhart et al., 2006). Taken 

together, this suggests that the relationship between these three variables is complex, and 

likely a result of a dynamic interplay between modulatory roles of sex hormones on HPA-axis 

(Kirschbaum et al., 1996), and key neurotransmitter systems involved in depression (Goel et 

al., 2014). Our small sample (especially for males) precluded us from investigating this 

further, however given the gender differences observed in trajectory classes reported in 

Chapter 2, future work may benefit from specifically investigating the interaction between 

cortisol variations, gender and class membership.  
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Confounds 

There are a number of possible confounds that may have precluded findings of significant 

associations. Firstly, subtypes within depression have reportedly exhibited differential 

characteristics of HPA-function. For instance, while symptoms of melancholic depression are 

associated with hypercortisolaemia, patients with atypical symptoms show 

hypocortisolaemia (Chrousos, 2009). By extension, it is possible that the lack of positive 

results may be in part due to the inclusion of patients with comorbidities. Approximately 

50% of our sample presented with at least 1 comorbid mental illness meeting clinical 

threshold for diagnosis. Abnormalities in HPA-axis functioning is a common feature of a 

number of psychiatric illnesses including schizophrenia (Walker, Mittal, & Tessner, 2008), 

bipolar disorder (Streit et al., 2016), eating disorders (Luz Neto et al., 2018), alcoholism 

(Lovallo, Dickensheets, Myers, Thomas, & Nixon, 2000), Post Traumatic Stress Disorder 

(PTSD; (Meewisse, Reitsma, De Vries, Gersons, & Olff, 2007) and anxiety disorders (Vreeburg 

et al., 2010). As the direction of cortisol abnormalities differs across psychiatric conditions 

(Chrousos, 2009), hypotheses for depression samples that include patients with 

comorbidities are complicated. Comorbid anxiety in particular is an important consideration 

for our work, given that it is the most commonly reported comorbidity with depression 

(Avenevoli et al., 2015; Kessler et al., 2003). Indeed this was true for our study; 77% of those 

patients presenting with comorbidities in IMPACT had a comorbid diagnosis of anxiety. The 

relationship between HPA-axis abnormalities and anxiety, as well as anxiety-comorbid 

depression is currently unclear. For instance, one study found depressed patients with 

comorbid anxiety showed higher CAR than those with depression alone (Vreeburg et al., 

2009); an effect that is suggested to be driven specifically by panic disorder and agoraphobia 

(Vreeburg et al., 2010). However, Van den Bergh and colleagues (2008) found that only trait 

anxiety, and not depressive symptoms provided a significant contribution to the association 

between emotional distress and elevated evening cortisol. Conversely, Cameron (2006) 

stated that elevated HPA-axis responses was only a feature of comorbid depression and 

anxiety; and not of each condition alone. The dynamic between depression and anxiety and 

cortisol abnormalities appears to be additionally influenced by pubertal age. Forbes and 

colleagues (2006) reported that elevated cortisol prior to sleep onset was only associated 

with anxiety in children, yet for adolescents, elevated cortisol prior to sleep onset was 

associated with depression. The age range of our sample likely crossed this important 
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developmental period, and thus developmental changes in our sample may have 

confounded our results.  

 

The relationship between aberrant HPA-axis function and treatment response for other 

psychiatric conditions is also unclear (Fischer & Cleare, 2017; Luz Neto et al., 2018). Indeed, 

the prognostic utility of basal cortisol for treatment outcome for anxiety disorders has not 

yet gained adequate support (Fischer & Cleare, 2017). Furthermore, Fischer and colleagues 

(2017) found that only studies that excluded depressed patients with comorbidities reported 

an association between elevated cortisol after DST challenge and non-response to 

antidepressants. It is, therefore, possible that the large proportion of patients with 

comorbidities in our sample, particularly those with anxiety disorders, clouded results 

indicative of an association between elevated cortisol and an unfavourable trajectory class in 

depression alone. However, exclusion of such a large proportion of patients would strongly 

question the generalizability of these results to real cases of patients with depression. While 

inconclusive, prior work suggests that the consideration of comorbidity is an essential aspect 

for understanding HPA-axis dysregulation in depression and anxiety (Cameron, 2006); an 

association that our current work was not primarily designed to investigate.  

 

Secondly, it is important to acknowledge the potential influence of sleep disturbances on the 

results of the current analysis. Sleep-wake cycles play a major role in the regulation of basal 

cortisol (Buckley & Schatzberg, 2005). While we ensured that samples were collected in 

reference to sleep and waking time, documenting and controlling for the quality of sleep 

was not possible. Good quality sleep during adolescence is known to be especially important 

for mental health and academic achievement (Fuligni, Arruda, Krull, & Gonzales, 2018). In 

addition, adolescence marks a period where sleep undergoes significant alterations between 

childhood and adulthood (Forbes et al., 2006). HPA-axis dysfunction has been shown to 

exacerbate disruptions during sleep (Buckley & Schatzberg, 2005) and in turn, chronic 

insomnia has been associated with disturbances in nocturnal pulsatile secretions of cortisol, 

as well as elevated cortisol, particularly during the evening (Rodenbeck et al., 2002). Sleep 

disturbance is a very common symptom of depression (Mezuk & Kendler, 2012), and indeed, 

sleep disturbance was reported as the most prevalent symptom in the IMPACT cohort, with 

92% of the sample meeting criteria for significant impairment (Goodyer et al., 2017). 

Consequently, we cannot discount the possibility that the prevalence of sleep disturbance in 
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our sample may have precluded our observation of significant differences between classes in 

evening cortisol. A number of studies have supported the assertion that a dynamic and 

reciprocal relationship exists between cortisol, sleep quality, symptoms of depression and 

perception of stress in adolescence (Blake, Trinder, & Allen, 2018; Hsiao et al., 2010; Ly, 

McGrath, & Gouin, 2015). The exact nature and influential power of these relationships is 

unclear(Blake et al., 2018). Therefore, it is possible that the role of cortisol in treatment 

outcome may be indirect and act through the more physical symptoms like sleep 

disturbance observed in depression. The near ubiquitous presence of sleep disturbance in 

our adolescent cohort suggests that sleep itself may be an important therapeutic target for 

this demographic. Investigating cortisol abnormalities in this context may yield more fruitful 

results. Future work will need to focus on elucidating this interactive relationship between 

sleep, cortisol and treatment outcome more accurately than was possible in our limited 

sample.  

 

Finally, it is possible that this cohort presented a sample with significantly large inter-

individual variability, owing to the role that puberty plays in hormonal development and 

change at this age. The impact of puberty on our results is discussed in more detail in 

Chapter 5 as it pertains to the results entire thesis. However, investigating hormonal 

associations in a sample where individuals will be at differing pubertal stages is likely to 

introduce a significant amount of noise in our data, which may not have been adequately 

controlled by chronological age alone.  

  

Reflections on Methodology 

Our study focused on peak-morning and evening basal measures of cortisol. However, it is 

possible that the prognostic utility of cortisol as a biomarker for treatment response may not 

have been adequately represented in this current work. For instance, it may not be the 

absolute peak-morning cortisol that relates to response, but the size of the awakening 

response (CAR) that elicits between-class differences. CAR is a derived cortisol measure, and 

calculated by subtracting a participant’s waking cortisol measure, from their peak-morning 

cortisol measure. The advantage is that it removes inter-individual variability in absolute 

values, and thus is able to focus solely on the size of response. A number of studies have 

related abnormal CAR to depression (Huber et al., 2006; Stetler & Miller, 2005). Some 

studies have also found that patients who respond to treatment experience changes in CAR 
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(Ruhé et al., 2015). It is therefore possible that our null results are due to an investigation of 

a biased variable. However, CAR requires both waking and 30 minute-post-waking 

measurement to be accurate, and is sensitive to deviations in these variables from study 

protocols. This is obviously difficult for home collection (see below). Nevertheless, we 

repeated our investigations using CAR (Appendix 4G), and the findings are in agreement with 

those of the peak-morning cortisol variable. As such, inter-individual variability in absolute 

values cannot fully explain our null results.  

 

Furthermore, a number of studies have suggested that, rather than baseline levels of 

cortisol, it is a change in cortisol that is predictive of a favourable trajectory. Zobel and 

colleagues (2001) found that the change in cortisol and ACTH responses to DST test was 

predictive of outcome, yet patients did not differ on these variables upon admission. In 

addition, Ising and colleagues (2007) found that it was the normalisation of cortisol 

suppression to DST test within the first two weeks of treatment that was associated with 

increased remission rates at the end of hospitalisation (~15 weeks). A number of studies 

have also found that sustained elevated cortisol following remission is predictive of relapse 

(Schüle, 2007; Zobel et al., 2001, 1999). Assessment of whether early basal changes was 

indicative of increased likelihood membership to a favourable trajectory class was not 

possible in this current work, as we only had salivary data at baseline. However, this 

perspective would allow for further hypotheses about the mechanism of treatment action; 

that for patients who follow a favourable symptom trajectory, treatments work in part 

through altering their HPA-axis function. Assessment of early changes in cortisol is therefore 

an important avenue for future work, as it may help clinicians gain an earlier idea of 

prognosis.  

 

Alternatively, the predictive value of cortisol measures may reside more strongly in other 

aspects of the HPA-axis functionality. For instance, a number of studies have investigated 

stress reactivity, either in response to pharmacological or psychological stressors, rather 

than basal measures. These studies have found significant associations with abnormal stress 

response and treatment outcome (Gunlicks-Stoessel et al., 2013; Klimes-Dougan et al., 2018; 

Robbins et al., 1989). A second alternative might hypothesise that cortisol abnormalities 

between responders and non-responders may not be observed in real-time measures at all, 

and the assessment of more long-term systemic levels of cortisol exposure might better 
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elicit predictive value. The assessment of hair samples for such systemic cortisol measures 

has become increasingly recognised (Russell, Koren, Rieder, & van Uum, 2012). It is not 

invasive, and as it is not a measure of daily cortisol, it does not rely on collection to be rigidly 

timed to sleep onset. It is also robust against the high degree of daily variability observed in 

blood and saliva samples, which are major limitations of real-time measures (Russell et al., 

2012). Indeed, a small number of studies have associated abnormalities in hair cortisol 

concentrations with depression (Dettenborn et al., 2012; Hinkelmann et al., 2013; 

Staufenbiel, Penninx, Spijker, Elzinga, & Van Rossum, 2012; Steudte-Schmiedgen et al., 

2017), however the direction of effect is debated, and effect sizes remain small (Staufenbiel 

et al., 2012). No study known to the current author has investigated hair cortisol 

concentrations in the context of a biomarker for response. Consequently, while it is possible 

that systemic cortisol concentrations may be the variable of interest in this field, more 

research is required (Fischer, Strawbridge, et al., 2017). We generated our specific 

hypotheses from the more established literature that supported the investigation of basal 

cortisol, and it is important to note that hypotheses regarding hair cortisol, while 

complimentary, are theoretically distinct from those that investigate real-time measures.  

 

We also need to consider the type of cortisol assay that was taken. The IMPACT-GH study 

chose to collect salivary cortisol samples for a number of reasons. For challenging clinical 

populations, home salivary sampling for cortisol data is extremely useful; it is non-invasive, 

and easy to obtain. While salivary cortisol has shown to be a valid and reliable measure of 

unbound cortisol concentrations, it is important to note that due to specific enzymes 

present in saliva, the concentrations of cortisol are significantly lower than that found in 

blood samples, as blood samples measure both bound and unbound cortisol (Kirschbaum & 

Hellhammer, 1994). Only unbound cortisol can cross the blood-brain barrier and thus 

salivary cortisol is argued to better reflect the levels of cortisol that are likely to be present 

in cerebrospinal fluid and affect the brain (Herbert et al., 2006). However, it is possible that 

salivary measures do not provide the level of sensitivity necessary to detect small variations 

within a cohort of depressed patients. Blood samples may have provided more promising 

results, particularly as they have the additional advantage of a more controlled experimental 

setting at data collection. One must remember though that a disadvantage of blood samples 

is their invasive nature, which may be stress-inducing itself, and thus bias results of blood 

measures (Vitiello et al., 1996). Despite questions over sensitivity of salivary samples, it is 
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unlikely that this explanation fully accounts for our null results. High correlations between 

salivary and serum measures of cortisol via blood sampling have been repeatedly shown in a 

number of studies (Baghai et al., 2002; Kirschbaum & Hellhammer, 1994), and only increase 

when correlated with the corresponding unbound cortisol fraction in blood (Kirschbaum & 

Hellhammer, 1994).  

