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Abstract

Many mathematical models for the spread of infectious diseases predict that, even
tually, the disease will die out of the population. However, the expected time to 
extinction can be long. When this is the case, interest focuses upon the long-term 
behaviour of the disease process prior to extinction, which is described by the quasi
stationary distribution.

Mathematically, if the infection process is modelled as a Markov process, then the 
quasi-stationary distribution is given by the left eigenvector of the reduced transition 
rate matrix, and can thus be evaluated numerically using computer packages such as 
Matlab. However, the transition rate matrix may be very large, or indeed infinite. 
Thus simple approximating methods can be of great value, and often yield qualita
tive insight into the structure of the quasi-stationary distribution. The most widely 
used method is to approximate the infection process by a Gaussian diffusion process, 
which leads to a normally distributed approximation for the quasi-stationary distri
bution. This approximation works well when time to fade-out is very long, but less 
well when time to fade-out is expected to be short or moderately long (Nasell(1996)). 
Another method used to approximate the infection process is the moment closure 
method.

In this thesis, we analyse the basic SIS (Susceptible-Infected-Susceptible) model, 
in which individuals who have been infected recover to the susceptible state with
out acquiring any immunity to future infection. We work out the quasi-stationary 
distribution given by the left eigenvector corresponding to the eigenvalue with the 
maximal real part of the reduced transition rate matrix and approximate the quasi
stationary distribution by a Gaussian diffusion process and compare the two results. 
Cumulant equations are then derived and moment closure method based on distri
butional assumption is applied on them. The performance of these distributions
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(Normal, Log-normal, Binomial, Poisson and Beta-binomial) are compared against 
each other and the true quasi-stationary distribution (left eigenvector) using the to
tal variation distance. We then analyse a two group SIS model without demography 

in which within-group and between-group transmission parameters are the same for 
both groups. We approximate the quasi-stationary distribution using diffusion ap
proximation and the result is compared with the true quasi-stationary distribution. 
Cumulant equations are derived and moment closure applied on them to derive an 
approximation of the quasi-stationary distribution.

The basic SIS model is then extended to incorporate demographic process of 
immigration and death. This is a two dimensional process with infinite state space 
so it is not possible to work out the left leading eigenvector. Thus diffusion ap
proximation and moment closure method applied on cumulant equations are used 
to derive approximations for the quasi-stationary distribution. To validate these 
results, we carry out a simulation of the disease process and compare this with 
our approximations results. Nasell(2005) carried out a detailed analysis of the the 
SIR (Susceptible-Infected-Removed) model with demography. We compare our re
sults with the results of Nasell(2005). It is shown that the SIR and SIS models 
have the same mean susceptible population in equilibrium, but the SIS model has a 
higher infection prevalence. The variance for the number of susceptible individuals 
at quasi-stationarity for the SIR model is greater than that of the SIS model but 
the SIS model has a larger variance than the SIR model for the number of infected 
individuals.

A two-group SIS model incorporating demographic process of immigration and 
death is then analysed. The result of the diffusion approximation is rather messy 
and not illuminating so we use numerical values to evaluate the result. We run a 
numerical simulation of the stochastic model and comparison with the result we 
obtained from the diffusion approximation shows that the diffusion approximation 
provides a good approximation of the quasi-stationary distribution for the parameter 
values studied.

Finally, we analyse the SIRS (Susceptible-Infected-Removed-Susceptible) in which 
there is temporary immunity. Thus we focus particularly upon the effect of wan
ing of immunity. Here we analyse the SIRS model with and without demography.
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Like with the SIS model with demography, we derive approximations for the quasi
stationary distribution using diffusion approximation and moment closure method 
applied on cumulant equations and the results are compared with simulation result. 
It is shown that when the loss of immunity rate u =  0 then we get an SIR model 
and when v oo we get the SIS model. Thus, the introduction of loss of immunity 
allows the disease to settle to an endemic equilibrium, but the number of infected 
individuals in endemic equilibrium is less than in the SIS model. It is also shown 
that any decrease in average immune period, for fixed i?0 > 1, corresponds to an 
increase in expected time to extinction of infection from the population.
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Chapter 1 

Introduction

It is well known that a person suffering from an infectious disease poses a threat to 
others. Susceptible individuals who come in contact with or in some cases are in 
the vicinity of an infectious individual may involuntarily contract the disease. The 
study of epidemic diseases has received a great deal of attention from mathemati
cians and population biologists. Different types of models have been proposed and 
discussed. This thesis explores the two standard modelling procedures: determin
istic and stochastic. The deterministic model considers a structured mathematical 
framework, where the actual number of new cases in a short interval of time is taken 
to be proportional to the number of both susceptibles and infectives. The stochas
tic model on the other hand considers conditional realisation, where it is assumed 
that the probability of one new case in a short interval of time is proportional to 
both susceptibles and infectives, as well as the length of the time interval. Although 
both definitions sound similar, there is a subtle difference: the deterministic model 
considers a set mathematical structure, while the stochastic model works on the con
ditional probability structure. Deterministic models may be analysed with either 
difference or differential equations. Difference equations describe the transitions be
tween compartments using discrete time steps and by expressing the number of cases 
at a given time t +  1 in terms of that at preceding time t. Differential equations, 
on the other hand, describe the change in each compartment during a small time 
interval, 6t, say, where the time is continuous. In this thesis we will analyse deter
ministic models using differential equations. Deterministic models are very popular 
in epidemic theory because of their tractability. The stochastic approach, however, 
when it can be performed is more realistic, powerful and flexible. For Anderson and
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Britton (2000), the main advantage of the deterministic models lies in their simpler 
(but not necessarily simple!) analysis. For them, for a stochastic epidemic model to 

be mathematically manageable it has to be quite simple and thus not entirely realis
tic. Deterministic models, on the other hand, can be more complex yet still possible 
to analyse, at least when numerical solutions are adequate. Anderson and Britton 
(2000) gave some good reasons (which are presented below) why the stochastic mod
els are to be preferred when their analysis is possible. First, the most natural way to 
describe the spread of a disease is stochastic; one defines the probability of disease 
transmission between two individuals, rather than stating certainly whether or not 
transmission will occur. Deterministic models usually describe the spread under the 
assumption of mass action, relying on the law of large numbers. Secondly, there are 
phenomena which are genuinely stochastic and do not satisfy a law of large numbers. 
For example, in a large community, many models will lead either to a minor out
break infecting only a few individuals, or else to a major outbreak infecting a more 
or less deterministic proportion of the community. Calculation of the probability of 
the two events is only possible in a stochastic setting. The third advantage concerns 
estimation. Knowledge about uncertainty in estimates requires a stochastic model, 
and an estimate is not much use without some knowledge of uncertainty. There
fore stochastic models are to be preferred when their analysis is possible; otherwise 
deterministic models should be used. There is no conflict between the two. Both 
types of models play an important role in better understanding the mechanism of 
disease spread.

As stated above stochastic models are not easy to analyse. Usually the transi
tion probabilities exhibits non-linear dependence on population size or number of 
infectives which makes the resultant stochastic process analytically intractable (Kr- 
ishnarajah et al. (2004)). So techniques of approximation are needed to capture the 
underlying behaviour of the stochastic process. We can approximate the behaviour 
of the stochastic process, when the population size is large, by an essentially de
terministic motion, with a random diffusion of smaller order superimposed upon 
it (Barbour (1975)). Here we look at the behaviour of the process near the equi
librium point of the deterministic equations. The deterministic trajectory starting 
from near an equilibrium point of the deterministic equations reduces to the same 
point for all time, and the stochastic fluctuation around it is approximated by the
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Ornstein-Uhlenbeck process (see section 1.2). If the deterministic equilibrium is 
unstable, the original infection process can be expected to eventually diffuse away 
from it, and then to possibly follow some deterministic trajectory, with smaller 
order diffusion around it before entering another special phase (Barbour (1975)). 
On the other hand, if the deterministic equilibrium is stable, the original process 
will also enjoy a stable equilibrium behaviour similar to that of the approximating 

Ornstein-Uhlenbeck process. It is, however, possible that there exists one or more 
absorbing states which the process must eventually reach, in which case the apparent 
equilibrium is a quasi-equilibrium.

Here we analyse the SIS model with and without demography, two-group SIS 
model with and without demography and the SIRS model with and without de
mography. The letters S, I and R refer to susceptible, infective and recovered indi
viduals respectively. S, I  and R are random variables with discrete state space in 
the stochastic models and continuous variables in the corresponding deterministic 
models. The state variables are generally functions of time, although the main focus 
of this research is the quasi-stationary behaviour. The SIS model is a model for an 
infection without immunity, where recovery is possible and where recovered indi
viduals are immediately susceptible. The SIRS model deals with a situation where 
the immunity is temporary. The number of susceptible, infected and recovered (and 
immune) individuals will be denoted by S, I  and R respectively, where R — 0 in 
the SIS model. All infected hosts are assumed to be infective. The treatment of the 
stochastic version of each of the models is preceded by the formulation and analysis 
of the corresponding deterministic model.

The immigration rate will be put equal to fxN and the death rate per individual 
Ab where N  is the expected population size when infection is absent. V̂e assume 
here that there are no disease related deaths. All models are based on homogeneous 
mixing. We also assume a constant contact rate (3. The infection rate at time t 
will in each of the models be expressed as (3si/N, where s and i are the values 

taken by the state variables S and I  respectively at time t. N  is the population 
size for epidemic models without demography whilst it is equal to the steady-state 
expected population size if no infection is present in the population for epidemic 
models with demography. The recovery rate will be expressed as qf. The latent
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period (the period between the time of exposure to the disease and the time when 
infectiousness begins) is zero. So the average period of infectivity for models without 
demography is 1/ 7 . The removal rate from the infective class by both recovery and 
death is 7 +  /r, so the death-adjusted average period of infectivity is 1/(7 +  ¡j).

The basic reproduction number R0 may be defined as the number of new in
fected individuals that a solitary infected individual is able to produce in a wholly 
susceptible population. This parameter is useful because it helps determine whether 
or not an infectious disease will spread through the population. The basic reproduc
tion number is affected by several factors including: duration of infectivity of the 
infectives, how infectious the organism is and the number of susceptible hosts in the 
population. In other words, the expression for i?0 usually consist of a term for the 
rate of transmission divided by the expression for the rate of recovery and death.

One way of understanding the dynamics of the model is through the derivation of 
differential equations for the cumulants (the mean, variance etc.) of the distribution 
of the states of the process. The difficulty in applying this approach, however, is 
that nonlinearities in the equations governing the behaviour of the system lead to 
coupling between the equations for cumulants of different orders (Lloyd (2004)). 
For, instance, the equation for the first-order cumulants may involve second-order 
cumulants and those of second-order cumulants may involve third-order cumulants 
and so on. However, an approximation, moment closure approximation, which can 
truncate this set of equations can be used. The simplest moment closure method 
assumes that the distribution of states follows some given distribution and then 
uses the relationship between the moments of that distribution to truncate the set 
of cumulant equations (Nasell (2003), Lloyd (2004)). For example Nasell (2003) 
assumes that the distribution is normal and so the third-order and higher order 
cumulants vanish and closure of the set of cumulant equations is achieved by setting 
the third and higher order cumulants to zero. Here we shall use this moment closure 
method for the SIS model without demography and an extension of it used by Nasell 
(2005) for multi-dimensional processes.

Another way of understanding the dynamics of the epidemic is the use of diffu
sion approximation. We say that a particle is diffusing about a space Mn whenever it 
experiences erratic and disordered motion through the space (Grimmett and Stirza-
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ker (1982)). For example, radioactive particles diffusing through the atmosphere or 
a rumour diffusing through the population. Here we use the Ornstein-Uhlenbeck 
diffusion process to approximate the quasi-stationary distribution.

The performance of these approximations can be compared against each other 
and against the results obtained from numerical simulations of the stochastic model.

In this project we will start by give a brief discussion of the quasi-stationary 
distribution and the Ornstein-Uhlenbeck process. A literature review is given in 
chapter 2. In chapter 3, 4, 5, 6 and 7 we define and analyse in turn the SIS model 
without demography, the two-group SIS model without demography, the SIS model 
with demography, the two-group SIS model with demography and the SIRS model 
with and without demography. For each of the models in turn, we first analyse the 
deterministic version of the model. We then consider the stochastic model condi
tioned on non-extinction of infection. We use Ornstein-Uhlenbeck diffusion approxi
mation to approximate the fluctuations about the deterministic endemic equilibrium 
to approximate the quasi-stationary distribution. An alternative approximation is 
then derived for all models except for the two-group SIS model with demography 
using cumulant differential equations and moment closure. Finally, we present nu
merical simulation results to validate our approximations. All numerical work was 
carried out using Matlab 7 on a desktop PC. In the final chapter, we give concluding 
remarks.

1.1 Quasi-stationary distribution

One of the main targets of this project is the quasi-stationary distribution. As stated 
earlier stochastic processes are widely used to model real-world phenomena. Some 
of these processes terminate due to the presence of an absorbing state. However, the 
behaviour of these processes prior to absorption can be of great interest. Certain 
processes, especially those for which the time to absorption is large, display some 
form of equilibrium on the non-absorbing states (Schrijner (1995)). The distribution 
of the state of the process during this long waiting time is close to the distribution of 
some random variable under the condition that extinction has not occurred (Nasell 
(1996)). This distribution is referred to as the quasi-stationary distribution or limit
ing conditional distribution. The limiting conditional distribution can be described
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by means of the limit, as time tends to infinity, of the conditional distribution of 
a Markov process, given that absorption has not yet occurred. This distribution 
is important for all the models we treat in this project as an approximation of the 
distribution of state prior to extinction. It is a useful approximation of the state 
of the process when it has been going on for a long time without extinction. It 
is a counterpart to the endemic infection level in the deterministic model (Nasell 
(2005)). The goal of the analysis is to derive information about the quasi-stationary 
distribution of each of the models analysed.

The quasi-stationary distribution for a continuous time Markov chain {W (i) : 
t >  0} with finite state space was first discussed by Darroch and Seneta (1967), 
under the assumption that the state space C may be partitioned as C =  D  U {0 } 
where 0 is the unique absorbing state while the transient states D form a single 
communicating class. Two years earlier, Darroch and Seneta (1965) solved the 
problem of the existence of the quasi-stationary distribution for a discrete time 
Markov chain with finite state space. They proved that there always exists precisely 
one quasi-stationary distribution. That is, there exists a unique distribution 7rx 
defined on D  such that if 7rx is taken as the initial distribution of the process then 
P(X (t )  =  x\X(t) € D) — 7rx for all t >  0, all x G D. Furthermore, the quasi
stationary distribution 7rx is also the unique limiting conditional distribution. That 
is, for any initial distribution of the process on D  we have limt^ 00P(X(t )  =  x\X(t) € 
D) =  7rx for all x £ D.

Consider a Markov process (X (t) : t >  0} on the finite state space C =  
{ 0 ,1 , . . . ,  N} ,  where 0 is an absorbing state while D  =  {1,2, . . . , N }  is a com
municating class of transient states. We define the transition probabilities Pij(t) — 
P r(X (i +  s) =  j|X(s) =  i), where =  1 for i =  0,1, . . . ,  TV, t >  0. The
state probabilities Pj(t) =  Pr(X(t)  =  j ) are determined by the transition probabili
ties and the distribution of X (s), s < t, through

N

Pj(t +  6t) =  ^~2Pi(t)Pi,j(5t). (1.1)
i=0

Subtracting pj(t) from both sides of equation (1.1) and taking limits as 6t —> oo we 
have

lim Pj(t +  St) - Pj(t) =  ^  Pi(t)pij(6t) PjWfajiSt)  -  1) 
st-> o St is—>0 St St
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Using Lemma 5.4.1 of Ross (1996) which can be stated as

1. limft_o =  A*,

2. l im ^ o ^ f =  Aij, i ^ j ,  

we have

Pj{t) =  AjjPt(i) — XjPj(t) (1-2)
*?4j

where A^ are the infinitesimal transition rates of the continuous-time Markov pro
cess (X( i ) } ,  Aj =  ^U^-Ajj,  and we use a dot to represent differentiation with 
respect to time. Putting j  =  0 in equation (1.2) yields

Po(i) =  Ai)0Pi(i)- (1.3)
2̂ 0

Now a sequence is a quasi-stationary distribution if qj >  0 for all j,

Ef=i =  1. and

Q j = P j ( t ) / ( l - p 0(t)) j  =  l ,2 , 3 , . . . ,N i  t >  0, (1.4)

where Pj(t) are the state probabilities of the process with initial distribution Pr(X(0) =  

j )  =  Qj, j  =  1) 2, . . . ,  N  and Pr(X(0) =  0) =  0. That is, a quasi-stationary distribu
tion is an initial distribution on {1, 2, . . . ,  N }  such that the conditional probability 
of the process being in state j  at time t , given that absorption has not taken place 
by that time, is independent of time t for all j  (Darroch and Seneta (1967)).

The sequence {qj} constitutes a quasi-stationary distribution if and only if {qj} 
solves the system

'y / Ai,jqi — XjQj =  — y  } Xi^qiqj j  =  1,2 , . . . ,  N, (1-5)
ij£j, i> 1 ¿>1

and satisfies qj >  0 and Y ĵ=\Qj =  1- To prove this, we follow van Doom (1991). 
First, let {qj}  be a quasi-stationary distribution. Thus qj >  0 and E y li Qj =  1- The 
process with initial distribution {qj} has state probabilities (from (1.4))

Pj(t) =  Qj(l ~Po(t)) j  =  l , 2 , . . . ,N .  (1.6)
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Differentiating equation (1.6) we have

Pj(t) =  -ejPo(i)- (1.7)

Substituting equation (1.3) into equation (1.7) we have

=  - O j ^ K o P i t t ) -  (1.8)
& 0

Substituting equation (1.8) into equation (1.2) we have

^  y ^ j P j { t )  =  ~ Q j  ^   ̂ ^ j f i P i j t ) '

Now substituting for pi(t),pj(t) from equation (1.6), dividing through by (1 — Po(t)), 
and noting that X0j  =  0 for all j ,  yields equation (1.5).

Conversely, suppose that {qj}  is a probability distribution on ( 1, 2, . . . ,  N }  sat
isfying equation (1.5). Define m0(t) such that mo(0) =  0 and rh0(t) =  (1 -  

mo(i))E i^ o ft\ o , and define m^t) =  qj{\ -  m0(i)) for j  =  1 Differ
entiating rrij(t) with respect to time,

rhjit) =  -qjihoit) =  -<&(1 -  m0(t)) ] T  qiXifi =  (1 -  m0(t))
i ^ O

Since {g.,} is assumed to satisfy (1.5), this becomes 

=  (1 -  ™0(i)) ( A -  Xjqj
\i ĵ, *> 1

That is, for j  =  1,2, . . . ,  TV, the functions m^t)  satisfy equation (1.2). Similarly, 

we can show that (1.3) is satisfied. Since E ^=i"b00 =  (1 -  ™o(i)) E jL i & =  
1 — m0(t), then the functions =  0 ,1, . . . ,  N, satisfy equations (1.2) and (1.3)

together with EyLo =  1> and so must be the state probabilities of the process 
X(t )  with initial distribution Prpf(0) =  j ) =  mj(0) =  qj for j  =  1, 2 and
Pr(X(0) =  0) =  mo(0) =  0. Since (1.4) is satisfied by {mj(t)} ,  then { qj} must be a 
quasi-stationary distribution.

Denoting by AD the transition rate matrix restricted to the transient states 
equation (1.5), for the finite-state process, can be written

qAo =  —pci
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where q — (q1,q2, . . . ,  qN) and ¡x — Y i e v  &\o- Darroch and Seneta (1967) showed 
that the quasi-stationary distribution equals the left eigenvector of A^ corresponding 
to the eigenvalue with the maximal real part.

For processes on an infinite state space, in general there is no guarantee of exis
tence of a unique quasi-stationary distribution or limiting conditional distribution. 
In the case of birth-death processes it is known that the quasi-stationary distribu
tion need not be unique, but that provided the initial distribution of the process 
has finite support then the limiting conditional distribution corresponds to one par
ticular member of the set of quasi-stationary distributions (van Doom (1991)). For 
more general infinite state space processes, every limiting conditional distribution 
is a quasi-stationary distribution, but little else is known. See Pakes (1995) for a 
review of known results. We shall proceed by simulating our processes of interest 
over a sufficiently long time that convergence towards some limiting conditional dis
tribution appears to have occurred, and considering approximation methods under 
the assumption that a unique limiting conditional distribution exists. From now on 
we shall use the term quasi-stationary distribution rather than limiting conditional 
distribution.

1.2 The Ornstein Uhlenbeck Process

As stated in section 1.1, the main goal of this analysis is to derive information about 
the quasi-stationary distribution of each of the models analysed. The pursuit of 
this goal, however, leads to mathematical problems where exact solutions cannot be 
found. There are no analytic solutions to the forward Kolmogorov equations derived 
for each model, so approximations are used. One of the approximations we will 
use to approximate the quasi-stationary distribution is the diffusion approximation 
(Ornstein Uhlenbeck). The material on the Ornstein Uhlenbeck process is taken 
from Tuckwell (1995).

The Ornstein Uhlenbeck process was introduced by Uhlenbeck and Ornstein in 
1930 as a mathematical model for the velocity of a Brownian motion particle. The 
assumption is that the velocity of the particle (rather than its position) undergoes 
a random walk. They used the following stochastic differential equation for the

9



dv . . .—  +  kv — w(t) 
dt

velocity v(t) of a particle at time t.

where k is constant and w is a white noise. In addition to its initial use in studies of 
Brownian motion, the Ornstein Uhlenbeck process has found application in diverse 
areas such as astrophysics, stochastic models for neuronal activity, birth and death 
theory, population biology etc.

The Ornstein Uhlenbeck process can be defined as a time - homogenous diffusion 
process with

1. first infinitesimal moment proportional to the value of the process, so

a(x,t) = —ax (1.9)

where a is a positive constant. The drift is therefore directed towards the 
origin. A constant drift sometimes occurs naturally in addition to the drift 
proportional to x and this does not affect the overall qualitative properties of 
the process so the general form of the first infinitesimal moment is

a(x, t) =  —ax +  b

where 6 is a constant which can be any real number.

2. a constant second infinitesimal moment, so

f3(x,t) =  a2 (1.10)

where a is a non-negative real constant.

The Ornstein Uhlenbeck process unrestricted on ( - 00, 00) has a non-degenerate 
stationary distribution. Another important feature of the Ornstein Uhlenbeck pro
cess is that any finite point is eventually reached with probability one in a finite 
time, regardless of the values of the parameters a, b and a. The process makes 
excursions away from the equilibrium, but the farther away from equilibrium the 
stronger is the drift towards equilibrium.

If the initial value of an Ornstein Uhlenbeck process is x then at time t, the 
random variable X(t)  i.e, the value of an Ornstein Uhlenbeck process at time t, is a
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Gaussian random variable with mean

E[X(t)\X(0) =  x\ =  xe~at

and variance

Var[X(t)|X(0) =  x] =  ^  (1 -  e~2“ ) .

Hence, on using the standard formula for a normal density, we have

p(y,t\x) ______“______* x exp ( - ^ - xe atl2N)
7T<72(1 -  e -2“‘) )  P ^  (1 -  e-2at) J >

where p(y, t\x) is the probability density function of the random variable X(t)  given 
that the initial value X (0) is x.

1.2.1 Limiting behaviour at t = oo (stationary distribution)

As stated earlier the Ornstein Uhlenbeck process on (—oo, oo) has a stationary 
density for all parameter values. This time-independent density can be found by 
noting that the mean and the variance of X  (f) take the following values as t —> oo 
regardless of the initial value A (0):

E[X(t)}

Var[X(t)]

0; 

2 a
The stationary density is that of a Gaussian random variable with these values for 
its mean and variance and is thus

p \v) =
l

exp

Since the Ornstein Uhlenbeck process is a Gaussian process, and since the quasi
stationary distribution of the processes we are studying can be approximated by 

a normal distribution when R0 > 1 and the population size is large, we shall use 
the stationary distribution of the Ornstein Uhlenbeck process to approximate the 
quasi-stationary distribution of each of the models studied.

The other reason for using the Ornstein Uhlenbeck Process is because it has 
a drift that is directed towards the origin (in our case the endemic deterministic

11



equilibrium). The theory for diffusion approximation (Etheir and Kurtz, (1986)) 
suggests that, in the endemic case, the deviation from equilibrium converges weakly 
as IV -> oo to an Ornstein Uhlenbeck Process where the system fluctuates about 
the equilibrium but is always drawn back to it. So if the endemic deterministic 
equilibrium is stable, we expect the Ornstein Uhlenbeck process to drift towards it. 
The Ornstein Uhlenbeck process satisfies

dXt =  - 6 { X t -  n)dt +  adWt (1.11)

where 6 is the speed of the drift back to the mean ¡jl, X t denotes the Ornstein 
Uhlenbeck process X(t)  and Wt is a Wiener process.
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Chapter 2

Literature Review

2.1 Brief history

Material on the brief history is based on Bailey (1975).

The study of epidemiology began well before the 19th century. However, genuine 
progress was only achieved in the 19th century. Hamer (1906) considered that the 
course of an epidemic must depend inter alia on the number of susceptibles and the 
contact-rate between susceptibles and infectious individuals (Bailey 1975). These 
are basic to all subsequent deterministic theories, and indeed appear in probability 
versions as well. Ross (1911 and later) worked with a more structured mathematical 
model taking into account a whole set of basic parameters describing various aspects 
of the transmission of malaria. Although Ross employed the idea of chance or 
probability in formulating his basic equations, they were actually still deterministic 
in character. That is, the future state of the epidemic can be determined when the 
initial numbers of susceptibles and infectious individuals, together with the attack, 
recovery, birth and death rates are given. This was the first time a well-organised 
mathematical theory was used as a research tool in epidemiology.

Kermack and McKendrick (1927 to 1939) carried out more elaborate mathemat
ical studies of the same general types of models. They introduced a greater degree 
of generality, including variable rates of infection, recovery etc. Their most out
standing result was the celebrated Threshold Theorem. This theorem states that 
the introduction of infectious cases into a community of susceptibles would not give 
rise to an epidemic outbreak if the density of susceptibles was below a certain crit
ical value. If, on the hand, the critical value was exceeded, then there would be
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an epidemic. Soper (1929) carried out further deterministic work specifically with 
measles.

McKendrick (1926) was the first to published a genuinely stochastic treatment of 
an epidemic process. Whereas in deterministic models one takes the actual number 
of new cases in a short interval of time to be proportional to the numbers of both 
susceptibles and infectious cases as well as to the length of the interval, McKendrick 
assumed that the probability of one case in a short interval was proportional to the 
same quantity. This model entails an individual being himself infectious from the 
instant he receives infection until the moment he or she dies, recovers, or is isolated. 
Since McKendrick’s publication a lot of stochastic treatments of the epidemic process 
have been carried out (for further information see Bailey (1975)).

2.2 Simple epidemic model

Here we consider the simplest type of epidemic model in which infection spreads 
by contact between the members of a community, but in which there is no removal 
from circulation by death, recovery or isolation (Bailey 1975). This is the basic 
SI (susceptible -»  infective) model. In this model, all susceptibles will eventually 
become infected.

2.2.1 Deterministic model

The assumption here is homogenously mixing group of individuals of total size n +  1. 
Suppose the epidemic starts at time t =  0 with one infected individual who is 
infectious and n susceptible individuals. We let s and i be the number of susceptibles 
and infectives, respectively, at time t, so that s +  i =  n +  1. We assume here that 
the rate of occurrence of infection is proportional to both the number of infectives 
and the number of susceptibles. So the number of new infectives in the time-interval 
ôt can be written as fîsiôt where /? is the infection rate (or contact rate). So the 
process is described by the differential equation

di
dt

=  fisi

=  /3i(n — z +  l). (2. 1)
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At equilibrium i =  0 or i* — n +  1, i.e, no infectives or everybody becomes infected. 
This confirms our initial assertion that eventually everyone will be infected. We can 
solve equation (2.1) with the initial condition i(0) =  1. This gives

1 +  ne- (̂n+1)i

This equation is called the logistic law of growth. As t ->• oo, e~^n+1'>t -> 0 and 
therefore i(t) —> n +  1 =  i*.

2.2.2 Stochastic model

Whether or not an infective actually communicates his disease to susceptibles in his 
vicinity is plainly a matter of chance. The magnitude of this chance may depend 
on the virulence of the organisms, the extent at which they are discharged, the 
degree of the susceptibles’ proximity to the infectives and so on. All this can be 
subsumed under a single concept called adequate contact (Bailey (1975)). So the 
spread of an infectious disease is a random process. For example, in a small group 
of individuals, a few of whom have a cold, some will catch the infection others will 
not. The simple stochastic epidemic was first mentioned by Bartlett (1949). This is 
the probability version of the deterministic model discussed in the previous section. 
As before, the assumption is a homogeneously mixing group of n +  1 individuals, 
one of whom is infective and n susceptibles. This time, however, the number of 
infectives and susceptibles at time t are random variables / (t) and .S'(t), respectively, 
where S(t) +  I(t) =  n +  1. So the epidemic is completely described by the process 
{ /(¿ ); t >  0}. The epidemic is modelled by a continuous time Markov Chain. See 
Taylor and Karlin (1998) (chapter 3, page 95) for a definition of Markov Chain.

Modelling individual infection

The consideration here is that infection takes place at random, and the assumption 
is that only one infection can happen at a time. The time between events is some 
random variable which will be modelled. Considering a time interval of length 
St, namely (t, t +  St) say, the chance of a contact between any two individuals is 

PSt +  o{St). The assumption here is that ¡3 is the contact rate. It follows then that 
the probability of an infection occurring in St is (ISISt +  o(St) (i.e. the chance of

15



one new case in a very short interval of time is jointly proportional to the length of 
the interval, the number of susceptibles and the number of infectives plus something 
small relative to that length). Therefore the probability of no infection is 1 - 0 S I 6 t +  
o{8t) (the sign of the term o(5t) is irrelevant since it is very small). So the probability 
of i infectives at time t +  5t can be expressed as

Pi(t +  St) =  (3(i -  l)(n  -  i +  2)ôtPi^ { t )  +  (1 -  0i(n -  i +  1 ))StPi(t).

The above transition probabilities give a continuous-time Markov jump process 
where the number of infectives follows a pure birth process and the time between 
jumps is given by an exponential distribution with mean

2.3 General epidemic model

We now consider the general epidemic model of Kermack and Mckendrick (1927) 
also known as the SIR model. Let S(t), I(t) and R(t) respectively denote the 
number of susceptibles, infectives and removed (recovered and immune) individuals. 
The main characteristics of this epidemic process are roughly as follows. A closed 
population is subdivided into susceptibles, infectives and removed individuals. So 
S(t) +  I(t) +  R(t) =  N  for all t. So the model we study here is a bivariate Markov 
chain {S(t) ,I(t),  t > 0}. Each infective is infectious during a random period of 
time that is exponentially distributed with intensity 7 . While infected, it behaves 
independently of the others and is able to contact susceptibles, who will then become 
infected at a rate SI . After that period, the individual recovers and become 
immune or dies and plays no further role in the propagation of the disease (Mollison 
(1995)).

2.3.1 Deterministic model

We introduce the scaling s =  and i =  The deterministic version of the model 
is defined by the following set of differential equations

ds

di
dt
dr
dt

=  (3si — 7 i, 

=  •yi.

( 2.2)

(2.3)

(2.4)
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The term ¡3 si is the crucial non-linear term, indicating that infections occur at high 
rate when there are many susceptibles and infectives.

At the start of the epidemic, when t — 0, let (s, i, r) take values (so, ¿0, 0). The 
question now is, ‘when will there be an epidemic?’ For there to be an epidemic, we 
expect [^ ]t=0 > 0. So from equation (2.3)

t  =  ’3 s i~ l i

=  (2.5)

Therefore if So >  ̂ then [^ ]t=0 > 0. So initially the number of infected individuals 
will increase and there will be an epidemic. However, if So <  ̂ then|j|]t_0 < 0 
and no epidemic can occur because the number of infectives decreases with time. 
So there must be sufficient susceptibles for an epidemic to be possible. Therefore 
P =  -p gives a threshold density of susceptibles.

As stated earlier , the above equation cannot be solved easily because of the 
non-linearity ((3si). Now we consider the approximate solution to the system of 
equation obtained by Kermack and McKendrick (1927).

We eliminate i from the first and third equations (2.2 and 2.4) by division

ds
-

dr 7
s

)
p

s =  s0e_r/p

Since s -I- i T r =  1, we can write equation (2.4) as

dr n \
Tt =  7 ( 1 - s “ r) '
dv
—  =  7 ( l  -  s0e~r/p -  r ) . (2.6)

Explicit solution to equation (2.6) giving r as a  function of t does not appear possible 
so we consider approximation by first expanding the exponential factor as far as the 
term in r2.

ft  -

Solving equation (2.7) gives

r i r2 
p + 2 p2

— r (2.7)
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Sor = To f l j  - l ) + “‘“ h [ 2 ait  ~tanh_1((7 " v /QyJ j ■ (2-8)
The epidemic curve, which gives the rate at which new infectives accrue, is therefore

I = isf" cosh~2 (}“7i - tanh_1 ((7 - 11/a (2.9)

where

°=(2M1prs°) + ( f - 1
2 \ 2

This is in general a symmetrical bell-shaped curve (Bailey (1975)). This illustrates 
the common observation that in many actual epidemics the number of new cases 
reported each day climbs to a peak value and then dies away again.

We find the total size of the epidemic i.e. the total number of removal after the 
elapse of a very long period of time by letting t -> 00 in (2.8). Since tanh(f) 1 as 
t —> 00,

r(oo) =  — f — -  1 +  a
so VP

Assuming that there are a few initial infectives, then the first term in a is approxi
mately zero. So the second term is dominant. Therefore

r(oo) =  2p ------j  .

This result can also be achieved by putting dr/dt =  0 and s0 =  1 in (2.7). Kermack 
and McKendrick first got the above result and rewrote it again as follows:

So — P +  Vi

where u is the (scaled) number of susceptibles by which we are initially above thresh
old. So

r(oo) 2 P
p +  v -  p \ 

p +  v )

~  2 v { l - - p  +  " \

To the first order r — 2v. It follows then that s^  =  p — u, i.e. the initial (scaled) 
number of susceptibles So, reduces finally to a value as far below the threshold, p, 
as it was originally above.
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Now we consider the stochastic version of the general epidemic. The stochastic 
version of the model was proposed by McKendrick (1926), but did not receive much 
attention. It was not until the late 1940’s when Bartlett (1949) studied the stochastic 

version of the model (Kermack-Mckendrick model) that stochastic continuous-time 
epidemic models began to be analysed extensively.

Here there are two types of transition - infection and removal. As before, we 
write the chance of one new infection in time St as §¡SI5t. When this transition 
occurs, S decreases by one unit and I  increases by one unit. The chance of one 
removal in St can be taken as 'y I St, where 7 is the removal-rate. I  decreases by one 
unit after the transition but S remains unchanged.

Let there be n susceptibles and a infectives at time t =  0. We denote p3 i(t) 
the probability that at time t there are s susceptibles and i infectives. The forward 
Kolmogorov equation is

dpS i (3 /  a \
dt =  )v S +  1 ^ ~  IOPs+ U -i W  +  7(* +  l)ps,t+i(í) -  ( — si +  j i J  ps i (t)

where 0< i +  s < n  + a, 0 <  s < n  and 0 < i < n  +  a.

Gani(1965) and Siskind (1965) solve this problem using probability-generating 
function and Laplace transform. The probability-generating function they used is 
given by

N N-s
P(z , w, t) =  z^'PsÁt)-  (2.10)

3=0 2=0

It can be shown that equation (2.10) satisfies the partial differential equation

% = (wl~zw)̂ h +p{l- ŵ  <211>
See Bailey (1975) for further investigation on this topic.

2.4 SIR epidemic model with demography

Andersson and Britton (2000) and Násell (1996, 2002 and 2005) analysed the SIR 
model with demography. Individuals are born into the population at a constant rate

2.3.2 Stochastic model

19



fiN and each of them has an exponentially distributed lifetime with intensity ¡x, i.e. 
the average lifetime is given by \¡¡x. Therefore the population size will fluctuate 
around the quantity N . Násell (2002) allows for disease related deaths. Andersson 
and Britton (2000) and Násell (1999 and 2005) assumed no disease related deaths. 
We will follow this approach. The choice of size-independent birth rates is to avoid 
population extinction or explosion.

As in the previous section, a given infective stays infectious for a time period that 
is exponentially distributed with intensity 7 . During that time he or she contacts 
a given individual at rate (3/N. If the contacted individual is susceptible, he or she 
immediately becomes infectious and proceeds to infect other individuals. All random 
variables and Poisson processes involved are assumed to be mutually independent.

As before, we use S(t) and I(t) to denote the number of susceptibles and infec- 
tives respectively at time t. Therefore (S,I ) =  {(S(t), /(f)) ; t >  0} is a bivariate 
continuous time Markov process with the following transition rates:

(s,i) —> (s +  l ,i )  =  fj,N,

(s,i) —> (s — 1, i +  1) = j^si, 

(s,i) -> (s -  l,i) =  ¡J.S,

(s,i) —> (s,i — 1) =  (¡X +  j)i.

