
Ramsey classes and partial orders

Anja Komatar

School of Mathematics

The University of Leeds

Submitted in accordance with the requirements for the degree of

Doctor of Philosophy

May 2019

mailto:a.komatar@leeds.ac.uk
https://physicalsciences.leeds.ac.uk/pgr/940/anja-komatar
http://www.leeds.ac.uk


Intellectual Property and Publication Statement

The candidate confirms that the work submitted is their own and that
appropriate credit has been given where reference has been made to
the work of others.

This copy has been supplied on the understanding that it is copy-
right material and that no quotation from the thesis may be published
without proper acknowledgement.

The right of Anja Komatar to be identified as Author of this work
has been asserted by them in accordance with the Copyright, Designs
and Patents Act 1988.

©December 11, 2019 The University of Leeds and Anja Komatar.

i



To Toby and Scruffy, for being the fluffiest, most supportive baes.

Just like moons and like suns,
With the certainty of tides,

Just like hopes springing high,
Still I’ll rise.
- Maya Angelou

https://www.youtube.com/watch?v=JqOqo50LSZ0


Acknowledgements

Many thanks to Prof. Dugald MacPherson for guidance, support and
productive mathematical discussions. I am grateful for your respectful
and expert supervision.

Prof. Colva Roney-Dougal, thank you for pointing me in the right
direction at a crucial point of my PhD.

Thank you Alyson Peacock, Kathryn Boardman and Jeanette Youds.
Without your support and compassion, this thesis would not exist.

Billy, thank you for 24/7 maths and non-maths assistance, and for
your encouragement and solidarity.

Thank you Susie, for always being there for me and keeping up my
spirits - looking forward to our Treat Yo Self day!

Many thanks to PhD students that shared this experience with me.
Especially Colleen, Raph, Ricardo, Steven and Inga, I really enjoyed
working in your company! Thank you for being my friends, and thank
you to all my friends for being there for me while I focused on the
research. Thank you also to my colleagues, for reminding me con-
sistently that there is a life outside of the Ramsey classes of ordered
shaped partial orders.



Abstract

We consider the classes of finite coloured partial orders, i.e., par-
tial orders together with unary relations determining the colour of
their points. These classes are the ages of the countable homogeneous
coloured partial orders, classified by Torrezão de Souza and Truss in
2008. We prove that certain classes can be expanded with an order
to become Ramsey classes with the ordering property. The motiva-
tion for finding such classes is the 2005 paper of Kechris, Pestov and
Todorčević, showing that these concepts are important in topologi-
cal dynamics for calculating universal minimal flow of automorphism
groups of homogeneous structures and finding new examples of ex-
tremely amenable groups.

We introduce the elementary skeletons to enumerate the classes of
ordered shaped partial orders and show that classes are Ramsey using
three main approaches. With the Blowup Lemma we use the known
results about the Ramsey classes of ordered partial orders, to prove
results about shaped classes. We use the Structural Product Ramsey
Lemma to show that a class K is Ramsey when structures in classes
known to be Ramsey determine each structure in K uniquely. Finally,
we use the Two Pass Lemma when each structure in the considered
class has two dimensions that can be built separately and the classes
corresponding to both dimensions of the structure are known to be
Ramsey. We then show that the classes of unordered reducts of the
structures in the classes enumerated by elementary skeletons are the
Fraïssé limits of the countable homogeneous coloured partial orders.
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Chapter 1

Introduction

Stemming from the Classical Ramsey Theorem (Theorem 2.2.2), Structural Ram-
sey Theory considers classes of structures and is mainly concerned with the ques-
tion Does a certain class of structures have a Ramsey property?

We need to introduce some notation to define the Ramsey property. Given
structures A and B, denote the set of all substructures of B, isomorphic to A,
as
(
B
A

)
. Further, given a positive integer k, we denote the set {1, 2, . . . , k} by

[k]. Then a class K of structures has a Ramsey property if given any structures
A,B ∈ K there exists a structure C ∈ K such that given any finite colouring

c :

(
C

A

)
→ [k],

there exists a B′ ∈
(
C
B

)
such that

(
B′

A

)
is monochromatic. A class with the Ramsey

property is also referred to as a Ramsey class.
It is particularly intriguing to consider the Structural Ramsey Theory of a

classes of structures corresponding to homogeneous structures, as these have been
classified in many cases. In this introduction, we will explore why the aim of this
thesis was to find the classes of ordered shaped partial orders, that have the
Ramsey property, but are also Fraïssé and have the ordering property, and how
that is connected to the known classification of all Fraïssé classes of shaped partial
orders. We will also provide a summary of the proof of the main result of the
thesis, Theorem 2.5.31.
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1.1 Motivation

1.1 Motivation

A shaped partial order P is a partial order (P,<), together with a set S of
shapes and a map s : P → S, assigning each point in the set P a shape. In
the literature, they are referred to as coloured partial orders, for example in the
Countable homogeneous coloured partial orders by Torrezão de Sousa & Truss
(2008). The paper contains the classification of all countable homogeneous shaped
partial orders, and thus, by the Fraïssé correspondence, the classification of all
Fraïssé classes of shaped partial orders. The reason we refer to the partial orders
as shaped rather than coloured is to avoid the confusion when we consider the
colourings in proving the Ramsey property of the classes. We summarise the
classification in Section 2.4.

It is perhaps tempting to classify the Fraïssé classes of shaped partial orders
with the Ramsey Property, but most of the classes turn out not to have the
Ramsey Property for the reason best illustrated by the following example.

Example 1.1.1. Consider class K(AC) of shaped antichains of chains and
the structures A and B in K(AC).

A :

B :

Let C be any shaped antichain of chains. Order its chains.

C : 1 2 ... n

...

Colour
(
C
A

)
as follows. Colour A red if its circle lies in a chain before its

diamond, and blue otherwise.

2



1.1 Motivation

i< j

Then regardless of where the substructure of C, isomorphic to B, lies, it
will contain a red and a blue copy of A, as we can see in the picture below.

B1 : B2 :

This is not a phenomenon unique to shaped partial orders. The problem is
that unless all the structures in the class K concerned are either highly symmetric
(for example, an antichain, or a complete graph) or rigid (these are the structures
with only the trivial automorphism; for example, a chain), the class K fails to
have the Ramsey property. For example, considering the antichains of chains A
and B below, a proof like the one in Example 1.1.1 shows that the class K(ACℵ0)

of all finiter antichains of chains, a Fraïssé class of partial orders, is not a Ramsey
class.

A : B :

On the other hand, considering the classes of rigid structures often leads to
discovering new Ramsey classes. For example, Böttcher & Foniok (2011) consid-
ers the Fraïssé classes of permutations, based on their classification in Cameron
(2002), and shows that they all have the Ramsey property. Thinking of a per-
mutation as a set together with two total orders, it is clear that all structures in
those classes are rigid.

It is often interesting to consider classes of structures that are closed under
substructures and have the joint embedding property (defined in 2.1.3). The

3



1.1 Motivation

early scholars of Structural Ramsey Theory showed in Nešetřil & Rödl (1977)
that amongst such classes, the ones that have the Ramsey property also have the
amalgamation property (also defined in 2.1.3), thus making them Fraïssé classes.
This indicates that perhaps we should consider classifying Fraïssé classes of rigid
structures with the Ramsey property that are somehow related to the Fraïssé
classes of shaped partial orders.

An easy way to create a classK of rigid structures from a classK0 of structures
is to consider an order class. That is, we expand the language L0 of K0 by a
binary relation symbol ≺ to get L = L0 ∪ {≺}. Then the class K is an order
class in the language L with respect to K0, if each structure A ∈ K is of the form
〈A0,≺〉, where A0 ∈ K0 and ≺ defines a total order relation. Due to the total
order ≺, such structure A is rigid. The class K is reasonable with respect to K0,
if given any A = 〈A0,≺〉 ∈ K and any B0 ∈ K0, then if A0 is a substructure of
B0, there exists a B = 〈B0,≺〉 ∈ K, such that A is a substructure of B. This, of
course, implies that it contains at least one ordered structure A of each structure
A0 in K0. We can find multiple examples of Ramsey classes arising from this
construction in Nešetril (2005).

Proposition 2.3.3, proven in Kechris et al. (2005), spells out the connection
between K and K0 in a specific setting. In short, if K is a Fraïssé class, then
K is a reasonable class with respect to K0 if and only if K0 is a Fraïssé class as
well. Thus the classification of Fraïssé classes of shaped partial orders provides
the basis of classification of the Fraïssé classes of their ordered expansions.

But given a Fraïssé class K0, there are often several order classes K that we
might want to consider. If we consider the class K(ACℵ0) of antichains of chains
as the class K0, the class K could be formed in at least three ways. We know
already that for each (A,<,≺) ∈ K, the structure (A,<) will be an antichain of
chains. But additionally, there is

(i) K = K(ACℵ0 , o), where (A,≺) is any total order;

(ii) K = K(ACℵ0 , e), where (A,≺) is any total order extending the partial order
(A,<); and

4



1.1 Motivation

(iii) K = K(ACℵ0 , ce), where (A,≺) is obtained by starting with any ordering
of the chains of (A,<), say calling the chains A1, A2, . . . An, and then
extending the partial order (A,<) by placing all the points of the chain
Ai before all the points of the chain Aj in the total order (A,≺) whenever
i < j.

The classes K(ACℵ0 , o), K(ACℵ0 , e) and K(ACℵ0 , ce) are all reasonable classes
with respect to K(ACℵ0).

Thus an additional property, the ordering property, is worth considering. The
class K has the ordering property with respect to K0, if for each A0 ∈ K0 there
exists a B0 ∈ K, such that for each ordered A,B ∈ K, there exists a substructure
ofB isomorphic toA. In Nešetřil & Rödl (1978), the authors show that the classes
of ordered sparse graphs (graphs containing no cycles shorter than a specified size)
have the ordering property and remark that it is related to the Ramsey property
of the class and that the connection provided the original motivation for writing
the paper. The property is also considered in Nešetřil & Rödl (1990).

To see how the Ramsey property, the ordering property, Fraïssé classes and
their corresponding homogeneous structures fit together consider the following
setup. Suppose that H is a homogeneous structure that is a totally ordered
structure for ≺ in language L ⊇ {≺}. Let H0 be a reduct of H to L \ {≺}. If
H0 is also homogeneous, we have the following correspondence.

homogeneous H0

ordered homogeneous H order class K

class K0

+/- a total order +/- total orders

Fraïssé

Fraïssé

The horizontal arrows represent Fraïssé correspondence and the vertical ar-
rows represent adding total orders to get an order class from a Fraïssé class of
structures or, as in the setup, taking a reduct of an ordered homogeneous struc-
ture to get a homogeneous structure without the total order.

We have already mentioned the Proposition 2.3.3, which shows that in this
setup the class K is a reasonable class with respect to K0. But Kechris et al.
(2005) shows that there are further connections. We include the definitions of
the topological dynamics concepts mentioned here in Section 2.3.

5



1.1 Motivation

(i) If K is a Ramsey class then the automorphism group Aut(H) is extremely
amenable. This result was significant, as it meant that the authors used
the known results about Ramsey classes to find new extremely amenable
groups.

(ii) If K is Ramsey and has the ordering property, then K provides a way to
calculate the universal minimal flow of Aut(H0). The authors also used the
known results about Ramsey classes to calculate the universal minimal flow
of various groups.

(iii) If K is Ramsey, then there exists a class K′, such that

• K′ is a sub class of K, and

• K′ is reasonable, Ramsey and has the ordering property w.r.t. K0.

(iv) Suppose K′ and K′′ are both reasonable Ramsey order classes and have the
ordering property with respect to class K0. Then the classes K′ and K′′ are
simply bi-definable.

Result (i) provides additional motivation for finding Ramsey classes, while
result (ii) ties the classes with the Ramsey and ordering properties to a result
about the homogeneous structure, for example the homogeneous shaped partial
orders mentioned in the beginning of this section. Further, result (iii) tells us
that if we can find an ordered class that is Ramsey, we can also find one that
also has the ordering property, while result (iv) tells us that such a class will be
unique up to simple bidefinability.

Thus the aim of this thesis was to consider the classes K of ordered shaped
partial orders, and find, up to simple bidefinability, all of them that satisfy the
following.

(i) The class K is Ramsey.

(ii) The class K is Fraïssé .

(iii) The class K has the ordering property.

6



1.2 Summary of the proof

In the thesis we use different skeletons Σ to enumerate different classes of
shaped partial orders. We denote a class of ordered shaped partial orders by
K(Σ, o) and the class of its reducts without the total orders by K(Σ) and vice
versa.

We use the good skeletons, defined in Torrezão de Sousa & Truss (2008), to
enumerate Fraïssé classes of shaped partial orders K(Σ). In Lemma 2.5.6 we find
a criterion that specifies that in some cases there is no order class K(Σ, o) that
is Ramsey. In the main theorem in this thesis, Theorem 2.5.31, we show that
for the rest of the classes K(Σ), there exists a class K(Σ′, o) of ordered shaped
partial orders, such that

(i) K(Σ) and K(Σ′) are simply bi-definable,

(ii) K(Σ′, o) is a Ramsey class and is a reasonable class with respect to K(Σ′),
and

(iii) in many cases, K(Σ′, o) has the ordering property.

The theorem is weaker than the result this thesis aimed for. To achieve the
aim and complete the classification, a proof that specific classes of ordered shaped
partial orders have the ordering property is needed.

1.2 Summary of the proof

Following this introduction, the thesis contains five chapters.

• Chapter 2 Preliminaries formally introduces the concepts and definitions
mentioned in the previous section.

• Chapter 3 Key Technical Lemmas contains techniques used to show
classes of shaped partial orders are Ramsey.

• Chapter 4 Ramsey Results proves that some of the classes of shaped
partial orders are Ramsey.

7



1.2 Summary of the proof

• Chapter 5 Correspondence is a translation between the language in the
classification of homogeneous shaped partial orders and language in the
thesis, and contains various simple bi-definability results and results about
the ordering property

• Chapter 6 Conclusion remarks on the gap between the aim of this thesis
and the main result, as well as considers future topics to research.

We have included ’Links’ throughout the thesis that look as follows.

Link. Definition 2.1.2

These signpost the reader to related concepts in the thesis, drawing parallels
between related concepts and results that couldn’t appear near each other in the
text. The reader may want to read various chapters in parallel, in which case the
links may be helpful. The reader may prefer to read the work linearly and ignore
the links.

Before discussing the structure of the proof further, consider a similar pursuit
of Fraïssé Ramsey classes with the ordering property in the case of ordered partial
orders. Schmerl (1979), as stated in 2.1.10, classified homogeneous partial orders,
which are

(i) an antichain An of any countable size n,

(ii) a countable chain C (isomorphic to Q with the natural order),

(iii) an antichain of chains ACn containing any countable number n > 1 of
countable chains,

(iv) a countable chain of antichains CAn of any countable size n > 1, or

(v) a generic homogeneous partial order.

Schmerl’s classification forms a basis for Sokić (2012a) and Sokić (2012b),
which consider various order classes, that are reasonable with respect to Fraïssé
classes of partial orders, and determines whether they are Fraïssé , Ramsey or
have the ordering property. The subsection starting on page 31 lists all the classes

8



1.2 Summary of the proof

of ordered partial orders considered. In summary, the Fraïssé classes of ordered
partial orders that are Ramsey and have the ordering property, up to simple
bidefinability, are the following.

(i) The class K(A1, o) containing only the antichain with one point and the
empty order, reasonable with respect to the class K(A1).

(ii) The class K(Aℵ0 , o) of all finite ordered antichains, reasonable with respect
to the class K(Aℵ0).

(iii) The class K(C, e) of all ordered chains, where (P,<) and (P,≺) define the
same total order for each (P,<,≺) ∈ K(C, e), reasonable with respect to
the class K(C) .

(iv) The class K(ACℵ0 , ce) of all ordered antichains of chains with total orders
convex on the chains of each structure and extending the partial order,
reasonable with respect to the class K(ACℵ0).

(v) The class K(CAℵ0 , e) of all chains of antichains with total order extensions,
reasonable with respect to the class K(CAℵ0).

(vi) The classK(G, e) of all partial orders with total order extensions, reasonable
with respect to the class K(G).

As described in the previous section, the aim of this thesis was to obtain an
analogous result about Fraïssé classes of shaped partial orders.

The classification of homogeneous shaped partial orders in Torrezão de Sousa
& Truss (2008) is much lengthier than the classification of homogeneous partial
orders. It introduces a skeleton, which is a partial order, together with the labels
for points (G, AC or CA) and the labels for each partial order relation (<c, <g,

<sh, <pm or <cpm). The authors then define a good skeleton, with conditions
about the labels of the points and relations between them. They show that any
homogeneous shaped partial order corresponds to a unique good skeleton, and
that any good skeleton, together with a set of shapes and multiplicities for each
point in the skeleton, defines a homogeneous shaped partial order. Thus the good

9



1.2 Summary of the proof

skeletons enumerate the shaped homogeneous partial orders. More details about
the classification are considered in Section 2.4.

The labels G, AC and CA refer to interdensely shaped components of a ho-
mogeneous shaped partial order. They are essentially shaped versions of the
structures in the Schmerl classification, but the AC refers to both, antichains of
chains and antichains, while CA encompasses chains of antichains as well as a
chain. However, to facilitate the Ramsey property proofs, we use a different set
of skeletons, introduced in the last part of Section 2.5. Chapter 3 contains the
proofs of the lemmas used to show the Ramsey property of classes of ordered
shaped partial orders in Chapter 4. And finally, in Chapter 5 we show that the
classes discussed so far correspond to the Fraïssé classes precisely to the ordered
classes of shaped partial orders, enumerated by the good skeletons. Section 5.2
also contains the ordering property proofs.

We finish this section by introducing the core ideas of the Chapter 3, as these
are the methods used in this thesis to show that classes of ordered shaped partial
orders are Ramsey.

Bi-definability

If the homogeneous stuctures H and H′ are simply bi-definable, they are essen-
tially the same structure in different languages. Similarly, simply bi-definable
classes K and K′ represent essentially the same class of structures. More pre-
cisely, if K is a class in language L and K′ is a class in language L′, the relations
in L′ can be defined by simple formulas in language L (and the the ones in L by
simple formulas in L′). Formally, this is defined in 3.1.2.

Simple bi-definability is important because it preserves the Ramsey property.
Namely, if the classes K and K′ are simply bi-definable, then K has the Ramsey
property if and only if K′ does, which we show in Lemma 3.1.6.

We consider an informal example, showing that the class of ordered antichains
of chains and the class of ordered chains of antichains are simply bi-definable.

Example 1.2.1. Let K in the language L = {<,≺} be the class
K(ACℵ0 , ce) of ordered antichains of chains, let K′ in the language L =

10



1.2 Summary of the proof

{<′,≺} be the class K(CAℵ0 , ce) of ordered chains of antichains, and let
K0 in the language L = {≺} be the class K(C) of chains.

(i) Let P = 〈P0, <〉 be an ordered antichain of chains with the total order
P0. Consider the structure P ′ = 〈P0, <

′〉, where p1 <
′ p2 if and only

if

• p1 ≺ p2, and

• we don’t have p1 < p2.

Then P ′ is a chain of antichains; denote it by Φ(P ).

(ii) Conversely, let P ′ = 〈P0, <
′〉 be an ordered chain of antichains with

the total order P0. Consider the structure P = 〈P0, <〉, where p1 < p2

if and only if

• p1 ≺ p2, and

• we don’t have p1 <
′ p2.

Then P is an antichain of chains; denote it by Φ′(P ′).

Clearly, Φ′(Φ(P )) = P , and Φ creates a bijections between the expansions
of P0 in K and those in K′, and similarly for Φ′.
The formula

ϕ
(
p1, p2

)
= (p1 ≺ p2) ∧ ¬(p1 < p2)

then defines <′, and similarly

ϕ′
(
p1, p2

)
= (p1 ≺ p2) ∧ ¬(p1 <

′ p2)

defines < .

A different way of reasoning about the situation could be to consider any
chain P0. If we partition it into convex pieces, then we can define < and
obtain an ordered antichain of chains P by forgetting the relations between
different convex pieces. To define <′, forget the relations within each convex
piece, and obtain a chain of antichains P ′. Since the total order is still
present in P and P ′, it is really the partition into convex pieces that defines

11



1.2 Summary of the proof

the obtained structure, so P and P ′, in a sense, represent the same structure
in different languages.
This shows that the classes K(ACℵ0 , ce) and K(CAℵ0 , ce) are simply bi-
definable, so the list of the Fraïssé Ramsey classes of ordered partial orders
with the ordering property could be even shorter.

Structural Product Ramsey Lemma

Consider a class K of shaped antichains, where each point is shaped as either a
circle or a diamond. If class K1 contains all circle-shaped antichains and K2 all
diamond-shaped ones, the structures in K are precisely

(i) circle-shaped antichains K1,

(ii) diamond-shaped antichains K2, and

(iii) antichains containing circle-shaped and diamond-shaped points.

To form the class of structures in (iii), we take a structure in K1, one in K2,
and combine their points to get a unique structure. So by understanding the
structures in K1 and K2 we can understand the structures in K. In Section 3.2
we consider the cases when that happens even when the classes K1 and K2 are
more complicated, or when class K is defined by more than two classes.

We define a product of classes in 3.2.3 - in the example above, that would be
a subclass of K, containing precisely the structures in (iii), but a class can be
a product of many classes. The product of classes, however, is not closed under
substructures. Thus we introduce a full product of classes, defined in 3.2.7. It
formalises the notion of a class K being defined by classes Ki, i ∈ [n].

Lemma 3.2.6 shows that if the classes K1,K2, . . .Kn are Ramsey classes, the
product K is a Ramsey class as well. But, as in the example above, a product of
classes is not necessarily closed under the substructures. For that reason Lemma
3.2.9 shows that if the classes K1,K2, . . .Kn are Ramsey classes, the full product
K′ is a Ramsey class as well.

The languages we use in definitions 3.2.3 and 3.2.7 are useful for the formal
definitions of the concepts. Lemma 3.2.10 and its corollaries translate the Ramsey

12



1.2 Summary of the proof

property results about full products to the results about merge classes, which are
classes in the language of the ordered shaped partial orders used throughout the
thesis. The main difference between a full product of classes and specific merge
classes is that the languages Li of classes Ki are disjoint and all classes of ordered
shaped partial orders contain relation symbols < and ≺.

Blowup Lemma

The Blowup Lemma links the results about Ramsey classes of shaped ordered
partial orders to the results about the Ramsey properties of their reducts. A
blowup P of a partial order P (or a shaped partial orderP) is a structure, obtained
by replacing each point of a partial order P by a partial order, a block, containing
one point of each shape at least. We denote its unshaped reduct by P . Given
structures A and B, we consider the unshaped A and B. When they lie in the
class with Ramsey property, we can find a C, such that C → (B)Ak . The hard
part of the Blowup Lemma is to show that C → (B)Ak . We use the colouring of(
C
A

)
to define a colouring of

(
C
A

)
. We focus on the set (

(
C
A

)
), of substructures of C

with at most one point in each block of C. Finding a monochromatic
(
B
A

)
then

translates to finding a monochromatic
(
B
A

)
under specific conditions.

Two Pass Lemma

Start with an antichain (Figure 2.2). If we replace each point of the antichain
with a chain, we get an antichain of chains (Figure 2.4).

So to build an antichain of chains, we could first decide on the size of the
antichain and then on the size of each of the chains. The Two Pass Lemma is
useful in the cases that generalise this situation. If, in class K, each structure
A can be viewed as a quotient structure Aq (for example, an antichain) together
with levels (for example, chains), we can build a structure in the class K by first
choosing the quotient structure and then the levels. In the cases considered, the
quotient structure contains an index set IA, and for each i ∈ IA there is one
level Ai of the structure.

Given structures A and B, we first find a quotient structure Cq such that
Cq → (Bq)

Aq

k . The Cq will be the quotient structure of our C. So next we use

13



1.2 Summary of the proof

the Ramsey properties of various less complex classes with the same levels as
the structures in K (e.g. the class of chains, or the class of antichains of a fixed
number of chains in our example) to build the levels of C.

We fix a colouring

c :

(
C

A

)
→ [k]

and consider nested substructures C(1), . . . ,C(t); one per each A′q ∈
(
Cq
Aq

)
. We use

the colours of some A′ ∈
(
C(i)

A

)
for i ∈ [t] to define a colouring

c′ :

(
Cq

Aq

)
→ [k].

We finally show that the monochromatic
(
B′q
Aq

)
under c′ yields a monochromatic(

B′

A

)
under c.
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Chapter 2

Preliminaries

In this chapter we present the definitions, concepts and results from the literature
that are relevant to the Ramsey classes of shaped partial orders. We present the
results using notation compatible with the rest of this thesis. We also introduce
classes of ordered shaped partial orders that will be considered in the thesis.

2.1 Homogeneous structures

Basic model theory definitions

We start with the relevant formal model theoretic definitions.
A language is a collection L = {Ri}i∈I ∪{fj}j∈J ∪{ck}k∈K of distinct relation,

function and constant symbols. Each function and relation symbol has an asso-
ciated number, called its arity. The arity n(i) of each relation symbol Ri and the
arity m(j) of each function symbol fj are positive integers. A structure for L is
an object of the form

A = 〈A, {RA
i }i∈I , {fA

j }j∈J , {cAk }k∈K〉,

where A is a non-empty set, called the universe of A, RA
i is a n(i)-ary relation

on A, i.e., RA
i ⊂ An(i), fA

j is an m(j)-ary function on A, i.e., fA
j : Am(j) → A,

and cAk ∈ A.
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2.1 Homogeneous structures

Given two structures A and B in the same language L, an isomorphism of A
to B is a bijective map θ : A→ B, such that

RA
i (a1, . . . , an(i)) ⇐⇒ RB

i (θ(a1), . . . , θ(an(i)))

and
θ(fA

j (a1, . . . , am(j))) = fB
j (θ(a1), . . . , θ(am(j)))

and
θ
(
cAk
)

= cBk

for all i ∈ I, j ∈ J and k ∈ K. We write θ : A→ B if that is the case.
A substructure B of A has as a universe a non-empty subset B ⊂ A closed un-

der each fA
j , containing all the cAk and satisfying RB

i = RA
i ∩Bn(i), fB

j = fA
j |Bm(j).

We write B E A to denote that B is a substructure of A. Note that this is not
standard notation.

Suppose that B′ E A and θ : B → A, θ(B) = B′ is a map, that defines an
isomorphism when its range is restricted to its image. Then we say that θ is an
embedding of B into A and we write θ : B→ A.

Example 2.1.1. A partial order is a structure in a language L = {<},
with a relation < of arity 2. We will denote a partial order with a universe
P as P = (P,<), abbreviating the formal notation P = 〈P,<P〉. The
language only contains one relation symbol and no function or constant
symbols. A structure P is a partial order if < is irreflexive, antisymmetric
and transitive.
Given any subset R of P , the partial order on R induced from the partial
order on P defines a partial order; a substructure of P on R.

Note. Let (P,<) be a partial order. If p ∈ P , and neither p < q nor q < p

holds, we write ||.
Let P1, P2 be disjoint subsets of P . We write P1 < P2 if for all p1 ∈ P1, p2 ∈
P2 we have p1 < p2.

In the thesis we will consider structures in different languages. Of particular
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2.1 Homogeneous structures

interest are the structures related in the following way.

Definition 2.1.2. Let L be a language and A a structure in language L.
Let L′ be a subset of L and A′ = A|L′ , that is, a structure in language L′

with universe A that agrees with A on all relations, functions and constants
in L′. Then we call A′ a reduct of A. Conversely, we say that A is an
expansion of A′.

Fraïssé correspondence

The focus of this thesis is on the classes of finite structures. But there is a corre-
spondence between specific classes of structures and specific countable structures.
In this section we present how the two are related.

Definition 2.1.3. A class K of finite structures:

• is hereditary if it is closed under substructures (i.e., for any A ∈ K
and B E A we have B ∈ K),

• satisfies the joint embedding property if for any A,B ∈ K there is a
C ∈ K with A E C and B E C, and

• satisfies the amalgamation property if for any embeddings f1 : A →
B1 and f2 : A → B2, where A,B1,B2 ∈ K, there is a C ∈ K and
embeddings g1 : B1 → C and g2 : B2 → C, such that g1 ◦f1 = g2 ◦f2.

A class K is a Fraïssé class if it is hereditary and satisfies the joint embed-
ding and amalgamation properties.

Note that since K contains only finite structures, it contains only countably
many structures up to isomorphism.

On the side of the structures, we consider the following.

Definition 2.1.4. A countable structure H is homogeneous if every iso-
morphism between finite substructures of H extends to an automorphism
of H.

17



2.1 Homogeneous structures

Figure 2.1: Fraïssé correspondence

Fraïssé class K 1:1 correspondence

Flim(K)

Age(H)

countable
homogeneous
structure H

Homogeneous structures have been studied extensively, and an overview of
the results can be found in the survey MacPherson (2011).

To link homogeneous structures to classes of finite structures we introduce the
following.

Definition 2.1.5. The age of a structure H is the class K of all finitely
generated structures that can be embedded in H. We write K = Age(H).

It can be shown that the age of any countably infinite homogeneous structure
is a Fraïssé class, giving the correspondence. This was proved in Fraïssé (1954).
It can commonly be found in model theory books, including Hodges (1997).

Theorem 2.1.6 (Fraïssé’s Theorem). A class K is an age of a homogeneous
structure H if and only if the class K is a Fraïssé class. Furthermore,
any two countably infinite homogeneous structures with the same age are
isomorphic.

This theorem provides another link between the Fraïssé classes of finite struc-
tures and homogeneous structures.

Definition 2.1.7. Given a Fraïssé classK, a countable homogeneous struc-
ture H, such that K is the age of H, is called a Fraïssé limit of K.

By Theorem 2.1.6 the structure H exists and is unique up to isomorphism.
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2.1 Homogeneous structures

Figure 2.2: Antichain of size n

1 2 3 · · · i · · · n

Homogeneous partial orders

Classification of homogeneous structures presents an intriguing challenge for math-
ematicians. An example, particularly relevant to this thesis, is Schmerl’s classi-
fication of the homogeneous partial orders in Schmerl (1979). It is, perhaps,
more intuitive to start by considering their ages, that is, Fraïssé classes of partial
orders.

While we usually use the bold letters K and H to denote a class and a
homogeneous structure, we will use the light letters K and H when referring to
partial orders in particular. This will help us distinguish between partial orders
and shaped partial orders, the focus of this thesis.

Throughout this thesis, we will be using the following notation for a disjoint
union of sets.

Definition 2.1.8. Given a set X and a collection of sets {Yx : x ∈ X}, the
disjoint union X o Y of sets {Yx : x ∈ X} is the set

X o Y =
⋃
x∈X

{x} × Yx.

Defined below are certain kinds of partial orders (P,<), Fraïssé classes of
partial orders and the corresponding Fraïssé limits.

Definition 2.1.9. Denote by [n] the set {1, 2, . . . , n} of the first n positive
integers.

(i) (a) An antichain of size n is a partial order on n points, in which
all the pairs of distinct points are incomparable. That is,

P = {pi : i ∈ [n]}
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2.1 Homogeneous structures

Figure 2.3: Chain of size n

pn

...

p2

p1

Figure 2.4: Antichain of n chains

Pi

p3,m3 · · · pi,mi

p2,m2
...

p1,m1
... · · · pi,j · · · pn,mn

...
...

...
...

p1,3 p2,3 p3,3 · · · pi,3 · · · pn,3

p1,2 p2,2 p3,2 · · · pi,2 · · · pn,2

p1,1 p2,1 p3,1 · · · pi,1 · · · pn,1
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2.1 Homogeneous structures

Figure 2.5: Chain of antichains

pn,1 pn,2 pn,3 · · · pn,mn

...
...

...
...

pi,1 pi,2 pi,3 · · · pi.j · · · pi,mi Pi

...
...

...
...

...
...

...

p3,1 p3,2 · · · p3,m3

p2,1 p2,2 p2,3 · · · p2,m2

p1,1 p1,2 p1,3 · · · p1,m1
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2.1 Homogeneous structures

and pi||pi′ for all distinct i, i′ ∈ [n]. See Figure 2.2.

(b) For 1 ≤ n < ℵ0, let K(An) denote the class of all antichains
of size at most n, and K(Aℵ0) denote the class of all finite an-
tichains.

(c) The corresponding Fraïssé limits H(An), for all 1 ≤ n ≤ ℵ0, are
antichains of cardinality n.

(ii) (a) A chain of size n is a total or linear order of n points. That is,
we can label its points as P = {pi : i ∈ [n]} such that pi < pi′

if and only if i < i′. So P is isomorphic to [n] with its natural
order. See Figure 2.3.

(b) The class K(C) consists of all finite chains.

(c) The Fraïssé limit of K(C) is denoted by H(C), a countably infi-
nite homogeneous chain, isomorphic to (Q, <) with the natural
order.

(iii) (a) An antichain of n chains consists of n disjoint incomparable
chains. That is, there is a partition {Pi : i ∈ [n]} of the set of
points P , such that each Pi = {pi,j : j ∈ [mi]} is a chain. We
have pi,j < pi′,j′ if and only if i = i′ and j < j′.

Let M = {[mi] : i ∈ [n]}. We write

P = {pi,j : (i, j) ∈ [n] oM}.

See Figure 2.4.

(b) The class K(ACn) is the class of all finite structures which are
antichains of at most n chains, and the class K(ACℵ0) is the
class of all finite antichains of chains.

(c) The Fraïssé limit of K(ACn) is denoted by H(ACn). It consists
of an antichain of n chains, for 2 ≤ n ≤ ℵ0, with each chain
isomorphic to (Q, <).

(iv) (a) A chain of antichains of size at most m consists of a linearly
ordered set of disjoint antichains, each of size at most m. That

22



2.1 Homogeneous structures

is, there is a partition {Pi : i ∈ [n]} of the set of points P , such
that each Pi = {pi,j : j ∈ [mi]} is an antichain and 1 ≤ mi ≤ m.
We have pi,j < pi′,j′ if and only if i < i′. An infinite chain of
antichains is defined similarly, but we might have {Pi : i ∈ ℵ0}
or Pi = {pi,j : j ∈ ℵ0} for some i. Again we write

P = {pi,j : (i, j) ∈ [n] o [m]}.

See Figure 2.5.

(b) The class K(CAm) is the class of all finite structures which are
chains of antichains of size at most m, and the class K(CAℵ0) is
the class of all finite chains of antichains.

(c) The Fraïssé limit of K(CAm) isH(CAm), the chain of antichains,
with each antichain of size m, for 2 ≤ m ≤ ℵ0.

(v) (a) We denote by K(G) the class of all finite partial orders.

(b) Its Fraïssé limit is H(G), the generic partial order.

Note. (i) By definition of an antichain of chains, a structure containing
only one chain is an antichain of chains. However, we did not list
K(AC1) as a class of antichains of chains to avoid the clash with K(C).
The same applies to a chain of antichains of size 1 and K(CA1).

(ii) We can build the structure K(CAm) by replacing each point of Q
with an antichain of size m.

Schmerl, by classifying countable homogeneous partial orders, shows that
the classes K(An),K(Aℵ0),K(C),K(ACn),K(ACℵ0),K(CAn),K(CAℵ0) and K(G)

above are indeed Fraïssé classes. He classified them by considering the following
structures.

(i) An incomparable pair, x||y.

x y
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2.1 Homogeneous structures

(ii) A comparable pair, x < y.

y

x

(iii) An L-shape, namely a triplet of points with x < y, x||z and y||z.

y

x z

(iv) A Λ-shape, namely a triplet of points with x||y, x < z and y < z.

z

x y

He then considers the following classes.

(i) Partial orders that do not contain a comparable pair as a substructure.

(ii) Partial orders that do not contain an incomparable pair as a substructure.

(iii) Partial orders that contain an L-shape but do not contain a Λ-shape.

(iv) Partial orders that contain a Λ-shape but do not contain an L-shape.

(v) Partial orders that contain both, an L-shape and a Λ-shape.

He shows that if H is a homogeneous partial order, then it satisfies one of
the conditions (i)-(v), and that the list of conditions is exhaustive. It is clear
that any partial order satisfying the condition (i) is an antichain, and Schmerl
shows that any countable antichain is homogeneous. Similarly, a partial order
satisfying (ii) must be a chain, and the only countable homogeneous chains are
either the trivial chain with one element or a linear order isomorphic to (Q, <).
Schmerl then shows that a homogeneous structure not satisfying conditions (i)
and (ii) must contain an L-shape or a Λ-shape as a substructure, and thus satisfy
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2.2 Introduction to structural Ramsey theory

one of the conditions (iii)-(v). The case (iii) yields the homogeneous antichains
of chains, case (iv) chains of antichains, and case (v) the generic homogeneous
partial order. He proves the following.

Theorem 2.1.10. The homogeneous partial orders are:

(i) an antichain H(An) of cardinality n, for all 1 ≤ n ≤ ℵ0,

(ii) a countably infinite chain H(C),

(iii) an antichain of n chains H(ACn), for all 2 ≤ n ≤ ℵ0,

(iv) a chain of antichains of size n H(CAn), for all 2 ≤ n ≤ ℵ0,

(v) and a generic partial order H(G).

Note. The structure H(C) could be viewed as both, H(AC1) and H(CA1).
In different contexts, it might be classed as one or the other rather than
considered separately.

2.2 Introduction to structural Ramsey theory

Structural Ramsey theory stems from the classical Ramsey theorem and extends
the concept to whole classes of structures. We will introduce the necessary nota-
tion first.

We denote by
(
B

A

)
the set of all substructures of B isomorphic to A.

Ramsey arguments focus on finding, for structures A and B and an integer
k > 1, a structure C, such that given any colouring

c :

(
C

A

)
→ [k]

there is a substructure B′ ∈
(
C

B

)
, such that

(
B′

A

)
is monochromatic; that is,
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2.2 Introduction to structural Ramsey theory

there is an l ∈ [k], such that

c :

(
B′

A

)
→ {l},

or in other words, the colouring c is constant on
(
B′

A

)
.

Definition 2.2.1 (Erdős-Rado notation). We write

C→ (B)Ak

if for any k-colouring of substructures of C isomorphic to A there is a
substructure B′ of C isomorphic to B, such that all substructures of B′

isomorphic to A are of the same colour.

Classical Ramsey Theorem

Ramsey theory stems from the Classical Ramsey Theorem, a theorem proven by
Frank Plumpton Ramsey in Ramsey (1930).

Theorem 2.2.2 (Classical Ramsey Theorem). For any three positive inte-
gers q, r and k, there is a number p, such that for sets A, B and C of sizes
q, r, and p respectively and any colouring

c :

(
C

A

)
→ [k]

there is a subset B′ ⊂ C of size r, such that
(
B′

A

)
is monochromatic.

In terms of sizes we write
p→ (r)qk.

In other words, Theorem 2.2.2 states that the class of all finite sets is Ramsey.
As well as mentioning the Classical Ramsey Theorem due to its historical

importance, we will see in the next section that it can be used to show that
certain classes of partial orders are Ramsey.
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2.2 Introduction to structural Ramsey theory

Definition of a Ramsey class

Structural Ramsey theory focuses on whole classes of structures, rather than
randomly picking A and B and looking for a C such that C → (B)Ak . It is a
study of classes K, in which a C exists for any choice of A and B.

Definition 2.2.3. Given a class K and a structure A ∈ K, we say that
a class K is A-Ramsey, if given any B ∈ K there is a C ∈ K such that
C→ (B)Ak .

We say that a class K is Ramsey, if it is A-Ramsey for all A ∈ K.

Structural Ramsey theory and Fraïssé classes

Structural Ramsey theory was initially studied by Nešetřil and Rödl. In the paper
Nešetřil & Rödl (1977) they prove that there is a link between Ramsey classes
and Fraïssé classes. In particular, there is a link between Ramsey classes of rigid
structures, i.e., ones that have no non-trivial automorphisms, and Fraïssé classes.
The following result was first proved in Lemma 1 on page 294 of Nešetřil & Rödl
(1977), but is also mentioned on page 20 of Kechris et al. (2005) in a language
more compatible with this thesis.

Theorem 2.2.4. Let K be a class of finite rigid structures. If K is a
Ramsey class, hereditary, and has the joint embedding property, then K
has the amalgamation property.

So any Ramsey class of finite rigid structures, which is hereditary, has the
joint embedding property and contains only countably many structures up to
isomorphism, is a Fraïssé class.

We have seen a classification of homogeneous partial orders in the first section
of this introduction and will see an overview of other classified homogeneous
structures in the third section. Suppose now that we are given a classification of
specific homogeneous structures and that the corresponding Fraïssé classes consist
of rigid structures. Then one can classify the corresponding Ramsey classes by
checking whether the Fraïssé classes are Ramsey or not.
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2.2 Introduction to structural Ramsey theory

However, often, the corresponding Fraïssé classes contain structures that are
not rigid. For example, even the antichain (P,<) of size 2 is not rigid. If it
consists of points p1 and p2, then aside from the trivial automorphism, the map
sending p1 to p2 and vice versa is an automorphism as well, so (P,<) is indeed
not rigid. We will consider what happens when a class contains structures that
are not rigid and how one can expand a class to a class of rigid structures by
adding a total order relation to the language.

Only some classes of partial orders are Ramsey

What about classes of partial orders encountered in Definition 2.1.9? Consider
first the classes K(An). First, any element of K(A1) is the partial order with only
one element, unique up to isomorphism. So K(A1) is trivially Ramsey.

Let (P,<) be an antichain of size p and (R,<) an antichain of size r. Since
the partial order relation on any antichain is empty, the substructures of (P,<)

isomorphic to (R,<) correspond precisely to subsets of P of size r. So to consider
the rest of K(An), we will turn to the Classical Ramsey Theorem.

Lemma 2.2.5. In the Classical Ramsey Theorem, we have:

(i) q → (q)qk

(ii) If p→ (r)qk, k > 1 and r > q ≥ 1, then p > r.

Proof. First, given sets A and B of sizes q and r respectively, if there exists a
set C of size p such that C → (B)Ak , we must have that p ≥ r for the set C to
even contain a subset B′ of size r.
If we have q = r, we can see that a set C of size p = q = r satisfies C → (B)Ak ,
and hence that we have q → (q)qk. Indeed, if A,B and C are of the same size,
then

(
C
A

)
,
(
C
B

)
and

(
B
A

)
are each of size 1 and hence trivially monochromatic,

which concludes the proof of (i).
However, as soon as we have r > q ≥ 1, we have |

(
B
A

)
| > 1, so taking a C of

size r would not work. Indeed, given a C of size r, we have |
(
C
A

)
| > 1, so we

can colour one of the structures in
(
C
A

)
with colour 1, and the rest with colour
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2.2 Introduction to structural Ramsey theory

2. Then the unique subset B′ of C of size r, namely C itself, has substructures
of two different colours and hence we have C 9 (B)Ak . Since we have p ≥ r

and p 6= r, we have p > r. This yields (ii).

Example 2.2.6. To show that K(An) is not a Ramsey class for any
1 < n < ℵ0, take (R,<) to be an antichain of size n and (Q,<) one of
size q with n > q ≥ 1. Clearly (R,<), (Q,<) ∈ K(An). Then by the
Classical Ramsey Theorem and Lemma 2.2.5, if p→ (n)qk and k > 1, then
p > n. So for any (P,<) ∈ K(An), we must have P 9 (R)Qk , as P is an
antichain of size at most n.

On the other hand, the Classical Ramsey Theorem shows that K(Aℵ0) is a
Ramsey class.

Example 2.2.7. Given antichains (Q,<) and (R,<) of sizes q and r re-
spectively, find p such that p→ (r)qk using Classical Ramsey Theorem.
Let (P,<) be an antichain of size p. Then for any subset Q′ of P of size q,
the substructure of P on the set Q′ is isomorphic to Q, and similarly for
any subset R′ of P of size r.
The fact that P → (R)Qk follows trivially.

So far we have shown that K(An) is a Ramsey class if and only if n = 1 or
n = ℵ0. What about the class K(G) of all finite partial orders? We will show
that K(G) is not a Ramsey class.

Example 2.2.8. Let Q be a partial order with three points, q1, q2, q3, where
q2 < q3, and R be a partial on four points r1, r2, r3, r4, where r1 < r2 and
r3 < r4, and there are no non-specified comparable pairs. That is, Q looks
like . | and R like | |. Let P be any finite partial order, with points
{pi : i ∈ I}. Then P,Q,R ∈ K(G).
We will find a colouring of

(
P
Q

)
that yields no monochromatic

(
R
Q

)
, showing

there is no P such that
P → (R)Qk .
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Indeed, pick a total order on the points of P , for example, pi ≺ pj if i < j.
Let e : Q→ P be an embedding. Colour e(Q):

(i) red, if e(q1) ≺ e(q2), and

(ii) blue, if e(q2) ≺ e(q1).