 

Home collection was a further limitation of our study design. Home collection minimises 

inconveniences associated with travel and time commitments of clinic assessments and 

consequently, these factors often allow for more data to be collected. It also leads to a more 

valid measure of true cortisol levels in the normal environment, as opposed to the unusual 

and potentially stressful setting of a laboratory.  However, home collection makes 

compliance rates and time interval between waking and sampling very difficult to verify, 

which is a common issue for all home-based cortisol collection studies. Various day-to-day 

factors can all affect cortisol parameters, such as whether the data are collected on working 

or non-working days (Kunz-Ebrecht, Kirschbaum, Marmot, & Steptoe, 2004), sleep patterns 

(Rodenbeck et al., 2002) and time of eating (Gibson et al., 1999). We provided patients with 

detailed instructions to minimise these confounds, and also impressed the importance of 

accurate recording of times of sampling. Furthermore, extensive data cleaning through our 

strict inclusion criteria further aided control of compliance through exclusion of patients 

reporting sampling outside our given time windows.  

 

Finally, it is likely that this current work was underpowered to detect an association between 

basal cortisol levels and class membership. As previously mentioned, there are a number of 

factors, such as age, demographic and choice of biological assay (Fischer, Macare, et al., 

2017; Fischer, Strawbridge, et al., 2017; Guerry & Hastings, 2011), that would suggest we 

should expect small effect sizes in our sample, compared to other work. Furthermore, as this 

was a secondary analysis from a treatment study with a significant assessment burden for 

participants, valid cortisol collection at all time points may have been a relatively low priority 

for the research team and participants, leading to a relatively low sample size.  In addition, 

while the empirically-derived classes gained from growth mixture modelling offered a less 

arbitrary method of defining groups of symptom change over time, the resultant model 

produced imbalanced class sizes. Consequently, this meant that our smaller non-responder 

class only contained 18 and 29 patients for peak-morning and evening cortisol respectively 
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for regression models. This detail precluded our ability to better investigate potential 

interaction effects of gender, for which our results tentatively suggested may be of interest. 

The small sample size is arguably the biggest limitation of this work and therefore, the 

findings from this chapter should be interpreted as exploratory, and predominantly 

hypothesis-generating work.   

 

In conclusion, this current work suggests that baseline levels of cortisol may not be 

associated with trajectories of symptom change in depressed adolescents, however it is 

imperative for these results to be replicated in larger samples before definitive conclusions 

can be made. It is possible that abnormalities in HPA-axis function may be more related to 

the development of depression, rather than its persistence following treatment (Vreeburg et 

al., 2009). Future work should investigate alternative measures of cortisol response, and the 

interactions between significant variables such as gender, comorbidity and sleep, in order to 

gain a fuller understanding of the role of cortisol in depression, and its relationship to 

treatment response in this patient group.  
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Appendix 4A 

Comparisons between IMPACT-GH sub-sample and the full IMPACT sample 

A total of 112 patients enrolled in the IMPACT trial provided valid peak-morning cortisol 

measures and a total of 166 patients have valid evening cortisol measures. Tables 1 and 2 

summarize the demographic and baseline outcome measures of these individuals compared 

to those not providing cortisol measures.  

 

Overall, there were very few significant differences between the full IMPACT sample and the 

IMPACT-GH subsample. Exceptions were ethnicity, where a higher proportion of white 

patients provided cortisol data than other ethnic groups (92.0 to 81.3% for peak-morning 

cortisol; and 89.8% to 80.6% for evening cortisol respectively). This is likely a chance finding 

due to imbalanced groupings.  
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Table 1: Demographic and clinical characteristics of patients with and without peak cortisol 

data 

 With peak cortisol 
(n=112) 

Without peak 
cortisol (n=353) 

Comparison 

 N % N % X2 p 
Female 83 74.1 265 75.0 0.04 .838 
Region - - - - 2.72 .256 
   East Anglia 52 46.4 133 37.7 - - 
   North London 27 24.1 100 28.3 - - 
   North-West  
England 

33 29.5 120 34.0 - - 

Ethnicity(white)  103 92.0 287 81.3 7.14 .008 
Suicidal attempts 36 32.1 123 34.8 0.28 .600 
Suicidal thoughts 98 87.5 316 89.5 0.35 .551 
NSSI 66 58.9 205 58.1 0.03 .873 
Comorbidity* - - - - 0.06 .808 
      1 28 19.0 119 33.7 - - 
      2 25 32.5 52 14.7 - - 
      3 2 25.0 6 1.7 - - 
     4 0 0.0 1 0.3 - - 
Treatment arm - - - - 2.13 .345 
       BPI 31 27.7 124 35.1 - - 
       CBT 40 35.7 114 32.3 - - 
       STPP 41 36.6 115 32.6 - - 
Baseline SSRI 20 17.9 61 17.3 0.02 .888 
 Mean S.D Mean S.D t p 
Age 15.6 1.5 15.6 1.4 0.27 .785 
RCMAS 39.8 6.8 41.3 7.4 1.94 .053 
LOI 9.8 4.9 10.1 5.3 0.53 .596 
HONOSCA 
((available for 107 
for those with 
cortisol and 328 for 
those without) 

18.4 
 

5.8 18.6 6.2 0.32 .751 

 Median IQR Median IQR W p 
IMD 19.4 25.6 25.3 28.0 22156 .054 
IMD; Index of Multiple Deprivation, RCMAS; Revised Children’s Manifest Anxiety Scale, LOI; 
Leyton Obsessional Inventory, NSSI; Non-suicidal self-injury, HoNOSCA; Health of the Nation 
Outcome Scales for Children and Adolescents, BPI; Brief Psychological Intervention, CBT; 
Cognitive Behavioural Therapy, STPP; Short-Term Psychoanalytic Psychotherapy, SSRI; 
Selective Serotonin Reuptake Inhibitors 
 

*Variable was recoded as binary to meet assumptions of chi-square test.  
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Table 2: Demographic and clinical characteristics of patients with and without evening 

cortisol data 

 With evening 
cortisol (n=166) 

Without evening 
cortisol (n=299) 

Comparison 

 N % N % X2 p 
Female 125 75.3 223 74.6 0.03 .864 
Region - - - - 3.58 .167 
   East Anglia 73 44.0 112 37.5 - - 
   North London 37 22.3 90 30.1 - - 
   North-West  
England 

56 33.7 97 32.4 - - 

Ethnicity(white) 149 89.8 241 80.6 6.62 .010 
Suicidal attempts 60 36.1 99 33.1 0.44 .509 
Suicidal thoughts 144 86.7 270 90.3 1.04 .308 
NSSI 101 60.8 170 56.9 0.70 .403 
Comorbidity* - - - - 0.87 .351 
      1 53 31.9 94 31.4 - - 
      2 33 19.9 44 14.7 - - 
      3 2 1.2 6 2.0 - - 
     4 0 0 1 <1.0 - - 
Treatment arm - - - - 1.93 .380 
       BPI 55 33.1 100 33.4 - - 
       CBT 61 36.7 93 31.1 - - 
       STPP 50 30.1 106 35.5 - - 
Baseline SSRI 23 13.8 58 19.4 2.28 .131 
 Mean S.D Mean S.D t p 
Age 15.6 1.4 15.6 1.4 0.20 .842 
RCMAS 40.0 7.2 41.4 7.3 1.98 .049 
LOI 9.7 4.9 10.2 5.4 0.97 .334 
HONOSCA (available 
for 154 for those 
with cortisol and 
278 for those 
without) 

18.3 6.2 18.7 6.0 0.70 .483 

 Median IQR Median IQR W p 
IMD 20.5 26.7 25.3 27.4 26602 .199 
IMD; Index of Multiple Deprivation, RCMAS; Revised Children’s Manifest Anxiety Scale, LOI; 
Leyton Obsessional Inventory, NSSI; Non-suicidal self-injury, HoNOSCA; Health of the Nation 
Outcome Scales for Children and Adolescents, BPI; Brief Psychological Intervention, CBT; 
Cognitive Behavioural Therapy, STPP; Short-Term Psychoanalytic Psychotherapy, SSRI; 
Selective Serotonin Reuptake Inhibitors 
 
*Variable was recoded as binary to meet assumptions of chi-square test. 
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Appendix 4B 

The relationship between day 1 and day 2 cortisol measurements 

Due to significant skew present in the cortisol datasets, all cortisol data were log 

transformed before analyses were conducted. However, even after transformation, the 

models for both cortisol variables failed the Shapiro-Wilks test for normality. Consequently, 

permutation tests were conducted in place of linear regressions and results are reported in 

Table 1 below. Linear regressions with permutation testing were conducted using the lmp() 

function in the core lmPerm package in R, version 3.3.3. 

 

Table 1: Permutation results for day 2 scores on day 1 scores.  

 R2 B Iterations β p 
Peak(n=112) 0.312 0.657 5000 0.562 <.001 
Evening(n=166) 0.304 0.591 5000 0.551 <.001 
 

These data show that for every increase in one SD of day 1 peak-morning cortisol, day 2 

waking cortisol increased by 0.562 SDs. Evening cortisol shows a weaker correspondence 

between day 1 and day 2 cortisol measures, in that for every increase in one SD of day 1 

evening cortisol, day 2 evening cortisol increased by 0.551.  

 

We conclude that these relationships are not sufficient to warrant inclusion of patients with 

only cortisol data present at one time-point.  
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Appendix 4C 

The effect of oestrogenic medication on cortisol measures.  

Due to significant skew present in the cortisol datasets, both cortisol variables were log 

transformed before analyses were conducted. However, even after transformation, the 

models failed the Shapiro-Wilks test for normality. Consequently, permutation tests were 

conducted in place of linear regressions and results are reported in Table 1 below. Linear 

regressions with permutation testing were conducted using the lmp() function in the core 

lmPerm package in R, version 3.3.3. 

 

Table 1: Permutation results for oestrogenic medication on cortisol levels, adjusted for age, 

gender and baseline MFQ.  

Cortisol 
variable 

R2 B Iterations β p p(bonferroni) 

Peak 0.010 - - - - - 
   Age - 0.007 51 0.044 .686 >.999 
   MFQ - -0.002 122 -0.010 .451 >.999 
   Oestrogenic 
medication 

- -0.000 51 -0.000 >.999 >.999 

Evening 0.033 - - - - - 
   Age - 0.026 907 0.150 .100 .300 
   MFQ - -0.000 51 -0.008 >.999 >.999 
   Oestrogenic 
medication 

- -0.033 393 -0.037 .204 .612 

MFQ; Mood and Feelings Questionnaire 
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Appendix 4D 

The effect of baseline SSRI prescription on cortisol measures.  

Due to significant skew present in the cortisol datasets, both cortisol variables were log 

transformed before analyses were conducted. However, even after transformation, the 

models failed the Shapiro-Wilks test for normality. Consequently, permutation tests were 

conducted in place of linear regressions and results are reported in Table 1 below. Linear 

regressions with permutation testing were conducted using the lmp() function in the core 

lmPerm package in R, version 3.3.3. 

 

Table 1: Permutation results for SSRI prescription on cortisol levels, adjusted for age, gender 

and baseline MFQ.  