All states (s,0) communicate with each other, but not with any state (s,i) with 
i >  1. The states (s,0) form an absorbing set and the states (s,i), i >  1, are 
transient. The Kolmogorov forward equation for the model is

dps,i
dt P-NPs-i,i(t) +  N  (s +  1)(* iWt-i.i-iCi) +  p(s + l)ps+l i(t) +  p(i +  l)ps i+1(t) 

+ j ( i  +  l)pSij+i(i) — ( p N  +  ~ s i  +  fxs +  fxi +  7A  pS}i(t), (2.12)

where s =  0, 1, 2, . . .  and i =  0, 1, 2, . . . .
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2.4.1 Deterministic model

We now define the scaled process l/N(S(t), I(t)) =  (s(t), i(t)). The deterministic 
model of the scaled process is given by

ds
dt -  M(1 -  s) -  Psi , 
di
— =  Psi -  (¿i +  7)i.

(2.13)

(2.14)

Here the basic reproduction number is given by R0 =  /3/(7 +  /¿), since the true 
infectious period is exponentially distributed with intensity 7+^t, taking into account 
the possibility of death before recovery. Also let a =  (7+fx)/fx be the ratio of average 
lifetime to the average duration of infection.

Equations (2.13) and (2.14) have two stationary points, namely (1, 0) which is 
the disease free state and

which is the endemic level. It can be shown that the first stationary point is stable if 
Ro < 1 and unstable if Rq > 1 while the second one is stable if _R0 > 1. The second 
stationary point is unfeasible if T?0 < 1. So if R0 < 1 the infection is predicted to die 
out fairly quickly. On the other hand, if R0 > 1 then the infection will rise towards 
the endemic level.

2.4.2 Diffusion approximation

We now proceed by studying the scaled and centred process (S(t) -  Ns*,I(t) -  
Ni*)/VN . The theory for diffusion approximation (Etheir and Kurtz, (1986)) 
suggests that this process may be approximated by a two-dimensional Ornstein- 
Uhlenbeck process, (S(t) ,I(t)), which is the limiting process as the population size, 
N , tends to infinity. Since the limiting process is of Ornstein-Uhlenbeck type, it has 
a bivariate Gaussian stationary distribution with mean (0, 0) and covariance matrix 
S  where £  solves the matrix equation

J(s*, »*)£ +  £J(s*, t*)r  +  G (s V )  =  0 (2.15)

(Gardiner (1985)). Here J(s, *) and G (s,i) are the local drift and covariance matri
ces of ( ) ) .  The local drift matrix is the Jacobian matrix of the first order
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infinitesimal moments of the scaled process and the local covariance matrix is the 
infinitesimal covariance matrix of the scaled process. We are interested in the be
haviour of the epidemic process close to the endemic level and therefore we approx
imate J (s,i) and G(s,z) at the endemic level, which become J(s*,f*) and G(s*,z*). 
The local drift matrix J(s*,z*) (which corresponds to 9 in equation (1.11)) and the 
local covariance matrix G(s*,z*) (which corresponds to a in the same equation) of 
the limiting process, (S(t) , I( t )), are

f3i* -  n -0s*  \ _  (  -R o  - a \
(3i* 0s* -  (7 +  fj) )  0 )

and

G is* n  =  (  Ps*z* +  m(1 +  s*) -0s*i* \ _  jx_ f  2R0 - ( R q -  1)
V - f a * ?  0 s ' +  (7 +  V Y  )  R o \ - ( R o - l )  2(R0 — 1)

respectively. The stationary distribution of the process (S(t) ,I (t )) can be used to 
provide an approximation of the quasi-stationary distribution of the process (S ,I ). 
That is, the quasi-stationary distribution of (S', I) can be approximated by a bivari
ate normal distribution with mean N(s*,i*) and covariance matrix TVS. Solving 
equation (2.15) we derive the explicit expression for the covariance matrix for the 
stationary solution, £ .

_  ^¡_ f  a + R0 —R o

Rl V ~-Ro Ro — l +  R-o/a

For the approximation to be valid, we require that the step size l/N of the scaled 
process is sufficiently small for it to be approximated by a process with continuous 
sample paths; that the equilibrium point (s*,i*) is stable, so that the process will 
tend to spend a long time in the vicinity of (s*,i*) and that i* is sufficiently large 
that the Ornstein-Uhlenbeck process is unlikely to reach the boundary 1 =  0 (Clancy 
(2005)). Therefore, we expect the approximation to be good if the infection process 
is above threshold, that is R0 > 1 and N  is sufficiently large.

Nasell (2005) also used cumulant equations to approximate the quasi-stationary 
distribution. He derived the cumulant equations and used moment closure methods 
to solve them. For details see Nasell (2005). However, the derivation of cumulant 
equations will be discussed in detail in later chapters.
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2.5 SIS model

The susceptible-infected-susceptible (SIS) model describes an infection spreading in 
a closed population of N  individuals, where individuals recover but do not develop 
immunity, being immediately susceptible to re-infection. So the population under 
consideration is divided into disjoint classes which change with time t. We define 
S(t) and I(t) as the number of susceptible individuals and the number of infected 
individuals at time t respectively. The susceptible class consists of those individuals 
who can incur the disease and the infective class consists of those who are infected 
and are transmitting the disease to others. Since S(t) +  / (t) =  N  for all t, it is 
sufficient to concentrate on I(t). { I{ t ) : t > 0} is a finite-state space univariate 
continuous-time Markov chain with state space C =  {0 ,1 ,2 , . . .  ./V} and transition 
rates

Pr ( I ( t +  6 t ) = i  + l  \I(t) =  i) =  (P/N)i(N - i ) 8 t  +  o{5t) for z =  1, 2, . . . ,  IV -  1, 

Pv (I(t +  St) =  i -  l \ I(t) =  i) — 'yidt +  o(St) for i =  1, 2, . . . ,  IV,

for some /?, 7 > 0, all other transitions having probability o(6t).

The origin is an absorbing state in this model, and eventual absorption at the 
origin is certain. All states except the origin are transient, and the stationary 
distribution is degenerate with probability one at the origin.

As stated earlier, we assume a constant contact rate (5. The infection rate at 
time t will be expressed as fisi/N, where s and i are the values taken by the state 
variables S and I  respectively at time t. The recovery rate will be expressed as 7i. 
The latent period (the period between the time of exposure to the disease and the 
time when infectiousness begins) is zero. So the average period of infectivity is 1 /j.

The SIS model was first discussed by Weiss and Dishon (1971)and has since been 
used by other authors in a variety of contexts -  see Nasell (1996) and references 
therein. Since this model has a degenerate stationary distribution with probability 
one at the origin, our interest therefore focuses upon the quasi-stationary distri
bution, which describes the long term behaviour of the process prior to eventual 
extinction. More precisely, the process has a unique limiting conditional distribu
tion q =  (<71, q2, ■.., qn) such that

Qi =  hm Pr (I(t) =  i | I(t) > 0),
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whatever the distribution of the initial state 7(0) (Darroch and Seneta (1967)). 
This distribution is also quasi-stationary in that if Pr(/(0) =  i) =  qu then P r(/(i) =  
z|/(i) > 0) =  ^ for all t > 0, and, it is the unique solution of the equations

(P/N)(i -  1 ) (N -  i +  1 )ft_! +  y(i +  1 )qi+1 -  ((p/N)i(N - i )  +  7i) Qi

=  -79 i Qi (2.16)

for i =  1, 2, . . . ,  N, where we adopt the convention that q0 =  qN+1 =  0. Note that 
(2.16) is a special case of equation (1.5).

The SIS model without demography was analysed in detail by Nâsell (1996, 
1999). He showed that the quasi-stationary distribution q has forms depending on 
the value of R0 =  (3/y and its relationship to the total population size, N. He identi
fied three different parameter regions that determine the form of the quasi-stationary 
distribution. When Rq is distinctly below 1, the quasi-stationary distribution is ap
proximated by a geometric distribution and when Rq is distinctly above 1, it is 
approximated by a Normal distribution. However, there exists a transition region 
when 7?o is near 1, where the form of the distribution is more complex. He found it 
by rescaling 7?0 =  1 + p/ y/N to make R0 a function of N  in such a way that for fixed 

P> Ro approaches 1 as N  approaches infinity. He defined this region by requiring p 
to be fixed as N —> oo.

Kryscio and Lefèvre (1989) and later Nâsell (1996, 1999) used two birth and 
death processes to approximate the SIS model. The two approximations lack ab
sorbing states and have non-degenerate stationary distributions that Nâsell (1996, 
1999) called p(1) and p(0K The state space of each of these two approximations 
differs from the state space of the SIS model by not including the state 0. The 
first approximation, can be interpreted as the SIS model with one permanently 
infected individual. In this approximation, every recovery rate 7i is replaced by 
(* — 1)7 while all the infection rates remain unchanged. The second approximation, 
p{0), is interpreted as the SIS model with the origin removed. In this approximation 
the recovery rate from state 1, 71 =  7 , is replaced by 0, while all other transition 
rates remain unchanged. Nâsell’s results from the approximations confirmed those 
of Kryscio and Lefèvre (1989) that the quasi-stationary distribution q is well approx
imated by the distribution for R0 distinctly larger than 1 and by the distribution 
p when 7?o is distinctly smaller than 1. He showed that in the transition region,
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the quasi-stationary distribution q makes a transition from close to p(b to close to 

P^  as Ro grows past value 1. Násell (1996, 1999) also derived approximations for 
the expected time to extinction from the quasi-stationary distribution for the three 
parameter regions of Rq. Andersson and Djehiche (1998) also investigated the time 
to extinction. They derived the asymptotic distribution for the extinction time as 
the population grows to infinity, under different initial conditions and for different 
values of the infection rate.

Ovaskainen (2001) approximated the quasi-stationary distribution in two differ
ent limits. In the first case the number of individuals N  is fixed, but the basic 
reproduction ratio Rq —> oo (with relative error of the approximations of the order 
0(1/Ro))- In the second case, the basic reproduction ratio R0 > 1 is fixed but the 
number of individuals IV —> oo (with relative error of the approximations of the 
order 0(1/N)).

Detailed analysis of the SIS model without and with demography is given in 
chapter 3 and chapter 5 respectively.

For models incorporating demographic processes, we allow for recruitment of new 
susceptibles to the population at constant rate pN. This is often referred to in the 
literature as ‘birth’ , but since a birth rate might be expected to depend upon current 
population size we use the term ‘immigration’. Other recruitment rates considered 
by previous authors include (a) birth of susceptibles at rate proportional to current 
population size (Hethcote (1994)); (b) birth of susceptibles at rate proportional 
to number of susceptibles present (Clancy, O’Neill and Pollett (2001)); (c) logistic 
birth rate (Krishnarajah et al. (2007)). However, birth rates (a) and (b) lead 
to exponential growth or decay of the total population size, while (c) results in 
a somewhat more complicated model. We choose constant immigration to give a 
relatively simple model with stable total population size.
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Chapter 3

SIS model without demography

In section 2.5 we briefly defined the SIS (susceptible-infected-susceptible) model so 
we will now analyse it in detail. In some of the sections (3.1 - 3.6) we present 
known results which we will develop further in later chapters for more complicated 
models. Section 3.7 presents results slightly different from those previously obtained 
by Nasell (2003). The results in section 3.8 and 3.9 are entirely new.

Nasell (2003) studied the quasi-stationary distribution of the stochastic logistic 
model in the parameter region where its body is approximately Normal. He used 
moment closure methods to approximate the quasi-stationary distribution by the 
Normal, Binomial, Poisson and the Log-normal distributions. Krishnarajah et al. 
(2004) also used moment closure methods to approximate the stochastic epidemic. 
They, like Nasell, used a moment closure approximation based on distributional 
assumptions. However, they used raw moments instead of central moments or cu
mulants. They used the Beta-binomial and Log-normal approximations to model 
the distribution of states of the process at fixed time t. In addition, they devel
oped a closure approximation based on a mixture distribution in order to capture 
the behaviour of the stochastic SIS model around the threshold between persistence 
and extinction. This mixture approximation comprises a probability distribution 
(Log-normal or Beta-binomial) designed to capture the probabilities of the system 
conditioned on non-extinction and a probability mass at 0 which represents the 
probability of extinction.

In this chapter we will investigate the closed SIS epidemic model using a diffu
sion approximation similar to the one used by Clancy and French (2001). We also 
derive cumulant equations and use moment closure methods based on distributional

26



assumptions specifically, we assume a normal, poisson, log-normal, binomial or 
beta-binomial distribution. Some of our approximating distributions are those of 
Nasell (2003), others are new. We then work out the total variation distance of 

each of the approximating distributions from the exact quasi-stationary distribu
tion. For comparison, we also compute the total variation distance away from the 
true quasi-stationary distribution of the asymptotic approximations of Nasell (1996, 
1999).

3.1 Model formulation

In this model there are two possible events (see Table 3.1), i.e. infection of a suscep
tible individual and recovery of an infected individual. Three parameters are used, 
namely the population size N, the contact rate 0 , and the recovery rate 7 . All these 
parameters are assumed to be strictly positive. The basic reproduction number (the 
average number of new infected individuals that a solitary infected individual pro
duces in a population of susceptible individuals) is R0 =  0/j.  The state space C 
can also be defined a s C ^ l O j u D ,  where 0 is the absorbing state and D  comprises 
the transient states. Absorption at 0 is certain within a finite time.

Let Pi(t) =  Pr(I( t ) =  i), i 6 {0 ,1 ,2 , . . .  iV}, denote the state probabilities. 
These depend on the initial distribution {^¿(0)}. The intensity matrix A (matrix

Table 3.1: The transition rates for the model are given as:

Event State Transition Transiton Rate
Infection of a susceptible 
Recovery of an infective

i —> i +  1 
i —> z — 1

ß ( i/ N ) ( N - i )  
7 i

which consists of the transition rates aitj from state i to state j  for 1 ^  j  and where 

~  ~ ai with Q>i — ai,j) is of tri-diagonal type, with entries

7̂,2 — 1 — * =  1, 2, . . . ^ ,

* =  0 , 1 ,  2 , . . .  At  — 1,

ai,i =  -(7*  +  ß ^ A N  -  *)). i =  0 ,1, 2, . . .  IV,

27



“ *¿ =  0 for Z,J =  0,1,2,. ..7V and j  £ {i -  1,*,* +  1}.

The Kolmogorov forward equations for the state probabilities can be written as,

dpi i — 1 ' /  ~ \
~dt =  ~ 1 +  +  7(z +  l)Pi+i(i) -  [0~iy(N ~ i) +  7*J Pi(t), (3.1)

for i =  0,1, 2 , . . . ,  N  and where p~i(t) =  pN+1(t) =  0. In matrix notation,

% = PA.dt y

As stated earlier, this process has a degenerate stationary distribution that puts 
probability one at the origin. Therefore two different behaviours are possible at any 
given time. Either the process is extinct after having reached the absorbing state 
at the origin, or the process remains in the transient states. In the latter case the 
distribution of the process is found by conditioning on absorption not having taken 
place. This will be analysed later in section (3.4).

3.2 Deterministic model

We introduce the scaling i(t) — -U- and s(t) — to denote the fractions of the 
population which are infective and susceptible respectively. The population size, N , 
considered here is sufficiently large so that the size of each class can be considered 
as a continuous variable. The differential equations for the deterministic version of 
the epidemic model are

di
dt
ds
dt

¡3 si — 7 i, 

—fdsi +  7 i.

(3.2)

(3.3)

The constant population size is built into the system (3.2) and (3.3), since adding 
the equations gives:

d(s +  i) ds di
—--- - = ---1--= o.

dt dt dt

So the first equation (3.2) along with the fact that s 
description of the model,

1 — i give a complete

di
dt =  (3{1 — i)i — 7 i. (3.4)
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The basic reproduction number R0 is

Ro =  -■ (3.5)
7

Therefore, increases in the rate of transmission tend to increase R0, and increase in 
the rate of recovery tends to reduce the spread of the disease in the population.

3.3 Equilibrium

At equilibrium equation (3.4) becomes

0 =  Pi( 1 — i) — 'yi.

So, either

i = 0 or

The first critical point corresponds to the absorbing state of the stochastic system, 
which is the disease-free equilibrium, and the second one corresponds to the endemic 
equilibrium. The associated value of the proportion of susceptibles at the endemic 
equilibrium is T-.

Here i* is only feasible if ^  < 1, that is Rq >  1. When i =  0 then the disease 
has died out and there is no more process to investigate. So we are interested in the 
process when i^ O . We investigate the value of i as t —> oo for R0 > 1 and this is 
referred to as the endemic level.

3.3.1 Stability of equilibrium

The equilibrium states can be characterised as being stable or unstable. To investi
gate their stability properties we differentiate the function f ( i ),  the right hand side 
of (3.4), about each equilibrium value. If ^  > 0, then the equilibrium solution is 
unstable. However, if & < 0, then the equilibrium is stable. So

df
di

P — 2 Pi — 7 .

At i =  0,
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Thus % only less than 0 when 7 is greater that /?, indicating stability if R0 < 1.

dt +  7-

Thus i* is stable if Rq >  1. That is, the endemic equilibrium is stable if it is 
feasible. However, if i?0 <  1 then the process is strictly decreasing and therefore 
must approach an equilibrium since the process is bounded at zero. Since the only 
non-negative equilibrium of the process is 0, then it approaches 0.

3.4 Conditioning on non-extinction

Now we study the process { / ( f ) }  conditioned on non-extinction. This conditional 
distribution converges to a stationary conditional distribution called the quasi
stationary distribution. The quasi-stationary distribution mean can be approxi
mated by the deterministic equilibrium. The state probabilities at time f conditioned 
on non-extinction are given by

Qi(t) =  P ( I ( t ) = z \ I ( t ) ^ 0 )  
=  P i ( t )

1 ~ P o ( t ) ’
(3.6)

where * =  1, 2 , . . . ,  N  and q(t)T =  (qi(t), q2(t) , . . . ,  qN(t)). So ft(t) =  0 if [1, A/]. 
Differentiating equation (3.6) and using the equation p0(t) =  'ypi(t) (which is ob
tained by putting i =  0 in equation (3.1) and where the dot represents differentiation 
with respect to time) we have

dqt
dt

Vi{t)
1 ~Po(t) + 79i(f) Pi(t)

1 - P o ( f ) ‘
(3.7)

The Kolmogorov forward equations (3.1) for the state probabilities pi(t) can now be 
used to derive differential equations for the conditional state probabilities <&(i), 

do, i — 1
=  -  i +  l)oi-i(f) +  q(i +  l)qi+i(t)

~  ~  *) +  7* J  ft(i) +  79iQi ( t ) , (3.8)

for i — 1, 2 , . . .  N, where q0(t) =  qN+i(t) — 0. Note that setting the time derivatives 
in equations (3.8) to zero yields equations (2.16).
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Denoting by Aq the intensity matrix A with the first column and row deleted, 
the above equations can be written as

dq
— =  qAQ +  79! g. (3.9)

The quasi-stationary distribution qt =  l i m ^ ^ i )  (qT =  (qu q2, . . . ,  qN)) is the 
stationary solution of this system of equations. That is,

qAQ =  - jq iq .  (3.10)

This shows that the quasi-stationary distribution q is the left eigenvector of the 
N x N  matrix Aq corresponding to the eigenvalue —7?i. This was solved using 
Matlab for parameter value N =  200, (3 =  0.9 and 7 =  0.4. It can be seen in 
Figure 3.1 that the quasi-stationary distribution is approximately normal, for these 
parameter values.

Quasi-stationary distribution

Figure 3.1: The quasi-stationary distribution of the number of infectives. The pa
rameter values are N =  200, /? =  0.9 and 7 =  0.4 (so i?0 =  2.25)
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3.5 Diffusion approximation

In order to study the behaviour of the disease process prior to extinction, it is as
sumed that the number N  in the population is large and an approximating diffusion 
process is looked for using the result used in chapter 5 of Anderson and Britton 
(2000). The approximation theory is a form of central limit theorem. This means 
that we can only hope to approximate the epidemic process when there are many 
infective individuals, thus excluding the initial and final phases of the epidemic (An
derson and Britton, (2000)). In section 3.3, it was seen that the deterministic model 
has a unique stable equilibrium at i* =  1 -  ^  if R0 >  1. It follows then that if 
the stochastic process I(t) is started close to the endemic level (Ni*) it will tend to 
stay close to Ni* for a considerable time subject to small random fluctuations. In 
order to study these fluctuations of the process I, we define the y/N-scaled centred 
process

7 (t) = >/iv^-**V t>o.
Here the focus is on the case where Rq > 1. Since the process has a finite state 
space and all states j  with j  >  1 communicate, the process will become absorbed 
into the disease-free state 0 in finite time. Prior to absorption we expect to observe 
small fluctuations around the endemic level. This process I(t), for N  large, can be 
approximated by a diffusion process called an Ornstein-Uhlenbeck process (Ethier 
and Kurtz, (1986)).

More precisely, if i(t) denotes the trajectory of the deterministic process, and

' - f  -  m =  0 and the/(0 ) =  Ni(0), then for any T > 0 we have l im ^ ^  sup0<i<T

process y/N ^  -  i(t)^ converges weakly in the space of all sample paths on any 
finite time interval [0,T] to a diffusion process (Ethier and Kurtz, (1986)). (See also 
Mandelbaum and Pats (1994).) In the case ¿(0) =  i* then i(t) =  i* for all t and the 
relevant diffusion is an Ornstein-Uhlenbeck process.

The Ornstein-Uhlenbeck process has a local drift constant

^ = I (!) -
=  - ( / ? - 7 )>
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and its local variance around i* is, from Table 3.1, 

G(i*) =

The state of this Ornstein-Uhlenbeck process at time t is distributed according to a 
normal distribution with mean 0 and variance £(i) satisfying

~  =  2 A ( n ^ + G { n

(Gardiner (1985)).

To find the variance of the Ornstein-Uhlenbeck process in equilibrium, the equa
tion above is equated to zero.

2A(i*)T, =  -G (i* ),

2E G9-7 )  =  27 ( l - £ ) ,

S ( / ? - 7 )  =  j j (P- 'Y) ,

l
Therefore the equilibrium distribution of the Ornstein-Uhlenbeck process is nor
mal with mean 0 and variance A.. So the quasi-stationary distribution of the dis
ease process I(t) can be approximated by a normal distribution with mean Ni* 

and variance This can be compared with the quasi-stationary distribution ob
tained using the truncated transition matrix Aq . Figure 3.2 shows a comparison of 

the Ornstein-Uhlenbeck approximation of the quasi-stationary distribution and the 
quasi-stationary distribution given by the left leading eigenvector of the truncated 
transition matrix. It shows that with parameter values N =  200, f3 =  0.9 and 

7 0-4 the Ornstein-Uhlenbeck approximation gives a very good approximation of
the quasi-stationary distribution.
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Ornstein-Uhlenbeck approximation of the Quasi-stationary distribution

Figure 3.2: The Ornstein-Uhlenbeck approximation of the number of infectives at 
quasi-stationarity. The red solid line represents the quasi-stationary distribution 
for the number of infectives calculated from the truncated transition matrix Aq. 
The blue line represents the Ornstein-Uhlenbeck approximation of the number of 
infectives at quasi-stationarity. The parameter values are N  =  200, /? =  0.9 and 
7 =  0.4 (so Ro =  2.25)
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3.6 Cumulant equations

Moment closure approximations are used to provide analytic approximations to 
non-linear stochastic population models (Krishnarajah et al. (2004)). They provide 
insights into the model behaviour and help validate simulation results. We will use 

methods from Bailey (1964) and Matis and Kiffe (1996) to derive the cumulant 
equations for our process similar to the ones given by Násell (2003). Equation (3.8) 
can be used to derive equations for the rate of change of the expected number of 
infectives E[I] and higher cumulants such as the variance and skewness. Let M(9, t) 
and K(9, t) denote the moment and cumulant generating function of I( t ) conditioned 
on non-extinction; that is, for t >  0,

N

M (d , t )= E [ e IW\I(t )>0\ =  J2<lieie O e R  (3.11)
i — 1

and K(9 , t ) =  log M(9,t).

Multiplying equation (3.8) by eld and summing over all values of % and simplifying 
(see Appendix A) gives

E dQj te 
dt

Simplifying,

\ N  ~ i + ~ 
*=2 ¿=1 

N - 1 N N

+  5 3  7 (* +  1)ft+ie‘fl -  S  W te " +  ¿ 791
i = 1 ¿= 1  j = 1

E dqi ,
d t B

2=1

N - 1 JV-1

¿=1 N i2qiel6

N
2=1

N

+  ( j (e  6 -  1)) ^  iqieie -  ^qiee +  ^  qçi&e*9
i= 2 i= 1

(3.12)

From equation (3.11) we have

and

dM(9, t) 
d9

id

N N - 1
= £  i V "  =  E  * V s +  ¿V V e ™ .

2 =  1 2=1
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Therefore equation (3.12) becomes

dM
dt [P(e6 -  1) +  7 (e e -  1)] ^

Using the transformation K(9 , t ) =  logM(0,i) gives

dK  \at e in L / -e m  dK 0 . e . d2K  ( dK\  -w  =  [0 ( e  - l ) + 7 ( e  ^  +  ( ^ - ) +  7?i(l - c  )■

Using the definition K(9 , t ) =  i where km(t) denotes the rath cumu
lant, and expanding in powers of 9, gives the following differential equations for the 
first three cumulants (see Appendix A for derivation).

¿i (t) jRo
N N  ( 1 ~~ ^  ) -  k l^  ) k l^  ~  k +  7<7i*h CO, (3.13)

hi t )  = iRo
N N{ 1 + i ) - k̂ ) k̂ + {2N(1~ i
-Akx{t)k2{t) -  2k3(t) +  79l (A:2(t) -  (Aq(f))2),

1 ) k2(t)

(3.14)

hi t )  = jRo
N

N  1 RoJ ~ kl^ J  kl®  ~ ~ 6ki(t )h(t)  -  6(k2(t))2

■ 1 ) k3{t) -  3hit )3NU + - k ) - l) k’{t) + 3{f i (1~-k
+ 7gi(/ci(i) -  3hit )  h i t )  +  hit)) , (3.15)

These equations can be used to approximate the quasi-stationary distribution. The 
cumulants of a distribution are closely related to moments; in particular, the first 
cumulant h  is equal to the mean while the second cumulant k2 is the variance. Here 
we are interested in the first two cumulants so we find them by setting kx =  k2 =  0 
and solve equations (3.13, 3.14) for h ,  k2. However, the equation describing the rate 
of change of the jth  cumulant depends on the (_) 1 )th cumulant. So the above equa
tions (3.13)-(3.15) are not closed because the equation for k2 contains the unknown 
h ,  and the equation for k3 contains the unknown Aq. One way of closing the system 
of equations is to approximate the cumulant functions of order j  with cumulants of 
higher order set to zero, a technique known as the cumulant truncation procedure 
(Matis and Kiffe (1996)). However, we will employ an alternative approach used 

by Nasell (2003) whereby we assume a particular distribution. This assumption
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imposes a functional relationship between the (j +  l)th cumulant and lower order 
cumulants. So from the assumptions we will be able to close the equations (3.13,
3.14) by expressing in terms of kx and k2. Therefore the two equations (3.13,
3.14) now contain three unknowns: kx,k2 and qx. Having assumed a distributional 
form for q we can express qx in terms of the cumulants of the distribution; however, 
initially we shall follow the simpler route of Nasell(2003) in assuming that qx =  0, 
which is equivalent to the condition that Rq be distinctly above 1. For Nasell these 
assumptions lead to a variable number of spurious solutions for the critical points 
of the moment closure equations. The only point that is accepted as stable is the 
point whose /ui-coordinate (where kx is the first cumulant) is asymptotically equal 
to the deterministic model prediction of the endemic level. From Nasell (2003) it 
can be shown that our stochastic model has a quasi-stationary distribution which 
with Rq > 1 approaches a Normal distribution in its body as N  —> 00, with mean 
7V(V  and variance

From previous studies of the stochastic logistic model, it is seen that in the region 
where R0 >  1 the quasi-stationary distribution is approximately Normal. Here 
we will consider approximating the quasi-stationary distribution by the Normal, 
Poisson, Log-normal, Binomial and Beta-binomial distributions.

Thus the problem of approximating the quasi-stationary distribution q for R0 
distinctly above 1 amounts to solving for kx, k2 the equations

( n  ( l - ^ )  - * 1)  ki - * »  =  0, (3.16)

N  ( X +  -  kl)  kl +  ( 2N i 1 ~  “  X)  k2 ~ Ak^  ~  2k* =  °> (3-17)

with k3 given by an expression in terms of kx,k2 determined by our choice of ap
proximating distribution.

3.7 Distributional approximations for R q >  1

Nasell (2003) derived approximations for the quasi-stationary distribution using the 
Normal, Poisson, Log-normal and Binomial distributions. We shall follow a similar 
approach for Normal, Log-normal and Binomial but a slightly different approach for 
the Poisson. The Beta-binomial approximation is entirely new.

37



3.7.1 Normal distribution

Here we assume that the quasi-stationary distribution is approximately Normal, so 
all cumulants of order higher than 2 are (approximately) zero. Putting k3 =  0 in 
equations (3.16, 3.17) gives

h  =  0
3 N

or hx = (j_¿) . i± - N
R0

8£
2‘

N  1̂ — and are O(N).  Therefore j^/ (jV 1̂ — is of order l/N. So
as N  —> oo the one term expansion of the square root is one. Therefore to first 
order in N, kx =  N ( l  — or kx =  N  ( l  -  /2  or kx =  0. Two of these
values of kx are spurious solutions and should be rejected. Taking the assumption 
of normality into consideration only kx =  N  1̂ — -d-j is consistent with it. Taking

kx =  N  ( l  -  /2, for instance, the ratio of the mean to the standard deviation is
equal to 1, which is not large. For the normal approximation to be valid, we require 
that the ratio of the mean to the standard deviation be greater than or equal to 3. 
This is because a normally distributed random variable takes values larger than 3 
standard deviations below its mean with high probability, so that provided the ratio 
of mean to standard deviation is at least 3 then the normal approximation assigns 
high probability to values larger than zero. Note that the true quasi-stationary 
distribution q assigns zero probability to negative values. Any normal distribution 
with mean kx =  0 assigns probability 0.5 to negative values, so cannot provide an 
acceptable approximation. So kx =  0 is also rejected. Taking two terms in the 
approximation of the square root as N —► oo leads to

k! =  N  ( 1 -  — ) ------- -
1 RoJ  R0 - i + 0 [ n

ko =
N 1

+ 0 | vRq \Rq — 1,
From Figure 3.3 it can be seen that the Normal distribution is a very good ap
proximation of the quasi-stationary distribution of our model, for N  =  200 and
Ro =  2.25.

3.7.2 Poisson distribution

Here the assumption is that the quasi-stationary distribution is approximately Pois
son. For the Poisson distribution the first two cumulants are equal so we can use
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equation (3.16) alone. This gives

* ■ -0  or =

By the same argument as in the normal case above we have that ki — 0 is a spurious 
solution and so we have

This differs slightly from the corresponding result of Nasell(2003), where both of 
equations (3.16, 3.17) were used together with the relationship k3 — kx.

Prom Figure 3.3 it can be seen that the Poisson is not a good approximation of 
our model for these parameter values. Although it gives a very good approximation 
of the first cumulant, there is nothing to regulate the spread. Therefore it is not 
good to fit a Poisson distribution to our model. It is important to note similar 
results were obtained when Nasell’s approximation was fitted.

3.7.3 Log-normal distribution

With the assumption that the quasi-stationary distribution is approximately Log
normal, then the third cumulant k3 can be expressed in terms of the first two,

h  =  3h +  I '  ( N M  (20° 3))

Substituting this into equation (3.17), solving equations (3.16, 3.17) for ku k2 and 
discarding the spurious solution at k\ =  0 gives

k =  N2 (fl> ~ l )3
Ro (N  (7?q — 1) +  Ro)

and

This result can be further simplified in the form kx =  aN + b + 0( l/N)  and allowing 
N  —> oo. This yields
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and

k2
N_
Ro

2
(1 -  i?o)2

+  0

Looking at Figure 3.3, it can be seen that the Log-normal distribution is a good
approximation of the quasi-stationary distribution for these parameter values.

3.7.4 Binomial distribution

Here the assumption is that the quasi-stationary distribution is approximately Bi
nomial (Bin(n,p)). Here we will allow n to vary. So we will approximate both n 
and p. The alternative is to set n — N  — 1 and approximate the quasi-stationary 
distribution by Bin (N — l,p) +  1 with only p to be estimated. The advantage is 
that there is only one parameter to approximate and therefore less mathematical 
complication. However, this may affect the shape of the distribution since n and 
p determine where the peak of the distribution lies. Therefore n and p will be ap
proximated. With the assumption of the binomial distribution the third cumulant 
k3 can be expressed in terms of the first two,

2 k2
h  =  —^ -  k2. (Nasell (2003))

Substituting this into equation (3.17) and solving equations (3.16, 3.17) for ku k2 
and discarding the spurious solution =  0 gives

k ‘  N  * o )  f l o  ( J V  ( l  -  i )  -  l )

and
. _  N 2(N(Ro -  l )2 -  2R0 +  1)
2 Ro(NR0 - N - l f  '

These results can be further simplified to:

kx =  N ( 1 -  —  ) ------- -—  +  O f )
1 V Ro) R o - l  \ N J

and

k2 ==R ^ ~  Ro(R0 -  l )2 +  °  ( n )  ‘

From Figure 3.3 it can be seen that the Binomial is a very good approximation of 
the quasi-stationary distribution for these parameter values.
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3.7.5 Beta-binomial distribution

Here the assumption is that the quasi-stationary distribution is approximately Beta- 
binomial. A variable with Beta-binomial distribution is distributed as a Binomial 
distribution with parameters N  and p, where p is distributed with a Beta distribution 
with parameters a and b. The probability mass function for N  trials is,

P(x)
B(x +  a, N — x +  b) 

B(a,b)

N
x

where B(a, b) is a beta function and ^ ^ J is a binomial coefficient. Here we will 
assume that N is constant and equal to the population size. The first three raw 
moments of the Beta-binomial in terms of its parameters (a and b) are

MÎ =  E[x] =
Na 

a +  b ’

M2 =  E[x2} =
Na(Na +  N  +  b) 
(a +  6)(a T 6 +  1)

' _  E\x3] — N a[N2(l +  a)(2 + a) +  3N(1 +  a)b +  b(a +  b) 
(a +  b) (a +  b +  1)(2 +  a +  6)

(http://mathworld.wolfram.com/BetaBinomialDistribution.html).

The cumulants are:

*1 ~  Ml;
 ̂ _  Nab(N +  a +  b)
2 (a +  b)2(a +  b +  1) ’

k3 =  n'3 -  kf -  3 ^ 2 -  (3.18)

We now need to express the third cumulant in terms of the first and second cumulant. 
So

k2 =  b(N +  g +  b) 
k2 Na(a +  6+ 1 )

—  (—  +  l)_ a+6 \a+fr ' 1/
“  * & < ! + + )
=  ( 1 - 77) + + 1)

*++& ) ■
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Therefore

_  (N -  k{)k\ -  kxk2 
a N(k2 -  ki) +  k\ '

Substituting this into
, Na

and simplifying gives

((N — ki)ki — k — 2)(N — ki) 
N{k2 -  k^ +  k\

From (3.15)

(3.19)

(3.20)

k:t = Na[N2(l +  a) (2 +  n) +  3./V(l +  a,)b +  6(a +  6)
k\ -  3h k 2. (3.21)(n +  6) (a +  b +  1)(2 +  a +  6)

Substituting equation (3.19) and equation (3.20) into equation (3.21) we have

k-\ = k2{2k\ — 2>k\N +  kiN2 +  4kxk2N — 2kik2 — 2N2k2 +  Nk2) 
kiN -  kxN2 -  Nk2 + 2kiN -  2k\ '

(3.22)

Substituting this into equation (3.17) and solving equations (3.16, 3.17) for klt k2 
and discarding the spurious solution k\ — 0 gives

h _  N (N2 -  3N R 2 -  2N2R0 +  N 2R2 +  2R2 +  2NR»)
1 R0 (2R0 -  3NRq +  N 2R0 -  N 2) '

As with the Log-normal and the binomial distribution, the second result can be 
expressed as aN +  b +  0(1/N). So

ki =  N
1

i?o — 1
+  0

and
. Nk2 — —---h R2- 2

+  O
Ro Ro(Ro ~  l )2 

Taking the first two terms for each cumulant ki, k2 gives

N(N(R0 -  l ) 2 -  Rp) 
Ro(N -  Ro) '■ b ~

N(N(Rp -  1 )  -  Ro) 
Ro(N —  R0)

From Figure 3.3 it can be seen that the Beta-binomial is a very good approximation 
of the quasi-stationary distribution of our model, for these parameter values.
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Figure 3.3: Different distributional approximations of the quasi-stationary distribu
tion using moment closure. The green represents the quasi-stationary distribution 
and the blue solid line represents the fitted approximating distribution. The param
eter values are N =  200, /? =  0.9 and 7 =  0.4 (so i?0 =  2.25).
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3.8 Total variation distance

In the previous section we compared the different approximations of the quasi
stationary distribution for one fixed set of parameter values. We are looking for the 
best approximation for the quasi-stationary distribution. We have already seen that 
although the means of all the approximating distributions give good approximations 
of the mean of the quasi-stationary distribution, not all distributions fit well. In this 
section, we will compare the approximating distributions over a range of parameter 
values using total variation distance. In classical analysis, the variation of a real
valued function /  on the bounded interval [a,b] is

suP p S l / ( ^ + i )

where the supremum runs over all partitions p =  { x u . ..  , xn} of the interval [a, b}. In 
effect, the total variation is the vertical component of the arc length of the graph of 
/ .  The function /  is said to be of bounded variation precisely if the total variation of 
/  is finite. In probability theory, the total variation distance between two probability 
measures P  and Q on the sigma-algebra F  is

$(P, Q) =  sup{|P(,4) -  Q(A )| : A € F}.

