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Abstract

Intermolecular interactions, including hydrogen bonding, are important for governing many
processes, including solvation, protein ligand binding and crystallisation. Previously in the
Hunter group, the Surface Site Interaction Point (SSIP) model of intermolecular interactions
has been used to describe molecules as a set of discrete hydrogen bonding sites.

In this thesis I describe the prediction of phase properties using this molecular description,
after giving an introduction to the wider area of phase property prediction.

Experimental equilibrium constants for formation of hydrogen bonded complexes was
collated to allow for the reparameterisation of the relationship used to convert calculated
electrostatic potentials into the hydrogen bond parameters used to describe the interaction
properties of SSIPs, and a curated database of this information was created.

An overhaul of the software infrastructure, to allow greater exploitation of automation in
the workflow, was undertaken. Canonicalisation of data formats for information produced
during the calculation has also been undertaken to provide a foundation for work in the
following chapters.

Calculation of partition coefficients for a series of molecular datasets have been used to
benchmark the performance of the surface site interaction model for liquids at equilibrium
(SSIMPLE) which uses the SSIP description for molecules to calculate free energies.

Functional Group Interaction Profiles (FGIP) describe the energy change of two solute
SSIPs interacting as a function of solute SSIP values. These profiles provide insight into the
strength of interactions within different solvents. A selection of profiles for a range of solvents
are included as examples. The profiles provide a useful guide for how to tune interactions
when designing systems which rely on intermolecular interactions for association.

Consideration of the solvation free energy of a single SSIP in a solvent as a function of
SSIP value, has led to the development of a metric for solvent similarity. The comparison of
solvation free energy curves for different solvents and solvent mixtures led to the construction
of similarity dendrograms that can be used for solvent selection in experimental systems.

Expansion of the approach to be used to examine the temperature dependence of the
interactions, allowed the exploration of vapour liquid equilibria.
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Chapter 1

Introduction

Understanding of the solvation properties of molecules in the liquid phase is fundamental to
several industrial and biological processes.

Free energy of transfer of solutes between solvent systems is used extensively in phar-
maceutical development to assess the bioavailability of possible active pharmaceutical in-
gredients. The association of solutes relies on the formation of favourable interactions.
Modification of the solvent composition can prevent these interactions, disfavouring asso-
ciation and further aggregation. This reduces the complexity of supramolecular structures
possible in the solution. The similarity of solvation ability of solvents is influenced by the
intermolecular interactions solvents can form with solutes. Evaluation of the similarity of
solvents is used to select replacements or alternatives for use in synthesis. The distribution of
molecules described by the vapour-liquid equilibria (VLE) requires the assessment of the
temperature dependence of interactions, to be able to accurately describe the expansion and
evaporation of liquids. Selection of experimental conditions for synthesis of pharmaceutical
agents at larger scales requires knowledge of VLE for the undertaking of safe and efficient
reactions.

All of these processes are based on the understanding of molecular interactions. The
surface site interaction point (SSIP) approach to molecular description is used in this work
to describe molecular interactions, in an attempt to describe and predict these solvation
effects. This is done using the Surface Site Interaction Model for the Properties of Liquids at
Equilibrium (SSIMPLE).



2 Introduction

1.1 Phase transfer energy

Phase transfer free energies are measured regularly to assess the suitability of potential drugs,
as a measure of the ability of the compound to travel through the body to the target. Passage
through aqueous phases (such as blood and the extracellular fluid) and cell membranes (a
hydrophobic phase) is required for a pharmaceutical agent to reach the required binding site
within a cell. The value of the partition coefficient between octan-1-ol and water is one of the
criteria in Lipinski’s ‘Rule of 5’ [1] for predicting suitability for potential drug candidates. A
value no greater than 5 is required under these rules.

Solubility and partition coefficients can refer to the dissolution or transfer of a solute
between any solvents. A partition coefficient is the ratio of concentrations of a compound in
a mixture of two immiscible solvents which are in equilibrium, represented by log P, which
is defined in equation (1.1). It can also be expressed in terms of the solvation energies, which
is shown in equation (1.2).

log P1,2 = log
(
[A]1
[A]2

)
(1.1)

log P1,2 =
log(e)(∆G1 −∆G2)

RT
(1.2)

Where log P1,2 is the partition coefficient for transfer from solvent 1 to solvent 2 of molecule
A; [A]1 and [A]2 are the concentrations of the unionised forms of molecule A in solvents 1
and 2 respectively; ∆G1 and ∆G2 are the solvation energies of molecule A in solvent 1 and 2
respectively; R is the gas constant and T is the temperature.

Equation (1.2) can be reached from equation (1.1) by relation of the chemical potential
of molecule A in the phases, at the limit of infinite dilution.

Log S is used to represent solubility coefficients. This describes the partition of the
compound between a solvent and the molecule in its standard state. The partition coefficient
can therefore be expressed as the difference between the solubility coefficients for the
molecule in the two solvents. These solubility and partition coefficients are for the neutral
state of a molecule. The distribution coefficient, log D, is related to log P, which is the
ratio of all forms of the molecule present in the two phases. It includes concentrations of
protonated and deprotonated forms, and therefore varies with pH.

Since the partition between octan-1-ol and water is used in drug discovery, the existing
methods to predict log P implicitly mean the partition between octan-1-ol and water, unless



1.1 Phase transfer energy 3

explicit solvents are given. Likewise, solubility prediction implicitly refers to solubility of
the compound in water.

1.1.1 Experimental determination of partition coefficients

The partition coefficient and solubility coefficient can be determined by experimental mea-
surement. The classical reference method used for partition coefficients is the shake flask
method, with all new methods calibrated to this method[2–4].

A flask containing the two solvents has the solute of interest added to it, and the solute is
allowed to equilibrate between the two solvent phases. The concentration of solute in each
phase is then measured by some analytical technique; either by quantitative spectroscopy
or measuring mass of solute in extracted aliquots of known volume. This process is time
consuming, leading to the need for faster and more efficient methods.

The creation of new methods or application of existing techniques to this field has been
done to try and reduce the time required to collect the experimental partition coefficients.

The pH dependence of solute precipitation has been used as an alternative approach
to obtain solubility coefficients [3–5]. The precipitation rate of the neutral species from a
supersaturated solution is used to find the solubility after the pH of the solution is changed.

Cyclic voltammetry can also be used to determine the partition coefficients[6, 7]. This
method uses the potential-pH profiles generated, along with the pKa of the solute to be able
to determine the partition coefficients.

Another approach is the use of HPLC (high performance liquid chromatography)[8–10].
This uses the retention time of the solutes in the column which is related to the partition
coefficient between the two phases in the column. Calibration with compounds of known
partition coefficients of the solvent of interest allows the generation of a linear relationship to
relate retention time to the partition coefficient to be measured. This means the method is
reliant on data from another method to be able to validate the results.

All these methods require a large amount of resources to be committed. A high throughput
screening approach has been applied to some methods [2, 6], to increase speed, but still
requires the synthesis of moderate quantities of each compound (on the order of 1-10mg).
The prediction of these values would be of great benefit, providing a more efficient way to
evaluate the potential suitability of drug candidates, in a much shorter time frame and without
the need to synthesise them.



4 Introduction

1.2 Phase transfer free energy calculation methods

Several methods have been developed to predict solubility coefficients and partition co-
efficients. These methods fall into broad categories which group the methods based on
the fundamental approaches taken for the prediction. Reviews by Mannhold et al. [11],
Nieto-Draghi et al. [12] and Skyner et al. [13] each provide slightly different taxonomies of
the methods.

The prediction methods can be broadly categorised as either empirical functions, implicit
solvent simulations or explicit solvent simulations.

1.2.1 Empirical phase transfer functions

Empirical functions for energy prediction consist of parameterised functions that use correla-
tion to experimental measurement of molecular properties. These methods can further be
classified into group contribution methods and quantitative structure property relationships
(QSPR).

Group Contribution methods

Group contribution methods are based on the summation of contributions from different
blocks in the chemical structures. These fall into three main categories. Fragment based,
atom based and topological descriptor based methods.

Fragment based methods have molecules cut into fragments, with the application of
correction factors to compensate for intramolecular interactions. Equation 1.3 shows the
general formula of fragmentational methods.

log P =
n

∑
i=1

ai fi +
m

∑
j=1

b jFj (1.3)

The first summation considers the contribution of fragment constant fi, with incidence ai.
The second term applies correction factor, Fj, with its frequency b j. The definition of
fragments larger than single atoms guarantees that significant electronic effects are comprised
in one fragment. This advantage becomes a disadvantage if key fragments are missing
from the definitions or arbitrary fragmentations are used, which can cause a calculation to
fail. The methods all rely on training sets to generate the parameters used in the individual
implementation of the algorithm. KLogP [14], KowWIN [15, 16], CLOGP [17], ADCLogP
[18], AB/LogP [19] and also AQUAFAC [20, 21] are implementations of this method.
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Atom based methods split up the molecule into individual atoms instead of fragments.
This provides a simpler general form for the methods, shown in equation 1.4.

log P =
n

∑
k=1

akNk (1.4)

With the summation over all atom types k, where ak, the contribution of atom type k, and
Nk, the number of atoms of type k. Atom types are classified based on element as well
as the chemical environment. This methodology fails to deal with long-range interactions
within a molecule, and also relies on parameterisation of all the potential functional group
environments. Examples of the implementation of atom-based methods are the original
Ghose-Crippen approach [22] (this is used in AlogP[23], MOLCAD[24], TSAR [25] and
PrologP[26]), the refined Ghose-Crippen approach [27] (which is implemented in ALOGP98),
and XLOGP [28]. The XLOGP methods apply correction factors to account for longer range
interactions, with the Ghose-Crippen and refined Ghose-Crippen methods are purely atom-
additive based models.

Topological descriptor methods use information based on the connectivity of atoms
within the molecule in the fitting of the empirical relationship. This produces relationships of
similar form to the atom or fragment based methods. Longer range interactions are taken
into account by considering the classification of atoms separated by multiple bonds.

MLOGP [29] was one of the first such methods developed. The two basic descriptors
used are the numbers of lipophilic and hydrophilic atoms in the molecule. A series of eleven
correction factors based on factors e.g. the number of unsaturated bonds and number of rings,
provides a simple formula based on fitting to experimental data for 1230 compounds.

Graph molecular connectivity was used by Junghans and Pretsch to develop TLOGP
[30]. This uses a vector representation of molecules to provide descriptors. Its performance
depends on the similarity to the training set molecules.

E-state indices [31] cover both topological and valence states of atoms. Models developed
based on these descriptors are VLOGP [32] and ALOGPS [33].

Quantitative Structure Property Relationships (QSPR)

QSPR methods are based on the assumption that molecules with similar structures will have
similar properties, with changes in macroscopic properties determined by variations between
the molecular structures. This method tries to quantitatively correlate an experimentally
observable property to a series of molecular descriptors, which encode the features of the
molecules.
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Abraham’s Linear Solvation Energy Relationship [34, 35] is one of the earliest QSPR
methods and relies on five different descriptors. ABSOLV [36] and ChemProp [37] both
contain implementations of this method. Some of the parameters used require determination
by experiment, which is not always practical, so fragment based approaches were developed
to overcome some of these issues.

Other examples of QSPR implementations include those in [38–41]. These methods have
a limited applicability domain, depending on the training and test sets of data used, with over
fitting to training data also a serious concern [42].

1.2.2 Implicit solvation methods

When undertaking electronic structure calculations of individual molecules the default view
is to consider the molecule in isolation when solving the molecular Schrödinger equation.
This approximation can be considered to represent the gas phase, where molecules are far
apart, but this neglects effects from the surrounding solvent molecules on the electron density
if you consider a molecule in a liquid. Implicit descriptions of solvent have been developed
to model these effects, to remove the computational expense from having to calculate the
electronic structure of solvent molecules explicitly, which would lead to a dramatic increase
in computational cost due to the high scaling of electronic structure methods [43].

The implicit solvent models describe the solvent as a dielectric continuum, in which the
molecule of interest is embedded into a cavity[44]. The size of the cavity is dependent on the
continuum method used as well as the solvent description.

Activity coefficients are then calculated by consideration of the energy of the interaction
between the molecule and solvent continuum at the cavity surface as the interactions between
them are gradually turned on in an approach analogous to thermodynamic integration [44].
The solvation energies are then calculated using parameterised relationships, based on
experimental data.

Examples of polarisable continuum models are the SM8 model from Truhlar et al.[45,
46] and the conductor-like screening model (COSMO) developed by Klamt [47]. COSMO
has been widely applied to areas related to solvation and phase transfer free energies.

Conductor-like screening model (COSMO)

The conductor-like screening model (COSMO) [47–49] embeds a molecule in a cavity
surrounded by a dielectric continuum with a permitivity of ε = ∞. The cavity surface
corresponds to the solvent accessible surface, which is defined at a distance from the nucleus
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of the nearest atom. The charge that is induced on the cavity surface which would screen
the surroundings from the molecular charge is calculated. The surface is then partitioned
into segments and a probability density function is calculated to describe the probability of
finding a given surface charge density on a unit of surface. This characteristic function is a σ

profile (px (σ)), of the charges on the surface. pX (σ) describes the probability of finding a
mean screening charge density, σ , on a typical contact segment of the molecule X.

The sigma profile, pX (σ), provides a description of the molecular surface charge density,
which can be used to describe intermolecular interactions. For it to be used for prediction,
this must be linked to thermodynamical quantities, which was first done in the definition of
COSMO for realistic solvation (COSMO-RS)[48–50].

In that work, the σ profile is linked to the chemical potential, the change in free energy
with number of particles. This is done by partitioning the molecule into a series of surface
segments. The mismatch energy, between two surface segments, can be computed by (1.5)
(equation 2 in [48]).

Emis f it (σ1,σ2) =
1
2

α (σ1 +σ2)
2 (1.5)

Where σ1, σ2 are the surface charge densities, and α is given by equation (1.6) (derived in
[48]).

α =
1.2π

5
2 R3

e f f

4πε0
(1.6)

With Re f f the effective radius of a segment, which was chosen to be 1Å, and ε0 is the
permittivity of free space. From consideration of the partition function, the chemical potential
per mole of surface segments was derived, and is shown in equation (1.7) (equation 5 in [48],
derived in appendix A in [48]).

µ
′
S (σ) =−kT ln

[∫
dσ

′p
(
σ
′)exp

{
−
(

1
2

α
′ (

σ +σ
′)2 −µ

′
S
(
σ
′))/kT

}]
(1.7)

Where µ ′
S is the chemical potential per mole of surface area, k is the Boltzmann constant, T

is the temperature, α ′ is defined in equation (1.6).
From this calculated chemical potential, the partition coefficient was then found, by the

creation of QSPR using the correlation of COSMO parameters to experimental data. This
also includes information about the number of aromatic rings. The initial parameterisation
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for the generation of the σ profiles made assumptions for the cavity radii for different atoms,
refinement to these parameters and others was undertaken in [49].

The COSMO-segment activity coefficient (COSMO-SAC) approach by Lin et al. [51,
52] uses the σ profiles from COSMO, to define the activity coefficients for segments. This is
used to calculate the restoring force to move from the ideal conductor to the solvent, thus
using a different approach to find the solvation energy.

Refinements to the COSMO model have tried to account for the discrepancy between
the idealised solvent model and the "real solvent" case, which is done with the COSMO-RS
implementation [50].

Activity coefficients describe the divergence from ideality of a particle. The activity
coefficients are used as the starting point in derivations for several property calculations,
including phase transfer free energies [48, 50, 51, 53]. This can also be used to predict
densities and molar volumes [54]

The COSMOfrag [55] implementation removes the requirement to run a QM calculation
on new molecules, instead a database of σ profiles for molecules which have already been
calculated. A composite σ profile for the molecule is then created through the weighted
combination of fragment σ profiles. COSMOfrag is designed to reduce the computational
intensity of the task, without loss in accuracy of the predicted values.

1.2.3 Explicit Solvation: Molecular Simulation

Molecular simulation methods can incorporate solvents as explicit molecules. Coarse grain-
ing of electron interactions leads to a force field using classical mechanics to describe the
interactions between atoms [56, 57]. This is used to simulate large systems using either
molecular dynamics (MD) or Monte Carlo (MC) approach to propagate the system to sample
phase space[58].

From such simulations, the free energies of solvation can be calculated by extracting
the energy components corresponding to interaction between the solvent and solute. This
is primarily done by two similar techniques, thermodynamic integration (TI) [59] and
free energy perturbation (FEP) [60]. In both methods the energy differences are found
by consideration of a thermodynamic cycle, where the end points are linked by coupling
parameter. The separation into discrete states then allows summation of the property as the
states are converted.

∆Gow can be abstracted from calculations through the use of a thermodynamic cycle
linking the free energies of the solute in different states, which identifies the simulations
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required such that thermodynamic integration of the appropriate transitions is calculated [61].
This method has been used to predict free energies of transfer for molecules illustrated by
[61–65].

The use of explicit solvent molecules in MD simulations makes the process very computa-
tionally demanding due to the size of the solvent box required. Periodic boundary conditions
are used to avoid finite size effects on the system.

As the molecule of interest increases in size, the box must also increase to ensure there is
no self interaction of the molecule of interest with a copy in an adjacent box. The number of
solvent molecules therefore increases dramatically with system size.

Molecular simulation with implicit solvation

To reduce the computational complexity of the simulations, implicit solvent methods have
been developed for MD simulations. The Poisson-Boltzmann surface area (PBSA) [66, 67]
or the Generalised Born surface area (GBSA) [68] are examples of this.

1.2.4 Machine learning Approaches

Recently, machine learning has gained popularity as a tool to help in the prediction of
properties of molecules, where large amounts of experimental data has previously been
gathered.

Machine learning is used to infer properties and structure of the data that has been
given, to create a mathematical model for the input data[69, 70]. The model can then be
used to make predictions. This allows the creation of new empirical relationships without
prior knowledge of which features are important in the molecules. It has been applied to
phase transfer energy prediction either to augment existing approaches, or to generate new
relationships. Skyner et al. [13] provides an overview of how the different machine learning
algorithms function.

New group contribution methods have been developed using machine learning to assign
coefficients and aid in the fragment assignment and characterisation during model devel-
opment [71, 72]. Machine learning has also been applied to QSPR methods [38], as these
methods are also based on simple mathematical models, which can be generated using
machine learning frameworks.

MD simulations are a computationally expensive method to find phase transfer and
solvation free energies, such that Riniker has proposed using ML with fingerprints generated
from MD, MDFP (molecular dynamics fingerprints), for prediction of free energies [73].
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Machine learning frameworks to predict chemical properties, including the solvation free
energies of molecules, benchmarked to QM methods have also been developed [74–76].

1.2.5 Performance of predictive models

The review by Mannhold et al. [11] contains a comparison of 30 different log P models using
the same molecular test set of 266 molecules. The best predictions gave an RMSD of less
than 0.50 for a subset of molecules. However the training set for some of these models was
contained in this subset. For the second part of the dataset, which did not overlap with the
training set, the models gave poorer results with RMSD.

For a new partition coefficient prediction model to be comparable to the existing best
methods from [11], the uncertainty in the predicted value should be just under 1, for log P

(this corresponds to an error in the phase transfer energy of approximately 5 kJ mol−1). If
the model is to perform significantly better than existing models in [11], then an uncertainty
value closer to 0.5 log units is required.

1.3 Solvent similarity

The aim to reduce the environmental impact is the core principle of green chemistry [77],
leading to greater sustainability of chemical practices. Solvents are routinely used as the
medium for chemical reactions as well as during purification. They therefore contribute
heavily to the environmental impact of production processes of pharmaceutical agents and
agrochemicals, leading to scales [78–81] designed to quantify the impact.

There are two major categories of assessment criteria. Identification of the environmental,
health and safety (EHS) impact of a solvent must be considered, by application of "greenness"
screening procedures [82] before use. The other approach, life cycle assessment (LCA),
involves comprehensive analysis of the impact of the solvent from production, to eventual
disposal after use [83]. Criteria weighting is important for the proposed solvents, with
multi-criteria decision analysis (MCDA) a possible solution [78, 84].

From these approaches harmful solvents have been identified as candidates to be replaced.
Solvent substitution could be undertaken if a suitable alternative with similar properties, but
lower environmental impact, can be identified.
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1.4 Similarity approaches

Identification of similarities between molecules requires a metric with a quantifiable scale
to denote the degree of similarity. The definition of such metrics have been developed to
describe molecular structure similarity. This has then allowed the exploration of prediction
of properties, such as partition coefficents, that have previously been discussed in section 1.2.

1.4.1 Molecular similarity

Structural similarity between two molecules has been used as a guide for similar proper-
ties[85]. There have been multiple methods developed to describe structural similarity based
on topological descriptors. The descriptors used can be divided into three classes:

• Whole molecule (1D) descriptors

• Descriptors calculated using the 2D molecule structure

• Descriptors calculated using the 3D molecule structure

Whole molecule descriptors are usually single number properties that describe bulk
molecule properties for example: number of stereocentres, molecular weight, partition
coefficient. A molecule could be represented by a collection of these values, normally after
some standardisation process has been applied to the values.

2D descriptors are computed from a chemical structure diagram, which is encoded as
a connectivity graph of all atoms in the molecule. These include topological indices and
fragment substructures[31]. A molecular fingerprint can be produced from these values,
which consists of a vector summarising the information. The Tanimoto [86], cosine coefficient
[87] and dice coefficient [87] are examples of structural similarity metrics which use such
2D fingerprints.

3D topological descriptors are less widely used, due to the difficulty in assigning useful
descriptions [87, 88]. Consideration of whether the lowest energy conformation chosen to
describe the molecule is sufficient, or if a conformational search is required for descriptor
generation. Alignment of the molecules to maximise overlap may also be required for some
of the measures. This leads to a complex 3D picture with no clearly preferred way to describe
a molecule. Shape similarity methods form the most common class of this type of descriptor
[89] including the receiver operator characteristic (ROC) approach [90].
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Property similarity

Molecular properties are influenced by molecular structure, so quantitative property structure
relationships (QSPR) have been developed.

These produce parameterised functions which are dependent on the values of identi-
fied molecular characteristics which have shown some correlation with the property to be
predicted.

The characteristics can be found from inspection of the molecular topology, or from
simple ab initio calculations. These have been used to provide relationships for a variety of
molecule properties including partition coefficients[19, 21, 34, 35, 91] and vapour-liquid
equilibria [92–96].

1.4.2 Solvent similarity

Possible solvent space covers a wide range of molecules. Quantifying the relative solvation
ability of different solvents requires a numerical distance between solvents in this solvent
space can be described. Such a distance is also referred to as a metric.

Hildebrand [97] first proposed to use the square root of the cohesive energy density of a
solvent, δ (equation 1.8), as a suitable quantity for comparison. The difference between δ

values for solvents was used to assess the degree of similarity.

δ =

[
∆Hv −RT

Vm

] 1
2

(1.8)

Where ∆Hv is the heat of vapourisation, R is the gas constant and T is the temperature and
Vm is the molar volume.

Hansen later proposed an extension of the Hildebrand parameter to estimate the miscibility
of polar and hydrogen bonded systems [98]. This parameter for describing solvent similarity,
is given in equation (1.9).

Ra =

√
4
(
δd,2 −δd,1

)2
+
(
δp,2 −δp,1

)2
+
(
δh,2 −δh,1

)2 ≤ R0 (1.9)

Where Ra is the similarity, δd , δp, δh are the dispersion (non-polar), polar (coulombic) and
hydrogen bonding cohesion solubility parameters for the solvents respectively. R0 is the
solubility radius, outside which they are not miscible. This value is not constant for all
systems, so has to be experimentally determined for each solvent combination.

The Hansen parameters have been widely used in the paint and coatings industry for the
discovery of appropriate solvents [99–101].
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1.5 Vapour liquid equilibria (VLE)

The partitioning of molecules between the vapour and liquid phases has implications for
processing and handling of substances. An equilibrium between a liquid and its vapour is a
function of the temperature and pressure of the vessel it is in. For binary and higher mixtures,
the proportion of each component in the two distinct phases may be different, due to different
affinities. The collection of VLE data can be used to create pressure-temperature phase
diagrams for species. This knowledge is exploited in distillation, to aid in extraction and
purification[102].

Experimental determination of VLE information, the composition of the vapour and
liquid phases of a system under given temperature and pressure conditions, is time consuming.
The prediction of phase composition has therefore been explored using several different
approaches.

The methods used for VLE prediction are based on generating equations of state for
the thermodynamic quantities of the material being modelled [103]. Classification of the
methods divides them into two broad classes: empirical approaches and simulations. There
are also some semi-empirical approaches.

1.5.1 Experimental measurement

The experimental determination of the vapour and liquid compositions is undertaken through
a protocol that has seen only minor changes as improvements in the equipment have allowed
for more efficient sampling [104–108]. The fundamental principle is to place a sample of
the material or mixture in a sealed vessel, heated by a heat bath, with a manostat to control
the pressure. The system is then allowed to reach equilibrium, before small samples from
the vapour and liquid phases are removed, for composition determination by spectroscopic
techniques.

The process is time consuming, due to the requirement for potentially long equilibration
times between measurements, and the use of high pressures and temperatures for full phase
space exploration resulting in increased risks. Collection of mole fractions and partial
pressures for all species in the vessel, leads to the collection of redundant information. This is
due to the correlation of the thermodynamic relationships, thus a reduced set of information
could be collected. The verification of the consistency of such data requires the full collection
of the complete data set to quantify the errors [109]. The accurate prediction of the behaviour
is therefore sought to reduce the time, cost and potential risks involved in gathering the
information.
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1.5.2 Equations of state

Equations of state (EoS) link thermodynamic state variables under a given set of physical
conditions to describe the state of matter, relating pressure, volume and temperature for a
system. The ideal gas law of Clapeyron [110] was the first equation of state developed for
a state of matter, shown in equation (1.10). This was based on the relationship between
pressure and volume first noted by Boyle in the 17th century[111].

PV̄ = RT (1.10)

Where P is the pressure; V̄ is the molar volume. For real gases this relationship does not hold
as there are interactions between molecules. The development of equations of state for the
description of real gases has been an area of active research since the first equation by van
der Waals [112], introduced an equation based on the concept of finite volume of constituent
molecules (b) and interactions between molecules (a), shown in equation (1.11).

(
P+

a
V̄ 2

)
(V̄ −b) = RT (1.11)

Where a and b are phase composition dependent parameters. This relationship can
be rearranged to produce a cubic expression in V̄ . Two solutions to the cubic expression
correspond to the molar volumes in the gas or liquid phases, with the third solution being a
spurious result. Further developments of such equations of state are covered in the reviews
by Anderko [113], Wei and Sadus [114] and Valderrama [115].

1.5.3 Empirical methods

Empirical approaches to predict vapour-liquid behaviour rely on the creation of equations
linking the properties of interest to other observable or calculable properties of a species by a
mathematical relationship. Quantitative Structure Property Relationships (QSPR) use the
correlation of a series of molecular descriptors to physical properties. QSPR methods have
previously been discussed for phase transfer free energies in section 1.2.1. The application
of this approach to the prediction of VLE behaviour has been undertaken by several groups.

The UNIFAC approach is a group contribution method which was first applied to the
generation of relationships to predict VLE and liquid liquid equilibria (LLE) in 1977 [92].
Improvements to the descriptions used to describe fragments have been produced [93–96],
leading to gradual improvements in the model. The applicability domain of the UNIFAC
methods are restricted to regions where experimental information is already known. The
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extension of the UNIFAC model to incorporate parameters for ionic liquids by Kato et. al

[108] therefore expands the applicability domain to a classification of solvents of interest for
green chemistry [116, 117].

The σ -profile descriptions of molecules generated by COSMO [47] have been used
in the creation of semi-empirical relationships to predict the composition of vapour-liquid
equilibria, and therefore phase diagrams. Through use of COSMO-RS, activity coefficients
are calculated [50, 53], which can then be used in a QSPR function [51, 53, 108, 118–121].
The development of predictive relationships for novel systems can influence emerging fields
such as biodiesel purification [122].

1.5.4 Simulations

Simulations of liquid-vapour systems can be used to predict phase properties through propa-
gation of the components through phase space. The Monte Carlo and Molecular Dynamics
techniques, previously introduced in section 1.2.3, have also been used in the prediction
of VLE and liquid-liquid phase compositions. Examples of Monte Carlo simulations with
application to VLE are in references [123–126], with examples of molecular dynamics
calculations in references [127–130].

Coarse graining of molecular interactions to simulate species at the mesoscopic scale
has been done through the use of Dissipative particle dynamics (DPD) [131, 132]. The
coarse grained description used in DPD simulations consists of beads used to represent a
molecule or molecule fragment. Parameterisation of the interactions between beads are used
to summarise the interactions of the constituent atoms within a bead, reducing the degrees
of freedom in the system. This has allowed the study of larger molecular VLE and LLE
systems, such that the study of micelle or bilayer formation is possible [133, 134] with DPD.

Statistical Associating Fluid Theory (SAFT)

Statistical Associating Fluid Theory (SAFT) is a methodology to include the effects of
association into a given theory to develop equations of state able to deal with VLE and LLE
phenomena [135–137]. SAFT extends the thermodynamic perturbation theory developed
by Wertheim [138, 139] to incorporate the treatment of mixtures [127, 135]. Overviews of
the development of the SAFT approach are presented in reviews by Müller and Gubbins
[136, 137]. The SAFT approach is independent of simulation framework, and used in Monte
Carlo simulations [135] and molecular dynamics simulations [127, 128]. After development
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of SAFT on model systems [127, 135], SAFT has been applied to a wide range of systems
including alkanes and polymer mixtures [140–144].

1.5.5 Performance of predictive models

The benchmarking of performance of predictive models for VLE have not been undertaken to
the same frequency or scope as in the field of phase transfer energy prediction. Anderko [113]
and Valderrama [115] both make limited comparisons of the performances of a selection of
a subset of methods in their reviews, which indicate that relative errors of less than 5% in
concentrations indicate good performance.

1.6 Intermolecular interactions

Intermolecular interactions play an important role in solvation, the formation of crystals and
molecular recognition events (including protein ligand interactions). There have been numer-
ous attempts to try and describe these forces. This has led to the naming of different types of
interactions, from our desire to partition the effects into discrete, separate phenomenolog-
ical classifications. Examples of the classifications include CH−O bonds, halogen bonds,
aromatic interactions, cation-π interactions, hydrophobic interactions [112, 145–148].

This leads to an obscuring of the origins of these often related forces. By consideration
of the interactions more generally as arising from electrostatic interactions, Hunter [149] has
been able to develop a way of describing these interactions using a unified framework for
assessing the strength of these interactions.

Taft and coworkers [145, 150] originally worked on quantification of hydrogen bond
strength. From experimental measurement of binding constants of various hydrogen bond ac-
ceptors with para-fluorophenol in tetrachloromethane, the pKHB was developed for hydrogen
bond acceptor strength. This work was then extended by the work of Abraham (summarised
in [151]). Measurements of association constants for a collection of hydrogen bond donors
with a complementary set of hydrogen bond acceptors was used to generate solvent depen-
dent scales for the strength of hydrogen bond donors and acceptors. The relationship of the
association constant to these scales is given in (1.12).

log(K) = c1α
H
2 β

H
2 + c2 (1.12)
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Where K is the association constant at 298K and c1, c2, are solvent dependent constants,
αH

2 is the hydrogen bond donor parameter for the first solute and β H
2 is the hydrogen bond

acceptor parameter for the second solute.
αH

2 and β H
2 were arbitrarily scaled between 0.0 and 1.0, to provide solvent independent

parameters (adjustment of c1 and c2 are used to provide the correct association constants
in a solvent). The scale has a systematic offset in the origin due to the solvent hydrogen
bond donor and acceptor properties of carbon tetrachloride, which was the solvent in which
the majority of the measurements were undertaken. Functional groups which are poorer
acceptors or donors are never observed to interact with the corresponding binding partner
due to competition with the solvent sites which are in excess. This means no experimental
parameters can be found for donors and acceptors that are less polar than carbon tetrachloride.

By consideration of the equilibrium between solvent and solute donor and acceptor sites,
the above relationship was restated to include the solvent acceptor and donor interactions
explicitly, given by the relationship in (1.13) by Hunter [149].

∆Go =−RT log(K) =−(α −αs)(β −βs)+ γ (1.13)

Where ∆Go is the free energy change on formation of a 1:1 hydrogen bonded complex of the
two solutes; α , β are the solute hydrogen bond donor and acceptor parameters; αs, βs are the
solvent hydrogen bond donor and acceptor parameters respectively. γ is a constant with a
value of 6 kJ mol−1.

This relationship removed the need to have empirically determined solvent specific
constants for prediction of the binding constants in the solvent, instead the hydrogen bond
donor and acceptor parameters of the solvent are required, allowing the wider applicability
to all solvents.

The process of gathering experimental information is time consuming and only gives
information about the strongest interaction sites on both molecules [152–154]. Mapping of
the hydrogen bonding parameters provides a description of all the molecular interactions,
based on a series of discrete surface site interaction points (SSIPs) [155] for a molecule. With
an understanding of how to describe intermolecular forces, we can attempt to understand and
predict what would be observed in different situations.
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1.7 Surface site interaction point (SSIP) approach to molecule
description

The surface site interaction point (SSIP) approach describes molecules as a series of discrete
surface sites. Previous work [149, 155] has shown that the calculated electrostatic potential
on the 0.002 e Bohr−3 isodensity surface of the molecule shows good correlation to the
experimental hydrogen bond donor and acceptor parameters. This relationship was then
combined with a coarse graining approach to describe the molecule as a collection of SSIPs
[155].

Calculation of the molecular electrostatic potential surface (MEPS) of a molecule can
be the time limiting step, and has been previously investigated [156]. The electron density
isosurface used for the mapping has also been explored [157].

1.7.1 Surface Site Interaction Model for the Properties of Liquids at
Equilibrium (SSIMPLE) approach

The SSIPs of a molecule can be used to describe the interactions between molecules in a
liquid since they arise from surface contacts. SSIPs in a phase are either bound to another
SSIP or unbound, and free to move in the phase. The SSIMPLE approach [158] calculates
the speciation of these states at equilibrium for all SSIPs in a phase. From the concentrations
of the free SSIPs and bound complexes at equilibrium, the free energies of molecules in the
phase are calculated, allowing transfer free energies to be calculated [158].

1.7.2 Applications of the SSIP description to crystals

In crystalline states, molecules are packed in a periodic array, forming the maximum possible
number of intermolecular interactions. There are many factors influencing the stability of the
crystalline state, making exact energies difficult to predict [159].

Cocrystal prediction

Cocrystals contain two or more molecular components in a defined stoichiometry. They are a
class of crystals of interest for the formulation of active pharmaceutical ingredients (APIs) to
improve drug potency by crystallisation with new co-formers.
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The pairwise interactions between SSIPs has been used to rank the relative favourability of
a range of potential coformers with an API, to provide guidance for experimental exploration
[160]. This has been validated in applications to a series of systems in [161–164].

Crystal solubility

Bioavailability of compounds influences the effectiveness of drugs, with water solubility
key for oral bioavailability. The effects on solubility of APIs by formation of cocrystals
is explored in [165]. It shows that cocrystal formulations may lead to large increases in
solubility, compared to neat formulations.

Calculating SSIPs from crystal data

Crystal structures contain information on the closest contacts between molecules. The
contacts represent the outcome of competition to form the strongest possible interactions.
The solution based parameters of α and β were shown to correlate to the probability of
observing these interactions[166–168] in the Cambridge Structure Database (CSD) [169].

1.8 Research Objectives

Building on previous work using the SSIP description of molecule interactions, in this work
the applications the SSIP and SSIMPLE approach to solvation will be expanded.

The collection and validation of binding constant measurements from literature was
undertaken to allow for the reparameterisation of the method used to map calculated elec-
trostatic potentials to the experimental hydrogen bonding parameters. As part of this work
in chapter 2, a detailed analysis of suitable data structures was undertaken. The design of
methods and structures to display and search the data were also developed.

The robust exploration of liquid phase based properties using the SSIP approach to
molecular interactions required the redesign of the computational framework, to allow
for greater automation. As part of this redesign, the code was rebuilt with an underlying
modularisation scheme. This process is discussed in chapter 3. Knowledge from the creation
of an experimental database of information was used to inform the design of data structures
to be used as inputs and outputs to the modular components of the computational work flow.
This design feature has allowed addition to the infrastructure to expand the applications of
the approach that have been explored in a systematic manner.
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The SSIMPLE method can be used to calculate free energies of transfer for molecules
as well as partition coefficients. Benchmarking of the SSIMPLE method on data sets was
undertaken after the reconstruction of the software to evaluate the effectiveness of the
SSIMPLE model and the SSIP descriptions used in prediction.

The interaction energy of two solutes in a solvent is a function of solvent as well as the
solute hydrogen bond donor and acceptor strength. This interaction energy is plotted in a
functional group interaction profile (FGIP), which is characteristic for a solvent. A method
to generate these plots for any solvent is presented in chapter 5.

The solvation energy of a solute depends on the strength of its hydrogen bond donor or
acceptor ability and the possible interactions with a solvent. A solute hydrogen bond donor
will interact favourably with hydrogen bond acceptors and unfavourably with hydrogen
bond donors in the solvent. Conversely a hydrogen bond acceptor on a solute will interact
favourably with solvent hydrogen bond donors and unfavourably with solvent hydrogen bond
acceptors. Therefore the difference between a solute’s solvation energy in two solvents is
representative of the similarity of the solvents. A new solvent similarity metric has been
developed in this work based on the solvation behaviour of a single solute SSIP in the
SSIMPLE framework.

Extension of the SSIMPLE approach to the study of vapour-liquid equilibria required
developments to the theoretical model. Incorporation of the temperature dependence of inter-
actions into the model, allowed calculations to be done at variable temperatures. Expressions
to calculate the total concentrations of species in a phase with expansion and evaporation of
the liquid were also developed in the SSIMPLE framework. Modelling of VLE as a function
of temperature act as proof of concept.



Chapter 2

Data Curation

Experimental equilibrium constant information for formation of hydrogen bonding complexes
has been collated, to allow the reparameterisation of the method used to map calculated
electrostatic potentials to the hydrogen bonding parameters. This required the design of
appropriate data structures. Storage of the data is only part of data management, with access
and usage of the gathered data being equally important.

2.1 Data storage methods

Digital data can be stored in a variety of different formats, each with advantages and
drawbacks. Existing databases of experimental and theoretical data use different formats.
The formats include comma separated variable (csv) file [63], Structured Query Language
(SQL) database [170], eXtensible Markup Language (XML) [171, 172], HDF5 [173] and
JavaScript Object Notation (JSON) [174] or bespoke database structures [175, 176]. The
formats were chosen for reasons including readability, query time and file size. Query time,
the time taken to interrogate the database can vary widely, depending on the type of database,
and scales differently with size, so must be considered [177].

For the database created in this work XML was used, with the use of the Chemical
Markup Language (CML) [178] extension of XML to represent chemical structures.

2.1.1 Chosen data framework: XML

XML (eXtensible Markup Language) provides an easy to interrogate storage format. It was
designed to describe data, with a focus on what the data are. Information is stored as a series
of elements. An element is described by a tag, which describes the information contained
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within the element. The value of an element can be a number, string or more elements (these
are referred to as children). An element can also have any number of attributes associated
with it. For example an element called Size could have a value of 10, and an attribute called
unit, which is m2, as in figure 2.1. The example element provides a simple example of an
element with an attribute and a text value as a child.

<?xml version="1.0" encoding="utf-8"?>
<Size unit="m^2">10</Size>

Fig. 2.1: XML example element

XML [179] provides a formal syntax to store information in a machine and human
readable format. XPATH [180] can be used to query an XML file, allowing for bulk retrieval
of data, such as standard InChIKeys [181] of molecules. Due to its extensible nature, XML
provides a very broad framework, with only a few syntactical restrictions on how information
can be represented. There is no restriction on the number or type of elements and attributes
in the file, so a convention needs to be defined.

This can be done by defining an XML Schema, which is an XML file which extends
the ideas of the more abstract Document Type Definition (DTD)[182]. A DTD defines the
expected structure of elements and attributes in a document, which can be used to validate
the data structure, but the definitions provided are still fairly broad. An XML Schema
Definition (XSD) is an extension of a DTD but allows greater specificity about the data
stored in elements and attributes, including the type and also format for a data value, as well
as namespace. For example, if a standard InChIKey is considered, which has a set format
described in [181], an ‘inchikey’ attribute can be restricted to conform to this format using
an XSD, which was not possible with a DTD. Validation tools can then be used to check for
conformance against the schema.

XML specifications for chemistry fields have already been developed. CML [178, 183–
185] provides a general format for representing 2D and 3D structures, as well as providing an
extensible platform for computational and spectroscopic work [186]. An alternate XML based
specification for thermodynamic information, ThermoML[187], has also been developed by
IUPAC to standardise the data format used for storage of thermodynamic data. There is also
an example of using an XML format for calculation output from NWChem [188, 189], a
quantum mechanics code.
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2.1.2 Alternative frameworks

There are a range of other frameworks that were also considered for storing information, but
were not chosen for the reasons given below.

JavaScript Object Notation (JSON) is another format for information which is similar to
XML, in general structure, but has much looser definitions on types values can take, and lacks
the native rigidity provided by the definition of a schema. JSON can easily be instantiated in
memory into a data structure, but traversal to find information requires assumed knowledge
of the data structure to be efficient. An implementation of NWChem using this has also
been developed [190]. The lack of standardised robust parsing and validation frameworks
means a JSON implementation would require greater maintenance. Work is currently being
undertaken to add this functionality to JSON, but it is currently still in draft form [191].

CSV files and other text file formats lack the stringent specifications of other formats
and require the development of bespoke validation software for any format designed. The
development and maintenance of such code would be unfeasible, hence use of existing
frameworks would be preferred.

SQL and related relational databases store information as collections of tables, providing
a framework for storing and manipulating big data. For output from individual calculations,
this would not be suitable, due to the relatively small amount of data generated.

Hierarchical Data Format 5 (HDF5) stores information in binary files in a structured way
as a series of tables that is platform independent. This is useful for applications with very
large amounts of data being produced, since you can compress this information. Since it
is in binary the files are not directly human readable, but visualisation is possible through
programs and application program interfaces (APIs) [173], such that data manipulation for
large scale systems is feasible. This has been used in astrophysics for improved efficiency in
image transport [192]. Current data requirements are much smaller than this, so the HDF5
framework is not suitable.

2.2 Data collection and storage

With XML selected as the data format of choice, a schema was developed to describe how
information will be stored once collected.
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2.2.1 Database Schema

The full schema is shown in appendix B. Information is stored in the database on a per
molecule basis, with the root element containing a list of molecule entries. Within each
molecule entry, the information is partitioned into four categories:

• Structure

• Physical Properties

• Calculated Properties

• Calculation Data

Each category represents a child element of the molecule. Within structure elements
information about the molecule structure (SMILES, InChIKey, CML) and names are stored. A
Physical Properties element contains the experimental data collected, along with information
on the experimental conditions for the measurement as well as the source of the information.
A Calculated Properties element is designed to store information from calculations, and act
as a curated repository for information. The Calculation Data element stores information on
the calculation.

2.2.2 Data collected

Experimental data has been found by searching the literature. Data on the association
constants of different molecules with a fixed host or guest has been gathered. The data
[34, 35, 151–153, 193–221] used in the original parameterisation of the model was verified,
and canonical SMILES were created, from which standard InChIKeys could be generated.
Further data was gathered from [222–255], using a similar process. Compound names were
resolved into structures using OPSIN [256]. Data from the Freesolv database [63] was also
compiled, including the references for the primary sources. The information compiled is
summarised in appendix D.

2.3 Data visualisation and usage

The data collection was undertaken to be used as a reference for future work, including the
reparameterisation of the coarse graining.
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2.3.1 Reparameterisation of SSIP footprinting approach

The information of the experimental hydrogen bonding parameters collated has been used in
the reparameterisation of the mapping used in the coarse graining approach to assign surface
site interaction point (SSIP) values [155]. The results of this process are discussed in 3.3.5.

2.4 Conclusions

An approach for data curation has been developed for the storage and use of experimental
information. This has been used in the reparameterisation of the footprinting approach.





Chapter 3

Computational implementation and
original code refactor

To be able to explore novel applications of the SSIP approach, a redesign of the workflow
was first undertaken. This also allowed the optimisation of some processes by use of better
scaling algorithms.

3.1 Footprinting Computational workflow overview

The proposed framework is designed to improve reproducibility and scalability of calculations
undertaken in future sections. Generation of the SSIP description, as shown in figure 3.1,
can be decomposed into discrete units, promoting the development of a modular code base
for the workflow. Generation of a 3D structure for the molecule of interest is followed by
calculation of molecular electrostatic potential surface (MEPS) of the molecule. A coarse
graining algorithm then converts the MEPS data to the SSIP description. Refactoring afforded
an opportunity to define the data formats required at the interfaces between these discrete
steps in the workflow, such that a modular construction could be employed. This allows for
easier extension, addition, development and replacement of components in the workflow.
The utilisation of more computationally efficient algorithms has improved the efficiency and
scalability of the footprinting process.



28 Computational implementation and original code refactor
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Fig. 3.1: SSIP footprinting. The process starts with a molecule of interest, for which a 3D
structure is generated. The MEPS data is then calculated for the molecule, before this is
coarse grained to produce a collection of SSIPs which describe the surface interaction sites.

3.2 Data formats

XML is predominately used as the file format for information transfer between different
parts of the workflow, due to the benefits discussed in chapter 2. Molecule structures are
expressed as CML, and the output of the SSIP footprinting process also expressed as XML.
The molecular electrostatic potential surface (MEPS) data are stored in unformatted cube
files.

3.2.1 SSIP Schema definition

The full schema is in appendix B. The schema is used to define the output file formats from
footprinting calculations. This allows for the modularisation of the workflow, providing the
ability to interchange components, such that different ideas can be explored without a full
redesign of the structure being required.

The molecule CML is encapsulated along with summary information about the MEPS
surfaces used in the calculation. The SSIPs are contained in a sequence of elements.

3.2.2 MEPS data files

To store the MEPS data produced during calculations, the unformatted cube file format is
used. This is a raw text file that uses FORTRAN formatted information, and is outputted by
QM codes to store property information, based on a specification by the Gaussian package
[257].
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3.3 SSIP approach to molecule description

The surface site interaction point (SSIP) approach describes intermolecular interactions via a
series of discrete sites on the 0.002 e bohr−3 electron density isosurface [155] of a molecule.
Figure 3.2 shows the modular construction of the computational framework developed to
undertake this work. The process uses the aforementioned data format specifications to be
used in input/output operations at the interfaces between different computational modules.

Fig. 3.2: Workflow showing the process of generating a SSIP description for a molecule from
input structure to the final XML output. Blue rectangles represent input/output information,
Orange rectangles represent computational processes.

3.3.1 Molecule Input

The calculation requires a 3D structure of the molecule written in a Chemical Markup
Language (CML) format [178], that has namespace qualified elements and attributes. CML
can be generated by conversion of molecule information stored in other 3D structure file
formats, using the openbabel software [258]. The Python library cmlgenerator [259] created
for this work provides a wrapper for this functionality, to be able to process molecules in
batches.

3D structure generation

A SMILES [260] string is a 2D structural representation, which can be outputted from
ChemDraw™. Generation of the corresponding 3D structure is required. The RDKit [261]
library can perform this operation, but outputs a mol2 formatted structure, which requires
further conversion using openbabel. The ETDKG2 [262] approach to conformer generation
is used, with a UFF[263] force field to optimise the produced structures. The minimum
energy conformer, from a search of 1000 conformers, is then selected for use in future steps.

The Python library, cmlgenerator, created for this work, acts as a wrapper with a command
line interface (CLI) to be able to undertake this transformation in one step.
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3.3.2 MEPS generation

The Flow Diagram in figure 3.3 summarises the process of MEPS generation. The MEPS is
generated on the 0.002 e bohr−3 electron density isosurface [155]. NWChem [188] was used
for calculations of the MEPS with a DFT method, the B3LYP functional [264–267]. B3LYP
was chosen due to the reliable results produced with a low computational cost [268]. The
basis set used was 6-31G* [269, 270] for all atoms, except Bromine, Selenium and Iodine,
where a 6-311G** [271] basis set was used.

The MEPS calculation is a multi-step process, which was automated and the functionality
was packaged into the nwchemcmlutils repository [272]. The Python application programme
interface within NWChem [188, 273] was used to improve the efficiency of the workflow.
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Start

CML file of molecule

Generate NWChem Job script from CML

Perform geometry optimisation

Calculate EPS grid in this orientation

Rotate Molecule

Calculate EPS grid in new orientation

Seven MEPSs rotated and su-
perimposed on each other

Generate combined MEPS from
the seven superimposed MEPSs

Output: Optimised molecule
CML and MEPS written to file

Stop

repeat six times

Fig. 3.3: Flow diagram for MEPS generation. Red rounded rectangles are start/stop points,
blue trapeziums show input/output operations, orange rectangles are processes.

The MEPS is calculated in seven different orientations such that a coarser grid can be
used to reduce computational time, without loss of accuracy, and to reduce the likelihood of
discretisation errors. The final surface which is outputted is the combination of the seven
MEPS grids, which provides a comparable result to the use of a much finer grid. Figure
3.4 shows the MEPS of water generated from a single orientation, showing the points lie in
planes due to the grid. An uneven distribution of points on the surface is heavily reliant on
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the initial geometry and the grid properties. Rotation by 45 or 120 degrees about the x, y and
z axes is used to generate a further six surfaces. The resultant surface from the superposition
of these seven surfaces after reorientation shown in figure 3.5, contains an even distribution
of points over the entire surface, with a higher density.
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Fig. 3.4: MEPS for water in one orientation (atoms not shown). Calculation used B3LYP
with a 6-31G* basis set, a grid padding of 2.0 Å and step size of 0.088 Å, on the 0.002 e
bohr−3 electron isosurface, with a tolerance of 0.00003 e bohr−3 in the electron density. The
colour map goes from red (negative potentials) to blue (positive potentials).
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Fig. 3.5: MEPS for water after all seven orientations have been superposed (atoms not
shown). Calculation used B3LYP with a 6-31G* basis set, a grid padding of 2.0 Å and step
size of 0.088 Å, on the 0.002 e bohr−3 electron isosurface, with a tolerance of 0.00003 e
bohr−3 in the electron density. The colour map goes from red (negative potentials) to blue
(positive potentials).

Molecule Volume

The volume enclosed by an isosurface is also calculated during this stage within NWChem.
This information is required for the work in chapter 7. The number of voxels with electron
densities greater than the specified surface is calculated for each orientation. The mean
volume enclosed is then written in the merged cube file that is outputted from the calculation.

3.3.3 Footprinting Algorithm

Once a MEPS for a molecule has been generated, it can then be footprinted, to produce
the SSIP description. Figure 3.6 contains example output of the footprinting process for
1,2-propandiol.
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(a) 1,2-propandiol MEPS (b) 1,2-propandiol with SSIPs

Fig. 3.6: The conversion of the MEPS (left, with no atoms shown) to the SSIPs (right, with
atoms shown) for 1,2-propandiol. A colour map is used for the MEPS, going from blue (for
positive MEPS points) to red (negative electrostatic potentials), with the depth of colour
representing the magnitude of the MEPS. For the SSIPs blue is used for positive SSIPs and
red for negative SSIPs, with size of sphere representing magnitude.

A SSIP represents a single surface segment. The partitioning of a molecule into a set
of SSIPs requires knowledge of the number of SSIPs to be assigned to the molecule. This
is calculated from the molecular surface area. Water is known to have four hydrogen bond
interaction sites. Calero et al. [155] used this to define the surface area of a SSIP as a quarter
the surface area of water which corresponds to ASSIP = 9.35Å

2
.

Hydrogen bond interactions occlude a segment of the surface from other interactions.
This places a restriction on the proximity of SSIPs on a molecular surface, to avoid clashing.
The minimum separation of SSIPs on the surface, d (in figure 3.7), influences the SSIP
description produced. It was parameterised by Calero et al. [155], and assigned a value of
3.2Å.

The flow diagram in figure 3.7 summarises the footprinting process, described in [155].
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Start

Optimised molecule CML file and MEPS

Calculate number of SSIPS on surface. Fraction of surface with negative potential deter-
mines number of negative SSIPs (Nneg). Remainder of SSIPs are allocated as positive (Npos)

MEPS values on surface are sorted largest to smallest

For each point on MEPS it is selected, and appended to new trial list.

This is the first point in each trial SSIP list. Remaining
positive points ranked by decreasing MEPS value

Highest point in list more than d away from an-
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Fig. 3.7: Flow diagram summarising footprinting process for a single molecule. Red
rounded rectangles are start/stop points, blue trapeziums show input/output operations,
orange rectangles are processes and green diamonds are decision nodes.
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Surface Area Calculation

The molecular surface area is calculated to be able to determine the required number of SSIPs
to assign to a molecule in the first step of footprinting. This is done using the positional
information for the MEPS points, which lie on a convex hull that encapsulates the molecule.
The molecular surface area, S.A., is calculated using equation (3.1).

S.A.=
N

∑
ri

Driπr2
D (3.1)

Where ri is the position of the ith point on the surface, Dri is the density of points in the local
environment, given by equation (3.2). The local environment is defined by rD, the density
radius, and δ (ri,r j) (equation (3.2) and equation (3.3)).

Dri =
1

∑
N
j δ (ri,r j)

(3.2)

δ (i, j) =

1 if |ri − r j| ≤ rD

0 otherwise
(3.3)

The density of points in the local environment is simply the reciprocal of the sum of the
number of other points within the defined search radius. Each point on the surface contributes
a circular area, equal to the area occluded by the density radius, weighted by the density of
points in the local environment. A value of rD = 0.5 Å was used.

Efficient searching for nearest neighbours

Calculating the distance between all points on the MEPS is an O
(
N2) operation, which

could become very expensive for large molecules. To reduce the computational cost, a
KDTree is used [274, 275], to reduce the scaling to O (NlogN) making the search for points
satisfying the distance cutoffs faster. The KDTree produces a space-partitioned data structure.
A KDTree data structure can be more efficiently traversed than a standard array structure,
which was used previously.

The implementation used in the code was written by Teodor Nikolov.

MEPS value mapping to Hydrogen bond parameter

The mapping of molecular electrostatic potential surface (MEPS) value to hydrogen bond
parameters uses second order polynomial functions, parameterised in [155]. SSIP values
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for positive MEPS segments are mapped to hydrogen bond donor parameters with equation
(3.4). The negative MEPS values are mapped to hydrogen bond acceptor parameters with
equation (3.5).

ε = 1.12×10−5
ψ

2
0.002 +1.14−2

ψ0.002ifψ0.002 > 0.0 (3.4)

ε = c
(

8.33×10−5
ψ

2
0.002 −2.08×10−2

ψ0.002

)
ifψ0.002 < 0.0 (3.5)

Where ψ2
0.002 is the MEPS value on the 0.002 e bohr−3 electron density isosurface in kJmol−1,

and c is an empirical correction factor based on functional group. The correction factors are
contained in table 3.1.

Functional Group c

Nitrile nitrogen 0.77
Primary amine nitrogen 1.02
Secondary amine nitrogen 1.24
Tertiary amine nitrogen 1.34
Pyridine type nitrogen 1.07
Ether type oxygen 1.16
Alcohol type oxygen 0.86
Aldehyde carbonyl oxygen 0.89
Ester carbonyl oxygen 0.92
Carbonate carbonyl oxygen 0.90
Nitro oxygen 0.77
Any oxygen atom bonded to sulfur 1.00
Any oxygen atom bonded to phosphorus 1.10

Table 3.1 Empirical functional group correction factors for negative surface segments

Functional group identification

As noted in [155] the acceptor sites have a correction factor applied. The requirement of an
empirical correction factor to improve the prediction of hydrogen bond acceptors produces
an extra requirement of functional group identification within the code.

This is done by expressing the molecule in a graph representation, with atoms as vertices,
and bonds as edges. A subgraph isomorphism approach can then be used to identify any
occurrences of the functional group, if it is also described as a graph. The algorithm used is
the VF2 of Cordella [276], which has been implemented in this code by Teodor Nikolov.
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The functional group identification routine employed prevents the assignment of multiple
correction factors. This is done by the canonical ordering of functional group subgraphs by
use of an enumeration object. Once an assignment to a functional group is made, no others
can be assigned. The functional groups are therefore ordered so the largest collection of
atoms would be assigned first, i.e. an oxygen atom would be assigned to an ester rather than
an ether.

Evaluation of trial SSIP configuration

The positional assignment uses the MEPS value, rather than the ε value of the SSIP. This is
done to ensure the correct surface features are found. Once the best configuration is found,
the region around each SSIP assigned is then further examined. Since a SSIP interaction
involves a small contact area and not just a single point, all MEPS points within this contact
area must be inspected. This led to the assignment of a contact radius, r, assigned value of
1.1Å, in work by Calero et al. [155]. A SSIP assigned to the surface is replaced by a more
polar point that is found within this radius, to more accurately account for the polarity of the
region.

Canonicalisation of output

To ensure reproducibility of footprints from the calculation, the output ordering of SSIPs
when written to file must be consistent, to allow for unit testing. The SSIPs are ordered by
decreasing numerical value. If there are any SSIPs with the same value, the distance of the
SSIPs to the molecule (mass unweighted) centroid is then used to ensure consistent ordering.

This is required because the traversal of the MEPS surfaces generating the different
trial SSIP collections is not deterministic, so the same solution may be found with different
additions to the SSIP description.

3.3.4 Limitations of Footprinting

The process of generating a SSIP description for a molecule has some known issues which
are discussed in the following sections.

Through space effects

Intermolecular interaction strengths are influenced by the functional groups adjacent to the
interaction site. The influence of atoms in the wider environment and not just the closest atom,



3.3 SSIP approach to molecule description 39

on the MEPS of a molecule, is therefore desirable to be able to describe the through space
effects. Overestimation of these through space effects, however can lead to the assignment of
incorrect descriptions.

The presence of two adjacent negative regions produce a build up of negative charge on
the surface, thus the assigned SSIPs appear much more polar than expected. Conversely the
presence of an adjacent positive region and negative region in space can lead to a cancellation
on the MEPS, thus making the assigned SSIPs much less polar. For rigid molecules, there is
minimal conformational flexibility, so these effects are always present. Figure 3.8 contains
the SSIP description for 2,6-dimethoxyphenol, which exhibits both of the features discussed.

Fig. 3.8: SSIP description of 2,6-dimethoxyphenol. The values of the SSIPs are displayed
with a coloured sphere indicating position with the value written nearby. The magnitude of
the value is also shown by the size of the translucent sphere, coloured red for acceptors and
blue for donors.

The reinforcement shown between the phenol oxygen and the top methoxy oxygen in
figure 3.8 leads to the assignment of three SSIPs for the region with values approximately two
units higher than expected for the oxygens if they were isolated. This therefore increases the
strength of the polar interactions of the molecule made at these sites, which is not realistic.
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The interaction between the phenol hydrogen and the lower methoxy group leads to
the assignment of a much weaker hydrogen bond donor and two very weak hydrogen
bond acceptors. This formation represents an intramolecular hydrogen bond, which would
therefore remove SSIPs from interacting with the other molecules in a phase, thus exposing
a more non-polar surface as shown here. The presence or lack of intramolecular hydrogen
bonds in a description will influence the calculations of interactions with other molecules.
Molecules with very polar groups would compete for interactions with the groups involved
in the intramolecular hydrogen bond. If these interactions were sufficiently strong this could
mean an open system was preferred (without the intramolecular hydrogen bond), which
cannot be formed if the system with the intramolecular hydrogen bond is used to represent
the molecule.

In 2,6-dimethylphenol four fewer sites were assigned to the surface than required by the
total surface area. This meant four extra null SSIPs were assigned, three sites were from
positive MEPS regions and one site from negative MEPS regions.

Conformational Effects

The through space interactions present on an MEPS are a function of conformation. Confor-
mational selection processes for non-rigid molecules can therefore influence the description
produced for the molecule, leading to variation in the outcome of any calculations using the
description.

An example of this is 1,2-propandiol. When the alcohol groups are in a gauche con-
formation, as shown in figure 3.9, the interactions between the oxygen lone pairs lead to a
reinforcement of the negative charge on the surface, such that there are three SSIPs assigned
to oxygen lone pairs, instead of 4 with a much larger central SSIP, with a value almost double
what is normally expected for an alcohol.
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Fig. 3.9: 1,2-propandiol with the alcohol groups gauche, and the O−H hydrogen atoms
pointing in opposite directions. The values of the SSIPs are displayed with a coloured sphere
indicating position with the value written nearby. The magnitude of the value is also shown
by the size of the translucent sphere, coloured red for acceptors and blue for donors.

Maintaining a gauche conformation, but rotating the OH bond of the secondary alcohol,
leads to the formation of an intramolecular hydrogen bond. This leads to a reduction in the
surface electrostatic potential in the region, as evidenced by the SSIPs shown in figure 3.10
for this conformation. There is now a much better description for the 2-hydroxy acceptor
sites. However there is now a very poor donor that is not aligned with the OH σ bond, and
one of the acceptor sites is missing on the other alcohol group.

It is also important to note the effect on the positive SSIP of the primary alcohol donor
after the formation of the intramolecular hydrogen bond. There is a significant increase in
its donor ability, due to polarisation of the oxygen. The polarisation of atoms, leading to a
modification to the strength of hydrogen bonding interactions, has been noted experimentally
to be significant for alcohols [277].
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Fig. 3.10: 1,2-propandiol with the alcohol groups gauche, and the O−H hydrogen atoms
pointing in the same direction. The values of the SSIPs are displayed with a coloured sphere
indicating position with the value written nearby. The magnitude of the value is also shown
by the size of the translucent sphere, coloured red for acceptors and blue for donors.

Positioning of the alcohol groups trans, by rotation of the C−C bond, avoids these
interactions completely, as shown in figure 3.11. This provides a conformation free of
intramolecular interactions.
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Fig. 3.11: 1,2-propandiol with alcohol groups trans. The values of the SSIPs are displayed
with a coloured sphere indicating position with the value written nearby. The magnitude of
the value is also shown by the size of the translucent sphere, coloured red for acceptors and
blue for donors.

The conformer used in calculation of the SSIP description has a large effect on the
resulting description. By using a conformer generation process if a 3D structure is not
provided the reproducibility of the SSIP description should be improved. However it may
not lead to the generation of the best description for a molecule.

Charged species

Experimental α and β values for a selection of charged species have been gathered [154].
The current approach functions for only neutral species. The inclusion of a charge on a
molecule causes a large change in the MEPS compared to a neutral isoelectronic molecule.
For anions, the entire surface is much more negative, whereas for cations the surface is more
positive. Generating a SSIP description of the molecule is therefore untreatable with the
current approach.
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3.3.5 Reparameterisation of SSIP footprinting process

To remove the dependence on empirical correction factors based on functional group recog-
nition, a new method has been proposed, using more computational parameters. This work
was carried out by Nicola De Mitri, with the results of his investigation summarised here.

In this approach the calculation of hydrogen bond acceptor SSIPs uses information from
three different MEPSs for the molecule. The hydrogen bond donor protocol remains the
same. This is referred to as the tri-surface approach to footprinting, with the previously
published approach (in [155], equation (3.5)), referred to as the mono-surface approach.

The selection of negative surface segments uses the electrostatic potential of an inner
electron surface, the 0.0104 a.u. MEPS for the trial SSIP configuration. This is to try to
identify lone pair directions.

The second modification is the mapping function of MEPS value to the SSIP ε value. The
new function is in (3.6). It has a similar quadratic functional form to the original approach.

ε = π (ψ0.002,ψ0.005)Q(ψ0.002) (3.6)

Where ψ0.002 is the MEP value on the 0.002 a.u. surface, ψ0.005 is the MEP value on the
0.005 a.u. surface. Q(ψ0.002) is a quadratic function, shown in (3.7). The correction factor
has been replaced with the function, π (ψ0.002,ψ0.005), shown in (3.8).

Q(ψ0.002) = ba
(
ψ0.002 +bbψ

2
0.002

)
(3.7)

π (ψ0.002,ψ0.005) = 1.00+bd ∗ |(1−b f )∗ (ψ0.005 −ψ0.002)+b f ∗ψ0.002 −bc| (3.8)

Where the parameters ba, bb, bc, bd and b f are defined in table 3.2 for MEPS data in
kJmol−1.

Parameter Symbol Parameter Value
ba -63.9536393
bb -4.72726144
bc -0.00610595816
bd 25.8334241
b f -0.00908829891

Table 3.2 Parameters for the tri-surface MEPS mapping equations (3.7) and (3.8).
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The π function replaces the use of empirical functional group correction factors in the
method described in [155]. The inclusion of information about another MEPS surface leads
to a greater understanding about the type of acceptor, without the need to add empirical
functional group correction factors.

Influence on through space effects: reinforcement

Propan-1,2-diol in the gauche hydroxyl configuration in figure 3.9 showed a large rein-
forcement effect when using the mono-surface approach. Using the same conformation,
but now with the tri-surface methodology, provides a direct comparison for the degree to
which this problem still occurs. Figure 3.12 shows a more even SSIP description, with the
largest hydrogen bond acceptor SSIP less polar, so the influence of the through space effects
were reduced. However still only three acceptors are present in the region between the two
hydroxyl oxygens, rather than 4.

The effect of reinforcement of SSIP values due to the occurrence of adjacent negative
segments on the values of SSIPs has been reduced using the tri-surface approach.
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Fig. 3.12: 1,2-propandiol with the alcohol groups gauche, and the O-H hydrogen atoms
pointing in opposite directions. Calculation of the SSIPs done using the tri-surface approach.
The values of the SSIPs are displayed with a coloured sphere indicating position with the
value written nearby. The magnitude of the value is also shown by the size of the translucent
sphere, coloured red for acceptors and blue for donors.

This could be due to the distance parameter, d, used to give good separation of SSIPs
over the molecular surface, which was optimised for the results from the previous mapping.
The use of the inner surface for position assignment is better able to detect lone pairs, so the
distance parameter could be refined.

3.4 Conclusion

The refactor described provides the core functionality required for the calculations presented
in the following chapters. The current framework follows a simple workflow to generate
SSIP descriptions of molecules in a reproducible and highly automated process.



Chapter 4

Phase Transfer Energy Calculation
benchmarking

The calculation of phase transfer free energies have been used in pharmaceutical development
to aid in drug selection for pharmacodynamic property selection, based on Lipinski’s rule
of 5 [1]. Multiple methods have been created to predict these energies, with reviews [11–
13] categorising existing approaches into three broad classes: empirical functions, implicit
solvation simulations or explicit solvation simulations.

Empirical methods consist of parameterised functions that use the correlation of molecular
properties to experimental measurement. These functions either use the summation of
information for individual fragments in the chemical structure in group contribution type
methods [14–28, 30, 31], or quantitative structure property relationships (QSPR) where
molecular descriptors are used [34–38, 40–42].

For implicit solvation methods the solvent medium is treated as a dielectric continuum
into which the molecule of interest is embedded in a cavity within an electronic structure
calculation framework [44]. Parameterised relationships are then used to convert the activity
coefficients generated from such calculations to free energies [45–48, 51, 52].

Full atomic simulations are required for explicit solvation models, using molecular
dynamics (MD) or Monte Carlo (MC) frameworks to propagate a system in phase space.
Calculation of free energies requires summation of the free energy components of interactions
between solute and solvent [61–68].

These approaches are all described in more detail in section 1.2.
The Surface Site interaction model for the properties of Liquids at Equilibrium (SSIM-

PLE) [158] will be used to calculate free energies of transfer and partition coefficients for a
series of molecules in this chapter.
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4.1 Surface Site Interaction Point (SSIP) approach to in-
teractions

To describe thermodynamic properties of liquids, all intermolecular interactions must be
considered. The molecular surface can be described by a collection of surface site interaction
points (SSIPs). This representation can be used to describe the properties of the molecule
surface, by the assignment of interaction parameters. The parameter assigned to a SSIP, i, is
εi, which describes polar interactions between surface segments.

The process of value and position assignment for SSIPs is undertaken by footprinting of
molecular electrostatic potential surface (MEPS) data. Two footprinting approaches are used
in this work. The first is the mono surface approach, using the MEPS at the 0.002 e bohr−3

electron density isosurface described in chapter 3.1 (based on work in [155]). The second is
the tri-surface approach detailed in 3.3.5, which requires the MEPS at the 0.0020 e bohr−3,
0.0050 e bohr−3 and 0.0104 e bohr−3 electron density isosurfaces.

4.2 SSIMPLE

In the SSIMPLE approach, the free energy of transfer for a molecule is found from consider-
ing the concentrations of free and bound SSIPs. Each molecule in a phase has a set of SSIPs
that describe intermolecular interactions, with figure 4.1 showing a cartoon representation
of the interactions present at a snapshot in time. The equilibrium population of the free and
bound species must be calculated.
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Fig. 4.1: Cartoon representation for a molecule (grey) in solution surrounded by solvent
molecules (clear). Solvent and solute interactions shown by dashed lines.

Pairwise interactions are considered between all SSIPs in a phase. The association
constant for formation of a bound contact between two SSIPs, i and j, is in equation (4.1)
(this is equation 5 in [158]).

Ki j =
1
2

e−
εiε j+EvdW

RT (4.1)

Where EvdW =−5.6 kJ mol−1; εi, ε j are the values of the SSIPs; R is the gas constant and
T is the temperature. EvdW is the energy of interaction from van der Waals interactions
between two SSIPs. From Hunter’s study of van der Waals interactions in non polar liquids
[278], a contribution of 0.3 kJ mol−1 Å

−2
to the interaction energy was found for noble

gases. SSIPs have a fixed surface area of 9.35 Å
2

([155], discussed in chapter 3). The energy
of van der Waals interactions between SSIPs is therefore constant. The polar interactions
are directional, whereas the van der Waals interactions are non-directional. If the polar
interactions are misaligned, only van der Waals interactions are possible between SSIPs. For
repulsive interactions, i.e. εiε j > 0, it is assumed that such a state can always be reached, so
εiε j is set to zero.
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4.2.1 Standard state of a SSIP

Ki j is a dimensionless quantity, so depends on the standard state used as a reference, normally
1 M for the solution phase. Definition of a concentration scale, that can be used to treat a
system with interactions between solvent and solute SSIPs was required. A standard state
where SSIP concentrations are expressed as the fraction of total volume occupied by the
SSIPs was defined [158].