Cortisol 
variable 

R2 B Iterations β p p(bonferroni) 

Peak 0.131 - - - - - 
   Gender - 0.098 5000 0.180 <.001* .003 
   Age - 0.002 51 0.011 >.999 >.999 
   MFQ - -0.000 88 -0.025 .534 >.999 
   SSRIs - 0.015 51 0.023 .863 >.999 
Evening 0.037 - - - - - 
   Gender - 0.022 51 0.046 >.999 >.999 
   Age - 0.023 1344 0.153 .070 .210 
   MFQ - -0.000 51 -0.008 >.999 >.999 
   SSRIs - 0.030 534 0.050 .159 .477 
MFQ; Mood and Feelings Questionnaire, SSRI; Selective Serotonin Reuptake Inhibitor 

*p<.05 
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Appendix 4E 

Table 1. Variance inflation factor and tolerance scores for logistic regression models. 

 VIF Tolerance 
Peak-morning   
     Gender 1.084 0.922 
     Age 1.000 0.999 
     Waking cortisol 1.084 0.922 
Evening   
     Gender 1.000 0.999 
     Age 1.001 0.999 
     Evening cortisol 1.001 0.999 
 

Table 2. Durbin-Watson test for independent errors for logistic regression models. 

 DW statistic p 
Peak-morning 1.854 .390 
Evening 2.012 .954 
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Appendix 4F 

Predictors of trajectory class membership for females only 

Investigation of the correlations between cortisol measures and variables entered into the 

regression models revealed the strength of collinearity between variables. Results are shown 

in Tables 1 and 2. Variance inflation factor scores however, indicated that multicollinearity 

for these data was not a concern (all VIF values <10, all tolerance values >.2). Further, all 

models also met the assumption of independent errors using the Durbin-Watson test, and 

linearity of logit using the Box-Tidwell test, supporting the use of logistic regressions with 

these data. 

 

Table 1: Correlation matrix for relationships between variables in peak-morning cortisol 

model 

 Peak cortisol MFQ Age 
Peak cortisol - -0.090 0.026 
MFQ - - 0.191 
Age - - - 
MFQ; Mood and Feelings Questionnaire 

*p<.05 

 

Table 2: Correlation matrix for relationships between variables in evening cortisol model 

 Evening cortisol MFQ Age 
Evening cortisol - 0.011 0.159 
MFQ - - 0.146 
Age - - - 
MFQ; Mood and Feelings Questionnaire 

*p<.05 

 

Results from each logistic regression are shown in Table 3. With the removal of males from 

the analysis, no variable was shown to significantly predict class membership for either peak 

or evening cortisol. 

 

Standardised residuals of the models were inspected to assess for whether the models 

contained any outliers of concern. There were no cases in any cortisol sample of residuals 

larger than ±2.58, and less than 5% of the total sample for each model showed residuals 
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greater than ±1.96. Therefore, the models can be viewed as a good representation of the 

actual data. 

 

Leverage was investigated to assess whether any cases are exerting undue influence over 

the models. While there were a number of cases in each regression model that suggested a 

potential problem with 2 or 3 times greater than average leverage, the Cook’s distance 

never exceeded 1 (Cook & Weisberg, 1982), for either cortisol variable. This indicates that 

the fit would not significantly change upon removal of these cases.  

 

Table 3: Cortisol predictors of trajectory class membership in females, adjusted for age. 

 OR 95%CI p p(bonferroni) 
Peak cortisol 
(n=75) 

    

     Age 1.131 0.760-1.719 .549 1.000 
    Peak cortisol 1.268 0.106-13.777 .846 1.000 
Evening cortisol 
(n=125) 

    

     Age 1.170 0.837-1.656 .364 1.000 
    Evening 
cortisol 

6.485 0.988-115.955 .118 .354 

*Significant predictors 
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Appendix 4G  

Cortisol Awaking Response (CAR) Analysis 

For patients to be included in the CAR analysis, they must have provided both waking and 

30-minute samples that met specific inclusion criteria. Firstly, their waking cortisol value 

must have been collected less than 10 minutes from their documented waking time and 

between 0400 and 1159. Secondly, their 30 minute cortisol sample must have been 

collected between 20 and 40 minutes from their documented waking time, and again, 

between 0400 and 1159. CAR was then calculated by subtracting their waking value from 

their 30-minute value.  

 

The relationship between day 1 and day 2 cortisol measurements 

A number of patients met these criteria for CAR, but only for a single day. Thirty-one 

patients were found to have only provided CAR on one of two days (Table 1). We therefore 

investigated the relationship between day 1 and day 2 scores, to determine the reliability of 

a single time point measurement in our data (See below).  

 

Table 1: Descriptive statistics for CAR data present on day 1 and day 2 

 N Mean SD Median IQR 
CAR      
Day 1 121 0.197 0.270 0.190 0.340 
Day 2 120 0.225 0.275 0.200 0.313 
Two-day 
average 

101 0.216 0.215 0.190 0.285 

CAR; Cortisol Awakening Response 

 

Due to significant skew present in the cortisol datasets, and a number of patients recording 

negative CARs, permutation tests were conducted in place of linear regressions and results 

are reported in Table 2 below.  

 

Table 2: Permutation results for day 2 scores on day 1 scores for CAR.  

 R2 B Iterations β p 
CAR(n=101) 0.121 0.37 5000 0.348 .001 
CAR; Cortisol Awakening Response 
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These data show that for every increase in one SD of day 1 CAR, day 2 CAR increased by 

0.348 SDs. It was decided that there was insufficient agreement in CAR scores between the 

two days to warrant inclusion of patients without an average score.  Therefore, for the CAR 

variable, patients must have provided a cortisol sample on both days to be included in the 

analyses and a two-day average was taken as their CAR value. The means, standard 

deviations (SD), medians and inter-quartile ranges across day 1 and 2 are presented in Table 

1, as well as the two-day average.  

 

Statistical and Sensitivity Analyses 

Univariate analyses of associations between classes were conducted for the CAR variable, to 

explore differences between the trajectory classes on demographic and clinical 

characteristics. A logistic regression was conducted to investigate whether specific cortisol 

levels predict class membership, controlling for age and gender (see reasons in main paper) 

and Bonferroni corrected. The methodology for these tests was identical to those of peak-

morning and evening variables. Sensitivity analyses of gender, oral contraceptives and SSRIs 

did not reveal any significance for the CAR variable, and were thus not entered as additional 

covariates in these regression models.  

 

Patient characteristics 

Of the 279 patients, 101 patients provided CAR measurements that met requirements on 

two days (Table 1). Sixteen (15.8%) were allocated to class 1 and 85 patients were allocated 

to class 2 (84.2%). Classes contained a similar proportion of patients to the full IMPACT 

sample (15.9% and 84.1% respectively) and these two samples did not significantly differ in 

class membership proportions (X2(1)< 0.001, p=.982) .  

 

Class Characteristics 

Table 3 presents the descriptive statistics and univariate tests for between class differences 

in CAR. No significant differences were present between the classes in CAR.  

 

Table 3: Descriptive Statistics for between class differences in CAR 

Cortisol Class 1: Halted-improvers Class 2: Continued-improvers  Comparison 
 N Mean SD Median IQR N Mean SD Median IQR W p 
CAR 16 0.19 0.21 0.21 0.29 85 0.22 0.22 0.19 0.31 694 .900 
CAR; Cortisol Awakening Response 
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Table 4 presents the demographic and clinical data of each trajectory class in the CAR sub-

sample. In contrast to the full IMPACT sample, no demographic or clinical characteristics 

showed significant class differences, with the exception of region. This finding was likely due 

to chance, given our small sample size. No differences were found between classes on 

treatment arm allocation or SSRI prescription at baseline. 
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Table 4: Demographic and clinical characteristics of trajectory classes in IMPACT-GH with 

CAR data 

 Class 1: Halted-
improvers (n=16) 

Class 2: Continued-
improvers (n=85) 

Comparison 

 N % N % X2/OR p 
Female% 14 87.5 61 71.7 0.37% .229 
Region% - - - - N/A% .025 
   East Anglia 3 18.8 46 54.1 - - 
   North London 6 37.5 17 20.0 - - 
   North-West  
England 

7 43.8 22 25.9 - - 

Ethnicity(white) % 16 100.0 78 91.8 N/A% .593 
Suicidal attempts 7 43.8 28 32.9 0.70 .405 
Suicidal thoughts% 15 93.8 74 87.1 2.22% .685 
NSSI 8 50.0 54 63.5 1.04 .308 
Comorbidity* - - - - 0.17 .678 
      1 4 25.0 23 27.1 - - 
      2 4 25.0 19 22.3 - - 
      3 1 6.3 1 1.2 - - 
Treatment arm%   - - - - N/A% .552 
       BPI 6 37.5 23 27.1 - - 
       CBT 4 25.0 32 37.6 - - 
       STPP 6 37.5 30 35.3 - - 
Baseline SSRI% 2 12.5 18 21.2 0.53% .732 
Oestrogen 
medication% + 

0 0 4 6.6 0% >.999 

 Mean S.D Mean S.D t p 
Age 15.9 1.7 15.5 1.5 -0.944 .357 
RCMAS 41.9 7.1 39.8 6.6 -1.085 .291 
LOI 11.3 5.7 9.4 4.8 -1.274 .218 
HONOSCA (available 
for 15 in class 1 and 
81 in class 2) 

20.8 6.1 18.1 5.8 -1.581 .130 

 Median IQR Median IQR W p 
IMD 19.4 16.1 18.4 23.6 678.5 .993 
IMD; Index of Multiple Deprivation, RCMAS; Revised Children’s Manifest Anxiety Scale, LOI; 
Leyton Obsessional Inventory, NSSI; Non-suicidal self-injury, HoNOSCA; Health of the Nation 
Outcome Scales for Children and Adolescents, BPI; Brief Psychological Intervention, CBT; 
Cognitive Behavioural Therapy, STPP; Short-Term Psychoanalytic Psychotherapy, SSRI; 
Selective Serotonin Reuptake Inhibitors 
+ conducted on females only.  
% Fishers exact test conducted on variables with insufficient cell size for chi-square test. 

*Variable was recoded as binary to meet assumptions of chi-square test. 
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Predictors of trajectory class membership 

Investigation of the correlations between cortisol measures and variables entered into the 

regression models revealed the strength of collinearity between variables. Results are shown 

in Table 5. Variance inflation factor scores however, indicated that multicollinearity for these 

data was not a concern (all VIF values <10, all tolerance values >.2). Further, both models 

also met the assumption of independent errors, and linearity of logit using the Box-Tidwell 

test, supporting the use of logistic regressions with these data. 

 

Table 5: Correlation matrix for relationships between variables in CAR model 

 CAR MFQ Age Gender 
CAR - -0.12 0.05 -0.08 
MFQ - - 0.21* -0.18 
Age - - - -0.23* 
Gender - - - - 
MFQ; Mood and Feelings Questionnaire 

*p<.05 

 

Results from each logistic regression are shown in Table 6. After controlling for gender and 

age, CAR was not a significant predictor of class membership. Removal of males from the 

analyses did not alter the significance of other variables in the model.   

 

Standardised residuals of the models were inspected to assess for whether the models 

contained any outliers of concern. There were no cases of residuals larger than ±2.58, and 

less than 5% of the total sample for the model showed residuals greater than ±1.96. 

Therefore, the model can be viewed as a good representation of the actual data. 

 

Leverage was investigated to assess whether any cases are exerting undue influence over 

the models. While there were a number of cases in the regression model that suggested a 

potential problem with 2 or 3 times greater than average leverage, the Cook’s distance 

never exceeded 1 (Cook & Weisberg, 1982), indicating that the fit would not significantly 

change upon removal of these cases.  
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Table 6: CAR as a predictor of trajectory class membership, adjusted for gender and age. 

