

Immune dysregulation increases the incidence of delayedtype drug hypersensitivity reactions

Journal:	Allergy			
Manuscript ID	ALL-2019-00704.R2			
Wiley - Manuscript type:	Review			
Date Submitted by the Author:	n/a			
Complete List of Authors:	Naisbitt, Dean; The University of Liverpool, Pharmacology Olsson-Brown, Anna; The University of Liverpool, Pharmacology Gibson, Andrew; The University of Liverpool, Pharmacology Meng, Xiaoli; The University of Liverpool, Pharmacology Ogese, Monday; The University of Liverpool, Pharmacology Tailor, Arun; The University of Liverpool, Pharmacology Thomson, Paul; The University of Liverpool, Pharmacology			
Keywords:	drug allergy, lymphocytes, T cells			
Note: The following files were submitted by the author for peer review, but cannot be converted to PDF. You must view these files (e.g. movies) online.				
fig 1.tif fig 2.tif fig 3.tif fig 4.tif fig 5.tif fig 6.tif				

SCHOLARONE[™] Manuscripts

1		
2		
4	1	Immune dysregulation increases the incidence of delayed-type drug hypersensitivity reactions
5	2	
6	Z	
/ 8	R	Short title: Regulatory nathways and drug hypersensitivity
9	5	onore the negatively pathways and anag hypersensitivity
10	4	
11		
12	5	Authors: Dean J Naisbitt,* Anna Olsson-Brown, Andrew Gibson, Xiaoli Meng, Monday O Ogese, Arun
14	6	Tailor & Paul Thomson
15	0	
16	7	Address: MRC Centre for Drug Safety Science, Department of Clinical and Molecular Pharmacology
17	,	
19	8	Sherrington Building, Ashton Street, The University of Liverpool, Liverpool, L69 3GE.
20	0	*Company and anone Duckager Door I. Neighigt (The University of Livernool, Livernool, England
21	9	*Correspondence: Professor Dean J. Naisbitt (The University of Liverpool, Liverpool, England
22 23	10	[Telephone_0044 151 7945346; e-mail. dnes@liv.ac.uk]).
24	10	
25	11	
26 27		
27 28	12	Conflict of Interest Statement: The authors declare no conflicts of interest.
29	12	Key words: Drug hypercensitivity, HLA, immune regulation
30	13	key words. Drug hypersensitivity, nEA, initialie regulation.
31 22	14	Word count: 5679
33		
34	15	Authorship: All authors have made substantial contributions to the development of the review and
35	16	writing the review and assessment of the final article. Each author agrees to be accountable for all
36 37	17	aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the
38	17	aspects of the work in clisting that questions related to the declady of integrity of any part of the
39	18	work are appropriately investigated and resolved.
40		
41		
43		
44		
45		
40 47		
48		
49		
50 51		
52		
53		
54		
55 56		
57		
58		
59		
60		

Abstract: Delayed-type, T-cell mediated, drug hypersensitivity reactions are a serious unwanted manifestation of drug exposure that develops in a small percentage of the human population. Drugs and drug metabolites are known to interact directly and indirectly (through irreversible protein binding and processing to the derived adducts) with HLA proteins that present the drug-peptide complex to T-cells. Multiple forms of drug hypersensitivity are strongly linked to expression of a single HLA allele and there is increasing evidence that drugs and peptides interact selectively with the protein encoded by the HLA allele. Despite this, many individuals expressing HLA risk alleles do not develop hypersensitivity when exposed to culprit drugs suggesting a non-linear, multifactorial relationship in which HLA risk alleles are one factor. This has prompted a search for additional susceptibility factors. Herein, we argue that immune regulatory pathways are one key determinant of susceptibility. As expression and activity of these pathways is influenced by disease, environmental and patient factors, it is currently impossible to predict whether drug exposure will result in a health benefit, hypersensitivity or both. Thus, a concerted effort is required to investigate how immune dysregulation influences susceptibility towards drug hypersensitivity.

Ce Review

Allergy

Introduction

Drug hypersensitivity refers to objectively reproducible symptoms or signs initiated by exposure to a drug at a dose normally tolerated by non-hypersensitive persons (1). Hypersensitivity is also commonly referred to as a form of off-target toxicity, which means that the development of tissue injury is not predictable from known pharmacology of the drug and there is no simple association between the dose of the drug administrated and the development of clinical signs and symptoms. Delayed-type reactions vary in severity and can target individual organs such as liver and skin in isolation or as part of a generalized hypersensitivity syndrome. Common to the cellular pathophysiology of drug hypersensitivity is the presence of drug-specific T-lymphocytes in blood and inflamed tissue (2-4). In fact, cutaneous hypersensitivity reactions (maculopapular, pustular, and bullous) are classified according the effector molecules secreted by T-cells when activated with drugs (5, 6).

In 2002, Mallal et al. reported a strong association between the presence of HLA-B*57:01, HLA-DR7, and HLA-DQ3 and hypersensitivity to the HIV-1 reverse-transcriptase inhibitor abacavir (7). Subsequent studies demonstrated that (i) all skin test confirmed cases of abacavir hypersensitivity carry HLA-B*57:01 (8), (ii) abacavir interacts selectively with high affinity within the HLA-B57:01 peptide binding cleft through non-covalent interactions (9-11), and (iii) abacavir only activates CD8+ T-cells (12-14). It is important to note that the abacavir association differs from all other forms of HLA-linked hypersensitivity reaction. For example, drug-responsive CD4+ and CD8+ T-cells are observed in patients hypersensitive to drugs such as carbamazepine, dapsone, flucloxacillin who express the relevant HLA class I risk alleles, B*15:02, B*13:01 and B*57:01, respectively (15-17). These data indicate that although there is a preference for drug (parent drug, metabolite) peptide complex HLA T-cell receptor binding in patients, binding interactions are generally heterogeneous and this contributes to the complete adaptive drug-specific T-cell response. Throughout this manuscript we discuss the different forms of drug HLA interaction in detail highlighting similarities and differences in pathways that lead to T-cell activation. However, we subsequently use the general term "drug peptide complex" where appropriate to refer to any drug-derived structure that interacts with HLA proteins and T-cell receptors to trigger T-cell activation. This is because the formation of an HLA, drug, peptide and T-cell receptor complex is necessary for all pathways of T-cell activation. It is simply the nature of the complex and form of binding interaction that differs. As the number of associations between drug hypersensitivity and HLA allele expression increases (18-20), it is important to consider the additional patient factors that confer susceptibility. This is of particular importance because not all patients expressing a risk HLA are susceptible, while many patients lacking known risk alleles go on to develop hypersensitivity when exposed to culprit drugs.

Three factors are critical for the activation of T-cells with drugs; exposure to a drug peptide complex, the availability of a T-cell repertoire for a drug peptide complex and a protein encoded by HLA alleles for drug peptide complex binding. The argument is presented that although each factor detailed above is critical for drug immunogenicity; separately or together, they cannot be used to predict patient outcome following drug exposure. We hypothesize that when each factor is present, active immune regulatory pathways (co-inhibitory receptors, Tregs, cytokines) are key determinants of whether drug exposure will result in hypersensitivity. Since expression and activity of these regulatory pathways are altered by disease, the genetic make-up of the host and environmental factors, it is currently impossible to predict whether drug exposure will result in a health benefit, hypersensitivity or both (Figure 1).

Different manifestations of drug hypersensitivity

Drug-induced cutaneous reactions: Although skin rashes are common forms of drug hypersensitivity, serious and life-threatening reactions develop much less frequently. Examples of serious cutaneous hypersensitivity reactions include Stevens-Johnson syndrome, toxic epidermal necrolysis and drug reaction with eosinophilia and systemic symptoms (DRESS). Although less serious than the conditions listed above, acute generalised exanthematous pustulosis and maculopapular exanthema are also important adverse drug reactions. A broad spectrum of different drugs may cause cutaneous reactions including the sulfonamides, allopurinol, carbamazepine, dapsone and many of the penicillins (21-24). Although there is some degree of pathophysiological overlap, there are some clinically defining features for each type of severe cutaneous adverse drug reaction and these are briefly discussed below.

The most common skin manifestation is maculopapular exanthema which accounts for approximately 95% of all cutaneous reactions (25). These are reported as eruptions starting on the trunk and upper extremities and progressively become more prevalent. These reactions are not life-threatening and almost always subside when the culprit drug has been withdrawn (26). Antibiotics and a number of tuberculosis medications such as rifampicin, isoniazid, pyrazinamide and ethambutol are common causes of maculopapular exanthema (27).

Acute generalised exanthematous pustulosis represents a more severe, usually drug-related skin reaction characterised by the presence of sterile pustules on an erythematous surface along with fever and neutrophilia in a patient. Furthermore, the involvement of activated neutrophils along with excessive production of cytokines IL-8 and IL-17 is characteristic of acute generalised exanthematous pustulosis, stimulating the recruitment to tissues and the induction of innate immune responses (28).

Page 5 of 73

Allergy

102 DRESS is a severe skin reaction with an incidence of between 1:1000 and 1:10000 in patients exposed 103 to culprit drugs such as anticonvulsants, antimicrobials and antivirals (29). The reaction is 104 characterised by skin eruptions, fever as well as symptoms in other organs, such as hepatitis, nephritis 105 and thyroiditis (30). DRESS has been shown to be regulated by the cellular actions of eosinophils 106 mediated via the secretion of IL-5 from drug-specific T-cells (31). Furthermore DRESS is often 107 associated with reactivation of several viruses, including HHV-6, CMV and EBV (32) (33).

Stevens-Johnson syndrome and toxic epidermal necrolysis define increasing degrees of severity of the same skin disease and are often grouped together. The disease involves the mucosal membranes including the eyes, mouth and genitals (30). The level of skin detachment can be used to categorise the severity of the reaction. The clinical definition of Stevens-Johnson syndrome is when the detachment of epidermal sheets remains on small areas and occurs on less than 10% of the body surface area. Stevens-Johnson syndrome/toxic epidermal necrolysis overlap is when this value is between 10-30% and toxic epidermal necrolysis patients experience large sheets of skin detachment exceeding 30% of the body surface area (34).

Drug-induced liver injury: The liver is the largest organ in humans; it is the major organ responsible for the metabolism and detoxification of drugs. Hepatocytes (parenchymal cells) make up about 85% of the liver while non-parenchymal cells, including liver sinusoidal endothelial cells, hepatic stellate cells, Kupffer cells and biliary epithelial cells make up the remaining 15% and play important roles in maintaining the homeostasis of the liver. Drug-induced liver injury is a major reason for drug attrition and withdrawal of drugs in clinical trials or drugs already licenced for clinical use (35). Worldwide, the estimated annual incidence rate of drug-induced liver injury is 0.02% (36, 37). Hoofnagle and Björnsson have recently classified drug-induced liver injury into three categories (direct, indirect and idiosyncratic) according to frequency, predictability and reaction mechanisms (38). Direct liver injury is common and occurs rapidly when drugs are given at high doses (e.g., paracetamol). Indirect liver injury has an intermediate frequency, is partially predictable and occurs as an indirect action of the drug on liver or the immune system (e.g., monoclonal antibodies). Finally, idiosyncratic liver injury occurs in only a small number of individuals, is not predictable and involves activation of the patients adaptive immune system. The mean onset of idiosyncratic liver injury with certain drugs exceeds 100 days (39). Amoxicillin, clavulanic acid, NSAIDS, flucloxacillin, lapatinib, lumiracoxib, ximelagatran among other drugs have been implicated with various degrees of unpredictable/idiosyncratic liver injury. Several forms of drug-induced liver injury are strongly associated with expression of specific HLA alleles (40). This, alongside the delayed onset of clinical symptoms, is indicative of the pathogenesis involving drug-specific T-cells. Recent

studies have identified and characterized drug-responsive CD4+ and CD8+ T-cells from the peripheral blood of patients with tuberculosis medicine-, co-amoxiclav- and flucloxacillin-induced liver injury (41-43). Furthermore, T-cells have been shown to infiltrate liver and kill hepatocytes through the release of cytolytic molecules (44, 45).

Does drug exposure impact on susceptibility to hypersensitivity?

For this discussion, we assume that the initiating event for T-cell activation is either a drug or drug metabolite binding directly to the HLA T-cell receptor complex (through either covalent or non-covalent binding) or a drug or drug metabolite binding indirectly to non-HLA proteins (through covalent binding; the HLA binding epitope being a peptide derived from the modified protein, which may or may not contain the drug moiety).

In consideration of the latter first, most research has been conducted on biological samples from patients with β -lactam hypersensitivity. For adduct formation, the β -lactam ring is targeted by lysine residues. Nucleophilic attack leads to ring opening and binding of the penicilloyl group to the lysine residue (46). β -lactam antibiotics modify serum proteins such as serum albumin and multiple intracellular proteins (47-51). Protein adducts are transported to antigen presenting cells via exosomal transport (50, 52) and β -lactam-modified protein and peptide adducts have been shown to activate patient T-cells (15, 53-57). Importantly, these adducts are formed in all drug exposed patients (48, 58-60), those who develop skin and liver reactions as well as those that safely tolerate the drug. Moreover, through the synthesis of β -lactam-modified peptides as standards for mass spectrometric analysis, Meng et al (58) were able to quantify and compare the level of drug albumin binding in hypersensitive and tolerant patients. No clear differences in the level of β -lactam antibiotic lysine modification was detected between the two patient groups, and importantly, the level of modification in all patients exceeded the threshold required for activation of β -lactam antibiotic-responsive T-cells. Obviously, additional studies are required to explore whether hapten thresholds are exceeded in patients receiving others β -lactam antibiotics and hapteneic drug metabolites. However, currently available data suggests that although the formation of drug protein adducts may be an important, if not critical factor for drug immunogenicity, the level of therapeutic drug exposure does not seem to be a key determinant of patient outcome. One way to confirm this would be a detailed comparison of the incidence of hypersensitivity reactions in patients receiving higher and lower β-lactam doses or longer and shorter treatment courses, as long as this doesn't impact on clinical care.

An assortment of drug structures activate T-cells through a direct non-covalent interaction with HLA and/or specific T-cell receptors. The p-I concept has been coined to explain this phenomenon and

Page 7 of 73

Allergy

differentiate this pathway of T-cell activation from the hapten concept. A number of pieces of experimental evidence support this direct binding concept: first, the addition of parent drug to human immune cell culture systems that express low levels of drug metabolizing enzymes leads to a T-cell response characterized by proliferation and cytokine and cytolytic molecule release (61-63); second, inhibition of protein processing within antigen presenting cells, which blocks T-cell responses to protein antigens has no effect on the activation of T-cells with drugs (64, 65); and third, the kinetics of T-cell activation with drugs is rapid, within minutes (14, 66), which is in stark contrast to classical antigen presentation pathways that require several hours. Many drugs have been shown to activate T-cells from hypersensitive patients via this pathway, including sulfamethoxazole (65), carbamazepine (67, 68) and allopurinol (66). However, with the exception of abacavir, the nature of the drug peptide HLA T-cell receptor interaction is yet to be defined. The selective interaction of abacavir with HLA-B*57:01 alters the spatial arrangement of molecules within the peptide binding groove. This results in the display of novel "altered" HLA-B*57:01 peptide sequences that seemingly go on to stimulate T-cells that bring about abacavir hypersensitivity (9-11, 69). Adam et al. (69) demonstrated that abacavir-responsive T-cells stemming from naïve and memory compartments are detectable in 100% of donors expressing HLA-B*57:01. This led the authors to suggest that abacavir T-cell reactivity by-passes normal co-stimulatory/regulatory requirements. However, we draw readers attention to the fact that it has not been possible to explain why only half of HLA-B*57:01+ donors (who all possess abacavir-responsive T-cells) exposed to abacavir develop hypersensitivity. It should also be noted that p-I- and hapten-responsive T-cells are not always detected in isolation. For the β -lactam antibiotics (55, 70) and sulfonamides/sulfones (17, 71, 72), the only drug exemplars studied to date, drug p-i- and hapten-responsive T-cells are found together.

Drugs administered at a high mass dose more frequently cause hypersensitivity reactions, when compared with drugs administered at lower doses (73). However, in humans, individual drugs tend to be administered at similar doses using dosing regimens directed to achieve drug concentrations within a therapeutic window for a sustained duration of time. Humans are therefore exposed to similar plasma concentrations of the parent drug. A handful of studies describe associations between metabolism (increased production of metabolite or increased exposure to parent drug) and the incidence of drug hypersensitivity reactions (74). For example, CYP2C9*3, which decreases phenytoin clearance is associated with an increased occurrence of anticonvulsant hypersensitivity (75, 76). Similarly, impaired renal function and increased plasma levels of oxypurinol (the metabolite that drives T-cell responses in hypersensitive patients (77)) correlate with the poor prognosis of allopurinol-induced severe cutaneous hypersensitivity reactions (78). However, these findings seem

to be an exception, rather than a rule, as few other studies have reported associations between drug
disposition and hypersensitivity.

It is clear that a threshold level of drug exposure must be surpassed for the activation of T-cells. In agreement with this, most drugs that have been withdrawn from the market or have received black box warnings due to liver injury are administered at daily doses greater than 50 mg per day (79, 80). However, it is difficult to argue susceptibility to drug hypersensitivity is solely dependent upon plasma drug concentrations or the drug concentration at the site of T-cell activation. The vast majority of patients tolerate therapeutics drug concentrations with little or no adverse effects. Thus, for the purpose of this review we argue that everyone taking medicinal drugs may be exposed to therapeutic concentrations that are capable of forming HLA drug peptide complexes and delivering them to T-cells.

23 212

213 Does the display of drug peptide complexes by human leukocyte antigen proteins impact on 214 susceptibility to hypersensitivity?

A plethora of studies, starting with abacavir discussed above, have identified astonishingly strong associations between HLA class I alleles and susceptibility to drug hypersensitivity reactions, which implies a direct effect of the gene product on the disease (81, 82) (Table 1 shows several HLA class I allele-associated drug hypersensitivity reactions with known drug peptide complex HLA binding interactions for T-cell activation). This suggests that mechanistically, restriction of the fit of the drug and peptide into HLA proteins is important for T-cell activation. HLA-B*57:01, which is associated with abacavir hypersensitivity, has a positive predictive value of 55 % and a negative predictive value of 100 % (8). This means that only individuals carrying the allele are at risk and 1 out of 2 carriers develop hypersensitivity following abacavir exposure. Genetic screening prior to abacavir use is routine practice and eradicates the appearance of hypersensitivity. Other forms of HLA class I associated hypersensitivity (e.g., flucloxacillin [HLA-B*57:01] (83), allopurinol [HLA-B*58:01] (21), carbamazepine [HLA-B*15:02] (84) and dapsone [HLA-B*13:01] (85)) display similar negative predictive values (99-100%) in specific patient groups; however, the positive predictive value is much lower. This suggests that the HLA allele is essential for drug peptide complex display, but other factors determine whether drug exposure results in a T-cell response and hypersensitivity. In a final group of HLA class I associated reactions (e.g., carbamazepine [HLA-A*31:01] (86), co-amoxiclav [HLA-A*02:01] (87), sulfamethoxazole [HLA-B*38:02] (88), minocycline [HLA-B*35:02] (89) and terbinafine [HLA-A*33:01] (90)), the carrier frequency in hypersensitive patients is 50% or lower. Thus, in these reactions, the drug-peptide complex is displayed by a number of different HLA proteins to activate T-cells. Additional

Page 9 of 73

 Allergy

forms of drug hypersensitivity are (i) linked to expression of HLA class II allele(s) or (ii) not known to be associated with expression of a specific HLA allele despite the fact that drug-specific CD4+ and CD8+ T-cells are detectable. Importantly, it has not been possible to show that selective drug peptide complex binding to HLA class II proteins, identified as risk factors, leads to the activation of CD4+ Tcells (authors unpublished data).

239 Drug-peptide complex HLA protein binding is without doubt critical for the development of drug
 240 immunogenicity; however, from the above discussion it is clear that for most HLA allele associated
 241 reactions, expression of the HLA protein alone does not determine whether drug exposure will result
 242 in hypersensitivity.

244 Does expression of specific T-cell receptors impact on susceptibility to hypersensitivity?

Advances in high-throughput sequencing technologies has enabled the detailed analysis of global T-cell repertoires in patients with and without immunological diseases. Glanville et al. (91) recently defined the minimal requirements for T-cell receptor specificity through an analysis of T-cell receptor sequences using a panel of HLA binding peptides. Focussing on 5711 T-cell receptor V β chain sequences from CD4+T-cells derived from 22 donors with mycobacterium tuberculosis, they identified 141 T-cell receptor specificity groups including 16 groups containing T-cell receptors from at least 3-4 individuals with shared alleles. The T-cell receptors shared HLA alleles from different donors for shared peptide presentation. These data indicate that a diverse array T-cell receptor sequences are available in any individual that interact with peptide ligands from a single protein antigen. Similar technologies should be applied to the study of drug hypersensitivity to explore whether shared drug peptide complex specificity clusters are present across different donors and whether this correlates with disease.

Our knowledge of how T-cell receptor sequences impact on drug hypersensitivity is in its infancy. Through global expression level analysis and assessment of the third complementary-determining region length distribution of the T-cell receptor profile in patients with carbamazepine-induced Stevens-Johnson syndrome, Ko et al. (92) identified VB-11-ISGSY as a dominant clonotype shared amongst different hypersensitive, but not drug-tolerant, donors. Furthermore, carbamazepine-specific cytotoxic T-cells could be primed from PBMC of healthy human donors that were carriers of both HLA-B*15:02 and VB-11-IsGSY. More recently, the same group working on the same patient cohort reported the detection of a public T-cell receptor composed of paired TCRa CDR3 "VFDNTDKLI" and TCR^β CDR3 "ASSLAGELF" clonotypes and that similar receptor clusters are found in the blister fluid cells and peripheral blood (93). These data suggest that the correct combination of HLA, drug

peptide complex and T-cell receptor may be important drivers for carbamazepine-induced Stevens-Johnson syndrome. Unpublished data analysing blister fluid from a different cohort of patients with Stevens Johnson syndrome after administration of multiple drugs also show an enrichment of T-cells that display a selective repertoire of T-cell receptor sequences at the most early phase of the adverse event (Vocanson, personal communication). However, the T-cell receptor identified differs across patients, even those exposed to the same culprit drug. Moreover, a dominant clonotype was not detected in all patients.

The proposal that susceptibility to drug hypersensitivity relates to expression of a single T-cell clonotype contrasts with published literature showing the polyclonal expansion of T-cells by certain drugs. Abacavir, which interacts non-covalently with HLA-B*57:01, activates T-cells in 100% of human donors that carry the risk allele (even though only half develop hypersensitivity when exposed to abacavir) (94). Analysis of T-cell receptors expressed on abacavir-responsive T-cells did not reveal skewed patterns (9). This is consistent with abacavir activating an array of different T-cell receptors. Similarly, nitroso sulfamethoxazole, a cysteine-reactive metabolite of sulfamethoxazole has been shown to prime naïve CD4+ and CD8+ T-cells from 59/60 healthy human donors (95, 96). Spectratyping revealed that nitroso-sulfamethoxazole-specific T-cell responses were controlled by public T-cell receptors present in all individuals alongside private T-cell repertoires specific to each individual (97). Finally, elegant studies by Azoury et al. (98, 99) utilized immunodominant β -lactam-modified peptides derived from albumin to calculate the frequency of naïve CD4+ T-cells that recognize the drug peptide complex. The haptenated peptides were recognized by naïve T-cells from 13/14 human donors.

These data, although utilizing a limited number of drugs, cover three forms of drug HLA binding derivative (parent drug, drug metabolite and haptenated peptide) and show that PBMC from each and every one of us contain naïve T-cells capable of recognizing and responding to drugs. Although certain HLA drug peptide complexes may associate preferentially with specific T-cell receptors and this may impact on the development of hypersensitivity: as has been described with HLA-B*15:02 and patients with carbamazepine-induced Stevens Johnson syndrome. It needs to be emphasized that the Caucasian population very rarely express HLA-B*15:02; they do however still develop carbamazepine hypersensitivity. The only explanation for this is that carbamazepine interacts with multiple HLA proteins and T-cell receptors to bring about hypersensitivity reactions.

54 296

To summarize the discussion thus far, most, if not all, drug-treated patients have a T-cell repertoire
 for drug peptide complexes and are exposed to drugs in sufficient quantities to activate the T-cells.
 Although expression of a specific HLA protein is important, for many forms of hypersensitivity, HLA

Page 11 of 73

 Allergy

risk allele expression per se does not predict the outcome of drug exposure. Therefore, for the remainder of this article we focus on the hypothesis that immune regulatory pathways are key determinants of whether drug exposure in genetically predisposed individuals will result in hypersensitivity. Figure 2 illustrates that drug exposure, expression of HLA alleles and T-cell receptors are all important determinants of immunogenicity, whereas regulatory pathways are determinants of hypersensitivity. The pathways of drug-specific T-cell activation are also depicted with reference to the possible different requirements for immune regulation.

While immune cells survey the tissue microenvironment for drug-derived signals, a key task is to maintain tissue homeostasis. The outcome of immune surveillance may be unresponsiveness (the immune system does not detect the drug-derived signal), a conventional effector response (leading to hypersensitivity with a drug-derived signal) or tolerance (a state of immunological unresponsiveness to the drug-derived signal). Tolerance can be natural or induced and these terms are discussed in more detail below with reference to regulatory T-cells. In the context of drug hypersensitivity it is important to consider variation in natural tolerance and whether drug treatment actively induces or alters toleragenic pathways and indeed the potential for certain drug peptide complexes to bypass natural tolerance. The way the immune system regulates immune responses, and is able to adapt to change, is through the expression of an array of cell surface co-stimulatory and co-inhibitory signalling receptors (Figure 3). Co-stimulatory receptors collect information from stressed or damaged cells and tissue and determine whether an effector response should be directed towards an antigen. The co-inhibitory receptors act alongside regulatory T-cells (Tregs) and stimulatory and inhibitory cytokines (e.g., IL-10, TGF- β) to preserve the regulatory environment to prevent unwanted immune responses against self and non-damaging agents and to prevent excessive responses to antigens when a T-cell response has been initiated. Factors that influence the balance between co-stimulatory and co-inhibitory signalling include the genetics of the host, disease and environmental factors.

It is possible that each and every one of us may develop a hypersensitivity reaction following drug treatment if the balance between co-stimulation and co-inhibition is skewed at the time of exposure. This represents a frightening concept for Pharma and healthcare professionals, since the factors that control this balance are difficult to predict and will vary across individuals and within an individual when they are exposed to different immunomodulatory environments (e.g., infections or damaging agents). For this reason, although it might be possible to work towards a framework to predict the intrinsic immunogenicity of a drug, prediction of the number of individuals that will ultimately develop a clinical drug hypersensitivity reaction is very difficult.

2 3 4	333	
5 6	334	Clinical evidence to exclude drug exposure, the availability of a T-cell repertoire or a single genetic
7 8	335	factor as key determinants that impact on susceptibility to drug hypersensitivity
9 10	336	We have worked together with respiratory physicians to understand the chemical and cellular basis
11 12	337	of $\beta\mbox{-lactam}$ hypersensitivity in patients with cystic fibrosis. This patient population is an important
13	338	study group as they have been monitored closely throughout childhood and adult life and as such they
14 15	339	have almost complete drug histories as well as detailed records of the nature and timeframe of
16 17	340	hypersensitivity reactions that occur more frequently when compared to the general population (100-
18	341	102). Piperacillin is a commonly used β -lactam antibiotic for the treatment of recurrent respiratory
19 20	342	infections. Patients receive repeated courses of the drug at the same dose (12g/day; iv injection) and
21 22	343	duration (14 days). If one assumes that a patient receives 3 treatment courses a year, the overall mass
23	344	of piperacillin a patient will be exposed to over a 20 year period would exceed 10kg. Thirty five percent
24 25	345	of patients with cystic fibrosis develop delayed-type piperacillin hypersensitivity reactions
26 27	346	characterized clinically with maculopapular or urticarial rashes, fever and arthralgia (100). Drug-
28	347	responsive T-cells are detected in approximately 75% of hypersensitive patients, but not tolerant
29 30	348	controls using the lymphocyte transformation test (60). Moreover, CD4+ and CD8+ T-cells that secrete
31 32	349	proinflammatory cytokines, including IL-22 and cytolytic molecules, when exposed to piperacillin are
33	350	present in inflamed skin (2). Drug-responsive T-cells are also detectable in drug tolerant patients
34 35	351	(unpublished data) and drug-naïve donors (2, 96), but only when immune regulation has been
36 37	352	perturbed ex vivo and the drug peptide adduct is presented by dendritic cells pre-treated with LPS to
38 39	353	provide co-stimulation.
40 41	354	The mean time to onset of piperacillin hypersensitivity is the ninth day of the ninth treatment course

(i.e., the average patient will tolerate eight separate courses of piperacillin), which might lead one to assume that susceptibility is linked to accumulation of, or repeated exposure to, the drug peptide complex. However, over a 20 year assessment period at the St. James Cystic Fibrosis Unit (Leeds, UK) patients have been diagnosed with hypersensitivity after every treatment course (1-15; personnel communication, Dr Paul Whitaker). These clinical data are impossible to rationalize in terms of drug exposure/accumulation, the availability of a T-cell repertoire for the drug peptide complex or indeed a single genetic factor such as HLA.

As depicted in figure 2, the pathway of T-cell activation for drugs such as allopurinol and carbamazepine are very different to that of β -lactam antibiotics. It is possible that reactions with these drugs occur after T-cell responses develop in the presence of other classical peptide antigens (i.e., the drug peptide complex cross-reacts with the peptide antigen). In this case, the drug will not always

Page 13 of 73

Allergy

activate a *de novo* response for hypersensitivity to develop and the regulatory requirements for activation will be lower. The caveat to this argument however is that both of these drugs have been shown to prime naïve T-cells using autologous dendritic cells to present the drug peptide complex in an appropriate immunological form (103).

11 370 The immune regulatory network

Several mechanisms have evolved to regulate T-cell responses and prevent the development of autoimmune disease and other inflammatory conditions. The best known mechanisms of peripheral tolerance include thymic selection of T-cells, the suppressive activity of Tregs (104) and the increased expression of cell surface receptors, the so-called immune checkpoints (105, 106). The importance of immune regulation and power of the regulatory network has been demonstrated clinically through the application of immune checkpoint inhibitors for the treatment of cancer (107). Furthermore, mutations in FOXP3, the regulatory transcription factor for Tregs, results in dysfunctional Tregs and the development of autoimmune disease and allergy (108). IPEX syndrome -a loss of function mutation in FOXP3 (and other regulatory pathways such as CTLA4) - is the most extreme clinical scenario. IPEX syndrome is often fatal presenting clinically for a variety of autoimmune-like syndromes. It would be interesting to investigate whether patients with IPEX syndrome also develop more drug hypersensitivity reactions. Tregs are now easy to expand ex vivo and have been used in Phase I clinical trials for the treatment of autoimmune disease to prevent transplant rejection (109). In the following sections we briefly discuss the major immune regulatory pathways and how dysregulation of these pathways may impact on drug hypersensitivity.

39 386

387 Immune checkpoints

Immune checkpoints are a series of receptor ligand interactions between T-cells and antigen presenting/tissue cells which specifically co-ordinate the secondary co-stimulatory signal required for immune activity following TCR binding. Checkpoint proteins negatively regulate the activation of naïve T-cells. Furthermore, checkpoint receptor expression is upregulated on T-cells when they are activated, providing a negative feedback loop to restrict the effector response. PD-1 and CTLA-4, which are expressed on T-cells, are the most studied immune checkpoints. PD-1 interacts with ligands PD-L1 and PD-L2, which activates tyrosine phosphatases that inactivate tyrosine kinase-mediated activation signals (110). CTLA-4 binds to ligands CD80 and CD86 on antigen presenting cells displaying antigen. T-cell inhibition is achieved through competitive antagonism of CD28 signalling and direct delivery of an intracellular signal (111). Other less well characterized immune checkpoints include TIM-3

398 (suppresses Th1/Th17 CD4+ responses (112)) and LAG-3 (contributes towards Treg activity and directly
 399 suppresses CD8+ T-cells (113)). The complex interaction between immune checkpoints and naïve and
 400 memory T-cell subsets and how intra- and inter-individual variation impacts on susceptibility to
 401 adverse immunological reactions is ill-defined.

In recent years, we have investigated whether receptor blockade with immune checkpoint inhibitors remove the immune brakes and enhance the priming of naïve T-cells by drugs. Naïve T-cells were cultured in vitro with drug and autologous dendritic cells in the presence and absence of immune checkpoint inhibitors targeting PD-1, CTLA-4 and Tim-3 for 14 days to allow priming to occur. Drug exposure was associated with an increase in expression of all three immune checkpoints on dividing T-cells during the culture period, presumably a regulatory event to keep the drug-specific response in check (114). After the 14 day culture period, the primed T-cells were restimulated with drug and a second batch of autologous dendritic cells and the strength of the T-cell response was assessed. PD-1 and CTLA-4 block enhanced the priming of naïve T-cells to drugs, whereas Tim-3 block had no effect (97, 114). A similar effect (enhanced priming of naïve T-cells to drugs) has been demonstrated in vivo with PBMC from patients receiving immune checkpoint inhibitor therapy (unpublished data). Furthermore, it is becoming apparent that patients receiving immune checkpoint inhibitor therapy develop more frequent drug hypersensitivity reactions. Ford et al. (115) recently described the development of sulfasalazine (a combination of salicylic acid and sulfapyridine)-induced cutaneous hypersensitivity in 4 patients with metastatic melanoma that had previous been treated with the anti PD-1 inhibitor pembrolizumab or the anti CTLA-4 inhibitor ipilimumab. Presumably the T-cell response and subsequent hypersensitivity reaction was induced by the sulfonamide component of sulfasalazine when natural immune checkpoints had been suppressed. Phillips et al. have recently reported on the treatment outcomes of 285 patients that developed cutaneous adverse events attributed to immune checkpoint inhibitor therapy (116). It would be interesting to consider the number of these patients receiving concomitant therapy with low molecular weight drugs.

A report of the post-approval safety of the B-raf inhibitor vemurafenib described seven patients that developed serious cutaneous hypersensitivity reactions and importantly, six of these patients received anti-PD-1 antibody therapy prior to starting vemurafenib (117). Phase II studies of ipilimumab plus or minus dacarbazine therapy concluded that ipilimumab monotherapy had a manageable adverse events profile (118), while dual therapy provided no improvement in efficacy and was not tolerable due to serious liver injury (119). Dacarbazine use alone is only associated with rare cases of liver injury (120). The immune checkpoint inhibitor again seems to alter the co-stimulatory/co-inhibitory balance, permitting the development of dacarbazine-induced liver injury in almost all treated patients. Finally, it has been reported that polymorphisms in regulatory targets of immune responses such as CTLA-4

Page 15 of 73

Allergy

and IL-10 could modulate susceptibility to nonsteroidal anti-inflammatory drug (121) and efavirenz (122) hypersensitivity reactions. Collectively, these data indicate that immune checkpoints act to regulate the strength of the drug-specific T-cell response and hence impact on the balance between tolerance and hypersensitivity (Figure 4). These interactions will become increasingly relevant as the focus on combination therapies for the treatment of various malignancies increases. Combination therapies in oncology started by using two checkpoint inhibitors in combination (α CTLa-4/ α PD-1) which illustrated increased efficacy but also an increased incidence of toxicity with a severe toxicity incidence of 56% of patients (123). Latterly there have been an increasing number of trials combining checkpoint inhibitors with additional systemic anticancer therapies including chemotherapy (KEYNOTE189 [ClinicalTrials.gov number, NCT02578680], IMpassion150 [ClinicalTrials.gov number, NCT03125902]) and tyrosine kinase inhibitors (KEYNOTE426 [ClinicalTrials.gov number, NCT02853331]). This has culminated in the use of all three agents in some anticancer regimes eg atezolizumab, bevacizumab, carboplatin and paclitaxel used in combination for the treatment of non-small cell lung cancer (NSCLC) within IMPower150 (ClinicalTrials.gov number, NCT02366143). Given the propensity for immune checkpoint inhibitors to interact and display phenotypically typical hypersensitivity reactions the ability to predict individuals at risk of hypersensitivity or particular drug combinations which carry an increased risk is increasingly important. It also remains to be seen if there is a characterizable dose-toxicity relationship or whether there is a temporal relationship to hypersensitivity. It is known that as monoclonal antibodies, immune checkpoint inhibitors have long half-lives (6.1-25 days) (124) and receptor occupancy exists for weeks. However it is currently unclear if there is a dynamic relationship with hypersensitivity and the duration of risk.

Tim-3 is an immune checkpoint receptor that interacts with its ligand galectin 9 to modulate Th1 CD4+ T-cell responses. The expression of Tim-3 has recently been shown to be significantly reduced on peripheral blood CD4+ T-cells in the acute phase of drug-induced manculopapular exanthema (125), a classical Th1-mediated iatrogenic disease. Furthermore, galectin 9 expression and release was reduced on dendritic cells. These data indicate that the Tim-3 immune checkpoint also contributes to the maintenance of drug tolerance and the prevention of hypersensitivity reactions.

Contact allergy is a CD8+ T-cell mediated delayed-type hypersensitivity reaction brought about by low molecular weight haptens. Unlike drug hypersensitivity, where for the most part murine models do not exist, contact allergy can be reproduced easily in mice through direct application of the hapten to skin. In recent years, contact allergy has been used to explore how Toll-like receptors, the inflammasome and endogenous danger signals impact on the hapten specific CD8+ T-cell response and skin inflammation (126-130). Most recently, Gamradt et al., (131) discovered that intrinsic control mechanisms such as immune regulatory (PD-1 and TIM-3) signalling determine whether the cytotoxic

CD8+ T-cells will be reactivated and hence prevent tissue injury. Blocking of immune checkpoints in vivo lead to severe contact hypersensitivity responses with low hapten doses.

Immune checkpoint blockade has been used in mice to attempt to develop animal models of drug-induced liver injury with a delayed onset (132-135). Treatment of mice with therapeutic doses of human liver injury inducing compounds such as amodiaquine, isoniazid and nevirapine did not result in significant tissue damage. However, when the drugs were administered in the presence of PD-1 and CTLA-4 block, mild, but significant, delayed onset liver injury was observed. Liver injury was associated with hepatic recruitment of immune cells including CD8+ T-cells, suggesting that they participate in the pathogenesis. Although this work represents an important step forward – an in vivo model is now available to begin to study drug-induced delayed-typed liver injury - additional studies are required to determine why the liver injury does not progress to the serious forms of tissue damage seen in human patients.

From the above discussion one can begin to visualize how immune checkpoint signalling impacts on the co-regulatory/co-stimulatory network that determines whether an effector response will ensue following antigen exposure as well as the strength and duration of the response. As one pathway is blocked other pathways exert an increased influence in an attempt to maintain tolerance. As we move forward combined immune checkpoint therapy will become more commonplace. This will result in an increase in serious autoimmune side effects. However, it is highly likely that drug hypersensitivity reactions will also become more prevalent.

Regulatory T-cells (Tregs)

Tregs regulate or suppress other cells in the immune system. They control the immune response to self and foreign antigens and help prevent autoimmune disease and allergy. Natural Tregs are identified by expression of the regulatory transcription factor FOXP3. Natural Tregs express CD4+ and CD25+ (136); however, CD25+ is also expressed on other forms of T-cell including activated T-cells. Thus, there was a search for additional classification markers. CD127+ has been identified as a marker that is only expressed at low levels on Tregs and can be used alongside CD4+, CD25+ and FOXP3 to identify natural Tregs (137, 138). Tregs can also be classified according to the expression of a naïve T-cell marker CD45RA (139). CD45RA+FOXP3^{low}CD4+ (CTLA-4^{low}, CD25^{high}, CD127^{low}) cells are referred to as naïve or inducible Tregs. These cells exhibit weak suppressive activity until they differentiate following antigen-mediated T-cell receptor engagement. They differentiate into effector Tregs (CD45RA-FOXP3^{high}CD4+) that display a range of additional markers including CTLA-4, CD25+, PD-1,

Page 17 of 73

Allergy

TIM-3 and secretory molecules such as IL-10 and TGF-β. These cells display a strong inhibitory activity
and increase in number in blood with age. Tregs exert their suppressive function through a range of
pathways ((139-141) Figure 5). These include the inhibition of antigen presenting cells through
expression of immune checkpoint receptors, the release of cytokines such as IL-10 and TGF-β that
decrease dendritic cell function and the production of pro-inflammatory cytokines and restriction of
IL-2 for effector T-cells through CD25+ ligation.

A plethora of studies have shown that FOXP3+ Tregs suppress hypersensitivity reactions to chemical contact allergens in mice by blocking effector CD8+ T-cell responses (142-144). Gomez de Aguero et al (145) reported that Langerhans cells (cutaneous dendritic cells) are critical in the regulatory process through inducing the depletion of antigen-responsive T-cells and by activating FOXP3+ Tregs. Furthermore, in vivo expansion of Treg populations has been shown to induce long-term suppression of contact hypersensitivity (146). In humans, Cavani et al (147) have reported that CD25+ regulatory T-cells maintain tolerance to the contact metal allergen nickel in non-hypersensitive individuals. T-cells showed a limited capacity to proliferate in the presence of nickel ex vivo. However, T-cell activation was strongly increased when Tregs were depleted from the PBMC population. Collectively, the data generated showed that Tregs blocked the efficient activation of naïve and memory nickel-specific T-cells. It will be interesting to see whether similar pathways (possibly when Tregs are depleted alongside checkpoint inhibition) are active in drug tolerant patients.

In in vitro T-cell priming assays with PBMC from healthy human donors, the depletion of FOXP3+ Tregs is important to detect CD4+ and CD8+ T-cell responses to drugs and haptenic chemicals (95, 148, 149). The reintroduction of Tregs to naïve T-cell priming assays block the activation of naïve T-cells by drugs in a cell concentration-dependent manner (114). Inducible effector Tregs (presumably drug peptide complex-responsive) are generated in vitro alongside effector CD4+ and CD8+ T-cells during the priming of naïve T-cells (unpublished data), further emphasizing their importance at regulating drug-specific immune responses. There is a potential for environmental and genetic factors to modulate the expression and activity of Tregs. For example, polymorphic variants of FOXP3 have been linked to various forms of autoimmune disease, while exposure to air pollution can methylate the FOXP3 locus, compromising Treg function (150-153). Thus, Tregs might be important in maintaining an effective level of tolerance in all drug-exposed patients.

Little is known about the influence of Tregs and Treg dysregulation in the acute phase of a drug hypersensitivity reaction. In patients with toxic epidermal necrolysis, the most severe form of blistering skin eruption, Takahashi *et al* described a functional impairment of Tregs and a reduced capacity to suppress effector T-cell responses to drugs (154, 155). However, the key mechanisms

implicit in Treg dysregulation were not defined. Recently, Wang et al. demonstrated that treatment with a TNF- α antagonist reduced skin healing time in patients with severe forms of toxic epidermal necrolysis (156). Drug treatment decreased TNF- α and granulysin levels in blister fluid and significantly increased Treg proportions in patients during the recovery phase. In patients with a different form of severe cutaneous hypersensitivity reaction, DRESS, CD14+ monocytes have been shown to mediate a gradual shift from a Treg to a Th17 phenotype during the course of the disease (157). In an independent study, lesional skin of patients with DRESS was found to be rich in FOXP3+ cells and the increase in Tregs positively correlated with the number of recorded days from the onset of the disease (158). Similarly, Hanafusa et al, found a switch in the population of dividing cells from CD8+ to FOXP3+ Tregs in drug-treated PBMC from a patient with DRESS (159). Collectively, these data indicate that the Tregs are being activated and recruited to inflamed skin to attempt to control the strength and duration of the drug-specific effector T-cell response. Thus, it is important to develop strategies to understand the role Tregs play in determining the outcome of drug exposure in patients.

Recently, breaking tolerance through depletion of murine CD4+ T-cells was found to result in the development of abacavir hypersensitivity in a HLA-B*57:01 transgenic model (160). Abacavir exposure per se induced a CD8+ T-cell response; however, the mice maintained an anergic disease state. An adverse reaction in skin was only detected when CD4+ T-cells, which included Tregs, were depleted. The epidermis became heavily infiltrated with CD8+ T-cells and skin showed typical signs of tissue injury. The authors demonstrated through a series of detailed experiments that CD4+ T-cell depletion resulted in optimal dendritic cell co-stimulation and a break in regulation, predisposing the mice to tissue injury.

40 552

553 Cytokines

During T-cell priming, naïve CD4+ T-cells differentiate into one of several linages, including Th1, Th2, Th17, Th22 and induced Tregs. Each T-cell population is characterized by the cytokines they secrete when activated. Importantly, the cytokine microenvironment during T-cell receptor triggering controls T-cell differentiation (Figure 6). The impact of the cytokine microenvironment on T-cell polarization can be demonstrated experimentally by culturing purified human T-cells with relevant cytokine cocktails (Th1, IL-12 & anti-IL-4; Th2, IL-4, anti-IL-12 & anti-IFN-γ; Th17, IL-1β, IL-6, IL-23 & TGF-β; Th22, TNF- α & IL-6) for 7 days prior to non-specific mitogen stimulation. Activated T-cells secrete the polarized cytokines illustrated in Figure 6. The activation of CD8+ T-cells is also influenced by cytokines. In the absence of specific cytokine signals, CD8+ T-cells become anergic and unresponsive to antigen

Allergy

563 stimulation. The dominant cytokines that promote CD8+ T-cell activation are IL-12 and IFN- α/β (161, 564 162).

There are many examples of disease induced cytokine imbalance (163-165) and this could have a major impact on the outcome of drug exposure. Diseases such as HIV and cystic fibrosis predispose individuals to drug hypersensitivity reactions. In patients with HIV the incidence of sulfonamide hypersensitivity is 10 times higher when compared with non-HIV infected patients (166). Cytokine imbalances such as Th1/Th2 switching are common features in patients with HIV as the disease progresses (167), but to date the impact of these changes on susceptibility to drug hypersensitivity has not been studied. Similarly, when patients with cystic fibrosis were compared to the general population, antibiotic reactions were found to be up to three times more common (100). The cystic fibrosis lung represents an area of chronic inflammation with high neutrophil numbers alongside elevated levels of cytokines such as IL-8, IL-1 β , IL-6, IL-17 and TNF- α (168-170). Obviously, this will have a colossal impact on the outcome of T-cell receptor triggering through altered antigen presentation as well as differential polarization of the effector T-cell response. However, to date, it has not been possible to establish models/systems to explore this relationship directly.

) 578

579 Conclusions

It is becoming increasingly apparent that multiple tolerance pathways determine the outcome of antigen exposure through regulation of (i) naïve T-cell activation and (ii) the strength and duration of the effector T-cell response. Through the studies discussed herein we are beginning to understand that similar pathways are active in patients at the time of drug exposure and that immune regulation networks contribute towards the outcome of drug exposure: health benefit or a hypersensitivity reaction. Work is required to define how the distinct pathways contribute towards individual susceptibility. Such studies are urgent given the plethora of immune modulatory drugs that are in development, which once approved will be administered alongside traditional low molecular weight drugs. It will also be important to determine whether low molecular weight drugs modulate tolerance pathways in patients and whether this contributes to the successful desensitization of certain hypersensitive patients.