The maximum density of SSIPs in a phase, cmax, is a function of packing density, and
the volume of a SSIP. cmax can be defined by equation (4.2), assuming the packing density
corresponds to that of the hypothetical zero point solid of cylindrical particles (90%) [278].

cmax =
0.9

NaVSSIP
(4.2)

Where VSSIP is the volume of a SSIP, and Na is Avogadro’s constant. The volume of a SSIP
was estimated using the volume of water enclosed within the 0.002 e bohr−3 isodensity
surface. VSSIP was defined to be 5 Å

3
[155], which is the zero point void volume. Under

these conditions cmax corresponds to a value of 300 M. Future discussions use concentrations
normalised by cmax unless otherwise stated.

4.2.2 Phase speciation

From consideration of the ensemble of SSIPs the free and bound concentrations are calculated.
The concentration of the bound species formed between i and j, [i j] is given by (4.3).

[i j] = Ki j
[
i f ree

][
j f ree

]
(4.3)

[
i f ree

]
,
[

j f ree
]

are the unbound concentrations of the ith and jth SSIP respectively. The total
concentration of the ith species is given by (4.4), which is the sum of the free concentration
and all bound species.

[i] =
[
i f ree

]
+

N

∑
j=1

([i j]+ [ ji]) (4.4)

Phase speciation calculation

The phase speciation calculation is done using a modified form of the concentration of
generalised species (COGS) algorithm [279, 280], which is detailed below.

The total concentration of the ith SSIP, in (4.4), is equal to the concentration of the
molecular species in the phase. Since the total concentration is known at the start of the
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speciation calculation, it provides a condition that the free concentration must satisfy. The
free concentration can then be found numerically by an iterative process. An initial guess
that

[
i f ree

]
= [i] is used to calculate the concentrations of all of the i · j species and then (4.5)

is used to iteratively converge on the free concentration, where n is the cycle number. This
gives a smooth convergence on the phase speciation, which is reached when the concentration
difference between iterations is less than a tolerance value. For phase speciation calculations
a tolerance of 10−10 in SSIP normalised concentration units was used.

[
i f ree

]
n+1 =

[
i f ree

]
n√

[i]n
[i]

(4.5)

This process allows the treatment of multi-component phases, where a solute and solvent
are present. The solvent is also not restricted to a single species, but can be a complex
mixture, as long as the total concentrations of each molecular component are defined a priori.

4.3 Solvation energies

Solvation of a SSIP considers the change in energy of transfer from the gas phase to the
solution phase with the solvent. The gas phase state of the SSIP used considered a free state
where there are no interactions. This means the binding free energy of solvation for a SSIP is
given by equation (4.6).

∆Gb,i = RT ln

([
i f ree

]
[i]

)
(4.6)

Where [i] is the total concentration of the SSIP, and
[
i f ree

]
is the free concentration.

Confinement of SSIPs to a condensed phase results in the binding energy overestimating
the probability of interaction. This confinement energy can be calculated by using Ki j = 1
for all SSIP interactions [158]. The concentrations of SSIPs in such a phase are therefore
given by equation (4.7).

[i] =
[
i f ree

]
+2
[
i f ree

]2 (4.7)

Rearrangement of equation (4.7), yields the probability of a SSIP being free, Pf , if there
is no interaction energy between any SSIPs in the phase, in equation (4.8).

Pf =

[
i f ree

]
[i]

=

√
1+8θ −1

4θ
(4.8)
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Where θ is the fractional occupancy of the phase, equal to [i].
The confinement energy, given in equation (4.9), is the free energy associated with

restricting a SSIP to a condensed phase.

∆Gc,i =−RT ln
(
Pf
)
=−RT ln

(√
1+8θ −1

4θ

)
(4.9)

Note that ∆Gc for a SSIP, i, is a constant for the phase, as it only depends on the fractional
occupancy of the phase and the temperature. For a single SSIP, i, the solvation free energy is
therefore the sum of the binding and confinement energies, given in (4.10).

∆GS,i = ∆Gb,i +∆Gc,i (4.10)

4.3.1 Molecular Solvation energy

A molecule is described by a collection of SSIPs, so the solvation energy of the molecule is a
function of the solvation energies of all SSIPs in the molecule. Since the interactions of each
SSIP in a molecule are assumed to be completely independent of all others, then the total
solvation energy of a molecule is the sum of the SSIP solvation energies for all SSIPs in the
molecule. This is shown in (4.11), where N is the total number of SSIPs in the molecule.

∆GS =
N

∑
i=1

∆GS,i (4.11)

4.3.2 Phase transfer free energies

Calculation of the free energy of transfer between two solvents is simply the difference
between the solvation free energies of the molecule in the two solvents, in (4.12).

∆G1/2 = ∆GS,2 −∆GS,1 (4.12)

Where the transfer is from solvent 1 to solvent 2.
The free energies calculated using the SSIMPLE approach correspond to the free energy

for a molefraction standard state. Thus to get the free energy change for a 1 M standard state
the concentrations of the solvents must be included as shown in (4.13).

∆Go
1/2 = ∆G1/2 −RT ln

(
[2]
[1]

)
(4.13)

Where [1] and [2] are the concentrations of solvent 1 and 2 respectively.
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Partition Coefficients

The partition coefficient is defined in (4.14) for the partition between solvents 1 and 2 of a
molecule M.

log P1/2 = log
(
[M]1
[M]2

)
=−

∆Go
1/2log(e)

RT
(4.14)

Where [M]1 and [M]2 are the concentrations relative to the 1 M standard state of the molecule
in solvent 1 and 2 respectively.

4.4 Calculation of free energy of transfer and partition co-
efficients

Four different data sets of free energy or partition coefficient information have been used to
evaluate the performance of the model. Two different approaches to footprint the molecules
to obtain SSIP descriptions were used. The mono-surface footprinting approach described in
3.3.3 and the tri-surface described in 3.3.5.

The first test set are molecules from the original SSIMPLE paper [158]. The second
set are molecules from a private communication from Reynolds [281]. The third set are
molecules from the set of chemically diverse molecules from [282]. The fourth set are the
eleven molecules that form the SAMPL6 challenge, [283].

Solvent Descriptions

The solvent SSIP descriptions used are the same for all data sets and footprinting approaches,
for consistency. The full descriptions used are in appendix E.1.

Solute Description

The solute SSIP descriptions were generated using the footprinting processes in chapter
3. Both footprinting approaches, the mono-surface approach from [155] (detailed in sec-
tion 3.3.3) and the new tri-surface method detailed in section 3.3.5 were used to generate
descriptions.

A concentration of 0.001 M was used for all solutes for the SSIMPLE calculation.
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4.4.1 Dataset 1- SSIMPLE paper molecules

Calculation of the free energies of transfer for the molecules in the dataset from the SSIMPLE
paper [158] has been undertaken. In that work, a manually assigned SSIP description for
the molecules was used. The results from using the mono-surface description are shown in
figure 4.2. The results from use of the tri-surface footprinting approach are shown in figure
4.3. The tabulated values of the plotted data are in appendix E.



4.4 Calculation of free energy of transfer and partition coefficients 55

−30 −20 −10 0 10 20 30 40

∆G1−octanol/water exp/kJmol−1

−30

−20

−10

0

10

20

30

40

∆
G

1−
oc
ta
n
ol
/w

a
te
r
ca
lc
/k

J
m
ol

−1

(a)

−30 −20 −10 0 10 20 30 40

∆Gn−hexadecane/water exp/kJmol−1

−30

−20

−10

0

10

20

30

40

∆
G

n
−h

ex
a
d
ec
a
n
e/
w
a
te
r
ca
lc
/k

J
m
ol

−1
(b)

−30 −20 −10 0 10 20 30 40

∆Gliquid/water exp/kJmol−1

−30

−20

−10

0

10

20

30

40

∆
G

li
qu

id
/w

a
te
r
ca
lc
/k

J
m
ol

−1

(c)

−30 −20 −10 0 10 20 30 40

∆Gliquid/1−octanol exp/kJmol−1

−30

−20

−10

0

10

20

30

40

∆
G

li
qu

id
/1
−o

ct
a
n
ol

ca
lc
/k

J
m
ol

−1

(d)

−30 −20 −10 0 10 20 30 40

∆Gliquid/n−hexadecane exp/kJmol−1

−30

−20

−10

0

10

20

30

40

∆
G

li
qu

id
/n

−h
ex

a
d
ec
a
n
e
ca
lc
/k

J
m
ol

−1

(e)

−30 −20 −10 0 10 20 30 40

∆Gliquid/diethylether exp/kJmol−1

−30

−20

−10

0

10

20

30

40

∆
G

li
qu

id
/d

ie
th
y
le
th
er

ca
lc
/k

J
m
ol

−1

(f)

Fig. 4.2: Calculated against experimental free energies of transfers as blue crosses using the
mono-surface footprint. y=x plotted as a black line for reference on all plots.
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Fig. 4.3: Calculated against experimental free energies of transfers as blue crosses using the
tri-surface footprint. y=x plotted as a black line for reference on all plots.
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Performance of the different footprinting approaches on free energy prediction are
summarised in table 4.1.

Solvent System Ref [158] Mono surface Tri-surface

1-octanol/water 2.7 2.8 3.1
n-hexadecane/water 2.7 2.9 4.4

pure liquid/water 1.5 2.2 2.2
pure liquid/1-octanol 2.4 2.2 2.2

pure liquid/n-hexadecane 1.2 1.8 3.1
pure liquid/diethyl ether 2.6 2.8 2.0

Table 4.1 RMSE (kJ mol−1) of the transfer free energy predictions for the different footprint-
ing methods

The RMSE values in table 4.1 show the errors with each footprinting approach are similar.
The manually assigned footprints provide the lowest error for four transfer energies; the
mono-surface and the tri-surface assigned footprints perform best for one data set each.
Performance is generally marginally worse for the tri-surface footprint than the mono-surface
footprint. This could possibly be attributed to the slightly more negative hydrogen bond
acceptors that are generally assigned to a molecule (see appendix F for examples).

4.4.2 Dataset two- Reynolds communication

A substantial collection of different transfer data collated by Reynolds [281]. Figure 4.4
contains the results from the mono-surface footprints and figure 4.5 contains the results from
the tri-surface footprints. The RMSE data for the two approaches for the different transfer
energies are in table 4.2. The mean RMSE of the free energy of transfer datasets is 0.37 kJ
mol−1 better for the mono-surface description (3.48 kJ mol−1) than the tri-surface description
(3.85 kJ mol−1).
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Fig. 4.4: Calculated free energies of transfer using the mono-surface footprint against exper-

imental free energies of transfer for Reynolds’ dataset[281]: ∆Gn−hexadecane/water (blue plus),

∆Gn−per f luorohexane/water (green plus), ∆Gcarbontetrachloride/water (red plus), ∆Gacetone/water (cyan plus),

∆Gtetrahydro f uran/water (magenta plus), ∆Gdiethylether/water (black plus), ∆G3−methyl−1−butanol/water

(blue circle), ∆G2−methyl−2−propanol/water (green circle), ∆G2−methyl−1−propanol/water (red circle),

∆G2−butanol/water (cyan circle), ∆G2−propanol/water (magenta circle), ∆G1−decanol/water (black cir-

cle), ∆G1−octanol/water (blue cross), ∆G1−hexanol/water (green cross), ∆G1−pentanol/water (red cross),

∆G1−butanol/water (cyan cross), ∆G1−propanol/water (magenta cross), ∆Gethanol/water (black cross)

∆Gmethanol/water (blue upward triangle) ∆Gacetonitrile/water (green upward triangle) ∆Gpropionitrile/water

(red upward triangle) ∆Gn−butyronitrile/water (cyan upward triangle) ∆G2−butanone/water (magenta up-

ward triangle) ∆Gcyclohexanone/water (black upward triangle) ∆Gdichloromethane/water (blue downward

triangle) ∆Gchloro f orm/water (green downward triangle) ∆G1,2−dichloroethane/water (red downward tri-

angle) ∆Gchlorobenzene/water (cyan downward triangle) ∆Gtoluene/water (magenta downward triangle)

∆Gdibutylether/water (black downward triangle) y=x plotted as a black line for reference.
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Fig. 4.5: Calculated free energies of transfer using the tri-surface footprint against experi-

mental free energies of transfer for Reynolds’ dataset[281]: ∆Gn−hexadecane/water (blue plus),

∆Gn−per f luorohexane/water (green plus), ∆Gcarbontetrachloride/water (red plus), ∆Gacetone/water (cyan plus),

∆Gtetrahydro f uran/water (magenta plus), ∆Gdiethylether/water (black plus), ∆G3−methyl−1−butanol/water

(blue circle), ∆G2−methyl−2−propanol/water (green circle), ∆G2−methyl−1−propanol/water (red circle),

∆G2−butanol/water (cyan circle), ∆G2−propanol/water (magenta circle), ∆G1−decanol/water (black cir-

cle), ∆G1−octanol/water (blue cross), ∆G1−hexanol/water (green cross), ∆G1−pentanol/water (red cross),

∆G1−butanol/water (cyan cross), ∆G1−propanol/water (magenta cross), ∆Gethanol/water (black cross)

∆Gmethanol/water (blue upward triangle) ∆Gacetonitrile/water (green upward triangle) ∆Gpropionitrile/water

(red upward triangle) ∆Gn−butyronitrile/water (cyan upward triangle) ∆G2−butanone/water (magenta up-

ward triangle) ∆Gcyclohexanone/water (black upward triangle) ∆Gdichloromethane/water (blue downward

triangle) ∆Gchloro f orm/water (green downward triangle) ∆G1,2−dichloroethane/water (red downward tri-

angle) ∆Gchlorobenzene/water (cyan downward triangle) ∆Gtoluene/water (magenta downward triangle)

∆Gdibutylether/water (black downward triangle) y=x plotted as a black line for reference.
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Solvent System Mono surface footprint Tri-surface footprint

∆Gn−hexadecane/water 3.37 5.17
∆Gn−per f luorohexane/water 7.94 6.57
∆Gcarbontetrachloride/water 3.29 3.44
∆Gacetone/water 3.00 3.86
∆Gtetrahydro f uran/water 2.78 4.28
∆Gdiethylether/water 4.40 4.97
∆G3−methyl−1−butanol/water 2.61 3.40
∆G2−methyl−2−propanol/water 2.92 2.78
∆G2−methyl−1−propanol/water 2.99 2.78
∆G2−butanol/water 4.05 3.82
∆G2−propanol/water 3.78 2.96
∆G1−decanol/water 3.72 4.18
∆G1−octanol/water 2.92 3.92
∆G1−hexanol/water 3.39 3.81
∆G1−pentanol/water 2.54 3.58
∆G1−butanol/water 3.02 3.28
∆G1−propanol/water 3.24 3.20
∆Gethanol/water 3.33 3.27
∆Gmethanol/water 4.26 3.20
∆Gacetonitrile/water 3.72 2.99
∆Gpropionitrile/water 3.23 3.75
∆Gn−butyronitrile/water 3.24 3.17
∆G2−butanone/water 2.86 3.68
∆Gcyclohexanone/water 2.89 4.63
∆Gdichloromethane/water 3.02 3.35
∆Gchloro f orm/water 3.83 3.90
∆G1,2−dichloroethane/water 3.97 4.15
∆Gchlorobenzene/water 2.75 4.53
∆Gtoluene/water 3.34 4.96
∆Gdibutylether/water 4.00 4.05
Mean 3.48 3.85

Table 4.2 RMSE (kJ mol−1) of the transfer free energy predictions for the different footprint-
ing methods for Reynolds communication[281].
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4.4.3 Dataset three: Martel dataset

The set of chemically diverse molecules collated by Martel and coworkers [282] is the third
dataset. Wet 1-octanol was used in these calculations (0.271 molefraction water content in a
1-octanol solution).

Figures 4.6 and 4.7 show the results for the two different approaches, with the tabulated
values in appendix E.

Comparison of the errors for these methods shows that the tri-surface approach is sig-
nificantly better than the mono-surface approach, by 0.66 log units, however this is for a
reduced dataset. Both footprinting methods have greater errors than the majority of methods
benchmarked in [11], where the RMSEs of the best methods were under 0.5 log units.
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Fig. 4.6: Log P1−octanol/water calculated with mono-surface footprint against experimental
log P1−octanol/water (blue crosses), y=x (black line) shown for reference. RMSE of 1.70.
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Fig. 4.7: Log P1−octanol/water calculated with tri-surface footprint against experimental log
P1−octanol/water (blue crosses), y=x (black line) shown for reference. RMSE of 1.04.

4.4.4 Dataset 4- SAMPL6 molecules

The SAMPL6 logP challenge contained 11 complex molecules [283]. Wet 1-octanol was
used in these calculations (0.271 molefraction water content in a 1-octanol solution), to
represent the experimental conditions. Figures 4.8 and 4.9 show the results for the two
different approaches, with the tabulated values in appendix E.

The tri-surface approach has performed significantly better on this set of molecules than
the mono-surface approach, with an RMSE nearly half that of the mono-surface approach.
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Fig. 4.8: Log P1−octanol/water calculated with mono-surface footprint against experimental
log P1−octanol/water (blue crosses), y=x (black line) shown for reference. RMSE of 1.42.
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Fig. 4.9: Log P1−octanol/water calculated with tri-surface footprint against experimental log
P1−octanol/water (blue crosses), y=x (black line) shown for reference. RMSE of 0.78.

Figure 4.10 shows the mono-surface and tri-surface SSIP descriptions for two of the
molecules in the SAMPL6 dataset. The hydrogen bond acceptor sites for both molecules
show significant differences between the two approaches. The tri-surface SSIP description
assigned for the hydrogen bond acceptor surface, is more negative than the mono-surface
descriptions assigned for the hydrogen bond acceptor surface. This is also seen for the
other molecules in the SAMPL6 set. This reduces impact of through space effects on the
description for the occluded aromatic nitrogen atoms.

This more polar description leads to stronger interactions of the solute with solvent
hydrogen bond donor sites, such that there are more favourable interactions with water, for
these large aromatic molecules.
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(a) (b)

(c) (d)

Fig. 4.10: SAMPL6 molecule SM02 SSIP description with mono-surface approach (a) and
tri-surface approach (b). SAMPL6 molecule SM04 SSIP description with mono-surface
approach (c) and tri-surface approach (d). The molecules are diplayed by a liquorice repre-
sentation of aatoms and bonds. SSIP value is written in text near to yellow sphere indicating
position. Translucent spheres for hydrogen bond donors (blue) and hydrogen bond acceptors
(red) indicate the SSIP magnitude.

4.5 Conclusions

The performance of the SSIMPLE approach, using two different approaches to footprinting
has been benchmarked on a series of datasets. The performance of the two footprinting
approaches are similar for all data sets presented in this work, with the tri-surface approach
giving lower RMSEs on average over all the datasets. The mono-surface approach provided
better predictions for the molecules that compose the SSIMPLE [158] and the Reynolds
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[281] datasets, whereas the Martel [282] and SAMPL6 [283] datasets received more accurate
energy predictions using the tri-surface description.



Chapter 5

Functional Group Interaction Profiles

Understanding of intermolecular interactions can be divided into two parts, classification and
quantification. The classification of intermolecular interactions is based on the functional
groups involved, such as CH−O bonds, halogen bonds, aromatic interactions, cation-π
interactions, hydrophobic interactions [112, 145–148]. The quantification of intermolecular
interactions requires measurement or calculation of the energy change upon association of
two interacting functional groups.

The association of two solutes in solution can be described by the equilibrium is shown
in figure 5.1. On the left, a solute donor is interacting with a solvent acceptor, and a solute
acceptor with a solute donor. On the right the solute donor and acceptor are now interacting,
and the solvent donor and acceptor are also interacting. The position of this equilibrium is
dependent on the relative strength of these four interactions.

Keq

αβ α

ββsαs

αs

βs

Fig. 5.1: Association of two solutes, with equilibrium constant Keq. In the free state the
solute hydrogen bond acceptor (red) and a solute hydrogen bond donor (blue) are initially
interacting with a solvent hydrogen bond acceptor (red) and solvent hydrogen bond donor
(blue) respectively.

Experimental quantification of the strength of the observed interactions requires the mea-
surement of this equilibrium constant. The development of predictive scales for the strength
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of intermolecular interactions uses large collections of experimental data to parameterise
such scales [145, 150, 151, 195].

Hunter [149] used the experimental data on intermolecular association constants to
formulate the predictive equation (5.1).

∆Go =−RT log(K) =−(α −αs)(β −βs)+ γ (5.1)

Where ∆Go is the free energy change for formation of the 1:1 complex between two solutes, R

is the gas constant, T is the temperature, α , β are the solute hydrogen bond donor and acceptor
values, αs, βs are the solvent hydrogen bond donor and acceptor parameters respectively. γ is
a constant with a value of 6 kJ mol−1.

A Functional Group Interaction Profile (FGIP) for a solvent is a plot of the free energy
change of interaction for all possible solute combinations in a solvent.

5.1 ∆∆GH bond

The functional group interaction profile (FGIP) is designed to give insight into the effects on
binding between solutes as a function of solute hydrogen bond acceptor and donor strength.

By consideration of the relationship in equation (5.1), the change in hydrogen bond
interaction energy, is the energy difference between the four hydrogen bonding interactions
in figure 5.1 given by equation (5.2).

∆∆GH bond =−(α −αs)(β −βs) (5.2)

5.1.1 Interpretation of ∆∆GH bond

Interpretation of the expression for ∆∆GH bond presented in (5.2), is simplified by considering
four different conditions. These conditions are represented by the generic FGIP quadrant
diagram depicted in figure 5.2, which shows which interaction dominates under the different
regimes.

Under the conditions α > αS and β > βS, the solute-solute interactions dominate and
∆∆GH bond will be negative, therefore solute-solute association is favoured. This is due to
stronger interactions between the solute molecules than with the solvent. This is satisfied in
the upper right quadrant of figure 5.2.

When the solvent is a better hydrogen bond donor and acceptor than the solutes the condi-
tions α < αS and β < βS are both satisfied. Solvent-solvent interactions are more favourable
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solute-solvent

interactions

dominate

solute-solute

interactions

dominate

solvent-solvent

interactions

dominate

solute-solvent

interactions

dominate

> S

< S

S

β<βS β>βSβS

β
Fig. 5.2: Generic FGIP for the interaction of a hydrogen bond donor (α) with a hydrogen
bond acceptor (β ) in solvent S, Blue regions have favourable solute-solute interactions
(negative ∆∆GH bond values), and red regions have unfavourable solute-solute interactions
(positive ∆∆GH bond values).
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than solvent-solute interactions, so solute-solute interactions are preferred. ∆∆GH bond will
be negative, due to the solvophobic effect. This is satisfied in the bottom left quadrant of
figure 5.2.

The remaining two possibilities are: the solvent is a better hydrogen bond donor than
the solute (α < αS), but a worse hydrogen bond acceptor (β > βS); the solvent is a better
hydrogen bond acceptor than the solute (β < βS), but a worse hydrogen bond donor (α > αS.
The greater strength of the solvent-solute interactions dominates, making solute-solute
interactions unfavourable. This is satisfied in the upper left and bottom right quadrants of
figure 5.2.

The boundaries between these regions, where the solute and solvent are of similar polarity,
are of interest and are defined by α = αS and β = βS.

5.1.2 Calculation of ∆Gint

∆GH bond in equation (5.2) can only be calculated if the solvent has a single type of hydrogen
bond acceptor and a single type of hydrogen bond acceptor, so is unsuitable to study complex
solvents. The calculated free energy of interaction ∆Gint represents the ∆∆GH bond calculated
with the surface site interaction model for the properties of liquids at equilibrium (SSIMPLE)
approach [158]. This process allows for the treatment of solvents which have a collection of
different hydrogen bond donor and acceptor sites, rather than a single hydrogen bond donor
and acceptor in equation (5.2), so more complex systems can be evaluated.

In the SSIMPLE approach a molecule is described by a collection of surface site inter-
action points (SSIPs). A SSIP is assigned an interaction parameter, εi, which is equivalent
to the hydrogen bond donor parameter (α) for positive sites or the hydrogen bond acceptor
parameter (−β ) for negative sites [149]. Assignment of these values is done by coarse
graining of the ab initio calculated Molecular Electrostatic Potential Surface (MEPS) of the
molecule in the gas phase [155].

To describe a liquid, SSIP interactions are treated in a pairwise manner, such that the
association constant for binding between the ith and jth SSIP, Ki j, is given in equation (5.3).

Ki j =
1
2

e−
εiε j+EvdW

RT (5.3)

where EvdW =−5.6 kJ mol−1, εi, ε j are the values of the SSIPs. EvdW is the energy of van
der Waals interactions between two SSIPs. The polar interaction term, εiε j, is set to zero for
repulsive interactions (i.e. εiε j > 0). It is assumed that a state where the directional polar
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interactions are misaligned such that only the non-directional van der Waals interactions are
possible between SSIPs can be found.

Treatment of interactions between solvent and solute SSIPs requires the definition of
a standard state to ensure Ki j is dimensionless. The standard state used is the theoretical
density of SSIPs in the zero point solid, cmax = 300 M. The populations of free and bound
species are then computed for the equilibrium state, as described by Hunter in [158] (detailed
in chapter 4).

Calculation of the free energy difference between the interactions made in the bound
state and the interactions made with the solvent in the free state, requires a new treatment
of the bound state. ∆Gint , in equation (5.4), allows calculation of the equivalent ∆GH bond

based on the solvation energies of the two solutes in the free state and the free energy of the
bound state.

∆Gint (ε1,ε2) = ∆Gbound (ε1,ε2)−∆GS(ε1)−∆GS(ε2) (5.4)

Where ε1, ε2 are the SSIP values of solute 1 and 2 respectively; ∆Gbound (ε1,ε2) is the free
energy of the bound state defined below; ∆GS(ε1), ∆GS(ε2) are the solvation free energies of
solute 1 and solute 2 respectively.

Solute Solvation free energy

The free energy of solvation for a SSIP, ∆GS,i, is given in equation (5.5), where ∆Gb,i, ∆Gc,i

are the binding energy and confinement energy of the SSIP respectively.

∆GS,i = ∆Gb,i +∆Gc,i (5.5)

The binding energy for a SSIP, ∆Gb,i, is given by equation (5.6), which arises due to the
interactions with the solvent SSIPs in the condensed phase.

∆Gb,i = RT ln

([
i f ree

]
[i]

)
(5.6)

Where
[
i f ree

]
is the concentration of the free SSIP which is not bound to a solvent SSIP and

[i] is the total concentration of the SSIP in the phase.
SSIPs are confined to the condensed phase in order to calculate the speciation of the

phase, but there is still probability of interaction between SSIPs in a condensed phase. The
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confinement energy is the free energy change per SSIP for SSIPs confined to the condensed
phase, ∆Gc,i, shown in equation (5.7), from [158].

∆Gc,i =−RT ln
(√

1+8θ −1
4θ

)
(5.7)

Where θ is the fractional occupancy of the phase, and is the total concentration of SSIPs in
the phase expressed relative to cmax.

To reduce the computational overhead of FGIP generation, the fitting of polynomial
functions to the solvation free energies are used in calculation of ∆Gb,i (described in appendix
C.2).

Free energy of the bound state

In order to use the solvation energies calculated with SSMIPLE, the free energy of the bound
state must be defined relative to the same reference state. Therefore the probability that one
SSIP does not interact with the other SSIP in a phase, which describes the bound state is
required. For the interaction of two solute SSIPs, consider the bound state to be a phase
where only the two SSIPs of interest are present, they can only interact with each other and
the total SSIP concentration is the same as in the solution state. The total concentrations of
each SSIP are given by equations (5.8) and (5.9).

[1] =
[
1 f
]
+2K12

[
1 f
][

2 f
]
+2K11

[
1 f
]2 (5.8)

[2] =
[
2 f
]
+2K12

[
1 f
][

2 f
]
+2K22

[
2 f
]2 (5.9)

Where
[
1 f
]

and
[
2 f
]

are the free concentrations of the two solute SSIPs in the bound state;
[1] and [2] are the total concentrations of the two solute SSIPs in the bound state; K12 is the
association constant for the interaction between the two solute SSIPs, given by (5.3), and
the factor of 2 is a statistical factor as complexes 1 ·2 and 2 ·1 are equivalent. K11 and K22

correspond to the self interaction of the SSIPs. All concentrations are expressed relative to
the SSIP standard state.

In the bound state, the total concentrations of each SSIP are the same. The constants
K11 and K22 are equivalent to KV dW , since it is assumed that the dipoles of repulsive inter-
actions are misaligned, thus giving a purely non-polar interaction. This means that the free
concentrations for both SSIPs are also the same.



5.2 FGIP Plots 73

For very strong polar interactions, K12 >> KV dW , the concentrations in self interacting
complexes are negligible. For non-polar SSIPs the self interactions are equally likely for any
other non-polar SSIP, so are important for the complete description of the bound state of
non-polar species.

Rearrangement of equations (5.8) and (5.9) to find the non interacting concentrations is
therefore possible. The probability a SSIP is free in the bound state, Pf , is given in equation
(5.10).

Pf ,1 = Pf ,2 =

[
1 f
]

[1]
=

√
1+4(K12 +KV dW )θ −1

2(K12 +KV dW )θ
(5.10)

The confinement of the SSIPs to a condensed phase leads to overestimation of the
probability of interaction in the bound state. This can be accounted for by the inclusion of
the confinement energy of SSIPs in the bound phase. This leads to the free energy of the
bound state, ∆Gbound , shown in equation (5.11).

∆Gbound (ε1,ε2) = RT ln
(
Pf ,1
)
+RT ln

(
Pf ,2
)
+∆Gc,1 +∆Gc,2

= 2RT ln

(√
1+4(K12 +KV dW )θ −1

2(K12 +KV dW )θ

)
+2∆Gc,i

(5.11)

Substitution into equation (5.4) leads to equation (5.12).

∆Gint (ε1,ε2) = ∆Gbound (ε1,ε2)−∆GS(ε1)−∆GS(ε2)

= 2RT ln

(√
1+4(K12 +KV dW )θ −1

2(K12 +KV dW )θ

)
+2∆Gc,i

−∆Gb,i(ε1)−∆Gc,i −∆Gb,i(ε2)−∆Gc,i

= 2RT ln

(√
1+4(K12 +KV dW )θ −1

2(K12 +KV dW )θ

)
−∆Gb,i(ε1)−∆Gb,i(ε2)

(5.12)

5.2 FGIP Plots

The calculation of ∆Gint for visualisation of FGIPs can be done for any solvent system. All
the analysis presented here is for solvents at 298K.
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5.2.1 FGIPs for single molecule solvents

The calculation of FGIPs for pure solvent systems was undertaken for a set of 261 solvents.
Information on solvent concentrations used is in appendix G.1, with the full set of FGIPs
generated in appendix H.

To show that calculation of ∆Gint is appropriate for generation of FGIPs, figure 5.3
compares the published FGIP for water (left) [149] calculated using ∆GH bond with the
corresponding FGIP calculated using ∆Gint (right). The agreement is excellent. In particular,
the value of ∆Gint is zero when α = αS and β = βS.

Water is a moderately good donor (α = 2.8) and also moderately good acceptor (β = 4.5).
This leads to a significant region of favourable solute-solute interactions for non-polar solutes,
due to the strong solvent-solvent interactions, which are preferred to the weaker solvent-
solute interactions. It looks similar to the quadrant diagram (figure 5.2), since water has
values of αS and βS, which lie in the centre of both ranges.
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Fig. 5.3: FGIPs for two solutes in water at 298K. The left shows ∆GH bond (kJ mol−1)
calculated using equation (5.2), and the right shows ∆Gint (kJ mol−1) calculated using
equation (5.4). The solute-solute interactions are favourable when negative (blue), and
unfavourable when positive (red).

Figure 5.4 shows the FGIP for dimethyl sulfoxide (DMSO). DSMO is a very good
hydrogen bond acceptor (β = 8.5) and a poor hydrogen bond donor (α = 1.4). Comparison
to the quadrant diagram in figure 5.2, shows that the upper left quadrant covers most of the
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plot. This means DMSO is a very useful solvent for dissolving many molecules, due to the
extensive range where solvent-solute interactions dominate.
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Fig. 5.4: FGIP showing ∆Gint (kJ mol−1) for two solutes in dimethyl sulfoxide (DMSO) at
298K. The solute-solute interactions are favourable when negative (blue), and unfavourable
when positive (red).

Toluene is a much less polar solvent, which is shown by the FGIP in figure 5.5. Toluene
is a weak acceptor (β = 2.0), as well as weak hydrogen bond donor (α = 0.6). Comparison
to the quadrant diagram, figure 5.2, shows that the upper right quadrant would encompass
most of the diagram. Solute-solute interactions are very likely to be stronger than interactions
with the toluene, so intermolecular interactions between solutes are highly favourable, and
dominate the FGIP.
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Fig. 5.5: FGIP showing ∆Gint (kJ mol−1) for two solutes in toluene at 298K. The solute-
solute interactions are favourable when negative (blue), and unfavourable when positive
(red).

5.2.2 FGIPs for solvent mixtures

The expression for ∆∆GH bond in equation (5.2), is unsuitable for the study of solvent mixtures
as it assumes only a single type of solvent hydrogen bond donor and a single type of solvent
hydrogen bond acceptor are present. This is untrue for solvent mixtures, where at least two
different solvent hydrogen bond donors and at least two different hydrogen bond acceptors
could be present. This leads to ambiguity as to which solvent parameter should be used in
the relationship, with the stoichiometries of the two solvent components adding additional
complexity.

Treatment of interactions using the SSIMPLE approach, with equation (5.4) developed
in this work removes any ambiguity, as all the interactions are considered during calculation,
providing easy evaluation of interaction energies in solvent mixtures.
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Two binary solvent mixtures have been investigated, water-ethanol and tetrahydrofuran-
chloroform. These solvent mixtures were chosen as they are completely miscible across the
full solvent composition range.

The FGIPs for the solvent mixtures were calculated at 5% volume intervals of the solvents.
A subset are shown in the following sections, to highlight key features, with the FGIPs for all
5% volume fraction mixture in appendix H for reference.

Water-Ethanol mixtures

Water and ethanol are both polar protic solvents. Using the experimental relationship in
equation (5.2), if the strongest solvent donor and acceptor were picked to describe the solvent,
then the FGIP for ethanol would be equivalent to that of water. However the alkyl chain
has a significant effect on the solvation properties of non-polar solutes. This increases the
solvation of non-polar solutes, so the region where solvent-solvent interactions dominate is
much less pronounced as compared with water since the solvophobic interactions are weaker.
Figure 5.6 highlights the effect of ethanol addition to water on increasing the strength of
solvent interactions with non-polar solutes.
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(a) Water 100% Ethanol 0% (b) Water 70% Ethanol 30%

(c) Water 30% Ethanol 70% (d) Water 0% Ethanol 100%

Fig. 5.6: FGIPs showing ∆Gint (kJ mol−1) for two solutes in ethanol-water mixtures at 298K.
The solute-solute interactions are favourable when negative (blue), and unfavourable when
positive (red).

As the proportion of ethanol increases, the bottom left solvophobic region, starts to
disappear. The alkyl chain on ethanol contains non-polar SSIPs which interact favourably
with the non-polar solute SSIPs.
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Tetrahydrofuran-Chloroform mixtures

Tetrahydrofuran (THF) and chloroform are two solvents commonly used during synthesis
or in purification. Both solvents are moderately polar solvents, with THF being a moderate
acceptor, and chloroform a moderate donor. Therefore THF preferentially interacts more
strongly with donors, and chloroform preferentially interacts more strongly with acceptors.

Figure 5.7 shows the FGIPs for a selection of THF-chloroform mixtures. The FGIPs for
the pure solvents appear to have just two regions, instead of the four of the quadrant diagram
due to the difference in donor and acceptor strengths. THF contains a moderate hydrogen
bond acceptor, but poor hydrogen bond donors, so the upper two quadrants extend down to
cover the majority of the FGIP, such that favourable solute-solute interactions dominate the
right hand side of the FGIP. Chloroform on the other hand has a good hydrogen bond donor
and poor hydrogen bond acceptors, so the two right quadrants extend to cover most of the
plot and in this case favourable solute-solute interactions dominate the top half of the FGIP.

As the solvents are mixed, competition with the solute SSIPs increases. This leads to
a decrease in the solute interaction strength for the mixtures as stronger interactions with
the solute hydrogen bond donors and acceptors from the solvent are now both possible. The
region of favourable solute-solute interactions becomes restricted to the upper right region
of the FGIPs in the solvent mixtures, with the regions between 0 < ε < 2 and 0 > ε >−4
showing large changes in interaction energy as solvent composition changes. Favourable
interactions between the solvent and solute now dominate these low polarity regions.
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(a) THF 100% Chloroform 0% (b) THF 70% Chloroform 30%

(c) THF 30% Chloroform 70% (d) THF 0% Chloroform 100%

Fig. 5.7: FGIPs showing ∆Gint (kJ mol−1) for two solutes in chloroform-THF mixtures at
298K. The solute-solute interactions are favourable when negative (blue), and unfavourable
when positive (red).

5.3 Origin of the constant in equation (5.1)

∆Go is the experimentally measured free energy change for formation of a 1:1 complex
between two solutes.
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This is defined using the association constant, given by equation (5.13).

∆Go =−RT ln(K) =−RT ln
(
[A ·D]

[A] [D]

)
(5.13)

Where [A ·D] is concentration of the complex; [D] is concentration of uncomplexed hydrogen
bond donor; [A] is the concentration of uncomplexed solute hydrogen bond acceptor. Con-
centrations are expressed relative to a standard state of 1M in equation (5.13). This can also
be expressed by considering the change in hydrogen bonding interactions, shown in equation
(5.14), with ∆∆GH bond defined in equation (5.2).

∆Go = ∆∆GH bond + γ (5.14)

Where γ is 6 kJ mol−1.

5.3.1 Calculation of ∆Go

It is also possible to calculate ∆Go using the SSIMPLE approach. Starting from equation
(5.13), relabelling the acceptor as solute 1 and donor as solute 2, yields equation (5.15).

∆Go =−RT ln
(
[1 ·2]
[1] [2]

)
(5.15)

The concentrations of all three species in (5.15) can be calculated from the speciation in
SSIMPLE, thus allowing the calculation of the observed free energy change from a SSIMPLE
calculation.

[1 ·2] = 2K1·2[1 f ][2 f ] (5.16)

[1 · 2] is the concentration of the complex defined relative to the SSIP standard state
(cmax), defined in equation (5.16); [1 f ], [2 f ] are the unbound concentrations of solute 1 and
2 respectively, i.e. the concentrations of SSIPs that do not interact with each other or the
solvent; K1·2 is defined in (4.1).

The concentrations of solute 1 not in the complex, [1], is given by equation (5.17), where
[1S] is the concentration of species 1 bound to solvent, KS,1 is the overall equilibrium constant
defining the interaction of all solvent SSIPs with species 1. A similar expression for [2],
the concentration of solute 2 not in the complex, is in equation (5.18), where [2S] is the
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concentration of species 2 bound to solvent, KS,2 the equilibrium constant defining the
interaction of all solvent SSIPs with species 2.

[1] = [1 f ]+ [1S] = [1 f ]+KS,1[1 f ] = (1+KS,1)[1 f ] (5.17)

[2] = [2 f ]+ [2S] = [2 f ]+KS,2[2 f ] = (1+KS,2)[2 f ] (5.18)

Where the equilibrium constant for solvation of the ith species, KS,i, is defined in equation
(5.19).

KS,i =
[iS][
i f
] (5.19)

Substitution of equations (5.16), (5.17) and (5.18) into equation (5.15) and the conversion
of concentrations from the SSIP standard state to the 1M standard state gives equation (5.20).

∆Go =−RT ln

(
2K1·2[1 f ][2 f ]

cmax
(
(1+KS,1)[1 f ]

)(
(1+KS,2)[2 f ]

)) (5.20)

Separation of the expression yields equation (5.21).

∆Go =−RT ln(2K1·2)+RT ln(cmax)+RT ln
(
1+KS,1

)
+RT ln

(
1+KS,1

)
(5.21)

By noting that the third and fourth terms in equation (5.21) correspond to the binding
energies of solvation (see appendix C.1 for full derivation), the free energy for formation of
the complex can be written as equation (5.22).

∆Go =−RT ln(2K1·2)+RT ln(cmax)−∆GS,1 −∆GS,2 +2∆Gc (5.22)

Substitution of K1·2 (equation (4.1)) into equation (5.22) yields equation (5.23).

∆Go = εiε j +EvdW +RT ln(cmax)−∆GS,1 −∆GS,2 +2∆Gc (5.23)
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5.4 Derivation of γ

The difference between ∆Go and ∆∆GHbonds, as shown in (5.13) is γ , which experimentally
was found to be 6 kJ mol−1 as described in [149]. The expressions derived for ∆Go and
∆Gint provide a method for calculating γ , shown in equation (5.24).

γ = ∆Go −∆Gint

= εiε j +EvdW +RT ln(cmax)−∆GS,1 −∆GS,2 +2∆Gc

−2RT ln

(√
1+4(K12 +KV dW )θ −1

2(K12 +KV dW )θ

)
+∆Gb,i(ε1)+∆Gb,i(ε2)

= εiε j +EvdW +RT ln(cmax)−2RT ln

(√
1+4(K12 +KV dW )θ −1

2(K12 +KV dW )θ

) (5.24)

From equation (5.24), note that γ is not a constant, but actually has a dependence on the
solute SSIP values, as K1·2, εi and ε j appear in the equation.

5.4.1 Tight binding limit

In the limit of tight binding, when K1·2θ >> 1 (K1·2 >> KV dW also holds), the probability
that a SSIP is not interacting in the bound state (equation (5.10)) simplifies, such that γ

becomes equation (5.25).

γtight = εiε j +EvdW +RT ln(cmax)+RT ln(K1·2θ)

=−RT ln(2K1·2)+RT ln(cmax)+RT ln(K1·2θ)

= RT ln
(

θcmax

2

) (5.25)

This expression shows that the constant arises from the solvent-solvent interactions. The
concentration inside the bracket is the concentration of solvent-solvent SSIP interactions if
the SSIPs were fully bound. This suggests that the origin of the γ term in the experimental
equation is related to the concentration of solvent.

In (5.13) the solvent is not considered and the standard state is 1 M, but the concentration
of the solvent is much higher (10 M for carbon tetrachloride, the solvent used to determine
the α/β scales). This must be accounted for when the free energy change of the hydrogen
bonding interactions in figure 5.1 is considered. In other words the solvent concentration



5.4 Derivation of γ 85

should be included in the expression for equilibrium constant. The equilibrium constant for
the interaction of the two solutes in solution in equation (5.26).

Keq =
[A ·D] [S ·S]
[A ·S] [D ·S] (5.26)

Where [S ·S] is the concentration of solvent. Thus an extra term in our expression for the
free energy change from experimental measurement which is related to the concentration of
solvent-solvent interactions is found.

Equation (5.25) provides an expression that is now independent of the SSIP values of
interest. The relationship in equation (5.25) provides a way to calculate a value of γ for
solvents. The plot in figure 5.8 shows the distribution of γ values for the set of 261 pure
solvents (details in appendix G). The mean value is 10.54 kJ mol−1 with a standard deviation
of 0.27 kJ mol−1.
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Fig. 5.8: Histogram of the distribution of γ for the set of solvents listed in appendix G,
calculated using equation (5.25).
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5.4.2 Comparison of γ to experimental value

The calculated value of γ is 10.5 kJ mol−1, which is significantly more than the experimental
value. The disparity can be traced to the creation of the hydrogen bond donor and accep-
tor scales in [149]. As discussed in chapter 1, the scales are derived from experimental
association constant measurements [145, 149–151] in carbon tetrachloride.

The experimental parameters for carbon tetrachloride are αS = 1.4, βS = 0.6. This differs
to the calculated description which has less polar SSIPs with the largest α = 1.1 and the
largest β = 0.15, (plot of all SSIPs in appendix G). The less polar SSIP description of the
solvent is offset by the more positive the constant, γ .

Comparison of the values of ∆Go calculated using equation (5.1) against ∆Go calculated
using equation (5.23) for carbon tetrachloride is shown in figure 5.9. The most significant
deviation occurs for the most polar solutes, with errors of less than 2 kJ mol−1 for the
strongest interactions.
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Fig. 5.9: Comparison of ∆Go calculated using equation (5.1) against ∆Go (equation (5.23)),
plotted with blue crosses. Black line is y=x.

5.5 Conclusions

Generation of functional group interaction profiles for any solvent composition is now
possible with the equations derived in this work. Examples of nearly 300 systems at 298K
are included for reference in appendix H, including a selection of binary solvent mixtures
which previous approaches were unable to describe. The origin of the difference between
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∆∆GH bond and ∆Go, γ (defined in equation (5.24)), was shown to correspond to the treatment
of the solvent concentration in the experimental definition of equilibrium constants. The
calculated value of γ was shown to be constant.



Chapter 6

Solvent Similarity

Solvent-solute interactions play an important role in dissolution and solvation of compounds.
Solvents are used in several industries, as a medium for reactions to synthesise compounds
such as in the pharmaceutical and agrochemical industries, or for the application of surface
coatings and paints. Finding the solvent with the correct properties to solvate the required
components is therefore important. Multiple solvents may possess similar efficacy at solva-
tion, so secondary factors such as cost and environmental effects also play a role in selection.
With the increasing desire to reduce environmental impact and improve efficiency in pro-
cesses, the concept of ‘green’ chemistry [77] is becoming more prominent, with scales to
assess the environmental impact of solvents developed [78–81]. This has led to the use of
alternative solvents with lower environmental impact in pharmaceutical companies [79, 284].

To find suitable solvent replacements in industry, solvents with similar properties must
be identified. The prediction of solvents with similar properties requires the definition of
a metric with which to compare them. Previously Hansen [98] has generated a similarity
metric for solvents, based on work originally undertaken by Hildebrand [97].

A new solvent similarity metric to use for solvent comparisons is presented here. The
difference between solvation profiles of a single solute surface site interaction point (SSIP)
[149, 155], calculated using the Surface Site Interaction Model for Liquids at Equilibrium
(SSIMPLE) [158] is proposed as a suitable metric.
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6.1 Surface Site Interaction Model for Liquids at Equilib-
rium (SSIMPLE)

A collection of Surface Site Interaction Points (SSIPs) is used to describe the interactions
that a molecule makes with the environment, e.g. the solvent. Each SSIP is assigned an
interaction parameter, εi, which is equivalent to the experimentally measured hydrogen bond
donor parameter (α) for positive sites or the hydrogen bond acceptor parameter (−β ) for
negative sites [149]. The assignment of these values is done by footprinting of the ab initio

calculated Molecular Electrostatic Potential Surface (MEPS) of the molecule [155].
To describe interactions between SSIPs in the liquid phase, all possible SSIP interactions

are treated in a pairwise manner, with the association constant for interaction between the ith
and jth SSIPs in a phase given by (6.1).

Ki j =
1
2

e−
εiε j+EvdW

RT (6.1)

Where EvdW =−5.6 kJ mol−1, εi, ε j are the values of the SSIPs, R is the gas constant and T

is the temperature.
EvdW is the energy attributed to van der Waals interactions between two SSIP fragments

and comes from [278]. The polar interaction term, εiε j, is set to zero for repulsive interactions
(i.e. εiε j > 0). It is assumed that a state where the directional polar interactions are misaligned
such that only the non-directional van der Waals interactions are possible between SSIPs can
be found. Since Ki j is dimensionless, the concentrations of SSIPs must be defined relative to
a standard state. The standard state used is the theoretical density of SSIPs in the zero point
solid, cmax = 300 M. The populations of free and bound species are then computed for the
equilibrium state, as described by Hunter in [158] (detailed in chapter 4).

The solvation free energy of a SSIP, is defined as the change in energy for transfer from
the gas phase to the solution phase. The gas phase is assumed to be sufficiently dilute that
there are no interactions with the molecule, i.e. all its SSIPs are completely free.

For a single SSIP, i, the solvation free energy is the sum of the binding and confinement
energies, shown in equation (6.2).

∆GS,i = ∆Gb,i +∆Gc,i (6.2)
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The binding energy for a SSIP, ∆Gb,i, is given by equation (6.3), which arises due to the
interactions with solvent SSIPs in the condensed phase.

∆Gb,i = RT ln
(

f i) (6.3)

f i =

[
i f ree

]
[i]

(6.4)

Where f i, is the fraction free (equation 6.4) of the SSIP,
[
i f ree

]
is the concentration of

free i (calculated using the SSIMPLE approach, [158]) and [i] is the total concentration of i
in the phase.

In order to calculate the speciation of the phase, the SSIPs are confined to the condensed
phase. The confinement energy, shown in equation (6.5), is the free energy change for SSIPs
being confined to the condensed phase [158].

∆Gc,i =−RT ln
(√

1+8θ −1
4θ

)
(6.5)

Where θ is the fractional occupancy of the phase, and is the total concentration of SSIPs
in the phase expressed relative to the standard state of the zero point solid concentration, cmax.
Note that ∆Gc,i for a SSIP is a constant for the phase, as it only depends on the fractional
occupancy of the phase and the temperature.

6.2 Similarity Quantification using SSIMPLE

Figure 6.1 shows plots of solvation energies as a function of all possible SSIP values for a
selection of solvents. These solvation profiles are smooth so a polynomial function can be
fitted to be able to regenerate the curves on the fly (detailed in appendix C.2), increasing the
speed of future analysis.
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Fig. 6.1: Solvation profiles for water (blue), DMSO (black) and toluene (green). The
calculated solvation free energy for a single SSIP (∆GS,i kJ mol−1) plotted as a function of
SSIP value, εi, as circles, with polynomial fit used during analysis plotted as a solid line
(described in appendix C).

The solvation profiles in figure 6.1 are dramatically different for each of the solvents
plotted. Toluene is a non-polar solvent, so has poor interactions with hydrogen bond donors
and acceptors and has a relatively shallow curve.

Dimethyl sulfoxide is a polar aprotic solvent. It has a strong hydrogen bond acceptor,
therefore it solvates donors very strongly, with a large ∆GS for positive SSIPs, but is only a
weak donor so solvates acceptors poorly; with a smaller negative value of ∆GS for negative
SSIPs. This produces a more assymetric curve.

Water is a moderate donor and acceptor, so has a sharp inverted ’u’ shaped curve. It
is classed as a polar protic solvent. The interaction of water is very weak with non-polar
hydrogen bond acceptor and donor sites, leading to hydrophobic interactions with non-polar
molecules. Preferential interaction between the water hydrogen bond donor and acceptor
groups means that for neutral SSIPs the solvation energy is unfavourable; ∆GS,i is positive
for water around εi = 0.0, but is negative for the other solvents displayed here.
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The difference between the shapes of the solvation profiles match the qualitative descrip-
tion of a solvent as non-polar, polar aprotic or polar protic.

6.3 Similarity Metric

Comparison of the solvation profiles requires the definition of a metric which describes the
distance between the curves. The metric would quantify the extent of the difference between
two solvents for all possible solute SSIP values.

Hausdorff and Fréchet distances [285, 286] are two possible distance metrics previously
used in assessing the similarity of curve paths. The Hausdorff distance equation (6.6) is the
largest minimum distance required to maintain a connection between the two curves along
the entire curve lengths. The Fréchet distance, in equation (6.7) is the same as the Hausdorff
distance, except that the traversal of the curves is unidirectional, i.e. you must increase the
values of ε if you have started from the most negative end; you cannot retraverse a section of
the profile.

dH(∆GS1,∆GS2)=max
{

sup
ε1∈E

inf
ε2∈E

d(∆GS1(ε1),∆GS2(ε2)), sup
ε2∈E

inf
ε1∈E

d(∆GS1(ε1),∆GS2(ε2)
}

(6.6)

F(∆GS1 ,∆GS2) = inf
ε1,ε2

max
t∈[0,1]

{
d
(

∆GS1(ε1(t)), ∆GS2(ε2(t))
)}

(6.7)

Where ∆GS1 , ∆GS2 are the solvation profiles for solvents 1 and 2 respectively; d is a
distance function; ε1, ε2 are solute SSIP values in solvent system 1 and solvent system 2
respectively; E is the set of all permitted ε values; t is a scaling parameter. The value of t is
such that the values of ε1 and ε2 are always incremented in the same direction.

These distances will be heavily dependent on the extrema of the curves, so will not
capture the small but important differences in the non polar region well. To overcome the
issue of extrema biasing, a domain averaged root mean square standard deviation between
solvation profiles is proposed as the similarity metric.
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Root mean square standard deviation (RMSD)

The root mean standard deviation (RMSD) between the two curves is given by equation
(6.8).

RMSD(S1,S2) =

√
∑

N
i=1 (∆GS1 (εi)−∆GS2 (εi))

2

N
(6.8)

Where S1, S2 are the solvents, ∆GS2 , ∆GS2 are the solvation profiles for a single SSIP for
solvent one and solvent two respectively, and εi is the solute SSIP value. The summation is
over all εi in the region of interest.

If the summation was carried out over the full curve then the RMSD would be dominated
by the solvation energy differences for the extreme ends of the εi scale. Instead, to avoid
this issue, the curves are partitioned and each domain is given an equal weighting after
normalisation. The distinct domains are given by equation (6.9). This is required to produce
a metric that is not biased by the interaction of a solvent with very strong donor or acceptors,
which are relatively uncommon compared to the occurrence of non-polar hydrocarbon groups
in chemical structures.

Domains =



−10.0 ≤ εi <−5.0

−5.0 ≤ εi <−2.0

−2.0 ≤ εi < 0.0

0.0 ≤ εi < 1.0

1.0 ≤ εi < 3.0

3.0 ≤ εi < 5.0

(6.9)

The normalisation factor for the jth domain, η j, used is defined in (6.10). This is the
maximum RMSD between any two solvents in the set of all solvents, S, for the domain. All
RMSDs for that domain are scaled by this value.

η j = max
k,l∈S

{
RMSD

(
Sk, j,Sl, j

)}
(6.10)

This results in scaled values between 0 and 1 for each domain. Where 0 means the
domains are identical, and a value of 1 means the domains are the most dissimilar. The mean



6.4 Similarity Visualisation 95

of the scaled values of all domains was then used as the distance between solvents to describe
similarity, in equation (6.11).

Similarity(Sk,Sl) =
1
D

D

∑
j

RMSD
(
Sk, j,Sl, j

)
η j

(6.11)

Where j is the domain, D is the total number of domains. The relative distance produced
from scaling the solvent values produces a set dependent metric, such that exact distances
are not comparable between different solvent sets, providing a qualitative guide to similarity
within a collection of solvent profiles.

A quantitative measure can be created by defining normalisation factors, η j based on
a standard reference set. The set of 261 pure solvent molecules listed in appendix G were
chosen to act as this reference, with the normalisation factors in table 6.1.

Domain η j/kJ mol−1

−10.0 ≤ εi <−5.0 29.573840367308566
−5.0 ≤ εi <−2.0 9.4352526310819851
−2.0 ≤ εi < 0.0 2.1109705595898145
0.0 ≤ εi < 1.0 1.981619630257929
1.0 ≤ εi < 3.0 11.244516687700679
3.0 ≤ εi < 5.0 30.555524859353685

Table 6.1 Normalisation factors for SSIP domains.

6.4 Similarity Visualisation

With the distance metric defined between all curves visualisation of the distances is required
to be able to interpret the similarity. For a group of N solvents a similarity matrix could be
created, of size N ×N, which could then be plotted with a colour scale used to represent the
degree of similarity. This could be useful for small N (N O (10)), but becomes unintelligible
for larger N. 261 pure solvent molecules have been considered (detailed in appendix G), thus
this approach to visualisation is not suitable, so clustering of the data is required.

6.4.1 Clustering

Clustering of individual datapoints into larger collections provides a way to structure the
similarity distance data stored in the similarity matrix to readily display it. The process of
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aggregating individual solvent entries into clusters of like solvents indicates the degree of
similarity by spatial positioning within the diagram.

Three types of clustering algorithm have been considered, which are:

• K-means[287, 288]

• Density-based spatial clustering of applications with noise (DBSCAN)[289]

• Hierarchical [290]

K-means clustering algorithms[287, 288] create K clusters of points, where the number of
clusters, K, must be specificied a priori. An iterative process is required to assign datapoints
to clusters, after initial guesses for each cluster centroids. The datapoints are assigned to one
of these clusters based on the voronoi diagram of the space. A new centroid is calculated and
then this process is repeated until the cluster centroids remain static.

The DBSCAN[289] clustering approach produces a collection of clusters without need
to specify the number of clusters. Instead a distance cutoff, δ , and the minimum number of
points (minPts) to create a dense region are required. Core points of a cluster have minPts

within a radius δ . The edge of a cluster is defined by points within δ of fewer core points
than minPts. Again, an iterative approach is required to complete assignment to the different
clusters, noting that the assignment of cluster edges may be ambiguous if there are multiple
points from different clusters equidistant, but the total number of points is less than minPts.

In Hierarchical clustering [290] the approach does not yield a total number of distinct
clusters as in the previous two approaches. During a hierarchical clustering, the two most
similar nodes (datapoints) are replaced by a new node representing an aggregate of the two
previous nodes. The distance to this new node is calculated, and a new distance matrix is
computed. This aggregation is repeated until only one node is present, when there is only
one entry in the resulting distance matrix.

The sequential merging of entries into higher order nodes gives a dendrogram structure
which can be displayed. This made the hierarchical approach the most suited to the task of
visualisation, so to understand the degree of similarity between individual solvents instead of
the formation of clusters. The degree of similarity can be determined by the distance to the
closest shared node between two solvent, purely from visual inspection.

There are multiple strategies for the creation of new nodes in hierarchical clustering
to represent the combination of the two most similar nodes from the previous step. These
strategies are:

• Single linkage
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• Complete linkage

• Unweighted pair group method with arithmetic mean (UPGMA)

• Weighted pair group method with arithmetic mean (WPGMA)

• Ward’s method [291]

The single linkage method uses the minimum distance between any leaf node in the
aggregated node to another node, for the updated distances. The complete linkage method
uses the maximum distance between any leaf node in the aggregated node to another node,
for the updated distances. UPGMA uses the mean distance of all leaf nodes to the other node
as the distance to the aggregated node. For WPGMA the mean of the distances from each
node cluster being combined is used to represent the distances to the aggregated node. This
produces an ultrametric tree, therefore leaf nodes are equidistant to the root node. In Ward’s
method the clustering criteria used minimises the total in-cluster variance after merging to
determine the new position.

Of these methods the UPGMA approach was evaluated to be the most logical choice,
as the average similarity of the clusters is of most interest. Since the relative distances
between solvents after clustering is of interest, it would be lost if WPGMA is used, so that
is unsuitable. The single and complete linkage methods lead to the extreme values in the
clusters dominating, which is also not suitable for the requirements. The variance within a
cluster is not important as a qualitative view of similarity for visualisation is required, thus
Ward clustering can be discounted.

6.5 Solvent comparison

Solvation profiles were then compared using the defined distance metric in equation (6.11).
The smaller the normalised distance, the more similar two solvents are.

6.5.1 Pure Solvents

The solvation profiles for 261 pure solvents at 298K were used in the following analysis.
Details of all the solvents are in appendix G, with the polynomials used to describe the
solvation profiles in appendix G.

The complete dendrogram is presented in figure 6.2. This provides an overview of the
similarity for all solvents in the set. Examination of this information requires truncation of
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the set at distinct branch nodes to visualise the grouping of solvents within smaller regions of
solvent space. The numbers on figure 6.2 correspond to the branch nodes used to generate
regional dendrograms of subsets of solvents.
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Fig. 6.2: Dendrogram showing normalised distances between 261 pure solvents at 298K
using UPGMA clustering algorithm. Numbers correspond to nodes used for partitions into
smaller subsets. Solvent clusters with a normalised distance between nodes of less than two
fifths of the maximum distance, which is denoted by the vertical black line was used as a
threshold to colour different clusters.

A partitioning scheme with a threshold of two fifths of the maximum distance between
nodes was used as a cutoff to colour different solvent clusters in all of the figures. For the
complete set of solvents this identifies four distinct clusters with this threshold level.

Distribution of distances

The distribution of unique solvent distances is shown in figure 6.3, peaks between 0.1 and 0.2
normalised distance units, with a long tail. The maximum theoretical normalised distance
for two solvents is 1.0, when a pair of solvents have the greatest dissimilarity in all six
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domains. The observed maximum distance is smaller than this, with a value of 0.80, for
hydrogen fluoride and hexamethylphosphoramide (HMPA). Hydrogen flouride contains a
very good hydrogen bond donor, but poor hydrogen bond acceptors, so solvates hydrogen
bond acceptors well, and hydrogen bond donors poorly. Whereas HMPA has the best
hydrogen bond acceptor of any solvent, but poor hydrogen bond donors, so exhibits the
opposite solvation behaviour to hydrogen fluoride.
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Fig. 6.3: Distribution of distances between solvents, as percentage of unique solvent dis-
tances.
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Regional dendrograms

The regional dendrograms are plotted below to show the solvents to the left of the nodes
labelled in figure 6.2. The normalised distances for these regional plots are those in table 6.1.

Region 1 (figure 6.4) is a collection of molecules with good hydrogen bond donors and
moderate hydrogen bond acceptors. It is mainly phenols (α ≈ 4), acids and alcohols, with
electron withdrawing substituents.
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Fig. 6.4: Dendrogram for solvents to the left of node 1 in figure 6.2. Solvent clusters with a
normalised distance between nodes of less than two fifths of the maximum distance, which is
denoted by the vertical black line was used as a threshold to colour different clusters.
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Fig. 6.5: Dendrogram for solvents to the left of node 2 in figure 6.2. Solvent clusters with a
normalised distance between nodes of less than two fifths of the maximum distance, which is
denoted by the vertical black line was used as a threshold to colour different clusters.
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Regions 2-5 contain the most non-polar molecules. Nitriles form the dominant classifica-
tion of molecules in region 2 (figure 6.5). These molecules are slightly more polar than those
in regions 3-5, and contain the best hydrogen bond acceptors of any of the molecules in the
super cluster formed by regions 2-5.

Aromatic compounds are found in region 3 (figure 6.6), with aromatic ethers and dialkyl
sulfides. The molecules have poor hydrogen bond donors and hydrogen bond acceptors, so
van der Waals interactions will be the dominant mode of interaction with solutes.
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Fig. 6.6: Dendrogram for solvents to the left of node 3 in figure 6.2. Solvent clusters with a
normalised distance between nodes of less than two fifths of the maximum distance, which is
denoted by the vertical black line was used as a threshold to colour different clusters.
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Fig. 6.7: Dendrogram for solvents to the left of node 4 in figure 6.2. Solvent clusters with a
normalised distance between nodes of less than two fifths of the maximum distance, which is
denoted by the vertical black line was used as a threshold to colour different clusters.
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Region 4 (figure 6.7) contains halogenated molecules (haloalkanes, haloarenes and
perfluorocarbons), which have poor hydrogen bond donors and also poor hydrogen bond
acceptors.

Region 5 (figure 6.8) contains the least polar set of molecules, the alkanes plus tetram-
ethylsilane and carbon disulfide. Carbon disulfide is an interesting molecule as its MEPS
surface is exclusively positive, so there are no negative SSIPs. These molecules possess the
weakest hydrogen bond donor groups and a minimal number of hydrogen bond acceptor
sites. This results in van der Waals interactions dominating the interactions of these solvent
molecules, hence giving poor solubility of polar groups.
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Fig. 6.8: Dendrogram for solvents to the left of node 5 in figure 6.2. Solvent clusters with a
normalised distance between nodes of less than two fifths of the maximum distance, which is
denoted by the vertical black line was used as a threshold to colour different clusters.
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Fig. 6.9: Dendrogram for solvents to the left of node 7 in figure 6.2. Solvent clusters with a
normalised distance between nodes of less than two fifths of the maximum distance, which is
denoted by the vertical black line was used as a threshold to colour different clusters.

Region 6 contains only thionyl chloride, which contains moderate hydrogen bond accep-
tors and poor hydrogen bond donors.

Region 7 (figure 6.9) contains ethylene carbonate, 4-methyl-1,3-dioxolan-2-one, ammo-
nia, hydrazine and formamide. These molecules contain strong hydrogen bond acceptors and
weak hydrogen bond donors.

Region 8 (figure 6.10) contains molecules with strong hydrogen bond acceptors, based
on pyridines (β ≈−7.5), amines (β ≈−8.0) and amides (β ≈−8.3), so therefore there is
good solvation of hydrogen bond donors. Solvation of hydrogen bond acceptors is weak
since the molecules contain poor hydrogen bond donors.
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Fig. 6.10: Dendrogram for solvents to the left of node 8 in figure 6.2. Solvent clusters with a
normalised distance between nodes of less than two fifths of the maximum distance, which is
denoted by the vertical black line was used as a threshold to colour different clusters.
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Fig. 6.11: Dendrogram for solvents to the left of node 9 in figure 6.2. Solvent clusters with a
normalised distance between nodes of less than two fifths of the maximum distance, which is
denoted by the vertical black line was used as a threshold to colour different clusters.

Region 9, in figure 6.11, contains substituted alcohols, which like region 10 contains
molecules with at least one moderate hydrogen bond donor, and multiple moderate hydrogen
bond acceptors. This allows them to solvate good hydrogen bond donors and acceptors well,
due to the high proportion of polar SSIPs. Methanol is also contained in this group, instead of
region 10, due to the smaller non-polar region compared to the other unsubstituted alcohols
which have longer alkyl chains.

Region 10 (figure 6.12) contains carboxylic acids and alcohols (including diols). These
molecules have at least one good hydrogen bond donor, plus multiple moderate hydrogen
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bond acceptors. This allows for favourable interactions with solute hydrogen bond donors
and acceptors of intermediate to strong ability. The small less polar regions on the molecules
give more limited interactions with non-polar solute SSIPs.
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Fig. 6.12: Dendrogram for solvents to the left of node 10 in figure 6.2. Solvent clusters with
a normalised distance between nodes of less than two fifths of the maximum distance, which
is denoted by the vertical black line was used as a threshold to colour different clusters.
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Fig. 6.13: Dendrogram for solvents to the left of node 11 in figure 6.2. Solvent clusters with
a normalised distance between nodes of less than two fifths of the maximum distance, which
is denoted by the vertical black line was used as a threshold to colour different clusters.

Region 11, in figure 6.13 is a collection of ethers, which have a moderate hydrogen bond
acceptor (β ≈ 5), but are poor hydrogen bond donors.

Region 12 (figure 6.14) contains ketones and esters.
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Fig. 6.14: Dendrogram for solvents to the left of node 12 in figure 6.2. Solvent clusters with
a normalised distance between nodes of less than two fifths of the maximum distance, which
is denoted by the vertical black line was used as a threshold to colour different clusters.
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Fig. 6.15: Dendrogram for solvents to the left of node 13 in figure 6.2. Solvent clusters with
a normalised distance between nodes of less than two fifths of the maximum distance, which
is denoted by the vertical black line was used as a threshold to colour different clusters.

Region 13 (figure 6.15) also contains molecules with good hydrogen bond acceptors, but
which lack a good donor. They are esters, aldehydes or substituted pyridines, so they can
solvate hydrogen bond donors and non-polar solutes well, but not hydrogen bond acceptors,
due to lack of strong positive SSIPs.

Region 14 (figure 6.16) contains an assortment of molecules with good hydrogen bond
acceptors, but poor hydrogen bond donors. Regions 11-14 form a cluster of polar aprotic
solvents which contain predominantly oxygen centred hydrogen bond acceptors (a few
nitrogen acceptors occur in region 13).
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Fig. 6.16: Dendrogram for solvents to the left of node 14 in figure 6.2. Solvent clusters with
a normalised distance between nodes of less than two fifths of the maximum distance, which
is denoted by the vertical black line was used as a threshold to colour different clusters.
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Fig. 6.17: Dendrogram for solvents to the left of node 17 in figure 6.2. Solvent clusters with
a normalised distance between nodes of less than two fifths of the maximum distance, which
is denoted by the vertical black line was used as a threshold to colour different clusters.

Region 15 and region 16 both contain only one molecule each: glycerol is in region
15 and HMPA (Hexamethylphosphoric triamide) is in region 16. Glycerol contains both
moderate hydrogen bond donors and moderate hydrogen bond acceptors, so can solvate
both hydrogen bond acceptors and hydrogen bond donors reasonably well. It also has a
small non-polar region, so can interact favourably with non-polar solutes as well. HMPA
has the strongest hydrogen bond acceptor, but contains only poor hydrogen bond acceptors,
so solvates hydrogen bond donors very well, but strong hydrogen bond acceptors are very
poorly solvated.
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Region 17 in figure 6.17 contains hydrogen peroxide and water, which can solvate strong
hydrogen bond donors and acceptors equally well, since both have a moderate hydrogen
bond donor and acceptor groups, but are unable to solvate non-polar sites well due to the
unfavourable interactions with the polar SSIPs.

Region 18 (figure 6.18) contains mainly carboxylic acids, the most polar hydrogen bond
donor species, which also contain moderately good hydrogen bond acceptors. The molecules
have only a small fraction of low polarity surface, so solvate non-polar molecules poorly.
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Fig. 6.18: Dendrogram for solvents to the left of node 18 in figure 6.2. Solvent clusters with
a normalised distance between nodes of less than two fifths of the maximum distance, which
is denoted by the vertical black line was used as a threshold to colour different clusters.

6.5.2 Solvent Mixtures

By combining different solvents together as a mixture, a new solvent system with different
properties is created. These mixtures possess properties that are a composite of the constituent
parts. The similarity of the mixtures to the component solvents should exhibit a smooth
change in similarity as the mixture composition is varied. This is due to the change in
composition of solvent SSIPs with which a solute can interact. Competition of solute
SSIP with solvent hydrogen bond acceptors and donors will vary with solvent composition.
Comparison of the similarity of the solvent mixtures to the pure solvents provides a method
to quantitatively measure the change in behaviour on mixing the solvents.