 OR 95%CI p p(bonferroni) 
CAR     
     Gender 0.328 0.048-1.340 .168 .504 
     Age 1.218 0.835-1.839 .320 .504 
    CAR 0.286 0.017-3.819 .357 .960 
CAR; Cortisol Awakening Response  
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Chapter 5: Depression and outcome following treatment: what have we learned? 

 

Summary of main findings 

This thesis has focused on individual differences in depressive symptom change in 

adolescents and predictors of such outcomes within a group of patients with DSM-IV clinical 

diagnosis of unipolar major depression. The findings of my first chapter highlighted 3 

important and clinically relevant aspects to patients’ symptom change over time: 

1. Depressed adolescents do not all follow the same trajectory of symptom change over 

time during and after psychological treatment. Distinct subgroups exist which show 

dissimilar patterns of change. These categories differ to those generated by a priori 

approaches (specifically, percentage reduction of symptoms greater than an arbitrary 

threshold). Researchers should be aware that adopting cut-offs based on a priori 

thresholds could differentially and potentially erroneously categorise responsive 

patients as unresponsive, thus under-estimating treatment effects.  

2. Symptom change over time is not a linear function and therefore researchers should 

be cautious of adopting definitions that assume such (linear) functions when 

assessing clinical response. A thorough investigation of trajectory shape in future 

work can help to build a more valid picture for clinicians of the likely journey to 

recovery for treatment-responsive patients. This could have beneficial effects on 

treatment adherence, through the management of expectations of patients, their 

families and, perhaps, clinicians themselves, which is one of the main challenges in 

this population of depressed patients (Stulz et al., 2010).  

3. Through comparison with previous studies in adolescent depression (Scott et al., 

2019), this work showed that long-term follow up is essential to reduce the risk of 

erroneous categorisation of patients with unfavourable long-term responses as rapid 

responders.  

 

The work of chapters 2-4 then allowed us to investigate characteristics of the empirically 

derived classes, with the knowledge that these classes were defined in a less arbitrary way, 

and thus may elucidate more conclusive findings across predictors of interest. As expected, 

patients categorised to the unfavourable trajectory presented with baseline characteristics 

indicative of greater clinical complexity and severity than those in the favourable trajectory 
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class, and this was also evident in the investigations of the two subsamples defined by 

imaging and cortisol parameters respectively.  

 

This work then extensively investigated a variety of predictors of class membership including 

clinical, neurological and physiological variables. The biological variables have not previously 

been investigated in empirical work. Interestingly, only comorbidity was found to 

independently predict class membership. The clinical model described in Chapter 2 only 

explained a small proportion of the variance associated with these trajectory classes, which 

warranted investigation of biological variables. However, the null results of the two further 

sub-studies suggested that perhaps those variables (cortical thickness, cortical surface area, 

and salivary cortisol), do not serve as strong predictors of symptom trajectory membership. 

These are tentative conclusions however as the investigations were limited by the small 

sample sizes of those sub-studies.  

 

Taken together, the results presented in this thesis have provided novel contributions to 

understanding the trajectory of symptom change in adolescent depression, and the 

importance of trial design and analytical choice in influencing outcome data. Given that 

behavioural symptoms appear insufficient in predicting such trajectories, and our 

preliminary work suggests that some selected biological variables may not serve significant 

roles in these questions, this work has also opened lines of further inquiry into why these 

groups are responding differently, and what could distinguish them at outset. 

 

Reflections on null results 

As stated above, the first interpretation of the null results presented in this thesis is that 

they suggest that the variables investigated here do not serve an influential role in 

prognosis. However, I’d like to refer back to a topic I discussed in the introduction of Chapter 

1: the issue of data reduction with categorical approaches (Altman & Royston, 2006; Cohen, 

1983; Royston et al., 2006). Categorical approaches inevitably lose information when data 

are reduced to a small number of groups, or in this case, a binary outcome (Altman & 

Royston, 2006; Cohen, 1983; Royston et al., 2006). As mentioned in Chapter 1, it is theorised 

that up to one third of information about pattern variation is lost when dichotimising 

continuous outcomes in this way (Cohen, 1983). Consequently, our lack of positive results 

may be due to this choice of methodology reducing our power to detect significant effects. 
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Indeed, a number of studies have noted that their analyses were more successful when 

response is defined on a continuous scale (Emslie et al., 2002; Koenig et al., 2018), 

suggesting that differences within a depressed cohort are subtle, and thus analytical 

methods should consider these in their study design appropriately.   

 

Moreover, many clinicians will advocate that categorical methods do not reflect clinical 

observations accurately because response to treatment is fundamentally continuous. 

Patients fall on a continuum with no clear characteristic that can separate individuals 

categorically to being well or unwell; it is a matter of degree (Malhi & Byrow, 2016). Clinical 

improvement turns into remission, which turns into recovery over time, the length of which 

differs per individual (Malhi & Byrow, 2016). This is the reason the majority of scales used to 

quantify depression are continuous scales of severity (Angold, et al 1961; Hamilton, 1960; 

Montgomery & Asberg, 1979). Moreover, there is a growing field of work advocating that 

psychopathology more generally (beyond only depression symptoms) needs to be 

interpreted in dimensional models rather than categorical boundaries (Kotov et al., 2011, 

2017). For example, it has been shown that depressive symptomatology is common in many 

non-depressive disorders (Braun, Sunday, & Halmi, 1994; Buckley, Miller, Lehrer, & Castle, 

2009; Garber & Weersing, 2010) and the presence of comorbidities across conditions is 

more common than their absence (Goodyer et al., 1997; Rohde et al., 1991). The findings of 

this thesis resonate with these statements as we found that over half our population 

presented with at least one comorbidity and this prevalence does not even consider patients 

who reached diagnostic threshold for some symptoms of other conditions, but did not reach 

full diagnosis of that condition. Furthermore, it was only comorbidity in this work that 

presented as an independent predictor of an unfavourable trajectory class. Consequently, it 

is possible that had our GMMs incorporated non-depressive symptoms at outset, patient 

groupings may have emerged that resulted in clearer links with our biological predictors and 

also provided an interesting perspective on questions of diagnoses. While this was not the 

focus of my research questions, it would be an interesting avenue for future research. The 

fact that the clinical profile of patients appears to predict their ability to respond to 

depression treatment highlights the importance of such trans-diagnostic research in 

understanding treatment response. What is clear is that the way in which 

psychopathological symptoms are grouped in diagnostic criteria is of critical importance in 
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research. Currently, it has a marked effect on the modality of treatment they receive, but it 

may also affect the success of that treatment.  

 

While the data-related and conceptual issues around categorical approaches presented 

above suggest a strong argument that continuous approaches should be favoured in this 

field, there are two core reasons why categorical methods were chosen for this work. Firstly, 

this work aimed to investigate factors associated with those groups of patients experiencing 

unfavourable trajectories of change over time. This type of question is addressed most 

optimally with categorical approaches. Secondly, part of rationale behind this work was to 

more directly inform clinical decision-making, which, as stated in Chapter 1, is fundamentally 

categorical (Uher et al., 2010). While continuous outcomes can provide more detailed 

investigations of the subtleties affecting response, they are limited in their ability to inform 

clinical practice in this context. Moreover, if the effects of a variable are so subtle that they 

are undetectable in categorical approaches, the question remains: how influential can these 

variables truly be in affecting treatment outcome? Consequently, I believe that choosing a 

categorical approach, but one that takes a less arbitrary method to defining its groupings, 

was the optimal decision to address the research questions in a way that is clinically 

meaningful.  

 

A second consideration regarding the null results in this work relates to a broader issue 

within psychopathological research that I touched upon in Chapter 3. That is, the extent to 

which differences in symptomatology can adequately relate to differences in underlying 

biological mechanisms (Insel et al., 2010). This is a poignant topic in the current literature. 

With the introduction of the Research Domain Criteria (RDoC) (Insel et al., 2010), there is a 

drive for neuroscientific and genetic research to be incorporated appropriately into 

classification schemes. This has emerged from the growing body of work in genetics and 

neuroscience that has highlighted the existence of biological associations with 

psychopathology, but a simultaneous failure of these associations to align with diagnostic 

criteria (Insel et al., 2010). An interesting consequence of this movement has been the 

investigation of “biotypes”: whether patients defined by biology provide a more coherent 

categorisation method of psychopathology (Clementz et al., 2016; Drysdale et al., 2017). The 

first study by Clementz and colleagues(2016) investigated biological profiles of psychosis; 

recruiting patients with schizophrenia, schizoaffective disorder and bipolar psychosis. The 
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authors made two important findings relevant to this current thesis. Firstly, they found that 

defining patients based on neuropsychological parameters (such as cognitive tasks and 

electrophysiological function) resulted in patients falling in 3 distinct biotypes (Clementz et 

al., 2016); however, the same analysis conducted on diagnostic criteria produced a single 

continuum of severity (ie- one group of patients, best defined dimensionally). This suggests 

that while symptoms may be better represented on a dimensional scale (and consequently 

present difficulties for the binary nature of clinical decision-making (Uher et al., 2010)), 

biological variables may be more discrete. It is possible that our reliance on clinical 

symptoms for diagnoses may be obscuring the distinction between neurobiologically 

discrete conditions with similar patterns of clinical symptoms: this would index aetiological 

as well as clinical heterogeneity. Similar findings have been reported in a study of 

depression, whereby differences in resting state fMRI produced 4 distinct biotypes of 

patients (Drysdale et al., 2017). These authors reported high sensitivity and specificity of the 

biotypes to classify patients correctly. Moreover, both of these studies showed that these 

biotypes corresponded poorly with diagnoses (Clementz et al., 2016), and could not be easily 

distinguished based on clinical presentation alone (Drysdale et al., 2017).  

 

The second important finding of Clementz and colleagues (2016) was that biotypes displayed 

significantly different grey matter volume reductions in widespread areas of the brain, 

including cingulate and frontal regions. These findings were also replicated with grey matter 

density in this cohort (Ivleva et al., 2017), providing a strong validation of the proposed 

biotypes. Critically, grey matter volume was found to predict biotype class better than 

diagnostic class (Clementz et al., 2016). This is particularly relevant to this thesis as both 

chapters 3 and 4 highlighted that the abnormalities seen in neuroimaging data and cortisol 

variables are not unique to depression, but implicated in a great variety of other diagnoses, 

from anxiety to schizophrenia (Girshkin et al., 2016; Goodkind et al., 2015; Luz Neto et al., 

2018). Perhaps, therefore, it is not that structural abnormalities in the brain are only 

indicative of general psychopathological illness, but that our categorisation approach is not 

optimally associating with these differences.  

 

The work on biotypes suggests that differences in symptomatology do not easily propagate 

to observable differences in biology. This is especially likely in depression, a condition 

showing substantial heterogeneity. It is likely that the underlying biology would mimic this 
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heterogeneity. These interpretations suggest that a potential alternative explanation for why 

this current work produced the null results is that the relationship between depressive 

symptoms and biology is more complex, perhaps with currently unidentified moderators and 

mediators acting upon the causal relationship (Kazdin & Nock, 2003). Indeed, Drysdale and 

colleagues (2017) actually noted that core symptoms of depression (such as low mood and 

anhedonia) related to a core set of neurological indicators that were present in all patients, 

regardless of biotype. These included some of the key regions of interest investigated in this 

thesis, like the insula, OFC and ventral mPFC (Drysdale et al., 2017). Consequently, 

categorising patients based on a total symptom severity scale over time, as conducted in this 

current thesis, may not have been the criteria under which patients reflect differentiation in 

neurobiology, particularly in the regions investigated here. The null results may have been a 

consequence of the way in which the outcome groups were defined, rather than suggesting 

that these variables are insignificant in prognosis. Unfortunately, IMPACT was not designed 

as a biological investigation. Very few biological variables existed in this dataset and the 

sample size of those with biological data was too small to conduct similar biotype analyses. 

Future biological work could incorporate symptoms beyond depression in their models, to 

fully elucidate biological differences between patients that might associate with response. 

