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Abstract

A result by Tange from 2015 [26] gave bases for the spaces of highest weight

vectors for the action of GLr×GLs on k [Matmrs] over a field of characteristic zero,

and in arbitrary characteristic for certain weights; here, we generalise this to give

bases for the spaces of highest weight vectors in k [Matmrs] of any given weight

in arbitrary characteristic. The motivation for this is to apply the technique of

transmutation to describe the highest weight vectors for the conjugation action

of GLn on k [Matn]. Then, we use similar methods but in characteristic zero

to describe finite spanning sets for the spaces of highest weight vectors for a

certain polynomial action of GLr on k
[
Matlr

]
(derived from the GLr-action on

Matr given by g · A = gAgT ), and apply this to the conjugation action of the

symplectic group Spn on k [spn].
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Introduction

Definition. Let An denote n-dimensional affine space and k a field. An affine

algebraic set is a subset {x ∈ An| f(x) = 0∀f ∈ S} for some set S of polynomials

in k[x1, . . . , xn]. An affine variety is an affine algebraic set that is irreducible,

i.e. that is not equal to the union of two proper subsets that are both also affine

algebraic sets. Throughout this thesis, affine varieties will be referred to simply

as varieties.

Let X ⊆ An and Y ⊆ Am be varieties; a map ϕ : X → Y is called a morphism

of varieties if each ϕi : X → A1, where ϕ(x) = (ϕ1, . . . , ϕm), can be expressed

as a polynomial on the co-ordinates of X. An algebraic group is a variety with a

group structure defined on all its points such that the multiplication and inverse

functions of the group are morphisms of varieties.

For G and H algebraic groups over an algebraically closed field, a function

f : G → H is a homomorphism of algebraic groups if it is both a morphism

of varieties and a group homomorphism.

In Chapter 1 of this thesis, I will discuss the background theory behind the

research in the latter two chapters; the first chapter will not contain any original

1



2 Contents

results. This chapter is mostly a summary of the research I did in the first year

of my PhD. In that time, I had frequent meetings with my supervisor Dr Rudolf

Tange, who gave me problems to try to solve by myself in between our meetings,

and helped me fill in gaps in my solutions as well as explaining further interest-

ing concepts in the meetings themselves. The problems I worked on, which were

mainly related to decompositions of modules of Lie algebras as direct sums of

irreducible modules, followed on from each other and, together with the books I

was reading, eventually led me to classical Schur-Weyl duality, which is described

in Section 1.6.

Chapter 2 is adapted from the paper [6], to appear in Algebras and Repres-

entation Theory, which was jointly authored with Dr Tange in 2016 and revised

in 2017. Generally the results and examples arose from simultaneous collabora-

tion, or followed from the other results; in terms of authorship, to the paper I

contributed a lot of explanatory text, the definitions and preliminaries (especially

almost all of the first section), and also the lemmas and theorems on the divis-

ibility of the basis elements (especially the results before Theorem 2.23, which

inspired the later results), and also most of the examples; the contribution of Dr

Tange was the majority of the remarks, particularly at the end of each subsection,

other examples including 2.5, and Theorem 2.23 and its corollaries including The-

orem 2.30; in the thesis I have also included more of my own material that did not

appear in the paper, in particular Subsection 2.2.1, Example 2.6, and in addition

I have expanded some of the explanations and included certain definitions and

Lemmas from the sources, for example my interpretation of Lemma 2.16.

The first goal in Chapter 2 is to give bases of the vector spaces k[Matmrs]
Ur×Us
(µ,λ) . In
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[26] this was done under the assumption that k is of characteristic 0. The method

there was to reduce the problem via a few simple isomorphisms to certain res-

ults from the representation theory of the symmetric group which were originally

due to Donin in [8]. Although this method is rather straightforward, it is hard

to generalise to arbitrary characteristic. Now we solve the problem in arbitrary

characteristic using results on bideterminants from the work of Kouwenhoven [21]

which is based on work of Clausen [3], [4]. We introduce “twisted bidetermin-

ants” to construct an explicit “good” filtration and, in particular, give bases for

the spaces of highest weight vectors in k[Matmrs], see Theorem 2.23 and its two

corollaries in Section 2.2. It turns out that these bases can also be obtained by

dividing the basis elements from [26, Thm. 4] by certain integers in the obvious

Z-form and then reducing mod p. As an application we give in Section 2.3 expli-

cit finite homogeneous spanning sets of the k[Matn]GLn-modules of highest weight

vectors in the coordinate ring k[Matn] under the conjugation action of GLn, see

Theorem 2.30. Although this problem is difficult to tackle directly, [26] contains

a method in arbitrary characteristic called “transmutation” to reduce this prob-

lem to giving spanning sets for the vector spaces k[Matmrs]
Ur×Us
(µ,λ) , see Theorem 2.27

below. So the problem is reduced to the problem solved in Section 2.2.

The goal for Chapter 3 is to apply the knowledge and techniques developed for

[26] and Chapter 2 for the action of the general linear group, to the related case

of the symplectic group Spn (where n is now an even integer) acting via conjug-

ation on its own Lie algebra spn and the algebra k[spn] of polynomial functions

on spn; we consider the problem of giving finite homogeneous spanning sets for

the k[spn]Spn-modules of highest weight vectors for such action. In particular, we

prove in Subsection 3.1.3 that we can apply transmutation to move to an action
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of GLr on the space of l-tuples of r × r-matrices. This time we assume k is of

characteristic 0 when looking for the highest weight vectors. Finite spanning sets

for the spaces of highest weight vectors on this transmuted variety are described

at the end of Subsection 3.2.2. Then these can be pulled back, i.e. we can apply

to them the comorphism of a particular morphism of varieties, in order to give

finite spanning sets for the spaces of highest weight vectors for the conjugation

action of the symplectic group, see 3.14.

Some notation. Let V be a vector space over a field k. By GL(V ), we mean the

general linear group on V , that is, the group of linear maps V → V ; if V ∼= kn,

then GL(V ) ∼= GLn(k), the space of invertible n × n-matrices with entries in k,

which will hereafter be denoted simply by GLn. We denote the Lie algebra of

GL(V ) by gl(V ). The Lie algebra of GLn, that is, the tangent to GLn at its

identity In (the n× n-matrix with ones everywhere on the leading diagonal and

zeros everywhere else), is the space Matn(k), consisting of all n×n-matrices with

entries in k; we shall also omit the (k) from this notation. A Lie algebra g is a

vector space together with an alternating bilinear map g× g→ g, (x, y) 7→ [x, y]

satisfying the Jacobi identity, [x, [y, z]]+[y, [z, x]]+[z, [x, y]] = 0 for all x, y, z ∈ g.

The adjoint action or adjoint representation of a Lie algebra g on itself is the map

ad : g → gl(g) given by x 7→ adx, where for an element x ∈ g, adx : g → g de-

notes the map y 7→ [x, y]. An abelian Lie algebra g is one where [x, y] = 0 for all

x, y ∈ g or equivalently where adx is the zero map for all x ∈ g.



Chapter 1

Background theory

1.1 Preliminaries

Definitions 1.1. Let g be a Lie algebra, and G an algebraic group, over an

algebraically closed field k.

1. A symmetric bilinear form on g is a function β : g2 → k satisfying

(a) β (ax1 + x2, y) = aβ (x1, y) + β (x2, y) ,

(b) β (x1, y) = β (y, x1) ,

for all a ∈ k, x1, x2, y ∈ g.

2. [16, p22] The radical of a symmetric bilinear form β is the subspace S =

{x ∈ g |β (x, y) = 0 ∀y ∈ g}. A symmetric bilinear form is called nondegen-

erate if its radical is {0}.

3. [16, p21] Let κ be the symmetric bilinear form on g given by κ(x, y) =

tr(adx.ady). We call κ the Killing form.

5



6 Chapter 1. Background theory

4. A k-vector space V is a module over g if there is a Lie algebra homomorphism

g → gl(V ) or respectively a module over G if there is an algebraic group

homomorphism G → GL(V ). This homomorphism, or equivalently the

module itself, is called a representation of g (resp. G). A representation is

called irreducible if it has no nonzero proper submodules.

5. For h a subalgebra of g and V a g-module, let V h := {v ∈ V |h.v = 0 ∀h ∈ h};

similarly, forH ≤ G and V aG-module, denote V H := {v ∈ V |h.v = v ∀h ∈ H }.

6. g is called simple if it is non-abelian and has no non-zero proper (left- or

right-) ideals; it is called semisimple if it is a (finite) direct product of simple

Lie algebras.

Proposition 1.2. A Lie algebra g over a field of characteristic 0 is semisimple

if and only if it satisfies one of the following equivalent conditions;

• The Killing form of g is nondegenerate;

• Every representation of g is fully reducible, i.e. is a sum of irreducible

representations.

From now on, let g denote a finite-dimensional semisimple Lie algebra over an

algebraically closed field of characteristic zero. A subalgebra h of g is called toral

if it contains no non-zero nilpotent elements; a toral subalgebra is maximal if it

is not contained in any other toral subalgebra. From now on let h be a fixed

maximal toral subalgebra of g, and h∗ its dual vector space.

Let Φ ⊆ h∗ denote the root system of g. Recall that a base of the root sys-

tem is a subset ∆ = {α1, . . . , αl} of Φ that is a basis of GL (E) (where E is the

Euclidean space of which Φ is a subset) such that for any α ∈ Φ, we can write
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α =
∑
αi∈∆

diαi with the integers di either all non-negative (in which case the root

α is called a positive root) or all non-positive (in which case the root α is called

a negative root); roots in the base are called simple roots. Let W denote the

Weyl group of Φ; that is, the subgroup of GL (E) generated by reflections σα (for

α ∈ Φ). The Weyl group is isomorphic to a subset of the symmetric group on Φ.

Using a base ∆, we can define a partial ordering on h∗ in the following way

[16, 10.1]: for λ, µ ∈ h∗, set λ ≺ µ if and only if µ− λ is a sum of positive roots

(and since every positive root is a sum of simple roots by the above definitions,

this is equivalent to requiring that µ− λ be a sum of simple roots) or λ = µ. We

can also write α � 0 for positive roots and α ≺ 0 for negative roots.

Let α ∈ Φ ⊆ h∗ be a root, then denote by hα the image of α∨ := 2α
(α,α)

(where

(−,−) is the inner product in E) under the inverse of the linear map θ : h→ h∗

given by θ : h 7→ κ (h,−) (where κ is the Killing form on g), which we know is

invertible because the Killing form is nondegenerate which means θ is at least

injective, and because h and h∗ have the same dimension (see [16, Sect. 9] for

more on this).

Definition 1.3. Now denote by Λ the subset of h∗ containing all integral linear

maps λ, i.e. those for which all λ (hαi) (αi ∈ ∆) and hence all λ (hα) (α ∈ Φ) are

integral. Call elements of Λ (integral) weights. If all the λ (hαi) are non-negative

integers then λ is called dominant, and the subset of Λ containing all such weights

is denoted Λ+.

Any finite-dimensional g-module V can be decomposed [16, Sect. 7] as a direct

sum V =
⊕
λ∈h∗

Vλ, with the subspaces Vλ := {v ∈ V |h.v = λ (h) v ∀h ∈ h} being
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called weight spaces whenever non-zero, in which case we say that λ is a weight

of h on V or simply a weight of V . (The set of weights of a particular finite-

dimensional g-module V is a finite subset of the infinite set Λ of all weights.)

Denote n+ :=
∑
α�0

gα (in case g = sln, then n+ is the set of strictly upper triangu-

lar matrices). A highest weight vector in V is any non-zero weight vector killed

by gα for all α ∈ ∆.

We can also state some of the above definitions for modules over the algeb-

raic group G = GLn, in almost the same way: let H ⊆ G be the subgroup

consisting of the diagonal invertible matrices, then weights are homomorphisms

H → k, the collection of which is denoted X (H). X (H) is isomorphic to the

set Zn of n-tuples of integers, (the isomorphism is given by ei 7→ εi where {ei}

is the standard basis of Zn and εi : h 7→ hi for hi the entry in the i-th row

(and column) of h ∈ H) and a weight λ = (λ1, . . . , λn) is called dominant here

if λ1 ≥ . . . ≥ λn. The weights of a specific G-module V are those for which the

space Vλ := {v ∈ V |h.v = λ (h) v ∀h ∈ H } is non-zero, in which case such space

is once again called a weight space. The roots are the non-zero weights of H on

gln, which are (εi − εj) : h 7→ hih
−1
j , i 6= j, and we can define again a “root

ordering” on X(H). Let us denote by U+ ⊂ GLn the set of upper unitriangular

matrices; that is, upper triangular matrices with 1 everywhere on the diagonal.

We can now state the following two results.

Theorem 1.4. [16, 7.2] Let V be an irreducible module over the general linear

group GLn, or a finite-dimensional irreducible module over any semisimple Lie

algebra. Then V has a highest weight µ (in the ordering of weights described

above); this weight is dominant, and its weight space Vµ is one-dimensional and

equal to V U+
in the group case or V n+ in the Lie algebra case.
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Moreover, every dominant weight is the highest weight of some irreducible module,

and two irreducible modules are isomorphic if and only if they have the same

highest weight.

This means that we can describe unique irreducible modules by denoting them

V (λ), where λ is the highest weight. I will also make use later on of the follow-

ing piece of notation from [16, 21.1]: for a module V , Π(V ) denotes the set of

all weights of V , and for an irreducible V (λ), we abbreviate the notation from

Π(V (λ)) to Π(λ).

Lemma 1.5. Consider a finite-dimensional g-module V and an irreducible g-

module V (µ) (with highest weight µ). Then we have

Homg (V (µ), V ) ∼= V n+
µ .

There is an analogue of this for the general linear group: let G = GLn and

consider a G-module V and an irreducible G-module V (µ) of V (with highest

weight µ). Then we have

HomG (V (µ), V ) ∼= V U+

µ .

In both of these cases, the isomorphism is given by f 7→ f (vµ), where vµ ∈ V (µ)

denotes a highest weight vector of weight µ.

Now let Z(λ) be the module U(g)⊗U(B) Dλ, (U(A) denoting the universal envel-

oping algebra of a Lie algebra A,) where Dλ is the one-dimensional vector space

with {vλ} as its basis, and B = B(∆) is the Borel subagebra h +
⊔
α�0

gα, with

an action of B on Dλ defined by

(
h+

∑
α�0

xα

)
.vλ = hvλ = λ(h)vλ making Dλ a

B-module and therefore also a U(B)-module, hence the definition of Z(λ) makes

sense and indeed we see that Z(λ) is a U(g)-module (these Z(λ), λ a weight,
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are called Verma modules). Now, we can also define V (λ) to be the irreducible

g-module Z(λ)/Y (λ), where Y (λ) is the unique maximal submodule of Z(λ).

Theorem 1.6. If λ ∈ Λ+ then the irreducible g-module V = V (λ) is finite-

dimensional and its set of weights, denoted Π(λ), is permuted by W , with dimVµ =

dimVσ(µ) for σ ∈ W .

1.2 Characters and multiplicity formulas

Denote by Z[Λ] the group ring of Λ over Z, the free Z-module with basis ele-

ments e(λ) in one-to-one correspondence with the elements λ of Λ, where as well

as standard addition, we can define multiplication by e(λ)e(µ) = e(λ+µ). W acts

naturally on Z[Λ] by permuting the basis elements, so that σ (e(λ)) = e (σ(λ)).

We can also think of Z[Λ] as a space of functions on h∗ with e(λ) corresponding to

ελ (where ε denotes the characteristic function, ελ(λ) = 1 and ελ(µ) = 0 for any

µ 6= λ); the multiplication in this case is convolution, (f ∗g)(λ) :=
∑

µ,ν∈Λ,
µ+ν=λ

f(µ).g(ν).

It can be checked that convolution is both associative and commutative and closed

on the set {f : h∗ → k| f(λ) 6= 0⇒ λ ≺ µ for some µ ∈M} for a finite M ⊆ h∗.

Note that ελ ∗ εµ = ελ+µ, and εσ(λ) = σ−1ελ for σ ∈ W .