For these calculations the volume change of mixing was assumed to be negligible.
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Water-Ethanol Mixtures

Water and ethanol appear in regions 17 and 10 of figure 6.2 respectively. Both molecules
contain an hydroxyl donor and oxygen lone pair acceptors, with ethanol also containing a
small alkyl chain that will solvate non-polar SSIPs. Figure 6.19 shows the dendrogram for
water-ethanol mixtures in isolation. This dendrogram exhibits a homogeneous distribution of
solvent mixtures.

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175

Normalised Distance

0
5
10
15
20
35
40
25
30
85
90
95
100
55
60
45
50
65
70
75
80

M
ix
tu
re

E
th
an
ol

C
on
te
nt
/%

V
ol
u
m
e

Fig. 6.19: Dendrogram showing similarity of Water-Ethanol solvent mixtures with 5% volume
fraction composition differences at 298K using UPGMA clustering algorithm. Solvent
clusters with a normalised distance between nodes of less than two fifths of the maximum
distance, which is denoted by the vertical black line was used as a threshold to colour different
clusters.

The even distribution of the mixtures during clustering aligns with the proportion of
ethanol in the mixture; the first node formed by any solvent mixture is to another solvent
mixture with a composition difference of less than 10%. This behaviour is expected, as the
solvent SSIP concentrations are gradually being changed, so solvation ability of the mixture
should vary smoothly with the composition.

Comparison of these solvent mixtures to the set of 261 pure solvents (in appendix G) can
be used to show the degree of similarity to pure solvents. The insertion points for the solvent
mixtures are in table 6.2.

The mixtures fall into three major categories: ≥75% ethanol, 30-70% ethanol and ≤25%
ethanol mixtures.

The mixtures with 80-95% ethanol are inserted into region 10 of the pure solvent dendro-
gram, with a high degree of similarity to 1,4-butanediol. The mixture with 75% ethanol is
also inserted into region 10 of the pure solvent dendrogram, with a high degree of similarity
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Mixture
ethanol
content/ %
volume

Most similar
pure solvent

Region Distance to
pure solvent

Distance to
water

Distance to
ethanol

0 water 17 0.000 0.000 0.360
5 water 17 0.028 0.028 0.332
10 water 17 0.053 0.053 0.308
15 water 17 0.075 0.075 0.286
20 water 17 0.095 0.095 0.266
25 water 17 0.114 0.114 0.247
30 formamide 7 0.112 0.131 0.230
35 formamide 7 0.098 0.148 0.213
40 formamide 7 0.084 0.164 0.197
45 formamide 7 0.073 0.180 0.181
50 formamide 7 0.063 0.195 0.166
55 formamide 7 0.056 0.210 0.151
60 formamide 7 0.053 0.225 0.136
65 formamide 7 0.056 0.240 0.121
70 formamide 7 0.064 0.256 0.105
75 1,2-

propanediol
10 0.051 0.271 0.090

80 1,4-butanediol 10 0.038 0.287 0.073
85 1,4-butanediol 10 0.022 0.304 0.057
90 1,4-butanediol 10 0.011 0.322 0.039
95 1,4-butanediol 10 0.019 0.341 0.020
100 ethanol 10 0.000 0.360 0.000

Table 6.2 Water-ethanol mixture summary of most similar solvents.

to 1,2-propanediol. This is due to the increase in proportion of water in the mixture, which
increases the proportion of polar hydrogen bond donors and acceptors in the solvent, with
1,2-propanediol having a larger proportion of polar hydrogen bond donors and acceptors than
1,4-butanediol.

The mixtures with 30-70% ethanol are most similar to formamide and are inserted into
region 7 of the pure solvent dendrogram. The mixtures with up to 25% ethanol more closely
resemble water, and are inserted into region 17.
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Tetrahydrofuran-Chloroform Mixtures

Tetrahydrofuran is a moderate hydrogen bond acceptor, appearing in region 8 of figure 6.2,
whereas chloroform is a moderate hydrogen bond donor, appearing in region 4 of figure 6.2.

A homogeneous distribution of solvent mixtures upon clustering are seen in figure 6.20,
when only the mixtures are compared. This behaviour is expected as the composition changes
lead to a gradual change in solvent SSIP composition.

The similarity of the mixtures when compared to other solvents shows a much greater
dispersion than water ethanol mixtures, summarised in table 6.3.
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Fig. 6.20: Dendrogram showing similarity of THF-Chloroform solvent mixtures with 5% vol-
ume fraction composition differences at 298K using UPGMA clustering algorithm. Solvent
clusters with a normalised distance between nodes of less than two fifths of the maximum
distance, which is denoted by the vertical black line was used as a threshold to colour different
clusters.

Up to 5 % volume chloroform mixtures are very similar to pure THF and after this point
the mixtures transition to behave more like morpholine. Morpholine contains a moderate
hydrogen bond donor group from the secondary amine, but also moderate hydrogen bond
acceptors. These solvents are both in region 8 of the pure solvent dendrogram.

Once 25% volume of chloroform has been reached, the mixtures start to more closely
match cyclohexanone, then quinoline at 40% volume chloroform and 3,3-dimethyl-2-butanone
at 45% volume chloroform. These solvents are all in region 12 of the pure solvent den-
drogram, which all have moderate hydrogen bond acceptors but fairly poor hydrogen bond
donors.
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50-70% volume chloroform mixtures are most similar to pure solvents in region 13 of the
pure solvent dendrogram, which have moderate hydrogen bond acceptors but weak hydrogen
bond donors.

As the concentration of chloroform increases (75-90% volume chloroform), the mixture
solvation properties start to resemble pure solvents in region 2 (nitriles and anilines), which
have weak hydrogen bond acceptors, and weak to moderate hydrogen bond donors. At 95%
volume chloroform the mixture is most similar to 1,1,2-trichloroethane (region 1).

Mixture
chloroform
content/ %
volume

Most similar pure
solvent

Region Distance to
pure solvent

Distance to
tetrahydro-
furan

Distance to
chloroform

0 tetrahydrofuran 8 0.000 0.000 0.314
5 tetrahydrofuran 8 0.010 0.010 0.306
10 morpholine 8 0.016 0.018 0.297
15 morpholine 8 0.019 0.027 0.289
20 morpholine 8 0.024 0.037 0.280
25 cyclohexanone 12 0.023 0.047 0.270
30 cyclohexanone 12 0.018 0.058 0.259
35 cyclohexanone 12 0.022 0.069 0.248
40 quinoline 12 0.024 0.082 0.237
45 3,3-dimethyl-2-

butanone
12 0.024 0.095 0.224

50 benzyl methyl ke-
tone

13 0.027 0.109 0.211

55 2-bromopyridine 13 0.025 0.125 0.197
60 2-bromopyridine 13 0.022 0.141 0.182
65 3-bromopyridine 13 0.030 0.159 0.167
70 3-bromopyridine 13 0.036 0.176 0.151
75 benzonitrile 2 0.037 0.194 0.134
80 phenylacetonitrile 2 0.039 0.211 0.115
85 phenylacetonitrile 2 0.046 0.228 0.095
90 aniline 2 0.048 0.246 0.073
95 1,1,2-

trichloroethane
1 0.046 0.268 0.053

100 chloroform 4 0.000 0.314 0.000

Table 6.3 Tetrahydrofuran-Chloroform mixture summary of most similar solvents.
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6.5.3 Replacement solvent- Dihydrolevoglucosenone

Dihydrolevoglucosenone ( (1R)-7,8-Dioxabicyclo[3.2.1]octan-2-one, commercially known
as Cyrene) has been suggested as a ’green’ replacement for dimethyl-formamide (DMF)
and N-methyl pyrrolidine (NMP) due to having similar COSMO σ -profiles [292]. Cyrene
production is from cellulose, which comes from plants[293] so the feedstock required can
be supplied from a sustainable source of plant biomass. At the end of its lifecycle, the
solvent can be incinerated without the release of NOx or SOx, due to the lack of N and S
hetero-atoms.

Cyrene has been shown to be a useable solvent for Sonogashira cross-coupling, Cacchi-
type annulation [294] and urea synthesis [295]. Sensitivity to basic conditions were high-
lighted by Wilson et al. [294], potentially limiting which reactions it could be used as an
alternative solvent for.

Since Cyrene is being used in the synthetic community as a replacement solvent it was
included in the dendrogram of pure solvents (figure 6.2) and appears in Region 14 (figure
6.16).

Sherwood et al. [292] used the COSMO σ profile description to suggest Cyrene as a
replacement for DMF and NMP. DMF and NMP both appear in region 8 (figure 6.10) of the
pure solvent similarity dendrogram with the SSIMPLE solvation energy metric presented in
this work.

Comparison of the solvation profiles directly using figure 6.21 shows that the solvation
of solute hydrogen bond donors is much poorer in Cyrene than NMP or DMF. The solvation
ability of hydrogen bond acceptors has a much smaller difference, since all have very similar
hydrogen bond donors.
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Fig. 6.21: Solvation profiles, ∆GS,i (kJ mol−1) against SSIP value, εi, for dimethyl formamide
(DMF) in blue, N-methyl pyrrolidine (NMP) in green, Dihydrolevoglucosenone in black,
ethyl formate in magenta.

This indicates a much greater disparity between the solvent abilities than previously
described, indicating more suitable alternatives exist. Cyrene, most closely matches 2,4-
pentanedione and the most common solvent that is relatively close in similarity is ethyl
formate, which is illustrated in figure 6.21. The distances to cyrene for the 25 most similar
solvents are displayed in table 6.4, along with the values for DMF and NMP.
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Solvent Distance to Cyrene

2,4-pentanedione 0.018
methyl formate 0.020
ethyl formate 0.024
p-methoxybenzaldehyde 0.025
1-methyl-2-pyrrolidinethione 0.027
pyrimidine 0.027
dimethylcyanamide 0.029
ethyl acetoacetate 0.029
dimethyl carbonate 0.031
cinnamaldehyde 0.031
methyl acetate 0.032
acetophenone 0.033
dimethylphthalate 0.034
2-bromopyridine 0.035
acetone 0.036
diethyl malonate 0.037
benzyl methyl ketone 0.038
4-methyl-2-pentanone 0.040
diethyl sulfite 0.041
ethyl acetate 0.041
propionaldehyde 0.041
diethyl carbonate 0.041
ethyl phenyl ketone 0.042
2-propanol 0.043
2,3-butanedione 0.043
dimethyl formamide 0.102
N-methyl pyrrolidine 0.139

Table 6.4 Distances to the 25 closest solvents to Cyrene
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6.6 Conclusion

The development of a new metric for solvent similarity presented here could be a useful
alternative to Hansen’s solubility parameters [98]. The outcome of the clustering using this
metric on the set of pure solvents aligns with the concepts of solvent type- non-polar, polar
protic, polar aprotic.

Binary mixtures, such as those of THF-chloroform and water-ethanol presented here
show gradual variation in solvation profile when compared to other mixtures of the same
series. The behaviour of the mixtures relative to other pure solvents can be radically different
to that of the components, as seen with the chloroform-tetrahydrofuran mixtures, for example
a THF-chloroform 65% volume chloroform mixture most closely matches 3-bromopyridine,
a much more polar solvent than either components of the mixture.

The evaluation of emerging solvents, such as Cyrene, with this metric can be used to
direct experimental feasibility studies to find which conventional solvents a new green solvent
might replace.



Chapter 7

Vapour-Liquid Equilibria

The study of vapour-liquid equilibria requires extensive experimental set ups [104–108]. The
prediction of such properties is therefore desirable. The creation of equations of state to
link the pressure, volume and temperature dependence of fluids have been in development
for nearly two centuries. Clapeyron first proposed the ideal gas law [110], which was
since modified by van der Waals [112] for non-ideal fluids. Further developments of more
complex equations of state are covered in reviews [113–115]. Quantitative Structure Property
Relationships (QSPR) have also been developed for VLE systems [93–96, 121]. Molecular
simulation frameworks, such as Monte Carlo (MC) [123–126], Molecular Dynamics (MD)
[127–130] and Dissipative Particle Dynamics (DPD) [131–134] have also been used to
predict phase compositions.

In this work the surface site interaction model for liquids at equilibrium (SSIMPLE)
[158] will be extended to consider the temperature dependence of interactions. This uses the
surface site interaction point approach (SSIP) approach to molecule description [155].

7.1 Surface Site Interaction Model for Liquids at Equilib-
rium (SSIMPLE)

The interactions a molecule makes with the environment, e.g. the solvent, are described by a
collection of surface site interaction points (SSIPs). An interaction parameter, εi, is assigned
to each SSIP, which is equivalent to the experimentally measured hydrogen bond donor
parameter (α) for positive sites or the hydrogen bond acceptor parameter (−β ) for negative
sites [149]. Coarse graining of the ab initio calculated molecular electrostatic potential
surface (MEPS) of the molecule in the gas phase is used to assign these parameters [155].
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All possible pairwise interactions between SSIPs in a phase are considered, with the
association constant for interaction of two SSIPs, i and j, in equation (7.1).

Ki j =
1
2

e−
εiε j+EvdW

RT (7.1)

Where EvdW =−5.6 kJ mol−1; εi, ε j are the values of the SSIPs; R is the gas constant and T

is the temperature. EvdW is the energy of interaction from van der Waals interactions between
two SSIPs. The contribution to the change in free energy due to polar interactions between
two SSIPs is given by εiε j.

The ensemble of SSIPs contained within a phase are considered to interact in a pairwise
manner, such that the concentration of the bound species formed between i and j, [i · j] is
given by (7.2).

[i · j] = Ki j
[
i f ree

][
j f ree

]
(7.2)

Where
[
i f ree

]
,
[

j f ree
]

are the concentrations of i and j that are free (not bound to any
other SSIP). The speciation of a phase is calculated using the concentrations of generalized
species (COGS) algorithm [279, 280]. This is detailed in chapter 4.2 and [158].

The current formulation of the SSIMPLE approach requires the total concentration of
all species to be known and uses SSIP values parameterised at 298K only. Temperature-
dependent changes in the structure of a liquid, which influence molecular concentrations, are
governed by two distinct processes: evaporation and expansion.

Development of treatment for the temperature dependence of interactions between species
and the expansion and evaporation of species in a phase are presented in this work which
allow the study of vapour-liquid equilibria.

7.2 Temperature dependence of interactions

The interaction energy between two SSIPs has two components: van der Waals interactions,
described by EvdW and polar interactions, described by εiε j. Figure 7.1 depicts the formation
of a hydrogen bonded bound state for two water molecules in solution. Molecular rotation
within the bound state can cause the loss of directional polar interactions, whilst maintaining
van der Waals interactions, the non-hydrogen bonded bound state in figure 7.1. Molecular
translation can break all interactions, leading to the free state.
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Fig. 7.1: Depiction of the three possible states of molecules in a liquid (water shown with
SSIPs on surface). Free molecules have no interactions, and have no restriction to motion.
Directional interactions, such as hydrogen bonding between bound molecules can be broken
if there is sufficient rotational energy in the molecule whilst remaining in a bound state. The
non-directional van der Waals contacts remain, maintaining formation of a non-hydrogen
bonded bound complex.

7.2.1 Van der Waals interactions: EvdW

Van der Waals interactions are non-directional surface interactions, that depend on surface
contact area [278].

The enthalpy change of evaporation, ∆H∗, for non-polar molecules such as noble gases
and alkanes can be used to explore the temperature dependence of non-polar interactions
[278]. Figure 7.2 shows that the variation of ∆H∗ for the non-polar molecules methane
and argon is ±0.2kJ mol−1, for the entire liquid temperature range. ∆H∗ is an equilibrium
measurement, only obtainable at temperatures at which the liquid exists, so it cannot be
measured at the same temperature for all the compounds and the data in figure 7.2 is plotted
relative to the melting temperature. Figure 7.2 also shows the data for water, which is a polar
molecule: −∆H∗ is not only much larger it is also strongly temperature dependent. Hydrogen
bonding contributes to the large attractive interaction energies in water, but the extent of
hydrogen bond formation decreases with temperature whereas the non-polar, van der Waals
interactions are temperature-independent. This observation is consistent with figure 7.1 and
can be used to formulate the temperature dependence of the two energy terms that contribute
to Ki j. The van der Waals term, EvdW , is temperature independent because these interactions
are not affected by temperature-induced rotational motion, but the contribution due to the
polar interaction term εiε j depends on the relative populations of the non-hydrogen bonded
and hydrogen bonded states and so is sensitive to temperature.
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Fig. 7.2: Temperature dependence of ∆H∗ for argon (black), methane (red) and water (blue).
∆T is the increase in temperature relative to the melting temperature.

7.2.2 Polar interactions: εiε j

The interaction parameters of the SSIPs, εi, were calibrated using free energies of complexa-
tion experimentally measured at 298K [149].

It is assumed that a polar interaction can populate either a hydrogen bonded state or
a non-hydrogen bonded state, while two SSIPs remain in contact due to van der Waals
interactions. The population of the state where the polar interaction is made is assumed
to be determined by a Boltzmann distribution and this in turn determines the size of the
contribution that the polar interaction makes to Ki j for the interaction of two SSIPs. Equation
(7.3) defines the Boltzmann weighted polar interaction term at any temperature, T. Where
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E0 is the polar interaction energy of two SSIPs at zero Kelvin. The value of E0 can be
determined for any pairwise SSIP interaction, because the value of εiε j at 298 K is known.

(
εiε j
)

T =


E0

1+e
E0
RT

if εi,T ε j,T < 0

0 otherwise
(7.3)

A directional Hydrogen bonded state of a repulsive polar interaction will not be signifi-
cantly populated so it is assumed that unfavourable polar interactions are negligible.

7.2.3 Calculation of Experimental association constants

Association constant measurements were undertaken by Gramstad and coworkers over a range
of temperatures for a series of different hydrogen bond donors and hydrogen bond acceptors
[222–255]. From this large collection of data, solutes with known experimental values of
hydrogen bond parameters were selected for this analysis. The ratios of the association
constants of these solutes measured in carbon tetrachloride at 293 K and 323 K (the greatest
temperature range studied) were used to validate the treatment of the temperature dependence
of the SSIP interactions in the SSIMPLE approach (using ∆Go in chapter 5). The calculated
and experimental results are compared in figure 7.3.
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Fig. 7.3: Comparison of the ratio of association constants at two different temperatures cal-
culated with the SSIMPLE approach with experimental measurements for 169 1:1 hydrogen
bonded complexes in carbon tetrachloride.

7.3 Structural properties of the liquid

Understanding structural parameters that describe the nature of the liquid state are important
for the derivation of a molecular interpretation of experimental data based on bulk physical
measurements, before thermodymanic parameters are considered [97, 296–298]. Detailed
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structural information for liquids is difficult to obtain compared to solids and solutes. Local
information about the arrangement of neighbouring molecules is provided by X-ray scat-
tering; the probability of finding atoms at specific separations defines a radial distribution
function, which has been used to test quality of atomistic simulations of liquids [299–302].
Spectroscopy provides information on the formation of specific interactions in the liquid: for
example, the extent of formation of OH···O in water [303].

The concentration of a liquid is strongly temperature dependent. As the temperature
increases, the concentration decreases, with a corresponding increase in vapour pressure.
The total concentration of molecules in the vapour phase and the liquid phase obeys the law
of rectilinear diameter for non-polar molecules [304, 305], in equation (7.4).

cT = [liquid]T +[vapour]T = c0(1−
RT
Eexp

) (7.4)

Where [liquid]T is the liquid phase concentration; [vapour]T is the vapour phase concen-
tration; Eexp is the expansion energy; c0 is the hypothetical zero point concentration of the
liquid and is related to molecular volume by equation (7.5) [278].

c0 =
r

NA(VvdW + v)
(7.5)

Where NA is Avogadro’s constant; r = 0.9, is the packing coefficient in the zero point
solid for rod like molecules [278]; VvdW is the molecular volume, defined by the 0.002 e
bohr−3 electron density isosurface; v = 5.0Å 3 is the zero point void volume, from [278].

The zero point concentration, c0, corresponds to the most concentrated state, which in
practice is never reached because the liquid freezes. The lowest possible liquid concentration
occurs at the critical point, when vapour and liquid concentrations are equal. Equation (7.6)
defines the value of cT for a molecule at the critical point, cc [278].

cc =
r

2NAVvdW
(7.6)

7.4 Expansion energy

Thermal expansion results in the incorporation of additional void volume, such that the total
concentration of the liquid and gas phases, cT , will decrease. The expansion energy which
governs this process, Eexp, is the average energy required to break interactions between
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molecules. The expansion energy can be decomposed into contributions from van der Waals
interactions and polar interactions, in the same way as Ki j.

7.4.1 Van der Waals expansion energy: EvdW
exp

Non-polar molecules obey the law of rectilinear diameter (equation (7.4)) and can be used to
examine the relationship between the expansion energy and the total van der Waals interaction
energy available to a molecule in the condensed phase. At the critical temperature, Tc , the
liquid and vapour concentrations are equal, such that cT = cc. Substitution of equations
(7.6) and (7.5) into equation (7.4) provides a relationship between the expansion energy and
critical temperature in equation (7.7).

Eexp =
2RTc

1− v
VvdW

(7.7)

Figure 7.4 shows the relationship between the values of Eexp calculated using experimen-
tal values of Tc and calculated values of VvdW against the calculated number of SSIPs for 190
alkanes (details in appendix I). Although there is some variation, equation (7.8), plotted in
black in figure 7.4, provides a reasonable description of the data.
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Fig. 7.4: Plot of Eexp against N, the number of SSIPs (blue crosses). Black line is EvdW
exp ,

equation (7.8).

The contribution to the expansion energy from van der Waals interactions is in equation
(7.8), where N is the number of SSIPs in the molecule. The total van der Waals interaction
energy available if all SSIPs were paired is 0.5EvdW N; the energy barrier to expansion is
approximately half of the total van der Waals interaction energy, but the contribution of
these interactions to thermal expansion is reduced by an additional factor of (1+ N

12). This
reduction indicates that the cooperativity of the interactions between molecules decreases
with molecular size.

EvdW
exp =

EvdW N
4(1+ N

12)
(7.8)

7.4.2 Determination of the polar expansion energy contribution

In order to determine the contribution that polar interactions make to the expansion energy,
the experimental temperature dependence of the concentration of water is examined. The
apparent expansion energy, Eapp

exp , can be computed with equation (7.9) (a rearrangement of
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equation (7.4)) using the experimental values of [liquid]T and [vapour]T to calculate cT and
equation (7.5).

Eapp
exp =

RT
1− cT

c0

(7.9)

Figure 7.5 shows that Eapp
exp changes significantly with temperature for water; i.e. water

does not obey the law for rectilinear diameter. The value of Eapp
exp increases dramatically

at low temperatures, where hydrogen bonded states are more highly populated. The more
hydrogen bonding interactions are made, the greater the energy barrier to pulling molecules
apart in the expansion process.
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Fig. 7.5: Eapp
exp against temperature for water

It is possible to calculate the extent of hydrogen bond formation in water as a function of
temperature using SSIMPLE. However, the equilibrium constant for pairwise interactions
between SSIPs (equation (7.1)) involves contributions from both van der Waals interactions
and polar interactions. In order to determine the population of the hydrogen bonded bound
state in figure 7.1, the population of the bound state calculated using SSIMPLE must be
compared with the population of the non-hydrogen bounded bound state which can be
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calculated using just the van der Waals term in equation (7.1) (i.e. εiε j = 0). For SSIPs that
only make van der Waals interactions the probability that a H-bonded or a non-H-bonded
state is populated would be equal because the energy difference is zero.

The extent to which polar interactions perturb these populations can therefore be cal-
culated using equation (7.10). Where φb is the fraction of the bound state that is hydrogen
bonded; ψ f , equation (7.11), is the fraction of free SSIPs from a SSIMPLE calculation that
includes polar interactions; ψvdW

f is the fraction of free SSIPs from a SSIMPLE calculation
when only van der Waals interactions are made, equation (7.12).

φb =


1− 1

2 ∗
ψ f

ψvdW
f

if ψ f < ψvdW
f

1
2 ∗

1−ψ f

1−ψvdW
f

if ψ f > ψvdW
f

1
2 otherwise

(7.10)

ψ f =
∑SSIPs

[
i f
]

∑SSIPs [i]
(7.11)

ψ
V dW
f =

∑SSIPs [i f ]V dW

∑SSIPs [i]
(7.12)

Where [i] is the total concentration of the SSIP; [i f ] is the concentration of i that is free;
[i f ]V dW is the concentration of i that is free if only van der Waals interactions occur. The
total concentration of a SSIP, [i], in a phase where there are only van der Waals interactions
between species is equation (7.13). KvdW is the association constant in equation (7.14)
(the case when εiε j = 0 in equation (7.1)). ψV dW

f can be written as equation (7.15), by
rearrangement of equation (7.13), and noting that the probability is the same for any SSIP. θ

is the fractional occupancy of the phase.

[i] = [i f ]+2KvdW [i f ]
2 (7.13)

KvdW =
1
2

e−
EvdW

RT (7.14)

ψ
V dW
f =

√
1+8KvdW θ −1

4KvdW θ
(7.15)

It is possible to use the temperature dependent formulation of Ki j in equation (7.1) in
conjunction with the experimental concentrations of the liquid and vapour phases of water to
calculate the speciation in both phases as a function of temperature using SSIMPLE.
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The overall fraction of bound states that are hydrogen bonded for the vapour-liquid
system at temperature T is φb, in equation (7.16).

φb =
[liquid]T φ l

b +[vapour]T φ v
b

[liquid]T +[vapour]T
(7.16)

Figure 7.6 shows that the value of Eapp
exp calculated from the experimental data for water

is closely related to the fraction of the bound state that is hydrogen bonded, φb, calculated
using SSIMPLE. The line of best fit through the data obtained above 313 K has a correlation
coefficient (R2 ) of 0.9996. The four lower temperature datapoints in figure 7.6 deviate from
this line, presumably because there is a change in the structure of the liquid as it approaches
the freezing point due to the geometric constraints imposed by highly H-bonded networks i.e.
there is a decrease in density associated with formation of ice-like structures.
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Fig. 7.6: Eapp
exp against φb

1−φb
for water (blue crosses). Black dotted line is value of Eapp

exp from
a linear fit without the four lowest temperature points.

The line of best fit in figure 7.6 has a slope of 5.3 kJ mol−1 and an intercept of 2.1 kJ
mol−1 . These values can be compared with the value of EvdW

exp calculated using equation for
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a molecule with four SSIPs that makes only van der Waals interactions (4.2 kJ mol−1 ) and
the total polar interaction energy for water at the zero point (twice E0 for two water-water
hydrogen bonds, which is -25.6 kJ mol−1). Some of the values of Eapp

exp are two to three times
larger than these energies. In order to obtain an expression for Eapp

exp that is consistent for
both polar and non-polar molecules, it is required that if polar interactions were to make
no contribution to the expansion energy of water, then φb would be 0.5 and Eapp

exp would be
4.2 kJ mol−1. Noting that the intercept in figure 7.6 is exactly half of 4.2 kJ mol−1, these
conditions are satisfied by equation (7.17).

Eapp
exp =

1
2

EvdW
exp +

1
2
(EvdW

exp +E polar
exp )

φb

1−φb

=
EvdW

exp +φbE polar
exp

2(1−φb)

(7.17)

Where E polar
exp is the contribution of polar interactions to Eapp

exp .
The value of E polar

exp can therefore be determined from the slope of the line of best fit in
figure 7.6, as 6.4 kJ mol−1, which is half of the value of E0 (12.8 kJ mol−1) for water at the
zero point. These results suggest that a suitable formulation of the expansion energy involves
the sum of the van der Waals term given by equation (7.8) and the average polar interaction
energy at the zero point per SSIP, in equation (7.18).

E polar
exp =−∑interactions E0

N
(7.18)

Equation (7.17) shows that contribution of this polar interaction term is weighted by
the fraction of bound states that are hydrogen bonded, i.e the fraction of polar interactions
that are actually made at any given temperature determines how much polar interaction is
available to oppose expansion. The denominator in equation (7.17) can be rationalised by
reformulating equation (7.4) that was used for non-polar molecules as equation (7.19) for
polar molecules.

cT = c0

(
1− 2(1−φb)RT

Eexp

)
(7.19)

Where Eexp is in equation (7.20).

Eexp = EvdW
exp +φbE polar

exp (7.20)

In equation (7.19) the 2(1−φb) term is a factor that scales the input of thermal energy
that drives expansion. For molecules that make only van der Waals interactions 2(1−φb)
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is equal to one, so equation 7.19 becomes identical to equation (7.4). For molecules that
make polar interactions, the 2(1−φb) term is less than one. When polar interactions are
present, some of the thermal energy goes into rotational motion of the molecules that breaks
directional interactions like hydrogen bonding and the rest goes into translational motion that
leads to expansion. In effect, the polar interactions must be broken before expansion can
take place, so the amount of thermal energy that goes into expansion is proportional to the
population of non-hydrogen bonded bound states, illustrated by figure 7.1.

Expression for E polar
exp

From equation (7.18), E polar
exp is the negative of the mean zero point polar interaction energy

per SSIP. In order to calculate E polar
exp , we therefore require a method to determine which

SSIPs interact at the zero point. The hierarchical SSIP pairing strategy described previously
for cocrystal prediction [160] is used.

Interactions in the zero point liquid state are assumed to maximise the total polar in-
teraction energy. All hydrogen bonding interactions are assumed to be independent and
free to find the best partner in this approach, such that there are no steric constraints on
contacts, no packing effects, and no cooperativity between sites that are close in space on the
surface of the molecule. This means that the best hydrogen bond donor pairs with the best
available hydrogen bond acceptor, and the second best hydrogen bond donor with the next
best hydrogen bond acceptor etc. Any remaining SSIPs of the same sign that have not been
paired are assumed to not form polar interactions, and therefore do not contribute.

The expansion energy from polar interactions for a molecule, E polar
exp , is obtained by

summation over all interactions as shown in equation (7.21).

E polar
exp =− 1

N ∑
i, j

(
εiε j
)

0K (7.21)

Where εi > 0, ordered such that εi > εi+1; ε j < 0 ordered such that ε j < ε j+1. Repulsive
interactions are assumed not to contribute to the total energy.

7.4.3 Calculation of liquid concentration

Equation (7.19), can be used to calculate the total concentration of molecules in the liquid
and vapour phase through an iterative approach.
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For most organic solvents at room temperature, the vapour pressure is low, and we can
assume that [liquid]T ≈ cT and [vapour]T ≈ 0. Thus SSIMPLE can be used to calculate the
concentration of the liquid phase as explained below.

An initial concentration equal to the critical concentration, cc (equation (7.6)), was
used for each SSIP. The SSIMPLE approach was used to calculate the speciation and the
concentration of each SSIP was then be reevaluated, [i]n,T , using equation (7.19).

The total concentration used for the next cycle, [i]n+1, is shown in equation (7.22),
gradually concentrates the liquid phase until the concentration converges. Convergence in
concentration is reached when [i]n,T − [i]n−1,T |< δ where the tolerance is δ = 10−8.

[i]n+1,T =
[i]n,calc +[i]n,T

2
(7.22)

7.4.4 Concentration of pure liquids at 298K

Figure 7.7 shows the calculated concentrations for a set of 261 pure solvents, detailed in
appendix G using the SSIMPLE approach. The major outliers, shown on Figure 7.7 are
hydrogen flouride (HF), hydrogen peroxide (H2O2), hydrazine (N2H4) and ammonia (NH3).
These outliers are all small molecules where the footprinting does not perform well and the
SSIP values are not very reliable.
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Fig. 7.7: Calculated concentration against experimental concentration for set of 261 solvents,
with RMSE of 1.17M. The identities of the major outliers are indicated.

7.5 Vapour phase concentration

For higher temperatures, the approximation, cT ≈ [liquid]T , does not hold. The vapour phase
can be treated in exactly the same way as the liquid phase using the SSIMPLE approach,
with the total concentration of SSIP i in the vapour phase, [i]vapour given by equation (7.23).

[i]vapour =
cT

2
e

∆GS,liquid−∆GS,vapour
RT (7.23)

[i]liquid = cT − [i]vapour (7.24)

Where ∆GS,liquid and ∆GS,vapour are the total solvation energies for the molecule in the
liquid phase and the vapour phase; [i]liquid , equation (7.24) is the concentration of the SSIP
in the liquid. The factor of two is required because at the saturated vapour pressure, the
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volume of the vapour plus liquid phases is double the volume of the liquid phase for a fixed
number of molecules. The molecules that are not bound to the liquid phase are assumed to
explore the full volume of both phases, so only half of them are in the vapour phase. This
formulation satisfies the criterion that when ∆GS,liquid = ∆GS,vapour, the concentration in the
liquid and vapour are both 1

2cc.
The initial concentration of the vapour is set equal to the tolerance, δ and the initial

concentration of the liquid phase is cc − δ . The liquid is then concentrated using the
procedure described above and ∆GS,liquid is evaluated. Using ∆GS,liquid in equation (7.23),
the vapour phase concentration is calculated. SSIMPLE is then used to calculate the gas phase
speciation, such that ∆GS,vapour can be reevaluated, and a new vapour phase concentration
calculated using equation (7.23). This new vapour phase concentration is used in the next
iteration, for recalculation of the liquid concentration. This process starts by finding the
maximum possible liquid concentration at a given temperature and then gradually dilutes it
by transferring molecules to the gas phase until equilibrium is reached.

Iteration with equations (7.23) and (7.24) are used to reevaluate the concentrations for
both phases until the amount partitioned to the vapour phase converges; i.e. [i]n+1,vapour −
[i]n,vapour < δ .

7.5.1 Calculation of vapour liquid equilibria

The equations above were used for the calculation of VLE for water in figure 7.8 and
cyclohexane in figure 7.9. The prediction of the mean concentration of the two phases,
1
2cT , shows good agreement with the experimental data. At high temperatures, close to the
critical point, the partitioning of species between the liquid and vapour phases becomes
much poorer, with too little being deposited into the gas. This arises from the assumption
made in the SSIMPLE model that molecular structures do not affect interactions: i.e. each
SSIP interaction of a molecule is completely independent of any other interaction, such
that the desired number of interactions can be formed. This assumptions holds well for
condensed phases, but close the the critical point, where there is a large percentage of void
space incorporated in the liquid, this assumption is no longer valid. This is because there are
not enough nearby molecules to form an extended network of interactions required for the
assumption to hold. For example water near the critical point will consist mainly of dimers
due to the large amount of void space in the liquid phase, rather than existing in an extended
network of hydrogen bonds, which is found in the liquid at lower temperatures.
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Fig. 7.8: Water concentration (linear concentration scale left, logarithmic concentration
scale right) against temperature. Calculated concentrations as solid lines, experimental
concentrations as crosses. [liquid]T are blue, [vapour]T are cyan, 1

2cT are magenta.

350 375 400 425 450 475 500 525 550
T/K

0

2

4

6

8

Co
nc

en
tra

tio
n/
M

(a)

350 375 400 425 450 475 500 525 550
T/K

10−1

100

101

Co
nc
en

tra
tio

n/
M

(b)

Fig. 7.9: Cyclohexane (linear concentration scale left, logarithmic concentration scale right)
against temperature. Calculated concentrations as solid lines, experimental concentrations as
crosses. [liquid]T are blue, [vapour]T are cyan, 1

2cT are magenta.

7.6 Conclusions

The SSIMPLE calculation framework has been extended to be able to consider vapour
liquid systems. This approach increases to the applicability of the SSIMPLE approach to
solvent systems where the concentrations of solvents are not known and also under variable
temperature conditions.



Chapter 8

Conclusions

The work presented in this thesis can be divided into two major areas:

• Redesign and rebuilding of the SSIP (Surface Site interaction Point) footprinting and
SSIMPLE (Surface Site Interaction Model for Properties of Liquids at Equilibrium)
software.

• Applications of the SSIMPLE approach.

8.1 Redesign of computational processes

Redesign of the computational processes encompasses the work on data curation, with the
definition of information rich file formats for the portability of information. The rebuilding
of the infrastructure to run SSIP footprinting and SSIMPLE property calculations were
completed after a redesign of the computational workflow. The extension of SSIMPLE to the
applications discussed in this thesis was made possible after the overhaul of the computational
processes.

8.1.1 Data Curation

Definition of data formats for the storage of experimental and calculation data provides a
defined framework for the interfacing of future developments. Collection and verification of
experimental data into a well defined data format for storage was used in the reparameteri-
sation of the SSIP footprinting approach. This data was also used in the evaluation of the
temperature dependence of interactions using the SSIMPLE approach.
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8.1.2 Computational implementation and original code refactor

The definition of clearly defined interfaces and data formats for the transfer of information
provides a modular framework that was expanded to develop the applications described
in the later half of this thesis. Adherence to software engineering best practices led to the
creation of software modules with reproducible output along with documented application
programme interfaces.

8.2 Applications of SSIMPLE

The redesigned framework was used to enable the following applications:

• benchmark performance of the SSIMPLE approach in phase transfer free energy
prediction

• generate Functional Group Interaction Profiles (FGIPs)

• design a new solvent similarity metric

• extension of SSIMPLE to be able to calculate vapour-liquid equilibria (VLE)

8.2.1 Phase transfer free energy calculation benchmarking

Phase transfer free energy calculations using SSIMPLE were evaluated using two different
methods for SSIP footprint generation on multiple data sets, detailed in chapter 4, showing
the large domain of applicability for the approach. Both SSIP footprinting approaches,
detailed in chapter 3, showed comparable accuracy in prediction of free energies of transfer
and log P. Comparison of the results to existing methods show performance is worse than
the leading prediction methods for log P, by around 0.5 log units.

8.2.2 Functional Group Interaction Profiles (FGIPs)

The process to generate Functional Group Interaction Profiles (FGIPs) for any solvent
composition is described in chapter 5. FGIPs display the free energy of interaction between
a solute hydrogen bond acceptor and solute hydrogen bond donor in a solvent as a function
of solute hydrogen bond acceptor and solute hydrogen bond donor strengths. Example
FGIPs for 261 single component solvent systems and 40 binary solvent mixtures at 298K are
included in appendix H.
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8.2.3 Solvent Similarity

A new similarity metric was developed for the assessment of solvation ability of solvents.
The solvation profile, the solvation free energy of a single solute SSIP as a function of solute
hydrogen bond donor/acceptor ability, of solvents are compared using a domain weighted
RMSD. This approach allows a quantitative comparison of solvation ability of different
solvents, including solvent mixtures.

8.2.4 Vapour-Liquid Equilibria

The law of rectilinear diameter was used to extend the SSIMPLE approach to include the
expansion and evaporation processes of liquids and introduce a gas phase into calculations.
The temperature dependence of interactions was also examined to extend treatment of systems
with SSIMPLE to any temperature. Previously only systems at 298K, for which experimental
data was available for hydrogen bond donor and hydrogen bond acceptor strengths, could be
studied. With these developments the SSIMPLE approach can now be used to calculate the
concentrations of species at any temperature, including partitioning of solvent into the gas
phase. The calculated water and cyclohexane VLE showed agreement to experimental data
within 5% error.
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Appendix A

Repositories

The code written to generate the work presented in this thesis are detailed below.

A.1 Data storage and handling

Data collation and handling has been an integral part of this research. Therefore the process-
ing is done in an automated fashion with validation of data files.

A.1.1 Schema and XLST

The XML Schema and XLST designed are included in the HunterDatabaseSchema repository
[306]. The Schema are deployed on the Hunter group website, to allow for remote validation.
The XLST are currently on the private part of the website but may be migrated to the public
part upon publication and further development.

A.1.2 Databasecreation

The experimental information gathered (detailed in 2.2 was compiled into separate csv files
which were then merged with bibliographic information upon the instantiation of the database
in the DatabaseCreation repository [307].

A.1.3 Data file parsing

The file parsing utility for the XML based file formats using Python was consolidated
into a single repository, containing validation and parsing routines which would output
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dictionaries of values to be passed onto the next stage in the pipeline. This is contained in
the phasexmlparser repository [308].

A.2 Calculations and input generation

The process of running jobs was summarised in figure 3.2, with the repositories required to
run the calculations listed in the following sections.

A.2.1 Structure generation

The CMLGenerator repository [259] is used to generate 3D structures. It has a command
line interface for easier operation, to generate 3D structures in the defined CML format from
given input (including batch submission of SMILES strings).

A.2.2 MEPS generation

The MEPS for molecules is generated using NWChem [188], version 6.8.1 or later contains
the required modifications developed in the fork by Mark Williamson [273]. The automated
generation of NWChem input scripts and job submission scripts, as well as the manipulation
of the cube files during runtime was done using NWChemCMLUtils [272].

A.2.3 SSIP footprinting

Conversion of the MEPS data to an SSIP description is done with the SSIP code developed
[309]. A command line interface (CLI) can be used to calculate the SSIP description in an
easy to use fashion. For the calculation of multiple SSIP molecular footprints in a single
step, the nwchemcmlutils CLI can be used [272]. This can be used for either footprinting
approach (mono- or tri- surface).

A.2.4 Phase transfer calculations with SSIMPLE

To convert the XML to the appropriate input format for phase transfer calculations, in
addition to the inclusion of concentration and mole fraction information, the phasexmlcreator
repository [310]. This includes a CLI for the most basic required inputs of solute XML
or single component solvent XML generation. Generation of multi-component solvents or
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phases requires small Python scripts to be written. SSIP descriptions for dummy molecules
can be created using singlessiplist [311].

The SSIMPLE calculation is undertaken using the phasetransfer sub-module of the SSIP
code [309].

A.3 Data analysis

Analysis post calculation can be partitioned into general analysis, common between data sets,
and specific analysis.

A.3.1 Shared functionality

The parser repositories (detailed in A.1.3) are used for standard inputs. For analysis the
resultsanalysis repository [312] contains the core functionality and data classes used as an
internal representation of the information.

SSIP description validation

The ssipplotting [313] repository contains methods to generate the summary plots of the
footprints, shown in F. This provides a graphical summary used to evaluate the effectiveness
of assigned values where the values are known. SSIP values for a single molecule are plotted
on the same scale.

FGIP and solvent similarity

The solventmapcreator repository [314] contains the methods for the creation of the FGIPs
and also the solvent similarity calculations and cluster analysis.

A.3.2 Phase transfer calculations

The solvent descriptions used were generated using the fgipsolventcreator repository [315].
The following repositories were used to generate the plots in the phasetransfer chapter [316–
319].
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A.3.3 Solvent SSIP description validation

The SSIP descriptions of the solvent molecules were validated [320] using the functionality
of ssipplotting [313]. The results are displayed in Appendix F.

A.3.4 FGIP

The FGIPs presented in this work were generated using [321] for pure solvents; [322] for
THF-chloroform mixtures; [323] for water-ethanol mixtures. The exploration of γ in equation
(5.24) was done in [324].

A.3.5 Solvent Similarity

The similarity analysis was undertaken using [325] for pure solvents; [326] for water-ethanol
mixture analysis; [327] for THF-chloroform analysis.

A.3.6 VLE

The plotting for Figures 7.2, 7.4, 7.5 and 7.6 was undertaken using [328]. Calculation of
association constants and subsequent analysis was done with [329]. Calcualtion of VLE and
liquid data and subsequent analysis is contained within [330].
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Schema

A copy of the document format specifications for the XML based descriptions are below.

B.1 SSIP Schema

Listing B.1 Schema for the SSIP data.

<?xml version="1.0" encoding="utf-8"?>

<!-- Copyright 2017 Mark Driver Licensed under the Apache License, Version

2.0 (the "License"); you may not use this file except in compliance with

the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed

under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES

OR CONDITIONS OF ANY KIND, either express or implied. See the License for

the specific language governing permissions and limitations under the License. -->

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www−hunter.ch.cam.ac.uk/SSIP"

elementFormDefault="qualified" attributeFormDefault="qualified"

xmlns:tns="http://www−hunter.ch.cam.ac.uk/SSIP" xmlns:cml="http://www.xml−cml.org/schema"

xmlns:h="http://www.w3.org/1999/xhtml" xmlns:xsi="http://www.w3.org/2001/XMLSchema−instance"

xsi:schemaLocation="http://www−hunter.ch.cam.ac.uk/SSIP http://www−hunter.ch.cam.ac.uk/schema/SSIP.xsd"

id="SSIPschema">
<xsd:import namespace="http://www.xml−cml.org/schema"

schemaLocation="http://www−hunter.ch.cam.ac.uk/cmlschema.xsd" />
<xsd:simpleType name="versionNumber">

<xsd:annotation>
<xsd:documentation>

<h:div class="summary">simpleType to represent version number.

</h:div>
<h:div class="description">

<h:p>
The version number is series of 3 numbers separated by a

".",
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so we will match using the regular expression.

"([0−9])*\.([0−9])*\.([0−9])*−?(\w)*"

</h:p>
</h:div>

</xsd:documentation>
</xsd:annotation>
<xsd:restriction base="xsd:string">

<xsd:pattern value="([0−9])*\.([0−9])*\.([0−9])*−?(\w)*" />
</xsd:restriction>

</xsd:simpleType>
<xsd:attributeGroup name="ssipNearestNeighbours">

<xsd:annotation>
<xsd:documentation>

<h:div class="summary">The nearest atom and non-H atom to the SSIP.

</h:div>
<h:div class="description">

The attributes store the nearest atom and nearest

non-H atom to the

SSIP, for use in analysis.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:attribute name="nearestAtomID" type="cml:idType">

<xsd:annotation>
<xsd:documentation>

<h:div class="summary">The atom ID for the atom nearest to the SSIP.

</h:div>
<h:div class="description">

The ID matches that in an atomArray for the

molecule corresponding to

the SSIP.

</h:div>
</xsd:documentation>

</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="nearestNonHAtomID" type="cml:idType">

<xsd:annotation>
<xsd:documentation>

<h:div class="summary"> The atom ID for the non-H atom nearest to the

SSIP

</h:div>
<h:div class="description">

The ID matches that in an atomArray for the

molecule corresponding to

the SSIP.

</h:div>
</xsd:documentation>

</xsd:annotation>
</xsd:attribute>

</xsd:attributeGroup>
<xsd:attributeGroup name="value">
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<xsd:annotation>
<xsd:documentation>

<h:div class="summary">Attribute group for value attribute

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:attribute name="value" type="xsd:double" use="required">

<xsd:annotation>
<xsd:documentation>

<h:div class="summary">Value attribute for the value of the SSIP.

</h:div>
</xsd:documentation>

</xsd:annotation>
</xsd:attribute>

</xsd:attributeGroup>
<xsd:attribute name="ssipSoftwareVersion" type="tns:versionNumber">

<xsd:annotation>
<xsd:documentation>

<h:div class="summary">Attribute to store version number of the SSIP

software.

</h:div>
</xsd:documentation>

</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="parameterVersion" type="tns:versionNumber">

<xsd:annotation>
<xsd:documentation>

<h:div class="summary">Attribute to store version number of the

parameterisation.

</h:div>
</xsd:documentation>

</xsd:annotation>
</xsd:attribute>
<xsd:attributeGroup name="softwareVersions">

<xsd:annotation>
<xsd:documentation>

<h:div class="summary">This contains attributes for the SSIP software

version and parameter version.

</h:div>
<h:div class="description">

The software versions for the SSIP software and

also the parameters

are used to keep track of when the SSIPList was

created.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:attribute ref="tns:ssipSoftwareVersion" use="required"></xsd:attribute>
<xsd:attribute ref="tns:parameterVersion" use="required"></xsd:attribute>

</xsd:attributeGroup>
<xsd:attributeGroup name="cartesianCoords3D">
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<xsd:annotation>
<xsd:documentation>

<h:div class="summary">Grouping of the 3D Cartesian coordinates x3, y3,

z3 used for SSIP location.

</h:div>
<h:div class="description">

<h:p>
The Cartesian coordinates for the SSIP, are expressed as 3

attributes, collected here.

They use the simpleTypes defined in the

cml schema. The coordinates

are x3, y3, z3.

</h:p>
</h:div>

</xsd:documentation>
</xsd:annotation>
<xsd:attributeGroup ref="cml:x3" />
<xsd:attributeGroup ref="cml:y3" />
<xsd:attributeGroup ref="cml:z3" />

</xsd:attributeGroup>
<xsd:attribute name="unit" type="xsd:string">

<xsd:annotation>
<xsd:documentation>

<h:div class="summary"> Unit attribute for surface information pieces.

</h:div>
</xsd:documentation>

</xsd:annotation>
</xsd:attribute>
<xsd:element name="TotalSurfaceArea">

<xsd:annotation>
<xsd:documentation>

<h:div class="summary">Total Surface area of MEPS.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:simpleContent>
<xsd:extension base="xsd:double">

<xsd:attribute ref="tns:unit" />
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>

</xsd:element>
<xsd:element name="NegativeSurfaceArea">

<xsd:annotation>
<xsd:documentation>

<h:div class="summary">Negative Surface area of MEPS.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>
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<xsd:simpleContent>
<xsd:extension base="xsd:double">

<xsd:attribute ref="tns:unit" />
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>

</xsd:element>
<xsd:element name="PositiveSurfaceArea">

<xsd:annotation>
<xsd:documentation>

<h:div class="summary">Positive Surface area of MEPS.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:simpleContent>
<xsd:extension base="xsd:double">

<xsd:attribute ref="tns:unit" />
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>

</xsd:element>
<xsd:element name="ElectronDensityIsosurface">

<xsd:annotation>
<xsd:documentation>

<h:div class="summary">This contains information on the Electron Density

Isosurface.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:simpleContent>
<xsd:extension base="xsd:double">

<xsd:attribute ref="tns:unit" />
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>

</xsd:element>
<xsd:element name="NumberOFMEPSPoints">

<xsd:annotation>
<xsd:documentation>

<h:div class="summary">This is the number of points

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:simpleContent>
<xsd:extension base="xsd:integer">

<xsd:attribute ref="tns:unit" />
</xsd:extension>

</xsd:simpleContent>
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</xsd:complexType>
</xsd:element>
<xsd:element name="VdWVolume">

<xsd:annotation>
<xsd:documentation>

<h:div class="summary">This is the volume encompassed by the surface.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:simpleContent>
<xsd:extension base="xsd:double">

<xsd:attribute ref="tns:unit" />
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>

</xsd:element>
<xsd:element name="ElectrostaticPotentialMax">

<xsd:annotation>
<xsd:documentation>

<h:div class="summary"> This is the maximum value of the electrostatic

potential.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:simpleContent>
<xsd:extension base="xsd:double">

<xsd:attribute ref="tns:unit" />
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>

</xsd:element>
<xsd:element name="ElectrostaticPotentialMin">

<xsd:annotation>
<xsd:documentation>

<h:div class="summary"> This is the minimum value of the electrostatic

potential.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:simpleContent>
<xsd:extension base="xsd:double">

<xsd:attribute ref="tns:unit" />
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>

</xsd:element>
<xsd:element name="Surface">

<xsd:annotation>
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<xsd:documentation>
<h:div class="summary">This includes details on the Surface.

</h:div>
<h:div class="description">

The details included are: The total surface area,

negative surface

area, positive surface area and number of ESP

points on the surface

used to generate the SSIP representation.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="tns:TotalSurfaceArea" />
<xsd:element ref="tns:NegativeSurfaceArea" />
<xsd:element ref="tns:PositiveSurfaceArea" />
<xsd:element ref="tns:ElectronDensityIsosurface" />
<xsd:element ref="tns:NumberOFMEPSPoints" />
<xsd:element ref="tns:VdWVolume" minOccurs="0"

maxOccurs="1" />
<xsd:element ref="tns:ElectrostaticPotentialMax" minOccurs="0" />
<xsd:element ref="tns:ElectrostaticPotentialMin" minOccurs="0" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="SurfaceInformation">

<xsd:annotation>
<xsd:documentation>

<h:div class="summary">This includes details on the Surface.

</h:div>
<h:div class="description">

The details included are: The total surface area,

negative surface

area, positive surface area and number of ESP

points on the surface

used to generate the SSIP representation.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:choice>
<xsd:sequence>

<xsd:element ref="tns:Surface" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:sequence>

<xsd:element ref="tns:TotalSurfaceArea" />
<xsd:element ref="tns:NegativeSurfaceArea" />
<xsd:element ref="tns:PositiveSurfaceArea" />
<xsd:element ref="tns:ElectronDensityIsosurface" />
<xsd:element ref="tns:NumberOFMEPSPoints" />
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<xsd:element ref="tns:VdWVolume" minOccurs="0"

maxOccurs="1" />
<xsd:element ref="tns:ElectrostaticPotentialMax" minOccurs="0" />
<xsd:element ref="tns:ElectrostaticPotentialMin" minOccurs="0" />

</xsd:sequence>
</xsd:choice>

</xsd:complexType>
</xsd:element>

<xsd:complexType name="ssipType">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary"> Complex type for SSIP element.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:attributeGroup ref="tns:value"></xsd:attributeGroup>
<xsd:attributeGroup ref="tns:cartesianCoords3D" />
<xsd:attributeGroup ref="tns:ssipNearestNeighbours" />

</xsd:complexType>

<xsd:element name="SSIP" type="tns:ssipType">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">This element contains the SSIP value.

</h:div>
<h:div class="description">

<h:p>
The value of the SSIP is stored in the element.

The element is

extended by attribute Groups for the Cartesian

coordinates for the

location of the SSIP on the isodensity

surface, and by its nearest

atoms.

</h:p>
</h:div>

</xsd:documentation>
</xsd:annotation>

</xsd:element>
<xsd:element name="SSIPs">

<xsd:annotation>
<xsd:documentation>

<h:div class="summary">This contains a list of SSIPs.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="tns:SSIP" minOccurs="1" maxOccurs="unbounded" />
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</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="SSIPMolecule">

<xsd:annotation>
<xsd:documentation>

<h:div class="summary">This contains the CML representation of the

molecule, the surface information and the SSIPs.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="cml:molecule" maxOccurs="1" minOccurs="1"></xsd:element>
<xsd:element ref="tns:SurfaceInformation" maxOccurs="1"

minOccurs="1" />
<xsd:element ref="tns:SSIPs" minOccurs="1" maxOccurs="1"></xsd:element>

</xsd:sequence>
<xsd:attributeGroup ref="tns:softwareVersions" />

</xsd:complexType>
</xsd:element>

</xsd:schema>

B.2 Phase Schema

Listing B.2 Schema for the Phase data.

<?xml version="1.0" encoding="UTF-8"?>

<!-- Copyright 2017 Mark Driver

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

-->

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www−hunter.ch.cam.ac.uk/PhaseSchema"

xmlns:tns="http://www−hunter.ch.cam.ac.uk/PhaseSchema"

elementFormDefault="qualified" attributeFormDefault="qualified" xmlns:cml="http://www.xml−cml.org/schema"

xmlns:h="http://www.w3.org/1999/xhtml" xmlns:ssip="http://www−hunter.ch.cam.ac.uk/SSIP"

id="Phaseschema">

<xsd:import namespace="http://www.xml−cml.org/schema"
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schemaLocation="http://www−hunter.ch.cam.ac.uk/schema/cmlschema.xsd" />

<xsd:import namespace="http://www−hunter.ch.cam.ac.uk/SSIP"

schemaLocation="http://www−hunter.ch.cam.ac.uk/schema/SSIP.xsd" />

<xsd:simpleType name="inchikeyType">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">simpleType specifying format of standard

InChIKey.

</h:div>
<h:div class="description">

The pattern matches standard InChIKey format.

matches description from IUPAC site:

http://www.iupac.org/home/publications/e-resources/inchi/r102-summary.html

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:restriction base="xsd:string">

<xsd:pattern value="[A−Z]{14}\−[A−Z]{10}\−[A−Z]" />
</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="unitTypes">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">Simple type for the different possible units.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:restriction base="xsd:string">

<xsd:enumeration value="MOLAR"></xsd:enumeration>
<xsd:enumeration value="SSIPConcentrationNormalised"></xsd:enumeration>
<xsd:enumeration value="KELVIN"></xsd:enumeration>
<xsd:enumeration value="CELSIUS"></xsd:enumeration>

</xsd:restriction>
</xsd:simpleType>

<xsd:attribute name="ssipID" type="xsd:integer">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">Attribute Group for the first SSIP ID. This is

just an integer, and is related to the canonical ordering of the

SSIPs in the phase.

</h:div>
</xsd:documentation>

</xsd:annotation>
</xsd:attribute>

<xsd:attribute name="units" type="tns:unitTypes">
<xsd:annotation>
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<xsd:documentation>
<h:div class="summary">Attribute for units.

</h:div>
</xsd:documentation>

</xsd:annotation>
</xsd:attribute>

<xsd:attributeGroup name="singleSSIPID">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">Group for when only one SSIPID is required for an

element.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:attribute ref="tns:ssipID" use="required"></xsd:attribute>

</xsd:attributeGroup>

<xsd:attribute name="stdInChIKey" type="tns:inchikeyType">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">This is for the standard InChIKey of a molecule.

</h:div>
</xsd:documentation>

</xsd:annotation>
</xsd:attribute>

<xsd:attribute name="moleculeID" type="xsd:string">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">Attribute for moleculeID.

</h:div>
</xsd:documentation>

</xsd:annotation>
</xsd:attribute>

<xsd:attributeGroup name="moleculeInformation">
<xsd:annotation>

<xsd:documentation>
<h:div>Attribute group for information about a Molecule in a

solvent. This includes the InChIKey of the molecule and a name.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:attribute ref="tns:stdInChIKey">
</xsd:attribute>
<xsd:attribute ref="tns:moleculeID" />

</xsd:attributeGroup>

<xsd:attribute name="moleFraction">
<xsd:annotation>
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<xsd:documentation>
<h:div class="summary">This is the fraction by volume for a molecule in a solvent.

</h:div>
</xsd:documentation>
</xsd:annotation>

</xsd:attribute>

<xsd:attributeGroup name="solventInformation">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">Attribute group for information about a solvent

system. This includes attributes for solvent names, solvent ID and

number of molecules.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:attribute name="solventName" type="xsd:string" use="required"></xsd:attribute>
<xsd:attribute name="solventID" type="xsd:string" use="required"></xsd:attribute>

</xsd:attributeGroup>

<xsd:attributeGroup name="energyPhaseInformation">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary"> This contains the attributes for referencing the

phases between which the molecule has been transferred for the

energy contained in the element.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:attribute name="fromSolventID" type="xsd:string"

use="required"></xsd:attribute>
<xsd:attribute name="toSolventID" type="xsd:string" use="required"></xsd:attribute>
<xsd:attribute name="valueType" type="xsd:string" use="required"></xsd:attribute>

</xsd:attributeGroup>

<xsd:complexType name="Concentration">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">Element containing information about a molecule&#39;s

concentration.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:simpleContent>

<xsd:extension base="xsd:double">
<xsd:attribute ref="tns:units" />

</xsd:extension>
</xsd:simpleContent>

</xsd:complexType>

<xsd:element name="TotalConcentration" type="tns:Concentration">
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<xsd:annotation>
<xsd:documentation>

<h:div class="summary">Element contains total concentration for SSIP.

</h:div>
</xsd:documentation>

</xsd:annotation>
</xsd:element>

<xsd:element name="FreeConcentration" type="tns:Concentration">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">Element contains the FreeConcentraiton of the

SSIP.

</h:div>
</xsd:documentation>

</xsd:annotation>
</xsd:element>

<xsd:element name="BoundConcentration">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">Element contains the concentration of the SSIP bound

to the SSIP with the given ID.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:complexContent>
<xsd:extension base="tns:Concentration">

<xsd:attributeGroup ref="tns:singleSSIPID" />
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

</xsd:element>

<xsd:element name="BoundConcentrationSum" type="tns:Concentration">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">Element containing total bound concentration.

</h:div>
</xsd:documentation>

</xsd:annotation>
</xsd:element>

<xsd:element name="SSIP">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary"> SSIP redefined to include concentration.

</h:div>
</xsd:documentation>

</xsd:annotation>
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<xsd:complexType>
<xsd:sequence>

<xsd:element ref="tns:TotalConcentration" />
<xsd:element ref="tns:FreeConcentration" minOccurs="0" />
<xsd:element ref="tns:BoundConcentrationSum" minOccurs="0" maxOccurs="1" />
<xsd:element ref="tns:BoundConcentration" minOccurs="0" maxOccurs="unbounded" />

</xsd:sequence>
<xsd:attributeGroup ref="ssip:cartesianCoords3D" />
<xsd:attributeGroup ref="ssip:ssipNearestNeighbours" />
<xsd:attributeGroup ref="ssip:value" />
<xsd:attribute ref="tns:units" />
<xsd:attribute ref="tns:moleculeID" use="required"/>

</xsd:complexType>
</xsd:element>

<xsd:element name="SSIPs">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary"> SSIP container.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="tns:SSIP" minOccurs="1" maxOccurs="unbounded" />

</xsd:sequence>
<xsd:attribute ref="tns:units" />

</xsd:complexType>
</xsd:element>

<xsd:element name="Molecule">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">This contains the SSIPList and information about

the molecule concentration.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="cml:molecule" minOccurs="1"

maxOccurs="1" />
<xsd:element ref="ssip:SurfaceInformation" />
<xsd:element ref="tns:SSIPs" />

</xsd:sequence>
<xsd:attributeGroup ref="tns:moleculeInformation" />
<xsd:attribute ref="ssip:ssipSoftwareVersion" />
<xsd:attribute ref="tns:moleFraction" use="optional" />

</xsd:complexType>
</xsd:element>
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<xsd:element name="Molecules">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">Molecules container.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="tns:Molecule" minOccurs="1" maxOccurs="unbounded" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="Solvent">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">Element contains information for the solvent.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="tns:Molecules"/>

</xsd:sequence>
<xsd:attributeGroup ref="tns:solventInformation"/>
<xsd:attribute ref="tns:units"/>

</xsd:complexType>
</xsd:element>

<xsd:element name="Solute">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">Element contains information for the solvent.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="tns:Molecule" minOccurs="1" maxOccurs="1"></xsd:element>

</xsd:sequence>
<xsd:attribute name="soluteID" use="required" />

</xsd:complexType>
</xsd:element>

<xsd:element name="Solvents">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">Container for solvent elements.

</h:div>
</xsd:documentation>
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</xsd:annotation>
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="tns:Solvent" minOccurs="1" maxOccurs="unbounded" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="SolventList">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary"> Container for solvents.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="tns:Solvents" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="Solutes">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">Container for Solutes.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="tns:Solute" minOccurs="1" maxOccurs="unbounded" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="SoluteList">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">Solutes container.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="tns:Solutes" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="Temperature">



B.2 Phase Schema 183

<xsd:annotation>
<xsd:documentation>

<h:div class="summary">Element containing information about the

temperature of the phase.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:simpleContent>
<xsd:extension base="xsd:double">

<xsd:attribute ref="tns:units"></xsd:attribute>
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>

</xsd:element>

<xsd:element name="Phase">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">Element contains information about the Phase.

The

information about the SSIPs is contained in Molecule Child

elements, including total concentrations. The free and bound

concentrations is then stored in later elements using the standard

canonicalisation. The solventID is needed when it is within a

PhaseCollection.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="tns:Molecules" />
<xsd:element ref="tns:Temperature" />

</xsd:sequence>
<xsd:attribute ref="tns:units" />
<xsd:attribute name="solventID" use="optional" />
<xsd:attribute name="phaseType" use="optional" />

</xsd:complexType>
</xsd:element>

<xsd:element name="Phases">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">Container for phases.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="tns:Phase" minOccurs="1" maxOccurs="unbounded"></xsd:element>
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</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="PhaseSystem">
<xsd:annotation>
<xsd:documentation>
<h:div class="summary">This is represents a phase system, where a condensed and gas phase are in

equilibrium.

</h:div>
</xsd:documentation>
</xsd:annotation>
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="tns:Phases" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
<xsd:attribute name="mixtureID" type="xsd:string"></xsd:attribute>
</xsd:complexType>
</xsd:element>

<xsd:element name="PhaseSystems">
<xsd:annotation>
<xsd:documentation>
<h:div class="summary">This is is a collection of phase systems, where a condensed and gas phase

are in equilibrium.

</h:div>
</xsd:documentation>
</xsd:annotation>
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="tns:PhaseSystem" minOccurs="1" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<xsd:element name="Mixture">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary"> This contains a number of Phase Collections,

each with a different solute.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="tns:Phases"/>

</xsd:sequence>
<xsd:attribute name="soluteID" use="optional" />
<xsd:attribute name="mixtureID" use="optional" />

</xsd:complexType>
</xsd:element>
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<xsd:element name="Mixtures">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">Collection of mixtures.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="tns:Mixture" minOccurs="1" maxOccurs="unbounded" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="MixtureCollection">
<xsd:annotation>

<xsd:documentation>
<h:div class="sumamry"> Collection of Mixtures. Represents MixtureContainer.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="tns:Mixtures" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="PhaseSystemMixture">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary"> This contains a number of Phase Collections,

each with a different solute.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="tns:PhaseSystems"/>

</xsd:sequence>
<xsd:attribute name="soluteID" use="optional" />

</xsd:complexType>
</xsd:element>

<xsd:element name="PhaseSystemMixtures">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary"> This contains a number of Phase Collections,

each with a different solute.

</h:div>
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</xsd:documentation>
</xsd:annotation>
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="tns:PhaseSystemMixture"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="PhaseSystemMixtureContainer">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary"> This contains a number of Phase Collections,

each with a different solute.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="tns:PhaseSystemMixtures"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="TotalEnergy">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">This element contains the value for the total

energy from all SSIP contributions.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:simpleContent>
<xsd:extension base="xsd:double">
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>

</xsd:element>

<xsd:element name="EnergyContribution">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary"> This is the contribution to the total energy from

an individual SSIP.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:simpleContent>
<xsd:extension base="xsd:double">
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<xsd:attributeGroup ref="tns:singleSSIPID"></xsd:attributeGroup>
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>

</xsd:element>

<xsd:element name="EnergyContributions">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary"> Collection of Energy contribution elements.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="tns:EnergyContribution" minOccurs="1" maxOccurs="unbounded" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="EnergyValue">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary"> This is the element structure for any energy

Element.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="tns:TotalEnergy" />
<xsd:element ref="tns:EnergyContributions" minOccurs="1" maxOccurs="1" />

</xsd:sequence>
<xsd:attribute ref="tns:moleculeID"></xsd:attribute>
<xsd:attributeGroup ref="tns:energyPhaseInformation"></xsd:attributeGroup>

</xsd:complexType>
</xsd:element>

<xsd:element name="FreeEnergy" substitutionGroup="tns:EnergyValue">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary"> This element contains a free energy of transfer

between the phases specified, for the molecule specified.

</h:div>
</xsd:documentation>

</xsd:annotation>
</xsd:element>

<xsd:element name="BindingEnergy" substitutionGroup="tns:EnergyValue">
<xsd:annotation>

<xsd:documentation>
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<h:div class="summary"> This element contains a binding energy of

transfer between the phases specified, for the molecule specified.

</h:div>
</xsd:documentation>

</xsd:annotation>
</xsd:element>

<xsd:element name="ConfinementEnergy" substitutionGroup="tns:EnergyValue">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary"> This element contains a confinement energy of

transfer between the phases specified, for the molecule specified.

</h:div>
</xsd:documentation>

</xsd:annotation>
</xsd:element>

<xsd:element name="PartitionCoefficient" substitutionGroup="tns:EnergyValue">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">This element contains partition coefficient for

the molecule specified between the phases specified.

</h:div>
</xsd:documentation>

</xsd:annotation>
</xsd:element>

<xsd:element name="FreeEnergyCollection">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">This acts as a container for all FreeEnergy

Elements present.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="tns:FreeEnergy" minOccurs="1"

maxOccurs="unbounded"></xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

<xsd:element name="BindingEnergyCollection">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">This acts as a container for all BindingEnergy

Elements present.