 

Limitations to interpretations 

One of the biggest limitations of this work has been our sample size. While the full IMPACT 

sample of 465 was sufficient for GMM (Nylund et al., 2007), it was modest, and as previously 

stated in Chapter 1 it is typical for GMM studies to possess a sample of 600 or more (Brière 

et al., 2016; Gueorguieva et al., 2011; Rhebergen et al., 2012; Thibodeau et al., 2015; Uher et 

al., 2010). Sample size was also a particular concern for the biological variables. I discuss 

these limitations more specifically in those chapters (3 and 4), however one of the biggest 

implications of this (particularly the low sample size of the biological samples) was that the 

studies may not have been powered enough to investigate more complex relationships 

between biological variables and clinical characteristics. As biotypes research has highlighted 

above (Clementz et al., 2016; Drysdale et al., 2017; Ivleva et al., 2017), the relationship 

between biology and symptomatology is not clear, and is not simple. Consequently, a larger 

sample with biological data would have allowed a more detailed investigation of the 

interactive relationships between biological and clinical profiles, but also between the 
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biological variables themselves. Investigating such questions would be an ideal extension of 

this current work.  

 

A second difficulty in the interpretation of this work is the developmental age of our study 

participants. As stated in Chapter 3, adolescence is a highly dynamic period of rapid cortical 

development. Large multi-sample longitudinal studies have illustrated that widespread, 

nonlinear changes in cortical thickness and surface area occur across the age range of our 

cohort (Tamnes et al., 2017; Vijayakumar et al., 2016). These changes also vary in degree 

across regions of the brain, with regions investigated in this work showing greatest areas of 

change (Tamnes et al., 2017). Similarly, as stated in Chapter 4, HPA-reactivity sharply 

increases during adolescence, along with rises in basal cortisol (Gunnar & Quevedo, 2007; 

Gunnar, Wewerka, Frenn, Long, & Griggs, 2009). Mapping trajectories of symptom change, 

on top of trajectories of development is therefore a complicated task.   

 

Compounding the above complication is the likelihood that a large degree of inter-individual 

variability exists within these cortical and hormonal changes, owing to differences in 

pubertal status. Pubertal status has been associated with changes in brain development 

beyond chronological age, and these changes may be sex-specific (Wierenga et al., 2018). 

Similarly, variability in cortisol levels is found to correlate with pubertal status (Kiess et al., 

1995). Consequently, while we controlled for chronological age in both the neurological and 

cortisol analyses, additional variability may be present in our dataset relating to pubertal age 

that is not completely explained by chronological age. We were unable to control for 

pubertal status, as it was not part of the study protocol thus developmental status across 

the study participants remains an alternative explanation for null results, and a limitation of 

this work.  

 

Outstanding questions 

This work provided a thorough and arguably more meaningful investigation of predictors of 

symptom change over time. However, there are two important questions in this field that 

are not answered in this work. The first being the question of which treatment is best suited 

for which patient. The distinction between this question and that of this current work 

resides in the difference in the definition of predictors and moderators, which are often 

confused, owing to their simultaneous reporting in many papers of depression treatment 
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(Curry et al., 2006; Kraemer, Wilson, Fairburn, & Agras, 2002; Phillips et al., 2015). Both 

predictors and moderators are present before treatment initiation, however the difference 

is that predictors associate with general response regardless of treatment modality, whereas 

moderators investigate differential treatment response (Curry et al., 2006; Kraemer et al., 

2002). That means that they investigate interactive effects of the variable with treatment 

modality. In terms of adolescent depression, the field of moderators of response is in its 

infancy (Weersing et al., 2017). There are many mixed results (Weersing et al., 2017), with 

most analyses of a secondary nature and therefore lacking optimal study design (Curry et al., 

2006). However, a number of moderators to response have been suggested. For instance, 

the TADS trial found that severe cases of depression showed no additional benefit of CBT to 

fluoxetine, while mild and moderate cases benefitted from this combination treatment 

(Curry et al., 2006). This study also found that patients reporting higher cognitive distortions 

benefitted from the addition of CBT to fluoxetine treatment, whereas those with fewer 

distortions showed no benefit of the addition of CBT. A recent review of adolescent 

depression also found a positive effect of CBT in cases of comorbid anxiety, but a negative 

effect for patients who have significant life stress or previous trauma (Weersing et al., 2017). 

As such, it is possible that the variables investigated in this thesis may have played a more 

prominent role in identifying moderators of treatment, rather than prediction of general 

symptomatic change.    

 

It is argued that investigations of moderators are more valuable to clinicians, as they provide 

an indicator for prescription (Curry et al., 2006; Phillips et al., 2015). Moreover, they could 

provide indicators of potential therapeutic weaknesses, which may aid questions of 

mechanism (see below) (Weersing et al., 2017). However, there is a great difficulty involved 

in detecting a moderation signal, with authors stating that the noise in standard clinical trials 

is too large to detect differences (Frank et al., 2011). Consequently, most variables emerge 

as non-specific predictors (Frank et al., 2011). Indeed, neuroimaging reviews have stated 

that there is an overriding focus on predictors in this field, and place the blame on the lack 

of sufficient sample sizes for moderator analyses (Phillips et al., 2015). Therefore, for this 

work it was more valuable to investigate questions of prediction, rather than attempt 

questions of differential response in sample sizes too small to give sufficient power. Indeed, 

in the TADS study, certain variables had to be collapsed to maintain a sample size adequate 

for moderator analyses (Curry et al., 2006). However, a more thorough investigation of 
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moderators would indeed provide clinicians with useful prescriptive information, provided 

the study was adequately powered. Similarly, we did not have sufficient power to 

investigate interactive effects between variables of interest and class membership (such 

interactions between gender, cortisol and class membership as mentioned in Chapter 4), 

which may have produced more insight into questions of prognosis.   

 

The second question still outstanding for this field is the question of how treatment causes 

the symptom change patterns we have observed in this work. This is a question of 

mechanism of action. As Weersing and colleagues (2017) stated in their recent review of 

psychological treatments in adolescent depression, there is currently a lack of sufficient 

understanding of the mechanism behind treatment action for either psychological (Weersing 

et al., 2017) or, indeed, pharmacological treatments (Moncrieff, 2018). For instance, 

Moncrieff (2018) highlighted that while it is still commonplace to believe that 

antidepressants work by balancing chemical abnormalities in depressed individuals, the 

evidence for this assertion is not conclusive. In terms of psychological therapies, little 

research has been conducted on mediators of CBT (Kazdin & Nock, 2003; Weersing et al., 

2017). Furthermore, although early work suggests that the behavioural component of CBT 

contributes most to its effectiveness (Jacobson et al., 1996), the active components of other 

psychological therapies remain to be adequately researched (Weersing et al., 2017; 

Weersing, Rozenman, & Gonzalez, 2009). This is true for the other psychological treatments 

used in IMPACT (BPI and STPP). Weersing and colleagues (2017) concluded by emphasising 

the effect this has on treatment development: “If the core processes of an intervention 

model are unknown, there is little scientific basis to guide improvements to the treatment 

when poor effects are observed in practice settings” (p.37) (Weersing et al., 2017). IMPACT 

was not designed to answer questions of mechanism, and contained no placebo group. 

However, the results presented in this thesis provide new information on the shape of 

trajectories of symptom change, and suggest that alterations might occur near treatment 

cessation. Consequently, this understanding of the trajectory of change during treatment 

contributes information that could be of value to understanding change mechanisms. 

Nevertheless, further focused mechanistic research is critical in advancing our treatment of 

adolescent depression (Weersing et al., 2017).  
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The practical issue of both the above questions is that they are currently hindered by a 

requirement for large samples and longitudinal data, which is costly, and typically results in 

underpowered research (Bhatt & Mehta, 2016). Consequently, the call for the adoption of 

adaptive designs in clinical trials is growing support (Bhatt & Mehta, 2016; Goodyer & 

Wilkinson, 2018), and would help address both questions outlined above. While these 

designs necessitate the adoption of more complex planning and statistical analyses, they 

allow for a flexible approach to treatment allocation (Bhatt & Mehta, 2016). Interim analyses 

can be used to answer the question of what treatment is working best for whom, and 

simultaneously optimise treatment allocation (Weisz et al., 2012). This helps increase power 

while shortening the necessary study duration (Bhatt & Mehta, 2016). Incorporating 

neurobiological tests into these designs could provide additional insight into how these 

treatments are exerting their effects.  

 

Conclusions and directions for future work 

Overall, this work has highlighted the importance of considering the temporal aspects of 

symptom change in the categorisation of patients to response classes. Without this 

information, we would not know that for a minority of patients, the active treatment period 

appears an important component for continued improvement, and thus may inform practice 

of extending treatment for such cases.  It has also tentatively proposed a re-examination of 

biological predictors that have previously shown promise in relating to outcome, as this 

alternative categorical approach suggests these effects may be over-estimated or the 

hypotheses upon which they are based are underdeveloped.   

 

It is imperative for future work to focus first on replicating the results of the GMM described 

here in another sample of patients with adolescent depression, as described in Chapter 1. 

With replication, we can begin to extend these findings to investigate what factors may alter 

a persons’ trajectory path, which treatment is most optimal for which patient and indeed, 

the mechanisms by which treatment is acting to elucidate these trajectory paths.  

 

More generally, while clinical research should continue to develop methods that aid our 

current diagnostic systems, exploratory work may benefit from less reliance on these criteria 

in study design and search for alternative approaches to diagnosis. This may elucidate 

clinical profiles in a more coherent manner to inform prescription of treatment modalities. 
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The development of treatments based on biologically validated classification methods may 

prove to better address cases of treatment resistance in the future, and finally advance the 

currently stagnated field of treatment efficacy (Insel et al., 2010).  
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Abstract  

Objective: To classify a cohort of depressed adolescents recruited to the UK IMPACT trial. 

We examined for predictors and determined the dadat driven outomes of pateitnes with a 

priori operational definitions of treatment response.   

Method: Secondary data analysis using growth mixture modelling (GMM). Missing data was 

imputed.Trajectories of self-reported depressive symptoms were plotted using measures taken 

at 6 nominal time points over 86 weeks from randomisation in all 465 patients.  

Results: A piecewise GMM categorised patients into two classes with initially similar and 

subsequently distinct trajectories.  Both groups had a significant decline in depressive 

symptoms over the first 18 weeks.   Eighty-four  percent (84.1%, n=391) of patients were 

classed as “continued improvers” with symptoms reducing over the full duration of the study.  

A further class of 15.9% (n=74) of patients were termed “halted improvers” with higher 

baseline depression scores, faster early recovery but no further improvement after 18 weeks. 

Presence of baseline co-morbidity moderately increased membership  (OR = 1.40, CI 1.00-

1.96) of the halted improvers class. Compared to the data driven classes,  by end of stud a 

clinical cut-off (<=27) and symptom reduction (>=50%) scores for defining response.  

misclasiffied 15% for 31% cases respectively. 

Conclusion: A fast reduction in depressive symptoms in the first few weeks of treatment may 

not indicate a good prognosis.  Halted improvement may only be apparent after 18 weeks of 

treatment. Utilising longitudinal modeling may improve the precision of revealing  

differential responses to treatment. Clinical progress maybe somewhat better in the year after 

treatment than previously considered.  

 



 

261 
 

Background/rationale  

Adolescence denotes the highest incidence risk rate for the emergence of major depression 

over the lifecourse 1. A quarter of depressed adults report that their illness began during 

adolescence 2, with early onset being a risk factor for subsequent relapse and recurrence3,4 and 

impairment 2. The effectiveness of current treatment strategies, which may involve 

psychological  and SSRI medication alone or in combination  5, have reported moderate effect 

sizes of between 0.3-0.6 6,7.  At least 20% of adolescents with major depression show no 

response to available treatments8 but the reasons for this are unclear.  

