
Published as a conference paper at ICLR 2019

META-LEARNING PROBABILISTIC INFERENCE FOR
PREDICTION

Jonathan Gordon∗, John Bronskill∗
University of Cambridge
{jg801,jfb54}@cam.ac.uk

Matthias Bauer
University of Cambridge
Max Planck Institute for Intelligent Systems
bauer@tue.mpg.de

Sebastian Nowozin†
Google AI Berlin
nowozin@google.com

Richard E. Turner
University of Cambridge
Microsoft Research
ret26@cam.ac.uk

ABSTRACT

This paper introduces a new framework for data efficient and versatile learning.
Specifically: 1) We develop ML-PIP, a general framework for Meta-Learning ap-
proximate Probabilistic Inference for Prediction. ML-PIP extends existing proba-
bilistic interpretations of meta-learning to cover a broad class of methods. 2) We
introduce VERSA, an instance of the framework employing a flexible and versatile
amortization network that takes few-shot learning datasets as inputs, with arbi-
trary numbers of shots, and outputs a distribution over task-specific parameters in
a single forward pass. VERSA substitutes optimization at test time with forward
passes through inference networks, amortizing the cost of inference and relieving
the need for second derivatives during training. 3) We evaluate VERSA on bench-
mark datasets where the method sets new state-of-the-art results, handles arbitrary
numbers of shots, and for classification, arbitrary numbers of classes at train and
test time. The power of the approach is then demonstrated through a challenging
few-shot ShapeNet view reconstruction task.

1 INTRODUCTION

Many applications require predictions to be made on myriad small, but related datasets. In such cases,
it is natural to desire learners that can rapidly adapt to new datasets at test time. These applications
have given rise to vast interest in few-shot learning (Fei-Fei et al., 2006; Lake et al., 2011), which
emphasizes data efficiency via information sharing across related tasks. Despite recent advances,
notably in meta-learning based approaches (Ravi and Larochelle, 2017; Vinyals et al., 2016; Edwards
and Storkey, 2017; Finn et al., 2017; Lacoste et al., 2018), there remains a lack of general purpose
methods for flexible, data-efficient learning.

Due to the ubiquity of recent work, a unifying view is needed to understand and improve these
methods. Existing frameworks (Grant et al., 2018; Finn et al., 2018) are limited to specific families
of approaches. In this paper we develop a framework for meta-learning approximate probabilistic
inference for prediction (ML-PIP), providing this view in terms of amortizing posterior predictive
distributions. In Section 4, we show that ML-PIP re-frames and extends existing point-estimate
probabilistic interpretations of meta-learning (Grant et al., 2018; Finn et al., 2018) to cover a broader
class of methods, including gradient based meta-learning (Finn et al., 2017; Ravi and Larochelle,
2017), metric based meta-learning (Snell et al., 2017), amortized MAP inference (Qiao et al., 2017)
and conditional probability modelling (Garnelo et al., 2018a;b).

The framework incorporates three key elements. First, we leverage shared statistical structure between
tasks via hierarchical probabilistic models developed for multi-task and transfer learning (Heskes,
∗Authors contributed equally
†Work done while at Microsoft Research

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/286187613?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Published as a conference paper at ICLR 2019

2000; Bakker and Heskes, 2003). Second, we share information between tasks about how to learn
and perform inference using meta-learning (Naik and Mammone, 1992; Thrun and Pratt, 2012;
Schmidhuber, 1987). Since uncertainty is rife in small datasets, we provide a procedure for meta-
learning probabilistic inference. Third, we enable fast learning that can flexibly handle a wide range
of tasks and learning settings via amortization (Kingma and Welling, 2014; Rezende et al., 2014).

Building on the framework, we propose a new method – VERSA – which substitutes optimization
procedures at test time with forward passes through inference networks. This amortizes the cost of
inference, resulting in faster test-time performance, and relieves the need for second derivatives during
training. VERSA employs a flexible amortization network that takes few-shot learning datasets, and
outputs a distribution over task-specific parameters in a single forward pass. The network can handle
arbitrary numbers of shots, and for classification, arbitrary numbers of classes at train and test time
(see Section 3). In Section 5, we evaluate VERSA on (i) standard benchmarks where the method sets
new state-of-the-art results, (ii) settings where test conditions (shot and way) differ from training, and
(iii) a challenging one-shot view reconstruction task.

2 META-LEARNING PROBABILISTIC INFERENCE FOR PREDICTION

We now present the framework that consists of (i) a multi-task probabilistic model, and (ii) a method
for meta-learning probabilistic inference.

2.1 PROBABILISTIC MODEL

Two principles guide the choice of model. First, the use of discriminative models to maximize
predictive performance on supervised learning tasks (Ng and Jordan, 2002). Second, the need to
leverage shared statistical structure between tasks (i.e. multi-task learning). These criteria are met
by the standard multi-task directed graphical model shown in Fig. 1 that employs shared parameters
θ, which are common to all tasks, and task specific parameters {ψ(t)}Tt=1. Inputs are denoted x
and outputs y. Training data D(t) = {(x(t)n , y

(t)
n)}Ntn=1, and test data {(x̃(t)m , ỹ

(t)
m)}Mt

m=1 are explicitly
distinguished for each task t, as this is key for few-shot learning.

x̃
(t)
mỹ

(t)
mψ(t)y

(t)
nx

(t)
n

θ

D(t)

m = 1, ...,Mtn = 1, ..., Nt

t=1,...

Figure 1: Directed graphical model for multi-task learning.

LetX(t) and Y (t) denote all the inputs and outputs (both test and train) for task t. The joint probability
of the outputs and task specific parameters for T tasks, given the inputs and global parameters is:

p
(
{Y (t), ψ(t)}Tt=1|{X(t)}Tt=1, θ

)
=

T∏
t=1

p
(
ψ(t)|θ

) Nt∏
n=1

p
(
y(t)n |x(t)n , ψ(t), θ

) Mt∏
m=1

p
(
ỹ(t)m |x̃(t)m , ψ(t), θ

)
.

In the next section, the goal is to meta-learn fast and accurate approximations to the posterior predictive
distribution p(ỹ(t)|x̃(t), θ) =

∫
p(ỹ(t)|x̃(t), ψ(t), θ)p(ψ(t)|x̃(t), D(t), θ)dψ(t) for unseen tasks t.

2.2 PROBABILISTIC INFERENCE

This section provides a framework for meta-learning approximate inference that is a simple reframing
and extension of existing approaches (Finn et al., 2017; Grant et al., 2018). We will employ point esti-
mates for the shared parameters θ since data across all tasks will pin down their value. Distributional
estimates will be used for the task-specific parameters since only a few shots constrain them.

2

Published as a conference paper at ICLR 2019

Once the shared parameters are learned, the probabilistic solution to few-shot learning in the model
above comprises two steps. First, form the posterior distribution over the task-specific parameters
p(ψ(t)|x̃(t), D(t), θ). Second, compute the posterior predictive p(ỹ(t)|x̃(t), θ). These steps will require
approximation and the emphasis here is on performing this quickly at test time. We will describe
the form of the approximation, the optimization problem used to learn it, and how to implement this
efficiently below. In what follows we initially suppress dependencies on the inputs x̃ and shared
parameters θ to reduce notational clutter, but will reintroduce these at the end of the section.

Specification of the approximate posterior predictive distribution. Our framework approxi-
mates the posterior predictive distribution by an amortized distribution qφ(ỹ|D). That is, we learn
a feed-forward inference network with parameters φ that takes any training dataset D(t) and test
input x̃ as inputs and returns the predictive distribution over the test output ỹ(t). We construct this by
amortizing the approximate posterior qφ(ψ|D) and then form the approximate posterior predictive
distribution using:

qφ(ỹ|D) =

∫
p(ỹ|ψ)qφ(ψ|D)dψ. (1)

This step may require additional approximation e.g. Monte Carlo sampling. The amortization will
enable fast predictions at test time. The form of these distributions is identical to those used in
amortized variational inference (Edwards and Storkey, 2017; Kingma and Welling, 2014). In this
work, we use a factorized Gaussian distribution for qφ(ψ|D(t)) with means and variances set by the
amortization network. However, the training method described next is different.

Meta-learning the approximate posterior predictive distribution. The quality of the approxi-
mate posterior predictive for a single task will be measured by the KL-divergence between the true
and approximate posterior predictive distribution KL [p(ỹ|D)‖qφ(ỹ|D)]. The goal of learning will be
to minimize the expected value of this KL averaged over tasks,

φ∗ = arg min
φ

E
p(D)

[KL [p(ỹ|D)‖qφ(ỹ|D)]] = arg max
φ

E
p(ỹ,D)

[
log

∫
p(ỹ|ψ)qφ(ψ|D)dψ

]
. (2)

Training will therefore return parameters φ that best approximate the posterior predictive distribution
in an average KL sense. So, if the approximate posterior qφ(ψ|D) is rich enough, global optimization
will recover the true posterior p(ψ|D) (assuming p(ψ|D) obeys identifiability conditions (Casella
and Berger, 2002)).1 Thus, the amortized procedure meta-learns approximate inference that supports
accurate prediction. Appendix A provides a generalized derivation of the framework, grounded in
Bayesian decision theory (Jaynes, 2003).