Define the formal character of a finite-dimensional module V , denoted chV (or

chλ in case V is the irreducible V (λ), λ ∈ Λ+), to be the element
∑

µ∈Π(λ)

m(µ)e(µ)

of Z[Λ], where m(µ) is the multiplicity of µ in V , defined so that m(µ) := dimVµ

(which equals 0 in case µ is not a weight of V ). Let ρ = 1
2

∑
α�0

α, then we can state

the Weyl character formula as in [16, 24.3].
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Theorem 1.7 (Weyl’s formula). Let λ ∈ Λ+, then(∑
σ∈W

sgn (σ′) εσ(ρ)

)
∗ chλ =

∑
σ∈W

sgn (σ′) εσ(λ+ρ).

Using this formula, we can also now define the function chλ for any λ ∈ Λ (i.e.

not necessarily dominant) by chσ(λ+ρ)−ρ = sgn(σ)chλ for σ ∈ W , that is, chλ = 0

if λ + ρ is fixed by a reflection, and otherwise λ + ρ will be conjugate to some

strictly dominant weight µ (that is, the integers µ (hαi) are strictly positive),

in which case µ − ρ is dominant, and then chµ−ρ can be defined as it was for

dominant weights before the theorem, and in this case the two definitions indeed

coincide. Weyl’s formula also gives us ω(ρ) ∗ chλ = ω(λ+ ρ), where ω : Λ→ Z[Λ]

is given by

ω(µ) :=
∑
σ∈W

sgn(σ)εσ(µ)

.

Let p ∈ Z[Λ] denote the Konstant function, defined so that

p (µ) := #

{
{rα|α � 0}

∣∣∣∣∣−µ =
∑
α�0

rαα

}
.

If we define the functions fα : h∗ → k (indexed by positive roots) by fα(−rα) = 1

for r ∈ Z+ and fα(µ) = 0 otherwise, then we have p =
∏
α�0

fα. One way we can

look at p(ν) (ν ∈ h∗) is as the number of sets of non-negative integers {rα|α � 0}

for which −ν =
∑
α�0

rαα. We can now also state Konstant’s formula, from [16,

24.2].

Theorem 1.8 (Konstant’s formula). Let λ ∈ Λ+. Then the multiplicities of V (λ)

are given by

mλ(µ) =
∑
σ∈W

sgn (σ′) p (µ+ ρ− σ (λ+ ρ)) .
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Steinberg’s formula [16, 24.2] combines those of Konstant and Weyl to give a

method for decomposing a tensor product of two irreducible modules as a direct

sum of irreducible modules.

Theorem 1.9 (Steinberg’s formula). Let λ′, λ′′ ∈ Λ+. Then the number of times

V (λ) (λ ∈ Λ+) occurs in the direct sum decomposition of V (λ′)⊗ V (λ′′) is∑
σ∈W

∑
τ∈W

sgn(στ)p (λ+ 2ρ− σ(λ′ + ρ)− τ(λ′′ + ρ)) .

The following is my solution to Exercise 9 from [16, Sect. 24], for which I followed

the hints given there by the author. Starting by assuming the above formulas,

we attempt to obtain an alternative formula for decomposing a tensor product

of two irreducible modules as a direct sum of irreducible modules, assuming that

we have explicit knowledge of the weights of one of the modules.

First, fix a pair λ′, λ′′ ∈ Λ+, then for each λ ∈ Λ+ let n(λ) denote the number of

times V (λ) appears in the decomposition of the tensor product V (λ′) ⊗ V (λ′′),

so that we can write the formal character of the tensor product as

chλ′ ∗ chλ′′ =
∑
λ∈Λ+

n(λ)chλ

Now multiply both sides of the above by ω(ρ) and apply Weyl’s formula for λ

and λ′′ to obtain:

chλ′ ∗ ω (λ′′ + ρ) =
∑
λ∈Λ+

n(λ)ω(λ+ ρ).

We can replace chλ′ with the formula
∑
λ∈Λ

mλ′(λ)ελ and then the left-hand side of

the above becomes: ∑
λ∈Λ

mλ′(λ)ελ ∗
∑
σ∈W

sgn(σ)εσ(λ′′+ρ)
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then using the fact that W permutes the weight spaces of V (λ′) and that the left-

most sum is W -invariant, we can distribute the product over the rightmost sum,

bringing the summation over W to the outside of the expression and replacing λ

by σ(λ), to give

∑
σ∈W

sgn(σ)
∑

λ∈Π(λ′)

mλ′(λ)
(
εσ(λ) ∗ εσ(λ′′+ρ)

)
and then because of the distributivity of this action, as well as the property of

the characteristic function that εµ ∗ εν = εµ+ν , we can again rewrite this, as

∑
σ∈W

sgn(σ)
∑

λ∈Π(λ′)

mλ′(λ)εσ(λ+λ′′+ρ).

So, we are left with

∑
σ∈W

sgn(σ)
∑

λ∈Π(λ′)

mλ′(λ)εσ(λ+λ′′+ρ) =
∑
σ∈W

sgn(σ)
∑
λ∈Λ+

n(λ)εσ(λ+ρ).

Then applying Weyl’s formula, we have

∑
σ∈W

sgn(σ)
∑

λ∈Π(λ′)

mλ′(λ)εσ(λ+λ′′+ρ) =
∑

λ∈Π(λ′)

mλ′(λ)ω(ρ) ∗ chλ+λ′′ ;

but as we obtained
∑
σ∈W

sgn(σ)
∑
λ∈Λ+

n(λ)εσ(λ+ρ) by multiplying chλ′ ∗ chλ′′ by ω(ρ)

in the first place, this gives us a new formula:

chλ′ ∗ chλ′′ =
∑

λ∈Π(λ′)

mλ′(λ)chλ+λ′′ .

This is known as Brauer’s formula, or sometimes the Brauer-Klimyk formula.

Remark 1.10. Brauer’s formula remains valid in characteristic p if we replace

irreducible modules by induced modules (see Definition 2.11).
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1.2.1 Example: deriving the Clebsch-Gordan formula

We apply Brauer’s formula to the Lie algebra sl2, consisting of 2 × 2 zero-trace

matrices, which gives a very explicit formula for the direct sum decomposition of

the tensor product of two finite-dimensional irreducible sl2-modules.

sl2 has a basis {E,F,H}, where

E =

0 1

0 0

 , F =

0 0

1 0

 , H =

1 0

0 −1

 .

Note that for these three matrices as defined, we have [E,F ] = H, [H,E] = 2E,

and [H,F ] = −2F . The maximal toral subalgebra is simply h = 〈H〉, and so

the roots are the eigenvalues of H, which are just 2 and −2 (we can consider

weights of H on sl2 as integers, because of the bijection taking any integer r

to the linear map xr : H 7→ r in h∗). Thus we have only one positive root

α = 2; this gives ρ = 1
2
α = 1 and implies that the Weyl group is of order

2, W ∼= {1,−1}. We also have that for a finite-dimensional irreducible sl2-

module V (n), Π (n) = {n, n− 2, . . . ,−n} and V (n) = Vn ⊕ Vn−2 ⊕ . . . ⊕ V−n

with dimVπ = 1 for each π ∈ Π (n) (hence, dimV (n) = n + 1) so, we have that

for every weight π, mn (π) = 1.

So, for sl2, Brauer’s formula becomes:

V (m)⊗ V (n) ∼=
⊕
π∈Π(n)

V (π +m) ,

which we can state even more explicitly, as

V (m)⊗ V (n) ∼= V (m+ n)⊕ V (m+ (n− 2))⊕ . . .⊕ V (m+ (−n)) ,
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which is also known (e.g. in [16, 22.Ex. 7], [11, 1.2]) as the Clebsch-Gordan

formula.

1.3 Symmetric and exterior powers of the nat-

ural module over sln

Throughout this section and the next, unless stated otherwise, V will necessarily

denote the n-dimensional vector space kn over a field k of characteristic 0, as well

as the so-called natural module over sln(k), which one defines by endowing the

aforementioned vector space with the action x.v = xv, viewing v ∈ V as an n× 1

matrix and multiplying it on the left by the n× n matrix x ∈ sln.

1.3.1 Definitions

The tensor algebra T (V ) of the vector space V is the direct sum of the tensor

spaces V ⊗r for r = 1, 2, . . . where the tensor space V ⊗r := V ⊗ . . .⊗ V︸ ︷︷ ︸
r

is the

nr-dimensional space spanned by tensors of the form vi1 ⊗ . . . ⊗ vir , 1 ≤ ij ≤ n

for a basis {v1, . . . , vn} of V . The tensor algebra is indeed an algebra, with

tensor multiplication acting as the algebra multiplication. In fact, because by

this multiplication we have that the subspace V ⊗rV ⊗s, spanned by the products

xy, x ∈ V ⊗r, y ∈ V ⊗s, is contained in V ⊗(r+s), this algebra is a graded algebra.

Consider the two-sided ideal of the tensor algebra, which we shall denote by

I, generated by differences of products v⊗w−w⊗ v for v, w ∈ V . The quotient

algebra V ⊗/I is called the symmetric algebra and is usually denoted S (V ). I is

in fact a graded ideal of V ⊗, and because of this, the quotient algebra S (V ) is
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again a graded algebra. The r-th graded piece of the symmetric algebra, denoted

SrV , is called the r-th symmetric power of the vector space V . Consider the

standard basis {e1, . . . , en} of V , then the products ei1 . . . eir with i1 ≤ . . . ≤ ir

in SrV , which can also be written as et11 . . . e
tn
n with

∑
i

ti = r, form a basis of

the r-th symmetric power, where if π : T (V ) → S (V ) is the canonical map,

then the product of two elements of S (V ) is defined as π (v) π (w) = π (v ⊗ w)

(v, w ∈ T (V )).

Now consider the ideal J of V ⊗ generated by tensors of the form v⊗ v for v ∈ V .

Again, this is a graded ideal, and the graded quotient algebra V ⊗/J is called

the exterior algebra, denoted ∧ (V ). Similarly to the symmetric power, the r-th

exterior power of V for some r is simply the r-th graded piece of ∧ (V ) and is

denoted ∧rV ; a basis for this space is made of the wedge products ei1 ∧ . . .∧ eir of

the basis elements of V , with i1 < · · · < ir. It should be noted here that clearly

if r > n then we will have ∧rV = {0}.

Weights of T (V ) as a module

We can consider T (V ) and subspaces and quotients of it as sln-modules them-

selves, defining the action by applying to the action on V a “derivation” rule

X. (v ⊗ w) = (X.v)⊗ w + v ⊗ (X.w) ,

for X in sln. This means that we can define weight spaces, weights and weight

vectors for the tensor algebra and quotients of it. Let us now state a couple

of lemmas that will help to determine the weights of the symmetric and exterior

powers of V , and the dimensions of the weight spaces, in the following subsections.
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Lemma 1.11. Let v and w in T (V ) have weights λ and µ, respectively. Then

the weight of v ⊗ w is λ+ µ. This property is also valid for S (V ) and ∧ (V ).

Proof. Consider the action of elements of the Lie algebra on tensors in the module

as defined above. Then if λ and µ are the of v and w respectively, we have

X. (v ⊗ w) = (λ (X) v)⊗ w + v ⊗ (µ (X)w)

and then since λ (X) and µ (X) are scalars, by the bilinearity of the tensor product

this becomes

X. (v ⊗ w) = λ (X) (v ⊗ w) + µ (X) (v ⊗ w)

and finally, distributivity of scalar multiplication and the fact that λ and µ are

homomorphisms give us

X. (v ⊗ w) = (λ+ µ) (X) (v ⊗ w)

as required. This also holds in the symmetric and exterior algebras because

the canonical maps π : T (V ) → S (V ), ρ : T (V ) → ∧ (V ) are sln-module

homomorphisms. �

By the above lemma, we have that the weight of et11 . . . e
tn
n in SrV is t1ε1 + · · ·+

tnεn, where εi are the weights of the standard basis elements ei of V .

Lemma 1.12. Let h be the maximal toral subalgebra of sln, that is, the space of

diagonal n× n zero-trace matrices. Then the weights εi : h→ k, i = 1, . . . , n on

h are given by

εi :


d1 0

. . .

0 dn

 7→ di.
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Proof. Defining a map εi as above, we have for any D =


d1 0

. . .

0 dn

 in h that

D.ei = Dei = diei = εi(D)ei.

�

1.3.2 The symmetric powers

Weight spaces

By the results of the previous subsubsection, the weights of h on SrV are t1ε1 +

· · ·+ tnεn, with t1 + · · ·+ tn = r. But what are the weight spaces? By definition,

the weight space of a given weight t1ε1 + · · ·+tnεn is the span of its weight vectors

(i.e. vectors of that weight) in the basis of SrV .

Lemma 1.13. Each weight of h has a unique expression of the form t1ε1 + · · ·+

tnεn with ti ∈ Z≥0 and t1 + · · ·+ tn = r.

Proof. Let (t1, . . . , tn) and (t′1, . . . , t
′
n) be two n-tuples of positive integers such

that
∑
i

ti =
∑
i

t′i = r and
∑
i

tiεi =
∑
i

t′iεi. Then

0 =
∑
i

tiεi −
∑
i

t′iεi =
∑
i

(ti − t′i) εi.∑
εi = 0 is the defining relation for the εi, so any other linear relation is a scalar

multiple of this, which means that all the coefficients ti− t′i in the sum above are

equal; but then

0 = r − r =
∑
i

ti −
∑
i

t′i =
∑
i

(ti − t′i) = n (t1 − t′1) ,

implying t1 − t′1 = 0 and thus ti − t′i = 0 for all i. Hence, if two elements in the

basis of SrV have the same weight, they must be equal. �
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By this lemma, we have that each weight space SrVλ of SrV is one-dimensional,

i.e. the weight space for a weight λ = t1ε1 + · · · + tnεn is the span of the single

vector et11 . . . e
tn
n .

Irreducibility

Theorem 1.14. The whole space SrV is irreducible as an sln-module in the sense

that it has no nonzero proper submodules.

Proof. Let U be a nonzero submodule of SrV . Then U contains at least one of

the weight spaces in SrV , including the basis element et11 . . . e
tn
n corresponding

to that weight. By assumption, U is a submodule and so must be closed un-

der multiplication by elements of the underlying Lie algebra, but if we multiply

et11 . . . e
ti
i . . . e

tj
j . . . e

tn
n on the left by the matrix Eij with a single 1 as the j-th

entry of the i-th row and 0 elsewhere, then it can be checked using the derivation

rule given above and the fact that the multiplication in the quotient algebra S(V )

is commutative, that we get tie
t1
1 . . . e

ti+1
i . . . e

tj−1
j . . . etnn ; but as long as i 6= j, the

matrix Eij will be in sln, which means that Eij.e
t1
1 . . . e

tn
n must also be in U . Of

course, this is a scalar multiple of a basis element of SrV , and in this way we can

manipulate the powers of the ei to show that any combination thereof must be

in U ; in other words, U = SrV . Hence, SrV is irreducible. �

Highest weight and highest weight vectors

We wish to find the highest weight of the irreducible module SrV , and its highest

weight vectors. First, we must choose which of the roots εi − εj (i 6= j) of sln to

define as positive: let us call the positive roots all those where i < j.

Theorem 1.15. The highest weight of SrV is rε1.
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Proof. Consider a weight µ = t1ε1 + · · · + tnεn in SrV . Then the difference

between this and rε1 is

rε1 − µ = (r − t1) ε1 − t2ε2 − · · · − tnεn = t2 (ε1 − ε2) + · · ·+ tn (ε1 − εn)

(because t1 + · · ·+ tn = r, so r− t1 = t2 + · · ·+ tn). Each root ε1 − εj is positive

since j > 1 in every case here, and the tj are all positive integers, so rε1 − µ is

a sum of positive roots for any weight µ, thus rε1 must be the highest weight of

SrV . �

So, a highest weight vector in SrV is any scalar multiple of er1.

Remark 1.16. In general, to check that something is a highest weight vector it

only needs to be checked that it is a weight vector that is fixed by the upper

unitriangular matrices under the action of SLn or that it is killed by the strictly

upper triangular matrices under the action of sln. What we checked in the above

proof is a stronger property (although it is equivalent for irreducible modules):

we showed that not only is the weight rε1 maximal in the set of weights (which

would be enough to make it a highest weight vector), but that it is in fact greater

than every other weight.