 

To improve our recognition of patients who may or may not benefit from available 

treatments, requires more precision in defining treatment response 9–11.  Currently there are 

large variations between trials with respect to the definition of response12. Such discrepancies 

in measurement  can diminish comparability between studies and impact the proportions of 

patients considered responders or non-responders respectively 13,14. Definitions are commonly 

based on percentage reduction in symptoms or on final scores below an a priori clinical cut-

off . These methods are arbitrary and may lack clinical meaning11,13. Furthermore there can be 

a substantial overlap of patients who simultaneously meet criteria for non-remission (e.g. a 

final Hamilton Rating Scale for Depression (HRSD) score of >=7) but achieve a positive 

clinical response (reduction of >=50% in HRSD)15.   

Empirical person centered modelling techniques, such as growth mixture modelling (GMM), 

may address some of the validity issues with a priori definitions, by categorising patients 

post-hoc16. This computational technique searches for naturally occurring heterogeneity to 

categorize patients into particular latent classes that follow similar trajectories. Such 

approaches make no assumptions on what percentage reduction constitutes a meaningful 

response, providing a far less arbitrary definition and more homogenous subgroups of 

patients11,13,17. Homogeneity of groups is a particularly important characteristic for research 
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investigating predictors of response types that are likely to have small effect sizes. In 

modelling patterns of change over time, GMM is additionally able to provide descriptions of  

behavioural trajectory, which reveals how groups differ in their shape over time16,18. 

 

GMM analyses of treatment trials in depression have all supported the presence of multiple, 

qualitatively distinct classes of symptom trajectories in patients, and specific predictors of 

such classes11,13,17–20. Some studies also reported differential treatment preferences between 

classes13,17,19,20. However, most studies in Major Depressive Disorders (MDD) to date have 

been with adult patients with primarily pharmacological/combination interventions11,13,18–20  . 

One recent report was from the Treatment of Adolescent Depression Study(TADS) noting 

that, at 12 weeks, there were 2 groups  that improved  over the trial, and a further group 

showing limited change 21.  A report of healthy adolescents recruited to a depression 

prevention study carried out a longitudinal latent class growth analysis over a 2 year period. 

The authors noted 2 groups where symptoms gradually reduced over time; 1 group which  

showed no change, and a further whose symptom count resurged within 6 months of the 

intervention17.   

 

As shown current GMM studies of treatment in depression have also focused on short-term 

response of typically 8-12 weeks13,18,19. However, two studies have found that the duration of 

follow-up plays a contributory role in determining response classes11,17. Thibodeau and 

colleagues11 found that short-term follow-up mistakenly classified some responders as non-

responders, while Brière and colleagues17 found a subgroup of adolescents that showed a 

significant decline in symptoms during the first 12 weeks, but relapsed after this point. These 

fidnings highlight that longer-term follow-ups may improve the precision of denoting  true 

responders, sustained non-responders and relapsing patients11,17.  
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Objectives and Hypotheses 

Our primary objective was to reveal trajectories of depression symptoms from randomisation 

to the final assessment one year following end of treatment. The specific aims were to:  i) 

define the number and shape of longitudinal classes pf patients revealed from depression 

symptoms only; and ii) compare the defined groups with standard a priori definitions of 

response/non-response. Prior literature would suggest that 4 classes could emerge with 

favourable trajectories showing rapid and gradual improvement in symptoms13, and 

unfavourable trajectories showing either no improvement, or a relapsing trajectory shape17.  

 

Our second objective was then to test whether selected baseline clinical characteristics would 

predict class membership. Prior GMM studies have associated a number of baseline clinical 

variables with class membership and unfavourable trajectory including: older age13, higher 

baseline anxiety18, baseline level of function11, emotional stability and comorbidities11. 

Further, psychotic experiences (PEs), even at the subclinical level, have been noted as a 

potential risk factor for both relapse and treatment resistance of  mood disorders 22 23,24.   The 

prevalence of PEs in community samples of adolescents may be  higher than in adult samples 

25,26. Therefore, we specifically hypothesised that subclinical PEs and non-depressive 

comorbidity at baseline would be associated with unfavourable trajectory classes.  
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Methods 

Study Design 

This study was a re-analysis of the Improving Mood with Psychoanalytic and Cognitive 

Therapies (IMPACT) trial. The IMPACT study was a multicentre, pragmatic, observer-blind, 

randomised controlled trial investigating whether there was a superior effect for two specialist 

psychological treatments (cognitive behavioural therapy, short-term psychoanalytic 

psychotherapy) compared with a reference treatment of brief psychosocial  intervention (BPI) 

on reducing self-reported depressive symptoms by end of follow up 12 months after end of 

treatment27. Participants were randomly assigned to one of the three treatment arms, with 

stochastic minimisation by age, sex, self-reported depression sum score, and region, as per 

study protocol28. The primary findings from the trial demonstrated no differences in  

depression symptoms sum scores between treatment groups over the course and by the end of 

the study 27. Consequently, treatment group was collapsed for the present study, to investigate 

the symptom trajectories in this whole population. Self-reported depressive symptomatology 

was measured at 6 nominal time points:  baseline, 6, 12, 36, 52 and 86 weeks post-

randomisation. The last 2 time points were post treatment which was completed by 36 weeks 

in >95% of the cohort 26. Based on each individual’s sum score symptom change over the 

trial, a series of growth mixture models were conducted to determine the best fitting model, 

and the number of classes of individuals present within the dataset. Baseline clinical 

characteristics were used to describe the sub-classes, and estimate the predictive value of 

these characteristics in determining class membership.  

 

Setting 

The IMPACT trial28 recruited patients from 15 National Health Service child and adolescent 

mental health service (CAMHS) clinics across 3 geographical regions in the UK: East Anglia, 

North London and North-West England covering an estimated 1,000,000 adolescents aged 
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11-17 years. The study recruited, assessed and followed up all participants between June 29, 

2010 and Jan 17, 201327.  

 

Participants 

Adolescents aged between 11 and 17 years, with a current diagnosis of major depression 

(DSM-IV29) were enrolled. Patients were randomized to either cognitive behavioural therapy 

(CBT), short-term psychoanalytic psychotherapy (STPP) or a reference treatment of brief 

psychological intervention (BPI), as per study protocol. Full details on patient inclusion and 

exclusion criteria can be found in the study protocol28.  

 

Variables 

Symptom trajectory class membership was defined through growth mixture modelling (see 

below) using the self-reported Mood and Feelings Questionnaire (MFQ) score across all time-

points.  This is a 33-item Questionnaire30 of depressive symptomatology covering the past 2 

weeks. MFQ items were measured on a 3-point scale (almost never, sometimes, often/almost 

always). Total scores (range of 0-66)  were used in GMMs. Higher scores indicated more 

severe depressive symptoms and were positively correlated with greater psychosocial  

impairment31.  

 

As noted above, a number of baseline clinical variables were investigated for their potential 

predictive value over class membership. These were derived sum scores from self-report 

measures for anxiety (the Revised Children’s Manifest Anxiety Scale, RCMAS)32, 

obsessionality (the short Leyton Obsessional Inventory for adolescents, LOI)33 and overall 

psychiatric symptomatology/impairment (the Health of the Nation Outcome Scales for 

Children and Adolescents, HONOSCA)34. Lifetime suicidal thoughts and suicide attempts 

were defined as binary variables (yes, no) from data derived from the Columbia Suicide 
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Inventory35. Lifetime non-suicidal self-injury was measured using the self-report Risk and 

Self Harm Inventory36. The Kiddie-Schedule for Affective Disorder and Schizophrenia (K-

SADS)37 interview was used to assess the presence of psychiatric diagnoses and psychotic 

symptoms at baseline. Comorbidity was defined on an ordinal scale, as the number of 

additional mental illnesses other than depression that met threshold criteria during interview. 

Psychotic symptoms were also defined on an ordinal scale (absent, present: subthreshold, or 

present: threshold), as answering positively to either of the two screening questions for 

psychosis present in the K-SADS interview. 

 

Bias 

The recruitment sites were dependent on referrals from primary care sources including family 

physicians, community mental health teams and self-referral. Clinics who participated were 

invited and not selected randomly. Therefore, we cannot be certain that the sample is 

necessarily representative of major depression in the adolescent population at large nor of 

cases usually referred to child and adolescent mental health clinics in the UK. However, there 

are no other referral options for the primary care services other than their local NHS services 

and therefore the clinics are likely to be receiving the majority of referrals for major 

depression. Finally these clinics are part of routine NHS mental health services and not set up 

solely for the purposes of the IMPACT study.  

 

Study size 

Of 557 participants screened for eligibility into the IMPACT trial, 87 were excluded (73 did 

not meet criteria for major depression, 4 had mania, 4 had a primary substance use disorder, 2 

had received previous treatment used in the trial, 1 had autism, 1 was pregnant, 1 would not 

engage, 1 was unable to read or understand information). 470 adolescents were therefore 
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randomised to 3 treatment arms. Subsequently, 5 withdrew from the study, leaving 465 

patients included and in the current analysis27. 

 

Statistical methods 

Imputation 

Despite follow-up rates of 80% at 86-weeks27, multiple imputation was required in order to 

maximize sample size and achieve convergence for the GMM. Due to a wealth of auxiliary 

variables predicting missingness, data was presumed to be missing at random. Also due to 

these auxiliary variables, multiple imputation was favoured over Full Information Maximum 

Likelihood as auxiliary variables can easily be incorporated into a multiple imputation model 

and help decrease bias and increase efficiency38. Variables at all time points were assessed for 

inclusion in the imputation model in addition to MFQ items. Those related to outcome 

(p<0.05 or r>=0.3) and/or missingness in outcome, and variables used in final analyses, were 

included in the model39. Additional non-missing variables were also included to improve 

model prediction. This resulted in imputation of 24 variables plus the 33 MFQ items, repeated 

over six assessments, yielding a dataset too large to impute in wide format. Thus, time-

varying data was imputed in long format, a method which is less biased under conditions of 

less missing data, more repeated measures, and a reliable outcome measure40, as is the case in 

the present data. For each model, fifty datasets were multiply imputed using chained 

equations39. As it is not possible to obtain the VLMR and LMR fit statistics for model 

comparison in a multiply imputed dataset, multiple imputations were averaged prior to 

estimation of GMM. While we acknowledge it is more optimal to obtain model estimates 

from each of the multiply imputed datasets and then combine estimates39, our approach 

allowed us to obtain these fit statistics which are crucial for determining the most optimal 

model. 
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Growth Mixture Models 

Total MFQ scores at baseline, 6, 12, 36, 52 and 86 weeks were the intended time-points of the 

trial. However, substantial variation existed across individuals in the timing of their 

assessments. To model the symptom change experienced by patients accurately, the mean 

time of each actual assessment (weeks) was taken as the focal time points for GMMs. This 

therefore corresponded to baseline, 12, 18, 43, 60 and 95 weeks post-randomisation. Variation 

in time of assessment was further included as a covariate in all growth models.  

 

Growth mixture models were tested in the Mplus program version 8.041. Four growth trends 

were considered: a linear and quadratic growth trend respectively , and two linear-piecewise 

growth trends. We investigated piecewise growth trends because we hypothesised that 

different rates of improvement might occur during treatment vs follow-up stages of the trial. 

Due to the average length of treatment falling between the means of two assessment time-

points, we considered two possible transition points in the  models: the first  was placed at the 

third assessment (18 weeks on average from baseline) and the second at the fourth assessment 

(43 weeks from baseline).  