The right hand side of Eq. (2) indicates how training could proceed: (i) select a task t at random,
(ii) sample some training data D(t), (iii) form the posterior predictive qφ(·|D(t)) and, (iv) compute
the log-density log qφ(ỹ(t)|D(t)) at test data ỹ(t) not included in D(t). Repeating this process many
times and averaging the results would provide an unbiased estimate of the objective which can then
be optimized. This perspective also makes it clear that the procedure is scoring the approximate
inference procedure by simulating approximate Bayesian held-out log-likelihood evaluation. Im-
portantly, while an inference network is used to approximate posterior distributions, the training
procedure differs significantly from standard variational inference. In particular, rather than mini-
mizing KL(qφ(ψ|D)‖p(ψ|D)), our objective function directly focuses on the posterior predictive
distribution and minimizes KL(p(ỹ|D)‖qφ(ỹ|D)).

End-to-end stochastic training. Armed by the insights above we now layout the full training
procedure. We reintroduce inputs and shared parameters θ and the objective becomes:

L (φ) = − E
p(D,ỹ,x̃)

[log qφ(ỹ|x̃, θ)] = − E
p(D,ỹ,x̃)

[
log

∫
p(ỹ|x̃, ψ, θ)qφ(ψ|D, θ)dψ

]
. (3)

We optimize the objective over the shared parameters θ as this will maximize predictive performance
(i.e., Bayesian held out likelihood). An end-to-end stochastic training objective for θ and φ is:

L̂ (θ, φ) =
1

MT

∑
M,T

log
1

L

L∑
l=1

p
(
ỹ(t)m |x̃(t)m , ψ

(t)
l , θ

)
, with ψ(t)

l ∼ qφ(ψ|D(t), θ) (4)

1Note that the true predictive posterior p(y|D) is recovered regardless of the identifiability of p(ψ|D).

3

Published as a conference paper at ICLR 2019

| |
w

(1)
t · · · w(C)

t

| |

Linear Classifier

hθ(x̃)x̃

θ

p(ỹ|x̃, θ, ψt)

Feature extraction Softmax output

hθ

(
x
(1)
1

)
· · ·hθ

(
x
(1)
k1

)
k1 train examples

from class 1

hθ

(
x
(C)
1

)
· · ·hθ

(
x
(C)
kC

)
kC train examples

from class C

φ φAmortization
Network

Amortization Network qφ

hθ

(
x
(1)
1

)
...

hθ

(
x
(1)
k

)
φpre

φpre

h
(1)
1

h
(1)
k

h
(1)

φpost

q(w
(1)
t)

individual feature
extraction

instance
pooling

regression
onto weights

Figure 2: Computational flow of VERSA for few-shot classification with the context-independent approximation.
Left: A test point x̃ is mapped to its softmax output through a feature extractor neural network and a linear
classifier (fully connected layer). The global parameters θ of the feature extractor are shared between tasks
whereas the weight vectors w(c)

t of the linear classifier are task specific and inferred through an amortization
network with parameters φ. Right: Amortization network that maps the extracted features of the k training
examples of a particular class to the corresponding weight vector of the linear classifier.

and {ỹ(t)m , x̃
(t)
m , D(t)} ∼ p(ỹ, x̃, D), where p represents the data distribution (e.g., sampling tasks and

splitting them into disjoint training data D and test data {(x̃(t)m , ỹ
(t)
m)}Mt

m=1). This type of training
therefore uses episodic train / test splits at meta-train time. We have also approximated the integral
over ψ using L Monte Carlo samples. The local reparametrization (Kingma et al., 2015) trick enables
optimization. Interestingly, the learning objective does not require an explicit specification of the prior
distribution over parameters, p(ψ(t)|θ), learning it implicitly through qφ(ψ|D, θ) instead.

In summary, we have developed an approach for Meta-Learning Probabilistic Inference for Predic-
tion (ML-PIP). A simple investigation of the inference method with synthetic data is provided in
Section 5.1. In Section 4 we will show that this formulation unifies a number of existing approaches,
but first we discuss a particular instance of the ML-PIP framework that supports versatile learning.

3 VERSATILE AMORTIZED INFERENCE

A versatile system is one that makes inferences both rapidly and flexibly. By rapidly we mean that
test-time inference involves only simple computation such as a feed-forward pass through a neural
network. By flexibly we mean that the system supports a variety of tasks – including variable numbers
of shots or numbers of classes in classification problems – without retraining. Rapid inference comes
automatically with the use of a deep neural network to amortize the approximate posterior distribution
q. However, it typically comes at the cost of flexibility: amortized inference is usually limited to a
single specific task. Below, we discuss design choices that enable us to retain flexibility.

Inference with sets as inputs. The amortization network takes data sets of variable size as inputs
whose ordering we should be invariant to. We use permutation-invariant instance-pooling operations
to process these sets similarly to Qi et al. (2017) and as formalized in Zaheer et al. (2017). The
instance-pooling operation ensures that the network can process any number of training observations.

VERSA for Few-Shot Image Classification. For few-shot image classification, our parameteriza-
tion of the probabilistic model is inspired by early work from Heskes (2000); Bakker and Heskes
(2003) and recent extensions to deep learning (Bauer et al., 2017; Qiao et al., 2017). A feature ex-
tractor neural network hθ(x) ∈ Rdθ , shared across all tasks, feeds into a set of task-specific linear
classifiers with softmax outputs and weights and biases ψ(t) = {W (t), b(t)} (see Fig. 2).

A naive amortization requires the approximate posterior qφ(ψ|D, θ) to model the distribution over
full weight matrices in Rdθ×C (and biases). This requires the specification of the number of few-shot
classes C ahead of time and limits inference to this chosen number. Moreover, it is difficult to meta-
learn systems that directly output large matrices as the output dimensionality is high. We therefore
propose specifying qφ(ψ|D, θ) in a context independent manner such that each weight vector ψc
depends only on examples from class c, by amortizing individual weight vectors associated with a

4

Published as a conference paper at ICLR 2019

x̃

ψ(t)

Generator

θ

p(ỹ|x̃, θ, ψ(t))

(y
(t)
1 , x

(t)
1) (y

(t)
k , x

(t)
k)

φ φ

Amortization Network φ

y
(t)
1

...

y
(t)
k

φpre

φpre

h
(t)
1

x
(t)
1

h
(t)
k

x
(t)
k

φmid

φmid

h̃
(t)
1

h̃
(t)
k

h
(t)

φpost

ψ(t)

individual feature
extraction

instance
pooling

regression onto
stochastic inputs

Figure 3: Computational flow of VERSA for few-shot view reconstruction. Left: A set of training images and
angles {(y(t)n , x

(t)
n)}kn=1 are mapped to a stochastic input ψ(t) through the amortization network qφ. ψ(t) is then

concatenated with a test angle x̃ and mapped onto a new image through the generator θ. Right: Amortization
network that maps k image/angle examples of a particular object-instance to the corresponding stochastic input.

single softmax output instead of the entire weight matrix directly. To reduce the number of learned
parameters, the amortization network operates directly on the extracted features hθ(x):

qφ(ψ|D, θ) =

C∏
c=1

qφ

(
ψc|{hθ (xcn)}kcn=1, θ

)
. (5)

Note that in our implementation, end-to-end training is employed, i.e., we backpropagate to θ through
the inference network. Here kc is the number of observed examples in class c and ψc = {wc, bc}
denotes the weight vector and bias of the linear classifier associated with that class. Thus, we construct
the classification matrix ψ(t) by performing C feed-forward passes through the inference network
qφ(ψ|D, θ) (see Fig. 2).

The assumption of context independent inference is an approximation. In Appendix B, we provide
theoretical and empirical justification for its validity. Our theoretical arguments use insights from
Density Ratio Estimation (Mohamed, 2018; Sugiyama et al., 2012), and we empirically demonstrate
that full approximate posterior distributions are close to their context independent counterparts. Crit-
ically, the context independent approximation addresses all the limitations of a naive amortization
mentioned above: (i) the inference network needs to amortize far fewer parameters whose number
does not scale with number of classes C (a single weight vector instead of the entire matrix); (ii) the
amortization network can be meta-trained with different numbers of classes per task, and (iii) the
number of classes C can vary at test-time.

VERSA for Few-Shot Image Reconstruction (Regression). We consider a challenging few-shot
learning task with a complex (high dimensional and continuous) output space. We define view
reconstruction as the ability to infer how an object looks from any desired angle based on a small set
of observed views. We frame this as a multi-output regression task from a set of training images with
known orientations to output images with specified orientations.