1.3.3 The exterior powers

Now let us consider the r-th exterior power of V . Basis elements here are ei1 ∧

. . .∧eir (with i1 < · · · < ir, and this is well-defined because we are assuming that

∧rV is nonzero and therefore that r ≤ n). Each of these has weight εi1 + · · ·+εir ,

and these are the weights of ∧rV . Now to find the weight spaces: again by

Lemma 1.13, all these weights (the weights of all the basis elements) are distinct

so the weight spaces are all one-dimensional.
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Theorem 1.17. The r-th exterior power ∧rV of the natural module V is an

irreducible sln-module.

Proof. As in Theorem 1.14, let U be a nonzero submodule in ∧rV . Then as

before, U must contain at least one basis element, and in exactly the same way,

we can exchange ej for ei any number of times (for any j and i) to obtain any

combination of the eis, so that the entire basis of ∧rV is contained in U . Hence

∧rV is irreducible. �

If we choose the same positive roots as we did for the symmetric power, then

clearly the highest weight of the exterior power will be ε1 + · · · + εr. Vectors in

∧rV with this weight are the scalar multiples of e1 ∧ . . . ∧ er.

1.4 Decomposition of V ⊗ V ∗ and V ⊗ V (as sln-

modules) as direct sums of irreducibles

1.4.1 gln
∼= V ⊗ V ∗ as an sln-module

Since gln is a gln-module under the adjoint action, it is also an sln-module

(by restriction). This module is isomorphic to V ⊗ V ∗, the tensor product of

the natural module with its dual vector space. The isomorphism is given by

v ⊗ f 7→ (x 7→ f (x) v) (Here f acts on x so x must be in V and f (x) ∈ k; then

f (x) v ∈ V so (x 7→ f (x) v) ∈ EndV ∼= gln). In order to visualise the inverse of

this isomorphism, it is necessary to define bases for the two spaces. For example,

choosing the standard bases {e1, . . . , en}, {e∗1, . . . , e∗n} and {E11, . . . , Enn}, one

can easily see that Eij 7→ ei ⊗ e∗j does the job.



22 Chapter 1. Background theory

We have that the weights of gln as an sln-module are all the roots εi − εj, i 6= j,

along with the zero weight. The zero weight space is the maximal toral subal-

gebra h, the algebra of diagonal matrices with trace zero. sln ∼= h⊕
∑
i 6=j

(gln)εi−εj

is a Lie subalgebra of gln and an sln-submodule of gln under the adjoint action

(indeed, [X, Y ] ∈ sln for all X, Y ∈ gln). sln is a simple Lie algebra and hence

irreducible as a module over itself under the adjoint action (in fact we can think

of this as a definition of a simple Lie algebra).

Now, sln has dimension n2 − 1 over k and gln has dimension n2, so the direct

complement of sln in gln must be a one-dimensional submodule (and obviously

this will also be irreducible, so then we will be done with our decomposition).

There is only one (up to module isomorphism) one-dimensional representation

of the Lie algebra sln, which is the representation corresponding to the module

consisting of scalar multiples of the identity matrix In =


1 0

. . .

0 1

 in gln.

Hence, we have the direct sum decomposition

V ⊗ V ∗ ∼= gln
∼= sln ⊕ 〈In〉 ,

where sln and 〈In〉 are both irreducible submodules of V ⊗ V ∗.

1.4.2 V ⊗ V

The weights of the natural module V are ε1, . . . , εn, where as above εi is the

weight of the standard basis element ei of V . This means that weights of V ⊗ V

are εi+εj (see Lemma 1.11). Clearly, the basis elements ei⊗ej and ej⊗ei of V ⊗V

both have weight εi + εj = εj + εi. By Lemma 1.13, we see that no other basis

element in V ⊗V (i.e. none involving an et in the tensor product where i 6= t 6= j)
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will have the same weight εi + εj. Thus, each weight space (V ⊗ V )εi+εj , i 6= j is

two-dimensional, while the weight spaces (V ⊗ V )εi+εi must have dimension one.

We can consider a symmetry group {1, σ} of order two acting on the tensor

space V ⊗ V and preserving the weight spaces, with id the identity and σ send-

ing any ei ⊗ ej to ej ⊗ ei. Now, let us define two representations 1 and sgn, by

1 (id) = 1 (σ) = sgn (id) = 1 ∈ k and sgn (σ) = −1 ∈ k. Then the stabilisers of

these representations,

{v ∈ V |s (v) = 1 (s) v,∀s ∈ {id, σ}} = 〈ei ⊗ ei, ei ⊗ ej + ej ⊗ ei〉

and

{v ∈ V |s (v) = sgn (s) v,∀s ∈ {id, σ}} = 〈ei ⊗ ej − ej ⊗ ei|i 6= j〉

are isomorphic to the symmetric square S2V and exterior square ∧2V of V re-

spectively (both of which have been shown in Section 3 to be irreducible) and

thus we have

V ⊗ V ∼= S2V ⊕ ∧2V.

1.5 Representations of the symmetric group

In this section and the next, unless stated otherwise, V denotes an arbitrary

vector space, although still over the (characteristic-zero) field k.

1.5.1 Young symmetrisers

Definitions 1.18. [11, 4.1],[22, I] To any (descending) partition λ = (λ1, . . . , λk)

of a natural number r, we can uniquely define a subset {(i, j) |1 ≤ i ≤ l(λ), 1 ≤ j ≤ λi}
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of N × N, called the Young diagram corresponding to λ. We will identify each

partition λ with its corresponding Young diagram. The (i, j) ∈ λ are called the

boxes of λ. A (Young) tableau of shape λ (λ a partition of r ∈ N) is a mapping

T : λ→ N. A tableau is called an r-tableau if its entries are the numbers 1, . . . , r

(so the entries must be distinct).

The following construction appears in [11, 4.1]. For a given partition λ =

(λ1, . . . , λk) of r, pick a Young tableau T over the Young diagram Y (λ), and

then we can define the following two subgroups of Sr:

Rλ := {σ ∈ Sr|σ preserves each row of T} ,

Cλ := {σ ∈ Sr|σ preserves each column of T} ,

called the row stabiliser and column stabiliser, respectively, of the Young tableau

T , or equivalently of the Young diagram λ. Now in the group algebra k [Sr] =

kSr, define aλ :=
∑
σ∈Rλ

σ, bλ :=
∑
σ∈Cλ

sgn (σ)σ, called the row symmetriser and

column anti-symmetriser of λ respectively. Now if we consider Sr to be acting on

the tensor space V ⊗r (where here V may be any vector space) simply by permut-

ing vectors, then the images of these in that action are Im (aλ) = Sλ1V⊗. . .⊗SλkV

and Im (bλ) = ∧µ1V ⊗. . .⊗∧µlV , where µ = (µ1, . . . , µl) is the partition conjugate

to λ (in other words, µj is the number of boxes in the j-th column, rather than

row, of λ. Notice µ1 = k and l = λ1).

Now let cλ := aλ.bλ ∈ k [Sr]. These cλ are called Young symmetrisers, and

each one is idempotent up to a scalar multiple, by which we mean that some

scalar multiple of cλ is idempotent, or equivalently that c2
λ = mλcλ for some

scalar mλ. When λ = (r), we have cλ = aλ and so the image of cλ acting on V ⊗r

is SrV , and when λ = (1, . . . , 1) we have cλ = bλ and Im (cλ) = ∧rV .
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Theorem 1.19. Let r be a non-negative integer, then for any partition λ of

r, the ideal k [Sr] cλ (cλ a Young symmetriser) is an irreducible representation

of Sr; these irreducible representations are mutually non-isomorphic, and every

irreducible representation of Sr is obtained in this way.

So, the partitions (and by transitivity, the Young diagrams) of r are in one-to-one

correspondence with irreducible representations of the symmetric group Sr. The

irreducible representation of Sr corresponding to the partition λ is denoted πλ.

Definition 1.20. [11, 4.1] The hook length of a box x in a Young diagram Y (λ)

is hook (x) := aλ (x)+ lλ (x)+1, where aλ (x) is the number of boxes to the right,

and lλ (x) the number of boxes below, box x (called the arm length and leg length

of x, respectively).

Lemma 1.21. The dimension of the irreducible representation πλ of Sr, (λ a

partition of r) is given by the formula

dim (πλ) =
r!∏

x∈Y (λ)

hook (x)
,

where Y (λ) is the Young diagram for λ.

Example 1.22. The representation π(3,2,2) of S7 has dimension
5040

5.4.1.3.2.2.1
= 21.

1.5.2 Primitive idempotents

Definition 1.23. Let e be idempotent in some ring A. Then e is called prim-

itive if there does not exist any pair f1, f2 ∈ A of nonzero idempotents that are

orthogonal (that is, f1f2 = f2f1 = 0) and that satisfy e = f1 + f2.

Theorem 1.24. Let A be a ring, and e ∈ A be idempotent. Then the A-module

Ae is indecomposable if and only if e is primitive. Moreover, if A is a semisimple

algebra, then Ae is irreducible if and only if e is primitive.
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Proof. First, let us prove by contrapositive that if Ae is indecomposable then e

is primitive. So, assume e is not primitive, that is we have e = f1 + f2 where f1

and f2 are both nonzero idempotents in A and f1f2 = f2f1 = 0. Then clearly

we have that Ae = {ae|a ∈ A} = {af1 + af2|a ∈ A} is a subset of Af1 + Af2 =

{af1 + bf2|a, b ∈ A}. Now consider fie = f 2
i = fi (for both fi); then for all

afi ∈ Afi we have afi = afie ∈ Ae, implyingAfi ⊆ Ae and henceAe = Af1+Af2.

Furthermore, this sum is direct since for x ∈ Af1 ∩ Af2 we have x = af1 = bf2

for some a, b ∈ A, so xf1 = af 2
1 = af1 = x and similarly xf2 = x, but then

x = xf2 = xf1f2 = 0, so Af1∩Af2 = {0}. Thus we have that Ae is decomposable

as Ae = Af1 ⊕ Af2.

Now for the converse, assume Ae is decomposable, that is Ae = F1 ⊕ F2 with

F1, F2 ⊂ Ae. So e = f1 + f2 for some f1 ∈ F1, f2 ∈ F2. Then since for all

x = ae ∈ Ae we have xe = ae2 = ae = x, and since F1 and F2 are subsets of Ae,

f1 and f2 are both in Ae, so

f1 = f1e = f1 (f1 + f2) = f 2
1 + f1f2

which can be rearranged to get

f1 − f 2
1 = f1f2

of which the left-hand side is clearly in F1 and the right-hand side is clearly in F2,

but it was assumed that F1∩F2 = {0}, therefore we must have both f1 = f 2
1 and

f1f2 = 0. We can do the same for f2. Now e = f1 + f2 with f1 and f2 orthogonal

idempotents in A, thus e is not a primitive idempotent.

The second part of the theorem follows from the first part together with the fact

that for a semisimple algebra A, any A-module is irreducible if and only if it is

indecomposable as a module over the ring A. �
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Lemma 1.25. Let e be an idempotent in a ring R, and let M be a module over

R. Then the space HomR (Re,M) and the submodule eM are isomorphic as

abelian groups (if R is an algebra then they are isomorphic as vector spaces): the

isomorphism is given by f 7→ f (e) = f (e2) = ef (e).

1.6 Schur-Weyl duality

1.6.1 Double commutant theorem

Lemma 1.26 (Schur’s lemma). [14, Thm. 4.29.1] Let V and W be irreducible

representations of a Lie algebra g, and let ϕ : V → W be an equivariant map

(that is, g.ϕ(v) = ϕ(g.v) for g ∈ g and v ∈ V ). Then either ϕ = 0 or ϕ is an

isomorphism.

The following well-known result follows from the above part of Schur’s Lemma,

and standard properties of the Hom functor; the double commutant theorem,

also known as the double centraliser theorem, will follow in turn from this.

Theorem 1.27. Let A be an algebra over an algebraically closed field k of char-

acteristic 0, and let V be an A-module with decomposition V ∼=
⊕
i

niVi, where the

Vi are mutually non-isomorphic irreducible A-modules, with ni ∈ Z≥0. Then the

dimension of HomA (Vj, V ) is nj.

Proof. We have HomA (Vj, V ) =
⊕
i

niHomA (Vj, Vi), then by Lemma 1.26 any

module homomorphism in HomA (Vj, Vi) is either an isomorphism or zero, so

since the Vi are mutually non-isomorphic we have HomA (Vj, Vi) = {0} for i 6= j.

Now, consider the following: for isomorphic A-modules M and N , HomA (M,N)

is isomorphic (at least as a vector space) to EndA (M) (with the isomorphism

defined in the following way; a homomorphism θ from M to N maps to θ ◦ ϕ−1,
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where ϕ is an isomorphism from M to N ; the inverse takes an endomorphism

η of M to η ◦ ϕ). So, dim HomA (Vj, Vj) = dim EndA (Vj). But by Lemma 1.26

again, everything nonzero in EndA (Vj) is an isomorphism. Let f ∈ EndA (Vj)

then f has an eigenvalue µ; the kernel of f − µ.id is nonzero but then we must

have f = µ.id, that is, EndA (Vj) = kid ∼= k. Hence, now that we know that

HomA (Vj, Vj) is one-dimensional, we have

dim HomA (Vj, V ) = 0 + · · ·+ 0 + nj + 0 + · · ·+ 0 = nj.

�

Theorem 1.28 (Double commutant theorem). Now let V be a vector space, and

let A and B be subalgebras of EndV , with A semisimple and B = CEndVA =

{b ∈ EndV |ab = ba ∀a ∈ A}. Then B is also semisimple, and we have A =

CEndVB.

Definition 1.29. With a module V decomposed as a sum of irreducible sub-

modules, some of those submodules will be isomorphic to each other. The sum

of all the irreducible submodules in one equivalence class is called an isotypic

component of that decomposition.

For two subalgebras A and B of EndV , where we denote f.v = f (v) ∀f ∈

A ∪ B, v ∈ V and where the two actions always commute, the joint action

of A and B is the action defining a module structure over A ⊗ B, given by

(f ⊗ g) .v := f (g (v)). (This also equals g (f (v)) because of the commuting ac-

tions).

Theorem 1.30. Let A and B be commuting subalgebras of EndV . Then the

following are equivalent;

1. A and B are semisimple and each other’s centraliser;
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2. We have V ∼=
r⊕
i=1

Ui⊗Wi as A⊗B-modules, where the Ui are mutually non-

isomorphic irreducible A-modules and the Wi are mutually non-isomorphic

irreducible B-modules;

3. V is semisimple for A as well as for B, and the A-isotypic components of

V are the same as the B-isotypic components.

Remarks 1.31. The second statement can be restated in a more canonical way:

let U1, . . . , Ur be the irreducible A-submodules of V up to isomorphism. Then

the HomA (Ui, V ) are mutually non-isomorphic B-modules and the canonical map
r⊕
i=1

Ui ⊗ HomA (Ui, V )→ V is an isomorphism of A⊗B-modules.

Note that each isotypic component in the decomposition of V as an A-module is

Ui ⊕ . . .⊕ Ui︸ ︷︷ ︸
d

for some i ∈ {1, . . . , r}, where the multiplicity d is the dimension

of HomA (Ui, V ) by Theorem 1.27.

1.6.2 Representations of GLn and Sr

Let V = kn once again and consider the tensor space V ⊗r. We have already seen

that Sr acts on this space (on the left) by permuting the factors:

σ (v1 ⊗ . . .⊗ vr) = vσ−1(1) ⊗ . . .⊗ vσ−1(r).

We can also easily define a left-action of the group GLn on the space (by simul-

taneous matrix multiplication):

g (v1 ⊗ . . .⊗ vr) = gv1 ⊗ . . .⊗ gvr.

Note that these two actions clearly commute with each other. Now let R ⊆

End (V ⊗r) be the associative algebra generated by all ρ (g), g ∈ GLn, and S ⊆

End (V ⊗r) be the associative algebra generated by all π (σ), σ ∈ Sr, where π



30 Chapter 1. Background theory

and ρ are the group representations of Sr and GLn (respectively) defined above.

Algebras such as R and S are called enveloping algebras of representations.

Theorem 1.32 (Schur-Weyl duality). With R and S defined as above, we have

R =
{
a ∈ End

(
V ⊗r

)
|as = sa ∀s ∈ S

}
and

S =
{
a ∈ End

(
V ⊗r

)
|aq = qa ∀q ∈ R

}
.

Fulton and Harris’s book [11] can be consulted for a proof of this, and their proof

includes in it a proof of the double commutant theorem. See also [27, chapter IV].