Then given any R′ ∈
(
P
R

)
, let e′(R) = R′ for some embedding e′. Suppose,

without loss of generality, that e′(r1) ≺ e′(r3). We have

(i) e1 : Q→ P, q1 7→ e′(r1), q2 7→ e′(r3), q3 7→ e′(r4)

(ii) e2 : Q→ P, q1 7→ e′(r3), q2 7→ e′(r1), q3 7→ e′(r2)

So e1(Q), e2(Q) ∈
(
R′

Q

)
, but e1(Q) is red, and e2(Q) is blue.

As this is true for any P ∈ K(G), the class K(G) is not Q-Ramsey, and
hence not Ramsey.

Order classes

Suppose that K0 is a class of structures in a language L0. We can extend the
language L0 to a new language L and consider expansions of members of K0 to
L to obtain a new class K. We have K0 = K|L0, i.e., K0 consists of reducts of
the structures in K. Consider in particular the case where we extend L0 to L
by adding a binary relation symbol ≺. We will consider classes in which ≺ is a
linear order on each of the structures in the class.

Definition 2.2.9. Suppose that L is a language containing a binary rela-
tion symbol ≺. An order structure A for ≺ is a structure A in language L
for which ≺A is a linear ordering. An order class K for ≺ is one for which
all A ∈ K are order structures for ≺.

Suppose K is an order class of finite structures. As ≺ is a linear ordering on
any A ∈ K, the structure A is rigid, as any automorphism of A has to respect
the linear order on A and thus must be trivial.

When expanding a class to an order class, we will also insist that it contain
enough ordered structures to preserve information about the substructures. We
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2.2 Introduction to structural Ramsey theory

define that notion precisely.

Definition 2.2.10. Let L be a language containing relation ≺ and let
L0 = L \ {≺}. Let K be an order class for ≺ in language L and let
K0 = K|L0 be a class of reducts of structures in the class K in lan-
guage L0. The class K is reasonable with respect to K0 if for every
A0,B0 ∈ K0, every embedding e : A0 → B0, and linear ordering
≺ on A0 with A = 〈A0,≺〉 ∈ K, there is a linear ordering ≺′ on B0,
so that B = 〈B0,≺′〉 ∈ K and e : A → B is also an embedding (i.e.,
a ≺ b ⇐⇒ e(a) ≺′ e(b)).

Note. Given a class K0, we can obtain a reasonable class K with respect
to K0. Indeed, given A0 ∈ K0 with universe A, add 〈A0,≺〉 to K for
each total order (A,≺). Then given an embedding e : A0 → B0 and
A = 〈A0,≺〉 ∈ K, extend the total order on a part of B, induced from the
total order on A and the embedding e, to a total order on B. The structure
obtained lies in K by its definition. Further, e : A → B is an embedding
by the definition of the total order on B. So K is a reasonable class with
respect to K0.

We will outline how the results about order classes relate to the results about
the classes of their reducts and corresponding homogeneous structures in Section
1.4. We first state the results about Ramsey classes of ordered partial orders.

Classes of ordered partial orders

In Sokić (2012a) and Sokić (2012b), Sokić considers classes of finite partial orders
with arbitrary linear orderings, linear orderings that are linear extensions of the
partial ordering, and linear orderings of antichains of chains that are convex on
each of the chains. In his papers, KAn corresponds to our K(An), KBn to K(C)

and K(ACn), KCn to K(CAn) and KD to K(G). The classes of partial orders are
classes of structures in the language L0 = {<}, but we extend them to classes in
language L = {<,≺}.
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2.2 Introduction to structural Ramsey theory

Definition 2.2.11. Given a set P , denote the collection of all linear order-
ings on the set P by lo(P ). Then define the classes of partial orders with
arbitrary linear orderings as follows.

K(σ, o) = {(P,<,≺) : (P,<) ∈ K(σ),≺∈ lo(P )},

for

σ ∈ {An}1≤n≤ℵ0 ∪ {C} ∪ {ACn}1<n≤ℵ0 ∪ {CAn}1<n≤ℵ0 ∪ {G}.

While the classes in Definition 2.2.11 are clearly reasonable order classes, they
do not take into account the partial order structure. The classes in the following
definition do.

Definition 2.2.12. Given a partial order (P,<), a linear order ≺ is an
extension of < if for all p, q ∈ P we have

p < q ⇒ p ≺ q.

Denote the collection of all linear orderings on the set P that are extensions
of the partial order (P,<) by le(P,<). Then define the classes of partial
orders with linear extensions as follows.

K(σ, e) = {(P,<,≺) : (P,<) ∈ K(σ),≺∈ le(P,<)},

for

σ ∈ {An}1≤n≤ℵ0 ∪ {C} ∪ {ACn}1<n≤ℵ0 ∪ {CAn}1<n≤ℵ0 ∪ {G}.

Note. K(An, e) = K(An, o) for all 1 ≤ n ≤ ℵ0.
Besides, recall that the points of a chain of antichains P ∈ K(CAn) can
be labelled P = {pi,j : (i, j) ∈ [n] o [m]}, as in Definition 2.1.9. Then one
can easily show that picking a linear extension (P,≺) of the partial order
(P,<) corresponds precisely to picking a total order on each of the maximal

32



2.2 Introduction to structural Ramsey theory

antichains Pi of P .

The classes of chains of antichains in Definition 2.2.12 are also convex on the
maximal antichains. Namely, if p, q ∈ P lie in one of the maximal antichains Pi
of P , and there is a point q ∈ P , such that

p ≺ q ≺ r,

then the point q also lies in Pi. In fact, given any two maximal antichains in a
chain of antichains, one of them is completely below the other in the partial order,
and thus in the total order as well. So to ensure the same for maximal chains in
the classes of antichains of chains, the following total order is considered.

Definition 2.2.13. Define the classes of partial orders with convex linear
extensions as follows.

(i) K(ACn, co) is the class of structures (P,<,≺) ∈ K(ACn, o) such that
for all p, q, r ∈ P we have

(p < q or p > q), p ≺ r ≺ q ⇒ (p < r < q or p > r > q)

(ii) K(ACn, ce) is the class of structures (P,<,≺) ∈ K(ACn, e) such that
for all p, q, r ∈ P we have

p < q, p ≺ r ≺ q ⇒ p < r < q

The convex extensions induce a total order on the set of maximal chains of
an antichain of chains. That is, given any two maximal chains of an antichain of
chains, one of them is completely below the other in the total order ≺.

Note. We have

(i) K(σ, o)|L0 = K(σ, e)|L0 = K(σ) for

σ ∈ {An}1≤n≤ℵ0 ∪ {C} ∪ {ACn}1<n≤ℵ0 ∪ {CAn}1<n≤ℵ0 ∪ {G}, and

(ii) K(σ, co)|L0 = K(σ, ce)|L0 = K(σ) for σ ∈ {ACn}1<n≤ℵ0 .
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2.2 Introduction to structural Ramsey theory

Besides, recall that the points of an antichain of chains P ∈ K(ACn) can
be labelled P = {pi,j : (i, j) ∈ [n] oM}, as in Definition 2.1.9. Then one
can easily show that picking a convex linear extension (P,≺) of the partial
order (P,<) corresponds precisely to picking a total order of the set of
maximal chains Pi of P .

We introduce the lexicographic order, as it will be mentioned in various places
in the thesis.

Definition 2.2.14. Suppose that X is a total order and for each x ∈ X
there is a total order Yx. The lexicographic order on X oY is a total order
on X o Y , with

(x, y) < (x′, y′)

if x < x′, or x = x′ and y < y′.
In general, if X1, X2, . . . , Xk are total orders and

Y ⊂ X1 ×X2 × . . .×Xk,

then the lexicographic order on Y is defined as

(x1, x2, . . . , xk) < (x′1, x
′
2, . . . , x

′
k)

if x1 < x′1, or x1 = x′1 and x2 < x′2 and so on, until we get to
(x1, x2, . . . , xk−1) = (x′1, x

′
2, . . . , x

′
k−1) and xk < x′k.

Note. In case of K(CAn, e) (or K(ACn, ce)) above, if the indices i ∈ [n]

reflect the total order on the set of maximal antichains (or chains) of a
structure P and for each i ∈ [n] the total order [mi] reflects the total order
of the points in a maximal antichain (or chain) Pi of P , then the total order
on P is precisely the lexicographic order.
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2.2 Introduction to structural Ramsey theory

Example 2.2.15. Consider, for example, the partial order Q from example
2.2.8, with three points q1, q2, q3 and q2 < q3. Then Q is an antichain of
two chains, one of size 1 and one of size 2, so Q ∈ K(AC2). Consider three
linear orders on Q:

(i) ≺1: q3 ≺1 q2 ≺1 q1, let Q1 = (Q,<,≺1),

(ii) ≺2: q2 ≺2 q1 ≺2 q3, let Q2 = (Q,<,≺2), and

(iii) ≺3: q1 ≺3 q2 ≺ q3, let Q3 = (Q,<,≺3).

Then all three ordered partial orders Qi are elements of the class K(AC2, o).
The total order Q1 is not an extension of the partial order on Q, but
Q2, Q3 ∈ K(AC2, e). Now both Q1 and Q3 are convex on the chains of Q,
whilst Q2 is not, with q1 between the points q1 and q3 of the other chain of
Q. So Q1, Q3 ∈ K(AC2, co). Requiring that the total order be an extension
as well as convex, we get that only Q3 ∈ K(AC2, ce).

Sokić classifies which of these classes are Fraïssé. We combine Lemma 2 in
Sokić (2012a) and Lemma 1 and Lemma 3 in Sokić (2012b).

Theorem 2.2.16. The following classes are Fraïssé:

(i) K(A1, o) = K(A1, e) and K(Aℵ0 , o) = K(Aℵ0 , e),

(ii) K(C, o) and K(C, e),

(iii) K(ACn, o) and K(ACn, e) for all 1 < n ≤ ℵ0,

(iv) K(ACℵ0 , co) and K(ACℵ0 , ce),

(v) K(CAℵ0 , o) and K(CAℵ0 , e), and

(vi) K(G, o) and K(G, e).

The following classes are not Fraïssé:

(i) K(An, o) = K(An, e), for all 1 < n < ℵ0,
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2.2 Introduction to structural Ramsey theory

(ii) K(ACn, co) and K(ACn, ce) for 1 < n < ℵ0, and

(iii) K(CAn, o) and K(CAn, e) for all 1 < n < ℵ0.

Definition 2.2.17. Homogeneous ordered partial orders corresponding to
the classes in Theorem 2.2.16 are:

(i) H(A1, e) = Flim(K(A1, e)) and H(Aℵ0 , e) = Flim(K(Aℵ0 , e));

(ii) H(C, o) = Flim(K(C, o)) and H(C, e) = Flim(K(C, e));

(iii) H(ACn, o) = Flim(K(ACn, o)) and H(ACn, e) = Flim(K(ACn, e))

for all 1 < n ≤ ℵ0;

(iv) H(ACℵ0 , co) = Flim(K(ACℵ0 , co)) and

H(ACℵ0 , ce) = Flim(K(ACℵ0 , ce));

(v) H(CAℵ0 , o) = Flim(K(CAℵ0 , o)) and

H(CAℵ0 , e) = Flim(K(CAℵ0 , e)); and

(vi) H(G, o) = Flim(K(G, o)) and H(G, e) = Flim(K(G, e)).

Sokić proves which classes are Ramsey as well. We combine Theorem 7 in
Sokić (2012a) and Lemma 1 and Lemma 3 in Sokić (2012b).

Theorem 2.2.18. The following classes are Ramsey:

(i) K(A1, o), K(Aℵ0 , o), K(A1, e) and K(Aℵ0 , e),

(ii) K(C, o) and K(C, e),

(iii) K(ACℵ0 , co) and K(ACℵ0 , ce),

(iv) K(CAℵ0 , o) and K(CAℵ0 , e), and

(v) K(G, e).

The following classes are not Ramsey:
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(i) K(An, o) = K(An, e) for all 1 < n < ℵ0,

(ii) K(ACn, o) and K(ACn, e) for all 1 < n ≤ ℵ0,

(iii) K(ACn, co) and K(ACn, ce) for 1 < n < ℵ0,

(iv) K(CAn, o) and K(CAn, e) for all 1 < n < ℵ0, and

(v) K(G, o).

Ordering Property

As above, let L = {<,≺}, L0 = {<}, let K be a class in language L and
K0 = K|L0.

Definition 2.2.19. A class K satisfies the ordering property with respect
to K0 if for every A0 ∈ K0 there is a B0 ∈ K0, such that for every linear
ordering ≺A on A0 and every linear ordering ≺B on B0 with

A = 〈A0,≺A〉 ∈ K and B = 〈B0,≺B〉 ∈ K,

there is an embedding e : A→ B.

Sokić proves the following. We combine Lemma 3 in Sokić (2012a) and Lemma
2 in Sokić (2012b).

Theorem 2.2.20. The following classes satisfy OP:

(i) K(An, o) = K(An, e) with respect to K(An) for all 1 ≤ n ≤ ℵ0,

(ii) K(C, e) with respect to K(C),

(iii) K(ACn, ce) with respect to K(ACn) for all 1 < n ≤ ℵ0,

(iv) K(CAn, e) with respect to K(CAn) for all 1 < n ≤ ℵ0, and

(v) K(G, e) with respect to K(G).

The following classes do not satisfy OP:
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(i) K(C, o) with respect to K(C),

(ii) K(ACn, o) and K(ACn, e) with respect to K(ACn) for all 1 < n ≤ ℵ0,

(iii) K(ACn, co) with respect to K(ACn) for all 1 < n ≤ ℵ0,

(iv) K(CAn, o) with respect to K(CAn) for all 1 < n ≤ ℵ0, and

(v) K(G, o) with respect to K(G).

2.3 Links to topological dynamics

Kechris, Pestov, Todorčević

The paper Kechris et al. (2005) explores the connections between structural Ram-
sey theory, Fraïssé theory and topological dynamics. In particular, it provides
a new way of finding extremely amenable groups and calculating the universal
minimal flow.

A T -flow is a continuous action of a topological group T on a compact space
X. A T -flow is minimal if all of its orbits are dense. The universal minimal
flow M(T ) is a minimal T -flow that can be homomorphically mapped onto any
other minimal T -flow. A general topological dynamics result states that every
topological group T has a universal minimal flow M(T ). If M(T ) is a singleton,
the group T is extremely amenable. Equivalently, T is extremely amenable if and
only if every T -flow has a fixed point.

Consider S∞, the group of all permutations of N, with the pointwise conver-
gence topology. That is, the elements of S∞ are bijections N → N, so S∞ is a
subgroup of the group of all functions N → N, namely NN. Taking the discrete
topology on N (with all subsets of N being open), and product topology on NN

(with a basis made of preimages of any collection of subsets of N in the product
under projection maps), we get precisely the pointwise convergence topology on
NN. The subspace topology on S∞ is precisely the pointwise convergence topology
as well.

The group S∞ is an interesting group to be considered because any countable
group is a subgroup of S∞. The paper Kechris et al. (2005) in Theorem 4.7 shows
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that there is a link between extremely amenable subgroups of S∞ and Fraïssé
order classes with the Ramsey property.

Theorem 2.3.1. Let T E S∞ be a closed subgroup. Then the following are
equivalent:

(i) T is extremely amenable.

(ii) T = Aut(H), where H is the Fraïssé limit of a Fraïssé order class
with the Ramsey property.

A standard result states that the closed subgroups of S∞ under the pointwise
convergence topology are precisely the automorphism groups of the homogeneous
first order structures. It is proven in Cameron (1990), for example. This leads to
the next theorem, Theorem 4.8 from Kechris et al. (2005), stating more explicitly
the connection between Ramsey classes and extremely amenable groups.

Theorem 2.3.2. Let K be a Fraïssé order class and H = Flim(K). Then
the following are equivalent:

(i) the automorphism group Aut(H) is extremely amenable, and

(ii) K satisfies the Ramsey property.

Thus finding a new Ramsey class might lead to finding a new extremely
amenable group if the automorphism group Aut(H) is not known to be extremely
amenable.

A common way to find new order classes to be studied is by expanding a
Fraïssé classK0 in language L0 to a new Fraïssé classK in language L = L0∪{≺},
such that the new class K is an order class with respect to ≺ and a reasonable
class with respect to K0, as discussed on page 30.

The paper Kechris et al. (2005) specifies and proves that in certain circum-
stances considering K provides a way to calculate a universal minimal flow of the
automorphism group of Flim(K0), providing a way to calculate universal min-
imal flows of a wider range of automorphism groups of homogeneous structures
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that are not extremely amenable.
Instead of starting with the class K0, we will start by considering the class K

and work our way back to results related to K0. The paper Kechris et al. (2005)
in Proposition 5.2 shows the following.

Proposition 2.3.3. Let L ⊃ {≺} be a language and K a Fraïssé order
class for ≺ in L. Let L0 = L \ {≺}, K|L0, H = Flim(K) and H0 = H|L0.
Then the following are equivalent:

(i) K0 is a Fraïssé class and H0 = Flim(K0), and

(ii) K is reasonable with respect to K0.

In the rest of this section we will consider the case with K, K0, H and H0 as
in Proposition 2.3.3, with K a Fraïssé order class for ≺ in L, that is reasonable
with respect to K0.

The homogeneous structures H and H0 are both structures with a countable
universe H = {hi : i ∈ N}.

We could view the total order ≺ on H as an element of 2N2 : that is, a map

1≺ : N2 → {0, 1}

with
1≺(i, i′) = 1 ⇐⇒ hi ≺ hi′ .

Let LO be a subset of 2N2 of all maps corresponding to total orders of H. It is
clear that any 1≺′ ∈ 2N2 lies in LO precisely when it satisfies the following four
conditions:

(i) ∀i ∈ N,1≺′(i, i) = 0,

(ii) ∀i, i′ ∈ N, i 6= i′ ⇒ (1≺′(i, i
′) = 1 ∨ 1≺′(i′, i) = 1),

(iii) ∀i, i′ ∈ N,¬(1≺′(i, i
′) = 1 ∧ 1≺′(i′, i) = 1), and

(iv) ∀i, i′, i′′ ∈ N, (1≺′(i, i′) = 1 ∧ 1≺′(i′, i′′) = 1)⇒ 1≺′(i, i
′′) = 1.
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Taking a discrete topology on {0, 1} and a product topology on 2N2 , we get
a compact space 2N2 by Tychonoff’s theorem. A quick check shows that LO is a
closed subspace of 2N2 , and thus compact itself.

Then taking any permutation g ∈ S∞ of N, g acts on LO as follows:

∀i, i′ ∈ N, g · 1≺′(i, i′) = 1g·≺′(i, i
′) = 1 ⇐⇒ 1≺′(g

−1(i), g−1(i′)) = 1

Let T0 be the automorphism group of H0. Then we can view T0 as isomorphic
to a subgroup of S∞ in a natural way, identifying t ∈ T0 with g ∈ S∞ if

∀i, i′ ∈ N, t(hi) = hi′ ⇐⇒ g(i) = i′.

Thus we can consider the action of T0 on LO,

T0 · LO → LO.

Definition 2.3.4. Let K be a Fraïssé class, that is a reasonable order class
with respect to K0, let H0 = Flim(K0) and H = 〈H0,≺〉 = Flim(H0).
Denote by XK the closure of the orbit ≺ under the action of the group
T0 = Aut(H0) on the space of all linear orders of the universe H of H and
H0;

XK = T0· ≺.

We call any ordering in XK a K-admissible ordering.

Aside from the connection between XK and the automorphism group of H =

Flim(K), the paper Kechris et al. (2005) in Proposition 7.1 shows that there is
a more explicit connection between XK and K.

Proposition 2.3.5. A linear ordering ≺′ is in XK if and only if for every
finite substructure A0 of H0, the structure

A = 〈A0,≺ |≺′〉

lies in the class K.
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It is perhaps more intuitive to think about the total orderings on the finite
structures in K0 that yield the order class K. Similarly to orderings of H in XK

being K-admissible, we will also say that an ordering ≺, where for some A0 ∈ K0

we have 〈A0,≺〉 ∈ K, is K-admissible. However, we will be careful to clarify
whether we are referring to a K-admissible ordering of a homogeneous structure
or a K-admissible ordering of a finite structure in a Fraïssé class.

More importantly, the paper Kechris et al. (2005) in Theorem 10.8 shows
how to calculate the universal minimal flow of T0, where T0 is the automorphism
group of a homogeneous structure, in case that there exists a reasonable Fraïssé
expansion of its age with specific properties.

Theorem 2.3.6. Let L ⊃ {≺} be a language, L0 = L \ {≺}, and K a
Fraïssé order class in L, reasonable with respect to the class K0 = K|L0.
Let then H = Flim(K) and H0 = Flim(K0) = H|L0.

Let further T0 = Aut(H0), T = Aut(H) and let XK be the set of linear
orderings on H which are K-admissible. Then the following are equivalent:

(i) K has the Ramsey and ordering properties.

(ii) XK is the universal minimal flow of T0.

Further, combining part (i) of Theorem 7.5 with the Theorem 10.8 from
Kechris et al. (2005), we get the following result.

Theorem 2.3.7. The universal minimal flow XK in Theorem 2.3.6 is
metrizable.

Existence and uniqueness

Given a Fraïssé classK0 that does not have Ramsey property, finding a reasonable
Fraïssé order class K with respect to K0 that has Ramsey property may be
difficult or even impossible at times. So one might predict that finding a class K
with the Ramsey and ordering properties, and thus yielding interesting topological
results discussed in the previous section, would be even more difficult. While that
might be the case, Theorem 10.7 from Kechris et al. (2005) assures us that the
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search is not in vain.

Theorem 2.3.8. Let K0 be a Fraïssé class in the language L0, and as-
sume that K is a reasonable Fraïssé order class with respect to K0 in the
language L = L0 ∪ {≺} which satisfies the Ramsey property. Then there is
a reasonable Fraïssé order class K′ ⊂ K with respect to K0, such that K′

satisfies both the Ramsey and ordering properties.

However, once the class with the ordering and Ramsey properties is found, it
is essentially unique in a specific sense. That is, the class is unique up to simple
bi-definability.

Definition 2.3.9. A first order simple formula is a quantifier-free finite
formula in the first order language.
Let K and K′ both be reasonable order classes in language L = L0 ∪ {≺}
with respect to K0 in language L0. The classes K and K′ are simply bi-
definable if there are simple formulas ϕ(x, y) and ϕ′(x, y) in L, such that
for each A0 ∈ K0, the formulas ϕ and ϕ′ define (uniformly) a bijection
between the expansions of A0 in L that are in K with those that are in K′.

The general definition of bi-definability is not restricted only to reasonable
order classes. We will explore it further in Section 3.1. Now we consider the
definition of simple bi-definability in this specific context.

The paper Kechris et al. (2005) in Theorem 9.1 first shows that bi-definability
preserves Ramsey and ordering properties.

Theorem 2.3.10. Suppose that the classes K and K′ are reasonable Fraïssé
order classes in L with respect to K0. If K and K′ are simply bi-definable,
then the following hold.

(i) The class K satisfies the Ramsey property if and only if the class K′

does.

(ii) The class K satisfies the ordering property if and only if the class K′

does.
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The following theorem, Theorem 9.2 in Kechris et al. (2005), is the uniqueness
result for classes with Ramsey and ordering properties.

Theorem 2.3.11. Suppose that the classes K and K′ are reasonable Fraïssé
order classes in L with respect to K0. If K and K′ satisfy the ordering and
Ramsey properties, then they are simply bi-definable.

Thus, up to simple bi-definability, given a class K0, if there exists a class
K, that is a reasonable Fraïssé order class in L with respect to K0 and satisfies
the ordering and Ramsey properties, then the class K is unique up to simple
bi-definability.

Further, by Theorem 9.5 in Kechris et al. (2005), if K satisfies the ordering
and Ramsey properties

Theorem 2.3.12. Suppose that the classes K and K′ are reasonable Fraïssé
order classes in L with respect to K0. If class K has the Ramsey property
and class K′ has the Ramsey and ordering properties, then K′ ⊂ K up to
simple bidefinability.

Topological dynamics of partial orders

Combining the results from Theorem 2.2.18 and Theorem 2.3.2 Sokić proves the
following. We combine Theorem 11 in Sokić (2012a) and Theorem 3 in Sokić
(2012b).

Theorem 2.3.13. The following groups are extremely amenable.

(i) Aut(H(Aℵ0 , e)),

(ii) Aut(H(C, e)) and Aut(H(C, o)) ,

(iii) Aut(H(ACℵ0 , co)) and Aut(H(ACℵ0 , ce)),

(iv) Aut(H(CAℵ0 , o)) and Aut(H(CAℵ0 , e)),

(v) Aut(H(G, o)) and Aut(H(G, e)).
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2.4 Shaped homogeneous partial orders

Similarly, combining Theorems 2.2.16, 2.2.18, 2.3.6, and 2.2.20 Sokić proves
the following. We combine Theorem 13 and 14 in Sokić (2012a) and Theorem 3
in Sokić (2012b).

Theorem 2.3.14. XK is a universal minimal T0-flow for the following.

(i) K = K(Aℵ0 , e) and T0 = Aut(H(Aℵ0))

(ii) K = K(C, e) and T0 = Aut(H(C))

(iii) K = K(ACℵ0 , ce) and T0 = Aut(H(ACℵ0))

(iv) K = K(CAℵ0 , e) and T0 = Aut(H(CAℵ0))

(v) K = K(G, e) and T0 = Aut(H(G))

2.4 Shaped homogeneous partial orders

Countable homogeneous shaped partial orders (or, as referred to in the pa-
per, countable homogeneous coloured partial orders) have been classified in Tor-
rezão de Sousa & Truss (2008). The paper shows that there is an equivalence
relation ∼, partitioning H into interdensely shaped components. The structure
of a homogeneous structure in terms of the equivalence classes of ∼ and the con-
nections between them can be described by a labelled partial order Σ, in which
the labels of vertices carry information about the equivalence classes of ∼ and
the labels of comparable pairs carry information about the connections between
them. It states and proves a classification theorem for countable homogeneous
shaped partial orders in terms of the associated labelled partial orders Σ. This
section revisits the results from the paper Torrezão de Sousa & Truss (2008),
adapting notation to one that will be used throughout this thesis.

Model theory of shaped partial orders and notation

We begin this section with a formal definition.
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2.4 Shaped homogeneous partial orders

Definition 2.4.1. Let < be binary relation and let sa for a ∈ A be unary
relations. Let S = {sa : a ∈ A} and let P be a set. An S-shaped partial
order P is a structure

P = 〈P,<, {sa}a∈A〉,

satisfying the following conditions.

(i) Relation < is a partial order relations.

(ii) For all p ∈ P the following holds:

s1(p) ∨ s2(p) ∨ . . . ∨ s|A|(p).

(iii) For all pairs of distinct a, a′ ∈ A and for all p ∈ P , the we have:

¬(sa(p) ∧ sa
′
(p)).

Note. Part (iii) of the definition requires that each point of P has a shape
and part (iv) ensures that each point has exactly one shape.

However, informally, we replace the unary relations and the related axioms
with a map s, sending the set of points of P to the set of shapes. That is,

s : P → S, s(p) = sa if sa(p) in the model P.

Throughout the rest of the thesis we will be using the following notation.

Definition 2.4.2. Let < be a binary relation and let S = {sa : a ∈ A} be
a finite set. A S-shaped partial order P is a structure

(P,<, s)

satisfying the following conditions.

(i) (P,<) is a partial order, and
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2.4 Shaped homogeneous partial orders

(ii) s : P → S is a map.

For each p ∈ P , the element s(p) ∈ S is the shape of P .
The class K of all finite S-shaped partial orders K(G,S) is the class of all
finite S-shaped partial orders.

Note. The formal definition of a substructure or an isomorphism then trans-
lates to the shape maps agreeing on the shape of points. Namely, if P,R
are shaped partial orders with P = (P,<P, sP), R = (R,<R, sR) and

e : P→ R

is an embedding, then for all p ∈ P we have

sP(p) = sR(e(p)).

Suppose that S is an countably infinite set of shapes. Then for each finite
subset S′ of S there is a class K(G,S′) of all finite ordered S′-shaped partial
orders. Torrezão de Sousa & Truss (2008) shows that each of these classes is a
Fraïssé class, as it shows that a generic countable homogeneous shaped partial
order H(G,S′) exists. But then by compactness, the structure H(G,S) exists
as well. Thus the class K(G,S) is a Fraïssé class.

In this section we consider the countable homogeneous shaped partial orders.

Definition 2.4.3. A countable homogeneous shaped partial order H is a
countable partial order, together with an expansion by unary predicates,
that is homogeneous. We will say that H is an S-shaped partial order, if
H = (H,<, s), where (H,<) is a partial order and s : H → S is a map
from the set H of points of H to the set S of shapes of H.

The Interdense Relation

The formal definition of the ∼ relation is as follows.
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2.4 Shaped homogeneous partial orders

Definition 2.4.4. Let H = (H,<, s) be a countable homogeneous shaped
partial order. Let ∼ be the transitive closure of the following relation:

x ∼′ y ⇐⇒

• s(x) = s(y) or

• x < y and s(x), s(y) occur interdensely between x and y (that is,
for any x′, y′ such that x < x′ < y′ < y there are z, z′ such that
x′ < z < y′ and x′ < z′ < y′ and s(z) = s(x), s(z′) = s(y)), or

• analogous condition for y < x.

According to Torrezão de Sousa & Truss (2008), the relation ∼ tells us a lot
about the homogeneous shaped partial order H. Remark 2.4.5 part (ii) refers to
the equivalence relation on the shapes, denoted by ≈, that ∼ induces (considered
in Section 2 of the paper). In Section 3, the paper states the results summarised
in parts (iii)-(v).

Remark 2.4.5. (i) The relation ∼ is an equivalence relation, and hence
partitions H into equivalence classes Hσ, where σ ∈ Σ for some set Σ.
We refer to the substructure of H restricted to an equivalence class
Hσ of ∼ as the component Hσ of H.

(ii) The relation ∼ induces a partition of S into sets Sσ for σ ∈ Σ, such
that s(Hσ) = Sσ for σ ∈ Σ. So each Hσ is an Sσ-shaped partial
order.

(iii) The next section of this thesis considers the components of a shaped
homogeneous partial order. It summarises that for each σ ∈ Σ, the
substructure of H on the points Hσ is one of the following:

• an Sσ-shaped antichain of chains AC,

• an Sσ-shaped chain of antichains CA, or

• an Sσ-shaped generic partial order G.
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2.4 Shaped homogeneous partial orders

(iv) The partial order (H,<) induces a partial order on Σ. For σ, σ′ ∈ Σ,
set σ < σ′ if there are x ∈ Hσ and y ∈ Hσ′ such that x < y in (H,<).
Then < is a partial order on Σ.

In particular, if σ < σ′, then for all p ∈ Hσ, q ∈ Hσ′ , either p < q or
p||q, but never q < p.

(v) Further, given any distinct σ, σ′, the restriction of < on the pairs
(x, y) with x ∈ Hσ, y ∈ Hσ′ is one of the six types of relations we will
denote by ||, <c, <g, <pm, <cpm or <sh. These are considered in the
section starting on page 52.

(vi) The set Σ together with a partial order (Σ, <) mentioned in (iv), a
map l1 on points of Σ and a map l2 on comparable points of (Σ, <)

will be discussed informally in the following two sections and defined
formally in 2.4.14.

Countable homogeneous interdensely shaped partial orders

An interdensely shaped homogeneous partial order is one for which the relation
∼ has only one equivalence class. That is, H is a one component homogeneous
shaped partial order.

Recall that the set Q with the natural order is, up to isomorphism, the unique
countably infinite homogeneous linear order. Similarly, given a set of shapes S,
there is, up to isomorphism, a unique countably infinite interdensely S-shaped
homogeneous linear order, that we will denote by QS.

The interdensely shaped homogeneous partial orders are classified in Theorem
8.1 of Torrezão de Sousa & Truss (2008). It later combines the shaped partial
orders with the underlying partial order an antichain of size n (An) or an antichain
of n chains (ACn) under the label AC, and similarly the shaped partial orders
with the underlying partial order a chain (C) or a chain of antichains of size at
most n (CAn) under the label CA, so
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2.4 Shaped homogeneous partial orders

Definition 2.4.6. Suppose that H = (H,<) is a countable homogeneous
interdensely shaped partial order.

(i) H is an antichain of chains, denoted by H(AC), if

(a) either (H,<) is an antichain of size n, where 1 ≤ n ≤ ℵ0 and
S = {s1},

(b) or (H,<) is an antichain of n chains, where 2 ≤ n ≤ ℵ0 and
each chain Hi of H is isomorphic to QS.

(ii) H is a chain of antichains, denoted by H(CA), where

(a) there are sets I andA and a map s1 : I → A, such that (I, <, s1)

is isomorphic to QA

(b) there is a partition {Hi : i ∈ I} of the set H into maximal
antichains of (H,<), with x < y in (H,<) for all x ∈ Hi, y ∈ Hi′

and i < i′ in (I, <),

(c) the set of shapes S partitions as {Sa : a ∈ A}, and

(d) for i ∈ I with s1(i) = a, Hi is an antichain with na,b points of
shape sa,b for each sa,b ∈ Sa, where 1 ≤ na,b ≤ ℵ0.

(iii) H is a generic S-shaped partial order, denoted by H(G), if

(a) (H,<) is a generic countable homogeneous partial order, and

(b) H is interdensely S-shaped.

Note. (i) We view an antichain as an antichain of chains of length 1.
Also, a shaped interdense linear order could be viewed as an antichain
of one chain. But in this classification it is viewed as a chain of
antichains, each of size 1.

(ii) We will see that for a Σ with more than one point, each component
Hσ is isomorphic to an interdensely-shaped homogeneous shaped par-
tial order.
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2.4 Shaped homogeneous partial orders

(iii) We introduce the map

l1 : Σ→ {AC,CA,G},

with the label l1(σ) denoting whether the structure is isomorphic to an
H(AC),H(CA) or H(G). In light of remark (ii), l1 can be defined
on Σ with more than one component as well and will be formally
introduced in Definition 2.4.14.

(iv) The notation H(AC) introduced in this definition is a shorthand for

H(Σ), Σ = {σ}, l1(σ) = AC

and similarly for H(CA) and H(G). Whilst H(AC),H(CA) or
H(G) is shorter, the notation H(Σ) is consistent with Definition
2.4.14.

The paper Torrezão de Sousa & Truss (2008) shows the following in Theorem
8.1 on page 29.

Lemma 2.4.7. Any countable homogeneous interdensely shaped partial or-
der H is either an H(AC), an H(CA) or an H(G).

While it is easy to define countable homogeneous interdensely shaped partial
orders, the countable homogeneous shaped partial orders with more than one
component have a more complex structure. Thus considering their ages, or even
viewing a countable homogeneous shaped partial order primarily as a Fraïssé
limit of a particular Fraïssé class of shaped partial orders, is essential. Since the
structures H are one-component structures, so are the corresponding classes.

Definition 2.4.8. (i) The homogeneous structure H(AC) is a Fraïssé
limit of the class K(AC) of antichains of chains. That is, either,

(i:a) for some 1 ≤ n ≤ ℵ0, K(AC) is a class of finite S-shaped
antichains of size at most n, where S = {s1}, or
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2.4 Shaped homogeneous partial orders

(i:b) for some 2 ≤ n ≤ ℵ0, K(AC) is a class of finite S-shaped
antichains of at most n chains.

(ii) The homogeneous structure H(CA) is a Fraïssé limit of the class
K(CA) of finite S-shaped antichains of chains. That is,

(a) the set of shapes S partitions as {Sa : a ∈ A},

(b) for each sa,b ∈ Sa, there is an na,b, with 1 ≤ na,b ≤ ℵ0, and

(c) each antichain of a P ∈ K(CA) is Sa-shaped for some a ∈ A,
and has at most na,b points of shape sa,b for each sa,b ∈ Sa.

(iii) The homogeneous structure H(G) is a Fraïssé limit of the class K(G)

of all finite S-shaped partial orders.

Remark 2.4.9. NotationK(AC) omits information about the set of shapes
S, whether the class is a class of antichains or proper antichains of chain,
and how many chains there could be in any structure. To include that
information in the notation we write K(AC,S, {n1, n2}), where n1 corre-
sponds to n in parts (i:a) and (i:b) of the definition above, and the classes
in (i:a) have n2 = 1, while the classes in (i:b) have n2 = ℵ0.
Similarly, notation K(CA) omits information about the set of shapes S

and the related na,b. We let Sa = {sa,b : b ∈ Ba} for some set Ba and
denote by N the set {na,b : (a, b) ∈ A o B}. We then write K(CA,S, N)

to denote the class.
Finally, we write K(G,S) to label the class defined in part (iii) of the
definition above.

Relations between interdense components

Consider now homogeneous shaped partial orders with two equivalence classes of
relation ∼, namely Hσ and Hσ′ . These homogeneous shaped partial orders are
two-component homogeneous shaped partial orders.

We consider the following relations:

(i) incomparable label ||,
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2.4 Shaped homogeneous partial orders

(ii) complete label <c,

(iii) perfect matching label <pm,

(iv) complement of the perfect matching label <cpm,

(v) generic label <g, and

(vi) shuffle label <sh.

Despite the symbol <, these labels are not partial order relations, but merely
labels of relation pairs of a partial order.

Definition 2.4.10. Suppose that H = (H,<, s) is a homogeneous shaped
partial order, where H is a disjoint union of sets Hσ and Hσ′ . We have the
following notation and the corresponding conditions.

(i) Hσ||Hσ′ , if for all x ∈ Hσ and y ∈ Hσ′ we have x||y.

(ii) Hσ <c Hσ′ , if for all x ∈ Hσ and y ∈ Hσ′ we have x < y.

(iii) Hσ <pm Hσ′ , if for some 2 ≤ n ≤ ℵ0,

(a) Hσ is an AC with n chains Hσ,i, and Hσ′ is an AC with n chains
Hσ′,i, for 1 ≤ i ≤ n, where

(b) for all x ∈ Hσ,i and y ∈ Hσ′,i′ we have x < y if and only if i = i′.

(iv) Hσ <cpm Hσ′ , if, for some 2 ≤ n ≤ ℵ0,

(a) Hσ is an AC with n chains Hσ,i, and Hσ′ is an AC with n chains
Hσ′,i, for 1 ≤ i ≤ n, where

(b) for all x ∈ Hσ,i and y ∈ Hσ′,i′ we have x < y if and only if i 6= i′.

(v) Hσ <g Hσ′ , if

(a) Hσ and Hσ′ are each either an AC with ℵ0 chains or a G,

(b) it is not the case that Hσ <pm Hσ′ or Hσ <cpm Hσ′ , and

(c) there are x, x′ ∈ Hσ and y, y′ ∈ Hσ′ such that x||y and x′ < y′.
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(vi) Hσ <sh Hσ′ , if

(a) Hσ and Hσ′ are both CA, and

(b) there are x, x′ ∈ Hσ and y, y′ ∈ Hσ′ such that x||y and x′ < y′.

Note. We will refer to conditions (ii)-(vi) as the <l-condition for the corre-
sponding <l∈ {<c, <g, <sh, <pm, <cpm}, i.e., condition (ii) is the <c condi-
tion.

The paper Torrezão de Sousa & Truss (2008) classifies two-component homo-
geneous shaped partial orders in Theorem 8.2.

Lemma 2.4.11. If the countable homogeneous shaped partial order H has
two equivalence classes Hσ and Hσ′ under the relation ∼, the substructure
of H on each of the classes is a countable homogeneous interdensely shaped
partial order. The pair of equivalence classes satisfies one of the conditions
in Definition 2.4.10 above. Further, given a pair of countable homogeneous
interdensely shaped partial orders Hσ, Hσ′ with disjoint sets of shapes and
a compatible condition from the Definition 2.4.10, there is, up to an iso-
morphism, a unique countable homogeneous shaped partial order H with
Hσ, Hσ′ as substructures and (Hσ ∪Hσ′ , <, s) satisfying the condition.

Note. (i) Label the unique homogeneous structure on H = Hσ ∪ Hσ′

satisfying a <l condition as the structure Hσ<lσ′ .

(ii) Further, for structures satisfying conditions (ii)-(vi), let

l2 : {(σ, σ′)} → {<c, <pm, <cpm, <g, <sh}

be a map with l2(σ, σ′) =<l if σ <l σ
′ in Σ. Then each <l can be

thought of as a binary relation on Σ. But the relation is not a partial
order relation - not all of the relations are transitive.

(iii) The equivalence relation ∼ on S-shaped Hσ<lσ′ partitions the set of
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shapes S into sets Sσ and Sσ′ , such that Hσ is Sσ-shaped and Hσ′

is Sσ′-shaped.

(iv) Again, in line with Definition 2.4.14, label Hσ<lσ′ as H(Σ), where Σ

has points σ and σ′ and either σ||σ′ or σ < σ′ and l2(σ, σ′) =<l. The
skeleton Σ is associated with the structure H, Hσ and Hσ′ are its
components, and l2 will be the map assigning labels to the comparable
pairs of components.

(v) The structure Hσ is isomorphic to one of the structures H(AC),
H(CA) or H(G), similarly for σ′. Denote the age of Hσ by K(σ),
and similarly for σ′.

Rather than Definition 2.4.10 and Lemma 2.4.11, the paper Torrezão de Sousa
& Truss (2008) defines the two-component homogeneous shaped partial orders as
a Fraïssé limit of certain Fraïssé classes of partial orders and then shows the list
is exhaustive.

Suppose we are given disjoint sets of shapes Sσ1 and Sσ2 , and one-component
Fraïssé classes of Sσi-shaped partial orders for i = 1, 2. Let H be a two-
component homogeneous S-shaped partial order, with S = Sσ1 ∪Sσ2 and with
K as its age. Namely, H has two components, the Sσi-shaped component of H
being Hσi with age K(σi). Then the shaping s of any P ∈ K induces a partition
on the universe P of P, namely if Pi = s−1(Sσi), then P = P1 ∪ P2. Let then Pi

be the substructure of P on the points Pi, and refer to Pi as the components of
P. Then we have

K = {P : P1 ∈ K(σ1),P2 ∈ K(σ2)},

with the shapes and the partial order structure on the sets Pi, described already
in the one-component case. To understand what K, and consequently H, looks
like, we will specify the partial order on the pairs (p1, p2) with pi ∈ Pσi .

Further, if Pi is an antichain of chains, then Pi partitions into maximal chains
on the sets {Pi,j : j ∈ Ii} for some set Ii, and if Pi is a chain of antichains, then
Pi partitions into maximal antichains on the sets {Pi,j : j ∈ Ii} for some set Ii.
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(i) The structure Hσ1||σ2 is a Fraïssé limit of the class K(σ1||σ2), where

∀P ∈ K(σ1||σ2),∀p1 ∈ P1,∀p2 ∈ P2 p1||p2.

So the two components Pi of any shaped partial order P in K(σ1||σ2) are
incomparable, and so are the components Hσi of Hσ1||σ2 .

(ii) The structure Hσ1<cσ2 is a Fraïssé limit of the class K(σ1 <c σ2), where

∀P ∈ K(σ1 <c σ2),∀p1 ∈ P1,∀p2 ∈ P2 p1 < p2.

In this case then, the component P1 of any shaped partial order P in
K(σ1 <c σ2) is completely below the other component P2. Hence in
Hσ1<cσ2 , the component Hσ1 is completely below the component Hσ2 .

(iii) The structure Hσ1<pmσ2 is a Fraïssé limit of the class K(σ1 <pm σ2), if for
each P ∈ K(σ1 <pm σ2), each chain of P1 is below at most one chain in P2.

There is also an n, with 2 ≤ n ≤ ℵ0, such that Hσi consists of n incom-
parable chains on the sets of points Hi,j, each isomorphic to an Sσi-shaped
copy of Q. Then for any j, j′ ∈ [n] the chain H1,j is completely below the
chain H2,j and incomparable with all other chains H2,j′ . So there is a perfect
matching between the chains of Hσ1 and Hσ2 .