Our generative model is similar to the generator of a GAN or the decoder of a VAE: A latent vector
ψ(t) ∈ Rdψ , which acts as an object-instance level input to the generator, is concatenated with an angle
representation and mapped through the generator to produce an image at the specified orientation. In
this setting, we treat all parameters θ of the generator network as global parameters (see Appendix E.1
for full details of the architecture), whereas the latent inputs ψ(t) are the task-specific parameters. We
use a Gaussian likelihood in pixel space for the outputs of the generator. To ensure that the output
means are between zero and one, we use a sigmoid activation after the final layer. φ parameterizes an
amortization network that first processes the image representations of an object, concatenates them
with their associated view orientations, and processes them further before instance-pooling. From
the pooled representations, qφ(ψ|D, θ) produces a distribution over vectors ψ(t). This process is
illustrated in Fig. 3.

5

Published as a conference paper at ICLR 2019

4 ML-PIP UNIFIES DISPARATE RELATED WORK

In this section, we continue in the spirit of Grant et al. (2018), and recast a broader class of meta-
learning approaches as approximate inference in hierarchical models. We show that ML-PIP unifies a
number of important approaches to meta-learning, including both gradient and metric based variants,
as well as amortized MAP inference and conditional modelling approaches (Garnelo et al., 2018a).
We lay out these connections, most of which rely on point estimates for the task-specific parame-
ters corresponding to q(ψ(t)|D(t), θ) = δ

(
ψ(t) − ψ∗(D(t), θ)

)
. In addition, we compare previous

approaches to VERSA.

Gradient-Based Meta-Learning. Let the task-specific parameters ψ(t) be all the parameters in a
neural network. Consider a point estimate formed by taking a step of gradient ascent of the training
loss, initialized at ψ0 and with learning rate η.

ψ∗(D(t), θ) = ψ0 + η
∂

∂ψ
log

Nt∑
n=1

p(y(t)n |x(t)n , ψ, θ)

∣∣∣∣
ψ0

. (6)

This is an example of semi-amortized inference (Kim et al., 2018b), as the only shared inference
parameters are the initialization and learning rate, and optimization is required for each task (albeit
only for one step). Importantly, Eq. (6) recovers Model-agnostic meta-learning (Finn et al., 2017),
providing a perspective as semi-amortized ML-PIP. This perspective is complementary to that of
Grant et al. (2018) who justify the one-step gradient parameter update employed by MAML through
MAP inference and the form of the prior p(ψ|θ). Note that the episodic meta-train / meta-test splits
do not fall out of this perspective. Instead we view the update choice as one of amortization which is
trained using the predictive KL and naturally recovers the test-train splits. More generally, multiple
gradient steps could be fed into an RNN to compute ψ∗ which recovers Ravi and Larochelle (2017).
In comparison to these methods, besides being distributional over ψ, VERSA relieves the need to
back-propagate through gradient based updates during training and compute gradients at test time, as
well as enables the treatment of both local and global parameters which simplifies inference.

Metric-Based Few-Shot Learning. Let the task-specific parameters be the top layer softmax
weights and biases of a neural network ψ(t) = {w(t)

c , b
(t)
c }Cc=1. The shared parameters are the lower

layer weights. Consider amortized point estimates for these parameters constructed by averaging the
top-layer activations for each class,

ψ∗(D(t), θ) = {w∗c , b∗c}Cc=1 =
{
µ(t)
c ,−‖µ(t)

c ‖2/2
}C
c=1

where µ(t)
c =

1

kc

kc∑
n=1

hθ(x
(c)
n) (7)

These choices lead to the following predictive distribution:

p(ỹ(t) = c|x̃(t), θ) ∝ exp
(
−d(hθ(x̃

(t)), µ(t)
c)
)

= exp

(
hθ(x̃

(t))Tµ(t)
c −

1

2
‖µ(t)

c ‖2
)
, (8)

which recovers prototypical networks (Snell et al., 2017) using a Euclidean distance function d with
the final hidden layer being the embedding space. In comparison, VERSA is distributional and it uses
a more flexible amortization function that goes beyond averaging of activations.

Amortized MAP inference. Qiao et al. (2017) proposed a method for predicting weights of classes
from activations of a pre-trained network to support i) online learning on a single task to which
new few-shot classes are incrementally added, ii) transfer from a high-shot classification task to a
separate low-shot classification task. This is an example usage of hyper-networks (Ha et al., 2016) to
amortize learning about weights, and can be recovered by the ML-PIP framework by pre-training θ and
performing MAP inference for ψ. VERSA goes beyond point estimates and although its amortization
network is similar in spirit, it is more general, employing end-to-end training and supporting full
multi-task learning by sharing information between many tasks.

Conditional models trained via maximum likelihood. In cases where a point estimate of the
task-specific parameters are used the predictive becomes

qφ(ỹ|D, θ) =

∫
p(ỹ|ψ, θ)qφ(ψ|D, θ)dψ = p(ỹ|ψ∗(D, θ), θ). (9)

6

Published as a conference paper at ICLR 2019

In such cases the amortization network that computes ψ∗(D, θ) can be equivalently viewed as part of
the model specification rather than the inference scheme. From this perspective, the ML-PIP training
procedure for φ and θ is equivalent to training a conditional model p(ỹ|ψ∗φ(D, θ), θ) via maximum
likelihood estimation, establishing a strong connection to neural processes (Garnelo et al., 2018a;b).

Comparison to Variational Inference (VI). Standard application of amortized VI (Kingma and
Welling, 2014; Rezende et al., 2014; Kingma et al., 2015; Blundell et al., 2015) for ψ in the multi-task
discriminative model optimizes the Monte Carlo approximated free-energy w.r.t. φ and θ:

L̂(θ, φ) =
1

T

T∑
t=1

 ∑
(x,y)∈D(t)

(
1

L

L∑
l=1

log p(y(t)|x(t), ψ(t)
l , θ)

)
−KL

[
qφ(ψ|D(t), θ)‖p(ψ|θ)

] ,

(10)
where ψ(t)

l ∼ qφ(ψ|D(t), θ). In addition to the conceptual difference from ML-PIP (discussed in
Section 2.1), this differs from the ML-PIP objective by i) not employing meta train / test splits, and ii)
including the KL for regularization instead. In Section 5, we show that VERSA significantly improves
over standard VI in the few-shot classification case and compare to recent VI/meta-learning hybrids.

5 EXPERIMENTS AND RESULTS

We evaluate VERSA on several few-shot learning tasks. We begin with toy experiments to investigate
the properties of the amortized posterior inference achieved by VERSA. We then report few-shot
classification results using the Omniglot and miniImageNet datasets in Section 5.2, and demonstrate
VERSA’s ability to retain high accuracy as the shot and way are varied at test time. In Section 5.3, we
examine VERSA’s performance on a one-shot view reconstruction task with ShapeNet objects.2

5.1 POSTERIOR INFERENCE WITH TOY DATA

To investigate the approximate inference performed by our training procedure, we run the following
experiment. We first generate data from a Gaussian distribution with a mean that varies across tasks:

p(θ) = δ(θ − 0); p
(
ψ(t)|θ

)
= N

(
ψ(t); θ, σ2

ψ

)
; p

(
y(t)n |ψ(t)

)
= N

(
y(t)n ;ψ(t), σ2

y

)
. (11)

We generate T = 250 tasks in two separate experiments, having N ∈ {5, 10} train observations
and M = 15 test observations. We introduce the inference network qφ(ψ|D(t)) = N (ψ;µ

(t)
q , σ

(t)2
q),

amortizing inference as:

µ(t)
q = wµ

N∑
n=1

y(t)n + bµ, σ(t)2
q = exp

(
wσ

N∑
n=1

y(t)n + bσ

)
. (12)

The learnable parameters φ = {wµ, bµ, wσ, bσ} are trained with the objective function in Eq. (4). The
model is trained to convergence with Adam (Kingma and Ba, 2015) using mini-batches of tasks from
the generated dataset. Then, a separate set of tasks is generated from the same generative process, and
the posterior qφ(ψ|D) is inferred with the learned amortization parameters. The true posterior over ψ
is Gaussian with a mean that depends on the task, and may be computed analytically. Fig. 4 shows the
approximate posterior distributions inferred for unseen test sets by the trained amortization networks.
The evaluation shows that the inference procedure is able to recover accurate posterior distributions
over ψ, despite minimizing a predictive KL divergence in data space.