So, we have a space V ⊗r and we have two semisimple subalgebras (R and S)

of End (V ⊗r) whose actions on V ⊗r commute with each other; in other words,

we have a module to which the double commutant theorem applies. By The-

orem 1.30, this means we have a decomposition

V ⊗r ∼=
⊕
λ

Uλ ⊗ HomS

(
Uλ, V

⊗r) ,
where the Uλ are mutually non-isomorphic irreducible S-modules and the

HomS (Uλ, V
⊗r) are mutually non-isomorphic irreducible R-modules. By The-

orem 1.19, all irreducible Sr modules are of the form k [Sr] cλ where cλ is the

Young symmetriser for a partition λ of r. So, we should have that the irreducible

GLn-modules in V ⊗r are of the form HomS (k [Sr] cλ, V
⊗r). By Lemma 1.25, we

have a module isomorphism from this space to cλV
⊗r, given by f 7→ f (cλ) (note

f (cλ) = f (c2
λ) = cλf (cλ)) for any f ∈ HomS (k [Sr] cλ, V

⊗r). Thus, the spaces

cλV
⊗r, cλ Young symmetrisers, are irreducible modules for GLn. Only the parti-

tions λ = (λ1, . . . , λk) with k ≤ n (Young diagrams with no more than n rows)

show up here.
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Similarly, we know (Theorem 1.4) that the irreducible modules V (µ) of GLn

are characterised by their highest weights, and by Lemma 1.5 we have

HomGLn (V (µ) , V ) ∼= V U+

µ , thus the spaces of highest weight vectors (V ⊗r)
U+

µ

are irreducible modules of Sr, for all partitions µ with length less than or equal

to r.

1.6.3 Other instances of Schur-Weyl duality

The Schur-Weyl duality stated above, between the symmetric and general linear

groups, is what is usually called classical Schur-Weyl duality. In general, Schur-

Weyl duality states for two particular groups or algebras with commuting actions

on a vector space that their enveloping algebras are each other’s centraliser. Other

pairs of objects where this occurs include;

• GLn and Br,s (n) both acting on V ⊗r ⊗ V ∗⊗s, V = kn, where Br,s (n) is the

walled Brauer algebra with parameters r, s and n;

• Spn, Br (−n) � V ⊗r, where Spn is the symplectic group and Br (−n) is the

Brauer algebra with parameters r,−n;

• On, Br (n) � V ⊗r, where On is the orthogonal group and Br (n) is the

Brauer algebra with parameters r, n.

Of course, these are even more instances of the Schur-Weyl duality than these

([13] discusses a few). There is also the related Howe duality, where both of the

groups are continuous, rather than one being discrete (the symmetric group or

Brauer algebra in the above examples) as with the Schur-Weyl duality.
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Chapter 2

Highest weight vectors in

arbitrary characteristic

2.1 Preliminaries

Let k be an algebraically closed field of arbitrary characteristic, let GLn be

the group of invertible n × n matrices with entries in k and let Tn and Un

be the subgroups of diagonal matrices and of upper uni-triangular matrices

respectively. The group GLr × GLs acts on the k-vector space Matmrs of m-

tuples of r × s matrices with entries in k via ((A,B) · X)i = AXiB
T , where

X = (X1, . . . , Xm) ∈ Matmrs and BT is the transpose of B, and on the coordinate

ring k[Matmrs] via ((A,B) · f)(X) = f((AT , BT ) · X) = f((ATXiB)1≤i≤m). For

(µ, λ) a character of Tr × Ts, the space of highest weight vectors will be denoted

k[Matmrs]
Ur×Us
(µ,λ) . It consists of the functions f ∈ k[Matmrs] with (A,B) · f = f for

all (A,B) ∈ Ur × Us and (A,B) · f = µ(A)λ(B)f for all (A,B) ∈ Tr × Ts.

Note that k[Matmrs] is the polynomial algebra over k in the variables x(l)ij,

33
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1 ≤ l ≤ m, 1 ≤ i ≤ r, 1 ≤ j ≤ s, where x(l)ij is the entry in the i-th row

and j-column of the l-th matrix. If m = 1 we write xij instead of x(1)ij. The

GLr ×GLs-module k[Matmrs] is multigraded by tuples of integers ≥ 0 (not neces-

sarily partitions) of length m. We denote the set of such tuples with coordinate

sum t by Σt. So the elements in the piece of multidegree ν ∈ Σt have total degree

t.

2.1.1 Skew Young diagrams and tableaux

In this subsection we introduce some more combinatorics related to Young dia-

grams and tableaux, that we will need in Section 2.2 and which originates from

[18], [28, 29], and [8]. In Subsection 2.1.2 we discuss interpretations in terms of

representation theory.

For λ a partition of n we denote the length of λ by l(λ) and its coordinate sum

by |λ|. As in Chapter 1, we will identify each partition λ with the corresponding

Young diagram {(i, j) | 1 ≤ i ≤ l(λ), 1 ≤ j ≤ λi}. Recall that the (i, j) ∈ λ are

called the boxes of λ.

More generally, if λ, µ are partitions with λ ⊇ µ, then we denote the diagram λ

with the boxes of µ removed (or the set theoretic difference of λ and µ considered

as subsets of N × N) by λ/µ, and call it the skew Young diagram associated to

the pair (λ, µ). Of course the skew diagram λ/µ does not determine λ and µ.

For a (skew) diagram E, we will denote the transpose by E ′ and the number of

boxes by |E|. The group of permutations of the boxes of E will be denoted by

SE, and the column stabiliser of E in S(E), that is, the product of the groups of

permutations of each column of E, will be denoted by CE. By diagram mapping
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we mean a bijection between two diagrams as subsets of N× N.

Definitions 2.1. Let E be a skew diagram with t boxes. A skew tableau of

shape E is a mapping T : E → N = {1, 2, . . .}. A skew tableau of shape E is

called ordered if its entries are weakly increasing along rows and weakly increasing

down columns, (column) semi-standard if its entries are weakly increasing along

rows and strictly increasing down columns, or row-semistandard if its entries are

strictly increasing along rows and weakly increasing down columns. As with

ordinary Young tableau (see Chapter 1), a tableau with t boxes is called a t-

tableau if its entries are the numbers 1, . . . , t. A t-tableau whose entries are

strictly increasing along both columns and rows is called standard. If m is the

biggest integer occurring in a tableau T , then the weight of T is the m-tuple

whose i-th component is the number of occurrences of i in T . Sometimes we will

also consider the weight of T as an m′-tuple for some m′ ≥ m by extending it

with zeros.

Definition 2.2. Let P be an ordered tableau, of a shape E and weight ν =

(ν1, . . . , νm) ∈ Σt. Then we say a t-tableau T of shape E belongs to P if for all

i ∈ {1, . . . ,m} we have

T−1

({
i−1∑
j=1

νj + b

∣∣∣∣∣ b ∈ {1, . . . , νi}
})

= P−1(i) ⊆ E.

Definition 2.3. For a skew shape E with t boxes, we define the canonical skew

tableau SE by filling the boxes in the i-th row with i’s, and we define the tableau

TE by filling in the numbers 1, . . . , t row by row from left to right and top to

bottom. So SE is semi-standard, and TE is a t-tableau which is standard. The

standard enumeration of a tableau T of shape E is the t-tuple obtained from T

by reading its entries row by row from left to right and top to bottom.
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Definition 2.4. A semi-standard tableau S of a shape F is called (E-)special

for a skew diagram E if S = SE ◦ α for some diagram mapping α : F → E such

that for any a, b ∈ F , if α(b) occurs strictly below α(a) in the same column, then

b occurs in a strictly lower row than a. We then say that α represents S. We

call α admissible if for any a, b ∈ F , if α(b) occurs strictly below α(a) in the

same column, then b occurs in a strictly lower row than a and in a column to

the left of a or in the same column. A special (semi-standard) tableau also refers

to any semi-standard tableau that is E-special for some E. By [26, Lem. 6],

every special semi-standard tableau has a representative that is admissible. An

admissible mapping α is called special if additionally, for any a, b ∈ F with α(b)

in a column strictly to the left of α(a), b occurs;

(1) in a column strictly to the right of a and in a row above a or in the same

row, if α(b) is in the same row as α(a);

(2) in a column strictly to the right of a or in a strictly lower row, if α(b) is in a

strictly lower row than α(a);

It follows from (1) and the admissibility condition that if α(b) is strictly above

and to the left of α(a) then b should be strictly above and to the right of a.

An alternative way to visualise the concept of special diagram mappings is the

following, due to Zelevinsky [28, 29], in which they are called “pictures”. Define

two orderings ≤ and � on N×N as follows: (p, q) ≤ (r, s) if and only if p ≤ r and

q ≤ s, and (p, q) � (r, s) if and only if p < r or (p = r and q ≥ s). Note that � is

a linear ordering. Recall that skew Young diagrams are by definition subsets of

N×N. A diagram mapping α : F → E is called special if α : (F,≤)→ (E,�) and

α−1 : (E,≤)→ (F,�) are order-preserving. It is clear from this second definition

that a diagram mapping α is special if and only if α−1 is special.
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Furthermore, we have that the tableau SE ◦ α is semi-standard (and therefore,

a special semi-standard tableau) whenever α is special [28, p155-159], and that

every special tableau has a unique special representative [26, Thm. 3].

Examples 2.5. Let F = (2, 2) and E = (3, 2)/(1) be skew diagrams. Since each

has four boxes, we can construct a bijective map α1 : F → E between the two

shapes. To demonstrate the examples, we first give F the standard enumeration

(denoted TF as a tableau), and then give a tableau S on E such that TF = S ◦α1,

that is, the tableau where each box a ∈ E is labelled with the same number that

its preimage α−1
1 (a) ∈ F is labelled with by TF , which will be a t-tableau.

1 2

3 4

α1−→ 1 2

3 4

Then α1 is not admissible, since 4 is below 1 in the same column of E, but it occurs

in a column strictly to the right of 1 in F . We now form the canonical tableau SE

on E and pull this numbering back to F via α1 to obtain the tableau S = SE ◦α1:

S = 1 1

2 2

α1−→ 1 1

2 2
= SE

Clearly S is semi-standard, and we also have that for all a, b ∈ F , b occurs in a

strictly lower row than a whenever α1(b) occurs strictly below α1(a) in the same

column. So S is a special semi-standard tableau; in particular it is E-special.

Now define α2, α3 : F → E by

1 2

3 4

α2−→ 1 2

4 3
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and

1 2

3 4

α3−→ 2 1

4 3

Then SE ◦ α2 = SE ◦ α3 = S, α2 is admissible, but not special, and α3 is special.

The inverse of α3 is also special and is therefore the unique special representative

of the F -special semi-standard tableau T = SF ◦ α−1
3 on E:

T = SF ◦ α−1
3 = 1 1

2 2

α−1
3−→ 1 1

2 2
= SF

Besides T there is one other semi-standard tableau T̃ of shape E and weight (2, 2):

T̃ = 1 2

1 2

β−→ 1 1

2 2

This tableau is not F -special: if β : E → F is a diagram mapping with T̃ = SF ◦β

and b is the rightmost box in the top row of E, then there must be a box a of

E such that β(a) is directly above β(b) in the same column in F , but a cannot

occur in a higher row than b in E.

Examples 2.6. For the next example, let F ′ = (5, 3, 2)/(2, 1) and E ′ = (3, 3, 2, 1)

/(1, 1). Again these are diagrams with the same number of boxes, so we can

construct a diagram mapping between them, and again We define the diagram

mapping α4 : F ′ → E ′ by numbering the boxes of E ′ with a t-tableau and declar-

ing that each box a ∈ F ′ is mapped by α4 to the box of E ′ which has the same
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number below:

1 2 3

4 5

6 7

α4−→ 2 3

4 5

1 6

7

This time, when we apply the canonical tableau to E ′ and let T1 = SE′ ◦ α4, we

see that α4 is not a representative of a special tableau because the tableau T1 on

F ′ is not semistandard:

3 1 1

2 2

3 4

α4−→ 1 1

2 2

3 3

4

Now define α5 : F ′ → E ′ as the mapping such that α5(ai) = α4(a4−i) for ai the

i-th box in the first row of F ′ and α5(a) = α4(a) otherwise, then the tableau

T2 = SE′ ◦ α5 is special, and α5 represents it (in fact α5 is an admissible repres-

entative):

1 1 3

2 2

3 4

α5−→ 1 1

2 2

3 3

4

α5 is still not a special diagram mapping though and hence not a special represent-

ative of T2 because it fails to satisfy condition (1) on the boxes in the second row.

However, since T2 is special, we know that it has a (unique) special representative,

and in fact if we define α6 : F ′ → E ′ to be the mapping α6(ai) = α5(a3−i) for ai
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the i-th box in the second row of F ′, α6(a) = α5(a) otherwise, then we find that

α6 is the special representative of T2 = SE′ ◦ α6 = SE′ ◦ α5. Since α6 is special,

its inverse is also special and is therefore the unique special representative of the

special semistandard tableau SF ◦ α−1
6 on E:

SF ◦ α−1
3 = 1 1

2 2

1 3

3

α−1
6−→ 1 1 1

2 2

3 3

= SF

As the examples demonstrate, some diagram mappings may be representatives of

special semi-standard tableaux by the above definition, without being admissible;

however, from now on, when we talk about representatives of special tableaux we

will insist that they are admissible, as this is needed for the linear independence

in the proof of this chapter’s main result, Theorem 2.23, later on, where we will

be using a refinement of the above combinatorics.

We need to cut F and E into pieces labelled by certain integers and then we

work with certain diagram mappings α which map each piece of F into the piece

of E of the same label. We then apply the above combinatorics to the restrictions

of α to these pieces.

Definition 2.7. Now once again let E and F be skew diagrams each with t boxes.

Let P and Q be ordered tableaux of shapes E and F , both of weight ν ∈ Σt.

Then a diagram mapping α : F → E with P ◦ α = Q determines an m-tuple

of tableaux (SP−1(1) ◦ α1, . . . , SP−1(m) ◦ αm) (*), where αi : Q−1(i) → P−1(i) is

the restriction of α to Q−1(i). We will say that α represents (*). Notice that

the m-tuples (*), for varying α, all have the same tuple of shapes and the same
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tuple of weights. We express this by saying that the tuple of tableaux has shapes

determined by Q and weights determined by P . When the tableaux SP−1(i) ◦ αi

are special semi-standard, we require the αi to be admissible.

Example 2.8. Take F = (4, 4, 3)/(1) and E = (4, 3, 3) be skew diagrams, take

ν = (4, 6) and define Q and P as indicated below.

Q =

1 1 2

1 1 2 2

2 2 2

α−→
1 1 2 2

1 1 2

2 2 2

= P

Then α1 goes between the “1-pieces” of Q and P and α2 goes between the “2-

pieces” of Q and P . We also indicate the canonical numberings on the pieces of

E and certain special semi-standard numberings on the pieces of F which can be

obtained by pulling back the canonical numberings along suitable αi. In partic-

ular:

1 1

2 2

α1−→
1 1

2 2

and

1

1 2

3 3 3

α2−→
1 1

2

3 3 3

It can be shown that the tableau

1

2 3

1 3 3

is the only other P−1(2)-

special semi-standard tableau of shape Q−1(2) and weight (2, 1, 3) other than
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SP−1(2) ◦ α2 above. For this particular P and Q, therefore, we see that the

number of special diagram mappings from Q−1(1) to P−1(1) is 1, and the number

of special diagram mappings from Q−1(2) to P−1(2) is 2.

2.1.2 Bideterminants and skew Schur and Specht modules

In this section we will review some facts from the representation theory of the

general linear group as well as the symmetric group. Bideterminants are intro-

duced in [7] and their skew versions in [1]. Other sources are [5, 21, 3, 4, 12]. In

the latter three their application to the representations of the symmetric group

is also discussed. The representation theory of the symmetric group will not be

used here, but it may help to understand the combinatorics we use. It was also

used in [26, Thm. 4] to obtain a version in characteristic 0 of the corollary 2.25

to Theorem 2.23 below.