(iv) The structure Hσ1<cpmσ2 is a Fraïssé limit of the class K(σ1 <cpm σ2), if for
each P ∈ K(σ1 <cpm σ2), each chain of P1 is incomparable with at most
one chain in P2, and below all the others.

There is also an n, with 2 ≤ n ≤ ℵ0, such that Hσi consists of n incom-
parable chains on the sets of points Hi,j, each isomorphic to an Sσi-shaped
copy of Q. Then the chain H1,j is incomparable with the chain H2,j and
completely below all other chains H2,j′ . So the relationship between the
chains of H1 and H2 is a complement of a perfect matching.

(v) The structure Hσ1<gσ2 is a Fraïssé limit of the class K(σ1 <g σ2), if

(a) the classes K(σi) are each a K(AC) or a K(G),
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(b) if P1 ∈ K(σ1) and K(σ1) is a class K(AC), then P1 partitions into
maximal chains on the sets {P1,i : i ∈ I}, and we have

∀i ∈ I, ∀p, p′ ∈ P1,i,∀q ∈ P2 (p < q) ⇐⇒ (p′ < q),

and similarly if K(σ2) is a class K(AC),

(c) the partial order on P is any partial order extending the partial orders
on Pi and satisfying the condition (b).

Condition (b) considers the case when P1 (or P2) is in the class of antichains
of chains. It says that for any point q ∈ P2 (or q ∈ P1), any maximal chain
P1,i of P1 (or P2,i of P2) is either all incomparable with q or completely
below q (completely above q). Thus in case that P1 (or P2) is an antichain,
the condition (b) is trivially true.

Consider the case where for i ∈ {1, 2} either l1(σi) = G or l1(σi) = AC

and K(σi) is the class of antichains. The class K(σ1 <g σ2) consists of all
shaped partial orders P with Pi ∈ K(σi). So the homogeneous structure
Hσ1<gσ2 , the Fraïssé limit of K(σ1 <g σ2), consists of Hσ1 generically below
Hσ2 .

Consider now the case where either l1(σ1) = AC and H(σ1) is a homoge-
neous shaped antichain of chains, and either l1(σ2) = G or l1(σ2) = AC and
H(σ2) is a homogeneous shaped antichain. Let σ′1 be such that Hσ′1<gσ2

and H(σ′1) is an antichain. To construct Hσ1<gσ2 , replace each point of
H(σ′1) by an Sσ1-shaped copy of Q. Construct Hσ1<gσ2 similarly if H(σ2)

or both H(σi) are homogeneous shaped antichains of chains.

(vi) The structure Hσ1<shσ2 is a Fraïssé limit of the class K(σ1 <sh σ2), if

(a) the classes K(σi) are both of form K(CA),

(b) if Pi ∈ K(σi), then Pi partitions into maximal antichains on the sets
{Pi,j : j ∈ Ii}, such that

∀p ∈ Pi,j,∀p′ ∈ Pi,j′ (p < p′) ⇐⇒ j < j′,
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and

(c) either the structure P ∈ K(σ1 <sh σ2) satisfies the following: given
any a1 ∈ A1, a2 ∈ A2,

i. if P1,j and P1,j′ are both Sa1-shaped maximal antichains and
j < j′, then there exists a Sa2-shaped maximal antichain P2,j′′ ,
such that

P1,j < P2,j′′ and P1,j′ ||P2,j′′

ii. and if P2,j and P2,j′ are both Sa2-shaped maximal antichains and
j < j′, then there exists a Sa1-shaped maximal antichain P1,j′′ ,
such that

P1,j′′ ||P2,j and P1,j′′ < P2,j′ ,

(d) or the structure P ∈ K(σ1 <sh σ2) is a substructure of some structure
satisfying (c).

According to the paper Torrezão de Sousa & Truss (2008), each point p
of Hσ1 splits the points of Hσ2 into sets Hp,l and Hp,u, the lower and the
upper part of Hσ2 such that p is incomparable with Hp,l and p is completely
below Hp,u.

More precisely, suppose that {Hi,j : j ∈ Ii} is the partition of the set Hσ1

into maximal antichains of Hσ1 . Then for each j ∈ I1 there is a j′ ∈ I2,
such that for any p ∈ H1,j and q ∈ H1,j′′ we have p < q precisely if j′ < j′′.

Since Hσi are both chains of antichains, there are sets Ii and Ai and maps
sσi,1 : Ii → Ai, such that (Ii, <, sσi,1) is isomorphic to QAi . Suppose that
A1 and A2 are disjoint and consider the structure QA1∪A2 , which is unique
up to isomorphism. Then its substructure on the points of shapes in Ai is
isomorphic to QAi . We obtain Hσ1<shσ2 by replacing each a-shaped point
of QA1∪A2 with the appropriate Sa-shaped antichain of Hσ1 or Hσ2 . The
total order on QA1∪A2 defines the partial order on Hσ1<shσ2 . Suppose that
i, i′ ∈ QA1∪A2 and i < i′. If the antichain replacing i is an antichain of Hσ2

and the antichain replacing i′ is an antichain of Hσ1 , the two antichains are
incomparable. Otherwise, the antichain replacing i lies completely below
antichain replacing i′.
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2.4 Shaped homogeneous partial orders

We say that the maximal antichains of Hσ1 shuffle between the maximal
antichains of Hσ2 .

Note. The only difference between conditions (iii) and (iv) in Definition
2.4.10 is that in (iii) the components are either an AC or a G, and in (iv)
the components are both a CA. The different notation will, however, be
useful later.

Skeleton

The concept of a skeleton codes how a homogeneous shaped partial order is built
from its components.

Definition 2.4.12. A skeleton Σ = (Σ, <, l1, l2) is a partial order (Σ, <)

together with maps

• l1 : Σ→ {AC,CA,G} and

• l2 : {(σ, τ) ∈ Σ2 : σ < τ} → {<g, <c, <cpm, <pm, <sh}.

For each σ, τ ∈ Σ, with σ < τ we call l1(σ) and l2(σ, τ) the label of a point
and the label of a relation between two points respectively.

Note. Throughout the thesis we will abuse notation and write

l2 : {<} → {<g, <c, <cpm, <pm, <sh}.

Only <c and <sh are partial order relations; the rest need not be transitive.

We will restrict our attention to a class of skeletons that additionally satisfy
certain conditions. The following correspond to the abstract skeletons defined in
the paper Torrezão de Sousa & Truss (2008).

Definition 2.4.13. A good skeleton is a skeleton that obeys the rules de-
scribed below. For any two components σ1, σ2 we have:
2-chain lemmas: For two components with σ1 < σ2 we have the following
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2.4 Shaped homogeneous partial orders

options for two components and the relation between them.

l1(σ1) l1(σ2) l2(σ1, σ2)

1.) CA CA <c, <sh

2.) CA AC <c

3.) CA G <c

4.) AC AC <c, <g, <pm, <cpm

5.) AC G <c, <g

6.) G G <c, <g

Moreover, in cases of two components with different labels, the analogous
option applies for σ1 > σ2.
V-shape lemmas For any three components σ1, σ2, σ3, with σ1 < σ2,
σ1 < σ3 and σ2||σ3 we have:

l1(σ1) l1(σ2) l1(σ3) l2(σ1, σ2) l2(σ1, σ3)

1.) any any any <c any allowed
2.) CA CA CA <sh <sh

3.) AC or G AC or G AC or G <g <g

Λ-shape lemmas
Conditions analogous to conditions in V-shape lemmas, but with σ1 > σ2,
σ1 > σ3 and σ2||σ3.
3-chain lemmas: For three components with σ1 < σ2 < σ3 we have the
following options for the components and relations between them.

l1(σ1) l1(σ2) l1(σ3) l2(σ1, σ2) l2(σ2, σ3) l2(σ1, σ3)

1.) any any any <c any allowed <c

1.)* any any any any allowed <c <c

2.) CA CA CA <sh <sh <sh

3.) AC AC AC <pm <pm <pm

4.) AC AC AC <pm <cpm <cpm

4.)* AC AC AC <cpm <pm <cpm

5.) AC AC AC/G <pm <g <g

5.)* AC/G AC AC <g <pm <g

6.) AC AC/G AC <g <g <cpm

7.) AC/G AC/G AC/G <g <g <c, <g
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2.4 Shaped homogeneous partial orders

Note that the Case 1 and Case 1* are dual, and similarly for the other
paired cases.

To define a shaped homogeneous partial order, we need a good skeleton and
additional information.

Definition 2.4.14. Fix a good skeleton Σ, a set of shapes S, together with
a partition {Sσ : σ ∈ Σ} of S, and

• for each σ ∈ Σ with l1(σ) = AC, numbers nσ,1 and nσ,2, with

– 2 ≤ nσ,1 ≤ ℵ0 and nσ,2 ∈ {1,ℵ0}, or nσ,1 = nσ,2 = 1, and

– |Sσ| = 1 if nσ,2 = 1;

• for each σ ∈ Σ with l1(σ) = CA,

– a partition {Sσ,a : a ∈ Aσ} of Sσ, and

– for each sa,bσ ∈ Sσ,a, a number nσ,a,b with 1 ≤ nσ,a,b ≤ ℵ0.

Then the shaped partial order H(Σ) is a structure H(Σ) = (H,<, s) satis-
fying the following. The set H partitions as {Hσ : σ ∈ Σ}, such that

(i) (a) if l1(σ) = AC, Hσ is a homogeneous interdensely Sσ-shaped
antichain of nσ,1 chains of size nσ,2,

(b) if l1(σ) = CA, Hσ is a homogeneous interdensely Sσ-shaped
chain of antichains, where for each maximal antichain Hσ,i there
is an a ∈ Aσ such that the substructure of H on Hσ,i consists of
nσ,a,b points of shape sa,bσ for each sa,bσ ∈ Sσ,a, and

(c) if l1(σ) = G, Hσ is a homogeneous interdensely Sσ-shaped
generic partial order;

(ii) (a) if l2(σ, σ′) =<l for some <l∈ {<c, <g, <sh, <pm, <cpm}, then the
substructure of H on the set of points Hσ ∪ Hσ′ is isomorphic
to Hσ<lσ′ , and

(b) if, for distinct σ, σ′, we do not have σ < σ′ or σ′ < σ in Σ, then
we have x||y for all x ∈ Hσ, y ∈ Hσ′ ;
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2.4 Shaped homogeneous partial orders

(iii) (H,<) is a partial order.

Remarks 2.4.15. (i) We refer to integers nσ,1, nσ,2 and nσ,a,b as multi-
plicities. The notation H(Σ) emphasises the role of Σ in constructing
a homogeneous structure, but hides the fact that one has to specify
the set of shapes S and the multiplicities to define a structure H(Σ).

(ii) The 2-chain lemmas correspond exactly to the<l-conditions in Defini-
tion 2.4.10. Thus by Lemma 2.4.11, the condition (ii) (a) in Definition
2.4.14 is compatible with the conditions in (i).

(iii) The 3-chain, V-shape and Λ-shape lemmas ensure that a partial or-
der, with pairs of components isomorphic to Hσ<lσ′ , exists and is
homogeneous. For example, if we have Hσ1 <c Hσ2 and Hσ2 <c Hσ3 ,
then by transitivity we must have Hσ1 <c Hσ3 . This is confirmed by
the 3-chain lemma 1.) or 1.)*.

The main result in Torrezão de Sousa & Truss (2008) is the following.

Theorem 2.4.16. Any structure H(Σ) defined in Definition 2.4.14 is a
countable homogeneous shaped partial order. Further, any countable homo-
geneous shaped partial order is isomorphic to an H(Σ) for some choice of
Σ, with corresponding data as in Definition 2.4.14.

Note. IfH(Σ) has only one component, i.e., Σ = {σ}, we know that l1(σ) ∈
{AC,CA,G}. Depending on the label of σ, we will refer to one component
homogeneous shaped partial orders as H(AC), H(CA) or H(G).
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2.5 Ramsey classes of ordered shaped partial orders

2.5 Ramsey classes of ordered shaped partial or-
ders

Model theory of shaped ordered partial orders

In 2.4.1 we defined a shaped partial order. We add a total order.

Definition 2.5.1. Let < and ≺ be binary relations and let sa for a ∈ A
be unary relations. Let S = {sa : a ∈ A} and let P be a set. An ordered
S-shaped partial order P is a structure

P = 〈P,<,≺, {sa}a∈A〉,

where

(i) P = 〈P,<, {sa}a∈A〉 is a shaped partial order, and

(ii) the structure (P,≺) is a chain.

Similar to 2.4.2, we use notation P = (P,<,≺, s) to denote an ordered S-
shaped partial order P.

Further, we introduced the interdense relation on the points of any homo-
geneous shaped partial order H(Σ) in Definition 2.4.4. We observed that it
partitions the set S of shapes into subsets Sσ and the similarly the universe H
of H into components Hσ, for some skeleton Σ and for σ ∈ Σ. So when Sσ is
finite, Sσ = {s1

σ(p), s2
σ(p), . . . , snσ(p)}, we could introduce unary relations Fσ to

denote membership in the Sσ-shaped component Hσ(Σ) of H(Σ). We have

∀p, (Fσ(p) ⇐⇒ p ∈ Hσ(Σ) ⇐⇒ s(p) ∈ Sσ).

Then if K(Σ) is the age of H(Σ) and P ∈ K(Σ), the relations Fσ denote
membership in Sσ-shaped component of P as well.

We will regularly use shapes to partition a class being studied. For example,
we might study a class with a skeleton consisting of two points, σ1, σ2, and thus of
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2.5 Ramsey classes of ordered shaped partial orders

structures that are Sσ-shaped, or Sσ′-shaped, or have two parts, one Sσ-shaped
and one Sσ′-shaped. At a later point, we might focus on a Sσ-shaped part of a
structure in a class K(Σ) for some Σ and combine the other shape relations to get
a part that is not Sσ-shaped. Formally, we will consider classes of the following
form.

Definition 2.5.2. Let L be a relational language. Let K1 and K2 be
classes in language L, closed under substructures. A class K is a merge of
classes K1 and K2, if K is a class in language L, that contains relations
F1, F2 of arity 1, such that the following hold.

(i) For any A ∈ K and a ∈ A, the following statement is true:

(F1(a) ∨ F2(a)) ∧ ¬(F1(a) ∧ F2(a)).

(ii) For each A ∈ K the relations F1, F2 partition the universe of A into

A = A1 ∪ A2,

such that for all a ∈ A1 we have F1(a) and for all a ∈ A2 we have
F2(a). If A1 is non-empty, the substructure A1 of A with universe
A1 lies in the class K1; analogous for A2.

If A1 and A2 are both non-empty, the structure A is a merge of
structures A1 and A2.

(iii) For each A1 ∈ K1, A2 ∈ K2, the class K contains A1, A2 and at
least one structure A, that is a merge of structures A1 and A2.

The Definition 2.5.2 extends naturally to more than two classes.

Definition 2.5.3. Let L be a relational language. Let Ki, for i ∈ [n], be
classes in language L, closed under substructures. A class K is a merge of
classes Ki, for i ∈ [n], if K is a class in language L, that contains relations
F1, F2, . . . , Fn of arity 1, such that the following hold.
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2.5 Ramsey classes of ordered shaped partial orders

(i) For any A ∈ K and a ∈ A, the following statements are true:

F1(a) ∨ F2(a) ∨ . . . ∨ Fn, and

for all i 6= j; i, j ∈ [n] : ¬(Fi(a) ∧ Fj(a)).

(ii) For each A ∈ K the relations Fi partition the universe of A into

A =
⋃
i∈[n]

Ai

such that for all a ∈ Ai we have Fi(a). If Ai is non-empty, the
substructure Ai of A with universe Ai lies in the class Ki.

If Ai are all non-empty, the structure A is a merge of structures Ai,
for i ∈ [n].

(iii) For each non-empty subset N of [n] and a selection of structures
Ai ∈ Ki, for i ∈ N , the class K contains Ai for each i ∈ N , and at
least one structure A, that is a merge of structures Ai.

Link. Theorem 4.3.5, Theorem 4.2.4

While the Definition 2.5.3 is technical, it formalises a very common notion.

Lemma 2.5.4. Let Σ be a good skeleton, and let S be a set of shapes,
partitioning into disjoint sets S = {Sσ : σ ∈ Σ}. For each σ ∈ Σ, let Kσ

be a class of Sσ-shaped partial orders ( K(G),K(AC) or K(GA)), based
on the label l1(σ). Then the class K is a merge of classes Kσ for σ ∈ Σ.

The proof of this lemma consists only of unravelling of definitions. The labels
of relations between points in Σ further specify which structures the merge K
contains.
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2.5 Ramsey classes of ordered shaped partial orders

Finite restriction

Suppose that S = {s} and that K is a class of all ordered S-shaped partial
orders. Take any two ordered S-shaped partial orders P,R ∈ K, with

P = (P,<P,≺P, sP) and R = (R,<R,≺R, sR).

Then for each p ∈ P, r ∈ R we have

sP(p) = sR(r) = s.

So P and R are isomorphic precisely when their unshaped reducts, the structures
(P,<P,≺P) and (R,<R,≺R), are isomorphic.

Lemma 2.5.5. Let K be a Fraïssé class of ordered S-shaped partial orders
that is a Ramsey class and let s ∈ S. Let Ks of all s-shaped structures in
K. The following hold.

(i) If the class K is Ramsey, then so is Ks.

(ii) The class Ks is Fraïssé.

(iii) For some Fraïssé class Ks of ordered partial orders, the class Ks con-
sists precisely of structures P = (P,<P,≺P, sP), such that

(P,<P,≺P) ∈ Ks.

(iv) Let K′s be the class of all reducts (P,<P) of structures (P,<P,≺P) in
Ks. Then K′s is a Fraïssé class.

Proof. To prove part (i), take any Q,R ∈ Ks. Since Q,R ∈ K, there exists
P ∈ K such that P→ (R)Qk . Let Ps be the s-shaped substructure of P. Then
for any Q′ ∈

(
P
Q

)
and R′ ∈

(
P
R

)
, Q′ and R′ are both substructures of Ps. Thus

given any colouring of
(
P′

Q

)
, we can define the corresponding colouring of

(
P
Q

)
.

The R′ ∈
(
P
R

)
yielding the monochromatic

(
R′

Q

)
, that exists as K is Ramsey,

then corresponds to the monochromatic R′ ∈
(
P′

R

)
, showing that Ks is Ramsey

as well.
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2.5 Ramsey classes of ordered shaped partial orders

The arguments needed to prove part (ii) are similar. Recall the definition of a
Fraïssé class, Definition 2.1.3. The class Ks trivially has hereditary property,
as any substructure of an s-shaped structure is s-shaped. To show that Ks

has joint embedding property and amalgamation property proceed similarly.
Given a structure P ∈ K, let Ps be the s-shaped substructure of P.

(i) Given Q,R ∈ Ks, there exists P ∈ K showing that K has joint embed-
ding property. Then Ps shows that Ks has joint embedding property.

(ii) Given Q,R1,R2 ∈ Ks and embeddings e1 : Q → R1, e2 : Q → R2,
there exists P ∈ K showing that K has amalgamation property. Then
Ps shows that Ks has amalgamation property.

To prove part (iii), observe that for any P ∈ Ks and any p ∈ P, we have
sP(p) = s. So class Ks of unshaped reducts of structures in Ks has hereditary
property, joint embedding property and amalgamation property because the
class Ks does.
First notice that Ks plays the role of K in Proposition 2.3.3 and K′s plays the
role of K0. By definition of K′s, the class Ks is reasonable with respect to K′s.
Thus the class K′s is Fraïssé.

Consider again the Theorem 2.2.18, the summary of results showing that
certain classes of ordered partial orders are Ramsey and that others are not, from
Sokić (2012a) and Sokić (2012b). The index n in the notation of An, ACn and
CAn in each case denotes the width of a maximal antichain contained in a class
of ordered partial orders. We can see that if 1 < n < ℵ0, a class with index n is
never Ramsey. In this section we show that a similar result is true for classes of
ordered shaped partial orders. The following is the result.

Lemma 2.5.6. Let K be a Fraïssé class of ordered shaped partial orders
that is a Ramsey class. Suppose that for some shape s, the class K contains
an s-shaped antichain with two points, A2. Then the class K contains an
s-shaped antichain of any finite size.

Proof. Let Ks be the class of all s-shaped structures in K. Then by Lemma
2.5.5, the class Ks is Fraïssé and so are the class Ks of unshaped reducts of
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structures in Ks and the class K′s of unordered reducts of structures in Ks. So
the class K′s is a Fraïssé class of partial orders. Namely, the class K′s is one of
the following:

(i) K(An) for 1 ≤ n ≤ ℵ0,

(ii) K(C),

(iii) K(ACn) for 1 < n ≤ ℵ0,

(iv) K(CAn) for 1 < n ≤ ℵ0, or

(v) K(G).

These classes are defined in Definition 2.1.9.
Additionally, since K is a Ramsey class, by Lemma 2.5.5, the class Ks is a
Ramsey class as well.
Now, since K is a Fraïssé class, it also contains an s-shaped antichain with one
point, A1, as A1 is a substructure of A2.
Suppose first that An is the largest s-shaped antichain in the class K and that
An is of size n. Since A2 ∈ K, we know that n ≥ 2. Then the class K′s must
be one of the following three: K(An), K(ACn) or K(CAn). We consider two
different cases.

(i) The class K′s is K(ACn).

Take any P ∈ Ks. Take any chain Pi of P and define a colouring of
(
P
A1

)
as follows:

(a) If A′1 ∈
(
Pi
A1

)
, colour A′1 with colour 1.

(b) If A′1 /∈
(
Pi
A1

)
, colour A′1 with colour 2.

Since P is an antichain of at most n chains, any antichain of P of size n
will contain a point in the chain Pi. So none of them are monochromatic
under the colouring above, and thus

P 9 (An)A1
k .
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(ii) The class K′s is K(An) or K(CAn). Take any P ∈ Ks. Then P consists
of disjoint maximal antichains of size at most n. Colouring one point in
each antichain with colour 1 and the rest with colour 2 again shows that
P 9 (An)A1

k .

In both cases we get a contradiction, as Ks is a Ramsey class. Thus the
largest s-shaped antichain in the class K does not exist and K contains s-
shaped antichains of arbitrarily large size. It contains an s-shaped antichain
of any finite size because it has the hereditary property.

This tells us that many classes of shaped partial orders do not have an or-
dered expansion that is Ramsey. We can further narrow down the classes to be
considered.

Lemma 2.5.7. Let S be a countably infinite set of shapes and let K be
any class of S-shaped partial orders. If, for each finite subset S′ of S the
subclass K′(S) of all S′-shaped partial orders in K is Ramsey, then the
class K is Ramsey.

Proof. Take any Q,R ∈ K. Since they are finite, there must be a finite subset
Σ′ ⊂ Σ, such that Q and R are Σ′-shaped - namely

Σ′ = {sQ(q) : q ∈ Q} ∪ {sR(r) : r ∈ R}.

Then as K′(S) is Ramsey, there exists a P ∈ K′(S), such that

P→ (R)Qk .

But P ∈ K, so K is Ramsey.

Classification

As stated in Theorem 2.4.16, the homogeneous shaped partial orders are defined
by a good skeleton Σ (defined in 2.4.13), and for each σ ∈ Σ a set Sσ of shapes
and, if necessary, multiplicities nσ,1 and nσ,2, or nσ,a,b (defined in 2.4.14). By the
Fraïssé correspondence, this gives a classification of all Fraïssé classes of shaped
partial orders.
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Suppose that K(Σ) is a Fraïssé class of shaped partial orders. On one hand,
we will use a good skeleton with a total order to define a class K(Σ, o), a Fraïssé
order class of shaped partial orders that is reasonable with respect to K(Σ).

Definition 2.5.8. A good skeleton with a total order is a structure

Σ = (Σ, <,≺, l1, l2),

such that

(i) (Σ, <, l1, l2) is a good skeleton, and

(ii) (Σ,≺) is a total order.

By Lemma 2.5.6, if any of the multiplicities nσ,1 or nσ,a,b is not equal to 1 or
ℵ0, the class K(Σ, o) is not Ramsey. We will show that if all of the multiplicities
nσ,1 and nσ,a,b are equal to 1 or ℵ0, there exists some Fraïssé order class of shaped
partial orders K(Σ, o) that is reasonable with respect to K(Σ), and is a Ramsey
class. We introduce elementary skeletons to enumerate classes of shaped ordered
partial orders in a way that works better for Ramsey proofs.

We will start by considering an ordered skeleton, with more labels l1 than a
skeleton (defined in 2.4.12), but with fewer l2 labels.

Definition 2.5.9. An ordered skeleton Σ = (Σ, <,≺, l1, l2) is structure as
follows.

(i) (Σ, <) is a partial order.

(ii) (Σ,≺) is a total order.

(iii) l1 : Σ→ {A1, GA,GC,AC,CA,GAC,G}

(iv) l2 : {<} → {<g, <c}

We consider specific ordered skeletons and the classes of ordered shaped partial
orders they are enumerating in the following subsections.
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Trivial antichain

The simplest class of ordered shaped partial orders is the class containing a sin-
gle structure on a set of size 1. The corresponding homogeneous ordered shaped
partial orders is also a structure on a set of size 1. In the classification of homoge-
neous shaped partial orders, its unordered reduct corresponds to a good skeleton
containing one point labelled AC, as in Definition 2.4.14.

While the label AC is used for all antichains, it is used for for antichains of
at least two chains. The ’antichain of one chain’, i.e., a chain, is labelled CA.

Since we are only considering classes of all finite antichains and all finite
antichains of chains, we introduce a new label, A1, for the class of ordered shaped
partial orders containing a single structure on a set of size 1 instead of considering
it as a special case of a structure labelled AC.

Definition 2.5.10. Let Σ be a skeleton with one point labelled A1, and let
S = {s} be a set with one shape. Then K(A1,S) is the class containing
the s-shaped stucture P with a universe of size 1 with an empty partial
order. The class K(A1,S, o) additionally contains an empty total order on
P.

Link. Lemma 5.2.5

Generic

We first consider a generic homogeneous structure H(G) and the corresponding
Fraïssé class of all shaped partial orders, K(G). We defined the class of partial
orders in 2.1.9. We defined linear extensions in 2.2.12. Finally H(G) is defined in
2.4.6 and K(G) in 2.4.8. We pull the definitions together with the aim to define
a class of ordered shaped partial orders. We also include the set S of shapes in
the definitions, as different sets of shapes define different classes of structures.

Definition 2.5.11. Let Σ be a skeleton with one point labelled G, and let
S be a set of shapes. For any structure P ∈ K(G,S, o), there exist

(i) a structure (P,<, s) ∈ K(G,S) and
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(ii) a chain I,

such that the following hold.

(iii) P = (P,<,≺, s)

(iv) P = {pi : i ∈ I}

(v) If pi < pi′ then i < i′ in I.

(vi) pi ≺ pi′ precisely when i < i′ in I.

Further, given any (P ′, <′, s′) ∈ K(G,S) and a chain I ′ satisfying the
conditions (iv), (v) and (vi), the structure P′ = (P ′, <′,≺′, s′) from
condition (iii) is also a structure in K(G,S, o).

The class K(G,S, o) of ordered shaped partial orders is the class of S-
shaped partial orders together with linear extensions of the partial orders.

Link. Lemma 5.2.1

Remark 2.5.12. At times we omit the set S of shapes and consider the
classes K(G) and K(G, o) of shaped partial orders and ordered shaped
partial orders respectively.

Chains of antichains

We can see that in the case of the class of all shaped partial orders, for any
P ∈ K(G), we can add any map s : P → S to P to get a shaped partial order
P ∈ K(G,S). But the structure of homogeneous shaped chains of antichains
induces the structure on the set of shapes as well, and restricts the shapings to
the ones that respect the structure of the set of shapes. We defined the class of
chains of antichains in 2.1.9. We defined linear extensions in 2.2.12, but we will
define total orders on chains of antichains that also respect the structure of the
set of shapes. Finally H(CA) is defined in 2.4.6 and K(CA) in 2.4.8, and we will
combine all to define a class of ordered shaped chains of antichains. But we first
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introduce a class of ordered glorified antichains. A picture of an ordered glorified
antichain is in Figure 2.6.

Figure 2.6: Glorified antichain P

Definition 2.5.13. Let Σ be a skeleton with one point labelled GA and
consider the following.

(i) A total order B.

(ii) For each b ∈ B a number nb ∈ {1,ℵ0}, and N = {nb : b ∈ B}.

(iii) A set S of shapes, such that S = {sb : b ∈ B}.

An ordered glorified antichain P ∈ K(GA,S, N, o) satisfies the following.

(iv) P = (P,<,≺, s) and (P,<, s) ∈ K(G,S).

(v) For some chain J , the universe of P is

P = {pbj : j ∈ J , s(pbj) = sb}.

(vi) The shapes in S induce a partition {J b : b ∈ B} of J and a partition
{P b : b ∈ B} of P , such that

P b = {pbj : j ∈ J b}.

(vii) If nb = 1 then |P b| ≤ 1.

(viii) pbj||pb
′

j′ for all j 6= j′.

(ix) pbj ≺ pb
′

j′ when j ≺ j′ in J .
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(x) For all pairs pbj, pb
′

j′ ∈ P , if j < j′ then b ≤ b′.

Further, given any (P ′, <′, s′) ∈ K(G,S) and a chain J ′ that define a
structure P′ = (P ′, <′,≺′, s′) satisfying conditions (iv)-(x), the structure
P′ lies in K(GA,S, N, o).

If P b is non-empty, we denote the substructure of P on P b by Pb.
The class K(GA,S, N, o) is a class of ordered shaped glorified antichains.

Remark 2.5.14. By this definition, all the points of the glorified antichain
P in Figure 2.6 are incomparable in the partial order <. The points shown
in the picture are the points of sb1-shaped antichain P b1 , sb-shaped antichain
P b and sb|B|-shaped antichain P b|B| , with the shapes inducing this partition
as in part (vi) of this definition.
A point in P has the label

pbj,

where b tells us that the point is sb-shaped and the label j tells defines the
total order ≺. Namely, in the total order ≺ we have

pb11 ≺ pb12 ≺ pb13 ≺ . . . ≺ pb1j1 ≺ . . . ≺ pbj ≺ pbj+1 ≺ . . . ≺ pbj+jb ≺ . . .

. . . ≺ p
b|B|
j′ ≺ p

b|B|
j′+1 ≺ . . . ≺ p

b|B|
j′+j|B|

.

By part (ix), this arises from J being a chain in which

1 < . . . < j1 < . . . < j < . . . < j + jb < . . . < j′ < j′ + 1 < . . . < j′ + j|B|.

By part (x) we have b1 < . . . b < . . . < b|B| in the chain B. Thus ≺ is convex
on each of the sb-shaped parts Pb of P and we have

Pb1 ≺ . . . ≺ Pb ≺ . . .Pb|B| .

Also, by part (vii) we have j1 ≤ n1, jb < nb and j|B| < n|B|, as n1, nb, n|B| ∈
{1,ℵ0} by part (iii). This means that in general the part Pb is finite and
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has at most one point in the case when nb = 1.

By part (viii) of the definition above, any structure in the classK(GA,S, N, o)

is an antichain. We swiftly move on to chains of antichains. See Figure 2.7 for a
sketch of a chain of antichains.

Figure 2.7: Chain of antichains P

Definition 2.5.15. We define a class K(CA,S, N, o) of ordered chains of
antichains using the following.

(i) A total order A and, for each a ∈ A, a total order Ba.

(ii) A set S of shapes, such that

S = {sa,b : (a, b) ∈ Ao B}.

Let also
Sa = {sa,b : b ∈ Ba}.

(iii) For each (a, b) ∈ AoB a number na,b ∈ {1,ℵ0}, Na = {na,b : b ∈ Ba},
and N = {na,b : (a, b) ∈ Ao B}.
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(iv) For each a ∈ A, a class K(GA,Sa, Na, o) of glorified chains.

(v) A class K(C,A) of A-shaped chains.

For each structure P ∈ K(CA,S, N, o) there is an A-shaped chain

I = (I, <, sI) ∈ K(C,A),

and for each i ∈ I, with a = sI(i), a glorified antichain

Pi ∈ K(GA,Sa, Na, o),

such that the following hold

(vi) P = (P,<,≺, s).

(vii) Pi = {pa,bi,j : j ∈ Ji, s(pa,bi,j ) = sa,b}.

(viii) P = {pa,bi,j : (i, j) ∈ I o J , s(pa,bi,j ) = sa,b}.

(ix) pa,bi,j < pa
′,b′

i′,j′ if i < i′.

(x) pa,bi,j ≺ pa
′,b′

i′,j′ if

(a) if i < i′, or

(b) i = i′ and j < j′.

Further, given any I ′ ∈ K(C,A) and for each i ∈ I ′ a structure
P′i ∈ K(GA,Sa, Na, o), where a = sI

′
(i), the structure P′ = (P ′, <′,≺′, s′)

satisfying conditions (vii)-(x) lies in K(CA,S, N, o).

Link. Lemma 5.2.3

Remarks 2.5.16. (i) Take any P ∈ K(CA,S, N, o). Essentially, the
partial and total order on P are reflected in the total orders I and,
for each i ∈ I, Ji, and thus in indices i and j of the points pa,bi,j of P.
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The shaping of P is reflected in the indices a and b of the points pa,bi,j
of P. Thus for any pa,bi,j , p

a′,b′

i,j′ ∈ P we in fact have a = a′.

(ii) Take any P ∈ K(CA,S, N, o) and pa,bi,j , p
a′,b′

i′,j′ ∈ P. Then the condi-
tions (ix) and (x) show that the total order ≺ extends the partial
order <.

(iii) In Figure 2.7 we can see that to construct a chain of antichains, we
start with anA-shaped chain I and replace each of its a-shaped points
i with an Sa-shaped glorified antichain Pi. This induces the partial
order < on the glorified antichains, so we have

P1 < P2 < . . . < Pi < . . . < P|I|.

The total order ≺ is convex on the glorified antichains Pi and extends
the total orders on them, as well as extending <, and inducing the
total order

P1 ≺ P2 ≺ . . . ≺ Pi ≺ . . . ≺ P|I|.

Finally, we consider a particular ordered shaped chain of antichains, a chain.

Definition 2.5.17. Let Σ be a skeleton with one point labelled CA, of S-
shaped chains of antichains with |Ba| = 1 and na,b1 = 1 for all a ∈ A. Then
K(Σ) is the set of all S-shaped chains, and K(Σ, o) the class of all ordered
S-shaped chains. We denote the class K(Σ) in this case by K(C,S). The
structures in K(C,S, o) are chains with the partial order < and the total
order ≺ agreeing on any structure in K(C,S), as ≺ extends the order <,
as in any class K(CA,S, N, o).

Glorified antichains of chains

This section will be longer than the previous two on generic partial orders and
chains of antichains. Instead of establishing notation for the class of shaped
partial orders corresponding to a homogeneous shaped antichain of chains we will
introduce a different building block of a shaped partial order, glorified antichains
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of chains, built of glorified chains. A picture of an ordered glorified chain is in
Figure 2.8.

Figure 2.8: Glorified chain P

Definition 2.5.18. Let Σ be a skeleton with one point labelled GC and
consider the following.

(i) A total order A, with a partition {A1,A2}, where A2 is possibly an
empty set, and for all a1 ∈ A1 and a2 ∈ A2 we have a1 < a2.

(ii) For each a ∈ A a number na ∈ {1,ℵ0}, and N = {na : a ∈ A}.

(iii) A set S of shapes with a partition {Sa : a ∈ A}, where |Sa| = 1

when na = 1 and for each a ∈ A there exists a total order Ba, such
that Sa = {sa,b : b ∈ Ba}.

An ordered glorified chain P ∈ K(GC,S, N, o) satisfies the following.
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(iv) P = (P,<,≺, s) and (P,<, s) ∈ K(G,S).

(v) For some chain J , the universe of P is

P = {ph,a,bj : j ∈ J , s(ph,a,bj ) = sa,b, a ∈ Ah}.

(vi) The partition of shapes from part (iii) induces a partition
{J a : a ∈ A} of J and {P a : a ∈ A} of P , so that

P a = {ph,a,bj : j ∈ J a}.

(vii) If na = 1 then |P a
i | = 1.

(viii) ph,a,bj < ph
′,a′,b′

j′ when h = h′ and j < j′.

(ix) ph,a,bj ≺ ph
′,a′,b′

j′ when j < j′.

(x) For all pairs ph,a,bj , ph
′,a′,b′

j′ ∈ P , if j < j′ then a ≤ a′.

Further, given any (P ′, <′, s′) ∈ K(G,S) and a chain J ′ that define a
structure P′ = (P ′, <′,≺′, s′) satisfying conditions (iv)-(x), the structure
P′ lies in K(GA,S, N, o).

If P a is non-empty, we denote by Pa the substructure of P on P a.
For h ∈ [2], let P h =

⋃
a∈Ah P

a. If P h is non-empty, we denote by Ph the
substructure of P on P h.

Remarks 2.5.19. (i) Essentially, the part (x) says the total order on P

induces the total order on the set of substructures Pa, with

Pa < Pa′ ⇒ a < a′.

The part (viii) then says that P1 and P2 are both chains for <,
incomparable with each other. The part (ix) says that the total order
≺ extends the partial order < and places P1 below P2.
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(ii) In the notation for a point in P,

ph,a,bj ,

the label h tells us whether the point lies in P1 or P2. The label j
tells us where in ≺ the point lies by (ix). Finally, by (v), the labels a
and b denote the shape sa,b of the point. For each a the substructure
Pa of P is Sa-shaped.

We can see that the class K(GC,S, N, o) is almost a class of chains. Similarly,
K(GAC,S, N, o) will resemble a class of antichains of chains. See Figure 2.9 for
a sketch of a glorified antichain of chains.

Figure 2.9: Glorified antichain of chains P
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Definition 2.5.20. We define a class K(GAC,S, N, o) of ordered glorified
antichains of chains using the following.

(i) A total order A, with a partition {A1,A2}, where A2 is possibly an
empty set, and for all a1 ∈ A1 and a2 ∈ A2 we have a1 < a2.

(ii) For each a ∈ A a number na ∈ {1,ℵ0}, and N = {na : a ∈ A}.

(iii) A set S of shapes with a partition {Sa : a ∈ A}, where |Sa| = 1

when na = 1 and for each a ∈ A there exists a total order Ba, such
that Sa = {sa,b : b ∈ Ba}.

(iv) A class K(GC,S, N, o) of glorified chains.

For each structure P ∈ K(GAC,S, N, o) there is a chain I, and for each
i ∈ I, a glorified chain

Pi ∈ K(GC,S, N, o),

such that the following hold.

(v) P = (P,<,≺, s).

(vi) Pi = {ph,a,bi,j : j ∈ Ji}.

(vii) P = {ph,a,bi,j : (i, j) ∈ I o J , s(ph,a,bi,j ) = sa,b, a ∈ Ah}.

(viii) ph,a,bi,j < ph
′,a′,b′

i′,j′ if

(a) if h = h′, i = i′ and j < j′, or

(b) h = 1, h′ = 2 and i 6= i′.

(ix) ph,a,bi,j ≺ ph
′,a′,b′

i′,j′ if

(a) if i < i′, or

(b) i = i′ and j < j′.

Further, given any chain I ′ and for each i ∈ I ′ a structure
P′i ∈ K(GC,S, N, o), the structure P′ = (P ′, <′,≺′, s′) satisfying condi-
tions (vii)-(x) lies in K(GAC,S, N, o).
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Link. Subsection of 5.2 (Matching skeletons), Definition 5.2.9, Definition
5.2.11, Lemma 5.2.12

Remark 2.5.21. We defined a glorified antichain of chains by taking a
total order I and for each i ∈ I a glorified chain Pi, consisting of chains
P1
i and P2

i for <.
The label ph,a,bi,j introduces the label i in addition to labels of points in a
glorified chain, denoting that the point lies in the glorified chain Pi.
Take any i, i′ ∈ I and h ∈ {1, 2}. The chains Ph

i and Ph
i′ are incomparable

in <. But for any i ∈ I, if P 1
i and P 2

i are non-empty, P1
i is incomparable

with P2
i , but is below all the other chains in P2, which creates a complement

of a perfect matchin between chains in P1 and P2.
The total order ≺ extends the total order on the glorified chains, but does
not extend the partial order <. Instead it is convex on the glorified chains,
setting

P1 ≺ P2 ≺ . . . ≺ Pi ≺ . . . ≺ P|I|.

Finally, we define particular cases of K(GAC,S, N, o).

Definition 2.5.22. When A is of size 1, A = {a}, we consider two cases.

(i) If na = ℵ0, the classes K(AC,S) and K(AC,S, o), of shaped an-
tichains of chains and ordered shaped antichains of chains.

(ii) If na = 1, then |S| = 1. The classes K(A, {sa}) and K(A, {sa}, o)
are the classes of shaped antichains and ordered shaped antichains
respectively.

Link. Lemma 5.2.5

Note. Let K be a class of unshaped reducts of structures in K(AC,S, o).
Then K is precisely the class K(ACℵ0 , ce), as defined in 2.2.11.
The class K(AC,S, o) is precisely the class of shaped antichains of chains
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with convex extensions, defined in 2.2.13 for the class of antichains of chains,
and K(A, {s}, o) is a class of antichains with arbitrary linear orders, as
defined for the class of antichains

Simple skeleton

Simple skeletons are needed when proving the Ramsey property of classes of
ordered shaped partial orders.

Definition 2.5.23. Consider an ordered skeleton Σ = (Σ, <,≺, l1, l2). The
Σ is a simple skeleton, labelled Σsp, if

(i) l1(Σ) ⊂ {G,GAC,A},

(ii) l2(<) ⊂ {<g, <c},

(iii) (Σ,≺) extends the partial order (Σ, <),

(iv) Σ satisfies the c-condition, and

(v) for each distinct σ, σ′ ∈ Σ there exist σi for i ∈ [n] such that

σ = σ0 −g σ1 −g . . .−g σn −g σn+1 = σ′.

Suppose that Σ is a simple skeleton.

a) If l1(Σ) ⊂ {G,GAC}, then Σ is a glorified skeleton.

b) If l1(Σ) ⊂ {G,A}, then Σ is a antichained skeleton.

c) If l1(Σ) ⊂ {G}, then Σ is a generic skeleton.

In Definition 2.5.22 we introduced labels AC and A and classes K(AC,S, o)

and K(A, {s}, o) as specific cases of the class K(GAC,S, N, o), namely when

A = {a}, S = Sa,

and either na = ℵ0 or na = 1. So different simple skeletons will define the same
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class. Indeed, a skeleton Σ with a point σ labelled A and a set {s} of shapes
defines the class K(A, {s}, o). A nearly identical skeleton Σ′, but with σ labelled
GAC, S = {s} and N = {1} defines the class K(GAC,S, N, o). While they
appear different, both classes define a class of s-shaped antichains.

Thus we only need to consider glorified skeletons when focusing on the clas-
sification, but use simple skeletons and antichained skeletons to emphasise that
some of their points denote classes of antichains rather than any other glorified
antichains of chains.

Definition 2.5.24. Suppose that Σ = (Σ, <,≺, l1, l2) is a glorified skeleton.
The skeleton

Σ′ = (Σ, <,≺, l′1, l2)

is the antichained skeleton of Σ if

l1(σ) = GAC ⇐⇒ l′1(σ) = A and l1(σ) = G ⇐⇒ l′1(σ) = G.

Conversely, the skeleton Σ is the glorified skeleton of Σ′.

We first define a class of structures corresponding to an antichained skeleton.
See Figure 2.10 for a sketch of a structure in the class defined by an antichained
skeletons.

Definition 2.5.25. Let Σ be an antichained skeleton or a generic skeleton,
and for each σ ∈ Σ,

(i) if l1(σ) = A, let Sσ = {sσ} be a set of shapes, and

(ii) if l1(σ) = G, let Sσ be a set of shapes.

Let S =
⋃
σ∈Σ Sσ. A structure P ∈ K(Σ,S, o) is an ordered S-shaped

partial order, such that

(i) there is a partition {Pσ : σ ∈ Σ} of P ,

(ii) if Pσ is non-empty, the substructure Pσ of P on the subset Pσ is
Sσ-shaped and Pσ ∈ K(σ,Sσ, o)
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Figure 2.10: A structure P in a class defined by an antichained skeleton Σ

(iii) if Pσ is non-empty and l1(σ) = A, then Pσ is an antichain,

(iv) if σ <c σ
′, then for each p ∈ Pσ and p′ ∈ Pσ′ , we have p < p′,

(v) if σ ≺ σ′, then for each p ∈ Pσ and p′ ∈ Pσ′ , we have p ≺ p′.