 

Classes were incrementally added to the single class model to determine the best fit. All 

models allowed for within-class variation, letting  patient’s symptom scores vary around the 

mean of the group. However, upon testing, there was no evidence of significant variation 

between-classes, (See Supplementary Matieral, Table 1), meaning that the variation around 

each group mean was not significantly different for the respective classes. Consequently, 

between-class variation was held equal for all growth factors. Only solutions that were 

replicated with different starting values were accepted.  
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We considered models with 1 to 5 trajectory classes due to our a priori hypothesis, and 

retained the most parsimonious model based on the following criteria: 

Firstly, the model with the lowest AIC and BIC was retained, with BIC values favoured in 

cases of discrepancy. Models were only considered as favourable over the model with one 

fewer latent class if the BIC difference was 10 or more13. Secondly, entropy values were 

considered. This is a measure of the uncertainty of the model in the classification of subjects 

into the correct class. Values closer to 1 are preferred. Finally, clinical interpretability and 

relevance of the class trajectories, as well as class size, were taken into account. Given the 

sample size of our cohort, models where classes contained less than 10% of the sample were 

rejected as these were not considered numerically stable13. Patients were assigned to their 

most likely class based on model probabilities. 

 

Baseline clinical characteristics and predictors of class membership  

We undertook a two-step approach to investigating trajectories of symptom change, and 

predictors of these trajectories. After selecting the best fitting trajectory model, we saved the 

information on most likely class membership for all patients and conducted analyses of 

associations in a separate step. Univariate analyses were conducted (chi-square, or t-tests) to 

determine whether there were significant differences between classes on baseline 

demographic and clinical characteristics. Mann-Whitney-Wilcoxon tests were performed 

where data were non-normal. Multinomial logistic regression was then used to determine 

which  variables predicted class membership. R-squared statistic indicated how much 

variance the regression model explained. Odds Ratios are reported for any predictors.  

 

Agreement between categorical definitions and GMM model result 

Cohen’s Kappa coefficient42 was used to test the agreement between trajectory classes and the 

two most commonly used definitions of response/non-response in clinical trials. The first 
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definition reclassified patients as clinical responders/non-responders if they had a 50% 

reduction/or not  in MFQ score by end of study (12 months following treatment). The second 

definition reclassified patients as clinical/non-responders if their MFQ score at 12 months 

following treatment was below or above 27 respectively 43.  



 

271 
 

Results 

Participants 

All 465 participants who entered the trial were available for the longitudinal analysis. Across 

all assessments, 65% or more of the sample (304/465) had full data on all MFQ items. 

 

Outcome data 

Fit information for all piecewise class models tested are provided in Table 1. A two-class, 

piecewise model that separately modelled the change in depressive symptoms, linearly, over 

the first 18 weeks of treatment (on average; assessments 0-2), and then the remaining period 

of the trial (assessments 3-5), was identified as the optimal model. This is illustrated in Figure 

1. BIC showed a favourable decrease of approximately 42 with the addition of a second class 

from the single class solution. Although the 3 class solution yielded a slightly lower BIC 

(ΔBIC=4.039), the decrease in entropy below commonly accepted thresholds suggests poor 

classification precision in the 3 class solution(entropy=0.844 vs 0.734). The Mplus code for 

the two-class model is provided in the Supplementary Material.  

Table One Here 

 

Figure One Here 

 

The two-class piecewise GMM divided patients into a comparatively large class of 391 

(84.1%; class 1), and a small class of 74 (15.9%; class 2). The mean depression scores and the 

% change between time points is shown in table 2. 

 

Table Two Here 
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Class 2 on average showed significantly higher baseline levels of MFQ scores than class 1 

(Wald X2(1)= 25.577, p<.001). Both classes showed a significant decrease in MFQ score over 

the first 18 weeks of the trial (-6.466, p<.001, and -8.794, p<.001 respectively). However, 

class 2 showed a significantly faster rate of MFQ reduction compared with class 1 (Wald 

X2(1)=5.446, p=.0196).  

 

These two classes departed markedly from each other after 18 weeks. While class 2 showed a 

significantly faster rate of improvement over the first 18 weeks, they showed no further 

improvement statistically over the rest of the trial (0.899, p=.183). Conversely, class 1 on 

average, continued to show a significant decline in MFQ score, albeit slower than in the initial 

18 weeks (-1.639, p=.014). This difference between the second linear slopes of the two 

classes was statistically significant (Wald X2(1) =167.075, p<.001). By the end of the trial, 

Class 1 showed on average a 60.5% improvement in depressive symptoms, compared with 

11.0% in class 2. We labelled class 2 as “halted-improvers” due to the statistically revealed 

transition point and class 1 as “continued-improvers”.  

 

Baseline characteristics of each class  

 

The characteristics of patients following each trajectory class are described in Table 3.  

 

Table Three Here 

 

The two classes differed significantly on their proportions of males and females. Eighty-five 

percent of halted improvers were female, compared with only 73% of continued improvers. 

No other demographic characteristics were significantly different between groups.  
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Halted improvers on average showed significantly higher obsessionality scores, higher 

likelihood of NSSI, higher HoNOSCA (greater overall psychiatric symptoms/impairment) and 

more comorbid disorders than continued improvers at baseline. Interestingly neither baseline 

levels of suicidality, psychotic symptoms nor treatment group discriminated between the 

classes.  There were no significant differences between the two classes on any characteristic 

related to treatment. 

 

Predictors of Trajectory Class Membership 

Class 1 acted as the reference class for the logistic regression. Results from the logistic 

regression are shown in Table 4. When controlling for variables included in the model, only 

the number of co-morbid psychiatric diagnoses significantly predicted a higher probability of 

membership to halted-improvers compared with continual-improvers (Table 3). With each 

increasing number of co-morbid diagnoses the odds of a patient belonging to the halted-

improvers class compared to the continual-improvers class increased by a factor of 1.4. This 

analysis produced a significant improvement in the fit of the model over the constant 

(X2(4)=46.03, p<.001) but only explained 5.4% of the total variance in class membership 

allocation (Cox and Snell R2= 0.054). 

 

Table 4 Here 

 

Agreement between GMM classes and a priori categorical definitions of response 

Continued-improvers were considered the comparative for “clinical responders”, and halted-

improvers were considered the comparative for “clinical non-responders”.  Comparisons are 

illustrated in Figure 2.  

 

Figure Two Here 
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Percentage reduction by end of study  

There was moderate agreement between trajectory class membership and clinical categorical 

outcome when ‘treatment response’ is defined by percentage reduction of 50% by end of 

study (k=0.412, p<.001). All halted-improvers were also clinical non-responders by this 

definition. However, only 269 of 391 (69%) of continued-improvers were also clinical 

responders. The remaining continued-improvers (122 of 391; 31%) were classified as clinical 

non-responders on the percent reduction category.  

 

Clinical cut-off 

There was stronger, albeit still moderate agreement between trajectory membership and 

clinical categorical outcomes when defined by a cut-off score  of 27 on the MFQ by end of 

study (k=0.642, p<.001). All halted-improvers were also clinical non-responders. However, 

only 332 of 391 (85%) of continued-improvers were also clinical responders. The remaining 

continued-improvers (59 of 391; 15%) were classified as clinical non-responders. 

 

Overall if either a priori category definitions have been used in this study a false negative 

classification  rate of between 15%-31% would have been reported.  
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Discussion 

Key results and Interpretation 

Using a cohort of depressed adolescents recruited into a clinical trial we computed a 

depression symptom trajectory that revealed a piecewise function, with two separate linear 

trajectories. The best fit model was for two classes of individuals differing on specific 

characteristics. We defined a large (84.1%) group of continued improvers and a small (15.9%) 

group of halted improvers. We noted that both groups improved significantly over the first 18 

weeks of the trial. The halted group showed a cessation in improvement from thereon and this 

may index a putative relapsing group by traditional end-of-study measures. As the slope value 

for the second phase of the model did not reach significance in this cohort this requires 

replicaiton. These findings  are consistent with secondary findings from two other clinical 

trials investigating the effectiveness of antidepressants in adult samples13,18. Although there 

are a number of studies that support the existence of more than two classes, these applied 

constraints on investigated trajectory shape11,19, and eliminated within-class variation from 

their models17. These methodological choices are often necessary when models struggle to fit 

the data, and both lead models to favour more classes44. To assume that no individual 

variation exists within classes in depressive patients we felt was not representative of real 

data. We therefore favoured a GMM analysis at outset, which would allow for within-class 

variation. Our results were stable across different sets of random starting values without these 

constraints, offering a much more representative model of patient experience of depressive 

symptom change.  

 

A striking finding in the present study was the great contrast between trajectories of the two 

groups across both parts of the model.  Compared to the continuous improvers, the halted 

improvers group actually showed significantly greater symptom reduction between the start of 

treatment and 18 week assessment. This indicates that clinicians may need to consider that a 
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fast reduction in depressive symptoms does not necessarily indicate a good prognosis. 

Further, treatment response cannot be prognostically assessed adequately before 18 weeks. 

The precise psychological treatment implications however cannot be determined as there was 

no placebo control group: we do not know whether this period of rapid improvement is due to 

the psychological therapy, a non-specific response to receiving assessment and treatment, or 

regression to the mean.  

 

Previous studies reporting two classes describe their trajectory groups as either rapid and 

gradual responders, or responders and non-responders over each piece of the piecewise 

model13,18. One recent study of adolescents reported 3 trajectory classes with the 2 improving 

classes merging by end of treatment21. However, those studies were limited to short trial 

durations of 12 weeks or less and not able to assess longer-term outcome. The shape of the 

halted-improvers trajectory in this clinical study resonates with the symptom resurgence 

group reported by Briere and colleagues in their community-sample depression prevention 

study17. Their resurgence group showed a similar rapid initial improvement in symptoms, 

followed by a rapid decline in symptoms over time. While the slope value for the second 

section of our trajectory in the halted improvers did not reach significance with this cohort, 

visual inspection suggests this trend. Briere’s samples was one third larger than ours17 and 

therefore it is possible that a larger sample may have provided the power to detect a 

significant decline in condition in these patients. This trajectory shape suggests that different 

underlying therapeutic mechanisms may be activated in early and subsequent treatment 

responses. What factors account for the optimal break point of responding to be at the 18 

week assessment is not clear. Longer-term follow-up is essential in future studies to 

disentangle group trajectory patterns and their related underlying mechanisms more 

accurately and to reveal the most valid prognostic markers for treatment response both early 

and later in follow up.  
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We attempted to identify baseline predictors of class membership as a parsimonious 

beginning to establishing candidate moderators for future mechanistic research. Univariate 

analyses suggested potential predictors of halted responding may include being female, higher 

current obsessionality, self-harm, more impairment and greater comorbidity at baseline. These 

findings are consistent with prior reports45–48 except with regard to gender: one previous study 

associated female sex with a better outcome by end of treatment 17 . Interestingly, and in 

contrast to previous reports23,47,49, suicidality and psychotic symptoms were not associated as 

potential predictors of our unfavourable trajectory class; halted improvers. The reason for this 

dissonance may be the shorter follow-up of those studies, especially terminating before 18 

weeks.  It is possible as well that these associations (except comorbidity) were due to 

confounding, given their non-significance in our multivariate model, or that our two-step 

approach decreased power to detect these differences.  

Despite baseline univariate differences, a predictive model of demographic and clinical 

characteristics explained very little of the variance between these two classes (5.4%). Only  

comorbidities at baseline was retained as the only significant independent predictor with a 

small odds ratio (<2). This finding suggests that baseline demographic and clinical 

observations are insufficient in predicting depression symptom change over time.  Including 

non-depressive symptoms in a more multidimensional longitudinal analysis of all symptoms 

to further disaggregate the behavioural phenotypes over time and determine if non depressive 

symptoms improve the classes, traejctories and break points in longitudinal course may be of 

value. Such an analysis may improve the signal for putative moderators for treatment 

response over that shown  here.   

 

In line with the Research Domain Criteria (RDoC)50 framework, future work could also 

investigate the significance of biological predictors of such trajectories. Furthermore a much 

fuller inclusion of social environment factors should be considered in moderator and indeed 
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mediator models of treatment response. Incorporating qualitative data to incorporate patient 

experience of treatment may also help to explain some of the differences found in patterns of 

symptom change over time. 