Let E be a skew diagram with t boxes. Let S and T be (skew) tableaux of

the same shape E, with S having entries ≤ r and T having entries ≤ s. Then we

define the bideterminant (S |T ) ∈ k[Matrs] associated to this pair of tableaux by

(S |T ) =
n∏
i=1

det((xS(a),T (b))a,b∈Ei),

where Ei is the i-th column of E and n is the number of columns in E. Note

that we have

(S |T ) =
∑
π∈CE

sgn(π)
∏
a∈E

xS(π(a)), T (a) =
∑
π∈CE

sgn(π)
∏
a∈E

xS(a), T (π(a)) ,

where CE ≤ SE is the column stabiliser of E.

Example 2.9. Let E = (3, 2)/(1), S =
1 2

1 2
, T =

2 3

1 3
. Then
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(S |T ) ∈ k[Mat2,3] is given by

(S |T )

a b c

d e f

 = a. det

b c

e f

 .f = abf 2 − acef .

Definition 2.10. The skew Specht module S(E) = St(E) = St,k(E) for the group

algebra A = At,k = kSt of the symmetric group St on {1, . . . , t} is defined just

as in the case of an ordinary Young diagram (see Definition 3.9): S(E) = Ae1e2,

where e1 is the column anti-symmetriser of TE and e2 is the row symmetriser

of TE. The module M(E) = Mt,k(E) = Ae2 is called the permutation module

associated to E.

Let E and F be skew tableaux both with t boxes and let µ be the tuple of row

lengths of E. If k is of characteristic 0, then we have as in [26, Sect. 3] that

the special semi-standard tableaux of shape F and weight µ form a basis of the

space HomSt(S(E), S(F )) ∼= (S(E) ⊗ S(F ))St ∼= (S(E) ⊗ S(F ))St , where NSt

denotes the space of coinvariants of an A-module N , i.e. the quotient of N by the

span of the elements x− g · x, x ∈ N , g ∈ St; hence the number of such special

semi-standard tableaux is equal to the dimension of this space. In particular, if

we let P and Q be ordered tableaux of shapes E and F , both of weight ν ∈ Σt,

then [26, Sect. 3] also gives us that the number of m-tuples of semi-standard

tableaux with shapes determined by Q and weights determined by P is equal to

the dimension of HomSν (S(E), S(F )) ∼= (S(E) ⊗ S(F ))Sν ∼= (S(E) ⊗ S(F ))Sν ,

where Sν ≤ St is the Young subgroup associated to ν (for more details, see also

[28]).

Definition 2.11. The skew Schur module associated to a shape E, denoted by

∇GLr(E), is the span in k[Matrs], s ≥ the number of rows of E, of all the bide-

terminants (S |SE) where S is a tableau of shape E and with entries ≤ r. In
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particular, for λ a dominant weight, the Schur module associated to the (ordin-

ary) Young diagram corresponding to the partition λ is also known as the induced

module.

The skew Schur module ∇GLr(E) will be nonzero if and only if r is greater than

or equal to the length of each column of E. ∇GLr(E) is stable under the action of

GLr, and the set of bideterminants (S |SE) with S as above and in addition semi-

standard, form a basis (see [5, Thm. 3.3]). It is also possible to define ∇GLr(E)

as the span in k[Matsr] of all the bideterminants (SE |T ) where T is a tableau

of shape E and with entries ≤ r, with the action of GLr coming from the right

multiplication rather than from the left multiplication.

Note that the Specht module St,k(E) can also be defined as the weight space

∇GLr(E)1t for any r ≥ t (where 1t denotes the partition of t into ones, whose

Young diagram is a single column). This weight space is indeed stable under

St ≤ GLr, where St is identified with the group of permutation matrices whose

nonzero off-diagonal entries are restricted to the first t rows (and columns).

Definition 2.12. [20, II.4.16] Let V be a GLr-module. An ascending chain

0 = V0 ⊂ V1 ⊂ . . . of submodules of V is called a good filtration if V =
⋃
i≥0 Vi

and if each Vi/Vi−1 is isomorphic to an induced GLr-module ∇GLr(λ) for some

dominant weight λ.

The elements (S |T ) with S and T both standard, and where the entries of S

are ≤ r and those of T are ≤ s, form a basis of k[Matrs] [7]. In fact one can use

bideterminants to construct explicit good filtrations of k[Matrs] as a GLr ×GLs-

module [5, Thm. 2.1].

Definition 2.13. The co-Schur or Weyl module ∆GLr(E) associated to a shape E



2.1. Preliminaries 45

is the contravariant dual∇GLr(E)◦, which is the dual of the vector space∇GLr(E)

with GLr acting via the transpose: (g · f)(v) = f(gT · v).

Lemma 2.14. [20, Prop. II.4.13] Let G be an algebraic group, and let E and F

be skew diagrams. Then we have

HomG (∆G(E),∇G(F )) = HomG (G,∆G(E)∗ ⊗∇G(F )) =

k if F = E,

0 otherwise.

Once again let E and F be skew diagrams both with t boxes and let µ be the tuple

of row lengths of E. Then the number of special semi-standard tableaux of shape

F and weight µ is equal to dim HomGLr(∆GLr(F ),∇GLr(E)) whenever r is greater

than or equal to the smaller of the number of rows of E and the number of rows of

F . This can be seen by reducing to the case that k has characteristic 0, using the

above lemma together with the fact that ∇GLr(E) has a good filtration: [22, I.5]

gives us that, for such an r, HomGLr(∆GLr(F ),∇GLr(E)) ∼= HomSt(S(E), S(F ))

as vector spaces, and then by the characterisation of the dimension of the latter

above, and by [26, Rem. 4.2], we have the desired result.

Assume r = r1 + · · ·+ rm for certain integers ri > 0, let ν ∈ Σt and let Sν ≤ St

be the Young subgroup associated to ν. If k has characteristic 0, then we have

an isomorphism St(E) ∼=
⊕

P

⊗m
i=1 Sνi(P

−1(i)) of Sν-modules, where the sum

is over all ordered tableau P of shape E and weight ν. For k arbitrary, there

exists a (
∏m

i=1 GLri)-module filtration of the piece of multidegree ν of ∇GLr(E)

with sections in some order isomorphic to the modules
⊗m

i=1∇GLri
(P−1(i)), P

an ordered tableau of shape E and weight ν. Here we can omit the P ’s for which

P−1(i) has a column of length > ri for some i.

Remark 2.15. Let λ and µ be partitions with µ ⊆ λ. Let r, r1, s be integers ≥ 0

with r1, s ≥ l(λ) and r1 ≥ l(µ) + r and put r′ = r1 − r. We embed GLr′ × GLr



46 Chapter 2. Highest weight vectors in arbitrary characteristic

in GLr1 such that GLr fixes the first r′ basis vectors. Then one can embed

∇GLr(λ/µ) as a GLr-submodule in ∇GLr1
(λ). Indeed one can deduce from [9,

2.3] that ∇GLr(λ/µ) ∼= HomGLr′
(∆GLr′

(µ),∇GLr1
(λ)) ∼= ∇GLr1

(λ)
Ur′
µ , where µ is

considered as a weight for Tr′ . One can also construct an explicit isomorphism as

follows. Let E ∈ Matr′s be the matrix whose first min(r′, s) rows are those of the

s× s identity matrix followed by r′− s zero rows if r′ > s. Then the comorphism

of the morphism A 7→ [ EA ] : Matrs → Matr1s maps ∇GLr1
(λ)Ur′ isomorphic-

ally onto ∇GLr(λ/µ). Combinatorially this is easy to understand: ∇GLr1
(λ)Ur′

has a basis labelled by semi-standard tableaux of shape λ with entries ≤ r1 in

which the entries ≤ r′ occupy the boxes of µ and form the canonical tableau Sµ.

These tableaux are clearly in one-to-one correspondence with the semi-standard

tableaux of shape λ/µ with entries ≤ r: just remove the µ-part and subtract r′

from the entries of the resulting tableau of shape λ/µ.

We can now consider the following useful lemma from [1, Thm. II.4.11] (see also

the successive Theorem 1.4, Remark 2, Theorem 1.5 and Claim 2 in [21]), giving

a good filtration of a skew Schur module over a direct product of algebraic groups

where the induced modules that the quotients (or sections) of the filtration are

isomorphic to are direct products of induced modules for the groups in the direct

sum, which by the above remark will indeed be induced modules themselves for

the direct sum.

Lemma 2.16. Let G and H be algebraic groups, and E be a skew diagram.

Then the induced module ∇G⊕H(E) over the group G ⊕ H has a good filtration

with sections isomorphic to

∇G(E1)⊗∇H(E2),
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with E1, E2 running through every pair of skew diagrams with E1 ∪ E2 = E and

E1 ∩ E2 = ∅ as subsets of N× N.

2.2 The action of GLr × GLs on several r × s-

matrices

2.2.1 Characteristic 0 case where one shape is a single

column

Let r, s, t and m be positive integers, and let λ and µ be partitions of t with

l (µ) ≤ r and l (λ) ≤ s. Let ν = (ν1, . . . , νm) ∈ Σt (that is, an m-tuple of non-

negative integers with
∑

i νi = t), let P and Q be ordered tableaux of shape λ

and µ respectively and both of weight ν, and let α : µ → λ be a representative

of an m-tuple of diagram mappings αi : Q−1 (i) → P−1 (i) between the skew

diagrams consisting of the boxes of λ and µ assigned the same integer by P or Q

respectively, or in other words let α : µ→ λ be a mapping such that P ◦ α = Q.

Then [26, Thm. 4] defines

uP,Q,α =
∑

π∈Cµ, σ∈Cλ

sgn(π)sgn(σ)
∏
a∈µ

x (Q(a))π(a)1, σ(α(a))1
, (2.1)

where for a box b in a diagram, b1 denotes the row index of b in that diagram,

and where x (η)i,j ∈ k [Matmrs] for η ∈ {1, . . . ,m} is the function picking out the

(i, j)-th entry in the η-th matrix component. [26, Thm. 4] then states that the

uP,Q,α, where for each P and Q as above α runs through a set of admissible repres-

entatives for the m-tuples of special tableaux with shapes determined by Q and

weights determined by P , form a basis of the vector space k [Matmrs]
Ur×Us
(µ,λ) when k

has characteristic 0. In fact, for the action of GLr × GLs in [26], the inverse of
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the right-hand matrix is used rather than the transpose as we have here, which

explains why we have π(a)1 in the formula for the basis elements rather than

r − π(a)1 + 1, and why we consider the weight µ for the highest weight vectors

rather than −µrev; We can obtain the highest weight vectors for one action from

those for the other by acting with the r×r-matrix with ones on the anti-diagonal

and zeros elsewhere.

For a general field k with no restriction on characteristic, [26] also gives (Theorem

2) a basis for k [Matmrs]
Ur×Us
(µ,λ) where either λ or µ is a column: in the case where λ

is a column of length t ≤ s and µ is some partition of t with l (µ) ≤ r and µ1 ≤ m,

then this basis comprises the elements vT ∈ k [Matmrs] for the row-semistandard

tableaux T of shape µ with entries ≤ m, with each vT defined by

(A1, . . . , Am) 7→

∑
S

det
(
A′S1,1

e1

∣∣∣. . . ∣∣∣A′S1,µ1
e1

∣∣∣. . . ∣∣∣A′Sl(µ),1el(µ)

∣∣∣. . . ∣∣∣A′Sl(µ),µl(µ)el(µ)

)
dt
,

where the sum is over the orbit of T under Cµ, ei are the standard basis elements

of kr, A′i denotes the transpose of the matrix Ai, and Mdt is the matrix M with

all but the first t rows removed.

From now on let P be the ordered tableau of weight ν = (ν1, . . . , νm) on a

column of length t ≤ s and let Q be a fixed ordered tableau of shape µ ` t with

l (µ) ≤ r, and also of weight ν. Then we have the following results.

Lemma 2.17. If Q is row-semistandard, exactly one α : µ → 1t representing

an m-tuple of admissible diagram mappings between P and Q exists; if Q is not

row-semistandard, then no such mappings exist.



2.2. The action of GLr ×GLs on several r × s-matrices 49

Proof. Consider the skew diagrams P−1(i) and Q−1(i) for one of the 1 ≤ i ≤ m

occurring more than once in the tableaux. Since the former is a column, then for

any two boxes there, one will necessarily be directly below the other. Pick two

boxes in the column and label the box in Q−1(i) mapped by αi to the one in a

higher row by a, and the box mapped by αi to the lower box of P−1(i) by b. Then

for αi to be admissible, by definition it is necessary for b to occur in a strictly

lower row than a. Since this is true for any pair of boxes and their images in αi,

it must be that Q−1(i) does not contain more than one box in any one row, i.e.

we must have Q row-semistandard. If this is the case, then any αi that does not

preserve in the column P−1(i) the order of the rows in which the boxes of Q−1(i)

occur cannot be admissible by definition. �

Theorem 2.18. Let k be a field of characteristic 0. Then the basis elements

uP,Q,α and vQ, as defined above, of the space k [Matmrs]
Ur×Us
(µ,1t) , are equivalent up to

multiplication by an integer.

Proof. Since P is a column tableau it is completely determined by its weight ν,

the weight of Q, and then by the above Lemma the suitable α is unique, thus the

elements uP,Q,α certainly can vary only with Q.

The column stabiliser C1t of a column of length t is clearly isomorphic to the

symmetric group St on t letters, so for σ ∈ C1t we can denote by σ̃ the corres-

ponding element of St. Furthermore, for each j ∈ {1, . . . , t}, denote by aj the

box of µ that is mapped to the j-th box in 1t by α. Now the basis element uP,Q,α

can be written

uQ =
∑

π∈Cµ, σ̃∈St

sgn(π)sgn (σ̃)
t∏

j=1

x (Q (aj))π(aj)1, σ̃(j) ,
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which we can see is now of the form

∑
π∈Cµ

sgn(π)det (Mπ) ,

for the t× t matrices Mπ given by Mπ
kl = x (Q (ak))π(ak)1, l

. Now for each π ∈ Cµ

define Sπ = Q ◦ π−1, and denote by π̃ the permutation of {1, . . . , t} such that

aπ̃(k) = π (ak) for 1 ≤ k ≤ t, then if we consider the t × t matrix Nπ formed by

permuting the rows of Mπ by π̃ ∈ St, that is

Nπ
kl = Mπ

π̃−1(k)l = x
(
Q
(
π−1 (ak)

))
(ak)1, l

= x (Sπ (ak))(ak)1, l
,

then det (Nπ) = sgn (π̃) det (Mπ) = sgn(π)det (Mπ) so the basis element becomes

uQ =
∑
π∈Cµ

det (Nπ) .

Comparing this to

vQ =
∑

S∈Cµ.Q

det
(
Y S
)
,

with the matrices Y S defined to be
x (S1,1)1, 1

...

x (S1,1)1, t

∣∣∣∣∣∣∣∣∣∣∣
· · ·

∣∣∣∣∣∣∣∣∣∣∣
x (S1,µ1)1, 1

...

x (S1,µ1)1, t

∣∣∣∣∣∣∣∣∣∣∣
· · ·

∣∣∣∣∣∣∣∣∣∣∣
x
(
Sl(µ),1

)
l(µ), 1

...

x
(
Sl(µ),1

)
l(µ), t

∣∣∣∣∣∣∣∣∣∣∣
· · ·

∣∣∣∣∣∣∣∣∣∣∣
x
(
Sl(µ),µl(µ)

)
l(µ), 1

...

x
(
Sl(µ),µl(µ)

)
l(µ), t

 ,

(it can be easily checked that these vQ are the same as those above), we see that

there is a fixed τ ∈ St (i.e. dependent on α but not on π) such that for all

π ∈ Cµ, the rows of Nπ can be permuted by τ to obtain the transpose of Y Sπ .

(In particular, τ is the permutation for which aτ−1(i) is the i-th box of µ in the

standard numbering, that is going through µ row by row from left to right and

top to bottom.) Furthermore, the summands det (Nπ1) and det (Nπ2) of uQ are

equal whenever π1 (Q) = π2 (Q), so uQ is divisible by the size of the stabiliser
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of Q inside the column stabiliser of µ (we shall denote this subgroup by Cµ(Q)),

and in particular

vQ = sgn(τ)
uQ

|Cµ(Q)|
.

�

2.2.2 Field of arbitrary characteristic and arbitrary skew

shapes

More generally, we can consider for E and F skew diagrams each with t boxes, P

and Q tableaux of shapes E and F respectively, both of weight ν ∈ Σt, α : F → E

a diagram mapping such that P ◦ α = Q, S a tableau of shape F with entries

≤ r and T a tableau of shape E with entries ≤ s, the sum∑
(π,σ)∈CF×CE

sgn(π)sgn(σ)
∏
a∈F

x(Q(a))S(π(a)), T (σ(α(a))) . (2.2)

Note that we obtain (2.1) from (2.2) by taking S and T the canonical tableaux

SF and SE.