Tables

Table 1. HLA class I allele-associated drug hypersensitivity reactions with known drug HLA binding

interactions for T-cell activation

	Reaction phenotype	HLA allele	Known HLA (peptide)	Evidence of
			interaction ^a	bioactivation ^b
	Abacavir hypersensitivity	HLA-B*57:01 (7)	Direct non-covalent binding	Yes, aldehyde (172)
			(9, 171)	
	Allopurinol severe skin	HLA-B*58:01	Direct labile metabolite	No
	reactions	(21)	binding (77)	
	Carbmazepine Stevens	HLA-B*15:02	Direct labile drug &	Yes, multiple metabolites
	Johnson syndrome	(84)	metabolite binding (173,	(175, 176)
			174)	
	Carbmazepine skin reactions	HLA-A*31:01	Direct labile drug &	Yes, multiple metabolites
		(86)	metabolite binding (173,	(175, 176)
			174)	
	Dapsone drug reaction with	HLA-B*13:01	Direct labile & metabolite	Yes, nitroso metabolite
	eosinophilia and systemic	(85)	covalent binding (17, 177)	(178, 179)
	symptoms		~	
	Flucloxacillin liver injury	HLA-B*57:01	Direct labile & covalent	Not applicable (47)
		(83)	binding (43, 55)	
	Sulfamethoxazole skin	HLA-B*38:02	Direct labile & metabolite	Yes, nitroso metabolite
	reactions	(88)	covalent binding (4, 71, 72)	(180)
	Co-amoxiclav liver injury	HLA-A*02:01	Direct covalent binding (42)	Not applicable (48)
		(87)	4	
	Minocycline liver injury	HLA-B*35:02	Unknown	Yes, quinone iminium ion
		(89)		(181)
	Terbinafine liver injury	HLA-A*33:01	Unknown	Yes, aldehyde metabolite
		(90)		(182)
	Ticlopidine liver injury	HLA-A*33:03	Direct labile binding (184)	Yes, sulfenic acid (185)
		(183)		
	Vancomycin drug reaction	HLA-A*32:01	Unknown	No
	with eosinophilia and	(186)		
	systemic symptoms			
594		I	l	

 ^aalternative pathways feasible for all compounds, but to date have not been studied

^bformation of a metabolite does not indicate that they are involved in the reaction

Figure 2. The influence of drug- and patient-specific factors on drug immunogenicity and hypersensitivity. Drug exposure and the availability of HLA proteins and T-cell receptors for drug binding are essential for immunogenicity. However, these factors either together or in isolation do not predict whether a patient will develop hypersensitivity. This is because immune regulatory pathways control whether a pathogenic immune response will develop. These pathways may influence p-I and hapten responses to different extents although this is yet to be proven even in the case of abacavir. The bottom component of the figure highlights the nature of the drug immune receptor binding interaction, the requirement for antigen processing and the derivative that T-cell receptors interact with for hapten and p-I reactions.

Allergy

Figure 3. The balance between co-stimulatory and co-inhibitory pathways are the key determinant of
whether drug exposure will result in hypersensitivity. This balance is influenced by genetic, disease
and environmental factors. Thus, the balance will differ across individuals and within the same
individual with time.

625 the balance between tolerance and hypersensitivity.

1

2 3 4 5 Figure 5. Tregs regulate the strength of antigen-specific effector T-cell responses and hence may alter 628

629 the balance between tolerance and hypersensitivity following drug exposure.

6			
7 8		[Natural Tregs Effector Tregs
9 10 11 12		Tregs: Tregs produced in the thymus are termed natural	Treg Treg Inducible Tregs
13 14 15 16 17		Treg formed by differentiation of naïve T cells outside the thymus are called adaptive or inducible	Cell-cell contact CD25, IL-2 IL-10
18 19 20 21 22 23		 Exert function through Cell contact Cytokine secretion Apoptosis of effector cells 	 Decrease in T-cell proliferation Decrease in MHC and co-stimulatory molecules Decrease in APC function Decrease in inflammatory cytokines
24 25 26 27 28		 Modulation of DC function Do they play a role in regulating drug hypersensitivity? 	Th1 CPU LENY Th2 CD8+ cell LCTL activity
29 30 31 32 33 34 35	630		
36 37 38 39 40 41 42			
43 44 45 46 47 48			
49 50 51 52 53 54			
55 56 57 58 59 60			

Figure 6. Cytokine control of T-cell differentiation.

Page 27 of 73

Allergy

1 2 3	636	Text box 1. Major Milestone Discoveries
4 5	60 7	
6 7 8 9	637	Drug, drug metabolite and drug-modified peptide HLA binding activates 1-cells in
	638	patients with hypersensitivity
9 10	639	 Development of assays with PBMC from healthy human donors to study naïve drug
11 12	640	peptide complex T-cell priming <i>ex vivo</i>
12	641	Individual HLA alleles are important determinants of disease susceptibility
14 15	642	Characterisation of HLA-allele-restricted drug-specific T-cell responses in patients with
16 17 18 19 20 21 22 23 24 25	643	drug hypersensitivity.
	644	Co-inhibitory receptors impact on the ability of drug peptide complexes to activate naïve
	645	T-cells
	646	• Discovery of an increased incidence of drug hypersensitivity reactions in patients
	647	receiving immune checkpoint inhibitor therapy
	648	
26 27 28	649	Text Box 2. Future Research Perspectives
28 29	650	Genome-wide association studies and functional assessment of patient T-cells have taught us that
30 31 32 33 34	651	drug peptide complexes interact selectively and specificity with HLA proteins to bring about
	652	hypersensitivity reactions. It is now important to define, through detailed structural analysis, the way
	653	in which drug peptide complexes bind to HLA proteins. The nature of the interaction will differ drug-
35 36	654	to-drug. It is also important to determine the contribution different forms of drug peptide complex
37 38	655	play in the disease pathogenesis as we know that parent drug, metabolite and drug-modified peptide-
39 40	656	responsive T-cells circulate in patients' blood and tissues.
41 42	657	Of particular importance, is identification of the parameters that that influence susceptibility in
43	658	patients expressing known HLA risk alleles. Ongoing studies seem to suggest that drugs stimulate a
44 45	659	very restricted repertoire of T-cells in patients with Stevens Johnson syndrome. Might this be the case
46 47	660	in other forms of drug hypersensitivity? The balance between co-stimulatory and co-inhibitory
48	661	signalling during drug peptide complex-specific T-cell priming is also an important determinant of
49 50	662	susceptibility. Future research must focus on patients at the earliest stages of a reaction to delineate
51 52	663	the contribution individual pathways (e.g, receptor signalling, Tregs, cytokines) in play in
53	664	determination of the outcome of drug exposure. In this respect, important lessons will be learned
54 55 56	665	from patients receiving immune checkpoint inhibitor therapy for cancer treatment.
57 58	666	
59 60	667	

 668 669 References 1. Johansson SG, et al. (2004) Revised nomenclature for allergy for global use: Report of the Nomenclature Review Committee of the World Allergy Organization, October 2003. J Allergy Clin Immunol 113(5):832-836. 673 2. Sullivan A, et al. (2018) beta-Lactam hypersensitivity involves expansion of circulating and skin-resident TH22 cells. J Allergy Clin Immunol 141(1):235-249 e238. 675 3. Bartschipt M, et al. (2001) Trcell involvement in drug-induced acute generalized exanthematous pustulosis. J Clin Invest 107(11):1433-1441. 677 4. Nassif A, et al. (2001) Trcell involvement in drug-induced acute generalized exanthematous pustulosis. J Clin Invest 107(11):1433-1441. 678 5. Pichler WJ, et al. (2010) Drug hypersensitivity reactions: pathomechanism and clinical symptoms. Med Clin Morth Am 94(1):645-644, vx. 681 6. Pichler WJ (2003) Delayed drug hypersensitivity reactions: pathomechanism and clinical symptoms. Med Clin Morth Am 94(1):645-644, vx. 683 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet 359(9308):727- 732. 684 Malla S, et al. (2002) HLI-B*5701 screening for hypersensitivity to abacavir. N Engl J Med 358(6):568-579. 687 10. Norcross MA, et al. (2012) Innune self-reactivity triggered by drug-modified HLA-peptide repertoire. Nature 486(7404):554-558. 688 10. Norcross MA, et al. (2012) Abacavir induces loading of novel self-petides into HLA-B*577: 01: an autoimmune model for HLA-associated drug hypersensitivity. AIDS 26(11):F21-F29. 691 10. Norcross MA, et al. (2012) Abacavir reactive memory T cells are present in drug naive individuals. PLoS One 10(2):e011716. 693 12. Lucas A, et al. (2013) Tocells from HLA-B*5701+ human subjects are activated with abacavir through two independent pathways and induce cell death by multiple mechanism. Chem Res Taxcio 24(5):757-766. 693 1	2			
669 References 7 1. Johansson SG, et al. (2004) Revised nomenclature for allergy for global use: Report of the Nomenclature Review Committee of the World Allergy Organization, October 2003. J Allergy Clin Immunol 113(5):832-836. 7 2. Sullivan A, et al. (2018) beta-Lactam hypersensitivity involves expansion of circulating and skin-resident TH22 cells. J Allergy Clin Immunol 141(1):235-249 e238. 7 3. Britschgi M, et al. (2001) T-cell involvement in drug-induced acute generalized exanthematous pustulois. J Clin Invest 107(11):1433-1441. 676 exanthematous pustulosis. J Clin Invest 107(11):1433-1441. 677 S. Pichler WL, et al. (2010) Drug hypersensitivity reactions: Ann Intern Med 139(8):683-693. 681 6. Pichler WL (2003) Delayed drug hypersensitivity reactions. Ann Intern Med 139(8):683-693. 682 6. Pichler WL (2003) Delayed drug hypersensitivity reactions. Ann Intern Med 139(8):683-693. 683 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet 359(9308):727- 732. 684 722. 685 Mallal S, et al. (2012) Immune self-reactivity triggered by drug-modified HLA-peptide repertoire. Nature 486(7404):554-558. 686 358(6):568-579. 697 11. Ostrov DA, et al. (2012) Abacavir induces loading of novel self-peptides into HLA-B*57: 01: an autoImmune	3 4	668		
 Johansson SG, et al. (2004) Revised nomenclature for allergy for global use: Report of the Nomenclature Review Committee of the World Allergy Organization, October 2003. J Allergy (Clin Immunol 113(5):832-836. Sullivan A, et al. (2018) beta-Lactam hypersensitivity involves expansion of circulating and skin-resident TH22 cells. J Allergy Clin Immunol 141(1):235-249 2238. Britschgi M, et al. (2001) T-cell involvement in drug-induced acute generalized exanthermatous pustulosis. J Clin Invest 107(11):1433-1441. Nassif A, et al. (2001) Drug hypersensitivity reactions: pathomechanism and clinical symptoms. Med Clin North Am 94(4):645-664, xv. Pichler WI. (2003) Delayed Grug hypersensitivity reactions: Ann Intern Med 139(8):683-693. Kell E, J Allergy Clin Immunol 114(5):1209-1215. Pichler WI. (2003) Delayed Grug hypersensitivity reactions: Ann Intern Med 139(8):683-693. Kell E, et al. (2003) Delayed Grug hypersensitivity reactions: Ann Intern Med 139(8):683-693. Mallal S, et al. (2003) BLA-B*5701 screeening for hypersensitivity to abacavir. Lancet 359(9308):727- 732. Kell E, et al. (2003) HLA-B*5701 screeening for hypersensitivity to abacavir. N Engl J Med 358(6):568-579. Illing PT, et al. (2012) Joacavir induces loading of novel self-peptides into HLA-B*57: 01: an autoimmune model for HLA-associated drug hypersensitivity. AID2 26(11):F21-F29. Norcross MA, et al. (2012) Joacavir induces loading of novel self-peptide individuals. PLoS One 10(2):e0117160. Bell CC, et al. (2012) Joacavir induces loading of novel self-peptide maine individuals. PLoS One 10(2):e011716. Monshi MM, et al. (2013) Human Leukocyte Antigen (HLA)-B(Star)/S7:01-Restricted Activation of Drug Specific T Cells Forwides the Immunological Basis for Flucokavallin- Induced Liver Injury. Hepatology 57(2):727-739. Wu Y, Farrell J, Pirmohamed M, Park KK, & Naisbitt	5 6 7	669	Refere	nces
9 671 Nomenclature Review Committee of the World Allergy Organization, October 2003. <i>J Allergy</i> 11 672 Clin Immunol 113(5):832-836. 11 673 Sullivana, A et al. (2018) beta-Lactam hypersensitivity involves expansion of circulating and skin-resident TH22 cells. <i>J Allergy Clin Immunol</i> 141(1):235-249 e238. 12 674 Stin-resident TH22 cells. <i>J Allergy Clin Immunol</i> 141(1):235-249 e238. 13 Britschig M, et al. (2001) T-cell involvement in drug-induced acute generalized exanthematous pustulosis. <i>J Clin Invest</i> 107(11):1433-1441. 16 677 4. Nassif A, et al. (2001) Tocil involvement in drug-induced acute generalized exanthematous pustulosis. <i>J Clin Invest</i> 107(11):1433-1441. 16 677 5. Pichler WJ, et al. (2001) Torgi hypersensitivity reactions: pathomechanism and clinical symptoms. <i>Med Clin North Am</i> 94(1):643-664. vv. 681 6. Pichler WJ (2003) Delayed drug hypersensitivity reactions. <i>Ann Intern Med</i> 139(8):683-693. 682 Mallal S, et al. (2002) Association between presence of HLA-B*5701. HLA-DR7, and HLA-DD3 and HLA-DD3 and hypersensitivity to abacavir. <i>Lancet</i> 359(9308):727-732. 684 Status Mallal S, et al. (2012) Immune self-reactivity triggered by drug-modified HLA-peptide repertoire. <i>Nature</i> 486(7404):5554-558. 685 8. Mallal S, et al. (2012) Drug hypersensitivity caused by	8	670	1.	Johansson SG, et al. (2004) Revised nomenclature for allergy for global use: Report of the
 Clin Immunol 113(5):832-836. Sullivan A, et al. (2018) beta-Lacard hypersensitivity involves expansion of circulating and skin-resident TH22 cells. J Allergy Clin Immunol 141(1):235-249 e238. Britschgi M, et al. (2001) T-cell involvement in drug-induced acute generalized exanthematous pustulosis. J Clin Invest 107(11):1433-1441. Nassif A, et al. (2004) Toxic epidermal necrolysis: effector cells are drug-specific cytotoxic T cells. J Allergy Clin Immunol 114(5):1209-1215. Pichler WJ, et al. (2002) Association between presensitivity reactions: pathomechanism and clinical symptoms. Med Clin North Am 94(4):645-664. sv. Pichler WJ, et al. (2002) Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet 359(9308):727-732. Mallal S, et al. (2002) Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet 359(9308):727-732. Mallal S, et al. (2002) HLA-B*5701 screening for hypersensitivity to abacavir. N Engl J Med 358(6):568-579. Illing PT, et al. (2012) Immune self-reactivity triggered by drug-modified HLA-peptide repertoire. Nature 486(7404):554-558. Norcross MA, et al. (2012) Abacavir induces loading of novel self-peptides into HLA-B*57: O1: an autoimmune model for HLA-associated drug hypersensitivity. JADS 26(11):F21-F29. Norcross MA, et al. (2012) Drug hypersensitivity caused by alteration of the MHC-presented self-peptide repertoire. Proc Natl Acad Sci U S A 109(25):9959-9964. Lucas A, et al. (2012) Abacavir-reactive memory T cells are present in drug naive individuals. PLoS One 10(2):e0117160. Bell CC, et al. (2013) T-cells from HLA-B*57:01+ human subjects are activated with abacavir through two independent pathways and induce cell death by multiple mechanisms. Chem Res Toxicol	9	671		Nomenclature Review Committee of the World Allergy Organization, October 2003. J Allergy
 2. Sullivan A, <i>et al.</i> (2018) beta-lactam hypersensitivity involves expansion of circulating and skin-resident TH22 cells. <i>J Allergy Clin Immunol</i> 141(1):235-249 e238. 3. Britschgi M, <i>et al.</i> (2001) T-cell involvement in drug-induced acute generalized exanthematous pustulosis. <i>J Clin Invest</i> 107(11):1433-1441. 4. Nassif A, <i>et al.</i> (2001) Toxic epidemal necrolysis: effector cells are drug-specific cytotoxic T cells. <i>J Allergy Clin Immunol</i> 114(5):1209-1215. 5. Pichler WJ, <i>et al.</i> (2010) Drug hypersensitivity reactions: pathomechanism and clinical symptoms. <i>Med Clin North Am</i> 94(4):645-664. <i>svv.</i> 6. Pichler WJ (2003) Delayed drug hypersensitivity reactions. <i>Ann Intern Med</i> 139(8):683-693. 6. Pichler WJ (2003) Delayed drug hypersensitivity reactions. <i>Ann Intern Med</i> 139(8):683-693. 6. Pichler WJ (2003) Delayed drug hypersensitivity reactions. <i>Ann Intern Med</i> 139(8):683-693. 6. Pichler WJ (2003) Delayed drug hypersensitivity reactions. <i>Ann Intern Med</i> 139(8):683-693. 6. Malial S, <i>et al.</i> (2002) HLA-B*5701 screening for hypersensitivity to abacavir. <i>Lancet</i> 359(9308):727- 732. 6. Malial S, <i>et al.</i> (2002) HLA-B*5701 screening for hypersensitivity to abacavir. <i>N Engl J Med</i> 358(6):568-579. 9. Illing PT, <i>et al.</i> (2012) Immune self-reactivity triggered by drug-modified HLA-peptide repertoire. <i>Nature</i> 486(7404):554-558. 6. Norcross MA, <i>et al.</i> (2012) Drug hypersensitivity caused by alteration of the MHC-presented self-peptide repertoire. <i>Proc Natl Acad Sci U S A</i> 109(25):9959-9964. 6. Storn 20(2):e0117160. 6. Beli CC, <i>et al.</i> (2013) T-cells from HLA-B*57:01+ human subjects are activated with abacavir through two independent pathways and induce cell death by multiple mechanism. <i>Chem Res Taxicol</i> 26(5):759-766. 6. Beli CC, <i>et al.</i> (2013) Human Leukocyte Antigen (HLA)-8(star)57:01-Restricted Activation of Dru	10	672		Clin Immunol 113(5):832-836.
12 674 skin-resident TH22 cells. J Allergy Clin Immunol 141(1):235-249 e238. 14 675 3. Britschig M, et al. (2001) T-cell involvement in drug-induced acute generalized exanthematous pustulosis. J Clin Invest 107(11):1433-1441. 16 677 4. Nassif A, et al. (2004) Toxic epidermal necrolysis: effector cells are drug-specific cytotoxic T cells. J Allergy Clin Immunol 114(5):1209-1215. 17 678 cells. J Allergy Clin Immunol 114(5):1209-1215. 18 679 5. Pichler WJ, et al. (2001) Drug hypersensitivity reactions: pathomechanism and clinical symptoms. <i>Med Clin North Am</i> 94(4):645-664, sv. 18 680 symptoms. <i>Med Clin North Am</i> 94(4):645-664, sv. 18 681 Allala S, et al. (2002) Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HV-1 reverse-transcriptase inhibitor abacavir. Lancet 359(9308):727-732. 18 683 Malial S, et al. (2002) Immune self-reactivity triggered by drug-modified HLA-peptide repertoire. Nature 486(7404):554-558. 19 Illing PT, et al. (2012) Ibnacriv induces loading of novel self-peptides into HLA-B*57: 01: an autoimmune model for HLA-associated drug hypersensitivity. AlDS 26(11):F21-F29. 10 Ostrov DA, et al. (2012) Drug hypersensitivity caused by alteration of the MHC-presented self-peptide epertorie. Proc Natl Acad Sci U S A 109(2):59:59:564. 12 Lucas A, et al. (2012) Human self reactivit	11	673	2.	Sullivan A, et al. (2018) beta-Lactam hypersensitivity involves expansion of circulating and
 G75 3. Britschgi M, <i>et al.</i> (2001) T-cell involvement in drug-induced acute generalized exanthematous pustulosis. <i>J Clin Invest</i> 107(11):1433-1441. G76 exanthematous pustulosis. <i>J Clin Invest</i> 107(11):1433-1441. G77 5. Pichler WJ, <i>et al.</i> (2004) Toxic epidemal necrolysis: effector cells are drug-specific cytotoxic T cells. <i>J Allergy Clin Immunol</i> 114(5):1209-1215. G79 5. Pichler WJ (2003) Delayed drug hypersensitivity reactions: pathomechanism and clinical symptoms. <i>Med Clin North Am</i> 94(4):645-664, <i>xv.</i> G81 6. Pichler WJ (2003) Delayed drug hypersensitivity reactions. <i>Ann Intern Med</i> 139(8):683-693. G82 7. Mallal S, <i>et al.</i> (2008) Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HV-1 reverse-transcriptase inhibitor abacavir. <i>J Lancet</i> 359(9308):727- 732. G85 8. Mallal S, <i>et al.</i> (2008) HLA-B*5701 screening for hypersensitivity to abacavir. <i>N Engl J Med</i> 358(6):568-579. G87 9. Illing PT, <i>et al.</i> (2012) Immune self-reactivity triggered by drug-modified HLA-peptide repetroire. <i>Nature</i> 486(7404):554-558. G89 10. Norcross MA, <i>et al.</i> (2012) Drug hypersensitivity caused by alteration of the MHC-Dresented self-peptide repertoire. <i>Proc Natl Acad Sci U S A</i> 109(25):9959-9964. G93 12. Lucas A, <i>et al.</i> (2012) Trug hypersensitivity caused by alteration of the MHC-presented self-peptide repertoire. <i>Proc Natl Acad Sci U S A</i> 109(25):9959-9964. G94 14. 205 One 10(2):0117160. G95 13. Bell CC, <i>et al.</i> (2013) T-cells from HLA-B*57:01+ human subjects are activated with abacavir through two independent pathways and induce cell death by multiple mechanisms. <i>Chem Res Toxicol</i> 26(5):759-766. G98 14. Adam J, <i>et al.</i> (2012) Avidity determines T-cell reactivity in abacavir hypersensitivity. <i>Eur J Immunol</i> 42(7):1706-1716. G97 701 Konshi MM, <i>et al.</i> (2013) Human Leukocyte Antigen (HLA)-B(star)57:	12	674		skin-resident TH22 cells. J Allergy Clin Immunol 141(1):235-249 e238.
 676 exanthematous pustulosis. <i>J Clin Invest</i> 107(11):1433-1441. 677 4. Nassif A, et al. (2004) Toxic epidermal necrolysis: effector cells are drug-specific cytotoxic T cells. <i>J Allergy Clin Immunol</i> 114(5):1209-1215. 679 5. Pichler WJ, et al. (2010) Drug hypersensitivity reactions: pathomechanism and clinical symptoms. <i>Med Clin North Am</i> 94(4):645-664, xv. 681 6. Pichler WJ (2003) Delayed drug hypersensitivity reactions. <i>Ann Intern Med</i> 139(8):683-693. 682 7. Mallal S, et al. (2002) Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. <i>Lancet</i> 359(9308):727-732. 685 8. Mallal S, et al. (2002) HLA-B*5701 screening for hypersensitivity to abacavir. <i>Lancet</i> 359(9308):727-732. 685 9. Ulling PT, et al. (2012) Immune self-reactivity triggered by drug-modified HLA-peptide repertoire. <i>Nature</i> 486(7404):554-558. 689 10. Norcross MA, et al. (2012) Abacavir induces loading of novel self-peptides into HLA-B*57: O1 is an autoimmune model for HLA-associated drug hypersensitivity. <i>AIDS</i> 26(11):F21-F29. 691 11. Ostrov DA, et al. (2012) Macavir reactive memory T cells are present in drug naive individuals. <i>PLoS One</i> 10(2):e0117160. 695 13. Bell CC, et al. (2013) Abacavir reactive memory T cells are present in drug naive individuals. <i>PLoS One</i> 10(2):e0117160. 695 14. Adam J, et al. (2013) Human Leukocyte Antigen (HLA)-B(star)57:01-Restricted Activation of Drug-Specific T Cells from HLA-B*57:01+ human subjects are activated with abacavir through two independent pathways and induce cell death by multiple mechanisms. <i>Chem Res Toxicol</i> 26(5):759-766. 698 14. Adam J, et al. (2013) Human Leukocyte Antigen (HLA)-B(star)57:01-Restricted Activation of Drug-Specific T Cells from Hypersensitivity. <i>J Litter</i> 1 <i>Immunol</i> 42(7):1706-1716. 703 16. Wu Y, Farrell J, Pirmohamed M, Park K	13 17	675	3.	Britschgi M, et al. (2001) T-cell involvement in drug-induced acute generalized
 A. Nassif A, et al. (2004) Toxic epidermal necrolysis: effector cells are drug-specific cytotoxic T cells. J Allergy Clin Immunol 114(5):1209-1215. Pichler WJ, et al. (2010) Drug hypersensitivity reactions: pathomechanism and clinical symptoms. Med Clin North Am 94(4):645-664, xv. Pichler WJ (2003) Delayed drug hypersensitivity reactions. Ann Intern Med 139(8):683-693. B. Pichler WJ (2003) Delayed drug hypersensitivity reactions. Ann Intern Med 139(8):683-693. Mallai S, et al. (2002) Association between presence of HLA-B*5701, HLA-BR7, and HLA-DQ3 and hypersensitivity to HV-1 reverse-transcriptase inhibitor abacavir. Lancet 359(9308):727-732. B. Mallai S, et al. (2002) HLA-B*5701 screening for hypersensitivity to abacavir. N Engl J Med 358(6):568-579. Illing PT, et al. (2012) Immune self-reactivity triggered by drug-modified HLA-peptide repertoire. Nature 486(7404):554-558. Norcross MA, et al. (2012) Drug hypersensitivity caused by alteration of the MHC-presented self-peptide repertoire. Proc Natl Acad Sci U S A 109(25):9959-9964. U. Lucas A, et al. (2012) Drug hypersensitivity caused by alteration of the MHC-presented self-peptide repertoire. Proc Natl Acad Sci U S A 109(25):9959-9964. U. Lucas A, et al. (2012) Abacavir-reactive memory T cells are present in drug naive individuals. PLoS One 10(2):e0117160. Bell CC, et al. (2013) T-cells from HLA-B*7:01 + human subjects are activated with abacavir through two independent pathways and induce cell deat by multiple mechanisms. Chem Res Toxicol 26(5):759-766. Monshi MM, et al. (2012) Avidity determines T-cell reactivity in abacavir hypersensitivity. Eur J Immunol 42(7):710-61-716. Monshi MM, et al. (2013) Human Leukocyte Antigen (HLA)-B(star)57-01-Restricted Activation of Drug Specific T Cells From typersensitivity. Juler 2011 Immunol. Monshi MM, et al. (2013) Human Leukocyte Antigen (H	15	676		exanthematous pustulosis. J Clin Invest 107(11):1433-1441.
17 678 cells. J Allergy Clin Immunol 114(5):1209-1215. 18 679 5. Pichler WJ, et al. (2010) Drug hypersensitivity reactions: pathomechanism and clinical symptoms. Med Clin North Am 94(4):645-664, xv. 20 681 6. Pichler WJ (2003) Delayed drug hypersensitivity reactions: Ann Intern Med 139(8):683-693. 21 682 7. Malial S, et al. (2002) Association between presence of HLA-B*501, HLA-B7A, and HLA-D03 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. <i>N Engl J Med</i> 358(6):568-579. 22 683 Malial S, et al. (2012) Immune self-reactivity triggered by drug-modified HLA-peptide repertoire. <i>Nature</i> 486(7404):554-558. 26 70 Illing PT, et al. (2012) Drug hypersensitivity caused by alteration of the MHC-presented self-peptide repertoire. <i>Nature</i> 486(7404):554-558. 27 691 10. Norrozs MA, et al. (2012) Drug hypersensitivity caused by alteration of the MHC-presented self-peptide repertoire. <i>Proc Natl Acad Sci</i> U 5 A 109(25):959-9964. 283 12. Lucas A, et al. (2015) Abacavir-reactive memory T cells are present in drug naive individuals. <i>PLoS One</i> 10(2):e0117160. 296 13. Bell CC, et al. (2012) Avidity determines T-cell reactivity in abacavir hypersensitivity. <i>Eur J Immunol</i> 42(7):1706-1716. 206 13. Bell CC, et al. (2012) Avidity determines T-cell reactivity in abacavir hypersensitivity. <i>Eur J Immunol</i> 42(7):1706-1716.	16	677	4.	Nassif A, et al. (2004) Toxic epidermal necrolysis: effector cells are drug-specific cytotoxic T
 Fielder WJ, <i>et al.</i> (2010) Drug hypersensitivity reactions: pathomechanism and clinical symptoms. <i>Med Clin North Am</i> 94(4):645-664, <i>xv.</i> Pichler WJ (2003) Delayed drug hypersensitivity reactions. <i>Ann Intern Med</i> 139(8):683-693. Mallal S, <i>et al.</i> (2002) Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. <i>N Engl J Med</i> 358(6):568-579. Mallal S, <i>et al.</i> (2008) HLA-B*5701 screening for hypersensitivity to abacavir. <i>N Engl J Med</i> 358(6):568-579. Mallal S, <i>et al.</i> (2012) Immune self-reactivity triggered by drug-modified HLA-peptide repertoire. <i>Nature</i> 486(7404):554-558. Norcross MA, <i>et al.</i> (2012) Abacavir induces loading of novel self-peptides into HLA-B*57: 01: an autoimmune model for HLA-associated drug hypersensitivity. <i>AIDS</i> 26(11):F21-F29. Otsrov DA, <i>et al.</i> (2012) Drug hypersensitivity caused by alteration of the MHC-presented self-peptide repertoire. <i>Proc Natl Acad Sci U S A</i> 109(25):9959-9964. Lucas A, <i>et al.</i> (2013) T-cells from HLA-B*57:01+ human subjects are activated with abacavir through two independent pathways and induce cell death by multiple mechanisms. <i>Chem Res Toxicol</i> 26(5):759-766. Bell CC, <i>et al.</i> (2012) Avidity determines T-cell reactivity in abacavir hypersensitivity. <i>Eur J Immunol</i> 42(7):1706-1716. Monshi MM, <i>et al.</i> (2012) Avidity determines T-cell reactivity in abacavir hypersensitivity. <i>Eur J Immunol</i> 42(7):1706-1716. Monshi MM, <i>et al.</i> (2013) Human Leukocyte Antigen (HLA)-B(star)57:01-Restricted Activation of Drug-Specific T Cells Provides the Immunological Basis for Flucloxacillin-Induced Liver Injury. <i>Hepatology</i> 57(2):727-739. Mo thy areall J, Pirrobamed M, Park KK, & Naibitt DJ (2007) Generation and characterization of antigen-specific CD4(+), CD8(+), and CD4(+)CD8(+) T-cell clones from patients with carbamazepine hypersensit	17	678		cells. J Allergy Clin Immunol 114(5):1209-1215.
 symptoms. Med Clin North Am 94(4):645-664, xv. Pichler WJ (2003) Delayed drug hypersensitivity reactions. Ann Intern Med 139(8):683-693. Mallal S, et al. (2002) Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet 359(9308):727- 732. Mallal S, et al. (2008) HLA-B*5701 screening for hypersensitivity to abacavir. N Engl J Med 358(6):568-579. Illing PT, et al. (2012) Immune self-reactivity triggered by drug-modified HLA-peptide repertoire. Nature 486(7401):553-558. Norcross MA, et al. (2012) Abacavir induces loading of novel self-peptides into HLA-B*57: 01: an autoimmune model for HLA-associated drug hypersensitivity. AIDS 26(11):F21-F29. Ostrov DA, et al. (2012) Drug hypersensitivity caused by alteration of the MHC-presented self-peptide repertoire. Proc Natl Acad Sci U S A 109(25):9959-9964. Lucas A, et al. (2013) T-cells from HLA-B*57:01+ human subjects are activated with abacavir through two independent pathways and induce cell death by multiple mechanisms. Chem Res Taxical 26(5):759-766. Adam J, et al. (2013) Availty determines T-cell reactivity in abacavir hypersensitivity. Eur J Immunol 42(7):1706-1716. Monshi MM, et al. (2013) Human Leukocyte Antigen (HLA)-B(star)57:01-Restricted Activation of Drug-Specific CD4(+), CD8(+), and CD4(+)CD8(+) T-cell clones from patients with carbamazepine hypersensitivity. J Allergy. Wu Y, Farrell J, Pirmohamed M, Park BK, & Nalsbitt DJ (2007) Generation and characterization of antigen-specific CD4(+), CD8(+), cnells form 1-cells from hypersensitive patients expressing the risk allele HLA-B*1301. Allergy. Wu Y, Farrell J, Pirmohamed M, Park BK, & Nalsbitt DJ (2007) Generation and characterization of antigen-specific CD4(+), CD8(+), cnells from hypersensitive patients expressing the risk allele HLA-B*1301. Allergy. Negrin	18	679	5.	Pichler WJ, et al. (2010) Drug hypersensitivity reactions: pathomechanism and clinical
 681 6. Pichler WJ (2003) Delayed drug hypersensitivity reactions. Ann Intern Med 139(8):683-693. Mallal S, et al. (2002) Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet 359(9308):727-732. 685 8. Mallal S, et al. (2008) HLA-B*5701 screening for hypersensitivity to abacavir. N Engl J Med 358(6):568-579. 687 9. Illing PT, et al. (2012) Immune self-reactivity triggered by drug-modified HLA-peptide repertoire. Nature 486(7404):554-558. 689 10. Norcross MA, et al. (2012) Drug hypersensitivity caused by alteration of the MHC-presented self-peptide repertoire. Proc Natl Acad Sci U S A 109(25):9959-9964. 11. Ostrov DA, et al. (2012) Drug hypersensitivity calls are present in drug naive individuals. PLoS One 10(2):e0117160. 695 13. Bell CC, et al. (2013) Tacells from HLA-B*57:01 + human subjects are activated with abacavir through two independent pathways and induce cell death by multiple mechanisms. Chem Res Toxicol 26(5):759-766. 698 14. Adam J, et al. (2013) Human Leukocyte Antigen (HLA)-B(star)57:01-Restricted Activation of Drug-Specific T Cells Provides the Immunological Basis for Flucloxacillin-induced Liver Injury. Hepatology 57(2):727-739. 703 16. Wu Y, Farrell J, Pirmohamed M, Park BK, Anisbitt DJ (2007) Generation and characterization of antigen-specific CD4(+), CD8(+), and CD4(+)CD8(+) T-cell clones from patients with carbamazepine hypersensitivity. J Allergy Clin Immunol. 714 21. Purcell AW, & McCluskey I (2017) The role of HLA B*13:01. Allergy. 725 20. 2019 Dassone and nitroso dapsone-specific activation of T-cells from hypersensitive patients expressing the risk allele HLA B*13:01. Allergy. 736 19. Wey Farrell J, Drahag F, & Ostrov DA (2018) Human Leukocyte Antigen Association of adverse drug reactions. Pharmacogenomics: 18(15):1441-1457.	19	680		symptoms. Med Clin North Am 94(4):645-664, xv.
 Res Toxicol 26(5):759-766. Bell CC, <i>et al.</i> (2012) Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. <i>N Engl J Med</i> 358(6):568-579. Mallal S, <i>et al.</i> (2008) HLA-B*5701 screening for hypersensitivity to abacavir. <i>N Engl J Med</i> 358(6):568-579. Bulling PT, <i>et al.</i> (2012) Immune self-reactivity triggered by drug-modified HLA-peptide repertoire. <i>Nature</i> 486(7404):554-558. Norcross MA, <i>et al.</i> (2012) Drug hypersensitivity caused by alteration of the MHC-presented self-peptide repertoire. <i>Proc Natl Acad Sci U S A</i> 109(25):9959-9964. Uscas A, <i>et al.</i> (2013) Truells from HLA-B*57:01+ human subjects are activated with abacavir through two independent pathways and induce cell death by multiple mechanisms. <i>Chem Res Toxicol</i> 26(5):759-766. Adam J, <i>et al.</i> (2012) Audity determines T-cell reactivity in abacavir hypersensitivity. <i>Eur J Immunol</i> 42(7):1706-1716. Monshi MM, <i>et al.</i> (2013) Human Leukocyte Antigen (HLA)-B(star)57:01-Restricted Activation of Drug-Specific T Cells Provides the Immunological Basis for Fluctoacillin- Induced Liver Injury. <i>Hepatology</i> 57(2):727-739. Wu Y, Farrell J, Pirmohamed M, Park BK, & Naisbitt DJ (2007) Generation and characterization of antigen-specific CD4(+), CD8(+), and CD4(+)CD8(+) T-cell Clones from patients with carbamazepine hypersensitivity. <i>J Allergy Clin Immunol.</i> Zhao Q, <i>et al.</i> (2013) Dasone- and nitroso dapsone-specific activation of T-cells from hypersensitive patients expressing the risk allele HLA-B*13:01. <i>Allergy.</i> Negrini S & Becquemont L (2017) HLA-associated drug hypersensitivity and the prediction of adverse drug reactions. <i>Pharmaccagenonics</i>: 18(15):1441-1457. Schutte RJ, Sun Y, Li D, Zhang F, & Ostrov DA (2018) Human Leukocyte Antigen Associations in Drug Hypersensitivity Reactions. <i>Clin Lab Med</i> 38(4):669-677.	20	681	6.	Pichler WJ (2003) Delayed drug hypersensitivity reactions. Ann Intern Med 139(8):683-693.
22683and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet 359(9308):727-23684732.24684732.256858.2688Malial S, et al. (2008) HLA-B*5701 screening for hypersensitivity to abacavir. N Engl J Med26686358(6):568-579.276879.2868910.29688repertoire. Nature 486(7404):554-558.2969110.200.Norcross MA, et al. (2012) Abacavir induces loading of novel self-peptide sinto HLA-B*57:2901: an autoimmune model for HLA-associated drug hypersensitivity. AIDS 26(11):F21-F29.2969111.20Ostrov DA, et al. (2012) Drug hypersensitivity caused by alteration of the MHC-presented3959112.20self-peptide repertoire. Proc Natl Acad Sci U S A 109(25):9959-9964.2112.Lucas A, et al. (2015) Abacavir-reactive memory T cells are present in drug naive individuals.26 <i>PLoS One</i> 10(2):e0117160.2113.Bell CC, et al. (2013) T-cells from HLA-B*57:01+ human subjects are activated with abacavir26fbrmunol 42(7):1706-1716.2114.Adam J, et al. (2013) Human Leukocyte Antigen (HLA)-B(star)57:01-Restricted23701Activation of Drug-Specific C 24(+), CD8(+), and CD4(+)CD8(+) T-cell clones from patients with carbamazepine hypersensitivity. J Allergy Clin Immunol.24015.Monshi MM, et al. (2013) Human Leukocyte Antigen KB, & Naisbit D1 (2007) Generation and character	21	682	7.	Mallal S, et al. (2002) Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3
 684 732. 685 8. Malial S, et al. (2008) HLA-B*5701 screening for hypersensitivity to abacavir. N Engl J Med 358(6):568-579. 687 9. Illing PT, et al. (2012) Immune self-reactivity triggered by drug-modified HLA-peptide repertoire. Nature 486(7404):554-558. 689 10. Norcross MA, et al. (2012) Abacavir induces loading of novel self-peptides into HLA-B*57: 01: an autoimmune model for HLA-associated drug hypersensitivity. AIDS 26(11):F21-F29. 691 11. Ostrov DA, et al. (2012) Drug hypersensitivity caused by alteration of the MHC-presented self-peptide repertoire. Proc Natl Acad Sci U S A 109(25):9959-9964. 693 12. Lucas A, et al. (2013) T-cells from HLA-B*57:01+ human subjects are activated with abacavir through two independent pathways and induce cell death by multiple mechanisms. Chem Res Toxicol 26(5):759-766. 693 13. Bell CC, et al. (2013) T-cells from HLA-B*57:01+ human subjects are activated with abacavir through two independent pathways and induce cell death by multiple mechanisms. Chem Res Toxicol 26(5):759-766. 699 14. Adam J, et al. (2013) Human Leukocyte Antigen (HLA)-B(star)57:01-Restricted Activation of Drug-Specific T Cells Provides the Immunological Basis for Flucloxacillin-1 Induced Liver Injury. Hepatology 57(2):727-739. 703 16. Wu Y, Farrell J, Pirmohamed M, Park BK, & Naisbitt DI (2007) Generation and characterization of antigen-specific CD4(+), CD8(+), and CD4(+)CD8(+) T-cell clones from patients with carbamazepine hypersensitivity. J Allergy Clin Immunol. 706 17. Zhao Q, et al. (2019) Dapsone- and nitroso dapsone-specific activation of T-cells from hypersensitive patients expressing the risk allele HLA-B*13:01. Allergy. 708 18. Illing PT, Purcell AW, & McCluskey J (2017) The role of HLA genes in pharmacogenomics: unravelling HLA associated adverse drug reactions. Immunogenetics 69(8-9):617-630. 710 19. Negrini S & Becquemont L (2017) HLA-associ	22	683		and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet 359(9308):727-
 685 8. Mallal S, et al. (2008) HLA-B*5701 screening for hypersensitivity to abacavir. N Engl J Med 358(6):568-579. 687 9. Illing PT, et al. (2012) Immune self-reactivity triggered by drug-modified HLA-peptide repertoire. Nature 486(7404):554-558. 689 10. Norcross MA, et al. (2012) Abacavir induces loading of novel self-peptides into HLA-B*57: 01: an autoimmune model for HLA-associated drug hypersensitivity. AIDS 26(11):F21-F29. 691 11. Ostrov DA, et al. (2012) Drug hypersensitivity caused by alteration of the MHC-presented self-peptide repertoire. Proc Natl Acad Sci U S A 109(25):9959-9964. 693 12. Lucas A, et al. (2015) Abacavir-reactive memory T cells are present in drug naive individuals. PLoS One 10(2):e0117160. 695 13. Bell CC, et al. (2013) T-cells from HLA-B*57:01+ human subjects are activated with abacavir for through two independent pathways and induce cell death by multiple mechanisms. Chem Res Toxicol 26(5):759-766. 698 14. Adam J, et al. (2012) Avidity determines T-cell reactivity in abacavir hypersensitivity. Eur J Immunol 42(7):1706-1716. 700 15. Monshi MM, et al. (2013) Human Leukocyte Antigen (HLA)-B(star)57:01-Restricted Activation of Drug-Specific T Cells Provides the Immunological Basis for Flucloxacillin- Induced Liver Injury. Hepatology 57(2):727-739. 703 16. Wu Y, Farrell J, Pirmohamed M, Park BK, & Naisbitt DJ (2007) Generation and characterization of antigen-specific CD4(+), CD8(+), and CD4(+)CD8(+) T-cell clones from patients with carbamazepine hypersensitivity. J Allergy Clin Immunol. 706 17. Zhao Q, et al. (2019) Dapsone- and nitroso dapsone-specific activation of T-cells from hypersensitive patients expressing the risk allel HLA-B*13:01. Allergy. 708 18. Illing PT, Purcell AW, & McCluskey J (2017) The role of HLA genes in pharmacogenomics: unravelling HLA associated adverse drug reactions. Immunogenetics 69(8-9):617-630. 710 19. N	25 24	684		732.
 686 358(6):568-579. 687 9. Illing PT, <i>et al.</i> (2012) Immune self-reactivity triggered by drug-modified HLA-peptide repertoire. <i>Nature</i> 486(7404):554-558. 689 10. Norcross MA, <i>et al.</i> (2012) Abacavir induces loading of novel self-peptides into HLA-B*57: 01: an autoimmune model for HLA-associated drug hypersensitivity. <i>AIDS</i> 26(11):F21-F29. 691 11. Ostrov DA, <i>et al.</i> (2012) Drug hypersensitivity caused by alteration of the MHC-presented self-peptide repertoire. <i>Proc Natl Acad Sci U S A</i> 109(25):9959-9964. 693 12. Lucas A, <i>et al.</i> (2015) Abacavir-reactive memory T cells are present in drug naive individuals. <i>PLoS One</i> 10(2):e0117160. 695 13. Bell CC, <i>et al.</i> (2013) T-cells from HLA-B*57:01+ human subjects are activated with abacavir through two independent pathways and induce cell death by multiple mechanisms. <i>Chem Res Toxicol</i> 26(5):759-766. 698 14. Adam J, <i>et al.</i> (2012) Avidity determines T-cell reactivity in abacavir hypersensitivity. <i>Eur J Immunol</i> 42(7):1706-1716. 700 15. Monshi MM, <i>et al.</i> (2013) Human Leukocyte Antigen (HLA)-B(star)57:01-Restricted Activation of Drug-Specific T Cells Provides the Immunological Basis for Flucloxacillin-Induced Liver Injury. <i>Hepatology</i> 57(2):727-739. 703 16. Wu Y, Farrell J, Pirmohamed M, Park BK, & Naisbitt DJ (2007) Generation and characterization of antigen-specific CD4(+), CD8(+), and CD4(+)CD8(+) T-cell clones from patients with carbamazepine hypersensitivity. <i>J Allergy Clin Immunol.</i> 706 17. Zhao Q, <i>et al.</i> (2019) Dapsone- and nitroso dapsone-specific activation of T-cells from hypersensitive patients expressing the risk allele HLA-B1301. <i>Allergy.</i> 708 18. Illing PT, Purcell AW, & McCluskey J (2017) The role of HLA genes in pharmacogenomics: unravelling HLA associated daverse drug reactions. <i>Immunogenetics</i> 69(8-9):617-630. 710 19. Negrini S & Becquemont L (2017) HLA-associated drug hypersensitivity and the prediction of adverse drug reactions.	24	685	8.	Mallal S, et al. (2008) HLA-B*5701 screening for hypersensitivity to abacavir. N Engl J Med
 687 9. Illing PT, <i>et al.</i> (2012) Immune self-reactivity triggered by drug-modified HLA-peptide repertoire. <i>Nature</i> 486(7404):554-558. 689 10. Norcross MA, <i>et al.</i> (2012) Abacavir induces loading of novel self-peptides into HLA-B*57: 01: an autoimmune model for HLA-associated drug hypersensitivity. <i>AIDS</i> 26(11):F21-F29. 691 11. Ostrov DA, <i>et al.</i> (2012) Drug hypersensitivity caused by alteration of the MHC-presented self-peptide repertoire. <i>Proc Natl Acad Sci U S A</i> 109(25):9959-9964. 693 12. Lucas A, <i>et al.</i> (2013) Abacavir-reactive memory T cells are present in drug naive individuals. <i>PLoS One</i> 10(2):e0117160. 694 913. Bell CC, <i>et al.</i> (2013) T-cells from HLA-B*57:01+ human subjects are activated with abacavir through two independent pathways and induce cell death by multiple mechanisms. <i>Chem Res Toxicol</i> 26(5):759-766. 698 14. Adam J, <i>et al.</i> (2012) Avidity determines T-cell reactivity in abacavir hypersensitivity. <i>Eur J Immunol</i> 42(7):1706-1716. 700 15. Monshi MM, <i>et al.</i> (2013) Human Leukocyte Antigen (HLA)-B(star)57:01-Restricted Activation of Drug-Specific T Cells Provides the Immunological Basis for Flucloxacillin- Induced Liver Injury. <i>Hepatology</i> 57(2):727-739. 705 16. Wu Y, Farrell J, Pirmohamed M, Park KR, & Naisbitt DJ (2007) Generation and characterization of antigen-specific CD4(+), CD8(+), and CD4(+)CD8(+) T-cell clones from patients with carbamazepine hypersensitivity. <i>J Allergy Clin Immunol.</i> 705 707 hypersensitive patients expressing the risk allel HLA-B*13:01. <i>Allergy.</i> 708 18. Illing PT, Purcell AW, & McCluskey I (2017) The role of HLA genes in pharmacogenomics: unravelling HLA associated adverse drug reactions. <i>Immunogenetics</i> 69(8-9):617-630. 710 19. Negrini S & Becquemont L (2017) HLA-associated drug hypersensitivity and the prediction of adverse drug reactions. <i>Pharmacogenomics</i> 18(15):1441-1457. 712 20. Schutte RJ, Sun Y, Li D, Zhang F, & Ostrov DA (2018) Human L	26	686		358(6):568-579.
 688 repertoire. <i>Nature</i> 486(7404):554-558. 689 10. Norcross MA, <i>et al.</i> (2012) Abacavir induces loading of novel self-peptides into HLA-B*57: 01: an autoimmune model for HLA-associated drug hypersensitivity. <i>AIDS</i> 26(11):F21-F29. 691 11. Ostrov DA, <i>et al.</i> (2012) Drug hypersensitivit, caused by alteration of the MHC-presented self-peptide repertoire. <i>Proc Natl Acad Sci U S A</i> 109(25):9959-9964. 693 12. Lucas A, <i>et al.</i> (2015) Abacavir-reactive memory T cells are present in drug naive individuals. <i>PLoS One</i> 10(2):e0117160. 695 13. Bell CC, <i>et al.</i> (2013) T-cells from HLA-B*57:01+ human subjects are activated with abacavir through two independent pathways and induce cell death by multiple mechanisms. <i>Chem Res Toxicol</i> 26(5):759-766. 697 14. Adam J, <i>et al.</i> (2013) Human Leukocyte Antigen (HLA)-B(star)57:01-Restricted Activation of Drug-Specific T Cells Provides the Immunological Basis for Flucloxacillin- Induced Liver Injury. <i>Hepatology</i> 57(2):727-739. 703 16. Wu Y, Farrell J, Pirmohamed M, Park BK, & Naisbitt DJ (2007) Generation and characterization of antigen-specific CD4(+), CD8(+), and CD4(+)CD8(+) T-cell clones from patients with carbamazepine hypersensitivity. <i>J Allergy Clin Immunol.</i> 706 17. Zhao Q, <i>et al.</i> (2019) Dapsone- and nitroso dapsone-specific activation of T-cells from hypersensitive patients expressing the risk allele HLA-B*13:01. <i>Allergy.</i> 709 11. Billing PT, Purcell AW, & McCluskey J (2017) The role of HLA genes in pharmacogenomics: unravelling HLA associated adverse drug reactions. <i>Immunogenetics</i> 69(8-9):617-630. 710 19. Negrini S & Becquemont L (2017) HLA-associated drug hypersensitivity and the prediction of adverse drug reactions. <i>Pharmacogenomics</i> 18(15):1441-1457. 712 20. Schutte RI, Sun Y, Lio Z, Jang F, & Ostrov DA (2018) Human Leukocyte Antigen Associations in Drug Hypersensitivity Reactions. <i>Clin Lab Med</i> 38(4):669-677.	27	687	9.	Illing PT, et al. (2012) Immune self-reactivity triggered by drug-modified HLA-peptide
 689 10. Norcross MA, et al. (2012) Abacavir induces loading of novel self-peptides into HLA-B*57: 01: an autoimmune model for HLA-associated drug hypersensitivity. AIDS 26(11):F21-F29. 691 11. Ostrov DA, et al. (2012) Drug hypersensitivity caused by alteration of the MHC-presented self-peptide repertoire. Proc Natl Acad Sci U S A 109(25):9959-9964. 693 12. Lucas A, et al. (2013) T-cells from HLA-B*57:01+ human subjects are activated with abacavir through two independent pathways and induce cell death by multiple mechanisms. Chem Res Toxicol 26(5):759-766. 698 14. Adam J, et al. (2012) Avidity determines T-cell reactivity in abacavir hypersensitivity. Eur J Immunol 42(7):1706-1716. 699 15. Monshi MM, et al. (2013) Human Leukocyte Antigen (HLA)-B(star)57:01-Restricted Activation of Drug-Specific T Cells Provides the Immunological Basis for Flucloxacillin- Induced Liver Injury. Hepatology 57(2):727-739. 703 16. Wu Y, Farrell J, Pirmohamed M, Park BK, & Naisbitt DJ (2007) Generation and characterization of antigen-specific CD4(+), CD8(+), and CD4(+)CD8(+) T-cell clones from patients with carbamazepine hypersensitivity. J Allergy Clin Immunol. 706 17. Zhao Q, et al. (2019) Dapsone- and nitroso dapsone-specific activation of T-cells from hypersensitive patients expressing the risk allele HLA-B*13:01. Allergy. 708 18. Illing PT, Purcell AW, & McCluskey J (2017) The role of HLA genes in pharmacogenomics: unravelling HLA associated adverse drug reactions. Immunogenetics 69(8-9):617-630. 711 adverse drug reactions. Pharmacogenamics: 8(16):1:141-1457. 712 20. Schutte RI, Sun Y, Li D, Zhang F, & Ostrov DA (2018) Human Leukocyte Antigen Associations in Drug Hypersensitivity Reactions. Clin Lab Med 38(4):669-677. 714 21. Hung SJ, et al. (2005) HLA-B*5801 allele as a genetic marker for severe cutaneous adverse reactions caused by allopurinol. Proc Natl Acad Sci U S A 102(11):4134-4139.	28	688		repertoire. <i>Nature</i> 486(7404):554-558.
 690 01: an autoimmune model for HLA-associated drug hypersensitivity. <i>AIDS</i> 26(11):F21-F29. 691 11. Ostrov DA, <i>et al.</i> (2012) Drug hypersensitivity caused by alteration of the MHC-presented self-peptide repertoire. <i>Proc Natl Acad Sci U S A</i> 109(25):9959-9964. 693 12. Lucas A, <i>et al.</i> (2015) Abacavir-reactive memory T cells are present in drug naive individuals. <i>PLoS One</i> 10(2):e0117160. 695 13. Bell CC, <i>et al.</i> (2013) T-cells from HLA-B*57:01+ human subjects are activated with abacavir through two independent pathways and induce cell death by multiple mechanisms. <i>Chem Res Toxicol</i> 26(5):759-766. 698 14. Adam J, <i>et al.</i> (2012) Avidity determines T-cell reactivity in abacavir hypersensitivity. <i>Eur J Immunol</i> 42(7):1706-1716. 700 15. Monshi MM, <i>et al.</i> (2013) Human Leukocyte Antigen (HLA)-B(star)57:01-Restricted Activation of Drug-Specific T Cells Provides the Immunological Basis for Flucloxacillin-Induced Liver Injury. <i>Hepatology</i> 57(2):727-739. 703 16. Wu Y, Farrell J, Pirmohamed M, Park BK, & Naisbitt DJ (2007) Generation and characterization of antigen-specific CD4(+), CD8(+), and CD4(+)CD8(+) T-cell clones from patients with carbamazepine hypersensitivity. <i>J Allergy Clin Immunol.</i> 706 17. Zhao Q, <i>et al.</i> (2013) Haysone and nitroso dapsone-specific activation of T-cells from hypersensitive patients expressing the risk allele HLA-B*13:01. <i>Allergy.</i> 708 18. Illing PT, Purcell AW, & McCluskey J (2017) The role of HLA genes in pharmacogenomics: unravelling HLA associated daverse drug reactions. <i>Immunogenetics</i> 69(8-9):617-630. 710 19. Negrini S & Becquemont L (2017) HLA-associated drug hypersensitivity and the prediction of adverse drug reactions. <i>Pharmacogenomics</i> 18(15):1441-1457. 712 20. Schutte RJ, Sun Y, Li D, Zhang F, & Ostrov DA (2018) Human Leukocyte Antigen Associations in Drug Hypersensitivity Reactions. <i>Clin Lab Med</i> 38(4):669-677. 7	29	689	10.	Norcross MA, et al. (2012) Abacavir induces loading of novel self-peptides into HLA-B*57:
 definition of the second second	30	690		01: an autoimmune model for HLA-associated drug hypersensitivity. <i>AIDS</i> 26(11):F21-F29.
 self-peptide repertoire. <i>Proc Natl Acad Sci U S A</i> 109(25):9959-9964. Lucas A, <i>et al.</i> (2015) Abacavir-reactive memory T cells are present in drug naive individuals. <i>PLoS One</i> 10(2):e0117160. Bell CC, <i>et al.</i> (2013) T-cells from HLA-B*57:01+ human subjects are activated with abacavir through two independent pathways and induce cell death by multiple mechanisms. <i>Chem</i> <i>Res Toxicol</i> 26(5):759-766. A dam J, <i>et al.</i> (2012) Avidity determines T-cell reactivity in abacavir hypersensitivity. <i>Eur J</i> <i>Immunol</i> 42(7):1706-1716. Monshi MM, <i>et al.</i> (2013) Human Leukocyte Antigen (HLA)-B(star)57:01-Restricted Activation of Drug-Specific T Cells Provides the Immunological Basis for Flucloxacillin- Induced Liver Injury. <i>Hepatology</i> 57(2):727-739. Mu Y, Farrell J, Pirmohamed M, Park BK, & Naisbitt DJ (2007) Generation and characterization of antigen-specific CD4(+), CD8(+), and CD4(+)CD8(+) T-cell clones from patients with carbamazepine hypersensitivity. <i>J Allergy Clin Immunol.</i> Zhao Q, <i>et al.</i> (2019) Dapsone- and nitroso dapsone-specific activation of T-cells from hypersensitive patients expressing the risk allele HLA-B*13:01. <i>Allergy.</i> Illing PT, Purcell AW, & McCluskey J (2017) The role of HLA genes in pharmacogenomics: unravelling HLA associated adverse drug reactions. <i>Immunogenetics</i> 69(8-9):617-630. Negrini S & Becquemont L (2017) HLA-associated drug hypersensitivity and the prediction of adverse drug reactions. <i>Pharmacogenomics</i> 18(15):1441-1457. Schutte RJ, Sun Y, Li D, Zhang F, & Ostrov DA (2018) Human Leukocyte Antigen Associations in Drug Hypersensitivity Reactions. <i>Clin Lab Med</i> 38(4):669-677. Hung SI, <i>et al.</i> (2005) HLA-B*5801 allele as a genetic marker for severe cutaneous adverse reactions caused by allopurinol. <i>Proc Natl Acad Sci U S A</i> 102(11):4134-4139. 	31	691	11.	Ostrov DA, et al. (2012) Drug hypersensitivity caused by alteration of the MHC-presented
 Lucas A, et al. (2015) Abacavir-reactive memory T cells are present in drug naive individuals. <i>PLoS One</i> 10(2):e0117160. Bell CC, et al. (2013) T-cells from HLA-B*57:01+ human subjects are activated with abacavir through two independent pathways and induce cell death by multiple mechanisms. <i>Chem</i> <i>Res Toxicol</i> 26(5):759-766. G98 14. Adam J, et al. (2012) Avidity determines T-cell reactivity in abacavir hypersensitivity. <i>Eur J</i> <i>Immunol</i> 42(7):1706-1716. Monshi MM, et al. (2013) Human Leukocyte Antigen (HLA)-B(star)57:01-Restricted Activation of Drug-Specific T Cells Provides the Immunological Basis for FlucIoxacillin- Induced Liver Injury. <i>Hepatology</i> 57(2):727-739. Mu Y, Farrell J, Pirmohamed M, Park BK, & Naisbitt DJ (2007) Generation and characterization of antigen-specific CD4(+), CD8(+), and CD4(+)CD8(+) T-cell clones from patients with carbamazepine hypersensitivity. <i>J Allergy Clin Immunol</i>. Zhao Q, et al. (2019) Dapsone- and nitroso dapsone-specific activation of T-cells from hypersensitive patients expressing the risk allele HLA-B*13:01. <i>Allergy</i>. Illing PT, Purcell AW, & McCluskey J (2017) The role of HLA genes in pharmacogenomics: unravelling HLA associated adverse drug reactions. <i>Immunogenetics</i> 69(8-9):617-630. Negrini S & Becquemont L (2017) HLA-associated drug hypersensitivity and the prediction of adverse drug reactions. <i>Pharmacogenomics</i> 18(15):1441-1457. Schutte RJ, Sun Y, Li D, Zhang F, & Ostrov DA (2018) Human Leukocyte Antigen Associations in Drug Hypersensitivity Reactions. <i>Clin Lab Med</i> 38(4):669-677. Hung SI, et al. (2005) HLA-B*5801 allele as a genetic marker for severe cutaneous adverse reactions caused by allopurinol. <i>Proc Natl Acad Sci U S A</i> 102(11):4134-4139. 	3Z 22	692		self-peptide repertoire. Proc Natl Acad Sci U S A 109(25):9959-9964.
35694 <i>PLoS One</i> 10(2):e0117160.3669513.Bell CC, et al. (2013) T-cells from HLA-B*57:01+ human subjects are activated with abacavir37696through two independent pathways and induce cell death by multiple mechanisms. <i>Chem</i> 38697 <i>Res Toxicol</i> 26(5):759-766.3969814.Adam J, et al. (2012) Avidity determines T-cell reactivity in abacavir hypersensitivity. <i>Eur J</i> 40699 <i>Immunol</i> 42(7):1706-1716.4170015.Monshi MM, et al. (2013) Human Leukocyte Antigen (HLA)-B(star)57:01-Restricted43701Activation of Drug-Specific T Cells Provides the Immunological Basis for Flucloxacillin-44702Induced Liver Injury. <i>Hepatology</i> 57(2):727-739.4570316.Wu Y, Farrell J, Pirmohamed M, Park BK, & Naisbitt DJ (2007) Generation and46704characterization of antigen-specific CD4(+), CD8(+), and CD4(+)CD8(+) T-cell clones from47705patients with carbamazepine hypersensitivity. <i>J Allergy Clin Immunol.</i> 4870617.Zhao Q, et al. (2019) Dapsone- and nitroso dapsone-specific activation of T-cells from49hypersensitive patients expressing the risk allele HLA-B*13:01. Allergy.5070818.Illing PT, Purcell AW, & McCluskey J (2017) The role of HLA genes in pharmacogenomics:51709unravelling HLA associated adverse drug reactions. <i>Immunogenetics</i> 69(8-9):617-630.5271019.Negrini S & Becquemont L (2017) HLA-associated drug hypersensitivity and the prediction of5371220.Schutte	34	693	12.	Lucas A, et al. (2015) Abacavir-reactive memory T cells are present in drug naive individuals.
3669513.Bell CC, et al. (2013) T-cells from HLA-B*57:01+ human subjects are activated with abacavir37696through two independent pathways and induce cell death by multiple mechanisms. Chem38697Res Toxicol 26(5):759-766.3969814.Adam J, et al. (2012) Avidity determines T-cell reactivity in abacavir hypersensitivity. Eur J40699Immunol 42(7):1706-1716.4170015.Monshi MM, et al. (2013) Human Leukocyte Antigen (HLA)-B(star)57:01-Restricted43701Activation of Drug-Specific T Cells Provides the Immunological Basis for Flucloxacillin-44702Induced Liver Injury. Hepatology 57(2):727-739.4570316.Wu Y, Farrell J, Pirmohamed M, Park BK, & Naisbitt DJ (2007) Generation and46704characterization of antigen-specific CD4(+), CD8(+), and CD4(+)CD8(+) T-cell clones from47705patients with carbamazepine hypersensitivity. J Allergy Clin Immunol.4870617.Zhao Q, et al. (2019) Dapsone- and nitroso dapsone-specific activation of T-cells from49707hypersensitive patients expressing the risk allele HLA-B*13:01. Allergy.5070818.Illing PT, Purcell AW, & McCluskey J (2017) The role of HLA genes in pharmacogenomics:51709unravelling HLA associated adverse drug reactions. Immunogenetics 69(8-9):617-630.5371019.Negrini S & Becquemont L (2017) HLA-associated drug hypersensitivity and the prediction of54713in Drug Hypersensitivity Reactions. Clin Lab Med 38(4):669-677.57	35	694		PLoS One 10(2):e0117160.
37696through two independent pathways and induce cell death by multiple mechanisms. Chem38697Res Toxicol 26(5):759-766.3969814.Adam J, et al. (2012) Avidity determines T-cell reactivity in abacavir hypersensitivity. Eur J40699Immunol 42(7):1706-1716.4170015.Monshi MM, et al. (2013) Human Leukocyte Antigen (HLA)-B(star)57:01-Restricted43701Activation of Drug-Specific T Cells Provides the Immunological Basis for Flucloxacillin-44702Induced Liver Injury. Hepatology 57(2):727-739.4570316.Wu Y, Farrell J, Pirmohamed M, Park BK, & Naisbitt DJ (2007) Generation and46704characterization of antigen-specific CD4(+), CD8(+), and CD4(+)CD8(+) T-cell clones from47705patients with carbamazepine hypersensitivity. J Allergy Clin Immunol.4870617.Zhao Q, et al. (2019) Dapsone- and nitroso dapsone-specific activation of T-cells from49707hypersensitive patients expressing the risk allele HLA-B*13:01. Allergy.5070818.Illing PT, Purcell AW, & McCluskey J (2017) The role of HLA genes in pharmacogenomics:51709unravelling HLA associated adverse drug reactions. Immunogenetics 69(8-9):617-630.5371019.Negrini S & Becquemont L (2017) HLA-associated drug hypersensitivity and the prediction of54713in Drug Hypersensitivity Reactions. Clin Lab Med 38(4):669-677.5771421.Hung SI, et al. (2005) HLA-B*5801 allele as a genetic marker for severe cutaneous adverse58 <t< td=""><td>36</td><td>695</td><td>13.</td><td>Bell CC, et al. (2013) T-cells from HLA-B*57:01+ human subjects are activated with abacavir</td></t<>	36	695	13.	Bell CC, et al. (2013) T-cells from HLA-B*57:01+ human subjects are activated with abacavir
38697Res Toxicol 26(5):759-766.3969814.Adam J, et al. (2012) Avidity determines T-cell reactivity in abacavir hypersensitivity. Eur J40699Immunol 42(7):1706-1716.4170015.Monshi MM, et al. (2013) Human Leukocyte Antigen (HLA)-B(star)57:01-Restricted43701Activation of Drug-Specific T Cells Provides the Immunological Basis for Flucloxacillin-44702Induced Liver Injury. Hepatology 57(2):727-739.4570316.Wu Y, Farrell J, Pirmohamed M, Park BK, & Naisbitt DJ (2007) Generation and46704characterization of antigen-specific CD4(+), CD8(+), and CD4(+)CD8(+) T-cell clones from47705patients with carbamazepine hypersensitivity. J Allergy Clin Immunol.4870617.Zhao Q, et al. (2019) Dapsone- and nitroso dapsone-specific activation of T-cells from49707hypersensitive patients expressing the risk allele HLA-B*13:01. Allergy.5070818.Illing PT, Purcell AW, & McCluskey J (2017) The role of HLA genes in pharmacogenomics:51709unravelling HLA associated adverse drug reactions. Immunogenetics 69(8-9):617-630.5371019.Negrini S & Becquemont L (2017) HLA-associated drug hypersensitivity and the prediction of54711adverse drug reactions. Pharmacogenomics 18(15):1441-1457.5571220.Schutte RJ, Sun Y, Li D, Zhang F, & Ostrov DA (2018) Human Leukocyte Antigen Associations6771421.Hung SI, et al. (2005) HLA-B*5801 allele as a genetic marker for severe cutaneous adverse	37	696		through two independent pathways and induce cell death by multiple mechanisms. Chem
 44. Adam J, et al. (2012) Avidity determines T-cell reactivity in abacavir hypersensitivity. Eur J Immunol 42(7):1706-1716. 45. Monshi MM, et al. (2013) Human Leukocyte Antigen (HLA)-B(star)57:01-Restricted Activation of Drug-Specific T Cells Provides the Immunological Basis for Flucloxacillin- Induced Liver Injury. Hepatology 57(2):727-739. 45. 703 46. Wu Y, Farrell J, Pirmohamed M, Park BK, & Naisbitt DJ (2007) Generation and characterization of antigen-specific CD4(+), CD8(+), and CD4(+)CD8(+) T-cell clones from patients with carbamazepine hypersensitivity. J Allergy Clin Immunol. 47. 705 patients with carbamazepine hypersensitivity. J Allergy Clin Immunol. 48. 706 47. Zhao Q, et al. (2019) Dapsone- and nitroso dapsone-specific activation of T-cells from hypersensitive patients expressing the risk allele HLA-B*13:01. Allergy. 50. 708 51. Illing PT, Purcell AW, & McCluskey J (2017) The role of HLA genes in pharmacogenomics: unravelling HLA associated adverse drug reactions. Immunogenetics 69(8-9):617-630. 52. 709 53. 710 54. Negrini S & Becquemont L (2017) HLA-associated drug hypersensitivity and the prediction of adverse drug reactions. Pharmacogenomics 18(15):1441-1457. 55. 712 50. Schutte RJ, Sun Y, Li D, Zhang F, & Ostrov DA (2018) Human Leukocyte Antigen Associations in Drug Hypersensitivity Reactions. Clin Lab Med 38(4):669-677. 57. 714 51. Hung SI, et al. (2005) HLA-B*5801 allele as a genetic marker for severe cutaneous adverse reactions caused by allopurinol. Proc Natl Acad Sci U S A 102(11):4134-4139. 	38	697		Res Toxicol 26(5):759-766.
 ⁴⁰ 699 <i>Immunol</i> 42(7):1706-1716. ⁴¹ 700 15. Monshi MM, <i>et al.</i> (2013) Human Leukocyte Antigen (HLA)-B(star)57:01-Restricted ⁴³ 701 Activation of Drug-Specific T Cells Provides the Immunological Basis for Flucloxacillin- ⁴⁴ 102 Induced Liver Injury. <i>Hepatology</i> 57(2):727-739. ⁴⁵ 703 16. Wu Y, Farrell J, Pirmohamed M, Park BK, & Naisbitt DJ (2007) Generation and ⁴⁶ 704 characterization of antigen-specific CD4(+), CD8(+), and CD4(+)CD8(+) T-cell clones from ⁴⁷ 705 patients with carbamazepine hypersensitivity. <i>J Allergy Clin Immunol</i>. ⁴⁸ 706 17. Zhao Q, <i>et al.</i> (2019) Dapsone- and nitroso dapsone-specific activation of T-cells from ⁴⁹ 707 hypersensitive patients expressing the risk allele HLA-B*13:01. <i>Allergy</i>. ⁵⁰ 708 18. Illing PT, Purcell AW, & McCluskey J (2017) The role of HLA genes in pharmacogenomics: ⁵¹ unravelling HLA associated adverse drug reactions. <i>Immunogenetics</i> 69(8-9):617-630. ⁵³ 710 19. Negrini S & Becquemont L (2017) HLA-associated drug hypersensitivity and the prediction of ⁵⁴ 711 adverse drug reactions. <i>Pharmacogenomics</i> 18(15):1441-1457. ⁵⁵ 712 20. Schutte RJ, Sun Y, Li D, Zhang F, & Ostrov DA (2018) Human Leukocyte Antigen Associations ⁵⁶ 713 in Drug Hypersensitivity Reactions. <i>Clin Lab Med</i> 38(4):669-677. ⁵⁷ 714 21. Hung SI, <i>et al.</i> (2005) HLA-B*5801 allele as a genetic marker for severe cutaneous adverse ⁵⁹ reactions caused by allopurinol. <i>Proc Natl Acad Sci U S A</i> 102(11):4134-4139. 	39	698	14.	Adam J, et al. (2012) Avidity determines T-cell reactivity in abacavir hypersensitivity. Eur J
 700 15. Monshi MM, <i>et al.</i> (2013) Human Leukocyte Antigen (HLA)-B(star)57:01-Restricted 701 701 702 703 703 703 704 705 705 705 706 707 707 708 708 708 709 708 709 709 709 701 700 701 702 703 703 704 705 705 705 706 707 708 708 708 709 700 709 709 709 709 709 709 709 700 709 709 709 709 700 709 700 710 711 710 714 710 710 710 710<td>40</td><td>699</td><td></td><td>Immunol 42(7):1706-1716.</td>	40	699		Immunol 42(7):1706-1716.
701Activation of Drug-Specific T Cells Provides the Immunological Basis for Flucloxacillin-43702Induced Liver Injury. Hepatology 57(2):727-739.4570316.Wu Y, Farrell J, Pirmohamed M, Park BK, & Naisbitt DJ (2007) Generation and46704characterization of antigen-specific CD4(+), CD8(+), and CD4(+)CD8(+) T-cell clones from47705patients with carbamazepine hypersensitivity. J Allergy Clin Immunol.4870617.Zhao Q, et al. (2019) Dapsone- and nitroso dapsone-specific activation of T-cells from49707hypersensitive patients expressing the risk allele HLA-B*13:01. Allergy.5070818.Illing PT, Purcell AW, & McCluskey J (2017) The role of HLA genes in pharmacogenomics:51709unravelling HLA associated adverse drug reactions. Immunogenetics 69(8-9):617-630.5371019.Negrini S & Becquemont L (2017) HLA-associated drug hypersensitivity and the prediction of54711adverse drug reactions. Pharmacogenomics 18(15):1441-1457.5571220.Schutte RJ, Sun Y, Li D, Zhang F, & Ostrov DA (2018) Human Leukocyte Antigen Associations56713in Drug Hypersensitivity Reactions. Clin Lab Med 38(4):669-677.5771421.Hung SI, et al. (2005) HLA-B*5801 allele as a genetic marker for severe cutaneous adverse587157155971571459715714507155171552714537155471455715 </td <td>41 42</td> <td>700</td> <td>15.</td> <td>Monshi MM, et al. (2013) Human Leukocyte Antigen (HLA)-B(star)57:01-Restricted</td>	41 42	700	15.	Monshi MM, et al. (2013) Human Leukocyte Antigen (HLA)-B(star)57:01-Restricted
702Induced Liver Injury. Hepatology 57(2):727-739.4570316.Wu Y, Farrell J, Pirmohamed M, Park BK, & Naisbitt DJ (2007) Generation and46704characterization of antigen-specific CD4(+), CD8(+), and CD4(+)CD8(+) T-cell clones from47705patients with carbamazepine hypersensitivity. J Allergy Clin Immunol.4870617.Zhao Q, et al. (2019) Dapsone- and nitroso dapsone-specific activation of T-cells from49707hypersensitive patients expressing the risk allele HLA-B*13:01. Allergy.5070818.Illing PT, Purcell AW, & McCluskey J (2017) The role of HLA genes in pharmacogenomics:51709unravelling HLA associated adverse drug reactions. Immunogenetics 69(8-9):617-630.5371019.Negrini S & Becquemont L (2017) HLA-associated drug hypersensitivity and the prediction of54711adverse drug reactions. Pharmacogenomics 18(15):1441-1457.5571220.Schutte RJ, Sun Y, Li D, Zhang F, & Ostrov DA (2018) Human Leukocyte Antigen Associations56713in Drug Hypersensitivity Reactions. Clin Lab Med 38(4):669-677.5771421.Hung SI, et al. (2005) HLA-B*5801 allele as a genetic marker for severe cutaneous adverse58715715reactions caused by allopurinol. Proc Natl Acad Sci U S A 102(11):4134-4139.	43	701		Activation of Drug-Specific T Cells Provides the Immunological Basis for Flucloxacillin-
4570316.Wu Y, Farrell J, Pirmohamed M, Park BK, & Naisbitt DJ (2007) Generation and46704characterization of antigen-specific CD4(+), CD8(+), and CD4(+)CD8(+) T-cell clones from47705patients with carbamazepine hypersensitivity. J Allergy Clin Immunol.4870617.Zhao Q, et al. (2019) Dapsone- and nitroso dapsone-specific activation of T-cells from49707hypersensitive patients expressing the risk allele HLA-B*13:01. Allergy.5070818.Illing PT, Purcell AW, & McCluskey J (2017) The role of HLA genes in pharmacogenomics:51709unravelling HLA associated adverse drug reactions. Immunogenetics 69(8-9):617-630.5371019.Negrini S & Becquemont L (2017) HLA-associated drug hypersensitivity and the prediction of54711adverse drug reactions. Pharmacogenomics 18(15):1441-1457.5571220.Schutte RJ, Sun Y, Li D, Zhang F, & Ostrov DA (2018) Human Leukocyte Antigen Associations56713in Drug Hypersensitivity Reactions. Clin Lab Med 38(4):669-677.5771421.Hung SI, et al. (2005) HLA-B*5801 allele as a genetic marker for severe cutaneous adverse58715reactions caused by allopurinol. Proc Natl Acad Sci U S A 102(11):4134-4139.	44	702		Induced Liver Injury. <i>Hepatology</i> 57(2):727-739.
46704characterization of antigen-specific CD4(+), CD8(+), and CD4(+)CD8(+) T-cell clones from47705patients with carbamazepine hypersensitivity. J Allergy Clin Immunol.4870617.Zhao Q, et al. (2019) Dapsone- and nitroso dapsone-specific activation of T-cells from49707hypersensitive patients expressing the risk allele HLA-B*13:01. Allergy.5070818.Illing PT, Purcell AW, & McCluskey J (2017) The role of HLA genes in pharmacogenomics:51709unravelling HLA associated adverse drug reactions. Immunogenetics 69(8-9):617-630.5371019.Negrini S & Becquemont L (2017) HLA-associated drug hypersensitivity and the prediction of54711adverse drug reactions. Pharmacogenomics 18(15):1441-1457.5571220.Schutte RJ, Sun Y, Li D, Zhang F, & Ostrov DA (2018) Human Leukocyte Antigen Associations56713in Drug Hypersensitivity Reactions. Clin Lab Med 38(4):669-677.5771421.Hung SI, et al. (2005) HLA-B*5801 allele as a genetic marker for severe cutaneous adverse58715reactions caused by allopurinol. Proc Natl Acad Sci U S A 102(11):4134-4139.	45	703	16.	Wu Y, Farrell J, Pirmohamed M, Park BK, & Naisbitt DJ (2007) Generation and
47705patients with carbamazepine hypersensitivity. J Allergy Clin Immunol.4870617.Zhao Q, et al. (2019) Dapsone- and nitroso dapsone-specific activation of T-cells from49707hypersensitive patients expressing the risk allele HLA-B*13:01. Allergy.5070818.Illing PT, Purcell AW, & McCluskey J (2017) The role of HLA genes in pharmacogenomics:51709unravelling HLA associated adverse drug reactions. Immunogenetics 69(8-9):617-630.5371019.Negrini S & Becquemont L (2017) HLA-associated drug hypersensitivity and the prediction of54711adverse drug reactions. Pharmacogenomics 18(15):1441-1457.5571220.Schutte RJ, Sun Y, Li D, Zhang F, & Ostrov DA (2018) Human Leukocyte Antigen Associations56713in Drug Hypersensitivity Reactions. Clin Lab Med 38(4):669-677.5771421.Hung SI, et al. (2005) HLA-B*5801 allele as a genetic marker for severe cutaneous adverse58715reactions caused by allopurinol. Proc Natl Acad Sci U S A 102(11):4134-4139.	46	704		characterization of antigen-specific CD4(+), CD8(+), and CD4(+)CD8(+) T-cell clones from
 706 707 708 708 708 708 709 709 709 709 709 700 700 700 700 700 700 701 701 702 703 703 704 705 705 706 706 707 708 708 709 709 700 700 700 700 700 701 701 702 703 703 704 705 705 705 706 706 707 708 709 709 700 710 710	47	705		patients with carbamazepine hypersensitivity. J Allergy Clin Immunol.
49707hypersensitive patients expressing the risk allele HLA-B*13:01. Allergy.5070818.Illing PT, Purcell AW, & McCluskey J (2017) The role of HLA genes in pharmacogenomics:51709unravelling HLA associated adverse drug reactions. Immunogenetics 69(8-9):617-630.5371019.Negrini S & Becquemont L (2017) HLA-associated drug hypersensitivity and the prediction of54711adverse drug reactions. Pharmacogenomics 18(15):1441-1457.5571220.Schutte RJ, Sun Y, Li D, Zhang F, & Ostrov DA (2018) Human Leukocyte Antigen Associations56713in Drug Hypersensitivity Reactions. Clin Lab Med 38(4):669-677.5771421.Hung SI, et al. (2005) HLA-B*5801 allele as a genetic marker for severe cutaneous adverse58715reactions caused by allopurinol. Proc Natl Acad Sci U S A 102(11):4134-4139.	48	706	17.	Zhao Q, et al. (2019) Dapsone- and nitroso dapsone-specific activation of T-cells from
5070818.Illing PT, Purcell AW, & McCluskey J (2017) The role of HLA genes in pharmacogenomics: unravelling HLA associated adverse drug reactions. Immunogenetics 69(8-9):617-630.5371019.Negrini S & Becquemont L (2017) HLA-associated drug hypersensitivity and the prediction of adverse drug reactions. Pharmacogenomics 18(15):1441-1457.5571220.Schutte RJ, Sun Y, Li D, Zhang F, & Ostrov DA (2018) Human Leukocyte Antigen Associations in Drug Hypersensitivity Reactions. Clin Lab Med 38(4):669-677.56713in Drug Hypersensitivity Reactions. Clin Lab Med 38(4):669-677.5771421.Hung SI, et al. (2005) HLA-B*5801 allele as a genetic marker for severe cutaneous adverse reactions caused by allopurinol. Proc Natl Acad Sci U S A 102(11):4134-4139.	49 50	707		hypersensitive patients expressing the risk allele HLA-B*13:01. Allergy.
51709unravelling HLA associated adverse drug reactions. Immunogenetics 69(8-9):617-630.5371019.Negrini S & Becquemont L (2017) HLA-associated drug hypersensitivity and the prediction of54711adverse drug reactions. Pharmacogenomics 18(15):1441-1457.5571220.Schutte RJ, Sun Y, Li D, Zhang F, & Ostrov DA (2018) Human Leukocyte Antigen Associations56713in Drug Hypersensitivity Reactions. Clin Lab Med 38(4):669-677.5771421.Hung SI, et al. (2005) HLA-B*5801 allele as a genetic marker for severe cutaneous adverse58715reactions caused by allopurinol. Proc Natl Acad Sci U S A 102(11):4134-4139.	50 51	708	18.	Illing PT, Purcell AW, & McCluskey J (2017) The role of HLA genes in pharmacogenomics:
71019.Negrini S & Becquemont L (2017) HLA-associated drug hypersensitivity and the prediction of53710adverse drug reactions. Pharmacogenomics 18(15):1441-1457.5571220.Schutte RJ, Sun Y, Li D, Zhang F, & Ostrov DA (2018) Human Leukocyte Antigen Associations56713in Drug Hypersensitivity Reactions. Clin Lab Med 38(4):669-677.5771421.Hung SI, et al. (2005) HLA-B*5801 allele as a genetic marker for severe cutaneous adverse58715reactions caused by allopurinol. Proc Natl Acad Sci U S A 102(11):4134-4139.	52	709		unravelling HLA associated adverse drug reactions. Immunogenetics 69(8-9):617-630.
54711adverse drug reactions. Pharmacogenomics 18(15):1441-1457.5571220.Schutte RJ, Sun Y, Li D, Zhang F, & Ostrov DA (2018) Human Leukocyte Antigen Associations56713in Drug Hypersensitivity Reactions. Clin Lab Med 38(4):669-677.5771421.Hung SI, et al. (2005) HLA-B*5801 allele as a genetic marker for severe cutaneous adverse58715reactions caused by allopurinol. Proc Natl Acad Sci U S A 102(11):4134-4139.	53	710	19.	Negrini S & Becquemont L (2017) HLA-associated drug hypersensitivity and the prediction of
 55 712 20. Schutte RJ, Sun Y, Li D, Zhang F, & Ostrov DA (2018) Human Leukocyte Antigen Associations 56 713 in Drug Hypersensitivity Reactions. <i>Clin Lab Med</i> 38(4):669-677. 57 714 21. Hung SI, <i>et al.</i> (2005) HLA-B*5801 allele as a genetic marker for severe cutaneous adverse 58 715 reactions caused by allopurinol. <i>Proc Natl Acad Sci U S A</i> 102(11):4134-4139. 	54	711		adverse drug reactions. Pharmacogenomics 18(15):1441-1457.
56713in Drug Hypersensitivity Reactions. Clin Lab Med 38(4):669-677.5771421.58715Hung SI, et al. (2005) HLA-B*5801 allele as a genetic marker for severe cutaneous adverse59reactions caused by allopurinol. Proc Natl Acad Sci U S A 102(11):4134-4139.	55	712	20.	Schutte RJ, Sun Y, Li D, Zhang F, & Ostrov DA (2018) Human Leukocyte Antigen Associations
 Find Structure Find Structure Hung Structure<td>56</td><td>713</td><td></td><td>in Drug Hypersensitivity Reactions. <i>Clin Lab Med</i> 38(4):669-677.</td>	56	713		in Drug Hypersensitivity Reactions. <i>Clin Lab Med</i> 38(4):669-677.
 715 reactions caused by allopurinol. <i>Proc Natl Acad Sci U S A</i> 102(11):4134-4139. 59 	57	714	21.	Hung SI, et al. (2005) HLA-B*5801 allele as a genetic marker for severe cutaneous adverse
59	58	715		reactions caused by allopurinol. Proc Natl Acad Sci U S A 102(11):4134-4139.
60	59 60			