 

Finally, we considered whether the 2-class solution is in agreement with currently used 

measures based on self-report. The findings showed only moderate agreement between 

empirical and a priori definitions of symptom change, similar to those of previous studies13,18. 

The difference resides in 15% of improvers identified through GMM who are classified as 

non-responders by a priori methods. These differences demonstrate that the choice of 

methodology to determine outcome is particularly important if homogeneity is a goal for 

revealing the best group of non-responding individuals. The findings here have provided a 

clear cut homogeneous group (defined by narrow range of depressive symptom scores over 

time) of halted improvers by end of study, potentially predicted by higher depression scores at 

entry combined with halted improvement by 18 weeks.  

 

This current work would also caution the use of cut-off or percentage change measures within 

36 weeks of beginning therapy as it is possible that a significant percentage of potentially 

good responding patients might be misclassified to quickly as false negatives to treatment. 

Indeed the impact of misclassification in clinical trials has been highlighted in previous GMM 

work and research has suggested that current clinical response definitions may be too strict 

13,18. The current results support these prior findings from studies of adults, showing that the 

level of correspondence between these two contrasting approaches is currently inadequate. 

Until more is known about sub-classes of depression, researchers must take care in their 

choice of outcome measure and in particular to try to minimise a false negative result. 
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Limitations 

We cannot use these findings to generalise to population based trials where recruitment takes 

place from schools, community settings or patients with distinct cultural differences to those 

in this UK NHS study. The current work could be improved in future studies through the 

collection of more time-points to allow for a more detailed investigation of trajectory shape. 

Additionally, GMM are large-sample statistical techniques, and while a sample of 465 is 

sufficient, a sample of 600 or more may have seen the emergence of a more stable 3-class 

model. The lack of a non-symptom driven 86-week outcome validator, such as interpersonal 

function, is another limitation of this paper. However, investigation of HONOSCA, a measure 

of function as well as psychiatric symptomatology, showed similar trends to MFQ 

(Supplementary material), which provides preliminary external validity for our findings. 

GMM trajectories in clinical populations with multiple symptom profile could utilise non-

depressive symptoms in their longitudinal analyses.  The predominance of females in the trial 

prevents an investigation of sex differentiated trajectories. 
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Table One. Model fit information for piecewise GMM-CIs  
 
 
Fit 
Statistics 

 1 Class 2 Classes 3 Classes 4 Classes 5 Classes 

GMM-CIs       
LL (No. of 
parameters) 

 -
10487.996 

-10454.836 -10440.533 -10431.253 -10423.269 

AIC  21015.992 20957.672 20937.065 20926.506 20918.538 
BIC  21098.832 21057.081 21053.042 21059.051 21067.651 
Entropy  1 .844 .734 .718 .729 
Group size 
(%)  

C1 465(100%) 391(84.1%)  329(70.7%) 191(41.1%) 219(47.1%) 

 C2 - 74(15.9%) 77(16.6%) 161(34.6%) 109(23.5%) 
 C3 - - 59(12.7%) 57(12.3%) 56(12.0%) 
 C4 - - - 56(12.0%) 54(11.6%) 
 C5 - - - - 27(5.8%) 
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Table Tw
o. Estim

ated and observed m
ean values for M

FQ
 scores and observed m

ean percentage im
provem

ent in M
FQ

 scores are given for both latent 
classes. 

    

 
Class 1: Continual im

provem
ent 

(n=391) 
Class 2: H

alted im
provem

ent 
(n=74) 

 
M

FQ
 scores 

M
FQ

 scores 
A

ssessm
ent 

Point in average 
w

eeks from
 baseline 

Estim
ated 

W
eighted 

Estim
ates 

O
bserved 

%
 observed 

im
provem

ent from
 

baseline 

Estim
ated 

W
eighted 

Estim
ates 

O
bserved 

%
 observed 

im
provem

ent from
 

baseline 
0 

44.828 
44.810 

44.774 
 

51.638 
51.721 

52.096 
 

12 
37.073 

34.649 
34.623 

22.672 
41.090 

38.191 
38.420 

26.252 
18 

32.881 
32.752 

32.689 
26.991 

35.390 
36.134 

36.558 
29.826 

43 
25.877 

23.938 
25.920 

42.109 
39.232 

38.243 
38.669 

25.774 
60 

23.039 
22.291 

22.224 
50.364 

40.789 
39.034 

39.835 
23.535 

95 
17.247 

17.797 
17.673 

60.528 
43.966 

44.978 
46.357 

11.016 
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Table Three.  Characteristics of subjects following the two latent trajectories  
 Class 1: Continued 

improvers (n=391) 
Class 2: Halted 

improvers (n=74) 
Comparison 

 Mean(n) S.D(%) Mean(n) S.D(%) X2/t/W p 
Demographics       
   Female 285 72.8% 63 85.1% 4.955 .026 
   Age 15.6 1.4 15.7 1.3 0.459 .647 
   Region - - - - 2.035 .361 
       East Anglia 161 41.2% 24 32.4% - - 
       North London 105 26.9% 22 29.7% - - 
       North-West 
England 

125 32.0% 28 37.8% - - 

Ethnicity(white) 325 83.1% 65 87.8% 1.024 .312 
Index of multiple 
deprivation(IMD) 

23.4 - 27.7 - 13446 .336 

Baseline clinical 
characteristics 

      

   RCMAS 40.7 7.3 42.3 6.7 1.863 .065 
   LOI 9.6 5.1 11.8 5.6 3.124 .002 
   Suicidal thoughts 345 88.2% 69 93.2% 1.600 .206 
   Suicidal attempts 131 33.5% 28 37.8% 0.519 .471 
   NSSI 218 55.8% 53 71.6% 6.443 .011 
   HONOSCA 
(available for 435 
patients) 

18.3 6.0 19.9 6.3 2.018 .046 

   Comorbidity^ - - - - 10.20 .006 
      1 121 30.9% 26 35.1% - - 
      2 59 15.1% 18 24.3% - - 
      3 5 1.3% 3 4.1% - - 
      4 0 0% 1 1.4% - - 
   Psychotic 
symptoms 

- - - - 2.024 .363 

       Subthreshold 87 23.6% 16 22.5% - - 
       Threshold 32 8.8% 10 14.1% - - 
Treatment 
characteristics 

      

   Treatment arm:  - - - - 2.463 .292 
       BPI 127 32.5% 28 37.8% - - 
       CBT 127 32.5% 27 36.5% - - 
       STPP 137 35.0% 19 25.7% - - 
   Baseline SSRI 
prescription 

87 22.3% 10 13.5% 2.877 .090 

IMD: *Median reported for non-parametric tests:  
^due to insufficient cell size, variable was recorded as 0,1 and 2+ to meet assumptions of chi-
square test. 
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Figure One 
 

 
 
Sample (shown in red/blue) and estimated (shown in black) means for the 2 class piecewise 
growth mixture model.  Class 1 reveal a continued improver class, n=391(84.1%) of the 
population. Class 2 reveal halted improver class , n= 74(15.9%) of the population. Behind 
plots every individual patient’s trajectory, colour coded to their respective classes.  
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Figure 2 
 

 

 

 
 
Sample means for the three categorical approaches. (a) Trajectory classes. (b) Percentage 
reduction. (c) Clinical cut-off.  Behind plots every individual patient’s trajectory, colour 
coded to their respective classes. 


	Study Design
	Setting
	Participants
	Variables
	Bias
	Study size
	Chapter 4: Physiological predictors of trajectory classes: the role of cortisol
	Introduction
	Cortisol and treatment response in depression
	Studies of disrupted HPA mechanisms in depression have noted that there is a great deal of variability between patients (Chida & Steptoe, 2009; Dedovic & Ngiam, 2015; Stetler & Miller, 2011). Some authors have argued that this heterogeneity might be a...
	Two of the most recent meta-analyses investigating the relationship between cortisol and treatment response in depression highlighted the scarcity of research in adolescent populations (Fischer, Macare, et al., 2017; Fischer, Strawbridge, et al., 2017...
	Only one study to date, published after the meta-analysis (Fischer, Macare, et al., 2017), investigated neuroendocrine predictors of response to SSRIs in a specifically adolescent sample (Klimes-Dougan et al., 2018). This study, while limited by sampl...
	Evening cortisol
	A final important observation of this field to date is that all studies have defined response a priori. A number of studies have taken remission (O’Toole et al., 1997), or a percentage decrease in symptoms (Holland et al., 2013; Juruena et al., 2009) ...
	Materials and Methods
	Study Design
	This study was a re-analysis of the IMPACT-GH trial. IMPACT-GH consisted of a subgroup of patients who, in addition to the data of the IMPACT trial, also provided salivary cortisol data. All patients enrolled into the IMPACT study were asked to take p...
	Cortisol Measurement
	Saliva was collected by a Salimetrics SOS cotton swab, which was left under the tongue for at least one minute. Salivary cortisol levels were measured by competitive enzyme immunoassay (EIA) using a Salimetrics Europe Ltd kit. Cortisol was measured in...

	Inclusion criteria
	Statistical Analyses
	Univariate analyses of associations between classes were conducted on each of the two subsamples, to explore differences between the trajectory classes on demographic and clinical characteristics. Independent sample t-tests were performed on all conti...
	A number of considerations were necessary prior to the main analysis detailed above. Firstly, cortisol levels are known to increase with age, particularly through adolescence (Guerry & Hastings, 2011). In addition, failing to control for age has shown...
	Secondly, marked gender differences exist in HPA-activity between males and females (Horstmann & Binder, 2011; Verma et al., 2011). While less consistently reported in adolescents (Bouma, Riese, Ormel, Verhulst, & Oldehinkel, 2009), gender differences...
	Table 2: Gender differences in cortisol levels
	Results
	Patient Characteristics
	Class Characteristics
	Predictors of trajectory class membership
	Investigation of the correlations between cortisol measures and variables entered into the regression models revealed the strength of collinearity between variables. Results are shown in Table 6 and 7. Variance inflation factor scores however, indicat...
	Table 8: Cortisol predictors of trajectory class membership, adjusted for gender and age.
	The relationship between day 1 and day 2 cortisol measurements
	Table 1: Permutation results for day 2 scores on day 1 scores.
	These data show that for every increase in one SD of day 1 peak-morning cortisol, day 2 waking cortisol increased by 0.562 SDs. Evening cortisol shows a weaker correspondence between day 1 and day 2 cortisol measures, in that for every increase in one...
	We conclude that these relationships are not sufficient to warrant inclusion of patients with only cortisol data present at one time-point.
	Appendix 4D
	Predictors of trajectory class membership for females only
	Investigation of the correlations between cortisol measures and variables entered into the regression models revealed the strength of collinearity between variables. Results are shown in Tables 1 and 2. Variance inflation factor scores however, indica...
	Table 3: Cortisol predictors of trajectory class membership in females, adjusted for age.
	The relationship between day 1 and day 2 cortisol measurements
	Table 2: Permutation results for day 2 scores on day 1 scores for CAR.
	CAR; Cortisol Awakening Response
	These data show that for every increase in one SD of day 1 CAR, day 2 CAR increased by 0.348 SDs. It was decided that there was insufficient agreement in CAR scores between the two days to warrant inclusion of patients without an average score.  There...
	Statistical and Sensitivity Analyses
	Univariate analyses of associations between classes were conducted for the CAR variable, to explore differences between the trajectory classes on demographic and clinical characteristics. A logistic regression was conducted to investigate whether spec...
	Patient characteristics
	Class Characteristics
	Table 3 presents the descriptive statistics and univariate tests for between class differences in CAR. No significant differences were present between the classes in CAR.
	Predictors of trajectory class membership
	Investigation of the correlations between cortisol measures and variables entered into the regression models revealed the strength of collinearity between variables. Results are shown in Table 5. Variance inflation factor scores however, indicated tha...
	Table 6: CAR as a predictor of trajectory class membership, adjusted for gender and age.