</h:div>
</xsd:documentation>

</xsd:annotation>
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<xsd:complexType>
<xsd:sequence>

<xsd:element ref="tns:BindingEnergy" minOccurs="1"

maxOccurs="unbounded"></xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

<xsd:element name="ConfinementEnergyCollection">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">This acts as a container for all

ConfinementEnergy Elements present.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="tns:ConfinementEnergy" minOccurs="1"

maxOccurs="unbounded"></xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

<xsd:element name="PartitionCoefficientCollection">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">This acts as a container for all

PartitionCoefficient Elements present.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="tns:PartitionCoefficient" minOccurs="1"

maxOccurs="unbounded" />
</xsd:sequence>

</xsd:complexType>
</xsd:element>

<xsd:element name="EnergyValues">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">This element acts as a wrapper for all the energy

values outputted by the phase transfer code, acting as the root

element.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:all minOccurs="0">
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<xsd:element ref="tns:BindingEnergyCollection" minOccurs="0" maxOccurs="1" />
<xsd:element ref="tns:ConfinementEnergyCollection" minOccurs="0" maxOccurs="1" />
<xsd:element ref="tns:FreeEnergyCollection" minOccurs="0" maxOccurs="1" />
<xsd:element ref="tns:PartitionCoefficientCollection" minOccurs="0" maxOccurs="1" />

</xsd:all>
</xsd:complexType>

</xsd:element>

<xsd:element name="AssociationEnergyValue">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">Element contains Association energy values.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>
<xsd:attribute name="moleculeID1"/>
<xsd:attribute name="moleculeID2"/>
<xsd:attribute name="solventID"/>
<xsd:attribute name="value"/>
</xsd:complexType>

</xsd:element>

<xsd:element name="AssociationEnergyValueCollection">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">Element contains Collection of Association energy

values.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="tns:AssociationEnergyValue" minOccurs="1" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="FreeConcentrationFraction">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">Element contains information on free concentration

fraction.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:attribute ref="tns:moleculeID"/>
<xsd:attribute name="concentrationFraction" type="xsd:double"/>

</xsd:complexType>
</xsd:element>
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<xsd:element name="BoundConcentrationFraction">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">Element contains information on bound concentration

fraction.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:attribute ref="tns:moleculeID"/>
<xsd:attribute name="boundToMoleculeID" type="xsd:string"/>
<xsd:attribute name="concentrationFraction" type="xsd:double"/>

</xsd:complexType>
</xsd:element>

<xsd:element name="MoleculeConcentrationFraction">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">Element contains information on molecule

concentration fractions.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="tns:FreeConcentrationFraction" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="tns:BoundConcentrationFraction" minOccurs="1"

maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute ref="tns:moleculeID"/>

</xsd:complexType>
</xsd:element>

<xsd:element name="PhaseConcentrationFraction">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">Element contains information on phase concentration

fractions.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="tns:MoleculeConcentrationFraction" minOccurs="1"

maxOccurs="unbounded"/>
<xsd:element ref="tns:Temperature"/>

</xsd:sequence>
<xsd:attribute name="solventID"/>
<xsd:attribute name="phaseType"/>

</xsd:complexType>
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</xsd:element>

<xsd:element name="PhaseConcentrationFractionCollection">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">Element contains information on phase concentration

fractions.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="tns:PhaseConcentrationFraction" minOccurs="1"

maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:schema>

B.3 Database Schema

Listing B.3 Schema for the database

<?xml version="1.0" encoding="UTF-8"?>

<!-- Copyright 2017 Mark Driver

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

-->

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www−hunter.ch.cam.ac.uk/HunterDatabase"

xmlns="http://www−hunter.ch.cam.ac.uk/HunterDatabase"

xmlns:h="http://www.w3.org/1999/xhtml" xmlns:cml="http://www.xml−cml.org/schema"

xmlns:convention="http://www.xml−cml.org/convention/"

xmlns:compchem="http://www.xml−cml.org/dictionary/compchem/"

xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:ssip="http://www−hunter.ch.cam.ac.uk/SSIP"

elementFormDefault="qualified" attributeFormDefault="qualified">
<xsd:import namespace="http://www.xml−cml.org/schema"

schemaLocation="http://www−hunter.ch.cam.ac.uk/schema/cmlschema.xsd" />
<xsd:import namespace="http://www.xml−cml.org/dictionary/compchem/" />
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<xsd:import namespace="http://www−hunter.ch.cam.ac.uk/SSIP"

schemaLocation="SSIP.xsd" />

<xsd:simpleType name="nameType">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">Enumeration of name type.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:restriction base="xsd:string">

<xsd:enumeration value="IUPAC" />
<xsd:enumeration value="CAS" />
<xsd:enumeration value="trivial" />
<xsd:enumeration value="systematic" />
<xsd:enumeration value="generic" />
<xsd:enumeration value="abbreviation" />

</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="inchikeyType">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">simpleType specifying format of standard

InChIKey.

</h:div>
<h:div class="description">

The pattern matches standard InChIKey format.

matches description from IUPAC site:

http://www.iupac.org/home/publications/e-resources/inchi/r102-summary.html

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:restriction base="xsd:string">

<xsd:pattern value="[A−Z]{14}\−[A−Z]{10}\−[A−Z]" />
</xsd:restriction>

</xsd:simpleType>

<xsd:attributeGroup name="journalData">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">This contains the attributes for Journal Volume

number and page number for the article in question.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:attribute name="volume" type="xsd:string">

<xsd:annotation>
<xsd:documentation>

<h:div class="summary">This is the volume number for the Journal.

</h:div>
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</xsd:documentation>
</xsd:annotation>

</xsd:attribute>
<xsd:attribute name="pageNumber" type="xsd:string">

<xsd:annotation>
<xsd:documentation>

<h:div class="summary">This is the page numbers for the journal.

</h:div>
</xsd:documentation>

</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="year" type="xsd:gYear">

<xsd:annotation>
<xsd:documentation>

<h:div class="summary">This is the year of publication for the

journal.

</h:div>
</xsd:documentation>

</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="numberOfPages" type="xsd:integer">

<xsd:annotation>
<xsd:documentation>

<h:div class="summary">This is the number of pages for the article.

</h:div>
</xsd:documentation>

</xsd:annotation>
</xsd:attribute>

</xsd:attributeGroup>

<xsd:attributeGroup name="propertyName">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">This attribute group contains the attribute for a

property name.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:attribute name="name" type="xsd:string" />

</xsd:attributeGroup>

<xsd:attributeGroup name="jobType">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">This attribute group specifies the Job type for a

calculation.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:attribute name="jobType" type="xsd:string" />

</xsd:attributeGroup>
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<xsd:element name="Name">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">This is a name for a molecule.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:simpleContent>
<xsd:extension base="xsd:string">

<xsd:attribute name="type" type="nameType" />
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>

</xsd:element>
<xsd:element name="Names">

<xsd:annotation>
<xsd:documentation>

<h:div class="summary">This is a collection of all the Names of a

molecule.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="Name" minOccurs="1" maxOccurs="unbounded" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="CanonicalSmiles" type="xsd:string">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">This contains the canonicalised Smiles of the

molecule.

</h:div>
</xsd:documentation>

</xsd:annotation>
</xsd:element>

<xsd:element name="StdInChIKey" type="inchikeyType">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">Contains Standard InChIKey

</h:div>
</xsd:documentation>

</xsd:annotation>
</xsd:element>

<xsd:element name="MolecularStructure3D">
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<xsd:annotation>
<xsd:documentation>

<h:div class="summary">This contains an atom array and bond array.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="cml:molecule" />

</xsd:sequence>
<xsd:attribute name="structureType" type="xsd:string" />

</xsd:complexType>
</xsd:element>

<xsd:element name="Value">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">This contains the value of a data entry

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:simpleContent>
<xsd:extension base="xsd:double">

<xsd:attribute name="unit" />
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>

</xsd:element>
<xsd:element name="DOI" type="xsd:string">

<xsd:annotation>
<xsd:documentation>

<h:div class="summary">This is the DOI for a paper.

</h:div>
</xsd:documentation>

</xsd:annotation>
</xsd:element>
<xsd:element name="JournalTitle">

<xsd:annotation>
<xsd:documentation>

<h:div class="summary">This is the name of the Journal were the paper

was published

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:simpleContent>
<xsd:extension base="xsd:string">

<xsd:attributeGroup ref="journalData" />
</xsd:extension>

</xsd:simpleContent>
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</xsd:complexType>
</xsd:element>
<xsd:element name="ArticleName" type="xsd:string">

<xsd:annotation>
<xsd:documentation>

<h:div class="summary">The Name of the article from which the data was

retrieved.

</h:div>
</xsd:documentation>

</xsd:annotation>
</xsd:element>
<xsd:element name="Author" type="xsd:string">

<xsd:annotation>
<xsd:documentation>

<h:div class="summary">This is an Author for the paper where the data

was retrieved from.

</h:div>
</xsd:documentation>

</xsd:annotation>
</xsd:element>
<xsd:element name="AuthorList">

<xsd:annotation>
<xsd:documentation>

<h:div class="summary">This is the list of Authors on a paper.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="Author" minOccurs="1" maxOccurs="unbounded" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="Link" type="xsd:string">

<xsd:annotation>
<xsd:documentation>

<h:div class="summary">This contains the Link/URL for a source- normally

only used if no DOI is presentfor a Primary source, but a URL is

provided.

</h:div>
</xsd:documentation>

</xsd:annotation>
</xsd:element>
<xsd:element name="PrimarySource">

<xsd:annotation>
<xsd:documentation>

<h:div class="smmary">This contains the Primary source of the data, if

the data was not first published in the source.

</h:div>
</xsd:documentation>

</xsd:annotation>
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<xsd:complexType>
<xsd:sequence>

<xsd:element ref="DOI" minOccurs="0" maxOccurs="1" />
<xsd:element ref="JournalTitle" minOccurs="0" maxOccurs="1" />
<xsd:element ref="ArticleName" minOccurs="0" maxOccurs="1" />
<xsd:element ref="AuthorList" minOccurs="0" maxOccurs="1" />
<xsd:element ref="Link" minOccurs="0" maxOccurs="1" />
<xsd:element ref="Notes" minOccurs="0" maxOccurs="1" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="Source">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">This contains the information on the source of

the data.

</h:div>
<h:div class="description">

This includes the DOI, JournalTitle and

ArticleName.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="DOI" />
<xsd:element ref="JournalTitle" minOccurs="0" maxOccurs="1" />
<xsd:element ref="ArticleName" minOccurs="0" maxOccurs="1" />
<xsd:element ref="AuthorList" minOccurs="0" maxOccurs="1" />
<xsd:element ref="Link" minOccurs="0" maxOccurs="1" />
<xsd:element ref="PrimarySource" minOccurs="0"

maxOccurs="1" />
</xsd:sequence>

</xsd:complexType>
</xsd:element>

<xsd:element name="Uncertainty">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">This is the uncertainty in a value

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:simpleContent>
<xsd:extension base="xsd:float">

<xsd:attribute name="unit" />
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>



B.3 Database Schema 199

</xsd:element>
<xsd:element name="Notes" type="xsd:string">

<xsd:annotation>
<xsd:documentation>

<h:div class="summary">This contains additional notes about a data

entry.

</h:div>
</xsd:documentation>

</xsd:annotation>
</xsd:element>
<xsd:element name="ExperimentalMethod" type="xsd:string">

<xsd:annotation>
<xsd:documentation>

<h:div class="summary">This contains the method used to obtain the

experimental value.

</h:div>
</xsd:documentation>

</xsd:annotation>
</xsd:element>
<xsd:element name="Temperature">

<xsd:annotation>
<xsd:documentation>

<h:div class="summary">This contains the temperature at which the

experiment was done.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:simpleContent>
<xsd:extension base="xsd:string">

<xsd:attribute name="unit" />
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>

</xsd:element>
<xsd:element name="Solvent" type="xsd:string">

<xsd:annotation>
<xsd:documentation>

<h:div class="summary">This contains the solvent used in the experiment.

</h:div>
</xsd:documentation>

</xsd:annotation>
</xsd:element>
<xsd:element name="Host" type="xsd:string">

<xsd:annotation>
<xsd:documentation>

<h:div class="summary">This contains the Host used in the experiment.

</h:div>
</xsd:documentation>

</xsd:annotation>
</xsd:element>
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<xsd:element name="Conditions">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">This contains all the experimental conditions for

the measurement.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="Temperature" minOccurs="0" maxOccurs="1" />
<xsd:element ref="Host" minOccurs="0" maxOccurs="1" />
<xsd:element ref="Solvent" minOccurs="0" maxOccurs="1" />
<xsd:element ref="Notes" minOccurs="0" maxOccurs="1" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="Method">

<xsd:annotation>
<xsd:documentation>

<h:div class="summary">This is the method by which the data value was

obtained. It contains the ExperiementalMethod and a list of

Conditions.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="ExperimentalMethod" minOccurs="0"

maxOccurs="1" />
<xsd:element ref="Conditions" minOccurs="0" maxOccurs="1" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="Property">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">Property element is used to store information

about a Property for a molecule. The property is either a

numerical

value with an uncertainty, a SSIP or SSIPList.

</h:div>
<h:div class="description">

The Property element contains one of the

following: Value and uncertainty, SSIP or SSIPList.

The Source

element must also be present, with Method and Notes elements

optional. The name of the property is stored as an attribute.

</h:div>
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</xsd:documentation>
</xsd:annotation>
<xsd:complexType>

<xsd:sequence>
<xsd:sequence>

<xsd:element ref="Value" />
<xsd:element ref="Uncertainty" />

</xsd:sequence>
<xsd:element ref="Method" minOccurs="0" maxOccurs="1" />
<xsd:element ref="Source" minOccurs="1" maxOccurs="1" />
<xsd:element ref="Notes" minOccurs="0" maxOccurs="1" />

</xsd:sequence>
<xsd:attributeGroup ref="propertyName" />

</xsd:complexType>
</xsd:element>

<xsd:element name="PropertyMeanValue">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary"> This is the mean value of a property.

</h:div>
<h:div class="description">

This is used for properties where multiple

measurements have been found

in the literature, thus the mean value

of all occurances will be

used instead of only one.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:simpleContent>
<xsd:extension base="xsd:double">

<xsd:attributeGroup ref="cml:units" />
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>

</xsd:element>

<xsd:element name="PropertyPreferedValue">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">This contains the preferred value to use if

multiple version of the property are stored.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="Property" />

</xsd:sequence>
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<xsd:attributeGroup ref="propertyName" />
</xsd:complexType>

</xsd:element>

<xsd:element name="PropertyList">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">This contains a list of property Elements. It can

also contain a PropertyMeanValue, if the data is compatible.

</h:div>
<h:div class="description">

This groups all values of a property which have

been found, curated and

added to the database. If the data is found

from multiple sources/experimental runs, then the mean can be

calculated. This is

then used for parameterisation/comparison to

calculated values.

This is stored in a PropertyMeanValue element.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="PropertyMeanValue" minOccurs="0"

maxOccurs="1" />
<xsd:element ref="PropertyPreferedValue" minOccurs="0"

maxOccurs="1" />
<xsd:element ref="Property" minOccurs="1" maxOccurs="unbounded" />

</xsd:sequence>
<xsd:attributeGroup ref="propertyName" />

</xsd:complexType>
</xsd:element>

<xsd:element name="InputFile">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">This contains the input file used for a

calculation

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<!-- I need to better understand the compchem convention and how to use

it. -->

</xsd:complexType>
</xsd:element>

<xsd:element name="Input">
<xsd:annotation>

<xsd:documentation>
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<h:div class="summary">This contains an input file and also a

MolecularStructure3D.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="InputFile" />
<xsd:element ref="MolecularStructure3D" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="OutputFile">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">This contains the output file for a calculation.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<!-- Need to look at compchem convention. OR this contains reference to

output file. -->

</xsd:complexType>
</xsd:element>

<xsd:element name="OutputData">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">Output data from the calcuilation- extra info not

in Outputfile.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<!-- Need to look at compchem convention -->

</xsd:complexType>
</xsd:element>

<xsd:element name="Output">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">This contains an output file and

MolecularStructure3D.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="OutputFile" />
<xsd:element ref="MolecularStructure3D" />
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<xsd:element ref="OutputData" minOccurs="0" />
</xsd:sequence>

</xsd:complexType>
</xsd:element>

<xsd:element name="Calculation">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">This contains information on a calculation

carried out on the molecule. It either conforms to the compchem

convention for a calculation using NWChem, or our internal

convention for our calculations.

</h:div>
<h:div class="description">

The choice between either using compchem for

NWChem calculations or

the internal convention for footprinting

calculations. Internal Convention needs work.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="Input" />
<xsd:element ref="Output" />
<xsd:element ref="cml:module" />

</xsd:sequence>
<xsd:attributeGroup ref="jobType" />

</xsd:complexType>
</xsd:element>

<xsd:element name="Structure">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">This contains all structural information.

</h:div>
<h:div class="description">

This contains Names, CanonicalSmiles, StdInChIKey

and

MolecularStructure3D elements.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="Names" maxOccurs="1" />
<xsd:element ref="CanonicalSmiles" minOccurs="1"

maxOccurs="1" />
<xsd:element ref="StdInChIKey" maxOccurs="1" />
<xsd:element ref="MolecularStructure3D" minOccurs="0"



B.3 Database Schema 205

maxOccurs="1" />
</xsd:sequence>

</xsd:complexType>
</xsd:element>

<xsd:element name="ExperimentalProperties">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">This contains all Experimental data gathered.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="Property" minOccurs="0" maxOccurs="unbounded" />
<xsd:element ref="PropertyList" minOccurs="0" maxOccurs="unbounded" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="CalculatedProperties">

<xsd:annotation>
<xsd:documentation>

<h:div class="summary">This contains all the calculated Property data.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="Property" minOccurs="0" maxOccurs="unbounded" />
<xsd:element ref="PropertyList" minOccurs="0" maxOccurs="unbounded" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="CalculationData">

<xsd:annotation>
<xsd:documentation>

<h:div class="summary">This contains Data for calculations run on the

molecule.

</h:div>
<h:div class="description">

This contains inputs and outputs for Calculations

carried out on the

molecule. Each Calculation contains an Input and

Output (if Job has

finished). The results of Calculations are used

to update the

Calculated Properties.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>
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<xsd:sequence>
<xsd:element ref="Calculation" minOccurs="0" maxOccurs="unbounded" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="Molecule">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary"> This contains all the information about a

Molecule.

</h:div>
<h:div class="description">

This contains Structure, PhysicalProperties,

CalculatedProperties and

CalculationData children, and a StdInChIKey

attribute. The

StdInChIKey is used to distinguish the Molecules from

each other, so they should be unique.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="Structure" minOccurs="1" maxOccurs="1" />
<xsd:element ref="ExperimentalProperties" minOccurs="1"

maxOccurs="1" />
<xsd:element ref="CalculatedProperties" minOccurs="0"

maxOccurs="1" />
<xsd:element ref="CalculationData" minOccurs="0"

maxOccurs="1" />
</xsd:sequence>
<xsd:attribute name="inchikey" type="inchikeyType"

use="required" />
<xsd:attribute name="stuartFileName" type="xsd:string" />
<xsd:attribute name="freesolvFileName" type="xsd:string" />

</xsd:complexType>
</xsd:element>

<xsd:element name="MoleculeList">
<xsd:annotation>

<xsd:documentation>
<h:div class="summary">This is a container for all Molecules, and is the

root element of the database.

</h:div>
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="Molecule" minOccurs="1" maxOccurs="unbounded" />

</xsd:sequence>



B.3 Database Schema 207

</xsd:complexType>
</xsd:element>

</xsd:schema>
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Supplementary Derivations

This Appendix contains an alternate approach to derive the free energy of solvation to that
discussed in chapters 4, 5, 6, 7. The fitting of polynomial functions to describe the solvation
free energies used in chapters 5 and 6 is also described here.

C.1 Free energy of binding alternate derivation

The SSIMPLE [158] approach to solvation considered transfer free energies to derive the
free energies of transfer. This approach is taken in this appendix.

A two phase liquid system, composed of phase 1 and phase 2 with a solute, m, in both
phases is considered. For a single SSIP, i, in m, at equilibrium, it will have the same chemical
potential in both phases, shown in (C.1).

[i f ree]1 = [i f ree]2 (C.1)

Where
[
i f ree

]
1,
[
i f ree

]
2 is the concentration of the ith solute SSIP that is free in phase 1

and 2 respectively. The free energy difference of binding between the two phases for m is
given by ∆Gb,1→2 in (C.2), as discussed in [158]. This is the sum of the free energy changes
to transfer all SSIPs in the molecule from phase 1 to phase 2. Note that the sign in (C.2)
differs to that published in equation 15 in [158], which is incorrect.

∆Gb,1/2 =−
N

∑
i

RT ln
(
[i]2
[i]1

)
(C.2)
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Where [i]1, [i]2 the concentration of the ith solute SSIP in phase 1 and 2 respectively, N is
the total number of SSIPs in m. The fraction free of the SSIP, which is in equation (C.3) can
be used to rewrite equation (C.2) as equation (C.4).

f i =

[
i f ree

]
[i]

(C.3)

∆Gb,1/2 =
N

∑
i

RT ln
(

f i
2

f i
1

)
(C.4)

Alternatively equation (C.4) can also be rewritten using the solubility constant for the ith
species, KS,i, which is defined in equation (C.5).

Ki
S =

[ibound][
i f ree

] (C.5)

∆Gb,1/2 =
N

∑
i

RT ln
(

1+Ki
S1

1+Ki
S2

)
(C.6)

Where [ibound] is the concentration bound to solvent;
[
i f ree

]
is the concentration not

bound; Ki
S1, Ki

S2 are the solvation constants for the ith SSIP in phase 1 and 2 respectively.
Confinement of SSIPs to a condensed phase results in the binding energy over estimating

the probability of interaction. Consideration of a condensed phase where Ki j = 1.0 is required,
as in [158]. The concentrations of SSIPs in such a phase are given by equation (C.7).

[i] =
[
i f ree

]
+2
[
i f ree

]2 (C.7)

Rearrangement of equation (C.7), yields the probability of a SSIP being free, Pf , if there
is no interaction energy between any SSIPs in the phase, in equation (C.8).

Pf =

[
i f ree

]
[i]

=

√
1+8θ −1

4θ
(C.8)

Where θ is the fractional occupancy of the phase, relative to the zero point solid state,
equal to [i]

cmax
.

The confinement energy, given in equation (C.9), is the free energy associated with
restricting a SSIP to be in a condensed phase.

∆Gc,i =−RT ln
(
Pf
)
=−RT ln

(√
1+8θ −1

4θ

)
(C.9)
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The confinement energy for a molecule requires summation over all SSIPs; which is
N∆Gc,i, since ∆Gc,i is independent of SSIP value.

The free energy of transfer, ∆G1→2 is shown in equation (C.10); with ∆G1
c,i,∆G2

c,i the
confinement energies per SSIP in phases 1 and 2.

∆G1/2 = ∆Gb,1/2 +N(∆G2
c,i −∆G1

c,i) (C.10)

C.2 SSIP Solvation energy curves: Polynomial description

∆Gb (εi) and ∆GS (εi) are smooth functions of SSIP value, so we can fit a polynomial function
to it, to allow for easy interpolation between a selection of calculated values. This is used
to increase speed of computation and reduce memory requirements for the analysis used to
generate FGIPs in chapter 5 and solvent similarity in chapter 6.

The solvation free energy does show different behaviour for donor and acceptor SSIPs,
so the fit has two regimes as shown in (C.11).

∆GS (εi) =

 f+ (εi) i f εi > 0

f− (εi)otherwise
(C.11)

Where f+ and f− are the polynomial functions for the different positive and negative
regimes generated using regression analysis. The split fit is required due to the large variation
in interaction strengths of hydrogen bond donors and acceptors with a solvent. Figure C.1
shows the ∆GS,i for the simulation and the values from an eighth order polynomial fit for
N,N-dimethylformamide, which also shows two distinct gradients for the different solute
regions.
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Fig. C.1: Plot of solvation energy for a solute SSIP in N,N-dimethylformamide at 298K.
Simulation values as blue crosses, with red line representing the values from an eighth order
polynomial fit as in equation (C.11).

An eighth order fit was used for the polynomial as this had a mean RMSE of under 0.05
kJ mol−1 for both positive and negative ε regions for the set of 261 solvent molecules in the
pure solvent data set, listed in G.1. Figure C.2 is for the solvation profiles (∆GS,i) and Figure
C.3 is for the binding energy. The error in the polynomial fits are significantly lower than the
errors in the solvation free energies when an eighth order fit is used, without overfitting of
the data.
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Fig. C.2: RMSE for the polynomial fits to the positive and negative ε regions as a function of
polynomial order for the solvation profile.
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Fig. C.3: RMSE for the polynomial fits to the positive and negative ε regions as a function of
polynomial order for the binding energy, ∆Gb,i.

The polynomials coefficients used in the generation of functional group interaction
profiles (FGIPs), in chapter 5, as well as the similarity profile analysis, in chapter 6, use the
polynomials in appendix G.





Appendix D

Database

A copy of the database can be found on the CD accompanying the thesis, which was created
using [307]. 6441 property values were collected for 1470 molecules. Of these property
values: 1001 are β values, for 770 unique molecules; 364 are α values for 275 unique
molecules.





Appendix E

Partition Coefficient Data

E.1 Solvent descriptions

The solvent descriptions used for calculation of the partition coefficients and phase transfer
free energies were the same used for the creation of functional group interaction profiles and
solvent similarity, details are in appendix G. The descriptions were calculated with using
the original parameterisation in [155]. The description of wet octanol used was a mixed
1-octanol-water solvent, with 0.271 molefraction of water, based on information from the
SAMPL6 challenge [283].

E.1.1 Solvent Concentration

The concentrations of the solvent molecules are in G.1.

E.2 Partition data

Summary of data for partition plots. Experimental data is from the cited sources.

E.2.1 Dataset 1

This information is located on the attached CD.

E.2.2 Dataset 2- Reynolds

This information is located on the attached CD.
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E.2.3 Dataset 3- Martel

InChIKey Experimental
logP1−octanol/water

Calculated
logP1−octanol/water

ZHTYOISLJWAJCL-AWEZNQCLSA-N 4.17 5.29
NEVMHUGOCDUYCY-JTQLQIEISA-N 2.79 3.15
OGYZPWONPFHXSP-UHFFFAOYSA-N 3.96 4.44
HBWITNNIJDLPLS-UHFFFAOYSA-N 5.30 5.47
GCUGOKRWLBHMLQ-IBGZPJMESA-N 3.53 5.97
WQKMACGRTRICNN-UHFFFAOYSA-N 4.35 4.85
MYXZSSULOWIELP-ZFWWWQNUSA-N 6.21 7.11
ROQYSLYSLZPOBT-UHFFFAOYSA-N 3.14 3.71
OAJNZFCPJVBYHB-UHFFFAOYSA-N 1.81 1.74
XQLJKVUBWFWJHH-CYBMUJFWSA-N 2.34 2.92
GMCWXHUWHFUMQH-UHFFFAOYSA-N 2.98 4.11
GZJYYTDPEQCUOZ-OAHLLOKOSA-N 4.50 6.70
GNHSFPGRILAESF-UHFFFAOYSA-N 3.33 3.76
KKIVPOXYVUDHPE-UHFFFAOYSA-N 4.12 5.15
CZHBUODUVDGWLO-SNVBAGLBSA-N 3.96 4.70
ILDWRDGUEBWGLQ-UHFFFAOYSA-N 3.69 4.67
GKOUEWHYLFOVFG-UHFFFAOYSA-N 4.00 5.51
BMADQAUGPJFBPU-GFCCVEGCSA-N 3.24 3.10
PEGDWZSJRLDGOV-UHFFFAOYSA-N 1.14 -0.56
RCFRVQFKBHAWED-UHFFFAOYSA-N 5.38 5.76
CGTCXQOYTCJPIZ-UHFFFAOYSA-N 2.68 4.15
VCLVBIPTRZNCGF-YUMQZZPRSA-N 1.49 2.33
DVGGJTWGPZXYGY-UHFFFAOYSA-N 5.05 4.43
CSFNXBMHFQEMBP-FMIVXFBMSA-N 4.28 4.15
GOOSRBXROIWFPI-CHWSQXEVSA-N 3.30 4.82
PBSZHNXXFIYDBU-UHFFFAOYSA-N 4.41 4.94
HANDMCWHWMILMT-UHFFFAOYSA-N 4.14 6.12
HRQYWOOZOXTWOR-UHFFFAOYSA-N 2.46 3.41
SXJBCGWDRVUTRR-YLJYHZDGSA-N 5.48 7.33

Continued on next page
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InChIKey Experimental
logP1−octanol/water

Calculated
logP1−octanol/water

CBWMOBFPWMOJKZ-QYVJPZLMSA-N 0.51 1.81
MHKHJIJXMVHRAJ-UHFFFAOYSA-N 2.61 2.96
NKCVVZUBNFITEG-ZWNOBZJWSA-N 3.68 4.30
YEXRTWOVQNJHLF-UHFFFAOYSA-N 1.56 -1.61
VCPGACZNGUNXMK-KBXCAEBGSA-N 2.46 4.49
FOCILOSWFFTFNL-UHFFFAOYSA-N 3.65 4.78
RJNURKQUNFBADL-CCEZHUSRSA-N 4.69 5.73
QEUFQFSKUSAQQE-UHFFFAOYSA-N 2.82 3.93
XTIUPBZFKHSICA-UHFFFAOYSA-N 3.90 4.60
FVLNTXOYQXQZHP-UHFFFAOYSA-N 3.92 6.44
QYMABJIOSDFFRG-DHZHZOJOSA-N 4.45 6.00
UAHAAFGEZOBXTP-AWEZNQCLSA-N 3.58 4.82
XCJIPKCPRKVCIN-KRWDZBQOSA-N 5.02 7.22
OLZITQXFEGHLND-NXEZZACHSA-N 2.44 3.85
ZGUBQUIWHJBVMV-GFCCVEGCSA-N 3.83 4.20
YEWVKBUFRDKCAG-UHFFFAOYSA-N 2.79 4.38
GSWSWFNVEVSOJC-SECBINFHSA-N 1.41 2.77
BQOCMHOWHOMIMJ-UHFFFAOYSA-N 2.34 1.72
CFGMGRLIFAVVMY-UHFFFAOYSA-N 2.92 4.50
VTRHVCVHBFETCP-UHFFFAOYSA-N 4.04 4.96
WUODFZJMRMJWIS-XUWVNRHRSA-N 5.87 6.57
NFCPRRWCTNLGSN-UHFFFAOYSA-N 2.67 4.07
YUTFQTAITWWGFH-UHFFFAOYSA-N 2.15 2.48
CISOKWVGMLHGBN-UHFFFAOYSA-N 3.04 2.95
WYCHMHPXGUPIBI-UONOGXRCSA-N 2.66 4.50
LKEZQXUSGJDRKD-FOCLMDBBSA-N 1.10 2.89
ZBNZMSUGDPAPSB-GIJQJNRQSA-N 4.81 4.46
TVWLCJVDJFYZSD-UHFFFAOYSA-N 3.45 2.84
RERURSHSFQDGJT-UHFFFAOYSA-N 3.61 2.56
ROQJDMYDPFGLEK-UHFFFAOYSA-N 4.97 5.22
FHVVYVTWZBXZBN-QWHCGFSZSA-N 2.85 3.55

Continued on next page
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InChIKey Experimental
logP1−octanol/water

Calculated
logP1−octanol/water

DXFNVIVIEHJYQT-UHFFFAOYSA-N 2.70 3.72
XZERHOWNUXQBNF-VXNVDRBHSA-N 1.16 1.75
COIUQMDQIBGHQH-UHFFFAOYSA-N 3.33 3.89
ZORGBFBWSHUFAR-ZDUSSCGKSA-N 5.45 7.23
WHHFXQYCQIZJON-UHFFFAOYSA-N 4.33 5.16
MCOMUPQTXUHLTL-RDDDGLTNSA-N 0.71 0.07
IWZGIPVTSGGNME-UHFFFAOYSA-N 2.71 3.41
KNQRFJRNEDUILA-UHFFFAOYSA-N 3.24 3.60
AAVGUZZUJOHLGC-UHFFFAOYSA-N 5.86 7.84
DHKMJAHFQFYQLM-WCQYABFASA-N 4.76 7.15
ORKOCUGYWLTPIP-KGLIPLIRSA-N 4.64 4.79
CJBOKCHSMBRXAK-UHFFFAOYSA-N 3.20 5.29
ZYUUTRPXZHRTBC-UHFFFAOYSA-N 2.60 3.92
YFKZCWAATHXKMA-UHFFFAOYSA-N 3.19 4.09
BHVSCKTUCMZDIV-UHFFFAOYSA-N 4.89 5.36
XCLOVAUIMQGTOK-UHFFFAOYSA-N 4.52 6.07
YDYPMLDCUCWBKB-UHFFFAOYSA-N 4.69 4.62
ZVGRHWZDOBWBPQ-FQEVSTJZSA-N 5.77 7.80
IOYBVXGEPKKEBH-QHCPKHFHSA-N 4.38 6.74
AEXUGBKKZSVAPK-MGPUTAFESA-N 4.73 6.06
IKNZKDSAYXMKKQ-ZIAGYGMSSA-N 4.56 4.36
ZTAMDRVTGLTOKN-ZCXUNETKSA-N 6.96 9.13
CHNTVHWKBXYWAT-UHFFFAOYSA-N 6.15 7.04
LWEWLNJRHDOSHP-UHFFFAOYSA-N 5.92 6.20
HORBZFFNOVIHPI-YLJYHZDGSA-N 4.25 6.05
ALPGTOOTEBXLDZ-UHFFFAOYSA-N 5.01 6.59
AYGQLBHSQFMOEI-UHFFFAOYSA-N 5.86 7.84
UYZFELGGXDXOHW-RRFJBIMHSA-N 5.05 7.19
HCRFJPAQRKAART-JSGCOSHPSA-N 5.54 5.33
MUNBZSILFSBXQL-FSJBWODESA-N 5.16 7.89
QVDDCLSXTLUEQH-OUKQBFOZSA-N 5.53 5.87
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InChIKey Experimental
logP1−octanol/water

Calculated
logP1−octanol/water

DDRSZUUAUJASSI-RDJZCZTQSA-N 5.92 6.79
KZLDWBSCYBHPAW-HDICACEKSA-N 5.00 6.74
YWSZRAHHUHWDDC-XOBRGWDASA-N 3.07 5.03
LKSYGZBTKUVKQG-CYYJNZCTSA-N 6.51 9.93
INVKBFDNVBLXPS-UHFFFAOYSA-N 6.09 5.88
MLHPBLBIRWJQOT-UHFFFAOYSA-N 2.76 3.85
KKMUTMLAXBFINA-UHFFFAOYSA-N 2.89 6.03
JNIUASRGXBINOO-UHFFFAOYSA-N 4.63 5.41
BGZJVJOLKCRHGM-AYBZRNKSSA-N 3.65 4.98
CAYAHNKHBWVYHU-UHFFFAOYSA-N 4.62 8.49
AHPUQHAFKQTLEB-LQUAGZSJSA-N 6.00 9.41
SDMBWFDEPMYMGI-UHFFFAOYSA-N 3.93 3.06
LMSKFFORTXTXLR-UHFFFAOYSA-N 4.92 4.98
SFTXUGPQTNDPEG-ZWKOTPCHSA-N 4.48 5.70
VTKYHTUHVWMKSC-FQEVSTJZSA-N 5.04 6.01
NSQKTSFQLVEUHM-UHFFFAOYSA-N 4.08 4.16
UTLKAWYFHJSKQV-UHFFFAOYSA-N 4.41 3.67
YUCJLWRFTZJYIK-UHFFFAOYSA-N 5.75 7.40
INEZMZGOJOCSIS-QHCPKHFHSA-N 4.99 4.90
FAKKPEHAXNWGNO-UHFFFAOYSA-N 5.27 6.60
NRCNTMPERVVZPZ-GOTSBHOMSA-N 4.93 7.62
JXSDKBMQPWWPFP-VSGBNLITSA-N 6.65 10.58
QTZMVOQSYGIBAX-UHFFFAOYSA-N 3.69 3.72
JVTLAKZLKZFVEB-UHFFFAOYSA-N 4.83 10.29
WCJDQPQLNDQEAF-UHFFFAOYSA-N 4.55 5.05
TXKWKZXGRPPXJL-UHFFFAOYSA-N 3.55 2.72
MRPVKLSIDSIUDA-CYBMUJFWSA-N 5.04 6.57
URPZRDIJQKPJFZ-UHFFFAOYSA-N 4.48 5.26
HKVRLDHZKYJDFA-UHFFFAOYSA-N 3.95 5.94
ONGGCQFIGCVCSN-ZDUSSCGKSA-N 6.53 7.78
JJPYDFGDSYHKLR-UHFFFAOYSA-N 4.22 6.06
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InChIKey Experimental
logP1−octanol/water

Calculated
logP1−octanol/water

JZTMANRDBQZJEA-PBBNMVCDSA-N 5.77 7.13
ZQAHKDUZHISWBE-QHHAFSJGSA-N 3.72 4.32
FZNTXTCEOPRPML-UHFFFAOYSA-N 5.13 8.23
JGCYRGXRKXORRJ-UHFFFAOYSA-N 4.85 6.71
SVFKDRUYIIUIFE-UHFFFAOYSA-N 5.64 6.26
NRNCEYNQMPDMIW-JVWAILMASA-N 5.58 6.96
CWKKCWFXWWPOSH-UHFFFAOYSA-N 1.55 2.39
MDMSJQVAZRPBTH-FQEVSTJZSA-N 3.89 5.54
KQAVKBHOJFRDIK-UHFFFAOYSA-N 6.08 8.41
OUCUJHWBDDGFED-UHFFFAOYSA-N 4.16 5.33
QTGCYMOYQIUQDI-UHFFFAOYSA-N 4.14 5.47
IOQGCFQJRDDVBG-LRKLCTCQSA-N 5.07 6.85
JNEFIQXNVVUKLD-UHFFFAOYSA-N 2.77 2.17
WWJUWUYPLQLOEI-RGJNTOLQSA-N 1.48 1.45
SMXADHJFXXLOLN-UHFFFAOYSA-N 4.62 3.19
FGQPHLLMLBCMCK-UHFFFAOYSA-N 5.72 6.04
FGVMSGZDOANVQA-UHFFFAOYSA-N 5.35 6.66
CFWIEFRWFQHAQW-HXUWFJFHSA-N 4.18 5.79
YAMKVBLBJAAXFT-VWLOTQADSA-N 4.25 6.06
ZAKIKYBNFKWDDQ-XWRIVVANSA-N 5.29 7.59
GCFRRTILCGTGBQ-YLJYHZDGSA-N 5.50 7.93
UMPQEFOTUDZBJG-UHFFFAOYSA-N 5.47 6.47
KQMIMACSJDBGQK-ONGXEEELSA-N 4.47 4.55
CFQXQCSYUSXLDL-UHFFFAOYSA-N 2.09 2.93
POLMJDIEAXQIPX-BDTNDASRSA-N 5.98 8.45
DLRPHOSBFYTCAM-UHFFFAOYSA-N 6.85 7.88
WKDBMZQECSVNDS-UHFFFAOYSA-N 1.88 2.38
UGLGPUOORWARAH-ZCFIWIBFSA-N 2.75 3.12
DUOXRUNUARSQEB-UHFFFAOYSA-N 3.53 6.59
WBICRFXNOLHJLW-UHFFFAOYSA-N 4.92 7.01
UCEQJOWFMHDKKL-UHFFFAOYSA-N 5.47 8.86
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InChIKey Experimental
logP1−octanol/water

Calculated
logP1−octanol/water

NGYKAUYSNYJQEW-WKULSOCRSA-N 6.14 9.06
XPEXCQBNKAUOFM-UHFFFAOYSA-N 5.51 6.58
KGPXNTXVIMCKQE-UHFFFAOYSA-N 3.11 3.51
XZHJOCVCQOPOIY-UHFFFAOYSA-N 3.19 4.63
UYLIFRMAFKBLGA-UHFFFAOYSA-N 5.87 8.03
CAKSREDMTKQPNR-UHFFFAOYSA-N 6.72 10.66
ZHUATNWTFFMRCK-UHFFFAOYSA-N 3.68 4.39
YEOUKSXVZKMTQY-GOSISDBHSA-N 3.47 4.80
KXCHBLHOXKENCH-KBPBESRZSA-N 3.93 4.61
NQERVHWPAYNKBW-UHFFFAOYSA-N 2.30 2.87
KRVBIJNWBWCZRY-UHFFFAOYSA-N 4.31 6.11
RQVCHKZPRRZJCK-INIZCTEOSA-N 6.04 8.80
NTBDKTGBUJTAHX-UHFFFAOYSA-N 6.06 6.07
WOASUTLIZIBWDW-UHFFFAOYSA-N 5.56 6.24
HTPWJGVWDZMPLH-XDHOZWIPSA-N 4.25 4.72
ITWFHOWJWBBFJT-BQYQJAHWSA-N 4.67 5.45
YVTGQQYMCFXZOP-UHFFFAOYSA-N 6.58 9.57
CVMWEBSWRVKUDR-UHFFFAOYSA-N 4.42 5.06
XOMCFOVVVRBCRX-JOCHJYFZSA-N 4.55 5.87
XXVSGJDBVQTJAT-DTORHVGOSA-N 4.43 6.03
VYPPVOVFFZDOLO-UHFFFAOYSA-N 4.70 5.84
UNLXBPZUCFUUFH-UHFFFAOYSA-N 5.26 6.35
ZWQWUXJOSIEPAF-HMAPJEAMSA-N 4.04 4.20
HVPBYYHGVNFDHG-UHFFFAOYSA-N 2.45 2.16
MWSQBNLQCJIDNT-ZBFHGGJFSA-N 4.50 5.98
PNAWEPHPWYNHLG-KZULUSFZSA-N 4.55 5.94
FVXIXCWTNABXHN-GJZGRUSLSA-N 2.86 4.89
GKGGWGQAWVRXJJ-UHFFFAOYSA-N 5.14 5.88
IMEMJHICQKFFMG-UHFFFAOYSA-N 4.82 6.44
MIKZEONNIJGZLT-UHFFFAOYSA-N 5.09 5.59
KJOVSBNTQFQTIO-UHFFFAOYSA-N 3.62 4.14
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InChIKey Experimental
logP1−octanol/water

Calculated
logP1−octanol/water

ZNCVVZOMUWLFFN-ZANVPECISA-N 5.49 7.93
FWSVZRJCNNFMSR-UHFFFAOYSA-N 4.00 5.84
CJMDFPWXRRTBSV-UHFFFAOYSA-N 2.71 1.71
DERFFWPLVQTHEZ-YYHQMBLXSA-N 2.28 3.83
WPLKQUJNEKRTMS-UHFFFAOYSA-N 5.22 4.25
LBQCUXUTTHIVQP-UHFFFAOYSA-N 2.78 3.91
NSHXKNKAVFRJHR-QLENYVDCSA-N 5.87 5.83
PSFUCQBYNSURMM-PTDBIEIZSA-N 3.77 3.86
NZTIPCHEAMRWCN-OAQYLSRUSA-N 3.08 5.90
NNPHTJJEJWDYAK-VWLOTQADSA-N 4.21 4.83
YRDOMFQFSOICJQ-PEZBUJJGSA-N 4.62 5.08
OMJNHHOTHQLHNZ-GDLZYMKVSA-N 4.65 7.28
DBUWPYDSLYIBCA-JXALSKIBSA-N 6.25 8.35
NFHLXMZEEQHTEB-UHFFFAOYSA-N 5.16 6.54
ARCDRMYSNWSNEQ-CYFREDJKSA-N 6.01 9.30
XDMQFOFJMPRXRG-UHFFFAOYSA-N 5.68 6.33
IHEAMWFNSHEPHK-CCLHPLFOSA-N 4.44 7.70
CXQKIQPKNPSGDE-UHFFFAOYSA-N 5.45 5.26
SVTRDJBJMCOYEM-UHFFFAOYSA-N 4.68 7.42
KLPLWWRXBYLZHN-UHFFFAOYSA-N 2.93 3.25
BDRHHTPONBYHDD-GJZGRUSLSA-N 3.68 4.14
SFLDAQSATWBWJP-UHFFFAOYSA-N 5.34 5.11
MXFUIUPCZDUIPC-HXUWFJFHSA-N 4.18 5.56
HKKAJYQKDOSXKD-CAOOACKPSA-N 4.03 4.23
HDDFAGCFLQKITD-UHFFFAOYSA-N 4.54 4.63
WZVDLTJRQXYDGS-HXUWFJFHSA-N 5.25 8.22
DIRBFPKLPYJGBA-UHFFFAOYSA-N 3.87 3.50
KWKMYBXXAONWEO-UHFFFAOYSA-N 6.17 8.46
RHRZLSZWJLEFGE-BTYIYWSLSA-N 4.53 5.70
JCNNVRSNLKLUNU-JOCHJYFZSA-N 4.15 6.97
AQCBGMZTLIAKJI-JOCHJYFZSA-N 4.97 6.46
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InChIKey Experimental
logP1−octanol/water

Calculated
logP1−octanol/water

BSGDPNHSNFVIQI-UHFFFAOYSA-N 3.19 4.25
GRVALHCXOIYOPV-UHFFFAOYSA-N 5.59 7.34
ZPEIYUMLGKDPBB-UBFVSLLYSA-N 5.83 7.89
VSDNJYCAZXKHAJ-LLVKDONJSA-N 5.76 9.16
RWXUTVGACDKSDP-QPPBQGQZSA-N 5.83 10.12
SZBIPEGMKJHKTD-QHCPKHFHSA-N 4.98 9.28
WNOOCLQDMXSNLZ-VIFPVBQESA-N 4.07 4.53
HRORZUQIQZUQMI-RBUKOAKNSA-N 4.52 5.41
CACMYLJNIDZGKK-PGMHBOJBSA-N 4.64 7.93
INXOYAADWKOYAB-LLVKDONJSA-N 2.05 2.19
DSDPNAASNKSGJJ-UHFFFAOYSA-N 2.68 3.21
CHWBXRZVOJPPPR-UHFFFAOYSA-N 3.13 3.97
QDGKZHNFOUFZDW-XBVQOTNRSA-N 3.85 6.41
VWOZKEQMWIZNMT-HNNXBMFYSA-N 3.75 4.89
DIVVAQYRKSZEEW-UHFFFAOYSA-N 3.92 4.23
DDHOGDYFLHNTAA-UHFFFAOYSA-N 4.86 3.87
NFVMGWKOORQLNW-RYUDHWBXSA-N 4.25 5.37
RZSANSNOPKTWBK-UHFFFAOYSA-N 4.57 5.52
IRNBMLQJZCQHSW-UHFFFAOYSA-N 3.50 4.58
GLPFKDSABFADSV-BQYQJAHWSA-N 5.31 6.37
LLDZOOUNGYCZSH-QPJJXVBHSA-N 2.46 3.11
ZLXGVYXVUKDLNG-OAHLLOKOSA-N 3.48 5.71
CEEKAUKKCDPUKD-YOEHRIQHSA-N 4.94 6.21
YPWVYUCBFXPYRX-ONEGZZNKSA-N 1.59 4.17
OBFAAMQTFVUZJO-UHFFFAOYSA-N 5.83 8.43
FGVRQOGQXMNHGR-MRVPVSSYSA-N 4.09 5.09
ZTGKTXRVNVAAEZ-SNVBAGLBSA-N 5.83 6.47
UFJPMIQEOMDPAL-VKJFTORMSA-N 4.38 4.25
WTJAOSUCZCHUHA-UHFFFAOYSA-N 5.63 5.38
LTSCOYSDXSZJGC-OAHLLOKOSA-N 4.55 5.93
BFUGHTCDORQPRS-UHFFFAOYSA-N 3.30 3.93
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InChIKey Experimental
logP1−octanol/water

Calculated
logP1−octanol/water

KRJCCTZGOZLVHM-LLVKDONJSA-N 5.06 6.42
QRZFZAWIYOQACB-UHFFFAOYSA-N 4.49 3.15
GEHZJNMZLQKLDL-UHFFFAOYSA-N 2.74 3.64
XROGAVVMKSBCRD-SFHVURJKSA-N 4.55 5.50
KZOLLAACMDISDU-UHFFFAOYSA-N 5.43 9.22
UBWASVDNTIJASA-HSALFYBXSA-N 3.37 5.61
OIMISOGUXWNOTR-ONOMSOESSA-N 5.81 6.48
PGHGRJRFLRIDKV-UHFFFAOYSA-N 4.31 7.10
OTNJMHOYCFLNRI-UHFFFAOYSA-N 3.75 5.20
PCFAVTJTLIYZHT-INIZCTEOSA-N 3.95 6.42
YXVLATGCUIPYTB-UHFFFAOYSA-N 5.04 8.47
NBBJIPDAOKGSNA-IBGZPJMESA-N 3.99 5.34
SERNBTUTHRLYCV-GJZGRUSLSA-N 4.19 6.20
YOVXPJSGNSFMKE-UHFFFAOYSA-N 2.95 3.72
YNJPORWECCVABQ-ZWKOTPCHSA-N 4.48 4.75
JMJCHRSOBZHAHJ-OAHLLOKOSA-N 3.14 4.57
LMYGHJZQDHRZFC-UHFFFAOYSA-N 4.00 4.50
KTGUPAFUVGHOQS-UHFFFAOYSA-N 1.74 2.63
KHSORWOFDJUUMT-UHFFFAOYSA-N 5.70 6.71
BCSQUJYENGABAT-UHFFFAOYSA-N 2.93 2.34
FABBYUIQYBYMEC-PMACEKPBSA-N 5.49 7.81
DFWQFBNINNFHPH-UHFFFAOYSA-N 4.59 7.23
ZXPRSEABWUIJCK-HNNXBMFYSA-N 3.90 6.09
XAIDHRILHSJWHP-LJQANCHMSA-N 5.10 6.84
LCCDJOCVVMFOHD-UHFFFAOYSA-N 3.20 2.35
IHUUTTHUGLJFAF-UHFFFAOYSA-N 2.64 1.58
VUNZVDNKOMJTCK-UHFFFAOYSA-N 3.25 3.40
WHVPISQBOXRCHR-DFEHQXHXSA-N 5.24 6.87
AQSUNOZBYRWGBO-HXUWFJFHSA-N 4.48 3.09
KLAKGOHDTGZVKU-UHFFFAOYSA-N 4.34 5.18
KNTBAPSEJMDMLH-PFBJBMPXSA-N 6.47 8.87
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InChIKey Experimental
logP1−octanol/water

Calculated
logP1−octanol/water

STUBXTBZJGURQS-UHFFFAOYSA-N 3.02 5.46
TVUHCGKTUZXUJY-MRCUWXFGSA-N 6.36 9.15
DNKNARHPWPLDBY-UHFFFAOYSA-N 3.30 4.27
ROUZTSOXZWQINV-OAHLLOKOSA-N 4.58 5.72
MZDCJAPBIUAZNA-ROUUACIJSA-N 3.74 3.65
SEPSLMVKQVHQNT-UHFFFAOYSA-N 5.96 7.37
VZLDLRDTGAFUKP-QMMMGPOBSA-N 4.79 5.86
CPIDUHGJETUEKJ-FCHUYYIVSA-N 5.56 5.22
XCJXQCUJXDUNDN-XNVXBWHWSA-N 5.69 6.35
NVWFNGRWBYLOQL-HAHDFKILSA-N 4.66 7.48
AJNYEMLGBXCAJD-UHFFFAOYSA-N 3.04 3.50
CLBOJFVOEQYSIF-HWKANZROSA-N 1.61 0.70
XOJDPDUKYKQGLY-NXZHAISVSA-N 4.59 6.21
AZQFHIOYKBSTLM-UHFFFAOYSA-N 4.64 4.91
LCMAQUWOPVHYJP-MHZLTWQESA-N 5.45 6.12
YCINBPWVFJKMKA-GFCCVEGCSA-N 3.68 5.23
BYLPAFIYZWIQCN-QFIPXVFZSA-N 5.32 5.63
MJZVQRMHVMIJDZ-QHCPKHFHSA-N 5.43 9.69
IMRZTJQUCNZSCF-UHFFFAOYSA-N 4.25 6.82
XXLXNUKFOGCGGI-UHFFFAOYSA-N 4.43 4.56
MNEJNVRRUICAQU-UHFFFAOYSA-N 3.72 8.39
YZGUMMAITZYKOD-UHFFFAOYSA-N 2.89 3.02
YOCFCLLRCGSJIU-UHFFFAOYSA-N 4.61 4.23
FOZZNDRTRNDJBC-UHFFFAOYSA-N 4.16 5.00
QHIZTQZAHBUIEK-LFIBNONCSA-N 6.59 8.30
OPUIFMOEKSUETI-GASCZTMLSA-N 4.91 5.96
HCJFDHHBUCXINJ-CYBMUJFWSA-N 3.43 3.98
MFEWOASOCGWVJY-CQSZACIVSA-N 5.05 8.89
FESKORARFOGMKM-UHFFFAOYSA-N 5.60 8.72
DRLNFFKVXNSCFI-FYWRMAATSA-N 4.92 6.54
MDZQHXDFKBVUGZ-UHFFFAOYSA-N 4.84 6.16
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InChIKey Experimental
logP1−octanol/water

Calculated
logP1−octanol/water

JFSCYNSDKYRXPM-MHZLTWQESA-N 5.39 6.42
HIMPVFWXMRWJNG-UHFFFAOYSA-N 4.61 5.70
XIJNSAGCFRMZDO-UHFFFAOYSA-N 4.28 5.60
ZDNPASVKQISNOI-CQSZACIVSA-N 4.48 6.77
BSLPDPNWYWWKDM-RYUDHWBXSA-N 2.69 4.05
ZTVVEQXQBOATSI-UHFFFAOYSA-N 3.86 4.44
BRPXBFGWZBBNCG-ACRUOGEOSA-N 4.00 4.33
LABFHIJXDBVOEM-GOSISDBHSA-N 4.75 6.90
UWEABYAGFQFZFW-LBPRGKRZSA-N 3.10 3.33
ANSZZPJMTBLPCY-UHFFFAOYSA-N 0.86 1.55
UQIRGIDFUWCHDC-MDWZMJQESA-N 4.94 6.45
ZDPSBNRWMXTNCI-OAQYLSRUSA-N 5.31 8.59
WDCOJJCXZXFZJZ-KRWDZBQOSA-N 4.18 3.66
FDEMLXAFJTWNQD-UHFFFAOYSA-N 4.13 6.30
HBTOYNLTBSWHKA-UHFFFAOYSA-N 4.73 6.58
PWRSQLHEWLIIQP-UHFFFAOYSA-N 2.31 4.41
QRPPVVILVWRKMT-CVDCTZTESA-N 5.28 6.55
ZOQPZXUCYJGNGZ-UHFFFAOYSA-N 5.99 7.80
KVXNSYHNCCGHAQ-VQCBNXJZSA-N 6.26 8.00
WVDXMBBVTMQIHU-UHFFFAOYSA-N 3.71 5.15
PQENZYXOUZMDFI-UHFFFAOYSA-N 4.34 6.17
CZZXDIHZMJQBGQ-AIYVTKCESA-N 3.39 4.24
UKOXYLFGSFPIKY-UHFFFAOYSA-N 3.47 5.81
FYSQOPNXZUHHBZ-UHFFFAOYSA-N 5.03 5.24
AHEBMWPPIOTQOC-LJQANCHMSA-N 5.56 7.34
IZXBODQUOMRHIG-HQQGHWSLSA-N 6.66 6.10
NOPWOZZLZKHIRI-KLHWPWHYSA-N 3.11 4.72
NBWRFBZIRGPFSC-UHFFFAOYSA-N 2.93 5.24
ITTAHRUGUAGBGK-DQRAZIAOSA-N 5.14 5.02
NALFHGJNUXROMT-GHVJWSGMSA-N 5.84 5.87
DMKCZUXCQWLBOI-UHFFFAOYSA-N 3.27 4.89
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InChIKey Experimental
logP1−octanol/water

Calculated
logP1−octanol/water

HYXGIGVZSVPNGR-DEOSSOPVSA-N 5.07 7.83
GKPVOQLJHWLOIE-UHFFFAOYSA-N 5.85 7.63
DUDAZNFMQDQCTJ-FQEVSTJZSA-N 5.41 7.57
AAQGPMOPIQKGEL-UHFFFAOYSA-N 3.74 5.55
CPXSZGKFGNBILI-UHFFFAOYSA-N 4.99 5.08
MPRBOWAGTINOPY-UHFFFAOYSA-N 2.63 3.67
QGWMNAWELIVFTG-UHFFFAOYSA-N 2.78 3.00
ZTPCZESYHLPHTL-CQSZACIVSA-N 3.75 4.09
UKTLLYCWSFLLTQ-QGZVFWFLSA-N 3.73 4.89
YJXKSJWDDFJERR-VCHYOVAHSA-N 3.08 3.40
DCYUXNHCVBQGHH-ZDUSSCGKSA-N 4.27 5.49
KZTABLWIZXQULZ-SNVBAGLBSA-N 3.33 2.80
LGNNLEKUCHDMHW-UHFFFAOYSA-N 3.27 4.72
JUJFXCLBPZBDMK-HZPDHXFCSA-N 3.42 5.28
MNTNYGIDPGQTOC-OAHLLOKOSA-N 4.36 7.27
ROUIFMYBELJXEB-HNNXBMFYSA-N 3.59 5.04
HMPCZKBDXOYXEK-HXUWFJFHSA-N 4.42 7.21
ZCMGFFOIGKAQSD-FIFLTTCUSA-N 3.97 4.21
YIJYNRMUUBIRAZ-GHMZBOCLSA-N 2.80 3.23
BZUWNEFCJVOJHV-VIFPVBQESA-N 3.74 3.51
ADCZQRGTZNBXSY-UHFFFAOYSA-N 3.27 5.53
WBEXFXGSYBGDKO-SNVBAGLBSA-N 3.12 4.53
XJGNDNFOGCBVCX-CYBMUJFWSA-N 4.83 6.59
NPMKARLPTSLAKF-PHIMTYICSA-N 4.11 5.80
NMYZUPRJTGVYOA-UHFFFAOYSA-N 5.81 8.00
GQPQLHBCZMCHEZ-QMMMGPOBSA-N 6.63 7.50
ZXICNMNZPJRBPN-QMMMGPOBSA-N 3.08 3.87
ZPXKNIORQOXHPT-JKSUJKDBSA-N 4.30 4.51
WMSUKVNVAIOYTI-UHFFFAOYSA-N 4.43 7.45
NEYKKGVGPSFWOW-UHFFFAOYSA-N 1.85 3.31
RVTSNQDYGDXALU-UHFFFAOYSA-N 3.53 5.20
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InChIKey Experimental
logP1−octanol/water

Calculated
logP1−octanol/water

WXRPRGUHSRCLLM-UHFFFAOYSA-N 3.54 5.37
WTCNAYPUXMJTKU-HXUWFJFHSA-N 3.89 4.01
UUMRHEMBQPWFEG-NSHDSACASA-N 3.73 5.17
QSNPETXBWYINSB-UHFFFAOYSA-N 3.85 5.72
YQPMKLSMDZIKIV-ZDUSSCGKSA-N 4.52 5.98
KYIIQLZELBWXGZ-UHFFFAOYSA-N 4.92 4.56
NAPXWOKKOKBBFI-UHFFFAOYSA-N 3.90 3.02
LWEJOHOGFKEJOR-MRXNPFEDSA-N 5.16 6.13
ZPDMNDVAWLUIAG-UHFFFAOYSA-N 5.77 7.26
WFLQLAWLHFSZCD-UHFFFAOYSA-N 3.77 4.53
DVIOKQKRRBJPEK-UHFFFAOYSA-N 1.04 3.49
FEALGFZIOWUCBX-GOSISDBHSA-N 3.62 4.80
GWHMRPRMYRJABK-UHFFFAOYSA-N 4.43 4.52
HIMGRAHFJJIWAE-WAPOTWQKSA-N 3.80 5.11
OPUXZJDYQMKOMJ-UHFFFAOYSA-N 4.66 6.49
XREOKRVOJWYEGN-UHFFFAOYSA-N 3.45 4.54
HOMZNWKHRFOTDB-UHFFFAOYSA-N 4.62 7.05
GFTIFHCOENKKEV-FNCQTZNRSA-N 4.03 3.59
LRWUGAPSLMMXPA-QGZVFWFLSA-N 4.26 5.33
FZAWHHFNCLCWFV-FQEVSTJZSA-N 4.93 6.65
FSKUVTXSZTZMPW-JFMUQQRKSA-N 2.95 6.72
WUFVSQQGAYLGOP-MZYLBHOOSA-N 5.05 8.91
ZJQUDWDDZQAYJT-UHFFFAOYSA-N 3.20 2.81
CXEQEWXYGGKYDI-SFHVURJKSA-N 4.09 5.62
QCVIRJQIFSJLLW-ZEQRLZLVSA-N 4.37 7.73
QDBJFRLQQSVCQR-JYRVWZFOSA-N 2.14 3.11
OXGKYQKRPIKUSQ-UHFFFAOYSA-N 5.08 8.15
CIRWZGGESKUJHD-UHFFFAOYSA-N 4.73 4.89
HBUMYZBRQSSBIF-OAHLLOKOSA-N 4.49 5.08
XVNFPKKAPYTPDI-UHFFFAOYSA-N 4.57 6.69
HTYDUJRXOVWOKK-UHFFFAOYSA-N 3.44 3.69
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InChIKey Experimental
logP1−octanol/water

Calculated
logP1−octanol/water

KJGFUVLCCMTQTR-JMIUGGIZSA-N 4.93 6.40
NZRFSPNKJXIAHT-HXUWFJFHSA-N 5.63 7.22
TVBDIDDDJKLNIM-UHFFFAOYSA-N 4.24 4.53
IPHRCEPGBRGPPH-QHCPKHFHSA-N 4.34 7.30
USJBIIUVAKUIEG-UHFFFAOYSA-N 5.38 6.81
OOGLOENQRAUVGN-KRWDZBQOSA-N 3.85 4.59
WFSNJEDEIOZDHH-UHFFFAOYSA-N 3.80 3.84
XAPARILERDDUIA-RNCFNFMXSA-N 2.28 3.64
PPFVMXCGNLPTNO-UHFFFAOYSA-N 3.72 3.17
AZBUKWAUCAIIJN-UHFFFAOYSA-N 4.91 6.64
WFLKEQDJTAPERD-ZDUSSCGKSA-N 2.68 1.85
PPDOYIPVQSJRJV-UHFFFAOYSA-N 4.34 5.60
PEEXVCWBKQZBGA-UHFFFAOYSA-N 5.98 8.85
HCZZWVMQPZFMRX-UHFFFAOYSA-N 4.47 5.04
XJESGUOVKGXOEP-IAGOWNOFSA-N 5.51 7.99
CXNPTWLUNSEKLS-LLVKDONJSA-N 3.48 5.25
KKFZHSHXFMQMAT-UHFFFAOYSA-N 5.13 6.34
JWYSXYSJUHOIBO-INIZCTEOSA-N 4.44 5.96
KUKLHSJZZPQRCM-FQEVSTJZSA-N 4.21 5.57
XAAOHIZGIKSWHV-ZBXLFGCISA-N 2.18 4.54
ZKRRXUIMZUVGSN-UHFFFAOYSA-N 2.69 3.39
MJODVAOBVHVUME-WGDLNXRISA-N 3.79 5.62
ORRIBHZQKOAYQB-TYZQSYOASA-N 4.82 5.65
GZLCETKUTVIGQQ-UHFFFAOYSA-N 3.72 3.01
ZVDVVMSTHWWLHG-XZOQPEGZSA-N 5.42 6.34
HVRJMCIXBUWZCB-SFHVURJKSA-N 4.44 6.94
ULHCSQJPZWUAIA-MRXNPFEDSA-N 2.48 4.18
KEGLPYHWYBPPKK-UHFFFAOYSA-N 3.25 5.31
NIUCKOXIWCRUEH-UHFFFAOYSA-N 2.87 3.86
IWYAMGDQQATQPW-DWXRJYCRSA-N 3.79 7.45
RADPPQIJXOCSGQ-UHFFFAOYSA-N 4.46 4.66
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InChIKey Experimental
logP1−octanol/water

Calculated
logP1−octanol/water

BLCWNIGSFBOPQU-UHFFFAOYSA-N 2.56 1.88
DAOOKTDKSRSHHO-UPCLLVRISA-N 4.62 5.24
RBFMSOZXUUNGHX-UHFFFAOYSA-N 2.68 3.80
KAGAULBNAFMDFT-SECBINFHSA-N 1.43 2.94
NVEDNAPMXDKXSK-VIFPVBQESA-N 1.85 3.34
VGFIKAGLGYIDNO-SJORKVTESA-N 2.96 5.54
IWIZLHUNPZWOLU-UHFFFAOYSA-N 4.05 5.86
IRLHGKUNRKPBTD-LEWJYISDSA-N 3.95 6.75
PCPZUPPJCAFQRB-SDQBBNPISA-N 5.80 6.11
LNLWVMUKDKIWLS-CXUHLZMHSA-N 3.18 3.89
CUTVCQQLTOCFRM-UHFFFAOYSA-N 5.96 7.97
TUFRLCLSGMQEAK-UHFFFAOYSA-N 4.15 4.24
OZCAWKDKOKHTKN-UHFFFAOYSA-N 4.11 4.59
SOOBMJKCWOLEOI-UHFFFAOYSA-N 4.24 4.95
JJMIZFIRKGFFBT-BYPYZUCNSA-N 2.84 4.22
OOAOSOAEXSJSJL-MSOLQXFVSA-N 3.31 5.74
XHRGGNHVBWBJKI-SFHVURJKSA-N 3.97 3.97
MLQMNOGMLXHIJV-BRNYJPRKSA-N 4.71 3.58
XZZQAAPHFLQVLN-UHFFFAOYSA-N 4.93 4.53
BWONCUGSZKCCIK-DOTOQJQBSA-N 4.80 6.64
WOUPSKHTIXFKFF-GOSISDBHSA-N 4.90 6.37
KMNVRCWPZINLKV-IUXPMGMMSA-N 2.52 5.76
TXMIDRACNKSZPW-PXRHPAFUSA-N 5.45 8.90
YJYSTHAIRHSORF-UHFFFAOYSA-N 2.05 5.27
PTCSWPFIQHUFOE-JTNHKYCSSA-N 4.34 6.53
WXPHQFQCOBBPIO-VIFPVBQESA-N 3.56 3.41
GRYLSQBVFCYQBZ-UHFFFAOYSA-N 4.75 5.48
YDRBFHSWIJHFLS-UHFFFAOYSA-N 2.47 3.86
CHBFEQWFFHDSSP-UHFFFAOYSA-N 5.89 7.82
GYALPDCCJCQAEN-HSZRJFAPSA-N 5.60 9.08
XSWIQGFJJNCSFI-KRWDZBQOSA-N 4.92 6.70
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InChIKey Experimental
logP1−octanol/water

Calculated
logP1−octanol/water

CWECLZCKMKKXJQ-QNGOZBTKSA-N 4.41 7.76
OVDBHQYUKOYVOQ-UHFFFAOYSA-N 2.55 4.34
SEWJZKJXAAKTFG-CYBMUJFWSA-N 1.98 3.55
DLTNARWOWSMBRQ-UHFFFAOYSA-N 5.35 8.64
JYEJKRCNEMYMEF-VYYCAZPPSA-N 5.68 6.55
VVPWYMMLGFSQBL-HNONPPJISA-N 3.25 3.90
UTXUGRIYKFTWSE-DLBZAZTESA-N 3.56 4.39
DJPBASBZLCQIJC-VQTJNVASSA-N 4.34 3.92
PXKDIPHYHWDCDS-GASCZTMLSA-N 4.39 4.81
IJAMGEZYGPUHRK-UHFFFAOYSA-N 4.98 7.70
AKISEPIDMROWEK-UHFFFAOYSA-N 3.68 3.52
GELXZTXDAVDBAG-UHFFFAOYSA-N 3.43 2.87
RZKIOQDMVCVPMS-UHFFFAOYSA-N 5.31 7.21
HDYIZCUZYIIPKF-UHFFFAOYSA-N 5.17 5.79
YNFKFTQWCBXILI-UHFFFAOYSA-N 4.46 5.29
MBMVNKPLKUBNTH-JTQLQIEISA-N 4.97 7.07
QCPMXJGMPWCZJI-UHFFFAOYSA-N 5.59 7.75
KVDXSPZBMCWJLL-YFKPBYRVSA-N 0.61 2.01
KEJDGVUGSFBSTF-UHFFFAOYSA-N 1.56 0.92
ILEYOVVZWSNYBD-VXGBXAGGSA-N 4.38 6.58
QELXXCRQIHCPII-TZFALNRWSA-N 4.96 6.64
JGPOKGKCKBYCSO-UHFFFAOYSA-N 3.63 5.03
QNPSPPUXZSNJQQ-WUXMJOGZSA-N 5.36 7.16
ZRBNCQSSHOZQIA-CYBMUJFWSA-N 3.61 4.90
VKWSYMTWSQLAEF-UHFFFAOYSA-N 4.59 3.76
SVKPQZITSXAYOU-MNEOSPDGSA-N 5.40 6.64
FPFZEYWOKLQUAU-OAQYLSRUSA-N 4.54 6.89
JZVBYNZPQLWWNZ-OAHLLOKOSA-N 1.14 1.95
TYUGYIMCRDPMPJ-UHFFFAOYSA-N 1.48 1.41
BTEKQMROJFGITO-UHFFFAOYSA-N 4.47 7.22
UCKKDRLPGJIQSZ-ZVHZXABRSA-N 6.80 8.35
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InChIKey Experimental
logP1−octanol/water

Calculated
logP1−octanol/water

LXVOVLFIXAASDZ-UHFFFAOYSA-N 4.10 6.46
CFTRIZQAAJPXQE-UHFFFAOYSA-N 4.63 5.37
PNIFKGARWDRNGN-INIZCTEOSA-N 6.01 6.55
YONZWQXETNXNCR-UHFFFAOYSA-N 4.55 5.09
NCOQXRXMRLIQEY-UHFFFAOYSA-N 4.34 5.82
DPNXCAIGIMLFBE-ZDUSSCGKSA-N 3.90 3.99
RTMFAKDIZRPSAS-UHFFFAOYSA-N 4.99 6.83
YVSWDPCIYMZTPY-IBGZPJMESA-N 2.41 6.04
BUDUREKJMNEQPJ-UHFFFAOYSA-N 5.04 6.46
NQIRDAFLQJGUDK-UHFFFAOYSA-N 5.87 5.59
UGDRPQKXROPZSI-ZZXKWVIFSA-N 3.64 3.26
SNDKOCUTXFLZEF-UHFFFAOYSA-N 4.15 3.79
YXVRGBUHSOBVHY-UHFFFAOYSA-N 3.90 4.70
CPHOVWSNRJFISA-KSSFIOAISA-N 3.65 5.65
UIVWACWKCZLFJN-OAHLLOKOSA-N 3.56 6.86
FOZKGUULHURPKE-UHFFFAOYSA-N 4.33 2.93
LTDPUFMRVCFSNR-UHFFFAOYSA-N 5.31 7.22
ABBBQZTWZGGQMV-GFCCVEGCSA-N 3.35 4.84
KPBQUJHQPKXRGM-UHFFFAOYSA-N 4.89 6.32
MCXVVSQVUOBOQP-UHFFFAOYSA-N 2.00 0.83
SBHZPCZOCQUGMB-TTYLXTBDSA-N 4.95 6.63
UILOOYAFYSPHBY-SFQUDFHCSA-N 3.83 7.45
RWWKXMFLKNKNMZ-UHFFFAOYSA-N 3.37 6.07
PZUFTAHZHKKUQH-UHFFFAOYSA-N 4.69 6.74
HNNNVJFOFHGYTP-UHFFFAOYSA-N 4.43 6.25
ZFNLCJAOJJZMEP-HCGXMYGOSA-N 4.98 6.02
UKAXOFBQGPETQX-UHFFFAOYSA-N 2.17 1.84
XPJZKWRGHILEER-UHFFFAOYSA-N 4.09 5.23
WIJNKOGONVYBGY-CMDGGOBGSA-N 5.65 6.16
VJOLDPDJEOPQEJ-FPYGCLRLSA-N 5.08 7.30
IVHCENOEVQKPAJ-UHFFFAOYSA-N 5.39 8.20
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InChIKey Experimental
logP1−octanol/water

Calculated
logP1−octanol/water

KKUXNMSOKNFPNO-HNNXBMFYSA-N 3.28 4.89
YYDDJSAOOYOSCE-UHFFFAOYSA-N 5.21 4.68
JENCNZDUWJGIHF-UHFFFAOYSA-N 4.32 3.86
JTKRRRFBPXEIRJ-JTHWEQIXSA-N 3.17 4.86
KOVQRPKIMYZUMM-XZOQPEGZSA-N 6.01 9.06
SNFVYUDGJHCYHC-QZTJIDSGSA-N 4.38 6.61
IWGLMZNQDGNFCR-CMDGGOBGSA-N 5.20 5.72
LLMZJFAVXNCYMB-AWEZNQCLSA-N 3.81 4.78
AFHZHIYYMVWJKX-DXRVJIQQSA-N 4.27 5.74
UORRYFRRFINENK-UICJJRBLSA-N 5.53 7.76
IKKKFHFINZEPJS-UHFFFAOYSA-N 4.20 4.75
UVLKINHWLRXFFS-OAHLLOKOSA-N 3.32 4.28
YIKWDEDBUNSBOG-RXMQYKEDSA-N 2.12 2.09
JEUWOFGICFQRDC-SFHVURJKSA-N 4.09 7.59
UAQFYHCNUOSISM-UHFFFAOYSA-N 4.15 5.21
RRNKOOVIXANIQE-UHFFFAOYSA-N 4.71 7.03
MZXIQSBGQNWMBD-UHFFFAOYSA-N 4.28 5.59
JOIPGSCLRUCANG-KRWDZBQOSA-N 4.43 4.01
PJIOEFNPYZVAIO-UHFFFAOYSA-N 3.52 2.30
BJSAANIPBRXNLX-UHFFFAOYSA-N 2.26 3.13
QRMPGBJUZLXCKJ-UHFFFAOYSA-N 3.20 6.32
HEAYNZXNTGFSBT-UHFFFAOYSA-N 3.63 5.59
TVEBSRJZJSFOEQ-UHFFFAOYSA-N 3.55 3.02
BKNOZYOZRQYDJS-UHFFFAOYSA-N 3.78 5.64
KYPSRTCGYAUKRX-CSKARUKUSA-N 4.37 5.14
XULJJMCFNXRIKG-UHFFFAOYSA-N 3.57 3.05
SBCRDKRHZZAZNS-KRWDZBQOSA-N 4.04 6.03
FARNZWAPBICULX-JTQLQIEISA-N 2.18 3.65
KFDGDMRKBPBWHK-UHFFFAOYSA-N 2.27 2.82
OQNHJVQPZHWXJF-GOSISDBHSA-N 3.81 4.85
CUACHGSCSLHFGZ-UHFFFAOYSA-N 4.83 7.86
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InChIKey Experimental
logP1−octanol/water

Calculated
logP1−octanol/water

LBAFIEZOVLWYFZ-UHFFFAOYSA-N 4.92 6.91
LNOZQWIYHJQZCH-UHFFFAOYSA-N 3.41 6.43
MMNUXUOHYOFNBF-UHFFFAOYSA-N 4.73 6.32
IKPPQLDVGJTNCX-SECBINFHSA-N 4.52 6.51
YYELOBYDLMZBBQ-MDZDMXLPSA-N 4.30 5.17
PIEVAXRKLVXHQE-NSCUHMNNSA-N 4.40 4.75
UXNNRIWFHIWDPT-UHFFFAOYSA-N 3.60 5.16
GZQNBRHKYZXTRC-UHFFFAOYSA-N 4.21 5.71
SPTYXSCPYMRLLO-LLVKDONJSA-N 3.93 6.20
PWFDGTODQUGYHA-UHFFFAOYSA-N 4.78 6.25
SMNYOFAKPWSNOT-NTCAYCPXSA-N 4.34 5.04
LJPYZDKKFNSJEP-UHFFFAOYSA-N 3.18 4.12
NEEOGUOWXUGJOW-CYBMUJFWSA-N 4.09 5.64
OOFQHRCDCIKPPZ-UHFFFAOYSA-N 3.45 4.40
ZOOSCKVBKUXJNL-UHFFFAOYSA-N 2.57 3.10
SGDNURDNAGNIQA-UHFFFAOYSA-N 3.66 4.37
WNZSTHZQQPLYJE-UHFFFAOYSA-N 2.09 4.46
KBCMVDJECURDCQ-UHFFFAOYSA-N 4.48 5.59
HGTCZHGLSORINZ-UHFFFAOYSA-N 4.85 8.04
VGAHNRVZEUKAQI-HNNXBMFYSA-N 4.73 7.93
FNZSEIHPROENQZ-GQCTYLIASA-N 4.34 5.82
RNSUJULKSRLDKB-KBPBESRZSA-N 3.68 4.75
RFTUAICFFKVGAW-UHFFFAOYSA-N 3.56 4.85
SVHGOMBMZTWUKI-UHFFFAOYSA-N 4.35 7.31
KUOUTKXTVFKIMJ-UHFFFAOYSA-N 3.64 4.31
PWZYOWWGTQCTJT-CYBMUJFWSA-N 3.62 7.17
APBXPFPORVVLAM-UHFFFAOYSA-N 4.77 6.36
DBOVDDBYSUDFAU-UHFFFAOYSA-N 4.01 6.06
LZJUFSSTQXVBNZ-CQSZACIVSA-N 3.40 4.56
RFDSRVLKUXXOFR-UHFFFAOYSA-N 4.47 5.81
ZTFXCVWELNWUNG-UHFFFAOYSA-N 3.28 5.76
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InChIKey Experimental
logP1−octanol/water

Calculated
logP1−octanol/water

BOMSQFAAAZIQHP-LLVKDONJSA-N 4.77 5.63
FKVFUEKNZQBMRE-UHFFFAOYSA-N 4.64 5.09
CXGQEIVOZAKTFV-UHFFFAOYSA-N 2.00 2.57
JIUOPTXXGIXPMF-UHFFFAOYSA-N 4.17 5.31
DQPOYJGJZXULIA-NSHDSACASA-N 2.78 3.82
XBBNCCSGZQZHKB-UHFFFAOYSA-N 4.45 5.77
UNMNBRHGMDYLBT-UHFFFAOYSA-N 4.41 6.27
CONZAJPFHQVMJF-UHFFFAOYSA-N 3.39 4.57
HVFUALGOZLHNBG-JSGCOSHPSA-N 3.11 4.88
QAWNGMRTIHOQQI-GHMZBOCLSA-N 2.48 3.62
HTXNKCYBFXFBIZ-UHFFFAOYSA-N 5.14 6.08
DFOLGYLYIGLVRR-UHFFFAOYSA-N 4.26 3.83
HBCXUIGLMSNEFH-UHFFFAOYSA-N 3.82 4.68
VWKZGTMKCMFQLR-YVLHZVERSA-N 4.32 5.60
TUBOJVNASSNRCV-UHFFFAOYSA-N 5.48 7.60
DPMLUPHERVULNR-UHFFFAOYSA-N 3.79 5.76
MNKBPFLCLCXRLW-UHFFFAOYSA-N 5.09 6.49
CRPDGTKHEIKNSK-UHFFFAOYSA-N 4.17 5.16
LFAKWYLPUUIGIF-VXGBXAGGSA-N 4.55 6.10
GIXSHWSOHUJCQH-UHFFFAOYSA-N 4.69 6.11
HDUKGWHJQNLVKC-UHFFFAOYSA-N 2.69 4.63
QMJRCZVQSJOCCY-UHFFFAOYSA-N 4.77 5.28
WBYDPPMHWFGHIZ-UHFFFAOYSA-N 2.98 6.47
FURUFXYYTPGZFM-MHZLTWQESA-N 3.76 5.16
MJTPTDCFFIFMAM-UHFFFAOYSA-N 4.48 6.50
TXLPUBSTTXHQRR-UHFFFAOYSA-N 4.45 8.08
CCJUYZBXKBQBRM-UHFFFAOYSA-N 4.22 5.17
BCFNIXUPNOZTSK-UHFFFAOYSA-N 4.42 4.61
SZRSNULTEJROPV-SOFGYWHQSA-N 4.46 5.30
IUGXEQSYTBOJHE-YADARESESA-N 5.24 6.71
DEUFEDRUPOJLGX-UHFFFAOYSA-N 4.27 4.78

Continued on next page
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InChIKey Experimental
logP1−octanol/water

Calculated
logP1−octanol/water

MDRZOKNYGRIKBA-VSGBNLITSA-N 5.01 7.68
FBNICSGIIJKYMF-JHGXHUTESA-N 4.75 7.90
WWSOROONDXPRIT-UHFFFAOYSA-N 4.73 6.88
VSPUXIYWADHSOK-UHFFFAOYSA-N 3.61 5.25
JLSSWDFCYXSLQX-UHFFFAOYSA-N 1.87 3.45

Table E.1 Data for mono-surface plot.