 Roychowdhury S, Cram AE, Aly A, & Svensson CK (2007) Detection of haptenated proteins in organotypic human skin explant cultures exposed to dapsone. <i>Drug Metab Dispos</i> 35(9):1463-1465. Rijal JP, Pompa T, Giri S, & Bhatt VR (2014) A case of toxic epidermal necrolysis caused by trimethoprim-sulfamethoxatole. <i>BMJ Case Rep</i> 2014. Garcia-Doval J, LeCleach L, Borquet H, Otero XL, & Roujeau JC (2000) Toxic epidermal necrolysis and Stevens-Johnson syndrome: does early withdrawal of causative drugs decrease the risk of death? <i>Arch Dermotol</i> 136(3):232-372. Hunziker T, Kunzi UP, Braunschweig S, Zehnder D, & Hoigne H (1997) Comprehensive hospital drug monitoring (CHDM): adverse skin reactions, a 20-year survey. <i>Allergy</i> 52(4):388-393. Roujeau JC (2005) Clinical heterogeneity of drug hypersensitivity. <i>Toxicology</i> 209(2):123-129. Ye YM, <i>et al.</i> (2017) Drug-specific CD4(1) - rcell immune responses are responsible for antituberculosis drug-induced maculopapular exanthema and drug reaction with eosinophilia and systemic symptoms syndrome. <i>Br J Dermotol</i> 176(2):378-386. Feldmeyer L, Heidemeyer K, & Yawalkar N (2016) Acute Generalized Exanthematous Pustulosis: Pathogenesis, Genetic Background, Clinical Variants and Therapy. <i>Int J Mol Sci</i> 17(8). Choquet-Kastylevsky G, <i>et al.</i> (1998) Increased levels of interleukin 5 are associated with the generation of eosinophilia in drug-induced hypersensitivity syndrome. <i>Br J Dermatol</i> 136(3):1026-1032. Choquet-Kastylevsky G, <i>et al.</i> (1997) Human herpesvirus 6 infection associated with anticorensitivity syndrome and reactive haemophagocytic syndrome. <i>Br J Dermatol</i> 136(4):1026-1032. Bessamps V, <i>et al.</i> (1997) Human herpesvirus 6 infection associated with anticorensitivity syndrome and reactive haemophagocytic syndrome. <i>Br J Dermatol</i> 137(4):605-608. Suck KT & Kim DJ (2012) Drug-induced liver injury: present and future. <i>Clinical and mole</i>	1			
 Tide 22. Roychowdhury S, Cram AE, Aly A, & Svensson CK (2007) Detection of haptenated proteins in organotypic human skin explant cultures exposed to dapsone. <i>Drug Metab Dispos</i> 35(9):1463-1465. Rijal JP, Pompa T, Giri S, & Bhatt VR (2014) A case of toxic epidermal necrolysis caused by trimethoprim-sulfamethoxazole. <i>BMJ Case Rep</i> 2014. Garcia-Doval I, LeCleach L, Bocquet H, Otero XL, & Roujeau I (2000) Toxic epidermal necrolysis and Stevens-Johnson syndrome: does early withdrawal of causative drugs docrease the risk of death? <i>Arch Dermatol</i> 136(3):323-327. Hunziker T, Kunzi UP, Braunschweig S, Zehnder D, & Holgne R (1997) Comprehensive hospital drug monitoring (CHDM): adverse skin reactions, a 20-year survey. <i>Allergy</i> 52(4):388-393. Roujeau IC (2005) Clinical heterogeneity of drug hypersensitivity. <i>Toxicology</i> 209(2):123-129. Ke YM, <i>et al.</i> (2017) Drug-specific CD4(+) T-cell immune responses are responsible for antitubreculosis drug-induced maculopapular exanthema and drug reaction with eosinophilia and systemic symptoms syndrome. <i>Br J Dermatol</i> 176(2):378-386. Feldmeyer L, Heidemeyer K, & Yawalkar N (2016) Acute Genalized Exanthematous Pustulosis: Pathogenesis, Genetic Background, Clinical Variants and Herapy. <i>Int J Mol Sci</i> 17(8). Spriet S & Banks TA (2015) Drug reaction with eosinophilia and systemic symptoms syndrome. <i>Br J Dermatol</i> 176(2):378-386. Gara U Lercht J & Naisbitt DJ (2013) diosyncratic adverse drug reactions: current concepts. <i>Pharmacol Rev</i> 65(2):779-808. Choquet-Kastylevsky G, <i>et al.</i> (1998) Increased levels of interleukin 5 are associated with the generation of esoinophilia in drug-induced hypersensitivity syndrome. <i>Br J Dermatol</i> 139(6):1026-1032. Suzuki Y, Inagi R, Aono T, Yamanishi K, & Shiohara T (1998) Human herpesvirus 6 infection as a risk factor for the development of severe drug-induced liver injury. <i>Any Clinic Prepspectives on sts</i>	2			
 717 organotypic human skin explant cultures exposed to dapsone. <i>Drug Metab Dispos</i> 35(9):1463-1465. 719 23. Rijal JP, Pompa T, Giri S, & Bhatt VR (2014) A case of toxic epidermal necrolysis caused by trimethoprim sufamethoxazole. <i>BMJ Case Rep</i> 2014. 721 24. Garcia-Doval J, LeCicaeth, LeOquet H, Otero XL, & Roujeau JC (2000) Toxic epidermal necrolysis and Stevens-Johnson syndrome: does early withdrawal of causative drugs decrease the risk of death? <i>Arch Dermatol</i> 136(3):223-327. 724 25. Hunziker T, Kunzi UP, Braunschweig S, Zehnder D, & Holgne R (1997) Comprehensive thospital drug monitoring (CHDM): adverse skin reactions, a 20-year survey. <i>Allergy</i> 52(4):388-393. 727 726. Roujeau UC (2005) Clinical heterogeneity of drug hypersensitivity. <i>Toxicology</i> 209(2):123-129. 728 727 727 728 727 728 728 729 antituberculosis drug-induced maculopapular exanthema and drug reaction with antituberculosis drug-induced maculopapular exanthema and drug reaction with antituberculosis drug-induced maculopapular exanthema and drug reaction with eosinophilia and systemic symptoms syndrome. <i>Br J Dermatol</i> 176(2):378-386. 738 738 739 736 731 748 738 737 738 7397 738 7397 736 736 736 736 731 748 734 732 737 737 737 737 737 737 737 737 737	3 ⊿	716	22.	Roychowdhury S, Cram AE, Aly A, & Svensson CK (2007) Detection of haptenated proteins in
 718 35(9):1463-1465. 719 23. Riji JP, Pompa T, Girl S, & Bhatt VR (2014) A case of toxic epidermal necrolysis caused by trimethoprim-sulfamethoxarole. <i>BMJ Case Rep</i> 2014. 721 24. Garcia-Doval I, LeCleach L, Bocquet H, Otero XL, & Roujeau JC (2000) Toxic epidermal necrolysis and Stevens-Johnson syndrome: does early withdrawal of causative drugs decrease the risk of death? <i>Arch Dermatol</i> 135(3):323-327. 724 25. Hunziker T, Kunzi UP, Braunschweig S, Zehnder D, & Hoigne R (1997) Comprehensive hospital drug monitoring (CHDM): adverse skin reactions, a 20-year survey. <i>Allergy</i> 52(4):388-393. 727 26. Roujeau JC (2005) Clinical heterogeneity of drug hypersensitivity. <i>Toxicology</i> 209(2):123-129. 727 27 26. Roujeau JC (2005) Clinical heterogeneity of drug hypersensitivity. <i>Toxicology</i> 209(2):123-129. 727 28. ZY W YM, <i>et al.</i> (2017) Drug-specific CD4(+) T-cell immune responses are responsible for antituberculosis drug-induced maculopapular exanthema and drug reaction with eosinophilia and systemic symptoms syndrome. <i>Br J Dermatol</i> 176(2):378-386. 738 20. Spriet S & Banks TA (2015) Drug reaction with eosinophilia and systemic symptoms syndrome. <i>Allergy Asthma Proc</i> 36(6):501-505. 736 30. Uetrecht J & Naishitt DJ (2013) (liosyncratic adverse drug reactions: current concepts. <i>Pharmacol Rev</i> 65(2):779-808. 738 31. Choquet-Kastylevsky G, et al. (1998) Increased levels of interleukin 5 are associated with the generation of eosinophilia in drug-induced hypersensitivity syndrome. <i>Br J Dermatol</i> 137(4):605-608. 744 33. Suzuki Y, Inagi R, Anon T, Yamanishi K, & Shiohara T (1998) Human herpesvirus 6 infection associated with anticonvulsant hypersensitivity syndrome and reactive haemophagocytic syndrome. <i>Br J Dermatol</i> 137(4):605-608. 744 33. Suzuki Y, Inagi R, Anon T, Yamanishi K, & Shiohara T (1998) Human herpesvirus 6 infection as a risk factor for the development of	5	717		organotypic human skin explant cultures exposed to dapsone. Drug Metab Dispos
 P. 719 23. Rijal JP, Pompa T, Gir S, & Bhatt VR (2014) A case of toxic epidermal necrolysis caused by trimethoprim-suffamethoxazole. <i>BNU Case Rep</i> 2014. 24. Garcia-Doval I, LeCleach L, Bocquet H, Otero XL, & Roujeau JC (2000) Toxic epidermal necrolysis and Stevens-Johnson syndrome: does early withdrawal of causative drugs decrease the risk of death? <i>Arch Dermatol</i> 136(3):323-327. 27. 24. S. Hunziker T, Kunzi UP, Braunschweig S, Zehnder D, & Hoigne R (1997) Comprehensive hospital drug monitoring (CHDM): adverse skin reactions, a 20-year survey. <i>Allergy</i> 52(4):388-393. 27. 72. 26. Roujeau IC (2005) Clinical heterogeneity of drug hypersensitivity. <i>Toxicology</i> 209(2):123-129. 27. Ye YM, <i>et al.</i> (2017) Drug-specific CD4(+) T-cell immune responses are responsible for antituberculosis drug-induced maculopapular exanthema and drug reaction with eosinophilia and systemic symptomes syndrome. <i>Br J Dermatol</i> 176(2):378-386. 28. Feldmeyer L, Heidemeyer K, & Yawalkar N (2016) Acute Generalized Exanthematous Pustulosis: Pathogenesis, Genetic Background, Clinical Variants and Therapy. <i>Int J Mol Sci</i> 17(8). 29. Spriet S & Banks TA (2015) Drug reaction with eosinophilia and systemic symptoms syndrome. <i>AllergA Xetham Proc</i> 36(6):501-505. 30. Uetrecht J & Naisbitt DJ (2013) Idiosyncratic adverse drug reactions: current concepts. <i>Pharmacol</i> 704 65(2):779-808. 31. Choquet-Kastylevsky, <i>G. et al.</i> (1998) Increased levels of interleukin 5 are associated with the generation of eosinophilia Ind rug-induced hypersensitivity syndrome. <i>Br J Dermatol</i> 137(4):605-608. 34. Descamps V, <i>et al.</i> (1997) Human herpesvirus 6 infection associated with anticonvulsant hypersensitivity syndrome and reactive haemophagocytic syndrome. <i>Br J Dermatol</i> 137(4):605-608. 35. Gahr M, <i>et al.</i> (2016) Drug-induced liver injury. Nayo Clinic proceedings 89(1):95-106. 36. Gahr M, <i>et al.</i>	6	718		35(9):1463-1465.
8 720 trimethoprim-sulfamethoxarole. BMJ Cose Rep 2014. 9 721 24. Garcia colval, LeCleach, LeScquet H, Otero XL, & Roujeau JC (2000) Toxic epidermal necrolysis and Stevens-Johnson syndrome: does early withdrawal of causative drugs decrease the risk of death? Arch Dermatol 136(3):323-327. 17 724 25. Hunziker T, Kunzi JP, Braunschweig S, Zehnder D, & Hoigne R (1997) Comprehensive hospital drug monitoring (CHDM): adverse skin reactions, a 20-year survey. Allergy 52(4):388-393. 17 727 26. Roujeau JC (2005) Clinical heterogeneity of drug hypersensitivity. Toxicology 209(2):123-129. 17 728 27. Ye YM, et al. (2017) Drug-specific CD4(+) T-cell immune responses are responsible for antituberculosis drug-induced maculopapular exanthema and drug reaction with eosinophilia and systemic symptoms syndrome. Br J Dermatol 176(2):378-386. 17 28. Feldmeyer L, Heidemeyer K, & Yawalkar N (2016) Acute Generalized Exanthematous Pustulosis: Pathogenesis, Genetic Background, Clinical Variants and Therapy. Int J Mol Sci 17(8). 17 733 17(8). Spriet S & Banks TA (2015) Drug reaction with eosinophilia and systemic symptoms syndrome. Ar J Dermatol 136(6):501-505. 17 736 30. Uetrecht J & Naishitt D J (2013) Idiosyncratic adverse drug reactions: current concepts. Phomacol Rev 56(2):79-808. 17 737 31. Choquet-Kastylevsky G, et al. (1998) Increased levels of interleukin 5 are ass	7	719	23.	Rijal JP, Pompa T, Giri S, & Bhatt VR (2014) A case of toxic epidermal necrolysis caused by
9 721 24. Garcia-Doval, LeCleach L, Bocquet H, Otero XL, & Roujeau JC (2000) Toxic epidermal necrolysis and Stevens-Johnson syndrome: does early withdrawal of causative drugs decrease the risk of death? <i>Arch Dermatol</i> 136(3):323-327. 12 724 25. Hunziker T, Kunzi UP, Braunschweig S, Zehnder D, & Hoigne R (1997) Comprehensive hospital drug monitoring (CHDM): adverse skin reactions, a 20-year survey. <i>Allergy</i> 52(4):388-393. 16 727 26. Roujeau IC (2005) Clinical heterogeneity of drug hypersensitivity. <i>Toxicology</i> 209(2):123-129. 17 728 274. 47. 16. 17 729 antituberculosis drug-induced maculopapular exanthema and drug reaction with eosinophilia and systemic symptomes syndrome. <i>Br J Dermotol</i> 176(2):378-386. 17 728 Feldmeyer L, Heidemeyer K, & Yawalkar N (2016) Acute Generalized Exanthematous Pustulosis: Pathogenesis, Genetic Background, Clinical Variants and Therapy. <i>Int J Mol Sci</i> 17(78). 17 28. Spriet S & Banks TA (2015) Drug reaction with eosinophilia and systemic symptoms syndrome. <i>Allergy Asthma Proc</i> 36(6):501-505. 17 29. Spriet S & Banks TA (2015) Drug reaction with eosinophilia and systemic symptoms syndrome. <i>Allergy Syndrome and reactive haemophagocytic syndrome. Br J Dermatol</i> 139(6):1026-1032. 17 13 20. Descramps V, et al. (1997) Human herpesvirus 6 infection associated with anticonvulsant hypersensitivity syndrome and reactive haemophagocytic synd	8	720		trimethoprim-sulfamethoxazole. BMJ Case Rep 2014.
10 722 necrolysis and Stevens-Johnson syndrome: does early withdrawal of causative drugs 17 724 25. Hunziker T, Kunzi UP, Braunschweig S, Zehnder D, & Hoigne R (1997) Comprehensive 17 725 S2(4):388-393. 727 17 727 26. Roujeau JC (2005) Clinical heterogeneity of drug hypersensitivity. <i>Toxicology</i> 209(2):123-129. 17 728 27. Ye YM, <i>et al.</i> (2017) Drug-specific CD4(+) T-cell immune responses are responsible for 17 730 eosinophilia and systemic symptoms syndrome. <i>Br J Dermatol</i> 176(2):378-386. 17 728 27. Ye YM, <i>et al.</i> (2015) Drug reaction with eosinophilia and systemic symptoms syndrome. <i>Br J Dermatol</i> 176(2):378-386. 17 728 27. 5priet S & Banks TA (2015) Drug reaction with eosinophilia and systemic symptoms syndrome. <i>Br J Dermatol</i> 176(2):378-386. 17 731 17(8). Uetrecht J & Naisbit DJ (2013) Jloigoyncratic adverse drug reactions: current concepts. 733 31. Choquet-Kastylevsky G, et al. (1998) Increased levels of interleukin 5 are associated with the generation of eosinophilia in drug-induced hypersensitivity syndrome. <i>Br J Dermatol</i> 139(6):1026-1032. 744 32. Descamps V, et al. (1997) Human herpesvirus 6 infection associated with anticonvulsant hypersensitivity syndrome and reactive haemophagocytic syndrome. <i>Br J Derm</i>	9	721	24.	Garcia-Doval I, LeCleach L, Bocquet H, Otero XL, & Roujeau JC (2000) Toxic epidermal
11 723 decrease the risk of death? <i>Arch Dermatol</i> 136(3):323-327. 12 724 Chanker T, Kunzi UD, Branschweig S, Zehnder D, & Hoigne R (1997) Comprehensive hospital drug monitoring (CHDM): adverse skin reactions, a 20-year survey. <i>Allergy</i> 52(4):388-393. 15 726 Soujeau JC (2005) Clinical heterogeneity of drug hypersensitivity. <i>Toxicology</i> 209(2):123-129. 16 727 26. Roujeau JC (2005) Clinical heterogeneity of drug hypersensitivity. <i>Toxicology</i> 209(2):123-129. 17 728 27. Ye YM, <i>et al.</i> (2017) Drug-specific CD4(+) T-cell immune responses are responsible for antituberculosis drug-induced maculopapular exanthema and drug reaction with eosinophilia and systemic symptoms syndrome. <i>Br J Dermatol</i> 176(2):378-386. 1731 28. Feldmeyer L, Heidemeyer K, & Yawalkar N (2016) Acute Generalized Exanthematous Pustuosis: Pathogenesis, Genetic Background, Clinical Variants and Therapy. <i>Int J Nol Sci</i> 17(8). 1732 30. Uetrecht J & Naisbitt DI (2013) Idiosyncratic adverse drug reactions: current concepts. <i>Pharmacol Rev</i> 65(2):779-808. 1733 31. Choquer-Kastylewsky G, <i>et al.</i> (1997) Human herpesvirus 6 infection associated with anticonvulsant hypersensitivity syndrome and reactive haemophagocytic syndrome. <i>Br J Dermatol</i> 139(6):1026-1032. 1741 32. Descamps V, <i>et al.</i> (1997) Human herpesvirus 6 infection associated with anticonvulsant hypersensitivity syndrome and reactive haemophagocytic syndrome. <i>Br J Dermatol</i> 137(4):605-608. 174 32. Suzuki Y, Inagi R, Aono T, Yamanishi K, &	10	722		necrolysis and Stevens-Johnson syndrome: does early withdrawal of causative drugs
 Yz4 25. Hunziker T, Kunzi UP, Braunschweig S, Zehnder D, & Hoigne R (1997) Comprehensive hospital drug monitoring (CHDM): adverse skin reactions, a 20-year survey. <i>Allergy</i> 52(4):388-393. Yz7 26. Roujeau JC (2005) Clinical heterogeneity of drug hypersensitivity. <i>Taxicology</i> 209(2):123-129. Ye YM, et al. (2017) Drug-specific CD4(+) T-cell immune responses are responsible for antituberculosis drug-induced maculopapular exanthema and drug reaction with eosinophilia and systemic symptoms syndrome. <i>Br J Dermatol</i> 176(2):378-386. Ya1 28. Feldmeyer L, Heidemeyer K, & Yawalkar N (2016) Acute Generalized Exanthematous Pustulosis: Pathogenesis, Genetic Background, Clinical Variants and Therapy. <i>Int J Mol Sci</i> 17(8). Ya2 29. Spriet S & Banks TA (2015) Drug reaction with eosinophilia and systemic symptoms syndrome. <i>Allergy Asthmo Proc</i> 36(6):501-505. Ya3 30. Uetrecht J & Nalsbitt DJ (2013) Idiosyncratic adverse drug reactions: current concepts. <i>Pharmacol Rev</i> 65(2):779-808. Choquet-Kastylevsky G, <i>et al.</i> (1998) Increased levels of interleukin 5 are associated with the generation of eosinophilia in drug-induced hypersensitivity syndrome. <i>Br J Dermatol</i> 139(6):1026-1032. Ya4 33. Suzuki Y, Inagi R, Anon T, Yamanishi K, & Shiohara T (1998) Human herpesvirus 6 infection as a risk factor for the development of severe drug-induced hypersensitivity syndrome. <i>Arch Dermatol</i> 134(4):1108-1112. Ya7 34. Lerch M, Mainetti C, Terziroli Beretta-Piccoli B, & Harr T (2018) Current Perspectives on Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis. <i>Clin Rev Allergy Immunol</i> 54(1):147-176. Gahr M, <i>et al.</i> (2016) Drug-induced liver injury. Associated with Antidepressive Psychopharmacotherapy: An Explorative Assecsment Based on Quantitative Signal Detection Using Different MedDRA Terms. <i>Journal of clinical pharmacology</i> 56(6):769-778. Su K KT & Kim DJ (2012) Drug-induced liver injury. Tr	11	723		decrease the risk of death? Arch Dermatol 136(3):323-327.
 hospital drug monitoring (CHDM): adverse skin reactions, a 20-year survey. Allergy 52(4):388-393. 727 26. Roujeau JC (2005) Clinical heterogeneity of drug hypersensitivity. <i>Toxicology</i> 209(2):123-129. 728 27. Ye YM, <i>et al.</i> (2017) Drug-specific CD4(+) T-cell immune responses are responsible for antituberculosis drug-induced maculopapular exanthema and drug reaction with rotion and true responsible for antituberculosis drug-induced maculopapular exanthema and drug reaction with rotion philia and systemic symptoms syndrome. <i>Br J Dermatol</i> 176(2):378-386. 731 28. Feldmeyer L, Heidemeyer K, & Yawalkar N (2016) Acute Generalized Exanthematous Pustulosis: Pathogenesis, Genetic Background, Clinical Variants and Therapy. <i>Int J Mol Sci</i> 17(8). 734 29. Spriet S & Banks TA (2015) Drug reaction with eosinophilia and systemic symptoms syndrome. <i>Allergy Asthma Proc</i> 36(6):501-505. 736 30. Uetrecht J & Naisbitt DJ (2013) Idiosyncratic adverse drug reactions: current concepts. <i>Pharmacol Rev</i> 65(2):779-808. 737 31. Choquet-Kastylevsky G, <i>et al.</i> (1998) Increased levels of interleukin 5 are associated with the generation of eosinophilia in drug-induced hypersensitivity syndrome. <i>Br J Dermatol</i> 139(6):1026-1032. 741 32. Descamps V, <i>et al.</i> (1997) Human herpesvirus 6 infection associated with anticonvulsant hypersensitivity syndrome and reactive haemophagocytic syndrome. <i>Br J Dermatol</i> 137(4):605-608. 743 33. Suzuki Y, Inagi R, Aono T, Yamanishi K, & Shiohara T (1998) Human herpesvirus 6 infection as a risk factor for the development of severe drug-induced hypersensitivity syndrome. <i>Arch Dermatol</i> 134(9):1108-1112. 743 4. Lerch M, Mainetti C, Terziroli Beretta-Piccoli B, & Harr T (2018). Current Perspectives on Stevens-Johnson Syndrome and Toxic Epidermal Necrolysi	12	724	25.	Hunziker T, Kunzi UP, Braunschweig S, Zehnder D, & Hoigne R (1997) Comprehensive
15 726 52(4):388-393. 16 727 26. Roolgeau JC (2005) Clinical heterogeneity of drug hypersensitivity. <i>Taxicology</i> 209(2):123-129. 17 728 27. Ye YM, et al. (2017) Drug-specific CD4(+) T-cell immune responses are responsible for antituberculosis drug-induced maculopapular exanthema and drug reaction with eosinophilia and systemic symptoms syndrome. <i>Br J Dermatol</i> 176(2):378-386. 17 731 28. Feldmeyer L, Heidemeyer K, & Yawalkar N (2016) Acute Generalized Exanthematous Pustulosis: Pathogenesis, Genetic Background, Clinical Variants and Therapy. <i>Int J Mol Sci</i> 17(8). 17 32 Spriet S & Banks TA (2015) Drug reaction with eosinophilia and systemic symptoms syndrome. <i>Allergy Asthma Proc</i> 36(6):501-505. 17 30. Uetrecht J & Naisbitt DJ (2013) dilosyncratic adverse drug reactions: current concepts. <i>Pharmacol Rev</i> 65(2):779-808. 17 741 32. Descamps V, <i>et al.</i> (1998) Hioreased levels of interleukin 5 are associated with the generation of eosinophilia in drug-induced hypersensitivity syndrome. <i>Br J Dermatol</i> 139(6):1026-1032. 17 741 32. Descamps V, <i>et al.</i> (1997) Human herpesvirus 6 infection associated with anticonvulsant hypersensitivity syndrome. An or Aramanishi K, & Shiohara T (1998) Human herpesvirus 6 infection as a risk factor for the development of severe drug-induced hypersensitivity syndrome. <i>Arch Dermatol</i> 134(9):108-1112. 18 43. Suzuki Y, Inagi R, Aono T, Yamanishi K, &	14	725		hospital drug monitoring (CHDM): adverse skin reactions, a 20-year survey. Allergy
16 727 26. Rougeau JC (2005) Clinical heterogeneity of drug hypersensitivity. <i>Troxicology</i> 209(2):123-129. 17 728 27. Ye W, <i>net al.</i> (2017) Drug-specific C04(+) T-cell immune responses are responsible for antituberculosis drug-induced maculopapular exanthema and drug reaction with eosinophilia and systemic symptoms syndrome. <i>Br J Dermatol</i> 176(2):378-386. 18 Feldmeyer L, Heidmeyer K, & Yawalkar N (2016) Acute Generalized Exanthematous Pustulosis: Pathogenesis, Genetic Background, Clinical Variants and Therapy. <i>Int J Mol Sci</i> 17(8). 17 28 Spriet S & Banks TA (2015) Drug reaction with eosinophilia and systemic symptoms syndrome. <i>Allergy Asthma Proc</i> 36(6):501-505. 17 30. Uetrecht J & Naisbitt DJ (2013) Idiosyncratic adverse drug reactions: current concepts. <i>Pharmacol Rev</i> 65(2):779-808. 18 31. Choquet-Kastylevsky G, <i>et al.</i> (1998) Increased levels of interleukin 5 are associated with the generation of eosinophilia in drug-induced hypersensitivity syndrome. <i>Br J Dermatol</i> 139(6):1026-1032. 17 41 32. Descamps V, <i>et al.</i> (1997) Human herpesvirus 6 infection associated with anticonvulsant hypersensitivity syndrome and reactive haemophagocytic syndrome. <i>Br J Dermatol</i> 137(4):605-608. 18 744 33. Suzuki Y, Inagi R, Aono T, Yamanishi K, & Shiohara T (1998) Human herpesvirus 6 infection as a risk factor for the development of severe drug-induced hypersensitivity syndrome. <i>Arch Dermatol</i> 134(9):1108-1112. 18 743	15	726		52(4):388-393.
17 728 27. Ye YM, et al. (2017) Drug-specific CD4(+) T-cell immune responses are responsible for 18 729 antituberculois drug-induced maculopapular exanthema and drug reaction with 19 730 eosinophilia and systemic symptoms syndrome. Br J Dermatol 176(2):378-386. 1731 28. Feldmeyer I, Heidemeyer K, & Yawalkar N (2016) Acute Generalized Exanthematous 1732 Pustulosis: Pathogenesis, Genetic Background, Clinical Variants and Therapy. Int J Mol Sci 17(8). 1732 29. Spriet S & Banks TA (2015) Drug reaction with eosinophilia and systemic symptoms syndrome. Allergy Asthmo Proc 36(6):501-505. 1736 30. Uetrecht J & Naisbitt DJ (2013) Idiosyncratic adverse drug reactions: current concepts. Pharmacol Rev 65(2):779-808. 1749 29. Decreamps V, et al. (1997) Human herpesvirus 6 infection associated with anticonvulsant hypersensitivity syndrome and reactive haemophagocytic syndrome. Br J Dermatol 139(6):1026-1032. 1740 139(6):1026-1032. 137(4):605-608. 1741 31. Suzuki Y, Inagi R, Aono T, Yamanishi K, & Shiohara T (1998) Human herpesvirus 6 infection as a risk factor for the development of severe drug-induced hypersensitivity syndrome. Arch Dermatol 134(4):105-608. 1740 3124(4):105-608. Suzuki Y, Inagi R, Aono T, Yamanishi K, & Shiohara T (2018) Current Perspectives on Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis. Clin Rev Allergy Im	16	727	26.	Roujeau JC (2005) Clinical heterogeneity of drug hypersensitivity. <i>Toxicology</i> 209(2):123-129.
18 729 antituberculosis drug-induced maculopapular exanthema and drug reaction with 17 eosinophilia and systemic symptoms syndrome. Br J Dermatol 176(2):378-386. 17 731 28. 17 Feldmeyer L, Heidemeyer K, & Yawalkar N (2016) Acute Generalized Exanthematous 17 732 Pustulosis: Pathogenesis, Genetic Background, Clinical Variants and Therapy. Int J Mol Sci 17 17(8). 733 29. Spriet S & Banks TA (2015) Drug reaction with eosinophilia and systemic symptoms 17 Syndrome. Allergy Asthma Proc 36(6):501-505. 736 30. Uetrecht J & Naibitt DJ (2013) Idiosyncratic adverse drug reactions: current concepts. 737 Pharmacol Rev 65(2):779-808. 738 31. Choquet-Kastylevsky G, et al. (1998) Increased levels of interleukin 5 are associated with the 739 generation of eosinophilia in drug-induced hypersensitivity syndrome. Br J Dermatol 139(6):1026-1032. 741 32. Descamps V, et al. (1997) Human herpesvirus 6 infection associated with anticonvulsant 742 hypersensitivity syndrome and reactive haemophagocytic syndrome. Br J Dermatol 743 33. Suzuki Y, Inagi R, Aono T, Yamanishi K, & Shiohara T (1998) Human herpesvirus 6 infection as 744 33. Suzuki Y, Inagi R, Aono T, Yamanishi K, & Shioha	17	728	27.	Ye YM, et al. (2017) Drug-specific CD4(+) T-cell immune responses are responsible for
 eosinophilia and systemic symptoms syndrome. <i>Br J Dermatol</i> 176(2):378-386. Feldmeyer L, Heidemeyer K, & Yawalkar N (2016) Acute Generalized Exanthematous Pustulosis: Pathogenesis, Genetic Background, Clinical Variants and Therapy. <i>Int J Mol Sci</i> 17(8). Spriet S & Banks TA (2015) Drug reaction with eosinophilia and systemic symptoms syndrome. <i>Allergy Asthma Proc</i> 36(6):501-505. Uetrecht J & Naisbitt DJ (2013) Idiosyncratic adverse drug reactions: current concepts. <i>Pharmacol Rev</i> 65(2):779-808. Uetrecht J & Naisbitt DJ (2013) Idiosyncratic adverse drug reactions: current concepts. <i>Pharmacol Rev</i> 65(2):779-808. Choquet-Kastylevsky G, <i>et al.</i> (1998) Increased levels of interleukin 5 are associated with the generation of eosinophilia in drug-induced hypersensitivity syndrome. <i>Br J Dermatol</i> 139(6):1026-1032. T41 32. Descamps V, <i>et al.</i> (1997) Human herpesvirus 6 infection associated with anticonvulsant hypersensitivity syndrome and reactive haemophagocytic syndrome. <i>Br J Dermatol</i> 137(4):605-608. Suzuki Y, Inagi R, Aono T, Yamanishi K, & Shiohara T (1998) Human herpesvirus 6 infection as a risk factor for the development of severe drug-induced hypersensitivity syndrome. <i>Arch Dermatol</i> 134(9):1108-1112. Lerch M, Mainetti C, Terzinoli Beretta-Piccoli B, & Har T (2018) Current Perspectives on Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis. <i>Clin Rev Allergy Immunol</i> 54(1):147-176. Su Kit X Kim DJ (2012) Drug-induced Liver Injury Associated With Antidepressive Psychopharmacotherapy: An Explorative Assessment Based on Quantitative Signal Detection Using Different MedDRA Terms. <i>Journal of clinical pharmacology</i> 56(6):769-778. Su Kit X Kim DJ (2012) Drug-induced Liver Injury - Types and Phenotypes. <i>N</i> <i>Engl J Med</i> 381(3):264-273. Leise MD, Poterucha JJ, & Talwalkar JA (2014) Drug-induced liver injury. <i>Long-term</i> follow-up in a hepatotoxicity regis	18	729		antituberculosis drug-induced maculopapular exanthema and drug reaction with
 Zes. Feldmeyer L, Heldemeyer K, & Yawalkar N (2016) Acute Generalized Exanthematous Pustulosis: Pathogenesis, Genetic Background, Clinical Variants and Therapy. <i>Int J Mol Sci</i> 17(8). Spriet S & Banks TA (2015) Drug reaction with eosinophilia and systemic symptoms syndrome. <i>Allergy Asthma Proc</i> 36(6):501-505. Uetrecht J & Naisbitt DJ (2013) Idiosyncratic adverse drug reactions: current concepts. <i>Pharmacol Rev</i> 65(2):779-808. Choquet-Kastylevsky G, <i>et al.</i> (1998) Increased levels of interleukin 5 are associated with the generation of eosinophilia in drug-induced hypersensitivity syndrome. <i>Br J Dermatol</i> 139(6):1026-1032. Descamps V, <i>et al.</i> (1997) Human herpesvirus 6 infection associated with anticonvulsant hypersensitivity syndrome and reactive haemophagocytic syndrome. <i>Br J Dermatol</i> 137(4):605-608. Suzuki Y, Inagi R, Aono T, Yamanishi K, & Shiohara T (1998) Human herpesvirus 6 infection as a risk factor for the development of severe drug-induced hypersensitivity syndrome. <i>Arch Dermatol</i> 134(9):1108-1112. Lerch M, Mainetti C, Terziroll Beretta-Piccoli B, & Harr T (2018) Current Perspectives on Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis. <i>Clin Rev Allergy Immunol</i> 54(1):147-176. Gahr M, <i>et al.</i> (2016) Drug-induced Liver Injury Associated With Antidepressive Psychopharmacotherapy: An Explorative Assessment Based on Quantitative Signal Detection Using Different MedDRA Terms. <i>Journal of clinical pharmacology</i> 56(6):769-778. Suk KT & Kim DJ (2012) Drug-induced Liver Injury: present and future. <i>Clinical and molecular hepatology</i> 18(3):249-257. Leis MD, Poterucha JJ, & Talwalkar JA (2014) Drug-induced liver injury. <i>Mayo Clinic proceedings</i> 89(1):95-106. Suk KT & Kim DJ (2012) Genetic association studies in drug-induced liver injury. Long-term follow-up in a hepatotoxicity registry. <i>Hepatology</i> 44(6):1581-1588. Andrade RJ, et al. (2006) Out	19	730		eosinophilia and systemic symptoms syndrome. Br J Dermatol 176(2):378-386.
 Pustulosis: Pathogenesis, Genetic Background, Clinical Variants and Therapy. Int J Mol Sci 17(8). 734 29. Spriet S & Banks TA (2015) Drug reaction with eosinophilia and systemic symptoms syndrome. Allergy Asthma Proc 36(6):501-505. 736 30. Uetrecht J & Naisbitt DJ (2013) Idiosyncratic adverse drug reactions: current concepts. Pharmacol Rev 65(2):779-808. 738 31. Choquet-Kastylevsky G, et al. (1998) Increased levels of interleukin 5 are associated with the generation of eosinophilia in drug-induced hypersensitivity syndrome. Br J Dermatol 139(6):1026-1032. 741 32. Descamps V, et al. (1997) Human herpesvirus 6 infection associated with anticonvulsant hypersensitivity syndrome and reactive haemophagocytic syndrome. Br J Dermatol 137(4):605-608. 743 33. Suzuki Y, Inagi R, Aono T, Yamanishi K, & Shiohara T (1998) Human herpesvirus 6 infection as a risk factor for the development of severe drug-induced hypersensitivity syndrome. Arch Dermatol 134(9):1108-1112. 744 34. Lerch M, Mainetti C, Terziroli Beretta-Piccoli B, & Harr T (2018) Current Perspectives on Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis. Clin Rev Allergy Immunol 54(1):147-176. 750 35. Gahr M, et al. (2016) Drug-Induced liver Injury Associated With Antidepressive Psychopharmacotherapy: An Explorative Assessment Based on Quantitative Signal Detection Using Different MedDRA Terms. Journal of clinical pharmacology 56(6):769-778. 751 37. Leise MD, Poterucha JJ, & Talwalkar JA (2014) Drug-induced liver injury. Mayo Clinic proceedings 89(1):95-106. 753 38. Hoofnage JH & Bijornsson ES (2019) Drug-Induced Liver Injury - Types and Phenotypes. N Engl J Med 381(3):249-257. 753 39. Andrade RJ, et al. (2006) Outcome of acute idiosyncratic drug-induced liver injury: Long-term follow-up in a hepatotoxicity registry. Hepatology 44(6):1581-1588. 761 Mo Daly AK & Day CP (2012) Genetic association studies in	20	731	28.	Feldmeyer L, Heidemeyer K, & Yawalkar N (2016) Acute Generalized Exanthematous
 17(8). Spriet S & Banks TA (2015) Drug reaction with eosinophilia and systemic symptoms syndrome. <i>Allergy Asthma Proc</i> 36(6):501-505. 30. Uetrecht J & Naisbitt DJ (2013) Idiosyncratic adverse drug reactions: current concepts. <i>Pharmacol Rev</i> 65(2):779-808. 31. Choquet-Kastylevsky G, <i>et al.</i> (1998) Increased levels of interleukin 5 are associated with the generation of eosinophilia in drug-induced hypersensitivity syndrome. <i>Br J Dermatol</i> 139(6):1026-1032. 741. 32. Descamps V, <i>et al.</i> (1997) Human herpesvirus 6 infection associated with anticonvulsant hypersensitivity syndrome and reactive haemophagocytic syndrome. <i>Br J Dermatol</i> 137(4):605-608. 744. 33. Suzuki Y, Inagi R, Aono T, Yamanishi K, & Shiohara T (1998) Human herpesvirus 6 infection as a risk factor for the development of severe drug-induced hypersensitivity syndrome. <i>Arch Dermatol</i> 134(9):1108-1112. 747. 34. Lerch M, Mainetti C, Terziroli Beretta-Piccoli B, & Harr T (2018) Current Perspectives on Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis. <i>Clin Rev Allergy Immunol</i> 54(1):147-176. 750. 35. Gahr M, <i>et al.</i> (2016) Drug-induced Liver Injury Associated With Antidepressive Psychopharmacotherapy: An Explorative Assessment Based on Quantitative Signal Detection Using Different MedDRA Terms. <i>Journal of clinical pharmacology</i> 56(6):769-778. 751. Leise MD, Poterucha JJ, & Talwalkar JA (2014) Drug-induced liver injury. <i>Mayo Clinic proceedings</i> 89(1):249-257. 753. 37. Leise MD, Poterucha JJ, & Talwalkar JA (2014) Drug-induced liver injury. Long-term follow-up in a hepatotoxicity registry. <i>Hepatology</i> 44(6):1581-1588. 753. 40. Hoofnagle H & Bjornsson ES (2019) Drug-Induced Liver Injury - Types and Phenotypes. <i>N Engl J Med</i> 381(3):264-273. 754. Hoofnage H & Bjornsson ES (2019) Drug-Induced Liver injury. <i>Drug Metab Rev</i> 44(1):116-126. 764. 40. Daly AK & Day CP (2012) Genetic	∠ I 22	732		Pustulosis: Pathogenesis, Genetic Background, Clinical Variants and Therapy. Int J Mol Sci
 734 29. Spriet's & Banks TA (2015) Drug reaction with eosinophilia and systemic symptoms syndrome. <i>Allergy Asthma Proc</i> 36(6):501-505. 736 30. Uetrecht J & Naisbitt D (2013) Idiosyncratic adverse drug reactions: current concepts. <i>Pharmacol Rev</i> 65(2):779-808. 737 Choquet-Kastylevsky G, <i>et al.</i> (1998) Increased levels of interleukin 5 are associated with the generation of eosinophilia in drug-induced hypersensitivity syndrome. <i>Br J Dermatol</i> 139(6):1026-1032. 741 32. Descamps V, <i>et al.</i> (1997) Human herpesvirus 6 infection associated with anticonvulsant hypersensitivity syndrome and reactive haemophagocytic syndrome. <i>Br J Dermatol</i> 137(4):605-608. 744 33. Suzuki Y, Inagi R, Aono T, Yamanishi K, & Shiohara T (1998) Human herpesvirus 6 infection as a risk factor for the development of severe drug-induced hypersensitivity syndrome. <i>Arch Dermatol</i> 134(9):1108-1112. 747 34. Lerch M, Mainetti C, Terziroli Beretta-Piccoli B, & Harr T (2018) Current Perspectives on Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis. <i>Clin Rev Allergy Immunol</i> 54(1):147-176. 750 35. Gahr M, <i>et al.</i> (2016) Drug-Induced Liver Injury Associated With Antidepressive Psychopharmacotherapy: An Explorative Assessment Based on Quantitative Signal Detection Using Different MedDRA Terms. <i>Journal of Clinical pharmacology</i> 56(6):769-778. 753 36. Suk KT & Kim DJ (2012) Drug-induced Liver Injury: present and future. <i>Clinical and molecular hepatology</i> 18(3):249-257. 755 37. Leise MD, Poterucha JJ, & Talwalkar JA (2014) Drug-induced liver injury. <i>Mayo Clinic proceedings</i> 89(1):95-106. 757 38. Hoofnagle JH & Bjornsson ES (2019) Drug-Induced Liver Injury - Types and Phenotypes. N <i>Engl J Med</i> 381(3):264-273. 759 39. Andrade RJ, <i>et al.</i> (2006) Outcome of acute idiosyncratic drug-induced liver injury: Long-term follow-up in a hepatotoxicity registry. <i>Hepatology</i> 44(6):1581-1588. 764 0. D	23	733		17(8).
 syndrome. Allergy Asthma Proc 36(6):501-505. 736 30. Uetrecht J & Naisbitt DJ (2013) Idiosyncratic adverse drug reactions: current concepts. Pharmacol Rev 65(2):779-808. 738 31. Choquet-Kastylevsky G, et al. (1998) Increased levels of interleukin 5 are associated with the generation of eosinophilia in drug-induced hypersensitivity syndrome. Br J Dermatol 139(6):1026-1032. 741 32. Descamps V, et al. (1997) Human herpesvirus 6 infection associated with anticonvulsant hypersensitivity syndrome and reactive haemophagocytic syndrome. Br J Dermatol 137(4):605-608. 743 33. Suzuki Y, Inagi R, Aono T, Yamanishi K, & Shiohara T (1998) Human herpesvirus 6 infection as a risk factor for the development of severe drug-induced hypersensitivity syndrome. Arch Dermatol 134(9):1108-1112. 744 34. Lerch M, Mainetti C, Terziroli Beretta-Piccoli B, & Harr T (2018) Current Perspectives on Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis. Clin Rev Allergy Immunol 54(1):147-176. 750 35. Gahr M, et al. (2016) Drug-Induced Liver Injury Associated With Antidepressive Psychopharmacotherapy: An Explorative Assessment Based on Quantitative Signal Detection Using Different MedDRA Terms. Journal of clinical pharmacology 56(6):769-778. 753 36. Suk KT & Kim DJ (2012) Drug-induced liver injury: present and future. Clinical and molecular hepatology 18(3):249-257. 753 37. Leise MD, Poterucha JJ, & Talwalkar JA (2014) Drug-induced liver injury. Mayo Clinic proceedings 89(1):95-106. 757 38. Hoofnagle JH & Bjornsson ES (2019) Drug-Induced Liver Injury - Types and Phenotypes. N Engl J Med 381(3):264-273. 758 41. Usui T, et al. (2006) Outcome of acute idiosyncratic drug-induced liver injury: Long-term follow-up in a hepatotoxicity registry. Hepatology 44(6):1581-1588. 764 0. Daly AK & Day CP (2012) Genetic association studies in drug-induced liver injury. Drug Metab Rev 44(1):116-126.	24	734	29.	Spriet S & Banks TA (2015) Drug reaction with eosinophilia and systemic symptoms
 736 30. Detrecht J & Naisbitt DJ (2013) Idiosyncratic adverse drug reactions: current concepts. <i>Pharmacol Rev</i> 65(2):779-808. 737 <i>Pharmacol Rev</i> 65(2):779-808. 738 31. Choquet-Kastylevsky G, <i>et al.</i> (1998) Increased levels of interleukin 5 are associated with the generation of eosinophilia in drug-induced hypersensitivity syndrome. <i>Br J Dermatol</i> 139(6):1026-1032. 741 32. Descamps V, <i>et al.</i> (1997) Human herpesvirus 6 infection associated with anticonvulsant hypersensitivity syndrome and reactive haemophagocytic syndrome. <i>Br J Dermatol</i> 137(4):605-608. 743 33. Suzuki Y, Inagi R, Aono T, Yamanishi K, & Shiohara T (1998) Human herpesvirus 6 infection as a risk factor for the development of severe drug-induced hypersensitivity syndrome. <i>Arch</i> <i>Dermatol</i> 134(9):1108-1112. 747 34. Lerch M, Mainetti C, Terziroli Beretta-Piccoli B, & Harr T (2018) Current Perspectives on Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis. <i>Clin Rev Allergy Immunol</i> 54(1):147-176. 750 35. Gahr M, <i>et al.</i> (2016) Drug-Induced Liver Injury Associated With Antidepressive Psychopharmacotherapy: An Explorative Assessment Based on Quantitative Signal Detection Using Different MedDRA Terms. <i>Journal of clinical pharmacology</i> 56(6):769-778. 753 37. Leise MD, Poterucha JJ, & Talwalkar JA (2014) Drug-induced liver injury. <i>Mayo Clinic proceedings</i> 89(1):95-106. 754 8. Hoofnagle JH & Bjornsson ES (2019) Drug-Induced Liver Injury - Types and Phenotypes. N <i>Engl J Med</i> 381(3):264-273. 759 39. Andrade RJ, <i>et al.</i> (2006) Outcome of acute idiosyncratic drug-induced liver injury. Long-term follow-up in a hepatotoxicity registry. <i>Hepatology</i> 44(6):1581-1588. 764 0. Daly AK & Day CP (2012) Genetic association studies in drug-induced liver injury. <i>Drug Metab Rev</i> 44(1):116-126. 763 41. Usui T, <i>et al.</i> (2017) From the Cover: Characterization of Isoniazid-Specific T-Cell Clones in Patient	25	735		syndrome. Allergy Asthma Proc 36(6):501-505.
 Pharmacol Rev 65(2):779-808. 738 31. Choquet-Kastylevsky G, et al. (1998) Increased levels of interleukin 5 are associated with the generation of eosinophilia in drug-induced hypersensitivity syndrome. Br J Dermatol 139(6):1026-1032. 740 139(6):1026-1032. 741 32. Descamps V, et al. (1997) Human herpesvirus 6 infection associated with anticonvulsant hypersensitivity syndrome and reactive haemophagocytic syndrome. Br J Dermatol 137(4):605-608. 744 33. Suzuki Y, Inagi R, Aono T, Yamanishi K, & Shiohara T (1998) Human herpesvirus 6 infection as a risk factor for the development of severe drug-induced hypersensitivity syndrome. Arch Dermatol 134(9):1108-1112. 747 34. Lerch M, Mainetti C, Terziroli Beretta-Piccoli B, & Harr T (2018) Current Perspectives on Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis. Clin Rev Allergy Immunol 54(1):147-176. 750 35. Gahr M, et al. (2016) Drug-Induced Liver Injury Associated With Antidepressive Psychopharmacotherapy: An Explorative Assessment Based on Quantitative Signal Detection Using Different MedDRA Terms. Journal of clinical pharmacology 56(6):769-778. 753 36. Suk KT & Kim DJ (2012) Drug-induced liver injury: present and future. Clinical and molecular hepatology 18(3):249-257. 753 75. Leise MD, Poterucha JJ, & Talwalkar JA (2014) Drug-induced liver injury. Mayo Clinic proceedings 89(1):95-106. 757 38. Hoofnagle JH & Bjornsson ES (2019) Drug-Induced Liver Injury - Types and Phenotypes. N Engl J Med 381(3):264-273. 759 39. Andrade RJ, et al. (2006) Outcome of acute idiosyncratic drug-induced liver injury. Long-term follow-up in a hepatotoxicity registry. Hepatology 44(6):1581-1588. 761 40. Daly AK & Day CP (2012) Genetic association studies in drug-induced liver injury. Drug Metab Rev 44(1):116-126. 763 41. Usui T, et al. (2017) From the Cover: Characterization of Isoniazid-Specific T-Cell Clones in Patien	26	736	30.	Uetrecht J & Naisbitt DJ (2013) Idiosyncratic adverse drug reactions: current concepts.
 738 31. Choquet-Kastylevsky G, et al. (1998) Increased levels of interleukin S are associated with the generation of eosinophilia in drug-induced hypersensitivity syndrome. Br J Dermatol 139(6):1026-1032. 741 32. Descamps V, et al. (1997) Human herpesvirus 6 infection associated with anticonvulsant hypersensitivity syndrome and reactive haemophagocytic syndrome. Br J Dermatol 137(4):605-608. 743 33. Suzuki Y, Inagi R, Aono T, Yamanishi K, & Shiohara T (1998) Human herpesvirus 6 infection as a risk factor for the development of severe drug-induced hypersensitivity syndrome. Arch Dermatol 134(9):1108-1112. 747 34. Lerch M, Mainetti C, Terziroli Beretta-Piccoli B, & Harr T (2018) Current Perspectives on Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis. Clin Rev Allergy Immunol 54(1):147-176. 750 35. Gahr M, et al. (2016) Drug-Induced Liver Injury Associated With Antidepressive Psychopharmacotherapy: An Explorative Assessment Based on Quantitative Signal Detection Using Different MedDRA Terms. Journal of Clinical pharmacology 56(6):769-778. 36. Suk KT & Kim DJ (2012) Drug-induced liver injury: present and future. Clinical and molecular hepatology 18(3):249-257. 753 37. Leise MD, Poterucha JJ, & Talwalkar JA (2014) Drug-induced liver injury. Mayo Clinic proceedings 89(1):95-106. 757 38. Hoofnagle JH & Bjornson ES (2019) Drug-Induced Liver Injury - Types and Phenotypes. N Engl J Med 381(3):264-273. 759 39. Andrade RJ, et al. (2006) Outcome of acute idiosyncratic drug-induced liver injury. Long-term follow-up in a hepatotoxicity registry. Hepatology 44(6):1581-1588. 761 40. Daly AK & Day CP (2012) Genetic association studies in drug-induced liver injury. Drug Metab Rev 44(1):116-126. 763 41. Usui T, et al. (2017) From the Cover: Characterization of Isoniazid-Specific T-Cell Clones in Patients with anti-Tuberculosis Drug-Related Liver and Skin Injury. Toxicol Sci 155(2):4	27	737		Pharmacol Rev 65(2):779-808.
 739 generation of eosinophilia in drug-induced hypersensitivity syndrome. Br J Dermatol 139(6):1026-1032. 741 32. Descamps V, et al. (1997) Human herpesvirus 6 infection associated with anticonvulsant rya hypersensitivity syndrome and reactive haemophagocytic syndrome. Br J Dermatol rya isk factor for the development of severe drug-induced hypersensitivity syndrome. Arch Dermatol 134(9):1108-1112. rya arisk factor for the development of severe drug-induced hypersensitivity syndrome. Arch Dermatol 134(9):1108-1112. rya Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis. Clin Rev Allergy Immunol 54(1):147-176. ryschopharmacotherapy: An Explorative Assessment Based on Quantitative Signal Detection using Different MedDRA Terms. Journal of clinical pharmacology 56(6):769-778. suk KT & Kim DJ (2012) Drug-induced liver injury: present and future. Clinical and molecular hepatology 18(3):249-257. teise MD, Poterucha JJ, & Talwalkar JA (2014) Drug-induced liver injury. Mayo Clinic proceedings 89(1):95-106. rys Andrade RJ, et al. (2006) Outcome of acute idiosyncratic drug-induced liver injury: Long-term rys Andrade RJ, et al. (2012) Genetic association studies in drug-induced liver injury. Long-term rys Andrade RJ, et al. (2012) Genetic association studies in drug-induced liver injury. Drug Metab Rev 44(1):116-126. Usu Ja YK & Day CP (2012) Genetic association studies in drug-induced liver injury. Drug Metab Rev 44(1):116-126. Usui T, et al. (2017) From the Cover: Characterization of Isoniazid-Specific T-Cell Clones in Patients with anti-Tuberculosis Drug-Related Liver and Skin Injury. Toxicol Sci 155(2):420- 431. 	28	738	31.	Choquet-Kastylevsky G, et al. (1998) Increased levels of interleukin 5 are associated with the
 740 139(6):1026-1032. 741 32. Descamps V, <i>et al.</i> (1997) Human herpesvirus 6 infection associated with anticonvulsant hypersensitivity syndrome and reactive haemophagocytic syndrome. <i>Br J Dermatol</i> 137(4):605-608. 743 33. Suzuki Y, Inagi R, Aono T, Yamanishi K, & Shiohara T (1998) Human herpesvirus 6 infection as a risk factor for the development of severe drug-induced hypersensitivity syndrome. <i>Arch</i> <i>Dermatol</i> 134(9):1108-1112. 747 34. Lerch M, Mainetti C, Terziroli Beretta-Piccoli B, & Harr T (2018) Current Perspectives on Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis. <i>Clin Rev Allergy Immunol</i> 54(1):147-176. 750 35. Gahr M, <i>et al.</i> (2016) Drug-Induced Liver Injury Associated With Antidepressive Psychopharmacotherapy: An Explorative Assessment Based on Quantitative Signal Detection Using Different MedDRA Terms. <i>Journal of clinical pharmacology</i> 56(6):769-778. 753 36. Suk KT & Kim DJ (2012) Drug-induced liver injury: present and future. <i>Clinical and molecular</i> <i>hepatology</i> 18(3):249-257. 755 37. Leise MD, Poterucha JJ, & Talwalkar JA (2014) Drug-induced liver injury. <i>Mayo Clinic</i> <i>proceedings</i> 89(1):95-106. 757 38. Hoofnagle JH & Bjornsson ES (2019) Drug-Induced Liver Injury - Types and Phenotypes. N <i>Engl J Med</i> 381(3):264-273. 759 39. Andrade RJ, <i>et al.</i> (2006) Outcome of acute idiosyncratic drug-induced liver injury: Long-term follow-up in a hepatotoxicity registry. <i>Hepatology</i> 44(6):1581-1588. 761 40. Daly AK & Day CP (2012) Genetic association studies in drug-induced liver injury. <i>Drug Metab</i> <i>Rev</i> 44(1):116-126. 763 41. Usui T, <i>et al.</i> (2017) From the Cover: Characterization of Isoniazid-Specific T-Cell Clones in Patients with anti-Tuberculosis Drug-Related Liver and Skin Injury. <i>Toxicol Sci</i> 155(2):420- 3765 	29	739		generation of eosinophilia in drug-induced hypersensitivity syndrome. Br J Dermatol
 Pati 32. Descamps V, et al. (1997) Human herpesvirus 6 infection associated with anticonvulsant hypersensitivity syndrome and reactive haemophagocytic syndrome. Br J Dermatol 137(4):605-608. Pati 33. Suzuki Y, Inagi R, Aono T, Yamanishi K, & Shiohara T (1998) Human herpesvirus 6 infection as a risk factor for the development of severe drug-induced hypersensitivity syndrome. Arch Dermatol 134(9):1108-1112. Pati 34. Lerch M, Mainetti C, Terziroli Beretta-Piccoli B, & Harr T (2018) Current Perspectives on Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis. Clin Rev Allergy Immunol 54(1):147-176. Gahr M, et al. (2016) Drug-Induced Liver Injury Associated With Antidepressive Psychopharmacotherapy: An Explorative Assessment Based on Quantitative Signal Detection Using Different MedDRA Terms. Journal of clinical pharmacology 56(6):769-778. Suk KT & Kim DJ (2012) Drug-induced liver injury: present and future. Clinical and molecular hepatology 18(3):249-257. Leise MD, Poterucha JJ, & Talwalkar JA (2014) Drug-induced liver injury. Mayo Clinic proceedings 89(1):95-106. Hoofnagle JH & Bjornsson ES (2019) Drug-Induced Liver Injury - Types and Phenotypes. N Engl J Med 381(3):264-273. Andrade RJ, et al. (2006) Outcome of acute idiosyncratic drug-induced liver injury. Drug Metab Rev 44(1):116-126. Andrade RJ, et al. (2012) Genetic association studies in drug-induced liver injury. Drug Metab Rev 44(1):116-126. Mai Ak & Day CP (2012) Genetic casociation of Isoniazid-Specific T-Cell Clones in Patients with anti-Tuberculosis Drug-Related Liver and Skin Injury. Toxicol Sci 155(2):420-431. 	30 21	740		139(6):1026-1032.
 742 hypersensitivity syndrome and reactive haemophagocytic syndrome. <i>Br J Dermatol</i> 137(4):605-608. 744 33. Suzuki Y, Inagi R, Aono T, Yamanishi K, & Shiohara T (1998) Human herpesvirus 6 infection as a risk factor for the development of severe drug-induced hypersensitivity syndrome. <i>Arch Dermatol</i> 134(9):1108-1112. 747 34. Lerch M, Mainetti C, Terziroli Beretta-Piccoli B, & Harr T (2018) Current Perspectives on Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis. <i>Clin Rev Allergy Immunol</i> 54(1):147-176. 750 35. Gahr M, <i>et al.</i> (2016) Drug-Induced Liver Injury Associated With Antidepressive Psychopharmacotherapy: An Explorative Assessment Based on Quantitative Signal Detection Using Different MedDRA Terms. <i>Journal of clinical pharmacology</i> 56(6):769-778. 753 36. Suk KT & Kim DJ (2012) Drug-induced liver injury: present and future. <i>Clinical and molecular hepatology</i> 18(3):249-257. 755 37. Leise MD, Poterucha JJ, & Talwalkar JA (2014) Drug-induced liver injury. <i>Mayo Clinic proceedings</i> 89(1):95-106. 757 38. Hoofnagle JH & Bjornsson ES (2019) Drug-Induced Liver Injury - Types and Phenotypes. <i>N Engl J Med</i> 381(3):264-273. 759 39. Andrade RJ, <i>et al.</i> (2006) Outcome of acute idiosyncratic drug-induced liver injury: Drug Metab <i>Rev</i> 44(1):116-126. 763 41. Usui T, <i>et al.</i> (2017) From the Cover: Characterization of Isoniazid-Specific T-Cell Clones in Patients with anti-Tuberculosis Drug-Related Liver and Skin Injury. <i>Toxicol Sci</i> 155(2):420-431. 	21 22	741	32.	Descamps V, et al. (1997) Human herpesvirus 6 infection associated with anticonvulsant
 743 137(4):605-608. 744 33. Suzuki Y, Inagi R, Aono T, Yamanishi K, & Shiohara T (1998) Human herpesvirus 6 infection as a risk factor for the development of severe drug-induced hypersensitivity syndrome. Arch Dermatol 134(9):1108-1112. 747 34. Lerch M, Mainetti C, Terziroli Beretta-Piccoli B, & Harr T (2018) Current Perspectives on Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis. Clin Rev Allergy Immunol 54(1):147-176. 750 35. Gahr M, et al. (2016) Drug-Induced Liver Injury Associated With Antidepressive Psychopharmacotherapy: An Explorative Assessment Based on Quantitative Signal Detection Using Different MedDRA Terms. Journal of clinical pharmacology 56(6):769-778. 751 36. Suk KT & Kim DJ (2012) Drug-induced liver injury: present and future. Clinical and molecular hepatology 18(3):249-257. 753 37. Leise MD, Poterucha JJ, & Talwalkar JA (2014) Drug-induced liver injury. Mayo Clinic proceedings 89(1):95-106. 757 38. Hoofnagle JH & Bjornsson ES (2019) Drug-Induced Liver Injury - Types and Phenotypes. N Engl J Med 381(3):264-273. 759 39. Andrade RJ, et al. (2006) Outcome of acute idiosyncratic drug-induced liver injury: Long-term follow-up in a hepatotoxicity registry. Hepatology 44(6):1581-1588. 761 40. Daly AK & Day CP (2012) Genetic association studies in drug-induced liver injury. Drug Metab Rev 44(1):116-126. 763 41. Usui T, et al. (2017) From the Cover: Characterization of Isoniazid-Specific T-Cell Clones in Patients with anti-Tuberculosis Drug-Related Liver and Skin Injury. Toxicol Sci 155(2):420- 8765 431. 	33	742		hypersensitivity syndrome and reactive haemophagocytic syndrome. Br J Dermatol
3574433.Suzuki Y, Inagi R, Aono T, Yamanishi K, & Shiohara T (1998) Human herpesvirus 6 infection as36745a risk factor for the development of severe drug-induced hypersensitivity syndrome. Arch37746Dermatol 134(9):1108-1112.3874734.Lerch M, Mainetti C, Terziroli Beretta-Piccoli B, & Harr T (2018) Current Perspectives on39748Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis. Clin Rev Allergy Immunol4074954(1):147-176.4175035.Gahr M, et al. (2016) Drug-Induced Liver Injury Associated With Antidepressive42Psychopharmacotherapy: An Explorative Assessment Based on Quantitative Signal Detection44752Using Different MedDRA Terms. Journal of clinical pharmacology 56(6):769-778.4536.Suk KT & Kim DJ (2012) Drug-induced liver injury: present and future. Clinical and molecular46754hepatology 18(3):249-257.4775537.Leise MD, Poterucha JJ, & Talwalkar JA (2014) Drug-induced liver injury. Mayo Clinic47proceedings 89(1):95-106.4975738.40Nofnagle JH & Bjornsson ES (2019) Drug-Induced Liver Injury - Types and Phenotypes. N58Engl J Med 381(3):264-273.5175939.54Andrade RJ, et al. (2006) Outcome of acute idiosyncratic drug-induced liver injury. Drug Metab5676140.5775958Engl J Med 381(3):264-273.5939.50Andrade RJ, et al. (2006) Outcome of acute idiosyncratic drug	34	743		137(4):605-608.
36745a risk factor for the development of severe drug-induced hypersensitivity syndrome. Arch37746Dermatol 134(9):1108-1112.3874734.Lerch M, Mainetti C, Terziroli Beretta-Piccoli B, & Harr T (2018) Current Perspectives on39748Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis. Clin Rev Allergy Immunol4074954(1):147-176.4175035.Gahr M, et al. (2016) Drug-Induced Liver Injury Associated With Antidepressive42Psychopharmacotherapy: An Explorative Assessment Based on Quantitative Signal Detection43Using Different MedDRA Terms. Journal of clinical pharmacology 56(6):769-778.44752Using Different MedDRA Terms. Journal of clinical pharmacology 56(6):769-778.4575336.Suk KT & Kim DJ (2012) Drug-induced liver injury: present and future. Clinical and molecular46754hepatology 18(3):249-257.4775537.Leise MD, Poterucha JJ, & Talwalkar JA (2014) Drug-induced liver injury. Mayo Clinic47756proceedings 89(1):95-106.4975738.Hoofnagle JH & Bjornsson ES (2019) Drug-Induced Liver Injury - Types and Phenotypes. N50758Engl J Med 381(3):264-273.5175939.Andrade RJ, et al. (2006) Outcome of acute idiosyncratic drug-induced liver injury: Long-term5376140.Daly AK & Day CP (2012) Genetic association studies in drug-induced liver injury. Drug Metab54762Rev 44(1):116-126.5576341.Usui T, et al. (2017) From the Cover: C	35	744	33.	Suzuki Y, Inagi R, Aono T, Yamanishi K, & Shiohara T (1998) Human herpesvirus 6 infection as
37746Dermatol 134(9):1108-1112.3874734.Lerch M, Mainetti C, Terziroli Beretta-Piccoli B, & Harr T (2018) Current Perspectives on39748Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis. Clin Rev Allergy Immunol4074954(1):147-176.4175035.Gahr M, et al. (2016) Drug-Induced Liver Injury Associated With Antidepressive42751Psychopharmacotherapy: An Explorative Assessment Based on Quantitative Signal Detection43Using Different MedDRA Terms. Journal of clinical pharmacology 56(6):769-778.4575336.46754hepatology 18(3):249-257.4775537.48756proceedings 89(1):95-106.4975738.40758Engl J Med 381(3):264-273.5175939.53758Engl J Med 381(3):264-273.5475939.5576140.567615739.54Andrade RJ, et al. (2006) Outcome of acute idiosyncratic drug-induced liver injury: Long-term follow-up in a hepatotoxicity registry. Hepatology 44(6):1581-1588.56762Rev 44(1):116-126.5741.Usui T, et al. (2017) From the Cover: Characterization of Isoniazid-Specific T-Cell Clones in Patients with anti-Tuberculosis Drug-Related Liver and Skin Injury. Toxicol Sci 155(2):420-5756431.	36	745		a risk factor for the development of severe drug-induced hypersensitivity syndrome. Arch
3874734.Lerch M, Mainetti C, Terziroli Beretta-Piccoli B, & Harr T (2018) Current Perspectives on39748Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis. Clin Rev Allergy Immunol4074954(1):147-176.4175035.Gahr M, et al. (2016) Drug-Induced Liver Injury Associated With Antidepressive42751Psychopharmacotherapy: An Explorative Assessment Based on Quantitative Signal Detection43752Using Different MedDRA Terms. Journal of clinical pharmacology 56(6):769-778.4575336.Suk KT & Kim DJ (2012) Drug-induced liver injury: present and future. Clinical and molecular46754hepatology 18(3):249-257.4775537.Leise MD, Poterucha JJ, & Talwalkar JA (2014) Drug-induced liver injury. Mayo Clinic48756proceedings 89(1):95-106.4975738.Hoofnagle JH & Bjornsson ES (2019) Drug-Induced Liver Injury - Types and Phenotypes. N50758Engl J Med 381(3):264-273.5175939.Andrade RJ, et al. (2006) Outcome of acute idiosyncratic drug-induced liver injury: Long-term52follow-up in a hepatotoxicity registry. Hepatology 44(6):1581-1588.5476140.Daly AK & Day CP (2012) Genetic association studies in drug-induced liver injury. Drug Metab55762Rev 44(1):116-126.5676341.Usui T, et al. (2017) From the Cover: Characterization of Isoniazid-Specific T-Cell Clones in57764Patients with anti-Tuberculosis Drug-Related Liver and Skin Injury. Toxicol Sci 155(2):420- <td>37</td> <td>746</td> <td></td> <td>Dermatol 134(9):1108-1112.</td>	37	746		Dermatol 134(9):1108-1112.
39748Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis. Clin Rev Allergy Immunol4074954(1):147-176.4175035.Gahr M, et al. (2016) Drug-Induced Liver Injury Associated With Antidepressive42751Psychopharmacotherapy: An Explorative Assessment Based on Quantitative Signal Detection43752Using Different MedDRA Terms. Journal of clinical pharmacology 56(6):769-778.4575336.Suk KT & Kim DJ (2012) Drug-induced liver injury: present and future. Clinical and molecular46754hepatology 18(3):249-257.4775537.Leise MD, Poterucha JJ, & Talwalkar JA (2014) Drug-induced liver injury. Mayo Clinic48756proceedings 89(1):95-106.4975738.Hoofnagle JH & Bjornsson ES (2019) Drug-Induced Liver Injury - Types and Phenotypes. N50758Engl J Med 381(3):264-273.5175939.Andrade RJ, et al. (2006) Outcome of acute idiosyncratic drug-induced liver injury: Long-term5376140.Daly AK & Day CP (2012) Genetic association studies in drug-induced liver injury. Drug Metab55762Rev 44(1):116-126.5676341.Usui T, et al. (2017) From the Cover: Characterization of Isoniazid-Specific T-Cell Clones in57764Patients with anti-Tuberculosis Drug-Related Liver and Skin Injury. Toxicol Sci 155(2):420-58765431.	38	747	34.	Lerch M, Mainetti C, Terziroli Beretta-Piccoli B, & Harr T (2018) Current Perspectives on
 749 54(1):147-176. 750 35. Gahr M, et al. (2016) Drug-Induced Liver Injury Associated With Antidepressive 751 Psychopharmacotherapy: An Explorative Assessment Based on Quantitative Signal Detection 752 Using Different MedDRA Terms. Journal of clinical pharmacology 56(6):769-778. 753 36. Suk KT & Kim DJ (2012) Drug-induced liver injury: present and future. Clinical and molecular 754 hepatology 18(3):249-257. 755 37. Leise MD, Poterucha JJ, & Talwalkar JA (2014) Drug-induced liver injury. Mayo Clinic 756 proceedings 89(1):95-106. 757 38. Hoofnagle JH & Bjornsson ES (2019) Drug-Induced Liver Injury - Types and Phenotypes. N 758 Engl J Med 381(3):264-273. 759 39. Andrade RJ, et al. (2006) Outcome of acute idiosyncratic drug-induced liver injury: Long-term 760 follow-up in a hepatotoxicity registry. Hepatology 44(6):1581-1588. 761 40. Daly AK & Day CP (2012) Genetic association studies in drug-induced liver injury. Drug Metab 762 Rev 44(1):116-126. 763 41. Usui T, et al. (2017) From the Cover: Characterization of Isoniazid-Specific T-Cell Clones in 764 Patients with anti-Tuberculosis Drug-Related Liver and Skin Injury. Toxicol Sci 155(2):420- 765 431. 	39	748		Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis. Clin Rev Allergy Immunol
175035.Gahr M, et al. (2016) Drug-Induced Liver Injury Associated With Antidepressive42751Psychopharmacotherapy: An Explorative Assessment Based on Quantitative Signal Detection43752Using Different MedDRA Terms. Journal of clinical pharmacology 56(6):769-778.4475336.Suk KT & Kim DJ (2012) Drug-induced liver injury: present and future. Clinical and molecular46754hepatology 18(3):249-257.4775537.Leise MD, Poterucha JJ, & Talwalkar JA (2014) Drug-induced liver injury. Mayo Clinic48756proceedings 89(1):95-106.4975738.Hoofnagle JH & Bjornsson ES (2019) Drug-Induced Liver Injury - Types and Phenotypes. N50758Engl J Med 381(3):264-273.5175939.Andrade RJ, et al. (2006) Outcome of acute idiosyncratic drug-induced liver injury: Long-term5376140.Daly AK & Day CP (2012) Genetic association studies in drug-induced liver injury. Drug Metab55762Rev 44(1):116-126.5676341.Usui T, et al. (2017) From the Cover: Characterization of Isoniazid-Specific T-Cell Clones in57764Patients with anti-Tuberculosis Drug-Related Liver and Skin Injury. Toxicol Sci 155(2):420-58765431.	40 41	749		54(1):147-176.
12751Psychopharmacotherapy: An Explorative Assessment Based on Quantitative Signal Detection43752Using Different MedDRA Terms. Journal of clinical pharmacology 56(6):769-778.4575336.Suk KT & Kim DJ (2012) Drug-induced liver injury: present and future. Clinical and molecular46754hepatology 18(3):249-257.4775537.Leise MD, Poterucha JJ, & Talwalkar JA (2014) Drug-induced liver injury. Mayo Clinic48756proceedings 89(1):95-106.4975738.Hoofnagle JH & Bjornsson ES (2019) Drug-Induced Liver Injury - Types and Phenotypes. N50758Engl J Med 381(3):264-273.5175939.Andrade RJ, et al. (2006) Outcome of acute idiosyncratic drug-induced liver injury: Long-term5376140.Daly AK & Day CP (2012) Genetic association studies in drug-induced liver injury. Drug Metab55762Rev 44(1):116-126.5676341.Usui T, et al. (2017) From the Cover: Characterization of Isoniazid-Specific T-Cell Clones in57764Patients with anti-Tuberculosis Drug-Related Liver and Skin Injury. Toxicol Sci 155(2):420-58765431.	41	750	35.	Gahr M, et al. (2016) Drug-Induced Liver Injury Associated With Antidepressive
44752Using Different MedDRA Terms. Journal of clinical pharmacology 56(6):769-778.4575336.Suk KT & Kim DJ (2012) Drug-induced liver injury: present and future. Clinical and molecular46754hepatology 18(3):249-257.4775537.Leise MD, Poterucha JJ, & Talwalkar JA (2014) Drug-induced liver injury. Mayo Clinic48756proceedings 89(1):95-106.4975738.Hoofnagle JH & Bjornsson ES (2019) Drug-Induced Liver Injury - Types and Phenotypes. N50758Engl J Med 381(3):264-273.5175939.Andrade RJ, et al. (2006) Outcome of acute idiosyncratic drug-induced liver injury: Long-term53760follow-up in a hepatotoxicity registry. Hepatology 44(6):1581-1588.5476140.Daly AK & Day CP (2012) Genetic association studies in drug-induced liver injury. Drug Metab55762Rev 44(1):116-126.5676341.Usui T, et al. (2017) From the Cover: Characterization of Isoniazid-Specific T-Cell Clones in57764Patients with anti-Tuberculosis Drug-Related Liver and Skin Injury. Toxicol Sci 155(2):420-58765431.	43	751		Psychopharmacotherapy: An Explorative Assessment Based on Quantitative Signal Detection
4575336.Suk KT & Kim DJ (2012) Drug-induced liver injury: present and future. Clinical and molecular46754hepatology 18(3):249-257.4775537.Leise MD, Poterucha JJ, & Talwalkar JA (2014) Drug-induced liver injury. Mayo Clinic48756proceedings 89(1):95-106.4975738.Hoofnagle JH & Bjornsson ES (2019) Drug-Induced Liver Injury - Types and Phenotypes. N50758Engl J Med 381(3):264-273.5175939.Andrade RJ, et al. (2006) Outcome of acute idiosyncratic drug-induced liver injury: Long-term52760follow-up in a hepatotoxicity registry. Hepatology 44(6):1581-1588.5476140.Daly AK & Day CP (2012) Genetic association studies in drug-induced liver injury. Drug Metab55762Rev 44(1):116-126.5676341.Usui T, et al. (2017) From the Cover: Characterization of Isoniazid-Specific T-Cell Clones in57764Patients with anti-Tuberculosis Drug-Related Liver and Skin Injury. Toxicol Sci 155(2):420-58765431.	44	752		Using Different MedDRA Terms. <i>Journal of clinical pharmacology</i> 56(6):769-778.
46754hepatology 18(3):249-257.4775537.Leise MD, Poterucha JJ, & Talwalkar JA (2014) Drug-induced liver injury. Mayo Clinic48756proceedings 89(1):95-106.4975738.Hoofnagle JH & Bjornsson ES (2019) Drug-Induced Liver Injury - Types and Phenotypes. N50758Engl J Med 381(3):264-273.5175939.Andrade RJ, et al. (2006) Outcome of acute idiosyncratic drug-induced liver injury: Long-term52760follow-up in a hepatotoxicity registry. Hepatology 44(6):1581-1588.5476140.Daly AK & Day CP (2012) Genetic association studies in drug-induced liver injury. Drug Metab55762Rev 44(1):116-126.5676341.Usui T, et al. (2017) From the Cover: Characterization of Isoniazid-Specific T-Cell Clones in57764Patients with anti-Tuberculosis Drug-Related Liver and Skin Injury. Toxicol Sci 155(2):420-58765431.5960	45	753	36.	Suk KT & Kim DJ (2012) Drug-induced liver injury: present and future. <i>Clinical and molecular</i>
4775537.Leise MD, Poterucha JJ, & Talwalkar JA (2014) Drug-induced liver injury. Mayo Clinic48756proceedings 89(1):95-106.4975738.Hoofnagle JH & Bjornsson ES (2019) Drug-Induced Liver Injury - Types and Phenotypes. N50758Engl J Med 381(3):264-273.5175939.Andrade RJ, et al. (2006) Outcome of acute idiosyncratic drug-induced liver injury: Long-term52760follow-up in a hepatotoxicity registry. Hepatology 44(6):1581-1588.5476140.Daly AK & Day CP (2012) Genetic association studies in drug-induced liver injury. Drug Metab55762Rev 44(1):116-126.5676341.Usui T, et al. (2017) From the Cover: Characterization of Isoniazid-Specific T-Cell Clones in57764Patients with anti-Tuberculosis Drug-Related Liver and Skin Injury. Toxicol Sci 155(2):420-58765431.	46	754		hepatology 18(3):249-257.
48756proceedings 89(1):95-106.4975738.Hoofnagle JH & Bjornsson ES (2019) Drug-Induced Liver Injury - Types and Phenotypes. N50758Engl J Med 381(3):264-273.5175939.Andrade RJ, et al. (2006) Outcome of acute idiosyncratic drug-induced liver injury: Long-term52760follow-up in a hepatotoxicity registry. Hepatology 44(6):1581-1588.5476140.Daly AK & Day CP (2012) Genetic association studies in drug-induced liver injury. Drug Metab55762Rev 44(1):116-126.5676341.Usui T, et al. (2017) From the Cover: Characterization of Isoniazid-Specific T-Cell Clones in57764Patients with anti-Tuberculosis Drug-Related Liver and Skin Injury. Toxicol Sci 155(2):420-58765431.	47	755	37.	Leise MD, Poterucha JJ, & Talwalkar JA (2014) Drug-induced liver injury. <i>Mayo Clinic</i>
4975738.Hoofnagle JH & Bjornsson ES (2019) Drug-Induced Liver Injury - Types and Phenotypes. N50758Engl J Med 381(3):264-273.5175939.Andrade RJ, et al. (2006) Outcome of acute idiosyncratic drug-induced liver injury: Long-term52760follow-up in a hepatotoxicity registry. Hepatology 44(6):1581-1588.5476140.Daly AK & Day CP (2012) Genetic association studies in drug-induced liver injury. Drug Metab55762Rev 44(1):116-126.5676341.Usui T, et al. (2017) From the Cover: Characterization of Isoniazid-Specific T-Cell Clones in57764Patients with anti-Tuberculosis Drug-Related Liver and Skin Injury. Toxicol Sci 155(2):420-58765431.5960	48	756		proceedings 89(1):95-106.
50758Engl J Med 381(3):264-273.5175939.Andrade RJ, et al. (2006) Outcome of acute idiosyncratic drug-induced liver injury: Long-term52760follow-up in a hepatotoxicity registry. Hepatology 44(6):1581-1588.5476140.Daly AK & Day CP (2012) Genetic association studies in drug-induced liver injury. Drug Metab55762Rev 44(1):116-126.5676341.Usui T, et al. (2017) From the Cover: Characterization of Isoniazid-Specific T-Cell Clones in57764Patients with anti-Tuberculosis Drug-Related Liver and Skin Injury. Toxicol Sci 155(2):420-58765431.5960431.	49 50	757	38.	Hoofnagle JH & Bjornsson ES (2019) Drug-Induced Liver Injury - Types and Phenotypes. N
75939.Andrade RJ, et al. (2006) Outcome of acute idiosyncratic drug-induced liver injury: Long-term52760follow-up in a hepatotoxicity registry. Hepatology 44(6):1581-1588.5376140.Daly AK & Day CP (2012) Genetic association studies in drug-induced liver injury. Drug Metab55762Rev 44(1):116-126.5676341.Usui T, et al. (2017) From the Cover: Characterization of Isoniazid-Specific T-Cell Clones in57764Patients with anti-Tuberculosis Drug-Related Liver and Skin Injury. Toxicol Sci 155(2):420-58765431.596060	50 51	758		Engl J Med 381(3):264-273.
760follow-up in a hepatotoxicity registry. Hepatology 44(6):1581-1588.5376140.Daly AK & Day CP (2012) Genetic association studies in drug-induced liver injury. Drug Metab55762Rev 44(1):116-126.5676341.Usui T, et al. (2017) From the Cover: Characterization of Isoniazid-Specific T-Cell Clones in57764Patients with anti-Tuberculosis Drug-Related Liver and Skin Injury. Toxicol Sci 155(2):420-58765431.5960	52	759	39.	Andrade RJ, et al. (2006) Outcome of acute idiosyncratic drug-induced liver injury: Long-term
5476140.Daly AK & Day CP (2012) Genetic association studies in drug-induced liver injury. Drug Metab55762Rev 44(1):116-126.5676341.Usui T, et al. (2017) From the Cover: Characterization of Isoniazid-Specific T-Cell Clones in57764Patients with anti-Tuberculosis Drug-Related Liver and Skin Injury. Toxicol Sci 155(2):420-58765431.5960	53	760		follow-up in a hepatotoxicity registry. <i>Hepatology</i> 44(6):1581-1588.
55762Rev 44(1):116-126.5676341.Usui T, et al. (2017) From the Cover: Characterization of Isoniazid-Specific T-Cell Clones in57764Patients with anti-Tuberculosis Drug-Related Liver and Skin Injury. Toxicol Sci 155(2):420-58765431.5960	54	761	40.	Daly AK & Day CP (2012) Genetic association studies in drug-induced liver injury. Drug Metab
5676341.Usui T, et al. (2017) From the Cover: Characterization of Isoniazid-Specific T-Cell Clones in57764Patients with anti-Tuberculosis Drug-Related Liver and Skin Injury. Toxicol Sci 155(2):420-58765431.5960	55	762		<i>Rev</i> 44(1):116-126.
 764 Patients with anti-Tuberculosis Drug-Related Liver and Skin Injury. <i>Toxicol Sci</i> 155(2):420- 765 431. 60 	56	763	41.	Usui T, et al. (2017) From the Cover: Characterization of Isoniazid-Specific T-Cell Clones in
58 765 431. 59	57	764		Patients with anti-Tuberculosis Drug-Related Liver and Skin Injury. Toxicol Sci 155(2):420-
57 60	58	765		431.
	59 60			