The definition of a class of structures corresponding to a glorified skeleton
is more complicated. Recall that K(GAC,S, N, o) is defined in 2.5.20. Figure
2.11 explains visually how to build a GAC component of a structure from an A
component.

Definition 2.5.26. Let Σ be a glorified skeleton. Consider any σ ∈ Σ.

(i) If l1(σ) = G, let Sσ be a set of shapes.

(ii) If l1(σ) = GAC, consider the following.
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(a) A total order Aσ, with a partition {Aσ,1,Aσ,2}, where Aσ,2 is
possibly an empty set, and for all a1 ∈ Aσ,1 and a2 ∈ Aσ,2 we
have a1 < a2.

(b) For each a ∈ Aσ,1 an nσ,a ∈ {1,ℵ0} and Nσ = {nσ,a : a ∈ Aσ}.

(c) A set S of shapes with a partition {Sσ,a : a ∈ Aσ}, where
|Sa| = 1 when na = 1 and for each a ∈ Aσ there exists a total
order Bσ,a, such that Sσ,a = {sa,bσ : b ∈ Bσ,a}.

(d) If there exists a σ′ ∈ Σ, such that σ′ <g σ, then Aσ,2 is empty.

Let S =
⋃
σ∈Σ Sσ.

We define the class K(Σ,S) of ordered shaped partial orders with a glorified
skeleton as follows.

Consider an antichained skeleton Σ′ of Σ.

(iii) If l1(σ) = GAC, let S′σ = {sσ}.

Let S =
(⋃

σ∈Σ,l′1(σ)=GSσ

)
∪
(⋃

σ∈Σ,l′1(σ)=AS
′
σ

)
.

A structure P ∈ K(Σ,S) is an S-shaped partial order, such that the
following hold.

(iv) There is a partition {Pσ : σ ∈ Σ} of P .

(v) If Pσ is non-empty, the substructure Pσ of P on the subset Pσ is
Sσ-shaped.

(vi) If Pσ is non-empty and l1(σ) = GAC, then Pσ is a glorified antichain
of chains, Pσ ∈ K(Σσ,Sσ, Nσ, o), with universe

Pσ = {ph,a,bσ,i,j : (i, j) ∈ Iσ o Jσ, s(ph,a,bσ,i,j ) = sa,bσ ∈ Aσ,h}.

(vii) There is a structure P′ ∈ K(Σ′,S′) with partition {P ′σ : σ ∈ Σ} of P ′

and the following.

(a) If l′1(σ) = G and Pσ is non-empty, then P′σ = Pσ.
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(b) If l′1(σ) = A and Pσ is non-empty, then P′σ in an antichain with

Pσ = {pσ,i : i ∈ Iσ}.

Let f : P → P ′ be a map, such that for p ∈ Pσ

(viii) if l1(σ) = G, then f(p) = p, and

(ix) if l1(σ) = GAC, then p = ph,a,bσ,i,j and f(p) = pσ,i.

Suppose that σ 6= ς, p ∈ Pσ, q ∈ Pς and that

p < q.

Then one of the following is true.

(x) σ <c ς

(xi) σ <g ς, f(p) < f(q) in P′ and either l1(σ) = G or l1(σ) = GAC and
p = p1,a,b

σ,i,j , or

(xii) ς <g σ, f(p)||f(q) in P′, l1(ς) = GAC and q = q2,a,b
σ,i,j .

Finally, the structure P still satisfies this condition for total order ≺.

(xiii) If σ ≺ σ′, then for each p ∈ Pσ and p′ ∈ Pσ′ , we have p ≺ p′.

Link. Lemma 4.3.6, Theorem 4.3.7, Lemma 5.2.18

Remark 2.5.27. We saw an example of a structure P in a class of ordered
shaped partial orders defined by an antichained skeleton in Figure 2.10. In
Remark 2.5.21 we also discussed that we form a glorified antichain of chains
from a total order I and for each i ∈ I a glorified chain Pi. Take a glorified
skeleton Σ and its antichained skeleton Σ′. We will build a P ∈ K(Σ,S)

from a P′ ∈ K(Σ′,S′) by similarly building a glorified antichain of chains
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Pσ from each of the antichains P′σ for any σ ∈ Σ with l1(σ) = GAC.
So given a P′, to build P keep all the components with label G and in
each component labelled GAC replace each point in the antichain with a
glorified chain to form a glorified antichain of chains. We need to specify
the partial order between different components of P. Namely, for any σ ∈ Σ

with l1(σ) = GAC and any σ′ ∈ Σ, we need to define < between the points
in Pσ and Pσ′ , whenever the two sets are not empty.

• When σ <c σ
′ we simply place the component Pσ completely below

the component Pσ′ in the partial order < or vice versa when σ′ <c σ.

• When σ′ <g σ, by part (ii)(d) of the definition, the Aσ,2 defining
the glorified antichain of chains Pσ must then be empty, so Pσ only
consists of incomparable chains in Pσ,1. Take any p ∈ Pσ, q ∈ Pσ′ .
Then there are only two options:

f(q) < f(p) or f(q)||f(p).

When f(q) < f(p), we place the entire chain P1
σ,i above q, and oth-

erwise the entire chain P1
σ,i is incomparable with q.

• The final case, σ <g σ
′, behaves similarly, but with an additional

twist. When f(q) < f(p), we place the entire chain P1
σ,i below q, and

the chain P2
σ,i is incomparable with q. The opposite happens when

f(q)||f(p), we place the entire chain P2
σ,i above q, and the chain P1

σ,i

is incomparable with q.

With the complement of a perfect matching between the chains of P in P1

and those in P2 where necessary, the obtained structure is indeed a partial
order.
The total order ≺, however, is much easier to describe. It places the entire
Pσ either completely above or completely below the other components of
P and thus extends the total order on Σ but not the partial order <.
Representing an example of what might happen in P is Figure 2.11. In
the picture the chains of P1 and P2 are represented by turqouise rectan-
gles. The reason that not all red edges from the complement of the perfect
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matching appear in the final combined picture is that there is already a <
relationship between some pairs of chains arising from the blue edges.

Elementary skeleton

Finally, consider an elementary skeleton.

Definition 2.5.28. An elementary skeleton Σ = (Σ, <,≺, l1, l2) is a struc-
ture defined as follows.

(i) Σ = (Σ, <,≺, l1, l2) is an ordered skeleton,

(ii) l1(Σ) ⊂ {A1, CA,GAC,G},

(iii) for any distinct σ, σ′ ∈ Σ with l1(σ) ∈ {A1, CA} we have σ||σ′, and

(iv) any two distinct σ, σ′ ∈ Σ with σ <c σ
′ satisfy the c-condition, defined

as follows.

(a) If there is τ ∈ Σ, such that τ < σ, then τ <c σ
′.

(b) If there is τ ∈ Σ, such that σ′ < τ , then σ <c τ .

Remark 2.5.29. So the subset of Σ of the points labelled A1 or CA is an
antichain, incomparable with the rest of the points in the skeleton.

While the definition of an elementary skeleton is short compared to the defini-
tion of the good skeleton (2.4.13), it will be accompanied by a longer counterpart
to Definition 2.4.14. We aimed to prove the following.

Conjecture 2.5.30. Suppose that K is a class of ordered shaped partial
orders, that is Ramsey and has ordering property. Then K is simply bi-
definable with K(Σ, o), where Σ is an elementary skeleton.

This aim was not achieved, and we proved a weaker result.
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Theorem 2.5.31. Suppose that Σ is a good skeleton. Suppose that S is a
set of shapes, that there is a partition {Sσ : σ ∈ Σ} of S, and

• for each σ ∈ Σ with l1(σ) = AC, numbers nσ,1 and nσ,2, with

– nσ,1 = ℵ0 and nσ,2 ∈ {1,ℵ0}, or nσ,1 = nσ,2 = 1, and

– |Sσ| = 1 if nσ,2 = 1;

• for each σ ∈ Σ with l1(σ) = CA,

– a partition {Sσ,a : a ∈ Aσ} of Sσ, and

– for each sa,bσ ∈ Sσ,a, a number nσ,a,b ∈ {1,ℵ0}.

Let K(Σ) be the class of shaped partial orders as defined in 2.4.14. Then
there exists an elementary skeleton Σ′ and a class K(Σ′, o) of ordered shaped
partial orders, such that

(i) the classes K(Σ) and K(Σ′) are simply bi-definable, and

(ii) the class K(Σ′, o) is a reasonable class with respect to K(Σ′) and is a
Ramsey class.

Further, when the elementary skeleton Σ′ does not contain edges labelled
<g, the class K(Σ′, o) has the ordering property.

Note. The author was planning on proving a stronger result, by additionally
proving that K(Σ′, o) has the ordering property. The author discovered a
flaw in the proof and had to amend the statement of the main theorem.
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2.5 Ramsey classes of ordered shaped partial orders

Figure 2.11: Building a structure in a class defined by a glorified skeleton from a
structure in a class defined by an antichained skeleton
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Chapter 3

Key technical lemmas

In this chapter we introduce technical lemmas that will be used in proving that
classes of ordered shaped partial orders are Ramsey. This chapter is heavy on
notation, so the results in Chapter 4 should be viewed as examples of structures
satisfying the definitions in this chapter. Thus the definitions are often followed
by Links, signposting the reader to relevant lemmas in Chapter 4. The reader is
advised to read the two chapters in parallel.

3.1 Bi-definability

Recall again the Classical Ramsey Theorem (2.2.2) and related Example 2.2.7.
While the Classical Ramsey Theorem is about finite sets, it is clear that it also
shows that the class of all finite antichains is Ramsey as well. In both cases, any
two structures or substructures of the same size are isomorphic. The same is true
in the case of the class of chains, the classes of ordered chains and antichains, and
also in the classes of ordered shaped antichains, K(A, o). In these cases it is easy
to see that all classes are Ramsey for essentially the same reason - the size of a
structure determines its isomorphism class, so it’s not really important what the
structures in the class look like. Consider, for example, the following proof.

Example 3.1.1. Given ordered shaped antichains Q = (Q,<,≺, s) and
R = (R,<,≺, s) of sizes q and r respectively, find p such that p → (r)qk
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3.1 Bi-definability

using Classical Ramsey Theorem.
Let P = (P,<,≺, s) be an ordered shaped antichain of size p. Then for any
subset Q′ of P of size q, the substructure of P on the set Q′ is isomorphic
to Q, and similarly for any subset R′ of P of size r.
The fact that P→ (R)Qk follows trivially.
This shows that the class K(A, o) , defined in 2.5.22, is a Ramsey class.

The proof in Example 3.1.1 is essentially identical to the proof in Example
2.2.7. That happens because all the mentioned classes of structures are simply bi-
definable. We mentioned the simple bi-definability for the specific case of classes
of structures with different total orderings in Definition 2.3.9 already. We revisit
the definition here, for classes of relational structures. We also show that any
two simply bi-definable classes are either both Ramsey, or neither is. That will
be one of the techniques of showing that a class of ordered shaped partial orders
is Ramsey. This result is mentioned in paper Kechris et al. (2005) for the specific
case of simply bi-definable classes of two extensions of Fraïssé classes by a total
order relation.

We start with a formal definition.

Definition 3.1.2. Let K0 be a class of structures in a relational language
L0. Let L1 = L0∪{R1,j}j∈J1 and L2 = L0∪{R2,j}j∈J2 be languages of rela-
tions of arities n(1, j) and n(2, j) respectively, and let K1 be a reasonable
class of structures in language L1 and K2 in L2. The classes K1 and K2

are simply bi-definable over K0 if the following are true.

(i) There are quantifier-free formulas {ϕ1,j}j∈J2 with n(1, j) variables
in language L1, and given any A0 ∈ K0 and A1 ∈ K1 with
A1 = 〈A0, {RA1

1,j }j∈J1〉, there exists a structure A2 ∈ K2 with
A2 = 〈A0, {RA2

2,j }j∈J2〉, with RA2
2,j on A0 defined by ϕ1,j, i.e.,

RA2
2,j (a1, a2, . . . , an(2,j)) ⇐⇒ A1 |= ϕ1,j[a1, a2, . . . , an(2,j)].

We define Φ1 by setting Φ1(A1) = 〈A0, {RA2
2,j }j∈J2〉.

(ii) Similarly, there are simple formulas {ϕ2,j}j∈J1 in L2, defining for each
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3.1 Bi-definability

A0 ∈ K0 and A2 ∈ K2 with A2 = 〈A0, {RA2
2,j }j∈J2〉, a structure

Φ2(A2) = 〈A0, {RA1
1,j }j∈J1〉.

(iii) For each A0 ∈ K0, the map Φ1 is a bijection between the expansions
of A0 in K1 and expansions of A0 in K2, with inverse Φ2.

Remarks 3.1.3. (i) Technically, we define a Φ1 and a Φ2 for each
A0 ∈ K0, so they could be referred to as ΦA0

1 and a ΦA0
2 . But since

K1 and K2 are both reasonable expansions of the class K0, if K1 and
K2 were sets, we could patch together different ΦA0

1 ’s and ΦA0
2 ’s to

get a bijection Φ1 between K1 and K2 with an inverse Φ2.

So, informally, we will say that K1 and K2 are simply bi-definable if
there exists a unifom bijection Φ1 : K1 → K2, with inverse Φ2.

We sometimes omit reference to K0.

(ii) When proving that two classes of structures are simply bi-definable,
we will omit formally defining the languages and writing explicit sim-
ple formulas ϕ. Instead, we will explain how the relations in class K2

can be defined by the relations in K1 and vice versa.

The link between simple bi-definability and Ramsey classes is the fact that
Φ1 and Φ2 ’preserve’ substructures as well.

Lemma 3.1.4. Suppose that K1 and K2 are simply bi-definable over K0.
Then for any structures A1,B1 ∈ K1, A2,B2 ∈ K2 with Φ1(A1) = A2 and
Φ1(B1) = B2, there is a bijection

fA1,B1 :

(
B1

A1

)
→
(
B2

A2

)
,

with inverse fA2,B2. Moreover, fA1,B1 sends a substructure of B1 with
universe A′ to a substructure of B2 with universe A′.
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3.1 Bi-definability

Proof. Take any A′1,∈
(
B1

A1

)
. Then we must have

A′1 = 〈A′0, {R
A′1
1,j }j∈J1〉, A′0 = 〈A′0, {R

A′0
0,j }j∈J0〉

with
R

A′1
1,j = RB1

1,j ∩ A′
n(1,j)
0 ,A′0 ∈

(
B0

A0

)
.

Besides, there is a map θ : A0 → A′0, such that

RA1
1,j (a1, a2, . . . , an(1,j)) ⇐⇒ R

A′1
1,j (θ(a1), θ(a2), . . . , θ(an(1,j)))

for all relations R1,j, with j ∈ J1.
Consider the structure A′2, with

A′2 = 〈A′0, {R
A′2
2,j }j∈J2〉

and
R

A′2
2,j = RB2

2,j ∩ A′
n(2,j)
0 .

We will show that

RA2
2,j (a1, a2, . . . , an(2,j)) ⇐⇒ R

A′2
2,j (θ(a1), θ(a2), . . . , θ(an(2,j)))

for all relations R2,j, with j ∈ J2.
Take any (a′1, a

′
2, . . . a

′
n(2,j)) ∈ A′

n(2,j)
0 . Then we have,

R
A′2
2,j(a

′
1, a
′
2, . . . a

′
n(2,j)) ⇐⇒ RB2

2,j(a
′
1, a
′
2, . . . a

′
n(2,j))

by definition of a substructure.
Now recall that RB2

2,j is defined as

RB2
2,j (b1, b2, . . . , bn(2,j)) ⇐⇒ B1 |= ϕ1,j[b1, b2, . . . , bn(2,j)].

So we have

RB2
2,j (a

′
1, a
′
2, . . . a

′
n(2,j)) ⇐⇒ B1 |= ϕ1,j[a

′
1, a
′
2, . . . a

′
n(2,j)].
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3.1 Bi-definability

But since (a′1, a
′
2, . . . a

′
n(2,j)) ∈ A′

n(2,j)
0 and A′1 is a substructure of B1, we must

also have

B1 |= ϕ1,j[a
′
1, a
′
2, . . . a

′
n(2,j)] ⇐⇒ A′1 |= ϕ1,j[a

′
1, a
′
2, . . . a

′
n(2,j)].

The map θ defines an isomorphism between A1 and A′1, so we have

A′1 |= ϕ1,j[a
′
1, a
′
2, . . . a

′
n(2,j)] ⇐⇒ A1 |= ϕ1,j[θ

−1(a′1), θ−1(a′2), . . . θ−1(a′n(2,j))].

But, again, by definition of RA2
2,j , we have

A1 |= ϕ1,j[θ
−1(a′1), θ−1(a′2), . . . θ−1(a′n(2,j))]

⇐⇒ RA2
2,j (θ−1(a′1), θ−1(a′2), . . . θ−1(a′n(2,j))).

Which means that we’ve just shown

R
A′2
2,j(a

′
1, a
′
2, . . . a

′
n(2,j)) ⇐⇒ RA2

2,j (θ−1(a′1), θ−1(a′2), . . . θ−1(a′n(2,j))),

which finishes the proof.

Corollary 3.1.5. Suppose that K1 and K2 are simply bi-definable over
K0. Then for any structures A1,B1,C1 ∈ K1, A2,B2,C2 ∈ K2 with
Φ1(A1) = A2, Φ1(B1) = B2 and Φ1(C1) = C2, if

B′1 ∈
(
C1

B1

)
, with fB1,C1(B′1) = B′2,

then the maps fA1,B′1 and fA1,C1 agree on the subset
(
B′1
A1

)
of
(
C1

A1

)
and we

write

fA1,B′1 = fA1,C1|
(B′1
A1

)
.

Proof. Take any A1 ∈
(
B′1
A1

)
, and let A′2 = fA1,B′1(A′1).

Suppose that the universe of C is C, of B′1 is B ⊂ C and of A′1 is A. Then
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3.1 Bi-definability

the universe of B′2 is B ⊂ C as well, by Lemma 3.1.4. Similarly, the universe
of A′2 = fA1,B′1(A′1) is precisely A ⊂ B ⊂ C. So fA1,B′1 and fA1,C1 both send
A′1 precisely to the substructure of B′2 E C2 with the universe A, i.e.,

fA1,B′1(A′1) = fA1,C1(A′1).

Now we are ready to show that simply bi-definable classes are either both
Ramsey, or neither is.

Lemma 3.1.6 (Simply Bi-definable Ramsey Lemma). Suppose that K1 and
K2 are simply bi-definable classes and that K1 is a Ramsey class. Then K2

is a Ramsey class as well.

Proof. Take any A,B ∈ K2. Let A1 = Φ1(A) and B1 = Φ1(B). Then there
exists C1 ∈ K1 such that

C1 → (B1)A1
k .

Let C = Φ2(C1). We will show that

C→ (B)Ak .

Let
c :

(
C

A

)
→ [k]

be any colouring.
Then, using fA1,C1 from Lemma 3.1.4, there is a colouring

c ◦ fA1,C1 :

(
C1

A1

)
→ [k].

Since C1 → (B1)A1
k , there exists B′1 ∈

(
C1

B1

)
, such that

(
B′1
A1

)
is monochromatic.

Now consider B′ = fB1,C1(B′1). By Lemma 3.1.5, we have

fA1,C1(

(
B′1
A1

)
) =

(
B′

A

)
.
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3.2 Structural Product Ramsey Lemma

So for any A′ ∈
(
B′

A

)
, we have A′ = fA1,C1(A′1) for some A′1 ∈

(
B′1
A1

)
and

c(A′) = c
(
fA1,C1(A′1)

)
= c ◦ fA1,C1(A′1),

so
(
B′

A

)
is monochromatic.

3.2 Structural Product Ramsey Lemma

Aside from the Classical Ramsey theorem, a very useful result is the Product
Ramsey Theorem.

Theorem 3.2.1 (Product Ramsey Theorem). Let B = B1 × . . . × Bt be
a product of non-empty sets of sizes |Bi| = bi for 1 ≤ i ≤ t. Let also
A = A1 × . . .×At be a product of sets of sizes |Ai| = ai ≤ bi for 1 ≤ i ≤ t,
and let k be a non-negative integer. Then there is a number N such that
for any set C = C1 × . . .× Ct, where |Ci| ≥ N for 1 ≤ i ≤ t, we have

C → (B)Ak .

Again, in terms of sizes, we can write

N → (b1, . . . , bt)
(a1,...,at)
k .

The proof of this theorem is commonly known, and was also an inspiration
for the proof of Theorem 3.2.6.

The proof of the Product Ramsey Theorem can be applied to a result about
the class of chains of antichains, although proving that the class is Ramsey re-
quires an argument that inspired the Two Pass Lemma (see 3.6.15).

Example 3.2.2. Take any two structures Q,R ∈ K(CAℵ0), each consisting
of |I| maximal antichains, an antichain Qi of size qi and an antichain Ri of
size ri for each i ∈ I. Then

(
R
Q

)
is non-empty precisely when each antichain

Ri is at least as long the antichain Qi, 1 ≤ qi ≤ ri.
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3.2 Structural Product Ramsey Lemma

By Product Ramsey Theorem, there is a number p, such that

p→ (r1, . . . , rt)
(q1,...,qt)
k .

Let P be a structure with maximal antichains Pi of size p for each i ∈ I.
Now, importantly, given a subset Q′i of Pi of size qi for each i ∈ I, the
substructure of P on the set

⋃
i∈I Q

′
i is isomorphic to Q, and similarly for

subsets R′i of Pi of size ri. Thus by the Product Ramsey Theorem, we have
P → (R)Qk .

The underlying reasons making the Product Ramsey Theorem work, that will
allow us to state a similar result for a much wider selection of classes of structures,
are the following.

(i) There is a set [t] and each structure considered consists of substructures Ai

for each i ∈ [t].

(ii) If the set
(
B
A

)
is non-empty, then for any A′ ∈

(
B
A

)
, the substructure A′i of

A′ is a substructure of the substructure Bi of B for each i ∈ [t].

(iii) Picking a set of substructures A′i E Bi for each i ∈ [t] yields precisely one
substructure A′ of B.

We will define a product of classes of structures and use it on the way to
proving a Structural Product Ramsey Lemma, analogous to the Product Ramsey
Theorem, but extending it formally to classes of structures.

Definition 3.2.3. Let {Li}i∈[t] be disjoint relational languages. For each
i ∈ [t] let Li = {Ri,j}j∈Ji , and let Ki be a class of structures in language
Li, closed under substructures. A product K of classes Ki, K =

∏
i∈[t] Ki

in language L =
⋃
i∈[t] Li is defined as follows.

(i) Given, for each i ∈ [t], a structure Ai ∈ Ki, there is a structure∏
i∈[t] Ai ∈

∏
i∈[t] Ki such that the following hold.

(a) The universe of
∏

i∈[t] Ai is [t] o A.

(b) For any i ∈ I and j ∈ Ji, the relation Ri,j is defined for
∏

i∈[t] Ai
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3.2 Structural Product Ramsey Lemma

as follows:

RA
i,j((i1, a1), (i2, a2), . . . , (in(i,j), an(i,j))) ⇐⇒

i1 = i2 = . . . = in(i,j) = i and RAi
i,j (a1, a2, . . . , an(i,j))

(ii) The product
∏

i∈[t] Ki consists precisely of the structures in (i).

Remarks 3.2.4. (i) Take any B ∈ K. For any set of non-empty sub-
sets {Ai}i∈[t] with Ai ⊂ Bi, the subset [t] o Ai of [t] o Bi, with the
induced relations in L defines a substructure A of B. Further, any
substructure A′ of B in K is defined precisely by a set of non-empty
subsets {A′i}i∈[t] with A′i ⊂ Bi.

(ii) Structures A =
∏

i∈[t] Ai and B =
∏

i∈[t] Bi are isomorphic precisely
when, for all i ∈ [t], Ai is isomorphic to Bi. This follows straightfor-
ward from part (i)(b) of the definition above and the definition of an
isomorphism.

(iii) Essentially, for any i ∈ I and j ∈ Ji, we have

RAi
i,j ⊂ (Ai)

n(i,j)

and by part (i)(b) of the definition above we have

RA
i,j ⊂ ({i} × Ai)n(i,j) and

(a1, a2, . . . , an(i,j)) ∈ RAi
i,j ⇐⇒ ((i, a1), (i, a2), . . . , (i, an(i,j))) ∈ RA

i,j.

Lemma 3.2.5. Suppose that K is a product of classes Ki for i ∈ [t]. Then
for any A,B ∈ K there is a bijection

fA,B :

(
B

A

)
→
∏
i∈[t]

(
Bi

Ai

)
.
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3.2 Structural Product Ramsey Lemma

Proof. Follows from Remarks 3.2.4.

Lemma 3.2.6. Suppose that K is a product of classes, K =
∏

i∈[t] Ki.
Suppose that for each i ∈ [t], Ki is a Ramsey class. Then K is a Ramsey
class.

Proof. Take any A,B ∈ K. For i ∈ [t], define Ci ∈ Ki and a number li
recursively as follows.

C1 → (B1)Ai
k , l1 =

∣∣∣∣(C1

B1

)∣∣∣∣
and

Ci → (Bi)
Ai

k·
∏i−1
j=1 lj

, li =

∣∣∣∣(Ci

Bi

)∣∣∣∣ .
The Ci exist because the classes Ki are Ramsey.
Now let C =

∏
i∈[t] Ci. We will show that C→ (B)Ak .

To start, set f1 = fA,B, f2 = fA,C and f3 = fB,C.

Colour c :

(
C

A

)
→ [k]. Then c′ = c ◦ f−1

2 :
∏

i∈[t]

(
Ci

Ai

)
→ [k] is a colouring

as well, and finding a monochromatic
∏

i∈[t]

(
B′i
Ai

)
will yield a monochromatic(

B′

A

)
= f−1

1

∏
i∈[t]

(
B′i
Ai

).

Start with t = 2. Enumerate
(
C1

B1

)
= {B1,1, . . . ,B1,l1} and fix anA′2 ∈

(
C2

A2

)
.

Then c′ induces a colouring

c′|1 :

(
C1

A1

)
→ [k], A′1 7→ c′((A′1,A

′
2)).

Since C1 → (B1)A1
k , there is a j ∈ [l1] such that

(
B1,j

A1

)
is monochromatic of

colour ki ∈ [k]. So let

c′2 :

(
C2

A2

)
→ [k]× [l1], A′2 7→ (ki, j).
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3.2 Structural Product Ramsey Lemma

Note that |[k]× [l1]| = k · l1. So since C2 → (B2)A2
kl1

, the colouring c′2 gives us

a monochromatic
(
B′2
A2

)
. That is, for each A′2 ∈

(
B′2
A2

)
,

c′2(A′2) = (ki, j),

so for each A′1 ∈ B1,j we must have

c′((A′1,A
′
2)) = ki.

So we must have
(
B1,j

A1

)
×
(
B′2
A2

)
monochromatic under c′ of colour ki and

f−1
1 gives us the monochromatic

(
B′

A

)
as explained above.

Now proceed by induction. Suppose the statement is true for t ≤ T . Set
L =

∏T
j=1 lj. Then

c′ :
∏
i∈[T ]

(
Ci

Ai

)
×
(
CT+1

AT+1

)
→ [k]

and picking an A′T+1 ∈
(
CT+1

AT+1

)
induces a colouring

c′|1 :
∏
i∈[T ]

(
Ci

Ai

)
→ [k], (A′1, . . . ,A

′
T ) 7→ c′((A′1, . . . ,A

′
T+1)).

We have that
∣∣∣∣∏i∈[T ]

(
Ci

Bi

)∣∣∣∣ = L, so enumerate
∏

i∈[T ]

(
Ci

Bi

)
. By induction

there is a monochromatic
∏

i∈[T ]

(
B′i
Ai

)
, the jth such in the enumeration, of

colour ki, so define

c′2 :

(
C2

A2

)
→ [k]× [L], A′2 7→ (ki, j).

Note that |[k]× [L]| = k · L and we have

CT+1 → (BT+1)
AT+1

k·L .
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3.2 Structural Product Ramsey Lemma

Hence the monochromatic B′T+1 ∈
(
CT+1

BT+1

)
under the colouring c′2 together

with the jth element of
∏

i∈[T ]

(
Ci

Bi

)
give us the monochromatic element of∏

i∈[T+1]

(
Ci

Bi

)
of colour ki, finishing the proof.

Now, by definition of the product K =
∏

i∈[t] Ki, given any A ∈ K, each
of the Ai is a structure, and thus Ai is non-empty. But taking any non-empty
subset A′ of [t] o Ai, there exists a relational structure A′, a substructure of A
with universe A′. So unless t = 1, the class K is not closed under substructures.
To get a class closed under substructures, we introduce a full product of classes.

Definition 3.2.7. Let {Li}i∈[t] be disjoint relational languages. For each
i ∈ [t] let Li = {Ri,j}j∈Ji , and let Ki be a class of structures in language
Li. Let S be the set of non-empty subsets of [t]. Let L =

⋃
i∈[t] Li be a

union of languages Li. The class K in L is a full product of classes Ki if

K =
⋃
T∈S

(∏
i∈T

Ki

)
.

Remarks 3.2.8. (i) Take A =
∏

i∈TA Ai ∈ K. Then in particular, for
each i ∈ TA, the substructure of A on the set of points {i} × Ai lies
in K. We abuse notation and denote it by Ai, despite the fact Ai is
technically a structure in Ki.

(ii) Technically, again, if Ki are proper classes, we can’t take a union of
them. But we abuse the notation to mean that A ∈ K if and only if
A ∈

∏
i∈T Ki for some T ∈ S.

Lemma 3.2.9 (Full Structural Product Ramsey Lemma). Suppose that K
is a full product of classes. Suppose that for each i ∈ [t], Ki is a Ramsey
class. Then K is a Ramsey class.
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3.2 Structural Product Ramsey Lemma

Proof. First note that by Lemma 3.2.6 the class
∏

i∈T Ki is Ramsey for each
T ∈ S.
Take any A =

∏
i∈TA Ai,B =

∏
i∈TB Bi ∈ K. Unless TA ⊂ TB, the set

(
B
A

)
is

empty, and trivially B→ (B)Ak . So consider the case when TA ⊂ TB.
Clearly, if TA = TB, A,B ∈

∏
i∈TA Ki, and thus there exists a C ∈

∏
i∈TA Ki

(and thus C ∈ K), such that C→ (B)Ak .
Otherwise consider the substructure

∏
i∈TA Bi of B. Again there exists∏

i∈TA Di ∈
∏

i∈TA Ki, such that

∏
i∈TA

Di →

(∏
i∈TA

Bi

)A

k

.

Define C as
∏

i∈TB Ci, where

(i) Ci = Di if i ∈ TA, and

(ii) Ci = Bi if i ∈ TB \ TA.

Then C→ (B)Ak .
Indeed. Suppose that B′ ∈

(
C
B

)
. Then for i ∈ TB \ TA, we must have B′i = Ci.

For i ∈ TA, B′i is a substructure of Ci = Di, isomorphic to Bi. Thus finding a
monochromatic substructure of

∏
i∈TA Di isomorphic to

∏
i∈TA Bi corresponds

to finding a a monochromatic substructure of C isomorphic to B.

Recall that we can build new classes by merging them, as in Definition 2.5.2.
In the case where the merge of any two structures is unique, we can apply the
Full Structural Product Ramsey Lemma.

Lemma 3.2.10. Let L = {Ri}i∈I be a relational language and let K,K1

and K2 be classes in language L. Suppose that K is a merge of classes K1

and K2.
Let L1 = {R1,i}i∈I and L1 = {R2,i}i∈I be disjoint copies of language L, and
let K′1 be a copy of the class K1 in language L1, and let K′2 be a copy of
the class K2 in language L2.
If, for each A1 ∈ K1 and A2 ∈ K2 the merge A of structures A1 and A2
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3.2 Structural Product Ramsey Lemma

is unique up to isomorphism, then the class K is simply bi-definable with
the full product of classes K′1 and K′2.

Note. By ’a copy of the language’ and ’a copy of the class’ we mean that K1

and K′1 are essentially the same class, up to slightly different notation. We
could say that they are trivially simply bi-definable. We introduce L1 and
L2 because we define a product of classes for classes in disjoint languages
in 3.2.3.

Proof. Trivially, for any A1 ∈ K1 there exists a structure A′1 ∈ K′1 such that
for all i ∈ I we have

R
A′1
1,i (a1, a2, . . . , an(i)) ⇐⇒ A1 |= RA1

i (a1, a2, . . . , an(i)).

Similarly, there exists a structure A′2 ∈ K′2 for any A2 ∈ K2.
Conversely, for h ∈ [2] and any A′h ∈ K′h, there is a Ah ∈ Kh, such that

RAh
h,i (a1, a2, . . . , an(i)) ⇐⇒ A′h |= R

A′h
i (a1, a2, . . . , an(i)).

This formalises the assertion that K′h is a copy of Kh for h ∈ [2].

Take any A ∈ K. If A2 is empty, then A = A1 ∈ K1, so

R
A′1
1,i (a1, a2, . . . , an(i)) ⇐⇒ A |= RA

i (a1, a2, . . . , an(i)).

Similarly if A1 is empty. In an analogous way, we can define RA
i using RA′1

1,i

for any A′1 ∈ K′1, and using RA′2
2,i for any A′2 ∈ K′2.

Otherwise A is a merge of A1 and A2. Then we have

R
A′1
1,i (a1, . . . , an(i)) ⇐⇒ A |= RA

i (a1, . . . , an(i)) ∧ F1(a1) ∧ . . . ∧ F1(an(i))

and

R
A′2
2,i (a1, . . . , an(i)) ⇐⇒ A |= RA

i (a1, . . . , an(i)) ∧ F2(a1) ∧ . . . ∧ F2(an(i)).
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3.2 Structural Product Ramsey Lemma

So using the definition of relations on the productA′ =
∏

h′∈[2] Ah′ , that defines
the relations RA′

h,i.
Conversely, a relation RA′

h,i defines the relation R
Ah
i . Since given any two struc-

tures A1 ∈ K1, A2 ∈ K2 there is a unique merge A ∈ K of A1 and A2, that
means that the relations RA′

1,i and RA′
2,i define the relation RA

i . This concludes
the proof.

Corollary 3.2.11. Let L = {Ri}i∈I be a relational language and let K and
Ki, for i ∈ [n], be classes in language L. Suppose that K is a merge of
classes Ki.
Let, for h ∈ [n], Lh = {Rh,i}i∈I be copies of language L, and let K′i be a
copy of the class Ki in language Li.
If, for each selection of Ai ∈ Ki, the merge A of structures Ai is unique up
to isomorphism, then the class K is simply bi-definable with the full product
of classes K′i.

Proof. The proof follows from 3.2.10, by induction on the number n of the
classes involved.

Corollary 3.2.12. Let L = {Ri}i∈I be a relational language and let K and
Ki, for i ∈ [n], be classes in language L. Suppose that K is a merge of
classes Ki and suppose that each class Ki is a Ramsey class.
If, for each selection of Ai ∈ Ki the merge A of structures Ai is unique up
to isomorphism, then the class K is a Ramsey class.

Link. Theorem 4.3.5, Theorem 4.2.4

Proof. By Lemma 3.2.11, the classK is simply bidefinable with the full product
of classes K′i, defined in the lemma. Now by Lemma 3.1.6, each class K′i is
a Ramsey class, as it is simply bi-definable with the Ramsey class Ki. The
full product of classes K′i is Ramsey by Lemma 3.2.9, so K is indeed also a
Ramsey class.
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3.3 Substructures

3.3 Substructures

Throughout this section, let K be a class of ordered S-shaped partial orders
closed under substructures and isomorphisms, and let K be a Fraïssé class of
ordered partial orders containing the unshaped reducts of the structures in K,
i.e.,

if (P,<,≺, s) ∈ K, then (P,<,≺) ∈ K.

Note. Given a shaped partial order P = (P,<,≺, s), refer to the reduct
(P,<,≺) as P . This is a slight abuse of notation, as P also refers to the
universe of P (and of (P,<,≺)). It makes the heavy notation in this section
somewhat lighter.

Definition 3.3.1. Given a P ∈ K, define the set
[
SP
]
of shapings of P

to be the set [
SP
]

= {s : (P,<,≺, s) ∈ K}.

Lemma 3.3.2. Let P ∈ K, P = (P,<P,≺P, sP) and let

iP ′ : (P,<,≺)→ (P ′, <,≺)

be an isomorphism with the underlying bijection

iP ′ : P → P ′.

Then sP ◦ i−1
P ′ ∈ [SP ′ ].

Proof. We will show that iP ′ defines an isomorphism

iP′ : (P,<,≺, sP)→ (P ′, <,≺, sP ◦ i−1
P ′ ).

For each p ∈ P ,

sP(p) = sP ◦ (i−1
P ′ ◦ iP ′)(p) = sP ◦ i−1

P ′ (iP ′(p)).
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3.3 Substructures

So since iP ′ is an isomorphism and K is closed under isomorphisms,
(P ′, <,≺, sP ◦ i−1

P ′ ) ∈ K and hence sP ◦ i−1
P ′ ∈ [SP ′ ].

Lemma 3.3.3. Let P ∈ K, (P,<P,≺P, sP) and R′ ∈
(
P
R

)
. If K is closed

under substructures and isomorphisms, then for

sP|R′ : R′ → S, r 7→ sP(r)

and the isomorphism i : R → R′ of partial orders with the underlying
bijection

i : R→ R′

we have s|R′ ◦ i ∈ [SR].

Proof. Since K is a class of ordered S-shaped partial orders closed under
substructures, for any subset Q on P , the structure of P induces a structure
on Q, namely

(Q,<Q,≺Q, sQ), where <Q=<P |Q,≺Q=≺P |Q, sQ = sP|Q.

So the isomorphism i is a map

i : (R,<R,≺R)→ (R′, <P |R′ ,≺P |R′).

Then (R,<R,≺R, s|R′ ◦ i) is isomorphic to (R′, <P |R′ ,≺P |R′ , sP|R′), as for any
r ∈ R we have

s|R′ ◦ i(r) = s|R′(i(r)).

So, indeed, s|R′ ◦ i ∈ [SR].

Corollary 3.3.4. If K is closed under substructures and isomorphisms,
P,R ∈ K and for each R′ ∈

(
P
R

)
, iR′ is the isomorphism

iR′ : R→ R′.
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3.3 Substructures

Then there is a map

θP,R :

(
P

R

)
×
[
SP
]
→
[
SR
]
, (R′, s) 7→ s|R′ ◦ iR′ .

Note. Since iR′ is an isomorphism between two rigid structures, it is unique.

Proof. Straightforward from Lemma 3.3.3.

Definition 3.3.5. A class K has a neat shapings property if for any R′ ∈(
P
R

)
we have

θ
(
{R′} ×

[
SP
] )

=
[
SR
]
.

Lemma 3.3.6. Suppose that K is a class of ordered partial orders and
P, P ′, R ∈ K. Then an isomorphism

i : (P,<,≺)→ (P ′, <,≺), with i : P → P ′

yields a bijection

φR :

(
P

R

)
→
(
P ′

R

)
, R′ 7→ i(R′).

Proof. Since i is an isomorphism, the map i is a bijection. Clearly i(R′) is a
subset of P ′ by definition of i. Also, if R′ ∈

(
P
R

)
then for any r, r′ ∈ R′ we have

r < r′ ⇐⇒ i(r) < i(r′) and r ≺ r′ ⇐⇒ i(r) ≺ i(r′).

So the map
i|R′ : R′ → i(R′), r 7→ i(r)

defines an isomorphism i′ : R′ → i(R′) and thus i(R′) is isomorphic to R and
lies in

(
P ′

R

)
. So φR(

(
P
R

)
) ⊂

(
P ′

R

)
and φR is well defined.

109



3.4 Blowup Lemma

Similarly we could use i−1 to show that
(
P ′

R

)
⊂
(
P
R

)
, considering

φ−1
R :

(
P ′

R

)
→
(
P

R

)
, R′ 7→ i−1(R′).

Finally, given R′ ∈
(
P
R

)
, we have

φ−1
R (φR(R′)) = φ−1

R (i(R′)) = i−1(i(R′)) = R′

and similarly φR(φ−1
R (R′)) = R′, so φR is indeed a bijection.

3.4 Blowup Lemma

Definition 3.4.1. LetK be a class of orderedS-shaped partial orders, and
let K be a Fraïssé class of ordered partial orders containing the unshaped
reducts of the structures in K. Let X be a set of size at least |S| and
let α : S → X be an injective map and β : X → S a map such that
β(α(s)) = s.
A weak (X,α, β)-blowup P of an ordered partial order P ∈ K is any ordered
partial order in K on the set of points

P = P ×X.

Given a p ∈ P , a p-block of P is the substructure of P on the set of points
{p} ×X.

Link. Lemma 4.1.1, Lemma 5.2.2

Given a set X, the maps α, β and a partial order P ∈ K we can define a map

s : P → S, (p, x) 7→ β(x).

Since P ∈ K and we did not require K to have any properties, it could
happen that

[
SP
]
is empty. So in general, the map s need not be a shaping of

P . But we will consider the cases where it is, and where additionally the blowup
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3.4 Blowup Lemma

P = (P ,<,≺, s) contains (P,<,≺, s) as a substructure for any s ∈
[
SP
]
.

Note. Given a shaping s ∈
[
SP
]
, there is a shaped partial order (P,<,≺, s)

in the class K by definition. But given a partial order P ∈ K, we might
want to denote the specific shaping on P by sP, reverting to the more
formal notation when many shapings are involved.

There is a natural way to find such a substructure of P. Indeed, take any
shaped partial order P = (P,<,≺, s) ∈ K and let

s : P → S, p 7→ s(p).

Then for a subset P (s) of P defined as

P (s) = {(p, x) : p ∈ P, x = α(s(p))}

we have:
s((p, x)) = β(x) = β(α(s(p))) = s(p).

Denote by P (s) also the substructure of P on the set P (s). Suppose that we have
P (s) ∈

(
P
P

)
and that P = (P ,<,≺, s) ∈ K. Let P(s) be the substructure of P

on the points P (s). Then we have

P(s) ∈
(
P

P

)
.

We will additionally require that the blowup and substructures are related in
a natural way.

Definition 3.4.2. Let K be a class of ordered S-shaped partial orders
closed under substructures and isomorphisms, and let K be a Fraïssé class
of ordered partial orders containing the unshaped reducts of the structures
in K. Let X be a set of size at least |S| and let α : S→ X be an injective
map and β : X → S a map such that β(α(s)) = s.
The class K admits (X,α, β)-blowups if it satisfies the following two con-
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3.4 Blowup Lemma

ditions.

(i) For any reduct P ∈ K of a structure P ∈ K, there is a unique weak
(X,α, β)-blowup P , which, together with a map

s : P → S, (p, x) 7→ β(x),

forms an ordered shaped partial order in K, denoted by
P = (P ,<,≺, s).

(ii) Given any P,R ∈ K and their reducts P,R ∈ K, the following maps
are well-defined:

(a) the map

gg :

(
P

R

)
×
[
SR
]
→

(
P

R

)
,

(R′, s′) 7→ R′(s′) = (R′(s′), <,≺),

where R′(s′) = {(r, x) : r ∈ R′, x = α(s′(i−1
R′ (r)))}, and

(b) the map

ff :

(
P

R

)
→

(
P

R

)
,

R′ 7→ R′ = (R′(sR), <,≺, sR ◦ i−1
R′ ),

where R′(sR) = {(r, x) : r ∈ R′, x = α(sR(i−1
R′ (r)))}.

Link. Lemma 4.1.3, Lemma 5.2.2

Note. We defined gg as a map sending a substructure of P , together with a
shaping of the substructure R′ of P , to substructure on a specific subset of
P . Since P is a partial order, a subset of its universe defines a unique sub-
structure of P . But insisting that the map gg be well-defined requires that
the substructure of P on the specific subset is isomorphic to the structure
R. Similarly with the map ff .
Besides, we should actually write ggP,R and ffP,R

1 , since the maps exist for
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3.4 Blowup Lemma

each pair P,R of structures in K and their reducts P,R ∈ K. But we will
drop the labels of the maps unless they’re needed.

Definition 3.4.3. For the maps gg and ff defined in 3.4.2, define the set
of partial transversals of P isomorphic to R as the set

gg
((P

R

)
×
[
SR
] )

=

((
P

R

))
⊂
(
P

R

)
.