We will now show that (2.2) is in Z[Matmrs] = Z[(x(l)ij)lij] divisible by the or-

der of the subgroup

CP,Q,α = {(τ, ρ) ∈ CF (Q)× CE(P ) |α ◦ τ ◦ α−1 = ρ}

of CF ×CE, where CF (Q) and CE(P ) are defined similarly to Cµ(Q) above. Note

that

CP,Q,α ∼= CF (Q) ∩ α−1CE(P )α ≤ SF
∼=

m∏
i=1

CQ−1(i) ∩ α−1
i CP−1(i)αi

and that

CP,Q,α ∼= αCF (Q)α−1 ∩ CE(P ) ≤ SE
∼=

m∏
i=1

αiCQ−1(i)α
−1
i ∩ CP−1(i) .
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In each of the two lines above one may omit “(Q)” in CF (Q) or “(P )” in CE(P ),

but not both.

Theorem 2.19. Each summand in (2.2) only depends on the left coset of (π, σ)

modulo CP,Q,α.

Proof. Let (π1, σ1), (π2, σ2) ∈ CF × CE and suppose (π2, σ2) = (π1 ◦ τ, σ1 ◦ ρ)

for some (τ, ρ) ∈ CP,Q,α. Then sgn(π1)sgn(σ1) = sgn(π2)sgn(σ2), since sgn(τ) =

sgn(ρ). Furthermore,

∏
a∈F

x (Q(a))S(π2(a)), T (σ2(α(a))) =
∏
a∈F

x (Q(a))S(π1(τ(a))), T (σ1(ρ(α(a))))

=
∏
a∈F

x (Q(a))S(π1(τ(a))), T (σ1(α(τ(a))))

=
∏
a∈F

x
(
Q
(
τ−1(a)

))
S(π1(a)), T (σ1(α(a)))

=
∏
a∈F

x (Q(a))S(π1(a)), T (σ1(α(a))) .

�

Now define the twisted bideterminant (S |mP,Q,α T ) ∈ k[Matmrs] by

(S |mP,Q,α T ) =
∑
(π,σ)

sgn(π)sgn(σ)
∏
a∈F

x(Q(a))S(π(a)), T (σ(α(a))) , (2.3)

where the sum is over a set of representatives of the left cosets of CP,Q,α in

CF × CE. Clearly, if k has characteristic 0, then (S |mP,Q,α T ) equals (2.2) divided

by |CP,Q,α|. Note that the product in (2.3) can also be written as

∏
a∈E

x(P (a))S(π(α−1(a))), T (σ(a)) .

In case m = 1, P and Q are constant equal to 1 and they play no role. We then
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omit P,Q and the superscript m in our notation and instead of x(1)ij we write

xij. So

(S |α T ) =
∑
(π,σ)

sgn(π)sgn(σ)
∏
a∈F

xS(π(a)), T (σ(α(a))) , (2.4)

where the sum is over a set of representatives of the left cosets of

Cα = {(τ, ρ) ∈ CF ×CE |α◦ τ ◦α−1 = ρ} in CF ×CE. Note that if m = 1, E = F

and α = id we get the ordinary bideterminant.

Lemma 2.20. If X is a set of representatives for the left cosets of αCF (Q)α−1∩

CE(P ) in CE, then CF ×X is a set of representatives for the left cosets of CP,Q,α

in CF × CE. If we concatenate all matrices in an m-tuple column-wise, then

we obtain an isomorphism between k[Matmrs] and k[Matr,ms] as rings, which maps

x(l)ij to xi,(l−1)s+j. Now we have

(S |mP,Q,α T ) =
∑
σ∈X

sgn(σ)(S |Tα,σ) ,

where Tα,σ(a) = T (σ(α(a))) + (Q(a) − 1)s for a ∈ F . Of course we could also

work with a set X̃ of representatives for the left cosets of CF (Q) ∩ α−1CE(P )α

in C̃F = α−1CEα. Then the above sum would be over σ ∈ X̃ with Tα,σ(a) =

T (α(σ(a))) + (Q(a)− 1)s for a ∈ F .

Similarly, if X is a set of representatives for the left cosets of CF (Q)∩α−1CE(P )α

in CF , then X × CE is a set of representatives for the left cosets of CP,Q,α in

CF ×CE. If we concatenate all matrices in an m-tuple row-wise, then we obtain

an isomorphism k[Matmrs]
∼= k[Matmr,s] which maps x(l)ij to x(l−1)r+i,j. Then we

have

(S |mP,Q,α T ) =
∑
π∈X

sgn(π)(Sα,π |T ) ,

where Sα,π(a) = S(π(α−1(a))) + (P (a)− 1)r for a ∈ E. With X̃ a set of repres-

entatives for the left cosets of αCF (Q)α−1 ∩ CE(P ) in C̃E = αCFα
−1, the above
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sum would be over π ∈ X̃ with Sα,π(a) = S(α−1(π(a))) + (P (a)− 1)r for a ∈ E.

Remark 2.21. In the case of the twisted bideterminants for a single matrix (i.e.

m = 1), P and Q play no role, so CF (Q) and CE(P ) can be replaced by CF

and CE, and in the definitions of Tα,σ and Sα,π the terms containing Q or P

may be omitted. In [4, Sect. 8-11], the twisted bideterminants (S |α T ) are known

as “shuffle-products”, and moving from the single matrix version of the first

expression above to that of the second is called “overturn of the P-shuffle product

onto the L-side”.

Example 2.22. Take F = (2, 2) and E = (2, 1, 1) and Q, P and α as indicated

below.

Q =
1 2

2 2

1 2

3 4

α−→
1 3

2

4

1 2

2

2

= P

Here the second tableau of shape F has been given the standard numbering and

α maps each box of F to the box of E with the same number. Clearly, P ◦α = Q.

Note that

α1 : 1 −→ 1 and α2 :
2

3 4
−→

3

2

4

are special.

Now we consider certain twisted bideterminants in k[Mat2
23] ∼= k[Mat43]. For

S a tableau of shape F with entries ≤ 2, T a tableau of shape E with entries

≤ 3, and α, P,Q as above we have
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(S |2P,Q,α T ) =


s11 s21 + 2

s12 + 2

s22 + 2

∣∣∣∣∣∣∣∣∣∣
T

−


s21 s11 + 2

s12 + 2

s22 + 2

∣∣∣∣∣∣∣∣∣∣
T

 .

This can be seen by applying Lemma 2.20 to the set of representatives X =

〈(1, 3)〉 ≤ CF for the left cosets of CF (Q) ∩ α−1CE(P )α = 〈(2, 4)〉 in CF .

Let k be an algebraically closed field, then the coordinate ring k[Matmrs] is Nm
0 -

graded. Fix a multidegree ν ∈ Σt. Then one can construct a good filtration

M1 ⊇M2 ⊇ · · · ⊇Mq+1 = 0

of the graded piece M1 of degree ν of k[Matmrs] as follows.

Let X be the set of triples (P,Q, α), with P and Q ordered tableaux of weight ν

with shapes λ of length ≤ s and µ of length ≤ r and α : µ → λ an admissible

representative for the m-tuples of special tableaux with shapes determined by Q

and weights determined by P (see Section 2.1.1). Then for a numbering

(P1, Q1, α
1), (P2, Q2, α

2), . . . , (Pq, Qq, α
q)

of X, define the space Mi for each i ≤ q to be the span in k[Matmrs] of all twisted

bideterminants (S |mPj ,Qj ,αj T ) with j ≥ i, where for λj the shape of each Pj and

µj the shape of the Qj, S is a tableau of shape µj with entries ≤ r, and T is a

tableau of shape λj with entries ≤ s.

Theorem 2.23. There is a numbering (P1, Q1, α
1), . . . , (Pq, Qq, α

q) of the set X

of triples as defined above such that for each i ≤ q, the space Mi is GLr × GLs-
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stable and we have an isomorphism

(S |Sµi)× (T |Sλi) 7→ (S |mPi,Qi,αi T ) mod Mi+1

∇GLr

(
µi
)
⊗∇GLs

(
λi
) ∼→Mi/Mi+1 .

Furthermore, the twisted bideterminants (S |mPj ,Qj ,αj T ), 1 ≤ j ≤ q, S and T as

above and in addition semi-standard, form a basis of the graded piece of degree ν

of k[Matmrs].

Proof. We use the isomorphism k[Matmrs]
∼= k[Matmr,s], see Lemma 2.20. Let t be

an integer ≥ 0. We start with the good GLmr × GLs-filtration (see [1, II.4]) of

the piece of degree t of k[Matmr,s] with sections isomorphic to

∇GLmr(λ
i)⊗∇GLs(λ

i). (2.5)

Here the λi are the partitions of t of length ≤ min(mr, s). The isomorphisms to

the sections of the filtration are given by

(S |Sλi)⊗ (T |Sλi) 7→ (S |T ) modulo the (i+ 1)-th filtration space.

After restricting the left multiplication action to GLmr we can decompose the

above filtration according to the multidegree in Nm
0 . From now on we focus on

the piece of multidegree ν ∈ Σt. By considering GLmr as a direct sum of m

copies of GLr, we can repeatedly apply Lemma 2.16 to ∇GLmr(λ
i), until we have

“refined” the above filtration to a filtration with sections isomorphic to

( m⊗
j=1

∇GLr(P
−1
i (j))

)
⊗∇GLs(λ

i), (2.6)

where the group GLmr acts on the first factor, and the Pi go through all ordered

tableaux of shape λi with weight ν, which will make the corresponding m-tuples

of diagrams P−1
i (j) go through all the m-tuples of tableaux with numbers of
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boxes determined by ν such that the union of the diagrams in the tuple equals

λi, for each i. Now we restrict the first factor of (2.6) to the diagonal copy of

GLr in GLmr and we have

m⊗
j=1

∇GLr

(
P−1
i (j)

) ∼= ∇GLr (EPi) , (2.7)

where for P an ordered tableau with entries≤ m we define EP = E(P−1(1),...,P−1(m))

and for an m-tuple (D1, . . . , Dm) of skew Young diagrams

E(D1,...,Dm) =

D1

. .
.

Dm

where each row or column contains boxes from at most one skew tableau Dj. Now

we apply [21, Thm. 1.5] and we can refine our previous filtration to a filtration

with sections

∇GLr(µ
i)⊗∇GLs(λ

i) .

Here the µi have length ≤ r. Furthermore, the labelling is coming from triples

(P, µ, α) where P is an ordered tableau of weight ν, µ a partition of t and

α : µ → EP goes through a set of admissible representatives for the special

tableaux of shape µ and weight the tuple of row lengths of EP . These triples are

in one-to-one correspondence with the triples (P,Q, α) mentioned earlier.

We now have to check that our filtration is indeed given by spans of twisted bide-

terminants. From Lemma 2.20 it is clear that under the section-isomorphism (2.5)

the element (S |mP,Q,α Sλi) ⊗ (T |Sλi), S of shape µ with entries ≤ r, α : µ → λi,

T of shape λi with entries ≤ s, is mapped to (S |mP,Q,α T ) modulo the (i + 1)-th

filtration space. So it now suffices to show that at “stage (2.7)” the elements

(S |mP,Q,α Sλi) correspond under the section isomorphisms (2.7) and (2.6) to the
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elements defining the filtration of ∇GLr(EPi) from [21, Thm. 1.5].

For this we focus on one particular i which we suppress in the notation. If

α : µ → λ is an admissible representative of an m-tuple of special tableaux,

then the diagram mapping α : µ → EP whose restrictions : Q−1(j) → P−1(j)

are the same as those of α, is an admissible representative of the special tableau

T = SEP ◦ α of shape µ. The elements defining the filtration of ∇GLr(EP ) from

the proof of [21, Thm. 1.5] are (S |α SEP ), S of shape µ with entries ≤ r. Here one

should bear in mind that in [21] the bideterminants are formed row-wise rather

than column-wise, and that there α
−1

is used rather than α: the map fT on page

93 of [21] satisfies (after transposing) T ◦ fT = SEP , and it corresponds to the

inverse of our α. Note that actually the α corresponding to the fT from [21]

are the (unique) special representatives of the special tableaux T of shape µ and

weight the tuple of row lengths of EP , but it is clear that the arguments there

work for any choice of admissible representatives α. Furthermore, it is clear from

the proof of [21, Claim 2 (p94)] that the filtration of ∇GLr(EP ) does not depend

on the choice of representing α.

Now by Lemma 2.20 we have

(S |α SEP ) =
∑
π∈X

sgn(π)(Sα,π |SEP ) ,

where X is a set of representatives for the left cosets of Cµ ∩α
−1
CEPα in Cµ and

Sα,π(a) = S(π(α
−1

(a))) for a ∈ EP . Now we have Cµ ∩ α
−1
CEPα = Cµ(Q) ∩

α−1Cλ(P )α, so, by Lemma 2.20 we have for the same set X

(S |mP,Q,α Sλ) =
∑
π∈X

sgn(π)(Sα,π |Sλ) ,



2.2. The action of GLr ×GLs on several r × s-matrices 59

where Sα,π(a) = S(π(α−1(a))) + (P (a) − 1)r for a ∈ λ. Under the section

isomorphisms (2.7) and (2.6), Sα,π corresponds to Sα,π, that is, (Sα,π |SEP ) is

mapped to (Sα,π |Sλ) modulo the filtration space labelled by “the next P”. So,

by the above two equations, (S |α SEP ) is mapped to (S |mP,Q,α Sλ) modulo the

filtration space labelled by the next P . �

Corollary 2.24. Let λ, µ be partitions of t with l(µ) ≤ r and l(λ) ≤ s and let

ν ∈ Σt. Then the elements (Sµ |mP,Q,α Sλ), P,Q ordered tableaux of shapes λ and

µ, both of weight ν, and α in a set of representatives for the m-tuples of special

tableaux with shapes determined by Q and weights determined by P , form a basis

of the piece of degree ν of k[Matmrs]
Ur×Us
(µ,λ) .

Proof. Using Lemma 2.20, we get that the elements (Sµ |mP,Q,α Sλ) are highest

weight vectors of the given weight. Furthermore, they are linearly independent

by Theorem 2.23. On the other hand, it follows from Lemma 2.14 that the

dimension of k[Matmrs]
Ur×Us
(µ,λ) is equal to the number of sections∇GLr(µ

i)⊗∇GLs(λ
i)

with (λi, µi) = (λ, µ) in a good filtration of k[Matmrs], since for each such section

there will be a copy of k while for sections with λ 6= µ we will get the zero vector

space. But then this dimension is equal to the number of elements of our linearly

independent set. �

Finally we give a version for the above corollary for the GLr × GLs-action on

k[Matmrs] defined by ((A,B) · f)(X) = f((A−1XiB)1≤i≤m), that is, we twist the

GLr-action we considered previously with the inverse transpose. We define the

anti-canonical tableau S̃µ of shape µ by S̃µ(a) = r− a1 + 1, for a ∈ µ where a1 is

the row index of a. For a tuple µ of integers of length ≤ r we denote by µrev the

reverse of the r-tuple obtained from µ by extending it with zeros.
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Corollary 2.25. Let λ, µ be partitions of t with l(µ) ≤ r and l(λ) ≤ s and let

ν ∈ Σt. Then the elements (S̃µ |mP,Q,α Sλ), P,Q ordered tableaux of shapes λ and

µ, both of weight ν, and α in a set of representatives for the m-tuples of special

tableaux with shapes determined by Q and weights determined by P , form a basis

of the piece of degree ν of k[Matmrs]
Ur×Us
(−µrev,λ). �

Remarks 2.26. 1. We now extract from the proof of Theorem 2.23 how the triples

(P,Q, α) are enumerated. First we order the P ’s by identifying each P with the

tuple of Young diagrams (i.e. partitions) P−1({1, . . . ,m−i})0≤i≤m−1 and ordering

these lexicographically, where the partitions are themselves also ordered lexico-

graphically. For a fixed P we order the pairs (Q,α) as follows. For each i we let Si

be the tableau obtained by shifting the entries of SP−1(i) ◦αi by
∑i−1

j=0 rj, where rj

is the number of rows of P−1(j). Here the αi are defined as in Section 2.1.1. Let

SQ,α be the tableau of the same shape as Q obtained by piecing the Si together

according to Q. Then we say that (Q1, α1) > (Q2, α2) if the standard enumer-

ation of SQ1,α1 is lexicographically less than that of SQ2,α2 . Now we order the

triples (P,Q, α) lexicographically by first comparing the P -component and then

the (Q,α)-component. Finally, we enumerate the triples (P,Q, α) in decreasing

order.