5.2 FEW-SHOT CLASSIFICATION

We evaluate VERSA on standard few-shot classification tasks in comparison to previous work. Specif-
ically, we consider the Omniglot (Lake et al., 2011) and miniImageNet (Ravi and Larochelle, 2017)
datasets which are C-way classification tasks with kc examples per class. VERSA follows the im-
plementation in Sections 2 and 3, and the approximate inference scheme in Eq. (5). We follow the
experimental protocol established by Vinyals et al. (2016) for Omniglot and Ravi and Larochelle

2Source code for the experiments is available at https://github.com/Gordonjo/versa.

7

https://github.com/Gordonjo/versa

Published as a conference paper at ICLR 2019

ψ(t) ψ(t) ψ(t) ψ(t)

Figure 4: True posteriors p(ψ|D) () and approximate posteriors qφ(ψ|D) () for unseen test sets (?) in
the experiment. In both cases (five and ten shot), the approximate posterior closely resembles the true posterior
given the observed data.

(2017) for miniImagenet, using equivalent architectures for hθ. Training is carried out in an episodic
manner: for each task, kc examples are used as training inputs to infer qφ(ψ(c)|D, θ) for each class,
and an additional set of examples is used to evaluate the objective function. Full details of data
preparation and network architectures are provided in Appendix D.

Table 3 details few-shot classification performance for VERSA as well as competitive approaches. The
tables include results for only those approaches with comparable training procedures and convolutional
feature extraction architectures. Approaches that employ pre-training and/or residual networks (Bauer
et al., 2017; Qiao et al., 2017; Rusu et al., 2018; Gidaris and Komodakis, 2018; Oreshkin et al., 2018;
Garcia and Bruna, 2017; Lacoste et al., 2018) have been excluded so that the quality of the learning
algorithm can be assessed separately from the power of the underlying discriminative model.

For Omniglot, the training, validation, and test splits have not been specified for previous methods,
affecting the comparison. VERSA achieves a new state-of-the-art results (67.37% - up 1.38% over
the previous best) on 5-way - 5-shot classification on the miniImageNet benchmark and (97.66% - up
0.02%) on the 20-way - 1 shot Omniglot benchmark for systems using a convolution-based network
architecture and an end-to-end training procedure. VERSA is within error bars of state-of-the-art on
three other benchmarks including 5-way - 1-shot miniImageNet, 5-way - 5-shot Omniglot, and 5-way
- 1-shot Omniglot. Results on the Omniglot 20 way - 5-shot benchmark are very competitive with, but
lower than other approaches. While most of the methods evaluated in Table 3 adapt all of the learned
parameters for new tasks, VERSA is able to achieve state-of-the-art performance despite adapting
only the weights of the top-level classifier.

Comparison to standard and amortized VI. To investigate the performance of our inference
procedure, we compare it in terms of log-likelihood (Table 1) and accuracy (Table 3) to training
the same model using both amortized and non-amortized VI (i.e., Eq. (10)). Derivations and further
experimental details are provided in Appendix C. VERSA improves substantially over amortized VI
even though the same amortization network is used for both. This is due to VI’s tendency to under-fit,
especially for small numbers of data points (Trippe and Turner, 2018; Turner and Sahani, 2011)
which is compounded when using inference networks (Cremer et al., 2018). Using non-amortized VI

Table 1: Negative Log-likelihood (NLL) results for different few-shot settings on Omniglot and miniImageNet.
The ± sign indicates the 95% confidence interval over tasks using a Student’s t-distribution approximation.

Omniglot miniImageNet
5-way NLL 20-way NLL 5-way NLL

Method 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Amortized VI 0.179± 0.009 0.137± 0.004 0.456± 0.010 0.253± 0.004 1.328± 0.024 1.165± 0.010
Non-Amortized VI 0.144± 0.005 0.025± 0.001 0.393± 0.005 0.078± 0.002
VERSA 0.010± 0.005 0.007± 0.003 0.079± 0.009 0.031± 0.004 1.183± 0.023 0.859± 0.015

improves performance substantially, but does not reach the level of VERSA and forming the posterior
is significantly slower as it requires many forward / backward passes through the network. This is
similar in spirit to MAML (Finn et al., 2017), though MAML dramatically reduces the number of
required iterations by finding good global initializations e.g., five gradient steps for miniImageNet.
This is in contrast to the single forward pass required by VERSA.

8

Published as a conference paper at ICLR 2019

Versatility. VERSA allows us to vary the number of classes C and shots kc between training and
testing (Eq. (5)). Fig. 5a shows that a model trained for a particular C-way retains very high accuracy
as C is varied. For example, when VERSA is trained for the 20-Way, 5-Shot condition, at test-time
it can handle C = 100 way conditions and retain an accuracy of approximately 94%. Fig. 5b shows
similar robustness as the number of shots kc is varied. VERSA therefore demonstrates considerable
flexibility and robustness to the test-time conditions, but at the same time it is efficient as it only
requires forward passes through the network. The time taken to evaluate 1000 test tasks with a 5-way,
5-shot miniImageNet trained model using MAML (https://github.com/cbfinn/maml) is
302.9 seconds whereas VERSA took 53.5 seconds on a NVIDIA Tesla P100-PCIE-16GB GPU. This
is more than 5× speed advantage in favor of VERSA while bettering MAML in accuracy by 4.26%.

0 20 40 60 80 100

85

90

95

100

M
ea

n
A

cc
ur

ac
y

(%
)

5 way, 1 shot

5 way, 5 shot

20 way, 1 shot

20 way, 5 shot

(a) Way (C)

0 2 4 6 8 10
99

99.2

99.4

99.6

99.8

100

M
ea

n
A

cc
ur

ac
y

(%
)

5 way, 5 shot

5 way, 1 shot

20 way, 5 shot

20 way, 1 shot

(b) Shot (kc)

Figure 5: Test accuracy on Omniglot when varying (a) way (fixing shot to be that used for training) and (b)
shot. In Fig. 5b, all models are evaluated on 5-way classification. Colors indicate models trained with different
way-shot episodic combinations.

5.3 SHAPENET VIEW RECONSTRUCTION

ShapeNetCore v2 (Chang et al., 2015) is a database of 3D objects covering 55 common object
categories with∼51,300 unique objects. For our experiments, we use 12 of the largest object categories.
We concatenate all instances from all 12 of the object categories together to obtain a dataset of 37,108
objects. This dataset is then randomly shuffled and we use 70% of the objects for training, 10% for
validation, and 20% for testing. For each object, we generate 36 views of size 32× 32 pixels spaced
evenly every 10 degrees in azimuth around the object.

We evaluate VERSA by comparing it to a conditional variational autoencoder (C-VAE) with view
angles as labels (Kingma et al., 2014; Narayanaswamy et al., 2017) and identical architectures. We
train VERSA in an episodic manner and the C-VAE in batch-mode on all 12 object classes at once.
We train on a single view selected at random and use the remaining views to evaluate the objective
function. For full experimentation details see Appendix E. Fig. 6 shows views of unseen objects
from the test set generated from a single shot with VERSA as well as a C-VAE and compares both to
ground truth views. Both VERSA and the C-VAE capture the correct orientation of the object in the
generated images. However, VERSA produces images that contain much more detail and are visually
sharper than the C-VAE images. Although important information is missing due to occlusion in the
single shot, VERSA is often able to accurately impute this information presumably due to learning
the statistics of these objects. Table 2 provides quantitative comparison results between VERSA with
varying shot and the C-VAE. The quantitative metrics all show the superiority of VERSA over a
C-VAE. As the number of shots increase to 5, the measurements show a corresponding improvement.

Model MSE SSIM

C-VAE 1-shot 0.0269 0.5705
VERSA 1-shot 0.0108 0.7893
VERSA 5-shot 0.0069 0.8483

Table 2: View reconstruction test results. Mean squared
error (MSE – lower is better) and the structural similar-
ity index (SSIM - higher is better) (Wang et al., 2004)
are measured between the generated and ground truth
images. Error bars not shown as they are insignificant.

9

https://github.com/cbfinn/maml

Published as a conference paper at ICLR 2019

6 CONCLUSIONS

We have introduced ML-PIP, a probabilistic framework for meta-learning. ML-PIP unifies a broad
class of recently proposed meta-learning methods, and suggests alternative approaches. Building
on ML-PIP, we developed VERSA, a few-shot learning algorithm that avoids the use of gradient
based optimization at test time by amortizing posterior inference of task-specific parameters. We
evaluated VERSA on several few-shot learning tasks and demonstrated state-of-the-art performance
and compelling visual results on a challenging 1-shot view reconstruction task.

Table 3: Accuracy results for different few-shot settings on Omniglot and miniImageNet. The ± sign indicates
the 95% confidence interval over tasks using a Student’s t-distribution approximation. Bold text indicates the
highest scores that overlap in their confidence intervals.