InChIKey Experimental
logP1−octanol/water

Calculated
logP1−octanol/water

HBWITNNIJDLPLS-UHFFFAOYSA-N 5.30 3.50
GCUGOKRWLBHMLQ-IBGZPJMESA-N 3.53 3.56
GMCWXHUWHFUMQH-UHFFFAOYSA-N 2.98 2.36
GZJYYTDPEQCUOZ-OAHLLOKOSA-N 4.50 5.79
GNHSFPGRILAESF-UHFFFAOYSA-N 3.33 3.36
CZHBUODUVDGWLO-SNVBAGLBSA-N 3.96 4.01
BMADQAUGPJFBPU-GFCCVEGCSA-N 3.24 2.82
CGTCXQOYTCJPIZ-UHFFFAOYSA-N 2.68 2.37
DVGGJTWGPZXYGY-UHFFFAOYSA-N 5.05 3.37
CSFNXBMHFQEMBP-FMIVXFBMSA-N 4.28 3.09
GOOSRBXROIWFPI-CHWSQXEVSA-N 3.30 2.92
HANDMCWHWMILMT-UHFFFAOYSA-N 4.14 4.63
CBWMOBFPWMOJKZ-QYVJPZLMSA-N 0.51 0.99
FOCILOSWFFTFNL-UHFFFAOYSA-N 3.65 3.87
FVLNTXOYQXQZHP-UHFFFAOYSA-N 3.92 3.62
GSWSWFNVEVSOJC-SECBINFHSA-N 1.41 0.59
BQOCMHOWHOMIMJ-UHFFFAOYSA-N 2.34 0.14
CFGMGRLIFAVVMY-UHFFFAOYSA-N 2.92 2.70
CISOKWVGMLHGBN-UHFFFAOYSA-N 3.04 1.96
FHVVYVTWZBXZBN-QWHCGFSZSA-N 2.85 2.94
DXFNVIVIEHJYQT-UHFFFAOYSA-N 2.70 2.72

Continued on next page
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InChIKey Experimental
logP1−octanol/water

Calculated
logP1−octanol/water

COIUQMDQIBGHQH-UHFFFAOYSA-N 3.33 3.63
AAVGUZZUJOHLGC-UHFFFAOYSA-N 5.86 6.64
DHKMJAHFQFYQLM-WCQYABFASA-N 4.76 4.42
CJBOKCHSMBRXAK-UHFFFAOYSA-N 3.20 4.88
BHVSCKTUCMZDIV-UHFFFAOYSA-N 4.89 4.91
AEXUGBKKZSVAPK-MGPUTAFESA-N 4.73 5.00
CHNTVHWKBXYWAT-UHFFFAOYSA-N 6.15 4.62
ALPGTOOTEBXLDZ-UHFFFAOYSA-N 5.01 5.32
AYGQLBHSQFMOEI-UHFFFAOYSA-N 5.86 6.35
HCRFJPAQRKAART-JSGCOSHPSA-N 5.54 4.08
DDRSZUUAUJASSI-RDJZCZTQSA-N 5.92 5.19
BGZJVJOLKCRHGM-AYBZRNKSSA-N 3.65 3.27
AHPUQHAFKQTLEB-LQUAGZSJSA-N 6.00 6.71
FAKKPEHAXNWGNO-UHFFFAOYSA-N 5.27 5.25
CWKKCWFXWWPOSH-UHFFFAOYSA-N 1.55 0.84
FGVMSGZDOANVQA-UHFFFAOYSA-N 5.35 5.88
CFWIEFRWFQHAQW-HXUWFJFHSA-N 4.18 4.96
GCFRRTILCGTGBQ-YLJYHZDGSA-N 5.50 5.02
CFQXQCSYUSXLDL-UHFFFAOYSA-N 2.09 1.05
DUOXRUNUARSQEB-UHFFFAOYSA-N 3.53 5.12
CVMWEBSWRVKUDR-UHFFFAOYSA-N 4.42 3.95
FVXIXCWTNABXHN-GJZGRUSLSA-N 2.86 4.50
GKGGWGQAWVRXJJ-UHFFFAOYSA-N 5.14 5.09
FWSVZRJCNNFMSR-UHFFFAOYSA-N 4.00 5.47
CJMDFPWXRRTBSV-UHFFFAOYSA-N 2.71 0.92
DERFFWPLVQTHEZ-YYHQMBLXSA-N 2.28 1.50
DBUWPYDSLYIBCA-JXALSKIBSA-N 6.25 7.03
ARCDRMYSNWSNEQ-CYFREDJKSA-N 6.01 5.73
CXQKIQPKNPSGDE-UHFFFAOYSA-N 5.45 3.54
BDRHHTPONBYHDD-GJZGRUSLSA-N 3.68 3.46
HDDFAGCFLQKITD-UHFFFAOYSA-N 4.54 3.99

Continued on next page
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InChIKey Experimental
logP1−octanol/water

Calculated
logP1−octanol/water

DIRBFPKLPYJGBA-UHFFFAOYSA-N 3.87 2.59
AQCBGMZTLIAKJI-JOCHJYFZSA-N 4.97 3.87
BSGDPNHSNFVIQI-UHFFFAOYSA-N 3.19 0.52
CACMYLJNIDZGKK-PGMHBOJBSA-N 4.64 5.50
DSDPNAASNKSGJJ-UHFFFAOYSA-N 2.68 1.32
DIVVAQYRKSZEEW-UHFFFAOYSA-N 3.92 3.12
GLPFKDSABFADSV-BQYQJAHWSA-N 5.31 5.14
CEEKAUKKCDPUKD-YOEHRIQHSA-N 4.94 4.80
FGVRQOGQXMNHGR-MRVPVSSYSA-N 4.09 3.30
BFUGHTCDORQPRS-UHFFFAOYSA-N 3.30 3.60
GEHZJNMZLQKLDL-UHFFFAOYSA-N 2.74 2.09
BCSQUJYENGABAT-UHFFFAOYSA-N 2.93 1.09
DFWQFBNINNFHPH-UHFFFAOYSA-N 4.59 6.37
AQSUNOZBYRWGBO-HXUWFJFHSA-N 4.48 2.32
DNKNARHPWPLDBY-UHFFFAOYSA-N 3.30 3.10
CPIDUHGJETUEKJ-FCHUYYIVSA-N 5.56 4.17
AJNYEMLGBXCAJD-UHFFFAOYSA-N 3.04 2.00
CLBOJFVOEQYSIF-HWKANZROSA-N 1.61 -0.29
AZQFHIOYKBSTLM-UHFFFAOYSA-N 4.64 3.97
FOZZNDRTRNDJBC-UHFFFAOYSA-N 4.16 4.52
HCJFDHHBUCXINJ-CYBMUJFWSA-N 3.43 3.69
FESKORARFOGMKM-UHFFFAOYSA-N 5.60 5.82
DRLNFFKVXNSCFI-FYWRMAATSA-N 4.92 5.55
BSLPDPNWYWWKDM-RYUDHWBXSA-N 2.69 4.04
BRPXBFGWZBBNCG-ACRUOGEOSA-N 4.00 2.15
ANSZZPJMTBLPCY-UHFFFAOYSA-N 0.86 0.90
FDEMLXAFJTWNQD-UHFFFAOYSA-N 4.13 4.80
HBTOYNLTBSWHKA-UHFFFAOYSA-N 4.73 6.12
CZZXDIHZMJQBGQ-AIYVTKCESA-N 3.39 3.67
FYSQOPNXZUHHBZ-UHFFFAOYSA-N 5.03 4.27
AHEBMWPPIOTQOC-LJQANCHMSA-N 5.56 5.21

Continued on next page
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InChIKey Experimental
logP1−octanol/water

Calculated
logP1−octanol/water

DMKCZUXCQWLBOI-UHFFFAOYSA-N 3.27 3.21
GKPVOQLJHWLOIE-UHFFFAOYSA-N 5.85 6.88
DUDAZNFMQDQCTJ-FQEVSTJZSA-N 5.41 4.87
AAQGPMOPIQKGEL-UHFFFAOYSA-N 3.74 4.20
CPXSZGKFGNBILI-UHFFFAOYSA-N 4.99 4.44
DCYUXNHCVBQGHH-ZDUSSCGKSA-N 4.27 3.37
BZUWNEFCJVOJHV-VIFPVBQESA-N 3.74 2.14
ADCZQRGTZNBXSY-UHFFFAOYSA-N 3.27 3.52
GQPQLHBCZMCHEZ-QMMMGPOBSA-N 6.63 6.69
DVIOKQKRRBJPEK-UHFFFAOYSA-N 1.04 3.00
FEALGFZIOWUCBX-GOSISDBHSA-N 3.62 3.96
GWHMRPRMYRJABK-UHFFFAOYSA-N 4.43 3.02
GFTIFHCOENKKEV-FNCQTZNRSA-N 4.03 3.35
FZAWHHFNCLCWFV-FQEVSTJZSA-N 4.93 4.57
FSKUVTXSZTZMPW-JFMUQQRKSA-N 2.95 4.23
CXEQEWXYGGKYDI-SFHVURJKSA-N 4.09 3.08
CIRWZGGESKUJHD-UHFFFAOYSA-N 4.73 3.95
HBUMYZBRQSSBIF-OAHLLOKOSA-N 4.49 3.43
HCZZWVMQPZFMRX-UHFFFAOYSA-N 4.47 2.66
CXNPTWLUNSEKLS-LLVKDONJSA-N 3.48 4.92
GZLCETKUTVIGQQ-UHFFFAOYSA-N 3.72 2.33
BLCWNIGSFBOPQU-UHFFFAOYSA-N 2.56 0.92
DAOOKTDKSRSHHO-UPCLLVRISA-N 4.62 3.71
CUTVCQQLTOCFRM-UHFFFAOYSA-N 5.96 5.39
BWONCUGSZKCCIK-DOTOQJQBSA-N 4.80 4.39
GRYLSQBVFCYQBZ-UHFFFAOYSA-N 4.75 4.32
CHBFEQWFFHDSSP-UHFFFAOYSA-N 5.89 6.36
GYALPDCCJCQAEN-HSZRJFAPSA-N 5.60 7.84
CWECLZCKMKKXJQ-QNGOZBTKSA-N 4.41 5.23
DJPBASBZLCQIJC-VQTJNVASSA-N 4.34 2.74
AKISEPIDMROWEK-UHFFFAOYSA-N 3.68 2.57

Continued on next page
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InChIKey Experimental
logP1−octanol/water

Calculated
logP1−octanol/water

GELXZTXDAVDBAG-UHFFFAOYSA-N 3.43 1.66
FPFZEYWOKLQUAU-OAQYLSRUSA-N 4.54 5.31
BTEKQMROJFGITO-UHFFFAOYSA-N 4.47 5.56
CFTRIZQAAJPXQE-UHFFFAOYSA-N 4.63 2.88
DPNXCAIGIMLFBE-ZDUSSCGKSA-N 3.90 2.35
BUDUREKJMNEQPJ-UHFFFAOYSA-N 5.04 4.76
CPHOVWSNRJFISA-KSSFIOAISA-N 3.65 3.30
FOZKGUULHURPKE-UHFFFAOYSA-N 4.33 2.29
ABBBQZTWZGGQMV-GFCCVEGCSA-N 3.35 2.00
AFHZHIYYMVWJKX-DXRVJIQQSA-N 4.27 5.46
BJSAANIPBRXNLX-UHFFFAOYSA-N 2.26 2.49
HEAYNZXNTGFSBT-UHFFFAOYSA-N 3.63 4.91
BKNOZYOZRQYDJS-UHFFFAOYSA-N 3.78 4.30
CUACHGSCSLHFGZ-UHFFFAOYSA-N 4.83 6.46
GZQNBRHKYZXTRC-UHFFFAOYSA-N 4.21 5.54
FNZSEIHPROENQZ-GQCTYLIASA-N 4.34 4.14
APBXPFPORVVLAM-UHFFFAOYSA-N 4.77 5.48
DBOVDDBYSUDFAU-UHFFFAOYSA-N 4.01 3.84
BOMSQFAAAZIQHP-LLVKDONJSA-N 4.77 4.42
FKVFUEKNZQBMRE-UHFFFAOYSA-N 4.64 4.58
CXGQEIVOZAKTFV-UHFFFAOYSA-N 2.00 2.17
DQPOYJGJZXULIA-NSHDSACASA-N 2.78 2.65
CONZAJPFHQVMJF-UHFFFAOYSA-N 3.39 2.10
DFOLGYLYIGLVRR-UHFFFAOYSA-N 4.26 3.74
HBCXUIGLMSNEFH-UHFFFAOYSA-N 3.82 3.72
DPMLUPHERVULNR-UHFFFAOYSA-N 3.79 4.23
CRPDGTKHEIKNSK-UHFFFAOYSA-N 4.17 3.82
GIXSHWSOHUJCQH-UHFFFAOYSA-N 4.69 5.10
HDUKGWHJQNLVKC-UHFFFAOYSA-N 2.69 3.02
CCJUYZBXKBQBRM-UHFFFAOYSA-N 4.22 4.59
BCFNIXUPNOZTSK-UHFFFAOYSA-N 4.42 2.50

Continued on next page
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InChIKey Experimental
logP1−octanol/water

Calculated
logP1−octanol/water

DEUFEDRUPOJLGX-UHFFFAOYSA-N 4.27 3.26

Table E.2 Data for tri-surface plot.
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E.2.4 Dataset 4- SAMPL6

Molecule ID Experimental
logP1−octanol/water

Mono-surface
logP1−octanol/water

Tri-Surface
logP1−octanol/water

SM02 4.09 6.11 4.38
SM04 3.98 5.02 3.75
SM07 3.21 4.15 2.85
SM08 3.10 3.33 2.89
SM09 3.03 4.97 3.54
SM11 2.10 3.21 0.89
SM12 3.83 5.04 3.65
SM13 2.92 5.49 4.19
SM14 1.95 2.50 0.71
SM15 3.07 3.33 1.89
SM16 2.62 4.21 2.41



Appendix F

SSIP description validation

F.1 Displaying SSIP Summary information

The SSIP XML provides a machine readable format, with limited direct human readability.
To be able to assess the suitability of the descriptions to be used to generate the FGIPs and
also to be used in development of the solvent similarity metric, the descriptions were visually
inspected.

F.2 Solvent SSIP summary plots

The solvent SSIP information was plotted on a single scale for each molecule. The 3D infor-
mation for the descriptions is unimportant for solvation free energies, thus a one dimensional
representation can be used, so multiple molecules can be compared. If an experimental
value for the largest α and/or β was collected in chapter 2, then this was plotted as a red
cross. Black circles represent descriptions previously generated through a combination of the
previous software and manual adjustment for use in [158]. Mean functional group values
were also included as horizontal black lines and are described in the next section.

F.2.1 Functional Group mean values

The mean value of the hydrogen bond donor and acceptor values were also included on the
plot, as horizontal black lines. To add the values to the plots, subgraph pattern matching
using RDKit [261] with the SMILES arbitrary target specification (SMARTS) [331] as input
for structures.

The mean values (from [149]), and the SMARTS strings are in table F.1.
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Functional Group SSIP Value SMARTS

Phenol -3.0 [c][OX2][H]
Nitro alkane -3.8 N(=O)(=O)C
Primary aniline -4.2 [c]([NX3]([H])[H])
Secondary aniline -4.5 [c]([NX3]([H])[C,c])
Carboxylic acid -4.9 [CX3](=O)O[H]
Nitrile -5.0 N#C
Alcohol -5.0 [CX4](O[H])
Ester -5.4 [CX3](=O)O[C,c]
Alkyl ether -5.4 [CX4]O[CX4]
Ketone -5.8 [#6][CX3](=O)[#6]
Primary amine -7.9 [NX3]([H])([H])[CX4]
Secondary amine -8.2 [NX3]([H])([CX4])[CX4]
Secondary amide -8.3 [CX3](=O)N([H])[#6]
Pyridine -7.4 [nX2]1ccccc1
Imidazole -8.6 C1=C[NX2]=C[N]1([H])
Sulfoxide -8.3 [#6][S](=[OX1])(=[OX1])[#6]
Primary amine 1.4 [NX3]([H])([H])[CX4]
Secondary amine 1.4 [NX3]([H])([CX4])[CX4]
Primary aniline 2.4 [c]([NX3]([H])[H])
Secondary aniline 2.1 [c]([NX3]([H])[C,c])
Alcohol 2.7 [CX4](O[H])
Secondary amide 3.0 [CX3](=O)N([H])[#6]
Pyrrole 3.0 C1=CC=C[N]1([H])
Indole 3.2 [nX3]([H])1c2ccccc(cc1)2
Carboxylic acid 3.6 [CX3](=O)O[H]
Imidazole 3.2 C1=C[NX2]=C[N]1([H])
Phenol 3.6 [c][OX2][H]

Table F.1 Table containing mean value by functional group and the SMARTS pattern used to
detect it in a molecule.
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Molecule name SSIP α value modifications SSIP β value modifications

water Two values to 2.8 from 2.9,
2.9

Two values to -4.5 from -6.2,
-6.3

ammonia One value to -6.8 from -9.5
1,2-dimethoxybenzene Two values to -3.6 from -7.0,

-7.9
glycerol Six values to -5.3 from 0.0,

0.0, -4.9, -5.1, -8.4, -8.4
bis(chloroethyl)ether One value to -5.3 from -1.7

Table F.2 Summary of Solvent description modifications

F.2.2 Solvent description modifications.

The following solvent SSIP descriptions were modified for calculation of the FGIPs and
also solvent similarity. This was done because the largest α or β SSIPs showed significant
deviation from the experimental value for either the molecule, or the functional group mean
value.

F.2.3 Solvent Summary Graphics

The plots showing the unmodified SSIP description produced from the mono-surface and
tri-surface footprinting approaches are in the following sections for the different solvents.
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Mono surface SSIP description plots
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Fig. F.1: SSIP description generated by mono-surface footprinting approach. Molecules (top
left to bottom right) are tetramethylsilane, n-pentane, 2-methylbutane, n-hexane, cyclohexane,
n-heptane, n-octane, 2,2,4-trimethylpentane, n-decane, n-dodecane, n-hexadecane, benzene.
Blue pluses are the calculated values, black circles are the values used in [158], black line is
the mean functional group value, red crosses are for experimental values of the molecule, in
D.
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Fig. F.2: SSIP description generated by mono-surface footprinting approach. Molecules (top
left to bottom right) are toluene, ortho-xylene, meta-xylene, para-xylene, ethylbenzene, iso-
propylbenzene, 1,3,5-trimethylbenzene, styrene, 1,2,3,4-tetrahydronaphthalene, cis-decalin,
water, methanol. Blue pluses are the calculated values, black circles are the values used in
[158], black line is the mean functional group value, red crosses are for experimental values
of the molecule, in D.
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Fig. F.3: SSIP description generated by mono-surface footprinting approach. Molecules (top
left to bottom right) are ethanol, 1-propanol, 2-propanol, 1-butanol, 2-methyl-1-propanol,
2-butanol, 2-methyl-2-propanol, 1-pentanol, 3-methyl-1-butanol, 2-methyl-2-butanol, 1-
hexanol, cyclohexanol. Blue pluses are the calculated values, black circles are the values
used in [158], black line is the mean functional group value, red crosses are for experimental
values of the molecule, in D.
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Fig. F.4: SSIP description generated by mono-surface footprinting approach. Molecules (top
left to bottom right) are 1-octanol, 1-decanol, 1-dodecanol, benzyl alcohol, 2-phenylethanol,
allyl alcohol, 2-chloroethanol, 2-cyanoethanol, 2,2,2-trifluoroethanol, 1,1,1,3,3,3-hexafluoro-
2-propanol, 2-methoxyethanol, 2-ethoxyethanol. Blue pluses are the calculated values, black
circles are the values used in [158], black line is the mean functional group value, red crosses
are for experimental values of the molecule, in D.
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Fig. F.5: SSIP description generated by mono-surface footprinting approach. Molecules (top
left to bottom right) are ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol,
2R,3S-butanediol, 1,4-butanediol, 1,5-pentanediol, diethylene glycol, triethylene glycol,
glycerol, phenol, ortho-cresol. Blue pluses are the calculated values, black circles are the
values used in [158], black line is the mean functional group value, red crosses are for
experimental values of the molecule, in D.
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Fig. F.6: SSIP description generated by mono-surface footprinting approach. Molecules
(top left to bottom right) are meta-cresol, para-cresol, 2-methoxyphenol, 2,4-dimethylphenol,
3-chlorophenol, diethyl ether, di-n-propyl ether, diisopropyl ether, dibutyl ether, bis(2-
chloroethyl) ether, 1,2-dimethyoxyethane, diethylene glycol dimethyl ether. Blue pluses
are the calculated values, black circles are the values used in [158], black line is the mean
functional group value, red crosses are for experimental values of the molecule, in D.
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Fig. F.7: SSIP description generated by mono-surface footprinting approach. Molecules (top
left to bottom right) are furan, tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran,
1,3-dioxane, 1,3-dioxolan, 1,8-cineole, anisole, ethyl phenyl ether, diphenyl ether, dibenzyl
ether, 1,2-dimethoxybenzene. Blue pluses are the calculated values, black circles are the
values used in [158], black line is the mean functional group value, red crosses are for
experimental values of the molecule, in D.
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Fig. F.8: SSIP description generated by mono-surface footprinting approach. Molecules
(top left to bottom right) are methyl orthoformate, methyl orthoacetate, propionaldehyde, bu-
tyraldehyde, benzaldehyde, p-methoxybenzaldehyde, cinnamaldehyde, acetone, 2-butanone,
2-pentanone, 3-methyl-2-butanone, 3-pentanone. Blue pluses are the calculated values, black
circles are the values used in [158], black line is the mean functional group value, red crosses
are for experimental values of the molecule, in D.
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Fig. F.9: SSIP description generated by mono-surface footprinting approach. Molecules (top
left to bottom right) are cyclopentanone, 4-methyl-2-pentanone, 3,3-dimethyl-2-butanone,
perfluorooctane, cyclohexanone, 2-heptanone, 3-heptanone, 2,2,4,4-tetramethyl-3-pentanone,
acetophenone, ethyl phenyl ketone, benzyl methyl ketone, 2,4,5-trimethylacetophenone. Blue
pluses are the calculated values, black circles are the values used in [158], black line is the
mean functional group value, red crosses are for experimental values of the molecule, in D.
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Fig. F.10: SSIP description generated by mono-surface footprinting approach. Molecules
(top left to bottom right) are p-chloroacetophenone, diphenyl ketone, 2,4-pentanedione,
2,3-butanedione, formic acid, acetic acid, propanoic acid, butanoic acid, pentanoic acid,
hexanoic acid, heptanoic acid, dichloroacetic acid. Blue pluses are the calculated values,
black circles are the values used in [158], black line is the mean functional group value, red
crosses are for experimental values of the molecule, in D.
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Fig. F.11: SSIP description generated by mono-surface footprinting approach. Molecules
(top left to bottom right) are trifluoroacetic acid, acetic anhydride, benzoyl chloride, benzoyl
bromide, methyl formate, ethyl formate, methyl acetate, ethyl acetate, n-propyl acetate, butyl
acetate, isopentyl acetate, methyl propionate. Blue pluses are the calculated values, black
circles are the values used in [158], black line is the mean functional group value, red crosses
are for experimental values of the molecule, in D.
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Fig. F.12: SSIP description generated by mono-surface footprinting approach. Molecules
(top left to bottom right) are ethyl propionate, dimethyl carbonate, diethyl carbonate, ethylene
carbonate, 4-methyl-1,3-dioxolan-2-one, diethyl malonate, methyl benzoate, ethyl benzoate,
dimethylphthalate, di-n-butylorthophthalate, ethyl chloroacetate, ethyl trichloroacetate. Blue
pluses are the calculated values, black circles are the values used in [158], black line is the
mean functional group value, red crosses are for experimental values of the molecule, in D.



260 SSIP description validation

ethyl

aceto
aceta

te

−10

−8

−6

−4

−2

0

2

4

6

ǫ

gamma-

buty
rolac

tone n-per
fluor

ohex
a

ne perflu
orom

ethyl

cyclo
hexa

ne perflu
orohe

ptan

e cis-p
erfluo

rode

calin

fluor
oben

zene

−10

−8

−6

−4

−2

0

2

4

6

ǫ

hexa
fluor

oben
ze

ne 1,4-d
ichlo

robu
t

ane chlor
oben

zene

dichl
orom

ethan
e

1,1-d
ichlo

roeth

ane

Fig. F.13: SSIP description generated by mono-surface footprinting approach. Molecules
(top left to bottom right) are ethyl acetoacetate, gamma-butyrolactone, n-perfluorohexane,
perfluoromethylcyclohexane, perfluoroheptane, cis-perfluorodecalin, fluorobenzene, hexaflu-
orobenzene, 1,4-dichlorobutane, chlorobenzene, dichloromethane, 1,1-dichloroethane. Blue
pluses are the calculated values, black circles are the values used in [158], black line is the
mean functional group value, red crosses are for experimental values of the molecule, in D.
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Fig. F.14: SSIP description generated by mono-surface footprinting approach.
Molecules (top left to bottom right) are 1,2-dichloroethane, trans-1,2-dichloroethylene,
ortho-dichlorobenzene, meta-dichlorobenzene, chloroform, 1,1,1-trichloroethane, 1,1,2-
trichloroethane, trichloroethylene, 1,2,4-trichlorobenzene, carbon tetrachloride, tetra-
chloroethylene, 1,1,2,2-tetrachloroethane. Blue pluses are the calculated values, black
circles are the values used in [158], black line is the mean functional group value, red crosses
are for experimental values of the molecule, in D.
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Fig. F.15: SSIP description generated by mono-surface footprinting approach. Molecules
(top left to bottom right) are pentachloroethane, 1-bromobutane, bromobenzene, dibro-
momethane, 1,2-dibromoethane, bromoform, n-butyl iodide, iodobenzene, methylene iodide,
n-butylamine, benzylamine, ethylenediamine. Blue pluses are the calculated values, black
circles are the values used in [158], black line is the mean functional group value, red crosses
are for experimental values of the molecule, in D.
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Fig. F.16: SSIP description generated by mono-surface footprinting approach. Molecules
(top left to bottom right) are diethylamine, di-n-butylamine, pyrrole, pyrrolidine, piperidine,
morpholine, triethylamine, tri-(n-butyl)amine, aniline, o-chloroaniline, methylphenylamine,
N,N-dimethylaniline. Blue pluses are the calculated values, black circles are the values used
in [158], black line is the mean functional group value, red crosses are for experimental
values of the molecule, in D.
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Fig. F.17: SSIP description generated by mono-surface footprinting approach. Molecules
(top left to bottom right) are aminoethanol, diethanolamine, triethanolamine, pyri-
dine, 2-methylpyridine, 3-methylpyridine, 4-methylpyridine, 2,4-dimethylpyridine, 2,6-
dimethylpyridine, 2,4,6-trimethylpyridine, 2-bromopyridine, 3-bromopyridine. Blue pluses
are the calculated values, black circles are the values used in [158], black line is the mean
functional group value, red crosses are for experimental values of the molecule, in D.
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Fig. F.18: SSIP description generated by mono-surface footprinting approach. Molecules
(top left to bottom right) are 2-cyanopyridine, pyrimidine, quinoline, acetonitrile, propioni-
trile, n-butyronitrile, 3-methylbutanenitrile, acrylonitrile, phenylacetonitrile, benzonitrile,
nitromethane, nitroethane. Blue pluses are the calculated values, black circles are the values
used in [158], black line is the mean functional group value, red crosses are for experimental
values of the molecule, in D.
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Fig. F.19: SSIP description generated by mono-surface footprinting approach. Molecules
(top left to bottom right) are 1-nitropropane, 2-nitropropane, nitrobenzene, for-
mamide, N-methylformamide, N,N-dimethylformamide, N,N-dimethylthioformamide, N,N-
diethylformamide, N-methylacetamide, N,N-dimethylacetamide, N,N-diethylacetamide, 2-
pyrrolidinone. Blue pluses are the calculated values, black circles are the values used in
[158], black line is the mean functional group value, red crosses are for experimental values
of the molecule, in D.
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Fig. F.20: SSIP description generated by mono-surface footprinting approach. Molecules
(top left to bottom right) are N-methyl pyrrolidinone, N-methyl thiopyrrolidinone, tetram-
ethylurea, tetraethylurea, dimethylcyanamide, carbon disulfide, dimethyl sulfide, diethyl
sulfide, diisopropyl sulfide, dibutyl sulfide, tetrahydrothiophene, thiane. Blue pluses are the
calculated values, black circles are the values used in [158], black line is the mean functional
group value, red crosses are for experimental values of the molecule, in D.



268 SSIP description validation

dimethyl
sulfo

xi

de

−10

−8

−6

−4

−2

0

2

4

6

ǫ

dibut
yl

sulfo
xide sulfo

lane

thiob
is(2-e

than

ol)
dieth

yl su
lfite

dimethyl

sulfa
te

dieth
yl su

lfate

−10

−8

−6

−4

−2

0

2

4

6

ǫ

methan
esulfo

nic

acid trimethyl
phos

ph

ate trieth
ylpho

spha

te
tri-n-

buty
lphos

phat
e

hexa
methyl

phos
p

horic
triam

ide

Fig. F.21: SSIP description generated by mono-surface footprinting approach. Molecules (top
left to bottom right) are dimethylsulfoxide, dibutyl sulfoxide, sulfolane, thiobis(2-ethanol),
diethyl sulfite, dimethyl sulfate, diethyl sulfate, methanesulfonic acid, trimethylphosphate,
triethylphosphate, tri-n-butylphosphate, hexamethylphosphoric triamide. Blue pluses are the
calculated values, black circles are the values used in [158], black line is the mean functional
group value, red crosses are for experimental values of the molecule, in D.
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Fig. F.22: SSIP description generated by mono-surface footprinting approach. Molecules (top
left to bottom right) are hydrogen peroxide, hydrogen fluoride, sulfuric acid, ammonia, hy-
drazine, sulfur dioxide, thionyl chloride, phosphorus oxychloride, Dihydrolevoglucosenone.
Blue pluses are the calculated values, black circles are the values used in [158], black line is
the mean functional group value, red crosses are for experimental values of the molecule, in
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Tri-surface SSIP description plots
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Fig. F.23: SSIP description generated by tri-surface footprinting approach. Molecules (top
left to bottom right) are tetramethylsilane, n-pentane, 2-methylbutane, n-hexane, cyclohexane,
n-heptane, n-octane, 2,2,4-trimethylpentane, n-decane, n-dodecane, n-hexadecane, benzene.
Blue pluses are the calculated values, black circles are the values used in [158], black line is
the mean functional group value, red crosses are for experimental values of the molecule, in
D.
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Fig. F.24: SSIP description generated by tri-surface footprinting approach. Molecules (top
left to bottom right) are toluene, ortho-xylene, meta-xylene, para-xylene, ethylbenzene, iso-
propylbenzene, 1,3,5-trimethylbenzene, styrene, 1,2,3,4-tetrahydronaphthalene, cis-decalin,
water, methanol. Blue pluses are the calculated values, black circles are the values used in
[158], black line is the mean functional group value, red crosses are for experimental values
of the molecule, in D.
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Fig. F.25: SSIP description generated by tri-surface footprinting approach. Molecules (top
left to bottom right) are ethanol, 1-propanol, 2-propanol, 1-butanol, 2-methyl-1-propanol,
2-butanol, 2-methyl-2-propanol, 1-pentanol, 3-methyl-1-butanol, 2-methyl-2-butanol, 1-
hexanol, cyclohexanol. Blue pluses are the calculated values, black circles are the values
used in [158], black line is the mean functional group value, red crosses are for experimental
values of the molecule, in D.
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Fig. F.26: SSIP description generated by tri-surface footprinting approach. Molecules (top
left to bottom right) are 1-octanol, 1-decanol, 1-dodecanol, benzyl alcohol, 2-phenylethanol,
allyl alcohol, 2-chloroethanol, 2-cyanoethanol, 2,2,2-trifluoroethanol, 1,1,1,3,3,3-hexafluoro-
2-propanol, 2-methoxyethanol, 2-ethoxyethanol. Blue pluses are the calculated values, black
circles are the values used in [158], black line is the mean functional group value, red crosses
are for experimental values of the molecule, in D.
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Fig. F.27: SSIP description generated by tri-surface footprinting approach. Molecules (top
left to bottom right) are ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol,
2R,3S-butanediol, 1,4-butanediol, 1,5-pentanediol, diethylene glycol, triethylene glycol,
glycerol, phenol, ortho-cresol. Blue pluses are the calculated values, black circles are the
values used in [158], black line is the mean functional group value, red crosses are for
experimental values of the molecule, in D.
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Fig. F.28: SSIP description generated by tri-surface footprinting approach. Molecules (top
left to bottom right) are meta-cresol, para-cresol, 2-methoxyphenol, 2,4-dimethylphenol,
3-chlorophenol, diethyl ether, di-n-propyl ether, diisopropyl ether, dibutyl ether, bis(2-
chloroethyl) ether, 1,2-dimethyoxyethane, diethylene glycol dimethyl ether. Blue pluses
are the calculated values, black circles are the values used in [158], black line is the mean
functional group value, red crosses are for experimental values of the molecule, in D.
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Fig. F.29: SSIP description generated by tri-surface footprinting approach. Molecules (top
left to bottom right) are furan, tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran,
1,3-dioxane, 1,3-dioxolan, 1,8-cineole, anisole, ethyl phenyl ether, diphenyl ether, dibenzyl
ether, 1,2-dimethoxybenzene. Blue pluses are the calculated values, black circles are the
values used in [158], black line is the mean functional group value, red crosses are for
experimental values of the molecule, in D.
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Fig. F.30: SSIP description generated by tri-surface footprinting approach. Molecules (top
left to bottom right) are methyl orthoformate, methyl orthoacetate, propionaldehyde, bu-
tyraldehyde, benzaldehyde, p-methoxybenzaldehyde, cinnamaldehyde, acetone, 2-butanone,
2-pentanone, 3-methyl-2-butanone, 3-pentanone. Blue pluses are the calculated values, black
circles are the values used in [158], black line is the mean functional group value, red crosses
are for experimental values of the molecule, in D.
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Fig. F.31: SSIP description generated by tri-surface footprinting approach. Molecules (top
left to bottom right) are cyclopentanone, 4-methyl-2-pentanone, 3,3-dimethyl-2-butanone,
perfluorooctane, cyclohexanone, 2-heptanone, 3-heptanone, 2,2,4,4-tetramethyl-3-pentanone,
acetophenone, ethyl phenyl ketone, benzyl methyl ketone, 2,4,5-trimethylacetophenone. Blue
pluses are the calculated values, black circles are the values used in [158], black line is the
mean functional group value, red crosses are for experimental values of the molecule, in D.
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Fig. F.32: SSIP description generated by tri-surface footprinting approach. Molecules (top
left to bottom right) are p-chloroacetophenone, diphenyl ketone, 2,4-pentanedione, 2,3-
butanedione, formic acid, acetic acid, propanoic acid, butanoic acid, pentanoic acid, hexanoic
acid, heptanoic acid, dichloroacetic acid. Blue pluses are the calculated values, black circles
are the values used in [158], black line is the mean functional group value, red crosses are for
experimental values of the molecule, in D.
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Fig. F.33: SSIP description generated by tri-surface footprinting approach. Molecules (top
left to bottom right) are trifluoroacetic acid, acetic anhydride, benzoyl chloride, benzoyl
bromide, methyl formate, ethyl formate, methyl acetate, ethyl acetate, n-propyl acetate, butyl
acetate, isopentyl acetate, methyl propionate. Blue pluses are the calculated values, black
circles are the values used in [158], black line is the mean functional group value, red crosses
are for experimental values of the molecule, in D.
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Fig. F.34: SSIP description generated by tri-surface footprinting approach. Molecules (top
left to bottom right) are ethyl propionate, dimethyl carbonate, diethyl carbonate, ethylene
carbonate, 4-methyl-1,3-dioxolan-2-one, diethyl malonate, methyl benzoate, ethyl benzoate,
dimethylphthalate, di-n-butylorthophthalate, ethyl chloroacetate, ethyl trichloroacetate. Blue
pluses are the calculated values, black circles are the values used in [158], black line is the
mean functional group value, red crosses are for experimental values of the molecule, in D.
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Fig. F.35: SSIP description generated by tri-surface footprinting approach. Molecules
(top left to bottom right) are ethyl acetoacetate, gamma-butyrolactone, n-perfluorohexane,
perfluoromethylcyclohexane, perfluoroheptane, cis-perfluorodecalin, fluorobenzene, hexaflu-
orobenzene, 1,4-dichlorobutane, chlorobenzene, dichloromethane, 1,1-dichloroethane. Blue
pluses are the calculated values, black circles are the values used in [158], black line is the
mean functional group value, red crosses are for experimental values of the molecule, in D.
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Fig. F.36: SSIP description generated by tri-surface footprinting approach. Molecules
(top left to bottom right) are 1,2-dichloroethane, trans-1,2-dichloroethylene, ortho-
dichlorobenzene, meta-dichlorobenzene, chloroform, 1,1,1-trichloroethane, 1,1,2-
trichloroethane, trichloroethylene, 1,2,4-trichlorobenzene, carbon tetrachloride, tetra-
chloroethylene, 1,1,2,2-tetrachloroethane. Blue pluses are the calculated values, black circles
are the values used in [158], black line is the mean functional group value, red crosses are for
experimental values of the molecule, in D.
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Fig. F.37: SSIP description generated by tri-surface footprinting approach. Molecules (top left
to bottom right) are pentachloroethane, 1-bromobutane, bromobenzene, dibromomethane, 1,2-
dibromoethane, bromoform, n-butyl iodide, iodobenzene, methylene iodide, n-butylamine,
benzylamine, ethylenediamine. Blue pluses are the calculated values, black circles are the
values used in [158], black line is the mean functional group value, red crosses are for
experimental values of the molecule, in D.
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Fig. F.38: SSIP description generated by tri-surface footprinting approach. Molecules (top
left to bottom right) are diethylamine, di-n-butylamine, pyrrole, pyrrolidine, piperidine,
morpholine, triethylamine, tri-(n-butyl)amine, aniline, o-chloroaniline, methylphenylamine,
N,N-dimethylaniline. Blue pluses are the calculated values, black circles are the values used
in [158], black line is the mean functional group value, red crosses are for experimental
values of the molecule, in D.
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Fig. F.39: SSIP description generated by tri-surface footprinting approach. Molecules
(top left to bottom right) are aminoethanol, diethanolamine, triethanolamine, pyri-
dine, 2-methylpyridine, 3-methylpyridine, 4-methylpyridine, 2,4-dimethylpyridine, 2,6-
dimethylpyridine, 2,4,6-trimethylpyridine, 2-bromopyridine, 3-bromopyridine. Blue pluses
are the calculated values, black circles are the values used in [158], black line is the mean
functional group value, red crosses are for experimental values of the molecule, in D.
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Fig. F.40: SSIP description generated by tri-surface footprinting approach. Molecules
(top left to bottom right) are 2-cyanopyridine, pyrimidine, quinoline, acetonitrile, propioni-
trile, n-butyronitrile, 3-methylbutanenitrile, acrylonitrile, phenylacetonitrile, benzonitrile,
nitromethane, nitroethane. Blue pluses are the calculated values, black circles are the values
used in [158], black line is the mean functional group value, red crosses are for experimental
values of the molecule, in D.
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Fig. F.41: SSIP description generated by tri-surface footprinting approach. Molecules
(top left to bottom right) are 1-nitropropane, 2-nitropropane, nitrobenzene, for-
mamide, N-methylformamide, N,N-dimethylformamide, N,N-dimethylthioformamide, N,N-
diethylformamide, N-methylacetamide, N,N-dimethylacetamide, N,N-diethylacetamide, 2-
pyrrolidinone. Blue pluses are the calculated values, black circles are the values used in
[158], black line is the mean functional group value, red crosses are for experimental values
of the molecule, in D.
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Fig. F.42: SSIP description generated by tri-surface footprinting approach. Molecules (top
left to bottom right) are N-methyl pyrrolidinone, N-methyl thiopyrrolidinone, tetramethy-
lurea, tetraethylurea, dimethylcyanamide, carbon disulfide, dimethyl sulfide, diethyl sulfide,
diisopropyl sulfide, dibutyl sulfide, tetrahydrothiophene, thiane. Blue pluses are the calcu-
lated values, black circles are the values used in [158], black line is the mean functional
group value, red crosses are for experimental values of the molecule, in D.
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Fig. F.43: SSIP description generated by tri-surface footprinting approach. Molecules (top
left to bottom right) are dimethylsulfoxide, dibutyl sulfoxide, sulfolane, thiobis(2-ethanol),
diethyl sulfite, dimethyl sulfate, diethyl sulfate, methanesulfonic acid, trimethylphosphate,
triethylphosphate, tri-n-butylphosphate, hexamethylphosphoric triamide. Blue pluses are the
calculated values, black circles are the values used in [158], black line is the mean functional
group value, red crosses are for experimental values of the molecule, in D.
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Fig. F.44: SSIP description generated by tri-surface footprinting approach. Molecules (top left
to bottom right) are hydrogen peroxide, hydrogen fluoride, sulfuric acid, ammonia, hydrazine,
sulfur dioxide, thionyl chloride, phosphorus oxychloride, Dihydrolevoglucosenone. Blue
pluses are the calculated values, black circles are the values used in [158], black line is the
mean functional group value, red crosses are for experimental values of the molecule, in D.





Appendix G

Solvent information

G.1 Pure Solvent information

G.1.1 Solvent name and concentration

Table containing information for the concentrations of the single component (pure) solvents
used in table G.1. Concentrations are from [332, 333]. The ID in table G.1 was used to order
the pure solvent FGIPs.

Solvent ID [liquid]/

M

InChIKey NSSIP ∆Gc,i/ kJ

mol−1

tetramethylsilane 1 7.33 CZDYPVPMEAXLPK-

UHFFFAOYSA-N

16 1.03

n-pentane 2 8.61 OFBQJSOFQDEBGM-

UHFFFAOYSA-N

14 1.05

2-methylbutane 3 8.51 QWTDNUCVQCZILF-

UHFFFAOYSA-N

14 1.04

n-hexane 4 7.60 VLKZOEOYAKHREP-

UHFFFAOYSA-N

16 1.05

cyclohexane 5 9.20 XDTMQSROBMDMFD-

UHFFFAOYSA-N

14 1.09

n-heptane 6 6.78 IMNFDUFMRHMDMM-

UHFFFAOYSA-N

18 1.06

Continued on next page
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Solvent ID [liquid]/

M

InChIKey NSSIP ∆Gc,i/ kJ

mol−1

n-octane 7 6.12 TVMXDCGIABBOFY-

UHFFFAOYSA-N

21 1.09

2,2,4-trimethylpentane 8 6.24 NHTMVDHEPJAVLT-

UHFFFAOYSA-N

19 1.04

n-decane 9 5.11 DIOQZVSQGTUSAI-

UHFFFAOYSA-N

25 1.08

n-dodecane 10 4.43 SNRUBQQJIBEYMU-

UHFFFAOYSA-N

29 1.09

n-hexadecane 11 3.40 DCAYPVUWAIABOU-

UHFFFAOYSA-N

37 1.08

benzene 12 11.12 UHOVQNZJYSORNB-

UHFFFAOYSA-N

12 1.11

toluene 13 9.35 YXFVVABEGXRONW-

UHFFFAOYSA-N

14 1.10

ortho-xylene 14 8.26 CTQNGGLPUBDAKN-

UHFFFAOYSA-N

16 1.11

meta-xylene 15 8.11 IVSZLXZYQVIEFR-

UHFFFAOYSA-N

16 1.10

para-xylene 16 8.08 URLKBWYHVLBVBO-

UHFFFAOYSA-N

16 1.09

ethylbenzene 17 8.13 YNQLUTRBYVCPMQ-

UHFFFAOYSA-N

16 1.10

isopropylbenzene 18 7.14 RWGFKTVRMDUZSP-

UHFFFAOYSA-N

18 1.09

1,3,5-trimethylbenzene 19 7.17 AUHZEENZYGFFBQ-

UHFFFAOYSA-N

18 1.09

styrene 20 8.66 PPBRXRYQALVLMV-

UHFFFAOYSA-N

15 1.10

1,2,3,4-

tetrahydronaphthalene

21 7.30 CXWXQJXEFPUFDZ-

UHFFFAOYSA-N

18 1.10

cis-decalin 22 6.46 NNBZCPXTIHJBJL-

AOOOYVTPSA-N

19 1.06

Continued on next page
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Solvent ID [liquid]/

M

InChIKey NSSIP ∆Gc,i/ kJ

mol−1

water 23 55.35 XLYOFNOQVPJJNP-

UHFFFAOYSA-N

4 1.48

methanol 24 24.57 OKKJLVBELUTLKV-

UHFFFAOYSA-N

7 1.29

ethanol 25 17.03 LFQSCWFLJHTTHZ-

UHFFFAOYSA-N

9 1.21

1-propanol 26 13.32 BDERNNFJNOPAEC-

UHFFFAOYSA-N

11 1.18

2-propanol 27 13.00 KFZMGEQAYNKOFK-

UHFFFAOYSA-N

11 1.16

1-butanol 28 10.87 LRHPLDYGYMQRHN-

UHFFFAOYSA-N

13 1.15

2-methyl-1-propanol 29 10.76 ZXEKIIBDNHEJCQ-

UHFFFAOYSA-N

13 1.15

2-butanol 30 10.83 BTANRVKWQNVYAZ-

SCSAIBSYSA-N

13 1.15

2-butanol 30 10.83 BTANRVKWQNVYAZ-

SCSAIBSYSA-N

13 1.15

2-butanol 30 10.83 BTANRVKWQNVYAZ-

BYPYZUCNSA-N

13 1.15

2-butanol 30 10.83 BTANRVKWQNVYAZ-

BYPYZUCNSA-N

13 1.15

2-methyl-2-propanol 31 10.54 DKGAVHZHDRPRBM-

UHFFFAOYSA-N

13 1.13

1-pentanol 32 9.22 AMQJEAYHLZJPGS-

UHFFFAOYSA-N

15 1.14

3-methyl-1-butanol 33 9.16 PHTQWCKDNZKARW-

UHFFFAOYSA-N

15 1.13

2-methyl-2-butanol 34 9.13 MSXVEPNJUHWQHW-

UHFFFAOYSA-N

14 1.09

1-hexanol 35 7.99 ZSIAUFGUXNUGDI-

UHFFFAOYSA-N

17 1.13

Continued on next page
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Solvent ID [liquid]/

M

InChIKey NSSIP ∆Gc,i/ kJ

mol−1

cyclohexanol 36 9.68 HPXRVTGHNJAIIH-

UHFFFAOYSA-N

15 1.17

1-octanol 37 6.31 KBPLFHHGFOOTCA-

UHFFFAOYSA-N

21 1.11

1-decanol 38 5.24 MWKFXSUHUHTGQN-

UHFFFAOYSA-N

26 1.13

1-dodecanol 39 4.46 LQZZUXJYWNFBMV-

UHFFFAOYSA-N

30 1.12

benzyl alcohol 40 9.63 WVDDGKGOMKODPV-

UHFFFAOYSA-N

15 1.17

2-phenylethanol 41 8.38 WRMNZCZEMHIOCP-

UHFFFAOYSA-N

17 1.16

allyl alcohol 42 14.58 XXROGKLTLUQVRX-

UHFFFAOYSA-N

10 1.17

2-chloroethanol 43 15.48 SZIFAVKTNFCBPC-

UHFFFAOYSA-N

11 1.28

2-cyanoethanol 44 14.64 WSGYTJNNHPZFKR-

UHFFFAOYSA-N

11 1.24

2,2,2-trifluoroethanol 45 13.82 RHQDFWAXVIIEBN-

UHFFFAOYSA-N

10 1.14

1,1,1,3,3,3-hexafluoro-2-

propanol

46 9.56 BYEAHWXPCBROCE-

UHFFFAOYSA-N

13 1.07

2-methoxyethanol 47 12.61 XNWFRZJHXBZDAG-

UHFFFAOYSA-N

12 1.20

2-ethoxyethanol 48 10.27 ZNQVEEAIQZEUHB-

UHFFFAOYSA-N

14 1.16

ethylene glycol 49 17.89 LYCAIKOWRPUZTN-

UHFFFAOYSA-N

10 1.32

1,2-propanediol 50 13.57 DNIAPMSPPWPWGF-

GSVOUGTGSA-N

12 1.25

1,3-propanediol 51 13.79 YPFDHNVEDLHUCE-

UHFFFAOYSA-N

12 1.26
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1,2-butanediol 52 11.09 BMRWNKZVCUKKSR-

SCSAIBSYSA-N

14 1.22

(2R,3S)-2,3-butanediol 53 10.95 OWBTYPJTUOEWEK-

ZXZARUISSA-N

14 1.21

1,4-butanediol 54 11.24 WERYXYBDKMZEQL-

UHFFFAOYSA-N

14 1.23

1,5-pentanediol 55 9.47 ALQSHHUCVQOPAS-

UHFFFAOYSA-N

16 1.20

diethylene glycol 56 10.52 MTHSVFCYNBDYFN-

UHFFFAOYSA-N

15 1.23

triethylene glycol 57 7.46 ZIBGPFATKBEMQZ-

UHFFFAOYSA-N

21 1.22

glycerol 58 13.66 PEDCQBHIVMGVHV-

UHFFFAOYSA-N

13 1.31

phenol 59 11.39 ISWSIDIOOBJBQZ-

UHFFFAOYSA-N

13 1.18

ortho-cresol 60 9.62 QWVGKYWNOKOFNN-

UHFFFAOYSA-N

15 1.17

meta-cresol 61 9.53 RLSSMJSEOOYNOY-

UHFFFAOYSA-N

15 1.16

para-cresol 62 9.44 IWDCLRJOBJJRNH-

UHFFFAOYSA-N

15 1.15

2-methoxyphenol 63 9.09 LHGVFZTZFXWLCP-

UHFFFAOYSA-N

16 1.17

2,4-dimethylphenol 64 8.32 KUFFULVDNCHOFZ-

UHFFFAOYSA-N

17 1.15

3-chlorophenol 65 9.87 HORNXRXVQWOLPJ-

UHFFFAOYSA-N

15 1.18

diethyl ether 66 9.55 RTZKZFJDLAIYFH-

UHFFFAOYSA-N

13 1.07

di-n-propyl ether 67 7.27 POLCUAVZOMRGSN-

UHFFFAOYSA-N

18 1.10
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diisopropyl ether 68 7.03 ZAFNJMIOTHYJRJ-

UHFFFAOYSA-N

17 1.04

dibutyl ether 69 5.87 DURPTKYDGMDSBL-

UHFFFAOYSA-N

22 1.09

bis(2-chloroethyl) ether 70 8.48 ZNSMNVMLTJELDZ-

UHFFFAOYSA-N

17 1.17

1,2-dimethyoxyethane 71 9.57 XTHFKEDIFFGKHM-

UHFFFAOYSA-N

14 1.12

diethylene glycol dimethyl

ether

72 7.00 SBZXBUIDTXKZTM-

UHFFFAOYSA-N

20 1.15

furan 73 13.68 YLQBMQCUIZJEEH-

UHFFFAOYSA-N

10 1.13

tetrahydrofuran 74 12.25 WYURNTSHIVDZCO-

UHFFFAOYSA-N

11 1.12

2-methyltetrahydrofuran 75 9.91 JWUJQDFVADABEY-

RXMQYKEDSA-N

13 1.09

tetrahydropyran 76 10.18 DHXVGJBLRPWPCS-

UHFFFAOYSA-N

13 1.11

1,3-dioxane 77 11.67 VDFVNEFVBPFDSB-

UHFFFAOYSA-N

12 1.15

1,3-dioxolan 78 14.37 WNXJIVFYUVYPPR-

UHFFFAOYSA-N

11 1.23

1,8-cineole 79 5.96 WEEGYLXZBRQIMU-

WAAGHKOSSA-N

20 1.04

anisole 80 9.15 RDOXTESZEPMUJZ-

UHFFFAOYSA-N

15 1.13

ethyl phenyl ether 81 7.87 DLRJIFUOBPOJNS-

UHFFFAOYSA-N

17 1.12

diphenyl ether 82 6.29 USIUVYZYUHIAEV-

UHFFFAOYSA-N

21 1.11

dibenzyl ether 83 5.19 MHDVGSVTJDSBDK-

UHFFFAOYSA-N

26 1.12
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1,2-dimethoxybenzene 84 7.83 ABDKAPXRBAPSQN-

UHFFFAOYSA-N

18 1.15

methyl orthoformate 85 8.89 PYOKUURKVVELLB-

UHFFFAOYSA-N

15 1.11

methyl orthoacetate 86 7.37 HDPNBNXLBDFELL-

UHFFFAOYSA-N

16 1.03

propionaldehyde 87 13.62 NBBJYMSMWIIQGU-

UHFFFAOYSA-N

10 1.13

butyraldehyde 88 11.05 ZTQSAGDEMFDKMZ-

UHFFFAOYSA-N

12 1.11

benzaldehyde 89 9.84 HUMNYLRZRPPJDN-

UHFFFAOYSA-N

14 1.13

p-methoxybenzaldehyde 90 8.23 ZRSNZINYAWTAHE-

UHFFFAOYSA-N

17 1.14

cinnamaldehyde 91 7.95 KJPRLNWUNMBNBZ-

QPJJXVBHSA-N

18 1.16

acetone 92 13.51 CSCPPACGZOOCGX-

UHFFFAOYSA-N

10 1.12

2-butanone 93 10.93 ZWEHNKRNPOVVGH-

UHFFFAOYSA-N

12 1.10

2-pentanone 94 9.30 XNLICIUVMPYHGG-

UHFFFAOYSA-N

14 1.10

3-methyl-2-butanone 95 9.35 SYBYTAAJFKOIEJ-

UHFFFAOYSA-N

14 1.10

3-pentanone 96 9.40 FDPIMTJIUBPUKL-

UHFFFAOYSA-N

14 1.10

cyclopentanone 97 11.24 BGTOWKSIORTVQH-

UHFFFAOYSA-N

13 1.17

4-methyl-2-pentanone 98 7.96 NTIZESTWPVYFNL-

UHFFFAOYSA-N

16 1.08

3,3-dimethyl-2-butanone 99 8.00 PJGSXYOJTGTZAV-

UHFFFAOYSA-N

15 1.05
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perfluorooctane 100 4.03 YVBBRRALBYAZBM-

UHFFFAOYSA-N

27 0.98

cyclohexanone 101 9.60 JHIVVAPYMSGYDF-

UHFFFAOYSA-N

14 1.12

2-heptanone 102 7.11 CATSNJVOTSVZJV-

UHFFFAOYSA-N

19 1.12

3-heptanone 103 7.11 NGAZZOYFWWSOGK-

UHFFFAOYSA-N

19 1.12

2,2,4,4-tetramethyl-3-

pentanone

104 5.77 UIQGEWJEWJMQSL-

UHFFFAOYSA-N

20 1.02

acetophenone 105 8.52 KWOLFJPFCHCOCG-

UHFFFAOYSA-N

16 1.13

ethyl phenyl ketone 106 7.53 KRIOVPPHQSLHCZ-

UHFFFAOYSA-N

18 1.12

benzyl methyl ketone 107 7.57 QCCDLTOVEPVEJK-

UHFFFAOYSA-N

18 1.13

2,4,5-

trimethylacetophenone

108 7.50 GENBEGZNCBFHSU-

UHFFFAOYSA-N

22 1.26

p-chloroacetophenone 109 7.71 BUZYGTVTZYSBCU-

UHFFFAOYSA-N

18 1.14

diphenyl ketone 110 6.08 RWCCWEUUXYIKHB-

UHFFFAOYSA-N

22 1.12

2,4-pentanedione 111 9.71 YRKCREAYFQTBPV-

UHFFFAOYSA-N

14 1.13

2,3-butanedione 112 11.39 QSJXEFYPDANLFS-

UHFFFAOYSA-N

13 1.18

formic acid 113 26.38 BDAGIHXWWSANSR-

UHFFFAOYSA-N

7 1.34

acetic acid 114 17.39 QTBSBXVTEAMEQO-

UHFFFAOYSA-N

9 1.22

propanoic acid 115 13.33 XBDQKXXYIPTUBI-

UHFFFAOYSA-N

11 1.18
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butanoic acid 116 10.82 FERIUCNNQQJTOY-

UHFFFAOYSA-N

13 1.15

pentanoic acid 117 9.15 NQPDZGIKBAWPEJ-

UHFFFAOYSA-N

15 1.13

hexanoic acid 118 7.95 FUZZWVXGSFPDMH-

UHFFFAOYSA-N

17 1.12

heptanoic acid 119 7.06 MNWFXJYAOYHMED-

UHFFFAOYSA-N

20 1.15

dichloroacetic acid 120 12.12 JXTHNDFMNIQAHM-

UHFFFAOYSA-N

13 1.23

trifluoroacetic acid 121 12.97 DTQVDTLACAAQTR-

UHFFFAOYSA-N

11 1.16

acetic anhydride 122 10.54 WFDIJRYMOXRFFG-

UHFFFAOYSA-N

14 1.18

benzoyl chloride 123 8.62 PASDCCFISLVPSO-

UHFFFAOYSA-N

16 1.14

benzoyl bromide 124 8.48 AQIHMSVIAGNIDM-

UHFFFAOYSA-N

16 1.12

methyl formate 125 16.10 TZIHFWKZFHZASV-

UHFFFAOYSA-N

9 1.17

ethyl formate 126 12.36 WBJINCZRORDGAQ-

UHFFFAOYSA-N

11 1.13

methyl acetate 127 12.53 KXKVLQRXCPHEJC-

UHFFFAOYSA-N

11 1.14

ethyl acetate 128 10.15 XEKOWRVHYACXOJ-

UHFFFAOYSA-N

13 1.11

n-propyl acetate 129 8.65 YKYONYBAUNKHLG-

UHFFFAOYSA-N

16 1.14

butyl acetate 130 7.55 DKPFZGUDAPQIHT-

UHFFFAOYSA-N

18 1.13

isopentyl acetate 131 6.66 MLFHJEHSLIIPHL-

UHFFFAOYSA-N

19 1.08
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methyl propionate 132 10.31 RJUFJBKOKNCXHH-

UHFFFAOYSA-N

13 1.12

ethyl propionate 133 8.66 FKRCODPIKNYEAC-

UHFFFAOYSA-N

16 1.14

dimethyl carbonate 134 11.88 IEJIGPNLZYLLBP-

UHFFFAOYSA-N

12 1.16

diethyl carbonate 135 8.21 OIFBSDVPJOWBCH-

UHFFFAOYSA-N

17 1.14

ethylene carbonate 136 15.12 KMTRUDSVKNLOMY-

UHFFFAOYSA-N

11 1.26

4-methyl-1,3-dioxolan-2-

one

137 11.75 RUOJZAUFBMNUDX-

GSVOUGTGSA-N

13 1.20

diethyl malonate 138 6.56 IYXGSMUGOJNHAZ-

UHFFFAOYSA-N

21 1.13

methyl benzoate 139 7.96 QPJVMBTYPHYUOC-

UHFFFAOYSA-N

17 1.12

ethyl benzoate 140 6.94 MTZQAGJQAFMTAQ-

UHFFFAOYSA-N

19 1.11

dimethylphthalate 141 6.13 NIQCNGHVCWTJSM-

UHFFFAOYSA-N

22 1.12

di-n-butylorthophthalate 142 3.75 DOIRQSBPFJWKBE-

UHFFFAOYSA-N

36 1.12

ethyl chloroacetate 143 10.26 VEUUMBGHMNQHGO-

UHFFFAOYSA-N

15 1.21

ethyl trichloroacetate 144 7.23 SJMLNDPIJZBEKY-

UHFFFAOYSA-N

19 1.13

ethyl acetoacetate 145 7.85 XYIBRDXRRQCHLP-

UHFFFAOYSA-N

18 1.15

gamma-butyrolactone 146 13.07 YEJRWHAVMIAJKC-

UHFFFAOYSA-N

12 1.22

n-perfluorohexane 147 4.97 ZJIJAJXFLBMLCK-

UHFFFAOYSA-N

22 0.99
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perfluoromethylcyclohexane 148 4.45 QIROQPWSJUXOJC-