2. We can now give a characteristic-free version of [26, Thm. 3]. Let E and

F be skew Young diagrams with t boxes. Let r be ≥ the number of rows of

F and let s be ≥ the number of rows of E, then the twisted bideterminants

(SF |P,Q,α SE) ∈ k[Matrs] where α goes through a set of admissible representat-

ives of special tableaux of shape F and weight the tuple of row lengths of E (and

P and Q = P ◦ α vary together with α), are linearly independent.

This can be deduced from [21] as follows. Write F = µ/µ̃ and take E to be
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E with µ̃ above and to the right of it in such a way that they have no rows

or columns in common. We use the definition of Schur modules that uses the

right multiplication action. If we combine this with Remark 2.15 we obtain an

isomorphism ∇GLs(F )
∼→ ∇GLs1

(µ)
Us′
µ̃ where s1 = s′+s. By Lemma 2.20 this iso-

morphism maps (SF |P,Q,α SE) to (Sµ |α SE) where α : µ→ E is given by α|F = α

and α|µ̃ = id. For α as above, α goes through a set of representatives for the

special tableaux of shape µ and weight the tuple of row lengths of E. Since the

elements (Sµ |α SE) are linearly independent by the proof of [21, Thm. 1.5], the

result follows.

3. Assume r = r1 + · · · + rm for certain integers rj > 0. By similar arguments

as in the proof of Theorem 2.23 one can construct a good
(∏m

j=1 GLrj

)
× GLs-

filtration of the degree ν piece of k[Matrs] using a spanning set labelled by triples

(λ, (µ1, . . . , µm), α), where λ is a partition of t = |ν| of length ≤ s, (µ1, . . . , µm)

is an m-tuple of partitions with µj of length ≤ rj and |µ1| + · · · + |µm| = t,

and where α : E(µ1,...,µm) → λ goes through a set of admissible representatives

for the special tableaux of shape E(µ1,...,µm) and weight λ. These triples are in

one-to-one correspondence with the triples (P, (µ1, . . . , µm), (α1, . . . , αm)), where

P is an ordered tableau of weight ν, (µ1, . . . , µm) is an m-tuple of partitions with

µj of length ≤ rj and |µ1|+ · · ·+ |µm| = t = |ν|, and each αj : µj → P−1(j) goes

through a set of admissible representatives for the special tableaux of shape µj

and weight the tuple of row lengths of P−1(j). The filtration spaces are spanned

by twisted bideterminants (S |P,Q,α T ), where S is of shape E(µ1,...,µm) with entries

≤ r, satisfying S−1((
∑j−1

l=1 rl + {1, . . . , rj}) = µj ⊆ E(µ1,...,µm) for all j, T is of

shape λ with entries ≤ s and α : E(µ1,...,µm) → λ is as above.
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2.3 Highest weight vectors for the conjugation

action of GLn on polynomials

Firstly, let us introduce some further notation. For n a natural number and λ, µ

partitions with l(λ) + l(µ) ≤ n, define the descending n-tuple

[λ, µ] := (λ1, . . . , λl(λ), 0, . . . , 0,−µl(µ), . . . ,−µ1).

The group GLn acts on Matn via the conjugation action, given by S ·A = SAS−1

and therefore on the coordinate ring k[Matn] via (S · f)(A) = f(S−1AS). Note

that the nilpotent cone Nn = {A ∈ Matn |An = 0} is under this action a GLn-

stable closed subvariety of Matn. We denote the algebra of invariants of k[Matn]

under the action of GLn by k[Matn]GLn , as in Chapter 1. It is well-known that

this is the polynomial algebra in the traces of the exterior powers of the matrix.

Now let r, s be integers ≥ 0 with r+ s ≤ n. We let GLr×GLs act on k[Matmrs] as

at the end of Section 2.2: we use the inverse rather than the transpose to define

the action of GLr. For a matrix M denote by Mrcbs the lower left r× s corner of

M . For m an integer ≥ 2 we define the map ϕr,s,n,m : Matn → Matmrs by

ϕr,s,n,m(X) =
(
Xrcbs ,

(
X2
)
rcbs , . . . , (X

m)rcbs

)
.

The restriction of this map to the nilpotent cone Nn will be denoted by the same

symbol. In [26] the following result was proved.

Theorem 2.27 ([26, Thm. 1]). Let χ = [λ, µ] be a dominant weight in the root

lattice, l(µ) ≤ r, l(λ) ≤ s, r + s ≤ n. Then the pull-back map

k[Matn−1
rs ]Ur×Us(−µrev,λ) → k[Nn]Unχ

along ϕr,s,n,n−1 : Nn → Matn−1
rs is surjective.
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Combining this with Corollary 2.25 we obtain

Lemma 2.28. Let χ = [λ, µ] be a dominant weight in the root lattice, l(µ) ≤

r, l(λ) ≤ s, |λ| = |µ| = t, r + s ≤ n. Then the pull-backs of the elements

(S̃µ |mP,Q,α Sλ), ν, P,Q, α as in Corollary 2.25, along ϕr,s,n,n−1 : Nn → Matn−1
rs

span the vector space k[Nn]Unχ .

Next we recall the following instance of the graded Nakayama Lemma from [26].

Lemma 2.29 ([26, Lem. 1]). Let f1, . . . , fl ∈ k[Matn]Unχ be homogeneous. If

the restrictions f1|Nn , . . . , fl|Nn span k[Nn]Unχ , then f1, . . . , fl span k[Matn]Unχ as

a k[Matn]GLn-module. The same holds with “span” replaced by “form a basis of”.

Combining Lemmas 2.28 and 2.29 we finally obtain

Theorem 2.30. Let χ = [λ, µ] be a dominant weight in the root lattice, l(µ) ≤

r, l(λ) ≤ s, |λ| = |µ| = t, r + s ≤ n. Then the pull-backs of the elements

(S̃µ |mP,Q,α Sλ), ν, P,Q, α as in Corollary 2.25, along ϕr,s,n,n−1 : Matn → Matn−1
rs

span the k[Matn]GLn-module k[Matn]Unχ .

Remarks 2.31. 1. Note that pulling the (S̃µ |mP,Q,α Sλ) back just amounts to inter-

preting x(Q(a))ij as the (i, j)-th entry of the Q(a)-th matrix power and replacing

r− a1 + 1 by n− a1 + 1. In particular, these pulled-back functions don’t depend

on the choice of r and s.

2. One obtains a bigger, “easier” spanning set by allowing arbitrary P,Q of weight

ν and arbitrary bijections α : µ→ λ with P ◦ α = Q.
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Chapter 3

Highest weight vectors for the

symplectic group

Let k be an algebraically closed field, and throughout this chapter assume char(k) =

0. Let Spn be the symplectic group, and spn its Lie algebra. Let Un denote the

subgroup consisting of the unipotent elements in a Borel subgroup. We are in-

terested in describing highest weight vectors in k [spn] with respect to the adjoint

action of Spn on spn (given by U.X = UXU−1). That is, we wish to give a

finite spanning set, if not a basis, in terms of λ for the vector space k [spn]Unλ

of the highest weight vectors of weight λ, as a module over the ring k [spn]Spn

of invariants. The aim is to use similar techniques as those used in Chapter 2

for the general linear group, that is, reducing the problem to describing highest

weight vectors for an “easier” variety, and pulling these back along a morphism

of varieties, applying the comorphism.

65
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3.1 The symplectic group

Let m be a non-negative integer, n = 2m and let J be an n × n matrix with

JT = −J = J−1, e.g. J =

 0 Im

−Im 0

. Let Spn denote the subgroup

{
U ∈ Matn

∣∣UJUT = J
}

of GLn and spn its Lie algebra, the space
{
X ∈ Matn

∣∣JXT +XJ = 0
}

.

Note that for U ∈ Spn we have U−1 = −JUTJ and for X ∈ spn we have

XT = JXJ ∈ spn and J (X i)
T − (−X)i J = 0 for i ∈ N.

From now on, we will assume J to be the matrix

 0 Ξm

−Ξm 0

, where for a

non-negative integer q, Ξq is the q × q-matrix which has ones everywhere on the

anti-diagonal and zeros everywhere else.

Let Un denote the subgroup of Spn consisting of the upper uni-triangular sym-

plectic matrices; for our choice of J we find that, as in Chapter 2, these will be

the unipotent elements in a Borel subgroup of Spn. Similarly, let Tn again denote

the subgroup of the diagonal matrices in Spn; these are the diagonal matrices
t1 0

. . .

0 tn

 that have ti = t−1
n−i+1 for all i, and this subgroup is the maximal

torus in Spn.

The character group of this Tn is isomorphic to the set Zm under component-wise

addition, with a tuple (a1, . . . , am) corresponding to the character


t1 0

. . .

0 tn

 7→
ta11 . . . tamm . Since Spn is simply connected, we have that the character group equals
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the weight lattice. The root lattice is then the sublattice of the weights with even

co-ordinate sum, that is,{
(a1, . . . , am)

∣∣∣∣∣
m∑
i=1

ai = 2j for some j ∈ Z

}
.

3.1.1 Chevalley restriction theorem

We can describe the invariants in k[spn] under the adjoint (that is, conjugation)

action of Spn using the following result:

Theorem (Chevalley theorem). [2, Ch. VIII, 8.3] Let G be a Lie group whose

Lie algebra g is a semisimple Lie algebra over k, and let h be a Cartan subalgebra

of g and W the corresponding Weyl group. Then the restriction k[g]→ k[h] gives

an isomorphism

k[g]G ∼= k[h]W .

Now let h be the subalgebra of diagonal matrices in spn, with a basis

{Hi|Hi(i, i) = 1, Hi(n− i+ 1, n− i+ 1) = −1, H(j, d) = 0 otherwise} .

Then the algebra k[h]W is generated [2, Ch. VIII, 13.3.VI] by the algebraically

independent elementary symmetric polynomials e1, . . . , em in the squares of the

functions xii ∈ k[h] with i ≤ m, where each xij sends a matrix to its (i, j)-th entry.

For the matrix X of the functions xij, 1 ≤ i, j ≤ n, denote the characteristic

polynomial by

f(z) = det(zIn −X) = zn + f1(X)zn−1 + · · ·+ fn−1z + fn;

then when restricted to h, the coefficients fi for odd i become zero, while the

restrictions of the even coefficients f2, f4, . . . , fn−2, fn are, up to sign, the afore-

mentioned elementary symmetric polynomials in the squares of the xii for i ≤ m.
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So we have that the functions f2, . . . , fn generate the algebra k[spn]Spn . And

since elementary symmetric polynomials are algebraically independent, this gives

us that {f2, . . . , fn} is in fact an algebraically independent generating set of the

algebra of invariant polynomials on the Lie algebra.

3.1.2 Reduction to the nilpotent cone

In general, for an algebra of invariants, if k[g]G = k[s1, ..., sq] for some family of

functions s1, . . . , sq ∈ k[g], then the vanishing ideal of the nilpotent cone N in

the Lie algebra g is (see [19, Sect. 7] and [25, Prop. 1(i)]) the ideal generated

by the s1, . . . , sq. The co-ordinate algebra k[N ] is then obtained from k[g] by

reducing the invariants to scalars: k[N ] = k[g]/Mk[g] = k ⊗k[g]G k[g], where M

is the maximal ideal of k[g]G generated by the si.

From now on, N will denote the nilpotent cone in spn, that is, the Spn-variety

{X ∈ spn |Xn = 0}. A refinement of the above gives a useful result for the k[g]G-

modules of highest weight vectors, which we can apply to the symplectic case to

obtain another instance of the Nakayama Lemma (compare Lemma 2.29 for the

general linear case).

Lemma 3.1. Let s1, . . . , sq ∈ k[spn]Unλ be homogeneous. If the restrictions

s1|N , . . . , sq|N span k[N ]Unλ , then s1, . . . , sq span k[spn]Unλ as a k[spn]Spn-module.

After this reduction, we see that we only have to find homogeneous finite spanning

sets for certain graded vector spaces, rather than for k[spn]Spn-modules.
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3.1.3 Transmutation

The technique we will use to find the desired spanning sets will be transmutation,

analogous to that used in [26], which was carried forward to Chapter 2. We will

move from the conjugation action of the symplectic group Spn to a simpler action

of GLr for some r ∈ Z+ in such a way that spanning sets for the spaces of highest

weight vectors on the transmuted variety, which are easy enough to find, map in

a known way to spanning sets for the highest weight vectors in the variety we are

interested in. The method derives from the following fact.

Lemma 3.2. [26] Let G, H be reductive groups and let Y be an affine G × H-

variety such that k [Y ] =
⊕

i∈I L
∗
i ⊗Ni where the Li are mutually non-isomorphic

G-modules and the Ni are mutually non-isomorphic H-modules. Then, if V is an

affine G-variety, then W = Y ×G V := Spec
(
k [Y × V ]G

)
is an H-variety and

the irreducible H-modules that show up in k [W ] are the Ni, with multiplicities

the same as the corresponding Li in k [V ].

We recall the following from Chapter 2 and [26]. Let G = GLn and V = Nn,m :=

{A ∈ Nn |Am+1 = 0} ≤ Matn. For the purpose of transmutation, choose r, s ∈

Z+ such that r + s ≤ n and then let H = GLr × GLs and Y = {(A,B) ∈

Matrn ×Matns|AB = 0}, and we get

W ∼=
{

(0, AXB, . . . , AXmB) ∈ Matm+1
rs

∣∣AB = 0, X ∈ Nn,m
}
.

In this chapter, we have instead G = Spn. Fix r ∈ Z+ with 2r ≤ n, and let

H = GLr. Define a map Q : Matnr → Matr by A 7→ ATJA and let Y := Q−1(0)

with a G × H-action on Y given by (U, V ) · A = UAV T . Then we have the

following theorem from [15].
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Theorem 3.3. [15, Thm. 3.8.6.2], k [Y ] decomposes as a G×H-module into∑
λ: l(λ)≤r

τλ ⊗ ρλ

where the τλ and ρλ are the representations of Spn and GLr respectively generated

by the Spn ×GLr-highest weight vectors

δλ =

l(λ)∏
j=1

δ
λj−λj+1

j ,

where for a (symmetric) matrix A with entries atu, δj denotes the j-th leading

minor, that is, the function

A 7→ det
(
Abj
)

= det


a11 · · · a1j

...
. . .

...

aj1 · · · ajj


Following the above result, we now have that in order to calculate finite spanning

sets for the spaces of highest weight vectors, we need to describe the space Y ×Spn

spn.

Definition 3.4. [23, Ch. 3] Let G be an algebraic group, X be an affine G-variety,

and Z be an affine variety; give Z the trivial G-action. Then a G-invariant

morphism ϕ : X → Z is a quotient morphism for G (also known as a G-quotient

morphism) if ϕ induces an isomorphism Imϕ ∼= Spec
(
k[X]G

)
, i.e. if the image

of its co-morphism ϕco : k[Z] → k[X] equals the ring of invariants k[X]G. Note

that the inclusion ϕco(k[Z]) ⊆ k[X]G follows immediately from the fact that ϕ is

G-invariant.

From the above definition comes the following fact.

Lemma 3.5. Let G be an algebraic group and X an affine G-variety. A set of

G-invariant functions f1, . . . , fs on X generate the ring k[X]G if and only if the

map ϕ : X → kr, x 7→ (f1(x), . . . , fs(x)) is a quotient morphism.
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For l < n, letNl denote the Spn-variety
{
X ∈ N

∣∣X l+1 = 0
}

and let ϕ : Y ×Nl →

Matlr be the morphism (A,X) 7→
(
ATJXA, . . . , ATJX lA

)
, where the GLr-action

on Matr is given by g ·A = gAgT . Since N ⊆ spn, we have for (A,X) ∈ Y ×Nl,(
ATJX iA

)T
= AT

(
XT
)i
JTA = −ATJ (−X)iA = (−1)i+1ATJX iA and hence

the image of the morphism ϕ lies inside the variety M1 × . . .×Ml, where Mi =

{symmetric r × r-matrices} for i odd and {skew symmetric r × r-matrices} for i

even.