 42. Kim SH, <i>et al.</i> (2015) Characterization of amoxicillin- and clavulanic acid-specific T cells in patients with amoxicillin-clavulanate-induced liver injury. <i>Hepatology</i> 62(3):887-899. 43. Monshi MM, <i>et al.</i> (2013) Human leukocyte antigen (HLA)-B*57:01-restricted activation of drug-specific T cells provides the immunological basis for flucloxacillin-induced liver injury. <i>Hepatology</i> 57(2):727-739. 771 44. Wuillemin N, <i>et al.</i> (2014) T Cells Infiltrate the Liver and Kill Hepatocytes in HLA-B(*)57:01- Associated Floxacillin-Induced Liver Injury. <i>Am J Pathol</i> 184(6):1677-1682. 773 45. Mennicke M, <i>et al.</i> (2009) Fulminant liver failure after vancomycin in a sulfasalazine-induced DRESS syndrome: fatal recurrence after liver transplantation. <i>Am J Transplant</i> 9(9):2197- 2202. 46. Batchelor FR, Dewdney JM, & Gazzard D (1965) Penicillin allergy: the formation of the penicilloyl determinant. <i>Nature</i> 206:362-364. 778 47. Jenkins RE, <i>et al.</i> (2009) Characterisation of flucloxacillin and 5-hydroxymethyl flucloxacillin haptenated HSA in vitro and in vivo. <i>Proteomics Clinical Applications</i> 3(6):720-729. 780 48. Meng X, <i>et al.</i> (2011) Mass spectrometric characterization of circulating and functional antigens derived from piperacillin in patients. <i>Chem Res Toxicol</i> 29(10):1762-1772. 782 49. Whitaker P, <i>et al.</i> (2011) Mass spectrometric characterization of circulating and functional antigens derived from piperacillin in patients with cystic fibrosis. <i>J Immunol</i> 187(1):200-211. 785 52. Ogese MO, <i>et al.</i> (2019) Exosomal transport of hepatocyte-derived drug-modified proteins to the immune system. <i>Hepatology.</i> 790 53. Padovan E, Bauer T, Tongio MM, Kalbacher H, & Weltzien HU (1997) Penicilloyl peptides are recognized as T cell antigenic determinants in penicillin allergy. <i>Eur J Immunol</i> 27(6):1303- 1307. 	1			
 Kim SH, et al. (2015) Characterization of amoxicillin- and clavulanic acid-specific T cells in patients with amoxicillin-clavulanate-induced liver injury. <i>Hepatology</i> 62(3):887-899. Monshi MM, et al. (2013) Human leukocyte antigen (HLA)-B*57:01-restricted activation of drug-specific T cells provides the immunological basis for flucloxacillin-induced liver injury. <i>Hepatology</i> 57(2):727-739. T1 44. Wuillemin N, et al. (2014) T Cells Infiltrate the Liver and Kill Hepatocytes in HLA-B(*)57:01- Associated Floxacillin-Induced Liver Injury. <i>Am J Pathol</i> 184(6):1677-1682. Mennicke M, et al. (2009) Fulminant liver failure after vancomycin in a sulfasalazine-induced DRESS syndrome: fatal recurrence after liver transplantation. <i>Am J Transplant</i> 9(9):2197- 2202. Katchelor FR, Dewdney JM, & Gazzard D (1965) Penicillin allergy: the formation of the penicilloyl determinant. <i>Nature</i> 206:362-364. Jenkins RE, et al. (2009) Characterisation of flucloxacillin and 5-hydroxymethyl flucloxacillin haptenated HSA in vitro and in vivo. <i>Proteomics Clinical Applications</i> 3(6):720-729. Meng X, et al. (2016) Amoxicillin and Clavulanate Form Chemically and Immunologically Distinct Multiple Haptenic Structures in Patients. <i>Chem Res Toxicol</i> 29(10):1762-1772. Kata A, et al. (2011) Mass spectrometric characterization of circulating and functional antigens derived from piperacillin in patients with cystic fibrosis. <i>J Immunol</i> 187(1):200-211. Sanchez-Gomez FJ, et al. (2017) Amoxicillin haptenates intracellular proteins that can be transported in exosomes to target cells. <i>Allergy</i> 72(3):385-396. Ariza A, et al. (2019) Exosomal transport of hepatocyte-derived drug-modified proteins to the immune system. <i>Hepatology</i>. Padovan E, Bauer T, Tongio MM, Kalbacher H, & Weltzien HU (1997) Penicilloyl peptides are recognized as T cell antigenic determinants in penicillin allergy. <i>Eur J Immunol</i> 27(6):1303-	2			
767patients with amoxicillin-clavulanate-induced liver injury. <i>Hepatology</i> 62(3):887-899.76843.Monshi MM, et al. (2013) Human leukocyte antigen (HLA)-B*57:01-restricted activation of769drug-specific T cells provides the immunological basis for flucloxacillin-induced liver injury.8770 <i>Hepatology</i> 57(2):727-739.977144.Wuillemin N, et al. (2014) T Cells Infiltrate the Liver and Kill Hepatocytes in HLA-B(*)57:01-772Associated Floxacillin-Induced Liver Injury. <i>Am J Pathol</i> 184(6):1677-1682.77345.Mennicke M, et al. (2009) Fulminant liver failure after vancomycin in a sulfasalazine-induced774DRESS syndrome: fatal recurrence after liver transplantation. <i>Am J Transplant</i> 9(9):2197-7752202.77646.8atchelor FR, Dewdney JM, & Gazzard D (1965) Penicillin allergy: the formation of the777penicilloyl determinant. <i>Nature</i> 206:362-364.77847.779haptenated HSA in vitro and in vivo. <i>Proteomics Clinical Applications</i> 3(6):720-729.78184.78249.78344.7849.7859.78645.7879.78850.78951.78151.78249.78349.78450.78450.78551.78551.78651.78651.78752.78852.78852.	5 7 4 .	766	42.	Kim SH, et al. (2015) Characterization of amoxicillin- and clavulanic acid-specific T cells in
676843.Monshi MM, et al. (2013) Human leukocyte antigen (HLA)-B*57:01-restricted activation of drug-specific T cells provides the immunological basis for flucloxacillin-induced liver injury. Hepatology 57(2):727-739.8770Hepatology 57(2):727-739.977144.44.Wuillemin N, et al. (2014) T Cells Infiltrate the Liver and Kill Hepatocytes in HLA-B(*)57:01- Associated Floxacillin-Induced Liver Injury. Am J Pathol 184(6):1677-1682.1177345.1177345.12Mennicke M, et al. (2009) Fulminant liver failure after vancomycin in a sulfasalazine-induced DRESS syndrome: fatal recurrence after liver transplantation. Am J Transplant 9(9):2197- 2202.1377646.14Batchelor FR, Dewdney JM, & Gazzard D (1965) Penicillin allergy: the formation of the penicilloyl determinant. Nature 206:362-364.1777847.187791978048.Meng X, et al. (2016) Amoxicillin and Clavulanate Form Chemically and Immunologically Distinct Multiple Haptenic Structures in Patients. Chem Res Toxicol 29(10):1762-1772.1778127349.274Whitaker P, et al. (2017) Amoxicillin haptenates intracellular proteins that can be transported in exosomes to target cells. Allergy 72(3):385-396.27527627651.27778427852.27852.27853.27852.27852.27853.27854.27953.278	5	767		patients with amoxicillin-clavulanate-induced liver injury. <i>Hepatology</i> 62(3):887-899.
7769drug-specific 1 cells provides the immunological basis for flucloxacillin-induced liver injury.8770Hepatology 57(2):727-739.977144.Wuillemin N, et al. (2014) T Cells Infiltrate the Liver and Kill Hepatocytes in HLA-B(*)57:01-772Associated Floxacillin-Induced Liver Injury. Am J Pathol 184(6):1677-1682.1177345.Mennicke M, et al. (2009) Fulminant liver failure after vancomycin in a sulfasalazine-induced12774DRESS syndrome: fatal recurrence after liver transplantation. Am J Transplant 9(9):2197-137752202.1477646.Batchelor FR, Dewdney JM, & Gazzard D (1965) Penicillin allergy: the formation of the16777penicilloyl determinant. Nature 206:362-364.1777847.Jenkins RE, et al. (2009) Characterisation of flucloxacillin and 5-hydroxymethyl flucloxacillin18779haptenated HSA in vitro and in vivo. Proteomics Clinical Applications 3(6):720-729.1978048.Meng X, et al. (2016) Amoxicillin and Clavulanate Form Chemically and Immunologically10Distinct Multiple Haptenic Structures in Patients. Chem Res Toxicol 29(10):1762-1772.1778249.Whitaker P, et al. (2017) Amoxicillin haptenates intracellular proteins that can be17850.Sanchez-Gomez FJ, et al. (2017) Amoxicillin haptenates intracellular proteins that can be17851.Ariza A, et al. (2014) Study of protein haptenation by amoxicillin through the use of a179biotinylated antibiotic. PLoS One 9(3):e90891.18078852. <tr< td=""><td>6 7</td><td>768</td><td>43.</td><td>Monshi MM, et al. (2013) Human leukocyte antigen (HLA)-B*57:01-restricted activation of</td></tr<>	6 7	768	43.	Monshi MM, et al. (2013) Human leukocyte antigen (HLA)-B*57:01-restricted activation of
 <i>Hepatology 57(2):727-739.</i> Wuillemin N, <i>et al.</i> (2014) T Cells Infiltrate the Liver and Kill Hepatocytes in HLA-B(*)57:01- Associated Floxacillin-Induced Liver Injury. <i>Am J Pathol</i> 184(6):1677-1682. Mennicke M, <i>et al.</i> (2009) Fulminant liver failure after vancomycin in a sulfasalazine-induced DRESS syndrome: fatal recurrence after liver transplantation. <i>Am J Transplant</i> 9(9):2197- 2202. T76 Batchelor FR, Dewdney JM, & Gazzard D (1965) Penicillin allergy: the formation of the penicilloyl determinant. <i>Nature</i> 206:362-364. T77 Jenkins RE, <i>et al.</i> (2009) Characterisation of flucloxacillin and 5-hydroxymethyl flucloxacillin haptenated HSA in vitro and in vivo. <i>Proteomics Clinical Applications</i> 3(6):720-729. Meng X, <i>et al.</i> (2016) Amoxicillin and Clavulanate Form Chemically and Immunologically Distinct Multiple Haptenic Structures in Patients. <i>Chem Res Toxicol</i> 29(10):1762-1772. Whitaker P, <i>et al.</i> (2017) Amoxicillin haptenates intracellular proteins that can be transported in exosomes to target cells. <i>Allergy</i> 72(3):385-396. Ariza A, <i>et al.</i> (2014) Study of protein haptenation by amoxicillin through the use of a biotinylated antibiotic. <i>PLoS One</i> 9(3):e90891. Ogese MO, <i>et al.</i> (2014) Study of protein haptenation by amoxicillin through the use of a biotinylated antibiotic. <i>PLoS One</i> 9(3):e90891. Padovan E, Bauer T, Tongio MM, Kalbacher H, & Weltzien HU (1997) Penicilloyl peptides are recognized as T cell antigenic determinants in penicillin allergy. <i>Eur J Immunol</i> 27(6):1303- 1307. 	7 /	769		drug-specific I cells provides the immunological basis for flucloxacillin-induced liver injury.
 771 44. Wullemin N, <i>et al.</i> (2014) I Cells Inflitrate the Liver and Kill Hepatocytes in HLA-B(*)57:01- 772 Associated Floxacillin-Induced Liver Injury. <i>Am J Pathol</i> 184(6):1677-1682. 773 45. Mennicke M, <i>et al.</i> (2009) Fulminant liver failure after vancomycin in a sulfasalazine-induced 774 DRESS syndrome: fatal recurrence after liver transplantation. <i>Am J Transplant</i> 9(9):2197- 775 2202. 776 46. Batchelor FR, Dewdney JM, & Gazzard D (1965) Penicillin allergy: the formation of the 777 penicilloyl determinant. <i>Nature</i> 206:362-364. 778 47. Jenkins RE, <i>et al.</i> (2009) Characterisation of flucloxacillin and 5-hydroxymethyl flucloxacillin 779 haptenated HSA in vitro and in vivo. <i>Proteomics Clinical Applications</i> 3(6):720-729. 780 48. Meng X, <i>et al.</i> (2016) Amoxicillin and Clavulanate Form Chemically and Immunologically 781 Distinct Multiple Haptenic Structures in Patients. <i>Chem Res Toxicol</i> 29(10):1762-1772. 782 49. Whitaker P, <i>et al.</i> (2011) Mass spectrometric characterization of circulating and functional antigens derived from piperacillin in patients with cystic fibrosis. <i>J Immunol</i> 187(1):200-211. 785 51. Ariza A, <i>et al.</i> (2014) Study of protein haptenation by amoxicillin through the use of a biotinylated antibiotic. <i>PLoS One</i> 9(3):e90891. 788 52. Ogese MO, <i>et al.</i> (2019) Exosomal transport of hepatocyte-derived drug-modified proteins 789 to the immune system. <i>Hepatology.</i> 790 53. Padovan E, Bauer T, Tongio MM, Kalbacher H, & Weltzien HU (1997) Penicilloyl peptides are 791 recognized as T cell antigenic determinants in penicillin allergy. <i>Eur J Immunol</i> 27(6):1303- 792 1307. 	8 /	//0		Hepatology $5/(2):727-739$.
10772Associated Hoxacilin-Induced Liver Injury. Am J Pathol 184(6):1677-1682.1177345.Mennicke M, et al. (2009) Fulminant liver failure after vancomycin in a sulfasalazine-induced12774DRESS syndrome: fatal recurrence after liver transplantation. Am J Transplant 9(9):2197-137752202.1477646.Batchelor FR, Dewdney JM, & Gazzard D (1965) Penicillin allergy: the formation of the16777penicilloyl determinant. Nature 206:362-364.1777847.Jenkins RE, et al. (2009) Characterisation of flucloxacillin and 5-hydroxymethyl flucloxacillin18779haptenated HSA in vitro and in vivo. Proteomics Clinical Applications 3(6):720-729.1978048.Meng X, et al. (2016) Amoxicillin and Clavulanate Form Chemically and Immunologically20781Distinct Multiple Haptenic Structures in Patients. Chem Res Toxicol 29(10):1762-1772.2178249.Whitaker P, et al. (2011) Mass spectrometric characterization of circulating and functional23antigens derived from piperacillin in patients with cystic fibrosis. J Immunol 187(1):200-211.2478450.51.Ariza A, et al. (2014) Study of protein haptenates intracellular proteins that can be2578551.78651.78778778852.789790780790781Diotinylated antibiotic. PLoS One 9(3):e90891.783790784791785Padovan E, Bauer T, Tongio MM, Kalbacher H, & We	9 /	//1	44.	Wullemin N, et al. (2014) I Cells Infiltrate the Liver and Kill Hepatocytes in HLA-B(*)57:01-
 773 45. Mennicke M, <i>et al.</i> (2009) Fulminant liver failure after Vancomycin in a sulfasalazine-induced 774 DRESS syndrome: fatal recurrence after liver transplantation. <i>Am J Transplant</i> 9(9):2197- 775 2202. 776 46. Batchelor FR, Dewdney JM, & Gazzard D (1965) Penicillin allergy: the formation of the 777 penicilloyl determinant. <i>Nature</i> 206:362-364. 778 47. Jenkins RE, <i>et al.</i> (2009) Characterisation of flucloxacillin and 5-hydroxymethyl flucloxacillin 779 haptenated HSA in vitro and in vivo. <i>Proteomics Clinical Applications</i> 3(6):720-729. 780 48. Meng X, <i>et al.</i> (2016) Amoxicillin and Clavulanate Form Chemically and Immunologically 781 Distinct Multiple Haptenic Structures in Patients. <i>Chem Res Toxicol</i> 29(10):1762-1772. 782 49. Whitaker P, <i>et al.</i> (2011) Mass spectrometric characterization of circulating and functional antigens derived from piperacillin in patients with cystic fibrosis. <i>J Immunol</i> 187(1):200-211. 784 50. Sanchez-Gomez FJ, <i>et al.</i> (2017) Amoxicillin haptenates intracellular proteins that can be 785 transported in exosomes to target cells. <i>Allergy</i> 72(3):385-396. 786 51. Ariza A, <i>et al.</i> (2019) Exosomal transport of hepatocyte-derived drug-modified proteins 788 52. Ogese MO, <i>et al.</i> (2019) Exosomal transport of hepatocyte-derived drug-modified proteins 789 to the immune system. <i>Hepatology.</i> 790 53. Padovan E, Bauer T, Tongio MM, Kalbacher H, & Weltzien HU (1997) Penicilloyl peptides are 791 recognized as T cell antigenic determinants in penicillin allergy. <i>Eur J Immunol</i> 27(6):1303- 792 1307. 	10 /	//2	45	Associated Floxacillin-Induced Liver Injury. Am J Pathol 184(6):1677-1682.
127/4DRESS syndrome: fatal recurrence after liver transplantation. Am J Transplant 9(9):2197-137752202.1477646.1577646.16777penicilloyl determinant. Nature 206:362-364.1777847.18779haptenated HSA in vitro and in vivo. Proteomics Clinical Applications 3(6):720-729.1978048.18779Distinct Multiple Haptenic Structures in Patients. Chem Res Toxicol 29(10):1762-1772.19781Distinct Multiple Haptenic Structures in Patients. Chem Res Toxicol 29(10):1762-1772.1778249.20Whitaker P, et al. (2011) Mass spectrometric characterization of circulating and functional antigens derived from piperacillin in patients with cystic fibrosis. J Immunol 187(1):200-211.2378450.24785transported in exosomes to target cells. Allergy 72(3):385-396.2578651.2678651.277872852.Ogese MO, et al. (2019) Exosomal transport of hepatocyte-derived drug-modified proteins2979053.2079053.2079053.2079121792237922479225792267922779228792291307.	12 -	//3	45.	Mennicke M, et al. (2009) Fulminant liver failure after vancomycin in a sulfasalazine-induced
 775 2202. 776 46. Batchelor FR, Dewdney JM, & Gazzard D (1965) Penicillin allergy: the formation of the penicilloyl determinant. <i>Nature</i> 206:362-364. 777 778 47. Jenkins RE, <i>et al.</i> (2009) Characterisation of flucloxacillin and 5-hydroxymethyl flucloxacillin haptenated HSA in vitro and in vivo. <i>Proteomics Clinical Applications</i> 3(6):720-729. 780 48. Meng X, <i>et al.</i> (2016) Amoxicillin and Clavulanate Form Chemically and Immunologically Distinct Multiple Haptenic Structures in Patients. <i>Chem Res Toxicol</i> 29(10):1762-1772. 782 49. Whitaker P, <i>et al.</i> (2011) Mass spectrometric characterization of circulating and functional antigens derived from piperacillin in patients with cystic fibrosis. <i>J Immunol</i> 187(1):200-211. 784 50. Sanchez-Gomez FJ, <i>et al.</i> (2017) Amoxicillin haptenates intracellular proteins that can be transported in exosomes to target cells. <i>Allergy</i> 72(3):385-396. 786 51. Ariza A, <i>et al.</i> (2014) Study of protein haptenation by amoxicillin through the use of a biotinylated antibiotic. <i>PLoS One</i> 9(3):e90891. 788 52. Ogese MO, <i>et al.</i> (2019) Exosomal transport of hepatocyte-derived drug-modified proteins to the immune system. <i>Hepatology.</i> 790 53. Padovan E, Bauer T, Tongio MM, Kalbacher H, & Weltzien HU (1997) Penicilloyl peptides are recognized as T cell antigenic determinants in penicillin allergy. <i>Eur J Immunol</i> 27(6):1303-792 	13 -	774		DRESS syndrome: fatal recurrence after liver transplantation. Am J Transplant 9(9):2197-
1577646.Batchelor FR, Dewdney JM, & Gazzard D (1965) Penicillin altergy: the formation of the16777penicilloyl determinant. Nature 206:362-364.1777847.Jenkins RE, et al. (2009) Characterisation of flucloxacillin and 5-hydroxymethyl flucloxacillin18779haptenated HSA in vitro and in vivo. Proteomics Clinical Applications 3(6):720-729.1978048.Meng X, et al. (2016) Amoxicillin and Clavulanate Form Chemically and Immunologically20781Distinct Multiple Haptenic Structures in Patients. Chem Res Toxicol 29(10):1762-1772.2178249.Whitaker P, et al. (2011) Mass spectrometric characterization of circulating and functional23783antigens derived from piperacillin in patients with cystic fibrosis. J Immunol 187(1):200-211.2478450.Sanchez-Gomez FJ, et al. (2017) Amoxicillin haptenates intracellular proteins that can be25785transported in exosomes to target cells. Allergy 72(3):385-396.2678651.Ariza A, et al. (2014) Study of protein haptenation by amoxicillin through the use of a2778952.Ogese MO, et al. (2019) Exosomal transport of hepatocyte-derived drug-modified proteins29789to the immune system. Hepatology.3079053.Padovan E, Bauer T, Tongio MM, Kalbacher H, & Weltzien HU (1997) Penicilloyl peptides are31791recognized as T cell antigenic determinants in penicillin allergy. Eur J Immunol 27(6):1303-327921307.	14	775	10	22U2.
16777Penicinolyl determinant. Nature 200:362-364.1777847.Jenkins RE, et al. (2009) Characterisation of flucloxacillin and 5-hydroxymethyl flucloxacillin18779haptenated HSA in vitro and in vivo. Proteomics Clinical Applications 3(6):720-729.1978048.Meng X, et al. (2016) Amoxicillin and Clavulanate Form Chemically and Immunologically20781Distinct Multiple Haptenic Structures in Patients. Chem Res Toxicol 29(10):1762-1772.2178249.Whitaker P, et al. (2011) Mass spectrometric characterization of circulating and functional22783antigens derived from piperacillin in patients with cystic fibrosis. J Immunol 187(1):200-211.2378450.Sanchez-Gomez FJ, et al. (2017) Amoxicillin haptenates intracellular proteins that can be25785transported in exosomes to target cells. Allergy 72(3):385-396.2678651.Ariza A, et al. (2014) Study of protein haptenation by amoxicillin through the use of a27787biotinylated antibiotic. PLoS One 9(3):e90891.2878852.Ogese MO, et al. (2019) Exosomal transport of hepatocyte-derived drug-modified proteins2979053.Padovan E, Bauer T, Tongio MM, Kalbacher H, & Weltzien HU (1997) Penicilloyl peptides are31791recognized as T cell antigenic determinants in penicillin allergy. Eur J Immunol 27(6):1303-327921307.	15 _	//6 777	46.	Batchelor FR, Dewoney JW, & Gazzard D (1965) Penicillin allergy: the formation of the
1717847.Jenkins RE, et al. (2009) Characterisation of nucloxachina and 5-hydroxymethyl nucloxachina18779haptenated HSA in vitro and in vivo. Proteomics Clinical Applications 3(6):720-729.1978048.Meng X, et al. (2016) Amoxicillin and Clavulanate Form Chemically and Immunologically20781Distinct Multiple Haptenic Structures in Patients. Chem Res Toxicol 29(10):1762-1772.2178249.Whitaker P, et al. (2011) Mass spectrometric characterization of circulating and functional22783antigens derived from piperacillin in patients with cystic fibrosis. J Immunol 187(1):200-211.2378450.Sanchez-Gomez FJ, et al. (2017) Amoxicillin haptenates intracellular proteins that can be25785transported in exosomes to target cells. Allergy 72(3):385-396.2678651.Ariza A, et al. (2014) Study of protein haptenation by amoxicillin through the use of a27787biotinylated antibiotic. PLoS One 9(3):e90891.2878852.Ogese MO, et al. (2019) Exosomal transport of hepatocyte-derived drug-modified proteins2979053.Padovan E, Bauer T, Tongio MM, Kalbacher H, & Weltzien HU (1997) Penicilloyl peptides are31791recognized as T cell antigenic determinants in penicillin allergy. Eur J Immunol 27(6):1303-327921307.	16 _	777	47	penicinoyi determinant. <i>Nature</i> 206:362-364.
18779Naptenated HSA in vitro and in vivo. Proteomics Clinical Applications 3(6):720-729.1978048.Meng X, et al. (2016) Amoxicillin and Clavulanate Form Chemically and Immunologically20781Distinct Multiple Haptenic Structures in Patients. Chem Res Toxicol 29(10):1762-1772.2178249.Whitaker P, et al. (2011) Mass spectrometric characterization of circulating and functional22783antigens derived from piperacillin in patients with cystic fibrosis. J Immunol 187(1):200-211.2378450.Sanchez-Gomez FJ, et al. (2017) Amoxicillin haptenates intracellular proteins that can be24785transported in exosomes to target cells. Allergy 72(3):385-396.2678651.Ariza A, et al. (2014) Study of protein haptenation by amoxicillin through the use of a27787biotinylated antibiotic. PLoS One 9(3):e90891.2878852.Ogese MO, et al. (2019) Exosomal transport of hepatocyte-derived drug-modified proteins29789to the immune system. Hepatology.3079053.Padovan E, Bauer T, Tongio MM, Kalbacher H, & Weltzien HU (1997) Penicilloyl peptides are31791recognized as T cell antigenic determinants in penicillin allergy. Eur J Immunol 27(6):1303-327921307.	17 /	778	47.	Jenkins RE, et al. (2009) Characterisation of nucloxacilin and 5-hydroxymethyl nucloxacilin
1978048.Meng X, et al. (2016) Amoxicilin and Clavulande Form Chemically and minufologically20781Distinct Multiple Haptenic Structures in Patients. Chem Res Toxicol 29(10):1762-1772.2178249.Whitaker P, et al. (2011) Mass spectrometric characterization of circulating and functional22783antigens derived from piperacillin in patients with cystic fibrosis. J Immunol 187(1):200-211.2378450.Sanchez-Gomez FJ, et al. (2017) Amoxicillin haptenates intracellular proteins that can be24785transported in exosomes to target cells. Allergy 72(3):385-396.2678651.Ariza A, et al. (2014) Study of protein haptenation by amoxicillin through the use of a27787biotinylated antibiotic. PLoS One 9(3):e90891.2878852.Ogese MO, et al. (2019) Exosomal transport of hepatocyte-derived drug-modified proteins2979053.Padovan E, Bauer T, Tongio MM, Kalbacher H, & Weltzien HU (1997) Penicilloyl peptides are31791recognized as T cell antigenic determinants in penicillin allergy. Eur J Immunol 27(6):1303-327921307.	18 /	779	40	Napienaled HSA In vitro and in vivo. <i>Proteomics Clinical Applications</i> 3(6):720-729.
20781District Multiple Haptenic structures in Patients. Chem Kes Toxicol 29(10):1762-1772.2178249.Whitaker P, et al. (2011) Mass spectrometric characterization of circulating and functional22783antigens derived from piperacillin in patients with cystic fibrosis. J Immunol 187(1):200-211.2378450.Sanchez-Gomez FJ, et al. (2017) Amoxicillin haptenates intracellular proteins that can be24785transported in exosomes to target cells. Allergy 72(3):385-396.2678651.Ariza A, et al. (2014) Study of protein haptenation by amoxicillin through the use of a27787biotinylated antibiotic. PLoS One 9(3):e90891.2878852.Ogese MO, et al. (2019) Exosomal transport of hepatocyte-derived drug-modified proteins29789to the immune system. Hepatology.3079053.Padovan E, Bauer T, Tongio MM, Kalbacher H, & Weltzien HU (1997) Penicilloyl peptides are31791recognized as T cell antigenic determinants in penicillin allergy. Eur J Immunol 27(6):1303-327921307.	19 / 20 -	780 701	48.	Nieng X, et al. (2016) Amoxicillin and Clavulanate Form Chemically and Immunologically Distinct Multiple Haptonic Structures in Patients. Chem Res Toyicol 20(10):1762-1772
 782 49. Wintaker P, et al. (2011) Mass spectrometric characterization of circulating and dulctional antigens derived from piperacillin in patients with cystic fibrosis. J Immunol 187(1):200-211. 784 50. Sanchez-Gomez FJ, et al. (2017) Amoxicillin haptenates intracellular proteins that can be transported in exosomes to target cells. Allergy 72(3):385-396. 786 51. Ariza A, et al. (2014) Study of protein haptenation by amoxicillin through the use of a biotinylated antibiotic. PLoS One 9(3):e90891. 788 52. Ogese MO, et al. (2019) Exosomal transport of hepatocyte-derived drug-modified proteins to the immune system. Hepatology. 790 53. Padovan E, Bauer T, Tongio MM, Kalbacher H, & Weltzien HU (1997) Penicilloyl peptides are recognized as T cell antigenic determinants in penicillin allergy. Eur J Immunol 27(6):1303-1307. 	20 / 21 -	701	40	Whiteker D. at al. (2011) Mass spectrometric sharestorization of singulating and functional
2378378450.Sanchez-Gomez FJ, et al. (2017) Amoxicillin haptenates intracellular proteins that can be24785transported in exosomes to target cells. Allergy 72(3):385-396.2678651.Ariza A, et al. (2014) Study of protein haptenation by amoxicillin through the use of a27787biotinylated antibiotic. PLoS One 9(3):e90891.2878852.Ogese MO, et al. (2019) Exosomal transport of hepatocyte-derived drug-modified proteins29789to the immune system. Hepatology.3079053.Padovan E, Bauer T, Tongio MM, Kalbacher H, & Weltzien HU (1997) Penicilloyl peptides are31791recognized as T cell antigenic determinants in penicillin allergy. Eur J Immunol 27(6):1303-227921307.	22 -	702	49.	antigons derived from piperacillin in patients with cystic fibrosis. <i>Limmunol</i> 187(1):200, 211
 784 50. Sanchez-Gomez P, et al. (2017) Anioxicillin haptenates intracendual proteins that can be transported in exosomes to target cells. <i>Allergy</i> 72(3):385-396. 785 51. Ariza A, et al. (2014) Study of protein haptenation by amoxicillin through the use of a biotinylated antibiotic. <i>PLoS One</i> 9(3):e90891. 788 52. Ogese MO, et al. (2019) Exosomal transport of hepatocyte-derived drug-modified proteins to the immune system. <i>Hepatology</i>. 790 53. Padovan E, Bauer T, Tongio MM, Kalbacher H, & Weltzien HU (1997) Penicilloyl peptides are recognized as T cell antigenic determinants in penicillin allergy. <i>Eur J Immunol</i> 27(6):1303-1307. 	23 _	705	50	Sanchaz Comoz El, at al. (2017) Amovicillin bantonatos intracollular protoins that can be
 785 786 786 787 787 788 788 788 789 789 790 790 791 792 792 792 793 793 794 794 794 794 795 792 795 795 796 797 797 798 798 790 790	24 <u>′</u>	704	50.	transported in exosomes to target cells. Allergy 72(2):285-206
 Anza A, et al. (2014) Study of protein haptenation by amovement through the use of a biotinylated antibiotic. <i>PLoS One</i> 9(3):e90891. 788 52. Ogese MO, et al. (2019) Exosomal transport of hepatocyte-derived drug-modified proteins to the immune system. <i>Hepatology</i>. 790 53. Padovan E, Bauer T, Tongio MM, Kalbacher H, & Weltzien HU (1997) Penicilloyl peptides are recognized as T cell antigenic determinants in penicillin allergy. <i>Eur J Immunol</i> 27(6):1303-1307. 	25 <u>′</u>	786	51	Ariza A <i>et al.</i> (2014) Study of protein hantenation by amovicillin through the use of a
27767Biotinylated antibilitie. 7205 One 5(5),050051.2878852.Ogese MO, et al. (2019) Exosomal transport of hepatocyte-derived drug-modified proteins29789to the immune system. Hepatology.3079053.Padovan E, Bauer T, Tongio MM, Kalbacher H, & Weltzien HU (1997) Penicilloyl peptides are31791recognized as T cell antigenic determinants in penicillin allergy. Eur J Immunol 27(6):1303-327921307.	26 /	787	51.	hiotinylated antihiotic <i>PLoS One</i> 9(3):e90891
 789 789 790 790 791 792 792 792 793 794 794 795 795 796 797 798 798 791 791 791 791 792 792 792 793 794 794 795 795 796 796 797 798 798	2/ /	788	52	Ogese MO, et al. (2019) Exosomal transport of hepatocyte-derived drug-modified proteins
3079053.Padovan E, Bauer T, Tongio MM, Kalbacher H, & Weltzien HU (1997) Penicilloyl peptides are31791recognized as T cell antigenic determinants in penicillin allergy. Eur J Immunol 27(6):1303-327921307.	20 7 29 -	789	52.	to the immune system. Henatology
31791recognized as T cell antigenic determinants in penicillin allergy. Eur J Immunol 27(6):1303-327921307.	30 -	790	53	Padovan F. Bauer T. Tongio MM. Kalbacher H. & Weltzien HII (1997) Penicillovi pentides are
³² 792 1307.	31 -	791	55.	recognized as T cell antigenic determinants in penicillin allergy. <i>Fur Limmunol</i> 27(6):1303-
	32 -	792		1307.
793 54. Brander C. <i>et al.</i> (1995) Heterogeneous T cell responses to beta-lactam-modified self-	33	793	54.	Brander C. <i>et al.</i> (1995) Heterogeneous T cell responses to beta-lactam-modified self-
34 structures are observed in penicillin-allergic individuals. <i>J Immunol</i> 155(5):2670-2678.	34 <u>-</u>	794	-	structures are observed in penicillin-allergic individuals. <i>J Immunol</i> 155(5):2670-2678.
36 795 55. Wuillemin N, et al. (2013) HLA haplotype determines hapten or p-i T cell reactivity to	36 - 36 -	795	55.	Wuillemin N, et al. (2013) HLA haplotype determines hapten or p-i T cell reactivity to
37 796 flucloxacillin. J Immunol 190(10):4956-4964.	37 7	796		flucloxacillin. <i>J Immunol</i> 190(10):4956-4964.
38 797 56. El-Ghaiesh S, <i>et al.</i> (2012) Characterization of the antigen specificity of T-cell clones from	38 7	797	56.	El-Ghaiesh S, et al. (2012) Characterization of the antigen specificity of T-cell clones from
39 798 piperacillin-hypersensitive patients with cystic fibrosis. J Pharmacol Exp Ther 341(3):597-610.	39 7	798		piperacillin-hypersensitive patients with cystic fibrosis. J Pharmacol Exp Ther 341(3):597-610.
40 799 57. Yaseen FS, et al. (2015) Promiscuous T-cell responses to drugs and drug-haptens. J Allergy	40 7	799	57.	Yaseen FS, et al. (2015) Promiscuous T-cell responses to drugs and drug-haptens. J Allergy
⁴¹ 800 <i>Clin Immunol.</i>	41 ε	800		Clin Immunol.
42 801 58. Meng X, et al. (2017) Definition of the Nature and Hapten Threshold of the beta-Lactam	42 42 ε	801	58.	Meng X, et al. (2017) Definition of the Nature and Hapten Threshold of the beta-Lactam
Antigen Required for T Cell Activation In Vitro and in Patients. J Immunol 198(11):4217-4227.	43 11 E	802		Antigen Required for T Cell Activation In Vitro and in Patients. J Immunol 198(11):4217-4227.
45 803 59. Meng X, <i>et al.</i> (2011) Direct evidence for the formation of diastereoisomeric	45 E	803	59.	Meng X, et al. (2011) Direct evidence for the formation of diastereoisomeric
46 804 benzylpenicilloyl haptens from benzylpenicillin and benzylpenicillenic acid in patients. J	46 8	804		benzylpenicilloyl haptens from benzylpenicillin and benzylpenicillenic acid in patients. J
47 805 Pharmacol Exp Ther 338(3):841-849.	47 8	805		Pharmacol Exp Ther 338(3):841-849.
48 806 60. Whitaker P, et al. (2011) Mass Spectrometric Characterization of Circulating and Functional	48 E	806	60.	Whitaker P, et al. (2011) Mass Spectrometric Characterization of Circulating and Functional
49 807 Antigens Derived from Piperacillin in Patients with Cystic Fibrosis. <i>Journal of Immunology</i>	49 g	807		Antigens Derived from Piperacillin in Patients with Cystic Fibrosis. Journal of Immunology
⁵⁰ 808 187(1):200-211.	50 ε	808		187(1):200-211.
809 61. Beeler A, Zaccaria L, Kawabata T, Gerber BO, & Pichler WJ (2008) CD69 upregulation on T	51 8 52 8	809	61.	Beeler A, Zaccaria L, Kawabata T, Gerber BO, & Pichler WJ (2008) CD69 upregulation on T
52 810 cells as an in vitro marker for delayed-type drug hypersensitivity. <i>Allergy</i> 63(2):181-188.	53 8	810		cells as an in vitro marker for delayed-type drug hypersensitivity. <i>Allergy</i> 63(2):181-188.
811 62. Pichler WJ & Tilch J (2004) The lymphocyte transformation test in the diagnosis of drug	54 ⁸	811	62.	Pichler WJ & Tilch J (2004) The lymphocyte transformation test in the diagnosis of drug
55 812 hypersensitivity. <i>Allergy</i> 59(8):809-820.	55 8	812		hypersensitivity. <i>Allergy</i> 59(8):809-820.
56 813 63. Nyfeler B & Pichler WJ (1997) The lymphocyte transformation test for the diagnosis of drug	56 8	813	63.	Nyfeler B & Pichler WJ (1997) The lymphocyte transformation test for the diagnosis of drug
57 814 allergy: sensitivity and specificity. <i>Clin Exp Allergy</i> 27:175-181.	57 8	814		allergy: sensitivity and specificity. Clin Exp Allergy 27:175-181.
58 815 64. Zanni MP, et al. (1998) HLA-restricted, processing- and metabolism-independent pathway of	58 8	815	64.	Zanni MP, et al. (1998) HLA-restricted, processing- and metabolism-independent pathway of
drug recognition by human alpha beta T lymphocytes. <i>J Clin Invest</i> 102(8):1591-1598.	50 EC	816		drug recognition by human alpha beta T lymphocytes. <i>J Clin Invest</i> 102(8):1591-1598.