Let the set of shaped partial transversals be the set

ff
((P

R

))
=

((
P

R

))
⊂
(
P

R

)

Lemma 3.4.4. For any partial transversal R′′ of P and any p ∈ P we have∣∣R′′ ∩ P p

∣∣ ≤ 1.

Proof. If R′′ ∈
((
P

R

))
, then R′′ = (R′(s′), <,≺) for some R′ ∈

(
P

R

)
and

s′ ∈
[
SR
]
and R′(s′) = {(r, x) : r ∈ R′, x = α(s′(i−1

R′ (r)))}. We also have
P p = {p} ×X. So for p ∈ P we have

(i) R′ ∩ P p = {(p, x) : x = α(s′(i−1
R′ (p)))} if p ∈ R′ and

(ii) R′′ ∩ P p = ∅ otherwise.

Lemma 3.4.5. The following maps are bijections.

(i) g :

(
P

R

)
×
[
SR
]
→
((
P

R

))
, g(R′, s′) = gg(R′, s′), and

(ii) f :

(
P

R

)
→
((

P

R

))
, f(R′) = ff(R′).
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3.4 Blowup Lemma

Note. The maps f amd g are restrictions of the maps ff and gg to their
codomains respectively.
Similar to the labels of maps gg and ff , we should actually write gP,R and
fP,R, since the maps exist for each pair P,R of structures in K and their
reducts P,R ∈ K. But we will drop the labels of the maps again unless
they’re needed.

Proof. The maps f and g are surjective by definition of
((
P

R

))
and

((
P

R

))
.

Suppose that gg(R′, s′) = gg(R′′, s′′), i.e., R′(s′) = R′′(s′′) and thus

{(r, x) : r ∈ R′, x = α(s′(i−1
R′ (r)))} = {(r, x) : r ∈ R′′, x = α(s′′(i−1

R′′(r)))}.

Now, for r ∈ R′, (r, x) ∈ R′(s′) = R′′(s′′), so r ∈ R′′ and thus R′ ⊂ R′′.
Analogously we can show R′′ ⊂ R′ and thus R′ = R′′. Also i−1

R′ = i−1
R′′ .

Now take any r ∈ R′ = R′′. We have i−1
R′ (r) ∈ R and i−1

R′ (R
′) = R. Also

(r, x) ∈ R′(s′) = R′′(s′′) and so

α(sR
′
(i−1
R′ (r))) = x = α(sR

′′
(i−1
R′ (r))).

By definition, α is an injective map, so we have sR′(i−1
R′ (r)) = sR

′′
(i−1
R′ (r)). The

shapings sR′ and sR
′′ agree on all i−1

R′ (r) ∈ R and are thus the same shaping.
So in fact we have (R′,S′) = (R′′,S′′) and gg is an injection.
We omit the proof that ff is a bijection.

Lemma 3.4.6. Suppose that P,R,Q ∈ K, R′ ∈
(
P
R

)
and Q′ ∈

(
R′

Q

)
. Then

gR
′,Q = gP,Q|(R′Q).

Proof. Since Q′ ∈
(
R′

Q

)
and R′ ∈

(
P
R

)
, we have Q′ ∈

(
P
Q

)
. Pick any s′ ∈

[
SQ
]
.

By definition we have

gP,Q :

(
P

Q

)
×
[
SQ
]
→

((
P

Q

))
,

(Q′, s′) 7→ Q′(s′) = (Q′(s′), <,≺),
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where Q′(s′) = {(q, x) : q ∈ Q′, x = α(s′(i−1
Q′ (q)))}, and

gR
′,Q :

(
R′

Q

)
×
[
SQ
]
→

((
R
′

Q

))
,

(Q′, s′) 7→ Q′(s′) = (Q′(s′), <,≺),

where Q′(s′) = {(q, x) : q ∈ Q′, x = α(s′(i−1
Q′ (q)))}.

Then indeed gR′,Q(Q′, s′) = Q′(s′) = gP,Q(Q′, s′), so gR′,Q = gP,Q|(R′Q)×[SQ]
.

Lemma 3.4.7. Suppose that

R′ ∈
((
P

R

))
and Q′ ∈

(
R′

Q

)
.

Then the following are true.

(i) Let R′ = gP,R((R′′, s)), where R′′ ∈
(
P
R

)
and s ∈

[
SR
]
. Then

(a) for each Q′′ ∈
(
R′′

Q

)
there is a s′ ∈

[
SQ
]
such that

gP,Q((Q′′, s′)) ∈
(
R′

Q

)
(b) and

Q′ = gP,Q((Q′′, s′))

for some Q′′ ∈
(
R′′

Q

)
and s′ from part (i)(a).

(ii) Q′ ∈
((
P

Q

))
.

Proof. For R′ ∈
((
P

R

))
, there are R′′ ∈

(
P

R

)
and s ∈

[
SR
]
such that

gP,R :

(
P

R

)
×
[
SR
]
→

((
P

R

))
,

(R′′, s) 7→ R′ = R′′(s) = (R′′(s), <,≺),

where R′′(s) = {(r, x) : r ∈ R′′, x = α(s(i−1
R′′(r))}.
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i) a)
Take any Q′′ ∈

(
R′′

Q

)
. Then let

iR′ : R→ R′, iR′′ : R→ R′′ and iQ′′ : Q→ Q′′

be isomorphisms, and
s′ = s ◦ i−1

R′′

∣∣
Q′′
◦ iQ′′

Start by showing that s′ ∈
[
SQ
]
. Since s : R → S and iR′′ : R → R′′ is an

isomorphism, we have s ◦ i−1
R′′ ∈

[
SR′′

]
by Lemma 3.3.2.

Further, as
s ◦ i−1

R′′

∣∣
Q′′

: Q′′ → S and iQ′′ : Q→ Q′′,

with iQ′′ an isomorphism, we have s′ = s◦i−1
R′′

∣∣
Q′′
◦iQ′′ ∈

[
SQ
]
by Lemma 3.3.3.

Now since Q′′ ∈
(
R′′

Q

)
and R′′ ∈

(
P
R

)
, we have Q′′ ∈

(
P
Q

)
. So by definition,

gP,Q :

(
P

Q

)
×
[
SQ
]
→

((
P

Q

))
,

(Q′′, s′) 7→ Q′′(s′) = (Q′′(s′), <,≺),

where Q′′(s) = {(q, x) : q ∈ Q′′, x = α(s′(i−1
Q′′(q))}.

Since q ∈ Q′′ ⊂ R′′, we have

x = α(s′(i−1
Q′′(q)) = α(s ◦ i−1

R′′

∣∣
Q′′
◦ iQ′′(i−1

Q′′(q)) =

= α(s ◦ i−1
R′′

∣∣
Q′′

(iQ′′(i
−1
Q′′(q))) =

= α(s ◦ i−1
R′′

∣∣
Q′′

(q)) =

= α(s ◦ i−1
R′′(q))

Therefore

Q′′(s′) = {(q, x) : q ∈ Q′′ ⊂ R′′, x = α(s(i−1
R′′(q))} ⊂ R′′(s).

Since Q′′(s′) is isomorphic to Q, we indeed have

Q′′(s′) = gP,Q ((Q′′, s′)) ∈
(
R′

Q

)
.

i) b)
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Consider now

W =

{
(Q′′, s ◦ i−1

R′′

∣∣
Q′′
◦ iQ′′) : Q′′ ∈

(
R′′

Q

)}
.

We claim that (
R′

Q

)
= gP,Q (W ) .

We have already shown that for (Q′′, s′) ∈ W, gP,Q((Q′′, s′)) ∈
(
R′

Q

)
, so

gP,Q (W ) ⊂
(
R′

Q

)
. But the size of W is the size of

(
R′′

Q

)
, and gP,Q is a bijection.

Since the sets are finite that means that indeed(
R′

Q

)
= gP,Q (W ) .

Hence for any Q′ ∈
(
R′

Q

)
,

Q′ = gP,Q((Q′′, s′))

for some Q′′ ∈
(
R′′

Q

)
and s′ ∈

[
SQ
]
.

ii) Follows immediately from part i).

Corollary 3.4.8. The following is true.((
P

R

))
=

{
R′ = (R′, <,≺, s) : R′ ∈

(
P

R

)
, R′ ∈

((
P

R

))}
.

Suppose that

R′ ∈
((

P

R

))
and Q′ ∈

(
R′

Q

)
.

Then the following are also true.

(i) For R′ = fP,R(R′′), we have

Q′ = fP,Q(Q′′)

for some Q′′ ∈
(
R′′

Q

)
.
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(ii) Q′ ∈
((

P

Q

))
.

Proof. Take any R′ = (R′, <,≺, s) ∈
((

P

R

))
. By definition of f we have

R′ = fP,R(R′′) = (R′′(sR), <,≺, sR ◦ i−1
R′′)

for some R′′ ∈
(
P
R

)
. We know by definition of gP,R that the substructure of P

on the points R′′(sR) is exactly the structure gP,R((R′′, sR)).

We already know that
((

P

R

))
⊂
(
P

R

)
, by definition. We have also shown

that R′ = R′′(sR) = gP,R((R′′, sR)) for some R′′ ∈
(
P
R

)
. Then by definition of

gP,R we indeed have R′ ∈
((
P

R

))
.

(i) Since Q′ ∈
(
R′

Q

)
, we have

Q′ = (Q′, <,≺, sQ ◦ i−1
Q′ )

with Q′ = (Q′, <,≺) isomorphic to (Q,<,≺) as Q′ is isomorphic to Q.

Also we must have Q′ ⊂ R′ since Q′ is a substructure of R′.

But then Q′ ∈
(
R′

Q

)
. So by part i) of Lemma 3.4.7 we have

Q′ = gP,Q((Q′′, s′))

for some Q′′ ∈
(
R′′

Q

)
and s′ ∈

[
SQ
]
. So

Q′ =
{

(q, x) : q ∈ Q′′, x = α(s′(i−1
Q′′(q)))

}
.

By definition of the shaping s on P we have

s((q, x)) = β(x) = β(α(s′(i−1
Q′′(q)))) = s′(i−1

Q′′(q)).
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3.4 Blowup Lemma

But as Q′ is isomorphic to Q we also have

s((q, x)) = sQ(i−1
Q′ ((q, x))).

So for q′ ∈ Q with q′ = i−1
Q′′(q) = i−1

Q′ ((q, x)) we have

s′(q′) = s′(i−1
Q′′(q)) = s((q, x)) = sQ(i−1

Q′ ((q, x))) = sQ(q′)

so s′ = sQ, and thus

Q′ = (Q′′(sQ), <,≺, sQ ◦ i−1
Q′′) = fP,Q(Q′′).

(ii) Follows immediately from ii).

Definition 3.4.9. A class K, which admits (X,α, β)-blowups, has the two
ways partial transversal property, if for any R′ ∈

(
P
R

)
we have

((
R
′

R

))
∩
((
P

R

))
6= ∅.

That is, any substructure of P isomorphic to an X-blowup of a structure R
has a partial transversal isomorphic to R that is also a partial transversal
of P .

Link. Lemma 4.1.4

Theorem 3.4.10. Let K be a class of ordered S-shaped partial orders
closed under substructures and isomorphisms, and let K be a Fraïssé class
of ordered partial orders containing the unshaped reducts of the structures
in K. Let X be a set of size at least |S| and let α : S→ X be an injective
map and β : X → S a map such that β(α(s)) = s.
If the class K admits (X,α, β)-blowups and has the two way partial
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3.4 Blowup Lemma

transversal property, K is Ramsey and for P,Q,R ∈ K we have

P → (R)Qk ⇒ P → (R)Qk ,

then K is Ramsey.

Link. Theorem 4.1.5

Proof. Take Q,R ∈ K. Then Q,R ∈ K. Since K is a Ramsey class, there is a
P ∈ K such that

P → (R)Qk .

We will show that
P→ (R)Qk .

Let

c :

(
P

Q

)
→ [k].

We will show that there is a shaped partial transversal R′ of P, isomorphic
to R, such that

(
R′

Q

)
is monochromatic. In that case, by Corollary 3.4.8, we

know that all of Q′ ∈
(
R′

Q

)
are partial transversals as well. We will thus focus

on the restriction

((c)) :

((
P

Q

))
→ [k], ((c))(Q) = c(Q).

By Lemma 3.4.5, we have the bijection

f :

(
P

Q

)
→
((

P

Q

))
.

Combining it with ((c)), we get the colouring

c′ = ((c)) ◦ f :

(
P

Q

)
→ [k].

Extend this colouring to all of
(
P
Q

)
, by defining c′′ that is constant on the partial
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3.4 Blowup Lemma

transversals of each block substructure Q′ of P . That is, let

c′′ :

(
P

Q

)
→ [k]

such that for Q′ ∈
(
P
Q

)
(i) if Q′ = g(Q′′, s′) for some (Q′′, s) ∈

(
P
Q

)
× [SQ],

c′′(Q′) = c′′(g(Q′′, s′)) = c′(Q′′),

(ii) and c′′(Q′) = 1 otherwise.

Since P → (R)Qk implies P → (R)Qk , we can find a R′ ∈
(
P
R

)
such that c′′ is

constant on
(
R
′

Q

)
. Then as K has the two way partial transversal property, we

can find an R∗ such that

R∗ ∈
((
R
′

R

))
∩
((
P

R

))
.

Since R∗ ∈
((
R
′

R

))
and

(
R
′

Q

)
is monochromatic,

(
R∗

Q

)
is monochromatic as

well. Let
c′′(Q′) = l for all Q′ ∈

(
R∗

Q

)
.

Since R∗ ∈
((
P

R

))
, for some R∗∗ ∈

(
P
R

)
and s ∈

[
SR
]

R∗ = gP,R((R∗∗, s))

We will show that for R′ = fP,R(R∗∗) the set
(
R′

Q

)
is monochromatic.

So take any Q′ ∈
(
R′

Q

)
. Due to Corollary 3.4.8 we have

Q′ = fP,Q(Q′′)

for some Q′′ ∈
(
R∗∗

Q

)
.
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Also by Lemma 3.4.7 part i) a), there is a s′ ∈ S such that

g(Q′′, s′) = Q′ ∈
(
R∗

Q

)
.

But then

((c))(Q′) = ((c))(fP,Q(Q′′)) = c′(Q′′) = c′′(g(Q′′, s′)) = c′′(Q′) = l.

So
(
R′

Q

)
is monochromatic with respect to ((c)). But then

(
R′

Q

)
is also monochro-

matic with respect to c as R′ is a shaped partial transversal. Thus indeed
P→ (R)Qk .

Corollary 3.4.11. Let K,Ku, X, α, β satisfy the conditions in Theorem
3.4.10. Suppose that the class K contains a class K′ of structures that is
closed under (X,α, β)-blowups and that the class K′u of unshaped reducts of
K′ is Ramsey. Then the class K′ is Ramsey.

Proof. Since K admits (X,α, β)-blowups and K′ is closed under (X,α, β)-
blowups, the class K′ admits (X,α, β)-blowups.
The classK′ also has the twofold partial transversal property, as for any R,P ∈
K′ we have R,P ∈ K by definition, so for any R′ ∈

(
P
R

)
we have

((
R
′

R

))
∩
((
P

R

))
6= ∅,

since K has the twofold partial transversal property.
Similarly,

P → (R)Qk ⇒ P → (R)Qk

is true in K′u since it is true in K.
So K′ and K′u satisfy all the conditions in Theorem 3.4.10 and K′ is Ramsey.
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3.5 Order classes

3.5 Order classes

Consider first the class K(C) of all finite chains, or all finite total orders. It is
well-known and easy to verify that any structure P ∈ K(C) is isomorphic to the
total order [n] with the natural order inherited from N and where n = |P |.

Let L be a language containing a binary relation symbol ≺ and let K be
an order class for ≺. Suppose further that K only contains finite structures.
Take a structure A ∈ K. Then A is a finite structure and ≺A is a total order
by definition, so the reduct of A to language {≺} is a finite total order. It is
therefore tempting to account for the total order ≺A by writing

A = {ai : i ∈ [n], n = |A|}, where ai ≺ ai′ ⇐⇒ i < i′,

using [n] as an index structure of the points of A.
But then, taking B′ ∈

(
A
B

)
, we would have

B′ = {b′j : j ∈ [m],m = |B′|}, where b′j ≺ b′j′ ⇐⇒ j < j′

and
B′ = {b′j : j ∈ [m],m = |B′|} ⊂ {ai : i ∈ [n], n = |A|},

which does not clearly denote which substructure of A the structure B′ is. We
could denote the points of B′ as the points aij for j ∈ [m]. However, we will avoid
the double indices wherever possible.

When defining classes of partial orders in Chapter 2, we wrote

P = {pi : i ∈ I}

or
P = {pi,j : (i, j) ∈ I o J }

and used the total order on I and the total orders on Ji for i ∈ I to define the
total order of a structure P (see Definition 2.5.11, Definition 2.5.15 and Definition
2.5.20). We will introduce notation in which the substructures of index structures
will define the total order of the substructures as well.
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3.5 Order classes

Denote by DA a finite total order in K(C) isomorphic to 〈A,≺A〉 and write

A = {ad : d ∈ DA}

to denote
ad ≺ ad′ ⇐⇒ d < d′ in DA,

encoding the total order ≺A in the notation for the points of the universe A of
A.

Example 3.5.1. Let A be a partial order on the set of points {a, b, c, d}
and B a partial order on the set of points {k, l,m}, such that

a < b, c, d; c < d and k < l,m.

Suppose further that A and B are ordered partial orders, with the total
orders extending the partial order, namely such that

a ≺ b ≺ c ≺ d and k ≺ l ≺ m.

Then we can set

a = a1, b = a2, c = a3, d = a4 and k = b1, l = b2,m = b3.

In this case, we set DA = [4] and DB = [3]. Then
(
A
B

)
contains two

structures, namely the structures on the points

B1 = {ai : i ∈ {1, 2, 3}} and B2 = {ai : i ∈ {1, 2, 4}}.

Then for any B′ ∈
(
A
B

)
, we write

B′ = {ad : d ∈ DB′}

where
e : B→ A

is an embedding with e(B) = B′. Since any embedding has to preserve a total
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3.6 Two Pass Lemma

order ≺B (and the rest of structure on B), e induces a map

e1 : DB → DA, with e1(DB) = DB′

and
d < d′ in DB ⇐⇒ e1(d) < e1(d′) in DA.

In this case we then get DB′ ∈
(DA

DB

)
, with e1 : DB → DA an embedding of total

orders.
Instead of requiring that the index structures be total orders, we will require

they have a total relation in the class, but permit additional structure. Formally,
we capture that in the following definition.

Definition 3.5.2. Suppose that the language L contains the relation sym-
bol ≺ and LD contains a relation <D. Let K be a class of structures in
language L and KD in language LD.
A class K is an order class with respect to KD if

(i) K is an order class with respect to ≺,

(ii) KD is an order class with respect to <D,

(iii) for each A ∈ K there exists a structure Φ(A) ∈ KD and such that
for the map

Φ : A→ Φ(A)

we have
a ≺ a′ ⇐⇒ Φ(a) <D Φ(a′).

We denote Φ(A) by DA, Φ(a) = d and write A = {ad : d ∈ DA}.

Link. Lemma 4.2.1

3.6 Two Pass Lemma

In this section, we will use letters A,B and C to refer to shaped partial orders
most of the time, and P,Q and R when we consider structures in a specific class

125



3.6 Two Pass Lemma

of shaped partial orders.
The idea that lies behind the Two Pass Lemma can be illustrated by the proof

that the class of chains of antichains, K(CAℵ0), is a Ramsey class. A similar proof
is also used in Sokić (2012a) to prove that the classes K(ACℵ0 , ce) and K(CAℵ0 , e)

are Ramsey, but we adapt notation to be consistent with the rest of the thesis.

Example 3.6.1. This is a continuation of Example 3.2.2.
Take any two structures Q,R ∈ K(CAℵ0), Q with |IQ| maximal antichains
and R with |IR| maximal antichains. As we mentioned in the beginning
of Section 3.1, the class K(C) of all chains is Ramsey. Thus there exists a
chain IP , such that

IP → (IR)I
Q

k .

Let (
IP

IQ

)
=
{

(IQ)(1), (IQ)(2), . . . , (IQ)(w)
}
.

Let the maximal length of the maximal antichain of R be r. Let the struc-
ture M̃ (0) be a chain of |IQ| maximal antichains of size r.
We will alternate between constructing structures M (n) and structures
M̃ (n−1), each with |IQ| maximal antichains, for n ∈ [w].

(i) Given M̃ (n−1), let M (n) be a structure satisfying

M (n) → (M̃ (n−1))Qk .

The structure M (n) exists by Example 3.2.2.

(ii) Then let m(n) be the maximal length of the maximal antichain of
M (n) and let M̃ (n) be a chain of |IQ| maximal antichains of size m(n).

Now since M (n) → (M̃ (n−1))Qk , the structure M̃ (n−1) is isomorphic to a
substructure of M (n). Further, the antichains of M̃ (n) are all at least as
long as the antichains of M (n). Thus we have

M̃ (0) EM (1) E M̃ (1) E . . . E M̃ (w−1) EM (w) E M̃ (w)
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3.6 Two Pass Lemma

Let P be a chain of |IP | maximal antichains of size m(w). We will show
that P → (R)Qk .
Let c :

(
P
Q

)
→ [k] be a colouring.

Set P (0) = P and consider the substructure of P (0) on the subset⋃
i∈(IQ)(1)

P
(0)
i ,

a union of antichains of P (0), labelled as (P (0)|(IQ)(1)).
This substructure is a chain of |IQ| maximal antichains of size m(w), thus
isomorphic to M̃ (w). Thus there exists a substructure N (1) of (P (0)|(IQ)(1)),
such that

(i)
(
N (1)

Q

)
is monochromatic of colour l1,

(ii) N (1) is isomorphic to M̃ (w−1), and

(iii) N (1) =
⋃
i∈(IQ)(1) N

(1)
i , such that N (1)

i ⊂ P
(0)
i .

Define P (1) as follows.

(i) If i ∈ (IQ)(1), let P (1)
i = N

(1)
i .

(ii) If i /∈ (IQ)(1), let P (1)
i = P

(0)
i .

Then P (1) is a chain of |IP | maximal antichains of size at least m(w−1).
We define N (n), P (n) and li recursively for n ∈ [w], in an analogous fashion.
We obtain a sequence of structures P (n), with

P (w) ⊂ P (w−1) ⊂ . . . ⊂ P (1) ⊂ P (0)

and with
N (n) = (P (n)|(IQ)(n)),

such that
(
N(n)

Q

)
is monochromatic of colour ln.

But then, for each n ∈ [w] and for N ′(n) = (P (w)|(IQ)(n)), the set
(
N ′(n)

Q

)
is

monochromatic of colour ln. In addition, the structure P (w) is a chain of
|IP | maximal antichains of size at least r.
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3.6 Two Pass Lemma

Define the colouring c′ on
(IP
IQ
)
as c′((IQ)(n)) = ln. Since IP → (IR)I

Q

k ,
there exists a I ′R ∈

(IP
IR
)
such that

(I′R
IQ
)
is monochromatic.

Then (P (w)|(I ′R) is a chain of |IR| maximal antichains of size at least r,
and (

(P (w)|I ′R)

Q

)
is monochromatic. Since r is the maximal length of the maximal antichain
of R, (P (w)|I ′R) contains a substructure isomorphic to R, ending the proof
that P → (R)Q.

Consider the class K(C) of chains and the class K(A) of antichains. In Exam-
ple 3.6.1 we used the fact that any structure P ∈ K(CAℵo) can be built from a
structure I ∈ K(C) and for each i ∈ I a structure Pi ∈ K(A). We will refer to I
as the index of P and to Pi as the levels of P . In the configuration for Two Pass
Lemma (3.6.2), the class KI will play the role of the class K(C) in the example
above and Kz, for each z ∈ Z will play the role of the class K(A). The shapes
Z are added since, unlike in the example above, we will be considering shaped
partial orders with differently shaped levels.

We will formalise ’building structures from an index structure and levels’ in
Definition 3.6.4 of a strongly levelled class. We will build a strongly levelled class
Ks from KI and classes Kz.

Now consider a class K with a glorified skeleton σ <g σ
′, where l1(σ) = G

and l1(σ′) = GAC. As we have seen in Definition 2.5.26, we built the class K
using the class Kq with an antichained skeleton σ <g σ

′, where l1(σ) = G and
l1(σ′) = A. Given a structure P′ ∈ Kq, we build a structure P ∈ K by picking a
glorified chain for each of the S2-shaped antichain of P′. So rather than building
a Ks from KI and K2, we could build K from Kq and Kz. This process of
building structures is formalised in Definition 3.6.9.

We formalise this setup in Definition 3.6.2. In addition to the classes already
mentioned, we add the classes KJ and KD to provide indices for other classes, as
in Definition 3.5.2.

The idea in the proof of Two Pass Lemma (3.6.15) is the same as idea in
Example 3.6.1, but the structures involved are more complicated. The reader
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may wish to return to the example above when reading through the proof of the
Two Pass Lemma.

Definitions

The notation in this section is heavy. The reader may wish to flip between this
section and the lemmas mentioned in the Link boxes below the definitions.

Since the definitions in this section involve a selection of classes, we define the
two pass configuration, so we can refer to it in the following definitions.

Recall Definition 3.5.2.

Definition 3.6.2. Let Z be a set of shapes and let S1 and {Sz}z∈Z
be disjoint sets of shapes, with S =

⋃
z∈Z Sz. Consider the languages

LI = {<I , . . .}, LJ = {<J , . . .}, LD = {<D, . . .}, L = {<,≺, . . .},
LZ = {z : z ∈ Z}, LS1 = {s : s ∈ S1} and LS = {s : s ∈ S}. Consider also
the following classes.

• A class KI of all Z-shaped chains in language LI ∪ LZ.

• Classes KJ and KD of all chains in languages LJ and LD respectively.

• A class K1 of S1-shaped partial orders in language L ∪ LS1 , that is
an order class with respect to KD.

• A class K2 of ordered Z-shaped partial orders in language L∪LZ, that
is bi-definable with KI , with the relations on any A2 ∈ K2 defining
the structure Φ(A2) = IA, so that

(i) A2 = (A2, <,≺, s), with A2 = {ai : i ∈ IA},

(ii) IA = (IA, <I , z),

(iii) ai ≺ ai′ precisely when i <I i
′, and

(iv) s(ai) = z(i).

As the classes are bidefinable, the relations on any IB define a struc-
ture Φ′(IB) = A2 ∈ K2.
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• For each z ∈ Z, let Kz be a class of ordered Sz-shaped partial or-
ders in language L ∪ LS, that is an order class with respect to KJ ,
closed under substructures and with the joint embedding property.
Let KZ = {Kz : z ∈ Z}.

The classes KI , KJ ,KD,K1,K2 and KZ are in a two pass configuration.
The classes KI , KJ and KZ are in a strongly levelled configuration

Link. Lemma 4.2.2, Lemma 4.3.3

Remark 3.6.3. The classes KJ and KD are essentially the class K(C) of
finite chains, but in languages LJ and LD respectively, instead of in the
language containing only the partial order relation <. The distinction is
important for the clarity throughout this section.

Definition 3.6.4. Let classes KI , KJ and KZ be in a strongly levelled
configuration. A strongly levelled class Ks defined by KI ,KJ and KZ is a
class in language L ∪ LS where the following hold.

(i) For each I = (I, <I , z) ∈ KI and a selection {Ai : i ∈ I} of structures
with Ai ∈ Kz(i), there exists a unique structure A ∈ Ks, where the
following is true.

(a) For each i ∈ I, the universe of Ai is Ai = {ai,j : j ∈ Ji} for
some Ji ∈ KJ .

(b) The universe of A is A = {ai,j : (i, j) ∈ I o J }.

(c) The substructure of A on the set Ai is isomorphic to Ai.

(d) The total order on A is defined as

ai,j ≺ ai′,j′

if i <I i
′ or i = i′ and j <J j

′.
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The shaped total order I and the total orders Ji for i ∈ I are also
index sets of A. When multiple structures are discussed, we write

A =
{
ai,j : (i, j) ∈ IA o J A

}
.

We denote the structure A by
⋃
i∈IA Ai, to denote that the isomor-

phism type of A is defined by the isomorphism types of IA and
{Ai : i ∈ IA}.

(ii) Any structure A ∈ Ks is one arising in part (i).

(iii) For all A,B ∈ Ks and A′ ∈
(
B
A

)
, with an embedding e : A → B,

e(A) = A′, there is an embedding

e1 : IA → IB,

such that
e(Ai) ⊂ Be1(i).

Link. Lemma 4.2.3, Lemma 4.3.4

In the Two Pass Lemma proof we will use the properties of structures in
strongly levelled classes. In particular, we will build a structure with an index
set I of a sufficient size, and then build a large enough selection of structures
{Ai : i ∈ I}. We proceed by formally defining how to build new structures from
existing ones in a strongly levelled class.

Definition 3.6.5. Let Ks be a strongly levelled class and let
A =

⋃
i∈IA Ai ∈ Ks, with the map zA defining the shapes on A. The set

Ã = {Ãz : z ∈ zA(IA)}

is a joint embedding set of A if for each z ∈ zA(IA) ⊂ Z there is a structure
Ãz ∈ Kz, such that

Ai E Ãz ∀i ∈ (zA)−1(z).
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That is, if the structure Ãz contains a substructure isomorphic to Ai for
all i that are z-shaped in IA.
We denote the index set of Ãz by J Ãz

1 .

Remark 3.6.6. This is why we required that, for all z ∈ z, the class Kz

have the joint embedding property. By the joint embedding property of the
class Kz, the structure Ãz exists, and thus a joint embedding set exists for
any A ∈ Ks.

Definition 3.6.7. Suppose that Ks is a strongly levelled class.
Given structures A,B ∈ K with zA(IA) ⊂ zB(IB), the structure

〈A,B〉 =
⋃
i∈IA

B̃zA(i)

is the level product of A and B.

Remark 3.6.8. (i) We know that 〈A,B〉 ∈ K, because IA ∈ KI and
for each i ∈ IA we have B̃zA(i) ∈ KzA(i). The levels B̃zA(i) for i ∈ IA

exist because zA(IA) ⊂ zB(IB).

(ii) For each i ∈ IA with zA(i) = z ∈ zB(IB), 〈A,B〉 has a level 〈A,B〉i
on the set of points

〈A,B〉i = {xi,j : j ∈ J B̃z
i },

with J B̃z
i isomorphic to the index set J B̃z

1 of B̃z and 〈A,B〉i isomor-
phic to the structure B̃z.

(iii) The structure 〈A,B〉 ∈ K has the universe

〈A,B〉 = {xi,j : (i, j) ∈ IA o J B̃}.
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Definition 3.6.9. Let classes KI , KJ ,KD,K1,K2 and KZ be in a two pass
configuration.
Let Kq be a merge of classes K1 and K2 in language L ∪ LS1 ∪ LZ.
Let Ks be a strongly levelled class defined by KI ,KJ and KZ.
The class K in language L∪LS1 ∪LS is a class with a strongly levelled part
Ks and a quotient Kq if the following hold.

(i) The class K is a merge of classes K1 and Ks.

(ii) Given any A1 ∈ K1 and As ∈ Ks, there are A2 ∈ K2 and Aq ∈ Kq

satisfying

(a) A1 = {ad : d ∈ DA1},

(b) A2 = {ai : i ∈ IA2},

(c) Aq = A1 ∪ A2, and A1 and A2 are substructures of Aq, and

(d) As = {ai,j : (i, j) ∈ IA2 o J As}.

For each pair of structures Aq and Ks satisfying conditions (a) to (d),
there is a unique structure A, labelled [Aq,As], in K. Its universe is

A = {ad : d ∈ DA1} ∪ {ai,j : (i, j) ∈ IA2 o J As},

and it contains A1 and As as substructures.

For convenience, we denote its points by

A = {ad : d ∈ DA} ∪ {ai,j : (i, j) ∈ IA o J A}.

(iii) For any A1 ∈ K1, the class cK contains the structure A1, denoted
by [A1, ∅].

For any structure As ∈ Ks with As = {ai,j : (i, j) ∈ IAs oJ As}, the
class cK contains the structure As, denoted by [Φ′(IAs),As].

(iv) Any A ∈ K is of the form described in (ii) or (iii).
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(v) Take A = [Aq,As] ∈ K and any subset A′1 of A1, a subset IA′ of IA,
and for each i ∈ IA′ a subset A′i of Ai. If the set

A′ = A′1 ∪

 ⋃
i∈IA′

A′i


is non-empty, the substructure of A on the subset A′ is isomorphic
to the structure [A′q,A

′
s], where

(a) A′q is a substructure of Aq on the subset A′1∪{ai : i ∈ IA′}, and

(b) A′s is a substructure of As on the subset
⋃
i∈IA′ A

′
i.

Link. Lemma 4.3.6

Remarks 3.6.10. (i) In part (iii), note that by Definition 3.6.2, we have
Φ′(IA) ∈ K2 and thus Φ′(IA) ∈ Kq.

(ii) We denote the substructure of A on the set of points A1 as A1; this
is the same as the substructure of Aq on the set of points A1.

(iii) We denote the substructure of A on the set of points
Ai = {ai,j : (i, j) ∈ {i} × J A

i } as Ai; this is the same as the substruc-
ture of As on the set of points Ai.

Definition 3.6.11. Suppose that the class K is a class with a strongly
levelled part Ks and a quotient Kq. Take any A = [Aq,As] ∈ K and
a substructure A′q of Aq. Then a restriction (A|A′q) of A to A′q is the
substructure of A on the subset

A′1 ∪ {ai,j : (i, j) ∈ IA′ o J A}.
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3.6 Two Pass Lemma

Lemma 3.6.12. Suppose that the class K is a class with a strongly levelled
part Ks and a quotient Kq. Take any structures As,Bs ∈ Ks and any
structures A = [Aq,As],B = [Bq,Bs] ∈ K. Then there is a bijection

fA,B :

(
B

A

)
→
(
Bq

Aq

)
o
(

(B|Aq)s
As

)
=

⋃
A′q∈(Bq

Aq
)

{A′q} ×
(

(B|A′q)s
As

)
,

where A′ = [A′q,A
′
s] 7→ (A′q,A

′
s).

Proof. The proof of this is just unravelling of the part (v) of Definition 3.6.9
of a class K is a class with a strongly levelled part Ks and a quotient Kq, and
Definition 3.6.11 of a restriction (B|A′q) of B to A′q.

The two pass lemma will show that under certain conditions a class K with
a strongly levelled part Ks and a quotient Kq is Ramsey. But we first show that
under certain conditions a part of a strongly levelled class K is Ramsey. We
define that part first.

Definition 3.6.13. Suppose that K is a strongly levelled class.
Given a structure I ∈ KI , a structure A ∈ K is I-levelled if A =

⋃
i∈IA Ai

and IA is isomorphic to I.
The class K is I-level-Ramsey if given any I-levelled structures A and B

in K, there exists an I-levelled structure C ∈ K such that C→ (B)Ak .
We label the class of all I-levelled structures in K by KI .
A class K is level-Ramsey if K is I-level-Ramsey for all I ∈ KI .

Lemma 3.6.14. Suppose that K is a strongly levelled class, defined by
KI ,KJ and KZ and that for each z ∈ Z the class Kz is a Ramsey class.
Then K is level-Ramsey.

Proof. Take any I ∈ KI . We will show that the class KI of all I-levelled
structures in K is Ramsey.
Take any selection of structuresAi ∈ Kz(i) for i ∈ I. Then, up to isomorphism,
there is a unique structure A =

⋃
i∈IAi in the class K.
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3.6 Two Pass Lemma

We will show that for any A,B ∈ KI there is a bijection

fA,B :

(
B

A

)
→
∏
i∈I

(
Bi

Ai

)
.

By definition, if A′ ∈
(
B
A

)
, then for each i ∈ I there is a subset A′i of Bi such

that the substructure A′i of B on the subset A′i is isomorphic to Ai. So for
each i ∈ I we must have A′i ∈

(
Bi
Ai

)
, so we can set

fA,B : A′ 7→ (Ai)i∈I .

Conversely, taking, for each i ∈ I, a structure A′i ∈
(
Bi
Ai

)
, the structure

A′ =
⋃
i∈I

A′i

is isomorphic to A and is a substructure of B.
This shows that a bijection fA,B like one in Lemma 3.2.5 exists for any struc-
tures A,B ∈ KI .
Thus the proof that the class KI is Ramsey is the same as proof of Lemma
3.2.6.
Note that alternatively, we could show that the class KI is simply bi-definable
with a product class.
Since I was any structure I ∈ KI , this shows that K is level-Ramsey.

Statement and proof of Two Pass Ramsey Lemma

Lemma 3.6.15 (Two Pass Ramsey Lemma). Suppose that Ks is a strongly
levelled class defined by KI ,KJ and KZ, and that for each z ∈ Z the class
Kz is Ramsey. Suppose that K is a class with a strongly levelled part Ks

and a quotient Kq, and that Kq is Ramsey. Then K is Ramsey.

Link. Theorem 4.3.7

Proof. First note that by Lemma 3.6.14, the class Ks is level-Ramsey.
Take A,B ∈ K, such that

∣∣(B
A

)∣∣ > 0.
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3.6 Two Pass Lemma

If A = [Aq, ∅] and B = [Bq,Bs], then as Kq is Ramsey, there exists Cq ∈ Kq

such that Cq → (Bq)
Aq

k . Then it is easy to check that

[Cq,Bs]→ ([Bq,Bs])
[Aq ,∅]
k .

Otherwise there exists a structure As ∈ Ks, such that A = [Aq,As]. But since∣∣(B
A

)∣∣ > 0, there must exist Bs ∈ Ks, such that B = [Bq,Bs].
Since K has a strongly levelled part Ks and quotient Kq, the bijection

fA,B :

(
B

A

)
→
(
Bq

Aq

)
o
(

(B|Aq)s
As

)
=

⋃
A′q∈(Bq

Aq
)

{A′q} ×
(

(B|Aq)s
As

)

exists by Lemma 3.6.12. Thus also
∣∣∣(BqAq

)∣∣∣ > 0 and
∣∣∣(BsAs

)∣∣∣ > 0.
Defining a C, such that C→ (B)Ak involves quite a few steps.
Let T = Aq and U = Bq. Since Kq is a Ramsey class, there exists a V ∈ Kq,
such that V→ (U)Tk . Enumerate the substructures of V isomorphic to T as(

V

T

)
= {T(1),T(2), . . . ,T(w)}.

By Definition 3.6.5, the structure

〈As,Bs〉 =
⋃
i∈IA

B̃zA(i)

is IA-levelled. Let M(0) = 〈As,Bs〉.
Since Ks is level-Ramsey, it is, in particular IA-level-Ramsey. So we can define
an IA-levelled structure M(n) recursively for n ∈ [w] as

M(n) →
(
〈As,M

(n−1)〉
)As

k
.

For each i ∈ IA, the level 〈As,M
(n)〉i is isomorphic to M̃

(n)

zA(i)
by definition

(3.6.7). The structures M
(n)
i and 〈As,M

(n)〉i are both zA(i)-shaped. So by
definition of M̃(n)

zA(i)
, we must have M

(n)
i E M̃

(n)

zA(i)
.
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3.6 Two Pass Lemma

Thus M(n) is isomorphic to a substructure of 〈As,M
(n)〉, implying that

〈As,M
(n)〉 →

(
〈As,M

(n−1)〉
)As
k
.

Also, since M(n) contains a substructure M′, isomorphic to 〈As,M
(n−1)〉, such

that
(
M′

As

)
is monochromatic, 〈As,M

(n−1)〉 is isomorphic to a substructure of
M(n) and hence of 〈As,M

(n)〉. Thus we have, for each z ∈ Z,

M̃(0)
z / M̃(1)

z / . . . / M̃(w)
z . (3.1)

Let C = V1 ∪ 〈V,M(w)〉. We will show that indeed C→ (B)Ak .
Let c :

(
C
A

)
→ k be a colouring. Since K is a class with a strongly levelled part

Ks and a quotient Kq, we have a bijection

fA,C :

(
C

A

)
→
(
Cq

Aq

)
o
(

(C|Aq)s
As

)
.

Given a T(w′) ∈
(
V
T

)
let

c|T(w′) :

(
(C|T(w′))s

As

)
→ [k], c|T(w′)(A′s) = k′ if c(f−1

A,C(T(w′),A′s)) = k′.

We will construct C(n) such that it satisfies construction conditions for C(n):

(i) for each i ∈ IC, C(n)
i contains a substructure isomorphic to M̃

(w−n)
z(i) , and

(ii) the structure (C(n)|T(n+1))s contains a substructure N(n+1,n+1) isomor-
phic to 〈As,M

(w−n−1)〉 such that
(
N(n+1,n+1)

As

)
is monochromatic under

c|T(n+1) of colour ln+1.

Note that by definition of restriction (3.6.11), for any w′ ∈ [w] we have

(C(n)|T(w′))s =
⋃

i∈IT(w′)

C
(n)
i .

Thus the construction condition (i) for C(n) implies the following.

(i)* For each T(w′) ∈
(
V
T

)
the structure (C(n)|T(w′))s contains a substructure

N(w′,n) isomorphic to 〈As,M
(w−n)〉.
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3.6 Two Pass Lemma

First let C(0) = C. Supposing that C(n−1) exists for a n ∈ [w] and satisfies the
construction conditions, we let C(n)

1 = C1, and

1. (C(n)|T(n))s = N(n,n) and

2. C
(n)
2,i = C

(n−1)
2,i if i /∈ IT(n) .

This ensures that
(

(C(n)|T(n))s
As

)
is monochromatic under c|T(n) of colour ln by

construction condition (ii). The statements 1. and 2. are parts of definition
of C(n).
We first check the construction conditions for C(0).

(i) We have C(0) = C = V1 ∪ 〈M(w),Vs〉, so C
(0)
i is isomorphic to M̃

(w)
z(i),

satisfying construction condition (i).

(ii) Following the check of construction condition (i), we know that
(C(0)|T(1))s is isomorphic to 〈M(w),As〉. Since we have

〈M(w),As〉 →
(
〈M(w−1),As〉

)As

k
,

the colouring c|T(1) yields a substructure of (C(0)|T(1))s isomorphic to
〈M(w−1),As〉 with all substructures isomorphic to As of colour l1, so let
that be the structure N(1,1).

Suppose that C(n−1) satisfies the construction conditions for C(n−1). We check
the construction conditions for C(n).

(i) If i ∈ IT(n) , then C
(n)
i is isomorphic to M̃

(w−n)
z(i) by part 1. of definition

of C(n). Indeed, N(n,n) is isomorphic to 〈As,M
(w−n)〉 by construction

condition (ii) for C(n−1) and 〈As,M
(w−n)〉i = M̃

(w−n)
z(i) .

If i /∈ IT(n) then C
(n)
i = C

(n−1)
i by part 2. of definition of C(n). It

contains a structure isomorphic to M̃
(w−n+1)
z(i) by construction condition

(i) for C(n−1) and hence one isomorphic to M̃
(w−n)
z(i) by (3.1) above.

So C(n) satisfies construction condition (i).

(ii) The structure (C(n)|T(n+1))s contains a substructure N(n+1,n) isomorphic
to 〈M(w−n),As〉 by a corollary (i)* of the construction condition (i) just
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3.6 Two Pass Lemma

shown. Since
〈M(w−n),As〉 →

(
〈M(w−n−1),As〉

)As

k

let N(n+1,n+1) be the substructure of N(n+1,n) such that
(
N(n+1,n+1)

As

)
is

monochromatic under c|T(n+1) of colour ln+1 and N(n+1,n) is isomorphic
to 〈M(w−n−1),As〉. Thus C(n) satisfies construction condition (ii).

By induction, we can indeed construct C(n) for n ∈ [w] ∪ {0} satisfying the
construction conditions.
Clearly we have

C = C(0) .C(1) . . . . .C(w).

This implies, for any w′ ∈ [w],

(C(w)|T(w′))s / (C(w′)|T(w′))s.

Combining that with part 1. of definition of C(w′) we have

(C(w)|T(w′))s / (C(w′)|T(w′))s = N(w′,w′).

Since
(

(N(w′,w′)|T(w′))s
As

)
is monochromatic of colour lw′ from construction con-

dition (ii) of C(w′−1), we see that
(

(C(w)|T(w′))s
As

)
is monochromatic of colour

lw′ .
Set (

B

A

)
=

⋃
T′∈(U

T)

KT′ ,

(
C

A

)
=

⋃
T′∈(V

T)

LT′ ,

where

KT′ =

(
(B|T′)

A

)
, LT′ =

(
(C|T′)

A

)
and L′

T(w′) = T
(w′)
1 ∪N(w′,w).