UHFFFAOYSA-N

21 0.89

perfluoroheptane 149 4.51 LGUZHRODIJCVOC-

UHFFFAOYSA-N

24 0.98

cis-perfluorodecalin 150 4.21 UWEYRJFJVCLAGH-

XIXRPRMCSA-N

25 0.96

fluorobenzene 151 10.60 PYLWMHQQBFSUBP-

UHFFFAOYSA-N

12 1.08

hexafluorobenzene 152 8.67 ZQBFAOFFOQMSGJ-

UHFFFAOYSA-N

15 1.10

1,4-dichlorobutane 153 9.51 KJDRSWPQXHESDQ-

UHFFFAOYSA-N

16 1.20

chlorobenzene 154 9.79 MVPPADPHJFYWMZ-

UHFFFAOYSA-N

14 1.13

dichloromethane 155 15.50 YMWUJEATGCHHMB-

UHFFFAOYSA-N

10 1.22

1,1-dichloroethane 156 11.81 SCYULBFZEHDVBN-

UHFFFAOYSA-N

12 1.15

1,2-dichloroethane 157 12.59 WSLDOOZREJYCGB-

UHFFFAOYSA-N

12 1.20

trans-1,2-

dichloroethylene

158 12.85 KFUSEUYYWQURPO-

OWOJBTEDSA-N

11 1.15

ortho-dichlorobenzene 159 8.84 RFFLAFLAYFXFSW-

UHFFFAOYSA-N

15 1.11

meta-dichlorobenzene 160 8.73 ZPQOPVIELGIULI-

UHFFFAOYSA-N

16 1.14

chloroform 161 12.40 HEDRZPFGACZZDS-

UHFFFAOYSA-N

11 1.13

1,1,1-trichloroethane 162 9.97 UOCLXMDMGBRAIB-

UHFFFAOYSA-N

13 1.09

1,1,2-trichloroethane 163 10.73 UBOXGVDOUJQMTN-

UHFFFAOYSA-N

13 1.14
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trichloroethylene 164 11.12 XSTXAVWGXDQKEL-

UHFFFAOYSA-N

13 1.17

1,2,4-trichlorobenzene 165 8.02 PBKONEOXTCPAFI-

UHFFFAOYSA-N

17 1.13

carbon tetrachloride 166 10.30 VZGDMQKNWNREIO-

UHFFFAOYSA-N

13 1.12

tetrachloroethylene 167 9.74 CYTYCFOTNPOANT-

UHFFFAOYSA-N

14 1.13

1,1,2,2-tetrachloroethane 168 9.45 QPFMBZIOSGYJDE-

UHFFFAOYSA-N

15 1.15

pentachloroethane 169 8.27 BNIXVQGCZULYKV-

UHFFFAOYSA-N

16 1.11

1-bromobutane 170 9.26 MPPPKRYCTPRNTB-

UHFFFAOYSA-N

15 1.14

bromobenzene 171 9.48 QARVLSVVCXYDNA-

UHFFFAOYSA-N

14 1.11

dibromomethane 172 14.33 FJBFPHVGVWTDIP-

UHFFFAOYSA-N

11 1.23

1,2-dibromoethane 173 11.55 PAAZPARNPHGIKF-

UHFFFAOYSA-N

13 1.19

bromoform 174 11.39 DIKBFYAXUHHXCS-

UHFFFAOYSA-N

13 1.18

n-butyl iodide 175 8.73 KMGBZBJJOKUPIA-

UHFFFAOYSA-N

16 1.14

iodobenzene 176 8.94 SNHMUERNLJLMHN-

UHFFFAOYSA-N

15 1.12

methylene iodide 177 12.41 NZZFYRREKKOMAT-

UHFFFAOYSA-N

13 1.24

n-butylamine 178 10.07 HQABUPZFAYXKJW-

UHFFFAOYSA-N

14 1.15

benzylamine 179 9.16 WGQKYBSKWIADBV-

UHFFFAOYSA-N

15 1.13

Continued on next page



G.1 Pure Solvent information 305

Solvent ID [liquid]/

M

InChIKey NSSIP ∆Gc,i/ kJ

mol−1

ethylenediamine 180 14.79 PIICEJLVQHRZGT-

UHFFFAOYSA-N

11 1.25

diethylamine 181 9.60 HPNMFZURTQLUMO-

UHFFFAOYSA-N

14 1.12

di-n-butylamine 182 5.86 JQVDAXLFBXTEQA-

UHFFFAOYSA-N

22 1.09

pyrrole 183 14.39 KAESVJOAVNADME-

UHFFFAOYSA-N

10 1.16

pyrrolidine 184 12.01 RWRDLPDLKQPQOW-

UHFFFAOYSA-N

12 1.16

piperidine 185 10.06 NQRYJNQNLNOLGT-

UHFFFAOYSA-N

13 1.10

morpholine 186 11.43 YNAVUWVOSKDBBP-

UHFFFAOYSA-N

13 1.19

triethylamine 187 7.15 ZMANZCXQSJIPKH-

UHFFFAOYSA-N

17 1.05

tri-(n-butyl)amine 188 4.18 IMFACGCPASFAPR-

UHFFFAOYSA-N

29 1.05

aniline 189 10.93 PAYRUJLWNCNPSJ-

UHFFFAOYSA-N

13 1.16

o-chloroaniline 190 9.47 AKCRQHGQIJBRMN-

UHFFFAOYSA-N

15 1.16

methylphenylamine 191 9.17 AFBPFSWMIHJQDM-

UHFFFAOYSA-N

15 1.13

N,N-dimethylaniline 192 7.87 JLTDJTHDQAWBAV-

UHFFFAOYSA-N

17 1.12

aminoethanol 193 16.58 HZAXFHJVJLSVMW-

UHFFFAOYSA-N

10 1.26

diethanolamine 194 10.42 ZBCBWPMODOFKDW-

UHFFFAOYSA-N

15 1.22

triethanolamine 195 7.51 GSEJCLTVZPLZKY-

UHFFFAOYSA-N

20 1.19
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pyridine 196 12.36 JUJWROOIHBZHMG-

UHFFFAOYSA-N

12 1.18

2-methylpyridine 197 10.09 BSKHPKMHTQYZBB-

UHFFFAOYSA-N

14 1.15

3-methylpyridine 198 10.24 ITQTTZVARXURQS-

UHFFFAOYSA-N

14 1.16

4-methylpyridine 199 10.20 FKNQCJSGGFJEIZ-

UHFFFAOYSA-N

14 1.16

2,4-dimethylpyridine 200 8.66 JYYNAJVZFGKDEQ-

UHFFFAOYSA-N

16 1.14

2,6-dimethylpyridine 201 8.57 OISVCGZHLKNMSJ-

UHFFFAOYSA-N

16 1.13

2,4,6-trimethylpyridine 202 7.52 BWZVCCNYKMEVEX-

UHFFFAOYSA-N

18 1.12

2-bromopyridine 203 10.48 IMRWILPUOVGIMU-

UHFFFAOYSA-N

14 1.18

3-bromopyridine 204 10.38 NYPYPOZNGOXYSU-

UHFFFAOYSA-N

14 1.17

2-cyanopyridine 205 10.39 FFNVQNRYTPFDDP-

UHFFFAOYSA-N

14 1.17

pyrimidine 206 12.69 CZPWVGJYEJSRLH-

UHFFFAOYSA-N

11 1.14

quinoline 207 8.44 SMWDFEZZVXVKRB-

UHFFFAOYSA-N

16 1.12

acetonitrile 208 18.90 WEVYAHXRMPXWCK-

UHFFFAOYSA-N

8 1.20

propionitrile 209 14.10 FVSKHRXBFJPNKK-

UHFFFAOYSA-N

10 1.15

n-butyronitrile 210 11.38 KVNRLNFWIYMESJ-

UHFFFAOYSA-N

12 1.13

3-methylbutanenitrile 211 9.56 QHDRKFYEGYYIIK-

UHFFFAOYSA-N

14 1.12
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acrylonitrile 212 15.10 NLHHRLWOUZZQLW-

UHFFFAOYSA-N

9 1.13

phenylacetonitrile 213 8.65 SUSQOBVLVYHIEX-

UHFFFAOYSA-N

16 1.14

benzonitrile 214 9.70 JFDZBHWFFUWGJE-

UHFFFAOYSA-N

14 1.13

nitromethane 215 18.52 LYGJENNIWJXYER-

UHFFFAOYSA-N

9 1.27

nitroethane 216 13.91 MCSAJNNLRCFZED-

UHFFFAOYSA-N

11 1.21

1-nitropropane 217 11.17 JSZOAYXJRCEYSX-

UHFFFAOYSA-N

13 1.17

2-nitropropane 218 11.04 FGLBSLMDCBOPQK-

UHFFFAOYSA-N

13 1.16

nitrobenzene 219 9.74 LQNUZADURLCDLV-

UHFFFAOYSA-N

15 1.17

formamide 220 25.06 ZHNUHDYFZUAESO-

UHFFFAOYSA-N

7 1.30

N-methylformamide 221 16.92 ATHHXGZTWNVVOU-

UHFFFAOYSA-N

10 1.28

N,N-dimethylformamide 222 12.90 ZMXDDKWLCZADIW-

UHFFFAOYSA-N

12 1.21

N,N-

dimethylthioformamide

223 11.74 SKECXRFZFFAANN-

UHFFFAOYSA-N

13 1.20

N,N-diethylformamide 224 8.98 SUAKHGWARZSWIH-

UHFFFAOYSA-N

15 1.12

N-methylacetamide 225 12.99 OHLUUHNLEMFGTQ-

UHFFFAOYSA-N

12 1.22

N,N-dimethylacetamide 226 10.75 FXHOOIRPVKKKFG-

UHFFFAOYSA-N

13 1.14

N,N-diethylacetamide 227 7.86 AJFDBNQQDYLMJN-

UHFFFAOYSA-N

17 1.11
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2-pyrrolidinone 228 13.01 HNJBEVLQSNELDL-

UHFFFAOYSA-N

12 1.22

N-methyl pyrrolidinone 229 10.37 SECXISVLQFMRJM-

UHFFFAOYSA-N

14 1.17

1-methyl-2-

pyrrolidinethione

230 11.66 OQILOJRSIWGQSM-

UHFFFAOYSA-N

15 1.30

tetramethylurea 231 8.31 AVQQQNCBBIEMEU-

UHFFFAOYSA-N

17 1.15

tetraethylurea 232 5.26 UWHSPZZUAYSGTB-

UHFFFAOYSA-N

24 1.08

dimethylcyanamide 233 12.38 OAGOUCJGXNLJNL-

UHFFFAOYSA-N

12 1.19

carbon disulfide 234 16.50 QGJOPFRUJISHPQ-

UHFFFAOYSA-N

9 1.19

dimethyl sulfide 235 13.55 QMMFVYPAHWMCMS-

UHFFFAOYSA-N

10 1.12

diethyl sulfide 236 9.22 LJSQFQKUNVCTIA-

UHFFFAOYSA-N

15 1.14

diisopropyl sulfide 237 6.88 XYWDPYKBIRQXQS-

UHFFFAOYSA-N

18 1.07

dibutyl sulfide 238 5.73 HTIRHQRTDBPHNZ-

UHFFFAOYSA-N

23 1.11

tetrahydrothiophene 239 11.27 RAOIDOHSFRTOEL-

UHFFFAOYSA-N

13 1.18

thiane 240 9.63 YPWFISCTZQNZAU-

UHFFFAOYSA-N

14 1.12

dimethylsulfoxide 241 14.03 IAZDPXIOMUYVGZ-

UHFFFAOYSA-N

11 1.21

dibutyl sulfoxide 242 5.13 LOWMYOWHQMKBTM-

UHFFFAOYSA-N

23 1.03

sulfolane 243 10.50 HXJUTPCZVOIRIF-

UHFFFAOYSA-N

14 1.18

Continued on next page
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Solvent ID [liquid]/

M

InChIKey NSSIP ∆Gc,i/ kJ

mol−1

thiobis(2-ethanol) 244 9.67 YODZTKMDCQEPHD-

UHFFFAOYSA-N

16 1.21

diethyl sulfite 245 7.84 NVJBFARDFTXOTO-

UHFFFAOYSA-N

18 1.15

dimethyl sulfate 246 10.57 VAYGXNSJCAHWJZ-

UHFFFAOYSA-N

14 1.18

diethyl sulfate 247 7.64 DENRZWYUOJLTMF-

UHFFFAOYSA-N

18 1.13

methanesulfonic acid 248 15.37 AFVFQIVMOAPDHO-

UHFFFAOYSA-N

11 1.28

trimethylphosphate 249 8.67 WVLBCYQITXONBZ-

UHFFFAOYSA-N

17 1.18

triethylphosphate 250 5.87 DQWPFSLDHJDLRL-

UHFFFAOYSA-N

23 1.12

tri-n-butylphosphate 251 3.65 STCOOQWBFONSKY-

UHFFFAOYSA-N

36 1.10

hexamethylphosphoric tri-

amide

252 5.69 GNOIPBMMFNIUFM-

UHFFFAOYSA-N

22 1.07

hydrogen peroxide 253 42.37 MHAJPDPJQMAIIY-

UHFFFAOYSA-N

5 1.44

hydrogen fluoride 254 47.62 KRHYYFGTRYWZRS-

UHFFFAOYSA-N

3 1.16

sulfuric acid 255 18.69 QAOWNCQODCNURD-

UHFFFAOYSA-N

10 1.35

ammonia 256 40.00 QGZKDVFQNNGYKY-

UHFFFAOYSA-N

5 1.40

hydrazine 257 31.35 OAKJQQAXSVQMHS-

UHFFFAOYSA-N

7 1.47

sulfur dioxide 258 22.83 RAHZWNYVWXNFOC-

UHFFFAOYSA-N

7 1.24

thionyl chloride 259 13.71 FYSNRJHAOHDILO-

UHFFFAOYSA-N

11 1.20

Continued on next page
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Solvent ID [liquid]/

M

InChIKey NSSIP ∆Gc,i/ kJ

mol−1

phosphorus oxychloride 260 10.87 XHXFXVLFKHQFAL-

UHFFFAOYSA-N

13 1.15

dihydrolevoglucosenone 261 9.76 WHIRALQRTSITMI-

UJURSFKZSA-N

15 1.18

Table G.1 Solvent information
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G.2 Polynomial Coefficient information

Polynomial coefficients for the solvation profiles (∆GS,i(εi)) are contained in the following sections.

Table G.2 contains the information for the pure solvents. The coefficients for water ethanol mixtures

are in table G.3, and the coefficients for chloroform tetrahydrofuran mixtures in table G.4.



312 Solvent information

Coefficient Order
Molecule Name ε Region 0th 1th 2th 3th 4th 5th 6th 7th 8th

(2R,3S)-2,3-
butanediol

positive -0.890201 -6.497101e-01 4.300415e-01 -9.204610e-01 3.380664e-01 -6.178162e-02 6.246097e-03 -3.339554e-04 7.384658e-06

(2R,3S)-2,3-
butanediol

negative -0.762634 8.643129e-01 6.406149e-01 2.417495e-01 3.175360e-02 2.110497e-03 7.333515e-05 1.177609e-06 5.280983e-09

1,1,1,3,3,3-
hexafluoro-2-
propanol

positive -1.101783 -1.525279e-01 -1.554708e-01 8.129254e-02 -3.145803e-02 3.993038e-03 -1.263393e-04 -9.480639e-06 5.583470e-07

1,1,1,3,3,3-
hexafluoro-2-
propanol

negative -1.222259 -8.236826e-02 5.638164e-02 3.267681e-01 7.436811e-02 7.862788e-03 4.452899e-04 1.305879e-05 1.559838e-07

1,1,1-trichloroethane positive -1.194875 -2.141508e-01 -1.893664e-02 -1.413340e-03 1.591105e-04 -1.250561e-05 1.288864e-06 -7.896803e-08 1.812658e-09
1,1,1-trichloroethane negative -1.193311 2.573454e-01 -2.620951e-02 6.455442e-03 6.124237e-04 5.073296e-06 -1.687381e-06 -8.404279e-08 -1.258913e-09
1,1,2,2-
tetrachloroethane

positive -1.222001 -1.385446e-01 -1.024372e-02 -3.335449e-05 -1.933680e-04 4.830368e-05 -5.913206e-06 3.740997e-07 -9.566664e-09

1,1,2,2-
tetrachloroethane

negative -1.217480 4.082954e-01 -3.192065e-02 2.716476e-02 4.942599e-03 4.149763e-04 1.917130e-05 4.710287e-07 4.822575e-09

1,1,2-trichloroethane positive -1.111634 -3.413493e-01 -7.097159e-02 -1.203293e-03 -3.355404e-03 9.510310e-04 -1.046873e-04 5.445297e-06 -1.119244e-07
1,1,2-trichloroethane negative -1.095659 3.824018e-01 5.881694e-02 7.749885e-02 1.356770e-02 1.179391e-03 5.695486e-05 1.461364e-06 1.557468e-08
1,1-dichloroethane positive -1.167188 -3.285231e-01 -5.563326e-02 -3.441650e-03 -6.645260e-04 2.980055e-04 -3.419368e-05 1.739662e-06 -3.421443e-08
1,1-dichloroethane negative -1.163313 2.715932e-01 -2.149865e-02 1.065449e-02 8.795448e-04 -4.453206e-06 -3.494978e-06 -1.608593e-07 -2.368143e-09
1,2,3,4-
tetrahydronaphthalene

positive -1.200397 -2.697206e-01 -9.249236e-02 1.252853e-04 -1.013312e-02 3.146856e-03 -3.950635e-04 2.347683e-05 -5.486562e-07

1,2,3,4-
tetrahydronaphthalene

negative -1.199543 1.872945e-01 -9.461591e-03 3.999001e-04 4.829767e-05 2.506149e-06 9.777836e-08 2.642631e-09 3.281642e-11

1,2,4-
trichlorobenzene

positive -1.226141 -1.687392e-01 -1.754670e-02 -2.033351e-03 1.858162e-04 -3.911042e-05 4.861510e-06 -2.594745e-07 5.111581e-09

1,2,4-
trichlorobenzene

negative -1.222474 2.566924e-01 -1.976128e-02 8.532983e-03 3.279971e-04 -6.703982e-05 -7.121413e-06 -2.667506e-07 -3.610351e-09

Continued on next page
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Coefficient Order
Molecule Name ε Region 0th 1th 2th 3th 4th 5th 6th 7th 8th

1,2-butanediol positive -0.899801 -7.116919e-01 5.056025e-01 -9.521099e-01 3.398289e-01 -6.098363e-02 6.079910e-03 -3.213235e-04 7.034611e-06
1,2-butanediol negative -0.737606 1.009706e+00 8.319744e-01 3.085418e-01 4.176239e-02 2.921697e-03 1.103190e-04 2.070689e-06 1.417222e-08
1,2-dibromoethane positive -1.221197 -2.050333e-01 -1.910846e-02 -1.801006e-03 3.004630e-04 -3.958559e-05 4.434252e-06 -2.742616e-07 6.739283e-09
1,2-dibromoethane negative -1.217877 3.298418e-01 -2.910078e-02 1.621918e-02 2.703716e-03 2.024788e-04 8.241187e-06 1.762773e-07 1.548821e-09
1,2-dichloroethane positive -1.086780 -4.563994e-01 -1.047747e-01 -1.375322e-02 -2.047900e-03 1.383131e-03 -2.031858e-04 1.296764e-05 -3.165268e-07
1,2-dichloroethane negative -1.079245 3.141796e-01 -4.850773e-03 3.084488e-02 4.985292e-03 3.838321e-04 1.624788e-05 3.633719e-07 3.356799e-09
1,2-
dimethoxybenzene

positive -1.142760 -5.147572e-01 2.934284e-01 -4.078396e-01 9.635362e-02 -9.747940e-03 3.303550e-04 1.171936e-05 -8.119088e-07

1,2-
dimethoxybenzene

negative -1.161421 2.361978e-01 -2.048120e-02 1.183917e-03 1.201629e-04 -2.577773e-07 -3.821803e-07 -1.632188e-08 -2.229165e-10

1,2-
dimethyoxyethane

positive -1.070258 -5.280988e-01 -3.392391e-01 -6.221322e-01 2.920257e-01 -6.015154e-02 6.602993e-03 -3.762205e-04 8.761635e-06

1,2-
dimethyoxyethane

negative -1.055962 2.075163e-01 -1.046939e-02 4.321737e-04 5.204461e-05 2.590511e-06 9.421122e-08 2.429991e-09 2.975495e-11

1,2-propanediol positive -0.785969 -6.330375e-01 2.614069e-01 -9.509676e-01 3.714685e-01 -7.072029e-02 7.390093e-03 -4.063470e-04 9.205268e-06
1,2-propanediol negative -0.641951 8.842620e-01 6.073547e-01 2.115452e-01 2.403233e-02 1.214316e-03 1.921975e-05 -4.821662e-07 -1.519363e-08
1,3,5-
trimethylbenzene

positive -1.194737 -2.787201e-01 -8.979033e-02 -4.647433e-03 -7.724531e-03 2.672832e-03 -3.479194e-04 2.109508e-05 -4.998647e-07

1,3,5-
trimethylbenzene

negative -1.194159 1.809265e-01 -1.014978e-02 4.053059e-04 4.572453e-05 1.775745e-06 4.781445e-08 1.158761e-09 1.587023e-11

1,3-dioxane positive -1.037390 -4.829166e-01 1.628682e-02 -9.782526e-01 4.189199e-01 -8.396431e-02 9.099593e-03 -5.146063e-04 1.192481e-05
1,3-dioxane negative -1.026221 2.619076e-01 -1.830239e-02 7.627057e-04 1.164965e-04 4.569398e-06 2.981314e-08 -2.412470e-09 -4.780393e-11
1,3-dioxolan positive -1.131308 -6.166724e-01 6.839796e-01 -1.307242e+00 4.962761e-01 -9.375130e-02 9.760541e-03 -5.353703e-04 1.210468e-05
1,3-dioxolan negative -1.143233 2.281282e-01 -2.052025e-02 1.115286e-03 4.933203e-05 -8.158327e-06 -7.852874e-07 -2.659573e-08 -3.291020e-10
1,3-propanediol positive -0.897807 -5.019565e-01 -9.413541e-01 -4.080824e-01 2.560258e-01 -5.771015e-02 6.660158e-03 -3.925000e-04 9.371531e-06
1,3-propanediol negative -0.742587 5.175538e-01 2.825034e-01 3.262181e-02 -1.390408e-02 -2.816542e-03 -2.115544e-04 -7.304052e-06 -9.705172e-08
1,4-butanediol positive -0.782036 -5.870980e-01 7.026171e-01 -1.429155e+00 5.540235e-01 -1.063297e-01 1.121334e-02 -6.216786e-04 1.418391e-05
1,4-butanediol negative -0.695868 6.776853e-01 2.561607e-01 6.342384e-02 -2.617091e-03 -1.318562e-03 -1.141832e-04 -4.172389e-06 -5.710865e-08

Continued on next page
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Coefficient Order
Molecule Name ε Region 0th 1th 2th 3th 4th 5th 6th 7th 8th

1,4-dichlorobutane positive -1.161084 -2.863278e-01 -6.176222e-02 -3.319870e-03 -1.583327e-03 5.883469e-04 -7.028148e-05 3.836723e-06 -8.191659e-08
1,4-dichlorobutane negative -1.159320 3.526121e-01 -3.838388e-02 8.431533e-03 1.582524e-03 1.227001e-04 5.126330e-06 1.129858e-07 1.032108e-09
1,5-pentanediol positive -0.957860 -4.935713e-01 1.383674e-01 -1.166561e+00 4.955148e-01 -9.940832e-02 1.079746e-02 -6.120406e-04 1.421265e-05
1,5-pentanediol negative -0.852034 4.510116e-01 1.697979e-01 1.674567e-04 -1.760865e-02 -3.005873e-03 -2.143167e-04 -7.207140e-06 -9.420351e-08
1,8-cineole positive -1.152710 -6.537940e-01 1.313699e+00 -2.158599e+00 8.377638e-01 -1.626982e-01 1.737137e-02 -9.739173e-04 2.243828e-05
1,8-cineole negative -1.158970 1.648618e-01 -6.894482e-03 3.427407e-04 4.258169e-05 2.795689e-06 1.325842e-07 3.751459e-09 4.505801e-11
1-bromobutane positive -1.216247 -1.673573e-01 -7.344112e-02 1.145686e-02 -1.015224e-02 2.229956e-03 -2.199310e-04 1.048303e-05 -1.965498e-07
1-bromobutane negative -1.214722 2.720319e-01 -2.231445e-02 1.212152e-03 1.032782e-04 -1.510887e-06 -4.112972e-07 -1.631639e-08 -2.163230e-10
1-butanol positive -1.015001 -9.296050e-01 1.932317e+00 -2.250632e+00 7.992896e-01 -1.466044e-01 1.497994e-02 -8.101510e-04 1.810671e-05
1-butanol negative -1.022195 3.070429e-01 -5.132932e-02 -7.027418e-02 -2.697715e-02 -3.634727e-03 -2.355745e-04 -7.505902e-06 -9.465560e-08
1-decanol positive -1.101115 -1.220303e+00 2.369069e+00 -2.166891e+00 6.821188e-01 -1.129973e-01 1.051422e-02 -5.206054e-04 1.069688e-05
1-decanol negative -1.134442 2.371375e-01 -4.170727e-02 -8.540030e-02 -3.260362e-02 -4.392719e-03 -2.853697e-04 -9.119467e-06 -1.153477e-07
1-dodecanol positive -1.093167 -1.349119e+00 2.754538e+00 -2.396388e+00 7.418081e-01 -1.212520e-01 1.113358e-02 -5.436205e-04 1.100387e-05
1-dodecanol negative -1.171724 1.332946e-01 -1.561124e-01 -1.224645e-01 -3.767910e-02 -4.745450e-03 -2.979316e-04 -9.317888e-06 -1.160684e-07
1-hexanol positive -1.062455 -1.055548e+00 2.212318e+00 -2.345769e+00 8.064904e-01 -1.445221e-01 1.448487e-02 -7.703410e-04 1.696256e-05
1-hexanol negative -1.086920 2.336173e-01 -7.300032e-02 -8.427325e-02 -3.018854e-02 -3.990629e-03 -2.564848e-04 -8.134834e-06 -1.022955e-07
1-methyl-2-
pyrrolidinethione

positive -0.962651 -7.152360e-01 9.415577e-01 -1.654688e+00 6.276881e-01 -1.193967e-01 1.253090e-02 -6.925746e-04 1.576585e-05

1-methyl-2-
pyrrolidinethione

negative -0.974943 3.473443e-01 -3.442563e-02 4.498374e-03 7.472084e-04 4.788482e-05 1.561381e-06 2.404800e-08 1.149134e-10

1-nitropropane positive -1.091515 -3.819063e-01 9.501791e-02 -1.549414e-01 -7.431771e-03 1.088151e-02 -1.874732e-03 1.340822e-04 -3.586933e-06
1-nitropropane negative -1.103096 3.528543e-01 -3.872601e-02 8.872934e-03 1.619227e-03 1.244000e-04 5.174671e-06 1.137245e-07 1.036250e-09
1-octanol positive -1.070858 -1.202864e+00 2.523880e+00 -2.441728e+00 8.073359e-01 -1.402995e-01 1.368568e-02 -7.100381e-04 1.528042e-05
1-octanol negative -1.120822 1.939369e-01 -1.128419e-01 -1.019346e-01 -3.353193e-02 -4.318569e-03 -2.741080e-04 -8.628911e-06 -1.079593e-07
1-pentanol positive -1.051993 -9.690513e-01 2.011067e+00 -2.262460e+00 7.935028e-01 -1.442408e-01 1.462978e-02 -7.861897e-04 1.747314e-05
1-pentanol negative -1.060662 2.750798e-01 -5.170626e-02 -7.783727e-02 -2.936065e-02 -3.938718e-03 -2.549977e-04 -8.124673e-06 -1.024989e-07
1-propanol positive -0.980816 -8.096442e-01 1.626934e+00 -2.112101e+00 7.721592e-01 -1.442968e-01 1.496020e-02 -8.189513e-04 1.849502e-05
1-propanol negative -0.973477 3.415066e-01 -3.929623e-02 -6.205056e-02 -2.497812e-02 -3.406014e-03 -2.218706e-04 -7.088196e-06 -8.953213e-08

Continued on next page
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Coefficient Order
Molecule Name ε Region 0th 1th 2th 3th 4th 5th 6th 7th 8th

2,2,2-trifluoroethanol positive -0.997364 -3.793563e-01 2.041970e-02 -8.300620e-02 -2.623974e-02 1.323710e-02 -2.019365e-03 1.374169e-04 -3.573987e-06
2,2,2-trifluoroethanol negative -0.908180 8.557748e-01 7.544323e-01 3.942971e-01 6.867456e-02 6.247265e-03 3.177204e-04 8.566070e-06 9.552493e-08
2,2,4,4-tetramethyl-3-
pentanone

positive -1.094507 -9.245292e-01 1.934993e+00 -2.293014e+00 8.208154e-01 -1.514826e-01 1.555865e-02 -8.452087e-04 1.896393e-05

2,2,4,4-tetramethyl-3-
pentanone

negative -1.138221 2.179984e-01 -1.352736e-02 5.388750e-04 5.064939e-05 7.479288e-07 -4.731274e-08 -2.000519e-09 -2.252734e-11

2,2,4-
trimethylpentane

positive -1.238415 -1.765605e-02 -1.167380e-03 -5.701911e-05 1.354018e-04 -3.916296e-05 5.085638e-06 -3.197527e-07 7.921273e-09

2,2,4-
trimethylpentane

negative -1.237311 1.615061e-01 -5.477737e-03 3.219743e-04 4.808390e-05 3.647622e-06 1.785892e-07 4.941948e-09 5.756941e-11

2,3-butanedione positive -0.957952 -6.097101e-01 1.828170e-01 -5.656391e-01 2.001658e-01 -3.489969e-02 3.372913e-03 -1.730490e-04 3.686304e-06
2,3-butanedione negative -0.966964 3.172693e-01 -3.272390e-02 7.716039e-03 9.919664e-04 4.837025e-05 8.081493e-07 -1.157786e-08 -4.128978e-10
2,4,5-
trimethylacetophenone

positive -1.144352 -1.141974e+00 2.415895e+00 -2.728511e+00 9.724221e-01 -1.797152e-01 1.850920e-02 -1.008435e-03 2.268839e-05

2,4,5-
trimethylacetophenone

negative -1.198872 2.401702e-01 -2.125604e-02 1.303201e-03 1.187240e-04 -1.828797e-06 -5.071655e-07 -2.044638e-08 -2.743000e-10

2,4,6-
trimethylpyridine

positive -1.170222 -1.030532e+00 3.059166e+00 -3.924782e+00 1.502709e+00 -2.933149e-01 3.157664e-02 -1.785037e-03 4.143657e-05

2,4,6-
trimethylpyridine

negative -1.186389 1.888496e-01 -1.533604e-02 5.931543e-04 -1.520721e-05 -8.469822e-06 -5.597768e-07 -1.561118e-08 -1.664109e-10

2,4-dimethylphenol positive -1.106467 -4.111088e-01 -1.078808e-01 -1.515767e-02 -2.395171e-02 8.673753e-03 -1.195550e-03 7.657203e-05 -1.906185e-06
2,4-dimethylphenol negative -0.916312 1.288790e+00 1.319604e+00 5.877605e-01 9.906402e-02 8.875450e-03 4.468373e-04 1.195010e-05 1.323225e-07
2,4-dimethylpyridine positive -1.161837 -1.027337e+00 3.223180e+00 -4.105006e+00 1.573199e+00 -3.075244e-01 3.315225e-02 -1.876385e-03 4.360267e-05
2,4-dimethylpyridine negative -1.176914 2.217588e-01 -1.940308e-02 1.010516e-03 4.354258e-05 -7.793260e-06 -7.341941e-07 -2.457842e-08 -3.013660e-10
2,4-pentanedione positive -0.896922 -6.117613e-01 3.558251e-01 -9.368303e-01 3.566248e-01 -6.676166e-02 6.880517e-03 -3.738729e-04 8.383334e-06
2,4-pentanedione negative -0.905053 3.489523e-01 -3.388729e-02 4.401611e-03 7.309368e-04 4.604990e-05 1.457296e-06 2.113850e-08 8.246211e-11
2,6-dimethylpyridine positive -1.152276 -1.127381e+00 3.057466e+00 -3.683604e+00 1.379267e+00 -2.651796e-01 2.821752e-02 -1.580227e-03 3.639759e-05
2,6-dimethylpyridine negative -1.188508 1.981138e-01 -1.704868e-02 6.312015e-04 -4.356394e-05 -1.263049e-05 -8.008690e-07 -2.226273e-08 -2.390999e-10
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2-bromopyridine positive -1.006249 -1.603988e+00 2.920445e+00 -2.613682e+00 8.242924e-01 -1.372013e-01 1.283572e-02 -6.390849e-04 1.320402e-05
2-bromopyridine negative -1.109329 2.531242e-01 -1.684152e-02 1.181144e-02 1.091236e-03 1.143585e-05 -2.917324e-06 -1.512080e-07 -2.317996e-09
2-butanol positive -1.023069 -9.092226e-01 1.486403e+00 -1.573215e+00 5.107924e-01 -8.633447e-02 8.181674e-03 -4.126577e-04 8.642896e-06
2-butanol negative -0.968545 6.321707e-01 3.254758e-01 8.454003e-02 5.500181e-04 -1.059838e-03 -1.023800e-04 -3.889664e-06 -5.434072e-08
2-butanone positive -1.040049 -5.384300e-01 1.162723e+00 -2.113137e+00 8.352447e-01 -1.639063e-01 1.763089e-02 -9.941886e-04 2.301270e-05
2-butanone negative -1.037670 3.011714e-01 -2.557917e-02 1.750138e-03 2.555240e-04 1.089778e-05 8.814789e-08 -6.177450e-09 -1.343003e-10
2-chloroethanol positive -0.979144 -5.667617e-01 -4.638912e-02 -1.322207e-01 2.185475e-02 2.398092e-04 -3.616235e-04 3.362895e-05 -9.987784e-07
2-chloroethanol negative -0.823545 1.170181e+00 1.036574e+00 4.702944e-01 7.814181e-02 6.879647e-03 3.404570e-04 8.959395e-06 9.773569e-08
2-cyanoethanol positive -0.953428 -4.409367e-01 1.197539e-01 -8.953514e-02 -8.180090e-02 3.222595e-02 -4.687957e-03 3.139713e-04 -8.118260e-06
2-cyanoethanol negative -0.755274 1.393956e+00 1.085067e+00 4.346615e-01 6.480709e-02 5.113928e-03 2.259525e-04 5.280969e-06 5.082859e-08
2-cyanopyridine positive -0.974113 -9.317893e-01 1.490175e+00 -1.525766e+00 4.813834e-01 -7.903134e-02 7.272935e-03 -3.561084e-04 7.237892e-06
2-cyanopyridine negative -1.022165 3.306715e-01 -8.293573e-03 2.558905e-02 3.734890e-03 2.524957e-04 9.021430e-06 1.589794e-07 1.004407e-09
2-ethoxyethanol positive -0.993060 -5.699371e-01 2.857063e-02 -8.181783e-01 3.403087e-01 -6.676237e-02 7.114118e-03 -3.968539e-04 9.093007e-06
2-ethoxyethanol negative -0.915065 4.051147e-01 2.492669e-02 -6.766834e-02 -3.131917e-02 -4.424432e-03 -2.940026e-04 -9.527288e-06 -1.216912e-07
2-heptanone positive -1.129077 -8.638787e-01 1.919537e+00 -2.436343e+00 8.969749e-01 -1.690290e-01 1.765968e-02 -9.732873e-04 2.211031e-05
2-heptanone negative -1.162559 2.204575e-01 -1.845211e-02 4.368498e-04 -1.325111e-04 -2.189813e-05 -1.233217e-06 -3.197388e-08 -3.242086e-10
2-methoxyethanol positive -0.935775 -5.378416e-01 -4.268989e-01 -5.611551e-01 2.729046e-01 -5.687227e-02 6.282805e-03 -3.594853e-04 8.397659e-06
2-methoxyethanol negative -0.853460 3.714764e-01 -1.860996e-02 -8.425663e-02 -3.425119e-02 -4.699678e-03 -3.083040e-04 -9.917020e-06 -1.260482e-07
2-methoxyphenol positive -1.042328 -6.155412e-01 3.088071e-01 -4.042506e-01 8.660035e-02 -6.684404e-03 -8.793516e-05 3.898859e-05 -1.507417e-06
2-methoxyphenol negative -1.017887 4.304984e-01 1.233483e-01 4.767953e-02 8.004371e-04 -5.235895e-04 -5.198240e-05 -1.974307e-06 -2.742566e-08
2-methyl-1-propanol positive -1.030840 -8.999038e-01 1.496157e+00 -1.621734e+00 5.352580e-01 -9.186713e-02 8.835886e-03 -4.521307e-04 9.604039e-06
2-methyl-1-propanol negative -0.952837 7.001680e-01 3.992854e-01 1.012856e-01 1.548118e-03 -1.115271e-03 -1.118432e-04 -4.306712e-06 -6.062771e-08
2-methyl-2-butanol positive -0.999257 -9.691971e-01 1.612612e+00 -1.594563e+00 4.987961e-01 -8.151030e-02 7.471339e-03 -3.642945e-04 7.369757e-06
2-methyl-2-butanol negative -0.979631 5.254512e-01 2.094362e-01 4.689134e-02 -4.605178e-03 -1.426048e-03 -1.162072e-04 -4.141665e-06 -5.589561e-08
2-methyl-2-propanol positive -0.981841 -9.770600e-01 1.745432e+00 -1.998963e+00 6.938246e-01 -1.246458e-01 1.250373e-02 -6.652757e-04 1.465433e-05
2-methyl-2-propanol negative -0.993531 3.227294e-01 -2.647775e-02 -5.014892e-02 -2.168523e-02 -3.004415e-03 -1.968514e-04 -6.304904e-06 -7.973295e-08
2-methylbutane positive -1.240942 -1.476979e-02 -1.023890e-03 -4.395708e-05 1.184994e-04 -3.493671e-05 4.593347e-06 -2.915146e-07 7.275377e-09
2-methylbutane negative -1.239829 1.454402e-01 -4.637962e-03 2.991283e-04 4.213525e-05 3.221511e-06 1.588783e-07 4.383144e-09 5.062381e-11
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2-methylpyridine positive -1.154410 -1.018908e+00 2.958227e+00 -3.733247e+00 1.418552e+00 -2.753512e-01 2.951252e-02 -1.662364e-03 3.847356e-05
2-methylpyridine negative -1.177446 2.044468e-01 -2.113132e-02 1.007337e-03 -8.010979e-05 -2.516455e-05 -1.764325e-06 -5.402035e-08 -6.355713e-10
2-
methyltetrahydrofuran

positive -1.139577 -3.284804e-01 3.176746e-01 -1.581029e+00 6.764351e-01 -1.374843e-01 1.511430e-02 -8.656369e-04 2.027793e-05

2-
methyltetrahydrofuran

negative -1.112227 2.150048e-01 -9.436872e-03 3.822902e-04 5.941447e-05 3.799807e-06 1.610402e-07 4.175446e-09 4.801350e-11

2-nitropropane positive -1.066415 -5.362569e-01 3.728754e-01 -4.996416e-01 1.319371e-01 -1.661632e-02 1.051533e-03 -2.782027e-05 7.701682e-08
2-nitropropane negative -1.086239 3.183391e-01 -3.329218e-02 6.260959e-03 1.015172e-03 6.631937e-05 2.222012e-06 3.562746e-08 1.870850e-10
2-pentanone positive -1.079194 -6.559118e-01 1.405161e+00 -2.181007e+00 8.375815e-01 -1.617021e-01 1.719231e-02 -9.607137e-04 2.207486e-05
2-pentanone negative -1.090311 2.639266e-01 -2.179769e-02 1.119745e-03 1.733771e-05 -1.269512e-05 -1.044544e-06 -3.367506e-08 -4.059868e-10
2-phenylethanol positive -1.026310 -1.072865e+00 1.782354e+00 -1.699389e+00 5.253396e-01 -8.483241e-02 7.674972e-03 -3.689067e-04 7.347272e-06
2-phenylethanol negative -1.006910 5.192136e-01 1.697375e-01 1.293727e-02 -1.384265e-02 -2.542134e-03 -1.853024e-04 -6.295323e-06 -8.275295e-08
2-propanol positive -0.967863 -8.541049e-01 1.703331e+00 -2.106460e+00 7.578214e-01 -1.400667e-01 1.439497e-02 -7.822464e-04 1.755513e-05
2-propanol negative -0.972442 3.468848e-01 -2.961777e-02 -4.670123e-02 -2.029810e-02 -2.814283e-03 -1.843003e-04 -5.897902e-06 -7.451805e-08
2-pyrrolidinone positive -0.987363 -5.143472e-01 2.139026e+00 -3.544878e+00 1.428933e+00 -2.867431e-01 3.145891e-02 -1.803962e-03 4.235388e-05
2-pyrrolidinone negative -0.996889 8.363129e-02 -2.345523e-01 -7.850689e-02 -1.461857e-02 -1.280509e-03 -5.735287e-05 -1.265126e-06 -1.067032e-08
3,3-dimethyl-2-
butanone

positive -1.063622 -7.345745e-01 1.606922e+00 -2.290990e+00 8.660261e-01 -1.657657e-01 1.751881e-02 -9.744166e-04 2.230517e-05

3,3-dimethyl-2-
butanone

negative -1.082733 2.550705e-01 -2.167314e-02 1.213231e-03 7.655464e-05 -5.821501e-06 -6.865162e-07 -2.451752e-08 -3.119236e-10

3-bromopyridine positive -1.064741 -1.490789e+00 2.900577e+00 -2.518854e+00 7.828293e-01 -1.285830e-01 1.186896e-02 -5.827464e-04 1.186471e-05
3-bromopyridine negative -1.170928 2.534228e-01 -2.481352e-02 6.874995e-03 5.000537e-04 -1.662458e-05 -3.199340e-06 -1.328801e-07 -1.872091e-09
3-chlorophenol positive -1.111107 -2.777550e-01 -1.256709e-01 3.562941e-02 -2.562869e-02 5.946439e-03 -6.501771e-04 3.511530e-05 -7.592558e-07
3-chlorophenol negative -1.135119 4.814550e-01 6.914161e-01 5.233399e-01 1.043136e-01 1.042904e-02 5.713908e-04 1.637991e-05 1.923633e-07
3-heptanone positive -1.139016 -8.212552e-01 1.800408e+00 -2.368955e+00 8.791609e-01 -1.664329e-01 1.744641e-02 -9.640842e-04 2.194955e-05
3-heptanone negative -1.167710 2.163200e-01 -1.588902e-02 5.543139e-04 -3.696889e-05 -9.384812e-06 -5.282115e-07 -1.287893e-08 -1.191955e-10
3-methyl-1-butanol positive -1.053234 -9.604103e-01 1.998770e+00 -2.272030e+00 8.001807e-01 -1.459291e-01 1.484210e-02 -7.995343e-04 1.780785e-05
3-methyl-1-butanol negative -1.066424 2.421138e-01 -6.771375e-02 -8.019779e-02 -2.909788e-02 -3.859426e-03 -2.483771e-04 -7.882407e-06 -9.915039e-08
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3-methyl-2-butanone positive -1.078267 -6.838775e-01 1.439279e+00 -2.166557e+00 8.254694e-01 -1.585720e-01 1.679657e-02 -9.357929e-04 2.144906e-05
3-methyl-2-butanone negative -1.092927 2.720050e-01 -2.156914e-02 1.107776e-03 7.205361e-05 -4.729518e-06 -5.708516e-07 -2.023274e-08 -2.548958e-10
3-methylbutanenitrile positive -1.034590 -1.200513e+00 2.163838e+00 -1.871514e+00 5.471009e-01 -8.344364e-02 7.079470e-03 -3.157204e-04 5.750242e-06
3-methylbutanenitrile negative -1.122696 3.321319e-01 -3.253393e-02 4.140397e-03 5.573427e-04 2.645320e-05 4.046310e-07 -7.526504e-09 -2.359071e-10
3-methylpyridine positive -1.139442 -1.063637e+00 3.136253e+00 -3.987303e+00 1.524210e+00 -2.973024e-01 3.199253e-02 -1.808024e-03 4.196101e-05
3-methylpyridine negative -1.157376 2.254920e-01 -2.254687e-02 1.620877e-03 8.925787e-05 -9.833865e-06 -1.083773e-06 -3.888234e-08 -5.008290e-10
3-pentanone positive -1.099605 -6.015719e-01 1.189729e+00 -2.031716e+00 7.909466e-01 -1.536795e-01 1.640665e-02 -9.195861e-04 2.118029e-05
3-pentanone negative -1.104651 2.422862e-01 -1.908788e-02 7.936843e-04 -2.697414e-05 -1.371452e-05 -9.593013e-07 -2.847044e-08 -3.231451e-10
4-methyl-1,3-
dioxolan-2-one

positive -0.796122 -1.370842e+00 2.473309e+00 -2.134372e+00 6.174558e-01 -9.332031e-02 7.855071e-03 -3.477306e-04 6.285176e-06

4-methyl-1,3-
dioxolan-2-one

negative -0.899483 5.060501e-01 -8.406628e-02 7.073692e-03 2.410429e-03 2.493096e-04 1.322871e-05 3.630058e-07 4.085229e-09

4-methyl-2-pentanone positive -1.065203 -9.031389e-01 1.887158e+00 -2.293542e+00 8.280320e-01 -1.537335e-01 1.586642e-02 -8.654581e-04 1.948694e-05
4-methyl-2-pentanone negative -1.105207 2.795487e-01 -2.251930e-02 1.209285e-03 6.466472e-05 -7.792340e-06 -8.078170e-07 -2.800327e-08 -3.514340e-10
4-methylpyridine positive -1.113174 -1.164421e+00 3.292704e+00 -4.127523e+00 1.574576e+00 -3.069144e-01 3.301670e-02 -1.865600e-03 4.329297e-05
4-methylpyridine negative -1.133833 2.341870e-01 -2.354486e-02 2.053388e-03 1.772430e-04 -3.665480e-06 -8.764673e-07 -3.580697e-08 -4.897893e-10
N,N-diethylacetamide positive -1.162744 3.876024e-02 9.749989e-01 -2.893522e+00 1.244727e+00 -2.573894e-01 2.877658e-02 -1.672567e-03 3.967642e-05
N,N-diethylacetamide negative -1.082366 2.467775e-01 -2.242817e-02 1.395823e-03 5.017602e-05 -1.267346e-05 -1.184135e-06 -4.050791e-08 -5.089947e-10
N,N-
diethylformamide

positive -1.110526 -2.107473e-01 1.320457e+00 -2.920134e+00 1.214672e+00 -2.470204e-01 2.731899e-02 -1.575340e-03 3.714222e-05

N,N-
diethylformamide

negative -1.058265 2.816857e-01 -2.513720e-02 1.963419e-03 2.218124e-04 3.534726e-06 -4.228862e-07 -2.229887e-08 -3.314444e-10

N,N-
dimethylacetamide

positive -1.053424 -3.293968e-01 1.463040e+00 -2.974736e+00 1.218761e+00 -2.458390e-01 2.704621e-02 -1.553900e-03 3.653727e-05

N,N-
dimethylacetamide

negative -1.010376 3.189667e-01 -2.792788e-02 2.343837e-03 3.142104e-04 1.257207e-05 2.980706e-08 -1.068045e-08 -2.093312e-10

N,N-dimethylaniline positive -1.126464 -5.269993e-01 -6.411607e-02 -1.528968e-01 4.461520e-02 -5.876325e-03 4.004190e-04 -1.291959e-05 1.310248e-07
N,N-dimethylaniline negative -1.130514 1.871544e-01 -1.771213e-02 4.764554e-04 -1.126826e-04 -1.851489e-05 -1.015298e-06 -2.558882e-08 -2.518874e-10
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N,N-
dimethylformamide

positive -1.026662 -4.213129e-01 1.372187e+00 -2.758362e+00 1.122486e+00 -2.252456e-01 2.467778e-02 -1.413012e-03 3.313077e-05

N,N-
dimethylformamide

negative -0.994567 3.392553e-01 -3.026358e-02 2.563176e-03 4.098099e-04 2.291191e-05 5.775372e-07 4.026072e-09 -4.882096e-11

N,N-
dimethylthioformamide

positive -0.841709 -7.843264e-01 8.072388e-01 -1.102725e+00 3.609474e-01 -6.082947e-02 5.756769e-03 -2.906837e-04 6.107376e-06

N,N-
dimethylthioformamide

negative -0.870364 4.089936e-01 -4.491115e-02 1.095658e-02 2.156113e-03 1.784980e-04 8.023909e-06 1.915047e-07 1.906952e-09

N-methyl pyrrolidi-
none

positive -1.138885 2.028837e-01 2.212266e-01 -2.329194e+00 1.050974e+00 -2.211728e-01 2.496666e-02 -1.460306e-03 3.479916e-05

N-methyl pyrrolidi-
none

negative -1.045894 2.806242e-01 -2.269705e-02 1.321724e-03 1.979780e-04 8.032772e-06 3.887296e-08 -5.526114e-09 -1.101804e-10

N-methylacetamide positive -0.971041 -7.558858e-01 2.685987e+00 -3.815552e+00 1.495038e+00 -2.957687e-01 3.214861e-02 -1.830965e-03 4.275930e-05
N-methylacetamide negative -1.057572 -1.627625e-01 -4.918774e-01 -1.834077e-01 -3.454645e-02 -3.203095e-03 -1.572083e-04 -3.940175e-06 -3.975831e-08
N-methylformamide positive -0.917036 -7.499153e-01 2.108621e+00 -3.085488e+00 1.195129e+00 -2.339764e-01 2.521856e-02 -1.426474e-03 3.312496e-05
N-methylformamide negative -1.004859 -2.158321e-01 -5.544517e-01 -2.306867e-01 -4.896145e-02 -5.109253e-03 -2.828990e-04 -8.036514e-06 -9.251761e-08
acetic acid positive -0.975667 -6.005733e-01 5.269518e-01 -1.746808e-01 -1.296217e-01 5.357360e-02 -8.018689e-03 5.494448e-04 -1.447887e-05
acetic acid negative -0.848413 1.213769e+00 1.040118e+00 4.495912e-01 7.203073e-02 6.132129e-03 2.939296e-04 7.502015e-06 7.946764e-08
acetic anhydride positive -1.004030 -6.866539e-01 8.208229e-01 -1.015971e+00 3.260489e-01 -5.371791e-02 4.950376e-03 -2.427690e-04 4.945800e-06
acetic anhydride negative -1.033900 3.324099e-01 -3.558950e-02 1.091420e-02 1.879519e-03 1.413498e-04 5.749921e-06 1.227338e-07 1.076221e-09
acetone positive -0.946746 -6.209410e-01 1.286206e+00 -2.099822e+00 8.124743e-01 -1.574188e-01 1.677596e-02 -9.390676e-04 2.160703e-05
acetone negative -0.954252 3.799352e-01 -3.496309e-02 2.884898e-03 6.258445e-04 4.690239e-05 1.861574e-06 3.891459e-08 3.372833e-10
acetonitrile positive -0.890007 -1.028930e+00 1.591440e+00 -1.429501e+00 4.027594e-01 -5.817411e-02 4.596457e-03 -1.863540e-04 2.963100e-06
acetonitrile negative -0.957463 4.006980e-01 -5.103684e-02 2.417179e-02 5.037586e-03 4.598732e-04 2.277645e-05 5.954107e-07 6.451008e-09
acetophenone positive -1.035587 -1.103635e+00 2.098050e+00 -2.246237e+00 7.664113e-01 -1.364567e-01 1.360548e-02 -7.204309e-04 1.580409e-05
acetophenone negative -1.095734 2.987196e-01 -2.771455e-02 2.642062e-03 3.445964e-04 1.270915e-05 -6.249711e-08 -1.504596e-08 -2.731288e-10
acrylonitrile positive -0.951298 -9.088521e-01 1.338533e+00 -1.152813e+00 2.969979e-01 -3.747810e-02 2.371061e-03 -6.108352e-05 7.284002e-08
acrylonitrile negative -1.010254 3.911575e-01 -3.113318e-02 2.338150e-02 4.155574e-03 3.390932e-04 1.521205e-05 3.628905e-07 3.607852e-09
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allyl alcohol positive -0.923042 -8.471008e-01 1.289169e+00 -1.671861e+00 5.938274e-01 -1.079852e-01 1.092842e-02 -5.857198e-04 1.298472e-05
allyl alcohol negative -0.903702 4.442004e-01 9.199905e-02 9.969019e-03 -9.490998e-03 -1.754741e-03 -1.274816e-04 -4.308530e-06 -5.633420e-08
aminoethanol positive -0.732261 -1.381674e+00 2.538456e+00 -2.554444e+00 8.379649e-01 -1.446776e-01 1.406316e-02 -7.286221e-04 1.568037e-05
aminoethanol negative -0.800914 3.233472e-01 -3.420746e-02 -3.945470e-03 -7.084336e-03 -1.133818e-03 -7.690779e-05 -2.476148e-06 -3.116189e-08
ammonia positive -1.092967 2.439675e+00 -5.694131e+00 5.016397e+00 -2.056090e+00 4.251579e-01 -4.726208e-02 2.710046e-03 -6.309725e-05
ammonia negative -0.911922 1.082704e+00 -7.590632e-01 -1.568647e-01 -1.941159e-02 -1.473717e-03 -6.718946e-05 -1.687094e-06 -1.792038e-08
aniline positive -0.983026 -5.891364e-01 3.434857e-01 -2.902169e-01 -6.416851e-03 1.807930e-02 -3.251646e-03 2.381144e-04 -6.478800e-06
aniline negative -0.972816 4.882414e-01 1.865492e-01 1.122971e-01 1.707675e-02 1.322987e-03 5.697119e-05 1.296679e-06 1.216124e-08
anisole positive -1.099428 -5.632276e-01 8.434079e-03 -1.925848e-01 4.054378e-02 -2.643298e-03 -1.199677e-04 2.315738e-05 -8.164432e-07
anisole negative -1.107089 2.233003e-01 -2.099917e-02 1.258410e-03 6.165841e-05 -8.757133e-06 -8.865579e-07 -3.072260e-08 -3.863969e-10
benzaldehyde positive -1.063402 -8.802906e-01 1.356040e+00 -1.484513e+00 4.842231e-01 -8.205588e-02 7.794973e-03 -3.941336e-04 8.276339e-06
benzaldehyde negative -1.109776 2.591776e-01 -2.717476e-02 4.177566e-03 4.276151e-04 6.031280e-06 -9.327595e-07 -4.899555e-08 -7.394734e-10
benzene positive -1.189915 -2.975202e-01 -7.854975e-02 -4.775659e-03 -3.519288e-03 1.315465e-03 -1.690335e-04 9.986133e-06 -2.302440e-07
benzene negative -1.189496 1.985797e-01 -1.735657e-02 8.341845e-04 4.654585e-05 -5.258833e-06 -5.368625e-07 -1.816879e-08 -2.226062e-10
benzonitrile positive -1.048517 -1.097759e+00 1.840836e+00 -1.536684e+00 4.182550e-01 -5.795094e-02 4.309807e-03 -1.583963e-04 2.091936e-06
benzonitrile negative -1.127831 2.947858e-01 -2.584035e-02 1.147186e-02 1.648366e-03 9.958969e-05 2.902069e-06 3.215559e-08 -4.757467e-11
benzoyl bromide positive -1.140607 -2.762925e-01 -1.132796e-01 6.273632e-02 -8.628298e-02 2.524515e-02 -3.301780e-03 2.081593e-04 -5.164174e-06
benzoyl bromide negative -1.142758 2.823423e-01 -2.552310e-02 9.769452e-03 1.192997e-03 5.231034e-05 3.772888e-07 -3.710464e-08 -8.229108e-10
benzoyl chloride positive -1.135102 -4.112152e-01 1.393608e-01 -1.109153e-01 -5.135222e-02 2.331377e-02 -3.518297e-03 2.398418e-04 -6.268021e-06
benzoyl chloride negative -1.151465 2.658659e-01 -2.591277e-02 8.140501e-03 9.152816e-04 3.002579e-05 -5.942907e-07 -5.931235e-08 -1.031597e-09
benzyl alcohol positive -1.036152 -9.222333e-01 1.339480e+00 -1.362757e+00 4.206265e-01 -6.731232e-02 6.022895e-03 -2.860547e-04 5.625470e-06
benzyl alcohol negative -1.006913 5.162709e-01 2.231354e-01 5.542374e-02 -2.926053e-03 -1.259071e-03 -1.071265e-04 -3.883826e-06 -5.290022e-08
benzyl methyl ketone positive -1.012960 -1.160353e+00 2.262328e+00 -2.505430e+00 8.762661e-01 -1.592704e-01 1.616562e-02 -8.695243e-04 1.934327e-05
benzyl methyl ketone negative -1.071060 2.959356e-01 -2.816856e-02 2.965240e-03 3.599461e-04 1.101198e-05 -2.557430e-07 -2.225667e-08 -3.696853e-10
benzylamine positive -0.957606 -2.209556e+00 4.746851e+00 -4.115330e+00 1.345991e+00 -2.342428e-01 2.294078e-02 -1.195283e-03 2.582312e-05
benzylamine negative -1.115044 2.981421e-01 -3.182591e-02 3.725970e-03 -5.791067e-04 -1.476949e-04 -1.090602e-05 -3.581109e-07 -4.507166e-09
bis(2-chloroethyl)
ether

positive -1.027982 -1.284074e+00 1.835173e+00 -1.461526e+00 3.742673e-01 -4.713444e-02 2.958614e-03 -7.364565e-05 -3.183870e-08
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bis(2-chloroethyl)
ether

negative -1.114571 2.888501e-01 -2.890324e-02 5.017551e-03 6.827925e-04 3.243093e-05 4.384971e-07 -1.264316e-08 -3.465295e-10

bromobenzene positive -1.211649 -1.950952e-01 -2.971593e-02 -2.934090e-03 5.235983e-07 -2.277310e-06 6.115580e-06 -6.357222e-07 1.929776e-08
bromobenzene negative -1.210721 2.304548e-01 -2.518351e-02 3.807067e-03 3.582655e-04 6.959800e-08 -1.212658e-06 -5.587748e-08 -8.090430e-10
bromoform positive -1.235369 -1.270848e-01 -7.795914e-03 4.777123e-05 -1.665210e-04 4.415585e-05 -5.610851e-06 3.604316e-07 -9.277175e-09
bromoform negative -1.230539 4.441234e-01 -3.998380e-02 2.890628e-02 4.877835e-03 3.853956e-04 1.697268e-05 4.012182e-07 3.977461e-09
butanoic acid positive -0.976912 -9.148617e-01 1.403207e+00 -1.551652e+00 5.096408e-01 -8.682323e-02 8.287808e-03 -4.210345e-04 8.882872e-06
butanoic acid negative -0.837766 9.531500e-01 5.442380e-01 1.231030e-01 -9.759377e-04 -1.848570e-03 -1.721241e-04 -6.490239e-06 -9.059340e-08
butyl acetate positive -1.118116 -8.556103e-01 1.500635e+00 -1.970699e+00 7.139616e-01 -1.322924e-01 1.361568e-02 -7.406998e-04 1.663804e-05
butyl acetate negative -1.150851 2.184744e-01 -1.557473e-02 6.432648e-04 5.498406e-05 -4.805272e-07 -1.658881e-07 -6.128762e-09 -7.479294e-11
butyraldehyde positive -1.081857 -7.123522e-01 9.922994e-01 -1.353706e+00 4.759671e-01 -8.539811e-02 8.531322e-03 -4.518733e-04 9.911654e-06
butyraldehyde negative -1.110285 2.554868e-01 -2.125699e-02 1.082561e-03 3.492455e-05 -9.485480e-06 -8.338755e-07 -2.729232e-08 -3.305717e-10
carbon disulfide positive -1.307329 -1.331750e-14 1.535566e-14 -8.375219e-15 2.519390e-15 -4.455997e-16 4.617044e-17 -2.589313e-18 6.062553e-20
carbon disulfide negative -1.306941 1.497615e-01 -1.405268e-02 3.532408e-04 -9.846491e-05 -1.476241e-05 -7.493433e-07 -1.720725e-08 -1.504067e-10
carbon tetrachloride positive -1.261980 -3.877713e-02 -5.338951e-03 1.845617e-03 -3.481963e-04 2.569704e-05 5.555989e-07 -1.775134e-07 6.831965e-09
carbon tetrachloride negative -1.260284 3.119126e-01 -3.204632e-02 5.649235e-03 8.838734e-04 5.406136e-05 1.616274e-06 2.007596e-08 2.295846e-11
chlorobenzene positive -1.220774 -2.122768e-01 -3.561007e-02 -2.909212e-03 -2.999222e-04 7.370811e-05 -8.888351e-07 -3.596108e-07 1.568975e-08
chlorobenzene negative -1.219861 2.103213e-01 -2.369259e-02 3.164763e-03 1.627164e-04 -2.073565e-05 -2.320733e-06 -8.584762e-08 -1.138251e-09
chloroform positive -1.220126 -1.662607e-01 -9.942860e-03 -4.672309e-04 -2.678255e-06 1.475957e-05 -2.411077e-06 1.740120e-07 -4.822481e-09
chloroform negative -1.187073 4.507678e-01 1.422460e-01 9.442700e-02 1.417198e-02 1.072633e-03 4.489395e-05 9.877984e-07 8.891901e-09
cinnamaldehyde positive -1.049978 -1.188297e+00 2.374332e+00 -2.412035e+00 8.151099e-01 -1.441945e-01 1.429285e-02 -7.526208e-04 1.642305e-05
cinnamaldehyde negative -1.119384 2.714404e-01 -2.651356e-02 7.031756e-03 8.085601e-04 2.707704e-05 -4.691457e-07 -4.994430e-08 -8.723444e-10
cis-decalin positive -1.250649 -1.040285e-02 -5.911493e-04 -1.045394e-04 1.008522e-04 -2.630826e-05 3.257800e-06 -1.986837e-07 4.812402e-09
cis-decalin negative -1.249260 1.509201e-01 -3.231850e-03 2.682489e-04 4.100234e-05 3.223094e-06 1.542416e-07 4.067209e-09 4.500708e-11
cis-perfluorodecalin positive -1.198594 -2.176718e-02 -2.745649e-03 9.409617e-04 -2.088799e-04 2.473520e-05 -1.494943e-06 3.511522e-08 8.785907e-11
cis-perfluorodecalin negative -1.191385 2.839656e-01 -1.220737e-02 1.822717e-02 1.726858e-03 3.470725e-05 -3.046931e-06 -1.823644e-07 -2.916539e-09
cyclohexane positive -1.265174 -7.534225e-03 -2.617612e-04 -9.611194e-05 5.185752e-05 -1.027065e-05 1.013843e-06 -5.024906e-08 9.998582e-10
cyclohexane negative -1.263755 1.572376e-01 -3.257131e-03 2.778808e-04 4.370735e-05 3.478430e-06 1.674658e-07 4.436342e-09 4.931251e-11
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cyclohexanol positive -1.045304 -1.008202e+00 1.914852e+00 -2.136170e+00 7.407897e-01 -1.332562e-01 1.338928e-02 -7.135150e-04 1.573936e-05
cyclohexanol negative -1.062352 2.767972e-01 -6.118314e-02 -7.460781e-02 -2.746725e-02 -3.655062e-03 -2.354432e-04 -7.473317e-06 -9.399565e-08
cyclohexanone positive -1.107701 -4.739699e-01 1.104379e+00 -2.164411e+00 8.683263e-01 -1.719499e-01 1.861978e-02 -1.055466e-03 2.453549e-05
cyclohexanone negative -1.097513 2.598276e-01 -2.030397e-02 1.032522e-03 1.255622e-04 2.575703e-06 -1.616493e-07 -9.089073e-09 -1.330960e-10
cyclopentanone positive -1.109450 -4.758185e-01 1.001566e+00 -2.035862e+00 8.172843e-01 -1.616524e-01 1.748089e-02 -9.896602e-04 2.298030e-05
cyclopentanone negative -1.100517 2.739290e-01 -2.220193e-02 1.218987e-03 1.995855e-04 9.214041e-06 1.275723e-07 -2.697551e-09 -7.573462e-11
di-n-butylamine positive -1.204755 -9.289133e-01 3.555454e+00 -4.612066e+00 1.789102e+00 -3.530602e-01 3.835336e-02 -2.184447e-03 5.102805e-05
di-n-butylamine negative -1.206633 1.414951e-01 -2.054314e-02 -2.056509e-03 -2.533343e-04 4.537314e-05 6.735651e-06 2.983533e-07 4.488261e-09
di-n-
butylorthophthalate

positive -1.127885 -7.344878e-01 1.200648e+00 -1.960801e+00 7.499961e-01 -1.438886e-01 1.521030e-02 -8.457537e-04 1.935182e-05

di-n-
butylorthophthalate

negative -1.140677 1.839395e-01 -1.492034e-02 5.728321e-04 -3.196237e-05 -6.310619e-06 -2.726810e-07 -4.456747e-09 -1.665685e-11

di-n-propyl ether positive -1.170545 -7.487239e-01 1.205907e+00 -1.751811e+00 6.471714e-01 -1.211503e-01 1.255745e-02 -6.869081e-04 1.550023e-05
di-n-propyl ether negative -1.193634 1.520120e-01 -6.143164e-03 3.265838e-04 3.848856e-05 2.615882e-06 1.284146e-07 3.668895e-09 4.388811e-11
dibenzyl ether positive -1.168831 -4.093266e-01 -6.220807e-03 -8.147222e-02 -2.357836e-02 1.234023e-02 -1.891521e-03 1.287451e-04 -3.345058e-06
dibenzyl ether negative -1.177149 1.931783e-01 -1.562828e-02 6.571086e-04 1.999906e-05 -5.490710e-06 -4.521547e-07 -1.394646e-08 -1.598459e-10
dibromomethane positive -1.204122 -2.497659e-01 -2.410580e-02 -1.863594e-03 2.330110e-04 -1.846143e-05 2.088461e-06 -1.488322e-07 3.994112e-09
dibromomethane negative -1.196433 3.778413e-01 -9.612559e-03 3.551916e-02 5.941489e-03 4.740414e-04 2.091696e-05 4.909639e-07 4.796634e-09
dibutyl ether positive -1.159555 -8.881057e-01 1.581952e+00 -1.987550e+00 7.135710e-01 -1.314250e-01 1.346018e-02 -7.291627e-04 1.631855e-05
dibutyl ether negative -1.195882 1.571710e-01 -5.213379e-03 3.072989e-04 4.358237e-05 3.256140e-06 1.585292e-07 4.360731e-09 5.042880e-11
dibutyl sulfide positive -1.195378 -4.756672e-01 5.123250e-01 -4.575915e-01 7.792091e-02 -1.138822e-03 -9.939841e-04 1.036985e-04 -3.256942e-06
dibutyl sulfide negative -1.225394 1.805517e-01 -8.020861e-03 3.741074e-04 4.811518e-05 3.068341e-06 1.398659e-07 3.895465e-09 4.685184e-11
dibutyl sulfoxide positive -1.190005 2.476613e-02 1.660652e+00 -3.677740e+00 1.553128e+00 -3.197085e-01 3.570075e-02 -2.074783e-03 4.923194e-05
dibutyl sulfoxide negative -1.097893 2.572014e-01 -1.984941e-02 9.535848e-04 7.300264e-05 -2.015851e-06 -3.505367e-07 -1.298916e-08 -1.652968e-10
dichloroacetic acid positive -1.093494 -1.697568e-01 -1.737701e-01 9.234743e-02 -3.999437e-02 6.488061e-03 -4.674096e-04 1.293005e-05 -1.594566e-08
dichloroacetic acid negative -1.243968 -2.468293e-02 1.468593e-01 4.095155e-01 9.221966e-02 9.747854e-03 5.528989e-04 1.624421e-05 1.943702e-07
dichloromethane positive -1.189386 -2.882673e-01 -3.833106e-02 -2.729660e-03 9.270732e-05 5.071457e-05 -5.318730e-06 1.816119e-07 -1.313649e-09
dichloromethane negative -1.176839 3.650568e-01 2.278269e-02 4.488576e-02 7.046246e-03 5.379154e-04 2.262496e-05 5.020085e-07 4.587114e-09
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diethanolamine positive -0.757092 -5.554292e-01 -9.210169e-03 -9.690592e-01 4.046202e-01 -8.081081e-02 8.799095e-03 -5.011126e-04 1.169425e-05
diethanolamine negative -0.680328 4.372788e-01 1.142938e-01 5.881110e-03 -1.272094e-02 -2.241203e-03 -1.605613e-04 -5.394171e-06 -7.032271e-08
diethyl carbonate positive -1.055694 -6.852655e-01 5.999001e-01 -1.143515e+00 4.200298e-01 -7.729282e-02 7.880337e-03 -4.249036e-04 9.470571e-06
diethyl carbonate negative -1.071072 2.757722e-01 -1.766985e-02 6.181134e-04 1.225541e-04 6.722831e-06 1.801981e-07 2.197433e-09 6.778439e-12
diethyl ether positive -1.129426 -5.867176e-01 5.928289e-01 -1.430427e+00 5.683280e-01 -1.106344e-01 1.178859e-02 -6.589310e-04 1.513495e-05
diethyl ether negative -1.129687 1.852348e-01 -6.794973e-03 3.513602e-04 5.208413e-05 3.814780e-06 1.823031e-07 5.002368e-09 5.827489e-11
diethyl malonate positive -1.001798 -7.240751e-01 6.779848e-01 -1.307908e+00 4.915549e-01 -9.220045e-02 9.548694e-03 -5.216149e-04 1.175496e-05
diethyl malonate negative -1.015218 2.883752e-01 -2.281383e-02 1.219968e-03 1.740846e-04 6.890261e-06 2.691844e-08 -4.945838e-09 -9.634369e-11
diethyl sulfate positive -1.026366 -6.706218e-01 4.322043e-01 -7.514381e-01 2.499028e-01 -4.195147e-02 3.930571e-03 -1.960674e-04 4.067167e-06
diethyl sulfate negative -1.045133 2.763100e-01 -2.692733e-02 2.731084e-03 3.914227e-04 1.770740e-05 1.903441e-07 -8.590203e-09 -2.059536e-10
diethyl sulfide positive -1.175237 -5.215699e-01 4.944057e-01 -5.562948e-01 1.409147e-01 -1.666890e-02 9.193935e-04 -1.429057e-05 -3.488334e-07
diethyl sulfide negative -1.200890 2.160486e-01 -1.288420e-02 4.977308e-04 5.745433e-05 1.706581e-06 4.713001e-09 -6.426419e-10 -8.352049e-12
diethyl sulfite positive -1.059992 -6.468280e-01 6.185778e-01 -1.262521e+00 4.789585e-01 -9.033456e-02 9.393414e-03 -5.147929e-04 1.163241e-05
diethyl sulfite negative -1.070955 2.649034e-01 -1.991938e-02 9.595166e-04 1.106875e-04 1.867804e-06 -1.656863e-07 -8.525767e-09 -1.211843e-10
diethylamine positive -1.200219 -5.366098e-01 2.607542e+00 -4.016538e+00 1.608952e+00 -3.225842e-01 3.540326e-02 -2.031490e-03 4.772995e-05
diethylamine negative -1.168759 1.798610e-01 -3.347980e-02 -6.812002e-03 -1.502131e-03 -1.104747e-04 -2.976541e-06 -1.144652e-10 8.615666e-10
diethylene glycol positive -0.884778 -5.740656e-01 -1.533613e-01 -6.692637e-01 2.921061e-01 -5.831714e-02 6.274934e-03 -3.523312e-04 8.112067e-06
diethylene glycol negative -0.707477 9.143510e-01 6.287372e-01 1.917443e-01 1.684103e-02 2.641650e-04 -4.236781e-05 -2.459060e-06 -4.037309e-08
diethylene glycol
dimethyl ether