1 ว			
2 3	817	65	Schnyder B. Mauri-Hellweg D. Zanni M. Bettens F. & Pichler W.I. (1997) Direct. MHC-
4	818	05.	dependent presentation of the drug sulfamethoxazole to human alphabeta T cell clones.
5	819		Clin Invest 100(1):136-141
6	820	66.	Yun L <i>et al.</i> (2014) Oxynurinol directly and immediately activates the drug-specific T cells via
/ 0	821	00.	the preferential use of HLA-B*58:01. <i>J Immunol</i> 192(7):2984-2993.
9	822	67.	Wu Y, et al. (2006) Activation of T cells by carbamazepine and carbamazepine metabolites. J
10	823	-	Alleray Clin Immun 118(1):233-241.
11	824	68.	Naisbitt DJ, et al. (2003) Hypersensitivity reactions to carbamazepine: characterization of the
12	825		specificity, phenotype, and cytokine profile of drug-specific T cell clones. <i>Mol Pharmacol</i>
13	826		63(3):732-741.
14	827	69.	Adam J, et al. (2014) Abacavir induced T cell reactivity from drug naive individuals shares
15 16	828		features of allo-immune responses. <i>PLoS One</i> 9(4):e95339.
10	829	70.	Yaseen FS, et al. (2015) Promiscuous T-cell responses to drugs and drug-haptens. J Allergy
18	830		Clin Immunol 136(2):474-476 e478.
19	831	71.	Schnyder B, et al. (2000) Recognition of sulfamethoxazole and its reactive metabolites by
20	832		drug-specific CD4+ T cells from allergic individuals. <i>J Immunol</i> 164(12):6647-6654.
21	833	72.	Castrejon JL, et al. (2010) Stimulation of human T cells with sulfonamides and sulfonamide
22	834		metabolites. J Allergy Clin Immunol 125(2):411-418 e414.
23	835	73.	Wong IC, Mawer GE, & Sander JW (1999) Factors influencing the incidence of lamotrigine-
24 25	836		related skin rash. Ann Pharmacother 33(10):1037-1042.
26	837	74.	Gibson A, Ogese M, & Pirmohamed M (2018) Genetic and nongenetic factors that may
27	838		predispose individuals to allergic drug reactions. Curr Opin Allergy Clin Immunol 18(4):325-
28	839		332.
29	840	75.	Su SC, et al. (2019) HLA Alleles and CYP2C9*3 as Predictors of Phenytoin Hypersensitivity in
30	841		East Asians. Clin Pharmacol Ther 105(2):476-485.
31	842	76.	Hung SI, et al. (2010) Common risk allele in aromatic antiepileptic-drug induced Stevens-
2∠ 33	843		Johnson syndrome and toxic epidermal necrolysis in Han Chinese. Pharmacogenomics
34	844		11(3):349-356.
35	845	77.	Yun J, et al. (2013) Allopurinol hypersensitivity is primarily mediated by dose-dependent
36	846		oxypurinol-specific T cell response. <i>Clin Exp Allergy</i> 43(11):1246-1255.
37	847	78.	Chung WH, et al. (2015) Insights into the poor prognosis of allopurinol-induced severe
38	848		cutaneous adverse reactions: the impact of renal insufficiency, high plasma levels of
39	849		oxypurinol and granulysin. Ann Rheum Dis 74(12):2157-2164.
40 41	850	79.	Uetrecht J (2007) Idiosyncratic drug reactions: current understanding. Annu Rev Pharmacol
42	851		Toxicol 47:513-539.
43	852	80.	Lammert C, et al. (2008) Relationship between daily dose of oral medications and
44	853		idiosyncratic drug-induced liver injury: search for signals. <i>Hepatology</i> 47(6):2003-2009.
45	854	81.	Pirmonamed M, Ostrov DA, & Park BK (2015) New genetic findings lead the way to a better
46	855		understanding of fundamental mechanisms of drug hypersensitivity. J Allergy Clin Immunol
4/	856	02	136(2):236-244.
48 ⊿0	857	82.	Pavios R, et al. (2015) I cell-mediated hypersensitivity reactions to drugs. Annu Rev Med
50	858	02	00:439-454.
51	859	83.	Daly AK, et al. (2009) HLA-B*5701 genotype is a major determinant of drug-induced liver
52	800	04	(injury due to inucioxaciliii). Not Genet 41(7):810-819.
53	001	04.	
54	802 862	OF	428(0982).480. Zhang FR, et al. (2012) HIA R*12:01 and the dansone hypercensitivity syndrome. N Engl I
55	003 964	65.	And 260(17).1620_1628
50 57	004 865	26	NEW SUS(17), 1020-1020. McCormack M ρ t al. (2011) HIA-A*2101 and carbamazoning induced hyperconsitivity
58	866	00.	reactions in Europeans N Engl I Med 36/(12):113/-11/2
59	500		(actions in Europeans, n Engrs ined Sof(12), 1134-1143.
60			