Informally, this is the largest possible difference between the probabilities (in our 
case the quasi-stationary distribution and each of the approximating distributions) 
that the two probability distributions can assign to the same event. For a finite 
space we can write

s (p > Q) =  \ lp (x) -  QOdl-
X

Working out the total variation distance for each of the approximating distributions 
using different parameter values, results are plotted in Figure 3.4. From Figure 3.4 
it can be seen that the Beta-binomial distribution (green solid line), the normal 
distribution (the red broken line), the binomial distribution (blue asterisks), have the 

lowest total variation distance when P0 > 1 followed by the Log-normal distribution 
(red solid line). The Poisson has the largest total variation distance. This confirms 
our earlier conclusion that the Beta-binomial, Normal, Binomial and the Log-normal 
distributions give better approximation to the quasi-stationary distribution than
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Total variation distance

0.5 1 1.5 2 2.5 3 4

Figure 3.4: The total variation distance is calculated for N =  200 and different values 
of i?o {Ro from 0.9 to 4.5 in step size of 0.3). The green solid line represents the 
total variation distance of the Beta-binomial distribution from the quasi-stationary 
distribution. The red broken line represents the total variation distance of the 
normal distribution from the quasi-stationary distribution, the red solid line the the 
Log-normal distribution from the quasi-stationary distribution. The blue asterisks 
represent the total variation distance of the binomial distribution from the quasi
stationary distribution. The black broken line represents the total variation distance 
of the Poisson distribution from the quasi-stationary distribution. This graph shows 
the behaviour of each approximation as Rq grows from 0.9 to 4.5. The results 
agree with the conclusions drawn earlier concerning goodness of each approximating 
distribution.
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the Poisson distribution. The total variation distance for the Normal distribution 
shows that the Normal distribution is a bad approximation for the quasi-stationary 
distribution for Rq < 1. Its total variation distance falls rapidly as R0 approaches 1. 
However, as Rq grows very large, the total variation distance grows slowly. This is 
due to the fact that the quasi-stationary distribution is skewed to the left (number 
of infected individuals is close to the boundary at N) as f?o grows very large.

It can also be seen in Figure 3.4 that the total variation distance for the Poisson 
distribution is only low when R0 is about 2. It is very high initially (when R0 is 
less than 1) then drops as R0 approaches 2. It then rises as Rq moves further away 
from 2. This is due to the fact that at R0 =  2, the mean of the quasi-stationary 
distribution is approximately equal to its variance, as we can see from the diffusion 
approximation formulae for the mean, N ( l  — and variance,

Looking back at the Ornstein-Uhlenbeck approximation it can be seen that the 
mean and variance of the number of susceptibles at quasi-stationarity are the same 
and equal to N/Rq. This is a property of the Poisson distribution. So we fit a Poisson 
distribution to the quasi-stationary distribution of the number of susceptibles rather 
than the number of infectives from the truncated transition matrix. It can been 
seen from Figure 3.5 that the Poisson distribution gives a very good fit. Therefore 
it will be better to use the Poisson distribution to approximate the quasi-stationary 
distribution for the number of susceptibles than to use it to approximate the quasi
stationary distribution for the number of infectives. Figure 3.6, which is the total 
variation distance between the fitted Poisson distribution and the quasi-stationary 
distribution for the number of susceptibles, shows that the Poisson distribution 
doesn’t give a good approximation of the quasi-stationary distribution when R0 is 
close to 1 but a very good approximation when R0 grows larger than 1. Its total 
variation distance falls rapidly as Ro moves towards 2. However, as R0 grows very 
large, the total variation distance grows slowly. This is due to the fact that the 
quasi-stationary distribution for the number of susceptibles is skewed to the right 
(number of susceptible individuals is close to the boundary at 0) as R0 grows very 
large.
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Poison approximation of the number of susceptibles at Quasi-stationarity

50 100 150
Number of Susceptible Individuals

2000

Figure 3.5: The Poisson distribution approximation of the quasi-stationary distribu
tion for the number of susceptibles. The red solid line represents the quasi-stationary 
distribution for the number of susceptibles calculated from the truncated transition 
matrix. The blue dots represent the Poisson approximation of the number of sus
ceptibles at quasi-stationarity. The parameter values are N =  200, (3 =  0.9 and 
7 =  0.4 (so Rq = 2.25).
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Total variation distance

Figure 3.6: The total variation distance between the Poisson approximation of the 
quasi-stationary distribution for the number of susceptibles and the true quasi
stationary distribution for the number of susceptibles. The total variation distance 
is calculated for N  =  200 and different values of Rq (i?0 from 1 to 4.5 in step size of 
0.3).

3.8.1 Nàsell’s (1996 and 1999) approximations of the quasi
stationary distribution

Násell (1996) derived an approximation for the quasi-stationary distribution q. He 
gave the following approximation of the cumulative distribution function of the 
quasi-stationary distribution

F (K )  =  <KMK)) -  1))
1 -  <¿>(v0(l))

where the functions u and v are defined by

uoU) =  y(j  +  H {z { j ))) =  - + ~
a

Vo(j) =  y{j  +  H (z { j )) -  1 =  y( j  -  H (—z(j))),
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where

where the function H  is defined

H{z)
I log s i-1, for z ±  0, 

| for z =  0.

Nasell (1999) gives the following approximation for the quasi-stationary distribution 

<?•

= f  ¿<p(y(j)) for R v > 1.
\ ( l - t f o ^ i T 1 for Rq < 1,

where <p(x) =  exp(—x2/2)/\f2n denotes the normal density function, p, a and y(j)  
are as defined above.

We will now analyse the total variation distance between these approximations 
of the quasi-stationary distribution and the quasi-stationary distribution calculated 
using the truncated transition matrix. Prom Figure 3.7 it can be seen that these ap
proximations give very good approximations of the the quasi-stationary distribution 
and they get better as Rq grows bigger. We now compare Naselhs (1996 and 1999) 
approximations with the other approximations (Normal, Binomial, Log-normal and 
Beta-binomial) but this time we allow N  to vary.

3.8.2 Comparison of all the above approximating distribu
tion with varying N

Now we allow N  to vary and fix R0 (R0 =  3) and work out the total variation dis
tances. Figure 3.8 shows the total variation distance between each approximation 
and the true quasi-stationary distribution as N  grows from 100 to 400 with step 
size of 20 and i?o fixed at 3. It can be seen in Figure 3.8 that the Beta-binomial 
gives the best approximation of the quasi-stationary distribution q for these param
eter values. This is followed by the Normal distribution, Nasell (1996 and 1999) 

approximations and the Binomial distribution. The total variation distance for the
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Total variation distance

Figure 3.7: The total variation distance is calculated for N =  200 and different val
ues of R0 (Rq from 0.9 to 4.5 in step size of 0.3). The black solid line represents the 
total variation distance of Nasell (1996) approximation from the quasi-stationary dis
tribution. The red asterisks represent the total variation distance of Nhsell (1999) 
approximation from the quasi-stationary distribution. This graph shows the be
haviour of each approximation as R0 grows from 0.9 to 4.
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Binomial distribution goes up and down. This is due to the error caused by rounding 
n to the nearest whole number. In the Binomial we approximate p and n with n 
rounded to the nearest whole number. The Log-normal distribution also give good 
approximations but the Poisson distribution is not good.

Figure 3.8: The total variation distance is calculated for f?0 =  3 and different 
values of N (N grows from 100 to 400 with step size of 20). The green solid line 
represents the total variation distance of the Beta-binomial distribution from the 
quasi-stationary distribution. The red broken line represents the total variation 
distance of the normal distribution from the quasi-stationary distribution, the red 
solid line the Log-normal distribution from the quasi-stationary distribution. The 
blue line represents the total variation distance of the binomial distribution from 
the quasi-stationary distribution. The red asterisks represent the total variation 
distance of Nasell (1996) approximation from the quasi-stationary distribution. The 
black line represents the total variation distance of Nasell (1999) approximation 
from the quasi-stationary distribution. The black broken line represents the total 
variation distance of the Poisson distribution from the quasi-stationary distribution.
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3.9 Moment closure for 417^0

With qx ^  0, that is R0 < 1, we have one more unknown to deal with in equations 
(3.13)-(3.15). So we have more unknowns than equations. To solve this problem we 
substitute the parameters for each approximating distribution into the equations. 
Here we will approximate the quasi-stationary distribution by the Poisson and the 
geometric distribution.

3.9.1 Poisson distribution

Suppose the quasi-stationary distribution is I  ~  Poisson(A) +  1. Then

so qi =  P ( I  =  1) =  e~x, ki =  A +  1 and k2 =  A. 
Take first the equation (3.13), giving

7-fto
N

Ro — 1
Rn

N  — ki ) k\ — k2 +  791*4 =  0.

Substituting for kx, k2 and qt in terms of A into equation (3.23) we have 

7#o
N fir) N(X +  1) -  (A +  l )2 -  A +  7 (A + l )e "A =  0

(3.23)

(Ro — 1)(A +  1) +  (A +  l)e A =  ((A +  l )2 +  A)

As N —> oo, below threshold we expect A =  0(1),  so the right hand side is O (^ ), 
so in the limit,

(Ro — 1) +  e A =  0,

e-A =  1 -  Ro,

A =  — ln(l — R0)

So below threshold (Ro < 1), we approximate the quasi-stationary distribution by 
1 + Poisson (in ( ^ ) ) .
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3.9.2 Geometric distribution

Suppose the quasi-stationary distribution is I  ~  Geometric(p). That is,

P(I  =  z) =  (1 -  p f - ' p  *== 1 ,2 ,...

Then qx =  P ( I  =  1) =  p, /cx =  and A:2 =
Now substituting the above into equation (3.23) gives

7-fto
N

i - p
ftp P / P P,2 +  7P~ =  o, 

p

ftp /  py p p2 ftp

Multiplying through by p2,

ftp — 1
P ftp

Nv2N - l - l + p + - f -  =  0,
rxp

(H o - l )p  +  p2 - ^ - i 2 i i r T  =  0,

2 4- ( P I I ft° A 2i?0P + i « 0 - 1 +  _  I p -  — 0,

p =
- ( f t o - l  +  f ) ± V ( ^ - 1 +  f ) 2 +  lf

_ 2 O  ̂ * H ( * - 1+* fi + 8R0
N (i? 0 - l  +  f ) 2'

Taking two terms approximation of the square root as N  —> 00 leads to

P

P

1 + 4ftn
N (/?0 -  1 +

1 i n  1  , M  , 2i?0

2 >

So below threshold (_ft0 < 1), we approximate the quasi-stationary distribution by
Geometric ( 1 — Rn — ^  — 2R„

N  j v ( f l 0 - l  +  $ L )
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3.9.3 Numerical analysis

Figures 3.9 and 3.10 show the Geometric and Poisson approximations compared 
with the true quasi-stationary distribution for i?0 =  0.43 and R0 =  0.71 respectively. 
Several other values of Ro (less than 1) were also tried. These figures are included 
to demonstrate that the Geometric distribution is a very good approximation for 
the quasi-stationary distribution for i?0 < 1. The Poisson on the other hand, is only 
a good approximation for R0 values less than 0.45.

For a better understanding of the performance of these approximating distribu
tions, we worked out the total variation distances and results are plotted in Fig
ure 3.11. It can be seen that total variation distance for the Poisson approximations 
grows with Rq while for the Geometric approximation is approximately 0 for values 
of R0 less than 0.6 and then grows as R0 tends to 1, especially for 0.9 < R0 < 1. 
Nasell’s (1996 and 1999) approximations seem to do very well for R0 values less than 
0.8. So the Geometric approximation appears to be the best approximation of the 
quasi-stationary distribution for R0 < 1.

3.10 Conclusion

In this chapter we analysed the SIS model with a constant population size. We 
have shown using the Ornstein-Uhlenbeck diffusion approximation that the quasi
stationary distribution can be approximated by a Normal distribution when i?0 > 1 
and N  is sufficiently large. This result was confirmed by the results of the mo
ment closure applied on the cumulant equations for q\ approximately zero. This 
was studied by Nasell (2003). For Nasell the cumulant approximations derived from 
the moment closure method are indeed asymptotic approximations of the quasi
stationary distribution cumulants. He showed using the moment closure method 
(which was presented here) that the quasi-stationary distribution can be approxi
mated by the Normal, Binomial, Poisson and Log-normal distributions. Here we 
extended that to the Beta-binomial. Nasell mainly focused on deriving approx
imations for the first few cumulants of the quasi-stationary distribution without 
commenting on how well the various approximating distributions perform. Here we 
commented on how well the various approximations performed, based mainly upon
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Geometric approximation
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Poisson approximation

0 .2  1----------------------- *------------------------ '-----------------------------i----------------------- i________________
o 10 20 30 40 50

Figure 3.9: Geometric and Poisson approximations of the quasi-stationary distri
bution using moment closure. The black solid line represents the quasi-stationary 
distribution and the red dots represent the fitted approximating distribution. The 
parameter values are N  =  200, 0  =  0.7 and 7 =  0.3 (so Rq =  0.43).
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Figure 3.10: Geometric and Poisson approximations of the quasi-stationary distri
bution using moment closure. The black solid line represents the quasi-stationary 
distribution and the red dots represent the fitted approximating distribution. The 
parameter values are N =  200, (3 =  0.7 and 7 =  0.5 (so R0 =  0.71).
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Total variation distance
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Figure 3.11: The total variation distance is calculated for N  =  200 and different 
values of i?o (Ro from 0.1 to 1 in step size of 0.05). The red solid line represents 
the total variation distance of Geometric approximation from the quasi-stationary 
distribution. The black broken line represents the total variation distance of Pois
son approximation from the quasi-stationary distribution. The black solid line 
represents the total variation distance of Nasell’s (1996) approximation from the 
quasi-stationary distribution.The asterisks represents the total variation distance 
of Nasells’ (1999) approximation from the quasi-stationary distribution.This graph 
shows the behaviour of each approximation as R0 grows from 0.1 to 1

57



visual inspection of plots showing both the true quasi-stationary distribution and 
the approximating distribution under consideration, for a few particular values of 
the parameters N  and R q. We saw that although all the approximating distribu
tions give very good approximations of the expected number of infected individuals 
at quasi-stationarity, fitting these distributions on the quasi-stationary distribution 
showed that the Poisson distribution doesn’t give a good fit as illustrated in Fig
ure 3.3. We also attempted to measure goodness of fit in order to decide on which 
approximating distribution fits best for any given values of (N, R0) for Ro > 1. We 
used total variation distance to measure the discrepancy between the approximating 
distribution and the exact quasi-stationary distribution. It was seen from this mea
sure of goodness of fit that the Beta-binomial provided the best approximation. It 
also confirmed that although the Poisson distribution gave a good approximation of 
the expected number of infected individuals at quasi-stationarity, it does not provide 
a good fit. For comparison, we also compute the total variation distance away from 
the true quasi-stationary distribution of the asymptotic approximations of Nâsell 
(1996, 1999). It was seen that the asymptotic approximations of Nâsell (1996, 1999) 
are very good approximations of the quasi-stationary distribution for R0 > 1. We 
showed that the Poisson is a better approximation for the number of susceptibles 
at quasi-stationarity since at quasi-stationarity the mean number of susceptibles is 
equal to its variance.

For Rq < 1 and ^  0, we approximated the quasi-stationary distribution by 
Poisson and Geometric distributions. It was seen that the Poisson only performed 
well for values of Rq less than 0.45. The Geometric on the other hand, is a very 
good approximation of the quasi-stationary distribution for R0 values less that 0.9. 
This confirms Nâsell’s (1996, 1999) conclusion that the quasi-stationary distribution 
is well approximated by a Geometric distribution when R0 is distinctly below 1.
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Chapter 4

Two population SIS model 
without demography

When modelling the spread of a disease in a human population, it is sometimes 
useful to take into account the formation of small social groups such as households, 
schools, work places etc. The reason for this is that the spread of infection is 
usually greatly facilitated among such groups where there is a high level of mixing. 
Here we study an SIS epidemiological model of individuals partitioned into two 
separate populations. Each population is divided into susceptibles and infectives. 
Individuals within a population are more likely to interact with each other, but there 
are occasional interactions between groups as well. So infection takes place either 
within or between populations, the latter generally happening much less frequently.

There has been a lot of interest in models for the spread of an epidemic among a 
population of individuals divided into households. Most of these studies (Ball 1991, 
Clancy 1994, Becker and Dietz 1995 and 1996, Ball and Lyne 2001, Ball and Neal 
2002, etc.), however, have been concerned with SIR epidemics and, therefore, en
demic behaviour is not possible. Ball (1999) considered the SIS household-structure 
model in which the population is partitioned into m households with N  members in 
each household. He determined a threshold i?*. It was shown that for the determin
istic model, for households with 2 members, if R* < 1 then the epidemic dies out, 
whilst if 72* > 1 the epidemic settles down to an endemic equilibrium. For him the 
usual basic reproductive ratio Rq does not provide a good indicator for the behaviour 
of these household epidemic models unless the household size N  is large. Like Ball, 
Arrigoni and Pugliese (2002) looked at a stochastic SIS model for the spread of
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epidemics among a population partitioned into m sites, each containing N  individu
als; epidemic spread occurs through within-site (‘local’) contact and global contacts. 
They analysed the limit behaviour of the system as m and N  increase to oo. Two 
limit procedures were considered, according to the order in which m and N  go to 

oo. They showed that the infected distribution converges, as time goes to infinity, to 
a Dirac measure, centred at an endemic state x*, if the threshold condition i?0 > 1 
holds; centred at 0, below the threshold. Neal (2006) also proved the existence of 
an endemic equilibrium for the epidemic if and only if the threshold parameter 
is greater than 1. For the stochastic model, he proved a law of large numbers result 
for the convergence, to the deterministic limit, of the mean number of infectives per 
household. We will follow a similar route by approximating the stochastic epidemic 
model for the spread of an epidemic in a population partitioned into two groups 
by a deterministic model and deriving a Gaussian approximation process for the 
fluctuation of the epidemic model about the deterministic equilibrium.

Ghoshal, Sander and Sokolov (2004), in a different approach, analysed the SIS 
household epidemic using methods from statistical physics, namely self-consistent 
field methods. The analysis was essentially deterministic, and self-consistent field 
theory was utilised to consider the individual household epidemics as independent 
epidemics, subject to a mean-field global infection.

Here we use a diffusion approximation (Ornstein-Uhlenbeck process) to study 
the long time behaviour of the model. A system of ordinary differential equations 
describing the cumulants of numbers of infectious individuals per population is de
rived. This system of equations is then truncated using the moment-closure method 
used by Nasell (2005) to derive the steady state distribution of the process. The re
sults of these two approximations are then compared with the exact quasi-stationary 
distribution.

In section 4.1 we shall define the two-group epidemic model. Then in section 
4.2 we will analyse the deterministic approximation of the stochastic model. Our 
deterministic model is a special case of the model of Lajmanovich and Yorke (1976); 
the stochastic model has not previously been studied, so far as we are aware. In 
section 4.3 we will then analyse the process conditioned on non-extinction. A diffu
sion approximation of the quasi-stationary distribution is given in section 4.4. This
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approximation is only valid when Rq is distinctly larger than one and N  is large. 
Finally we derive cumulant equations in section 4.5 and use them to approximate 
the quasi-stationary distribution and compare the results with the results obtained 
from the diffusion approximation.

4.1 Model formulation

Let there be Ni individuals in population 1 of whom m are initially infectives and N2 

in population 2 of whom n are infectives. Here, we assume that the population sizes 
are equal and constant (Ni =  N2 — N). The infectious periods of different infectives 
are independent and identically distributed according to a random variable /  which 
is exponentially distributed with intensity 7 . During his or her infectious period, a 
given infective makes contact with a given individual within his or her population at 
rate (3 and a given individual from the other population at rate A. If the contacted 
individual is susceptible then he or she becomes infected and is immediately able 
to infect other individuals. After the infectious period the individual recovers and 
becomes susceptible to re-infection. We thus assume that the within population 
infection rates, cross population infection rates and the recovery rates for both 
populations are equal.

This is a two dimensional Markovian model. The Markov chain I2(t))

describing the number of infected individuals at time t, takes values in the state 
space = { 0 , l , . . . ,A 'i }  x { 0 ,1 , . . . , 7V2}- The only non-zero transition rates are given 
in Table 4.1 below.

Table 4.1: The transition rates for the model are given as:

Event State Transition Transition Rate
Infection in Pop 1 
Infection in Pop 2 
Recovery in Pop 1 
Recovery in Pop 2

(¿i>¿2) —> (¿1 + M 2) 
(¿M2) -> (¿M2 + 1) 
(¿M2) —> (¿1 -  I?¿2) 
(¿M2) —> (¿1 s ¿2 -  1)

A(u,i2) + ^2(*ll*2) =  &n (n  ~ ¿1) + A ft(N -  ¿1)
#2(1!,¿2) + Ai(ji,j2) = @n (n  ~ ¿2) + A^(Af -  ¿2) 

ŷx(zi ,¿2) 
l 2(U,i9.) =7^2

Therefore the Kolmogorov forward equations for the state probabilities pil]i2(i)
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are

^  1 |Í2)P *1—1,¿2 W  T  ’7 l ( í l + l , ¿ 2 ) P ¿ l+ l , í 2  ( 0  T  0 2 ( il ,Í2  — l ) P i l , Í 2 ~  1 ( 0

+ 7 2 ( < i , i 2 +  l ) P i i IÍ2 +  l ( í )  “I" ^ 2 ( n  — 1,¿2)P¿1 —1,¿2 W  T  " ^ l(n ,*2 — l ) P i l i ¿2 —1 (^ ) 

0 l ( i l ,Í 2 )P i l ,Í 2  ( 0  /^2(¿i ,Í2 )P il,Í2  (^ )  T l(¿ li¿2 )P *l.*2  (^ )

_  T 2 (t i ,¿2 )P¿1 ,¿2(^) ^ 1 (¿1 ,¿2 )P *1 |Í2 (^ ) A 2 ( il ,Í2 )P i l ,Í2 M  ( 4 - 1 )

for ¿1 =  0,1, 2 , . . . ,  AT and ¿2 =  0 ,1 ,2 ,. . . ,  and where p_ii¿2(f) =  p¿li_1(í) =  

Pii.jv+iíí) = P jv+i,¿2(<) =  0.

4.2 Deterministic model

As A  —> 00, the process describing the density of infectives in each population 
{(iV -1( /1, / 2)); t >  0} can be approximated by a deterministic model described by 
the following differential equations

dii
—  =  /?¿i(l -  ii) +  Az2(1 -  ¿i) -  7¿!,

—  =  /?f2(l — f2) +  Aii(l — z2) — 7?2.

The basic reproduction number is

< « )

We also introduce a new parameter aq,

0
“ ■ =  (4.3)

This is the ratio of within population infection rate to the recovery rate.

4.2.1 Equilibrium

At equilibrium,

/3fi( l — *1) +  Az2(1 — ¿1) — 7«! =  0 ,
^ * 2 ( 1  -  * 2 )  +  A * ! ( l  -  ¿2) -  7*2 =  0 .

Solving these equations using Maple gives four possible solutions:
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1. ¿i — 0, ¿2 — 0. This point corresponds to the absence of infection in both 
populations.

2- *i =   ̂— ]^> *2 =  1 — This corresponds to an endemic infection level. (i*, 
i*2) is only feasible if R0 > 1.

3. k  and i, equal respectively

4. i, and i2 equal j respectjvely

To analyse the feasibility of (3) and (4) we let K  =  (¡3 -  A)2 -  j ( 0  -  A) and 

T =  (P T A)2 — l (P  ~  A), and so L > K.  Therefore (3) and (4) can be written 

as 20(0—X) an<̂  2/̂(i0 X) respectively. It is important to note that the equilibrium is 
feasible if both roots are real and positive and < 1. Analysing the roots it2p(p—A)
can be seen that

• If K L  < 0, then we have complex roots and these are not feasible.

• If K L  > 0 and K  > 0, then K  < L which implies

K 2 < KL  

=> K  < y/KL

=> K  — \!KL < 0 whereas K  +  V K L  > 0.

So whatever the sign of /? -  A, we have roots of opposite signs and therefore 
not feasible.

• If K L  > 0 and K  < 0, then K  — \/KL < 0. But K  < 0 implies that

(P ~  A)2 — q(/3 — A) < 0 

=► (P ~  A)2 < 7 (P ~  A)

=>■(/? — A) > 0

So 20(0̂ X) <  0 and therefore not feasible.

• If K  — 0 then roots 3 and 4 are equal to root 1.

• If L =  0 then y(0  — A) =  (0 +  A)2 > 0 so 0 >  A and K  =  {(3 -  A)2 -  (0 +  A)2. 

Thus roots 3 and 4 equal 20(0-\) =  (0-\) ■ This is negative since 0  > A.

Therefore we reject equilibrium points (3) and (4) as unfeasible.
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4.2.2 Stability of equilibria

Our 2-group deterministic model is a special case of the model of Lajmanovich 
and Yorke (1976). Prom their Theorem 3.1 we therefore see that for T?0 < 1, the 
disease-free equilibrium at (ix,i2) =  (0,0) is globally asymptotically stable within 
the feasible region [0, l]2, while for R0 > 1 the endemic equilibrium (z*, zJj) is globally 
asymptotically stable in [0, l]2 \ (0,0).

For i?0 > 1, we can conclude that if the process (h ( t ) , h(t))  is initially close to 
N{i\,i*2) then it will tend to stay close to for a considerable time, subject
to small random fluctuations.

4.3 Conditioning on non-extinction

Quasi-stationarity is defined by conditioning on non-extinction. The state proba
bilities conditioned on not being absorbed are denoted by qilii2(t). They can be 
determined from the unconditioned probabilities pil>i2(t) via the relation

(UuiAt) =  P ( ( h ( t ) j 2(t)) =  (iu i2)\(h(t),I2( t ) ) ^ ( 0, 0))
=  P i i M

1 -Po,o(t ) ’ (4.4)

for ii — 0,1,2, . . .  ,N  and i2 =  0,1, 2 , . . . ,  N. Differentiating (4.4) and using the 
equation

Po,o(t) =  7Po,i(t) +  7Pi,0(t), (4.5)

which is obtained by putting =  i2 =  0 in equation (4.1), gives

9il,i2 (t) Pix,ia(t)
1 -Po,o(i) +  7(9o,i(i) +  gi,o(i))

P i l , i 2 (t)
1 ~Po,o(t)

(4.6)

The Kolmogorov forward equations (4.1) for the state probabilities piui2{t) can be 
used to derive the differential equations for the conditional state probabilities qiui2 (t)

dqiltj 2 
dt —1,»2 (*) +  7 l(il+l,¿2)9*1+1,12 W +  0 2 {i1 ,i2 - l ) q i 1 ,i2 - l ( t )+  72(il,12 + 1)9*1,¿2 + 1 (̂ ) +  2̂(Zi 1, ¿2 ) 9*1 — 1 ,¿2 (̂ ) +  -̂ l(*l,*2-l)9il,i2- l (0A(*1, ¿2)9*1, ¿2(0 /̂ 2(¿l ,¿2)9'¿l ,¿2 (̂ ) 7 l(*l,¿2)9*1,i2(0  — 72̂ 1,¿2)9*1,¿2 W

l̂(¿l ,¿2) ̂ ¿ 1 ,¿2 (̂ ) — ^(¿^¿2 ) 99i, ¿2 ( 0  + (79o, i(t) + 79,i,o(i))9W2('0> (4-7)
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for =  0,1, 2 . . . ,  N, i2 =  0,1, 2 , . . . ,  N  and (ii, ¿2) 7̂  (0, 0). The quasi-stationary 
distribution qilii2 is the stationary solution of this system of differential equations. 
Analytic solutions are not possible so approximations are sought. We will derive a 
bivariate normal distribution approximation of the joint distribution of A and I2 in 
quasi-stationarity. This normal approximation is only valid if R0 > 1 and N  large.

4.4 Diffusion approximation

St +  o(St).

We now derive the diffusion approximation of the quasi-stationary distribution. The 
diffusion approximation has a continuous state space, in contrast with the discrete 
state space of the original process. The approximation is based on the restriction 
that Rq is strictly larger than 1 and N  is large. Here we approximate the quasi
stationary distribution by a bivariate normal distribution.

If we consider the scaled (?q, i2), the change s in the scaled state variables i\ and i2 

during the time interval [i, t +  ii] are denoted by Sii and ôi2: Sij =  ij(t +  St) -  ij(t), 
j  =  1,2. From the transition rates given we can determine the mean and the 
covariance of the vector with components Si\ and Si2. For the mean we have

e (  Sil ^  =  (  ^ i ( 1 “  * 1 ) +  ' M l  -  ¿ 1 ) -  7 * 1  
\ Si2 J 0*2(1 -  i2) +  A*x(l -  i2) -  7*2

The Jacobian matrix is given by
/  JL ( \

__  /  di\ V  dt )
à f di 2  \

^  di\ V  dt )

That is, at the endemic equilibrium,

jr ,*  —  (  P  ~  20** — A*£ — 7  
A(1 — ¿2)

Moving on to the covariance matrix of the vector of changes in the state variables 
during the time interval [t, t +  St].

511 \  _  f  0 * i ( l  -  h) +  A*2( l  -  h) + ■yii 0

512 J \ 0 0*2(1 -  *2) + A*i(l -  *2) + 7*2

=  G(*i, i2)St +  o{St).

J(*l,*2)
Q ( di\ \ 

di2 V dt ) d ( di 2 \
d%2 V dt J

A(1 — **)
0 -  20** -  Ml 7

Cov St + o(St)

Since we are interested in the behaviour of the process around (**, ¿Jj), we evaluate 
matrix G(*i ,*2) at the point (**, i%). Therefore

^ i ( l - * i )  +  A * 5 (l- iI )  +  7ii 00 0*2(1 ~ *2) +  A**(l — ¿2) +  7*2G(*ï, *2 ) =
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The process V ~ N , i2{t)) — may be approximated for large N  by
a two-dimensional Ornstein-Uhlenbeck process (Etheir and Kurtz, (1986)). The 
Ornstein-Uhlenbeck process has local drift matrix J^*,^ ) and local covariance ma

trix G (i j , i2)- The quasi-stationary distribution can be approximated by the sta
tionary distribution of this Ornstein-Uhlenbeck process. The stationary distribution 
of the Ornstein-Uhlenbeck process is bivariate normal with mean (0,0) and variance 
matrix E, where E is determined from the matrices J^*,?^) and G ^*,^ ) via the 
relationship

J ( ^ ) E  +  EJT( z ^ )  =  -G (»I,z*). (4.8)

This can be written as

(  ^ i i  ^ 1 2  ^  f  E l i  E 1 2  \  /  E u  E 1 2  A  f  J n  J 2 1  A  _  _  (  G n  G 1 2  \
\ 2̂1 J22 J \ E12 E22 J \ E12 E22 J y J\2 J22 )  \ G12 G22 )

G and E are symmetrical. Expanding the above gives

2(JnEn +  J12E12)
Jl 1 1̂2 + J\2̂ -i22 +  >^2lSii +  J22E12 

Gn G\2 
G12 G22

J n  E l 2  +  *^12 ^22 +  T 2 1 E H  +  J 2 2 E 1 2
2(J2iE12 + J22E22)

To solve for the components of E the above can be written as

/  2Jn 2Jl2 0 \ /  En \
j J 2 1  ( J n  +  J 2 2 )  J \ 2  J [ £ 1 2  I =
V 0 2 j21 2 j22 j V e22 /

So
/  Eu \ /  2 Jn 2 J12 0 \
I E l 2  I =  — j T 2 1  ( J 1 1  +  J 2 2 )  J \ 2  j
\ E22 )  \ 0 2J21 2J22 J

This is equivalent to

2/3(1 -  2*1) -  2(A¿5 + 7) 
A (l- i* )

0

2A(1 — *1)
2(/3 -  7 )  -  (A + 2/3) (i i+ t j)  

2A(1 — ¿2)
/  ^¿i(l -  *i) + A*5(l -  *i) + 7*; \

V ^ 2 ( 1  ~  *2) +  A**(l — ¿2) +  7^2 / ’

Gn \
G12 j • 
G22 /

’ Gn \

G12 j '  . G22 /

0
A(l-ii)

2/3(1 -  2*5) -  2(A*J + 7)
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which yields

/  (/?2+2/3A-7,3+A2)  A2______£  =  ____ l___  I (/32+2,SA-7/3+7A+A2) (/32+2/3A—7 /3+ 7 A+A2)/ J + A \  _h i_______________  (/32+2j9A-7/3+A2)V (/32+2/3A-7/3+7A+A2) (/32+2/3A-7;3+7A+A2)
The explicit formulae for the elements of E were found using Maple. Numerical 

values can be obtain by inputting the values of the variables in the equation. The 
equilibrium distribution of the Ornstein-Uhlenbeck process is bivariate normal with 
mean (0,0) and variance matrix E satisfying (4.8). So the quasi-stationary distribu
tion of the disease process (R(t), R(t))  can be approximated by a bivariate normal 
distribution with mean (Nil, ^ 2) and variance matrix NE. So from above the ex
pressions for the approximate mean and the variance of the marginal distributions in 
quasi-stationarity for the number of infected individuals in each of the populations 
are:

M/i =  N

ah =  N

M/2 =  N

=  N

-ftp ~ Oil
Ro(Rq T Rq — 2ay

R l -  Qi
Ro(Rq +  Ro ~  2ai

y

y

(4.9)

(4.10)

(4.11)

(4.12)

with R0 and au given by (4.2) and (4.3). The covariance of R and J2 in quasi- 
stationarity is approximately

ahh N ______ R p  — a  1______
R o ( R q +  R q — 2aq) (4.13)

The approximate normality of the joint quasi-stationary distribution requires that 
both of the marginal distributions are approximately normal, which in turn leads to 
the requirements that the ratios Cj1 =  oy, / ¡i[l and Cj2 =  oy2 / ¡if2 of standard devia
tion to mean in each marginal distribution are small. The ratio is the “coefficient of 
variation” which is a measure of the spread of the distributions of R and R. Since a 
normally distributed random variable takes values larger than 3 standard deviations 
below its mean with high probability, we take either Ch or Ch as sufficiently small
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if the value is smaller than 1/3. By the expressions (4.9)-(4.13) we have

c h = Cl2 Ro I N(R2 -  ai~) 
N(R0 -  1) y  R0{Rl +  R0 -  2ax)

Rq I ( Rp -  « 1)
(Ro — 1) y NR0(Rl +  R0 — 2cti)

(4.14)

This shows that as the population size N  increases, variability decreases. Therefore 
we require

Ro I (■R2o -o t  1 ) 1
(f?0 -  1 )  V NR0(R2o + R0 -  2ax) “  3 ’

that is,

TV > 9Æo(^ o2 - « i )
(Ro -  1 )2(R2 + R o -  2ax)

as well as Ro >  1.

Working out the quasi-stationary distribution using the eigenvector method and 
plotting it with the Ornstein-Uhlenbeck approximation we see from Figures 4.1 
that the Ornstein-Uhlenbeck approximation gives a very good approximation of the 
quasi-stationary distribution of each population, for the chosen parameter values. 
Figure 4.2 is the joint probability distribution of the numbers of infected individuals 
in populations 1 and 2 at quasi-stationarity. It can be seen that their joint distribu
tion is approximately normal. Figure 4.3 is the contour plot of the joint distribution.