positive -1.127449 -6.142188e-01 1.275496e-01 -8.068991e-01 3.210459e-01 -6.144364e-02 6.433309e-03 -3.540053e-04 8.021571e-06

diethylene glycol
dimethyl ether

negative -1.129541 1.839603e-01 -9.825982e-03 4.332357e-04 4.081143e-05 1.720452e-06 6.578825e-08 2.021846e-09 2.809793e-11

dihydrolevoglucosenone positive -0.922182 -6.845493e-01 6.914088e-01 -1.270180e+00 4.700545e-01 -8.726686e-02 8.969964e-03 -4.871333e-04 1.092559e-05
dihydrolevoglucosenone negative -0.936907 3.414829e-01 -3.455061e-02 5.207085e-03 8.598450e-04 5.587672e-05 1.861453e-06 2.974488e-08 1.565866e-10
diisopropyl ether positive -1.141392 -6.696884e-01 1.162635e+00 -1.876978e+00 7.166974e-01 -1.373310e-01 1.450093e-02 -8.054800e-04 1.841297e-05
diisopropyl ether negative -1.154167 1.703626e-01 -7.391766e-03 3.637859e-04 4.336648e-05 2.767452e-06 1.308596e-07 3.739349e-09 4.541101e-11
diisopropyl sulfide positive -1.164154 -4.735286e-01 4.314330e-01 -4.382414e-01 8.634944e-02 -4.913856e-03 -4.190595e-04 6.394891e-05 -2.202846e-06
diisopropyl sulfide negative -1.189443 1.922374e-01 -1.085077e-02 4.543487e-04 4.217050e-05 1.305484e-06 2.880560e-08 8.252923e-10 1.391437e-11
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dimethyl carbonate positive -0.916953 -6.611631e-01 1.133815e-01 -7.279292e-01 2.829781e-01 -5.314295e-02 5.480797e-03 -2.979298e-04 6.683370e-06
dimethyl carbonate negative -0.921456 3.334930e-01 -2.803446e-02 1.635915e-03 3.517306e-04 2.400994e-05 8.432609e-07 1.506534e-08 1.053738e-10
dimethyl sulfate positive -1.024729 -5.868370e-01 2.427458e-01 -5.135882e-01 1.640814e-01 -2.611119e-02 2.308199e-03 -1.083159e-04 2.108426e-06
dimethyl sulfate negative -1.036240 2.814025e-01 -2.610628e-02 1.223609e-02 1.797934e-03 1.143337e-04 3.675114e-06 5.299426e-08 1.812449e-10
dimethyl sulfide positive -1.102596 -5.273926e-01 3.699272e-01 -5.413417e-01 1.583472e-01 -2.297399e-02 1.817702e-03 -7.421731e-05 1.204088e-06
dimethyl sulfide negative -1.121694 2.749600e-01 -2.365304e-02 1.523237e-03 2.487826e-04 1.196477e-05 1.895516e-07 -2.668434e-09 -8.948264e-11
dimethylcyanamide positive -0.939983 -9.883430e-01 1.890840e+00 -2.268517e+00 8.117570e-01 -1.496598e-01 1.535609e-02 -8.334633e-04 1.868596e-05
dimethylcyanamide negative -0.981981 3.328570e-01 -3.674269e-02 1.062623e-02 1.930459e-03 1.503281e-04 6.345959e-06 1.416193e-07 1.311836e-09
dimethylphthalate positive -0.996607 -7.879669e-01 6.734243e-01 -1.145176e+00 4.107464e-01 -7.429723e-02 7.464649e-03 -3.973074e-04 8.753794e-06
dimethylphthalate negative -1.016631 2.577678e-01 -2.558324e-02 2.476071e-03 2.634916e-04 3.527779e-06 -5.655087e-07 -2.893867e-08 -4.284844e-10
dimethylsulfoxide positive -0.841684 -1.421172e+00 4.303744e+00 -4.867811e+00 1.816664e+00 -3.505053e-01 3.747169e-02 -2.108042e-03 4.875466e-05
dimethylsulfoxide negative -0.890509 4.681503e-01 -6.051261e-02 6.078221e-03 1.671249e-03 1.580460e-04 7.864337e-06 2.050695e-07 2.212832e-09
diphenyl ether positive -1.167208 -3.456227e-01 -1.422638e-01 3.292020e-02 -3.198821e-02 8.414076e-03 -1.010709e-03 5.923477e-05 -1.379568e-06
diphenyl ether negative -1.166215 1.956812e-01 -1.858138e-02 9.751170e-04 3.184531e-05 -9.289753e-06 -8.252295e-07 -2.727227e-08 -3.329349e-10
diphenyl ketone positive -1.075753 -1.181271e+00 2.353403e+00 -2.536486e+00 8.838086e-01 -1.602569e-01 1.623146e-02 -8.713758e-04 1.934987e-05
diphenyl ketone negative -1.137715 2.312834e-01 -2.248454e-02 1.598034e-03 7.301872e-05 -1.215582e-05 -1.220690e-06 -4.273019e-08 -5.437291e-10
ethanol positive -0.928881 -6.529969e-01 1.117066e+00 -1.797165e+00 6.827629e-01 -1.302703e-01 1.370624e-02 -7.590500e-04 1.730739e-05
ethanol negative -0.887748 4.264682e-01 4.726724e-02 -2.542575e-02 -1.845987e-02 -2.799427e-03 -1.907144e-04 -6.248878e-06 -8.025020e-08
ethyl acetate positive -1.028282 -7.681216e-01 1.112543e+00 -1.710938e+00 6.357115e-01 -1.193290e-01 1.239312e-02 -6.790292e-04 1.534425e-05
ethyl acetate negative -1.048914 2.904939e-01 -2.133067e-02 9.558287e-04 1.687813e-04 8.626755e-06 1.837425e-07 4.583940e-10 -2.744094e-11
ethyl acetoacetate positive -1.039025 -8.614806e-01 1.269186e+00 -1.578464e+00 5.439924e-01 -9.652216e-02 9.566741e-03 -5.035278e-04 1.098536e-05
ethyl acetoacetate negative -1.076533 2.838938e-01 -2.694446e-02 2.457161e-03 2.338310e-04 2.170803e-07 -7.310754e-07 -3.308122e-08 -4.707312e-10
ethyl benzoate positive -1.073470 -1.013164e+00 1.596361e+00 -1.735271e+00 5.783385e-01 -1.001426e-01 9.711600e-03 -5.008411e-04 1.071831e-05
ethyl benzoate negative -1.125498 2.410702e-01 -1.901414e-02 9.152977e-04 7.062883e-05 -2.449088e-06 -3.806346e-07 -1.388100e-08 -1.753520e-10
ethyl chloroacetate positive -1.122298 -4.338978e-01 1.606660e-01 -1.433931e-01 -3.795615e-02 2.059671e-02 -3.220385e-03 2.228885e-04 -5.874580e-06
ethyl chloroacetate negative -1.140232 3.403737e-01 -3.403231e-02 5.826819e-03 7.770173e-04 3.836046e-05 6.718088e-07 -7.485411e-09 -2.983879e-10
ethyl formate positive -0.989986 -7.606978e-01 8.166011e-01 -1.340678e+00 4.885063e-01 -8.983844e-02 9.163149e-03 -4.942734e-04 1.101947e-05
ethyl formate negative -1.010271 2.999657e-01 -2.585749e-02 1.712713e-03 2.882100e-04 1.555091e-05 3.558132e-07 1.273021e-09 -5.116056e-11
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ethyl phenyl ether positive -1.122177 -5.022706e-01 1.109463e-02 -1.707757e-01 2.897006e-02 -9.246625e-05 -4.099488e-04 3.996975e-05 -1.210973e-06
ethyl phenyl ether negative -1.129773 2.191490e-01 -1.708823e-02 7.579715e-04 5.241600e-05 -2.533788e-06 -3.259735e-07 -1.130396e-08 -1.379863e-10
ethyl phenyl ketone positive -1.072284 -1.130086e+00 2.088671e+00 -2.166567e+00 7.239430e-01 -1.265873e-01 1.241939e-02 -6.480885e-04 1.402876e-05
ethyl phenyl ketone negative -1.136988 2.463506e-01 -2.343317e-02 1.625127e-03 3.759797e-05 -1.725572e-05 -1.527496e-06 -5.163263e-08 -6.463312e-10
ethyl propionate positive -1.120045 -7.629037e-01 1.179984e+00 -1.776306e+00 6.605000e-01 -1.241670e-01 1.291361e-02 -7.084135e-04 1.602521e-05
ethyl propionate negative -1.141378 2.160622e-01 -1.518324e-02 6.269856e-04 4.867116e-05 -1.246736e-06 -2.033506e-07 -7.007376e-09 -8.310997e-11
ethyl trichloroacetate positive -1.152009 -2.686945e-01 -1.546785e-01 2.132747e-01 -1.828872e-01 4.987147e-02 -6.411679e-03 4.031787e-04 -1.002572e-05
ethyl trichloroacetate negative -1.160545 3.024899e-01 -3.144415e-02 5.339570e-03 8.393453e-04 5.126778e-05 1.524555e-06 1.864461e-08 1.615086e-11
ethylbenzene positive -1.199384 -2.438849e-01 -8.221834e-02 4.706478e-03 -8.906524e-03 2.405182e-03 -2.777697e-04 1.544264e-05 -3.407344e-07
ethylbenzene negative -1.198417 1.974898e-01 -1.242067e-02 4.944824e-04 4.340785e-05 3.471384e-07 -5.408840e-08 -1.901737e-09 -1.921359e-11
ethylene carbonate positive -0.725872 -1.164653e+00 1.870403e+00 -1.595483e+00 4.229405e-01 -5.645399e-02 3.979872e-03 -1.334538e-04 1.414023e-06
ethylene carbonate negative -0.815968 4.949575e-01 -1.206365e-01 8.901208e-03 3.665625e-03 4.071107e-04 2.268846e-05 6.463185e-07 7.492507e-09
ethylene glycol positive -0.575526 -5.144307e-01 -4.835076e-01 -5.556859e-01 2.768312e-01 -5.824684e-02 6.473367e-03 -3.719944e-04 8.718879e-06
ethylene glycol negative -0.389614 1.006167e+00 6.676750e-01 2.265044e-01 2.504941e-02 1.181196e-03 1.182101e-05 -8.198926e-07 -2.034614e-08
ethylenediamine positive -0.896011 -1.169582e+00 3.699716e+00 -4.417470e+00 1.670003e+00 -3.241976e-01 3.479090e-02 -1.962499e-03 4.548254e-05
ethylenediamine negative -0.921676 3.655967e-01 -1.921220e-02 2.229500e-02 3.609858e-03 2.699149e-04 1.099368e-05 2.349226e-07 2.055731e-09
fluorobenzene positive -1.212862 -1.615090e-01 -3.392162e-02 -3.353012e-03 -4.279935e-04 -8.294712e-06 1.982070e-05 -2.018627e-06 6.151351e-08
fluorobenzene negative -1.212124 2.106944e-01 -2.321577e-02 2.446376e-03 1.642739e-04 -1.094350e-05 -1.464731e-06 -5.576016e-08 -7.447860e-10
formamide positive -0.364552 -2.410346e+00 4.997939e+00 -3.969872e+00 1.220738e+00 -2.005812e-01 1.856231e-02 -9.137634e-04 1.864203e-05
formamide negative -0.488836 6.367041e-01 3.948967e-01 2.140707e-01 3.426956e-02 2.861282e-03 1.342333e-04 3.356022e-06 3.487063e-08
formic acid positive -0.955063 -2.215387e-01 -2.437649e-01 3.253938e-01 -2.462612e-01 6.527068e-02 -8.303364e-03 5.196575e-04 -1.289210e-05
formic acid negative -0.876824 9.646329e-01 9.326781e-01 5.176631e-01 9.444525e-02 8.932492e-03 4.696005e-04 1.302763e-05 1.489263e-07
furan positive -1.164100 -2.922032e-01 -1.268954e-01 2.057692e-02 -3.224557e-02 9.282088e-03 -1.172094e-03 7.126358e-05 -1.709880e-06
furan negative -1.162691 2.314644e-01 -2.508634e-02 5.794114e-03 5.965018e-04 1.084555e-05 -1.135914e-06 -6.414455e-08 -9.946501e-10
gamma-butyrolactone positive -0.904792 -7.274744e-01 1.176102e+00 -1.969073e+00 7.398432e-01 -1.402126e-01 1.470700e-02 -8.137255e-04 1.855910e-05
gamma-butyrolactone negative -0.916422 3.216833e-01 -3.539274e-02 9.318102e-03 1.684076e-03 1.282204e-04 5.265921e-06 1.138902e-07 1.017680e-09
glycerol positive -0.588453 -5.830061e-01 -2.164204e+00 4.074295e-01 1.068188e-03 -1.325379e-02 2.223242e-03 -1.552442e-04 4.095955e-06
glycerol negative -0.454556 3.577487e-01 1.033620e-01 -3.358946e-02 -2.511643e-02 -3.823802e-03 -2.617649e-04 -8.620328e-06 -1.112385e-07
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heptanoic acid positive -1.129264 -4.160789e-01 1.624252e-01 3.344660e-01 -3.732224e-01 1.087639e-01 -1.459041e-02 9.482665e-04 -2.422855e-05
heptanoic acid negative -0.945392 1.346259e+00 1.119348e+00 4.124197e-01 5.809756e-02 4.310463e-03 1.768353e-04 3.762683e-06 3.198079e-08
hexafluorobenzene positive -1.243311 -8.959422e-02 -6.273896e-03 1.093127e-03 -5.004731e-04 1.074659e-04 -1.256794e-05 7.645971e-07 -1.890995e-08
hexafluorobenzene negative -1.242590 2.224225e-01 -2.467523e-02 3.807710e-03 3.610061e-04 2.808923e-07 -1.207163e-06 -5.586577e-08 -8.101897e-10
hexamethylphosphoric
triamide

positive -1.323988 1.879068e+00 -2.787784e+00 -1.361696e+00 9.061574e-01 -2.152670e-01 2.592662e-02 -1.581826e-03 3.885784e-05

hexamethylphosphoric
triamide

negative -1.065320 2.083170e-01 -1.296873e-02 3.751806e-04 1.536084e-05 -2.300100e-06 -1.895216e-07 -5.598652e-09 -6.137355e-11

hexanoic acid positive -1.029724 -1.008700e+00 1.713668e+00 -1.671648e+00 5.215512e-01 -8.497963e-02 7.763548e-03 -3.771929e-04 7.601839e-06
hexanoic acid negative -0.908101 8.914197e-01 4.939126e-01 9.245096e-02 -7.884323e-03 -2.611172e-03 -2.169836e-04 -7.844029e-06 -1.071080e-07
hydrazine positive -0.574505 -1.377468e+00 4.008172e+00 -4.421845e+00 1.629684e+00 -3.112684e-01 3.299806e-02 -1.843278e-03 4.237591e-05
hydrazine negative -0.638507 5.462736e-01 -1.202215e-01 3.591542e-03 2.534136e-03 2.959372e-04 1.678126e-05 4.820455e-07 5.614915e-09
hydrogen fluoride positive -0.434075 4.562071e-02 -3.803266e-01 3.374770e-01 -1.795348e-01 4.101726e-02 -4.742655e-03 2.761243e-04 -6.460086e-06
hydrogen fluoride negative -0.875767 -2.098639e+00 -2.121163e+00 -2.793134e-01 -1.437268e-02 3.873878e-04 8.061455e-05 3.475677e-06 5.095788e-08
hydrogen peroxide positive -0.068345 -1.266862e+00 -5.581361e-01 3.917690e-02 2.015919e-02 -6.120790e-03 7.578750e-04 -4.559435e-05 1.093481e-06
hydrogen peroxide negative -0.105224 1.361692e-01 3.112663e-01 3.333778e-01 6.890535e-02 6.972562e-03 3.841087e-04 1.104339e-05 1.299196e-07
iodobenzene positive -1.215297 -1.959628e-01 -2.371654e-02 -2.283365e-03 1.992247e-04 -2.462606e-05 4.430317e-06 -3.448636e-07 9.401153e-09
iodobenzene negative -1.214113 2.331187e-01 -2.540824e-02 5.172498e-03 5.740135e-04 1.476000e-05 -7.128885e-07 -4.818309e-08 -7.773522e-10
isopentyl acetate positive -1.097834 -9.155021e-01 1.664746e+00 -2.037302e+00 7.241809e-01 -1.325258e-01 1.350680e-02 -7.287645e-04 1.625417e-05
isopentyl acetate negative -1.138469 2.189406e-01 -1.556222e-02 6.437046e-04 4.541145e-05 -1.174785e-06 -1.837008e-07 -6.211299e-09 -7.237247e-11
isopropylbenzene positive -1.206740 -2.140002e-01 -8.012677e-02 9.847253e-03 -1.021359e-02 2.460162e-03 -2.649808e-04 1.390183e-05 -2.907578e-07
isopropylbenzene negative -1.205497 1.882423e-01 -1.200117e-02 4.859126e-04 3.439148e-05 -3.263708e-07 -7.452622e-08 -2.125341e-09 -1.890388e-11
meta-cresol positive -1.066100 -4.363768e-01 7.801872e-03 -1.164830e-01 -2.594060e-03 7.301792e-03 -1.285630e-03 9.222385e-05 -2.463481e-06
meta-cresol negative -0.861363 1.377276e+00 1.329883e+00 5.702222e-01 9.362025e-02 8.197717e-03 4.042068e-04 1.060462e-05 1.153568e-07
meta-dichlorobenzene positive -1.232767 -1.755781e-01 -1.866219e-02 -9.493530e-04 -5.613048e-05 2.001723e-05 -1.517647e-06 6.159991e-08 -1.294225e-09
meta-dichlorobenzene negative -1.230580 2.451110e-01 -2.324895e-02 5.669636e-03 2.275100e-04 -4.435307e-05 -4.679596e-06 -1.733727e-07 -2.322036e-09
meta-xylene positive -1.181036 -3.004814e-01 -8.797094e-02 -6.722618e-03 -5.414048e-03 2.051606e-03 -2.719695e-04 1.657718e-05 -3.933176e-07
meta-xylene negative -1.180518 2.028485e-01 -1.243433e-02 4.695654e-04 5.602131e-05 1.629602e-06 -7.985833e-11 -8.090106e-10 -1.058405e-11
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methanesulfonic acid positive -0.736613 -7.049307e-01 4.746359e-01 -8.014696e-01 2.679604e-01 -4.529424e-02 4.272048e-03 -2.144366e-04 4.474648e-06
methanesulfonic acid negative -0.459162 1.564298e+00 1.172699e+00 4.107636e-01 5.029984e-02 2.955711e-03 7.811240e-05 3.773372e-07 -1.302114e-08
methanol positive -0.880521 -3.322054e-01 -9.625540e-02 -1.113183e+00 4.984544e-01 -1.025204e-01 1.131925e-02 -6.494213e-04 1.522394e-05
methanol negative -0.783086 4.339824e-01 8.018690e-02 -2.754335e-02 -2.137320e-02 -3.271316e-03 -2.241720e-04 -7.379704e-06 -9.514762e-08
methyl acetate positive -0.990400 -7.375345e-01 8.307139e-01 -1.457293e+00 5.459602e-01 -1.025452e-01 1.064095e-02 -5.823671e-04 1.314550e-05
methyl acetate negative -1.006029 3.007967e-01 -2.576931e-02 1.693091e-03 2.952655e-04 1.635907e-05 4.005673e-07 2.539317e-09 -3.671568e-11
methyl benzoate positive -1.069385 -9.451184e-01 1.316253e+00 -1.459625e+00 4.775611e-01 -8.094198e-02 7.683466e-03 -3.881038e-04 8.141188e-06
methyl benzoate negative -1.115480 2.424574e-01 -2.168855e-02 1.324431e-03 8.582711e-05 -6.295495e-06 -7.616851e-07 -2.749668e-08 -3.524432e-10
methyl formate positive -0.927701 -7.319457e-01 4.677307e-01 -1.055959e+00 3.946789e-01 -7.322337e-02 7.503728e-03 -4.060812e-04 9.076867e-06
methyl formate negative -0.939344 3.043316e-01 -3.114216e-02 4.368768e-03 7.015402e-04 4.259785e-05 1.250762e-06 1.488538e-08 6.700833e-12
methyl orthoacetate positive -1.066820 -6.453582e-01 4.607156e-01 -1.180006e+00 4.590275e-01 -8.770017e-02 9.201651e-03 -5.078056e-04 1.153995e-05
methyl orthoacetate negative -1.072535 2.001047e-01 -1.176029e-02 4.770529e-04 4.043882e-05 6.038933e-07 -2.138585e-08 -7.039011e-10 -3.901699e-12
methyl orthoformate positive -1.102422 -5.540768e-01 4.048067e-01 -1.178411e+00 4.686715e-01 -9.078879e-02 9.622540e-03 -5.352500e-04 1.224201e-05
methyl orthoformate negative -1.103789 2.176060e-01 -1.372523e-02 5.442458e-04 5.203710e-05 5.928739e-07 -6.468856e-08 -2.622594e-09 -3.051230e-11
methyl propionate positive -1.074423 -7.072472e-01 8.379708e-01 -1.494888e+00 5.654666e-01 -1.069264e-01 1.115346e-02 -6.130128e-04 1.388667e-05
methyl propionate negative -1.088305 2.268725e-01 -1.844149e-02 8.660906e-04 3.555527e-05 -6.242811e-06 -5.704750e-07 -1.860708e-08 -2.229013e-10
methylene iodide positive -1.249582 -1.591452e-01 -1.147435e-02 -8.397279e-04 8.025199e-05 -3.551864e-06 -8.374754e-08 2.727642e-08 -1.155025e-09
methylene iodide negative -1.245753 3.935789e-01 -3.557702e-02 3.004724e-02 5.743532e-03 5.043770e-04 2.429562e-05 6.206144e-07 6.589014e-09
methylphenylamine positive -1.029213 -6.146947e-01 -3.677326e-02 -2.051831e-01 4.486743e-02 -3.560879e-03 1.165848e-06 1.485829e-05 -5.921148e-07
methylphenylamine negative -1.013995 2.906515e-01 1.255444e-02 -3.091975e-04 -6.843370e-03 -1.152867e-03 -8.053216e-05 -2.652228e-06 -3.400489e-08
morpholine positive -1.065013 -3.233597e-01 1.826002e-01 -1.593483e+00 6.895045e-01 -1.406989e-01 1.550838e-02 -8.900862e-04 2.088830e-05
morpholine negative -1.045191 1.436644e-01 -8.763352e-02 -2.858994e-02 -6.068615e-03 -5.652389e-04 -2.653602e-05 -6.193127e-07 -5.687683e-09
n-butyl iodide positive -1.218090 -1.793740e-01 -4.385908e-02 -1.353748e-03 -1.826447e-03 3.776148e-04 -2.576326e-05 5.062859e-07 7.079736e-09
n-butyl iodide negative -1.217291 2.752571e-01 -2.390009e-02 1.445329e-03 1.387454e-04 4.646063e-07 -3.685466e-07 -1.644892e-08 -2.293725e-10
n-butylamine positive -1.086393 -1.655196e+00 4.810264e+00 -5.155719e+00 1.898327e+00 -3.633082e-01 3.860883e-02 -2.161706e-03 4.979989e-05
n-butylamine negative -1.158012 2.007675e-01 -3.565863e-02 -5.794664e-03 -2.773085e-03 -3.726619e-04 -2.299041e-05 -6.912690e-07 -8.240573e-09
n-butyronitrile positive -1.010939 -1.196344e+00 2.144540e+00 -1.916072e+00 5.757447e-01 -9.056417e-02 7.967480e-03 -3.712036e-04 7.135328e-06
n-butyronitrile negative -1.094825 3.420905e-01 -3.566642e-02 5.970110e-03 9.605474e-04 6.281347e-05 2.134005e-06 3.535612e-08 2.026509e-10
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n-decane positive -1.261883 -1.385071e-02 -9.313237e-04 -5.432894e-05 1.126886e-04 -3.250376e-05 4.226799e-06 -2.662652e-07 6.608045e-09
n-decane negative -1.260765 1.302323e-01 -3.815572e-03 2.729618e-04 3.704626e-05 2.859785e-06 1.407869e-07 3.838023e-09 4.366978e-11
n-dodecane positive -1.263659 -1.442047e-02 -9.848600e-04 -4.751254e-05 1.151768e-04 -3.362691e-05 4.397141e-06 -2.779805e-07 6.916747e-09
n-dodecane negative -1.262632 1.183338e-01 -3.700224e-03 2.630838e-04 3.341730e-05 2.568176e-06 1.278383e-07 3.511573e-09 4.008183e-11
n-heptane positive -1.248360 -1.475804e-02 -9.168941e-04 -8.464476e-05 1.222167e-04 -3.371722e-05 4.282788e-06 -2.654427e-07 6.506498e-09
n-heptane negative -1.247294 1.308505e-01 -4.120954e-03 2.831038e-04 3.795689e-05 2.920193e-06 1.451721e-07 4.007357e-09 4.611370e-11
n-hexadecane positive -1.257667 -1.343249e-02 -1.008666e-03 2.992371e-06 9.532460e-05 -2.996586e-05 4.042742e-06 -2.605498e-07 6.573138e-09
n-hexadecane negative -1.256501 1.301472e-01 -3.569590e-03 2.630774e-04 3.599597e-05 2.771214e-06 1.347324e-07 3.622555e-09 4.070947e-11
n-hexane positive -1.247730 -1.256684e-02 -8.148470e-04 -5.981254e-05 1.018082e-04 -2.868234e-05 3.682379e-06 -2.299093e-07 5.667254e-09
n-hexane negative -1.246739 1.250694e-01 -4.251915e-03 2.843878e-04 3.636050e-05 2.776796e-06 1.397910e-07 3.909035e-09 4.540583e-11
n-octane positive -1.263824 -1.303774e-02 -8.517058e-04 -6.147921e-05 1.068538e-04 -3.023026e-05 3.891512e-06 -2.434380e-07 6.009537e-09
n-octane negative -1.262736 1.302822e-01 -3.980394e-03 2.781372e-04 3.738224e-05 2.879615e-06 1.425530e-07 3.913090e-09 4.479633e-11
n-pentane positive -1.244461 -1.417847e-02 -8.654703e-04 -9.512188e-05 1.226424e-04 -3.343243e-05 4.227167e-06 -2.613291e-07 6.394694e-09
n-pentane negative -1.243218 1.550941e-01 -4.255604e-03 2.965100e-04 4.492928e-05 3.522544e-06 1.722568e-07 4.677875e-09 5.328534e-11
n-perfluorohexane positive -1.212019 -1.727357e-02 -9.747638e-04 -1.506005e-05 7.694863e-05 -2.144152e-05 2.681471e-06 -1.640965e-07 3.994455e-09
n-perfluorohexane negative -1.209537 2.468225e-01 -2.497919e-02 7.770474e-03 8.683302e-04 2.758524e-05 -6.416273e-07 -5.889121e-08 -1.011126e-09
n-propyl acetate positive -1.097363 -8.227055e-01 1.362403e+00 -1.875052e+00 6.846227e-01 -1.273547e-01 1.314305e-02 -7.165171e-04 1.612368e-05
n-propyl acetate negative -1.125868 2.417006e-01 -1.818952e-02 8.203961e-04 8.514944e-05 5.857631e-07 -1.852366e-07 -8.129636e-09 -1.091068e-10
nitrobenzene positive -1.117432 -5.732236e-01 7.213110e-01 -6.841618e-01 1.646596e-01 -1.795554e-02 7.886223e-04 4.944326e-06 -1.014834e-06
nitrobenzene negative -1.151388 3.053961e-01 -2.940485e-02 1.133688e-02 1.715646e-03 1.118218e-04 3.754049e-06 5.972460e-08 2.987623e-10
nitroethane positive -1.026150 -3.804724e-01 4.269414e-02 -1.286896e-01 -8.091570e-03 9.662730e-03 -1.634340e-03 1.157640e-04 -3.076074e-06
nitroethane negative -1.036031 4.547145e-01 -5.664858e-02 6.614125e-03 1.691185e-03 1.551953e-04 7.554083e-06 1.935485e-07 2.058472e-09
nitromethane positive -0.945861 -4.395990e-01 3.950244e-01 -4.119649e-01 7.988067e-02 -4.161076e-03 -4.574210e-04 6.419048e-05 -2.172072e-06
nitromethane negative -0.974708 5.167804e-01 -1.249680e-01 6.794627e-03 3.292921e-03 3.739307e-04 2.103843e-05 6.025984e-07 7.011115e-09
o-chloroaniline positive -1.095673 -2.146554e-01 -3.279741e-01 2.788627e-01 -1.757399e-01 4.340471e-02 -5.271407e-03 3.183299e-04 -7.670349e-06
o-chloroaniline negative -1.048256 5.161452e-01 2.310005e-01 1.396727e-01 2.202766e-02 1.788891e-03 8.138609e-05 1.971752e-06 1.984852e-08
ortho-cresol positive -1.074933 -3.938452e-01 5.671563e-02 -1.567331e-01 9.719158e-03 5.385538e-03 -1.124200e-03 8.525506e-05 -2.344082e-06
ortho-cresol negative -0.910151 1.158160e+00 1.013238e+00 4.347273e-01 6.933722e-02 5.879751e-03 2.808007e-04 7.141744e-06 7.539338e-08
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ortho-
dichlorobenzene

positive -1.194064 -2.525996e-01 -4.780262e-02 -2.034751e-03 -1.399326e-03 2.493695e-04 -1.085863e-05 -2.637691e-07 2.197884e-08

ortho-
dichlorobenzene

negative -1.191590 2.204322e-01 -2.163471e-02 6.765231e-03 4.038749e-04 -3.156150e-05 -4.205596e-06 -1.649827e-07 -2.271590e-09

ortho-xylene positive -1.202962 -2.501994e-01 -9.133702e-02 1.706618e-03 -1.090924e-02 3.305303e-03 -4.115952e-04 2.435211e-05 -5.674088e-07
ortho-xylene negative -1.202285 1.903919e-01 -1.307440e-02 5.104806e-04 4.440758e-05 -3.446390e-07 -1.182630e-07 -4.115324e-09 -4.713614e-11
p-chloroacetophenone positive -1.058284 -9.769928e-01 1.499755e+00 -1.245132e+00 3.177618e-01 -3.981373e-02 2.490640e-03 -6.207721e-05 -1.242471e-08
p-chloroacetophenone negative -1.127488 3.202646e-01 -3.155881e-02 6.151782e-03 7.960378e-04 3.704571e-05 4.664641e-07 -1.611638e-08 -4.224140e-10
p-
methoxybenzaldehyde

positive -0.993576 -1.146541e+00 1.996120e+00 -2.021751e+00 6.624172e-01 -1.135844e-01 1.093045e-02 -5.597777e-04 1.190006e-05

p-
methoxybenzaldehyde

negative -1.058772 3.103022e-01 -2.956512e-02 6.654922e-03 7.574025e-04 2.442721e-05 -5.025233e-07 -4.845904e-08 -8.333954e-10

para-cresol positive -1.066021 -4.416642e-01 1.099754e-02 -1.171418e-01 -3.652492e-03 7.698399e-03 -1.343054e-03 9.607383e-05 -2.563203e-06
para-cresol negative -0.858866 1.381644e+00 1.334695e+00 5.690902e-01 9.313114e-02 8.132334e-03 3.999667e-04 1.046849e-05 1.136211e-07
para-xylene positive -1.189879 -2.645885e-01 -8.932043e-02 2.427598e-03 -9.955986e-03 2.933042e-03 -3.582781e-04 2.086118e-05 -4.793875e-07
para-xylene negative -1.189094 2.013898e-01 -1.228366e-02 4.655396e-04 5.479058e-05 1.591382e-06 1.356031e-09 -7.058655e-10 -8.947886e-12
pentachloroethane positive -1.218970 -1.284891e-01 -1.022916e-02 1.166758e-03 -5.701988e-04 1.191863e-04 -1.357791e-05 8.114165e-07 -1.980509e-08
pentachloroethane negative -1.205156 3.814899e-01 1.125381e-02 3.140289e-02 3.125115e-03 7.948311e-05 -4.399045e-06 -3.009193e-07 -5.005823e-09
pentanoic acid positive -1.017759 -9.621483e-01 1.567783e+00 -1.651485e+00 5.356288e-01 -9.044841e-02 8.565298e-03 -4.317703e-04 9.039453e-06
pentanoic acid negative -0.884737 8.922008e-01 5.088830e-01 9.953020e-02 -6.518948e-03 -2.474371e-03 -2.094561e-04 -7.627820e-06 -1.045701e-07
perfluoroheptane positive -1.208520 -1.832552e-02 -9.401020e-04 -8.775288e-05 1.071132e-04 -2.723805e-05 3.260172e-06 -1.932724e-07 4.582315e-09
perfluoroheptane negative -1.206209 2.610699e-01 -2.635795e-02 7.315442e-03 8.594333e-04 3.164170e-05 -2.501429e-07 -4.452367e-08 -8.176282e-10
perfluoromethyl-
cyclohexane

positive -1.162218 -2.050490e-02 -1.076080e-03 -9.291692e-05 1.235702e-04 -3.209161e-05 3.894740e-06 -2.331889e-07 5.567548e-09

perfluoromethyl-
cyclohexane

negative -1.156677 2.646818e-01 -1.527264e-02 1.488046e-02 1.549405e-03 4.533618e-05 -1.541165e-06 -1.222391e-07 -2.073805e-09

perfluorooctane positive -1.211180 -1.599063e-02 -8.108330e-04 -7.498639e-05 8.927569e-05 -2.246695e-05 2.670075e-06 -1.575526e-07 3.724818e-09
perfluorooctane negative -1.208571 2.567087e-01 -2.511037e-02 8.102079e-03 9.375152e-04 3.371473e-05 -3.526603e-07 -5.175642e-08 -9.383298e-10
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phenol positive -1.050613 -3.943601e-01 -4.345966e-03 -1.127690e-01 1.780657e-03 5.630300e-03 -1.043526e-03 7.601439e-05 -2.044134e-06
phenol negative -0.887403 1.252752e+00 1.244587e+00 5.777139e-01 9.909845e-02 8.994252e-03 4.577596e-04 1.235926e-05 1.380229e-07
phenylacetonitrile positive -1.060001 -9.842373e-01 1.448481e+00 -1.112254e+00 2.487480e-01 -2.362311e-02 5.228776e-04 5.899528e-05 -3.001951e-06
phenylacetonitrile negative -1.132088 3.050456e-01 -2.893715e-02 1.006474e-02 1.289264e-03 6.431205e-05 1.122559e-06 -1.421476e-08 -5.440576e-10
phosphorus oxychlo-
ride

positive -1.069196 -3.501457e-01 2.729722e-01 -2.421178e-01 6.272693e-03 1.117692e-02 -2.163992e-03 1.621651e-04 -4.459359e-06

phosphorus oxychlo-
ride

negative -1.088793 4.276723e-01 -5.602866e-02 1.971040e-02 4.148476e-03 3.756131e-04 1.844350e-05 4.785493e-07 5.152241e-09

piperidine positive -1.201797 -3.814479e-01 2.306415e+00 -3.840326e+00 1.558134e+00 -3.143304e-01 3.463379e-02 -1.993005e-03 4.692863e-05
piperidine negative -1.163290 1.256808e-01 -5.991825e-02 -1.874677e-02 -4.062219e-03 -3.686156e-04 -1.647376e-05 -3.576127e-07 -2.946827e-09
propanoic acid positive -0.944659 -8.545867e-01 1.142825e+00 -1.454787e+00 4.997986e-01 -8.817255e-02 8.685193e-03 -4.543829e-04 9.857305e-06
propanoic acid negative -0.781888 9.945068e-01 5.959433e-01 1.425557e-01 2.112669e-03 -1.586364e-03 -1.596720e-04 -6.177788e-06 -8.736267e-08
propionaldehyde positive -1.058981 -6.491396e-01 7.070385e-01 -1.199892e+00 4.393788e-01 -8.083831e-02 8.236609e-03 -4.436313e-04 9.874912e-06
propionaldehyde negative -1.076723 2.539620e-01 -2.389850e-02 1.785179e-03 9.433778e-05 -1.159230e-05 -1.245208e-06 -4.444860e-08 -5.717427e-10
propionitrile positive -0.971017 -1.118543e+00 1.910137e+00 -1.750048e+00 5.252653e-01 -8.227563e-02 7.200994e-03 -3.335705e-04 6.371191e-06
propionitrile negative -1.046034 3.847024e-01 -4.231691e-02 7.547445e-03 1.444017e-03 1.134268e-04 4.833159e-06 1.092825e-07 1.029737e-09
pyridine positive -1.142033 -1.012114e+00 3.015439e+00 -3.810027e+00 1.450402e+00 -2.819805e-01 3.026311e-02 -1.706532e-03 3.953270e-05
pyridine negative -1.163000 2.114445e-01 -2.444976e-02 2.928828e-03 9.541925e-05 -2.708462e-05 -2.621529e-06 -9.315422e-08 -1.210845e-09
pyrimidine positive -1.028754 -6.594956e-01 1.119696e+00 -1.781229e+00 6.745341e-01 -1.284017e-01 1.348460e-02 -7.456310e-04 1.697947e-05
pyrimidine negative -1.042513 2.507960e-01 -2.498707e-02 5.397300e-03 1.824233e-04 -4.674111e-05 -4.708746e-06 -1.719945e-07 -2.286469e-09
pyrrole positive -0.904733 -6.649413e-01 -1.129687e-01 -2.968594e-01 1.162258e-01 -2.098714e-02 2.071462e-03 -1.080555e-04 2.336071e-06
pyrrole negative -0.759885 9.288828e-01 7.057711e-01 2.791028e-01 3.906776e-02 2.841171e-03 1.133545e-04 2.322809e-06 1.868959e-08
pyrrolidine positive -1.254375 2.412446e-02 1.716297e+00 -3.700597e+00 1.561006e+00 -3.211376e-01 3.584237e-02 -2.082134e-03 4.938889e-05
pyrrolidine negative -1.172113 1.481863e-01 -5.275195e-02 -1.538912e-02 -3.342220e-03 -2.954141e-04 -1.258794e-05 -2.526508e-07 -1.802850e-09
quinoline positive -1.063293 -1.627068e+00 3.688409e+00 -3.789140e+00 1.342421e+00 -2.486504e-01 2.570059e-02 -1.405238e-03 3.171811e-05
quinoline negative -1.148617 2.058809e-01 -2.359541e-02 2.128753e-03 1.178580e-05 -2.853630e-05 -2.431474e-06 -8.235088e-08 -1.040021e-09
styrene positive -1.168415 -3.241274e-01 -7.149878e-02 -5.076476e-03 -1.527381e-03 7.086475e-04 -9.278383e-05 5.441156e-06 -1.237551e-07
styrene negative -1.168016 2.150650e-01 -1.842078e-02 9.472320e-04 8.158186e-05 -2.343546e-06 -4.203003e-07 -1.588231e-08 -2.053667e-10
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sulfolane positive -0.864932 -9.985330e-01 2.314000e+00 -2.811392e+00 1.025938e+00 -1.927044e-01 2.010938e-02 -1.107988e-03 2.517378e-05
sulfolane negative -0.905912 4.043703e-01 -5.203194e-02 8.189524e-03 1.949117e-03 1.759585e-04 8.469018e-06 2.148905e-07 2.265493e-09
sulfur dioxide positive -1.050420 -3.241477e-01 -6.411350e-02 -5.967235e-02 1.218686e-03 2.973482e-03 -5.464092e-04 3.925723e-05 -1.041342e-06
sulfur dioxide negative -1.059361 2.841481e-01 -3.180295e-02 8.513194e-02 1.847605e-02 1.840781e-03 9.895576e-05 2.777684e-06 3.198501e-08
sulfuric acid positive -0.806814 -3.162963e-01 -1.643550e-01 4.628932e-02 -4.327584e-02 1.135411e-02 -1.371358e-03 8.098549e-05 -1.901295e-06
sulfuric acid negative -1.140228 -8.441434e-01 -2.260254e-01 4.021054e-01 1.015318e-01 1.126075e-02 6.576830e-04 1.972362e-05 2.396853e-07
tetrachloroethylene positive -1.265246 -4.933602e-02 -6.017960e-03 2.261312e-03 -6.421346e-04 1.022174e-04 -9.415684e-06 4.693270e-07 -9.826763e-09
tetrachloroethylene negative -1.264034 2.766013e-01 -2.720559e-02 3.338681e-03 3.132256e-04 -5.160856e-07 -1.085564e-06 -4.900120e-08 -7.015330e-10
tetraethylurea positive -1.152079 -7.257795e-01 2.145393e+00 -3.305226e+00 1.295222e+00 -2.551379e-01 2.761827e-02 -1.567599e-03 3.650815e-05
tetraethylurea negative -1.143592 1.987939e-01 -1.357668e-02 5.411274e-04 3.140123e-05 -1.811803e-06 -1.857370e-07 -5.618865e-09 -6.052000e-11
tetrahydrofuran positive -1.138680 7.411591e-02 -5.839523e-01 -1.213435e+00 6.024727e-01 -1.299644e-01 1.480481e-02 -8.691612e-04 2.074313e-05
tetrahydrofuran negative -1.073398 2.334199e-01 -1.243114e-02 4.555848e-04 6.755023e-05 3.439403e-06 1.069819e-07 2.183149e-09 2.262727e-11
tetrahydropyran positive -1.156291 -3.633272e-01 4.198692e-01 -1.589446e+00 6.673391e-01 -1.343872e-01 1.468445e-02 -8.372644e-04 1.954478e-05
tetrahydropyran negative -1.135436 2.116226e-01 -8.625014e-03 3.547241e-04 6.080412e-05 4.214465e-06 1.873008e-07 4.920483e-09 5.632119e-11
tetrahydrothiophene positive -1.167220 -5.606969e-01 5.507575e-01 -6.700491e-01 1.926391e-01 -2.769238e-02 2.166409e-03 -8.689358e-05 1.367285e-06
tetrahydrothiophene negative -1.193194 2.369677e-01 -1.677691e-02 6.909825e-04 9.429201e-05 2.706574e-06 -4.724007e-08 -4.026573e-09 -6.146934e-11
tetramethylsilane positive -1.225832 -5.677245e-02 -4.234084e-03 4.351291e-04 -2.466649e-04 5.358466e-05 -6.342535e-06 3.895435e-07 -9.694918e-09
tetramethylsilane negative -1.225238 1.781149e-01 -8.012929e-03 3.542535e-04 5.023740e-05 3.177720e-06 1.405160e-07 3.831639e-09 4.567172e-11
tetramethylurea positive -1.162390 1.124485e-01 3.258999e-01 -2.373863e+00 1.065478e+00 -2.237074e-01 2.520874e-02 -1.472352e-03 3.504427e-05
tetramethylurea negative -1.074158 2.661570e-01 -1.718086e-02 7.151529e-04 7.082209e-05 2.257286e-07 -1.590005e-07 -6.497953e-09 -8.345030e-11
thiane positive -1.154776 -5.374659e-01 5.418095e-01 -6.187414e-01 1.661410e-01 -2.170689e-02 1.464814e-03 -4.502039e-05 3.589128e-07
thiane negative -1.181461 2.417068e-01 -1.411261e-02 5.077092e-04 7.783287e-05 3.485494e-06 7.430399e-08 6.818353e-10 1.408666e-12
thiobis(2-ethanol) positive -0.774729 -5.675370e-01 -3.600620e-01 -6.650358e-01 3.069092e-01 -6.322363e-02 6.965520e-03 -3.983851e-04 9.307409e-06
thiobis(2-ethanol) negative -0.679025 4.887397e-01 8.047651e-02 -3.558088e-02 -2.443836e-02 -3.690201e-03 -2.518825e-04 -8.281001e-06 -1.067313e-07
thionyl chloride positive -1.196896 -1.457694e-01 -1.740513e-02 -4.157825e-03 7.822414e-04 -2.748970e-04 3.747659e-05 -2.106553e-06 4.248102e-08
thionyl chloride negative -1.212708 4.155181e-01 -1.509065e-01 4.381497e-02 1.200930e-02 1.283268e-03 7.156304e-05 2.057370e-06 2.410645e-08
toluene positive -1.177786 -3.206211e-01 -8.500471e-02 -6.514334e-03 -3.900884e-03 1.551857e-03 -2.055472e-04 1.243243e-05 -2.923964e-07
toluene negative -1.177366 2.021789e-01 -1.457605e-02 5.884702e-04 5.304883e-05 -6.025115e-07 -1.708759e-07 -6.234634e-09 -7.582273e-11

Continued on next page
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Coefficient Order
Molecule Name ε Region 0th 1th 2th 3th 4th 5th 6th 7th 8th

trans-1,2-
dichloroethylene

positive -1.238128 -1.460258e-01 -9.831067e-03 -7.299529e-04 7.049860e-05 -2.304694e-06 -2.891648e-07 4.206150e-08 -1.536739e-09

trans-1,2-
dichloroethylene

negative -1.229822 3.218240e-01 -9.362466e-04 2.365649e-02 2.922118e-03 1.485955e-04 2.626288e-06 -3.611476e-08 -1.369085e-09

tri-(n-butyl)amine positive -1.120097 -1.577209e+00 3.700478e+00 -3.554637e+00 1.217473e+00 -2.196364e-01 2.220064e-02 -1.190522e-03 2.641501e-05
tri-(n-butyl)amine negative -1.222476 1.383496e-01 -4.139321e-03 2.656429e-04 3.524566e-05 2.634486e-06 1.271692e-07 3.426492e-09 3.865181e-11
tri-n-butylphosphate positive -1.246060 -1.541996e-02 1.212441e+00 -3.323946e+00 1.421967e+00 -2.935713e-01 3.280666e-02 -1.906751e-03 4.523847e-05
tri-n-butylphosphate negative -1.155083 1.937902e-01 -1.146366e-02 4.207604e-04 2.859326e-05 -1.961943e-07 -5.209675e-08 -1.394532e-09 -1.101487e-11
trichloroethylene positive -1.261510 -1.158278e-01 -9.386629e-03 1.293881e-03 -6.370444e-04 1.338099e-04 -1.548641e-05 9.374645e-07 -2.309828e-08
trichloroethylene negative -1.251590 2.885649e-01 1.237805e-04 1.751333e-02 6.214669e-04 -1.405913e-04 -1.502310e-05 -5.714384e-07 -7.853346e-09
triethanolamine positive -0.861866 -5.886552e-01 2.163389e-01 -1.226416e+00 5.029007e-01 -9.919250e-02 1.066781e-02 -6.007949e-04 1.388811e-05
triethanolamine negative -0.769299 4.158711e-01 1.146885e-01 -2.220269e-02 -2.182723e-02 -3.413311e-03 -2.358407e-04 -7.801522e-06 -1.009321e-07
triethylamine positive -1.231359 -3.802267e-01 1.666402e+00 -3.065110e+00 1.248356e+00 -2.512368e-01 2.759115e-02 -1.582701e-03 3.716152e-05
triethylamine negative -1.195859 1.440614e-01 -5.544946e-03 2.880718e-04 2.844419e-05 1.843024e-06 9.037126e-08 2.546438e-09 2.963325e-11
triethylene glycol positive -0.918207 -6.397418e-01 4.264327e-01 -9.895689e-01 3.706336e-01 -6.880861e-02 7.053106e-03 -3.817234e-04 8.532284e-06
triethylene glycol negative -0.800466 7.694606e-01 3.772224e-01 9.164553e-02 -8.517597e-04 -1.399950e-03 -1.293507e-04 -4.850443e-06 -6.739136e-08
triethylphosphate positive -1.131740 3.307742e-02 5.722574e-01 -2.801361e+00 1.226702e+00 -2.546562e-01 2.851033e-02 -1.658312e-03 3.935937e-05
triethylphosphate negative -1.039532 2.556713e-01 -1.838064e-02 7.975741e-04 1.128416e-04 3.718048e-06 -2.691281e-08 -4.124171e-09 -6.791830e-11
trifluoroacetic acid positive -1.062027 -1.894633e-02 -3.868571e-01 2.617650e-01 -9.456997e-02 1.407892e-02 -9.102512e-04 1.721765e-05 3.260146e-07
trifluoroacetic acid negative -1.240088 -2.185352e-01 2.407572e-02 3.997350e-01 9.321194e-02 9.993510e-03 5.715851e-04 1.688954e-05 2.029516e-07
trimethylphosphate positive -1.044617 7.056863e-02 2.106452e-01 -2.475752e+00 1.119010e+00 -2.353031e-01 2.652894e-02 -1.549848e-03 3.689521e-05
trimethylphosphate negative -0.947540 2.572889e-01 -2.577707e-02 2.701834e-03 3.182245e-04 8.141346e-06 -3.682166e-07 -2.461563e-08 -3.900022e-10
water positive 0.838237 -5.190700e-01 -7.714317e-02 -8.138053e-01 3.524312e-01 -7.057004e-02 7.625482e-03 -4.298967e-04 9.933368e-06
water negative 0.775179 1.258973e-02 -3.723605e-01 4.109847e-02 1.733447e-02 2.097013e-03 1.256949e-04 3.799720e-06 4.623490e-08

Table G.2 Polynomial coefficients for pure solvents
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Coefficient Order
Ethanol content/ %
volume

ε Region 0th 1th 2th 3th 4th 5th 6th 7th 8th

0 positive 0.838237 -0.519070 -0.077143 -0.813805 0.352431 -0.070570 0.007625 -4.298967e-04 9.933368e-06
0 negative 0.775179 0.012590 -0.372360 0.041098 0.017334 0.002097 0.000126 3.799720e-06 4.623490e-08
5 positive 0.654950 -0.532589 0.079069 -0.910200 0.379728 -0.074879 0.008015 -4.488384e-04 1.031725e-05
5 negative 0.598293 0.077947 -0.273272 0.071380 0.021855 0.002478 0.000144 4.281484e-06 5.147507e-08
10 positive 0.499760 -0.547455 0.205787 -0.986888 0.401001 -0.078166 0.008306 -4.626007e-04 1.058870e-05
10 negative 0.450298 0.139727 -0.182671 0.098447 0.025811 0.002804 0.000160 4.679731e-06 5.573467e-08
15 positive 0.364385 -0.562506 0.312642 -1.050794 0.418464 -0.080819 0.008536 -4.732653e-04 1.079385e-05
15 negative 0.322818 0.199623 -0.098298 0.123002 0.029310 0.003086 0.000173 5.007328e-06 5.915841e-08
20 positive 0.243752 -0.577280 0.405301 -1.105932 0.433387 -0.083061 0.008728 -4.820070e-04 1.095863e-05
20 negative 0.210712 0.258451 -0.018834 0.145451 0.032414 0.003329 0.000184 5.271156e-06 6.182262e-08
25 positive 0.134535 -0.591620 0.487429 -1.154881 0.446584 -0.085034 0.008895 -4.895783e-04 1.109968e-05
25 negative 0.110599 0.316623 0.056515 0.166022 0.035155 0.003534 0.000193 5.474194e-06 6.375881e-08
30 positive 0.034427 -0.605494 0.561536 -1.199422 0.458621 -0.086836 0.009048 -4.965090e-04 1.122878e-05
30 negative 0.020123 0.374318 0.128189 0.184818 0.037543 0.003703 0.000199 5.616475e-06 6.496435e-08
35 positive -0.058241 -0.618918 0.629419 -1.240867 0.469920 -0.088542 0.009195 -5.032066e-04 1.135508e-05
35 negative -0.062430 0.431541 0.196357 0.201842 0.039573 0.003835 0.000204 5.695502e-06 6.540719e-08
40 positive -0.144718 -0.631916 0.692412 -1.280240 0.480823 -0.090214 0.009341 -5.100141e-04 1.148636e-05
40 negative -0.138361 0.488142 0.260949 0.217004 0.041219 0.003926 0.000206 5.706328e-06 6.502671e-08
45 positive -0.225968 -0.644511 0.751530 -1.318394 0.491625 -0.091906 0.009492 -5.172487e-04 1.162992e-05
45 negative -0.208697 0.543796 0.321644 0.230114 0.042442 0.003973 0.000206 5.641384e-06 6.373174e-08
50 positive -0.302749 -0.656703 0.807556 -1.356083 0.502604 -0.093672 0.009655 -5.252321e-04 1.179324e-05
50 negative -0.274289 0.597958 0.377838 0.240871 0.043180 0.003969 0.000203 5.490090e-06 6.139618e-08
55 positive -0.375677 -0.668459 0.861086 -1.394014 0.514043 -0.095568 0.009834 -5.343188e-04 1.198468e-05
55 negative -0.335883 0.649788 0.428567 0.248831 0.043346 0.003905 0.000196 5.238236e-06 5.785208e-08
60 positive -0.445258 -0.679688 0.912536 -1.432882 0.526245 -0.097658 0.010038 -5.449243e-04 1.221413e-05
60 negative -0.394187 0.698028 0.472393 0.253371 0.042821 0.003769 0.000186 4.867135e-06 5.288032e-08
65 positive -0.511926 -0.690202 0.962106 -1.473380 0.539548 -0.100016 0.010274 -5.575566e-04 1.249383e-05

Continued on next page
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Coefficient Order
Ethanol content/ %
volume

ε Region 0th 1th 2th 3th 4th 5th 6th 7th 8th

65 negative -0.449936 0.740819 0.507232 0.253623 0.041445 0.003546 0.000170 4.352533e-06 4.619910e-08
70 positive -0.576063 -0.699649 1.009678 -1.516175 0.554328 -0.102728 0.010554 -5.728451e-04 1.283915e-05
70 negative -0.503970 0.775423 0.530098 0.248396 0.039001 0.003214 0.000149 3.663412e-06 3.745199e-08
75 positive -0.638024 -0.707399 1.054600 -1.561817 0.570984 -0.105896 0.010889 -5.915583e-04 1.326912e-05
75 negative -0.557348 0.797821 0.536757 0.236063 0.035204 0.002748 0.000120 2.761015e-06 2.620038e-08
80 positive -0.698166 -0.712361 1.095313 -1.610515 0.589882 -0.109624 0.011294 -6.145811e-04 1.380618e-05
80 negative -0.611492 0.802157 0.521274 0.214447 0.029684 0.002112 0.000082 1.599148e-06 1.193395e-08
85 positive -0.756870 -0.712724 1.128735 -1.661706 0.611215 -0.113999 0.011781 -6.427944e-04 1.447356e-05
85 negative -0.668386 0.780044 0.475550 0.180730 0.021985 0.001268 0.000033 1.282700e-07 -5.869163e-09
90 positive -0.814571 -0.705662 1.149455 -1.713323 0.634731 -0.119033 0.012356 -6.767644e-04 1.528817e-05
90 negative -0.730802 0.719954 0.389114 0.131531 0.011603 0.000175 -0.000030 -1.691163e-06 -2.756494e-08
95 positive -0.871752 -0.687243 1.149123 -1.760901 0.659338 -0.124587 0.013011 -7.161628e-04 1.624665e-05
95 negative -0.802440 0.607301 0.249897 0.063452 -0.001879 -0.001190 -0.000105 -3.855694e-06 -5.292259e-08
100 positive -0.928881 -0.652997 1.117066 -1.797165 0.682763 -0.130270 0.013706 -7.590500e-04 1.730739e-05
100 negative -0.887748 0.426468 0.047267 -0.025426 -0.018460 -0.002799 -0.000191 -6.248878e-06 -8.025020e-08

Table G.3 Coefficients for water-ethanol mixture solvation profiles.
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Coefficient Order
Chloroform con-
tent/ % volume

ε Region 0th 1th 2th 3th 4th 5th 6th 7th 8th

0 positive -1.138680 0.074116 -0.583952 -1.213435 0.602473 -0.129964 1.480481e-02 -8.691612e-04 2.074313e-05
0 negative -1.073398 0.233420 -0.012431 0.000456 0.000068 0.000003 1.069819e-07 2.183149e-09 2.262727e-11
5 positive -1.135735 -0.008263 -0.296479 -1.395806 0.658249 -0.139526 1.574416e-02 -9.186379e-04 2.182741e-05
5 negative -1.040285 0.404232 0.163705 0.072443 0.014343 0.001492 8.092628e-05 2.182120e-06 2.312460e-08
10 positive -1.131570 -0.103908 0.013727 -1.588558 0.716242 -0.149323 1.669406e-02 -9.680627e-04 2.289835e-05
10 negative -1.054326 0.373315 0.152180 0.076513 0.017074 0.002018 1.248410e-04 3.860084e-06 4.732257e-08
15 positive -1.126023 -0.214286 0.347950 -1.791451 0.776104 -0.159256 1.764081e-02 -1.016533e-03 2.393253e-05
15 negative -1.079849 0.278797 0.064583 0.044874 0.011659 0.001568 1.063241e-04 3.522819e-06 4.564648e-08
20 positive -1.118917 -0.340898 0.707081 -2.003695 0.837239 -0.169167 1.856405e-02 -1.062741e-03 2.489665e-05
20 negative -1.103485 0.186783 -0.027996 0.008046 0.004523 0.000862 6.914949e-05 2.525688e-06 3.490824e-08
25 positive -1.110060 -0.485168 1.091258 -2.223631 0.898670 -0.178816 1.943388e-02 -1.104807e-03 2.574331e-05
25 negative -1.122706 0.111961 -0.107963 -0.025706 -0.002463 0.000123 2.750504e-05 1.326936e-06 2.100657e-08
30 positive -1.099267 -0.648226 1.499270 -2.448221 0.958854 -0.187844 2.020655e-02 -1.140023e-03 2.640517e-05
30 negative -1.137138 0.058008 -0.169957 -0.053515 -0.008599 -0.000561 -1.276263e-05 1.211658e-07 6.507742e-09
35 positive -1.086379 -0.830517 1.927570 -2.672273 1.015393 -0.195715 2.081830e-02 -1.164501e-03 2.678648e-05
35 negative -1.146933 0.025710 -0.212093 -0.074140 -0.013552 -0.001145 -4.868446e-05 -9.907522e-07 -7.236947e-09
40 positive -1.071330 -1.031105 2.368677 -2.887246 1.064613 -0.201636 2.117670e-02 -1.172686e-03 2.675189e-05
40 negative -1.152391 0.015011 -0.233587 -0.086871 -0.017121 -0.001604 -7.837625e-05 -1.944385e-06 -1.935999e-08
45 positive -1.054253 -1.246474 2.808686 -3.079518 1.100985 -0.204448 2.114956e-02 -1.156745e-03 2.611252e-05
45 negative -1.153914 0.025434 -0.234163 -0.091210 -0.019151 -0.001915 -1.003717e-04 -2.689645e-06 -2.918801e-08
50 positive -1.035662 -1.468640 3.223688 -3.228135 1.116422 -0.202510 2.055323e-02 -1.105959e-03 2.461306e-05
50 negative -1.152081 0.055833 -0.214203 -0.086876 -0.019524 -0.002061 -1.134262e-04 -3.183437e-06 -3.613755e-08
55 positive -1.016741 -1.682544 3.575531 -3.302572 1.099718 -0.193617 1.914700e-02 -1.006539e-03 2.192987e-05
55 negative -1.147788 0.103741 -0.175393 -0.074038 -0.018194 -0.002031 -1.166337e-04 -3.391995e-06 -3.973164e-08
60 positive -0.999662 -1.863501 3.808986 -3.262231 1.036751 -0.175100 1.664839e-02 -8.427161e-04 1.770106e-05
60 negative -1.142375 0.164563 -0.121626 -0.053703 -0.015264 -0.001829 -1.098284e-04 -3.302189e-06 -3.972984e-08
65 positive -0.987756 -1.976816 3.854584 -3.060492 0.912404 -0.144267 1.278678e-02 -6.000822e-04 1.160997e-05

Continued on next page
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Coefficient Order
Chloroform con-
tent/ % volume

ε Region 0th 1th 2th 3th 4th 5th 6th 7th 8th

65 negative -1.137583 0.231279 -0.059545 -0.028068 -0.011064 -0.001480 -9.412279e-05 -2.937966e-06 -3.633065e-08
70 positive -0.985236 -1.981977 3.640284 -2.654337 0.714243 -0.099151 7.388729e-03 -2.706336e-04 3.507033e-06
70 negative -1.135178 0.295581 0.002322 -0.000368 -0.006154 -0.001035 -7.212123e-05 -2.368672e-06 -3.029114e-08
75 positive -0.996514 -1.839841 3.105922 -2.013736 0.435625 -0.039097 4.395134e-04 1.437534e-04 -6.509407e-06
75 negative -1.136357 0.350427 0.056105 0.026012 -0.001176 -0.000559 -4.731553e-05 -1.693684e-06 -2.276607e-08
80 positive -1.025869 -1.515277 2.205410 -1.120888 0.075089 0.035385 -7.932777e-03 6.322191e-04 -1.811334e-05
80 negative -1.141392 0.392213 0.097102 0.048637 0.003353 -0.000108 -2.290759e-05 -1.008407e-06 -1.490737e-08
85 positive -1.078338 -0.968429 0.888593 0.042319 -0.367295 0.123153 -1.749720e-02 1.176290e-03 -3.076435e-05
85 negative -1.149791 0.420873 0.124324 0.066477 0.007158 0.000287 -9.681064e-07 -3.779286e-07 -7.533212e-09
90 positive -1.162540 -0.132734 -0.929945 1.505584 -0.889252 0.221460 -2.773559e-02 1.735440e-03 -4.329051e-05
90 negative -1.160726 0.438447 0.139272 0.079604 0.010179 0.000613 1.762581e-05 1.670322e-07 -1.057960e-09
95 positive -1.296888 1.110901 -3.349879 3.233449 -1.435572 0.312028 -3.594985e-02 2.120559e-03 -5.055678e-05
95 negative -1.173376 0.447598 0.144418 0.088657 0.012480 0.000872 3.280372e-05 6.201256e-07 4.401588e-09
100 positive -1.220126 -0.166261 -0.009943 -0.000467 -0.000003 0.000015 -2.411077e-06 1.740120e-07 -4.822481e-09
100 negative -1.187073 0.450768 0.142246 0.094427 0.014172 0.001073 4.489395e-05 9.877984e-07 8.891901e-09

Table G.4 Coefficients for chloroform-tetrahydrofuran mixture solvation profiles.



Appendix H

FGIP plots for solvents

Plots of functional group interaction profiles for solvents studied are in the following sections. The

solute-solute interactions are favourable when negative (blue), and unfavourable when positive (red).

H.1 Pure solvent FGIPs
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Fig. H.24: FGIP for methanol at 298K.
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Fig. H.26: FGIP for 1-propanol at 298K.

ArO
H

O

O
H

ON
H

O
H

H
S

H

ArS
H

H N

ON
H

Ar

H N
Ar

H

H

H

Cl
H

O
H CF3

CF3
CF3

N

O

O
O

Ar
O

N

N

N

O

N

FCl NS

S

O

N
Ar

N N

P

O

S

O

O

O O

O

Fig. H.27: FGIP for 2-propanol at 298K.



H.1 Pure solvent FGIPs 351

ArO
H

O

O
H

ON
H

O
H

H
S

H

ArS
H

H N

ON
H

Ar

H N
Ar

H

H

H

Cl
H

O
H CF3

CF3
CF3

N

O

O
O

Ar
O

N

N

N

O

N

FCl NS

S

O

N
Ar

N N

P

O

S

O

O

O O

O

Fig. H.28: FGIP for 1-butanol at 298K.
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352 FGIP plots for solvents

ArO
H

O

O
H

ON
H

O
H

H
S

H

ArS
H

H N

ON
H

Ar

H N
Ar

H

H

H

Cl
H

O
H CF3

CF3
CF3

N

O

O
O

Ar
O

N

N

N

O

N

FCl NS

S

O

N
Ar

N N

P

O

S

O

O

O O

O

Fig. H.30: FGIP for 2-butanol at 298K.
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Fig. H.32: FGIP for 1-pentanol at 298K.
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Fig. H.33: FGIP for 3-methyl-1-butanol at 298K.
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Fig. H.34: FGIP for 2-methyl-2-butanol at 298K.
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Fig. H.36: FGIP for cyclohexanol at 298K.
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Fig. H.38: FGIP for 1-decanol at 298K.
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Fig. H.40: FGIP for benzyl alcohol at 298K.
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Fig. H.41: FGIP for 2-phenylethanol at 298K.



358 FGIP plots for solvents

ArO
H

O

O
H

ON
H

O
H

H
S

H

ArS
H

H N

ON
H

Ar

H N
Ar

H

H

H

Cl
H

O
H CF3

CF3
CF3

N

O

O
O

Ar
O

N

N

N

O

N

FCl NS

S

O

N
Ar

N N

P

O

S

O

O

O O

O

Fig. H.42: FGIP for allyl alcohol at 298K.
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H.1 Pure solvent FGIPs 359

ArO
H

O

O
H

ON
H

O
H

H
S

H

ArS
H

H N

ON
H

Ar

H N
Ar

H

H

H

Cl
H

O
H CF3

CF3
CF3

N

O

O
O

Ar
O

N

N

N

O

N

FCl NS

S

O

N
Ar

N N

P

O

S

O

O

O O

O

Fig. H.44: FGIP for 2-cyanoethanol at 298K.
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Fig. H.45: FGIP for 2,2,2-trifluoroethanol at 298K.
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Fig. H.46: FGIP for 1,1,1,3,3,3-hexafluoro-2-propanol at 298K.
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Fig. H.48: FGIP for 2-ethoxyethanol at 298K.
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Fig. H.49: FGIP for ethylene glycol at 298K.
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Fig. H.50: FGIP for 1,2-propanediol at 298K.
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Fig. H.52: FGIP for 1,2-butanediol at 298K.
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Fig. H.53: FGIP for (2R,3S)-2,3-butanediol at 298K.
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Fig. H.54: FGIP for 1,4-butanediol at 298K.
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Fig. H.56: FGIP for diethylene glycol at 298K.
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Fig. H.58: FGIP for glycerol at 298K.
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Fig. H.60: FGIP for ortho-cresol at 298K.
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Fig. H.62: FGIP for para-cresol at 298K.
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Fig. H.64: FGIP for 2,4-dimethylphenol at 298K.
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Fig. H.65: FGIP for 3-chlorophenol at 298K.
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Fig. H.66: FGIP for diethyl ether at 298K.
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Fig. H.68: FGIP for diisopropyl ether at 298K.
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Fig. H.69: FGIP for dibutyl ether at 298K.
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Fig. H.70: FGIP for bis(2-chloroethyl) ether at 298K.

ArO
H

O

O
H

ON
H

O
H

H
S

H

ArS
H

H N

ON
H

Ar

H N
Ar

H

H

H

Cl
H

O
H CF3

CF3
CF3

N

O

O
O

Ar
O

N

N

N

O

N

FCl NS

S

O

N
Ar

N N

P

O

S

O

O

O O

O
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Fig. H.72: FGIP for diethylene glycol dimethyl ether at 298K.
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Fig. H.73: FGIP for furan at 298K.



374 FGIP plots for solvents

ArO
H

O

O
H

ON
H

O
H

H
S

H

ArS
H

H N

ON
H

Ar

H N
Ar

H

H

H

Cl
H

O
H CF3

CF3
CF3

N

O

O
O

Ar
O

N

N

N

O

N

FCl NS

S

O

N
Ar

N N

P

O

S

O

O

O O

O

Fig. H.74: FGIP for tetrahydrofuran at 298K.
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Fig. H.76: FGIP for tetrahydropyran at 298K.
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Fig. H.77: FGIP for 1,3-dioxane at 298K.
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Fig. H.78: FGIP for 1,3-dioxolan at 298K.
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Fig. H.80: FGIP for anisole at 298K.
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Fig. H.81: FGIP for ethyl phenyl ether at 298K.
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Fig. H.82: FGIP for diphenyl ether at 298K.
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Fig. H.83: FGIP for dibenzyl ether at 298K.
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Fig. H.84: FGIP for 1,2-dimethoxybenzene at 298K.
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Fig. H.85: FGIP for methyl orthoformate at 298K.
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Fig. H.86: FGIP for methyl orthoacetate at 298K.
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Fig. H.87: FGIP for propionaldehyde at 298K.



H.1 Pure solvent FGIPs 381

ArO
H

O

O
H

ON
H

O
H

H
S

H

ArS
H

H N

ON
H

Ar

H N
Ar

H

H

H

Cl
H

O
H CF3

CF3
CF3

N

O

O
O

Ar
O

N

N

N

O

N

FCl NS

S

O

N
Ar

N N

P

O

S

O

O

O O

O

Fig. H.88: FGIP for butyraldehyde at 298K.