1			
2			
3 ∕I	867	87.	Lucena MI, et al. (2011) Susceptibility to amoxicillin-clavulanate-induced liver injury is
	868		influenced by multiple HLA class I and II alleles. <i>Gastroenterology</i> 141(1):338-347.
6	869	88.	Lonjou C, et al. (2008) A European study of HLA-B in Stevens-Johnson syndrome and toxic
7	870		epidermal necrolysis related to five high-risk drugs. <i>Pharmacogenet Genomics</i> 18(2):99-107.
8	871	89.	Urban TJ, et al. (2017) Minocycline hepatotoxicity: Clinical characterization and identification
9	872		of HLA-B *35:02 as a risk factor. <i>J Hepatol</i> 67(1):137-144.
10	873	90.	Fontana RJ, et al. (2018) The role of HLA-A*33:01 in patients with cholestatic hepatitis
11	874		attributed to terbinafine. <i>J Hepatol</i> 69(6):1317-1325.
12	875	91.	Glanville J, et al. (2017) Identifying specificity groups in the T cell receptor repertoire. Nature
14	876		547(7661):94-98.
15	877	92.	Ko TM, et al. (2011) Shared and restricted T-cell receptor use is crucial for carbamazepine-
16	878		induced Stevens-Johnson syndrome. J Allergy Clin Immunol 128(6):1266-1276 e1211.
17	879	93.	Pan RY, et al. (2019) Identification of drug-specific public TCR driving severe cutaneous
18	880		adverse reactions. Nat Commun 10(1):3569.
19	881	94.	Schnyder B, Adam J, Rauch A, Thurnheer MC, & Pichler WJ (2013) HLA-B*57:01(+) abacavir-
20	882		naive individuals have specific T cells but no patch test reactivity. J Allergy Clin Immunol
21	883		132(3):756-758.
22	884	95.	Faulkner L, et al. (2012) The development of in vitro culture methods to characterize primary
24	885		T-cell responses to drugs. <i>Toxicol Sci</i> 127(1):150-158.
25	886	96.	Faulkner L, et al. (2016) Detection of Primary T Cell Responses to Drugs and Chemicals in
26	887		HLA-Typed Volunteers: Implications for the Prediction of Drug Immunogenicity. <i>Toxicol Sci</i>
27	888		154(2):416-429.
28	889	97.	Gibson A, et al. (2017) The Effect of Inhibitory Signals on the Priming of Drug Hapten-Specific
29	890		T Cells That Express Distinct Vbeta Receptors. <i>J Immunol</i> 199(4):1223-1237.
30	891	98.	Azoury ME, et al. (2018) Identification of T-cell epitopes from benzylpenicillin conjugated to
31 22	892		human serum albumin and implication in penicillin allergy. Allergy 73(8):1662-1672.
32	893	99.	Scornet N, et al. (2016) Bioinspired Design and Oriented Synthesis of Immunogenic Site-
34	894		Specifically Penicilloylated Peptides. <i>Bioconjug Chem</i> 27(11):2629-2645.
35	895	100.	Whitaker P, Naisbitt D, & Peckham D (2012) Nonimmediate beta-lactam reactions in patients
36	896		with cystic fibrosis. <i>Current Opinion in Allergy and Clinical Immunology</i> 12(4):369-375.
37	897	101.	Parmar JS & Nasser S (2005) Antibiotic allergy in cystic fibrosis. <i>Thorax</i> 60(6):517-520.
38	898	102.	Burrows JA, Toon M, & Bell SC (2003) Antibiotic desensitization in adults with cystic fibrosis.
39	899		Respirology 8(3):359-364.
40 41	900	103.	Usui T, et al. (2018) Application of in Vitro T Cell Assay Using Human Leukocyte Antigen-
41 12	901		Typed Healthy Donors for the Assessment of Drug Immunogenicity. Chem Res Toxicol
42	902		31(3):165-167.
44	903	104.	Wing K & Sakaguchi S (2010) Regulatory T cells exert checks and balances on self tolerance
45	904		and autoimmunity. <i>Nat Immunol</i> 11(1):7-13.
46	905	105.	Ishida Y, Agata Y, Shibahara K, & Honjo T (1992) Induced expression of PD-1, a novel member
47	906		of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J
48	907		11(11):3887-3895.
49	908	106.	Brunet JF, et al. (1987) A new member of the immunoglobulin superfamilyCTLA-4. Nature
50	909		328(6127):267-270.
51	910	107.	Ribas A & Wolchok JD (2018) Cancer immunotherapy using checkpoint blockade. Science
52	911		359(6382):1350-1355.
54	912	108.	Bennett CL, et al. (2001) The immune dysregulation, polyendocrinopathy, enteropathy, X-
55	913		linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 27(1):20-21.
56	914	109.	Todryk S, Jozwik A, de Havilland J, & Hester J (2019) Emerging Cellular Therapies: T Cells and
57	915		Beyond. <i>Cells</i> 8(3).
58	916	110.	Boussiotis VA (2016) Molecular and Biochemical Aspects of the PD-1 Checkpoint Pathway. N
59	917		Engl J Med 375(18):1767-1778.
60			

Page 33 of 73

1			
2			
4	918	111.	Teft WA, Kirchhof MG, & Madrenas J (2006) A molecular perspective of CTLA-4 function.
5	919	440	Annu Rev Immunol 24:65-97.
6	920	112.	Hastings WD, et al. (2009) TIM-3 is expressed on activated human CD4+ 1 cells and regulates
7	921	440	In1 and In17 cytokines. Eur J Immunol 39(9):2492-2501.
8	922	113.	Huang CT, et al. (2004) Role of LAG-3 in regulatory T cells. Immunity 21(4):503-513.
9	923	114.	Gibson A, et al. (2014) Negative regulation by PD-L1 during drug-specific priming of IL-22-
10	924		secreting I cells and the influence of PD-1 on effector I cell function. J Immunol
11	925		192(6):2611-2621.
13	926	115.	Ford M, Sahbudin I, Filer A, Steven N, & Fisher BA (2018) High proportion of drug
14	927		nypersensitivity reactions to suifasalazine following its use in anti-PD-1-associated
15	928		Inflammatory arthritis. Rheumatology (Oxford) 57(12):2244-2246.
16	929	116.	Phillips GS, et al. (2019) Treatment Outcomes of Immune-Related Cutaneous Adverse
17	930		Events. J Clin Uncol: JCU1802141.
18	931	117.	Unara H, Kiyonara Y, Isuda A, Takata M, & Yamazaki N (2018) Characteristics of adverse drug
19	932		reactions in a vemuratenib early post-marketing phase vigilance study in Japan. <i>Clin Transi</i>
20	933	440	
21	934	118.	Yamazaki N, et dl. (2015) Phase II study of Ipilimumab monotherapy in Japanese patients
23	935	110	with advanced melanoma. <i>Cancer Chemother Pharmacol</i> 76(5):997-1004.
24	936	119.	Yamazaki N, et dl. (2015) Phase II study of the Immune-checkpoint inhibitor ipilimumab plus
25	937		dacarbazine in Japanese patients with previously untreated, unresectable or metastatic
26	938	120	Melanoma. Cancer Chemother Pharmacol 76(5):969-975.
27	939	120.	Dancygler H, Runne U, Leuschner U, Milbraut R, & Classen M (1983) Dacarbazine (DTIC)-
28	940		Induced numan liver damage light and electron-microscopic lindings.
29	941	101	Hepatogastroenterology 30(3):93-95.
31	942	121.	Ferreira vasconcelos Livi, et di. (2018) Polymorphism of ILLO, IL4, CTLA4, and DAO Genes in
32	943		Cross-Reactive Nonsteroidal Anti-Inflammatory Drug Hypersensitivity. J Clin Pharmacol
33	944	177	36(1).107-115. de Oliveira Podrigues P. et al. (2017) Accessition of 11.10, 11.4, JENC, and CTLAA Cone
34	945	122.	Delymerphicms with Efavirona Hypersonsitivity Reaction in Patients Infected with Hyman
35	940 047		Immunodoficiones Virus, Inn Unfact Dis 70(4):420,426
36	0/2	172	Larkin L et al. (2015) Combined Nivolumah and Inilimumah or Monotherapy in Untreated
37 38	0/Q	125.	Melanoma N Engl I Med 373(1):23-34
39	950	12/	Sheng Let al. (2017) Clinical Pharmacology Considerations for the Development of Immune
40	951	127.	Checknoint Inhibitors I Clin Pharmacol 57 Suppl 10:S26-S42
41	952	125	Fernandez-Santamaria R <i>et al.</i> (2019) Expression of the Tim3-galectin-9 axis is altered in
42	953	125.	drug-induced maculonanular exanthema Alleray
43	954	126	Martin SE & Jakob T (2008) From innate to adaptive immune responses in contact
44	955	1201	hypersensitivity. Curr Opin Alleray Clin Immunol 8(4):289-293.
45 46	956	127.	Martin SF. et al. (2008) Toll-like receptor and IL-12 signaling control susceptibility to contact
40	957		hypersensitivity. J Exp Med 205(9):2151-2162.
48	958	128.	Weber FC. <i>et al.</i> (2010) Lack of the purinergic receptor P2X(7) results in resistance to contact
49	959		hypersensitivity. J Exp Med 207(12):2609-2619.
50	960	129.	Esser PR. <i>et al.</i> (2012) Contact Sensitizers Induce Skin Inflammation via ROS Production and
51	961		Hyaluronic Acid Degradation. <i>PLoS One</i> 7(7):e41340.
52	962	130.	Schmidt M, et al. (2010) Crucial role for human Toll-like receptor 4 in the development of
53	963		contact allergy to nickel. <i>Nat Immunol</i> 11(9):814-819.
54 55	964	131.	Gamradt P. <i>et al.</i> (2019) Inhibitory checkpoint receptors control CD8(+) resident memory T
56	965		cells to prevent skin allergy. J Allergy Clin Immunol 143(6):2147-2157 e2149.
57	966	132.	Metushi IG. et al. (2015) Development of a novel mouse model of amodiaguine-induced liver
58	967		injury with a delayed onset. J Immunotoxicol 12(3):247-260.
59			
60			

2			
3	968	133.	Mak A & Uetrecht J (2015) The Combination of Anti-CTLA-4 and PD1-/- Mice Unmasks the
4	969		Potential of Isoniazid and Nevirapine To Cause Liver Injury. Chem Res Toxicol 28(12):2287-
5	970		2291.
6 7	971	134.	Mak A & Uetrecht J (2015) The Role of CD8 T Cells in Amodiaguine-Induced Liver Injury in
7 8	972		PD1-/- Mice Cotreated with Anti-CTLA-4. Chem Res Toxicol 28(8):1567-1573.
9	973	135.	Metushi IG, Hayes MA, & Uetrecht J (2015) Treatment of PD-1(-/-) mice with amodiaguine
10	974		and anti-CTLA4 leads to liver injury similar to idiosyncratic liver injury in patients. <i>Hepatology</i>
11	975		61(4):1332-1342.
12	976	136.	Sakaguchi S, Sakaguchi N, Asano M, Itoh M, & Toda M (1995) Immunologic self-tolerance
13	977		maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a
14	978		single mechanism of self-tolerance causes various autoimmune diseases. J Immunol
15 16	979		155(3):1151-1164.
17	980	137.	Liu W, et al. (2006) CD127 expression inversely correlates with FoxP3 and suppressive
18	981		function of human CD4+ T reg cells. J Exp Med 203(7):1701-1711.
19	982	138.	Seddiki N, et al. (2006) Expression of interleukin (IL)-2 and IL-7 receptors discriminates
20	983		between human regulatory and activated T cells. <i>J Exp Med</i> 203(7):1693-1700.
21	984	139.	Togashi Y & Nishikawa H (2017) Regulatory T Cells: Molecular and Cellular Basis for
22	985		Immunoregulation. Curr Top Microbiol Immunol 410:3-27.
23 24	986	140.	Sakaguchi S, Miyara M, Costantino CM, & Hafler DA (2010) FOXP3+ regulatory T cells in the
2 4 25	987		human immune system. <i>Nat Rev Immunol</i> 10(7):490-500.
26	988	141.	Wing K, et al. (2008) CTLA-4 control over Foxp3+ regulatory T cell function. Science
27	989		322(5899):271-275.
28	990	142.	Ring S, Schafer SC, Mahnke K, Lehr HA, & Enk AH (2006) CD4+ CD25+ regulatory T cells
29	991		suppress contact hypersensitivity reactions by blocking influx of effector T cells into inflamed
30	992		tissue. Eur J Immunol 36(11):2981-2992.
31 32	993	143.	Vocanson M, et al. (2010) Inducible costimulator (ICOS) is a marker for highly suppressive
33	994		antigen-specific T cells sharing features of TH17/TH1 and regulatory T cells. J Allergy Clin
34	995		Immunol 126(2):280-289, 289 e281-287.
35	996	144.	Kish DD, Gorbachev AV, & Fairchild RL (2005) CD8+ T cells produce IL-2, which is required for
36	997		CD(4+)CD25+ T cell regulation of effector CD8+ T cell development for contact
37	998		hypersensitivity responses. J Leukoc Biol 78(3):725-735.
38	999	145.	Gomez de Aguero M, et al. (2012) Langerhans cells protect from allergic contact dermatitis
39 40	1000		in mice by tolerizing CD8(+) T cells and activating Foxp3(+) regulatory T cells. <i>J Clin Invest</i>
40 41	1001		
42	1002	146.	El Beidaq A, et al. (2016) In Vivo Expansion of Endogenous Regulatory I Cell Populations
43	1003		Induces Long-Term Suppression of Contact Hypersensitivity. J Immunol 197(5):1567-1576.
44	1004	147.	Cavani A, et al. (2003) Human CD25+ regulatory I cells maintain immune tolerance to nickel
45	1005	4.40	in healthy, nonallergic individuals. J Immunol 1/1(11):5760-5768.
46	1006	148.	vocanson M, et al. (2008) Depletion of numan peripheral blood lymphocytes in CD25+ cells
4/	1007		allows for the sensitive in vitro screening of contact allergens. J Invest Dermatol 128(8):2119-
40 ⊿0	1008	140	2122. Martin SE at $r/(2010)$ T call recognition of chamicale protein allergous and drugs towards
50	1009	149.	the development of in vitre access. Coll Mal Life Sci (7/24):4171, 4194
51	1010	150	the development of in vitro assays. <i>Cell Wol Life Sci</i> 67(24):4171-4184.
52	1011	150.	Gao L, et di. (2010) Polymorphisms in the POXP3 gene in Han Chinese psonasis patients. J
53	1012	151	Definition Sci 57 (1):51-50.
54	1015	151.	lovel of FOXP2 with prognesic of autoimmune thuroid diseases. <i>Clin Eva Immunel</i>
55	1014 1015		162(2)·402-406
50 57	1015	150	IUZ(J).4UZ-4UU. Gandhi R. et al. (2010) Activation of the and hydrocarbon recentor induces human type 1
58	1010	192.	regulatory T cell-like and F_{0} (2) regulatory T cells. Nat Immunol 11(0):946-952
59	101/		ירבמומנטי איד לכוו־ווגב מווע דטקאליין ובצעומנטי איד לכווא. ואטר ווווווטווטו דד(אוס מווע דטאאטיי) ובצעומנטי איד
60			

Page 35 of 73

1			
2		. – –	
4	1018	153.	Nadeau K, et al. (2010) Ambient air pollution impairs regulatory T-cell function in asthma. J
5	1019	. – .	Allergy Clin Immunol 126(4):845-852 e810.
6	1020	154.	Shiohara T, Kano Y, Takahashi R, Ishida T, & Mizukawa Y (2012) Drug-induced
7	1021		hypersensitivity syndrome: recent advances in the diagnosis, pathogenesis and
8	1022		management. Chem Immunol Allergy 97:122-138.
9	1023	155.	Takahashi R, et al. (2009) Defective regulatory T cells in patients with severe drug eruptions:
10	1024		timing of the dysfunction is associated with the pathological phenotype and outcome. J
11	1025	. – –	Immunol 182(12):8071-8079.
12	1026	156.	Wang CW, et al. (2018) Randomized, controlled trial of TNF-alpha antagonist in CTL-
14	1027		mediated severe cutaneous adverse reactions. <i>J Clin Invest</i> 128(3):985-996.
15	1028	157.	Ushigome Y, et al. (2018) Monocytes are involved in the balance between regulatory T cells
16	1029		and Th17 cells in severe drug eruptions. <i>Clin Exp Allergy</i> 48(11):1453-1463.
17	1030	158.	Morito H, et al. (2014) Increased ratio of FoxP3+ regulatory T cells/CD3+ T cells in skin
18	1031		lesions in drug-induced hypersensitivity syndrome/drug rash with eosinophilia and systemic
19	1032		symptoms. Clin Exp Dermatol 39(3):284-291.
20	1033	159.	Hanafusa T, Azukizawa H, Matsumura S, & Katayama I (2012) The predominant drug-specific
21 22	1034		T-cell population may switch from cytotoxic T cells to regulatory T cells during the course of
22	1035		anticonvulsant-induced hypersensitivity. <i>J Dermatol Sci</i> 65(3):213-219.
24	1036	160.	Cardone M, et al. (2018) A transgenic mouse model for HLA-B*57:01-linked abacavir drug
25	1037		tolerance and reactivity. J Clin Invest 128(7):2819-2832.
26	1038	161.	Curtsinger JM & Mescher MF (2010) Inflammatory cytokines as a third signal for T cell
27	1039		activation. Curr Opin Immunol 22(3):333-340.
28	1040	162.	Curtsinger JM, Lins DC, & Mescher MF (2003) Signal 3 determines tolerance versus full
29	1041		activation of naive CD8 T cells: dissociating proliferation and development of effector
30 21	1042		function. J Exp Med 197(9):1141-1151.
21 22	1043	163.	Talaat RM, Mohamed SF, Bassyouni IH, & Raouf AA (2015) Th1/Th2/Th17/Treg cytokine
33	1044		imbalance in systemic lupus erythematosus (SLE) patients: Correlation with disease activity.
34	1045		Cytokine 72(2):146-153.
35	1046	164.	Guan Q & Zhang J (2017) Recent Advances: The Imbalance of Cytokines in the Pathogenesis
36	1047		of Inflammatory Bowel Disease. <i>Mediators Inflamm</i> 2017:4810258.
37	1048	165.	Arend WP (2001) Cytokine imbalance in the pathogenesis of rheumatoid arthritis: the role of
38	1049		interleukin-1 receptor antagonist. Semin Arthritis Rheum 30(5 Suppl 2):1-6.
39	1050	166.	Bayard PJ, Berger TG, & Jacobson MA (1992) Drug hypersensitivity reactions and human
40 //1	1051		immunodeficiency virus disease. J Acquir Immune Defic Syndr 5:1237-1257.
42	1052	167.	Clerici M & Shearer GM (1993) A TH1>TH2 switch is a critical step in the etiology of HIV
43	1053		infection. Immunol Today 14(3):107-111.
44	1054	168.	Bonfield TL, Konstan MW, & Berger M (1999) Altered respiratory epithelial cell cytokine
45	1055		production in cystic fibrosis. J Allergy Clin Immunol 104(1):72-78.
46	1056	169.	Bonfield TL, et al. (1995) Inflammatory cytokines in cystic fibrosis lungs. Am J Respir Crit Care
47	1057		<i>Med</i> 152(6 Pt 1):2111-2118.
48	1058	170.	Scambler T, Holbrook J, Savic S, McDermott MF, & Peckham D (2018) Autoinflammatory
49 50	1059		disease in the lung. Immunology.
50	1060	171.	Chessman D, et al. (2008) Human leukocyte antigen class I-restricted activation of CD8+ T
52	1061		cells provides the immunogenetic basis of a systemic drug hypersensitivity. <i>Immunity</i>
52			28(6):822-832.
55	1062		
54	1062 1063	172.	Walsh JS, Reese MJ, & Thurmond LM (2002) The metabolic activation of abacavir by human
54 55	1062 1063 1064	172.	Walsh JS, Reese MJ, & Thurmond LM (2002) The metabolic activation of abacavir by human liver cytosol and expressed human alcohol dehydrogenase isozymes. <i>Chem Biol Interact</i>
54 55 56	1062 1063 1064 1065	172.	Walsh JS, Reese MJ, & Thurmond LM (2002) The metabolic activation of abacavir by human liver cytosol and expressed human alcohol dehydrogenase isozymes. <i>Chem Biol Interact</i> 142(1-2):135-154.
54 55 56 57	1062 1063 1064 1065 1066	172. 173.	 Walsh JS, Reese MJ, & Thurmond LM (2002) The metabolic activation of abacavir by human liver cytosol and expressed human alcohol dehydrogenase isozymes. <i>Chem Biol Interact</i> 142(1-2):135-154. Wu Y, <i>et al.</i> (2006) Activation of T cells by carbamazepine and carbamazepine metabolites. <i>J</i>
54 55 56 57 58	1062 1063 1064 1065 1066 1067	172. 173.	 Walsh JS, Reese MJ, & Thurmond LM (2002) The metabolic activation of abacavir by human liver cytosol and expressed human alcohol dehydrogenase isozymes. <i>Chem Biol Interact</i> 142(1-2):135-154. Wu Y, et al. (2006) Activation of T cells by carbamazepine and carbamazepine metabolites. <i>J Allergy Clin Immunol</i> 118(1):233-241.
1 2			
----------	------	------	--
2	1069	174	Wei CV, Chung WH, Huang HW, Chen VT, & Hung SI (2012) Direct interaction between HIA P
4	1060	1/4.	and carbamazoning activator T colls in patients with Stovens Johnson syndrome. J Allergy
5	1009		<i>Clin Immunol</i> 120(6):1562 1560 o1565
6	1070	175	Cilli IIIIIIIIIIII 129(0).1502-1509 E1505.
7	1071	175.	H. The role of human sytechrome D4E0 ensumes in the formation of 2 hydrowyiminactilhane
8	1072		II. The fole of human cytochrome P450 enzymes in the formation of 2-hydroxyimmostibene.
9 10	1075	176	Diug Melub Dispus 55(12).1619-1620.
10	1074	170.	vitre L Characterization of human autochromes DAEO responsible for the formation of 2 and
12	1075		2 hudrowieted metabolites. Drug Metab Dianes 20(11):1170-1170
13	1076	177	3-hydroxylated metabolites. <i>Drug Metab Dispos</i> 30(11):11/0-11/9.
14	1077	1//.	Chen W1, et al. (2018) The Function of HLA-B 13:01 involved in the Pathomechanism of
15	1078	170	Dapsone-Induced Severe Cultaneous Adverse Reactions. J Invest Dermator 138(7):1546-1554.
16	1079	1/8.	vyas Pivi, Roychowdhury S, & Svensson CK (2006) Role of human cyclooxygenase-2 in the
17	1080	470	bioactivation of dapsone and suitamethoxazole. <i>Drug Nietab Dispos</i> 34(1):16-18.
18	1081	179.	Roychowdhury S, Vyas PM, Reilly TP, Gaspari AA, & Svensson CK (2005) Characterization of
19	1082		the formation and localization of sulfamethoxazole and dapsone-associated drug-protein
20 21	1083		adducts in human epidermal keratinocytes. J Pharmacol Exp Ther 314(1):43-52.
21	1084	180.	Cribb AE, Spielberg SP, & Griffin GP (1995) N4-hydroxylation of sulfamethoxazole by
22	1085		cytochrome P450 of the cytochrome P4502C subfamily and reduction of sulfamethoxazole
24	1086		hydroxylamine in human and rat hepatic microsomes. Drug Metab Dispos 23(3):406-414.
25	1087	181.	Mannargudi B, McNally D, Reynolds W, & Uetrecht J (2009) Bioactivation of minocycline to
26	1088		reactive intermediates by myeloperoxidase, horseradish peroxidase, and hepatic
27	1089		microsomes: implications for minocycline-induced lupus and hepatitis. Drug Metab Dispos
28	1090		37(9):1806-1818.
29	1091	182.	Iverson SL & Uetrecht JP (2001) Identification of a reactive metabolite of terbinafine: insights
30	1092		into terbinafine-induced hepatotoxicity. <i>Chem Res Toxicol</i> 14(2):175-181.
31 22	1093	183.	Nicoletti P, et al. (2017) Association of Liver Injury From Specific Drugs, or Groups of Drugs,
32	1094		With Polymorphisms in HLA and Other Genes in a Genome-Wide Association Study.
34	1095		Gastroenterology 152(5):1078-1089.
35	1096	184.	Usui T, et al. (2018) HLA-A*33:03-Restricted Activation of Ticlopidine-Specific T-Cells from
36	1097		Human Donors. Chem Res Toxicol 31(10):1022-1024.
37	1098	185.	Liu ZC & Uetrecht JP (2000) Metabolism of ticlopidine by activated neutrophils: implications
38	1099		for ticlopidine-induced agranulocytosis. Drug Metab Dispos 28(7):726-730.
39	1100	186.	Konvinse KC, et al. (2019) HLA-A*32:01 is strongly associated with vancomycin-induced drug
40	1101		reaction with eosinophilia and systemic symptoms. J Allergy Clin Immunol 144(1):183-192.
41	1102		
42 13	1102		
44			
45			
46			
47			
48			
49			
50			
51 52			
52 52			
54			
55			
56			

1 2		
3	1	Immune dysregulation increases the incidence of delayed-type drug hypersensitivity reactions
4 5		
6	2	
7 8 9	3	Short title: Regulatory pathways and drug hypersensitivity
10 11	4	
12 13	5	Authors: Dean J Naisbitt,* Anna Olsson-Brown, Andrew Gibson, Xiaoli Meng, Monday O Ogese, Arun
14 15	6	Tailor & Paul Thomson
16 17	7	Address: MRC Centre for Drug Safety Science, Department of Clinical and Molecular Pharmacology,
18 19	8	Sherrington Building, Ashton Street, The University of Liverpool, Liverpool, L69 3GE.
20 21 22	9	*Correspondence: Professor Dean J. Naisbitt (The University of Liverpool, Liverpool, England
23	10	[Telephone, 0044 151 7945346; e-mail, dnes@liv.ac.uk]).
24 25 26	11	
27 28	12	Conflict of Interest Statement: The authors declare no conflicts of interest.
29 30	13	Key words: Drug hypersensitivity, HLA, immune regulation.
31 32	14	Word count: 5679
33 34	15	Authorship: All authors have made substantial contributions to the development of the review and
35 36	16	writing the review and assessment of the final article. Each author agrees to be accountable for all
37	17	aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the
38 39	18	work are appropriately investigated and resolved.
40 41		
42		
43		
44 45		
46		
47		
48		
49 50		
51		
52		
53		
54 55		
55 56		
57		
58		
59 60		
50		

Abstract: Delayed-type, T-cell mediated, drug hypersensitivity reactions are a serious unwanted manifestation of drug exposure that develops in a small percentage of the human population. Drugs and drug metabolites are known to interact directly and indirectly (through irreversible protein binding and processing to the derived adducts) with HLA proteins that present the drug-peptide complex to T-cells. Multiple forms of drug hypersensitivity are strongly linked to expression of a single HLA allele and there is increasing evidence that drugs and peptides interact selectively with the protein encoded by the HLA allele. Despite this, many individuals expressing HLA risk alleles do not develop hypersensitivity when exposed to culprit drugs suggesting a non-linear, multifactorial relationship in which HLA risk alleles are one factor. This has prompted a search for additional susceptibility factors. Herein, we argue that immune regulatory pathways are one key determinant of susceptibility. As expression and activity of these pathways is influenced by disease, environmental and patient factors, it is currently impossible to predict whether drug exposure will result in a health benefit, hypersensitivity or both. Thus, a concerted effort is required to investigate how immune dysregulation influences susceptibility towards drug hypersensitivity.