4.5 Cumulant equations

In this section we will derive cumulant equations and use them to approximate the 
quasi-stationary distribution using the moment closure method of Nasell (2005). 
We use the system of equations (4.7) to derive a partial differential equation for the 
moment generating function M  (see Appendix B), defined by

N N

M(9u 92,t) =  E[eh ^ +I^ \ h  +  I2 >  0] = * i= o  ¿2=0 Qii ,¿2 
(*1,*2)#(0,0)

(t)e*101 +*2<?2
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Quasi-stationary distribution of the number of Infectives in each Pop

Figure 4.1: Quasi-stationary distribution for the number of infectives in population 
1. The blue solid line represents the quasi-stationary distribution for the number 
of infectives calculated from the truncated transition matrix. The red solid line 
represents the Ornstein-Uhlenbeck approximation. The parameter values used are 
N  =  200, 7 =  0.4, ¡3 =  0.9 and A =  0.1. So R0 =  2.5 and Oi =  2.25
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Joint distribution of Pop-1 and Pop-2

x 1 0 3

2.5>v

No. of Infectives in Pop-2 0 0K No. of Infectives in Pop-1

Figure 4.2. The joint distribution of the numbers of infectives in populations 1 and 
2. The parameter values used are N  =  200, 7 =  0.4, 0 =  0.9 and A =  0.1. So 
Ro =  2.5 and ay =  2.25
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Figure 4.3: The contour plot of the quasi-stationary distribution. The contours 
are drawn at heights (probability values) of 0.0002, 0.0004, 0.0006, 0.0008, 0.001, 
0.0012, 0.0014, 0.0016, 0.0018 and 0.002. The parameter values used are N — 200, 
7 — 0-4, /? =  0.9 and A =  0.1. So R0 =  2.5 and ai =  2.25

71



&i, 92 € R. Thus,

OM
Ot

=  Me» -  i ) ~  -  — (e"1 -  Æ  +  7(e-». - n 8J±  +  « (e*  _  ^
p '  'a s , w* ' a a ; 7 71  'a e , + P l i ’ dh

^  - 1)

v a+  ; 86x862
-  7«),i(i) ~7?i,o(i)-

+  (79o,i(i) +  'y<hfi(t))M(0i,92, t)

Using the transformation K(9 i , 92, t) =  logM(01) 02, f) we have the cumulant gener
ating function. K(9i,92, t) satisfies

OK
dt

+  (/?(e*2 -  1) +  7 (e -e2 -  1) +  \{e6' -  1)) -  -^(e*2 -  1)

-  «  +  ^

+  79i,o(*)(l ~ eK)-

d92 N  
d2K  0 K 0 K \

d2K
~39[ +  V 09,

OK'
2 ,

09x092 +  09 x 092) +  79o,i(i)(l ~ e  )

(4.15)

' QÎ Qk
Using the definition K(9i92,t) =  partial differential

j>o, fc>o,a+fc>o ■+ '
equation (4.15) one can derive ordinary differential equations for the cumulants 
kjtk(t). The working can be found in Appendix B. The results for the cumulants of 
order 1 and 2 are as follows:

&i,c (P ~ 7)^1,0 +  Afc0,i -  ^ 2,0 ~  Jfki,o ~  ^ 1,1 -  j j k 1>0k0li

+(79o,i +  7?i,o)*i,o, (4.16)

co,i P 0-  (0 ~ 7)^0,1 +  Afcp0 -  — fc0,2 -  ^7^0,1 ~  -j f̂ci.i -  -¡¿ki,okN N N '-0,1

+(79o,i +  79i,o)&o,i> (4.17)

¿1,1 — 2 (/2 _  7 ) ^ i , 1 +  ^ (^ 2 ,0  +  ^0,2) +  ^ ( & 2 , i  +  h >2) — - jÿ (k i i0kitl +  k0Akiti)

~ j j ( k i ,2 +  &2,i) -  -^(^1,0̂ 1,! +  k0ilkiti) -  ^ (k o tik2t0 +  klfik0t2)N K" ^  ' ^ iy N  
+(79o,i +  79i,o)(&i,i — &i,o&o,i) (4.18)
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^2,0 (P +  7)^1,o T 2(/? 7)^2,0 2,0 ^̂ 3,o) +  Afci o +  2AA:i i

— — 4— &i,o&2,o — (^i, 0̂ 0,1 +  2/cio^i,i +  &o,1̂ 2,0)

jy !.i +  2/c2,i) +  (790,1 +  791,0X^2,0 — fc?,o), (4-19)

^0,2 — {P +  7)^0,1 +  2(/? — 7)^0,2 — ^ (^ 0,2 +  2/00,3) +  Afco,i +  2Afciii

~  ^jy^0’1̂ 0'2 — yy(^i,0̂ 0,1 +  2/oq, i&i,i +  kiflkot2)

— ]y(^U +  2^1,2) +  (790,1 +  79i,o)(&o,2(i) — fc02i). (4.20)

These equations are not closed because equations for cumulants of order one contain 
cumulants of order two, equations for cumulants of order two contain cumulants of 
order three and so on. In practice, a moment-closure approximation can be used to 
truncate this system of equations. We will use the moment-closure method used by 
Nasell (2005) to determine asymptotic approximations of the stationary solutions to 
these equations. This is valid in the parameter space where R0 is distinctly greater 
than 1. We are mainly interested in the means, variances and covariances, so like 
Nasell (2005) we allow fc12, &2,i, ^0,3 and k3fi, to grow with N, but not faster than 
O(N).  With this assumption and solving the equations using Maple gives:

^1,0

&o,i

ki,i

^2,0

ko,2

A ___j y _________ Rq(cxi +  1) — 2a!
\ Ro) (Rq +  Ro — 2ax)(Ro — 1)
A ___jy _  R q(® i +  1 ) — 2ax
\ Ro)  (i?o +  Rq — 2ai)(R0 — 1)

Ro Oi\
Rq(Rq +  Ro ~  2aq) 

Rl ~  a 1
R o { R o  +  R o  ~  2aq)

^0 ~ ai
R o ( R 2o +  R o  ~

N +  0 (  1), 

7V +  0(1), 

W +  0(1).

+  0  

+  0

1_
N
1

N

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

It can be seen that the variances and covariance of Ix and I2 coincide with the 
approximation derived using the Ornstein-Uhlenbeck approximation given in section 
4.4. The approximations for the expectations of Ix and I2 have been improved.
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4.6 Time to extinction

The time to extinction is a random variable whose distribution depends on the 
distribution of the initial state. If the process has been going on for a long time 
and has not gone extinct, then the quasi-stationary distribution can be used as an 
approximation of the distribution of states (Nasell (2001)). We can determine the 
distribution of the time to extinction r  from the probability Po,o(t) since the event 
{ r  <  i}  is equal to the event that {h ( t )  =  I2(t) =  0}. Therefore

P(r  < t )  =  P ( (h ( t ) , I 2(t)) =  (0, 0)) =po,o(t).

Assuming that the initial distribution is equal to the quasi-stationary distribu
tion, i.e. Pij,i2(0) =  qiui2 for A =  0,1, 2, . . .  JV,*2 =  0 ,1 ,2 , . . .  N, (iu i2) ±  (0,0) 
and po,o(0) =  0, it can be shown (using the same arguments as Nasell (1999)) that 
the time to extinction from the quasi-stationary distribution t q  has an exponential
distribution with expectation equal to — 1--- r.M 7 (90,1 + 91,0)
4.7 Conclusion

In this chapter we analysed a two group SIS epidemic model with the population 
size of each group constant. Since explicit solution is not possible, we approximate 
the quasi-stationary distribution using diffusion approximation and moment closure 
applied on cumulant equations. The results from both approximations compare very 
well with each other and with the leading eigenvector of the truncated transition 
matrix. However, the derivation of cumulant equations is cumbersome and may not 
be flexible to allow for considerable complications to be added to the model. The 
diffusion approximation is more flexible but may give rise to complicated solutions 
when considerable complications are added to the model. This will be seen in a later 
chapter when demography is added to the model.
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Chapter 5

SIS model with demography

Here we consider the SIS model with demography. Nasell (2004) looked at the SIR 
model with demography, in which infection is followed by permanent immunity. He 
derived approximations for the marginal distribution of infected individuals in quasi- 
stationarity and the time to extinction. He also approximated the quasi-stationary 
distribution using diffusion approximation and moment closure applied to the cu
mulant equations. In this chapter we will prove that the process will ultimately 
be absorbed. We approximate the quasi-stationary distribution of the process us
ing diffusion approximation. Cumulant equations are derived and moment closure 
applied to them to derive an approximation for the quasi-stationary distribution.

In the first section, we define the model. We then analyse (section 5.2) the 
deterministic version of the model. In this section we reparametrise the model and 
work out the equilibrium points. We prove almost sure absorption in section 5.3. In 
section 5.4 we look at the process conditioned on it not being absorbed. We analyse 
(section 5.5) diffusion approximation of the process. Using the Ornstein Uhlenbeck 
process we approximate the fluctuation about the deterministic endemic equilibrium. 
This provides the approximation for the quasi-stationary distribution. In section 5.6 
we derive cumulant differential equations for cumulants up to order 2. We then use a 
moment closure method to solve these differential equations. The result is compared 
with the result obtained from the diffusion approximation. In section 5.7 we carry 
out simulation of the process and use it to validate our result from the diffusion 
approximation. Our results are then compared with the results obtained by Nasell 
(2005) for the SIR model with demography in section 5.8. Concluding remarks on 
this chapter are given in section 5.9.
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5.1 Model

This is a bivariate continuous-time Markov chain. The two state variables used are 
the number of susceptible individuals S(t) at time t and the number of infectives 
I (t) at time t. The joint distribution at time t will be denoted by

pSii(t) =  P(S(t) =  s,I(t) = i )

This model has five possible transitions, shown in the table below. Four parameters 
are used, namely the ‘typical’ population size N, the death rate per individual /¿, 
the contact rate /3, and the recovery rate per individual 7 . It is assumed here 
that there are no deaths due to the disease and no vertical transmission of the 
disease (all newborns are susceptible), and that /3,7 , ¡i, N >  0. The state space 
of the process is C  =  {(s, i) : s =  0 ,1, 2, . . . ,  i =  0,1, 2, . . .  } and the set of states 
A  =  {(a, 0); s =  0,1,2, . . .  } is an absorbing set.

Table 5.1: The transition rates for the model are given as:

Event State Transition Transiten Rate
Immigration of a susceptible individual 
Death of a susceptible individual 
Infection of a susceptible individual 
Recovery of an infected individual 
Death of an infected

(M ) (s + 1 ,i) 
(s,i) -> (s -  1 ,i)

(s,i) -> (s -  M  + 1) 
(s,i) -> (s + l,i  -  1) 

(s,f) -» (s,i -  1)

Ai(s, i) = fiN 
= p.s

Pi (̂ j ip ~ JtjSi
72 (s, i) =  7 i 
P2(s,i) =  M*

With the convention that pSii(t) =  0 for (s ,i ) 0 C, the Kolmogorov forward 
equations for this process can be written as follows:

Ps,i(£) =  Ai(s — 1 ,i)Ps-i,i(t) +  Pi(s +  1> i)Ps+i,i(t) +  Pi(s +  1, z — l)y?s+li_1 (i) 

+ 7 2(s -  M  +  l)ps-i,i+i(i) +  p,2(s,i +  1 )ps,i+i(t)

-k(s ,i ) ( t)pSti(t), (5.1)

for s =  0,1,2, . . . ,  i =  0,1,2, . . .  and where k(s,i) =  Xi(s,i) +  +  A(s , i )  +
72(s,i) +  fj,2(s, i) and we use a dot to represent differentiation with respect to time.
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5.2 Deterministic model

We now analyse the deterministic approximation of the stochastic model. For a 
deterministic approximation we introduce the scaling s =  ^  and i =  -j-. The 
differential equations for the deterministic version of the model become

=  M +  7* ~ 0si -  ns, (5.2)

=  (3si -  (y +  n)i- (5.3)

This version has its threshold at Rq =  1, where Ro =  We also introduce a new 
parameter a2 to denote the ratio of the average life length to the average duration 
of infection:

ds
dt
di
dt

«2 = n +  i  
n '

The reparametrised process is:

ds
— =  /r(l +  (a2 -  1 )i -  a2R0si -  s), 
di
— =  nyOiiRosi -  a2i).

Adding equations (5.4) and (5.5) gives

ds di 
dt dt
ds di / ,
37 +  1 7  =  / i ( l - ( s  +  *)).

(5.4)

(5.5)

It follows then that limt_>00(s +  i) =  1.

The system of differential equations ((5.4) and (5.5)) has two critical points. One 
of them is at (s ,i ) =  (1,0), which corresponds to the disease-free equilibrium. The 
other critical point corresponds to the endemic infection level and is given as

The equilibrium (s*,i*) is feasible if R0 >  1.

5.2.1 Stability of equilibria

Like chapter 4, this is a two dimensional process and the Jacobian matrix will be 
used to determine the stability of the equilibria. The Jacobian matrix is given by
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-¡j,a2R0i — n 
l^a2R0i

a2 — 1 — fia2R0s 
lia2Rgs — na2

So at point (1, 0),
- / i  a2 -  1 -  fia2R0 
0 fj.a2R0 -  ¡ia2

The trace is

tr(J(1, 0)) =  [La2(Ro -  1) -  fi, (5.6)

and the determinant is

det(J(0, 0)) =  —fi2a2(R0 -  1). (5.7)

For stability, we need the trace to be negative and the determinant positive. From 
equation (5.6) and (5.7), the trace is negative and the determinant positive if and 
only if R g  <  1 . Therefore (1,0) is (locally) stable if R g  <  1 . For the endemic 
equilibrium, (s*, i*),

J (s* , 0  = — f j , ( a 2 ( R g  — 1 )  +  1 )  

f x a 2 ( R g  -  1 )

The trace is — / j , ( a 2 ( R g  — 1) + 1). This is negative if R g  >  1. The determinant 
is fj,2 a 2 ( R 0 -  1), which is positive for R 0 >  1. Therefore the endemic equilibrium, 
(s*,T), is (locally) stable if R g  >  1. The model, therefore, displays a clear threshold 
at i?0 =  1.

Having shown that the endemic equilibrium point (s*,i*) is locally stable for 
Ro >  1, we now show that it is globally stable. For endemic equilibrium, the 
following equalities hold,

=  ¡JL +  7 Z *  -  IIS* =  ( 7  +  ¡j)i*. (5.8)

at this steady state. To show global stability we shall use the Lyapunov function 
method. From La Salle and Lefschetz (1961), page 58, we have the following.

Let V (s , i) be a function defined for s, i > 0, with continuous partial derivatives, 
such that

v ( s * , n  =  0,

V(s,i)  >  0 V (s,i) with s,i > 0 such that (s, i) ^  (s*, i* ) .
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For l > 0 let designate the region where V(s,i)  < l. Suppose that

dV(s,i)
dt <  0 v(s,i) e n t .

Let R  be the set of points within Q; where dV/dt =  0 and let M  be the largest 
invariant set in R. Then every solution in tends to M  as t -*■ oo. (See also 
Barbashin (1970).)

For our process, following Korobeinikov and Wake (2002) we consider a Lyapunov 
function

V(s,i)  =  s - s *  +
s* 7 +  ¡JL

Note that V (s*,i*) =  0.

The partial derivatives of equation (5.9) are

i -  i* -  i* In - (5.9)

dV (s , i)
ds

=  1
s~
s

and

dV(s,i)

(5.10)

(5.11)di 7 +  n

From (5.10) and (5.11) we see that the only stationary point of V(s,i)  occurs at 
Now from (5.9) it is clear that V(s,i)  -* +oo as s -> 0, or i - f  0, or 

s -> +oo, or i -> +oo. Hence V(s,i)  > 0 for all (s,i) with s > 0, i > 0 and 
(s,i) ±  (s*,i*).

Now consider the time derivative

dV(s,i) _  dV(s,i) ds dV(s,i)di  
dt ds dt +  di dt' (5.12)

Substituting equations (5.2), (5.3), (5.10) and (5.11) into equation (5.12) gives
dV(s,i) , . „ . s* s*
----------- -  m +  7 i - P s t - i i s - f i ------ 7 i— +  Ps*i +  us*

s s
^ ( 0 s i -  Psi*) -  (5.13)

dt
+  -

7 +  fi
Using equation (5.8), equation (5.13) can be simplified to

dV(s,i) 
dt

I n s sM 2 ------------;
s s* +  7* ( 2 -  — -  -  

s s*

=  (M +  TtJl 2 - - - 4s s*

- 0 «  +  7 i ) j ( l - ^ ) 2 .
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Therefore — < 0 holds for all s, i > 0. The equality dV̂ .'  ̂ =  0 holds only when 
s =  s* and the point (s*,i*) is the only invariant set of the system (5.2)-(5.3) on 
this line. For any initial point (s, i) of the system with s,i  >  0, we can choose l > 0 

such that (s,i) € fi/, and then the solution remains within fij for all t > 0, and 
hence tends to as t -* oo (La Salle and Lefschetz (1961), page 58). That is,
for R0 >  1, the equilibrium (s*,i*) is globally asymptotically stable in the positive 
region s >  0, % > 0.

If the initial point has s =  0 and i > 0, then from (5.4) we see that ds/dt > 0 
initially, so that the system immediately enters the region with s > 0 and from there 
will converge to (s*,i*). If i =  0 initially, then there is no infection present in the 
system, and since there is no mechanism for external introduction of infection the 
system will converge to the disease-free equilibrium (s,z) =  (1, 0).

5.3 Ultimate absorption

To prove ultimate absorption we need to first show that the transition rates matrix 
Q is regular. A regular Markov process is a conservative process for which the 
Kolmogorov forward equations have a unique solution. That is, the transition rates 
given in Table 5.1 uniquely determine the transition semi-group of the process. We 
can show that Q is regular by using the criterion proven by Reuter (1957) (theorem 
7); that is a Markov process defined by Q is regular if, for each A > 0, the equations 

(A +  qm)zm =  1mnZn where 0 < zm <  1, have only the trivial solution zm =  0.
We shall follow the proof of Theorem 1 of Reuter (1961) to prove the regularity of 
Q. Writing z(s,i) for zm,

(A +  Ai(s,i) +  -I- /?i(s, i) +  72(s,i) +  /x2(s, i))z(s,i)

=  Aj(s,i)z(s +  M ) +  fl1 (s,i)z(s -  l,z) +  0 1 (s,i)z(s -  l , i  +  1)

+ 7 2(s , i)z(s +  l , i  -  1) +  ¿i2(s, i)z(s, i -  1),

for s >  0 and % > 1. For s >  0 and i — 0, this immediately gives Azm =  0. So 
z(s, 0) =  0. Let

Zk = max{z(s,i) : s >  0, * >  1, s +  z =  A;}.
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If this maximum is attained at (sk,ik) then

(A +  Au + /¿lfc + /?lfc +  72fc + /¿2k)Zk < \ikZk+x +  [ilkZk_1+  (3lkZk +  ~f2kZk +  ii2kZk-i,

where Xlk =  Xx(sk,ik),fiXk =  fi(Sk,ik),/3lk =  Px(sk,ik), 72fc =  72(sk,ik),fx2k =  
V2(sk,ik). Rearranging,

A Zk + (fj.lk +  [i2k){Zk — Zk- 1 ) <  XXk(Zk+x — Zk),

( zk+1 - zfc) > + - z k. x) + A Zfe.
Aifc Ai*:

But \iXk =  //sfc, ¡JL2k = \nk and Xlk =  fiN. 

So

(Zk+x -  30 > ^ (z fc -  zfc_o + J ^ z k . (5.14)

Following Reuter’s (1961) theorem 1, we will show that a sufficient condition for 
regularity is

e ( -Z—s V nf\ fiN ¡jlN 2
k k\

+  7TX +  • • ■ + ¡xNk
00. (5.15)

Going back to (5.14), if z(s, i) is not identically zero let k0 be the first k for which 
Zk >  0. Since Zk is increasing with k, for A; > k0

(Zk+1 Zk) > jy {Zk — 3 c -1) +  —j y Z ko,

(Zk+X Zk) > Ar (  \ T (3 c - 1 -  Zk~2) +  Jj^z k0̂  +  —JyZko,N \ N

(ZW  -  Z.) > -  Z t.i)  + ( ~  + ^ )  A Z „ ,

k(k 1) . . . ( ko +  1)(Zk+X- Z k) >  ( - ^ 7 +  - ^  +  - (fc^ 1) +  ••• +

+

fiN fj,N2 ¡j,N3 
k(k — 1) . . .  k0

/x.N k—/cq+1 A 3 fco

j y f c - f e o + i ( 3 co — 3*o_0

Let B  =  AZfc0. Then

(3fe+i - Z * ) > 5 f - i -  +  - T «  +  + • • • +  “  1) ' '  ’ (*° +  1)/xIV ¿¿TV2 /¿Af3 ^7Vfc“ fco+1
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Summing both sides over all values of k we have
OO OO /

J2 (Zk+i ~ Z k) > B J 2 [
k= 1 fc= l '

1 k 
UN +  ¡iN2 +

k(k
/¿TV3

1) + . . . +  A;(A;- 1) - - - 2
fxNk

It follows from condition (5.15) above that J2kLi(Zk+i -  Zk) diverges so that Zk -> 
oo, which is contrary to the assumption made earlier that z(s,i) <  1. Therefore, 
z (s,i) — 0 for all s >  0, i > 1 as required. Therefore the Q matrix is regular 
provided (5.15) holds.

We can show that (5.15) holds by showing that

°° k\
= (516>

Equation (5.16) holds because will tend to infinity as ktooo since /¿TV is constant. 
Therefore (5.15) holds.

To show ultimate absorption now we apply criterion (C) of Reuter (1961), which 
can be stated as follows: let D and A respectively denote the sets of non-absorbing 
and absorbing states: if the process has initial state m (m =  (s,i )) in D, let am be 
the probability of reaching A and let rm be the expected time to reach A: if there 
exist finite constants un >  0 such that

5 ^  QranUn +  1 < 0, TTl € D, (5.17)
n

then am =  1 and 0 < rm < um.

For the SIS model with demography we seek a non-negative solution to the 
inequality (5.17), which becomes, on writing u(s,i) for um, m =  (s,i),

A u ( s , i ) > l  (s , i ) e D  (5.18)

where

Au(s,i)  =  ^ N [ u { s , i ) -u ( s  +  l,i)] +  ~ s i [ u ( s , i ) - u ( s - l , i  +  l)}

+fj.s[u(s, i) -  u(s -  1, i)] +  fii[u(s, i) -  u(s, i -  1)]

+ 7i[u(s, i) — u(s +  1, i — 1)].

For a trial solution to 

Au(s, i)

(5.18) 

=  B

we consider u =  B(s +  i), where B > 0 is 

~ s i  +  ¡is - j i -  ¡jlN +  ^i +  fi i~ ~ s i

a constant.

= B[iis — ¡jlN +  ¡ii] 

=  Bjj,[{s +  i) — N).
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For s +  i >  N +  1

Au(s, i) =  B/j,[s +  i -  N } >  Bfi[N +  1 -  N} =  Bp (5.19)

so taking B  > A then Au(s, î) > 1 for s +  i > IV +  1.

Suppose that s-M < N. We have exhibited a function u defined on the state space 
of the process with A u{s,i) >  1 for (s,i) G D(N) =  {(s,f) G D : s +  i >  N +  l} .  We 
now argue as in Clancy, O’Neill and Pollett (2001). That is, by Reuter’s Criterion 
(C) stated earlier, the epidemic process must leave D(N)  with probability one, so 
that it is either ultimately absorbed at i =  0, or else returns infinitely often to the 
finite region D \ D (N )  without being absorbed at i =  0. However the probability of 
the latter scenario tends to zero because upon entering D \ the process has a
probability of absorption bounded away from zero. Therefore with probability one 
the process will be absorbed after a finite number of visits to D \ D(N).  Note that 
from the above arguments, nothing can be said about expected time to extinction

5.4 Conditioning on non-extinction

Having shown that the process will ultimately go extinct, we now consider the 
process prior to extinction. Quasi-stationarity is defined by conditioning on non
extinction. The state probabilities conditioned on not being absorbed are denoted 

by &,*(*)• They can be determined from the unconditioned probabilities pSti(t) via 
the relation

Qs,i(t) — P(S(t)  — s,I(t)  — i\I(t) ^  0) 
_  Ps,i(t)

(5.20)
1 -P.,o(t)

where p.ti(t) denotes the marginal distribution of the number of infected individuals
at time t,

OO
p.,i =  =  p(i ( t )  =  i).

s = 0

Taking equation (5.1) and summing for i =  0 over all s-values we have

P; 0(t) =  (7 +  V)P.,l(t). (5.21)
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Differentiating equation (5.20) and using (5.21) gives

P s , i ( t )

1 -p .,o (i) +  (7 +  fj)q„ i
1 - p . 1o(0’

where g.,»(i) =  &,*(£) denotes the marginal distribution of the number of in
fected individuals at time t conditioned on the process not having been absorbed. 
Using the Kolmogorov forward equation (5.1) we can derive the following system of 
differential equations for the conditional state probabilities qSti(t).

Q «.*(*) =  ^i(s — M)9s-i,i(£) +  Mi(s +  l,*)9s+i,i(i) +  Pi(s +  M  — l)qs+ij-i(t)  

+72(s -  1 , i +  l)9s-i,i+i(i) +  +  1 )qSti+i(t) -  k(s,i)qSti(t)

+  (7 +  ^)9.,i9s,i(i) (5.22)

with qSii(t) =  0 for (s,i) D. The quasi-stationary distribution qsA is the stationary 
solution of this system of equations.

It can be shown that the time to extinction given that the process is started in the 
quasi-stationary distribution, Tq , is exponentially distributed with mean — h—

(7+Ai)<7.,i '

5.5 Diffusion approximation

To approximate the quasi-stationary distribution of our process, we use a diffusion 
approximation. We use the scaled process to derive a diffusion approximation of 
the stochastic version of the model, valid for Rq > 1. The changes in the scaled 
state variables s =  S/N and i =  I/N during a small time interval [i, t +  it] will be 
denoted by 5s and 5i. From the hypotheses of the original process we can determine 
the mean and the covariance of the vector of changes in the state variable s (is) 
and i (Si). Starting with the mean:

I?[is] =  n(l +  (a2 — l)i — a2Rosi — s)5t +  o(6t),

E[5i\ — fi(a2Rosi — a2i)St +  o(5t).

The Jacobian matrix is defined in section 5.2.1 so we now determine the covariance 
matrix of the vector of changes in the state variable s and i during the time interval 
[i, t +  St]
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Cov 5rS>) =  (  »  +  fi(a2 -  1 )i +  fia2R0si +  fis) -fj,a2R0si -  fj,(a2 -  1 )i \ ^
\ Si )  V —fia2R0si — fi(a2 -  l)i fxa2R0si + ¡ia2i J

-\ro(5t)

=  G(s, i)6t +  o(8t).

The matrix G (s,i) is approximated by evaluating it at the critical point (s*,i*).

Civ* ■>*) =  ]±_ (  Ro +  1 +  (Ro ~  1)(2o!2 — 1) —(Ro ~  1)(2o!2 — 1)
Ro \ ~(Ro — 1)(20!2 +  1) ĈH2{Rq — 1)

Solving equation (4.8) with expressions for J(s*,i*) and G(s*,z*) yields:
( a2(flo~l)+2 __1_

/îo(a2 (ilo-l)+l) Ro

__1_ /?o(a2̂ Q + l) — Qt2
Ro Ro(a2(Ro--L)+l)The quasi-equilibrium distribution of the disease process (S, I) can be approximated 

by a bivariate normal distribution with mean

(Ns

and variance matrix
( <*2(flo-l)+2 __1_

• R o ( a 2( f l o - l ) + l )  Ro

_ _ _ _ _ 1 _  f l o ( Q 2 ^ 0  +  l )  —  0 2

Ro Ro(ci2(Ro — l)+l)
5.6 Cumulant equations

As an alternative to diffusion approximation, a more flexible and more precise ap
proximation method is moment closure. As with the previous chapter, we shall 
employ a moment closure method based on cumulants, rather than moments. The 
system of differential equations (5.22) can be used to derive a partial differential 
equation for the probability generating function M  defined by

> 0] = 501+102 > #2 €
5 = 0  i = l

Thus,
dM
dt =  »N (ee' -  1 )M  +  M(e~ei -  1 ) ^  +  ^ ( e e>~e' -  1)

UU\ 1\
d2M

d9i d02

+ ^  -  1 ) ^  +  -  1 ) ^  +  (7 +  (■ )!..«

-qee i9.iX ]?s'(s|l)esei -  M , j : qs(s\l)e's 81

s= 0 s=0
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(see Appendix C) where 9s(s|l) =  is the conditional probability that S takes 
the value s given that I  =  1 and where q.tl is the marginal probability that /  takes 
the value 1. Prom this, we derive the partial differential equation for the cumulant 
generating function using the transformation K{9u 92,t) =  logM(9u 92, t). We have
dK
dt

dK0 f 02-01 d2K  dK dK\ , _g _  a uiy
A' 6 ^  \d9id9o + d9, d9„) +  +  2 ~ l ^W2ddldd2 d01 d02)  

dK
]2

dK_
)d91

+ 7 (eei 02- l ) ^  +  MA(eei - 1) +  79.1 ^1 -  e~KeB'qA ^  qs {s\l){t)ea0i 

+W.i ( 1 ~ e~Kq.ij>2 qs(s\l)(t)esei ] . (5.23)
5=0

Using the definition of the cumulants kmn(t) as coefficients of the power series
__^ Qm Qn

K (9i,92,t) =  (for (m,n) ^  (0, 0)) in the partial differ-
m > 0 ,  n > 0 ,  m + n > 0  m .  7 1 .

ential equation (5.23) one can derive ordinary differential equations for the cumulants 
km,n(t)- Since we demand less of cumulants of order 3 and higher, we derive only 
cumulants of order 1 and 2. The results for the cumulants of order 1 and 2 are as 
follows:

¿1,0

ko,i

ki,i

^2,0

ko,2

VN ~ § ( khi + fci,ofco,i) ~ Mi.o + 7*b,i ~ 79. , 1  (1 + A[5|7 =  1]) 
+(7  +  Mk,i (*i,o -  E[S\I =  1]), ■

]ÿ(ki,i +  kiflk0ti) -  (n +  7)k0,i -  7q.,i +  (7 +  fJ-)q.,ik0>u

j ^ ( k i , o k i ti  — k i ti  — k i t0 k Qti  +  k 2ii  +  k 0 ii k 2io — k 0ti k i t i  — k i <2

(5.24)

(5.25)

-kiflkofi) -  (2fi +  7 ) ^ ,1  -  7 kotl +  7(A:0,2 +  9.,1*4,0)

+(7  +  m)9.,i (ki,i +  kQ, 1 (A[5|/ =  1] -  ki 0) ) , (5.26)
0

k'N +  jÿ  (ki,i +  ^1,0̂ 0,1 — 2^2,1 — 2kifiki i — 2k0tlk2fi) +  ¡¿kip 

+7k0,i +  27¿1,1 -  2fj,k2fl +  (7 +  fj,)q tl (k2fi -  k20 -  E[S2\I =  1])

+79.,1 (2klfiE[S\I =  1] -  2E[S\I =  1] -  1 -  E[S2\I =  1]) , (5.27)

^  (^1,1 +  kly0k0,i +  2kh2 +  2k0,ikhl +  2kli0k0t2) -  2(7 +  fi)k0,2 

+(7  +  fJ,)k0il +  (7 +  n)q„ 1 [k0,2 -  klA) . (5.28)

The equations for the first-order cumulants contain terms with the second order 
cumulants and equations for the second-order cumulants contain terms with third- 
order cumulants. The cumulants in equilibrium are related to the moments of the



quasi-stationary distribution as follows: £4,0 ~  E[S], k0>1 sa E[I), k1A ss CovfS1, 1], 

^2,0 ~  VarfS1] and hop ~  Var[/]. See Appendix C for the derivation of the cumulant 
equations (5.24) - (5.28).

Lloyd (2004) noted for the SIR model that the deterministic system consists of 
equations (5.24) - (5.25) with fc1|0 replaced by S, k0,\ by I  and ignoring second-order 
terms and terms in qlt_ and q,tl. So we can say that the deterministic model is 
obtained as a result of the simplest moment closure technique applied to (5.24) - 
(5.25) by setting second-order moments and terms involving q tl to zero.

The differential equations for the cumulants of the unconditioned process can 
be found by ignoring all the terms containing q,A in each equation. These can be 

used to derive asymptotic approximation for the cumulants in quasi-stationarity. 
This approximation is valid in the case when R0 is distinctly larger than 1. We 
shall further assume that cumulants of third-order and higher can be set to zero, 
equivalent to assuming a bivariate normal distribution for (S, I) in quasi-stationarity. 
This approximation is again expected to be valid in the case when R0 is distinctly 
larger than 1. (Note that following Nasell (2005) it is actually sufficient to allow 
£4,2, k2,i, k0t3 and k3fi to grow with N, but not faster then O(N).)

Solving the equilibrium cumulant equations under these assumptions using Maple 
gives the leading terms in power series for the cumulants as:

£4,0 

ko,i 

£4,1 

£̂2,0 

ko,2

(5.29)

(5.30)

(5.31)

(5.32)

(5.33)

Again, as in chapter 4, it can be seen that the variances and covariance of 
S and /  coincide with the approximation derived using the Ornstein-Uhlenbeck 
approximation given in section 4.2. The approximations for the expectations of S 
and I  have been improved.

In both the Ornstein-Uhlenbeck approximation and moment closure approxima
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tion, we are approximating a discrete distribution by a continuous distribution. And 
since we are approximating a discrete distribution by a continuous distribution, then 
for (s, i) £ 1? the probability P(S =  s, I  =  i) in equilibrium can be approximated by 
integrating the appropriate normal probability function over a unit square centred 
at (s,i) (Clancy and French(2001)). This can further be approximated by simply 
evaluating the normal density function at the point (s ,i ).

5.7 Simulation

We have studied the marginal distribution of the number of infected individuals 
in quasi-stationary distribution using diffusion approximation and cumulant equa
tion. We now compare these approximations with Monte Carlo simulation to judge 
the adequacy of these approximations, looking specifically at the marginal distri
bution of the number of infected individuals. It is impossible work out the exact 
quasi-stationary distribution (left eigenvector of the reduced transition rate matrix) 
because the transition rate matrix is infinite and so we run a numerical simulation of 
the stochastic model. For the simulation, we shall use the same parameter values as 
Nasell (2005), that is, /? =  750, 7 =  50, p, =  1/70 and N =  200,000. We run 50,000 
simulations, each initiated close to the deterministic endemic equilibrium point and 
run for 20 time units and the finial number of infectives collected at the end of each 
simulation. We then plot our results in Figure 5.1.

Figure 5.1 represents the marginal distribution of number of infected individ
uals at quasi-stationarity. It can be seen from this figure that both the Ornstein- 
Uhlenbeck approximation and the moment closure approximation give good approx
imations of the quasi-stationary distribution for these parameter values.

5.8 Comparison of the S IR  model and the SIS  
model

We will now compare our results with the results of Nasell (2005) for the SIR model 
with demography. We will start by comparing the deterministic equilibrium results.
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Number of Infectives x 10

Figure 5.1. The quasi-stationary distribution of the number of infected individu
als. The blue solid line is the simulation, based on 50, 000 simulation runs, each 
initiated close to the deterministic endemic equilibrium point and run for 20 time 
units. The red solid line represents both the moment closure approximation and the 
Ornstein-Uhlenbeck approximation, which are so close as to be indistinguishable. 
The parameter values are N =  200,000, 0  =  750, ^ =  1/70 and 7 =  50 (so R0 ~  15 
and a2 =  3501).
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SIR model (Nasell (2005)) SIS model
R0 =  ^ ru 7+m Ro _  V

7+M
a = V

_  7+/J
f*c* -- _±_ s* — Ro, * _ Rq — 1 n* -_ Ra-l4 oiRq Ro

where a =  ^  > 1. So i* (SIR)< i* (SIS) and s* (SIR) -  s* (SIS). That is, the SIR 
and SIS models have the same susceptible population in equilibrium, but the SIS 
model has a higher infection prevalence. Note that both models have total scaled 
population size 1 in equilibrium, but for the SIR model there is a third category of 
individual, the ‘Removed’ individuals, with equilibrium density r* — 1 — s* — i*.

Next, we compare moment closure approximations. Ignoring terms of order 
0(l/N ),  we have

SIR model SIS model
kl° R o  +  * o " -l
*•1 =  ^  W -i

k -  N 4---- 1-------D R o  + * 0 - 1U _ *0-1 I\T 1
fco1 *0 ^  *0-1

It should be noted that there is a typographic error in Nasell (2005), where k01 is 
given as ^  instead of

See www.math.kth . se/~ ingem ar/forsk /endsir/endsir.html.

In the moment closure approximation it can be seen that the mean number of 
infective individuals at quasi-stationarity (A:0,i) in the SIR model is less than in 
the SIS model, in agreement with the deterministic result. On the other hand, the 
mean number of susceptible individuals is seen to be slightly greater in the SIR 
model than the SIS model. Since there are (on average) more infectives present in 
the SIS model it is not surprising that this higher level of infectivity results in a 
reduction in the susceptible population size. It is however interesting to note that 
the effect is sufficiently small not to show up in the deterministic approximation, 
and requires the greater detail of the moment closure approximation to become 
apparent.

Looking at total population size, we see that for the SIS model k01 +  k10 =  N  as 
expected. For the SIR model we find

&oi +  fcio — N Ro +  o l — 1 
aR0

i OL — 1
+  R o - i

< N
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due to the fact that we have not yet taken into account the ’Removed’ category 
of individuals. The expected number of individual in the removed class at quasi- 
stationarity is equal to N  Adding in this contribution we find
that the expected equilibrium total population size for the SIR model is again equal 
to N.

To compare the variances we can look at their ratio

_  cn +  R0 Rq(oc(Ro — 1) +  1) 
o*s (SIS) ~  ~ R 2 a (R0 -  1) +  2

a +  Rq a(R0 — 1) +  1 
Ro a(Ro ~  1) +  2

Now

(a +  Ro)(a(R0 — 1) +  1) — R0(a(Ro — 1) +  2) =  a2(Ro — 1) +  a — R0

=  a2(R0 — 1) — (Rq — a) > 0

since a >  1. Thus,
ex +  Rq a(Ro — 1) +  1 ------------- i----------i------ > i

Ro cx(Rq — 1) +  2
Therefore the variance for the number of susceptible individuals at quasi-stationarity 
for the SIR model is greater than that of the SIS model.