Theorem 3.6. Every polynomial function on r n-vectors a1, . . . , ar and one mat-

rix X in the space spn that is invariant under the action of Spn by conjugation,

is a linear combination of the functions tr (X i) with 0 < i < n and the functions

picking out the entries of ATJX iA with i < n where A is the n × r-matrix with

the aj as its columns.

Proof. We have a spanning set for the multi-linear invariants from the first the-

orem in [24, Sect. 10]; then, as in [24, Thm. 1.3], since we can fully polarise an

invariant to obtain a multi-linear one and then recover the original invariant by

identifying the variables, this gives us that the spanning set for the multi-linear

invariants will in fact cover all symplectic invariants. Then from this (see also

its corollary [24, Thm. 10.1]) we get that the Spn-invariants of several vectors

a1, . . . , ar and several matrices X1, . . . , Xs ∈ Matn are generated by the functions

tr(M) and the functions picking out the entries of ATJMA, where A is the n×r-

matrix with the vectors as its columns, and M is any monomial (including In) in

the Xj and X∗j , where for a matrix B ∈ Matn, B∗ is defined as B∗ := −JBTJ .

In our case we have only one matrix X, that is, s = 1, and furthermore we have

that X ∈ spn, so XJ = −JXT , hence X∗ = −X. So, the M become simply

monomials in X, that is, powers of X. Finally, if Xn = 0 then we can assume
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all the powers of X in the functions in generating set are strictly less than the

dimension n, so at least this is true for X ∈ N by definition; however by the

Cayley-Hamilton theorem, which states that every matrix is a root of its own

characteristic polynomial, we can indeed neglect higher powers of any matrix X

in the functions for the generating set. �

Corollary 3.7. The above map ϕ is a quotient morphism for the Spn-action.

Now consider the matrix I ∈ Matnr consisting of the r× r identity matrix in the

first r rows followed by n−r rows of zeros below. For any X ∈ Matn, the product

ITXI ∈ Matr will be the upper-left r × r corner of X. So, because r ≤ m, the

matrix ITJI is the zero matrix, and hence I ∈ Y . We will consider ϕ to be a

map Nl → Matlr by letting

ϕ(X) = ϕ(I,X) =
(

(JX)br, . . . ,
(
JX l

)
br

)
where, for a matrix B, Bbr denotes the B-submatrix consisting of the upper-left

r × r corner of B.

Theorem 3.8. Let r, l be positive integers with l < n and 2r < n, then let λ

be a partition with length ≤ r, and let Mi, 1 ≤ i ≤ l be the subspaces of Matr

consisting of symmetric matrices for i odd and skew symmetric matrices for i

even. Then the pull-back map

k[Matlr]
Ur
λ → k[Nl]Unλ

along ϕ : Nl → Matlr is surjective.

Proof. For an n × n-matrix A, let Abr denote the r × r-matrix consisting of the

entries in the upper-left r×r corner of A. Then, if A is upper-triangular or upper
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uni-triangular in Matn, Abr will be upper-triangular or upper uni-triangular in

Matr, and so we have

ϕ(AXAT ) = Abrϕ(X)Abr,

for all X ∈ spn. Hence, the highest weight vectors in k[Matlr] will be mapped

to highest weight vectors of the corresponding weights in k[Nl] by this pull-back

map.

Furthermore, a consequence of Weyl’s theorem on complete reducibility (that

every finite-dimensional module over a semisimple Lie algebra over a field of

characteristic zero is itself semisimple as a module) is that a surjection of G-

modules will always induce a surjection on the U -invariants of any given weight,

for U the unipotent elements in a Borel subgroup of G; hence, the restriction

map from Matlr to ϕ(Nl) induces a surjection from k[Matlr]
Ur
λ to k[ϕ(Nl)]Urλ .

Let I ∈ Matnr be as above, and consider the orbit of I in Y under the Spn×GLr-

action, which is the subset
{
UnbrV

T
∣∣U ∈ Spn, V ∈ GLr

}
, where for an n × n-

matrix B, Bnbr ∈ Matnr denotes the matrix consisting of the first r columns of

B. It can be checked that an n× r-matrix of the form UnbrV
T for U symplectic

and V invertible itself consists of the first r columns of a symplectic matrix UV T
n ,

where for an r × r-matrix L, Ln denotes the element
L 0

...

0

0 · · · In−2r · · · 0

0

...

0 (L−1)T


in Spn. So, the orbit is equal to

{
Unbr

∣∣U ∈ Spn
}

. Since Spn×Y is an irreducible

variety, and we have a surjective morphism Spn × Y → Y given by (g, A) 7→ gA,
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it follows that Y is irreducible, and so the described orbit is dense in Y ; therefore,

the union of the Spn × GLr-conjugates of {I} × Nl (which will have the same

ϕ-image as {I} × Nl) is dense in Y × Nl. By the fact that ϕ is continuous,

it then follows that the subset ϕ(Nl) = ϕ({I} × Nl) is dense in ϕ(Y × Nl),

which means that we have k[ϕ(Nl)] = k[ϕ(Y × Nl)], where k[S] denotes the

subalgebra of restrictions of the polynomial functions on Matlr to the subset S.

So k[ϕ(Nl)]λUr = k[ϕ(Y × Nl)]λUr . But by Theorem 3.3 and Lemma 3.2, the

dimension of the space k[ϕ(Y ×Nl)]λUr is the same as that of k[Nl]Unλ . So the pull-

back map k[ϕ(Nl)]λUr → k[Nl]λUn , which is clearly injective, is an isomorphism.

Therefore, the pull-back map k[Matlr]λ
Ur → k[Nl]λUn is surjective. �

3.2 Spaces of highest weight vectors

The following subsection details results on multiplicity-free decompositions of,

and highest weight vectors in, the spaces k[M1] and k[M2], cited primarily from

[15]. These would be of interest in particular for defining bases for the spaces of

highest weight vectors on the product M1×. . .×Ml. In Subsection 3.2.2 however,

we will return to the larger variety Matlr instead, and thus we end up defining a

somewhat larger spanning set when we pull the highest weight vectors back to

the un-transmuted variety in the final subsection.

3.2.1 Symmetric and skew symmetric matrices

We have an inclusion Matr ←↩ M1 = {symmetric matrices}, so the map k [Matr]→

k [M1] is surjective. We have a GLr-action on M1 given by g · A = gAgT , and a

corresponding one on k [M1]. If we restrict the GLr×GLr-action on Matr (given

by (g, h) · A = gAhT ) to the diagonal copy of GLr in GLr × GLr, then the sur-
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jection k [Matr]→ k [M1] is equivariant.

In [15, Thm. 3.1], Howe gave a multiplicity-free decomposition

k [M1] ∼=
∑

λ: l(λ)≤r

ρ2λ

for the GLr-action given above, where for a partition µ, ρµ denotes the repres-

entation of highest weight µ, and the partition 2λ is created from the partition λ

simply by doubling each integer in the tuple. In the proof of that theorem Howe

shows that the highest weight vectors of these weights are the products of the of

the leading minors δj for 1 ≤ j ≤ r.

We recall the formula given in [26, Thm. 4] for the basis elements for the space

of highest weight vectors in k[Matmrs] of a given weight (−µrev, λ). Under the

GLr×GLr-action above however, as in Chapter 2, we let the second GLr act via

the transpose rather than the inverse, which means that we can replace −µrev by

µ. Furthermore, since we are now considering the variety k[Matr], we set s = r,

and so the weights are of the form (λ, λ), that is we also set µ = λ. Then, putting

the m from that paper to 1, the only tableau λ→ N applicable is the one that is

constant equal to 1, hence P = Q, α = id and these can all be omitted from the

notation, and we find that the basis reduces to the single element

uλ =
∑

π,σ∈Cλ

sgn (π) sgn (σ)
∏
a∈λ

xπ(a)1,σ(a)1
,

where Cλ is the column stabiliser of λ (as a Young diagram) and where b1 is

the row-index of a box b in λ; that is, this space of highest weight vectors is

one-dimensional. Since A ∈ Tr if and only if (A,A) ∈ Tr × Tr and B ∈ Ur

if and only if (B,B) ∈ Ur × Ur, the highest weight vectors for the action of
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GLr on k [M1] can be the obtained by restricting to M1 certain highest weight

vectors for the GLr × GLr-action on k[Matr]. A highest weight vector with

weight (λ, λ) in the full action will have weight 2λ for the restricted action: if

(A,A) .f = λ(A)λ(A)f for all A ∈ Tr then A.ϕ(f) = (2λ)(A)ϕ(f) for all A ∈ Tr

((A,A) .f : X 7→ f
(
ATXA

)
= (λ(A))2 f(X) = (2λ)(A)f(X)). Therefore, the

highest weight vectors are the scalar multiples of the element uλ, restricted to

the symmetric matrices, for each weight 2λ, λ a partition with l (λ) ≤ r. Fur-

thermore, the multiplicity-free decomposition stated above implies that all the

highest weight vectors can be obtained in this way.

Now let i be even so that Mi = {skew symmetric matrices} (we can denote

this simply by M2). In this case we can follow a similar procedure as above

with symmetric matrices. The decomposition for this action was given in [15,

Thm. 3.8.1]:

k [M2] ∼=
∑
λ

ρ(2λ)T ,

where the sum is now over diagrams with row lengths ≤ r
2
, and where µT rep-

resents the transpose of a diagram µ. The highest weight vectors we are looking

for here, again given in the discussion of this theorem in [15], are the products of

the Pfaffians of the leading j × j-minors for j ≤ r even. The Pfaffian of a skew

symmetric r × r-matrix A is defined in [27] as

pf (A) =
1(

r
2

)
! 2r/2

∑
σ∈Sr

sgn (σ)

r/2∏
i=1

aσ(2i−1),σ(2i),

where atu are the entries of A. It is well-known that the Pfaffian of an even skew

symmetric matrix is the square-root of its determinant.
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3.2.2 The highest weight vectors in the coordinate ring

k[Matlr] as a direct sum of coinvariant spaces

From now on, let Symr := M1 denote the set of r × r-symmetric matrices, and

Skewr := M2 denote the set of r × r-skew symmetric matrices. For H a group

and V an H-module, let VH denote the set of coinvariants, that is, the quotient

of V by the span of {gx−x|g ∈ H, x ∈ V }. Now let V = kr, then we can consider

both the spaces Symr
∼= S2V and Skewr

∼=
∧2 V as spaces of coinvariants of the

tensor square V ⊗ V by slightly different actions of the group Z2
∼= {1, σ}. In

particular, we have S2V ∼= (V ⊗V )Z2 with the action given by σ.(u⊗ v) = v⊗ u,

and
∧2 V ∼= (V ⊗ V )Z2 with the action given by σ.(u⊗ v) = −v ⊗ u.

Now fix t a non-negative integer and λ a partition of t. Denote by Tλ the stand-

ard t-tableau of shape λ, with the numbers 1, . . . , t entered into the boxes of λ

in order from left to right and then top to bottom.

Definition 3.9. Let A = kSt, and let Rλ, Cλ ⊆ St denote the row-stabiliser

and column-stabiliser of λ respectively (or of Tλ, to continue the use of a tableau

definition of column stabilisers) as in the previous chapters. Denote the column

anti-symmetriser of λ in A by e1,λ. The Young symmetriser of λ is the element

eλ :=

(∑
π∈Rλ

π

)
.

(∑
σ∈Cλ

sgn(σ).σ

)
,

and the module Aeλ is called the Specht module associated to λ.

Example 3.10. The Young symmetriser associated to the diagram is the
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element

e(2,1,1) = (12). ((134) + (143)− (13)− (14)− (34))

= (1342) + (1432)− (132)− (142)− (12)(34)

of kS4.

Definition 3.11. Let T be a tableau of shape λ, and Aeλ the Specht module

of λ. Then the polytabloid associated to T is the element [T ] ∈ Aeλ given by

[T ] := gT eλ where gT is the unique element of A satisfying gT ◦ Tλ = T .

Remark 3.12. It is a well-known result (see e.g. [17, Thm. 8.4] for a proof) that

for a (skew) diagram E, the polytabloids [T ], with T a standard tableau of shape

E, form a basis of the (skew) Specht module AeE.

Considering the GLr-action on Matr that uses the transpose rather than the

inverse, we have the GLr-module isomorphisms Matr ∼= V ⊗ V ∼= V ∗ ⊗ V ∗. This

gives

k
[
Matlr

] ∼= ⊕
t≥0

St
(

(V ⊗ V )l
)
.

Now for t and l integers, define as before Σt = {(νi)1≤i≤l ∈ Z≥0|Σiνi = t}, then

for ν ∈ Σt define Sν(U) := Sν1(U)⊗ . . .⊗ Sνl(U). Then we have:

k
[
Matlr

] ∼= ⊕
t≥0

ν∈Σt

Sν(V ⊗ V )

=
⊕
t≥0

ν∈Σt

(
V ⊗2t

)
Sν
,

where for ν ∈ Σt, Sν can be embedded in S2t in the following way. If σ is a per-

mutation in St, then we can consider a corresponding permutation σ′ ∈ S2t given
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by σ′(2i−1) = 2σ(i)−1, σ′(2i) = 2σ(i), for 1 ≤ i ≤ t; the group Sν ≤ S2t is then

defined as the subgroup consisting of all such permutations σ′ with σ ∈ Sν ≤ St.

Note that all weights λ of the maximal toral subgroup of diagonal matrices of

GLr on k[Matlr] must have even coordinate sum; that is, considering weights as

Young diagrams, the weights that appear will necessarily be diagrams with an

even number of boxes. Indeed the weights of the matrix coordinates all have

coordinate sum 2. So, let λ ` 2t be a weight, and then by the above we have that

the space k
[
Matlr

]Ur
λ

of highest weight vectors of weight λ is isomorphic to

⊕
ν∈Σt

((
V ⊗2t

)Ur
λ

)
Sν
,

where (V ⊗2t)
Ur
λ is isomorphic to the Specht module kS2teλ, via the map [T ] 7→

vT e1,T between basis elements, where for a tableau T , vT is the tensor in V ⊗2t

with vi in the positions that occur as entries in the i-th row of T , and e1,T is

the column anti-symmetriser associated to T . Then a finite spanning set for the

Specht module, when pulled back along this isomorphism and then mapped into

the space of coinvariants, will provide a finite spanning set for that space. By

Remark 3.12, the set of polytabloids corresponding to standard tableaux form a

basis of the Specht module. This has led to the following result.

Theorem 3.13. For an element vT e1,T in the Specht module and Sν ≤ S2t

a Young subgroup, denote the canonical image in the set of coinvariants by

πSν (vT e1,T ). Then we have that the set{∑
ν∈Σt

πSν (vT e1,T )

∣∣∣∣∣T standard tableau of shape λ

}
of sums of canonical images of such elements for the standard tableaux T of

shape λ, for varying Sν, is a spanning set for the space of highest weight vectors
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of weight λ.

3.2.3 Highest weight vectors in k [spn]

Now we only need to translate the above results back to the un-transmuted vari-

ety spn to get the highest weight vectors for the conjugation action of Spn.

Let λ be a dominant weight in the root lattice, that is, a partition with l(λ) ≤ m

and even co-ordinate sum, then let t = 1
2

∑l(λ)
i=1 λi, Σt = {(νi)1≤i≤n−1 ∈ Z≥0|Σiνi =

t} and r ∈ Z+ with l(λ) ≤ r ≤ m, with eλ and Sν ≤ S2t as above, and let πSν (f)

denote the canonical image of an element f ∈ kS2teλ of the Specht module in the

set of coinvariants with respect to the subgroup Sν . Then we have the following

theorem.

Theorem 3.14. The pull-backs along the map X 7→
(

(JX)br, . . . , (JX
n−1)br

)
,

Matn → Matn−1
r of the functions

∑
ν∈Σt

πSν (vT e1,T ), with T a standard tableau of

shape λ, form a spanning set for the space k[spn]Unλ of highest weight vectors for

the conjugation action of Spn on spn, as a k[spn]Spn-module.

Proof. The result follows directly from Theorem 3.8, Lemma 3.1 and from the

highest weight vectors for the transmuted variety given in Theorem 3.13. �
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