Ce Review

Introduction

Drug hypersensitivity refers to objectively reproducible symptoms or signs initiated by exposure to a drug at a dose normally tolerated by non-hypersensitive persons (1). Hypersensitivity is also commonly referred to as a form of off-target toxicity, which means that the development of tissue injury is not predictable from known pharmacology of the drug and there is no simple association between the dose of the drug administrated and the development of clinical signs and symptoms. Delayed-type reactions vary in severity and can target individual organs such as liver and skin in isolation or as part of a generalized hypersensitivity syndrome. Common to the cellular pathophysiology of drug hypersensitivity is the presence of drug-specific T-lymphocytes in blood and inflamed tissue (2-4). In fact, cutaneous hypersensitivity reactions (maculopapular, pustular, and bullous) are classified according the effector molecules secreted by T-cells when activated with drugs (5, 6).

In 2002, Mallal et al. reported a strong association between the presence of HLA-B*57:01, HLA-DR7, and HLA-DQ3 and hypersensitivity to the HIV-1 reverse-transcriptase inhibitor abacavir (7). Subsequent studies demonstrated that (i) all skin test confirmed cases of abacavir hypersensitivity carry HLA-B*57:01 (8), (ii) abacavir interacts selectively with high affinity within the HLA-B57:01 peptide binding cleft through non-covalent interactions (9-11), and (iii) abacavir only activates CD8+ T-cells (12-14). It is important to note that the abacavir association differs from all other forms of HLA-linked hypersensitivity reaction. For example, drug-responsive CD4+ and CD8+ T-cells are observed in patients hypersensitive to drugs such as carbamazepine, dapsone, flucloxacillin who express the relevant HLA class I risk alleles, B*15:02, B*13:01 and B*57:01, respectively (15-17). These data indicate that although there is a preference for drug (parent drug, metabolite) peptide complex HLA T-cell receptor binding in patients, binding interactions are generally heterogeneous and this contributes to the complete adaptive drug-specific T-cell response. Throughout this manuscript we discuss the different forms of drug HLA interaction in detail highlighting similarities and differences in pathways that lead to T-cell activation. However, we subsequently use the general term "drug peptide complex" where appropriate to refer to any drug-derived structure that interacts with HLA proteins and T-cell receptors to trigger T-cell activation. This is because the formation of an HLA, drug, peptide and T-cell receptor complex is necessary for all pathways of T-cell activation. It is simply the nature of the complex and form of binding interaction that differs. As the number of associations between drug hypersensitivity and HLA allele expression increases (18-20), it is important to consider the additional patient factors that confer susceptibility. This is of particular importance because not all patients expressing a risk HLA are susceptible, while many patients lacking known risk alleles go on to develop hypersensitivity when exposed to culprit drugs.

Three factors are critical for the activation of T-cells with drugs; exposure to a drug peptide complex, the availability of a T-cell repertoire for a drug peptide complex and a protein encoded by HLA alleles for drug peptide complex binding. The argument is presented that although each factor detailed above is critical for drug immunogenicity; separately or together, they cannot be used to predict patient outcome following drug exposure. We hypothesize that when each factor is present, active immune regulatory pathways (co-inhibitory receptors, Tregs, cytokines) are key determinants of whether drug exposure will result in hypersensitivity. Since expression and activity of these regulatory pathways are altered by disease, the genetic make-up of the host and environmental factors, it is currently impossible to predict whether drug exposure will result in a health benefit, hypersensitivity or both (Figure 1).

Different manifestations of drug hypersensitivity

Drug-induced cutaneous reactions: Although skin rashes are common forms of drug hypersensitivity, serious and life-threatening reactions develop much less frequently. Examples of serious cutaneous hypersensitivity reactions include Stevens-Johnson syndrome, toxic epidermal necrolysis and drug reaction with eosinophilia and systemic symptoms (DRESS). Although less serious than the conditions listed above, acute generalised exanthematous pustulosis and maculopapular exanthema are also important adverse drug reactions. A broad spectrum of different drugs may cause cutaneous reactions including the sulfonamides, allopurinol, carbamazepine, dapsone and many of the penicillins (21-24). Although there is some degree of pathophysiological overlap, there are some clinically defining features for each type of severe cutaneous adverse drug reaction and these are briefly discussed below.

The most common skin manifestation is maculopapular exanthema which accounts for approximately 95% of all cutaneous reactions (25). These are reported as eruptions starting on the trunk and upper extremities and progressively become more prevalent. These reactions are not life-threatening and almost always often subside even with when the continued dosing with the culprit drug has been withdrawn (26). Antibiotics and a number of tuberculosis medications such as rifampicin, isoniazid, pyrazinamide and ethambutol are common causes of maculopapular exanthema (27).

Acute generalised exanthematous pustulosis represents a more severe, usually drug-related skin reaction characterised by the presence of sterile pustules on an erythematous surface along with fever and neutropenia neutrophilia in a patient. Furthermore, the involvement of activated neutrophils along with excessive production of cytokines IL-8 and IL-17 is characteristic of acute generalised

Allergy

exanthematous pustulosis, stimulating the recruitment to tissues and the induction of innate immuneresponses (28).

DRESS is a severe skin reaction with an incidence of between 1:1000 and 1:10000 in patients exposed to culprit drugs such as anticonvulsants, antimicrobials and antivirals (29). The reaction is characterised by skin eruptions, fever as well as symptoms in other organs, such as hepatitis, nephritis and thyroiditis (30). DRESS has been shown to be regulated by the cellular actions of eosinophils mediated via the secretion of IL-5 from drug-specific T-cells (31). Furthermore DRESS is often associated with reactivation of several viruses, including HHV-6, CMV and EBV (32) (33).

Stevens-Johnson syndrome and toxic epidermal necrolysis define increasing degrees of severity of the same skin disease and are often grouped together. The disease involves the mucosal membranes including the eyes, mouth and genitals (30). The level of skin detachment can be used to categorise the severity of the reaction. The clinical definition of Stevens-Johnson syndrome is when the detachment of epidermal sheets remains on small areas and occurs on less than 10% of the body surface area. Stevens-Johnson syndrome/toxic epidermal necrolysis overlap is when this value is between 10-30% and toxic epidermal necrolysis patients experience large sheets of skin detachment exceeding 30% of the body surface area (34).

Drug-induced liver injury: The liver is the largest organ in humans; it is the major organ responsible for the metabolism and detoxification of drugs. Hepatocytes (parenchymal cells) make up about 85% of the liver while non-parenchymal cells, including liver sinusoidal endothelial cells, hepatic stellate cells, Kupffer cells and biliary epithelial cells make up the remaining 15% and play important roles in maintaining the homeostasis of the liver. Drug-induced liver injury is a major reason for drug attrition and withdrawal of drugs in clinical trials or drugs already licenced for clinical use (35). Worldwide, the estimated annual incidence rate of drug-induced liver injury is 0.02% (36, 37). Hoofnagle and Björnsson have recently classified drug-induced liver injury into three categories (direct, indirect and idiosyncratic) according to frequency, predictability and reaction mechanisms (38). Direct liver injury is common and occurs rapidly when drugs are given at high doses (e.g., paracetamol). Indirect liver injury has an intermediate frequency, is partially predictable and occurs as an indirect action of the drug on liver or the immune system (e.g., monoclonal antibodies). Finally, idiosyncratic liver injury occurs in only a small number of individuals, is not predictable and involves activation of the patients adaptive immune system. -and tThe mean onset of idiosyncratic liver injury tissue damage with certain drugs exceeds 100 days (39). Amoxicillin, clavulanic acid, NSAIDS, flucloxacillin, lapatinib, lumiracoxib, ximelagatran among other drugs have been implicated with various degrees of unpredictable/idiosyncratic liver injury. Several

forms of drug-induced liver injury are strongly associated with expression of specific HLA alleles (40).
This, alongside the delayed onset of clinical symptoms, is indicative of pathogenesis involving drug<u>specific T-cells</u>the adaptive immune system. Recent studies have identified and characterized drugresponsive CD4+ and CD8+ T-cells from the peripheral blood of patients with tuberculosis medicine-,
co-amoxiclav- and flucloxacillin-induced liver injury (41-43). Furthermore, T-cells infiltrate-have been
shown to infiltrate liver and kill hepatocytes through the release of cytolytic molecules (44, 45).

Drug induced hematologic disorders: Agranulocytosis, aplastic anaemia, megaloblastic anaemia and thrombocytopenia are major forms of drug-induced hematologic disorders. Drugs can directly target progenitor cells in the bone marrow or peripheral blood cells in the systemic circulation (46, 47). These adverse drug reactions are rare but can result in significant mortality. Various classes of drugs have been linked with drug-induced hematologic disorders. Examples include antibacterial, anti-inflammatory, antithyroid, antimalarial, antiepileptic, antidepressant and antipsychotic drugs. Similar to skin and liver reactions, drug-induced hematologic disorders can unpredictable. Genome wide association studies have linked some variants of HLA-DQB1 and HLA-B allele to clozapine-induced agranulocytosis providing evidence for an immune pathogenesis. There is also evidence to suggest that drugs which cause hematologic disorders can activate (i) inflammasomes, (ii) B-cells to produce anti-drug antibodies and (iii) cytotoxic T-cells ((48-50) unpublished data).

³⁵ 152 Does drug exposure impact on susceptibility to hypersensitivity?

For this discussion, we assume that the initiating event for T-cell activation is either a drug or drug metabolite binding directly to the HLA T-cell receptor complex (through either covalent or non-covalent binding) or a drug or drug metabolite binding indirectly to non-HLA proteins (through covalent binding; the HLA binding epitope being a peptide derived from the modified protein, which may or may not contain the drug moiety).

In consideration of the latter first, most research has been conducted on biological samples from patients with β -lactam hypersensitivity. For adduct formation, the β -lactam ring is targeted by lysine residues. Nucleophilic attack leads to ring opening and binding of the penicilloyl group to the lysine residue (51). β -lactam antibiotics modify serum proteins such as serum albumin and multiple intracellular proteins (52-56). Protein adducts are transported to antigen presenting cells via exosomal transport (55, 57) and β -lactam-modified protein and peptide adducts have been shown to activate patient T-cells (15, 58-62). Importantly, these adducts are formed in all drug exposed patients (53, 63-65), those who develop skin and liver reactions as well as those that safely tolerate the drug. Moreover, through the synthesis of β -lactam-modified peptides as standards for mass spectrometric

analysis, Meng et al (63) were able to quantify and compare the level of drug albumin binding in hypersensitive and tolerant patients. No clear differences in the level of β -lactam antibiotic lysine modification was detected between the two patient groups, and importantly, the level of modification in all patients exceeded the threshold required for activation of β -lactam antibiotic-responsive T-cells. Obviously, additional studies are required to explore whether hapten thresholds are exceeded in patients receiving others β -lactam antibiotics and hapteneic drug metabolites. However, currently available data suggests that although the formation of drug protein adducts may be an important, if not critical factor for drug immunogenicity, the level of therapeutic drug exposure does not seem to be a key determinant of patient outcome. One way to confirm this would be a detailed comparison of the incidence of hypersensitivity reactions in patients receiving higher and lower β -lactam doses or longer and shorter treatment courses, as long as this doesn't impact on clinical care.

An assortment of drug structures activate T-cells through a direct non-covalent interaction with HLA and/or specific T-cell receptors. The p-I concept has been coined to explain this phenomenon and differentiate this pathway of T-cell activation from the hapten concept. A number of pieces of experimental evidence support this direct binding concept: first, the addition of parent drug to human immune cell culture systems that express low levels of drug metabolizing enzymes leads to a T-cell response characterized by proliferation and cytokine and cytolytic molecule release (66-68); second, inhibition of protein processing within antigen presenting cells, which blocks T-cell responses to protein antigens has no effect on the activation of T-cells with drugs (69, 70); and third, the kinetics of T-cell activation with drugs is rapid, within minutes (14, 71), which is in stark contrast to classical antigen presentation pathways that require several hours. Many drugs have been shown to activate T-cells from hypersensitive patients via this pathway, including sulfamethoxazole (70), carbamazepine (72, 73) and allopurinol (71). However, with the exception of abacavir, the nature of the drug peptide HLA T-cell receptor interaction is yet to be defined. The selective interaction of abacavir with HLA-B*57:01 alters the spatial arrangement of molecules within the peptide binding groove. This results in the display of novel "altered" HLA-B*57:01 peptide sequences that seemingly go on to stimulate T-cells that bring about abacavir hypersensitivity (9-11, 74). Adam et al. (74) demonstrated that abacavir-responsive T-cells stemming from naïve and memory compartments are detectable in 100% of donors expressing HLA-B*57:01. This led the authors to suggest that abacavir T-cell reactivity by-passes normal co-stimulatory/regulatory requirements. However, we draw readers attention to the fact that it has not been possible to explain why only half of HLA-B*57:01+ donors (who all possess abacavir-responsive T-cells) exposed to abacavir develop hypersensitivity. It should also be noted that p-I- and hapten-responsive T-cells are not always detected in isolation. For the β -lactam antibiotics

200 (60, 75) and sulfonamides/sulfones (17, 76, 77), the only drug exemplars studied to date, drug p-i- and
 201 hapten-responsive T-cells are found together.

Drugs administered at a high mass dose more frequently cause hypersensitivity reactions, when compared with drugs administered at lower doses (78). However, in humans, individual drugs tend to be administered at similar doses using dosing regimens directed to achieve drug concentrations within a therapeutic window for a sustained duration of time. Humans are therefore exposed to similar plasma concentrations of the parent drug. A handful of studies describe associations between metabolism (increased production of metabolite or increased exposure to parent drug) and the incidence of drug hypersensitivity reactions (79). For example, CYP2C9*3, which decreases phenytoin clearance is associated with an increased occurrence of anticonvulsant hypersensitivity (80, 81). Similarly, impaired renal function and increased plasma levels of oxypurinol (the metabolite that drives T-cell responses in hypersensitive patients (82)) correlate with the poor prognosis of allopurinol-induced severe cutaneous hypersensitivity reactions (83). However, these findings seem to be an exception, rather than a rule, as few other studies have reported associations between drug disposition and hypersensitivity.

It is clear that a threshold level of drug exposure must be surpassed for the activation of T-cells. In agreement with this, most drugs that have been withdrawn from the market or have received black box warnings due to liver injury are administered at daily doses greater than 50 mg per day (84, 85). However, it is difficult to argue susceptibility to drug hypersensitivity is solely dependent upon plasma drug concentrations or the drug concentration at the site of T-cell activation. The vast majority of patients tolerate therapeutics drug concentrations with little or no adverse effects. Thus, for the purpose of this review we argue that everyone taking medicinal drugs may be exposed to therapeutic concentrations that are capable of forming HLA drug peptide complexes and delivering them to T-cells.

45 224

Does the display of drug peptide complexes by human leukocyte antigen proteins impact on susceptibility to hypersensitivity?

A plethora of studies, starting with abacavir discussed above, have identified astonishingly strong associations between HLA class I alleles and susceptibility to drug hypersensitivity reactions, which implies a direct effect of the gene product on the disease (86, 87) (Table 1 shows several HLA class I allele-associated drug hypersensitivity reactions with known drug peptide complex HLA binding interactions for T-cell activation). This suggests that mechanistically, restriction of the fit of the drug and peptide into HLA proteins is important for T-cell activation. HLA-B*57:01, which is associated with

Page 45 of 73

Allergy

abacavir hypersensitivity, has a positive predictive value of 55 % and a negative predictive value of 100 % (8). This means that only individuals carrying the allele are at risk and 1 out of 2 carriers develop hypersensitivity following abacavir exposure. Genetic screening prior to abacavir use is routine practice and eradicates the appearance of hypersensitivity. Other forms of HLA class I associated hypersensitivity (e.g., flucloxacillin [HLA-B*57:01] (88), allopurinol [HLA-B*58:01] (21), carbamazepine [HLA-B*15:02] (89) and dapsone [HLA-B*13:01] (90)) display similar negative predictive values (99-100%) in specific patient groups; however, the positive predictive value is much lower. This suggests that the HLA allele is essential for drug peptide complex display, but other factors determine whether drug exposure results in a T-cell response and hypersensitivity. In a final group of HLA class I associated reactions (e.g., carbamazepine [HLA-A*31:01] (91), co-amoxiclav [HLA-A*02:01] (92), sulfamethoxazole [HLA-B*38:02] (93), minocycline [HLA-B*35:02] (94) and terbinafine [HLA-A*33:01] (95)), the carrier frequency in hypersensitive patients is 50% or lower. Thus, in these reactions, the drug-peptide complex is displayed by a number of different HLA proteins to activate T-cells. Additional forms of drug hypersensitivity are (i) linked to expression of HLA class II allele(s) or (ii) not known to be associated with expression of a specific HLA allele despite the fact that drug-specific CD4+ and CD8+ T-cells are detectable. Importantly, it has not been possible to show that selective drug peptide complex binding to HLA class II proteins, identified as risk factors, leads to the activation of CD4+ T-cells (authors unpublished data).

Drug-peptide complex HLA protein binding is without doubt critical for the development of drug immunogenicity; however, from the above discussion it is clear that for most HLA allele associated reactions, expression of the HLA protein alone does not determine whether drug exposure will result in hypersensitivity.

Does expression of specific T-cell receptors impact on susceptibility to hypersensitivity?

Advances in high-throughput sequencing technologies has enabled the detailed analysis of global T-cell repertoires in patients with and without immunological diseases. Glanville et al. (96) recently defined the minimal requirements for T-cell receptor specificity through an analysis of T-cell receptor sequences using a panel of HLA binding peptides. Focussing on 5711 T-cell receptor V β chain sequences from CD4+T-cells derived from 22 donors with mycobacterium tuberculosis, they identified 141 T-cell receptor specificity groups including 16 groups containing T-cell receptors from at least 3-4 individuals with shared alleles. The T-cell receptors shared HLA alleles from different donors for shared peptide presentation. These data indicate that a diverse array T-cell receptor sequences are available in any individual that interact with peptide ligands from a single protein antigen. Similar technologies

should be applied to the study of drug hypersensitivity to explore whether shared drug peptide
complex specificity clusters are present across different donors and whether this correlates with
disease.

Our knowledge of how T-cell receptor sequences impact on drug hypersensitivity is in its infancy. Through global expression level analysis and assessment of the third complementary-determining region length distribution of the T-cell receptor profile in patients with carbamazepine-induced Stevens-Johnson syndrome, Ko et al. (97) identified VB-11-ISGSY as a dominant clonotype shared amongst different hypersensitive, but not drug-tolerant, donors. Furthermore, carbamazepine-specific cytotoxic T-cells could be primed from PBMC of healthy human donors that were carriers of both HLA-B*15:02 and VB-11-IsGSY. More recently, the same group working on the same patient cohort reported the detection of a public T-cell receptor composed of paired TCRa CDR3 "VFDNTDKLI" and TCR^β CDR3 "ASSLAGELF" clonotypes and that similar receptor clusters are found in the blister fluid cells and peripheral blood (98). These data suggest that the correct combination of HLA, drug peptide complex and T-cell receptor may be important drivers for carbamazepine-induced Stevens-Johnson syndrome. Unpublished data analysing blister fluid from a different cohort of patients with Stevens Johnson syndrome after administration of multiple drugs also show an enrichment of T-cells that display a selective repertoire of T-cell receptor sequences at the most early phase of the adverse event (Vocanson, personal communication). However, the T-cell receptor identified differs across patients, even those exposed to the same culprit drug. Moreover, a dominant clonotype was not detected in all patients.

The proposal that susceptibility to drug hypersensitivity relates to expression of a single T-cell clonotype contrasts with published literature showing the polyclonal expansion of T-cells by certain drugs. Abacavir, which interacts non-covalently with HLA-B*57:01, activates T-cells in 100% of human donors that carry the risk allele (even though only half develop hypersensitivity when exposed to abacavir) (99). Analysis of T-cell receptors expressed on abacavir-responsive T-cells did not reveal skewed patterns (9). This is consistent with abacavir activating an array of different T-cell receptors. Similarly, nitroso sulfamethoxazole, a cysteine-reactive metabolite of sulfamethoxazole has been shown to prime naïve CD4+ and CD8+ T-cells from 59/60 healthy human donors (100, 101). Spectratyping revealed that nitroso-sulfamethoxazole-specific T-cell responses were controlled by public T-cell receptors present in all individuals alongside private T-cell repertoires specific to each individual (102). Finally, elegant studies by Azoury et al. (103, 104) utilized immunodominant β -lactam-modified peptides derived from albumin to calculate the frequency of naïve CD4+ T-cells that recognize the drug peptide complex. The haptenated peptides were recognized by naïve T-cells from 13/14 human donors.

Page 47 of 73

Allergy

These data, although utilizing a limited number of drugs, cover three forms of drug HLA binding derivative (parent drug, drug metabolite and haptenated peptide) and show that PBMC from each and every one of us contain naïve T-cells capable of recognizing and responding to drugs. Although certain HLA drug peptide complexes may associate preferentially with specific T-cell receptors and this may impact on the development of hypersensitivity: as has been described with HLA-B*15:02 and patients with carbamazepine-induced Stevens Johnson syndrome. It needs to be emphasized that the Caucasian population very rarely express HLA-B*15:02; they do however still develop carbamazepine hypersensitivity. The only explanation for this is that carbamazepine interacts with multiple HLA proteins and T-cell receptors to bring about hypersensitivity reactions.

To summarize the discussion thus far, most, if not all, drug-treated patients have a T-cell repertoire for drug peptide complexes and are exposed to drugs in sufficient quantities to activate the T-cells. Although expression of a specific HLA protein is important, for many forms of hypersensitivity, HLA risk allele expression per se does not predict the outcome of drug exposure. Therefore, for the remainder of this article we focus on the hypothesis that immune regulatory pathways are key determinants of whether drug exposure in genetically predisposed individuals will result in hypersensitivity. Figure 2 illustrates that drug exposure, expression of HLA alleles and T-cell receptors are all important determinants of immunogenicity, whereas regulatory pathways are determinants of hypersensitivity. The pathways of drug-specific T-cell activation are also depicted with reference to the possible different requirements for immune regulation.

While immune cells survey the tissue microenvironment for drug-derived signals, a key task is to maintain tissue homeostasis. The outcome of immune surveillance may be unresponsiveness (the immune system does not detect the drug-derived signal), a conventional effector response (leading to hypersensitivity with a drug-derived signal) or tolerance (a state of immunological unresponsiveness to the drug-derived signal). Tolerance can be natural or induced and these terms are discussed in more detail below with reference to regulatory T-cells. In the context of drug hypersensitivity it is important to consider variation in natural tolerance and whether drug treatment actively induces or alters toleragenic pathways and indeed the potential for certain drug peptide complexes to bypass natural tolerance. The way the immune system does regulates immune responses, and is able to adapt to change, is through the expression of an array of cell surface co-stimulatory and co-inhibitory signalling receptors (Figure 3). Co-stimulatory receptors collect information from stressed or damaged cells and tissue and determine whether an effector response should be directed towards an antigen. The co-inhibitory receptors act alongside regulatory T-cells

(Tregs) and stimulatory and inhibitory cytokines (e.g., IL-10, TGF- β) to preserve the regulatory environment to prevent unwanted immune responses against self and non-damaging agents and to prevent excessive responses to antigens when a T-cell response has been initiated. Factors that influence the balance between co-stimulatory and co-inhibitory signalling include the genetics of the host, disease and environmental factors.

It is possible that each and every one of us may develop a hypersensitivity reaction following drug treatment if the balance between co-stimulation and co-inhibition is skewed at the time of exposure. This represents a frightening concept for Pharma and healthcare professionals, since the factors that control this balance are difficult to predict and will vary across individuals and within an individual when they are exposed to different immunomodulatory environments (e.g., infections or damaging agents). For this reason, although it might be possible to work towards a framework to predict the intrinsic immunogenicity of a drug, prediction of the number of individuals that will ultimately develop a clinical drug hypersensitivity reaction is very difficult.

Clinical evidence to exclude drug exposure, the availability of a T-cell repertoire or a single genetic factor as key determinants that impact on susceptibility to drug hypersensitivity

We have worked together with respiratory physicians to understand the chemical and cellular basis of β -lactam hypersensitivity in patients with cystic fibrosis. This patient population is an important study group as they have been monitored closely throughout childhood and adult life and as such they have almost complete drug histories as well as detailed records of the nature and timeframe of hypersensitivity reactions that occur more frequently when compared to the general population (105-107). Piperacillin is a commonly used β -lactam antibiotic for the treatment of recurrent respiratory infections. Patients receive repeated courses of the drug at the same dose (12g/day; iv injection) and duration (14 days). If one assumes that a patient receives 3 treatment courses a year, the overall mass of piperacillin a patient will be exposed to over a 20 year period would exceed 10kg. Thirty five percent of patients with cystic fibrosis develop delayed-type piperacillin hypersensitivity reactions characterized clinically with maculopapular or urticarial rashes, fever and arthralgia (105). Drug-responsive T-cells are detected in approximately 75% of hypersensitive patients, but not tolerant controls using the lymphocyte transformation test (65). Moreover, CD4+ and CD8+ T-cells that secrete proinflammatory cytokines, including IL-22 and cytolytic molecules, when exposed to piperacillin are present in inflamed skin (2). Drug-responsive T-cells are also detectable in drug tolerant patients (unpublished data) and drug-naïve donors (2, 101), but only when immune regulation has been

Page 49 of 73

Allergy

2	
3	
4	
5	
6	
7	
8	
9	
1	^
	U
1	1
1	2
1	3
1	4
1	5
1	6
1	7
1	8
1	9
2	0
2	1
2	י ר
2	2
2	3
2	4
2	5
2	6
2	7
2	8
2	9
	0
2	1
3	I

perturbed *ex vivo* and the drug peptide adduct is presented by dendritic cells pre-treated with LPS to
provide co-stimulation.

The mean time to onset of piperacillin hypersensitivity is the ninth day of the ninth treatment course (i.e., the average patient will tolerate eight separate courses of piperacillin), which might lead one to assume that susceptibility is linked to accumulation of, or repeated exposure to, the drug peptide complex. However, over a 20 year assessment period at the St. James Cystic Fibrosis Unit (Leeds, UK) patients have been diagnosed with hypersensitivity after every treatment course (1-15; personnel communication, Dr Paul Whitaker). These clinical data are impossible to rationalize in terms of drug exposure/accumulation, the availability of a T-cell repertoire for the drug peptide complex or indeed a single genetic factor such as HLA.

As depicted in figure 2, the pathway of T-cell activation for drugs such as allopurinol and carbamazepine are very different to that of β -lactam antibiotics. It is possible that reactions with these drugs occur after T-cell responses develop in the presence of other classical peptide antigens (i.e., the drug peptide complex cross-reacts with the peptide antigen). In this case, the drug will not always activate a *de novo* response for hypersensitivity to develop and the regulatory requirements for activation will be lower. The caveat to this argument however is that both of these drugs have been shown to prime naïve T-cells using autologous dendritic cells to present the drug peptide complex in an appropriate immunological form (108).

35
36383The immune regulatory network

Several mechanisms have evolved to regulate T-cell responses and prevent the development of autoimmune disease and other inflammatory conditions. The best known mechanisms of peripheral tolerance include thymic selection of T-cells, the suppressive activity of Tregs (109) and the increased expression of cell surface receptors, the so-called immune checkpoints (110, 111). The importance of immune regulation and power of the regulatory network has been demonstrated clinically through the application of immune checkpoint inhibitors for the treatment of cancer (112). Furthermore, mutations in FOXP3, the regulatory transcription factor for Tregs, results in dysfunctional Tregs and the development of autoimmune disease and allergy (113). IPEX syndrome - a loss of function mutation in FOXP3 (and other regulatory pathways such as CTLA4) - is the most extreme clinical scenario. IPEX syndrome is often fatal presenting clinically for a variety of autoimmune-like syndromes. It would be interesting to investigate whether patients with IPEX syndrome also develop more drug hypersensitivity reactions. Tregs are now easy to expand ex vivo and have been used in Phase I clinical trials for the treatment of autoimmune disease to prevent transplant rejection (114).

397 In the following sections we briefly discuss the major immune regulatory pathways and how398 dysregulation of these pathways may impact on drug hypersensitivity.

400 Immune checkpoints

Immune checkpoints are a series of receptor ligand interactions between T-cells and antigen presenting/tissue cells which specifically co-ordinate the secondary co-stimulatory signal required for immune activity following TCR binding. Checkpoint proteins negatively regulate the activation of naïve T-cells. Furthermore, checkpoint receptor expression is upregulated on T-cells when they are activated, providing a negative feedback loop to restrict the effector response. PD-1 and CTLA-4, which are expressed on T-cells, are the most studied immune checkpoints. PD-1 interacts with ligands PD-L1 and PD-L2, which activates tyrosine phosphatases that inactivate tyrosine kinase-mediated activation signals (115). CTLA-4 binds to ligands CD80 and CD86 on antigen presenting cells displaying antigen. T-cell inhibition is achieved through competitive antagonism of CD28 signalling and direct delivery of an intracellular signal (116). Other less well characterized immune checkpoints include TIM-3 (suppresses Th1/Th17 CD4+ responses (117)) and LAG-3 (contributes towards Treg activity and directly suppresses CD8+ T-cells (118)). The complex interaction between immune checkpoints and naïve and memory T-cell subsets and how intra- and inter-individual variation impacts on susceptibility to adverse immunological reactions is ill-defined.

In recent years, we have investigated whether receptor blockade with immune checkpoint inhibitors remove the immune brakes and enhance the priming of naïve T-cells by drugs. Naïve T-cells were cultured in vitro with drug and autologous dendritic cells in the presence and absence of immune checkpoint inhibitors targeting PD-1, CTLA-4 and Tim-3 for 14 days to allow priming to occur. Drug exposure was associated with an increase in expression of all three immune checkpoints on dividing T-cells during the culture period, presumably a regulatory event to keep the drug-specific response in check (119). After the 14 day culture period, the primed T-cells were restimulated with drug and a second batch of autologous dendritic cells and the strength of the T-cell response was assessed. PD-1 and CTLA-4 block enhanced the priming of naïve T-cells to drugs, whereas Tim-3 block had no effect (102, 119). A similar effect (enhanced priming of naïve T-cells to drugs) has been demonstrated in vivo with PBMC from patients receiving immune checkpoint inhibitor therapy (unpublished data). Furthermore, it is becoming apparent that patients receiving immune checkpoint inhibitor therapy develop more frequent drug hypersensitivity reactions. Ford et al. (120) recently described the development of sulfasalazine (a combination of salicylic acid and sulfapyridine)-induced cutaneous hypersensitivity in 4 patients with metastatic melanoma that had previous been treated with the anti

PD-1 inhibitor pembrolizumab or the anti CTLA-4 inhibitor ipilimumab. Presumably the T-cell response and subsequent hypersensitivity reaction was induced by the sulfonamide component of sulfasalazine when natural immune checkpoints had been suppressed. Phillips et al. have recently reported on the treatment outcomes of 285 patients that developed cutaneous adverse events attributed to immune checkpoint inhibitor therapy (121). It would be interesting to consider the number of these patients receiving concomitant therapy with low molecular weight drugs.

A report of the post-approval safety of the B-raf inhibitor vemurafenib described seven patients that developed serious cutaneous hypersensitivity reactions and importantly, six of these patients received anti-PD-1 antibody therapy prior to starting vemurafenib (122). Phase II studies of ipilimumab plus or minus dacarbazine therapy concluded that ipilimumab monotherapy had a manageable adverse events profile (123), while dual therapy provided no improvement in efficacy and was not tolerable due to serious liver injury (124). Dacarbazine use alone is only associated with rare cases of liver injury (125). The immune checkpoint inhibitor again seems to alter the co-stimulatory/co-inhibitory balance, permitting the development of dacarbazine-induced liver injury in almost all treated patients. Finally, it has been reported that polymorphisms in regulatory targets of immune responses such as CTLA-4 and IL-10 could modulate susceptibility to nonsteroidal anti-inflammatory drug (126) and efavirenz (127) hypersensitivity reactions. Collectively, these data indicate that immune checkpoints act to regulate the strength of the drug-specific T-cell response and hence impact on the balance between tolerance and hypersensitivity (Figure 4). These interactions will become increasingly relevant as the focus on combination therapies for the treatment of various malignancies increases. Combination therapies in oncology started by using two checkpoint inhibitors in combination (α CTLa-4/ α PD-1) which illustrated increased efficacy but also an increased incidence of toxicity with a severe toxicity incidence of 56% of patients (128). Latterly there have been an increasing number of trials combining checkpoint inhibitors with additional systemic anticancer therapies including chemotherapy (KEYNOTE189 [ClinicalTrials.gov number, NCT02578680], IMpassion150 [ClinicalTrials.gov number, NCT03125902]) and tyrosine kinase inhibitors (KEYNOTE426 [ClinicalTrials.gov number, NCT02853331]). This has culminated in the use of all three agents in some anticancer regimes eg atezolizumab, bevacizumab, carboplatin and paclitaxel used in combination for the treatment of non-small cell lung cancer (NSCLC) within IMPower150 (ClinicalTrials.gov number, NCT02366143). Given the propensity for immune checkpoint inhibitors to interact and display phenotypically typical hypersensitivity reactions the ability to predict individuals at risk of hypersensitivity or particular drug combinations which carry an increased risk is increasingly important. It also remains to be seen if there is a characterizable dose-toxicity relationship or whether there is a temporal relationship to hypersensitivity. It is known that as monoclonal antibodies, immune checkpoint inhibitors have long

half-lives (6.1-25 days) (129) and receptor occupancy exists for weeks. However it is currently unclear if there is a dynamic relationship with hypersensitivity and the duration of risk.

Tim-3 is an immune checkpoint receptor that interacts with its ligand galectin 9 to modulate Th1 CD4+ T-cell responses. The expression of Tim-3 has recently been shown to be significantly reduced on peripheral blood CD4+ T-cells in the acute phase of drug-induced manculopapular exanthema (130), a classical Th1-mediated iatrogenic disease. Furthermore, galectin 9 expression and release was reduced on dendritic cells. These data indicate that the Tim-3 immune checkpoint also contributes to the maintenance of drug tolerance and the prevention of hypersensitivity reactions.

Contact allergy is a CD8+ T-cell mediated delayed-type hypersensitivity reaction brought about by low molecular weight haptens. Unlike drug hypersensitivity, where for the most part murine models do not exist, contact allergy can be reproduced easily in mice through direct application of the hapten to skin. In recent years, contact allergy has been used to explore how Toll-like receptors, the inflammasome and endogenous danger signals impact on the hapten specific CD8+ T-cell response and skin inflammation (131-135). Most recently, Gamradt et al., (136) discovered that intrinsic control mechanisms such as immune regulatory (PD-1 and TIM-3) signalling determine whether the cytotoxic CD8+ T-cells will be reactivated and hence prevent tissue injury. Blocking of immune checkpoints in *vivo* lead to severe contact hypersensitivity responses with low hapten doses.

Immune checkpoint blockade has been used in mice to attempt to develop animal models of drug-induced liver injury with a delayed onset (137-140). Treatment of mice with therapeutic doses of human liver injury inducing compounds such as amodiaquine, isoniazid and nevirapine did not result in significant tissue damage. However, when the drugs were administered in the presence of PD-1 and CTLA-4 block, mild, but significant, delayed onset liver injury was observed. Liver injury was associated with hepatic recruitment of immune cells including CD8+ T-cells, suggesting that they participate in the pathogenesis. Although this work represents an important step forward – an in vivo model is now available to begin to study drug-induced delayed-typed liver injury - additional studies are required to determine why the liver injury does not progress to the serious forms of tissue damage seen in human patients.

From the above discussion one can begin to visualize how immune checkpoint signalling impacts on the co-regulatory/co-stimulatory network that determines whether an effector response will ensue following antigen exposure as well as the strength and duration of the response. As one pathway is blocked other pathways exert an increased influence in an attempt to maintain tolerance. As we move forward combined immune checkpoint therapy will become more commonplace. This will result in an

increase in serious autoimmune side effects. However, it is highly likely that drug hypersensitivityreactions will also become more prevalent.

499 Regulatory T-cells (Tregs)

Tregs regulate or suppress other cells in the immune system. They control the immune response to self and foreign antigens and help prevent autoimmune disease and allergy. Natural Tregs are identified by expression of the regulatory transcription factor FOXP3. Natural Tregs express CD4+ and CD25+ (141); however, CD25+ is also expressed on other forms of T-cell including activated T-cells. Thus, there was a search for additional classification markers. CD127+ has been identified as a marker that is only expressed at low levels on Tregs and can be used alongside CD4+, CD25+ and FOXP3 to identify natural Tregs (142, 143). Tregs can also be classified according to the expression of a naïve T-cell marker CD45RA (144). CD45RA+FOXP3^{low}CD4+ (CTLA-4^{low}, CD25^{high}, CD127^{low}) cells are referred to as naïve or inducible Tregs. These cells exhibit weak suppressive activity until they differentiate following antigen-mediated T-cell receptor engagement. They differentiate into effector Tregs (CD45RA-FOXP3^{high}CD4+) that display a range of additional markers including CTLA-4, CD25+, PD-1, TIM-3 and secretory molecules such as IL-10 and TGF- β . These cells display a strong inhibitory activity and increase in number in blood with age. Tregs exert their suppressive function through a range of pathways ((144-146) Figure 5). These include the inhibition of antigen presenting cells through expression of immune checkpoint receptors, the release of cytokines such as IL-10 and TGF- β that decrease dendritic cell function and the production of pro-inflammatory cytokines and restriction of IL-2 for effector T-cells through CD25+ ligation.

A plethora of studies have shown that FOXP3+ Tregs suppress hypersensitivity reactions to chemical contact allergens in mice by blocking effector CD8+ T-cell responses (147-149). Gomez de Aguero et al (150) reported that Langerhans cells (cutaneous dendritic cells) are critical in the regulatory process through inducing the depletion of antigen-responsive T-cells and by activating FOXP3+ Tregs. Furthermore, in vivo expansion of Treg populations has been shown to induce long-term suppression of contact hypersensitivity (151). In humans, Cavani et al (152) hasve reported that CD25+ regulatory T-cells maintain tolerance to the contact metal allergen nickel in non-hypersensitive individuals. T-cells showed a limited capacity to proliferate in the presence of nickel ex vivo. However, T-cell activation was strongly increased when Tregs were depleted from the PBMC population. Collectively, the data generated showed that Tregs blocked the efficient activation of naïve and memory nickel-specific T-cells. It will be interesting to see whether similar pathways (possibly when Tregs are depleted alongside checkpoint inhibition) are active in drug tolerant patients.

In in vitro T-cell priming assays with PBMC from healthy human donors, the depletion of FOXP3+ Tregs is important to detect CD4+ and CD8+ T-cell responses to drugs and haptenic chemicals (100, 153, 154). The reintroduction of Tregs to naïve T-cell priming assays block the activation of naïve T-cells by drugs in a cell concentration-dependent manner (119). Inducible effector Tregs (presumably drug peptide complex-responsive) are generated in vitro alongside effector CD4+ and CD8+ T-cells during the priming of naïve T-cells (unpublished data), further emphasizing their importance at regulating drug-specific immune responses. There is a potential for environmental and genetic factors to modulate the expression and activity of Tregs. For example, polymorphic variants of FOXP3 have been linked to various forms of autoimmune disease, while exposure to air pollution can methylate the FOXP3 locus, compromising Treg function (155-158). Thus, Tregs might be important in maintaining an effective level of tolerance in all drug-exposed patients.

Little is known about the influence of Tregs and Treg dysregulation in the acute phase of a drug hypersensitivity reaction. In patients with toxic epidermal necrolysis, the most severe form of blistering skin eruption, Takahashi et al described a functional impairment of Tregs and a reduced capacity to suppress effector T-cell responses to drugs (159, 160). However, the key mechanisms implicit in Treg dysregulation were not defined. Recently, Wang et al. demonstrated that treatment with a TNF- α antagonist reduced skin healing time in patients with severe forms of toxic epidermal necrolysis (161). Drug treatment decreased TNF- α and granulysin levels in blister fluid and significantly increased Treg proportions in patients during the recovery phase. In patients with a different form of severe cutaneous hypersensitivity reaction, DRESS, CD14+ monocytes have been shown to mediate a gradual shift from a Treg to a Th17 phenotype during the course of the disease (162). In an independent study, lesional skin of patients with DRESS was found to be rich in FOXP3+ cells and the increase in Tregs positively correlated with the number of recorded days from the onset of the disease (163). Similarly, Hanafusa et al, found a switch in the population of dividing cells from CD8+ to FOXP3+ Tregs in drug-treated PBMC from a patient with DRESS (164). Collectively, these data indicate that the Tregs are being activated and recruited to inflamed skin to attempt to control the strength and duration of the drug-specific effector T-cell response. Thus, it is important to develop strategies to understand the role Tregs play in determining the outcome of drug exposure in patients.

Recently, breaking tolerance through depletion of murine CD4+ T-cells was found to result in the development of abacavir hypersensitivity in a HLA-B*57:01 transgenic model (165). Abacavir exposure per se induced a CD8+ T-cell response; however, the mice maintained an anergic disease state. An adverse reaction in skin was only detected when CD4+ T-cells, which included Tregs, were depleted. The epidermis became heavily infiltrated with CD8+ T-cells and skin showed typical signs of tissue injury. The authors demonstrated through a series of detailed experiments that CD4+ T-cell depletion Allergy

resulted in optimal dendritic cell co-stimulation and a break in regulation, predisposing the mice totissue injury.

Cytokines

During T-cell priming, naïve CD4+ T-cells differentiate into one of several linages, including Th1, Th2, Th17, Th22 and induced Tregs. Each T-cell population is characterized by the cytokines they secrete when activated. Importantly, the cytokine microenvironment during T-cell receptor triggering controls T-cell differentiation (Figure 6). The impact of the cytokine microenvironment on T-cell polarization can be demonstrated experimentally by culturing purified human T-cells with relevant cytokine cocktails (Th1, IL-12 & anti-IL-4; Th2, IL-4, anti-IL-12 & anti-IFN-γ; Th17, IL-1β, IL-6, IL-23 & TGF-β; Th22, TNF- α & IL-6) for 7 days prior to non-specific mitogen stimulation. Activated T-cells secrete the polarized cytokines illustrated in Figure 6. The activation of CD8+ T-cells is also influenced by cytokines. In the absence of specific cytokine signals, CD8+ T-cells become anergic and unresponsive to antigen stimulation. The dominant cytokines that promote CD8+ T-cell activation are IL-12 and IFN- α/β (166, 167).

There are many examples of disease induced cytokine imbalance (168-170) and this could have a major impact on the outcome of drug exposure. Diseases such as HIV and cystic fibrosis predispose individuals to drug hypersensitivity reactions. In patients with HIV the incidence of sulfonamide hypersensitivity is 10 times higher when compared with non-HIV infected patients (171). Cytokine imbalances such as Th1/Th2 switching are common features in patients with HIV as the disease progresses (172), but to date the impact of these changes on susceptibility to drug hypersensitivity has not been studied. Similarly, when patients with cystic fibrosis were compared to the general population, antibiotic reactions were found to be up to three times more common (105). The cystic fibrosis lung represents an area of chronic inflammation with high neutrophil numbers alongside elevated levels of cytokines such as IL-8, IL-1 β , IL-6, IL-17 and TNF- α (173-175). Obviously, this will have a colossal impact on the outcome of T-cell receptor triggering through altered antigen presentation as well as differential polarization of the effector T-cell response. However, to date, it has not been possible to establish models/systems to explore this relationship directly.

54 591

592 Conclusions

58
 593 It is becoming increasingly apparent that multiple tolerance pathways determine the outcome of
 60 594 antigen exposure through regulation of (i) naïve T-cell activation and (ii) the strength and duration of

the effector T-cell response. Through the studies discussed herein we are beginning to understand that similar pathways are active in patients at the time of drug exposure and that immune regulation networks contribute towards the outcome of drug exposure: health benefit or a hypersensitivity reaction. Work is required to define how the distinct pathways contribute towards individual susceptibility. Such studies are urgent given the plethora of immune modulatory drugs that are in development, which once approved will be administered alongside traditional low molecular weight drugs. It will also be important to determine whether low molecular weight drugs modulate tolerance pathways in patients and whether this contributes to the successful desensitization of certain hypersensitive patients.

505	Table 1. HLA class I allele-ass	ociated drug hyp	ersensitivity reactions with	known drug HLA bind
506	interactions for T-cell activati	on	·	-
	Reaction phenotype	HLA allele	Known HLA (peptide)	Evidence
			interaction ^a	bioactivation ^b
	Abacavir hypersensitivity	HLA-B*57:01 (7)	Direct non-covalent binding (9, 176)	Yes, aldehyde (177)
	Allopurinol severe skin	HLA-B*58:01	Direct labile metabolite	No
	reactions	(21)	binding (82)	
	Carbmazepine Stevens	HLA-B*15:02	Direct labile drug &	Yes, multiple metabol
	Johnson syndrome	(89)	metabolite binding (178,	(180, 181)
	Carbmazaning skin reactions	HI A-A*21.01	Direct Jabile drug &	Ves multiple metabol
		(91)	metabolite binding (178,	(180, 181)
			179)	
	Dapsone drug reaction with	HLA-B*13:01	Direct labile & metabolite	Yes, nitroso metabo
	eosinophilia and systemic symptoms	(90)	covalent binding (17, 182)	(183, 184)
	Flucloxacillin liver injury	HLA-B*57:01	Direct labile & covalent	Not applicable (52)
		(88)	binding (43, 60)	
	Sulfamethoxazole skin	HLA-B*38:02	Direct labile & metabolite	Yes, nitroso metabo
	reactions	(93)	covalent binding (4, 76, 77)	(185)
	Co-amoxiclav liver injury	HLA-A*02:01 (92)	Direct covalent binding (42)	Not applicable (53)
	Minocycline liver injury	HLA-B*35:02	Unknown	Yes, guinone iminium
		(94)		(186)
	Terbinafine liver injury	HLA-A*33:01	Unknown	Yes, aldehyde metabo
		(95)		(187)
	Ticlopidine liver injury	HLA-A*33:03 (188)	Direct labile binding (189)	Yes, sulfenic acid (190
	Vancomycin drug reaction	HLA-A*32:01	Unknown	No
	with eosinophilia and	(191)		

^aalternative pathways feasible for all compounds, but to date have not been studied

^bformation of a metabolite does not indicate that they are involved in the reaction

Figure 2. The influence of drug- and patient-specific factors on drug immunogenicity and hypersensitivity. Drug exposure and the availability of HLA proteins and T-cell receptors for drug binding are essential for immunogenicity. However, these factors either together or in isolation do not predict whether a patient will develop hypersensitivity. This is because immune regulatory pathways control whether a pathogenic immune response will develop. These pathways may influence p-I and hapten responses to different extents although this is yet to be proven even in the case of abacavir. The bottom component of the figure highlights the nature of the drug immune receptor binding interaction, the requirement for antigen processing and the derivative that T-cell receptors interact with for hapten and p-I reactions.

Figure 3. The balance between co-stimulatory and co-inhibitory pathways are the key determinant of
whether drug exposure will result in hypersensitivity. This balance is influenced by genetic, disease
and environmental factors. Thus, the balance will differ across individuals and within the same
individual with time.