Omniglot miniImageNet
5-way accuracy (%) 20-way accuracy (%) 5-way accuracy (%)

Method 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Siamese Nets
(Koch et al., 2015)

97.3 98.4 88.1 97.0

Matching Nets
(Vinyals et al., 2016)

98.1 98.9 93.8 98.5 46.6 60.0

Neural Statistician
(Edwards and Storkey, 2017)

98.1 99.5 93.2 98.1

Memory Mod
(Kaiser et al., 2017)

98.4 99.6 95.0 98.6

Meta LSTM
(Ravi and Larochelle, 2017)

43.44 ± 0.77 60.60 ± 0.71

MAML
(Finn et al., 2017)

98.7 ± 0.4 99.9 ± 0.1 95.8 ± 0.3 98.9 ± 0.2 48.7 ± 1.84 63.11 ± 0.92

Prototypical Netsa

(Snell et al., 2017)
97.4 99.3 95.4 98.7 46.61 ± 0.78 65.77 ± 0.70

mAP-SSVM
(Triantafillou et al., 2017)

98.6 99.6 95.2 98.6 50.32 ± 0.80 63.94 ± 0.72

mAP-DLM
(Triantafillou et al., 2017)

98.8 99.6 95.4 98.6 50.28 ± 0.80 63.70 ± 0.70

LLAMA
(Grant et al., 2018)

49.40 ± 1.83

PLATIPUS
(Finn et al., 2018)

50.13 ± 1.86

Meta-SGD
(Li et al., 2017)

99.53 ± 0.26 99.93 ± 0.09 95.93 ± 0.38 98.97 ± 0.19 50.47 ± 1.87 64.03 ± 0.94

SNAIL
(Mishra et al., 2018)

99.07 ± 0.16 99.78 ± 0.09 97.64 ± 0.30 99.36 ± 0.18 45.1 55.2

Relation Net
(Yang et al., 2018)

99.6 ± 0.2 99.8 ± 0.1 97.6 ± 0.2 99.1 ± 0.1 50.44 ± 0.82 65.32 ± 0.70

Reptile
(Nichol and Schulman, 2018)

97.68 ± 0.04 99.48 ± 0.06 89.43 ± 0.14 97.12 ± 0.32 49.97 ± 0.32 65.99 ± 0.58

BMAML
(Kim et al., 2018a)

53.8 ± 1.46

Amortized VI 97.77 ± 0.55 98.71 ± 0.22 90.56 ± 0.54 96.12 ± 0.23 44.13 ± 1.78 55.68 ± 0.91
Non-Amortized VI 98.77 ± 0.18 99.74 ± 0.06 95.28 ± 0.19 98.84 ± 0.09
VERSA (Ours) 99.70 ± 0.20 99.75 ± 0.13 97.66 ± 0.29 98.77 ± 0.18 53.40 ± 1.82 67.37 ± 0.86

aWe report the performance of Prototypical Networks when training and testing with the same “shot” and “way”, which is consistent with
the experimental protocol of the other methods listed. We note that Prototypical Networks perform better when trained on higher “way” than
that of testing. In particular, when trained on 20-way classification and tested on 5-way, the model achieves 68.20± 0.66%.

10

Published as a conference paper at ICLR 2019

shot

C-VAE

VERSA

Ground Truth

shot

C-VAE

VERSA

Ground Truth

C-VAE

VERSA

Ground Truth

shot

C-VAE

VERSA

Ground Truth

shot

shot

C-VAE

VERSA

Ground Truth

shot

C-VAE

VERSA

Ground Truth

shot

C-VAE

VERSA

Ground Truth

shot

C-VAE

VERSA

Ground Truth

shot

C-VAE

VERSA

Ground Truth

shot

C-VAE

VERSA

Ground Truth

shot

C-VAE

VERSA

Ground Truth

shot

C-VAE

VERSA

Ground Truth

Figure 6: Results for ShapeNet view reconstruction for unseen objects from the test set (shown left). The model
was trained to reconstruct views from a single orientation. Top row: images/views generated by a C-VAE model;
middle row images/views generated by VERSA; bottom row: ground truth images. Views are spaced evenly every
30 degrees in azimuth.

11

Published as a conference paper at ICLR 2019

ACKNOWLEDGEMENTS

We thank Ravi and Larochelle for providing the miniImageNet dataset, and Yingzhen Li, Niki Kil-
bertus, Will Tebbutt, Maria Lomelli, and Robert Pinsler for their useful feedback. J.G. acknowledges
funding from a Samsung Doctoral Scholarship. M.B. acknowledges funding by the EPSRC and a
Qualcomm European Scholarship in Technology. R.E.T. acknowledges support from EPSRC grants
EP/M0269571 and EP/L000776/1.

REFERENCES

B. Bakker and T. Heskes. Task clustering and gating for Bayesian multitask learning. Journal of
Machine Learning Research, 4(May):83–99, 2003.

M. Bauer, M. Rojas-Carulla, J. B. Światkowski, B. Schölkopf, and R. E. Turner. Discriminative k-shot
learning using probabilistic models. arXiv preprint arXiv:1706.00326, 2017.

J. O. Berger. Statistical decision theory and Bayesian analysis. Springer Science & Business Media,
2013.

C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra. Weight uncertainty in neural network.
In International Conference on Machine Learning, pages 1613–1622, 2015.

G. Casella and R. L. Berger. Statistical inference, volume 2. Duxbury Pacific Grove, CA, 2002.

A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song,
H. Su, J. Xiao, L. Yi, and F. Yu. ShapeNet: An Information-Rich 3D Model Repository. Tech-
nical Report arXiv:1512.03012 [cs.GR], Stanford University — Princeton University — Toyota
Technological Institute at Chicago, 2015.

C. Cremer, X. Li, and D. Duvenaud. Inference suboptimality in variational autoencoders. arXiv
preprint arXiv:1801.03558, 2018.

A. P. Dawid. The geometry of proper scoring rules. Annals of the Institute of Statistical Mathematics,
59(1):77–93, 2007.

H. Edwards and A. Storkey. Towards a neural statistician. In Proceedings of the International
Conference on Learning Representations (ICLR), 2017.

L. Fei-Fei, R. Fergus, and P. Perona. One-shot learning of object categories. IEEE transactions on
pattern analysis and machine intelligence, 28(4):594–611, 2006.

C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep networks.
In International Conference on Machine Learning, pages 1126–1135, 2017.

C. Finn, K. Xu, and S. Levine. Probabilistic model-agnostic meta-learning. arXiv preprint
arXiv:1806.02817, 2018.

V. Garcia and J. Bruna. Few-shot learning with graph neural networks. arXiv preprint
arXiv:1711.04043, 2017.

M. Garnelo, D. Rosenbaum, C. J. Maddison, T. Ramalho, D. Saxton, M. Shanahan, Y. W. Teh, D. J.
Rezende, and S. Eslami. Conditional neural processes. arXiv preprint arXiv:1807.01613, 2018a.

M. Garnelo, J. Schwarz, D. Rosenbaum, F. Viola, D. J. Rezende, S. Eslami, and Y. W. Teh. Neural
processes. arXiv preprint arXiv:1807.01622, 2018b.

S. Gidaris and N. Komodakis. Dynamic few-shot visual learning without forgetting. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4367–4375, 2018.

E. Grant, C. Finn, S. Levine, T. Darrell, and T. Griffiths. Recasting gradient-based meta-learning as
hierarchical Bayes. In Proceedings of the International Conference on Learning Representations
(ICLR), 2018.

D. Ha, A. Dai, and Q. V. Le. Hypernetworks. arXiv preprint arXiv:1609.09106, 2016.

12

Published as a conference paper at ICLR 2019

T. Heskes. Empirical bayes for learning to learn. 2000.

G. E. Hinton, P. Dayan, B. J. Frey, and R. M. Neal. The” wake-sleep” algorithm for unsupervised
neural networks. Science, 268(5214):1158–1161, 1995.

F. Huszar. Scoring rules, divergences and information in Bayesian machine learning. PhD thesis,
University of Cambridge, 2013.

E. T. Jaynes. Probability theory: the logic of science. Cambridge university press, 2003.

Ł. Kaiser, O. Nachum, R. Aurko, and S. Bengio. Learning to remember rare events. In International
Conference on Learning Representations (ICLR), 2017.

T. Kim, J. Yoon, O. Dia, S. Kim, Y. Bengio, and S. Ahn. Bayesian model-agnostic meta-learning.
arXiv preprint arXiv:1806.03836, 2018a.

Y. Kim, S. Wiseman, A. C. Miller, D. Sontag, and A. M. Rush. Semi-amortized variational autoen-
coders. In Proceedings of the 35th International Conference on Machine Learning, 2018b.

D. Kingma and J. Ba. Adam: A method for stochastic optimization. In Proceedings of the International
Conference on Learning Representations (ICLR), 2015.

D. P. Kingma and M. Welling. Auto-encoding variational Bayes. In Proceedings of the International
Conference on Learning Representations (ICLR), 2014.