Then let
c′ :

(
V

T

)
→ [k], T(w′) 7→ lw′ .

Since we have V→ (U)Tk , there exists a U′ ∈
(
V
U

)
such that

(
U′

T

)
is monochro-

matic of colour l.
Consider (C(w)|U′). By construction condition (i), for all i ∈ IC, C(w)

i contains
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3.6 Two Pass Lemma

a substructure isomorphic to M̃
(0)
z(i). But M(0) = 〈As,Bs〉, so M̃

(0)
z(i) = B̃z(i).

Thus (C(w)|U′)s contains a substructure isomorphic to Bs, call it B′s.
Since K has a strongly levelled part Ks and a quotient Kq, there exists the
substructure B′ = [U′,B′s] of C, with B′ = f−1

B,C(U′,B′s).
Then if A′ = [A′q,A

′
s] ∈

(
B′

A

)
we have a bijection

fA,B′ :

(
B′

A

)
→
(
U′

T

)
o
(

(B′|T)s
As

)
.

Then
A′s / (B′|T′)s

for some T′ ∈
(
U′

T

)
. Also, we have B′ ∈

(
C(w)

B

)
. Besides, U′ ∈

(
V
U

)
, so(

U′

T

)
⊂
(
V
T

)
and thus T′ = T(w′) for some T(w′) ∈

(
V
T

)
. Combined with a result

above we thus get

A′s / (B′|T(w′))s / (C(w)|T(w′))s / (C(w′)|T(w′))s = N(w′,w′).

Now, by definition of U′, we have c′(T(w′)) = l and thus lw′ = l by definition
of c′. By construction condition (ii),

(
N(w′,w′)

As

)
is monochromatic under c|T(w′)

of colour l. So c|T(w′)(A′w) = l and therefore

c(f−1
A,C(T(w′),As)) = l.

But f−1
A,C(T(w′),As) = A′, so c(A′) = l. That is true for any A′ ∈

(
B′

A

)
, which

finishes the proof.

Corollary 3.6.16. Suppose that Ks is a strongly levelled class defined by
KI ,KJ and KZ. Suppose that the class KI is Ramsey, and that for each
z ∈ Z the class Kz is Ramsey. Then Ks is Ramsey.

Link. Theorem 4.2.5, Definition 3.6.2, Definition 3.6.9, Definition 3.6.4,
Lemma 3.1.6, Lemma 3.6.15

Proof. Suppose that Ks is a class of ordered S-shaped partial orders and that
s is a shape disjoint from S and Z.
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3.6 Two Pass Lemma

Suppose that K1 is a the class containing only the ordered s-shaped antichain
A1 with one point and let KD be a class of chains in language LD, so that the
classes KI , KJ ,KD,K1,K2 and KZ are in a two pass configuration.
Then since KI is Ramsey and KI and K2 are simply bi-definable by Definiton
3.6.2 of a two pass configuration, the class K2 is also Ramsey by Lemma 3.1.6.
Let Kq be a merge of classes K1 and K2, containing

(i) A1, and

(ii) for each A2 ∈ K2, the structure A2 and the unique merge of A1 and A2,
labelled (A2)∗.

Then as K2 is Ramsey, so is Kq.
Similarly let K be a merge of classes K1 and Ks, with each structure As ∈ Ks

defining a unique merge of A1 and As in K.
Then given Aq ∈ Kq and As ∈ Ks as in parts (ii)(a) and (ii)(b) of 3.6.9, the
structure Aq is either the structure Φ(IA) ∈ K2 or the unique merge (Φ(IA))∗

of A1 and Φ(IA), and the structure A defined in part (ii) exists in K and is
either the structure As or the unique merge of A1 and As, respectively.
The part (iv) follows by definition of K, and the part (iv) is a consequence of
definition of K and Definition 3.6.4.
So the class K has a strongly levelled part Ks and a quotient Kq.
Thus K is a Ramsey class by Lemma 3.6.15.
Now, K contains precisely the structures

(i) [A1, ∅], and

(ii) for each structure As ∈ Ks, the structure [Φ(IA),As], and

(iii) for each structure As ∈ Ks, the structure [(Φ(IA))∗,As].

Then given As,Bs ∈ Ks, construct C ∈ K to satisfy

C 7→ ([Φ(IB),Bs])
[Φ(IA),As]
k

as in the proof of Lemma 3.6.15. But when defining V ∈ Kq such that

V 7→ (Φ(IB))
Φ(IA)
k
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3.6 Two Pass Lemma

we know there exists V ∈ K2 satisfying the condition, as Φ(IA),Φ(IB) ∈ K2

and K2 is Ramsey.
But then C ∈ Ks, which completes the proof.
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Chapter 4

Ramsey Results

The building blocks of skeletons enumerating the classes of ordered shaped partial
orders, A1, G, CA and GAC, are presented in Figure 4.1.

To define chains of antichains and glorified antichains of chains we introduce
glorified antichains (GA, in 2.5.13) and glorified chains (GC, in 2.5.18). Es-
sentially, to construct a chain of antichains, we start with a chain and replace
all of its points by glorified antichains, and to construct a glorified antichain of
chains, we start with an antichain and replace all of its points by glorified chains.
Additionally, we use labels C, AC and A to denote specific classes.

(i) When the classK(CA,S, N, o) consists of shaped ordered chains, we denote
it by K(C,S, o), in Definition 2.5.17.

(ii) When the class K(GAC,S, N, o) consists of shaped ordered antichains of
chains, we denote it by K(AC,S, o), in Definition 2.5.22.

Figure 4.1: Building blocks of ordered shaped partial orders

A1

Singleton
Definition 2.5.10

CA
Chains of antichains

Definition 2.5.15

G
Partial orders
Definition 2.5.11

GAC
Glorified antichains of chains

Definition 2.5.20
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Figure 4.2: Elementary skeleton and its subskeleton

Elementary skeleton
Points: A1, CA,GAC,G

Relations: <c, <g

Definition 2.5.28

Glorified skeleton
Points: GAC, G
Relations: <c, <g

Definition 2.5.23

(iii) When the class K(GAC,S, N, o) consists of shaped ordered antichains, we
denote it by K(A, {sa}, o), in Definition 2.5.22.

To enumerate classes of ordered shaped partial orders, we build new skeletons
from the building blocks. We define the c-condition in the part (iv) of 2.5.28.
Take any partial order, label its points G or GAC, and its relations <c or <g.
If the obtained structure satisfies the c-condition and is <g-connected, it is a
glorified skeleton. We can build any elementary skeleton from a selection of
glorified skeletons, incomparable with points labelled A1 and points labelled CA.

We mentioned that the label A denotes a special case of the label GAC. We
also mentioned that we build a glorified antichain of chains by replacing points of
an antichain with glorified chains. We build the structures in the classes defined
by a glorified skeleton in the same way. Let Σ be a glorified skeleton. Replacing
each label ′GAC ′ with the label ′A′, we obtain an antichained skeleton Σ′. The
skeleton Σ with any number of the labels ′GAC ′ replaced with labels ′A′ forms a
simple skeleton, and any simple skeleton arises from some glorified skeleton. This
is defined formally in 2.5.23 and 2.5.24 . The class of structures enumerated by
an antichained skeleton is defined in 2.5.25, and one enumerated by a glorified
skeleton in 2.5.26.

In this chapter, we apply the tools from Chapter 3 to prove that the classes
enumerated by the skeletons discussed are Ramsey.

The list of Ramsey results in this chapter and the methods used to prove them
is in Table 4.1.
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Table 4.1

Skeleton Proof Method
Generic 4.1.5 Blowup Lemma
G 4.1.6 Corollary of blowup
C 4.1.7 Corollary of blowup

Antichained 4.1.8 Corollary of blowup
GA 4.2.4 Structural Product Ramsey
CA 4.2.5 Two Pass Lemma
GC 4.3.5 Structural Product Ramsey

Glorified 4.3.7 Two Pass Lemma

Structural Product Ramsey Lemma

In Section we proved the Full Structural Product Ramsey Lemma (3.2.9) and
link it to the classes of shaped ordered partial orders in Corollary 3.2.12. This
formulation of the result makes it very convenient for proving that certain classes
of ordered shaped partial orders are Ramsey.

Blowup Lemma

We apply the Blowup Lemma to a class K of ordered shaped partial orders
enumerated by a generic skeleton. We first define maps α and β, and a specific
weak blowup of each structure in the class in Definition 3.4.1. We then show that
K admits weak blowups (3.4.2) in Lemma 4.1.3. In 4.1.4 we show that the class
K has the two way partial transversal property, defined in 3.4.9. This allows us
to apply Theorem 3.4.10 to show that K is Ramsey in 4.1.5. Results that other
classes of ordered shaped partial orders are Ramsey as well follow easily.

Two Pass Lemma

We apply Two Pass Lemma (3.6.15) in two cases. We apply it directly to a class
of shaped ordered partial orders enumerated by a glorified skeleton. Its corollary
3.6.16 allows us to apply the lemma in a simpler context, for example to show
that the class of shaped ordered chains of antichains is strongly levelled.

We first show that the classes of glorified antichains and glorified chains are
order classes with respect to a class of chains, closed under substructures and
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satisfy the joint embedding property in lemmas 4.2.1 and 4.3.2. This is needed
in order for these classes to play the role of the class Kz in the definition of the
two pass configuration (3.6.2).

Lemma 4.2.2 links the class of chains and classes of glorified antichains to
the classes mentioned in Definition 3.6.2 and shows that they are in a two pass
configuration. The classes needed for the two pass configuration for the glorified
skeleton class are lengthier to define, thus there is Definition 4.3.1, followed by
Lemma 4.3.3.

Further, we show that a class of chains of antichains and a class of glorified
antichains of chains are strongly levelled (3.6.4) in lemmas 4.2.3 and 4.3.4.

The proof for the case of chains of antichains needs a result that the class of
glorified antichains is Ramsey (4.2.4), and combining results in section 4.2 yields
Theorem 4.2.5.

The case of a glorified skeleton needs slightly more work. In Lemma 4.3.6 we
show that the classes defined so far satisfy Definition 3.6.9. Let Σ be a glorified
skeleton. Then we focus on a point σ ∈ Σ labelled GAC. We then consider a
class of structures defined by a skeleton Σq, differing from Σ only in σ having a
label A. We show that the class defined by Kq plays the role of a quotient class,
and that we can build any structure in the class defined by Σ by starting with
a quotient structure and adding the levels from a class of glorified chains. We
show that formally in Lemma 4.3.6. We finish this chapter with Theorem 4.3.7.
In the proof, we start with an antichained skeleton of the glorified skeleton given,
as a class defined by an antichained skeleton is Ramsey (4.1.8). We proceed by
adding GAC labels to the antichained skeleton. Since a class of glorified chains is
Ramsey (4.3.5), we obtain Ramsey classes with more and more GAC labels using
Lemma 4.3.6, until we get a glorified skeleton.
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4.1 Antichained skeleton

4.1 Antichained skeleton

Let Σ = (Σ, <,≺, l1, l2) be a generic skeleton, as defined in Definition 2.5.23.
Then K(Σ,S, o), defined in 2.5.25, is a class of S-shaped partial orders, where

S =
⋃
σ∈Σ

Sσ, Sσ = {saσ : a ∈ Aσ}

is a disjoint union, and for each P ∈ K(Σ,S, o), the component Pσ is Sσ-shaped,
and Aσ = [n] for some positive integer n. The aim of this section is to show in
Theorem 4.1.5 that the class K(Σ,S, o) is Ramsey.

Recall the class K(G, e) of ordered (unshaped) partial orders from Definition
2.2.12. Given P = (P,<,≺) ∈ K(G, e), the set

[
SP
]
of all shapings s of P , such

that (P,<,≺, s) ∈ K(Σ,S, o), consists precisely of maps

s ∈
[
SP
]
, s : P → S,

that satisfy, for all p, q ∈ P ,

(σ ≺ σ′ ∧ s(p) ∈ Sσ ∧ s(q) ∈ Sσ′) ⇒ p ≺ q.

In other words, if σ ≺ σ′, then in the total order ≺, the Sσ-shaped component
of P is completely below the Sσ′-shaped component of P under the shaping s.

Definition 4.1.1. Let K(Σ,S, o) be a class of ordered S-shaped partial
orders corresponding to a generic skeleton Σ.
Let A, playing the role of s in Definition 3.4.1, be the number defined as

A = max
σ∈Σ
|Sσ|

and let X be the set
X = Σ× [A].

For the class K(G, e), define a weak X-blowup P of a partial order
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4.1 Antichained skeleton

P ∈ K(G, e) as an ordered partial order on the set

P = P ×X =
{

(pσ,i, ς, a) : (σ, i, ς, a) ∈ (Σ o IP )× Σ× [A]
}

with a partial order defined as

(pσ,i, ς, a) < (pσ′,i′ , ς
′, a′), if

(i) ς <c ς
′ in Σ,

(ii) ς <g ς
′ in Σ and pσ,i ≤ pσ′,i′ in P ,

(iii) ς = ς ′ and pσ,i < pσ′,i′ in P , or

(iv) ς = ς ′, pσ,i = pσ′,i′ and a < a′ in [A].

and the total order defined as

(pσ,i, ς, a) ≺ (pσ′,i′ , ς
′, a′), if

(v) ς ≺ ς ′ in Σ,

(vi) ς = ς ′ and pσ,i ≺ pσ′,i′ in P , or

(vii) ς = ς ′, pσ,i = pσ′,i′ and a < a′ in [A].

Let further α and β be maps as follows

α : S→ Σ× [A], saσ 7→ (σ, a);

β : Σ× [A]→ S, if a ≤ |Sσ|, (σ, a) 7→ saσ; otherwise (σ, a) 7→ s1
σ,

where for each σ ∈ Σ, s1
σ is the least element of Sσ.

Define, for each ς ∈ Σ a substructure P ς of P on the set of points

P ς =
{

(pσ,i, a) : (σ, i, ς, a) ∈ (Σ o IP )× [A]
}
.
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4.1 Antichained skeleton

Remark 4.1.2. (i) We know that K(G, e) is a Fraïssé class of all generic
partial orders with total orders that extend the partial orders. It
contains all the unshaped reducts of structures in K(Σ,S, o), since a
total order on any P ∈ K(Σ,S, o) extends the partial order on it (the
check that this is true is trivial). Similarly, it is easy to see that the
total order on P indeed extends the partial order on P , as defined in
Definition 4.1.1.

So the weak X-blowup P is well-defined.

(ii) In terms of the partial and total order on P , it would be more intuitive
to denote the points of P as

(ς, pσ,i, a)

as then the total order≺ on P is the lexicographic order on Σ×P×[A].

Lemma 4.1.3. Let Σ be a generic skeleton. The class K(Σ,S, o) admits
(Σ× [A], α, β)-blowups defined in 4.1.1.

Proof. By Remark 4.1.2, the class K = K(Σ,S, o) is a class of ordered
S-shaped partial orders closed under substructures and isomorphisms, and
K = K(G, e) is a Fraïssé class (see Theorem 2.2.16) of ordered partial orders
containing the unshaped reducts of the structures in K. We verify that these
satisfy the assumptions of Definition 3.4.2.
The set Σ × [A] is clearly of size at least |S|, the map α is injective, and for
each saσ we have

β(α(saσ)) = β(σ, α) = saσ.

Now we check the remaining two conditions of Definition 3.4.2.

(i) Take any P ∈ K(Σ,S, o) and a weak Σ × [A]-blowup P = (P ,<,≺) of
its reduct P ∈ K(G, o). Then consider the map

s : P → S, (pσ,i, ς, a) 7→ β(ς, a).
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4.1 Antichained skeleton

To show that (P ,<,≺, s) ∈ K(Σ,S, o), take any p, q ∈ P with

s(p) ∈ Sσ, s(q) ∈ Sσ′ and σ ≺ σ′ in Σ.

So if p = (p′, ς, a) for some p′ ∈ P , then s(p) = β(ς, a) ∈ Sσ. By
definition of β that means that in fact ς = σ. We can reason similarly
for q. That means that, for some p′, q′ ∈ P and a, a′ ∈ [A] we have

p = (p′, σ, a) and q = (q′, σ′, a′).

But then by definition of the weak Σ × [A]-blowup P = (P ,<,≺), we
must have p ≺ q. So s is indeed a shaping of P and

P = (P ,<,≺, s) ∈ K(Σ,S, o).

(ii) Now take any P,R ∈ K(Σ,S, o) and their reducts P,R ∈ K(G, o).

(a) Now consider the map

gg :

(
P

R

)
×
[
SR
]
→

(
P

R

)
,

(R′, s′) 7→ R′(s′) = (R′(s′), <,≺),

where R′(s′) = {(r, x) : r ∈ R′, x = α(s′(i−1
R′ (r)))}.

To check that the map is well-defined, take any R′ ∈
(
P
R

)
and

s′ ∈
[
SR
]
. We need to show that the substructure of P on the set

of points R′(s′) is isomorphic to R. So fix R′ ∈
(
P
R

)
and s′ ∈

[
SR
]
.

Consider the map

i : R→ R′(sR), r 7→ (r′, ς, a), where

r′ = iR′(r), and

(ς, a) = α
(
s′
(
i−1
R′ (r

′)
))

= α
(
s′
(
i−1
R′ (iR′(r))

))
= α (s′ (r)) .

So we have s′(r) ∈ Sς by definition of α. Now consider any r, q ∈ R
and let i(q) = (q′, ς ′, a′), with s′(q) ∈ Sς′ , as above.

• Suppose that r < q in R. Then as iR′ is an isomorphism, we
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4.1 Antichained skeleton

have
iR′(r) < iR′(q).

By definition of Σ, we must then either have ς = ς ′ or ς < ς ′ in
Σ.
If ς = ς ′, then i(r) < i(q) by part (iii) of the definition of the
partial order on P in Definition 4.1.1. If ς < ς ′ in Σ, then
i(r) < i(q) by part (i) or (ii) of the definition of the partial
order on P in Definition 4.1.1.

• Suppose now that r ≺ q in R. Then as iR′ is an isomorphism,
we have

iR′(r) ≺ iR′(q).

If we had ς ′ ≺ ς in Σ, then as s′ is a shaping, s′(r) ∈ Sς and
s′(q) ∈ Sς′ , we must have q ≺ r. That is a contradiction, so
we should again have ς = ς ′ or ς ≺ ς ′ in Σ. So we must indeed
have i(p) ≺ i(q) by part (i) or (ii) of the definition of the total
order ≺ on P in Definition 4.1.1.

Thus i is an isomorphism and the map gg is well-defined.

(b) Finally, consider the map

ff :

(
P

R

)
→

(
P

R

)
,

R′ 7→ R′ = (R′(sR), <,≺, sR ◦ i−1
R′ ),

where R′(sR) = {(r, x) : r ∈ R′, x = α(sR(i−1
R′ (r)))}.

Since sR : R → S is a shaping we know by part (a) that
R′(sR) ∈

(
P
R

)
. So we only need to check that R′ is isomorphic to R.

Consider the map

i : R→ R′(sR), r 7→ (r′, x) = (iR′(r), α
(
sR (r)

)
)

again. Then for any r ∈ R, we have

s(r′, x) = β(x) = β
(
α
(
sR (r)

))
= sR (r) ,

so i defines an isomorphismR→ R′ and the map ff is well-defined.

152



4.1 Antichained skeleton

Lemma 4.1.4. Let Σ be a generic skeleton. The class K(Σ,S, o) with
(Σ× [A], α, β)-blowups has the two way partial transversal property.

Proof. The two way partial transversal property makes sense, as we’ve just
shown that K(Σ,S, o) admits (Σ × [A], α, β)-blowups, as in the Definition
3.4.9. So take any R′ ∈

(
P
R

)
. We aim to show that there exists a partial order

R′′ such that

R′′ ∈
((
R
′

R

))
∩
((
P

R

))
.

First let
iR′ : R→ R

′ ⊂ P

be the isomorphism (which is unique, since K(Σ,S, o) is a class of ordered
shaped partial orders).
Recall that by part (v) of Definition 4.1.1, the total order on Σ induces total
orders

R
′
σ1
≺ R

′
σ2
≺ . . . ≺ R

′
σ|Σ|

and
P σ1 ≺ P σ2 ≺ . . . ≺ P σ|Σ| .

The total order ≺ is also convex on each of the R′σi , P σj , and as R′ is a
substructure of P , the total order on P induces a total order on R′.
For each i ∈ [|Σ|], let ri be the least point in R

′
σi
, and let r|Σ|+1 be the greatest

point of R′σ|Σ| in the total order ≺. By Pigeonhole Principle, two of the ri must
lie in the same P σj , say ri and ri′ , where i < i′. But as ≺ is convex on each
R
′
σi
, the ri+1 must lie in P σj as well. But then for any r ∈ R′σi , we have r ≺ ri′ ,

or r = ri′ precisely when i = |Σ|. Thus, in fact r ∈ P σj .
To summarise, there must be σ, σ′ ∈ Σ such that

R
′
σ ⊂ P σ′ .

By definition, there is an isomorphism

iR′ : R→ R
′ ⊂ P .
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4.1 Antichained skeleton

We will show that the sought R′′ is the substructure of P on the set of points

R′′ = {iR′(r, σ, 1) : r ∈ R}.

Define the map
s : R→ S, r 7→ s1

σ.

Since s(r) ∈ Sσ for all r ∈ R, the map s is a shaping of R, i.e., , s ∈
[
SR
]
.

Also iR : R→ R is the trivial isomorphism, so

fR,R :

(
R

R

)
×
[
SR
]
→
((
R

R

))
, and

(R, s) 7→ R(s) = {(r, x) : r ∈ R, x = α(s(r))}.

But by definition of α, we have α(s(r)) = (σ, 1), so in fact

R′′ = {iR′(r, σ, 1) : r ∈ R} = iR′ (R(s)) ,

and R′′ is isomorphic to R(s) and thus R.

This shows that in fact R′′ ∈
((
R
′

R

))
, as R(s) ∈

((
R

R

))
. Since R

′ is a

substructure of P , this further shows that R′′ ∈
(
P
R

)
.

It remains to show that R′′ ∈
((
P

R

))
, that is, finding an R∗ ∈

(
P

R

)
and a

shaping s′ : R→ S, such that gP,R(R∗, s′) = R′′.
For any r ∈ R there are p ∈ P and a ∈ [A], such that the isomorphism iR′

maps
(r, σ, 1) 7→ (p, σ′, a).

So consider the map
s′ : R→ S, r 7→ saσ′ .

Since s′(r) ∈ Sσ′ for all r ∈ R, the map s′ is a shaping of R, i.e., , s′ ∈
[
SR
]
.

Consider also the map
e : R→ P, r 7→ p.

We will show that e is an embedding.
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4.1 Antichained skeleton

Take any r, q ∈ R with r ≺ q. Then for any a ∈ [A] \ {1} we have in R

(r, σ, 1) ≺ (r, σ, a) ≺ (q, σ, 1)

But in the total order ≺ on P , there are at most A− 1 points above (p, σ′, a)

of the form
(p, σ′, a′)

for some a′ ∈ [A]. That means that

iR′(q, σ, 1) = (o, σ′, a′)

for some a′ ∈ [A] and o ∈ P , such that p ≺ o.
So if we have r, q ∈ R with r < q, we must also have r ≺ q by definition of
K(G, e), as the total order ≺ must be an extension of the partial order <. So
as above

iR′ : (r, σ, 1) 7→ (p, σ′, a), (q, σ, 1) 7→ (o, σ′, a′)

with p 6= o. Further, since R′′ ∈
(
P
R

)
, we have

r < q ⇐⇒ (r, σ, 1) < (q, σ, 1) ⇐⇒ (p, σ′, a) < (o, σ′, a′).

We also know that p 6= o and σ′ = σ′, so the fact that (p, σ′, a) < (o, σ′, a′)

must follow from part (ii) of Definition 4.1.1. Thus we must have p < o.
This shows that e : R → P is an embedding and hence e(R) ∈

(
P
R

)
. So we

have

gP,R :

(
P

R

)
→
(
P

R

)
, (e(R), s′) 7→ R′′,

showing that R′′ ∈
(
P

R

)
, which concludes the proof.

Theorem 4.1.5. Let Σ be a generic skeleton. Then the class K(Σ,S, o)

is Ramsey.

Proof. This follows trivially from Theorem 3.4.10, Lemma 4.1.3 and Lemma
4.1.4.
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4.1 Antichained skeleton

Corollary 4.1.6. The class K(G, o) is Ramsey.

Proof. This follows from Theorem 4.1.5, when Σ only has one point.

Corollary 4.1.7. The class K(C, o) is Ramsey.

Proof. Recall Definition 2.5.17. Given a set of shapes S, let K(C, o) be the
class of orderedS-shaped chains, andK(G, o) be the class of orderedS-shaped
partial orders. Then K(C, o) is closed under (Σ× [A], α, β)-blowups. The class
K(C, e) is a Ramsey class and is also a class of unshaped reducts of structures
in K(C, o). Then by Corollary 3.4.11 the class K(C, o) is Ramsey.

Corollary 4.1.8. Let Σ′ be an antichained skeleton. Then the class
K(Σ′,S, o) is Ramsey.

Proof. Recall that the antichained skeleton is a simple skeleton with all points
labelled either G or A (Definition 2.5.23). For Σ′ = (Σ, <,≺, l1, l2), let
Σ = (Σ, <,≺, l′1, l2) be a skeleton with l1(σ) = G for all σ ∈ Σ. Then by
Theorem 4.1.5, the class K(Σ, o) is Ramsey.
Take any Q,R ∈ K(Σ′, o). Then Q,R ∈ K(Σ, o), so there exists a
P′ ∈ K(Σ, o), such that P′ → (R)Qk .
So for P′ = (P,<′,≺, s), define the structure P as follows.

(i) P = (P,<,≺, s).

(ii) pσ,i, < pσ′,i′ if pσ,i <′ pσ′,i′ and either σ 6= σ′, or σ = σ′ and l(σ) 6= A.

Then for each σ ∈ Σ with l(σ) = A, the substructure Pσ of P is an antichain.
So P ∈ K(Σ′, o). We claim that P→ (R)Qk .
First notice that if Q′ ∈

(
P′

Q

)
is a substructure of P′ on the subset Q′, then

the substructure of P on the subset Q′ is isomorphic to Q as well. This is
true because for each σ ∈ Σ with l(σ) = A, the substructure Qσ of Q is an
antichain, and thus removing any pairs pσ,i <′ pσ,i′ in P′σ to get Pσ doesn’t
affect the substructures of P′ that were already antichains in the component
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4.2 Chain of antichains

σ. The same reasoning applies to any R′ ∈
(
P′

R

)
, yielding injective maps

fQ :

(
P′

Q

)
→
(
P

Q

)
, fR :

(
P′

R

)
→
(
P

R

)
,

sending any structure of P′ to a structure of P on the same subset of P .
Consider any colouring c :

(
P
Q

)
→ [k]. Then c◦ fQ :

(
P′

Q

)
→ [k]. So there exists

R′ ∈
(
P′

R

)
such that

(
R′

Q

)
is monochromatic. But then for R′′ = fR(R′), the

set
(
R′′

Q

)
is monochromatic. So indeed P→ (R)Qk .

4.2 Chain of antichains

In this section, we will show that a class K(CA,S, N, o) of ordered shaped chains
of antichains is a Ramsey class. We will do that using a corollary of the Two Pass
Lemma (3.6.16).

Let K(CA,S, N, o) be a class of chains of antichains, as defined in 2.5.15,
with a set of shapes

S = {sa,b : (a, b) ∈ Ao B} =
⋃
a∈A

Sa,

and for each (a, b) ∈ A o B a number na,b ∈ {1,ℵ0}. By Definition 2.5.15, for
each a ∈ A there is a class K(GA,Sa, Na, o) of glorified chains.

Lemma 4.2.1. Let KJ be a class of all chains in language LJ . The class
K(GA,Sa, Na, o) of glorified antichains is an order class with respect to
KJ , closed under substructures and has the joint embedding property.

Proof. Recall Definition 3.5.2 of a class K being an order class with respect to
KD. When K(GA,Sa, Na, o) plays the role of K and KJ plays the role of KD,
they clearly satisfy Definition 3.5.2, as for each P ∈ K(GA,Sa, Na, o) there is
a chain J , so that

P = {pa,bj : j ∈ J a, s(pa,bj ) = sa,b},

and by part (ix) of Definition 2.5.15 we have pa,bj ≺ pa,b
′

j′ when j ≺ j′ in J a.
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4.2 Chain of antichains

This shows that K(GA,Sa, Na, o) is an order class for ≺ and also an order
class with respect to KJ .
Given a structure P ∈ K(GA,Sa, Na, o), it is easy to check that for any
non-empty subset P ′ of P , the substructure of P on the set P ′ also lies in
K(GA,Sa, Na, o).
Finally, given P,R ∈ K(GA,Sa, Na, o), for each b ∈ Ba, let

mb = max{|P a,b|, |Ra,b|}.

Then if nb = 1, |P a,b| ≤ 1, |Ra,b| ≤ 1, so mb ≤ 1. If mb > 0, let Qa,b be an
sa,b-shaped antichain of size mb, and let Q be an antichain with substructures
Qa,b for b ∈ Ba and a total order ≺ so that

Qa,b ≺ Qa,b′ ⇐⇒ b < b′ in Ba.

Then both, P and R are substructures of Q and Q ∈ K(GA,Sa, Na, o), so
K(GA,Sa, Na, o) has joint embedding property.

We define classes KI , KJ and KA of the two pass configuration (3.6.2).

Lemma 4.2.2. Let A be a set of shapes and let {Sa}a∈A be disjoint sets
of shapes, with S =

⋃
a∈ASa. Define the languages:

• LI containing a partial order relation <I ,

• LJ containing a partial order relation <J ,

• L containing a partial order relation < and total order relation ≺,

• LA containing all the shapes a ∈ A, and

• LS containing all the shapes s ∈ S.

Consider the following classes:

• Class KI = K(C,A) of all A-shaped chains in language LI ∪ LA.

• Class KJ of all chains in language LJ .
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4.2 Chain of antichains

• Class Ka = K(GA,Sa, Na, o) of Sa-shaped glorified antichains, for
all a ∈ A, in language L ∪ LS and KA = {Ka : a ∈ A}.

The classes KI , KJ and KA are in a two pass configuration.

Proof. This follows straightforward from definition 3.6.2 of a two pass config-
uration, with the set Z of shapes replaced by a set A of shapes and the classes
KD, K1 and K2 omitted. The class Ka is an order class with respect to KJ ,
closed under substructures and has the joint embedding property by Lemma
4.2.1.

Lemma 4.2.3. The class K(CA,S, N, o) of ordered shaped chains is a
strongly levelled class defined by KI ,KJ and KA.

Proof. We have already shown that the classesKI ,KJ andKA are in a strongly
levelled configuration in Lemma 4.2.2.
Parts (i) and (ii) of the definition of a strongly levelled class are trivially true
in the class K(CA,S, N, o). Indeed, any P ∈ K(CA,S, N, o) is defined by an
A-shaped antichain I and for each i ∈ I, with a = sI(i), a glorified antichain
Pi ∈ K(GA,Sa, Na, o), and the conditions they satisfy in Definition 2.5.15
imply parts (i) and (ii) of Definition 3.6.4.
To show part (iii) of the definition, take any P,R ∈ K(CA,S, N, o). Let
R′ ∈

(
P
R

)
, with an embedding e : R → P, e(R) = R′. Then e must send

any distinct maximal antichains R′i, R′i′ to substructures of distinct maximal
antichains Pe1(i), Pe1(i′) of P, with e(R′i) ⊂ Pe1(i), e(R′i′) ⊂ Pe1(i′) and

R′i < R′i′ ⇐⇒ Pe1(i) < Pe1(i′),

since the partial order on any chain of antichains is defined by the total order
on the set of maximal antichains of a chain of antichains. Besides, R′i is Sa-
shaped precisely when Pe1(i) is. This defines the embedding e1 : IR → IP that
satisfies condition (iii) of the Definition 3.6.4 and finishes the proof.

Theorem 4.2.4. The class K(GA,Sa, Na, o) of glorified chains is Ramsey.
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4.3 Glorified skeleton

Proof. For each b ∈ Ba let Kb be

(i) the class K(A1, {sa,b}, o) if na,b = 1, and

(ii) the class K(A, {sa,b}, o) if na,b = ℵ0.

Each classK(A1, {sa,b}, o) is trivially Ramsey, as it only contains one structure.
Each class K(A, {sa,b}, o) is Ramsey, as shown in Example 3.1.1.
The class K(GA,Sa, Na, o) is clearly a merge of classes Kb for b ∈ Ba (see
Definition 2.5.3 - the relations sa,b play the role of Fi). Further, any a non-
empty set of antichains Pa,b, at most one for each b ∈ Ba, yields precisely one
merge structure P ∈ K(GA,Sa, Na, o).
Thus, by Corollary 3.2.12, the class K(GA,Sa, Na, o) is Ramsey.

Theorem 4.2.5. The class K(CA,S, N, o) of chains of antichains is Ram-
sey.

Proof. We have shown in Lemma 4.2.3 that K(CA,S, N, o) is a strongly lev-
elled class defined by KI ,KJ and KA.
The class KI is a class K(C, o), with the set A of shapes. Thus by Corollary
4.1.7, the class KI is Ramsey.
For each a ∈ A, the class K(GA,Sa, Na, o) is Ramsey by Theorem 4.2.4.
Then by Corollary 3.6.16, the class K(CA,S, N, o) of ordered shaped chains
is a Ramsey.

4.3 Glorified skeleton

We now aim to show that a class K(Σsp, o) of ordered shaped partial orders with
a glorified skeleton is a Ramsey class. We will do so by using the results about
antichained skeletons, constructing the glorified antichains of chains from the
antichains using the Two Pass Lemma.

In the first subsection, One glorified chain of antichains, we will consider a
glorified skeleton and focus on one point of it, labelled GAC. We finish the proof
in the following section, Induction.
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4.3 Glorified skeleton

One glorified antichain of chains

We start with defining skeletons and related classes of structures that will be in
use throughout this section.

Definition 4.3.1. Skeletons:

(i) Let Σ = (Σ, <,≺, l1, l2) be a simple skeleton, and let ρ ∈ Σ, such that
l1(ρ) = GAC.

(ii) Let Σq = (Σ, <,≺, lq1, l2) and

(a) lq1(ρ) = A,

(b) lq1(σ) = l1(σ) for σ 6= ρ.

(iii) Let Σ1 be a substructure of Σ on the subset Σ1 = Σ \ {ρ}.

(iv) Let Σ2 be an ordered skeleton with a single point labelled A.

(v) Let Σs be an ordered skeleton with a single point labelled GAC.

Sets of shapes:

(i) Let S be a set of shapes with a partition {Sσ : σ ∈ Σ}.

(ii) For the ρ as in part (i) of Skeletons, consider the following.

(a) A total order Aρ, with a partition {Aρ,1,Aρ,2}, where Aρ,2 is
possibly an empty set, and for all a1 ∈ Aρ,1 and a2 ∈ Aρ,2 we
have a1 < a2.

(b) For each a ∈ Aρ a number nρ,a ∈ {1,ℵ0}, and
Nρ = {nρ,a : a ∈ A}.

(c) A set Sρ of shapes with a partition {Sρ,a : a ∈ A}, where
|Sρ,a| = 1 when nρ,a = 1 and for each a ∈ A there exists a total
order Bρ,a, such that Sρ,a = {sa,bρ : b ∈ Bρ,a}.

(iii) Let S1 = S \Sρ.

(iv) Let S′ρ = {sρ}.
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4.3 Glorified skeleton

Languages:

(i) LI containing a partial order relation <I ,

(ii) LJ containing a partial order relation <J ,

(iii) LD containing a partial order relation <D,

(iv) L containing a partial order relation < and total order relation ≺,

(v) Lρ containing the shape sρ,

(vi) LS1 containing all the shapes s ∈ S1, and

(vii) LSρ containing all the shapes s ∈ Sρ.

Classes:

(i) KI is a class of all sρ-shaped chains in language LI ∪ Lρ.

(ii) KJ and KD are classes of all chains in languages LJ and LD respec-
tively.

(iii) K1 is a class K(Σ1,S1, o) in language L ∪ LS1 of ordered S1-shaped
partial orders.

(iv) K2 is a class K(Σ2, {sσ}, o), in language L∪Lρ, of ordered sρ-shaped
antichains.

(v) Ksρ is the class K(Σs,Sρ, Nρ, o). Let Kρ = {Ksρ}.

Lemma 4.3.2. Let KJ be a class of all chains in language LJ . The class
K(GC,S, N, o) of glorified chains is an order class with respect to KJ ,
closed under substructures and has the joint embedding property.

Proof. Recall Definition 3.5.2 of a class K being an order class with respect to
KD. When K(GC,S, N, o) plays the role of K and KJ plays the role of KD,
they clearly satisfy Definition 3.5.2, as for each P ∈ K(GC,S, N, o) there is a
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4.3 Glorified skeleton

chain J , so that

P = {ph,a,bj : j ∈ J , s(ph,a,bj ) = sa,b, a ∈ Ah},

and by part (ix) of Definition 2.5.18 we have ph,a,bj ≺ ph
′,a′,b′

j′ when j < j′. This
shows that K(GC,S, N, o) is an order class for ≺ and also an order class with
respect to KJ .
Given a structure P ∈ K(GC,S, N, o), it is easy to check that for any
non-empty subset P ′ of P , the substructure of P on the set P ′ also lies in
K(GC,S, N, o).
Finally, given P,R ∈ K(GC,S, N, o), for each a ∈ A define Qa as follows.

(i) If na = 1, let Qa be an antichain of size 1.

(ii) If na = ℵ0, and either P a or Ra is non-empty, let Qa be an Sa-shaped
chain, built from Pa on the bottom and Ra on top if both structures
exist, or from one of the structures if the other is non-empty.

Let Q be a glorified chain with substructures Qa for each a ∈ A.
Then both, P and R are substructures of Q and Q ∈ K(GC,S, N, o), so
K(GC,S, N, o) has joint embedding property.

Lemma 4.3.3. Classes KI , KJ ,KD,K1,K2 and Kρ are in a two pass con-
figuration.

Proof. The language Lρ plays the role of the language LZ in Definition 3.6.2,
and LSρ plays the role of LS.
The class K1 is an order class with respect to ≺, so we can encode the total
order on the structures in K1 using the chains in KD to satisfy Definition 3.5.2.
K2 is bidefinable with KI via a bijection Φ : KI → K2 that sends each sρ-
shaped chain to an ordered sρ-shaped antichain of the same size, and the partial
order on the chain defines the total order on the antichain. That is, for any
IA ∈ KI , with Φ(IA) = A2 we have:

(i) A2 = (A2, <,≺, s), with A2 = {ai : i ∈ IA},

(ii) IA = (IA, <I , z),
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4.3 Glorified skeleton

(iii) ai ≺ ai′ precisely when i <I i
′, and

(iv) s(ai) = z(i) = srho.

Finally, the class Ksρ = K(GC,Sρ, Nρ, o) of glorified chains is an order class
with respect to KJ , closed under substructures and has the joint embedding
property by Lemma 4.3.2.
Thus KI , KJ ,KD,K1,K2 and Kρ are in a two pass configuration.

Lemma 4.3.4. The class K(GAC,Sρ, Nρo) of ordered shaped glorified an-
tichains of chains is a strongly levelled class defined by KI ,KJ and Kρ.

Proof. We have shown that KI ,KJ and Kρ are in a two pass configuration
in Lemma 3.6.2. Parts (i) and (ii) of Definition 3.6.4 follow straightforward
from the definition of glorified antichains of chains (2.5.20). Indeed, a glorified
antichain of chains P ∈ K(GAC,Sρ, Nρo) consists of an sρ-shaped total order
IA, and for each i ∈ IA a glorified chain Pi ∈ K(GC,Sρ, Nρo) by parts
(vi) and (vii) of Definition 2.5.20, showing that parts (i)(a), (b) and (c) of
Definition 3.6.4 hold. Part (ix) of Definition 2.5.20 shows that part (i)(d) of
Definition 3.6.4 holds.
To show part (iii) of the definition, take any P,R ∈ K(GAC,Sρ, Nρo). Let
R′ ∈

(
P
R

)
, with an embedding e : R → P, e(R) = R′. Then e must send any

distinct maximal glorified chains R′i, R′i′ to substructures of distinct maximal
glorified chains Pe1(i), Pe1(i′) of P, with e(R′i) ⊂ Pe1(i), e(R′i′) ⊂ Pe1(i′) and

R′i < R′i′ ⇐⇒ Pe1(i) < Pe1(i′),

since the partial order on any glorified antichain of chains is defined by the
total order on the maximal glorified chains of a glorified antichain of chains.
This defines the embedding e1 : IR → IP that satisfies condition (iii) of the
Definition 3.6.4 and finishes the proof.
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4.3 Glorified skeleton

Glorified chains

Theorem 4.3.5. The class K(GC,S, N, o) of glorified chains is Ramsey.

Proof. For a ∈ A, let Ka be

(i) The class K(A1,Sa, o) containing the ordered sa,1-shaped antichain of
size 1 if na = 1.

(ii) The class K(C,Sa, o) of Sa-shaped chains otherwise.

Then considering relations Fa for a ∈ A, where for any P ∈ K(GC,S, N, o)

and p ∈ P we have
Fa(p) ⇐⇒ s(p) ∈ Sa

shows that K(GC,S, N, o) is a merge of classes Ka for a ∈ A, as defined in
Definition 2.5.3.
In fact, given a non-empty subset A of A and a structure Pa ∈ Ka for each
a ∈ A, the merge of structures Pa is the unique glorified chain with Pa below
Pa′ in the total order for each pair a, a′ ∈ A with a < a′.
The class K(A1,Sa, o) is trivially Ramsey for each a ∈ A with na = 1. By
Lemma 4.1.7 the remaining classes K(C,Sa, o) are Ramsey.
Thus, by Corollary 3.2.12, the class K(GC,S, N, o) is Ramsey.

Ramsey result for glorified antichain of chains

Lemma 4.3.6. The class K = K(Σ,S, o) is a class with a strongly levelled
part Ks = K(GAC,Sρ, o) and a quotient Kq = K(Σq,S1 ∪ {sρ}, o).

Proof. Recall Definition 3.6.9.
First notice that Kq = K(Σq,S1 ∪ {sρ}, o) is a merge of classes
K1 = K(Σ1,S1, o) and K2 = K(Σ2, {sσ}, o), since Σ1 = Σ \ {ρ}, Σ2 is an
ordered skeleton with a single point labelled A, and Σq contains Σ1 as well
as the point ρ labelled A. We’ve shown in Lemma 4.3.4 that the class Ks is
strongly levelled. Clearly also the class K is a merge of classes K1 and Ks.
Parts (ii)-(iv) of Definition 3.6.9 hold by the definition of the simple skeleton.
Indeed, by parts (vi) and (vii) of Definition 2.5.26, the Sρ-shaped part Pρ of
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4.3 Glorified skeleton

a structure P ∈ K, corresponding to the structure As in Definition 3.6.9, has
the corresponding structure P′ ∈ Kq, corresponding to the structure Aq in
Definition 3.6.9. Any structure P ∈ K is constructed in this manner, and K
contains all structures constructed from structures in Kq and Ks.
Finally, take any structure P ∈ K, consisting of a S1-shaped substructure
P1 and an Sρ-shaped glorified antichain of chains Ps, consisiting of a glorified
chain Pi for each i ∈ I for some sρ-shaped total order I. Its quotient structure
Pq consists of P1 and an sρ-shaped antichain P2 with points P2 = {pi : i ∈ I}.
The classes Kq and Ks are both closed under substructures, and taking a
subset P ′1 of P1, a subset I ′ of I, and for each i ∈ I ′ a subset P ′i of Pi, with at
least one of the P ′1 or Pi non-empty, indeed defines

(i) a substructure P′q of Pq on the set P ′1 ∪ {pi : i ∈ I ′}, with P′q ∈ Kq, and

(ii) a substructure P′s of Ps on the set P ′1 ∪
(⋃

i∈I′ Pi
)
, with P′s ∈ Ks.

This finishes the proof.

Induction argument

Theorem 4.3.7. Let Σ be a glorified skeleton. Then the class K(Σ,S, o)

is Ramsey.

Proof. Let Σ = (Σ, <,≺, l1, l2) and letK(Σ,S, o) be the class defined in 2.5.26.
We have the following for any σ ∈ Σ.