- **Figure 5.** Tregs regulate the strength of antigen-specific effector T-cell responses and hence may alter
- 642 the balance between tolerance and hypersensitivity following drug exposure.

7		Natural Trace Effector Trace
8	Troac	Natural fregs Ejjector fregs
9	Trees.	
10	Tregs produced in the thymus	T rea
11	are termed natural	Inducible Tregs
12		
13	Treg formed by differentiation	
14 15	of naïve T cells outside the	
15	thymus are called adaptive or	Cell-cell contact CD25 II-2 II-10
17	inducible	(aq, CT A, A) angegement TCE beta
18	maacibie	(eg. CTLA-4) engagement TGF-beta
19		Decrease in T-cell proliferation
20	Exert function through	Decrease in MHC and co-stimulatory molecules
21	Cell contact	Decrease in APC function
22	Cytokine secretion	
23	Apoptosis of effector cells	Decrease in inflammatory cytokines
24	Modulation of DC function	
25		
26	Do they play a role in regulating	(Th1) (Th2) (CTL)
27	drug hungroonsitivitu?	
28	arug nypersensitivity?	The coll IENky The coll II 12 CD8 coll CTI activity
²⁹ 643		
30		
31		
32		
55 24		
34		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49 50		
5U 51		
57		
52 53		
54		
55		
56		
57		
58		
59		
60		

Page 64 of 73

Allergy

3 4	649	Text box 1. Major Milestone Discoveries
5 6	650	• Drug, drug metabolite and drug-modified peptide HLA binding activates T-cells in
7	651	patients with hypersensitivity
9 10	652	• Development of assays with PBMC from healthy human donors to study naïve drug
10 11	653	peptide complex T-cell priming <i>ex vivo</i>
12 13	654	Individual HLA alleles are important determinants of disease susceptibility
14	655	Characterisation of HLA-allele-restricted drug-specific T-cell responses in patients with
15 16 17 18	656	drug hypersensitivity.
	657	• Co-inhibitory receptors impact on the ability of drug peptide complexes to activate naïve
19 20	658	T-cells
20	659	• Discovery of an increased incidence of drug hypersensitivity reactions in patients
22 23	660	receiving immune checkpoint inhibitor therapy
24 25	661	
26 27	662	Text Box 2. Future Research Perspectives
28 29 30 31	663	Genome-wide association studies and functional assessment of patient T-cells have taught us that
	664	drug peptide complexes interact selectively and specificity with HLA proteins to bring about
32 33	665	hypersensitivity reactions. It is now important to define, through detailed structural analysis, the way
34	666	in which drug peptide complexes bind to HLA proteins. The nature of the interaction will differ drug-
35 36	667	to-drug. It is also important to determine the contribution different forms of drug peptide complex
37 38	668	play in the disease pathogenesis as we know that parent drug, metabolite and drug-modified peptide-
39 40	669	responsive T-cells circulate in patients' blood and tissues.
41 42	670	Of particular importance, is identification of the parameters that that influence susceptibility in
43 44	671	patients expressing known HLA risk alleles. Ongoing studies seem to suggest that drugs stimulate a
45	672	very restricted repertoire of T-cells in patients with Stevens Johnson syndrome. Might this be the case
46 47	673	in other forms of drug hypersensitivity? The balance between co-stimulatory and co-inhibitory
48 49	674	signalling during drug peptide complex-specific T-cell priming is also an important determinant of
50	675	susceptibility. Future research must focus on patients at the earliest stages of a reaction to delineate
51 52	676	the contribution individual pathways (e.g, receptor signalling, Tregs, cytokines) in play in
53 54	677	determination of the outcome of drug exposure. In this respect, important lessons will be learned
55 56	678	from patients receiving immune checkpoint inhibitor therapy for cancer treatment.
57 58	679	

59 60 680

1			
2			
3	681		
4			
6	682	Refer	ences
7			
8	683	1.	Johansson SG, et al. (2004) Revised nomenclature for allergy for global use: Report of the
9	684		Nomenclature Review Committee of the World Allergy Organization, October 2003. J Allergy
10	685		Clin Immunol 113(5):832-836.
11	686	2.	Sullivan A, et al. (2018) beta-Lactam hypersensitivity involves expansion of circulating and
12	687		skin-resident TH22 cells. J Allergy Clin Immunol 141(1):235-249 e238.
14	688	3.	Britschgi M, et al. (2001) T-cell involvement in drug-induced acute generalized
15	689		exanthematous pustulosis. J Clin Invest 107(11):1433-1441.
16	690	4.	Nassif A, et al. (2004) Toxic epidermal necrolysis: effector cells are drug-specific cytotoxic T
17	691		cells. J Allergy Clin Immunol 114(5):1209-1215.
18	692	5.	Pichler WJ, et al. (2010) Drug hypersensitivity reactions: pathomechanism and clinical
19	693		symptoms. <i>Med Clin North Am</i> 94(4):645-664, xv.
20	694	6.	Pichler WJ (2003) Delayed drug hypersensitivity reactions. Ann Intern Med 139(8):683-693.
21	695	7.	Mallal S, et al. (2002) Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3
22	696		and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet 359(9308):727-
24	697		732.
25	698	8.	Mallal S, et al. (2008) HLA-B*5701 screening for hypersensitivity to abacavir. N Engl J Med
26	699		358(6):568-579.
27	700	9.	Illing PT, et al. (2012) Immune self-reactivity triggered by drug-modified HLA-peptide
28	701		repertoire. <i>Nature</i> 486(7404):554-558.
29	702	10.	Norcross MA, et al. (2012) Abacavir induces loading of novel self-peptides into HLA-B*57:
30 21	703		01: an autoimmune model for HLA-associated drug hypersensitivity. AIDS 26(11):F21-F29.
21 22	704	11.	Ostrov DA, et al. (2012) Drug hypersensitivity caused by alteration of the MHC-presented
33	705		self-peptide repertoire. Proc Natl Acad Sci U S A 109(25):9959-9964.
34	706	12.	Lucas A, et al. (2015) Abacavir-reactive memory T cells are present in drug naive individuals.
35	707		PLoS One 10(2):e0117160.
36	708	13.	Bell CC, et al. (2013) T-cells from HLA-B*57:01+ human subjects are activated with abacavir
37	709		through two independent pathways and induce cell death by multiple mechanisms. Chem
38	710		Res Toxicol 26(5):759-766.
39	711	14.	Adam J, et al. (2012) Avidity determines T-cell reactivity in abacavir hypersensitivity. Eur J
40 41	712		Immunol 42(7):1706-1716.
42	713	15.	Monshi MM, et al. (2013) Human Leukocyte Antigen (HLA)-B(star)57:01-Restricted
43	714		Activation of Drug-Specific T Cells Provides the Immunological Basis for Flucloxacillin-
44	715		Induced Liver Injury. <i>Hepatology</i> 57(2):727-739.
45	716	16.	Wu Y, Farrell J, Pirmohamed M, Park BK, & Naisbitt DJ (2007) Generation and
46	717		characterization of antigen-specific CD4(+), CD8(+), and CD4(+)CD8(+) T-cell clones from
47	718		patients with carbamazepine hypersensitivity. J Allergy Clin Immunol.
48	719	17.	Zhao Q, et al. (2019) Dapsone- and nitroso dapsone-specific activation of T-cells from
49 50	720		hypersensitive patients expressing the risk allele HLA-B*13:01. Allergy.
51	721	18.	Illing PT, Purcell AW, & McCluskey J (2017) The role of HLA genes in pharmacogenomics:
52	722		unravelling HLA associated adverse drug reactions. <i>Immunogenetics</i> 69(8-9):617-630.
53	723	19.	Negrini S & Becquemont L (2017) HLA-associated drug hypersensitivity and the prediction of
54	724		adverse drug reactions. Pharmacogenomics 18(15):1441-1457.
55	725	20.	Schutte RJ, Sun Y, Li D, Zhang F, & Ostrov DA (2018) Human Leukocyte Antigen Associations
56	726		in Drug Hypersensitivity Reactions. Clin Lab Med 38(4):669-677.
57	727	21.	Hung SI, et al. (2005) HLA-B*5801 allele as a genetic marker for severe cutaneous adverse
50 50	728		reactions caused by allopurinol. Proc Natl Acad Sci U S A 102(11):4134-4139.
60			

2			
3	729	22.	Roychowdhury S. Cram AE. Aly A. & Svensson CK (2007) Detection of haptenated proteins in
4	730		organotypic human skin explant cultures exposed to dapsone. Drug Metab Dispos
5	731		35(9):1463-1465.
6 7	732	23.	Rijal JP, Pompa T, Giri S, & Bhatt VR (2014) A case of toxic epidermal necrolysis caused by
/ 8	733		trimethoprim-sulfamethoxazole. BMJ Case Rep 2014.
9	734	24.	Garcia-Doval I, LeCleach L, Bocquet H, Otero XL, & Roujeau JC (2000) Toxic epidermal
10	735		necrolysis and Stevens-Johnson syndrome: does early withdrawal of causative drugs
11	736		decrease the risk of death? Arch Dermatol 136(3):323-327.
12	737	25.	Hunziker T, Kunzi UP, Braunschweig S, Zehnder D, & Hoigne R (1997) Comprehensive
13	738		hospital drug monitoring (CHDM): adverse skin reactions, a 20-year survey. Allergy
14	739		52(4):388-393.
15	740	26.	Roujeau JC (2005) Clinical heterogeneity of drug hypersensitivity. <i>Toxicology</i> 209(2):123-129.
10 17	741	27.	Ye YM, et al. (2017) Drug-specific CD4(+) T-cell immune responses are responsible for
18	742		antituberculosis drug-induced maculopapular exanthema and drug reaction with
19	743		eosinophilia and systemic symptoms syndrome. Br J Dermatol 176(2):378-386.
20	744	28.	Feldmeyer L, Heidemeyer K, & Yawalkar N (2016) Acute Generalized Exanthematous
21	745		Pustulosis: Pathogenesis, Genetic Background, Clinical Variants and Therapy. Int J Mol Sci
22	746		17(8).
23	747	29.	Spriet S & Banks TA (2015) Drug reaction with eosinophilia and systemic symptoms
24	748		syndrome. Allergy Asthma Proc 36(6):501-505.
25 26	749	30.	Uetrecht J & Naisbitt DJ (2013) Idiosyncratic adverse drug reactions: current concepts.
20	750		Pharmacol Rev 65(2):779-808.
28	751	31.	Choquet-Kastylevsky G, et al. (1998) Increased levels of interleukin 5 are associated with the
29	752		generation of eosinophilia in drug-induced hypersensitivity syndrome. Br J Dermatol
30	753		139(6):1026-1032.
31	754	32.	Descamps V, et al. (1997) Human herpesvirus 6 infection associated with anticonvulsant
32	755		hypersensitivity syndrome and reactive haemophagocytic syndrome. Br J Dermatol
33	756		137(4):605-608.
34 35	757	33.	Suzuki Y, Inagi R, Aono T, Yamanishi K, & Shiohara T (1998) Human herpesvirus 6 infection as
36	758		a risk factor for the development of severe drug-induced hypersensitivity syndrome. Arch
37	759		Dermatol 134(9):1108-1112.
38	760	34.	Lerch M, Mainetti C, Terziroli Beretta-Piccoli B, & Harr T (2018) Current Perspectives on
39	761		Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis. Clin Rev Allergy Immunol
40	762		54(1):147-176.
41	763	35.	Gahr M, et al. (2016) Drug-Induced Liver Injury Associated With Antidepressive
42	764		Psychopharmacotherapy: An Explorative Assessment Based on Quantitative Signal Detection
45 44	765		Using Different MedDRA Terms. Journal of clinical pharmacology 56(6):769-778.
45	766	36.	Suk KT & Kim DJ (2012) Drug-induced liver injury: present and future. Clinical and molecular
46	767		hepatology 18(3):249-257.
47	768	37.	Leise MD, Poterucha JJ, & Talwalkar JA (2014) Drug-induced liver injury. Mayo Clinic
48	769		proceedings 89(1):95-106.
49	770	38.	Hoofnagle JH & Bjornsson ES (2019) Drug-Induced Liver Injury - Types and Phenotypes. N
50	771		Engl J Med 381(3):264-273.
51	772	39.	Andrade RJ, et al. (2006) Outcome of acute idiosyncratic drug-induced liver injury: Long-term
52 53	773		follow-up in a hepatotoxicity registry. <i>Hepatology</i> 44(6):1581-1588.
54	774	40.	Daly AK & Day CP (2012) Genetic association studies in drug-induced liver injury. Drug Metab
55	775		<i>Rev</i> 44(1):116-126.
56	776	41.	Usui T, et al. (2017) From the Cover: Characterization of Isoniazid-Specific T-Cell Clones in
57	777		Patients with anti-Tuberculosis Drug-Related Liver and Skin Injury. Toxicol Sci 155(2):420-
58	778		431.
59			
60			

1			
2			
3	779	42.	Kim SH, et al. (2015) Characterization of amoxicillin- and clavulanic acid-specific T cells in
4 r	780		patients with amoxicillin-clavulanate-induced liver injury. <i>Hepatology</i> 62(3):887-899.
5	781	43.	Monshi MM, et al. (2013) Human leukocyte antigen (HLA)-B*57:01-restricted activation of
7	782		drug-specific T cells provides the immunological basis for flucloxacillin-induced liver injury.
8	783		Hepatology 57(2):727-739.
9	784	44.	Wuillemin N, et al. (2014) T Cells Infiltrate the Liver and Kill Hepatocytes in HLA-B(*)57:01-
10	785		Associated Floxacillin-Induced Liver Injury. Am J Pathol 184(6):1677-1682.
11	786	45.	Mennicke M, et al. (2009) Fulminant liver failure after vancomycin in a sulfasalazine-induced
12	787		DRESS syndrome: fatal recurrence after liver transplantation. Am J Transplant 9(9):2197-
13	788		2202.
14	789	46.	Williams DP, Pirmohamed M, Naisbitt DJ, Uetrecht JP, & Park BK (2000) Induction of
15	790		metabolism-dependent and -independent neutrophil apoptosis by clozapine. Molecular
10	791		pharmacology 58(1):207-216.
18	792	47.	Guest I & Uetrecht J (1999) Drugs that induce neutropenia/agranulocytosis may target
19	793		specific components of the stromal cell extracellular matrix. <i>Med Hypotheses</i> 53(2):145-151.
20	794	48.	Christie G, Breckenridge AM, & Park BK (1989) Drug-protein conjugatesXVIII. Detection of
21	795		antibodies towards the antimalarial amodiaguine and its guinone imine metabolite in man
22	796		and the rat. <i>Biochem Pharmacol</i> 38(9):1451-1458.
23	797	49.	Jaunkalns R, et al. (1992) Antimyeloperoxidase antibodies and adverse reactions to
24 25	798		clozapine. Lancet 339(8809):1611-1612.
25 26	799	50.	Uetrecht J (2019) Mechanisms of idiosyncratic drug-induced liver injury. Adv Pharmacol
20	800		85:133-163.
28	801	51.	Batchelor FR, Dewdney JM, & Gazzard D (1965) Penicillin allergy: the formation of the
29	802		penicilloyl determinant. <i>Nature</i> 206:362-364.
30	803	52.	Jenkins RE, et al. (2009) Characterisation of flucloxacillin and 5-hydroxymethyl flucloxacillin
31	804		haptenated HSA in vitro and in vivo. Proteomics Clinical Applications 3(6):720-729.
32	805	53.	Meng X, et al. (2016) Amoxicillin and Clavulanate Form Chemically and Immunologically
33	806		Distinct Multiple Haptenic Structures in Patients. Chem Res Toxicol 29(10):1762-1772.
34 25	807	54.	Whitaker P, et al. (2011) Mass spectrometric characterization of circulating and functional
36	808		antigens derived from piperacillin in patients with cystic fibrosis. <i>J Immunol</i> 187(1):200-211.
37	809	55.	Sanchez-Gomez FJ, et al. (2017) Amoxicillin haptenates intracellular proteins that can be
38	810		transported in exosomes to target cells. Allergy 72(3):385-396.
39	811	56.	Ariza A, et al. (2014) Study of protein haptenation by amoxicillin through the use of a
40	812		biotinylated antibiotic. <i>PLoS One</i> 9(3):e90891.
41	813	57.	Ogese MO, et al. (2019) Exosomal transport of hepatocyte-derived drug-modified proteins
42	814		to the immune system. <i>Hepatology</i> .
43	815	58.	Padovan E, Bauer T, Tongio MM, Kalbacher H, & Weltzien HU (1997) Penicilloyl peptides are
44 45	816		recognized as T cell antigenic determinants in penicillin allergy. Eur J Immunol 27(6):1303-
45 46	817		1307.
47	818	59.	Brander C, et al. (1995) Heterogeneous T cell responses to beta-lactam-modified self-
48	819		structures are observed in penicillin-allergic individuals. <i>J Immunol</i> 155(5):2670-2678.
49	820	60.	Wuillemin N, et al. (2013) HLA haplotype determines hapten or p-i T cell reactivity to
50	821		flucloxacillin. <i>J Immunol</i> 190(10):4956-4964.
51	822	61.	El-Ghaiesh S, et al. (2012) Characterization of the antigen specificity of T-cell clones from
52	823		piperacillin-hypersensitive patients with cystic fibrosis. J Pharmacol Exp Ther 341(3):597-610.
53	824	62.	Yaseen FS, et al. (2015) Promiscuous T-cell responses to drugs and drug-haptens. J Allergy
54 55	825		Clin Immunol.
56	826	63.	Meng X, et al. (2017) Definition of the Nature and Hapten Threshold of the beta-Lactam
57	827	-	Antigen Required for T Cell Activation In Vitro and in Patients. <i>J Immunol</i> 198(11):4217-4227.
58			
59			
60			

2			
3	828	64.	Meng X, et al. (2011) Direct evidence for the formation of diastereoisomeric
4	829		benzylpenicilloyl haptens from benzylpenicillin and benzylpenicillenic acid in patients. J
5	830		Pharmacol Exp Ther 338(3):841-849.
0 7	831	65.	Whitaker P, et al. (2011) Mass Spectrometric Characterization of Circulating and Functional
2 8	832		Antigens Derived from Piperacillin in Patients with Cystic Fibrosis. Journal of Immunology
9	833		187(1):200-211.
10	834	66.	Beeler A, Zaccaria L, Kawabata T, Gerber BO, & Pichler WJ (2008) CD69 upregulation on T
11	835		cells as an in vitro marker for delayed-type drug hypersensitivity. Allergy 63(2):181-188.
12	836	67.	Pichler WJ & Tilch J (2004) The lymphocyte transformation test in the diagnosis of drug
13	837		hypersensitivity. Allergy 59(8):809-820.
14	838	68.	Nyfeler B & Pichler WJ (1997) The lymphocyte transformation test for the diagnosis of drug
15	839		allergy: sensitivity and specificity. <i>Clin Exp Allergy</i> 27:175-181.
10	840	69.	Zanni MP, et al. (1998) HLA-restricted, processing- and metabolism-independent pathway of
18	841		drug recognition by human alpha beta T lymphocytes. J Clin Invest 102(8):1591-1598.
19	842	70.	Schnyder B, Mauri-Hellweg D, Zanni M, Bettens F, & Pichler WJ (1997) Direct, MHC-
20	843		dependent presentation of the drug sulfamethoxazole to human alphabeta T cell clones. J
21	844		Clin Invest 100(1):136-141.
22	845	71.	Yun J, et al. (2014) Oxypurinol directly and immediately activates the drug-specific T cells via
23	846		the preferential use of HLA-B*58:01. J Immunol 192(7):2984-2993.
24	847	72.	Wu Y, et al. (2006) Activation of T cells by carbamazepine and carbamazepine metabolites. J
25 26	848		Allergy Clin Immun 118(1):233-241.
20	849	73.	Naisbitt DJ, et al. (2003) Hypersensitivity reactions to carbamazepine: characterization of the
28	850		specificity, phenotype, and cytokine profile of drug-specific T cell clones. Mol Pharmacol
29	851		63(3):732-741.
30	852	74.	Adam J, et al. (2014) Abacavir induced T cell reactivity from drug naive individuals shares
31	853		features of allo-immune responses. <i>PLoS One</i> 9(4):e95339.
32	854	75.	Yaseen FS, et al. (2015) Promiscuous T-cell responses to drugs and drug-haptens. J Allergy
33	855		Clin Immunol 136(2):474-476 e478.
34 35	856	76.	Schnyder B, et al. (2000) Recognition of sulfamethoxazole and its reactive metabolites by
36	857		drug-specific CD4+ T cells from allergic individuals. <i>J Immunol</i> 164(12):6647-6654.
37	858	77.	Castrejon JL, et al. (2010) Stimulation of human T cells with sulfonamides and sulfonamide
38	859		metabolites. J Allergy Clin Immunol 125(2):411-418 e414.
39	860	78.	Wong IC, Mawer GE, & Sander JW (1999) Factors influencing the incidence of lamotrigine-
40	861		related skin rash. Ann Pharmacother 33(10):1037-1042.
41	862	79.	Gibson A, Ogese M, & Pirmohamed M (2018) Genetic and nongenetic factors that may
42	863		predispose individuals to allergic drug reactions. Curr Opin Allergy Clin Immunol 18(4):325-
43 44	864		332.
44 45	865	80.	Su SC, et al. (2019) HLA Alleles and CYP2C9*3 as Predictors of Phenytoin Hypersensitivity in
46	866		East Asians. Clin Pharmacol Ther 105(2):476-485.
47	867	81.	Hung SI, et al. (2010) Common risk allele in aromatic antiepileptic-drug induced Stevens-
48	868		Johnson syndrome and toxic epidermal necrolysis in Han Chinese. Pharmacogenomics
49	869		11(3):349-356.
50	870	82.	Yun J, et al. (2013) Allopurinol hypersensitivity is primarily mediated by dose-dependent
51	871		oxypurinol-specific T cell response. <i>Clin Exp Allergy</i> 43(11):1246-1255.
52	872	83.	Chung WH, et al. (2015) Insights into the poor prognosis of allopurinol-induced severe
55 57	873		cutaneous adverse reactions: the impact of renal insufficiency, high plasma levels of
55	874		oxypurinol and granulysin. Ann Rheum Dis 74(12):2157-2164.
56	875	84.	Uetrecht J (2007) Idiosyncratic drug reactions: current understanding. Annu Rev Pharmacol
57	876		Toxicol 47:513-539.
58	877	85.	Lammert C, et al. (2008) Relationship between daily dose of oral medications and
59	878		idiosyncratic drug-induced liver injury: search for signals. <i>Hepatology</i> 47(6):2003-2009.
60			

1			
2			
3	879	86.	Pirmohamed M, Ostrov DA, & Park BK (2015) New genetic findings lead the way to a better
4	880		understanding of fundamental mechanisms of drug hypersensitivity. J Allergy Clin Immunol
5	881		136(2):236-244.
6	882	87.	Paylos R. et al. (2015) T cell-mediated hypersensitivity reactions to drugs. Annu Rev Med
/	883		66·439-454
0 0	884	88	Daly AK <i>et al.</i> (2009) HIA-B*5701 genotype is a major determinant of drug-induced liver
10	885	00.	injury due to fluctoxacillin Nat Genet 41(7):816-819
11	886	80	Chung WH et al. (2004) Medical genetics: a marker for Stevens-Johnson syndrome. Nature
12	880 887	09.	
13	007	00	420(0502).400.
14	000	50.	And 260(17).1620 1629
15	009	01	MeCormack M at al. (2011) HIA A*2101 and carbamazoning induced hyperconsitivity
16	090 001	91.	micconnack M, et al. (2011) HLA-A 'S101 and carbanazepine-induced hypersensitivity
17	891	02	reactions in Europeans. <i>N Engr J Nieu</i> 304(12):1134-1143.
18	892	92.	Lucena IVI, et al. (2011) Susceptibility to amoxiciliin-clavulanate-induced liver injury is
19	893		influenced by multiple HLA class I and II alleles. Gastroenterology 141(1):338-347.
20	894	93.	Lonjou C, et al. (2008) A European study of HLA-B in Stevens-Johnson syndrome and toxic
21	895		epidermal necrolysis related to five high-risk drugs. <i>Pharmacogenet Genomics</i> 18(2):99-107.
22	896	94.	Urban TJ, et al. (2017) Minocycline hepatotoxicity: Clinical characterization and identification
24	897		of HLA-B *35:02 as a risk factor. <i>J Hepatol</i> 67(1):137-144.
25	898	95.	Fontana RJ <i>, et al.</i> (2018) The role of HLA-A*33:01 in patients with cholestatic hepatitis
26	899		attributed to terbinafine. <i>J Hepatol</i> 69(6):1317-1325.
27	900	96.	Glanville J, et al. (2017) Identifying specificity groups in the T cell receptor repertoire. Nature
28	901		547(7661):94-98.
29	902	97.	Ko TM, et al. (2011) Shared and restricted T-cell receptor use is crucial for carbamazepine-
30	903		induced Stevens-Johnson syndrome. J Allergy Clin Immunol 128(6):1266-1276 e1211.
31	904	98.	Pan RY, et al. (2019) Identification of drug-specific public TCR driving severe cutaneous
32	905		adverse reactions. Nat Commun 10(1):3569.
33 24	906	99.	Schnyder B, Adam J, Rauch A, Thurnheer MC, & Pichler WJ (2013) HLA-B*57:01(+) abacavir-
34	907		naive individuals have specific T cells but no patch test reactivity. J Allergy Clin Immunol
36	908		132(3):756-758.
37	909	100.	Faulkner L, et al. (2012) The development of in vitro culture methods to characterize primary
38	910		T-cell responses to drugs. <i>Toxicol Sci</i> 127(1):150-158.
39	911	101.	Faulkner L, et al. (2016) Detection of Primary T Cell Responses to Drugs and Chemicals in
40	912		HLA-Typed Volunteers: Implications for the Prediction of Drug Immunogenicity. <i>Toxicol Sci</i>
41	913		154(2):416-429.
42	914	102.	Gibson A. et al. (2017) The Effect of Inhibitory Signals on the Priming of Drug Hapten-Specific
43	915		T Cells That Express Distinct Vbeta Recentors, <i>Limmunol</i> 199(4):1223-1237
44	916	103	Azoury ME, et al. (2018) Identification of T-cell epitopes from henzylpenicillin conjugated to
45 46	917	100.	human serum albumin and implication in penicillin allergy. Allergy 73(8):1662-1672
40 17	918	104	Scornet N. et al. (2016) Bioinspired Design and Oriented Synthesis of Immunogenic Site-
48	919	104.	Specifically Penicillovlated Pentides <i>Bioconiug Chem</i> 27(11):2629-2645
49	020	105	Whiteker P. Naishitt D. & Beckham D (2012) Nonimmediate beta-lactam reactions in nations
50	021	105.	with systic fibrosis, Current Opinion in Allorgy and Clinical Immunology 12(4):260, 275
51	921	106	Dermar IS & Nascor S (200E) Antibiotic allorgy in cystic fibrosic. Theray 60(6):E17 E20
52	922	100.	Partial JS & Nassel S (2005) Antibiotic allergy in cystic histosis. <i>Thorax</i> 60(0).517-520.
53	923	107.	Burrows JA, Toom M, & Ben SC (2003) Antibiotic desensitization in adults with cystic horosis.
54	924	100	$\mathbf{xespirouogy} \ \mathbf{x}(3):359-304.$
55	925	108.	Usur 1, et al. (2018) Application of In Vitro 1 Cell Assay Using Human Leukocyte Antigen-
56	926		i yped Healthy Donors for the Assessment of Drug Immunogenicity. Chem Res Toxicol
5/	927	4.95	31(3):165-167.
28 20	928	109.	wing K & Sakaguchi S (2010) Regulatory I cells exert checks and balances on self tolerance
60	929		and autoimmunity. <i>Nat Immunol</i> 11(1):7-13.
00			

2			
3	930	110.	Ishida Y, Agata Y, Shibahara K, & Honjo T (1992) Induced expression of PD-1, a novel member
4	931		of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J
5	932		11(11):3887-3895.
0 7	933	111.	Brunet JF, et al. (1987) A new member of the immunoglobulin superfamilyCTLA-4. Nature
7 8	934		328(6127):267-270.
9	935	112.	Ribas A & Wolchok JD (2018) Cancer immunotherapy using checkpoint blockade. Science
10	936		359(6382):1350-1355.
11	937	113.	Bennett CL, et al. (2001) The immune dysregulation, polyendocrinopathy, enteropathy, X-
12	938		linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 27(1):20-21.
13	939	114.	Todryk S, Jozwik A, de Havilland J, & Hester J (2019) Emerging Cellular Therapies: T Cells and
14	940		Beyond. Cells 8(3).
15 16	941	115.	Boussiotis VA (2016) Molecular and Biochemical Aspects of the PD-1 Checkpoint Pathway. N
10	942		Engl J Med 375(18):1767-1778.
18	943	116.	Teft WA, Kirchhof MG, & Madrenas J (2006) A molecular perspective of CTLA-4 function.
19	944		Annu Rev Immunol 24:65-97.
20	945	117.	Hastings WD, et al. (2009) TIM-3 is expressed on activated human CD4+ T cells and regulates
21	946		Th1 and Th17 cytokines. Eur J Immunol 39(9):2492-2501.
22	947	118.	Huang CT, et al. (2004) Role of LAG-3 in regulatory T cells. Immunity 21(4):503-513.
23	948	119.	Gibson A, et al. (2014) Negative regulation by PD-L1 during drug-specific priming of IL-22-
24 25	949		secreting T cells and the influence of PD-1 on effector T cell function. J Immunol
25	950		192(6):2611-2621.
27	951	120.	Ford M, Sahbudin I, Filer A, Steven N, & Fisher BA (2018) High proportion of drug
28	952		hypersensitivity reactions to sulfasalazine following its use in anti-PD-1-associated
29	953		inflammatory arthritis. Rheumatology (Oxford) 57(12):2244-2246.
30	954	121.	Phillips GS, et al. (2019) Treatment Outcomes of Immune-Related Cutaneous Adverse
31	955		Events. J Clin Oncol: JCO1802141.
32	956	122.	Uhara H, Kiyohara Y, Tsuda A, Takata M, & Yamazaki N (2018) Characteristics of adverse drug
33 24	957		reactions in a vemurafenib early post-marketing phase vigilance study in Japan. Clin Transl
35	958		Oncol 20(2):169-175.
36	959	123.	Yamazaki N, et al. (2015) Phase II study of ipilimumab monotherapy in Japanese patients
37	960		with advanced melanoma. Cancer Chemother Pharmacol 76(5):997-1004.
38	961	124.	Yamazaki N, et al. (2015) Phase II study of the immune-checkpoint inhibitor ipilimumab plus
39	962		dacarbazine in Japanese patients with previously untreated, unresectable or metastatic
40	963		melanoma. Cancer Chemother Pharmacol 76(5):969-975. 🥢
41	964	125.	Dancygier H, Runne U, Leuschner U, Milbradt R, & Classen M (1983) Dacarbazine (DTIC)-
4Z //3	965		induced human liver damage light and electron-microscopic findings.
44	966		Hepatogastroenterology 30(3):93-95.
45	967	126.	Ferreira Vasconcelos LM, et al. (2018) Polymorphism of IL10, IL4, CTLA4, and DAO Genes in
46	968		Cross-Reactive Nonsteroidal Anti-inflammatory Drug Hypersensitivity. J Clin Pharmacol
47	969		58(1):107-113.
48	970	127.	de Oliveira Rodrigues R, et al. (2017) Association of IL10, IL4, IFNG, and CTLA4 Gene
49	971		Polymorphisms with Efavirenz Hypersensitivity Reaction in Patients Infected with Human
50 51	972		Immunodeficiency Virus. <i>Jpn J Infect Dis</i> 70(4):430-436.
52	973	128.	Larkin J, et al. (2015) Combined Nivolumab and Ipilimumab or Monotherapy in Untreated
53	974		Melanoma. N Engl J Med 373(1):23-34.
54	975	129.	Sheng J, et al. (2017) Clinical Pharmacology Considerations for the Development of Immune
55	976		Checkpoint Inhibitors. J Clin Pharmacol 57 Suppl 10:S26-S42.
56	977	130.	Fernandez-Santamaria R, et al. (2019) Expression of the Tim3-galectin-9 axis is altered in
57	978		drug-induced maculopapular exanthema. Allergy.
58	979	131.	Martin SF & Jakob T (2008) From innate to adaptive immune responses in contact
59 60	980		hypersensitivity. Curr Opin Allergy Clin Immunol 8(4):289-293.
00			

1 2 Allergy

3	981	132.	Martin SF, et al. (2008) Toll-like receptor and IL-12 signaling control susceptibility to contact
4	982		hypersensitivity. J Exp Med 205(9):2151-2162.
5	983	133.	Weber FC, et al. (2010) Lack of the purinergic receptor P2X(7) results in resistance to contact
7	984		hypersensitivity. <i>J Exp Med</i> 207(12):2609-2619.
8	985	134.	Esser PR, et al. (2012) Contact Sensitizers Induce Skin Inflammation via ROS Production and
9	986		Hyaluronic Acid Degradation. PLoS One 7(7):e41340.
10	987	135.	Schmidt M, et al. (2010) Crucial role for human Toll-like receptor 4 in the development of
11	988		contact allergy to nickel. Nat Immunol 11(9):814-819.
12	989	136.	Gamradt P, et al. (2019) Inhibitory checkpoint receptors control CD8(+) resident memory T
13	990		cells to prevent skin allergy. J Allergy Clin Immunol 143(6):2147-2157 e2149.
14 15	991	137.	Metushi IG, et al. (2015) Development of a novel mouse model of amodiaquine-induced liver
16	992		injury with a delayed onset. <i>J Immunotoxicol</i> 12(3):247-260.
17	993	138.	Mak A & Uetrecht J (2015) The Combination of Anti-CTLA-4 and PD1-/- Mice Unmasks the
18	994		Potential of Isoniazid and Nevirapine To Cause Liver Injury. Chem Res Toxicol 28(12):2287-
19	995		2291.
20	996	139.	Mak A & Uetrecht J (2015) The Role of CD8 T Cells in Amodiaquine-Induced Liver Injury in
21	997		PD1-/- Mice Cotreated with Anti-CTLA-4. Chem Res Toxicol 28(8):1567-1573.
22	998	140.	Metushi IG, Hayes MA, & Uetrecht J (2015) Treatment of PD-1(-/-) mice with amodiaquine
23	999		and anti-CTLA4 leads to liver injury similar to idiosyncratic liver injury in patients. <i>Hepatology</i>
24 25	1000		61(4):1332-1342.
25	1001	141.	Sakaguchi S, Sakaguchi N, Asano M, Itoh M, & Toda M (1995) Immunologic self-tolerance
27	1002		maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a
28	1003		single mechanism of self-tolerance causes various autoimmune diseases. J Immunol
29	1004		155(3):1151-1164.
30	1005	142.	Liu W, et al. (2006) CD127 expression inversely correlates with FoxP3 and suppressive
31	1006		function of human CD4+ T reg cells. J Exp Med 203(7):1701-1711.
32	1007	143.	Seddiki N, et al. (2006) Expression of interleukin (IL)-2 and IL-7 receptors discriminates
33 24	1008		between human regulatory and activated T cells. <i>J Exp Med</i> 203(7):1693-1700.
54 35	1009	144.	Togashi Y & Nishikawa H (2017) Regulatory T Cells: Molecular and Cellular Basis for
36	1010		Immunoregulation. Curr Top Microbiol Immunol 410:3-27.
37	1011	145.	Sakaguchi S, Miyara M, Costantino CM, & Hafler DA (2010) FOXP3+ regulatory T cells in the
38	1012		human immune system. Nat Rev Immunol 10(7):490-500.
39	1013	146.	Wing K, et al. (2008) CTLA-4 control over Foxp3+ regulatory T cell function. Science
40	1014		322(5899):271-275.
41	1015	147.	Ring S, Schafer SC, Mahnke K, Lehr HA, & Enk AH (2006) CD4+ CD25+ regulatory T cells
42	1016		suppress contact hypersensitivity reactions by blocking influx of effector T cells into inflamed
43 11	1017		tissue. <i>Eur J Immunol</i> 36(11):2981-2992.
45	1018	148.	Vocanson M, et al. (2010) Inducible costimulator (ICOS) is a marker for highly suppressive
46	1019		antigen-specific T cells sharing features of TH17/TH1 and regulatory T cells. J Allergy Clin
47	1020		Immunol 126(2):280-289, 289 e281-287.
48	1021	149.	Kish DD, Gorbachev AV, & Fairchild RL (2005) CD8+ T cells produce IL-2, which is required for
49	1022		CD(4+)CD25+ T cell regulation of effector CD8+ T cell development for contact
50	1023		hypersensitivity responses. <i>J Leukoc Biol</i> 78(3):725-735.
51	1024	150.	Gomez de Aguero M, et al. (2012) Langerhans cells protect from allergic contact dermatitis
52 52	1025		in mice by tolerizing CD8(+) T cells and activating Foxp3(+) regulatory T cells. J Clin Invest
55 54	1026		122(5):1700-1711.
55	1027	151.	El Beidaq A, et al. (2016) In Vivo Expansion of Endogenous Regulatory T Cell Populations
56	1028		Induces Long-Term Suppression of Contact Hypersensitivity. <i>J Immunol</i> 197(5):1567-1576.
57	1029	152.	Cavani A, et al. (2003) Human CD25+ regulatory T cells maintain immune tolerance to nickel
58	1030		in healthy, nonallergic individuals. <i>J Immunol</i> 171(11):5760-5768.
59			
60			
Page 72 of 73

Allergy

1

2			
3	1031	153.	Vocanson M, et al. (2008) Depletion of human peripheral blood lymphocytes in CD25+ cells
4	1032		allows for the sensitive in vitro screening of contact allergens. J Invest Dermatol 128(8):2119-
5	1033		2122.
6 7	1034	154.	Martin SF, et al. (2010) T-cell recognition of chemicals, protein allergens and drugs: towards
8	1035		the development of in vitro assays. <i>Cell Mol Life Sci</i> 67(24):4171-4184.
9	1036	155.	Gao L, et al. (2010) Polymorphisms in the FOXP3 gene in Han Chinese psoriasis patients. J
10	1037		Dermatol Sci 57(1):51-56.
11	1038	156.	Inoue N, et al. (2010) Association of functional polymorphisms related to the transcriptional
12	1039		level of FOXP3 with prognosis of autoimmune thyroid diseases. Clin Exp Immunol
14	1040		162(3):402-406.
15	1041	157.	Gandhi R, et al. (2010) Activation of the aryl hydrocarbon receptor induces human type 1
16	1042		regulatory T cell-like and Foxp3(+) regulatory T cells. <i>Nat Immunol</i> 11(9):846-853.
17	1043	158.	Nadeau K, et al. (2010) Ambient air pollution impairs regulatory T-cell function in asthma. J
18	1044		Allergy Clin Immunol 126(4):845-852 e810.
19	1045	159.	Shiohara T, Kano Y, Takahashi R, Ishida T, & Mizukawa Y (2012) Drug-induced
20	1046		hypersensitivity syndrome: recent advances in the diagnosis, pathogenesis and
21	1047		management. Chem Immunol Allergy 97:122-138.
22	1048	160.	Takahashi R, et al. (2009) Defective regulatory T cells in patients with severe drug eruptions:
23 24	1049		timing of the dysfunction is associated with the pathological phenotype and outcome. J
25	1050		Immunol 182(12):8071-8079.
26	1051	161.	Wang CW, et al. (2018) Randomized, controlled trial of TNF-alpha antagonist in CTL-
27	1052		mediated severe cutaneous adverse reactions. J Clin Invest 128(3):985-996.
28	1053	162.	Ushigome Y, et al. (2018) Monocytes are involved in the balance between regulatory T cells
29	1054		and Th17 cells in severe drug eruptions. <i>Clin Exp Allergy</i> 48(11):1453-1463.
30	1055	163.	Morito H, et al. (2014) Increased ratio of FoxP3+ regulatory T cells/CD3+ T cells in skin
31	1056		lesions in drug-induced hypersensitivity syndrome/drug rash with eosinophilia and systemic
3∠ 22	1057		symptoms. Clin Exp Dermatol 39(3):284-291.
34	1058	164.	Hanafusa T, Azukizawa H, Matsumura S, & Katayama I (2012) The predominant drug-specific
35	1059		T-cell population may switch from cytotoxic T cells to regulatory T cells during the course of
36	1060		anticonvulsant-induced hypersensitivity. J Dermatol Sci 65(3):213-219.
37	1061	165.	Cardone M, et al. (2018) A transgenic mouse model for HLA-B*57:01-linked abacavir drug
38	1062		tolerance and reactivity. J Clin Invest 128(7):2819-2832.
39	1063	166.	Curtsinger JM & Mescher MF (2010) Inflammatory cytokines as a third signal for T cell
40	1064		activation. Curr Opin Immunol 22(3):333-340.
41	1065	167.	Curtsinger JM, Lins DC, & Mescher MF (2003) Signal 3 determines tolerance versus full
42 43	1066		activation of naive CD8 T cells: dissociating proliferation and development of effector
44	1067		function. <i>J Exp Med</i> 197(9):1141-1151.
45	1068	168.	Talaat RM, Mohamed SF, Bassyouni IH, & Raouf AA (2015) Th1/Th2/Th17/Treg cytokine
46	1069		imbalance in systemic lupus erythematosus (SLE) patients: Correlation with disease activity.
47	1070		Cytokine 72(2):146-153.
48	1071	169.	Guan Q & Zhang J (2017) Recent Advances: The Imbalance of Cytokines in the Pathogenesis
49	1072		of Inflammatory Bowel Disease. Mediators Inflamm 2017:4810258.
50	1073	170.	Arend WP (2001) Cytokine imbalance in the pathogenesis of rheumatoid arthritis: the role of
51	1074		interleukin-1 receptor antagonist. Semin Arthritis Rheum 30(5 Suppl 2):1-6.
52 53	1075	171.	Bayard PJ, Berger TG, & Jacobson MA (1992) Drug hypersensitivity reactions and human
54	1076		immunodeficiency virus disease. J Acquir Immune Defic Syndr 5:1237-1257.
55	1077	172.	Clerici M & Shearer GM (1993) A TH1>TH2 switch is a critical step in the etiology of HIV
56	1078		infection. Immunol Today 14(3):107-111.
57	1079	173.	Bonfield TL, Konstan MW, & Berger M (1999) Altered respiratory epithelial cell cytokine
58	1080		production in cystic fibrosis. J Allergy Clin Immunol 104(1):72-78.
59			
60			

1 2

3 4	1081	174.	Bonfield TL, et al. (1995) Inflammatory cytokines in cystic fibrosis lungs. Am J Respir Crit Care
5 6	1082	175.	Scambler T, Holbrook J, Savic S, McDermott MF, & Peckham D (2018) Autoinflammatory
7	1084		disease in the lung. Immunology.
8	1085	176.	Chessman D, et al. (2008) Human leukocyte antigen class I-restricted activation of CD8+ T
9	1086		cells provides the immunogenetic basis of a systemic drug hypersensitivity. Immunity
10	1087		28(6):822-832.
11	1088	177.	Walsh JS, Reese MJ, & Thurmond LM (2002) The metabolic activation of abacavir by human
12	1089		liver cytosol and expressed human alcohol dehydrogenase isozymes. Chem Biol Interact
12	1090		142(1-2):135-154.
15	1091	178.	Wu Y, et al. (2006) Activation of T cells by carbamazepine and carbamazepine metabolites. J
16	1092		Allergy Clin Immunol 118(1):233-241.
17	1093	179.	Wei CY, Chung WH, Huang HW, Chen YT, & Hung SI (2012) Direct interaction between HLA-B
18	1094		and carbamazepine activates T cells in patients with Stevens-Johnson syndrome. J Allergy
19	1095		Clin Immunol 129(6):1562-1569 e1565.
20	1096	180.	Pearce RE, Uetrecht JP, & Leeder JS (2005) Pathways of carbamazepine bioactivation in vitro:
21	1097		II. The role of human cytochrome P450 enzymes in the formation of 2-hydroxyiminostilbene.
22	1098		Drug Metab Dispos 33(12):1819-1826.
23	1099	181.	Pearce RE, Vakkalagadda GR, & Leeder JS (2002) Pathways of carbamazepine bioactivation in
25	1100		vitro I. Characterization of human cytochromes P450 responsible for the formation of 2- and
26	1101		3-hydroxylated metabolites. Drug Metab Dispos 30(11):1170-1179.
27	1102	182.	Chen WT, et al. (2018) The Function of HLA-B*13:01 Involved in the Pathomechanism of
28	1103		Dapsone-Induced Severe Cutaneous Adverse Reactions. J Invest Dermatol 138(7):1546-1554.
29	1104	183.	Vyas PM, Roychowdhury S, & Svensson CK (2006) Role of human cyclooxygenase-2 in the
30	1105		bioactivation of dapsone and sulfamethoxazole. Drug Metab Dispos 34(1):16-18.
31 22	1106	184.	Roychowdhury S, Vyas PM, Reilly TP, Gaspari AA, & Svensson CK (2005) Characterization of
2∠ 33	1107		the formation and localization of sulfamethoxazole and dapsone-associated drug-protein
34	1108		adducts in human epidermal keratinocytes. <i>J Pharmacol Exp Ther</i> 314(1):43-52.
35	1109	185.	Cribb AE, Spielberg SP, & Griffin GP (1995) N4-hydroxylation of sulfamethoxazole by
36	1110		cytochrome P450 of the cytochrome P4502C subfamily and reduction of sulfamethoxazole
37	1111		hydroxylamine in human and rat hepatic microsomes. Drug Metab Dispos 23(3):406-414.
38	1112	186.	Mannargudi B, McNally D, Reynolds W, & Uetrecht J (2009) Bioactivation of minocycline to
39	1113		reactive intermediates by myeloperoxidase, horseradish peroxidase, and hepatic
40 41	1114		microsomes: implications for minocycline-induced lupus and hepatitis. Drug Metab Dispos
41	1115		37(9):1806-1818.
43	1116	187.	Iverson SL & Uetrecht JP (2001) Identification of a reactive metabolite of terbinafine: insights
44	1117		into terbinafine-induced hepatotoxicity. <i>Chem Res Toxicol</i> 14(2):175-181.
45	1118	188.	Nicoletti P, et al. (2017) Association of Liver Injury From Specific Drugs, or Groups of Drugs,
46	1119		With Polymorphisms in HLA and Other Genes in a Genome-Wide Association Study.
47	1120		Gastroenterology 152(5):1078-1089.
48	1121	189.	Usui T, et al. (2018) HLA-A*33:03-Restricted Activation of Ticlopidine-Specific T-Cells from
49 50	1122		Human Donors. Chem Res Toxicol 31(10):1022-1024.
50	1123	190.	Liu ZC & Uetrecht JP (2000) Metabolism of ticlopidine by activated neutrophils: implications
52	1124		for ticlopidine-induced agranulocytosis. <i>Drug Metab Dispos</i> 28(7):726-730.
53	1125	191.	Konvinse KC, et al. (2019) HLA-A*32:01 is strongly associated with vancomycin-induced drug
54	1126		reaction with eosinophilia and systemic symptoms. J Allergy Clin Immunol 144(1):183-192.
55	1127		
56			
5/ 50			
59			
60			