For the number of infected individuals we have

cr2(SIR) _  cx(Ro — 1) +  Rq Ro(a(Ro — 1) +  1) 
ctj(SIS) aRl R0(aR0 +  1) -  a

_  aRo — a +  R% aR0 — a +  1 
Ro(aR0 +  1) — a aRo 

_  Ro(a +  Ro) — a aR0 — (a — 1)
Ro(aRo +  1) — a aRo 
Ro(a +  Ro) ~ OL 

Ro(aRo +  1) — a

since a > 1. Now

(aRo +  1) — (a + R0) — (a — l)(i?o — 1) > 0.

So (aRo +  1) > (a +  R0). Therefore R0(o! +  Ro) -  a < Ro(aRo +  1) -  a and so

Ro(a+Ro)—a
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Therefore the SIS model has a larger variance than the SIR model for the number 
of infected individuals at quasi-stationarity.

We will now compare the coefficient of variation for the SIS and the SIR models 

for the number of infected individuals at quasi-stationarity. Coefficient of variation 
is a statistical measure of dispersion of data around the mean. The higher the 
coefficient of variation, the greater the dispersion in the data. The coefficient of 
variation is the ratio of the standard deviation to the mean. For better expressions, 
we will use their squared coefficient of variation (C V 2).

and

So

C V 2(S IR )_ Q̂ Q̂ -Rq 1) ~f Rq)
K 1 ~  N(Ro -  1)2

/''u/2/'c to\_ Ro(Ro(aRo T 1)
( 5 )  “  ^ ( R o  -  l ) 2 (« (i? o  - ! )  +  !)■

C V 2(SIR ) =  a(a(R 0 -  1) +  R p N(R0 -  1 )2(a(R0 -  1) +  1) 
CV*(SIS) N(R0 -  l )2 R0(Ro(aR0 +  1) -  a)

=  a(o;(Ro -  1) +  R p(a (R 0 -  1) +  1)
Ro(Ro(&Ro +  1) — Oi)

Now

a(a(R0 -  1) +  R2){a(R0 -  1) +  1) -  (R0(R0(aRo +  1) -  a))

=  (a -  1) {a2(R0 -  l )2 +  aR0(R2 -  1) +  R2) > 0 

Therefore the SIR model has a larger coefficient of variation than the SIS model.

5.9 Conclusion

In this chapter we showed that the disease will almost surely go extinct from the 
population. So we studied the distribution of the process prior to extinction after 
it has been going on for a long time. This stationary distribution conditioned on 

non-extinction is known as the quasi-stationary distribution. Explicit solution for 
the quasi-stationary distribution is not possible, so we use a diffusion approximation 
and moment closure method applied on cumulant equations to approximate it. The 
results obtained for the quasi-stationary expectation of the number of susceptible 
and infected individuals from the moment closure method refine the results obtained
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from the diffusion approximation. The results for the variances and the covariance 
are the same for the moment closure approximation and the diffusion approximation. 
These approximations are only valid for values of Rq > 1 and large N. We showed 

by comparison with simulation results that these approximations provide very good 
approximations of the quasi-stationary distribution for these parameter values.

We also compared our results with the results Nasell (2005) obtained for the 
SIR model with demography. For the diffusion approximation, the mean number 
of susceptible individuals at quasi-stationarity is the same for both the SIR and 
SIS models. In the moment closure approximation, however, the mean number of 
susceptible individuals at quasi-stationarity in the SIR model is slightly more that 
those in the SIS model, but the number of infected individuals in the SIS model is 
more than the SIR model. The variance for the number of susceptible individuals 
at quasi-stationarity for the SIR model is greater than that of the SIS model but 
the SIS model has a larger variance than the SIR model for the number of infected 
individuals. We also showed the SIR model has a larger coefficient of variation than 
the SIS model which mean that the SIR model has a shorter time to extinction than 
the SIS model.

It is important to note that the process was simplified and that a few things 
could have been added. For example, a latent period could have been added or 
we could have allowed for an infection rate that varies between different stages of 
infectivity. An age varying infectivity could have also been included. The technical 
level, however, will be higher under the extended model. Perhaps more important for 
approaching real life epidemics is to generalise the model by, for example including 
spatial, social, individual heterogeneities and social effects, which play an important 
role in the spread of infectious diseases (Anderson & May (1991)). However, we 
belief that the results obtained here give a good indication of the dynamics of an 
SIS disease process for the parameters studied.
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Chapter 6

Two Population SIS model with 
demography

In chapter 4 we looked at a two population model with constant population sizes. 
Now we analyse a two population model with demography. This is a multivariate 
continuous-time Markov chain. The four state variables used are the number of sus
ceptible individuals in each population Sx(t) and S2(t) at time t and the number of 
infectives in each population Ix(t) and I2[t) at time t. These state variables take val
ues in the state space {(s i, iu s2, i2) : sx =  0, 1, . . . ,  ix =  0, 1, . . . ,  s2 =  0, 1, . . . ,  i2 =  
0,1, • • • }■ The states (si; 0, s2, 0) form the absorbing set A and so communicate with 
each other, but not with any of the states (s^ ix, s2, i2) with at least one of ix and i2 

greater than 0 which form the transient set D. The joint probability distribution at 
time t will be denoted by pSll¿1,S2i¿2(t) =  P(Sx(t) =  sx, I x(t) =  ix,S2(t) =  s2, I2(t) =  
i2). The transition rates to various states are given in Table 6.1. where

Ai(si, íi, s2, i2) =  nN, l-íi(si,ii,s2,Í2) =  l¿sx,

A2(Si ,¿i , S2 , Í 2) =  l ¿ N ,  f l 3 ( s X í Í x , S2 , Í 2 )  =  f ¿ s 2 ,

a t -  ■ \ @ ■ A  .
P i { S i , i i , s 2 , i 2 ) =  — s xi x +  ~ ^ s xi 2, 7 i(sii Ti «2, *2) =  7¿i,

a , ■ . v / ?  . A  . ,
P 2 \ . S i , l X, S 2 , l 2 ) —  — S2Z2 +  —S2Zl, 72(S l,í l ,S2,Í2) =  7¿2

faisiÁi, s2, i2) =  nii and ^i{s i ,i i ,s2,Í2) — ¿ii2.
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Table 6.1. The transition rates for the model are given as:

Event State Transition Transiton Rate
Immigration of a susceptible in Pop. 1 
Death of a susceptible in Pop. 1 
Infection of a susceptible in Pop. 1 
Recovery of an infective in Pop. 1 
Death of an infective in Pop. 1 
Immigration of a susceptible in Pop. 2 
Death of a susceptible in Pop. 2 
Infection of a susceptible in Pop. 2 
Recovery of an infective in Pop. 2 
Death of an infective in Pop. 2

(si,¿1, s2,î2) —> (si + M l ,S2,Î2) 
(si,il,S2,l2) —> (si -  l,i\,S2,Î2)

(S1, f l ,S2,î2) > (si — l,il + 1 , S2, Z2)
(S1 ,Í1 ,S2,Í2) -> (Si + M l -  1,S2,Î2)

(SI,ÍI,S2,Í2) —► (Si,îi -  l,S2,f2)
(si,fl,S2,f2) -» (SI,Í!,S2 + 1,¿2) 
(sl,fl,S2,¿2) -» (S1,Î1,S2 ~ 1, ¿2)

(S1 ,Í1 ,S2,Í2) -» ( s 1, i 1,S2 -  1, Z2 + 1)
(5l,fl,S2,f2) -» (Sl,fl,s2 + 1, ¿2 -  1) 

(sl> *1, «2,¿2) —» {SI,Í\,S2,Í2 ~ 1)

Ai(si,fi, s2, i2)
Ati(s i)fi,s2,¿2)
Pl(sl,il,S2, f2) 
7l(si,fl,S2.f2) 
M2(si,fl,S2,f2) 
A2(s i,fi,s2,f2) 
M3(si,fl,S2,î2) 
02(S1 ,Í1 ,S2,Í2) 
72(51,fl,S2,¿2)
At4(si,fi,s2,¿2)

The Kolmogorov forward equation for the state probabilities pSuillS2,i2(t) =  =
si; h(t)  =  i\, S2(t) =  s2, h (t) =  ¿2} can be written as

ÍW i,»2,<a(*) =  A 1 (s1 -  l , i i , s 2,Í2)p,l-i,i1,s2,i2(t) +  Mi(si +  l , i 1)s2, í2)pSl+ii<IiSai<2(í)

+  P\{S\ +  M l -  1) S2,Í2)Ps1 + l,i1-l,s2,i2(t) +  (J-2(S1 ,Í1 +  l,S2,Í2)Psi,i1 + l,S2ti2(t) 

+  7l(sl _  M l +  1, S2,Í2)Ps1-l,i1 + l,s2,i2(t) +  A2(sM l,S2 -  l ,Í2)pSlltllS2-l,i2(í) 

+  P3(S1 ,11 ,S2 +  l , i 2)psi,iua2 + l,i2(t) + P 2(Sl,ii,S2 +  l , i 2 -  l)Psi,ii,s2 + l,i2-l(£) 

+  72(Sl,*l,S2 — 1,Z2 +  l)Psi, i!, s2-l, ¿2 + 1 (t) +  (J.4(S1 ,Í1 ,S2,Í2 +  l)pSl ,S2,j2 + l (t)
-  k(s,i)(t)ps¡i(t), (6>1)

for Sl =  0, 1, 2, dots, *! =  0, 1, 2, . . . ,  s2 =  0, 1, 2, dots, i2 =  0, 1 , 2 , . . .  and where

k(s1 , l 1 ,S2, l2) =  Al ( S l , î l ) S 2 ,Ï2 )  +  M l ( S l , * l , S 2 , * 2 ) + A ( S l , * l , S 2 , Ï 2 ) + 7 l ( 5 l , î l , S 2 , î 2) +  
M 2 ( s i , î i , s 2>î2) +  A2 ( s i ) î 1 , s 2 ) i 2) +  / i3 (s 1>i 1 , s 2 ) * 2 ) + Æ ( s 1 ) i 1 ) 5 2 , i 2) +  7 2 (a 1>t 1> 5 2 ,* 2) +
^4(^1 , il, s2, f2).
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6.1 Deterministic model

As with the previous chapters, we scale the process by introducing the scaling = 

f b  h — 7), $2 =  f f  and i2 =  ^. The deterministic version of the model is

dsi
dt
di\
dt

ds2
dt
di2
dt

~(0il  +  -^2)S1 +  7*1 +  t1 ~~ /*S1; (6.2)

(0ii +  Xi2)si -  (7 + (6.3)

—(0i2 +  Aii)s2 +  7*2 +  s2, (6.4)

(0 i2 +  Aii)s2 -  (7 +  n)i2. (6.5)

The basic reproductive ratio is

Ro —
0  +  A 
7 + m '

Adding equations (6.2) and (6.3) and equations (6.4) and (6.5), we have

dsi dii n  .
d T + *  = " (1

ds2 di2 .

It follows then that if si(0) +  ^(O) =  1 then si(t) +  ix(t) =  1 for all t >  0, and 
similarly for s2 +  i2.

The system of equations (6.2) - (6.3) has four critical points. The first, sj =  s2 =  
1 and ii =  i2 =  0 represents the disease free equilibrium. The second equilibrium 
which is the endemic equilibrium is (sj, i\, s*2, i*2) =  (1 /R0, 1 -  l/R0, i/R0t 1 -  l / i ? 0). 
This is feasible if Rq > 1. The third and fourth are

( / ? - A ) 2 - ( / ? - A)(7 +  fi)) ±  y/(JJ3 -  A)2 - ( ¡ 3 -  A)(7 +  /*))((/? +  A)2 -  (7 +  /*)(/? -  A))
2 0 (0 - X )  '

and

(P -  A)2 -  (0 -  A) (7 +  /*)) gF y/((0 -  A)2 - ( 0 -  A) (7 +  /j))((0 +  A)2 -  ( 7  +  y)(0  -  A))
20(0 — A) '

To analyse the feasibility of the third and fourth roots we let K  =  (0 -  A)2 -  
(P — A) (7 +  /r) and L = (0 +  A)2 — (7 +  /r) (/? — A), and so L > K. Therefore the third 
and fourth roots can be written as and respectively. It is important
to note that the equilibrium is feasible if both roots are real and positive and < 1.

96



Follow similar arguments as in section 4.2.1 and analysing the roots it can2p(p_A)
be seen that

• If K L  < 0, then we have complex roots and these are not feasible.

• If K L  > 0 and K  > 0, then K  < L which implies

K 2 < KL  

=► K  < y/KL

K  — V K L  < 0 whereas K  +  V K L  > 0.

So whatever the sign of ¡3 — A, we have roots of opposite signs and therefore 
not feasible.

• If K L  >  0 and K  < 0, then K  — V KL  < 0 . K  < 0 implies that

(0 - X ) 2 - (/? — A)(7  +  m ) < 0

= > ( / ? - A)2 < ( / ?  —A)(7 +  m)

=>(/? — A) > 0.

S° 2p{t^X) < 0 and therefore not feasible.

• If K  =  0 then roots 3 and 4 are equal to root 1.

• n  L =  0 then (7 +  m)(/? -  A) =  {(3 +  A)2 > 0 and so /? > A and K  =  
(P ~  A) — (/3 +  A)2. Thus roots 3 and 4 equal =  (p-% • This is negative 
for (3 > \.

Therefore we reject the third and fourth equilibrium points as unfeasible.

Stability

This is a four dimensional process so we use the eigenvalues of the Jacobian matrix 

to determine the (local) stability of equilibrium points. A point is (locally) stable if 

all the eigenvalues have negative real parts. The Jacobian matrix is

/  ~  Xi2 - -/?Sl +  7 0 —Asi ^
J( s i ,  -¿1, S2, ¿2) = +  A?2 -  ( 7  +  m) 0 Asi

0 —Asi —P12 — A i\ — n - 0 s 2 +  7
l  0 As2 Pi2 +  A i\ Ps2 -  (7 +  Ai) /
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At (1,0,1,0)

J(Sl,*l, S2, ¿2)

/ - p - 0  +  7 0 -A  \
0 0  -  (7 +  aO 0 A
0 -A ~P - 0  +  7

V 0 A 0 0 — (7 +  aO /
Using Maple we find the eigenvalues are 0  +  A -  (7 +  /z), ¡3 -  (7 +  A +  /z), - /z  and 
~P- This is (locally) stable if (/? +  A) < (7 +  /z), that is Rq < 1. In other words, 
the disease free equilibrium is stable if the endemic equilibrium, (s*, z*, s5+ 2), is 
unfeasible.

At (si, ¿1,55,¿5) = (flo-l) J _  (flo-lA 
Ro ’ Ro ’ Ro ) '

J(sI,*I,s 25 ‘ 2;

/

V

^ ( 0  +  aJ - m
( f l o - 1 )

•fto (0 +  A)

0

0

— — +  'Y Ro ^  >

^  -  (7 +  M)
-A.Ro
A.

0

0

s + a) -  M

iio ( 0  +  A)

_A_
i?0

_A_

- ¿ + 7

\

]| -  (7 + M) /

Again using Maple gives the eigenvalues as _ ^o(m+7+a+/3) 20^  + ^ ^  +  

and -/z . These are all less than 0 if (0 + A) > (7 +  /z), that is i?0 > 1. So the 
endemic equilibrium is (locally) stable if it is feasible.

For the two-group model without demography, we were able to demonstrate 
(section 4.2.2) global asymptotic stability of the endemic equilibrium, when R0 > 1. 
In this case we have only demonstrated local stability; this is still sufficient to 
conclude that (for R0 > 1) if the process (^(f),  I2(t)) is initially close to 

then it will tend to stay close to Af(zi,z?;) for a considerable time, subject to small 
random fluctuations.

6.2 Conditioning on non-extinction

The state probabilities conditioned on not being absorbed (on the states (si, ¿1, s2,i2) 
with at least one of R and i2 greater than 0) will be denoted by gSl,il]S2,j2(f). They 
can be determined from the unconditioned probabilities pS l t via the relation

?S!,ii,S2,i2(t) =  S2(t), I2(t)) — S2, i2)\(Ix(t), I2(t)) (0,0))
_  Psi,h,S2 ,i2  ( t )

1 -p.,o,.,o{t)' ( 6 . 6)
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where p.1j1,.i2(i) denotes the marginal distribution of the number of infected individ
uals in population 1 and population 2 at time t.

OO CO
P ., * l , . | * l  ^  y ^  y (^ )  =  =   ̂1 > - 2̂ ( ^ ) =  ^2)-

SJ=0 S2=0

Differentiating equation (6.6) and using the equation p.,0,.,o(0 =  7P.,i,.o(0+7P.o,.,i(0> 
which is obtained by setting ¿1 =  0, ¿2 =  0 in equation (6.1) and summing over all 
possible values of si and s2, gives

Qs 1 , (0  -  +  7 (9.,i,.o( 0  +  9.,o,.,i(0 )i—1 — P.,o,.,oW 1 —
(0

.*1,52>»2 Pi(0P.,o, .,o(0 '
The Kolmogorov forward equation (6.1) for the state probabilities pSl]il,a2,i2(i) can 
be used to derive the differential equations for the conditional state probabilities

Qsi,il,S2,l2 ( 0  ■
dqSi,¿1,52,22

dt P i  ( * ^ 1 +  1 > ^ 1  1 5 *̂2 ) 2̂ )^5 1 +1 ,2 1 —1 ,S2,22 ( 0  /^ 1 ( 1̂ ) ¿ 1 5 52 , ¿2) 9 s i ,l l ,S2 , ¿2 ( 0

+  ̂ l ( Sl 0  ¿ 1 5 5 2, 2̂ )^s i—1 ,21,S2 ,¿2 ( 0  '̂ l ('̂ l ) ¿ 1 , 5 2 , ¿2 )9 si ,¿1 ,5 2 ,1 2 ( 0

T /Tl(si T  1 , ¿1 , 5 2 , ¿2 ) 9 5 1 + 1  ,¿1 , 5 2 ,¿2 (̂ ) Ml(^l ) l̂ )^2 )̂ 2 )Qf5 1 ,2l ,S2 ,2 2 (̂ )

d”7 l ( ^ 1  1 ) * 1  +  1 ! 5 2, 22) 5̂ 1— l ,2l +l ,S2,22 (0  7 l (S l , ¿1 , 5 2 ) * 2  )<?Sl,¿1 ,52,22 (0

+ A >(5 l , f l , S2 +  1 , * 2  -  1 )9 5 1 ,2 1 ,5 2 + 1 ,1 2 - 1 ( 0  -  # 2(s i ,*l , s2,k)qSl,¿1 ,5 2 ,22 ( 0

+  M2(S l , i l  +  1 , S2, ¿2 )9 5 1 , 2 1 + 1 ,5 2 ^ ( 0  “  P 2 (S l , i l , 3 2) *2 )9 s i ,¿1 ,52,22( 0

+A2(s i, zi, s2 -  1,12)951,¿1,52- 1,¿2(0 -  A2(si,ii,s2,z2)gsl|iliS2ij2(0+P3(Sl,*l,S2 +  M 2)9si,¿1,52+1,¿2(0 -  P3(si,» l,s2, ¿¡2)951,21,52,22(0 
+ 72(5 1, i l ,S 2 -  1,*2 +  l) 9si,¿1,52-1,¿2+l(0 -7 2 (5 l,* l,5 2, i 2)9s1,21,52,22 (0  +  P4(Sl,*l,S2, i 2 +  1)951,11,52,12 + 1 (0  -  M4(«l, *1,52,̂ 2)95!,21,S2,22(0 +(79 .,1,.o(0  +  79.,o,.,i(i))9si,ii,52,i2(i )- (6 .7)

with 9si,ii,52,i2 =  0 f°r (si, ¿1, s2, ¿2) ^ D  The quasi-stationary distribution qsl,i1,S2li2 
is the stationary solution of this system of differential equations. Analytic solutions 
are not possible so we will approximate the quasi-stationary distribution using a 
diffusion approximation.
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6.3 Diffusion approximation

Since analytic solution to (6.7) is not available we now derive the diffusion ap
proximation of the quasi-stationary distribution. The diffusion approximation has 
a continuous state space, in contrast with the discrete state space of the original 
process. The approximation is based on the restriction that R0 is strictly larger 
than 1 and N  is large. Here we approximate the quasi-stationary distribution by a 
multivariate normal distribution.

We study the fluctuation around the endemic deterministic equilibrium. The 
changes in the scaled state variable Sj, *i, s2 and *2 during a small interval of time 
[t,t +  St] will be denoted by Æsi, Six, Ss2 and Si2 respectively, where =  Si(i + 
St) — si(t), Six =  ix(t + 6t) — ix(t), Ss2 — S2(t + St) — s2(t) and Si2 =  i2(t + St) —*2 ( f ) .  

We can determine the mean and the covariance of the vector of changes in the state 
variables from the hypotheses of the original process (Table 6.1). Starting with the 
mean:

( Ssx > ( H ~ (Ph +  A*2)si +  7*1 -  fisx \
Six {Ph +  A * 2 ) s i  -  (7 +  ii)ix
Ss2 M ~  {Ph +  A * i ) s 2 +  7*2 -  iis2

\  ^2 ) \ {Ph +  A * i ) s 2 — (7 +  /*)*! )
=  E(sx,ix, s2,i2)St +  o(St).

St +  o(St)

The Jacobian matrix or local drift matrix of this process evaluated at (s*, i\, s£, i*2) 
is given above (section 6.1) so we move on to define the covariance matrix. The 
covariance matrix of the vector of changes in the state variables during the time 
interval (t, t +  5) is given by

Cov

(  <5si \ 
Six 
Ss2

\ Si-i /

f ¡x+ (fiix +  A*2)si +  7*1 +  fisx — (f3sx +  7)*i — A*2Si
(/3si +  7)̂ 1 — A*2Si (/3*i +  A*2)si +  (7 T /¿)fi 

0 0 
\ 0 0

0
0

M +  (P̂ 2 +  A*i )s2 +  7̂ 2 +  PS2 
—(/?s2 +  7)*2 — A*i S2

0
0

—((3s2 +  7)*2 — A*is2 
(/?*2 +  A*i )s2 +  (7 +  /i)*2

\

St +  o(St)

— G(sx,ix,s2, i2)St +  o(St).

We can approximate the G(si, *i, s2, i2) matrix close to the deterministic equi-
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librium by evaluating it at the critical point (sj, s*, i*).

The process y/N((si(t), ix(t), s2( t ) s*2, i*2)) may be approximated by 
a four dimensional Ornstein-Uhlenbeck process with local drift matrix J(s*, 1*, Sg, i2) 
and local covariance matrix G(s*,i*,s2, i2). The quasi-stationary distribution can 
be approximated by the stationary distribution of this Ornstein-Uhlenbeck pro
cess. We can find the covariance matrix, £, for the stationary distribution of the 
Ornstein-Uhlenbeck process by solving (4.8) with expressions for J ( s * , i j , a n d  

*i> s2> *2)- However, the result is rather messy and not illuminating so we use 
numerical values to evaluate the result. Using the following parameters: ¡i =  1/70, 
/3 =  15, 7 =  5, A =  2 and Rq ~  3.4, we have

/  0.294958 \ 
0.705042 
0.294958 ’

\ 0.705042 )

(  0.2860539 
-0.2409595 
0.0092552 

\ -0.0539985

-0.2409595 0.0092552
1.1958651 -0.0539985

-0.0539985 0.2860539
0.098742 -0.2409595

-0.0539985 \ 
0.098742 

-0.2409595 
1.1958651 /

This multivariate normal distribution can only provide a reasonable approximation 
to the quasi-stationary distribution if most of its probability mass is concentrated 
in the positive quadrant. Since 95% of the probability of a normal distribution 
lies within two standard deviations of the mean, we require the mean numbers of 
susceptibles and infectives in each population to be more than two standard devi
ations for the approximation to be valid. Since the two populations are symmetric 
we can analyses population one. Using the same parameter values, for susceptibles 
we require 0.2949581V > 2V0.28605391V, that is, N >  13. For infectives, we need 
0.7050421V > 2Vl.19586511V, that is N > 9. So for our normal approximation to be 
plausible then the expected population size for each population should be greater 
than 13.

6.4 Numerical results

We now run a numerical simulation of the stochastic model and compare this with 
the result we obtained from the diffusion approximation. The parameter values used
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are N =  200, ¡3 =  15, A =  2, fi =  1/70, 7 =  5 and Ro ~  3.4. Figure 6.1 shows the 
simulation result and the diffusion approximation. It can be seen that the two give 
similar results for these parameter values.

Figure 6.1. The quasi-stationary distribution of the number of infected individuals 
in each population. The blue solid line is the simulation. The red solid line is the 
Ornstein Uhlenbeck approximation. The parameter values are N =  200, ¡3 =  15, 
X — 2 , fj, =  1/70, 7 =  5 and R0 ~  3.4. Simulation is run for 20 time units and for 
100,000 iterations.

6.5 Conclusion

In this chapter a two group SIS model with demography is formulated and analysed. 
Since explicit solution is not possible, we approximate the quasi-stationary distribu
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tion using diffusion approximation. The inclusion of demography makes the model 
more complicated and leads to complicated results.

First we analysed the deterministic case by working out the equilibrium of the 
differential equations describing the model. It is shown that these equations have 
four equilibrium points. One represents the disease free equilibrium, the other an 
endemic equilibrium and the last two are shown to be unfeasible. The basic repro
ductive number R q determines whether the disease is eliminated or persists. We 
show that when R q < 1 the only feasible and stable point is the disease free equi
librium. However, when R q >  1 the endemic equilibrium is feasible and stable.

The stochastic model is formulated as a Markov process. In this model we 
expected that when the disease goes extinct from the two populations it will not 
reoccur unless an infection is reintroduced by immigration of an infective into one of 
the populations. However, the time to complete fade out can be long so we study the 
distribution of the process after it has been going on for a long time prior to extinc
tion. In other words, we study the process conditioned on not being absorbed. We 
use diffusion approximation to derive an approximation for quasi-stationary mean 
and variance. As stated earlier, the inclusion of demography further complicates the 
model and therefore complicates the analysis of the diffusion approximation. The 
result obtained is complicated so numerical values are used. We run a simulation 
and compare the result with the result obtained from the diffusion approximation. 
The shape of the quasi-stationary distribution appears to be approximately normal 
for Rq > 1 and N  large.

We did not work out the exact quasi-stationary distribution (left eigenvector of 
the reduced transition rate matrix) because the transition rate matrix is infinite. We 
also did not derive cumulant equations and therefore did not use moment closure 
method because it is very messy and complicated. However, similar methods to 
those applied to other models should yield corresponding results. We also haven’t 
proved absorption, but similar methods to other chapters (5 and later 7) should 
work.

103



Chapter 7 

SIRS Model

In this chapter we analyse the SIRS (Susceptible-Infective-Removed-Susceptible) 
model without demography and the SIRS model with demography. The ‘Removed’ 
state describes individuals who have been infected and are now temporarily immune 
from further infection. Thus the SIRS model describes the situation where immunity 
is temporary.

For the SIRS model, the population is divided into three classes - susceptibles, 
infected and recovered (removed), and the numbers of individuals in theses classes 
are written as S, I  and R respectively. The letters S, I, R and S refer to the 
successive state the individual can be in, i.e., susceptible, infective, recovered and 
susceptible respectively. The SIRS model without demography may be modelled as 
2-dimensional processes, whereas the SIRS model with demography is modelled as 
a 3-dimensional process, leading to considerably more involved algebra. Here we 
assume that the rate at which removed individuals lose their immunity and return 
to the susceptible class is proportional to the number of removed individuals with 
proportionality constant v. So the average period of immunity is l/v. Note that 
when v =  0, we get the SIR model and when v tends to infinity we get the SIS 
model.

This chapter is divided into three sections. The first section looks at a closed 
SIRS model without demography. In the second section we analyse the SIRS model 
with demography. In each of these sections we develop deterministic and stochastic 
formulations of the model. We first analyse the deterministic model. We then use 
a diffusion approximation (Ornstein-Uhlenbeck process) to approximate the quasi
stationary distribution of the stochastic model. We then derive cumulant equations
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and use a moment closure approximation to work out the means, variances and 
covariances of the numbers of susceptible, infected and recovered individuals at 
quasi-stationarity. These approximations are then compared with the results ob
tained from numerical simulation of the stochastic model. Concluding remarks are 
given in the final section.

7.1 SIRS model without demography

We formulate the SIRS model first without demography. This model has three 
variables, namely the number of susceptible individuals S(t), the number of infected 
individuals / ( f )  and the number of recovered individuals R(t) at time t. These 
take values in the state space {(s, i, r) : s =  0, 1, 2, . . . ,  i =  0, 1, 2, . . . ,  r =  
0,1, 2 , . . . ,  s +  r +  i =  N}. The assumption here is that the population size N  is 
constant. Since the population size is constant, we replace R(t) by N - I ( t ) - S ( t ) and 
concentrate on the changes of the numbers of susceptible individuals and infected 
individuals. Therefore, the stochastic model is a bivariate continuous-time Markov 
chain with state space C — { (s,f)  : s =  0,1, 2 , . . . ,  N, i =  0,1, 2 , . . . ,  N, s +  i < N } .  
The state probabilities at time t will be denoted as

Vs,i{t) =  P {S (t ) =  s , / (t )  =  i}.

In this model there are three possible transitions, i.e. infection of a susceptible 
individual, recovery of an infected individual and a recovered individual becoming 
susceptible again, with rates given in Table 7.1

Table 7.1: The transition rates for the model are given as:

Event State Transition Transiton Rate
Infection of a susceptible 
Recovery of an infective 
Loss of immunity

(s,i) -> (s -  M  + 1) 
(s,i,r) -> (s,i -  l ,r  + 1) 

(s, i) -> (s + l,i)

Pi (5, f) —
72 (s, *) = 7 i 

V3 = v(N — s — i)

All states where the number of infected individuals is positive are transient, 
while the set of states A =  { (5, 0) : s =  0 ,1 ,2 , . . . ,  IV} forms an absorbing set. 
Furthermore, once the process enters the set A then the only transitions which can 
occur are loss of immunity events, and with probability 1 the process will ultimately
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be absorbed at the state (s, i) — (TV, 0). Since the state space is finite, there exists a 
unique quasi-stationary distribution supported on the set D =  C\ A. Provided that 
the initial distribution is supported on D  then this quasi-stationary distribution is 
the unique limiting conditional distribution.

The Kolmogorov forward equations for the state probabilities ps,i(t) =  P{S(t) =  
s ,I ( t ) =  i}  can be written as

Ps,i(i) =  A (s  +  M  ~ l)iVt-i.i-i(i) +  l 2(s,i +  l)ps,i+i(i)

+v3(s -  1, i)ps- hi(t) -  k(s , i)ps,i(t) (7.1)

for s =  0,1, 2 , . . . ,  TV, i =  0,1, 2 , . . . ,  TV, s +  i <  N  and where k(s, i) =  (3i(s, i) +  

72(M ) +  3̂ Since s and i must be non-negative, we define pSti(t) to be zero if 
any of s or * is negative.

7.1.1 Deterministic model

To derive a deterministic approximation of the stochastic version of the model, we 
introduce the scaling s — ^  and i =  ~  and reparametrise the model by introducing 
the following new parameters: R0, the basic reproduction number defined as the 
ratio of the contact rate j3 to the recovery rate 7 and 771, denoting the ratio of the 
loss of immunity rate v to the recovery rate 7 .

n■no — ~ ,
7

The differential equations for the deterministic version of the model are then

— =  7 ( m ( l - s - * ) - - R o S i ) ,
di
It  =

(7.2)

(7.3)

This system of equations has two critical points, one at (s,f)=(l,0), which corre
sponds to the absence of infection. The other critical point corresponds to the 
endemic infection level and is given by

/  1 rjxjRo -  1) 
\ i ? o  -^0 ( 1  +  771) (7.4)
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The equilibrium (s*,i*) is feasible if Ro > 1. 

When v — 0 then r)i — 0 and therefore

which is one of the steady states of the SIR model. Note that the SIR model without 
demography has equilibrium points at (s ,0) for every s 6 [0, 1].

On the other hand, when i / -> o o w e  get

_1_ R0 - l '
R0 Rq(«*.<*) =

the endemic equilibrium of the SIS model without demography.

Thus we see that the introduction of the loss of immunity allows the disease to 
settle to an endemic equilibrium. However, the number of infected individuals in the 
endemic equilibrium is less than those in the SIS model. This seems natural since 
the period of immunity reduces the number of susceptible-infective pairs available, 
and so infectious contact will occur at a slower rate.

Stability ,

For (local) stability we use the Jacobian matrix to determine the stability of the 
equilibrium.

j ( s (  —T(r?i +  Rot) —7(771 +  Ros)
'yRoi 7 (Ros -  1)

At (1,0)

J(1,0) = -7771 -7(771 +  Ro)
0 7 (Ro ~  1)

The trace is j(Ro  — 1 — 771). This is less than 0 if Ro < 1 +  r/i. The determinant 

is —72i?i(/?o — 1)) which is less than 0 if Ro > 1. For (local) stability, we need the 
trace to be negative and the determinant positive. Therefore (1,0) is unstable for 
Ro >  1. At (  J _  qi(flo-l) \ 

\Ro ’ Ro(l+m)) ’

J (s* ,n  = (’7 K/l -I" (1+7)l) 
ViiRo—1) 7(i+»n)

)  - 7 ( t?i +  1)

The trace is —7171 1̂ +  This is less than 0 if Ro > 1. The determinant is
Vi(Ro ~  1) which is greater than 0 if i?0 > 1- Therefore (s*,i*) is (locally) stable if 
it is feasible.
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To prove global stability of the endemic equilibrium of our model (7.1) - (7.2) in 
the case R0 > 1 we start rewriting the system by substitution (s,i) —> (x,i), using 
the transformation x =  s +  Therefore, our system (7.1) - (7.2) become

p p  =  u(k — x) — @xi, 
dt v ’
di
dt

— f3xi — gi

(7.5)

(7.6)

where k =  p p  and g =  u +  7. The new system has endemic equilibrium at

* «  .
X =

Ro
^  i - i -
Q \ Ro

where Ro =  From (7.5) - (7.6) it follows that

f3x*i* — u(k — x*) =  gi*. (7.7)

at steady state. To show that (x*,i*) is globally stable and hence (s*,T) is globally 
stable we consider the following Lyapunov function

V(x, i) =  x — x* — x* In — +  i — i* — i* In —
x* i*

The partial derivatives of equation (7.8) are

d V(x,i)  x*

and

Now

dx

dV (x, i) 
di

dV(x,i) dV(x,i) dx dV(x,i) di

(7.8)

(7.9)

(7.10)

(7.11)dt dx dt di dt

and substituting equations (7.5), (7.6), (7.9) and (7.10) into equation (7.11) gives

dV(x,i) _ . x* *  ̂ .
----- ------ - =  uk — ux — pxi — v -----b ux +  fix i

dt x
+(3xi — (3xi* — gi +  gi*.

Using equation (7.7), equation (7.12) can be simplified to

(7.12)

dV(x,i) 
dt

— UK I 2
X X

=  —UK
X \ X* /

X X
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Therefore < 0 holds for all x ,i  >  0. The equality =  0 holds only
when x =  x* and the point (x*,i*) is the only invariant set of the system (7.5), 
(7.6)) on this line. Therefore by asymptotic stability theorem (Barbashin (1970), 

page 28 or La Salle and Lefschetz (1961), page 58) the equilibrium (s*,i*) is globally 
asymptotically stable in the positive region s, i > 0.

7.1.2 Conditioning on non-extinction

We now study the process conditioned on not being absorbed (the number of infec- 
tives hitting zero). By conditioning on non-extinction, we can define a new stochastic 
process that is related, via the extinction process, to the unconditioned process. The 
state probabilities conditioned on not being absorbed are denoted by qs¡i(t). They 
can be determined from the unconditioned probabilities ps¿(t) via the relation

?s,¿(0 — P((S(t), I(t)) — (s, i)\I{t) 7̂  0) 
=  PsÁt)

1 -P..o(0
(7.13)

where p.}i(t) is the marginal distribution of the number of infected individual at time
t and is given by

N -i

p.,i =  J2 psÁt) =  p m  =  i).
s = 0

Taking equation (7.1) and summing for i =  0 over all s values we have

P.,o(i) =  lP.,i(t).