(i) If l1(σ) = G, let Sσ be a set of shapes.

(ii) If l1(σ) = GAC, we have.

(a) A total order Aσ, with a partition {Aσ,1,Aσ,2}, where Aσ,2 is pos-
sibly an empty set, and for all a1 ∈ Aσ,1 and a2 ∈ Aσ,2 we have
a1 < a2.

(b) For each a ∈ Aσ,1 an nσ,a ∈ {1,ℵ0} and Nσ = {nσ,a : a ∈ Aσ}.

(c) A set S of shapes with a partition {Sσ,a : a ∈ Aσ}, where |Sa| = 1

when na = 1 and for each a ∈ Aσ there exists a total order Bσ,a,
such that Sσ,a = {sa,bσ : b ∈ Bσ,a}.
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4.3 Glorified skeleton

(d) If there exists a σ′ ∈ Σ, such that σ′ <g σ, then Aσ,2 is empty.

We also have S =
⋃
σ∈Σ Sσ.

Let ΣGAC be the subset of Σ of all points in Σ labelled GAC. Enumerate the
points in ΣGAC as follows.

ΣGAC = {σ1, σ2, . . . , σw}.

Then for all v ∈ [w], letS′v = {sv}. LetS0 =
(⋃

σ∈Σ,l′1(σ)=GSσ

)
∪
(⋃

v∈[w] S
′
v

)
.

Let Σ0 = (Σ, <,≺, l01, l2) be the antichained skeleton of the skeleton Σ. Then
Σ0 plays the role of the skeleton Σ′ in Definition 2.5.26.
Let, for v ∈ [w], the skeleton Σv = (Σ, <,≺, lv1, l2) be a skeleton with points
σu for u ∈ [v] labelled GAC, the points σu for u ∈ [w] \ [v] labelled A, and
agreeing with Σ0 otherwise. Then Σw is precisely the skeleton Σ. Consider
also, for v ∈ [w], the set of shapes

S0 =

 ⋃
σ∈Σ,l′1(σ)=G

Sσ

 ∪
⋃
u∈[v]

Sσu

 ∪
 ⋃
u∈[w]\[v]

S′u

 .

The class K(Σ0,S0, o) is a Ramsey class by Corollary 4.1.8. Given that the
class K(Σv−1,Sv−1, o) is Ramsey, we will show that the class K(Σv,Sv, o) is
Ramsey, implying that the class K(Σw,Sw, o) = K(Σ,S, o) is Ramsey and
completing the proof.
For v ∈ [w], the class K(Σv−1,Sv−1, o) plays the role of the class Kq in
the Definiton 4.3.1 and K(Σv,Sv, o) plays the role of the class K. The
class K(GAC,Sσv , Nσv , o) plays the role of the class Ks and the class
K(GC,Sσv , Nσv , o) the role of Ksρ , with Kρ = {Ksρ}.
We have shown that the class K(GAC,Sσv , Nσv , o) is a strongly levelled class
defined by KI ,KJ and Kρ. in Lemma 4.3.4. We’ve shown that the class
K(GC,S, N, o) is Ramsey in Lemma 4.3.5. We’ve also shown thatK(Σv,Sv, o)

is a class with a strongly levelled part K(GAC,Sσv , Nσv , o) and a quotient
K(Σv−1,Sv−1, o) in Lemma 4.3.4. Then since K(Σv−1,Sv−1, o) is Ramsey, so
is K(GAC,Sσv , Nσv , o) by Two Pass Lemma 3.6.15.
.
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Chapter 5

Correspondence

This chapter contains a translation between skeletons from the classification of
the shaped homogeneous partial orders in Torrezão de Sousa & Truss (2008)
and the skeletons of the ordered shaped partial orders introduced in this thesis,
by considering which classes are simply bi-definable and which order classes are
reasonable. It also shows that specific classes of ordered shaped partial orders
have the ordering property.

In Definition 2.4.8 we introduced classesK(AC) of shaped antichains of chains,
K(CA) of shaped chains of antichains and K(G) of shaped partial orders, which
are the building blocks of classes K(Σ), defined by a good skeleton Σ; namely the
ages of the structures in Definition 2.4.14. In section 5.1 we unravel the conditions
in the definition of a good skeleton and introduce some of its subskeletons and
the core information about them in Figure 5.1. Breaking down the good skeleton
into simpler skeletons provides a way to interpret the long list of conditions in
the definition of a good skeleton.

To show this is the case, we consider various equivalence relations, defined
in 5.1.2. Denote by Figure 5.2 the statement that an equivalence class of the
skeleton A under the equivalence relation ∼ is either a skeleton B or a skeleton
C. Then Figure 5.3 summarises the results proved in Section 5.1. The skeletons
denoted by AC, CA and G in the picture are precisely the skeletons containing
one point labelled AC, CA and G. We summarise the results in Table 5.1.
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Table 5.1

Skeleton Partition Proof
Good Shuffle, Chunk Lemma 5.1.11
Chunk G, Pm, Cpm Lemma 5.1.15
Cpm Pm Lemma 5.1.15

Figure 5.1: Good skeleton and its subskeletons

Good skeleton
Points: AC,CA,G

Relations: <c, <g, <sh, <pm, <cpm

Definition 2.4.13

Shuffle skeleton
Points: CA

Relations: <c, <sh

Definition 5.1.5

Chunk skeleton
Points: AC,G

Relations: <c, <g, <pm, <cpm

Definition 5.1.8

Cpm-skeleton
Points: AC

Relations: <pm, <cpm

Definition 5.1.12

Pm-skeleton
Points: AC

Relations: <pm

Definition 5.1.12
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Figure 5.2: Equivalence classes notation

A B

C

|[∼]|

Figure 5.3: Equivalence classes of skeletons

Good

G CA

Shuffle Chunk

G G

AC Pm

Cpm

Pm

|[∼sh]| |[∼]|

|[∼cpm]| |[∼pm]|

|[∼pm]|

Let K(Σ) be a class of shaped partial orders enumerated by a good skeleton
Σ and let K′(Σ′, o) be a class of ordered shaped partial orders enumerated by an
elementary skeleton Σ′. We summarise the results from Section 5.2 that state that
K′(Σ′, o) is an order class with respect to K(Σ) and has the ordering property in
the tables 5.2 and 5.3. In all cases Chapter 4 contains the proof that K′(Σ′, o) is
a Ramsey class.

Specific cases of a chunk skeleton are a simple chunk skeleton (Definition
5.2.17), a chunk skeleton (Definition 5.1.18) and a trivial chunk skeleton (Defini-
tion 5.2.21).
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Table 5.2

K(Σ) K′(Σ′, o) Reasonable OP
K(G,S) K(G,S, o) Lemma 5.2.1 Lemma 5.2.2
K(CA,S, N) K(CA,S, N, o) Lemma 5.2.3 Lemma 5.2.4
K(AC,S, {ℵ0,ℵ0}) K(AC,S, o) Lemma 5.2.5 (i) Lemma 5.2.14
K(AC, {sa}, {ℵ0, 1}) K(A, {sa}, o) Lemma 5.2.5 (ii) Lemma 5.2.14
K(AC, {s}, {1, 1}) K(A1, {s}, o) Lemma 5.2.5 (iii) trivial
K(Σ(c)pm,S, N) K(GAC,S, N, o) Corollary 5.2.13 Lemma 5.2.14
K(Σ(c)pm,S, N) K(GAC,S, N, o) Corollary 5.2.13 Lemma 5.2.14
K(Σ(c)pm,S, N) K(GAC,S, N, o) Corollary 5.2.13 Lemma 5.2.14

Table 5.3

Σ Σ′ Reasonable OP
(C)pm GAC Corollary 5.2.13 Lemma 5.2.14
Simplified chunk Antichained Lemma 5.2.16
Simple chunk Glorified Lemma 5.2.18

Table 5.4

Σ Σ∗ Reasonable
Simplified chunk Antichained Lemma 5.2.16
Simple chunk Glorified Lemma 5.2.18
Non-trivial chunk Glorified Lemma 5.2.22
Shuffle CA Lemma 5.2.24
Good Elementary Lemma 5.2.26
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5.1 Substructures of a good skeleton

Definition 5.2.6 defines classes of ordered shaped partial orders enumerated
by good skeletons and lemmas 5.2.7 and 5.2.8 provide tools for proving that some
classes are simply bi-definable. Using them, the final part of Section 5.2 contains
proofs of results of the following kind. Let K(Σ) be a class of shaped partial
orders enumerated by the good skeleton Σ. Then there exists an elementary
skeleton Σ∗ and a class K(Σ∗, o), such that

(i) the classes K(Σ) and K(Σ∗) are simply bi-definable, and

(ii) the class K(Σ∗, o) is a reasonable class with respect to K(Σ∗) and is a
Ramsey class.

Table 5.4 summarises the results.

5.1 Substructures of a good skeleton

In this section we analyse the structure of a good skeleton. We divide the good
skeleton in smaller components to unravel the extensive list of conditions from
Definition 2.4.13.

Relations

Let Σ be an ordered skeleton. To simplify the notation, we will adopt the fol-
lowing. As well as viewing {<g, <c, <cpm, <pm, <sh} as labels, define relations
<g, <c, <cpm, <pm and <sh on Σ by σ <l τ if σ < τ and l2(σ, τ) =<l, where
l ∈ {g, c, cpm, pm, sh}. Then by writing σ >l τ we mean that in the skeleton
τ < σ and l2(τ, σ) = l.

Let Σ be a skeleton. We will build up to defining an equivalence relation ∼ on
Σ as a transitive and symmetric closure of the union of <g, <sh, <cpm and <pm,
defining weaker relations on the way.

Recall first that a relation ∼ is a reflexive, transitive and symmetric closure
of a relation ∼′ if it satisfies the following:

• if σi ∼′ σj then σi ∼ σj (closure),

• σi ∼ σi for all σi (reflexivity),
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5.1 Substructures of a good skeleton

• if σi ∼ σj then σj ∼ σi (symmetry), and

• if σi ∼ σj and σj ∼ σk then σi ∼ σk (transitivity).

Remark 5.1.1. Suppose that <l is any relation of arity 2 on a finite struc-
ture X. Let − be a symmetric closure of <l and ∼ be a transitive, sym-
metric and reflexive closure of <l. Then ∼ is an equivalence relation. We
can view (X,−) as a graph, with − being the edge relation. Then the
equivalence classes of ∼ correspond exactly to connected components of
(X,−). That is, for each x′ in the equivalence class [x]∼ of x, there exist
x1, x2, . . . , xn ∈ P such that we have

x = x0 − x1 − . . .− xn − xn+1 = x′.

That, of course, means that for each i ∈ [n + 1] we have xi−1 <l xi or
xi <l xi−1.

Based on this observation we will define the relevant relations and meta com-
ponents of a skeleton as follows.

Definition 5.1.2. Define

• −sh as a symmetric closure of <sh,

• −pm as a symmetric closure of <pm,

• −cpm as a symmetric closure of <cpm,

• −g as a symmetric closure of <g,

• ∼sh as a reflexive, symmetric and transitive closure of <sh,

• ∼pm as a reflexive, symmetric and transitive closure of <pm,

• ∼cpm as a reflexive, symmetric and transitive closure of <cpm,

• σ <′ τ if σ < τ and l2(σ, τ) ∈ {<g, <cpm, <pm},

• − as a symmetric closure of <′, and

• ∼ as a reflexive, symmetric and transitive closure of <′.
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5.1 Substructures of a good skeleton

Note. The relations ∼sh, ∼pm, ∼cpm and ∼ are equivalence relations. Let Σ

be a skeleton and σ ∈ Σ. Then denote by JσKsh, JσKpm, JσKcpm and JσK the
equivalence classes of σ with respect to ∼sh, ∼pm, ∼cpm and ∼ respectively.

Skeletons

We have already seen the c-condition in the definition of an elementary skeleton
(2.5.28). It will apply to good skeletons, alongside the sh-condition.

Definition 5.1.3. A skeleton Σ satisfies the c-condition if given any
σ1, σ2, σ3 ∈ Σ with σ1 < σ2 < σ3, then σ1 <c σ2 implies σ1 <c σ3 and
σ2 <c σ3 implies σ1 <c σ3.
A skeleton Σ satisfies the sh-condition if given any σ1, σ2, σ3 ∈ Σ with
σ1 <sh σ2 <sh σ3, we have σ1 <sh σ3.

Remark 5.1.4. Consider the c-condition. In the 3-chain lemmas part of
Definition 2.4.13, we can see that <c appears in the l2(σ1, σ2) and l2(σ2, σ3)

columns precisely in parts 1.) and 1.)*. In both cases l2(σ1, σ3) =<c. So
conditions 1.) and 1.)* are equivalent to the c-condition.
Similarly, sh-condition is the part 2.) of the 3-chain lemmas. The sh-
condition that shows that <sh is a transitive relation.

Shuffle skeleton

We first define a skeleton with all points being chains of antichains.

Definition 5.1.5. Consider a skeleton Σ = (Σ, <, l1, l2). The skeleton Σ is
a shuffle skeleton, labelled Σsh, if

(i) l1(Σ) ⊂ {CA},

(ii) l2(<) ⊂ {<sh, <c},

(iii) Σ satisfies the c- and sh-conditions, and
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(iv) for each distinct σ, σ′ ∈ Σ there exist σi for i ∈ [n] such that

σ = σ0 −sh σ1 −sh . . .−sh σn −sh σn+1 = σ′

Lemma 5.1.6. Any shuffle skeleton Σsh is a good skeleton.

Proof. Since all points of Σ are labelled CA, the relations in Σ are labelled
<sh or <c, and Σ satisfies the c- and sh-conditions, we can easily check that Σ

satisfies the conditions in definition 2.4.13 of a good skeleton.

Lemma 5.1.7. Let Σ be a good skeleton. Then any equivalence class of
∼sh on Σ is one of the following.

(i) A single point labelled AC or G.

(ii) A shuffle skeleton.

Proof. Take any σ ∈ Σ. First note that by the Remark 5.1.1, for any σ′ ∈ JσKsh
there exist σ1, . . . , σn ∈ JσKsh such that

σ = σ0 −sh σ1 −sh . . .−sh σn −sh σn+1 = σ′.

So the condition (iv) of the definition of a shuffle skeleton is satisfied by any
equivalence class of relation ∼sh.
Recall the definition of good skeleton, 2.4.13. By 2-chain lemmas, we see that if
σ <sh σ

′, we must have l1(σ) = l1(σ) = CA. So for any σ ∈ Σ with l1(σ) = AC

or l1(σ) = G, we must have
JσKsh = {σ}.

This covers case (i) in the lemma 5.1.7.
So consider the case l1(σ) = CA. As mentioned above, by 2-chain lemmas all
points in JσKsh are labelled CA. Also by 2-chain lemmas, a relation between
any two points labelled CA is either <sh or <c. So JσKsh satisfies conditions
(i) and (ii) of the definition of a shuffle skeleton. The parts 1.) and 1.)* of
the 3-chain lemmas imply that a good skeleton (and thus JσKsh) satisfies the
c-condition, and the part 2.) implies it satisfies the sh-condition. Thus JσKsh
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is indeed a shuffle skeleton. This completes the proof.

Chunk skeleton

Definition 5.1.8. Consider a skeleton Σ = (Σ, <, l1, l2). The Σ is a chunk
skeleton, labelled Σch, if

(i) l1(Σ) ⊂ {G,AC}

(ii) Σ is a good skeleton, and

(iii) for each distinct σ, σ′ ∈ Σ there exist σi for i ∈ [n] such that

σ = σ0 − σ1 − . . .− σn − σn+1 = σ′.

Remark 5.1.9. Suppose that Σ is a chunk skeleton, and Σ′ is a substruc-
ture of Σ. Then Σ′ satisfies parts (i) and (ii) of Definition 5.1.8 - trivially
for (i) and since any substructure of a good skeleton is a good skeleton.

Lemma 5.1.10. Let Σ be a good skeleton. Then any equivalence class of
∼ on Σ is one of the following.

• A single point labelled CA.

• A chunk skeleton.

Proof. Since Σ is a good skeleton, any substructure of Σ is a good skeleton,
satisfying condition (ii) of Definition 5.1.8.
Take any σ ∈ Σ. Again, by Remark 5.1.1, the equivalence class JσK satisfies
part (iii) of Definition 5.1.8.
Now by definition of −, if σ < σ′ and σ−σ′, then the label l2(σ, σ′) is <g, <pm

or <cpm. By 2-chain lemmas in Definition 2.4.13 that means that neither of
the σ, σ′ is a CA.
So if σ is a CA, JσK is a single point. Otherwise JσK satisfies condition (i) of
Definition 5.1.8. It also satisfies the other two conditions, and is thus a chunk
skeleton.
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Corollary 5.1.11. Let Σ be a good skeleton. Then there is a partition of
Σ,

Σ =

(⋃
t∈Sh

Σt

)
∪

( ⋃
z∈Ch

Σz

)
,

such that the following hold.

(i) For each t ∈ Sh, Σt is a shuffle skeleton.

(ii) For each z ∈ Ch, Σz is a chunk skeleton.

(iii) For any distinct x, y ∈ Sh∪Ch and σ ∈ Σx, σ′ ∈ Σy, if σ < σ′ in Σ,
then σ <c σ

′.

We refer to the partition above as the good partition.

Proof. This is a direct consequence of lemmas 5.1.7 and 5.1.10.
To get {Σt : t ∈ Sh}, take the equivalence classes JσKsh of all σ ∈ Σ with
l1(σ) = CA. To get {Σu : u ∈ Ch}, take the equivalence classes JσK of all
σ ∈ Σ with l1(σ) = AC or l1(σ) = G.
Using 2-chain conditions of a good skeleton (2.4.13), for any σ < σ′, we have

(i) if σ <sh σ
′, then l1(σ) = l1(σ′) = CA and σ′ ∈ JσKsh, so for some t ∈ Sh

we have σ, σ′ ∈ Σt, and

(ii) if σ <pm σ′, σ <cpm σ′ or σ <g σ
′, then l1(σ), l1(σ′) ∈ {AC,G} and

σ′ ∈ JσK, so for some z ∈ Ch we have σ, σ′ ∈ Σz.

So if σ ∈ Σx, σ′ ∈ Σy for some distinct x, y ∈ Sh ∪Ch, we must have σ <c σ
′,

proving condition (iii).

Matching skeletons

We will consider the equivalence classes of relations ∼pm and ∼cpm. We start by
defining skeletons, and then showing that the structures in the equivalence classes
correspond to the skeletons.
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5.1 Substructures of a good skeleton

Definition 5.1.12. Consider a skeleton Σ = (Σ, <, l1, l2).
The skeleton Σ is a pm-skeleton, labelled Σpm, if

(i) l1(Σ) ⊂ {AC},

(ii) l2(<) ⊂ {<pm}, and

(iii) (Σ, <) is a chain.

The skeleton Σ is a cpm-skeleton, labelled Σcpm, if

(i) there are disjoint sets Π1 and Π2, and Π = Π1 ∪ Π2,

(ii) Σ = {σπ : π ∈ Π},

(iii) the substructures of Σ on the subsets Σcpm,1 = {σπ : π ∈ Π1} and
Σcpm,2 = {σπ : π ∈ Π2} are both pm-skeletons, and

(iv) for all π1 ∈ Π1, π2 ∈ Π2, σπ1 <cpm σπ2 (and thus σπ1 < σπ2).

The skeleton Σ is a (c)pm-skeleton if it is a pm-skeleton or a cpm-skeleton.

Lemma 5.1.13. Any (c)pm-skeleton is a good skeleton.

Proof. By definition, a (c)pm skeleton is a chain, so Λ- and V -shape lemmas
are irrelevant. A (c)pm-skeleton clearly satisfies part 4.) of the 2-chain lemmas,
and parts 3.), 4.) and 4.)* of the 3-chain lemmas. Since l2(<) ⊂ {<pm, <cpm}
for any (c)pm skeleton, those are the only parts of the Definition 2.4.13 that
apply. So any (c)pm skeleton is indeed a good skeleton.

Lemma 5.1.14. Let Σ be a chunk skeleton. Then any equivalence class of
∼pm on Σ is one of the following.

• A single point labelled G.

• A pm-skeleton.
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5.1 Substructures of a good skeleton

Proof. By part 4.) of the 2-chain lemmas in 2.4.13, if σ <pm σ′ for some
σ, σ′ ∈ Σ, then l1(σ) = l1(σ′) = AC, showing that part (i) of the definition of
a pm-skeleton (5.1.12). By Remark 5.1.1, if σ′ ∈ JσKpm and σ′ 6= σ, then there
exist σi for i ∈ [n] such that

σ = σ0 −pm σ1 −pm . . .−pm σn −pm σn+1 = σ′.

We will show that σ −pm σ′. That means that either σ <pm σ′ or σ′ <pm σ,
showing that indeed parts (ii) and (iii) of the definition of a pm-skeleton hold.
Suppose that for some σa, σb, σc in Σ we have

σa −pm σb −pm σc.

Since no two relations in any part of the V- and Λ-shape lemmas are labelled
<pm, the 3-chain lemmas apply to σa, σb, σc. Two labels <pm only appear in
part 3.), so the structure on {σa, σb, σc} must be a chain, with all relations
labelled <pm. Thus we must have σa −pm σc.
That, of course, means that for the chain σ0 −pm σ1 −pm . . .−pm σn −pm σn+1

above we have σ0 −pm σ2, and thus σ0 −pm σ3 and eventually σ0 −pm σn+1.
So, if l1(σ) = AC, the substructure of Σ on the equivalence class JσKpm is a pm-
skeleton. Otherwise JσKpm is a singleton labelled G, concluding the proof.

Lemma 5.1.15. Let Σ be a chunk skeleton. Then any equivalence class of
∼cpm on Σ is one of the following.

• A single point labelled G or AC.

• A cpm-skeleton.

Further, if JσKcpm is a cpm-skeleton and σ′ ∈ JσKcpm, then Jσ′Kpm ⊂ JσKcpm.

Proof. Suppose that there are σa, σb, σc ∈ Σ such that

σa −cpm σb −cpm σc.

Suppose further that σa <cpm σb. Then the V- and Λ-shape lemmas again do
not apply, and only parts 4.) and 4.)* of 3-chain lemmas apply, showing that
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5.1 Substructures of a good skeleton

σc <cpm σb and σa −pm σc.
Otherwise we have σa >cpm σb, which leads to σb <cpm σc and again σa−pm σc.

By Remark 5.1.1, if σ′ ∈ JσKcpm and σ′ 6= σ, then there exist σi for i ∈ [n] such
that

σ = σ0 −cpm σ1 −cpm . . .−cpm σn −cpm σn+1 = σ′.

Now by part 4.) of the 2-chain lemmas in 2.4.13, if σa <cpm σb for some
σa, σb ∈ Σ, then l1(σa) = l1(σb) = AC, so

l1(σ) = l1(σ1) = . . . = l1(σn) = l1(σ′) = AC,

showing that part (i) of the definition of a cpm-skeleton (5.1.12) is true for any
equivalence class JσKcpm with |JσKcpm| > 1.
Suppose that σ <cpm σ1. Then by the comments in the beginning of this proof,
we must have σ2 <cpm σ1 and σ−pm σ2. Considering σ1, σ2 and σ3, we see that
σ2 <cpm σ3 and σ1 −pm σ3. But then considering σ, σ2 and σ3, we see that
σ <cpm σ3. Applying the argument repeatedly we show

σ <cpm σ2k−1 and σ −pm σ2k

for all k > 0. So if n is even we have σ <cpm σ′ and if n is odd, we have
σ −pm σ′. Further

σ2l <cpm σ2k−1, σ2l −pm σ2k and σ2l+1 −pm σ2k+1

for all k, l ≥ 0. Further, if σ−cpm σ′1, then by considering σ, σ1 and σ′1 we have
σ <cpm σ′1 and σ1 −pm σ′1. So in fact for any σ′′ ∈ JσKcpm we must have

σ <cpm σ′′ or σ −pm σ′′.

Let
Π1 = {σ′ : σ′ ∈ JσKcpm, σ′ −pm σ or σ′ = σ} and

Π2 = {σ′ : σ′ ∈ JσKcpm, σ <cpm σ′}.

Then by the reasoning above, we have Π1 = JσKpm and for any σ′ ∈ Π2 we
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5.1 Substructures of a good skeleton

have Π2 = Jσ′Kpm, and for any σ′′ ∈ Π1 and σ′ ∈ Π2 we have σ′′ <cpm σ′. This
shows part (iii) of definition of a cpm-skeleton in Definition 5.1.12 (that the
substructures of JσKcpm on the subsets Π1 and Π2 are both pm-skeletons) and
part (iv) of definition of a cpm-skeleton.
We proceed analogously if σ1 <cpm σ, but in that case we set

Π1 = {σ′ : σ′ ∈ JσKcpm, σ′ <cpm σ} and

Π2 = {σ′ : σ′ ∈ JσKcpm, σ′ −pm σ or σ′ = σ}.

So if JσKcpm with |JσKcpm| > 1, JσKcpm is a cpm skeleton. Otherwise
|JσKcpm| = 1.
Further, if JσKcpm is a cpm-skeleton and σ′ ∈ JσKcpm, then Jσ′Kpm ⊂ JσKcpm, as
Jσ′Kpm is either the set Π1 or the set Π2.

Corollary 5.1.16. Let Σch be a chunk skeleton. Then there is a partition
of Σch,

Σch =

( ⋃
v∈Pm

Σv

)
∪

( ⋃
w∈Cpm

Σw

)
∪

(⋃
γ∈Γ

σγ

)
,

such that the following hold.

(i) For each v ∈ Pm, Σv is a pm-skeleton.

(ii) For each w ∈ Cpm, Σw is a cpm-skeleton.

(iii) For each γ ∈ Γ, σγ is labelled G.

(iv) For any distinct x, y ∈ Pm ∪ Cpm ∪ Γ and

σ ∈ Σx or σ = σx, σ′ ∈ Σy or σ = σy,

if σ < σ′ in Σ, then σ <g σ
′ or σ <c σ

′.

We refer to the partition above as the chunk partition.
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5.1 Substructures of a good skeleton

Remark 5.1.17. Let (C)pm = Pm ∪ Cpm. Then

Σch =

 ⋃
u∈(C)pm

Σu

 ∪(⋃
γ∈Γ

σγ

)
,

where for each u ∈ (C)pm, Σu is a (c)pm-skeleton.

Proof. To get {Σu : u ∈ (C)pm}, take the equivalence classes JσKcpm with
|JσKcpm| > 1, which are cpm-skeletons by the proof of Lemma 5.1.15.
Now consider the equivalence classes JσKpm for σ ∈ Σ. By Lemma 5.1.14, JσKpm
is either a pm-skeleton or a single point labelled G. We’ve already shown in
Lemma 5.1.15 that if σ′ ∈ JσKcpm and |JσKcpm| > 1, then Jσ′Kpm ⊂ JσKcpm. Let

Σ′ = Σ \

 ⋃
|JσKcpm|>1

JσKcpm

 .

To get {Σw : w ∈ Cpm}, take JσKpm for σ ∈ Σ′ with l1(σ) = AC. Then
the remaining points in Σ are labelled G, proving parts (i), (ii) and (iii) of
Corollary 5.1.16.
Now if σ, σ′ ∈ Σ, then if σ < σ′, we have one of the following.

(i) If σ <pm σ′, then σ′ ∈ JσKpm, so σ, σ′ ∈ Σu for some u ∈ (C)pm.

(ii) If σ <cpm σ′, then σ′ ∈ JσKcpm, so σ, σ′ ∈ Σw for some w ∈ Cpm.

(iii) Otherwise σ <g σ
′ or σ <c σ

′.

This shows part (iv) of Corollary 5.1.16 and concludes the proof.

Definition 5.1.18. Let Σch be a chunk skeleton with a chunk partition

Σch = {Σu : u ∈ (C)pm} ∪ {σγ : γ ∈ Γ}.

For each u ∈ (C)pm let σu be the least point in the (c)pm-skeleton Σu.
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5.2 Good skeleton with a total order

The substructure Σ of Σch on the set

Σ = {σu : u ∈ (C)pm} ∪ {σγ : γ ∈ Γ}

is a simplified skeleton of Σch.

Lemma 5.1.19. Let Σ = (Σ, <, l1, l2) be a simplified skeleton of a chunk
skeleton Σch. Then l2(<) ⊂ {<c, <g}.

Proof. This is true because of the part (iv) of Corollary 5.1.16.

5.2 Good skeleton with a total order

In the introduction we defined a good skeleton (2.4.13) and the related good
skeleton with a total order (2.5.8). But then we defined specific ordered skeletons
(2.5.9) and considered them in Chapter 3. We started this chapter by considering
substructures of a good skeleton, so now we have the vocabulary necessary to
link the ordered skeletons to good skeletons with total orders and prove Theorem
2.5.31.

One component

First, recall the following classes, with the numbers of their definitions in brackets
in the table below.

label class (2.2.10) order class
G K(G,S) K(G,S, o) (2.5.11)
CA K(CA,S, N) K(CA,S, N, o) (2.5.15)
AC K(AC,S, {ℵ0,ℵ0}) K(AC,S, o) (2.5.22)

K(AC, {s}, {ℵ0, 1}) K(A, {s}, o) (2.5.22)
K(AC, {s}, {1, 1}) K(A1, {s}, o) (2.5.10)

Recall Definition 2.2.10, of a reasonable class K with respect to a class K0.
We will show that the order classes in the third column of the table above are
reasonable with respect to the corresponding class in the second column of the
table above.
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5.2 Good skeleton with a total order

We also show that the classes K(G,S, o) and K(CA,S, o) have the ordering
property. The proof that the classes of antichains of chains have ordering property
will be included in the Matching Skeletons sections, in Lemma 5.2.14.

If Σ is a good skeleton of size 1, with Σ = {σ}, we will define the class K(σ, o)

to be one of the order classes above. When omitting information about the shapes
and multiplicities, we will abbreviate the classes as follows.

(i) K(G,S, o) abbreviates as K(G, o).

(ii) K(CA,S, N, o) abbreviates as K(CA, o)

(iii) K(AC,S, o), K(A, {s}, o) and K(A1, {s}, o) all abbreviate as K(AC, o).

Generic

The class K(G,S) is defined in Definition 2.4.8 and the classK(G,S, o) in 2.5.11.

Lemma 5.2.1. The class K(G,S, o) is a reasonable class with respect to
the class K(G,S).

Proof. By parts (i) and (ii) of the definition of K = K(G,S, o), we obtain any
(P,<,≺, s) ∈ K from a structure (P,<, s) in the class K0 = K(G,S) and a
chain I. By parts (iv) and (vi), the relation ≺ is a total order on P , since I
is a chain. So K is an order class for ≺.
Further, the class K0 is indeed the class of reducts of K. Indeed, taking any
(P,<, s), let ≺ be any total order extending the partial order (P,<). Then
(P,≺) is a finite total order. Thus if n is the size of P , there is an isomorphism

ι : P → [n], such that p ≺ q ⇐⇒ ι(p) < ι(q).

So label any point q ∈ P as pι(q). Then

P = {pi : i ∈ [n]}

and the structure (P,<, s) and the chain [n] with a natural order satisfy con-
ditions (iv)-(vi) of Definition 2.5.11. Thus (P,<,≺, s) ∈ K and thus any
structure in K0 is a reduct of a structure in K.
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5.2 Good skeleton with a total order

Now take any P0,R0 ∈ K0, such that P0 = (P,<P0 , sP0), R0 = (R,<R0 , sR0)

and there exists an embedding

e : R0 → P0.

Further, take any R = (R,<R0 ,≺, sR0) ∈ K.
For each p, q ∈ R, set

e(p) ≺1 e(q) ⇐⇒ p ≺ q.

This defines a total order on a substructure e(R0) of P0. Since e is an em-
bedding, ≺1 extends the partial order <P0 on the substructure e(R0) of P0 as
well. Define ≺′ on P so that for p, q ∈ P

(i) if p <P0 q then p ≺′ q, and

(ii) if p ≺1 q then p ≺′ q.

The partial order exists, as we can start with the relation <P0 ∪ ≺1 and for
an incomparable pair in that relation adding the pair and all the comparisons
implied by transitivity to the relation, until we’ve constructed a total order.
Then let P = (P,<P0 ,≺′, sP0). Clearly, the map e defines an embedding

e : R→ P

as well. This finishes the proof.

Lemma 5.2.2. The class K(G,S, o) has the ordering property.

Proof. We have shown in Lemma 5.2.1 that the classK(G,S, o) is a reasonable
class with respect to the class K(G,S). Also, by part (v) of Definition 2.5.11,
for any (P,<,≺, s) ∈ K(G,S, o), the total order (P,≺) is an extension of the
partial order (P,<).
Recall Definition 4.1.1. When the skeleton Σ in the definition only has one
point, we can simplify the notation to the following.
Let A = |S| and let X = [A]. For the class K(G, e), define a weak A-blowup

185



5.2 Good skeleton with a total order

as an ordered partial order on the set

P = {(pi, a) : (i, a) ∈ IP × [A]}

with a partial order defined as

(pi, a) < (pi′ , a
′),

if

(i) pi < pi′ in P , or

(ii) i = i′ and a < a′;

and the total order defined as

(pi, a) ≺ (pi′ , a
′),

if

(i) pi ≺ pi′ in P , or

(ii) i = i′ and a < a′.

The maps α and β are just the maps α : sa 7→ a and β : a 7→ sa.
We have shown in Lemma 4.1.3 that K(G,S, o) admits ([A], α, β)-blowups. In
this proof we abbreviate this to A-blowup.
Recall the definition of that concept, Definition 3.4.2.
Now, let S′ be any set of shapes of size 2A− 1. Similarly, K(G,S′, o) admits
(2A− 1)-blowups.
Take any P0 = (P,<, s) ∈ K(G,S).
Then for any P = (P,<,≺, s) ∈ K(G,S, o), let P = (P ,<,≺) be the (2A−1)-
blowup of P = (P,<,≺, s). Then P ∈ K(G, e).
Let P 0 = (P ,<). Since the class K(G, e) has the ordering property (see The-
orem 2.2.20), there exists a structure (R,<) ∈ K(G), such that for any

(P ,<,≺′) ∈ K(G, e), (R,<,≺′) ∈ K(G, e)
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5.2 Good skeleton with a total order

there exists an embedding

e : (P ,<,≺′)→ (R,<,≺′).

Take s ∈ S and consider the any ordered s-shaped partial order R with the
universe R and reduct (R,<) - to get it just pick any extension (R,≺′) of
(R,<) that is a total order. Then by part (i) of Definition 3.4.2, the weak
A-blowup R, together with a map

s : R→ S, (p, a) 7→ sa

is an ordered shaped partial order R′ = (R,<,≺′, s) ∈ K(G,S, o).

We will show that for

any P = (P,<,≺, s) ∈ K(G,S, o) and any R = (R,<,≺, s) ∈ K(G,S, o),

there is an embedding

e : P = (P,<,≺, s)→ R = (R,<,≺, s).

Consider first the substructure R1 of R on the set of points

{(ri, 1) : i ∈ IR}.

By definition, it is isomorphic to (R,<). Thus for any

(P ,<,≺′) ∈ K(G, e), (R,<,≺′′) ∈ K(G, e)

there exists an embedding

e : (P ,<,≺′)→ (R,<,≺′′).

So take

any P = (P,<,≺, s) ∈ K(G,S, o) and any R = (R,<,≺, s) ∈ K(G,S, o).
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Let (P ,<,≺) be the weak A-blowup of P. Then there exists an embedding

e : (P ,<,≺)→ (R,<,≺).

Consider the substructure PA of P on the set of points

{(pi, A) : i ∈ IP}.

Suppose that for each i ∈ IR we have e(pi) = (rf(i), a) for some
f(i) ∈ IR, a ∈ [A]. Consider any pair i, i′ ∈ IP, where i < i′. Clearly

e(pi, A) = (rf(i), a) < e(pi′ , A) = (rf(i′), a
′)

since e is an embedding. We will show that

(rf(i), A) ≺ (rf(i′), 1).

By definition of a weak blowup and an embedding we must have

e(pi, A) < e(pi, A+1) < . . . < e(pi, 2A−1), e(pi′ , 1) < e(pi′ , 2) < . . . < e(pi′ , A)

We must also have

e(pi, A) ≺ e(pi, A+1) ≺ . . . ≺ e(pi, 2A−1) ≺ e(pi′ , 1) ≺ e(pi′ , 2) ≺ . . . < e(pi′ , A).

We also know that by definition of the weak blowup, while the total order ≺
on R can be any total order extending the partial order on it, the partial order
on R tells us that

(rf(i), a) < (rf(i), a+ 1) < . . . < (rf(i), A)

and
(rf(i′), 1) < (rf(i′), 2) < . . . < (rf(i′), a

′).

It also tells us that if r′ ∈ R, then if

(rf(i), a) < r′ < (rf(i), A)
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we must have r′ = (rf(i), a
′′) for some a < a′′ < A, and if

(rf(i′), 1) < r′ < (rf(i′), a
′),

r′ = (rf(i′), a
′′) for some 1 < a′′ < a′. Thus we must have

(rf(i), A) � e(pi, 2A− 1), e(pi′ , 1) � (rf(i′), 1).

Thus, indeed (rf(i), A) ≺ (rf(i′), 1). Suppose that

s : P → S, pi 7→ st(i).

Then an easy check shows that the substructure of R on the subset

{(rf(i), t(i)) : i ∈ IP}

is indeed isomorphic to P and

e : P→ R, pi 7→ (rf(i), t(i))

is an embedding.

Chain of antichains

The class K(CA,S, N) is defined in Definition 2.4.8 and the class K(CA,S, N, o)

in 2.5.15.

Lemma 5.2.3. The class K(CA,S, N, o) is a reasonable class with respect
to the class K(CA,S, N).

Proof. Considering the class K = K(CA,S, N, o) we have the following.

(i) A total order A and, for each a ∈ A, a total order Ba.

(ii) A set S of shapes, such that

S = {sa,b : (a, b) ∈ Ao B}.
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5.2 Good skeleton with a total order

Let also
Sa = {sa,b : b ∈ Ba}.

(iii) For each (a, b) ∈ A o B a number na,b ∈ {1,ℵ0}, Na = {na,b : b ∈ Ba},
and N = {na,b : (a, b) ∈ Ao B}.

(iv) For each a ∈ A, a class K(GA,Sa, Na, o) of glorified chains.

(v) A class K(C,A) of A-shaped chains.

Pick an a ∈ A. The class K(GA,Sa, Na, o) is defined in 2.5.13. Consider a
structure P = (P,<,≺, s) ∈ K(GA,Sa, Na, o). By part (viii) of the definition,
(P,<) is an antichain. It is Sa-shaped, and has at most na,b points of shape
sa,b for each sa,b ∈ Sa by part (vii) of the definition. That is, it satisfies part
(ii)(c) of Definition 2.4.8.
Now consider any P = (P,<,≺, s) ∈ K. By Definition 2.5.15, P is defined by
an A-shaped chain I and, for each i ∈ I, a structure Pi ∈ K(GA,Sa, Na, o),
where a = sI(i). Part (ix) of the definition then tells us that P is a chain
of antichains Pi, with Pi < Pj precisely when i < j in I. Thus the
reduct (P,<, s) satisfies the conditions in part (ii) of Definition 2.4.8, and
(P,<, s) ∈ K0 = K(CA,S, N).
Consider any chain of antichains P = (P,<, s) in the class K0. We will show
that there is a total order ≺, so that (P,<,≺, s) ∈ K.
The structure P has a finite number of maximal antichains, say n. Since it is
a chain of antichains, we can label the maximal antichains as Pi such that for
any p ∈ Pi, q ∈ Pj we have

p < q ⇐⇒ i < j.

By part (ii)(c) of Definition 2.4.8, each maximal antichain Pi is Sa-shaped for
some a ∈ A. So let

s[n] : [n]→ A, i→ a.

Then ([n], <, s[n]), where < is the natural order on [n], is an A-shaped chain.
For any i ∈ [n], the antichain Pi has mi points and is Sa-shaped, with at most
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5.2 Good skeleton with a total order

na,b points shaped sa,b. Label the points of Pi as

Pi = {pi,j : j ∈ [mi]},

so that
if s(pi,j) = sa,b, s(pi,j′) = sa,b

′
and b < b′ then j < j′

and set pi,j ≺ pi,j′ if j < j′. Then [mi] with the natural order and the sub-
structure Pi of P define a structure P′i = (Pi, <,≺, s) which satisfies condition
(iv)-(x) of Definition 2.5.13. So for any i ∈ [n], P′i ∈ K(GA,Sa, Na, o).
An easy check shows that ([n], <, s[n]) and, for each i ∈ [n], the structure P′i
define a structure P′ = (P,<,≺,S) by setting

pi,j ≺ pi′,j′ if i < i′ or i = i′ and j < j′.

The structure P′ satisfies conditions (vii)-(x) of Definition 2.5.15 and therefore
lies in K, as claimed. So K0 is indeed the class of all reducts of structures in
K.
Further, for any (P,<, s) ∈ K0 and a total order (P,≺), the structure
(P,<,≺, s) lies in the class K precisely when ≺ is an extension of the par-
tial order (P,<) (and thus convex on the maximal antichains of (P,<, s)) and
orders each Sa-shaped maximal antichain so that for any b < b′ in Ba, the
sa,b-shaped points are below the sa,b

′-shaped points in the total order ≺.
Take any P = (P,<, s) ∈ K0. Then if R = (R,<, s) is a substructure of
P and (R,<,≺, s) ∈ K, the total order on the substructure of P, which is
induced by the total order (R,≺) can be extended to a total order ≺′, so that
(P,<,≺′, s) ∈ K, concluding the proof.

Lemma 5.2.4. The class K(CA,S, N, o) has the ordering property.

Proof. Consider a structure P0 = (P,<, s) ∈ K(CA,S, N).
Take any structure P = (P,<,≺, s) ∈ K(CA,S, N, o). Then

P = {pa,bi,j : (i, j) ∈ I o J , s(pa,bi,j ) = sa,b},

and from part (x) of Definition 2.5.15 pa,bi,j ≺ pa
′,b′

i′,j′ if i < i′ or i = i′ and j < j′.
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We know that if i = i′ then a = a′. Further, from part (x) of Definition 2.5.13,
if i = i′ and j < j′, then b ≤ b′. This condition induces the total order on the
sa,b-shaped substructures Pa,b

i of Pi for b ∈ Ba, where for some total order J a,b
i

Pa,b
i = {pa,bi,j : j ∈ J a,b

i }.

Then the conditions of Definition 2.5.15 impose the ordering

Pa,b
i ≺ Pa′,b′

i′

if i < i′ or i = i′ and b < b′.
Suppose that for some other total order ≺′, the P′ = (P,<′,≺, s) lies in
K(CA,S, N, o) also.
The substructures Pi of P are determined by the partial order (P,<) of P0.
The substructures Pa,b

i of Pi for b ∈ Ba are determined by the shaping s of P0.
Thus P′ also consists of maximal antichains Pi, each containing sa,b-shaped
substructures Pa,b

i for b ∈ Ba. Again, we must have

Pa,b
i ≺′ P

a′,b′

i′

if i < i′ or i = i′ and b < b′.
Thus the total order (P,≺′) permutes the points within each Pa,b

i . That means
that there must be a total order J ′a,bi and a bijection

fa,bi : J a,b
i → J ′a,bi

such that for j ∈ J a,b
i

pa,bi,j ≺′ p
a,b
i,j′ ⇐⇒ fa,bi (j) < fa,bi (j′) in J ′a,bi .

For each i ∈ I, let J ′i be a total order, such that

J ′i =
⋃
b∈Ba

J ′a,bi
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5.2 Good skeleton with a total order

with the total order defined for pairs j, j′ with j ∈ J ′a,bi , j′ ∈ J ′a,b
′

i , as

j < j′ if b < b′ in Ba or b = b′ and j < j′ in J ′a,bi .

So consider the map

f : I o J → I o J ′, f ((i, j)) =
(
i, fa,bi (j)

)
for j ∈ J a,b

i .

The map f allows us to define the map

ι : P→ P′, pa,bi,j 7→ pa,bf((i,j)).

Since ι maps each antichain Pi as well as each substructure Pa,b
i to itself,

and by definition of J ′a,bi and fa,bi also maps the chain (P a,b
i ,≺) to the chain

(P a,b
i ,≺′), ι is an isomorphism.