D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling. Semi-supervised learning with deep
generative models. In Advances in Neural Information Processing Systems, pages 3581–3589,
2014.

D. P. Kingma, T. Salimans, and M. Welling. Variational dropout and the local reparameterization
trick. In Advances in Neural Information Processing Systems, pages 2575–2583, 2015.

G. Koch, R. Zemel, and R. Salakhutdinov. Siamese neural networks for one-shot image recognition.
In ICML Deep Learning Workshop, volume 2, 2015.

A. Lacoste, B. Oreshkin, W. Chung, T. Boquet, N. Rostamzadeh, and D. Krueger. Uncertainty in
multitask transfer learning. arXiv preprint arXiv:1806.07528, 2018.

S. Lacoste-Julien, F. Huszár, and Z. Ghahramani. Approximate inference for the loss-calibrated
Bayesian. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and
Statistics, pages 416–424, 2011.

B. Lake, R. Salakhutdinov, J. Gross, and J. Tenenbaum. One shot learning of simple visual concepts.
In Proceedings of the Annual Meeting of the Cognitive Science Society, volume 33, 2011.

Z. Li, F. Zhou, F. Chen, and H. Li. Meta-sgd: Learning to learn quickly for few shot learning. arXiv
preprint arXiv:1707.09835, 2017.

L. v. d. Maaten and G. Hinton. Visualizing data using t-SNE. Journal of machine learning research,
9(Nov):2579–2605, 2008.

N. Mishra, M. Rohaninejad, X. Chen, and P. Abbeel. A simple neural attentive meta-learner. 2018.

S. Mohamed. Density ratio trick. http://blog.shakirm.com/2018/01/
machine-learning-trick-of-the-day-7-density-ratio-trick/, 2018.

D. K. Naik and R. Mammone. Meta-neural networks that learn by learning. In Neural Networks,
1992. IJCNN., International Joint Conference on, volume 1, pages 437–442. IEEE, 1992.

S. Narayanaswamy, T. B. Paige, J.-W. van de Meent, A. Desmaison, N. Goodman, P. Kohli, F. Wood,
and P. Torr. Learning disentangled representations with semi-supervised deep generative models.
In Advances in Neural Information Processing Systems, pages 5927–5937, 2017.

A. Y. Ng and M. I. Jordan. On discriminative vs. generative classifiers: A comparison of logistic
regression and naive bayes. In Advances in Neural Information Processing Systems, pages 841–848,
2002.

13

http://blog.shakirm.com/2018/01/machine-learning-trick-of-the-day-7-density-ratio-trick/
http://blog.shakirm.com/2018/01/machine-learning-trick-of-the-day-7-density-ratio-trick/

Published as a conference paper at ICLR 2019

A. Nichol and J. Schulman. Reptile: a scalable metalearning algorithm. arXiv preprint
arXiv:1803.02999, 2018.

B. N. Oreshkin, A. Lacoste, and P. Rodriguez. Tadam: Task dependent adaptive metric for improved
few-shot learning. arXiv preprint arXiv:1805.10123, 2018.

C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep learning on point sets for 3d classification
and segmentation. Proc. Computer Vision and Pattern Recognition (CVPR), IEEE, 1(2):4, 2017.

S. Qiao, C. Liu, W. Shen, and A. Yuille. Few-shot image recognition by predicting parameters from
activations. arXiv preprint arXiv:1706.03466, 2017.

S. Ravi and H. Larochelle. Optimization as a model for few-shot learning. In Proceedings of the
International Conference on Learning Representations (ICLR), 2017.

D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate inference
in deep generative models. In International Conference on Machine Learning, pages 1278–1286,
2014.

A. A. Rusu, D. Rao, J. Sygnowski, O. Vinyals, R. Pascanu, S. Osindero, and R. Hadsell. Meta-learning
with latent embedding optimization. arXiv preprint arXiv:1807.05960, 2018.

J. Schmidhuber. Evolutionary principles in self-referential learning. PhD thesis, Technische Univer-
sität München, 1987.

J. Snell, K. Swersky, and R. Zemel. Prototypical networks for few-shot learning. In Advances in
Neural Information Processing Systems, pages 4080–4090, 2017.

M. Sugiyama, T. Suzuki, and T. Kanamori. Density ratio estimation in machine learning. Cambridge
University Press, 2012.

S. Thrun and L. Pratt. Learning to learn. Springer Science & Business Media, 2012.

E. Triantafillou, R. Zemel, and R. Urtasun. Few-shot learning through an information retrieval lens.
In Advances in Neural Information Processing Systems, pages 2255–2265, 2017.

B. Trippe and R. Turner. Overpruning in variational bayesian neural networks. arXiv preprint
arXiv:1801.06230, 2018.

R. E. Turner and M. Sahani. Two problems with variational expectation maximisation for time-series
models. Bayesian Time series models, 1(3.1):3–1, 2011.

O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra, et al. Matching networks for one shot learning. In
Advances in Neural Information Processing Systems, pages 3630–3638, 2016.

M. J. Wainwright and M. I. Jordan. Graphical models, exponential families, and variational inference.
Foundations and Trends R© in Machine Learning, 1(1-2):1–305, 2008.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assessment: from error
visibility to structural similarity. IEEE transactions on image processing, 13(4):600–612, 2004.

F. S. Y. Yang, L. Zhang, T. Xiang, P. H. Torr, and T. M. Hospedales. Learning to compare: Relation
network for few-shot learning. 2018.

M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov, and A. J. Smola. Deep sets.
In Advances in Neural Information Processing Systems, pages 3394–3404, 2017.

14

Published as a conference paper at ICLR 2019

A BAYESIAN DECISION THEORETIC GENERALIZATION OF ML-PIP

A generalization of the new inference framework presented in Section 2 is based upon Bayesian
decision theory (BDT). BDT provides a recipe for making predictions ŷ for an unknown test variable
ỹ by combining information from observed training data D(t) (here from a single task t) and a loss
function L(ỹ, ŷ) that encodes the cost of predicting ŷ when the true value is ỹ (Berger, 2013; Jaynes,
2003). In BDT an optimal prediction minimizes the expected loss (suppressing dependencies on the
inputs and θ to reduce notational clutter):3

ŷ∗ = argmin
ŷ

∫
p(ỹ|D(t))L(ỹ, ŷ)dỹ, where p(ỹ|D(t)) =

∫
p(ỹ|ψ(t))p(ψ(t)|D(t))dψ(t)

(A.1)
is the Bayesian predictive distribution and p(ψ(t)|D(t)) the posterior distribution of ψ(t) given the
training data from task t.

BDT separates test and training data and so is a natural lens through which to view recent episodic
approaches to training that utilize many internal training/test splits (Vinyals et al., 2016). Based on
this insight, what follows is a fairly dense derivation of an ultimately simple stochastic variational
objective for meta-learning probabilistic inference that is rigorously grounded in Bayesian inference
and decision theory.

Distributional BDT. We generalize BDT to cases where the goal is to return a full predictive
distribution q(·) over the unknown test variable ỹ rather than a point prediction. The quality of q
is quantified through a distributional loss function L(ỹ, q(·)). Typically, if ỹ (the true value of the
underlying variable) falls in a low probability region of q(·) the loss will be high, and vice versa. The
optimal predictive q∗ is found by optimizing the expected distributional loss with q constrained to a
distributional family Q:

q∗ = argmin
q∈Q

∫
p(ỹ|D(t))L(ỹ, q(·))dỹ. (A.2)

Amortized variational training. Here, we amortize q to form quick predictions at test time and
learn parameters by minimizing average expected loss over tasks. Let φ be a set of shared variational
parameters such that q(ỹ) = qφ(ỹ|D) (or qφ for shorthand). Now the approximate predictive distribu-
tion can take any training dataset D(t) as an argument and directly perform prediction of ỹ(t). The
optimal variational parameters are found by minimizing the expected distributional loss across tasks

φ∗ = argmin
φ
L [qφ] , L [qφ] =

∫
p(D)p(ỹ|D)L(ỹ, qφ(·|D))dỹ dD = Ep(D,ỹ)[L(ỹ, qφ(·|D))] .

(A.3)
Here the variablesD, x̃ and ỹ are placeholders for integration over all possible datasets, test inputs and
outputs. Note that Eq. (A.3) can be stochastically approximated by sampling a task t and randomly
partitioning into training data D and test data {x̃m, ỹm}Mm=1, which naturally recovers episodic mini-
batch training over tasks and data (Vinyals et al., 2016; Ravi and Larochelle, 2017). Critically, this
does not require computation of the true predictive distribution. It also emphasizes the meta-learning
aspect of the procedure, as the model is learning how to infer predictive distributions from training
tasks.