Differentiating equation (7.13) and using (7.14) gives

^ PsAt)  , Pi(t)Qs.iAt) =   -----— tit +  7P.,i(i)-

(7.14)

1  ~  P.,o(i) ' ' ^ ’^ ^ ( l  - p . , o ( 0 ) 2 
The Kolmogorov forward equations (7.1) for the state probabilities ps^{t) can be
used to derive the differential equations for the conditional state probabilities qs ¿(i), 

dqs,j _ n
dt ~  Pl(s+l,i-l)9s+l,i-l(i) +  72(s,i+l)9s,i+l(i) +  ^3(a-l,»)9s-l,i(i) — Pl{s,i)qs,i (t)

-72 (s,i)9s,t(i) -  Uz{s,i)qiui2- i{t)  +  79-, 19s,i(t), (7.15)

for s =  0 ,1 , . . . ,  TV, * =  1, 2 , . . . ,  N  -  s. The quasi-stationary distribution qS:i is the 
stationary solution of this system of differential equations. Since analytic solution 
of this is not possible, we will use diffusion approximation and cumulant equations 
to approximate the quasi-stationary distribution.
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7.1.3 Diffusion approximation

The changes in the scaled state variables s and % during the time interval from t to 
t +  St are denoted by 5s and Si, where 5s =  s(t +  5t) -  s(t) and 5i =  i(t +  5t) -  
i{t). From the original process we can determine the mean and the covariance with 
components 5s and 6i. For the mean:

7 (771(1 -  s - i )  -  R0si) 
7 (Rosi -  i)

— E{s,i)5t +  o{5t).

5t +  o(5t)

The Jacobian matrix J(s, i) is defined above so we move on to define the covariance 
matrix. The covariance matrix of the vector of changes in the state variables during 
the time interval (t,t +  5) is given by

Cov 5s
5i

7(771 (1 -  s — i) +  R0si) —7R0si 
- 7  Rosi j(Rosi +  i)

=  G (s,i)ôt +  o(5t).

5t +  o(5t)

We can approximate the G(s,z) matrix close to the deterministic equilibrium by 
evaluating it at the critical point

G(s*,z*) 7 (Rp -  1) 771 /  2 -1  \
Ro (1 +  7?l) \ - l  2 )  ■

We find the covariance matrix £  by solving (4.8) with expressions for J(.s*, 1*) and 
G(s*,i*), yielding

Therefore for R0 >  1 and N  sufficiently large, the distributions of the numbers of 
susceptible and infected individuals in quasi-stationarity is approximately bivariate 
normal with mean (jis , fJ,/) and variances

where

N
IJ'S ~R~0’ (7.16)
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.2 N((r]i(R0 —  ! )  +  ( !  +  Vi)2))
s vi(Ro +

_  m (R0 - l ) N  
-Ro(i +  Vi)

a2 __ N(Vl(R0 +  r]i)2 +  (T)i +  1)(Rq — 1)) 
7 (i +  m)2(Ro +  m)Ro

- N

(7.17)

(7.18)

(7.19)

(7.20)

7.2 Time to extinction

We have already seen from expression (7.4) that an increase in the average immune 
period (decrease in 771), with R0 held fixed, leads to lower equilibrium infection preva
lence. Using the diffusion approximation we can now study the effect of the immune 
period upon time to fade-out of infection. More precisely, the time to absorption at 
A  starting from quasi-stationarity, is exponentially distributed with mean (79.,i)~\ 
since at quasi-stationarity this is the (constant) hazard rate of absorption at A. Thus 
an increase in q^, the quasi-stationary marginal probability that 7 =  1, corresponds 
to a decrease in the mean time to extinction or more rapid fade-out of infection. 
For R0 > 1, when the marginal quasi-stationary distribution of I  is approximately 
normal, an increase in q,}1 roughly corresponds to an increase in the coefficient of 
variation of this marginal distribution. Thus, we will use the coefficient of variation 
(CU/) to analyse the prevalence of the disease. A large coefficient of variation can 
give rise to a high probability of low prevalence. In other words, when the coefficient 
of variation is large we expect a rapid extinction of the disease process. This can 
happen if the immune period is long, which means rjx is small. We will start by 
analysing the change in expected number of infectives with respect to 771.

From (7.18),

dfii =  (Rp -  1 )N  
drji 7?0(1 +  ?7i )2

This is greater than zero for Rq > 1. This means that if the immune period is short 
(771 is high) then there is a high average prevalence (/// is high). Now

M/
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Due to the complicated nature of CVi because of the square root of the variance we 
will work with C V 2. We find from the expressions (7.18) and (7.19) that

CVj  = N R l(l  +  Ty1)2(f?1(iZ0 +  ?n )2 +  fa  +  l ) ( i?0 -  1))
v i ( ^ - i ) 2N 2(i +  my (R 0 +  m)R0 

_  RoiVijRo +  rji)2 +  fa  +  l)(i?p — 1))
N'hKRq — 1)2(7?0 +  rji) ’

so that

j L ( n v 2\ -  ^o[2(^o ~ l)(flo +  r?i +  7)1 ) +  Tj\(i?o(.Ro +  1) -  I)i7?i2o(2i2o +  ??i)]
dVi NrftiRo-iyiRo + n)*
This is less than 0 for 720 > 1, which' implies that the probability I  is close to zero 
decreases as rji increases. That is, any decrease in average immune period, for fixed 
Ro > 1, corresponds to an increase in expected time to extinction of infection from 
the population.

7.2.1 Cumulant equations

We now derive differential equations for the cumulant. The system of differential 
equations (7.15) can be used to derive a partial differential equation for the moment 
generating function M  defined by

N  N - s

M(du 02,t) =  E{eS9l+Id2\I >  0] =  ^ e s01+i<?2 91 ,92 £ R.
5 =  0 ¿ = 1

Multiplying equations (7.15) by exp(s6l1 +  id2) and taking the sum s =  0,1, 2, . . .  A  
and * =  1, 2 , . . .  TV — s and simplifying (see Appendix D) we have

where <fc(s|l) =  ^7 is the conditional probability that S takes the value s given that 
1 =  1 . In terms of the cumulant generating function K(9i,92,t) =  logM(9lt92it) 
this becomes 

dK
~dt N 1)

d2K  dK ÖK 
d91d92 +  d9i d92 

dK

+  q(e 02 -  1) ^ -dK
d92

dK+vN {ee1 -  1) -  v(e61 -  1) —  -  u(edl -  l ) ~
du 1 Q/1d92

N

- je KQ;i^2 <is(s\l)(t)esei + 79.,i- (7.21)
5=0
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Using the definition K(9i,92,t) =  E km,n(t) 9™ 9%/ml nl wherem>0, n>0, m +n>0
km,n(t) denotes the (m, n)th cumulant function we derive the cumulant equations 
by expanding equation (7.21) in powers of 9i and 92 and equating coefficients. We 
only wish to consider cumulants of order up to two, but note that the expansion can 
be taken to higher and higher orders of cumulants. The equations for cumulants of
order up to two are as follows:

¿1,0 =  v N  — —(fci,i +  k ifiko, 1) — v ( k lto +  fco,i)+ 79 .,l (*i,o -  E [ S \ I  =  1]), (7 .22)¿0,1 =  +  fci.ofco.i) -  7̂ 0,1 +  79 .,lfco.i, (7 .23)
k i , i  =  j ÿ  { k i f l k i ' i  — k i ' i  — k h 0 k 0A +  k 2ti +  koti k 2fl — /co,i î,i — k \ , 2  — k i , 0 ko,2)

- { y  +  7) k h i +  » h o t  +  79 .,1 (Ai, 1 -  fci,o*o,i +  feo,i^[5 |/ =  1]), (7 .24)¿2,0 =  v N  +  — ( k i ' i  +  k i i0 koti — 2fca,i — 2A:i;0̂ i,i — 2̂ o, 1̂ 2,0)
~ l/(ki,o  +  fco.i +  2A;2j0 +  2 k \ ,i )+ 79 .,1 (*2,0 -  k \ o  ~ E [ S 2\I =  1] +  2 k li0 E [ S \ I  =  1]) , (7 .25)¿0,2 =  j ÿ  (fcqi +  k x,o&o,i +  2/7,2 +  Z k O 'i k i ' i  +  2 k i f l k 0t2) +  7 ( k 0,i — 2 k 0i2)+ 79 .,1 (ko,2 ~  k 20  l ) . (7 .26)

As in section 4.5 we allow k\,2, k2,i, k0 3 and k2,o to grow with N, but not faster than 
N. With this assumption and solving the equations using Maple gives

k\,o =  
ko,i =  
k\,x = 
k2fi =  

ko,2 =

7 w + 4 ± »
R o  Vi ( R o  ~
( R 0  -  1)77! u + ° l *

N  —
1

R o  — 17?o(l +  V i )

~ N  +  0 ( 1),Ko
( R o  — 1)771 +  (1 +  r) J 2

+  0

vi(Ro +  vi)Ro 
Vi (Rq +  V i ) 2  +  (V i +  l)(flo -  1) 

( 1  +  Vi)2(Rq +  m ) R o

N  +  0 (1),

N  +  0 ( 1 ) .

(7 .27)(7 .28)(7 .29)(7 .30)
(7 .31)

Again the variances and covariance match those calculated using the Ornstein- 
Uhlenbeck process, while the mean approximations are refined.
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7.2.2 Numerical results

Although this model has a finite population size, it was not possible to work out the 
exact quasi-stationary distribution (left eigenvector of the reduced transition rate 
matrix) because the transition rate matrix is too large (2000002 x 2000002). Matlab 
had no sufficient memory to work out the left eigenvector of the reduced transition 
rate matrix. So we now run a numerical simulation of the stochastic model and com
pare this with the results from the Ornstein-Uhlenbeck process approximation and 
the moment closure method applied on the cumulant equations. It can be seen from 
Figure 7.1 that both the Ornstein-Uhlenbeck approximation and the moment closure 
approximation give very good approximations of the quasi-stationary distribution 
for these parameter values.

7.3 SIRS model with demography

Here we study the SIRS model with demography. Like the other models, the transi
tions are only allowed to neighbouring states. In this model there are seven triggering 
events, i.e. immigration of a susceptible individual, infection of a susceptible indi
vidual, death of a susceptible individual, recovery of an infected individual, death 
of an infected individual, death of a recovered individual and a recovered individual 
becoming susceptible again. The immigration rate is taken as f j , N  and the per-capita 
death rate as fi, hence the average individual lifespan is 1/p, while the typical pop
ulation size is N. The per-capita recovery rate is 7 and so the average duration of 
infectiousness is 1/(7 +  //). The loss of immunity rate is u, so the average period of 
immunity is l/(u +  ¡i). Finally, the transmission rate is taken to be (3si/N.

The various transitions and their rates are given in Table 7.2.

Here five parameters are used, namely the typical population size N, the death 
rate per individual /¿, the contact rate ¡3, the recovery rate per infected individual 
7 and loss of immunity rate per immune individual v. All these parameters are 
assumed to be strictly positive. We assume that 7 +  ¡j, > 0, which means that there 
must be some flow out of the infective class and /r +  v > 0 means that there must 
be some flow into the susceptible class.

The state space C may be partitioned as C =  A U D where the set of states
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Table 7.2: The transition rates for the model are given as:

Event State Transition Transiton Rate
Immigration of a susceptible
Death of a susceptible
Infection of a susceptible
Death of an infective
Recovery of an infective
Death of a recovered individual
Recovered individual becomes susceptible

{s , i , r ) -> (s + l,i, r) 
(s,i,r) - > ( s -  1 , i ,r)

(■s , i , r ) -» (s -  l,z + l,r) 
(s,i,r) l,r) 

(s,i,r) -> (s,i -  l ,r + 1) 
(s , i , r ) -> (s, i , r  -  1) 

(s,i,r) (s + l , i , r  -  1)

Ai(s, i,r) =  p N  
Pi(s,i ,r)  = ps

Pi (s,i,r) = jjSi
p2(s,i,r) =  pi
72 (s,i,r) = 7 i 
p3(s,i,r) =  pr  
u3(s,i,r) =  ur

A  =  {(s, 0, r) : s > 0, r > 0} is absorbing while D =  {(s, i, r) : s >  0, r > 0, i > 1} is 
transient. If the process ever reaches A then it will be further absorbed into A2 =  
{ (s,0,0) : s >  0} C A, after which the population consists entirely of susceptible 
individuals and population size evolves according to a birth-and-death process with 
constant birth rate pN  and linear death rate ps.

Denoting the state probabilities as ps^r{t) =  P {S (t ) =  s,I(t) — i ,R (t) =  ?-}, 
the Kolmogorov forward equations for this model can be written as

P s , i ,r { t ')  ^ i ( s  1) f^ )P s — l , i , r { f )  T Pi (s T 1,Z 1 > ?’)Ps+l,i—l,r(t)

+Pi{s +  1, i, r)pa+liiir(t) +  p2(s, i +  1, r)pS!i+hr(t)

+72(s, i +  l , r -  l)p8ii+1,P_1(i) +  n3(s, i, r +  l)p8iiir+i(t)

+^3(5 11 it f  T l)Ps—i , i , r + i  (t) /c(s, z, r (7.32)

where k(s, i, r) =  A^s, z, r ' j + ^ s ,  i, r)+/?i(s, i, r)+p,2(s, i, r)+^2(s, i, r ) +p 3(s, i, r) +  
u3(s, i, r) and p3,itT(t) =  0 for (s, i, r) <£ C.

7.3.1 Deterministic model

As in section 5.2 we derive the deterministic approximation of the stochastic version 
of the model by introduce the scaling s =  i =  A and r =  *. We reparametrise 

the model by introducing R0 to denote the reproduction number defined as the ratio 
of the contact rate ¡3 to the sum of the recovery rate 7 and the death rate /x. We 
also introduce p2 to denote the ratio of the sum of the recovery rate 7 and the death 
rate p, to the death rate p. Finally, we introduce p3 to denote the ratio of the sum
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of the loss of immunity rate v and the death rate fj, to the death rate ¡jl.

PRq — 

V2

0 ) 
7 +  M
7  +  M
p +  v

Vs =

The differential equations for the deterministic version of the model become 
ds
dt
di
dt
dr

=  M 1 +  (vs -  1 )r -  RoV2si -  s), 

=  /j,r)2(Rosi -  i),

=  MOfc -  l)i -Vsr).

Summing up the three equations (7.33) - (7.35), we have
ds di dr

It follows then that

(7.33)

(7.34)

(7.35)

lim s +  i +  r =  1.t—*00
This system of equations (7.33) - (7.35) has two critical points, one at (s,i,r) =  
(1,0,0), which corresponds to the absence of infection. The other critical point 
corresponds to the endemic infection level and is given by

(s* f  r* \ = ( ± _  ^(Ro ~  1) (??2 — 1)(-Rq — 1) \
\Ro Ro(V3 +  V2 ~  1 )  ’ Rq(V3 +  V2 ~  1 )  /

The equilibrium point at (s*,i*,r*) is feasible if R0 > 1.

When v =  0 then rj3 =  1 and we find =  ( l / R o , ^ ^ ^  which is the
endemic equilibrium of the SIR model with demography.

On the other hand, when i/ -> oo we get =  (1/R0, (R0 -  1 )/Rq), the
endemic equilibrium of the SIS model with demography.

It is important to note that the number of infected individuals in endemic equi
librium of the SIRS model is more than in the SIR model but less than in the SIS 
model. The introduction of loss of immunity allows for more susceptibles into the 
susceptible stream thus increasing susceptible-infective pairs available compared to 
the SIR, and so infectious contacts will occur at a faster overall rate. On the other 
hand, the period of immunity reduces the number of susceptible-infective pairs avail
able compared to the SIS.
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Stability

For stability of each of the critical points we analyse the eigenvalues of the Jacobian 
matrix evaluated at each critical point. The point is stable if the eigenvalues have 
negative real parts.

The Jacobian matrix is

J (s, i,r)
-H(Ror)2i +  1) - f iRo^s  

/j,R0r]2Ì fJ>r)2(Ros ~  1)
0 n(n2 -  1)

m(t?3 -  1) 
0

-W 3

At (1,0,0)
/  - fx -fxR0V2 V(V3 ~  1)

J (s, i,r)  =  I 0 ¡xr)2(R0 -  1) 0
\ 0 KV2 -  1)

The eigenvalues are fxr}2(R0 -  1), -/wft. This is stable if R0 < 1, that is, if 
(s*,i*,r*) is unfeasible.

At is* ?'* r*l — ( -L V2(Rq- 1) (t?2-l)(flo-l)
 ̂ ’ ’ > \R0’ R0(V3+V2- 1)' i?0(%+i72-l) J  >

j(»* ,
+ 1)

(̂ +>72-1)
V

-A*»72
0

t*(V2 ~  1)

-  1) ^
0

-W 3  /

Using Maple gives one of the eigenvalues as — fx. The other two are complicated but 
evaluating them using numerical values shows that they are negative when R0 > 1 
and complex when R0 <  1. Therefore, it seems that the endemic equilibrium is 
(locally) stable when Rq > 1. The question of global stability remains open.

7.3.2 Ultimate absorption

Like in section 5.3, to prove ultimate absorption, we will first prove that the Q 
matrix is regular.

Regularity

We shall now show that Q is regular by using the criterion proven by Reuter (1957) 
(theorem 6) which is stated in section 5.3. We shall follow the proof of Theorem 1 
of Reuter (1961) to prove the regularity of Q. Writing z(s,i ,r)  for zm as in section
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5.3

(A +  Ai ( s , i , r )  +  n i ( s , i , r ) +  p 1 ( s , i , r ) +  72 ( s , i , r )  +  /J,2 ( s , i ,  r) +  u 3 ( s , i , r )  

+/j .3 ( s , i , r ) ) z ( s , i , r , )

=  \i(s,i,r)z(s +  1, 2, r) +  /¿j(s, i, r)z(s -  l , i , r )  +  /31 (s, i ,r)z(s -  1,2 +  l ,r )  

+ 72(s , 2, r)z(s, 2 -  1, r +  1) +  /x2(s, 2, r)z(s, 2 -  1, r))

+i^3(s, 2, r)z(s 4- 1,2, r -  1) +  fi3(s, 2, r)z(s, i, r -  1),

for s >  0, 2 >  1 and r >  0. We modify the process by setting qm =  0 for states 
m =  (s ,0 ,r) since when 2 hits zero the disease fades out of the population unless it 
is reintroduced. This immediately gives Azm =  0 for m =  (s , 0, r). So z(s, 0, r) =  0. 
Let

Zk =  max{z(s, i, r) : s >  0, 2 >  1, r >  0, s +  2 +  r =  A;}.

If this maximum is attained at (sk,ik,rk) then

(A +  Aifc +  /2lfc + /?1)t +  7 2k +  V2k +  V3k +  (¿3k)Zk < XlkZk+i +  + 0 ikZk

+  l2kZk +  [l2kZk-l  +  V3kZk

+ tokZk-u

where Alfc =  Ai(sk,ik,rk), filk =  fi{sk,ik,rk), 0lk =  Pi(sk,ik,rk), 72k =  72(sfe, 2*, rfc), 
V2k — (¿2(sk,ik,rk), ¡i3k =  ¡i3(sk,ik,rk), ¡j,3k — fi3(sk,ik,rk). Rearranging we have ,

(z t+1 _  Zk) >  + _  Zk_l} + j L Zk
Mk Aljfc

But fj,ifc =  fisk, fi2k =  ¡iik, fi3k =  firk and Alfc =  fiN.

So

(Zk+i Zk) >  j j ^ ( Z k ~  Zk-i)  +

For regularity, following Reuter’s (1961) theorem 1, we need

A  /  1 k k\
\fiN + fiN2 + ' "  + =  00.

(7.36)

(7.37)

So if z(s, 2, r) is not identically zero let k0 be the first k for which Zk > 0. Since Zk 
is increasing with k, for k > ko,

(Zk+i — Zk) >  — ( Z a; — Zk_ 1 ) +  j ^ Z ko,
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{ Z k + i  — Z k) > 1 k 
IiN +  Jm 2

■ f c ( f c - l ) ,
¿¿A3

+  _  1) ; . .  (fco +  1) ' ) A^ o
¡ i N kt — /CQ + 1

+ k ( k - l ) . . . k 0 _
J^k-ko+l ^fco-lj-

Let B  =  AZ^0. Then

(Zk+1 - Z k) > B [  —  + k
/ j ,N 2  ' f j ,N 3  

Summing both sides over all values of k we have

_l_ 1) — !)•■■ (kg +  1)

00 00 /  i l . fc(fc- 1)
liN3 + • • • +

&(A; — 1 ) .. .  2
/rIVfe

It follows from condition (7.37) above that E ^ = i(^ + i -  Zk) diverges so that Zk -*■ 
oo, which is contrary to the assumption made earlier in section 5.3 that z(s, i, r) <  1. 
Therefore, z(s,i,r)  =  0 for all s > 0, i > 1 and r >  0 as required. Therefore the Q 
matrix is regular provided (7.37) holds.

(7.37) holds if

E
k=1

Jb!
W k

=  oo. (7.38)

Equation (7.38) holds because tends to infinity as k —> oo since nN is constant. 
Therefore (7.37) holds.

Absolute absorption

To prove absolute absorption, we apply criterion (C) of Reuter (1961), which can 
be stated as follows: let D and A respectively denote the sets of non-absorbing and 
absorbing states: if the process has initial state m (m =  (s , i , r )) in D, let am be 
the probability of reaching A and let rm be the expected time to reach A: if there 
exist finite constants un >  0 such that

^ ' Qmn'U'n T 1 ^  0, 771 £  D , (7.39)
n

then am =  1 and 0 < rm < um.

For the SIRS model with demography we seek a non-negative solution to the 
inequality (7.39), which becomes, on writing u(s,i,r)  for um, m =  (s,i,r),

Au(s, i ,r) >  1 ( s , i , r ) e D  (7.40)
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where

A u (s ,î,r ) =  fiN[u(s,i,r) — u(s +  l,i,  r)] +  ^si[u {s ,i ,r )  — u(s — l, i  +  l,r)] 

+/j,s[u(s, i, r) — u(s — 1, i, r)] +  fj,i[u(s, i, r ) — u(s, i — 1, r)] 

+ 7*[«(s, i, r ) — u(s, i — 1, r +  1)] +  ¡j,r[u(s, i, r ) — u(s, i ,r — 1)] 

+vr[u(s , i, r) — u(s +  1, i, r — 1)].

For a trial solution to (2) we consider u =  B(s +  i +  r), where B > 0 is a constant.

A u(s,i ,r)  — B[fxs — fj,N +  fii +  fir]

=  Bfj.[(s +  i +  r) — N],

For s +  i +  r > N  +  l,

Au(s, i) =  Bfj,[s +  i +  r -  N] > B(jl[N +  1 — N] =  B/j,, (7.41)

so taking B > f  then Au > 1 for s +  i > N  +  1.

Suppose that s +  i +  r < N. We have exhibited a function u defined on the 
state space of the process with A u(s,i) >  1 for (s , i , r ) G D(N) =  { ( s , i , r ) G D  : 
s + f+ r  > A^+l}. Like in Section 5.3 we can conclude that the epidemic process must 
leave D(N)  with probability one, so that it is either ultimately absorbed at i — 0, 
or else returns infinitely often to the finite region D \ D(N)  without being absorbed 
at i =  0. However the probability of the latter scenario tends to zero because upon 
entering D \ D(N)  the process has a probability of absorption bounded away from 
zero. Therefore with probability one the process will be absorbed after a finite 
number of visits to D \ D(N).  Note that as in section 5.3, the above arguments do 
not allow us to say anything about the expected time to extinction rm.

7.3.3 Conditioning on non-extinction

We have shown that the disease will fade out of of the population. This occurs 
when the number of infectives falls to zero and this happens if there is a single 
infected individual in the population who recovers or dies before passing on the 
disease. We now study the process conditioned on non-extinction. We determine 
the state probabilities conditioned on not being absorbed denoted by qStiir(t) from
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the unconditioned probabilities ps,i(t) via the relation

qs,i,r(t) =  P((S(t ), I(t)R(t)) =  (s, i, r)\I(t) ^  0)
_  Ps,i{t)

(7.42)
1 -  P.,o,(*)

where p.,,,.(t) is the marginal distribution of the number of infected individuals at 
time t and is given by

oo oo
P;i, =  =  =  i)-

s —0 r = 0

Taking equation (7.32) and summing for i =  0 over all s and r values we have

P.,o.(t) =  (7 +  m)p .,i,(*)- (7.43)

Differentiating (7.42) and using (7.43) and the Kolmogorov forward equations (7.32) 
we derive the system of differential equations for conditional state probabilities

Qs,i,r(t) —  A i ( s  1 ,  r ) 9 s - l , i , r ( t )  + / ? l ( s  +  1 ,  i  —  1 ,  r ) q ,s + l i j _ l  7. ( t )

+^i(s +  l , i ,r)qs+lji:r(t) +  p,2(s,i +  l ,r)qSii+l>T(t)

+72(s, i +  1, r -  1 )&,»+!,r-i(i) +  p,3(s, i ,r +  1 )qs^r+1 (t)

+  u3{s -  1, i ,r  +  l ) ^ —1,2,r+1(t) -  k(s, i, r)qs i r(t)

+(7  + M)?.,i.(i ) ? w ( i). (7.44)

where q.x .(t) =  E s,r ^,i,r(i) and g,i<ir(i) =  0 for (s,x,r) £ D

One of the differences between these equations and (7.32) is the inclusion of 
an additional term in each one to account for the rate at which the infection goes 
extinct. This extra term further complicates the analysis of this set of equations. 
As a result approximations are sought.

7.3.4 Diffusion approximation

Prom the original process we can determine the mean and the covariance with com
ponents ôs, ôi and ôr. For the mean:

M(1 +  (V3 ~  1 )r -  Rop2si -  s) 
pp2(R0si -  i)

P((V2 ~ 1  ) i ~ p 3r)
=  E(s, i, r)6t +  o{5t).
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The Jacobian matrix of the mean vector E (s , i , r ) is given above.

The covariance matrix of the vector of change in the state variables during the 
time interval (i, t +  A) is given by

(  m(i + (% - i)r + Romsi + s) 1 1 H-* V

Cov I ôi 1 = I -¡JLRcq̂ si fj,r]2(Rosi + i) -<u(r?2 -  l)i
\ ô r j \ -M(% -  l)r -li(r)2 -  l)i m((% - 1  )i + mr)

+o(<$i) =  G(s, i, r)5t +  o{5t).

We can approximate the G(s , i , r)  matrix by evaluating it at the critical point

As in section 7.1.3 we find the covariance matrix £  by solving (4.8) with ex
pressions for J(s*,i*,r*) and G H o w e v e r ,  the result for this model is 
complicated so we use numerical value to evaluate it and compare the result with 
simulation. The parameter values used are N  =  200,000, /3 =  750, fi — 1/70, 7 =  50 
and v — 1 as before (section 5.7).

It can seen from Figure 7.2 that the diffusion approximation gives a very good 
approximation of the quasi-stationary distribution, for these parameter values.

7.3.5 Cumulant equations

The system of differential equations (7.44) can be used to derive a partial differential 
equation for the moment generating function M  defined by

M (0i,02,03, i ) =  E[ese'+Ie*+RB*\I > 0] =  £ £ £ Qs,i}r̂ s6i+iÔ2+r03
s=0 z = l  r = 0

01, 02,03 € R. Multiplying equations (7.44) by e^ + ^ + r^  and summjng over ap 
values of s, i, r and simplifying (see Appendix E) we have

dM
dt liN{e6' -  l )M  +  fi(

) d e 1 + N { 9̂0! <902
dM , _  ÔM , a . dM

+M(e ~ 1)w  + l{e 6 l~62 ~ 1 } + e~93 ~dd,.
dM

9s,i?(s,r|l)(i)e

dd ,

S01+7-03
90u

3 = 0  r = 0
00 00

-79.,i,.eei £ £ « » .  fl(s,r|l)(f)esei+r03 +  (7 +  n)q.x .M, (7.45)
s = 0  r = 0
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where qs,n(s, r|l)(f) =  is the conditional probability that S takes the value s 
and R takes the value r given that I — 1. Using the transformation K(0X, 92, 63,t) =  
logM(9x, 92,93, t) we have

dK
dt

d2K  8K d K \  AJ. - , dK
^  \89xd92 +  39x d92 J +  M (e ^  +  1 ~ l ) W xN [

a  tv- /  OO 00 \

-fz^e01-6*3 -  i ) ^ -  +  ( 1 -  e- *  2  £  9s.*(s> 0l)(0e*®1+r®8 )
^ \  s = 0  r = 0  /

( 0 0 0 0  \

1 - e 63e - K J2J^<lsAs,r\l) {t )e^ +rd3 . (7.46)

s = 0  r = 0  /

Using the definition K(9x,92,92,t) — E kx,y,z(t) 91 9\ 9z2/x\ y\ z\
£ > 0 ,  2/ > 0, z>0, x-\-y+z> 0

where kXtytZ(t) denotes the (x ,y ,z ) th cumulant function - for (x ,y , z ) 7̂  (0, 0, 0), we 
derive the following cumulant equations.

¿1,0,o(0

¿0,1 ,o(0 

¿0,0 ,1 (0

¿1,1,o(0

¿1,0,1 (0

 ̂¿ 1,1,o(0 +  ¿i,o,o(0 *o,i,o(0  ̂ — ^¿1,0,o(0 +  ^¿0,0,1 (0 
+ (7  +  Mk,i,.(0 (fci.o.o(i) -  £?[5|7 =  1]), (7.47)

(  ¿1,1,o(0 +  ¿i,o,o(0*o,i,o(0 )  -  (y +  7)*o,i,o(0 

+ (7  +  M k,i,.W V i,oW l (7.48)

7*o,i,o(0 -  /¿¿o,o,i(0 -  vkofitl(t)) -  ~/q.,x,.(t)( 1 +  E[R\I =  1]) 

+(̂  + 7)9., 1 ,.(¿0,0 ,1 (0 + E[R\I = 1]) - 7 9 .iii.(i),
]Y ¿ i ,o,o(0 * i,i ,o(0  ~  7ci,i,o(i) — ¿i,o,o(0*o,i,o(0 +  ¿ 2 ,i,o( 0  

+*o,i,o(0 * 2 ,o,o( 0  -  ¿o,i,o(0*i,i,o(0 -  kXt2fi(t) -  ¿i,o,o(0 *o,2 ,o( 0  

(2/r +  7 )/ciii)0 ( 0  — i'fco.mCO +  ( 7  +  m)9.,i,.(0 [*i .l.oW

(7.49)

+Ao,i,o(i)^[5,|/ =  1] -  ¿i,o,o(0*o,i,o(0]> (7.50)

( ¿1,1,1 +  ¿l,0,o(0 *0, l,l(i) +  ¿1,0,1 (0 *0,l,o(0 )  -  ^ ¿1,0 ,l(0  

+7*i,i,o(0 -  ^(¿0,0,1 (0 +  ¿1,0,1 (0 -  ¿0,0,2 (0) +  ( 7  +  Mk,i,.(0 [¿1,0,1 (0 

+k li0fl(t)E[R\I =  1] +  k0fi,x(t)E[S\I =  1] +  E[SR\I =  1]

¿ 1,0,0(0*o, 1,0(0] -  'yq.,i,.(t)(E[SR\I =  1] +  £?[5|7 =  1]), (7.51)
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*o,i,i(í) — jy. ^*i,i,i(i) +  A:ito,o(^)^0,1,1 (̂ ) +  *o,i,o(£)*i,o,i(f)  ̂ — 2¡j,kotiti(t) 

+7(*o,2,o(t) ~  *0,1,1 (t) -  *0,1,oCO) ~  ^*0,1,1(t) +  rrq.,i,.(t)k0tito(t)

+ (7  + (*0,1,1 (t) ~  *o,i,o(f)*o,0.1(f)) > (7.52)

*2,0,0(i) =  ^  (*l,l,o(í) +  *l,0,o(í)*0,l,o(í) — 2/c2,1,o(*) — 2*l,0,o(í)*l,l,o(í)

—2*o,i,o(¿)*2,o,o(f)  ̂ +  fiN +  /r*i,o,o(£) +  12*0,0,1 (£) + 2vk\fl¿(t) 

—2fxk2fi,o(t) +  (7 +  m)9.,i,.(í ) (k2fl,o(t) — *1,0,o(i)2 — E[S2\I =  1] 

+2klfii0(t)E[S\I =  1]), (7.53)

*0,2,o( )̂ =  (*i,i,o(0 4- *i,o,o(£)*o,i,o(£) 4- 2£^2,0(0 4- 2/co,i,o(i)*i,i,o(0

+ 2fci)o,o(0 *o,2,o(0 )  4- (7 4- Ai)(*o,i,o(0 — 2£:0,2,o(0 )

+ (7  + A»)g.,i,.(0 (*o,2,o(0 -  *0,1,o (02) , (7.54)

*0,0,2(0  7(*o,i,o(0 4” 2/ioiiii(i)) 4" £¿(*0,0,1 (i) 2/4)02(i)) 4" (̂£̂ 0,0,i(0

-2*b,o,2(i)) -  79.,i,.(t) (1 +  2£[JR|J -  1] -  E[i?2|/ =  1])

4-Í7 + A0?.,i,.(*) (*o,o,2 (0^[^2|7 =  1] -  *0,0,i(¿)2) • (7.55)

We let all cumulants of order greater than two grow with N, but not faster than 
N. With this assumption and solving the equations using Maple we find that the 
following are the only cumulants that are simple to write down.

*1,0 ,0  =  

*0 ,1 ,0  — 

*0 ,0 ,1 =  

* 1 , 1 ,0  =

j . „  ’h + ’K - i
Ra %(Ro - 1 )

VsjRo - 1) 
Ro(V3 + V2 — 1) 
(y2 -  1)(R0 -  1) 
Roivs 4-272 — 1) 

- i -A ^  + OO).

N -  —- —  +  0  ( — 
R o - 1  \N

N — V2 ~  1 
7]3(R0 -  1) +  0

1
Ñ

(7.56)

(7-57)

(7.58)

(7.59)

The other covariances and variances are too complicated so we use numerical values 
to evaluate them and compare the results with simulation.

Neglecting terms of order 0(1/N) we see that £4 ,0,0 + k0,ito 4- *0,0 ,1 = N, as 
expected. Further, the leading term in *0,1,0 is increasing in r¡3 (for fixed Rq and 
V2), meaning that any increase in mean immune period corresponds to a decrease 
in the mean number of infectives present in quasi-stationarity. The leading term 
° f  *1 ,0,0 is unaffected by rj2,r¡3, while the second order term is decreasing in 773 (for
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fixed ¿£0, 772). Any increase in mean immune period corresponds to a small increase 
in mean number of susceptibles in quasi-stationarity.

7.3.6 Numerical results

The parameter values used are N =  200,000, ¡3 =  750, fx =  1/70, 7 =  50, u =  1, 
Ro ~  15, 772 =  3501 and 773 =  71. It can be seen from Figure 7.2 that the diffusion 
approximation and moment closure method both give very good approximation of 
the quasi-stationary distribution, for these parameter values.

7.3.7 Time to extinction

Like in section 7.2, we will use the diffusion approximation to study the effect of the 
immune period upon the time to fade-out of infection. The time to extinction start
ing from quasi-stationarity is exponentially distributed with mean ((7 +  /x)q 1 )~1. 
Therefore, an increase in the quasi-stationary marginal probability that 1 = 1 ,  
corresponds to more rapid fade-out of infection. We have already seen that when 
Ro >  1, the marginal distribution at quasi-stationarity is approximately normal. 
Thus an increase in <7.^. corresponds to an increase in the coefficient of variation of 
the marginal distribution of the number infectives in quasi-stationarity.

Since the variance of this model is complicated, the expression for the coefficient 
of variation is very messy to be of any use analytically, so we carry out numerical 
analysis. Using Maple, we tried various values of ¿?0 > 1 (see Table 7.3) and it can 
be seen that ^•(C'U/) (see Appendix F for the expression for ^¡■(C'V/2)) is less than 
0 for all these values which implies that the probability I  is close to zero decreases 
as 773 increases.

Table 7.3: ^ ( C V j )  for various values of R0 > 1

Ro 1.2 1.5 2 3 6 10 15
d C V f

__*za__ -0.001812 -0.000710 -0.000355 -0.000179 -0.000074 -0.000043 -0.000029

Using Matlab, we plot 773 against the coefficient of variation and from Figure 7.3 it 
can be seen that the coefficient of variation decreases as 773 increases which confirms
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the Maple results. Thus, any decrease in the average immune period, for fixed 
i?o > 1) corresponds to an increase in the expected time to extinction of infection.

7.3.8 Conclusion

In this chapter we analysed the SIRS model with and without demography. In both 
cases we studied the distribution of the process prior to extinction after it has been 
going on for a long time. We used a diffusion approximation to derive expressions 
for the quasi-stationary expectations of the numbers of susceptible, infected and 
recovered individuals. The results obtained for the variances and covariances are 
complicated and so numerical values are used to evaluate them. Cumulant equa
tions are derived and an extension of the moment closure method applied on these 
cumulant equations to obtain expressions for expected numbers of susceptible, in
fected and recovered individuals at quasi-stationarity. These results refine the results 
obtained from the diffusion approximation. The results for the variances and covari
ances are the same as those obtained from the diffusion approximation. We carry 
out simulations and compare the results from both the diffusion approximation and 
the moment closure approximation. Comparison with simulation results shows that 
both the diffusion approximation and the moment closure approximation provide 
very good approximations of the quasi-stationary distribution for parameter values 
in the region R0 > 1.
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x 10

Figure 7.1: The quasi-stationary distribution of the number of infected individuals. 
The blue solid line is the simulation, based on 50, 000 simulation runs, each allowed 
to run for 20 time units. The red solid line represents both the moment closure 
approximation and the Ornstein-Uhlenbeck approximation, which are so close as 
to be indistinguishable. Parameter values are N  =  200,000, /3 =  750, v =  1 and 
7 =  50 (so R0 ~  15, a2 =  0.02).
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Number of Infectives

Figure 7.2: The quasi-stationary distribution of the number of infected individuals. 
The blue solid line is the simulation results, based on 50, 000 simulation runs, each 
allowed to run for 20 time units. The red solid line represents both the moment 
closure approximation and the Ornstein-Uhlenbeck approximation, which are so 
close as to be indistinguishable. Parameter values are N — 200, 000, (3 =  750, 
/r =  1/70, 7 =  50 and v =  1 (so R0 «  15, aq =  3501, a3 =  71).
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Figure 7.3. A plot of % against the coefficient of variation with varying values of 
v. v varies from 0.6 to 10 in step size of 0.3. The other parameter values are 
N  =  200,000, f3 — 750, [i =  1/70, 7 =  50 and R0 ss 15.
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Chapter 8 

Conclusion

We have formulated and analysed deterministic and stochastic models for six differ
ent models: SIS model without demography, SIS model with demography, two-group 
SIS model without demography, two-group SIS model with demography, SIRS model 
without demography and SIRS model with demography.