ArO
H

O

O
H

ON
H

O
H

H
S

H

ArS
H

H N

ON
H

Ar

H N
Ar

H

H

H

Cl
H

O
H CF3

CF3
CF3

N

O

O
O

Ar
O

N

N

N

O

N

FCl NS

S

O

N
Ar

N N

P

O

S

O

O

O O

O

Fig. H.89: FGIP for benzaldehyde at 298K.
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Fig. H.90: FGIP for p-methoxybenzaldehyde at 298K.
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Fig. H.92: FGIP for acetone at 298K.
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Fig. H.94: FGIP for 2-pentanone at 298K.
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Fig. H.96: FGIP for 3-pentanone at 298K.
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Fig. H.98: FGIP for 4-methyl-2-pentanone at 298K.
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Fig. H.100: FGIP for perfluorooctane at 298K.
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Fig. H.104: FGIP for 2,2,4,4-tetramethyl-3-pentanone at 298K.
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Fig. H.106: FGIP for ethyl phenyl ketone at 298K.
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Fig. H.108: FGIP for 2,4,5-trimethylacetophenone at 298K.

ArO
H

O

O
H

ON
H

O
H

H
S

H

ArS
H

H N

ON
H

Ar

H N
Ar

H

H

H

Cl
H

O
H CF3

CF3
CF3

N

O

O
O

Ar
O

N

N

N

O

N

FCl NS

S

O

N
Ar

N N

P

O

S

O

O

O O

O

Fig. H.109: FGIP for p-chloroacetophenone at 298K.
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Fig. H.110: FGIP for diphenyl ketone at 298K.
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Fig. H.112: FGIP for 2,3-butanedione at 298K.
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Fig. H.113: FGIP for formic acid at 298K.
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Fig. H.114: FGIP for acetic acid at 298K.
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Fig. H.115: FGIP for propanoic acid at 298K.
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Fig. H.116: FGIP for butanoic acid at 298K.
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Fig. H.117: FGIP for pentanoic acid at 298K.
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Fig. H.118: FGIP for hexanoic acid at 298K.
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Fig. H.120: FGIP for dichloroacetic acid at 298K.
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Fig. H.121: FGIP for trifluoroacetic acid at 298K.
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Fig. H.122: FGIP for acetic anhydride at 298K.
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Fig. H.124: FGIP for benzoyl bromide at 298K.
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Fig. H.125: FGIP for methyl formate at 298K.
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Fig. H.126: FGIP for ethyl formate at 298K.
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Fig. H.127: FGIP for methyl acetate at 298K.
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Fig. H.128: FGIP for ethyl acetate at 298K.
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Fig. H.129: FGIP for n-propyl acetate at 298K.
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Fig. H.130: FGIP for butyl acetate at 298K.
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Fig. H.131: FGIP for isopentyl acetate at 298K.
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Fig. H.132: FGIP for methyl propionate at 298K.
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Fig. H.133: FGIP for ethyl propionate at 298K.
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Fig. H.134: FGIP for dimethyl carbonate at 298K.
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Fig. H.135: FGIP for diethyl carbonate at 298K.
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Fig. H.136: FGIP for ethylene carbonate at 298K.
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Fig. H.137: FGIP for 4-methyl-1,3-dioxolan-2-one at 298K.
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Fig. H.138: FGIP for diethyl malonate at 298K.
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Fig. H.140: FGIP for ethyl benzoate at 298K.
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Fig. H.141: FGIP for dimethylphthalate at 298K.
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Fig. H.142: FGIP for di-n-butylorthophthalate at 298K.
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Fig. H.144: FGIP for ethyl trichloroacetate at 298K.
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Fig. H.145: FGIP for ethyl acetoacetate at 298K.
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Fig. H.146: FGIP for gamma-butyrolactone at 298K.
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Fig. H.148: FGIP for perfluoromethylcyclohexane at 298K.
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Fig. H.149: FGIP for perfluoroheptane at 298K.
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Fig. H.150: FGIP for cis-perfluorodecalin at 298K.
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Fig. H.152: FGIP for hexafluorobenzene at 298K.
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Fig. H.153: FGIP for 1,4-dichlorobutane at 298K.
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Fig. H.154: FGIP for chlorobenzene at 298K.
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Fig. H.156: FGIP for 1,1-dichloroethane at 298K.
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Fig. H.157: FGIP for 1,2-dichloroethane at 298K.
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Fig. H.158: FGIP for trans-1,2-dichloroethylene at 298K.
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Fig. H.160: FGIP for meta-dichlorobenzene at 298K.
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Fig. H.161: FGIP for chloroform at 298K.
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Fig. H.162: FGIP for 1,1,1-trichloroethane at 298K.
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Fig. H.164: FGIP for trichloroethylene at 298K.
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Fig. H.165: FGIP for 1,2,4-trichlorobenzene at 298K.
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Fig. H.166: FGIP for carbon tetrachloride at 298K.
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Fig. H.167: FGIP for tetrachloroethylene at 298K.
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Fig. H.168: FGIP for 1,1,2,2-tetrachloroethane at 298K.
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Fig. H.169: FGIP for pentachloroethane at 298K.
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Fig. H.170: FGIP for 1-bromobutane at 298K.
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Fig. H.171: FGIP for bromobenzene at 298K.
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Fig. H.172: FGIP for dibromomethane at 298K.
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Fig. H.173: FGIP for 1,2-dibromoethane at 298K.
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Fig. H.174: FGIP for bromoform at 298K.
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Fig. H.175: FGIP for n-butyl iodide at 298K.
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Fig. H.176: FGIP for iodobenzene at 298K.
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Fig. H.177: FGIP for methylene iodide at 298K.
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Fig. H.180: FGIP for ethylenediamine at 298K.
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Fig. H.181: FGIP for diethylamine at 298K.
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Fig. H.182: FGIP for di-n-butylamine at 298K.
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Fig. H.184: FGIP for pyrrolidine at 298K.
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Fig. H.186: FGIP for morpholine at 298K.
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Fig. H.188: FGIP for tri-(n-butyl)amine at 298K.
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Fig. H.189: FGIP for aniline at 298K.
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Fig. H.190: FGIP for o-chloroaniline at 298K.
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Fig. H.192: FGIP for N,N-dimethylaniline at 298K.
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Fig. H.193: FGIP for aminoethanol at 298K.
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Fig. H.194: FGIP for diethanolamine at 298K.
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Fig. H.195: FGIP for triethanolamine at 298K.
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Fig. H.196: FGIP for pyridine at 298K.
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Fig. H.197: FGIP for 2-methylpyridine at 298K.
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Fig. H.198: FGIP for 3-methylpyridine at 298K.
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Fig. H.199: FGIP for 4-methylpyridine at 298K.
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Fig. H.200: FGIP for 2,4-dimethylpyridine at 298K.
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Fig. H.201: FGIP for 2,6-dimethylpyridine at 298K.
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Fig. H.202: FGIP for 2,4,6-trimethylpyridine at 298K.
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Fig. H.203: FGIP for 2-bromopyridine at 298K.
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Fig. H.204: FGIP for 3-bromopyridine at 298K.
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Fig. H.205: FGIP for 2-cyanopyridine at 298K.
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Fig. H.206: FGIP for pyrimidine at 298K.
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Fig. H.207: FGIP for quinoline at 298K.
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Fig. H.208: FGIP for acetonitrile at 298K.
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Fig. H.209: FGIP for propionitrile at 298K.
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Fig. H.210: FGIP for n-butyronitrile at 298K.
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Fig. H.211: FGIP for 3-methylbutanenitrile at 298K.
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Fig. H.212: FGIP for acrylonitrile at 298K.
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Fig. H.213: FGIP for phenylacetonitrile at 298K.
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Fig. H.214: FGIP for benzonitrile at 298K.
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Fig. H.215: FGIP for nitromethane at 298K.
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Fig. H.216: FGIP for nitroethane at 298K.
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Fig. H.217: FGIP for 1-nitropropane at 298K.
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Fig. H.218: FGIP for 2-nitropropane at 298K.
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Fig. H.219: FGIP for nitrobenzene at 298K.
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Fig. H.220: FGIP for formamide at 298K.
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Fig. H.221: FGIP for N-methylformamide at 298K.
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Fig. H.222: FGIP for N,N-dimethylformamide at 298K.
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Fig. H.223: FGIP for N,N-dimethylthioformamide at 298K.
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Fig. H.224: FGIP for N,N-diethylformamide at 298K.
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Fig. H.225: FGIP for N-methylacetamide at 298K.
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Fig. H.226: FGIP for N,N-dimethylacetamide at 298K.
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Fig. H.227: FGIP for N,N-diethylacetamide at 298K.
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Fig. H.228: FGIP for 2-pyrrolidinone at 298K.
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Fig. H.229: FGIP for N-methyl pyrrolidinone at 298K.
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Fig. H.230: FGIP for 1-methyl-2-pyrrolidinethione at 298K.
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Fig. H.231: FGIP for tetramethylurea at 298K.
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Fig. H.232: FGIP for tetraethylurea at 298K.
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Fig. H.233: FGIP for dimethylcyanamide at 298K.



454 FGIP plots for solvents

ArO
H

O

O
H

ON
H

O
H

H
S

H

ArS
H

H N

ON
H

Ar

H N
Ar

H

H

H

Cl
H

O
H CF3

CF3
CF3

N

O

O
O

Ar
O

N

N

N

O

N

FCl NS

S

O

N
Ar

N N

P

O

S

O

O

O O

O

Fig. H.234: FGIP for carbon disulfide at 298K.

ArO
H

O

O
H

ON
H

O
H

H
S

H

ArS
H

H N

ON
H

Ar

H N
Ar

H

H

H

Cl
H

O
H CF3

CF3
CF3

N

O

O
O

Ar
O

N

N

N

O

N

FCl NS

S

O

N
Ar

N N

P

O

S

O

O

O O

O

Fig. H.235: FGIP for dimethyl sulfide at 298K.
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Fig. H.236: FGIP for diethyl sulfide at 298K.
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Fig. H.237: FGIP for diisopropyl sulfide at 298K.
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Fig. H.238: FGIP for dibutyl sulfide at 298K.
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Fig. H.239: FGIP for tetrahydrothiophene at 298K.
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Fig. H.240: FGIP for thiane at 298K.
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Fig. H.241: FGIP for dimethylsulfoxide at 298K.
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Fig. H.242: FGIP for dibutyl sulfoxide at 298K.

ArO
H

O

O
H

ON
H

O
H

H
S

H

ArS
H

H N

ON
H

Ar

H N
Ar

H

H

H

Cl
H

O
H CF3

CF3
CF3

N

O

O
O

Ar
O

N

N

N

O

N

FCl NS

S

O

N
Ar

N N

P

O

S

O

O

O O

O

Fig. H.243: FGIP for sulfolane at 298K.
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Fig. H.244: FGIP for thiobis(2-ethanol) at 298K.
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Fig. H.245: FGIP for diethyl sulfite at 298K.
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Fig. H.246: FGIP for dimethyl sulfate at 298K.
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Fig. H.247: FGIP for diethyl sulfate at 298K.
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Fig. H.248: FGIP for methanesulfonic acid at 298K.
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Fig. H.249: FGIP for trimethylphosphate at 298K.
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Fig. H.250: FGIP for triethylphosphate at 298K.
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Fig. H.251: FGIP for tri-n-butylphosphate at 298K.
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Fig. H.252: FGIP for hexamethylphosphoric triamide at 298K.
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Fig. H.253: FGIP for hydrogen peroxide at 298K.
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Fig. H.254: FGIP for hydrogen fluoride at 298K.
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Fig. H.255: FGIP for sulfuric acid at 298K.
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Fig. H.256: FGIP for ammonia at 298K.
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Fig. H.257: FGIP for hydrazine at 298K.
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Fig. H.258: FGIP for sulfur dioxide at 298K.
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Fig. H.259: FGIP for thionyl chloride at 298K.
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Fig. H.260: FGIP for phosphorus oxychloride at 298K.
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Fig. H.261: FGIP for dihydrolevoglucosenone at 298K.

H.2 Binary solvent mixture FGIPs

Volume fractions used to express solvent concentrations.
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Fig. H.263: FGIP for 5.0% ethanol 95.0% water at 298K.
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Fig. H.264: FGIP for 10.0% ethanol 90.0% water at 298K.
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ArO
H

O

O
H

ON
H

O
H

H
S

H

ArS
H

H N

ON
H

Ar

H N
Ar

H

H

H

Cl
H

O
H CF3

CF3
CF3

N

O

O
O

Ar
O

N

N

N

O

N

FCl NS

S

O

N
Ar

N N

P

O

S

O

O

O O

O

Fig. H.273: FGIP for 55.0% ethanol 45.0% water at 298K.
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Fig. H.274: FGIP for 60.0% ethanol 40.0% water at 298K.

ArO
H

O

O
H

ON
H

O
H

H
S

H

ArS
H

H N

ON
H

Ar

H N
Ar

H

H

H

Cl
H

O
H CF3

CF3
CF3

N

O

O
O

Ar
O

N

N

N

O

N

FCl NS

S

O

N
Ar

N N

P

O

S

O

O

O O

O

Fig. H.275: FGIP for 65.0% ethanol 35.0% water at 298K.
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Fig. H.276: FGIP for 70.0% ethanol 30.0% water at 298K.
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Fig. H.284: FGIP for 5.0% chloroform 95.0% tetrahydrofuran at 298K.
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Fig. H.285: FGIP for 10.0% chloroform 90.0% tetrahydrofuran at 298K.
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Fig. H.286: FGIP for 15.0% chloroform 85.0% tetrahydrofuran at 298K.
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Fig. H.288: FGIP for 25.0% chloroform 75.0% tetrahydrofuran at 298K.
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Fig. H.290: FGIP for 35.0% chloroform 65.0% tetrahydrofuran at 298K.
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Fig. H.291: FGIP for 40.0% chloroform 60.0% tetrahydrofuran at 298K.
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Fig. H.292: FGIP for 45.0% chloroform 55.0% tetrahydrofuran at 298K.
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Fig. H.293: FGIP for 50.0% chloroform 50.0% tetrahydrofuran at 298K.
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Fig. H.294: FGIP for 55.0% chloroform 45.0% tetrahydrofuran at 298K.
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Fig. H.295: FGIP for 60.0% chloroform 40.0% tetrahydrofuran at 298K.
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Fig. H.296: FGIP for 65.0% chloroform 35.0% tetrahydrofuran at 298K.
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Fig. H.297: FGIP for 70.0% chloroform 30.0% tetrahydrofuran at 298K.
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Fig. H.298: FGIP for 75.0% chloroform 25.0% tetrahydrofuran at 298K.
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Fig. H.299: FGIP for 80.0% chloroform 20.0% tetrahydrofuran at 298K.
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Fig. H.300: FGIP for 85.0% chloroform 15.0% tetrahydrofuran at 298K.
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Fig. H.301: FGIP for 90.0% chloroform 10.0% tetrahydrofuran at 298K.



488 FGIP plots for solvents

ArO
H

O

O
H

ON
H

O
H

H
S

H

ArS
H

H N

ON
H

Ar

H N
Ar

H

H

H

Cl
H

O
H CF3

CF3
CF3

N

O

O
O

Ar
O

N

N

N

O

N

FCl NS

S

O

N
Ar

N N

P

O

S

O

O

O O

O

Fig. H.302: FGIP for 95.0% chloroform 5.0% tetrahydrofuran at 298K.
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Fig. H.303: FGIP for 100.0% chloroform 0.0% tetrahydrofuran at 298K.

H.3 Calculation of γ from simulation

With the SSIMPLE approach, it is possible to calculate γ directly using equation (H.1), without

needing to with ∆Go
SSIMPLE defined in equation (5.23) and ∆∆GH bonds,FGIP defined in equation (5.4).

γ = ∆Go
SSIMPLE −∆∆GH bonds,FGIP (H.1)
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Figure H.304 shows the distribution of γ values for the same set of 261 pure solvents (details

in G). Solute values of ε1 = 5.0 and ε2 =−10.0 were used to investigate γ from simulation, which

should be within the tight binding region. The mean value is 10.53 kJ mol−1 with a standard deviation

of 0.27 kJ mol−1.
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Fig. H.304: Plot of difference between calculated ∆∆GHbonds and ∆Go, for 261 solvents,
with solute SSIPs of ε1 = 5.0 and ε2 =−10.0. 10 bins were used to group values.





Appendix I

Vapour Liquid Equilibria data

I.1 Computational Implementation details

I.1.1 Calculation of interaction energy

The expression for E0 in equation (7.3) cannot be inverted analytically. A cubic polynomial spline

is fitted to values of this function over the range −200 ≤ εi,298ε j,298 < 0, covering a wide range of

possible interactions.

Once E0 has been calculated, it is then used to find εi,T ε j,T at the temperature of interest, for the

calculation of Ki j as in equation 5 in [158].

I.2 Data for Vapour Liquid equilibria

Information plotted in chapter 7 figures.



492 Vapour Liquid Equilibria data

Molecule T/K ∆T/K −∆H∗/kJ mol−1

Water 273.00 0.00 42.70
Water 278.00 5.00 42.52
Water 283.00 10.00 42.34
Water 288.00 15.00 42.15
Water 293.00 20.00 41.96
Water 298.00 25.00 41.77
Water 303.00 30.00 41.58
Water 308.00 35.00 41.39
Water 313.00 40.00 41.19
Water 318.00 45.00 41.00
Water 323.00 50.00 40.81
Water 328.00 55.00 40.62
Water 333.00 60.00 40.44
Water 338.00 65.00 40.26
Water 343.00 70.00 40.08
Water 348.00 75.00 39.90
Water 353.00 80.00 39.73
Water 358.00 85.00 39.56
Water 363.00 90.00 39.40
Water 368.00 95.00 39.25
Water 373.00 100.00 39.10
Methane 90.68 0.00 8.16
Methane 100.00 9.32 8.02
Methane 110.00 19.32 7.94
Methane 111.63 20.95 7.90
Methane 120.00 29.32 7.86
Methane 130.00 39.32 7.86
Methane 140.00 49.32 7.94
Methane 150.00 59.32 8.20
Argon 83.80 0.00 6.30
Argon 85.00 1.20 6.27
Argon 87.28 3.48 6.21
Argon 90.00 6.20 6.18
Argon 95.00 11.20 6.14
Argon 100.00 16.20 6.13
Argon 105.00 21.20 6.13
Argon 110.00 26.20 6.21
Argon 120.00 36.20 6.48

Table I.1 Data for figure 7.2. Experimental data from [278]
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Guest InChIKey Host Experimental K293
K323

Calculated K293
K323

AATNZNJRDOVKDD-UHFFFAOYSA-N methanol 2.083333 1.922781

AATNZNJRDOVKDD-UHFFFAOYSA-N Alpha-naphthol 2.634052 2.627667

AJFDBNQQDYLMJN-UHFFFAOYSA-N phenol 2.242511 2.356667

AVPYQKSLYISFPO-UHFFFAOYSA-N phenol 1.645570 1.687495

AVQQQNCBBIEMEU-UHFFFAOYSA-N phenol 2.314647 2.451078

AWJUIBRHMBBTKR-UHFFFAOYSA-N phenol 3.009804 2.202193

BGNGWHSBYQYVRX-UHFFFAOYSA-N phenol 2.165803 2.022277

BGTOWKSIORTVQH-UHFFFAOYSA-N phenol 2.054422 1.930665

BLKXLEPPVDUHBY-UHFFFAOYSA-N phenol 2.375375 2.475406

BLKXLEPPVDUHBY-UHFFFAOYSA-N methanol 2.161765 1.849410

BLKXLEPPVDUHBY-UHFFFAOYSA-N Alpha-naphthol 2.527837 2.475406

BLKXLEPPVDUHBY-UHFFFAOYSA-N Indole 3.209302 1.973004

BSKHPKMHTQYZBB-UHFFFAOYSA-N phenol 3.012097 2.244975

BUDQDWGNQVEFAC-UHFFFAOYSA-N phenol 1.953488 1.616152

BXRFQSNOROATLV-UHFFFAOYSA-N phenol 1.752066 1.602435

CDQSTBHGKNNPSY-UHFFFAOYSA-N phenol 2.367113 2.311164

CQQUWTMMFMJEFE-UHFFFAOYSA-N phenol 2.096330 2.119744

CSCPPACGZOOCGX-UHFFFAOYSA-N phenol 2.048253 1.878353

DENRZWYUOJLTMF-UHFFFAOYSA-N phenol 1.880952 1.732559

DHXVGJBLRPWPCS-UHFFFAOYSA-N phenol 2.566914 1.895576

DKLYDESVXZKCFI-UHFFFAOYSA-N phenol 2.277992 2.160457

DQWPFSLDHJDLRL-UHFFFAOYSA-N phenol 2.779873 2.524951

DQWPFSLDHJDLRL-UHFFFAOYSA-N methanol 2.012987 1.873379

DQWPFSLDHJDLRL-UHFFFAOYSA-N Alpha-naphthol 2.791199 2.524951

DQWPFSLDHJDLRL-UHFFFAOYSA-N Indole 2.200000 2.001689

DSSYKIVIOFKYAU-UHFFFAOYSA-N phenol 1.829175 1.930665

DURPTKYDGMDSBL-UHFFFAOYSA-N phenol 2.343284 1.763564

DVVGIUUJYPYENY-UHFFFAOYSA-N phenol 2.634528 2.524951

DZBUGLKDJFMEHC-UHFFFAOYSA-N phenol 2.871795 2.202193

FIQMHBFVRAXMOP-UHFFFAOYSA-N phenol 2.887551 2.877208

FIQMHBFVRAXMOP-UHFFFAOYSA-N methanol 2.292453 2.041030

FIQMHBFVRAXMOP-UHFFFAOYSA-N Alpha-naphthol 3.032510 2.877208

FIQMHBFVRAXMOP-UHFFFAOYSA-N Indole 2.106164 2.202821

FIQMHBFVRAXMOP-UHFFFAOYSA-N Carbazole 2.043880 2.377488

Continued on next page
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Guest InChIKey Host Experimental K293
K323

Calculated K293
K323

FIQMHBFVRAXMOP-UHFFFAOYSA-N Pyrrole 2.066667 2.120375

FKNQCJSGGFJEIZ-UHFFFAOYSA-N phenol 2.877698 2.266767

FKRCODPIKNYEAC-UHFFFAOYSA-N phenol 1.990950 1.844537

FXHOOIRPVKKKFG-UHFFFAOYSA-N phenol 2.205882 2.451078

GAEKPEKOJKCEMS-UHFFFAOYSA-N phenol 2.064935 1.966632

GGSUCNLOZRCGPQ-UHFFFAOYSA-N phenol 1.238095 1.747965

GGSUCNLOZRCGPQ-UHFFFAOYSA-N methanol 1.307692 1.493333

GNOIPBMMFNIUFM-UHFFFAOYSA-N phenol 2.752039 3.121656

GRIXINIGTYIHSN-UHFFFAOYSA-N phenol 1.750000 1.966632

GXHHFMZALQKUFL-UHFFFAOYSA-N phenol 1.952381 2.119744

HPMLGNIUXVXALD-UHFFFAOYSA-N phenol 1.565217 1.414269

HUMNYLRZRPPJDN-UHFFFAOYSA-N phenol 1.979592 1.732559

HUTDHWXNOSDRBN-UHFFFAOYSA-N phenol 2.298246 2.333776

HZCDANOFLILNSA-UHFFFAOYSA-N phenol 2.309568 2.333776

HZCDANOFLILNSA-UHFFFAOYSA-N methanol 1.689655 1.780443

HZCDANOFLILNSA-UHFFFAOYSA-N Alpha-naphthol 2.620312 2.333776

HZXRDAIBHPCJLE-UHFFFAOYSA-N phenol 2.040000 1.913012

IAZDPXIOMUYVGZ-UHFFFAOYSA-N phenol 3.585670 2.475406

ILVXOBCQQYKLDS-UHFFFAOYSA-N phenol 3.089018 2.575698

IMFACGCPASFAPR-UHFFFAOYSA-N phenol 3.010309 2.080030

IMFACGCPASFAPR-UHFFFAOYSA-N methanol 1.708333 1.655746

IMFACGCPASFAPR-UHFFFAOYSA-N Alpha-naphthol 2.557471 2.080030

ISXOBTBCNRIIQO-UHFFFAOYSA-N phenol 3.009021 2.475406

ITQTTZVARXURQS-UHFFFAOYSA-N phenol 2.833333 2.223452

JFDZBHWFFUWGJE-UHFFFAOYSA-N phenol 1.956522 1.732559

JHIVVAPYMSGYDF-UHFFFAOYSA-N phenol 2.251604 1.966632

JIRGTCBOQAJBHY-UHFFFAOYSA-N phenol 2.178218 2.099764

JJHHIJFTHRNPIK-UHFFFAOYSA-N phenol 2.505338 2.223452

JLNGEXDJAQASHD-UHFFFAOYSA-N phenol 2.415423 2.288829

JLZWKZDHHREXTA-UHFFFAOYSA-N phenol 2.467914 2.099764

JUJWROOIHBZHMG-UHFFFAOYSA-N phenol 3.035533 2.160457

JUJWROOIHBZHMG-UHFFFAOYSA-N methanol 1.666667 1.695356

JUJWROOIHBZHMG-UHFFFAOYSA-N Alpha-naphthol 2.462687 2.160457

JUJWROOIHBZHMG-UHFFFAOYSA-N Carbazole 1.777778 1.887608

Continued on next page
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Guest InChIKey Host Experimental K293
K323

Calculated K293
K323

JUJWROOIHBZHMG-UHFFFAOYSA-N Pyrrole 1.750000 1.741359

JYYNAJVZFGKDEQ-UHFFFAOYSA-N phenol 2.968571 2.333776

KJPRLNWUNMBNBZ-QPJJXVBHSA-N phenol 2.055556 1.861341

KSMVZQYAVGTKIV-UHFFFAOYSA-N phenol 2.039841 1.717347

KWOLFJPFCHCOCG-UHFFFAOYSA-N phenol 1.507246 1.913012

KXKVLQRXCPHEJC-UHFFFAOYSA-N phenol 2.046229 1.811545

KYVIFDXEMABEDB-UHFFFAOYSA-N phenol 2.464435 2.451078

LFSAPCRASZRSKS-UHFFFAOYSA-N phenol 2.089184 1.913012

LOWMYOWHQMKBTM-UHFFFAOYSA-N phenol 2.733195 2.500029

LRMLWYXJORUTBG-UHFFFAOYSA-N phenol 2.871442 3.058469

LRMLWYXJORUTBG-UHFFFAOYSA-N methanol 2.587097 2.125286

LRMLWYXJORUTBG-UHFFFAOYSA-N Alpha-naphthol 3.209123 3.058469

LRMLWYXJORUTBG-UHFFFAOYSA-N Indole 2.207506 2.304333

MHDVGSVTJDSBDK-UHFFFAOYSA-N phenol 1.873984 1.717347

MJUJXFBTEFXVKU-UHFFFAOYSA-N phenol 2.473644 2.403298

MJUJXFBTEFXVKU-UHFFFAOYSA-N methanol 1.741935 1.814375

MJUJXFBTEFXVKU-UHFFFAOYSA-N Alpha-naphthol 2.253301 2.403298

MJUJXFBTEFXVKU-UHFFFAOYSA-N Indole 2.411765 1.931093

MTZQAGJQAFMTAQ-UHFFFAOYSA-N phenol 1.791667 1.795353

MXHTZQSKTCCMFG-UHFFFAOYSA-N phenol 1.285714 1.588898

MXHTZQSKTCCMFG-UHFFFAOYSA-N methanol 1.259259 1.415734

MXHTZQSKTCCMFG-UHFFFAOYSA-N Alpha-naphthol 1.266667 1.588898

MZBIWKMCTWJLPT-UHFFFAOYSA-N phenol 2.838480 2.451078

MZBIWKMCTWJLPT-UHFFFAOYSA-N methanol 1.946429 1.837610

MZBIWKMCTWJLPT-UHFFFAOYSA-N Alpha-naphthol 2.466515 2.451078

MZBIWKMCTWJLPT-UHFFFAOYSA-N Indole 1.936709 1.958885

NBBJYMSMWIIQGU-UHFFFAOYSA-N phenol 1.969432 1.702326

NUJGJRNETVAIRJ-UHFFFAOYSA-N phenol 1.689655 1.702326

NYYLZXREFNYPKB-UHFFFAOYSA-N phenol 2.701170 2.601528

NYYLZXREFNYPKB-UHFFFAOYSA-N methanol 2.129412 1.910247

NYYLZXREFNYPKB-UHFFFAOYSA-N Alpha-naphthol 2.435610 2.601528

NYYLZXREFNYPKB-UHFFFAOYSA-N Indole 2.345865 2.045840

OISVCGZHLKNMSJ-UHFFFAOYSA-N phenol 2.993711 2.160457

PJGSXYOJTGTZAV-UHFFFAOYSA-N phenol 1.907950 1.878353

Continued on next page
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Guest InChIKey Host Experimental K293
K323

Calculated K293
K323

POLCUAVZOMRGSN-UHFFFAOYSA-N phenol 1.941828 1.795353

PPMDSXRMQXBCJW-UHFFFAOYSA-N phenol 2.606613 2.601528

QAUUDNIGJSLPSX-UHFFFAOYSA-N phenol 1.479532 1.588898

QJUBWCXHSCFIHV-UHFFFAOYSA-N phenol 2.554217 2.333776

QSJXEFYPDANLFS-UHFFFAOYSA-N phenol 1.844340 1.644132

RDOXTESZEPMUJZ-UHFFFAOYSA-N phenol 1.683333 1.523779

RHLIPLVNXYUJQV-UHFFFAOYSA-N phenol 1.870968 2.080030

RTZKZFJDLAIYFH-UHFFFAOYSA-N phenol 2.133333 1.811545

RVAQSYWDOSHWGP-UHFFFAOYSA-N phenol 1.801477 2.181195

RVAQSYWDOSHWGP-UHFFFAOYSA-N methanol 1.789474 1.705563

RVAQSYWDOSHWGP-UHFFFAOYSA-N Alpha-naphthol 2.259669 2.181195

RVAQSYWDOSHWGP-UHFFFAOYSA-N Indole 1.630435 1.800939

RWCCWEUUXYIKHB-UHFFFAOYSA-N phenol 1.688985 1.811545

SECXISVLQFMRJM-UHFFFAOYSA-N phenol 2.579114 2.451078

SMWDFEZZVXVKRB-UHFFFAOYSA-N phenol 3.136612 2.181195

SNZSAFILJOCMFM-UHFFFAOYSA-N phenol 3.560456 3.089886

SNZSAFILJOCMFM-UHFFFAOYSA-N Indole 2.101124 2.321792

SUNMBRGCANLOEG-UHFFFAOYSA-N phenol 1.575581 1.644132

SUSQOBVLVYHIEX-UHFFFAOYSA-N phenol 2.208333 1.732559

SYBYTAAJFKOIEJ-UHFFFAOYSA-N phenol 1.892276 1.827939

UBUCNCOMADRQHX-UHFFFAOYSA-N phenol 1.523810 1.658399

UIQGEWJEWJMQSL-UHFFFAOYSA-N phenol 1.873727 1.827939

UKROGNGFIXLRHI-UHFFFAOYSA-N phenol 2.040359 2.139974

UMFJAHHVKNCGLG-UHFFFAOYSA-N phenol 1.960000 1.895576

USIUVYZYUHIAEV-UHFFFAOYSA-N phenol 1.967213 1.498811

VEUUMBGHMNQHGO-UHFFFAOYSA-N phenol 1.486207 1.702326

VEZXCJBBBCKRPI-UHFFFAOYSA-N phenol 2.040000 1.763564

VSYFZULSKMFUJJ-UHFFFAOYSA-N phenol 2.682160 2.475406

WEVYAHXRMPXWCK-UHFFFAOYSA-N phenol 2.120000 1.779360

WFJXYIUAMJAURQ-UHFFFAOYSA-N phenol 2.520433 2.500029

WMFABESKCHGSRC-UHFFFAOYSA-N phenol 1.515152 1.462237

WVLBCYQITXONBZ-UHFFFAOYSA-N phenol 2.318124 2.451078

WVLBCYQITXONBZ-UHFFFAOYSA-N methanol 1.709677 1.837610

WVLBCYQITXONBZ-UHFFFAOYSA-N Alpha-naphthol 2.450719 2.451078

Continued on next page
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Guest InChIKey Host Experimental K293
K323

Calculated K293
K323

WVLBCYQITXONBZ-UHFFFAOYSA-N Indole 2.011494 1.958885

WYURNTSHIVDZCO-UHFFFAOYSA-N phenol 2.476008 1.913012

XDOKVFJJVSLHDJ-UHFFFAOYSA-N phenol 2.192751 2.288829

XDOKVFJJVSLHDJ-UHFFFAOYSA-N methanol 1.500000 1.758436

XDOKVFJJVSLHDJ-UHFFFAOYSA-N Alpha-naphthol 2.475789 2.288829

XDOKVFJJVSLHDJ-UHFFFAOYSA-N Indole 1.981818 1.864193

XEKOWRVHYACXOJ-UHFFFAOYSA-N phenol 1.958084 1.795353

XNLICIUVMPYHGG-UHFFFAOYSA-N phenol 2.086059 1.861341

XZZNDPSIHUTMOC-UHFFFAOYSA-N phenol 1.859410 2.119744

XZZNDPSIHUTMOC-UHFFFAOYSA-N Indole 1.924528 1.764709

YEJRWHAVMIAJKC-UHFFFAOYSA-N phenol 2.036145 1.930665

YFTHZRPMJXBUME-UHFFFAOYSA-N phenol 2.574713 2.041290

YFTHZRPMJXBUME-UHFFFAOYSA-N methanol 1.545455 1.636669

YFTHZRPMJXBUME-UHFFFAOYSA-N Alpha-naphthol 2.663793 2.041290

YHQMSHVVGOSZEW-UHFFFAOYSA-N phenol 2.606324 2.575698

YHQMSHVVGOSZEW-UHFFFAOYSA-N Alpha-naphthol 2.684474 2.575698

YKOQQFDCCBKROY-UHFFFAOYSA-N phenol 2.441016 2.266767

YLQBMQCUIZJEEH-UHFFFAOYSA-N phenol 1.176471 1.390100

YMBSJQHEFLROIX-UHFFFAOYSA-N phenol 2.272727 2.099764

YRKCREAYFQTBPV-UHFFFAOYSA-N phenol 1.925267 1.779360

ZAFNJMIOTHYJRJ-UHFFFAOYSA-N phenol 2.371571 1.844537

ZMANZCXQSJIPKH-UHFFFAOYSA-N phenol 3.469466 2.223452

ZMANZCXQSJIPKH-UHFFFAOYSA-N methanol 1.828571 1.726344

ZMANZCXQSJIPKH-UHFFFAOYSA-N Alpha-naphthol 2.850785 2.223452

ZMXDDKWLCZADIW-UHFFFAOYSA-N phenol 2.377273 2.202193

ZSSWXNPRLJLCDU-UHFFFAOYSA-N phenol 2.939394 3.186262

ZSSWXNPRLJLCDU-UHFFFAOYSA-N methanol 2.748503 2.183856

ZSSWXNPRLJLCDU-UHFFFAOYSA-N Alpha-naphthol 3.468203 3.186262

ZSSWXNPRLJLCDU-UHFFFAOYSA-N Indole 2.088235 2.375098

ZSSWXNPRLJLCDU-UHFFFAOYSA-N Carbazole 2.330632 2.583100

ZSSWXNPRLJLCDU-UHFFFAOYSA-N Pyrrole 1.946488 2.277467

ZTQSAGDEMFDKMZ-UHFFFAOYSA-N phenol 2.192308 1.717347

ZWEHNKRNPOVVGH-UHFFFAOYSA-N phenol 2.304251 1.861341

Table I.2 Data for figure 7.3
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Name Surface Area/ Å
2

Volume/ Å
3

N Tc/K Eexp/kJ mol−1

methane 51.16 32.76 5.5 190 3.728362

ethane 73.41 52.43 7.9 305 5.606174

propane 93.70 71.99 10.0 370 6.611560

n-butane 113.84 91.77 12.2 425 7.474120

n-pentane 133.89 111.30 14.3 470 8.182759

n-hexane 154.08 131.08 16.5 507 8.764723

n-heptane 174.06 150.64 18.6 540 9.287384

n-octane 194.20 170.31 20.8 569 9.747501

n-nonane 214.27 189.95 22.9 594 10.144051

n-decane 234.41 209.63 25.1 617 10.510160

n-undecane 254.43 229.25 27.2 639 10.862199

n-dodecane 274.59 248.96 29.4 658 11.165466

n-tridecane 294.21 268.37 31.5 676 11.453926

n-tetradecane 313.72 287.91 33.6 697 11.794546

n-pentadecane 333.21 307.23 35.6 707 11.950484

n-hexadecane 352.89 326.79 37.7 721 12.175071

n-heptadecane 372.43 346.09 39.8 733 12.366991

n-octadecane 392.14 365.67 41.9 745 12.559594

n-nonadecane 411.65 384.95 44.0 756 12.736195

n-eicosane 431.32 404.55 46.1 767 12.913277

n-heneicosane 450.92 423.85 48.2 782 13.158320

n-docosane 470.57 443.40 50.3 792 13.319574

n-tricosane 490.12 462.73 52.4 801 13.464518

n-tetracosane 509.78 482.31 54.5 810 13.609769

n-pentacosane 529.37 501.59 56.6 819 13.755450

n-hexacosane 549.12 521.09 58.7 827 13.884582

n-heptacosane 568.59 540.43 60.8 835 14.014036

n-octacosane 588.38 559.99 62.9 843 14.143689

n-nonacosane 607.89 579.36 65.0 850 14.256840

n-triacontane 627.62 598.83 67.1 857 14.370181

isobutane 111.72 91.62 11.9 408 7.175832

isopentane 129.63 111.02 13.9 460 8.009608

neopentane 127.48 111.27 13.6 434 7.556091

2-methylpentane 149.67 130.62 16.0 497 8.593049

Continued on next page
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Name Surface Area/ Å
2

Volume/ Å
3

N Tc/K Eexp/kJ mol−1

3-methylpentane 147.40 130.32 15.8 504 8.714877

2,2-dimethylbutane 143.09 130.28 15.3 489 8.455609

2,3-dimethylbutane 143.99 130.33 15.4 500 8.645684

2-methylhexane 169.75 150.24 18.2 530 9.116229

3-methylhexane 165.61 150.14 17.7 535 9.202442

3-ethylpentane 162.87 149.86 17.4 540 9.289044

2,2-dimethylpentane 160.21 149.75 17.1 520 8.945232

2,3-dimethylpentane 158.33 149.53 16.9 537 9.238142

2,4-dimethylpentane 164.77 150.10 17.6 520 8.944512

3,3-dimetmylpentane 158.33 149.53 16.9 536 9.220939

2,2,3-trimethylbutane 156.02 148.86 16.7 531 9.136345

2-methylheptane 189.81 169.87 20.3 559 9.576942

3-methylheptane 185.26 168.30 19.8 564 9.665338

4-methylheptane 185.17 168.25 19.8 562 9.631151

3-ethylhexane 182.67 169.49 19.5 565 9.680394

2,2-dimethylhexane 183.15 169.51 19.6 550 9.423359

2,3-dimethylhexane 181.18 169.20 19.4 563 9.646630

2,4-dimethylhexane 182.94 169.35 19.6 553 9.475031

2,5-dimethylhexane 185.52 169.71 19.8 550 9.423021

3,3-dimethylhexane 178.03 169.07 19.0 562 9.629721

3,4-dimethylhexane 179.48 168.94 19.2 569 9.749893

2-methyl-3-ethylpentane 179.60 168.79 19.2 567 9.715886

3-methyl-3-ethylpentane 172.99 168.45 18.5 576 9.870714

2,2,3-trimethylpentane 173.45 167.22 18.6 563 9.650109

2,2,4-trimethylpentane 177.76 169.25 19.0 544 9.320994

2,3,3-trimethylpentane 170.70 168.00 18.3 573 9.820109

2,3,4-trimethylpentane 173.42 167.33 18.5 566 9.701334

2,2,3,3-tetramethylbutane 166.13 167.06 17.8 568 9.736099

2-methyloctane 207.91 188.46 22.2 587 10.026651

3-methyloctane 203.54 188.35 21.8 590 10.078055

4-methyloctane 203.33 188.15 21.7 588 10.044184

3-ethylheptane 200.75 187.90 21.5 594 10.147044

2,2-dimethylheptane 201.91 188.46 21.6 577 9.855840

2,6-dimethylheptane 203.97 188.48 21.8 576 9.838730

Continued on next page
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Name Surface Area/ Å
2

Volume/ Å
3

N Tc/K Eexp/kJ mol−1

2,2,3-trimethylhexane 193.05 187.37 20.6 591 10.096577

2,2,4-trimethylhexane 192.99 187.67 20.6 574 9.805721

2,2,5-trimethylhexane 197.76 188.12 21.2 568 9.702587

2,3,3-trimethylhexane 191.19 187.19 20.4 599 10.233518

2,3,5-trimethylhexane 195.92 187.74 21.0 582 9.942285

2,4,4-trimethylhexane 191.04 187.44 20.4 582 9.942720

3,3,4-trimethylhexane 189.05 186.91 20.2 604 10.319364

3,3-diethylpentane 187.18 187.01 20.0 610 10.421721

2,2-dimethyl-3-

ethylpentane

190.05 187.31 20.3 589 10.062497

2,4-dimethyl-3-

ethylpentane

188.30 186.87 20.1 591 10.097318

2,2,3,3-

tetramethylpentane

182.43 186.37 19.5 611 10.439790

2,2,3,4-

tetramethylpentane

186.26 187.14 19.9 592 10.114002

2,2,4,4-

tetramethylpentane

186.56 187.52 20.0 571 9.754685

2,3,3,4-

tetramethylpentane

184.01 186.69 19.7 607 10.370955

2-methylnonane 227.70 207.93 24.4 609 10.375958

3-methylnonane 225.59 207.62 24.1 614 10.461531

4-methylnonane 225.54 207.58 24.1 619 10.546773

5-methylnonane 225.56 207.66 24.1 610 10.393329

2,7-dimethyloctane 223.72 207.77 23.9 600 10.222813

3,3,4-trimethylheptane 208.54 206.31 22.3 628 10.701745

3,3,5-trimethylheptane 208.84 206.62 22.3 609 10.377579

2,2,3,3-

tetramethylhexane

202.00 205.84 21.6 623 10.617142

2,2,5,5-

tetramethylhexane

211.43 207.47 22.6 581 9.899443

2,4-dimethyl-3-isopropyl-

pentane

204.31 205.51 21.9 614 10.464183

cyclopropane 82.02 61.85 8.8 398 7.199997

Continued on next page
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Name Surface Area/ Å
2

Volume/ Å
3

N Tc/K Eexp/kJ mol−1

cyclobutane 100.05 80.02 10.7 460 8.158669

cyclopentane 116.22 98.21 12.4 512 8.970222

cyclohexane 131.30 117.07 14.0 553 9.605531

cycloheptane 146.70 136.36 15.7 604 10.425594

cyclooctane 160.28 155.09 17.1 647 11.116711

cyclononane 173.85 173.47 18.6 682 11.676863

cis-

decahydronaphthalene

180.93 181.25 19.4 702 12.004001

trans-

decahydronaphtmalene

184.38 181.76 19.7 687 11.746570

methylcyclopropane 102.21 81.52 10.9 437 7.741242

ethylcyclopropane 122.12 101.15 13.1 482 8.431477

cis-1,2-

dimethylcyclopropane

120.72 100.95 12.9 484 8.467335

trans-1,2-

dimethylcyclopropane

122.23 101.10 13.1 469 8.204283

methylcyclobutane 119.73 99.76 12.8 487 8.525117

ethylcyclobutane 138.17 119.29 14.8 527 9.146321

methylcyclopentane 134.97 117.96 14.4 533 9.255019

ethylcyclopentane 153.21 137.47 16.4 569 9.818444

1,1-

dimethylcyclopentane

147.21 136.37 15.7 547 9.441695

cis-1,2-

dimethylcyclopentane

149.25 137.10 16.0 565 9.750415

trans-1,2-

dimethylcyclopentane

151.75 137.49 16.2 553 9.542302

cis-1,3-

dimethylcyclopentane

153.75 137.60 16.4 551 9.507504

trans-1,3-

dimethylcyclopentane

153.69 137.61 16.4 553 9.541988

n-propylcyclopentane 172.95 156.95 18.5 603 10.356618

isopropylcyclopentane 168.12 156.68 18.0 593 10.185444

1-methyl-1-

ethylcyclopentane

164.55 156.38 17.6 582 9.997138

Continued on next page
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Name Surface Area/ Å
2

Volume/ Å
3

N Tc/K Eexp/kJ mol−1

cis-l-methyl-2-ethyl-

cyclopentane

165.01 155.38 17.6 592 10.171073

trans-l-methyl-2-ethyl-

cyclopentane

169.12 156.71 18.1 581 9.979267

cis-l-methyl-3-ethyl-

cyclopentane

171.48 156.91 18.3 581 9.978848

trans-1-methyl-3-ethyl-

cyclopentane

168.72 156.36 18.0 581 9.980003

1,1,2-

trimetmylcyclopentane

161.46 155.29 17.3 570 9.793282

1,1,3-

trimetmylcyclopentane

165.87 155.70 17.7 557 9.569089

l,cis-2,cis-3-trimethyl-

cyclopentane

163.84 155.43 17.5 584 10.033518

l,cis-2,trans-3-trimethyl-

cyclopentane

164.28 155.42 17.6 576 9.896094

l,trans-2,cis-3-trimethyl-

cyclopentane

166.76 155.94 17.8 566 9.723209

l,cis-2,cis-4-trimethyl-

cyclopentane

167.41 155.54 17.9 575 9.878660

l,cis-2,trans-4-trimetmyl-

cyclopentane

165.88 155.55 17.7 576 9.895819

l,trans-2,cis-4-trimethyl-

cyclopentane

168.70 155.86 18.0 564 9.689016

n-butylcyclopentane 191.00 175.16 20.4 621 10.629408

isobutylcyclopentane 186.43 175.24 19.9 624 10.680614

1-methyl-1-n-propyl-

cyclopentane

182.96 174.78 19.6 606 10.373322

1,1-diethylcyclopentane 178.25 174.46 19.1 612 10.476594

cis-1,2-

diethylcyclopentane

183.32 174.72 19.6 617 10.561723

1,1-dimethyl-2-ethyl-

cyclopentane

177.32 174.61 19.0 594 10.168201

n-pentylcyclopentane 212.01 195.78 22.7 644 10.989081

Continued on next page
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Name Surface Area/ Å
2

Volume/ Å
3

N Tc/K Eexp/kJ mol−1

n-hexylcyclopentane 231.50 215.09 24.8 665 11.320784

n-heptylcyclopentane 251.14 234.52 26.9 684 11.621320

n-octylcyclopentane 270.70 253.95 29.0 701 11.890336

n-nonylcyclopentane 290.33 273.38 31.1 717 12.144392

n-decylcyclopentane 309.92 292.81 33.1 732 12.383150

n-undecylcyclopentane 329.54 312.25 35.2 746 12.606351

n-oodecylcyclopentane 349.17 331.67 37.3 759 12.813823

n-trrdecylcyclopentane 368.76 351.07 39.4 771 13.005413

n-tetradecylcyclopentane 388.43 370.57 41.5 782 13.180943

n-

pentadecylcyclopentane

407.97 389.94 43.6 792 13.340434

n-hexadecylcyclopentane 427.59 409.39 45.7 803 13.517376

n-

heptadecylcyclopentane

447.11 428.77 47.8 811 13.644419

n-octadecylcyclopentane 466.80 448.27 49.9 821 13.805575

n-nonadecylcyclopentane 486.34 467.64 52.0 829 13.933590

n-eicosylcyclopentane 505.98 487.08 54.1 836 14.045185

methylcyclohexane 146.62 136.37 15.7 572 9.873217

ethylcyclohexane 167.19 156.12 17.9 609 10.461499

1,1-dimethylcyclohexane 161.47 155.68 17.3 591 10.153241

cis-1,2-

dimethylcyclohexane

162.19 155.69 17.3 606 10.410916

trans-1,2-

dimethylcyclohexane

164.61 155.99 17.6 596 10.238465

cis-i,3-

dimetmylcyclohexane

167.08 156.30 17.9 591 10.151905

trans-1,3-

dimethylcyclohexane

164.41 155.97 17.6 598 10.272866

cis-i,4-

dimethylcyclohexane

164.50 155.98 17.6 598 10.272844

trans-1,4-

dimethylcyclohexane

167.20 156.43 17.9 590 10.134449

n-propylcyclohexane 186.80 175.55 20.0 639 10.936793

isopropylcyclohexane 181.32 175.36 19.4 636 10.885792

Continued on next page
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Name Surface Area/ Å
2

Volume/ Å
3

N Tc/K Eexp/kJ mol−1

n-butylcyclohexane 206.23 194.91 22.1 667 11.382879

isobutylcyclohexane 200.59 194.33 21.5 660 11.264304

sec-butylcyclohexane 198.37 194.74 21.2 650 11.093016

tert-butylcyclohexane 193.32 193.87 20.7 645 11.008987

1-methyl-4-isopropyl-

cyclohexane

198.06 194.15 21.2 637 10.872026

n-pentylcyclohexane 225.81 214.32 24.2 670 11.406878

n-hexylcyclohexane 245.29 233.71 26.2 688 11.690164

n-heptylcyclohexane 264.93 253.14 28.3 706 11.975915

n-octylcyclohexane 284.56 272.55 30.4 723 12.246713

n-nonylcyclohexane 304.18 291.93 32.5 738 12.485305

n-decylcyclohexame 323.78 311.40 34.6 751 12.691408

n-undecylcyclohexane 343.42 330.82 36.7 764 12.898743

n-dodecylcyclohexane 362.96 350.21 38.8 776 13.090219

n-tridecylcyclohexane 382.57 369.58 40.9 787 13.265706

n-tetradecylcyclohexane 402.10 388.99 43.0 797 13.425079

n-pentadecylcyclohexane 421.64 408.36 45.1 807 13.585134

n-hexadecylcyclohexane 441.25 427.85 47.2 817 13.745713

n-

meptadecylcyclohexane

460.82 447.29 49.3 825 13.873180

n-octadecylcyclohexane 480.45 466.77 51.4 833 14.001103

n-nonadecylcyclohexane 500.02 486.19 53.5 841 14.129456

n-eicosylcyclohexane 520.00 506.00 55.6 849 14.258062

ethylcycloheptane 181.78 175.08 19.4 640 10.954770

bicyclohexyl 218.38 220.30 23.4 727 12.369293

1-methyl-[cis-decahydro-

naphthalene]

194.84 199.43 20.8 755 12.876985

1-methyl-[trans-

decahydro-naphthalene]

198.81 200.01 21.3 743 12.671372

1-ethyl-[cis-decahydro-

naphthalene]

209.97 218.53 22.5 729 12.405655

1-ethyl-[trans-decahydro-

naphthalene]

214.03 219.22 22.9 714 12.149499

Continued on next page
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Name Surface Area/ Å
2

Volume/ Å
3

N Tc/K Eexp/kJ mol−1

9-ethyl-[cis-

decahydronaphthalene]

206.78 217.86 22.1 721 12.270400

9-ethyl-[trans-decahydro-

naphthalene]

207.34 217.97 22.2 709 12.066034

Table I.3 Data for figure 7.4. Experimental data from [334]



506 Vapour Liquid Equilibria data

T/K [vapour]T /M [liquid]T /M cT /M Experimental
Eexp/ kJ
mol−1

1−φb φb
φb

1−φb
Calculated
Eexp/ kJ
mol−1

273.15 0.000269 55.5 55.5 71.72 5.10% 94.90% 18.61 100.255399
283.15 0.000522 55.5 55.5 74.03 5.67% 94.33% 16.65 89.926653
293.15 0.000960 55.5 55.5 73.35 6.25% 93.75% 15.00 81.208991
303.15 0.001690 55.3 55.3 70.60 6.85% 93.15% 13.59 73.786031
313.15 0.002840 55.1 55.1 66.76 7.47% 92.53% 12.38 67.414536
323.15 0.004600 54.9 54.9 62.53 8.11% 91.89% 11.34 61.905095
333.15 0.007220 54.6 54.6 58.16 8.75% 91.25% 10.43 57.107833
343.15 0.011000 54.3 54.3 53.97 9.41% 90.59% 9.63 52.904455
353.15 0.016300 54.0 54.0 50.21 10.07% 89.93% 8.93 49.200671
363.15 0.023500 53.6 53.7 46.72 10.74% 89.26% 8.31 45.918484
373.15 0.033200 53.2 53.3 43.53 11.43% 88.57% 7.75 42.995142
383.15 0.045900 52.8 52.9 40.79 12.11% 87.89% 7.26 40.380327
393.15 0.062300 52.4 52.5 38.25 12.80% 87.20% 6.81 38.029870
403.15 0.083200 51.9 52.0 35.99 13.50% 86.50% 6.41 35.908890
413.15 0.109000 51.4 51.6 33.96 14.19% 85.81% 6.05 33.987559
423.15 0.142000 50.9 51.1 32.14 14.89% 85.11% 5.71 32.240848
433.15 0.181000 50.4 50.6 30.51 15.60% 84.40% 5.41 30.647343
443.15 0.224000 49.9 50.1 29.01 16.30% 83.70% 5.14 29.194147
453.15 0.287000 49.3 49.6 27.70 17.00% 83.00% 4.88 27.850608
463.15 0.356000 48.7 49.0 26.50 17.71% 82.29% 4.65 26.618434
473.15 0.437000 48.0 48.5 25.39 18.41% 81.59% 4.43 25.480901
483.15 0.534000 47.4 47.9 24.39 19.11% 80.89% 4.23 24.427672
502.55 0.771000 46.0 46.7 22.55 20.47% 79.53% 3.88 22.590786
533.15 1.320000 43.6 44.9 20.37 22.61% 77.39% 3.42 20.155826
552.55 1.840000 41.7 43.5 19.08 23.97% 76.03% 3.17 18.832700
583.15 3.070000 38.4 41.4 17.48 26.11% 73.89% 2.83 17.027667
602.55 4.270000 35.6 39.8 16.40 27.50% 72.50% 2.64 16.006191
633.15 8.070000 29.3 37.4 15.13 29.77% 70.23% 2.36 14.543948
644.25 11.900000 24.2 36.1 14.48 30.72% 69.28% 2.25 13.994731
647.02 17.200000 17.2 34.4 13.46 31.19% 68.81% 2.21 13.738336

Table I.4 Data for Figures 7.5 and 7.6. Experimental data from [334]
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Molecule Name Experimental

concentration/

M

Calculated con-

centration/ M

(2R,3S)-2,3-butanediol 10.95 10.88

1,1,1,3,3,3-hexafluoro-2-propanol 9.56 10.44

1,1,1-trichloroethane 9.97 9.95

1,1,2,2-tetrachloroethane 9.45 8.78

1,1,2-trichloroethane 10.73 10.30

1,1-dichloroethane 11.81 11.96

1,2,3,4-tetrahydronaphthalene 7.30 7.07

1,2,4-trichlorobenzene 8.02 7.46

1,2-butanediol 11.09 10.88

1,2-dibromoethane 11.55 10.41

1,2-dichloroethane 12.59 12.30

1,2-dimethoxybenzene 7.83 7.49

1,2-dimethyoxyethane 9.57 10.13

1,2-propanediol 13.57 13.27

1,3,5-trimethylbenzene 7.17 7.29

1,3-dioxane 11.67 11.32

1,3-dioxolan 14.37 13.36

1,3-propanediol 13.79 13.09

1,4-butanediol 11.24 11.10

1,4-dichlorobutane 9.51 8.79

1,5-pentanediol 9.47 9.32

1,8-cineole 5.96 6.04

1-bromobutane 9.26 9.36

1-butanol 10.87 11.15

1-decanol 5.24 5.44

1-dodecanol 4.46 4.67

1-hexanol 7.99 8.19

1-methyl-2-pyrrolidinethione 11.66 9.11

1-nitropropane 11.17 11.24

1-octanol 6.31 6.54

1-pentanol 9.22 9.47

1-propanol 13.32 13.61

Continued on next page
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Molecule Name Experimental

concentration/

M

Calculated con-

centration/ M

2,2,2-trifluoroethanol 13.82 14.67

2,2,4,4-tetramethyl-3-pentanone 5.77 6.12

2,2,4-trimethylpentane 6.24 6.59

2,3-butanedione 11.39 11.96

2,4,5-trimethylacetophenone 7.50 6.07

2,4,6-trimethylpyridine 7.52 7.61

2,4-dimethylphenol 8.32 8.08

2,4-dimethylpyridine 8.66 8.61

2,4-pentanedione 9.71 10.17

2,6-dimethylpyridine 8.57 8.58

2-bromopyridine 10.48 9.77

2-butanol 10.83 11.09

2-butanone 10.93 11.71

2-chloroethanol 15.48 13.99

2-cyanoethanol 14.64 13.86

2-cyanopyridine 10.39 10.33

2-ethoxyethanol 10.27 10.46

2-heptanone 7.11 7.53

2-methoxyethanol 12.61 12.66

2-methoxyphenol 9.09 8.75

2-methyl-1-propanol 10.76 11.12

2-methyl-2-butanol 9.13 9.47

2-methyl-2-propanol 10.54 11.22

2-methylbutane 8.51 9.44

2-methylpyridine 10.09 9.96

2-methyltetrahydrofuran 9.91 10.07

2-nitropropane 11.04 11.23

2-pentanone 9.30 9.84

2-phenylethanol 8.38 8.08

2-propanol 13.00 13.59

2-pyrrolidinone 13.01 12.23

3,3-dimethyl-2-butanone 8.00 8.55

Continued on next page
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Molecule Name Experimental

concentration/

M

Calculated con-

centration/ M

3-bromopyridine 10.38 9.56

3-chlorophenol 9.87 9.30

3-heptanone 7.11 7.54

3-methyl-1-butanol 9.16 9.40

3-methyl-2-butanone 9.35 9.81

3-methylbutanenitrile 9.56 9.93

3-methylpyridine 10.24 10.00

3-pentanone 9.40 9.83

4-methyl-1,3-dioxolan-2-one 11.75 11.58

4-methyl-2-pentanone 7.96 8.55

4-methylpyridine 10.20 10.06

N,N-diethylacetamide 7.86 7.88

N,N-diethylformamide 8.98 8.99

N,N-dimethylacetamide 10.75 10.62

N,N-dimethylaniline 7.87 7.72

N,N-dimethylformamide 12.90 12.72

N,N-dimethylthioformamide 11.74 11.41

N-methyl pyrrolidinone 10.37 9.95

N-methylacetamide 12.99 13.15

N-methylformamide 16.92 16.62

acetic acid 17.39 16.89

acetic anhydride 10.54 10.90

acetone 13.51 14.54

acetonitrile 18.90 19.44

acetophenone 8.52 8.39

acrylonitrile 15.10 15.91

allyl alcohol 14.58 14.88

aminoethanol 16.58 15.42

ammonia 40.00 33.14

aniline 10.93 10.42

anisole 9.15 9.10

benzaldehyde 9.84 9.51

Continued on next page
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Molecule Name Experimental

concentration/

M

Calculated con-

centration/ M

benzene 11.12 10.98

benzonitrile 9.70 9.62

benzoyl bromide 8.48 7.98

benzoyl chloride 8.62 8.36

benzyl alcohol 9.63 9.24

benzyl methyl ketone 7.57 7.48

benzylamine 9.16 8.74

bis(2-chloroethyl) ether 8.48 8.37

bromobenzene 9.48 9.03

bromoform 11.39 9.99

butanoic acid 10.82 11.17

butyl acetate 7.55 8.03

butyraldehyde 11.05 11.46

carbon disulfide 16.50 14.00

carbon tetrachloride 10.30 9.87

chlorobenzene 9.79 9.53

chloroform 12.40 11.63

cinnamaldehyde 7.95 7.78

cis-decalin 6.46 6.17

cis-perfluorodecalin 4.21 4.58

cyclohexane 9.20 8.96

cyclohexanol 9.68 9.04

cyclohexanone 9.60 9.38

cyclopentanone 11.24 11.00

di-n-butylamine 5.86 6.26

di-n-butylorthophthalate 3.75 3.94

di-n-propyl ether 7.27 8.00

dibenzyl ether 5.19 5.25

dibromomethane 14.33 12.59

dibutyl ether 5.87 6.42

dibutyl sulfide 5.73 5.99

dibutyl sulfoxide 5.13 5.88

Continued on next page
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Molecule Name Experimental

concentration/

M

Calculated con-

centration/ M

dichloroacetic acid 12.12 11.27

dichloromethane 15.50 14.60

diethanolamine 10.42 10.03

diethyl carbonate 8.21 8.77

diethyl ether 9.55 10.64

diethyl malonate 6.56 6.98

diethyl sulfate 7.64 7.87

diethyl sulfide 9.22 9.47

diethyl sulfite 7.84 8.21

diethylamine 9.60 10.28

diethylene glycol dimethyl ether 7.00 7.30

diethylene glycol 10.52 10.11

dihydrolevoglucosenone 9.76 9.33

diisopropyl ether 7.03 8.00

diisopropyl sulfide 6.88 7.29

dimethyl carbonate 11.88 12.37

dimethyl sulfate 10.57 10.31

dimethyl sulfide 13.55 13.39

dimethylcyanamide 12.38 12.92

dimethylphthalate 6.13 6.25

dimethylsulfoxide 14.03 13.57

diphenyl ether 6.29 6.22

diphenyl ketone 6.08 5.96

ethanol 17.03 17.61

ethyl acetate 10.15 10.81

ethyl acetoacetate 7.85 8.15

ethyl benzoate 6.94 7.04

ethyl chloroacetate 10.26 9.32

ethyl formate 12.36 13.09

ethyl phenyl ether 7.87 7.90

ethyl phenyl ketone 7.53 7.43

ethyl propionate 8.66 9.22

Continued on next page
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Molecule Name Experimental

concentration/

M

Calculated con-

centration/ M

ethyl trichloroacetate 7.23 7.35

ethylbenzene 8.13 8.23

ethylene carbonate 15.12 14.38

ethylene glycol 17.89 17.30

ethylenediamine 14.79 14.04

fluorobenzene 10.60 10.52

formamide 25.06 24.27

formic acid 26.38 23.46

furan 13.68 13.64

gamma-butyrolactone 13.07 12.70

glycerol 13.66 12.77

heptanoic acid 7.06 7.25

hexafluorobenzene 8.67 8.97

hexamethylphosphoric triamide 5.69 5.80

hexanoic acid 7.95 8.20

hydrazine 31.35 26.74

hydrogen fluoride 47.62 59.76

hydrogen peroxide 42.37 36.12

iodobenzene 8.94 8.42

isopentyl acetate 6.66 7.14

isopropylbenzene 7.14 7.29

meta-cresol 9.53 9.24

meta-dichlorobenzene 8.73 8.37

meta-xylene 8.11 8.24

methanesulfonic acid 15.37 14.71

methanol 24.57 25.13

methyl acetate 12.53 13.13

methyl benzoate 7.96 7.91

methyl formate 16.10 16.75

methyl orthoacetate 7.37 8.24

methyl orthoformate 8.89 9.41

methyl propionate 10.31 10.75

Continued on next page
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Molecule Name Experimental

concentration/

M

Calculated con-

centration/ M

methylene iodide 12.41 10.29

methylphenylamine 9.17 8.98

morpholine 11.43 11.00

n-butyl iodide 8.73 8.72

n-butylamine 10.07 10.40

n-butyronitrile 11.38 11.79

n-decane 5.11 5.49

n-dodecane 4.43 4.73

n-heptane 6.78 7.30

n-hexadecane 3.40 3.68

n-hexane 7.60 8.25

n-octane 6.12 6.64

n-pentane 8.61 9.46

n-perfluorohexane 4.97 6.04

n-propyl acetate 8.65 9.23

nitrobenzene 9.74 9.22

nitroethane 13.91 13.76

nitromethane 18.52 17.86

o-chloroaniline 9.47 8.95

ortho-cresol 9.62 9.24

ortho-dichlorobenzene 8.84 8.39

ortho-xylene 8.26 8.21

p-chloroacetophenone 7.71 7.49

p-methoxybenzaldehyde 8.23 8.01

para-cresol 9.44 9.22

para-xylene 8.08 8.27

pentachloroethane 8.27 7.77

pentanoic acid 9.15 9.44

perfluoroheptane 4.51 5.34

perfluoromethylcyclohexane 4.45 5.84

perfluorooctane 4.03 4.80

phenol 11.39 10.79

Continued on next page
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Molecule Name Experimental

concentration/

M

Calculated con-

centration/ M

phenylacetonitrile 8.65 8.41

phosphorus oxychloride 10.87 10.65

piperidine 10.06 9.70

propanoic acid 13.33 13.55

propionaldehyde 13.62 14.13

propionitrile 14.10 14.57

pyridine 12.36 11.78

pyrimidine 12.69 12.63

pyrrole 14.39 14.12

pyrrolidine 12.01 11.49

quinoline 8.44 8.00

styrene 8.66 8.64

sulfolane 10.50 9.99

sulfur dioxide 22.83 20.74

sulfuric acid 18.69 16.63

tetrachloroethylene 9.74 9.10

tetraethylurea 5.26 5.48

tetrahydrofuran 12.25 12.07

tetrahydropyran 10.18 10.03

tetrahydrothiophene 11.27 10.45

tetramethylsilane 7.33 8.66

tetramethylurea 8.31 8.32

thiane 9.63 8.97

thiobis(2-ethanol) 9.67 9.31

thionyl chloride 13.71 12.44

toluene 9.35 9.44

trans-1,2-dichloroethylene 12.85 12.41

tri-(n-butyl)amine 4.18 4.47

tri-n-butylphosphate 3.65 3.94

trichloroethylene 11.12 10.62

triethanolamine 7.51 7.34

triethylamine 7.15 7.66

Continued on next page



I.2 Data for Vapour Liquid equilibria 515

Molecule Name Experimental

concentration/

M

Calculated con-

centration/ M

triethylene glycol 7.46 7.33

triethylphosphate 5.87 6.25

trifluoroacetic acid 12.97 14.38

trimethylphosphate 8.67 8.89

water 55.35 55.39

Table I.5 Data for Figure 7.7. Experimental data from [332, 333]
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T/K [vapour]exp / M [liquid]exp / M 1
2 cT,exp/ M [liquid]calc / M [vapour]calc / M 1

2 cT,calc/ M

273.15 0.000269 55.543889 27.772079 55.921448 0.000220 27.960834
283.15 0.000522 55.536117 27.768319 55.718894 0.000387 27.859641
293.15 0.000960 55.453517 27.727238 55.498655 0.000654 27.749655
303.15 0.001687 55.311078 27.656382 55.260457 0.001109 27.630783
313.15 0.002837 55.120656 27.561746 55.004054 0.001768 27.502911
323.15 0.004603 54.891367 27.447985 54.729227 0.002742 27.365984
333.15 0.007222 54.621528 27.314375 54.435764 0.004145 27.219954
343.15 0.010994 54.317128 27.164061 54.123450 0.006169 27.064809
353.15 0.016283 53.989850 27.003067 53.792070 0.008949 26.900509
363.15 0.023511 53.630233 26.826872 53.441374 0.012744 26.727059
373.15 0.033189 53.239633 26.636411 53.071069 0.017889 26.544479
383.15 0.045911 52.834572 26.440242 52.680819 0.024692 26.352755
393.15 0.062278 52.396072 26.229175 52.270191 0.033650 26.151920
403.15 0.083167 51.935639 26.009403 51.838671 0.045264 25.941967
413.15 0.109278 51.449856 25.779567 51.385591 0.060242 25.722916
423.15 0.141556 50.940361 25.540958 50.910149 0.079343 25.494746
433.15 0.181278 50.408817 25.295047 50.411299 0.103608 25.257454
443.15 0.223500 49.852433 25.037967 49.887763 0.134208 25.010985
453.15 0.286944 49.273222 24.780083 49.337927 0.172617 24.755272
463.15 0.355667 48.668906 24.512286 48.759768 0.220653 24.490210
473.15 0.437111 48.037667 24.237389 48.150740 0.280564 24.215652
483.15 0.533667 47.378094 23.955881 47.507651 0.355147 23.931399
502.55 0.770556 45.963067 23.366811 46.146876 0.555666 23.351271
533.15 1.324444 43.555900 22.440172 43.598612 1.107450 22.353031
552.55 1.843333 41.705239 21.774286 41.622068 1.701050 21.661559
583.15 3.069444 38.380350 20.724897 37.735193 3.210974 20.473084
602.55 4.273333 35.566933 19.920133 34.838635 4.495739 19.667187
633.15 8.072222 29.332394 18.702308 30.094315 6.596432 18.345374
644.25 11.916667 24.228333 18.072500 28.420030 7.289469 17.854750
647.02 17.216944 17.216944 17.216944 28.009141 7.453804 17.731472

Table I.6 Data for Figure 7.8
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T/K [vapour]exp / M [liquid]exp / M 1
2 cT,exp/ M [liquid]calc / M [vapour]calc / M 1

2 cT,calc/ M

353.15 0.0345 8.58 4.31 8.307599 0.024775 4.166187
373.15 0.0588 8.34 4.20 8.062910 0.042826 4.052868
393.15 0.0948 8.08 4.09 7.808949 0.070142 3.939546
413.15 0.1460 7.82 3.98 7.542403 0.110040 3.826221
433.15 0.2160 7.53 3.87 7.259021 0.166765 3.712893
453.15 0.3130 7.22 3.77 6.953340 0.245777 3.599559
473.15 0.4450 6.88 3.66 6.618396 0.354057 3.486227
493.15 0.6250 6.50 3.56 6.245678 0.500093 3.372886
513.15 0.8920 6.03 3.46 5.825639 0.693448 3.259543
533.15 1.3200 5.40 3.36 5.349671 0.942725 3.146198
543.15 1.7100 4.91 3.31 5.089171 1.089883 3.089527
547.15 1.9500 4.63 3.29 4.980790 1.152925 3.066857
550.15 2.2100 4.34 3.27 4.897968 1.201743 3.049856
552.15 2.5100 4.04 3.27 4.842054 1.234984 3.038519
553.80 3.2500 3.25 3.25 4.795480 1.262859 3.029169

Table I.7 Data for Figure 7.9
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