Loss functions. We employ the log-loss: the negative log density of qφ at ỹ. In this case,

L [qφ] = Ep(D,ỹ) [− log qφ(ỹ|D)] = Ep(D) [KL [p(ỹ|D)‖qφ(ỹ|D)] + H [p(ỹ|D)]] , (A.4)

where KL[p(y)‖q(y)] is the KL-divergence, and H [p(y)] is the entropy of p. Eq. (A.4) has the elegant
property that the optimal qφ is the closest member of Q (in a KL sense) to the true predictive p(ỹ|D),
which is unsurprising as the log-loss is a proper scoring rule (Huszar, 2013). This is reminiscent of
the sleep phase in the wake-sleep algorithm (Hinton et al., 1995). Exploration of alternative proper
scoring rules (Dawid, 2007) and more task-specific losses (Lacoste-Julien et al., 2011) is left for
future work.

3For discrete outputs the integral may be replaced with a summation.

15

Published as a conference paper at ICLR 2019

Specification of the approximate predictive distribution. Next, we consider the form of qφ. Mo-
tivated by the optimal predictive distribution, we replace the true posterior by an approximation:

qφ(ỹ|D) =

∫
p(ỹ|ψ)qφ(ψ|D)dψ. (A.5)

B JUSTIFICATION FOR CONTEXT-INDEPENDENT APPROXIMATION

In this section we lay out both theoretical and empirical justifications for the context-independent
approximation detailed in Section 3.

B.1 THEORETICAL ARGUMENT – DENSITY RATIO ESTIMATION

A principled justification for the approximation is best understood through the lens of density ratio
estimation (Mohamed, 2018; Sugiyama et al., 2012). We denote the conditional density of each class
as p(x|y = c) and assume equal a priori class probability p(y = c) = 1/C. Density ratio theory
then uses Bayes’ theorem to show that the optimal softmax classifier can be expressed in terms of the
conditional densities (Mohamed, 2018; Sugiyama et al., 2012):

Softmax(y = c|x) =
exp(h(x)>wc)∑
c′ exp(h(x)>wc′)

= p(y = c|x) =
p(x|y = c)∑

c′
p(x|y = c′)

, (B.1)

This implies that the optimal classifier will construct estimators for the conditional density for each
class, that is exp(h(x)>wc) ∝ p(x|y = c). Importantly for our approximation, notice that these
estimates are constructed independently for each class, similarly to training a naive Bayes classifier.
VERSA mirrors this optimal form using:

log p(x|y = c) ∝ hθ(x̃)>wc, (B.2)

where wc ∼ qφ (w|{xn|yn = c}) for each class in a given task. Under ideal conditions (i.e., if one
could perfectly estimate p(x̃|y = c)), the context-independent assumption holds, further motivating
our design.

B.2 EMPIRICAL JUSTIFICATION

Here we detail a simple experiment to evaluate the validity of the context-independent inference
assumption. The goal of the experiment is to examine if weights may be context-independent without
imposing the assumption on the amortization network. To see this, we randomly generate fifty tasks
from a dataset, where classes may appear a number of times in different tasks. We then perform
free-form (non-amortized) variational inference on the weights for each of the tasks, with a Gaussian
variational distribution:

qφ

(
W (t)|D(t), θ

)
= N

(
W (t);µ

(t)
φ , σ

(t)2
φ

)
. (B.3)

If the assumption is reasonable, we may expect the distribution of the weights of a specific class to be
similar regardless of the additional classes in the task.

We examine 5-way classification in the MNIST dataset. We randomly sample and fix fifty such tasks.
We train the model twice using the same feature extraction network used in the few-shot classification
experiments, and fix the dθ to be 16 and 2. We then train the model in an episodic manner by mini-
batching tasks at each iteration. The model is trained to convergence, and achieves 99% accuracy on
held out test examples for the tasks. After training is complete we examine the optimized µ(t)

φ for each
class in each task. Fig. B.1a shows a t-SNE (Maaten and Hinton, 2008) plot for the 16-dimensional
weights. We see that when reduced to 2-dimensions, the weights cluster according to class. Fig. B.1b
visualizes the weights in their original space. In this plot, weights from the same class are grouped
together, and clear similarity patterns are evident across the image, showing that weights from the
same class have similar means across tasks. Fig. B.2 details the task weights in 2-dimensional space.
Here, each pentagon represents the weight means learned for one training task, where the nodes of
the pentagon are colored according to the class the weights represent. In Fig. B.2a we see that overall,

16

Published as a conference paper at ICLR 2019

(a)

(b)

Figure B.1: Visualizing the learned weights for dθ = 16. (a) Weight dimensionality is reduced using T-SNE
(Maaten and Hinton, 2008). Weights are colored according to class. (b) Each weight represents one column of
the image. Weights are grouped by class.

(a) (b)

Figure B.2: Visualizing the task weights for dθ = 2. (a) All training tasks. (b) Only training tasks containing
both ‘1’s and ‘2’s.

17

Published as a conference paper at ICLR 2019

the classes cluster in 2-dimensional space as well. However, there is some overlap (e.g., classes ‘1’
and ‘2’), and that for some tasks a class-weight may appear away from the cluster. Fig. B.2b shows
the same plot, but only for tasks that contain both class ‘1’ and ‘2’. Here we can see that for these
tasks, class ‘2’ weights are all located away from their cluster.

This implies that each class-weights are typically well-approximated as being independent of the task.
However, if the model lacks capacity to properly assign each set of class weights to different regions
of space, for tasks where classes from similar regions of space appear, the inference procedure will
‘move’ one of the class weights to an ‘empty’ region of the space.

C VARIATIONAL INFERENCE DERIVATIONS FOR THE MODEL

We derive a VI-based objective for our probabilistic model. By “amortized” VI we mean that
qφ(ψ|D(t), θ) is parameterized by a neural network with a fixed-sized φ. Conversely, “non-amortized”
VI refers to local parameters φ(t) that are optimized independently (at test time) for each new task t,
such that q(ψ|D(t), θ) = N (ψ|µφ(t) ,Σφ(t)). However, the derivation of the objective function does
not change between these options. For a single task t, an evidence lower bound (ELBO; (Wainwright
and Jordan, 2008)) may be expressed as:

Lt = Eqφ(ψ|D(t),θ)

 ∑
(x,y)∈D(t)

log p(y|x, ψ, θ)

−KL
[
qφ(ψ|D(t), θ)‖p(ψ|θ)

]
. (C.1)

We can then derive a stochastic estimator to optimize Eq. (C.1) by sampling D(t) ∼ p(D) (ap-
proximated with a training set of tasks) and simple Monte Carlo integration over ψ such that
ψ(l) ∼ qφ(ψ|D(t), θ):

L̂ =
1

T

T∑
t=1

 ∑
(x,y)∈D(t)

(
1

L

L∑
l=1

log p(y|x, ψ(l), θ)

)
−KL

[
qφ(ψ|D(t), θ)‖p(ψ|θ)

] , (C.2)

Eq. (C.2) differs from our objective function in Eq. (4) in two important ways: (i) Eq. (4) does not
contain a KL term for qφ(ψ|D(t), θ) (nor any other form of prior distribution over ψ, and (ii) Eq. (C.1)
does not distinguish between training and test data within a task, and therefore does not explicitly
encourage the model to generalize in any way.

D EXPERIMENTATION DETAILS

In this section we provide comprehensive details on the few-shot classification experiments.

D.1 OMNIGLOT FEW-SHOT CLASSIFICATION TRAINING PROCEDURE

Omniglot (Lake et al., 2011) is a few-shot learning dataset consisting of 1623 handwritten characters
(each with 20 instances) derived from 50 alphabets. We follow a pre-processing and training procedure
akin to that defined in (Vinyals et al., 2016). First the images are resized to 28× 28 pixels and then
character classes are augmented with rotations of 90 degrees. The training, validation and test sets
consist of a random split of 1100, 100, and 423 characters, respectively. When augmented this results
in 4400 training, 400 validation, and 1292 test classes, each having 20 character instances. For C-way,
kc-shot classification, training proceeds in an episodic manner. Each training iteration consists of
a batch of one or more tasks. For each task C classes are selected at random from the training set.
During training, kc character instances are used as training inputs and 15 character instances are used
as test inputs. The validation set is used to monitor the progress of learning and to select the best
model to test, but does not affect the training process. Final evaluation of the trained model is done on
600 randomly selected tasks from the test set. During evaluation, kc character instances are used as
training inputs and kc character instances are used as test inputs. We use the Adam (Kingma and Ba,
2015) optimizer with a constant learning rate of 0.0001 with 16 tasks per batch to train all models.
The 5-way - 5-shot and 5-way - 1-shot models are trained for 80,000 iterations while the 20-way -
5-shot model is trained for 60,000 iterations, and the 20-way - 1-shot model is trained for 100,000
iterations. In addition, we use a Gaussian form for q and set the number of ψ samples to L = 10.