For the deterministic cases, we showed that the basic reproductive number R0 

determines whether the disease is eliminated quickly or persists. It was shown that 
when R0 < 1, then the disease free equilibrium is stable and the disease cannot 
invade the population. However, when R0 > 1 then the disease free equilibrium is 
unstable and the endemic equilibrium is stable. That is, the disease can invade a 
completely susceptible population if and only if R0 > 1.

For the stochastic cases, all the models studied here have degenerate stationary 
distributions with all probability at the absorbing states, independent of the value 
of the basic reproductive number. However, the expected time until extinction can 
be long. When this is the case, interest focuses upon the long-term behaviour of the 
disease process prior to extinction, which is described by the quasi-stationary dis
tribution. The main goal of this thesis was to analyse the quasi-stationary distribu
tions of stochastic epidemic models. Pursuing this goal led to difficult mathematical 
problems. Exact solutions could not be found so approximations were used. We ap
proximated the fully stochastic models using diffusion approximation and moment 
closure methods applied to cumulant equations. The diffusion approximation has 
a continuous state space, in contrast with the discrete state space of the original 
process. The diffusion approximation is only valid when R0, the basic reproductive 
number, is distinctly larger than one and N  is large. In all the models considered
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here except for the two-group model with demography, the cumulant equations were 
derived, and a moment closure method (used by Nâsell (2005)) was applied to these 
equations when i?0 is distinctly larger than 1. It was shown that the results for 
the expected number of susceptible individuals, infected individuals and removed 
individuals (in the case of the SIRS model with demography) refined the results ob
tained in the diffusion approximation. Furthermore, the same results for variances 
and covariance were obtained for both the moment closure method and the diffusion 
approximation. Comparison with simulation results showed that these approxima
tions provided good approximations for the quasi-stationary distribution when /?0 
is distinctly larger than one.

In chapter 3 we analysed the simple SIS epidemic model with a constant popula
tion size. We showed using the Ornstein-Uhlenbeck diffusion approximation that the 
quasi-stationary distribution can be approximated by a Normal distribution when 
Rq > 1 and N  is sufficiently large. This result was confirmed by the results of the mo
ment closure applied on the cumulant equations for qi (the probability the number 
of infectives at quasi-stationarity is equal to one) approximately zero. The cumu
lant approximations derived from the moment closure method are indeed asymp
totic approximations of the quasi-stationary distribution cumulants (Nâsell (2003)). 
Nâsell (2003) showed using the moment closure method that the quasi-stationary 
distribution can be approximated by the Normal, Binomial, Poison, Log-normal dis
tributions. We extended that to the Beta-binomial. We saw for the moment closure 
method that all the above distributions give very good approximations of the ex
pected number of infected individuals at quasi-stationarity. However, plotting these 
distributions against the true quasi-stationary distribution showed that the Poisson 
distribution doesn’t give a good fit as illustrated in Figure 3.3. The total variation 
distances of these distributions from the quasi-stationary distribution were calcu
lated and it was seen that the Beta-binomial provided the best approximation. It 
also confirmed that although the Poisson distribution gave a good approximation of 

the expected number of infected individuals at quasi-stationarity, it does not provide 
a good fit. We showed, in Figure 3.5, that the Poisson is a better approximation 
for the number of susceptibles at quasi-stationarity since at quasi-stationarity the 
mean number of susceptibles is equal to its variance.
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In chapter 4 we analysed a two group SIS epidemic model with the population 
size of each group constant. We derived an approximation for the quasi-stationary 
distribution using diffusion approximation and moment closure applied on cumulant 

equations. The results from both approximations compared very well with each 
other and with the leading eigenvector of the truncated transition matrix (the exact 
quasi-stationary distribution).

In chapter 5 we analysed the SIS model with demography. First we showed that 
the disease will almost surely go extinct from the population irrespective of the pa
rameter values. However, for large N  and Rq distinctly larger than one the process 
will settle to some form of equilibrium prior to extinction. The number of infected 
individuals increases to a long-lived quasi-stationary state, the mean of which is 
close to the deterministic endemic level. We derived approximation for the means 
and variances of the number of infected and susceptibles in quasi-stationarity. We 
used a diffusion approximation and moment closure method applied on cumulant 
equations to approximate the quasi-stationary distribution. The results obtained 
for the quasi-stationary expectation of the number of susceptible and infected in
dividuals from the moment closure method refined the results obtained from the 
diffusion approximation. The results for the variances and the covariance are the 
same for the moment closure approximation and the diffusion approximation. We 
showed by comparison with simulation results that these approximations provided 
very good approximations of the quasi-stationary distribution for these parameter 
values. Nasell (2005) analysed the SIR model with demography in detail. In chap
ter 5 we compared our results with the results he obtained for the SIR model with 
demography. For the diffusion approximation, the mean number of susceptible in
dividuals at quasi-stationarity is the same for both the SIR and SIS models. In the 
moment closure approximation, however, the mean number of susceptible individ
uals at quasi-stationarity in the SIR model is slightly more that those in the SIS 
model, but the number of infected individuals in the SIS model is more than the SIR 
model. The variance for the number of susceptible individuals at quasi-stationarity 
for the SIR model is greater than that of the SIS model but the SIS model has a 
larger variance than the SIR model for the number of infected individuals. We also 
showed the SIR model has a larger coefficient of variation than the SIS model which 
means that the SIR model has a shorter time to extinction than the SIS model.
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In chapter 6 a two group SIS epidemic model with demography was formulated 
and analysed. The inclusion of demography made the model more complicated and 
led to complicated results. First we analysed the deterministic case by working out 
the equilibrium of the differential equations describing the model. It was shown 
that these equations have four equilibrium points. One represents the disease free 
equilibrium, the other an endemic equilibrium and the last two are complicated and 
not feasible. The stochastic model is formulated as a Markov process. We used a 
diffusion approximation to derive an approximation for the quasi-stationary mean 
and variance. As stated earlier, the inclusion of demography further complicated the 
model and therefore complicated the analysis of the diffusion approximation. The 
result obtained was complicated so numerical values were used. We ran a simulation 
and compared the result with the result obtained from the diffusion approximation. 
The shape of the quasi-stationary distribution appeared to be approximately normal 
for R0 >  1 and N  large.

In chapter 7 we analysed the SIRS model with and without demography. In both 
cases we studied the distribution of the process prior to extinction after it has been 
going on for a long time. We derived expressions for the quasi-stationary expecta
tions of the numbers of susceptible, infected and recovered individuals using diffusion 
approximations. The results obtained for the variances and covariances for the SIRS 
model with demography were messy and so numerical values were used to evaluate 
them. Cumulant equations were derived and an extension of the moment closure 
method (Nasell (2005)) applied on these cumulant equations when R0 is distinctly 
larger than one. This led to expressions for the quasi-stationary expectation of the 
number of susceptible, infected and recovered individuals. These results refined the 
results obtained from the diffusion approximation. The results for the variances and 
covariances are the same as those obtained from the diffusion approximation. Com
parison with simulation results showed that both the diffusion approximation and 

the moment closure approximation provide very good approximations of the quasi
stationary distribution for parameter values in the region Rq > 1. It was shown that 
when the loss of immunity rate v =  0 then we get an SIR model and when v -*■ oo 
we get the SIS model. Thus, the introduction of loss of immunity allows the disease 
to settle to an endemic equilibrium for the SIRS model without demography, but 
the number of infected individuals in endemic equilibrium for both the model with
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and without demography is less than in the SIS model. Further, we have been able 
to conclude that a longer period of immunity results in a shorter persistence time 
for infection in the population, for infections well above threshold. Specifically, we 
showed in section 7.2 that for a model without demography, any increase in mean 
immune period results in a corresponding decrease in expected persistence time. 
For the full SIRS model with demography, we would expect a corresponding result, 
that any increase in mean immune period leads to a decrease in time to fade-out of 
infection. However, for this model the algebra becomes considerably less tractable. 
Numerical results, however, suggest that the result does indeed remain true. This 
confirms the conclusion that the SIR model has a shorter time to extinction than 
the SIS model.

It is important to note that the processes studied here were simplified. For 
example, they assume that the population is uniform and homogeneously mixing, 
whereas it is known that mixing depends on many factors including age (children 
usually have more adequate contacts per day that adults) (Hethcote (2000)). More
over, different geographic and social groups have different contact rates. So a few 
other things could have been added. For example, a latent period could have been 
added or we could have allowed for an infection rate that varies between different 
stages of infectivity. An age varying infectivity could have also been included. The 
technical level, however, will be higher under the extended models. For example, 
the models discussed here (SIR, SIS and SIRS) make the assumption that individu
als immediately become infectious upon contracting the infection. In reality, there 
is usually a latent period between acquisition of infection and the start of infec
tiousness. This can be accounted for within the model by allowing newly infected 
individuals to enter an exposed class where they remain for an average time length 
1/tf, say, before moving into the infectious class. The duration of the latent pe
riod is thus exponentially distributed and the number of exposed individuals can 
be written as E. Therefore the models become SEIR, SEIS and SEIRS. Individuals, 
therefore, move from exposed to infectious class at a rate of tiE. Note that the SIR, 
SIS and SIRS models are recovered when ■& -»• oo. The addition of this extra class 
makes analysis more complicated but the models more realistic. Another thing that 
could have been considered is the case when i?0 < 1 for two-group models, the SIRS 
models and the SIS model with demography. These cases are complicated and have
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been left for future research. Note that for Rq < 1, although the quasi-stationary 
distribution can still be defined, disease is likely to die out before quasi-stationary 
behaviour is observed in practice.

Perhaps more important for approaching real life epidemic is to generalise the 
model to include for example, spatial, social, individual heterogeneities and social 
effects, which play an important role in the spread of infectious diseases (Anderson 
& May (1991)). These are things that can be explored in the future. However, 
we believe that the results obtained here give a good indication of the dynamics of 
disease processes for the parameters studied.
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Appendix A

Cumulant equations for a closed 
SIS model

The Kolmogorov forward equation for the state probabilities conditioned on non
extinction qi(t) can be written as

dqj
dt =  f o - i Q i - i  +  l i + i Q i + i  ~  ( P i  +  7»)9» +  I Q i Q i (A.l)

for % =  1, 2 ,3 , . . . .  Multiplying equation (A.l) by eie, 9 € R, and summing over all 
values of i gives

£  ~ ^ el9 =  2  A -ift - ie 1® -  Afce* +  7t+i9i+ie‘0 -  7«9ie‘® +  79i9iei<?
¿ = 1 Z=1

since 7o =  Po =  /?v =  0.

N  . T V -1  TV—1 TV TV
eq+i) _  ^

T=1 ¿=1
TV

Z=1E f « *  = E « » ‘
¿=2 ¿=2

+E
¿=i

79i9ieie

£  ~ ^ elB ~  (e6 ~ !)  5Z  P iqiel<> +  (e * ~  !) J ]  ~  79ie® +  ^  7<M*ei<?
T=1 ¿=1 ¿=2 ¿=1

=  ( e ' - l ) E 4 ( A ' - i ) « e “’ +  (e- ‘, - l ) Ê T O « !- '- - 79ie
¿=1 ¿=1 ¿=2

TV

t=i
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rln. N~1 a N~l N
Y 1 H teld = ^ e° ~ 5Ziqieie ~ i2qieie + We_e ~ !)) i2 = 1 2=1

iqieid
i = 1

N

-yq ie6 + id

2 = 1

Using M(9, t) =  E[eie \ I >  0] =  Y,?=i Qi^6, 0 G K,

i = 2

(A.2)

jv
aM(<9,i) = Y Jn ^ 689

and
N

i = 1

N - 1

a02

equation (A.2) becomes

8M  a ( 8M

= £ ; v « = £ ,_e» + w  V e ™
2 = 1 2 = 1

at

8M

= -  «) ( l r  -  ^ e™) -  l< e" -  *) { t f  -  w2̂ ™ )
+  (7(e-0 -  1)) ^  -  7(e-0 -  l)q\ee +  79iM (0, t) -

=  [/3(ee -  1) +  7 (e -e -  1)] l ( e e - l ) ^ -  +  ^qi( M ( d , t ) - l ) .
dt ^  ' ,v~ */J 89 N  v~ *' 892

Using the transformation K(9 , t ) =  logM(9,t) gives

=  [ « e * - l )  + 7( e - » - l ) K §  - £ ( ✓ - ! ) e* ^ + e * f £ T 2
a^2 v a#+ 79 i(e -  1)

f  -  [ / V - i )  +  7(e- « - i ) ] § - | ( e » - i )
82K  ( 8K '  2

+â2 v â
+791(1 — e K)

ax
8t 0 K 4 *  M - 4 7 +  • •

a x
a#

0 ( D 02 03 
^ i v 7 + 2 i + 3 ! + " '  

i f 2 If3
+ 7 , , r - - 2 T + i r -

a2X ( 8 K  V 
a#2 +  V W )

(A.3)
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Using the definition K ( 6, t ) — where ki(t) denotes the ?th cumulant
function,

K ( 6,t)

8K  
~dt 
dK  
86 

d2K  
862 

( 8K \ 2 
\ d 6 j

ki{t)6 +  k2(t) — +  hait)— H----- ,

ki{t)6 +  k2(t) — + k3(t) — +  • • ■ >

A:i(t) +  k2(t)d +  /c3(t) — +  • • ■ ,

^2(0 +  k3(t)d +  k4(t) — +  • • ■ ,

+  &2(t)0 +  k3(t) — H----- ^ ^(/üi(î) +  k2(t)6 +  k3(t)^j H------ ^

(*!(t))2 +  2 dh(t)k2(t) +  62(k1 (t)k3(t) +  (k2(t))2)

+&3 ( l ( h ( t ) k 4(t) +  (k2(t)k3(t)\ H----- .

Substituting these into equation (A.3) we have 

¿i(f)6> +  k2{t)6— + k3{ t ) ~  +  ■■■ =

(3 6 2 6 30 H------- 1-------h • ■ •
./V I 2! 3!

k\(t) +  k2{t)6 +  k3(t) — +

( h i t ))2 +  k2(t) +  6(2h(t )k2(t) +  k3(t)) +  62 ^ 1  (t)k3(t) +  (k2(t))2 +  hc4(t)\ +  

+7?i ( h ( t )6 +  k2(t)6-  +  k3( t ) ^  -  (h ( t ) )2Ç  -  h k 2Ç  +  (h it ) )3^  +  •.

Equating the coefficients of 8

3!

h( t )  -  ( f l - r f h i t )  -  j j ( h ( t ))2 -  j f k 2(t) +  ^qikx(t) 

=  h(t)( (P  -  7) -  j jki (t ))  -  j f k 2(t) +  7<7i*a (t)

l
N h ( t )  ( -  h ( t )  ) -  k2(t) +  iq\h(t)

h  (t) jRo
N N l l ~ i

k\ (t) h ( t )  -  k2(t) +  iqih(t ) . (A.4)

138



Taking the coefficients of 62

\ k ( t )  =  ^ k 1 (t) +  l k 1 (t) +  ( f i - ' Y)k2( t ) - - ^ ( k 1 (t))2 -  J L k2(t) -  ^ k 3(t)
2N

2 3 1
+  ~iqi(k2(t) -  (ki(t))2)

=  l-{(3  + a)h (t )  -  ^ ( h ( t ))2 +  ((/?  “  7) -  *2(i) -  ^ * 3(i)

, ,  . „ ................... .- 2 Jjki(t)k2(t) +'yqi(k2(t) -  (h ( t ) )2)

l
N

i V ( / 3 -7)
0  ~  ^ iW )  +  ~ 7 T  “  0  ^  "  2k^ ) k^ )  ~ k& )

+'yqi(k2(t) -  (h ( t ) )2),

k2 (t) j Rq
N N l i + £ ) - k^ ) k' i-t'>+ ( 2 N ( i ~ i 1 k2(t)

~^h(t)k2(t) -  2k3(t) +  791 (k2(t) -  (h i t ) )2). (A.5)

Taking the coefficients of 93

6N 6 N

— m m  -  -  | ( * 2(i))2 -  ^ M i )

2N

, _  i b M  _  kdt )h ( t )  h ( t )  
m  1 3! 2! 3!

k3(t) = j Rq
N ( X ~ -  *i(*)) *i(*) -  6h( t )k 2(t) -  6h ( t )h ( t )  -  6(k2(t))2

' 1 ) h( t )  -  3k4(t)-  C*"'C1 -  -  0  + 8 C1 -  ^
+79i(A:i(t) — 3h(t)k2(t) +  k3(t)). (A.6)
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Appendix B

Cumulant equations for a closed 
Two-group SIS model

The Kolmogorov forward equations for the state probabilities conditioned on non
extinction can be written as

^  +  7 i(j1+i,j2)%1+i,i2(i) +  ,i2—1) Q'ii ,¿2—i (̂ )
+  7 2 ( 1 1 , ¿ 2  +  l ) < ? U , ¿ 2  +  1  C O  “ b  ^ 2 ( 1 1 — 1 , 2 2 ) 9 2 1 — 1 , 2 2  ( 0  +  ^ l ( l l  , ¿ 2  — l ) 9 l l  , ¿ 2 “ 1 ( 0

¿ 2) ^ 21,  ¿ 2(0  —  / ^ 2 ( i i , 22) ^ 21,¿2 ( 0  —  7 1 ( 11 , 12) 921, 22(0 —  7 2 ( i l , 1 2 ) 9 i l , 2 2  ( 0  

_ ' ^ 1 ( 2 1 , 2 2 ) 9 2 1 , 1 2  ( 0  ' ^ 2( 11 , 12) 921, 12(0  +  ( 7 9 0 , l ( 0  +  7 9 l , 0 ( 0 ) 9 2 l , i 2 ( 0 >

for =  0,1, 2 . . . ,  N, i2 — 0,1, 2 , . . . ,  N  and (?i, i2) 7̂  (0, 0). Multiplying this system 
of equations by e11014-*202, 0i , 82 £ M, and summing over all values of ?!,?2 gives
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-  1 2 1 2  h i n ,¿2)9¿!,¿2(í)eÍiei+¿202
¿1=0  ¿2 =  1

¿V AT

-  E E  0,1(¿1,¿2)9¿1,¿2 (0 e 1 1+202 
¿1 =  1 ¿2=0

N  N

-  E I > 2 ( n , ¿ 2)9¿i,¿2(íyi<?i+¿202 
¿1 = 0  ¿2 =  1

N  N —l

-  E E  1̂(¿1 ,¿2)*?¿1 ,¿2 (0^ 1 22
¿1=1 ¿2=0
N - l  N

-  E E  A2(¿1,¿2)9¿1,¿2 (0® 1 1 22 
¿1=0 ¿2 = 1

N  N

+  (790,1 ( 0  +  79 i,o(t)) X ]  Y 1  9<1« ( i)eil9l+<2®2,
¿1=0 ¿2=0
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N  TV

EE
¿1 —0 ¿2=0

)¿2 ¿i#i +¿2#2
dt

TV—1 TV

EEA(*i«)«>.^weöl(il+1)+,2fe
¿1=1 ¿2=0
T V -1  TV

E E ^ ( h,*2)9u ,Át)ei i e M  
¿1 =  1 ¿2=0

¿1 =  1 ¿2=0 
TV N

-  E E ^ ( u ,iz)Qiui2( t y i6i+i2e2 
¿1 =  1 ¿2=0

+  i , ¿ 2 ) 9 n , I 2 ( í ) e n 0 1 + e 2 ( ¿ 2 + 1 )

¿1=0  ¿2 =  1 
¿V T V -1

-  E E & (^)^ ,a¿K iei+í202 
¿1=0  ¿2=1

¿1=0  ¿2 =  1 
¿V ¿V

-  E E ^ . , ¡ ! )?í1, , ( í )«’ iíi+,2í2 
¿1=0  ¿2 =  1

+ ¿ E A2(n,¿2)fe,¿2(í)e0l(il+1)+¿202 
¿1 = 0  ¿2 =  1 

T V -1  TV

-  J 2 J2 X2(iui2)qn¿Át)eil6l+Í2e2 
¿1=0  ¿2 =  1

TV TV—1

+  E E AK H ^)^^ (¿)eíiei+02(22+1) 
¿1 =  1 ¿2=0 

N  i V - 1

¿1 =  1 ¿ 2 = 0

+
TV TV

( 7 ? 0 , i ( í )  +  79i,o(¿)) E E ^ ^ W ^ 1^ 2
¿1=0 ¿2=0

79o,i (t) -79i,o(í)-

142



N  N  ,

E E  >̂2 gli 0i +Í2̂ 2
Í1=0Í2=0 ^

¿ V - 1  TV

(eei -  ^
¿ 1=1 ¿2=0

+(e-01 - 1) E Y,^^2)qiuiÁt)eil6l+Í2e2 
¿1=1 ¿2=0

+(e02 -  1) E  Ê ß2(n,i2)Qn^(t)etl6l+i2e2 
¿ 1 = 0  ¿2 =  1

H e'02 -  1) EE î.«)«.,,̂ )^91"292
i l = 0  22 =  1 

T V -1  TV

+ (e01 - 1) E E Mn^iuiÁt)endl+Í2e2
¿1=0  ¿2 =  1

+ (e02 -  1) EE -̂ l (¿i ,¿2 ) 5¿i ,¿2 (̂ ) ® 1 1 2 2
¿1 = 1  ¿2 = 0

N  N

+ (790,1(0 + 791,0(0) EE 9¿1,¿2 (0 e 1 1 + 2 2
¿ 1 = 0  ¿ 2 = 0

-79o,i(0 - 79i,o(0>but
A(¿i , ¿ 2 ) = / 3 ^ 0 V - zi), 

1̂(¿1,¿2) ^^ÿ(^ — *l)> ß ( il ,i2 ) = / ^ 0 V - Z 2),
2̂(¿i,¿2) =  _  *2))

7i (¿1 ,¿2) 7®i > 72 (¿1,¿2) 7*2)
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so
N  N  ,

dQiito ¿¡lOi+nei
¿1=0 ¿2=0 ^ = (eei - 1) ]T J 2 ^ N -  i i )^ ( tV iei+ii62 ¿1=1 ¿2=0

N  N+(e"ei - 1) ¿  X;7*ifci,ia(i)eilfll+<3fla¿1 = 1 ¿2=0
+(e02 - 1) J2 Ë - *2 )qiltiMeiiei+i2e2 ¿1=0 ¿2 = 1 

N  N

+ {e~62 -  1) Y1 Ê g¿i,¿2(í)eiiei+i2e2 ¿1=0 ¿2 = 1
+ (e01 - 1) ¿  £  Â(iV - ii)gilli2(t)eilfll+<aöa ¿1=0 ¿2 = 1
+ (ßÖ2 - !) E E A|(iV - iTÌqnMitV16̂ 262 ¿1=1 ¿2=0

N  N

+ (7?o,i(0 + 7?i,o(0) 5Z 5Z?<i,«(i)eilöl+<aÖ2¿1=0 ¿2=0
-79o,i(0 - 79i,o(0-
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N  NE E
¿1=0 ¿2=0

*̂ ¿1̂ 2 -¿ifli+2202
d t

* 1=1 *2=0

- § ^ ei - o E E fo u r ty 1*1* 2**
* 1 =  1 *2 = 0

+ 7(e_Sl - 1) E E 1'̂ «̂ )̂ 1'1̂ 2 
*1 =  1 * 2=0

+ /V2 - 1) e  E m i^ {ty i9i+i2d2
¿1=0  ¿2 =  1

- ^  -  !) E E ̂ 2(t)ehei+i262
¿1=0  ¿2 =  1

N  N

+ 7(e“02 - 1) E E Mil,*2(i)en*1+i2®2
* 1=0  *2 =  1

+ Kedl ~ 1) E E (f)eiiei+i2(?2
¿1=0  ¿2 =  1

- jf^ dl -  o E E 1'^^^11®1̂ 2
¿1=0  ¿2 =  1

+ He02 ~ 1) E E *ifti,i2 (i)e<lfll+<afl2
*1 =  1 * 2=0

^  AT 1 V -1

-  N {e$2 ~ 1}E E ^ a W ^
*1 =  1 * 2=0

+
TV IV(796,1 (0  +  791,0(0 ) E E  5*1,*2 (0e 11+22 

* 1=0  *2=0

79o,i(0  -  79i,o(0 -Using
M ( 6 u 0 2 , t )  =  E [ e h 6 l+ h e > | A +  J2 > 0] =  E E  5*i,*2̂  1 1_*~2 2

*1=0 *2=0for (*i,i2) 7̂  (0,0), then
dM{e1e2,t)

dd1

TV TV

E E !>«+2e,iii+i!#2,
*1=0  *2=0
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and

so that

dM
~df

d A f (M 2,i)
dd2

d2M(exe2,t)
d6\

d2M(exe2,t)
dei

d2M {exe2,t)
dexde2

= J2 J2 i* ^ eiiei+i2e2’
2l=0 22=0

=  E E ^ « eilil+,!i!'
¿1=0 ¿2=0

N  N

N  N

'y y y  y *2̂ 11,¿2e¿1̂ 1+1202
¿1=0 ¿2=0 

N  N

= EE h ¿29illt2e2101+22̂ 2
2 1 = 0  2 2 = 0

« e " 1 - 1)
\  1 ¿2=0  /

(e"‘ “  f  W -  -  N ^ m ' E
V 1 ¿2=0 /

£
TV

<9M N

+l3{e‘ ‘ _1M Ife _ "e'Wl E Qìi,NS¿101

¿1=0

- 1 )

N

~  e“' “1 y~^2gjy,i2e,¿202

¿2 =  1

+A(eÉ?2 -  1) f —  -  ^ 2

d2M N

N

dex ® ^ ' 1̂ %i ,jvc

dexde2

¿i0i 1

NeNe^ x 2qNiÌ2e
22 =  1

21 =  1

iv l M a « ,  afe

/V
Are,¿101

¿1=1
+ ( 7 9 o , i ( i ) +  7 0 i ,o ( ì ) )T W ’ ( 0 1 , 0 2 , ì ) - 7 9 0 i1 ( ì )  - 7 g 1>0( i ) .
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dt“  ■ » > * • - > £ - f r - - » w * » - ' - ■ > £ * » > • * - > £

- fr-*- S -fr-—-
*  « • * - » £ -  f r - *  - S

901902

+ (79o,i(i) + 79i,o(i))-^(0i, 02; i)

-  79o,i (i) -79i,o(i)-

Using the transformation K(0i,92,t) =  logM(9i,62,t) we have

dK
dt w 's«, j\r ' + ^s«,y J

+ « ‘ fc -  -  |('fc -  «

90? 

d2K  (  dK

+  7(e 01 — 1)

d8\ +  V 902.

dK_ 
ddx

+ l { e ~'2 - l ) w 2

+  A(e 1 ^ 902 A^e 1 ^  90!902 +  901 902)  +  ^  ^90 i

ÎV ( e 02 -  1)
d2K  dK dK  \

901902 +  901 902 J + 79o,i(*)(1 - e  ) + 79i,o(0(1 - e  )

9#
9i -  (^ - 1 ) + 2 (e - - 1) +  V » - 1 ) ) | f - ^ - 1) f + ( f

+ (/,(eÄ - A)+7(e'#I - 11+A(e#‘ - ^ w r  -  ') { %  + ( ! '

A(fr" -  1) + 7 (e » . -  l)

+ 79l,o(i)(l — e )

92ÜT dK dK\
901902 +  90^90^ i +  79°’1̂ 1

„rr-,
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dK _  
~dt ~

+

P {6l + I  + " ') + 7 ( “ 01 + l  + " ' ) +A {d2 + I  + " '
/?̂ 2 + |  +  . . . ) + 7 ^ 2 +  |  +  . . . ) + a ^ i +  |  +  . . .

I
N

a e\ ef
9> +  2 i + 3i + -

d2K
~d6f  +

dK
oe1

dK
m l
dK
de 2

+

0  ( a  %
N V 2 +  2! + " ‘

a2# dK'  
de 2

7?o,i(t)(l -  eK) +  7?x,0(i)(l -  eK).

a2 i f  d K d K \
dexde 2 + W 1 W 2)

(B.l)

Using the definition K ^ ^ t )  =  where ^ ( i )  denotes
the (i i ,i2)th cumulant function - for (i1,i2) ^  (0,0),

K(6u 92,t)

dK
dt

^0,l(i)^2 +  ^l,o(i)^l +  fci,!(i)0i02 +  ^2,o(i)^y +  0̂,2 ( i ) ^  +  fei,2(i)^  . ,  ,̂ 01022
2! 2!

2!  '  2 ! 2!

¿0,1 (¿)#2 +  ¿l.oW^l +  ¿I,l(i)^1^2 + ¿2,o(i)^J +  ¿0,2 ( i ) ^  + ¿I,2(i)0? , l ,*eie2

+  *u ( t , f a  +  *2,2(1)M  +
2! 2!

2! 2!2!
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8K_
dd1
8K_
862

82K
8Q\
d2K
dB\

d2K
861862

e2 ft ft2
k ho{t) +  k i , i ( t ) 6 2 +  k 2f i ( t ) d i  +  k i t2( t ) - ~  +  k 2ii ( t ) d i d 2 +  k 2j2( t )-^ p  +  • ■ •

B2 ft2 ft
ko,\(t) +  kiti(t)6i + k0i2(t)62 +  k2ii(t)-^ +  kli2(t)did2 +  k2t2{t)-^-  +  • • •

62
k-ifl(t) +  k2̂ (t)62 +  k22 ( 0  ~  +  A;3,o0 i +  ■ • •

62
ko,2(t) + kifi{t)6\ +  k2,2(t)-^ +  k3i 0d2 +  • • ■ 

ki,i(t) +  k2:i(t)di +  kit2{t)d2 + k2fl{t)did2 +  ■ • •

^ i . o W  +  ki'i(t)d2 + k2,o(t)di +  kli2(t)-^ + k2>i(t)6id2 +  k2<2(t)^ ~  -\--------*u,o(0 +  2 k i io ( t ) k i ii ( t ) 6 2 +  2 k i f i ( t ) k 2f l( t ) 6 i  +  fci,o(0&i,2(002 
+ 2kifl(t)k2!i(t)6id2 +  • ■ •

(ko,i(t) +  A:i;1 (i)6>i +  k0t2{t)d2 +  k2tl( t ) ^  +  klj2(t)did2 +  k2a { t ) ^ ~  H-----

*0,1 (0 2k0ii(t)kltl(t)62 +  2k0ii{t)ko:2(t)62 +  &o,i(O^2,i(O0i 

~k2koi(t)k2!i(t)6id2 +  • • •

8 K  8 K  (  02 a n2 x
86-2 "862 ~  +  +  k2fi{t)62 +  klt2(t)-^ +  k2i2(t)d2d2 +  k2>2{ t ) - ~  H------ j

(^0,2 (t) +  +  k0:2(t)d2 +  k2tl(t)-^ +  ^1,2(^)0102 +  2̂,2 (¿) +  • • • ^

=  kli0(t)k0i2(t) +  klto(t)klil(t)d1 +  k0,2(t)k2,2(t)d2 +  fci;i (£)20i02 +  k2,0(t)k0,2{t)62 

+  k0il(t)k2fi(t)d2 +  + k li2(t)k2fi(t)6l +  k2,2(t)k0i2(t)6l +  fci,o(O&i,2(O0i02 

+  &0)1 (0^1,2(00102 +  Ol, l(0^1,2(0^| +  1̂,0 (0  ̂ l,2(0^y +  • ■ •

Substituting these into equation (B.l) gives
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* 0 ,1  (0^2 + *l,o(0 ^ 1  + *l,l(í)$l$2 + ^2,o(í)' ĵ' + *0,2 (Ot̂j + ■ ■ ■

m  + §  + +  7  ( - 0 1  +  \  + +  A [ &2 +  +  ' ' ’el
2!

BÌ
* 1 , 0  ( 0  +  * l , l ( 0 ^ 2  +  * 2 , o ( 0 ^ 1  +  * 1 , 2 ( 0 ^  +  * 2 , l ( 0 ^ 1 ^ 2  +  ■  •  •

+ ß  ( Ö2 +  I  + +  7  ( - 0 2  +  §  +

91

+  A ( 0i +  |  +
*0,1 (0  +  *1,1 (0^1 +  *0,2(0^2 +  *2,1 (Or^ +  *1,2(0^1^2 +  • ■ •

. ! ( *  +  £  +
IV \ 1 2 !

9Ì
*2,0 ( 0  +  *2,1 (0 ^ 2  +  *2,2 ( 0  T̂j" +  *3,0#1 +  *i,o( 0

+2 *i,o(0 *i,i(0 ^ 2  + %kifl(t)k2fi{t)9\ + *i,o(0*i,2(0 ^ 2  + 2 /ci,o(0 *2,i(0 î̂ 2 + • • • ̂
ß / 92 \  / 02

~  TV \  2 2Í  )  ( ^ ° ’2^  k i f l { t )9\ +  *2,2(0^7 +  *0,3^2 +  *o,i(0

+2ftoii(í)fciii(í)ei2fcoii(í)Aol2(í)02 +  *0,1 (0*2,1 (0 0 ? +  2* o,1(O*2,i (O0102 +  • • •

( *l,l(0  +  *2,1 (0^1 +  *1,2(0^2 +  *2,2(0^192 +  *1,0(0*0,1 (0 +  *l,o(0*l,l(0^1+  *0,l(0*l,l(0^2 + *1,1 (0^1 ̂ 2 +  *1,0 (0*0,2 (0^2 + *0,1 (0*2,0 (0^1 + *1,1 (0*2,0 (0^1
+  *1,1 (0*0,2(0^2 +  *l,o(0 *1,2(0 ̂ 1^2 +  *0,1 (0*1,2 (0^192 +  *0,1 (0*1,2(0^7 

+*i,o(0 *i,2(0^y -I-----J  +  7 ?o,i( 0  +  7 9 i,o(0 i
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0? e?,
ko,i(t)02 + *4,o(*)0i + *u,i(t)#i02 + 2̂,o(̂ )̂ y + ¿o,2(î)t̂7 + • • • =2!

/j ( « i +  |  +  - - ' ) + 7 ( - « i + | - |  +  - ' - ) + a (92 +  |  +  . . .

92
* 4 ,0  (i) +  *4,i(*)02 +  k2fi{t)0\ +  kit2(t)-^ +  k2,i(t)6i02 +  • • •

+ 0? 0o2
/5(^2 +  ĵ-H----- ) +  7 ( -02 + 7^H------- ) +  A ( 0X + H-------2! 0?

2!
0o2

ko,l(t) +  kiri(t)9i +  *̂0,2 (*)02 +  ^2,1(0 ^  +  ^1,2(̂ )0102 +  •■• 

0 ^  , 0 ? , Q2
*<2,0 (*) +  *<2,1 (*)02 +  *¡2,2 +  *>3,001 +  k\Q{t)

+2fcliO(t)*:i1i(i)02 +  2A:i,o(i)*:2Io(i)0i +  klfi{t)kxa{t)922 +  2Ar1>0(t)A:21i +  ■ • ■ )

^02 +  H----- ^ (ko,2(t) +  *4,2(i)01 +  *!2,2(i)^- +  fcO,302 +  *¡0,1 (*)

+2fcOii(i)A:lil(i)01 +  2k0tl(t)k0,2(t)Ô2 +  *^o,i(i)*:2,i(*)0i +  2k0A(t)k2,x(t)9x92 +  • ■ •)

(  *̂1,1 (*) +  k2,i(t)9i +  kX)2(*)02 +  k2fi{t)9\92 +  *7,o(*)*;o,i(i) +  * î,o(i)* î,i(*)0i 

+*:o,i(i)*:i,i(i)02 +  *:21(i)0i02 +  *4,o(*)*<),2(*)02 +  &o,i(*)*:2,o(*)0i +  *̂1,1 (¿)*̂ 2,o (^)0i

+*:i,i(i)*:o,2(i)02 + *4,o(*)*4,2(i)0i02 +  k0,i(t)ki^(t)9i92 +  k0lX(t)kXt2( t ) ^
92 \

+*4,o(*)*4,2(*)-^y H----- J +  (7<?o,i(*) +  79i,o(*)) (* ô,i(*)02 +  *4,o(*)0i + kXil(t)9x92

+ k 2fi(t)— +  kQi2(t)— — kox(t) — — — *̂ i,o(*)*;o,i(*)0i02 +  • • • 'j ■

Equating coefficients of 0i, 02,0i0a,0?, 02 respectively, on the left hand side of the
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pde with the corresponding coefficients on the right hand side we have

ki,o  =  {0 — 7 )&i,o +  AA;0,i — ^ ^ 2 ,0  — ^ ^ 1 ,0  — jÿ fc i.i — ]^ i,o & o ,i

+  (79o,i +  79i,o)&i,o,

¿0,1 =  (0 — 7)^0,1 +  ^ k i f i  — ^ k Qt2 — j ^ k l i  — — A:i;i — — A^ofco.i 

+ ( 79o,i +  79i,o)&o,i>

¿ 1 , 1  =  2 ( / 5  — 7 ) ^ 1 ^  +  A(A:2 ,o +  ^0 ,2) +  ^ ( ^ 2 , 1  +  ^ 1 ,2 )  — ^ ( ^ 1 , 0 ^ 1 , 1  +  ^0 ,1

~ j ÿ ( k i , 2  +  ^ 2 ,1 )  — +  &o,1 ^ 1 , 1 )  — ^ ( ^ 0 , 1 ^ 2 , 0  +  ^ 1,0 ^ 0 ,2 )

+ ( 79o,i +  79i,o)(fci,i ~  * i,0*0,1).