Now recall the Definition 2.2.19. We have just shown that for any
P0 = (P,<, s) ∈ K(CA,S, N) and any total orders ≺,≺′ with

P = (P,<,≺, s),P′ = (P,<,≺′, s) ∈ K(CA,S, N, o)

there is an isomorphism ι : P → P′. Thus P0 can play the role of A0 and
B0 in Definition 2.2.19 and show that the class K(CA,S, N, o) has ordering
property.

Antichain of chains

The class K(AC,S, {n1, n2}) is defined in Definition 2.4.8.

Lemma 5.2.5. The following are reasonable classes with respect to
K(AC,S, {n1, n2}).

(i) K(AC,S, o) with respect to K(AC,S, {ℵ0,ℵ0}),

(ii) K(A, {sa}, o) with respect to K(AC, {sa}, {ℵ0, 1}), and

(iii) K(A1, {s}, o) with respect to K(AC, {s}, {1, 1}).
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5.2 Good skeleton with a total order

Proof. By Definition 2.5.22, we label a class K(GAC,S, N, o) (defined in
2.5.20) with the total order A only consisting of a total order A1 = {a} of
size 1 and an empty set A2 as

(i) K(AC,S, o) when N = {na} = {ℵ0}, and

(ii) K(A, {sa}, o) when N = {na} = {1}.

Then considering Definition 2.5.18, any P = (P,<,≺,S) ∈ K(GC,S, N, o) is

(i) an S-shaped chain, with identical (P,<) and (P,≺) when N = {ℵ0},

(ii) and an sa-shaped antichain of size 1 when N = {1}.

Then Definition 2.5.20 tells us that given a chain I, a structure P in
K(AC,S, o) consists of |I| S-shaped chains Pi for each i ∈ I, with the total
order on P inducing a total order on the chains Pi and extending the partial
order on P. The total order on the chains is determined by the total order on
I, with

Pi ≺ Pj ⇐⇒ i < j in I.

The situation is analogous in the case of P in K(A, {sa}, o), with each Pi being
an ’chain’ of size 1.
Thus any reduct of a structure P in K(AC,S, o) lies in K(AC,S, {ℵ0,ℵ0}),
and any reduct of a structure P in K(A, {sa}, o) lies in K(AC,S, {ℵ0, 1}).
Conversely, given any P = (P,<, s) in K(AC,S, {ℵ0,ℵ0}) or P = (P,<, s) in
K(AC,S, {ℵ0, 1}), each consisting on n ’chains’ Pi, taking a chain [n] with the
natural order and extending the partial order (P,<) to a total order (P,≺)

by letting p ≺ q if p ∈ Pi, q ∈ Pj and i < j, yields an ordered structure
= (P,<,≺, s) that lies in K(AC,S, o) or K(A, {sa}, o), and checking that (i)
and (ii) hold is easy. The full proof is omitted.
Finally, the class K(A1, {s}, o) is defined in 2.5.10. Clearly K(AC, {s}, {1, 1})
contains only an s-shaped antichain of size 1, and K(A1, {s}, o) contains only
an ordered s-shaped antichain of size 1, so part (iii) of the lemma holds trivially.
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5.2 Good skeleton with a total order

Results about simply bi-definable classes

Definition 5.2.6. Let Σ = (Σ, <,≺, l1, l2) be a good skeleton with a total
order. The class K(Σ, o) consists precisely of all structures P satisfying the
following.

(i) P = (P,<P,≺P,SP).

(ii) For any σ ∈ Σ, if the subset Pσ of P is non-empty, the substructure
Pσ of P on the subset Pσ lies in the class K(σ, o).

(iii) If σ ≺ σ′ and p ∈ Pσ, p′ ∈ Pσ′ , then p ≺ p′.

Lemma 5.2.7. Let Σ = (Σ, <,≺, l1, l2) be a good skeleton with a total
order, and let Σ′ = (Σ, <,≺′, l1, l2) be a good skeleton with a total order,
differing from Σ only in the total order (Σ,≺′). Then the classes K(Σ, o)

and K(Σ′, o) are simply bi-definable.

Proof. Recall Definition 3.1.2.
Let, for each σ ∈ Σ the formula µσ be a simple formula

s(p) ∈ Sσ ∧ s(q) ∈ Sσ ∧ p ≺ q.

Further, let for each σ, ς ∈ Σ with σ ≺′ ς, the formula µσ,ς be a simple formula

s(p) ∈ Sσ ∧ s(q) ∈ Sς .

Finally, let ϕ be the simple formula(∨
σ∈Σ

µσ

)
∨

( ∨
σ,ς∈Σ,σ≺′ς

µσ,ς

)
.

Fix a structure P0 = (P,<P0 , sP0) ∈ K(Σ).
Take a structure P = (P,<P0 ,≺P, sP0) ∈ K(Σ, o) and define ≺′P

′
on P as

p≺′P
′
q ⇐⇒ P |= ϕ[p, q].
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The formulae µσ tell us that the total orders ≺P and ≺′P
′
agree on each

substructure Pσ of P and P′. The formulae µσ,ς state that p≺′P
′
q if σ ≺′ ς,

sP0(p) ∈ Sσ, and sP0(q) ∈ Sς . Thus the structure P′ = (P,<P0 ,≺′P, sP0) is
indeed the structure in the class K(Σ′, o). Set Φ1(P) = P′.
Symmetrically, we can define formulae µ′σ and µ′σ,ς and ϕ′ that define ≺P on P
from ≺′P

′
on P′ ∈ K(Σ′, o), and the map Φ2 between total order expansions

of P0 in K(Σ′, o) and total order expansions of P0 in K(Σ, o).
We’ve shown that part (i) and (ii) of Definition 3.1.2 are true. By definition,
the structures P and P′ agree on the total order on each subset Pσ of P , and
only differ on the total order for pairs p, q with p ∈ Pσ, q ∈ Pς and σ 6= ς. For
those pairs the total order is uniquely determined by Σ for P and Σ′ for P′.
Thus Φ1 is a bijection, which concludes the proof.

Lemma 5.2.8. Let Σ = (Σ, <, l1, l2) be a good skeleton and
Σ′ = (Σ, <′, l1, l

′
2) be a good skeleton, differing from Σ in the partial or-

der (Σ, <′) and label map l′2. Let R be a subset of Σ2, with a partition
{R1, R2, R3} such that

(i) If (σ, ς) ∈ R1, then σ <c ς and σ||′ς.

(ii) If (σ, ς) ∈ R2, then σ||ς and σ <′c ς.

(iii) If (σ, ς) ∈ R3, then for some <l∈ {<g, <c, <sh, <pm, <cpm} we have
σ <l ς and σ <′l ς.

Suppose further that

(iv) σ < ς precisely when (σ, ς) ∈ R1 ∪R3, and

(v) σ <′ ς precisely when (σ, ς) ∈ R2 ∪R3.

Then the classes K(Σ) and K(Σ′) are simply bi-definable.

Proof. Recall Definition 3.1.2 again.
Let, for each σ ∈ Σ the formula µσ be a simple formula

s(p) ∈ Sσ ∧ s(q) ∈ Sσ ∧ p < q.
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Further, let for each (σ, ς) ∈ R2 the formula µσ,ς be a simple formula

s(p) ∈ Sσ ∧ s(q) ∈ Sς .

Let also, for each (σ, ς) ∈ R3, the formula µσ,ς be a simple formula

s(p) ∈ Sσ ∧ s(q) ∈ Sς ∧ p < q.

Finally, let ϕ be the simple formula(∨
σ∈Σ

µσ

)
∨

 ∨
(σ,ς)∈R2∪R3

µσ,ς

 .

Fix a structure P0 = (P, sP0).
Take a structure P = (P,<P, sP0) ∈ K(Σ, o) and define <′P

′
on P as

p<′
P′
q ⇐⇒ P |= ϕ[p, q].

The formulae µσ tell us that the partial orders <P and <′P
′
agree on each

substructure Pσ of P and P′. The formulae µσ,ς define the partial order <′P
′

for points p, q in different components, P′σ and P′ς respectively, of P′. The
partial orders <P and <′P

′
again agree on pairs (σ, ς) ∈ R3. For (σ, ς) ∈ R1

we have p||′P′q, as there is no formula µσ,ς . For (σ, ς) ∈ R2 we have p<′P
′
q,

because the formula µσ,ς applies. Thus the structure P′ = (P,<P0 , sP0) is
indeed the structure in the class K(Σ′, o). Set Φ1(P) = P′.
Symmetrically, we can define formulae µ′σ and µ′σ,ς and ϕ′ that define <P on P
from <′P

′
on P′ ∈ K(Σ′, o), and the map Φ2 between total order expansions

of P0 in K(Σ′, o) and total order expansions of P0 in K(Σ, o).
We’ve shown that part (i) and (ii) of Definition 3.1.2 are true. By definition,
the structures P and P′ agree on the partial order on each subset Pσ of P ,
and only differ on the total order for pairs p, q with p ∈ Pσ, q ∈ Pς and
(σ, ς) ∈ R1 ∪ R2. For those pairs the partial order is uniquely determined by
Σ for P and Σ′ for P′. Thus Φ1 is a bijection, which concludes the proof.
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5.2 Good skeleton with a total order

Matching skeletons

We defined the class (GAC,S, N, o) of ordered glorified antichains of chains in
Definition 2.5.20. We defined a (c)pm-skeleton in Definition 5.1.12. In this section
we explore how the two are related.

Consider the structures Hσ<pmσ′ and Hσ<cpmσ′ , satisfying <pm- and <cpm-
condition respectively (defined in 2.4.10).

We know that in Hσ<pmσ′ , for any chain Hσ,i in Hσ, there is precisely one
chain Hσ′,i′ in Hσ′ , such that

Hσ,i <c Hσ′,i′

and vice versa. For any j 6= i′ we have

Hσ,i||Hσ′,j.

In Hσ<(cpmσ
′ , the two cases are swapped. For any chain Hσ,i in Hσ, there is

precisely one chain Hσ′,i′ in Hσ′ , such that

Hσ,i||Hσ′,i′

and vice versa. For any j 6= i′ we have

Hσ,i <c Hσ′,j.

In both cases, of course, Hσ and Hσ′ need to have the same number of chains.
In both cases there is also a bijection, or a matching, between the chains in

the bottom and the chains on the top; in Hσ<pmσ′ , each pair forms a chain, and
in Hσ<cpmσ′ , each pair is incomparable, and the non-pairs form chains.

Thinking of the chains in the two components as points in the respective
components of a bipartite graph and drawing an edge between two points if they
represent a pair of chains that form a chain, the graph representing a Hσ<pmσ′

would then be a perfect matching and the one representing Hσ<cpmσ′ its comple-
ment.
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5.2 Good skeleton with a total order

A different way to describe the similarities between Hσ<pmσ′ and Hσ<cpmσ′

would be to say that they are simply bi-definable. Indeed, suppose that < is the
partial order on Hσ<cpmσ′ . We can define the partial order <′ on the universe of
Hσ<cpmσ′ as p <′ q if

(i) p < q and p, q ∈Hσ or p, q ∈Hσ′ , or

(ii) p ∈Hσ, q ∈Hσ′ and p||q.

So stacking two (or more)H(AC) components with the same number of chains
on top of each other, with all relations between them being labelled <pm leads to a
shaped homogeneous partial order, with an unshaped reduct that is an antichain
of chains. Call the skeleton of structure described Σ1 - it is a chain of points
labelled AC, and with relations labelled <pm. Suppose Σ2 is also such a skeleton.
If they have the same number of chains, we could ’match’ the chains of Σ1 and
Σ2, by placing the chains of Σ2 on top of the chains of Σ1 and making precisely
the matched pairs of chains incomparable. Then for any σ ∈ Σ1 and σ′ ∈ Σ1 we
have Hσ <cpm Hσ′ . A glorified chain then consists of a matched pair of chains,
and the constructed structure is a glorified antichain of chains. See Figure 5.4
for a sketch of a glorified antichain of chains, as defined here, and compare it to
Figure 2.9.

Definition 5.2.9. Let Σ(c)pm be a (c)pm-skeleton, with

• a set of shapes S with a partition
⊔
σ∈Σ(c)pm

Sσ,

• for each σ ∈ Σ(c)pm a number nσ ∈ {1,ℵ0}, and

• if nσ = 1 then |Sσ| = 1.

Let N = {nσ : σ ∈ Σ(c)pm}.
The homogeneous shaped partial order H(Σ(c)pm,S, N) is a glorified S-
shaped antichain of ℵ0 chains. For any σ ∈ Σ(c)pm, Hσ(Σ(c)pm,S, N) is a
Sσ-shaped antichain of ℵ0 chains of size nσ.
The age K(Σ(c)pm,S, N) of H(Σ(c)pm,S, N) is a class of finite shaped glo-
rified antichains of chains. The universe of any P ∈ K(Σ(c)pm,S, N), is of
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5.2 Good skeleton with a total order

Figure 5.4: Glorified antichain of chains P

the form
P = {pσ,i,j : (σ, i, j) ∈ (Σ(c)pm × I) o J },

where I is a total order of size at most n1, for each (σ, i) ∈ Σ(c)pm×I, Jσ,i
is a total order of size at most nσ,2 or Jσ,i is an empty set. The partial
order on P is defined as

pσ,i,j < pσ′,i′,j′

if

(i) σ ∈ Σ(c)pm,1, σ′ ∈ Σ(c)pm,2 and i 6= i′, or

(ii) σ, σ′ ∈ Σ(c)pm,1 or σ, σ′ ∈ Σ(c)pm,2 and σ < σ′ in Σ(c)pm and i = i′, or

(iii) σ = σ′, i = i′ and j < j′ in Jσ,i.
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5.2 Good skeleton with a total order

An Sσ-shaped component Pσ of P for each σ ∈ Σ(c)pm, is the substructure
of P on the subset

Pσ = {pσ,i,j : (σ, i, j) ∈ ({σ} × I) o J }

of P . The shaping s : P → S sends Pσ to Sσ.
For each i ∈ I, the glorified chain Pi is the substructure of P on the subset

Pi = {pσ,i,j : (σ, i, j) ∈ (Σ(c)pm × {i}) o J }.

For each (σ, i) ∈ Σ× I, if the set Jσ,i is non-empty, the part Pσ,i of P on

Pσ,i = {pσ,i,j : j ∈ Jσ,i}.

Remarks 5.2.10. (i) For h ∈ [2], we define

Sh =
⋃

σ∈Σ(c)pm,1

Sσ, N1 = {nσ : σ ∈ Σ(c)pm,1}

and the substructure Ph,i of P on the set of points

Ph,i = {pσ,i,j : (σ, i, j) ∈ (Σ(c)pm,h × {i}) o J }.

Then Pi consists of a shaped chain P1,i and/or a shaped chain P2,i.
If it consists of two chains, then P1,i and P2,i are incomparable.

(ii) One might expect that the universe of a P ∈ K(Σ(c)pm,S, N) is

P = {pσ,i,j : (σ, i, j) ∈ (Σ(c)pm o I) o J },

with each component Pσ of P having a distinct index set Iσ.

But any P ∈ K(Σ(c)pm,S, N) is a finite substructure of
H(Σ(c)pm,S, N). As discused in the beginning of this subsection,
the partial order reducts of the substructures H(Σ(c)pm,h,Sh, Nh) for
h ∈ [2] of H(Σ(c)pm,S, N) are antichains of ℵ0 chains, due to the

201



5.2 Good skeleton with a total order

matching between the chains of Sσ-shaped antichains of ℵ0 chains.
For any maximal chain H1,i in H(Σ(c)pm,1,S1, N1), there is pre-
cisely one maximal chain H2,i in H(Σ(c)pm,2,S2, N2), such that H1,i

and H2,i are incomparable. The substructure of H(Σ(c)pm,S, N) on
H2,i ∪H2,i is a glorified chain of H(Σ(c)pm,S, N).

So each glorified chain Pi of P is a finite substructure of a glorified
chain of H(Σ(c)pm,S, N). Thus there exists the index set I, which
enumerates the glorified chains of P overall.

Finally, define a class of finite ordered shaped glorified antichains of chains.

Definition 5.2.11. Suppose thatK(Σ(c)pm,S, N) is a class of finite shaped
glorified antichains of chains. The classK(Σ(c)pm,S, N, o) of ordered shaped
glorified antichains of chains is an expansion of the class K(Σ(c)pm,S, N)

with glorified convex total orders of the partial orders. A glorified convex
total order ≺ of a glorified antichain of chains P is a total order in which

(i) ≺ extends the partial order on each glorified chain, placing the part
of the glorified chain defined by Σ(c)pm,1 below the part defined by
Σ(c)pm,2, and

(ii) ≺ is convex on each glorified chain.

Take any P = (P,<,≺, s) ∈ K(Σ(c)pm,S, N, o). There exists a total order
I and for each (σ, i) ∈ Σ(c)pm×I a total order Jσ,i , defining the total order
on P, as well as defining the partial order on it. The partial order on P is
defined in 5.2.9. But we have

pσ,i,j ≺ pσ′,i′,j′

if

(i) i < i′ in I,

(ii) i = i′ and σ < σ′ in Σ(c)pm, or

(iii) i = i′, σ = σ′ and j < j′ in Jσ,i.
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Note. The total order I and for each (σ, i) ∈ Σ(c)pm × I a total order Jσ,i
exist because the glorified convex total orders essentially define a total order
of the glorified chains of a glorified antichain of chains, and then define a
total order on a glorified chain as an extension of the partial order, and
placing one of the two chains in it below the other based on the skeleton
Σ(c)pm. The total order I reflects the total order of glorified chains, and
the total orders Jσ,i together with the chain Σ(c)pm reflect the total orders
within the glorified chains.

Lemma 5.2.12. Let K(GAC,S, N, o) be a class of glorified antichains of
chains defined by the following.

(i) A total order A, with a partition {A1,A2}, where A2 is possibly an
empty set, and for all a1 ∈ A1 and a2 ∈ A2 we have a1 < a2.

(ii) For each a ∈ A a number na ∈ {1,ℵ0}, and N = {na : a ∈ A}.

(iii) A set S of shapes with a partition {Sa : a ∈ A}, where |Sa| = 1

when na = 1 and for each a ∈ A there exists a total order Ba, such
that Sa = {sa,b : b ∈ Ba}.

(iv) A class K(GC,S, N, o) of glorified chains.

Let also Σ be a (c)pm-skeleton with A playing the role of Π in the definition
of the (c)pm-skeleton,

Σ = {σa : a ∈ A}.

Then the classes K(Σ,S, N, o) and K(GAC,S, N, o) define the same class
of structures.

Proof. Recall that K(GAC,S, N, o) is defined in 2.5.20.
Take any P ∈ K(GAC,S, N, o). Then

P = {ph,a,bi,j : (i, j) ∈ I o J , s(ph,a,bi,j ) = sa,b, a ∈ Ah}.

For each i ∈ I, the substructure Pi of P on the subset Pi = {ph,a,bi,j : j ∈ Ji} is
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a glorified chain, defined in 2.5.18. For each i ∈ I and a ∈ A, there is a subset
P a
i = {ph,a,bj : j ∈ J a

i , a ∈ Ah} of Pi. If P a
i is non-empty, J a

i is a chain and a
substructure of Ji. So we could write

P = {ph,a,bi,j : (a, i, j) ∈ (A× I) o J , s(ph,a,bi,j ) = sa,b, a ∈ Ah}.

Consider a structure P′ with the universe

P ′ = {pσa,i,j : (σa, i, j) ∈ (Σ× I) o J },

where Jσa,i is isomorphic to J a
i and

ιai : Jσa,i → J a
i , j 7→ ι(j)

is an isomorphism.
Define the shaping

s′ : P ′ → S, s′(pσa,i,j) = s
(
ph,a,bi,ι(j)

)
,

and we can check that s′ indeed satisfes s′(Pσa) ⊂ Sa for

Pσa = {pσa,i,j : (σa, i, j) ∈ ({σa} × I) o J }.

The partial order <′ and the total order ≺′ are defined in 5.2.9 and 5.2.11
using the total orders I and Jσa,i.
Let P′ = (P ′, <′,≺′,S′). Then P′ ∈ K(Σ,S, N, o).
An easy check shows that the map

ι : P′ → P, pσa,i,j → ph,a,bi,j

defines an isomorphism.
Similarly, given a P′ ∈ K(Σ,S, N, o), we can find an isomorphic
P ∈ K(GAC,S, N, o). Thus K(Σ,S, N, o) and K(GAC,S, N, o) both define
the same class.
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Corollary 5.2.13. Consider K(GAC,S, N, o) and K(Σ,S, N) defined in
Theorem 5.2.12. The class K(GAC,S, N, o) is a reasonable class with
respect to the class K(Σ,S, N).

We turn our eyes back to the class K(GAC,S, N, o).

Lemma 5.2.14. The class K(GAC,S, N, o) has the ordering property.

Proof. Consider a structure (P,<,S) ∈ K(GAC,S, N).
Take any P = (P,<,≺,S) ∈ K(GAC,S, N, o). The total order ≺ is convex
on the maximal glorified chains of P and for a chain I we have

Pi ≺ Pj ⇐⇒ i < j in I.

Thus ≺ for each of the glorified chains is determined already, and any different
total order ≺′ with P′ = (P,<,≺′,S) ∈ K(GAC,S, N, o) just permutes the
maximal glorified chains Pi of P.
Recall that by Lemma 4.3.2, the class K(GC,S, N, o) has the joint embedding
property. Let P′ be a glorified chain with Pi as a substructure for all i ∈ I.
Then let P∗ = (P ∗, <∗,S∗) be an antichain of chains P∗i for all i ∈ I, and
each P∗i isomorphic to P′. Then P∗ = (P ∗, <∗,S∗) ∈ K(GAC,S, N) and
(P ∗, <∗,≺∗,S∗) ∈ K(GAC,S, N, o) for any total order of the glorified chains
P∗i . Since the glorified chains are isomorphic, the structure (P ∗, <∗,≺∗,S∗) is
unique up to isomorphism.
Thus for any P = (P,<,≺,S) ∈ K(GAC,S, N, o), there is a substructure of
(P ∗, <∗,≺∗,S∗) isomorphic to P, as, by definition Pi is a substructure of P′

for all i ∈ I. This concludes the proof.

Chunk skeleton

Recall Definition 2.5.23 of a simple skeleton, Definition 5.1.8 of a chunk skeleton
and Definition 5.1.18 of a simplified skeleton of a chunk skeleton.
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Lemma 5.2.15. Suppose that Σ = (Σ, <, l1, l2) is a simplified skeleton of
some chunk skeleton Σch.
Let (Σ,≺) be a total order extending the partial order (Σ, <) and let l′1 be
a map with

l′1(σ) = A ⇐⇒ l1(σ) = AC.

Then Σ′ = (Σ, <,≺, l′1, l2) is an antichained skeleton.

We omit the trivial proof.
Lemma 5.2.15 provides another connection between classes corresponding to

good skeletons and classes corresponding to ordered skeletons.

Lemma 5.2.16. Let Σ and Σ′ be a pair of skeletons, as in Lemma 5.2.15.
Further, for each σ ∈ Σ,

(i) if l1(σ) = AC, let Sσ = {sσ} be a set of shapes, nσ,1 = ℵ0, nσ,2 = 1,

(ii) and if l1(σ) = G, let Sσ be a set of shapes, such that the sets Sσ are
disjoint for all σ ∈ Σ.

Let S =
⊔
σ∈Σ Sσ.

Then the class K(Σ′,S, o) is a reasonable class with respect to K(Σ,S).

Proof. This holds since for each σ ∈ Σ,

(i) if l1(σ) = AC, by part (ii) of Lemma 5.2.5, the class K(A, {sσ}, o) is a
reasonable class with respect to K(AC, {sσ}, {ℵ0, 1}), and

(ii) if l1(σ) = G, by Lemma 5.2.1, the class K(G,Sσ, o) is a reasonable class
with respect to the class K(G,Sσ).

The total order on any structure is determined by the total order on each
substructure Pσ, and Pσ ≺ Pσ′ whenever σ ≺ σ′.

Definition 5.2.17. Let Σch be a chunk skeleton with a chunk partition
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5.2 Good skeleton with a total order

For each u ∈ (C)pm let σu be the least point in the (c)pm-skeleton Σu.
The skeleton Σch is a simple chunk skeleton if for each u ∈ (C)pm, σ ∈ Σu

and σ′ /∈ Σu we have

(i) σu <c σ
′ if and only if σ <c σ

′, and

(ii) σ′ <c σu if and only if σ′ <c σ.

Lemma 5.2.18. Let Σch be a simple chunk skeleton with a simplified skele-
ton Σ. Let Σ′ be an antichained skeleton defined in Lemma 5.2.15 and let
Σ∗ be a glorified skeleton of Σ′, defined in 2.5.24.

(i) For u ∈ (C)pm, with Σu = {σu,a : a ∈ Au} we have the following.

(a) A total order Au, with a partition {Au,1,Au,2}, where Au,2 is
possibly an empty set, and for all a1 ∈ Au,1 and a2 ∈ Au,2 we
have a1 < a2.

(b) Σu,1 = {σu,a : a ∈ Au,1} and Σu,2 = {σu,a : a ∈ Au,2}.

(c) For each a ∈ Au, nu,a ∈ {1,ℵ0}, and Nu = {nu,a : a ∈ Au}.

(d) A set Su of shapes with a partition {Su,a : a ∈ Au}, where
|Su,a| = 1 when nu,a = 1 and for each a ∈ Au there exists a
total order Bu,a, such that Su,a = {sa,bu : b ∈ Bu,a}.

(e) A class K(GC,Su, Nu, o) of glorified chains.

(ii) For γ ∈ Γ, a set Sγ of shapes.

Let S =
(⊔

u∈(C)pmSu

)
t
(⊔

γ∈Γ Sγ

)
.

Then the class K(Σ∗,S, N, o) is a reasonable class with respect to the class
K(Σch,S).

207



5.2 Good skeleton with a total order

Proof. By Lemma 5.2.12, for each u ∈ (C)pm, the classes K(Σu,Su, Nu, o)

and K(GAC,Su, Nu, o) define the same class of structures, so the class
K(Σu,Su, Nu, o) is reasonable with respect to K(GAC,Su, Nu).
For γ ∈ Γ, by Lemma 5.2.1, the class K(G,Sγ, o) is a reasonable class with
respect to the class K(G,Sγ).
Take any P = (P,<,≺,S) ∈ K(Σ∗,S, N, o). Then

P = {Pu : u ∈ (C)pm} ∪ {Pγ : γ ∈ Γ},

and for non-empty Px with x ∈ (C)pm ∪ Γ, the substructure of P on Px is
Sx-shaped.
We know that in the simple chunk skeleton, for each u ∈ (C)pm, σ ∈ Σu and
σ′ /∈ Σu we have

(i) σu <c σ
′ if and only if σ <c σ

′, and

(ii) σ′ <c σu if and only if σ′ <c σ.

The partial order (P,<) satisfies those conditions due to the part (x) of Defi-
nition 2.5.26. Thus (P,<,S) ∈ K(Σch,S).
For x, y ∈ (C)pm ∪ Γ, the total order on any structure is determined by the
total order on each substructure Pu or Pγ, and Px ≺ Py whenever x ≺ y in
the antichained skeleton Σ′, which finishes the proof.

Lemma 5.2.19. Suppose that Σch = (Σ, <, l1, l2) is a chunk skeleton. Then
there exists a simple chunk skeleton Σ′ = (Σ, <′, l1, l

′
2), differing from Σ in

the partial order (Σ, <′) and label map l′2, so that there is a subset R of Σ2,
with a partition {R1, R2, R3} such that

(i) If (σ, ς) ∈ R1, then σ <c ς and σ||′ς.

(ii) If (σ, ς) ∈ R2, then σ||ς and σ <′c ς.

(iii) If (σ, ς) ∈ R3, then for some <l∈ {<g, <c, <sh, <pm, <cpm} we have
σ <l ς and σ <′l ς.

(iv) σ < ς precisely when (σ, ς) ∈ R1 ∪R3.
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5.2 Good skeleton with a total order

(v) σ <′ ς precisely when (σ, ς) ∈ R2 ∪R3.

Proof. This is true by the definition of a good skeleton, 2.4.13. For any
u ∈ (C)pm, σ ∈ Σu and σ′ /∈ Σu, we can obtain a simple chunk skeleton
from a chunk skeleton by adding a relation σ <c σ

′ or σ′ <c σu or deleting a
relation σu <c σ

′ or σ′ <c σ to obtain a skeleton satisfying conditions (i) and
(ii) in Definition 5.2.17, that is also a good skeleton.

Corollary 5.2.20. Suppose that Σch is a chunk skeleton. Then there exists
a simple chunk skeleton Σsch such that the classes K(Σch) and K(Σsch) are
simply bi-definable.

Proof. This follows from Lemma 5.2.8 and Lemma 5.2.19.

Lemma 5.2.21. Suppose that Σch is a chunk skeleton. Suppose that S is
a set of shapes, that there is a partition {Sσ : σ ∈ Σ} of S, and for each
σ ∈ Σ with l1(σ) = AC, numbers nσ,1 and nσ,2, with

(i) nσ,1 = ℵ0 and nσ,2 ∈ {1,ℵ0}, or nσ,1 = nσ,2 = 1, and

(ii) |Sσ| = 1 if nσ,2 = 1.

Let K(Σ) be the class of shaped partial orders as defined in 2.4.14. Then
if, for some σ ∈ Σ we have nσ,1 = nσ,2 = 1, the skeleton Σ consists only of
the point σ labelled AC, Sσ = {s} for some shape s, and K(Σ) contains
precisely the s-shaped antichain of size 1.
In this case we call the skeleton Σch a trivial chunk skeleton.

Proof. If nσ,1 = nσ,2 = 1, the homogeneous structure Hσ is an an s-shaped
antichain of size 1 for the shape s with Sσ = {s}. Then for any other σ′,
Hσ can either be incomparable with, completely below, or completely above
the structure Hσ′ , as Hσ only contains one point. Thus, by part (iii) of the
definition of a chunk skeleton (5.1.8), Σ does not contain any point other than
σ, which completes the proof.
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5.2 Good skeleton with a total order

Theorem 5.2.22. Let Σch be a chunk skeleton and K(Σch,S) the class of
S-shaped partial orders, as defined in 2.4.14. If Σch is not a trivial chunk
skeleton, then there exists a simple skeleton Σ, such that

(i) the classes K(Σch,S) and K(Σ,S) are simply bi-definable, and

(ii) the class K(Σ,S, o) is a reasonable class with respect to K(Σ,S) and
has the Ramsey property.

Remark 5.2.23. We refer to the skeleton Σ as the simple skeleton of the
chunk skeleton Σch.

Proof. We have shown in Corollary 5.2.20 that there exists a simple chunk
skeleton Σsch such that the classes K(Σch,S) and K(Σsch,S) are simply bi-
definable. Further, in Lemma 5.2.18, we have shown that there exists a simple
skeleton Σ, such that the class K(Σ,S, o) is reasonable with respect to the
class K(Σsch,S).
Let Φ : K(Σsch,S)→ K(Σch,S) be a ’map’, defined in Remark 3.1.3 after the
definition of simple bi-definability.
Define the class K(Σch,S, o) as follows. Any P = (P,<,≺,S) ∈ K(Σch,S, o)

satisfies the following.

(i) (P,<,S) ∈ K(Σch,S)

(ii) There is a structure P′ = (P,<′,≺′,S) ∈ K(Σ,S, o), such that

(P,<,S) = Φ
(
(P,<′,S)

)
and p ≺ q precisely when p ≺′ q for all p, q ∈ P .

Thus the classes K(Σ,S, o) and K(Σch,S, o) are simply bi-definable as well
and K(Σch,S, o) is a reasonable class with respect to K(Σch,S).
By Theorem 4.3.7, the classK(Σ,S, o) is Ramsey, which finishes the proof.
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5.2 Good skeleton with a total order

Shuffle skeleton

Let Σ be a shuffle skeleton, defined in 5.1.5. In Torrezão de Sousa & Truss (2008),
the structures H(Σ), where Σ is a shuffle skeleton, correspond precisely to the
SH∗-classes. In the proof of Theorem 5.2, starting on page 20, they show the
equivalent of the following.

Lemma 5.2.24. Suppose that Σ is a shuffle skeleton with the set of shapes

S =
⊔
σ∈Σ

Sσ, Sσ =
⊔
a∈Aσ

Sσ,a.

Then H(Σ,S) is simply bi-definable with the homogeneous structure
H(CA,S), where S is viewed as

S =
⊔

(σ,a)∈ΣoA

Sσ,a.

This, of course, implies that given any shuffle skeleton Σ and any compatible
set S of shapes, the classes K(Σ,S) and K(CA,S) are simply bi-definable.

Good skeleton

Let Σ be a good skeleton. Then by Lemma 5.1.11 there is a partition of Σ,

Σ =

(⋃
t∈Sh

Σt

)
∪

( ⋃
z∈Ch

Σz

)
,

such that the following hold.

(i) For each t ∈ Sh, Σt is a shuffle skeleton.

(ii) For each z ∈ Ch, Σz is a chunk skeleton.

(iii) For any distinct x, y ∈ Sh ∪ Ch and σ ∈ Σx, σ′ ∈ Σy, if σ < σ′ in Σ, then
σ <c σ

′.
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5.2 Good skeleton with a total order

Lemma 5.2.25. Let Σ be a good skeleton with a good partition

Σ =

(⋃
t∈Sh

Σt

)
∪

( ⋃
z∈Ch

Σz

)
.

Then there exists a good skeleton Σ′ with the same good partition such that
the following hold for Σ′.

(i) For each t ∈ Sh, Σt is a shuffle skeleton.

(ii) For each z ∈ Ch, Σz is a chunk skeleton.

(iii) For any distinct x, y ∈ Sh ∪ Ch and σ ∈ Σx, σ′ ∈ Σy, we have σ||σ′.

(iv) The classes K(Σ) and K(Σ′) are simply bi-definable.

We refer to Σ′ as a better skeleton.

Proof. This is true by Lemma 5.2.8.

Theorem 5.2.26. Suppose that Σ is a good skeleton. Suppose that S is a
set of shapes, that there is a partition {Sσ : σ ∈ Σ} of S, and

• for each σ ∈ Σ with l1(σ) = AC, numbers nσ,1 and nσ,2, with

– nσ,1 = ℵ0 and nσ,2 ∈ {1,ℵ0}, or nσ,1 = nσ,2 = 1, and

– |Sσ| = 1 if nσ,2 = 1;

• for each σ ∈ Σ with l1(σ) = CA,

– a partition {Sσ,a : a ∈ Aσ} of Sσ, and

– for each sa,bσ ∈ Sσ,a, a number nσ,a,b ∈ {1,ℵ0}.

Let K(Σ) be the class of shaped partial orders as defined in 2.4.14. Then
there exists an elementary skeleton Σ∗ and a class K(Σ∗, o) of ordered
shaped partial orders, such that

(i) the classes K(Σ) and K(Σ∗) are simply bi-definable, and
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5.2 Good skeleton with a total order

(ii) the class K(Σ∗, o) is a reasonable class with respect to K(Σ∗) and is
a Ramsey class.

Further, when the elementary skeleton Σ∗ does not contain edges labelled
<g, the class K(Σ∗, o) has the ordering property.

Proof. Let Σ′ be the better skeleton defined in 5.2.25. Then K(Σ,S) and
K(Σ′,S) are simply bi-definable.
For each x ∈ Sh ∪ Ch, let Sx =

⋃
σ∈Σx

Sσ.
Then by Lemma 5.2.24, for each t ∈ Sh, the class K(Σt,St) is simply bi-
definable with the class K(σ∗t ,St, Nt), where σ∗t is labelled CA and

Nt = {nσ,a,b : (σ, a, b) ∈ (Σt oAt) o Bt}.

By Theorem 4.2.5, the class K(σ∗t ,St, Nt, o) is Ramsey and by Lemma 5.2.3
the class K(σ∗t ,St, Nt, o) is a reasonable class with respect to K(σ∗t ,St, Nt).
For z ∈ Ch, where Σz is a trivial chunk skeleton, defined in 5.2.21, the class
K(Σz,Sz) is simply bi-definable with the class K(σ∗z ,Sz), where σ∗z is labelled
A1. The class K(σ∗z ,Sz, o) is trivially Ramsey and the class K(σ∗z ,Sz, o) is
reasonable with respect to the class K(σ∗z ,Sz). Let the set of all such z be
Ch1.
Otherwise, for z ∈ Ch \Ch1, by Theorem 5.2.22 there exists a simple skeleton
Σ∗z, such that

(i) the classes K(Σz,Sz) and K(Σ∗z,Sz) are simply bi-definable, and

(ii) the class K(Σ∗z,Sz, o) is a reasonable class with respect to K(Σ∗z,Sz)

and has the Ramsey property.

Let

Σ∗ =

(⋃
t∈Sh

σ∗t

)
∪

( ⋃
z∈Ch1

σ∗z

)
∪

 ⋃
z∈Ch\Ch1

Σ∗z

 ,

such that for any distinct x, y ∈ Sh ∪ Ch and σ ∈ Σ∗x or σ = σ∗x, σ′ ∈ Σ∗y or
σ′ = σ∗y, we have σ||σ′.
The fact that for distinct x, y we have σ||σ′ implies all of the following.
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5.2 Good skeleton with a total order

(i) The classes K(Σ′,S) and K(Σ∗,S) and thus K(Σ,S) and K(Σ∗,S) are
simply bi-definable.

(ii) Define K(Σ∗,S, o) as consisting of P = (P,<,≺, s), where

(a) there is a partition {Px : x ∈ Sh ∪ Ch} of P ,

(b) the substructure Px of P for each non-empty Px lies in the class
K(σ∗x,Sx, o) for x ∈ Sh ∪ Ch1 or K(Σ∗x,Sx, o) for x ∈ Ch \ Ch1,
and

(c) there is a total order on Sh ∪ Ch inducing a total order on Px.

Then the class K(Σ∗,S, o) is reasonable with respect to the class
K(Σ∗,S).

(iii) The class K(Σ∗,S, o) is Ramsey by Corollary 3.2.12. It is a merge of
classesK(σ∗x,Sx, o) andK(Σ∗x,Sx, o) for x ∈ Sh∪Ch, and taking a selec-
tion of structures, at most one Px from K(σ∗x,Sx, o) per x ∈ Sh ∪ Ch1

or K(Σ∗x,Sx, o) per x ∈ Ch \ Ch1, defines precisely one structure in
K(Σ∗,S, o); the structure with the total order defined by the total order
on Sh ∪ Ch.

Now Σ∗ consists of an antichain of points σ∗x for x ∈ Sh ∪ Ch1, labelled CA
or A1, as well as the union

⋃
z∈Ch\Ch1

Σ∗z of simple skeletons. Since each of the
simple skeletons consists of points labelled GAC or G, relations labelled <g

or <c, and satisfies the c-condition, the skeleton Σ∗ is indeed an elementary
skeleton, as defined in 2.5.28.
Finally, by condition (v) of the simple skeleton (2.5.23), if Σ∗ contains no edges
labelled <g, all the simple skeletons consist of a single point, so

Σ∗ = {σx : x ∈ Sh ∪ Ch}.

(i) By Lemma 5.2.4, any K(σx,Sx, o) with l1(σx) = CA has the ordering
property.

(ii) The class K(σx,Sx, o) with l1(σx) = A1 trivially has the ordering prop-
erty.
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5.2 Good skeleton with a total order

(iii) By Lemma 5.2.2, any K(σx,Sx, o) with l1(σx) = G has the ordering
property.

(iv) By Lemma 5.2.14, any K(σx,Sx, o) with l1(σx) = GAC has the ordering
property.

So take any structure P = (P,<, s) ∈ K(Σ∗,S). Then, for each
x ∈ Sh ∪ Ch, since K(σx,Sx, o) has ordering property, there exists a struc-
ture Rx = (Rx, <, s) ∈ K(σx,Sx), such that for any

P = (P,<,≺, s) ∈ K(Σ∗,S, o)

and the corresponding

Px = (Px, <,≺, s) ∈ K(σx,Sx, o)

as well as any
Rx = (Rx, <,≺, s) ∈ K(σx,Sx, o)

there exists an embedding

ex : Px = (Px, <,≺, s)→ Rx = (Rx, <,≺, s).

Let R ∈ K(Σ∗,S) be the unique merge in of structures

Rx = (Rx, <, s) ∈ K(σx,Sx, o)

for x ∈ Sh ∪ Ch. Then any total order ≺ on R induces the total orders ≺
on Rx = (Rx, <,≺, s) ∈ K(σx,Sx, o). Since the total order between points in
different Px (and Rx) is uniquely determined by a total order on Sh∪Ch, we
can combine the embeddings ex to get an embedding

e : P = (P,<,≺, s)→ R = (R,<,≺, s).

Thus the class K(Σ∗,S, o) has the ordering property.
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Chapter 6

Conclusion

Consider, again, Definition 2.4.14. It defines a homogeneous shaped partial H(Σ)

for any good skeleton Σ, and a set of shapes and multiplicities as follows. Let S
be a set of shapes, together with a partition {Sσ : σ ∈ Σ} of S, and

• for each σ ∈ Σ with l1(σ) = AC, numbers nσ,1 and nσ,2, with

– 2 ≤ nσ,1 ≤ ℵ0 and nσ,2 ∈ {1,ℵ0}, or nσ,1 = nσ,2 = 1, and

– |Sσ| = 1 if nσ,2 = 1;

• for each σ ∈ Σ with l1(σ) = CA,

– a partition {Sσ,a : a ∈ Aσ} of Sσ, and

– for each sa,bσ ∈ Sσ,a, a number nσ,a,b with 1 ≤ nσ,a,b ≤ ℵ0.

Suppose that K(Σ, o) is a reasonable order class with respect to K(Σ) and
either 1 < nσ,1 < ℵ0 for some σ ∈ Σ with l1(σ) = AC (or 1 < nσ,a,b < ℵ0 for
some σ ∈ Σ with l1(σ) = CA), the class K(Σ, o) contains an siσ-shaped A2 for
any siσ ∈ Sσ (or an sa,bσ -shaped A2). By Lemma 2.5.6, K(Σ, o) does not have the
Ramsey property. Thus the pair (nσ,1, nσ,2) is restricted to values (1, 1), (ℵ0, 1)

and (ℵ0,ℵ0), and nσ,a,b can only take values 1 and ℵ0 in Theorem 5.2.26.
The last sentence of Theorem 5.2.26 states that when the elementary skeleton

Σ′ does not contain edges labelled <g, the classK(Σ′, o) has the ordering property.
So to achieve the aim of the thesis, the outstanding result needed is that when
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the elementary skeleton Σ′ does contain edges labelled <g, the class K(Σ′, o) has
the ordering property. The following is needed to complete the aim of the thesis.

Conjecture 6.0.1. Let Σ be a chunk skeleton and Σ∗ a glorified skele-
ton, such that K(Σ) and K(Σ∗,S, N) are simply bi-definable. Then
K(Σ∗,S, N, o) has the ordering property.

The skeleton Σ∗ exists by Corollary 5.2.20. In the proof of Theorem 5.2.26
we prove that when all glorified skeleton substructures of an elementary skeleton
are singletons, the class of ordered shaped partial orders defined by it has the
ordering property. The proof works because we also show in the thesis that the
classes of structures defined by a singleton elementary skeleton have the ordering
property. So with a proven conjecture, we can similarly show that a class defined
by any elementary skeleton has the ordering property. Proving this conjecture is
the next step for the author of this thesis.

Next, the Ramsey and ordering properties results lead to topological dynamics
results. The classes mentioned in Theorem 5.2.26 can easily be seen to be closed
under substructures, so checking that they have the joint embedding property
would show that they are Fraïssé by Theorem 2.2.4. This would thus yield the
results about the automorphism groups of the corresponding ordered homoge-
neous shaped partial orders being extremely amenable, and allow us to calculate
the universal minimal flow of the automorphism groups of the corresponding ho-
mogeneous shaped partial orders.

We have seen in 1.2.1 that the classesK(ACℵ0 , ce) andK(CAℵ0 , ce) are simply
bi-definable. Similarly, there might be classes of ordered shaped partial orders
that are simply bi-definable. It might be interesting to find a classification of
Ramsey Fraïssé classes of ordered shaped partial orders with the ordering prop-
erty that contains no simply bi-definable classes.

Another set of questions to consider regards other shaped structures. For
example, one might want to classify all shaped homogeneous graphs or shaped
homogeneous tournaments. Given the classification, versions of the Two Pass
Lemma, the Structural Product Ramsey Lemma or the Blowup Lemma could be
relevant to showing that classes of ordered shaped graphs are Ramsey.
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