18

Published as a conference paper at ICLR 2019

D.2 miniIMAGENET FEW-SHOT CLASSIFICATION TRAINING PROCEDURE

miniImageNet (Vinyals et al., 2016) is a dataset of 60,000 color images that is sub-divided into 100
classes, each with 600 instances. The images have dimensions of 84× 84 pixels. For our experiments,
we use the 64 training, 16 validation, and 20 test class splits defined by (Ravi and Larochelle, 2017).
Training proceeds in the same episodic manner as with Omniglot. We use the Adam (Kingma and Ba,
2015) optimizer and a Gaussian form for q and set the number of ψ samples to L = 10. For the 5-way
- 5-shot model, we train using 4 tasks per batch for 100,000 iterations and use a constant learning rate
of 0.0001. For the 5-way - 1-shot model, we train with 8 tasks per batch for 50,000 iterations and use
a constant learning rate of 0.00025.

D.3 FEW-SHOT CLASSIFICATION NETWORK ARCHITECTURES

Tables D.1 to D.4 detail the neural network architectures for the feature extractor θ, amortization
network φ, and linear classifier ψ, respectively. The feature extraction network is very similar to that
used in (Vinyals et al., 2016). The output of the amortization network yields mean-field Gaussian
parameters for the weight distributions of the linear classifier ψ. When sampling from the weight
distributions, we employ the local-reparameterization trick (Kingma et al., 2015), that is we sample
from the implied distribution over the logits rather than directly from the variational distribution.
To reduce the number of learned parameters, we share the feature extraction network θ with the
pre-processing phase of the amortizaion network ψ.

Table D.1: Feature extraction network used for Omniglot few-shot learning. Batch Normalization and dropout
with a keep probability of 0.9 used throughout.

Omniglot Shared Feature Extraction Network (θ): x̃→ hθ(x̃)

Output size Layers
28× 28× 1 Input image
14× 14× 64 conv2d (3× 3, stride 1, SAME, RELU), dropout, pool (2× 2, stride 2, SAME)
7× 7× 64 conv2d (3× 3, stride 1, SAME, RELU), dropout, pool (2× 2, stride 2, SAME)
4× 4× 64 conv2d (3× 3, stride 1, SAME, RELU), dropout, pool (2× 2, stride 2, SAME)
2× 2× 64 conv2d (3× 3, stride 1, SAME, RELU), dropout, pool (2× 2, stride 2, SAME)

256 flatten

Table D.2: Feature extraction network used for miniImageNet few-shot learning. Batch Normalization and
dropout with a keep probability of 0.5 used throughout.

miniImageNet Shared Feature Extraction Network (θ): x̃→ hθ(x̃)

Output size Layers
84× 84× 1 Input image
42× 42× 64 conv2d (3× 3, stride 1, SAME, RELU), dropout, pool (2× 2, stride 2, VALID)
21× 21× 64 conv2d (3× 3, stride 1, SAME, RELU), dropout, pool (2× 2, stride 2, VALID)
10× 10× 64 conv2d (3× 3, stride 1, SAME, RELU), dropout, pool (2× 2, stride 2, VALID)
5× 5× 64 conv2d (3× 3, stride 1, SAME, RELU), dropout, pool (2× 2, stride 2, VALID)
2× 2× 64 conv2d (3× 3, stride 1, SAME, RELU), dropout, pool (2× 2, stride 2, VALID)

256 flatten

E SHAPENET EXPERIMENTATION DETAILS

E.1 VIEW RECONSTRUCTION TRAINING PROCEDURE AND NETWORK ARCHITECTURES

ShapeNetCore v2 (Chang et al., 2015) is an annotated database of 3D objects covering 55 common
object categories with ∼51,300 unique objects. For our experiments, we use 12 of the largest object
categories. Refer to Table E.1 for a complete list. We concatenate all instances from all 12 of the

19

Published as a conference paper at ICLR 2019

Table D.3: Amortization network used for Omniglot and miniImageNet few-shot learning.

Amortization Network (φ): xc1, ..., xckc → µw(c) , σ2
w(c)

Phase Output size Layers
feature extraction k × 256 shared feature network (θ)
instance pooling 256 mean
ψ weight distribution 256 2 × fully connected, ELU +

linear fully connected to µw(c) , σ2
w(c)

Table D.4: Linear classifier used for Omniglot and miniImageNet few-shot learning.

Linear Classifier (ψ): hθ(x̃)→ p(ỹ|x̃, θ, ψt)
Output size Layers
256 Input features
C fully connected, softmax

object categories together to obtain a dataset of 37,108 objects. This concatenated dataset is then
randomly shuffled and we use 70% of the objects (25,975 in total) for training, 10% for validation
(3,710 in total) , and 20% (7423 in total) for testing. For each object, we generate V = 36, 128× 128
pixel image views spaced evenly every 10 degrees in azimuth around the object. We then convert the
rendered images to gray-scale and reduce their size to be 32× 32 pixels. Again, we train our model
in an episodic manner. Each training iteration consists a batch of one or more tasks. For each task an
object is selected at random from the training set. We train on a single view selected at random from
the V = 36 views associated with each object and use the remaining 35 views to evaluate the objective
function. We then generate 36 views of the object with a modified version of our amortization network
which is shown diagrammatically in Fig. 3. To evaluate the system, we generate views and compute
quantitative metrics over the entire test set. Tables E.2 to E.4 describe the network architectures for
the encoder, amortization, and generator networks, respectively. To train, we use the Adam (Kingma
and Ba, 2015) optimizer with a constant learning rate of 0.0001 with 24 tasks per batch for 500,000
training iterations. In addition, we set dφ = 256, dψ = 256 and number of ψ samples to 1.

Table E.1: List of ShapeNet categories used in the VERSA view reconstruction experiments.

Object Category sysnet ID Instances
airplane 02691156 4045
bench 02828884 1813
cabinet 02933112 1571
car 02958343 3533
phone 02992529 831
chair 03001627 6778
display 03211117 1093
lamp 03636649 2318
speaker 03691459 1597
sofa 04256520 3173
table 04379243 8436
boat 04530566 1939

20

Published as a conference paper at ICLR 2019

Table E.2: Encoder network used for ShapeNet few-shot learning. No dropout or batch normalization is used.

ShapeNet Encoder Network (φ): y → h

Output size Layers
32× 32× 1 Input image
16× 16× 64 conv2d (3× 3, stride 1, SAME, RELU), pool (2× 2, stride 2, VALID)
8× 8× 64 conv2d (3× 3, stride 1, SAME, RELU), pool (2× 2, stride 2, VALID)
4× 4× 64 conv2d (3× 3, stride 1, SAME, RELU), pool (2× 2, stride 2, VALID)
2× 2× 64 conv2d (3× 3, stride 1, SAME, RELU), pool (2× 2, stride 2, VALID)

dφ fully connected, RELU

Table E.3: Amortization network used for ShapeNet few-shot learning.

ShapeNet Amortization Network (φ): x(t)1 , ..., x
(t)
k , y

(t)
1 , ..., y

(t)
k → µψ, σ

2
ψ

Phase Output size Layers
φpre k × dφ encoder network (φ)
concatenate h and X k × (dψ + dX) concat(h, X)
φmid k × dφ 2× 2 fully connected, ELU
instance pooling 1× dφ average
φpost 1× dφ 2× fully connected, ELU
ψ distribution dψ fully connected linear layers to µψ, σ2

ψ

Table E.4: Generator network used for ShapeNet few-shot learning. No dropout or batch normalization is used.

ShapeNet Generator Network (θ): x̃→ p(ỹ|x̃, θ, ψ(t))

Output size Layers
dψ + dx concat(ψ, x)

512 fully connected, RELU
1024 fully connected, RELU

2× 2× 256 reshape
4× 4× 128 deconv2d (3× 3, stride 2, SAME, RELU)
8× 8× 64 deconv2d (3× 3, stride 2, SAME, RELU)

16× 16× 32 deconv2d (3× 3, stride 2, SAME, RELU)
32× 32× 1 deconv2d (3× 3, stride 2, SAME, sigmoid)

21

	Introduction
	Meta-Learning Probabilistic Inference For Prediction
	Probabilistic Model
	Probabilistic Inference

	Versatile Amortized Inference
	ML-PIP Unifies Disparate Related Work
	Experiments and Results
	Posterior Inference with Toy Data
	Few-shot Classification
	ShapeNet View Reconstruction

	Conclusions
	Bayesian Decision Theoretic Generalization of ML-PIP
	Justification for Context-Independent Approximation
	Theoretical Argument – Density Ratio Estimation
	Empirical Justification

	Variational Inference Derivations for the Model
	Experimentation Details
	Omniglot Few-shot Classification Training Procedure
	miniImageNET Few-shot Classification Training Procedure
	Few-shot Classification Network Architectures

	ShapeNet Experimentation Details
	View Reconstruction Training Procedure and Network Architectures