¿2 ,0  =  {0 +  7 ) * i ,o  +  2 ( / 3  — 7 ) ^ 2 ,0  — ^ ( * 2 , 0  +  2/03^) +  +  2 A A :i i

— ~j\jki,o ~  4^ ÿ * i,0*2,0 ~  jÿ ( * i , 0*0,1 +  2*1,0*!,1 +  *0,1*2,0)

— ̂ ( * 1 , 1  +  2*2,1) +  (79o,i +  79i ,o)(*2,o ~  *1,0)1

¿0 ,2  =  (/? +  7 ) * o , i  +  2 ( / 3  — 7 ) ^ 0 ,2  — - ^ ( * 0 ,2  +  2 ^ 0 ,3 )  +  AA:0ii  +  2 A * i , i  

~  ^ ~ j ÿ k o , i k o , 2  — ^ ( * 1 , 0 * 0 , 1  +  2 ^ 0 , 1 ^ 1 1  +  * 1 ,0 * 0 ,2 )

— iv ( * i , i  +  2Aji)2) +  (790,1 +  79i,o)(*o,2(i)  — ^0,1 ) •

(B.2)

(B.3)

;i , i )

(B.4)

(B.5)

(B.6)
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Appendix C

Cumulant equations for the SIS 
model with demography

The Kolmogorov forward equations for the state probability conditioned on not 
being absorbed, qSti(t), can be written as.

dqs i
=  ^H5 — +  Mi(s +  M)9a+i,i(*) +  A (s  +  1 ,i — ljps+i.i-iii)

+y2(s -  M  +  l)gs-i,i+i(i) +  M2(M  +  l)qs,i+i(t) -  Xi(s,i)qSii(t)

-  Pi(s,i)qaii(t) -  72(s,i)q,,i(t) -  fMi(s,i)qa,i(t)

H i  + I*)q.,iq8,i(t),
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for s =  0 ,1 ,2 . . . ,  i =  1,2, . . . .  Multiplying this system of equations by es9l+ld2 
A ,  $2 6 K, and summing over all values of s, z gives

o o  o o

EE sdi +i62
dt

+

+

+

+

OO OO

S £ Al(s -  M )qs-x,i{t)esei+l62
5 = 1 ¿—1

OO OOEE A ( s  +  l , i  -  l)qs+iti-i(t)es9l+ie2
s = 0  i= 2 
o o  o oEE q2(s -  1, * +  l)qs-i,i+i{t)ea9l+%62
S = 1 2 = 1
OO o oEE /xi(s + l,i)qs+lti(t)ea8l+l025=0 2=1
OO OOEE /x2(s,z +  1 )qs,i+i(t)es9l+ld25=0 2=1

______ OO OO

^2 ^ /X1 (s,i)qSii(t)es9l+i92 -  ^2 ^2 fJLi(s,i)qaii(t)e'0S$i+id25=0 2=1 S=1 2=1
5 = 1 2=1 S  E  72(s, *)?«,i(i)ei9l+W2S=0 2=1
X ]  5 Z  s> ^ s A t y 61* 1625=0 2=1 +  (T +  E E ? , . ( ‘ ) ^ 1 + %5 = 0 2 = 1

OO OO

E E ^ , « 6" 1* " ’  =

+

+

+

+

+

(s + 1)0i+2#2 _
S=0  2=1 
OO 00

E E Al<s. i)rh,i(t)es‘ 1+">2

EE fJ-i(s,i)qSli(t)e

S = 0 2=1 
OO oo

(s  — 1 ) 0 1 + 2 0 2

S= 1 2=1
OO OO

■ E E * | ‘ |' W 1) ‘ ,* , *

EE A(s> i)qs,i{t)e

5 = 1 2 = 1
OO OO

(s  — l ) 0 i  + ( 2+ 1 )0 2

5=1 2=1 
OO o o

E E A (s> *)9*,i(<)e'“‘+‘#I
EE 72(s,i)9s,tWe(5+l)0i+(2 —1)̂2 _

S = 1 2=1 
OO OO

5=0 2=2 
OO oo

501+2̂ 2

^2̂ 2 ̂ 2(8,1) qs,i(t)e'
5=0 2 = 1 

OO OO
«01+(¿-1)02

s = 0  2 = 2
-  ] C  ^ ( s> *)^,i(i)eSei+ie25=0 2=1

(7 + Mk.i EE mo«*-5=0 2 = 1
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s = O i—1

But

Ë  Ë  =  (eei - 1) Ë  Ë  M s’ ^ s À t y e M
5 = 0  ¿ = 1

oo oo

+{e~Bl -  1 )  ^ 2  5 Z  M 3 »

5 = 1  Î = 1  
OO OO

+ ( ^ ^ i - i ) E E ^ ( s>i ) f e W eS
5 = 1  %— 1 

OO OO

+{e6i~02 - 1 )  E ]  e ^720 », i h s A t y
5 = 0  ¿ = 2  

oo oo

+ (e_02 -  d E E m m )?, w ^ - 2
s = 0  ¿ = 2

oo OO

-  S  72(3, l)gSil(i)esei+02 -  5^M 2(5, l)gSil(í)esei+02
s = 0  s = 0

00 00
+(n +  ß)q.,i E E a x * * .

S01+IÔ2

S01+Í02

dS0i+î02

S=0 j= l

ß ■X1 ( s , i ) - ß N ,  Mi {s,i) =  ßs, ß 1 (s,i) =  — si, 72(s,0  =  7¿, M2 (s,i) =  pi,

so
OOOO OOOO

EE <¿(Oes01+ie2 = (e01 - 1)mAÍ EE^m«***
s = 0  ¿ = 1  s = 0  i= 1

OO 00

+(e-ei-l)ME]Ê ŝ (í)eSei+¿e2
5 =  1 ¿ = 1  
.3 OO OO

5 = 1  i — 1 
OO OO+ (eÖa-Ö2 _ 1)7 £  ̂ ^(i)^1̂ 2

s = 0  i= 2

00 00- E 72(5, l)?s,i(0esei+e2 - $>2(s> l)çS)1(i)esei+02
s= 0  s =0

00 00

+(e-02 - 1)mEE<!,ì(ì) ^
5=0 ¿=2 
00 00

+(7 + /0<?.,i EE 1 2 ■
s = 0  i = l
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Using

M(9u 92,t) =  E[eSih+ie2 I /  > 0] =
5 = 0  i

dM(9x92, t ) ,
----- W x------=  Z . Z . s^ ( i)e

5=0 ¿=1

0s6\+iQ2

and

gives

dM(9x92,t)
d92

d2M(91 92, t ) 
d9xd92

s=0 ¿=1 
o o  o o

=  E E ^ * *
5 = 0  2 = 1

= EE ,501+202
5 = 0  2 =1

dM
dt

+fi(e -e> -  1) ( ~  -  f ^ q s M e ^ + A
d92 

dM
5 = 0

OO

+7(e61- 62 ~  1) ( w  -  Y ,  Qs,i(t)ese^  ) -  ^  £  qs,x(t)es6>
5 = 0 s=0

- 7ee2 2  qs,i(t)es81 +  (7 +  n)q.,xM.

dM
dt

5 = 0

5 =  0

-'ye6l Y ^qs,i(t)esei +  (7 +  ¿¿k,iM
s=0

aM
<9i AiAfM(e01 -  1) +  /j(e-01 -  1) ^  +  ^-(e®2-*1 -  1) - M 

v ' v 1 d9x N k Jd9xd92

+ K e ~ 62 ~  l ) ~  +  i ( e e ' ~ e * -  1 ) ~  -  M.,i ¿ 9 s ( s | l ) ( t ) e ifll
2 s = 0

-79., ie01 £  fc(s|l)(i)eSei +  (7 +  M)q.,\M
s=0
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where 9s(s|l)(i) =  ^  is the conditional probability that S takes the value s given 
that 1 = 1 .  Using the transformation K(9,,92,t) =  logM(9ly92,t ) we have

dK
dt

dK_
dt

^ ( e 62- 61 ~  1)
d2K  dK dK\  

+  ' dK
d9,d92 ' d91 d92)  + ^N (e 1 ! ) + M e  1 1 ) ^

+M(e“ e2 - l ) | ^ + 7 ( e 01_e2 - l ) ^  +  w.,i U  ~ e~K qs (s\l)(t)e
2 V  s=0

S01

+79.,i l - e eie -K ^ 9s(s|l)(t)esei
8=0

= jz  (9 2 -  91 -  9,92 +  h \  +  h i  +  h 29\ -  -9,91 +  ■ ■ ■ V )  
N  V 2 1 2 2 2 2 1 2 1 2 J \d9,d92 d9, d92)

/  92
+ fiN \ 9 i +  -±2! + - " J + ^ - 0 1 +  !  +  -

dK (  „ 9\
W 1 + t i ( ~ 62+ 2\ +

+7 (0i - 62-  9,92 +  h \  +  h 22 +  l-9 ,9 2 -  h 29\ +  ^ ¡ 9 22 +  ■ •.)  

+M.,i ^1 — e K 9s,(s|l)(f) ^1 +  s9, H—

+ 7 9 . , i  ^1 -  ( l  +  9, +  |  +  •  •  •  ^ e- *  J 2  9s(s\l)(t) ( l  +  s9, +  ^

dK_
d92

+ ))

2 .

dK_
d92

( C . l )
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Using the definition K{9l92,t) =  £ ~ 0£ ,~ 0 M*)59 where *«,<(*) denotes the 
(s, *)th cumulant function - for (s, i) ±  (0,0) we have

K (9 u e2,t)

dK
dt

dK
9 0 J

dK_
902

d2K  
90i 902 

dK dK  
9 0 i  9 0 2

/Q2 r\2 02
=  M i ) 0  2 +  A:i,o(t)0i +  k1:1 m e 2 +  k2fi(t)-± +  *0,2( i ) |  +  kit2{t)—̂ ~

020
+  *2,l(i)~^j I" *2,2 (t) m

2!2! +

-  fco,l(i)02 +  kifl(t)6i +  fci,i(i)0i02 +  ¿2,o(i)^y +  ¿0,2 ( i ) ^  +  ¿1,2 (t)012 0 0

+ ¿ 2 ,1 ^ ) ^  +  ¿ 2 ,2 ^ 1 1  +  ■■■,

2!
0o2^i,o(i) +  * i ,i( i) 0 2  +  k2fl(t)Qi +  * i ,2 ( t) ^ y  +  *2,1 (^)0i02

, / * 0100 +  *2,2 (¿)— ----b2!
01= *o,i(i) +  fci,i(i)0i +  k0}2(t)e2 +  *2,1 ( i )^  +  A:i,2(i)0i02

, / * 0?02 +k2,2( t ) -^~  -\----- ,

= *i,i(0  +  *2,i(i)0i +  k\t2(t)92 +  k22(t)9i92 +  • • • ,

02
&i,o(i) +  *i,i(i)02 +  k2fl(t)9i +  *1,2 +  *2,1 {d)9\02

+ *2,2 +

,0_i0|
2!

^*0,1 (0 +  *l,l(i)01 +  *O,2(i)02 +  *2,1

+  * 1 ,2 ( ^ ) 0 1 0 2  +  * 2 , 2 ( i ) “ ~ p -  +  ' ’ - ^

=  *l,0(i)*0,l(t) +  *l,o(i)*l,l(i)01 +  *O,l(i)*l,l(i)02 +  *1,1 (i)2 0102

+  * l , 0 ( i ) * 0 , 2 ( i ) ® 2  +  *0 ,1  ( * )  * 2 ,0  ( i )  01 +  * l , l ( t ) * 2 , o ( i ) ^ l  +  * l , l ( t ) * O , 2 ( i ) 0 l

+*l,o(i)^l, 2^)0102 +  *0,1 (̂ ) *1,2 (̂ ) 0102 +  *0,l(i)*l,2(*)^y 
0 2  ‘ 

+*l,o(i)*i,2(t)^y +  • • • .

Substituting these into equation (C.l) the above gives
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k o , i ( t ) 9 2  +  k i , o ( t ) 9 i  +  k i , i ( t ) 0 i Ô 2  +  & 2 , o ( í ) ^ |  +  ^ o ,2 ( ^ ) 7^  +  ■ • • —

—  ^ 0 2 -  Q i  -  Q1 Q2 +  - Q \  +  - Q l  +  2 ^ Q \  -  - j Q v Q \  +  -¿ Q \Q \ +  • • • ^

^ k i , i ( t )  +  k 2 , i ( t ) Q i  +  k i ^ ( t ) Q 2  +  & 2 ,2 ( i ) $ i 0 2  +  k \ ß ( t ) k O ' i ( t )  +  ^ i , i ( i ) 0 i 0 2  

~ k k i ß ( t ) k i ' i ( t ) Q i  +  k O ' i ( t ) k i t i ( t ) 9 2  +  k i ß ( t ) k o :2 ( t ) & 2  +  k f ) t± ( t ) k 2 f i { t ) Q i

+  ̂ l , l ( í ) ^ 2 , o ( ^ ) ^ l  +  & l , l ( í ) ^ 0 , 2 ( í ) $ 2  +  k i ß ( t ) k i t2 ( t ) Q i Q 2  +  k o t i ( t ) k i t2 ( i ) Q \ 9 2  

+ & 0 , 2(t)-^ +  kií0(t)k\t2(¿)-^y + ■ ■ ■ ^ +  ßN ^Q1 +  +

+ f i  í — Q\ +  +  ■ • ■ ) í fei,o(í) +  k i ti(t)Q 2  +  k 2f t (t ) Q i +  k i t2( t ) - ^  +  k 2ti( t ) Q i Q 2  +
í  Q2 \  í  Q2

+ M  ( —02 +  ^ y  +  • • • j  (  k 0 ' i ( t )  +  k i : i ( t ) Q i  +  k o t2 { t ) Q 2  +  & 2 , i ( í ) ^ y  +  ¿ 7 ,2 ( ^ ) 0 1 0 2  +

+ 7 (ö l -  02 -  0102 +  \q\ +  ^02 +  ^01022 -  ^020? +  \q\Q\ +  • ' • )
q2

k o , l ( t )  +  ¿ 7 , l ( ¿ ) 0 1  +  fco,2(¿)02 +  ¿ 7 ,1  ( í)y ^ y  +  ^ 1 , 2 ( ^ ) 0 1 0 2  +  ' '

+ 79 ., 1 (í) 1 -  ( 1 +  01 +  |  + 1  — ^0,1  ( í ) 0 2  — ¿ 7 ,o ( ¿ ) 0 1  — & l , l ( í ) 0 1 0 2  

— k 2 , o ( t ) —  —  k Q f i { t ) —  +  k l x { t ) - ^ -  +  f c j ] 0 ( í ) - +  +  ¿ 7 , i ( ¿ ) ¿ 7 , o ( ¿ ) 0 i 0 2  +  ■ ■

Qs(s\l)(t) ^1 + sQi H— H----- J + ßq j( t )   ̂1 — (  1 — k0'i(t)Q2

- h / > m  -  *1,1 -  * !,„(< )§  -  +  < i ( t ) f  +  * ? , „ « f

+*o,i(0 *i,o(í)^i^2 + ■■■)) y  gs(s|l}(í) ( l  +  sQ 1 H— —- +  ■ - ■ )
¿2=0 '  2 /
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0? eì
ko,l(t)@2 +  kito(t)9i +  fcl,l(i)0102 +  ¿2,o(i) 27 +  ô,2(^)7̂  +  • • • —2!
— ^02 -  01 -  0102 + -01 + -02 +  2 2̂01 -  2^^2 + ^1^2 H----- ^

^ * l , l ( 0  +  * 2,1 (0 0 1  +  kij2{t)&2 +  ^ 2,2 (^ )01^2 +  * l , o ( 0 * 0, l (0  +  fciiO( í ) f c l , l ( í )01

+ * o , i ( O * i , i ( O 02 +  * i , i ( O 0i 02 +  * i , o ( 0 * o , 2(002  +  * o , i ( O * 2, o ( O 0 i +  * i , i ( O * 2, o ( O 0i02
+ * l , l ( 0 * 0 , 2(002  +  * l , o ( 0 * l , 2(00102  +  * 0, l ( 0 * l ,  2(^)0102 +  * 0,1 ( 0 * 1 ,2 (0  ^ y

+*i,o(0*i,2(0^y + ■ ■ ■ ^ +  /xlV 0̂1 +  +02
* l , o ( 0  +  * l , l ( O 0 2  +  & 2 , o ( í ) 0 1  +  * 1 ,2  ( 0  ^ y  +  fc2 , i ( í ) 0 i 0 2  +

+M (-0 2  +  §  +  ' '

+  M  “ Ai +  ¿7 +

0?
* 0 , l ( 0  +  & l , l ( í ) 0 1  +  * 0 , 2 ( 0 0 2  +  ^2,1  ( ¿ )  +  * 1 ,2 ( 0 0 1 0 2  +  ■

^ a2 I ^ ú 2 , 7  ú2  ̂Û a2 , l /| 2 /i2
+ 7  ^ 0 1  — 02 — 0102 +  - 0 1  +  2 02 +  2 0 ! 0 2  _  4 ^ ^  "*■ ' '

02 \* 0,1 (0  +  ^ l , l ( í )01 +  * 0,2 (¿)02 +  * 2,l(0 '^j' +  ^ 1,2( )̂0102 +  ■ ■ • J  +  7 Ç.,1 (í)
l - ( l  +  02 +  ^  +  - -  -2!

1 — *O,l(O02 — Äl,o(i)01 — &l,l(í)0102 — *2,0 (0 g
2!

* 0 , 2 ( 0 ^  +  * 0 , 1  ( 0 " ^  +  * l , o ( 0 " ^  +  * 0 , 1  ( O  * 1 , 0  ( O  0 1 0 2  +  ’

+  6-±E{S2\I =  !} +  ■■

1 +  9i E [ S \ I  =  1 ]

+ M9.,i(0 K1 - (1 - *0,1 (002 - fci,o(O0i*1,1 (00102 *2,o(0 2¡ *0,2(0 2! "I" *0,1 (O 2 *1,0(O ̂  +  *0,1 (O*1,0(00102 +  •
1 +  0i£[S|/ =  1] +  y ^ [ 5 2|/ =  !] +  ••
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Equating coefficients of 61, 62, 6x62, 01,91 respectively, on the left hand side of the 
pde with the corresponding coefficients on the right hand side gives

ki,o =  fi>N — — ( f c p i  +  kiflkoti) — [ikxfi +  7 ^ 0,1 —  7 9 .,1 ( 1  +  E[S\I — 1 ] )

+  (7 +  ( k i , o  — E[S\I — 1]) (C.2)

¿0,1 =  -^(^1,1 +  fci.ô o.i) -  (M +  7)^o,i - 79.,i +  (7 +  Mk,ifco,i, (C.3)

^1,1 =  j ÿ { k i tok iti — k\ x — kifiko x +  /û2,i +  ^0,1^2,0 — ^0,1^1,1 ~  ki 2

— ^1,0^0,2) — (2/r 4- 7)^1,1 — 7^o,i +  7(^0,2 +  9.,1^1,0)

+  (7 + a09.,i (&i ,i +  0̂,1 (£[5|7 =  1] — /oll0)) , (C.4)

¿2,0 =  AlN + — (kxti +  kxflkoti — 2/o2,i — 2/ci,o/oi,i — 2fco,iA:2,o) +  ¿t/cpo 

+  7 ô,i +  27&iii — 2/̂ fc2,o +  (7 +  m)9.,i (̂ 2,0 — k\p — E[S2\I — 1])

+ 79.,! {2klfiE[S\I =  1] -  2£[S |J =  1] -  1 -  E[S2\I =  1]) , (C.5)

ko,2 =  -jÿ (^1,1 +  kxfiko'i +  2/̂ 12 +  2fco,1̂ 1,1 +  2/01,0/00,2) — 2(7 +  /r)/oo,2

+  (7 +  (J.)kQ,x +  (7 +  m)9.,i (̂ 0,2 — &o,i) ■ (C.6)
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Appendix D

Cumulant equations for the SIRS 
model without demography

The Kolmogorov forward equations for the state probabilities conditioned on non
extinction, qSii(t), can be written as

=  P l ( s + l , i - l ) Q s + l , i - l ( t )  +  7 2 ( s , t + l ) 9 s , i + l ( i )  +  ^ 3 ( s - l , i ) 9 s - l , i ( i )  ~  P l ( s , i ) Q s , i ( t )  
H2(s,i)Qs,i(t') ^,3 (s ,i ) 9 t i1»2—1 (^ )  T  'YQ.,iQs,i(t)i

for s =  0,1,2 . . . ,  TV, i =  1, 2, TV — s. Multiplying this system of equations by es9l+l92, 
81,62 € M, and summing over all values of s, i gives

N —l N - s

EE dQs,j cse, +181 
dt

N N - s

EE P i ( s + i , i - i ) q s + i , i - i ( t ) s s8l+ze2
5 = 0  2 =  2

N N - s - l

+ X] E  72(s,i+i)gs,i+i(t)es01+ie2
5 = 0  2 =  1

N N - s+  2  S  3̂(5-1,i)qs- i :i ( t ) e s9l+te2 -
S = 1 ¿ = 1

N N - s

-E E  Pi(s,i)qsAty6i+id2
5 =  1 2 = 1

-  Y1 ' ¿ ' r2(s,i)qs,i(t)eSei+ie2
5 = 0  2 =  1 

N - l  N - s

E  'E ^ .^ ( ty di+ie2
s = 0  ¿= 1

N N - s

+  E E 7 1 .,i< ls ,,( i)e rfl+ii2.
5 = 0  2 =  1
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N N - s

EE
s=0 i=l

dQa.i s6, +iQg
dt E E  A (s,*)9s,i(i)e(s_1)ei+(i+1)e2

5 =  1 2 = 1

+  E  ¿ 7 2 (s,i)9s,i(i)esei+(' - 1)e2 -
5 = 0  2 = 2  

N - 1 N - s

+ E E ̂ (s,i)qsAt)e(s+1)6l+ie2 -
S= 0  2 =  1

AT AT-5
+  E E ^ , i 9 S,i(i)eS' I+ie2

5 = 0  2 =  1

N N - s

E £  9®,* (̂)e*®1 +<®a
5 = 1  1 =  1

N N - s

E E 7 2(s,i)^,i(i)esei+ie2
5 = 0  2 = 1  

A T -1  A T -5

JV N - s

EE
5 = 0  2 = 1

gŜ l +¿#2
dt

N N - s

(e*-* - 1) E E pHs.^sAty91̂ 2
S =  1 2 =1

AT A / - s  N

+ (e~02 - 1) E E 72(8,o?.,i(i)eflei+<fe -E^(s,i)?s,i(i)esei+92
s=0 i=2 

N - 1 AT-s
s=0 

AT AT-+(e01 ~ 1) E E *'3(8li ) 0 » , i ( t ) e afll+ * a + E E 79 .,i9«,<(i)c'5̂ 1+202
S =  0 2 =  1 5 = 0  2 = 1

But

A (a,o =  72(5,») =  7* and i/3(s>i) =  u(N - s - i ) ,

so

N N - s

EE
5 = 0  ¿= 1

dqs,i cSe i +¿02 
dt

S =  1 2 = 1

Af AT-a at

+7(e-02 _ !) El E^W^1̂  - 7e*2 ¿ (̂Oe5®1
s=0 »=2 s=0

Af-1 AT-s
+i2(e01 -1)EE(JV-»-*)ft,i(i)e*fll+"2

5 = 0  ¿= 1  

N N - s

+7?.,1EE « ? 5 , » ( i ) e s e i + i e 2 .
5 = 0  » = 1

Using
IV AT-sM(01>02,i) = £[esil+"a |/>0] = EE Qs,i£s6l+ie2

S=0 2=1
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and

- M (g l’ g2|t) = f y £ jS qs, e se'+i6\
50i

dM(eu 62,t) ^  ^  ei+id2
502

52M (01; 02, t) 
502

52M (01,02,i)
del

d2M (eu e2, t )
50i 502

S=0 2=1

IV A T -S

E E
5 = 0  2 =  1 

N 7V-s

= E E s2̂ eSei+ie2>
5 = 0  2 = 1

AT AT-s
= E E12(̂

5 = 0  2 = 1  

N  i V - sEE ŝ 5)ie'
5 = 0  2 =  1

-S01+202

501+202

5M
5i 0 ( e “ ~ h  ~  +  7 ( < T *  -  1 ) -  E f c . W e " ' ^TV 50i 502 502

5 = 0

AT

s= 0  d d l  d ^ 2
+79,iM.

5M
5i

£
N

N

(e1 -  D ^ -  +  l(<Tfc -50i 502 502

+WV(eei -  1)M -  i/(e01 -  1)
dM
507

s = 0

dM
H e  1 -  +  79.,i m -

5M
5i

=  — (e02~01 — 1)  ̂ __ l
N

N 9 M  + 7 (e 62 -  1 ) ^ “  “ 79,1 E ^ (s | l ) (O e sSl
2 s = 0

50i 502

+ ^ ( e 01 -  1 ) M  -  K e 01 -  1 ) ^  -  K e * 1 -  1 ) ~  +  7 9 . , i M ,

where 9s(s|l) =  y y  is the conditional probability that S takes the value s given
that 1  =  1 .

Using the transformation if(0 i,0 2,i) =  logM{e1,e2,t) we have
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dK
dt

62-81

+uN{ee 1 -  1) -

N

d2K
ddide

u{e61

d K d K \  ,
+  +7( t - 0 2

2 ddi dd2
dK

- 1 )

- 1 ) ddx
dK

dM

—Te K1 . , i^ q s {s\ l ) { t )e s6i
5 = 0

a #
<9i « .ft  + ^  +  I s j  +  - 1 « ,« ! + + . .  \

l
N
(  d2K  dKdK_\
\ d M 62 +  de 1 <902;

( a B\ \ dK ( n 62
~ v  \e i + y  +  ' ' ' ) w r l' Y 1 +  2\ +

+  7 ( -02  +  ^  +  •
dM „  ( n
W 2 + U N { 6' +  i  +

dK
w 2

f  „202 \
~iq.,ie K 9s(s|l)(i) ^1 +  s0i 9— ■ J  +  79.,i- (D.l)

Using the definition =  E ~ 0 E*=o M * ) S f  where k3ii{t) denotes the
(s, z)th cumulant function - for (s, i) (0, 0) we have
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K (ou o2,t)

dK
dt

dK
dBi

dK_
d02

d2K  
d8id82 

dK dK  
d91 d92

O2
ko,i(t)02 +  + ki^(t)0i02 +  k2f i ( t )~  + koi2(t)

A  o\ e2A
+k\t2(t)—  h k2ti(t) — — b k2fl(t)2! 2!2!

02A
2!

+

% e2
ko,i(t)02 +  ¿i,o(0^i +  kiti(t)0i02 +  ¿2,o(^)^y +  ¿o,2(0777

+ ¿ 1 , 2 ( 0 “ ^  +  ¿2,1 (0  1 2

2!
^ + fa,2(t)^  +2! 2!2!

¿=i,o(0 +  kiti{t)02 +  k2fi{t)0i +  k\t2(t)-^ +  k2ti(t)0i02

, , A®\
+¿=2,2(0 2! +

92
¿=o,i(0 + fci,i(i)0i +  kOi2(t)02 +  Ai2,i (¿) +  k\̂ 2{idj0\02

+  ̂ 2,2(0_ ĵ_  H-----

fcl,l(0 +  ¿=2,1 (0^1 +  ¿"1,2 (0^2 + k2>2{t)9i92 +  • • •
/  d2
( ¿=i,o(0 +  ¿"1,1 (0 ^ 2  +  k2to(t)9i +  ¿Ci,2 (0 ^  +  k2yi{t)9i92

9 92 \ / n2
+k2)2(t)-^-  H----- j  ( ¿c0,i(0 +  ¿"i,i(O^i + ko,2(t)02 +  ¿"2,1 (0

+kii2(t)0i02 +  ¿"2,2( 0 ~2j~ +  ' ‘ '^

¿=l,o(0 ¿=0,1(0 +  ¿4,0 ^ 1,1 (0^1 +  ¿=0,1 (0 ¿"1,1 (0^2 +  ¿"l,l(02̂ 1̂ 2

+  klio(t)kOt2(t)02 +  kOil(t)k2fl(t)0i +  +  ¿=1,1 (0 ¿"2,0 (0^1

+  ¿=1,1 ̂ ¿=0,2(0^2 +  ¿"1,0 (0 ¿"1,2 (0^1 ̂ 2 +  ¿"0,1 (0 ¿"1,2 (0^1 ̂ 2 

+  ¿"0,1 ̂ ¿=1, 2(0 ^1' +  ¿=1,0 ̂ ^1,2 (0 +  • • ■

Substituting these into equation (D.l) gives
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—  ^ 0 2 -  01 -  0 1 0 2  +  2 ^ ï  +  2 ^ 2  +  2 2̂#i ~~ 2 ^ ^  +  4 ^ 2  ^--------- ^

 ̂&l,l(í) + ̂ 2,l(í)̂ l + kit2{t)&2 + ̂ 2,2 ( ^ ) 0 1 0 2 + A:ii0(í)fco,l(í) + kifl{t)ki'i(t)di

+  ̂ O , l ( í ) ^ l , l ( í ) 0 2  +  ^1,1  ( í ) 0 l 0 2  +  & l ,o ( í )& 0 ,2 ( 0 ^ 2  +  ^ 0 , l ( ^ ) ^ 2 ,o ( 0 ^ 1  "I" ^ l , l ( ¿ ) ^ 2 , o ( í ) 0 i02
+  ̂ l , l ( ^ ) ^ 0 ,2 ( í ) ^ 2  +  ^ l ,o ( í ) ^ l ,2 ( £ ) ^ 1 ^ 2  +  ^ 0 , l ( 0 ^ 1 ,2 ( ^ ) ^ 1 ^ 2  +  ^0,1  ( ¿ )^ 1 ,2  ( ¿ )  7^" 

+ & i ,o ( í ) & i ,2 ( í ) - ^ y  +  • ’ • ^  + 7  ^ — 02 +  ^ y  +  ' ' • ^  ^  &0,1 (t) +  & i , i ( í ) 0 i  +  kot2{t)02 

+k2,i(t)-  ̂+ A;1:2(í)0i02 + • • ■ ̂  + vN ̂ 0i + -̂y + • • ■ ̂  — y ̂ 0i + -^y + • • • ̂
k̂io(t) +  f c i , i ( í ) 0 2  +  k2fl(t)0\ +  ki2(t)-  ̂+  ^ 2 ,1 ( ^ )0 1 0 2  +  ■ • - ^

—z/ ̂ 0i + y- + • • • ̂  &̂o,i(í) + A:1,1(í)0i + Ajo,2(í)02 + &2,i(¿)y + ̂ 1,2(¿)̂ î2 + ■ ■ ■ ̂  
~79.,i — k0¡x(t)62 — ki¡0(t)6i — A;i,i(í)0i02 — A;2,o(í)y — &o,2(í)y

02  0 2  \ N /  2/32+*:o,i(í)y + k10(t)— + ̂ o,i(í)̂ i,o(í)0i02 + • • ■ J 9s(s|l)(í) í 1 + S0 1 4——̂ + • •
'  s= 0 '

+ 79..1-

ko,i(,t)Ö2 + kift(t)9i +  ki¿{t)6\62 + &2,o(¿)y + ¿0,2 (í)y- + • • ■ =

167



j f  (fc  ~  h  ~  M  +  \ w l  -  \ w l  +  \ m  +  • ■ • ) ̂k l , l ( t )  +  &2,l(i) l̂ +  £l,2(t)02 +  2̂,2(̂ )̂ 1̂ 2 +  £l,o( )̂£o,l( )̂ +  £l,o(0^1,l +fco,i(i )^i, i(i)02 + ^i,i(i)^i^2 +  k i i0( t ) k 0,2(t)d2 +  k 0' i ( t ) k 2f l ( t ) 6 i  +  £i,i(i)£2,o(f)0?+  £l,l(i)£o,2(t)$2 + £l,o( )̂£l,2(t)0102 +  £o,l(^)£l,2(t)$l$2 +  £(),1 (¿)£l,2 (t) 7̂+  ̂ l,o(i)^l,2(i)^y +  ■ • - ^ + 7  ^ - 0 2  +  ^  ( ifco,l(i) +  £l,l(t)01 +  k 0>2 ( t ) 9 2+  ̂ 2,l(0^J +  £l,2̂ )0102 H-----^ +  WV 0̂1 +  7+ H----- ^  ̂ #̂1 +  H-----^
^ k i , o ( t )  +  k i ti ( t ) 9 2 +  k 2 f l ( t ) 9 i +  £i,2(f)+y +  £2,i(t)0i02 + ■ ■ ■ ^

~ V  +  2! H-----)  +  +  k o f i{ t ) 9 2 +  £2,i(i)^y +  £i,2(i)0i02 H-----~79 .,1 ^1  -  ô,1(0^2 -  k i f i ( t ) 9 i -  £1,1(4)0102 -  k 2f l ( t ) ^  -  k 0, 2 ( t ) ^  +  £o,i(i)y+*ï,o(*)y +  k 0, 1 ( t ) k l f i ( t ) 9 19 2 +••■) ( l +  0i-E[5 |/ =  1] +  ^ [ 5 2|/ =  1] +  • • - j  + 79 ., i-Equating coefficients of 0i , 02) 0i 02, 0? ,0| respectively, on the left hand side of the

£o,i(i)$2 + kifi(t)6i +  £i,i (î)0i02 + ¿2,o(i)^y + ko,2{ t + ■ ■ ■ =

pde with the corresponding coefficients on the right hand side gives
£ 1 ,0  =  v N  — — ( £ 1 , 1  +  £ 1 ,0  £ 0 ,1 )  — ^ ( £ 1 ,0  +  £ 0 ,1)+ 79 .,1 (£1,0 -  E [ S \ I  =  1]), (D.2)£0,1 =  (£i,i +  £i,o£o,i)-7 *h,i+79..1 £0,1, (D.3)
ki,i — (£i.o£i,i - £1 , 1 — £i,o£o,i + £2,1 + £o,i£2,o — £0,1 £1 , 1 - £1 ,2 - £i,o£o,2)

-  (v +  7)fci,i +  i/Abi2 +  79.>i(£ iii - £ i io£0li +  £o,i^[5 | / = l ] ) ,  (D.4)

£2,0  =  vN +  — (£1,1 +  £i,o£o,i — 2 £ 2 ,i  — 2£i,0£i,i — 2 £ 0 ,i £ 2 ,o)

— ^ ( £ 1 ,0  +  £ 0 ,1 +  2 £ 2 ,o +  2 £ i , i )+  79 .,1 (£2,0 -  £1,0 -  £ [S 2|/ =  1] +  2£ii0£[S|/ =  1]) , (D.5)°̂,2 =  (̂ 1,1 +  fci,o£o,i +  2£i,2 +  2£0,i£i,i +  2£i ,0£0,2) +  7(£0,i — 2£0]2)+ 79 .,1 (£0,2 -  £q,i ) • (D.6)
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Appendix E

Cumulant equations for the SIRS 
model with demography

The Kolmogorov forward equations for the state probabilities conditioned on non
extinction, qs,i,r(t): can be written as

Q s , i , r f t )  A l ( s  1 j b  — T  / T l ( s +  1 ; b  ^ ) 9 s + l, i ,r ( ^ )

+/?i (s +  1, f 1, +  '72('S,f +  1 ,T IjO's^+l.r—1 (t)

+ p 2(M  + l,r )g s ,i+l,r (t) +  p3(s, *, r +  1 )gs,i,r+1(i)

+^3(5 -  1, i, r +  1 )gs-i,i,r+1(i) -  Ai(s, i, r)qSiitr(t) -  fii(s, i, r)qs>i>r(t) 

-P i(s , i ,r )qSii<r(t) - 72(M ,r )g SiiiI.(i) -  n2(sti,r)q3iitr(t)

-Ms(s, i, r)qSti,r(t) ~  v3(s, i, r)qs^r{t) +  (7 +  /¿k ,i,.5w ( i ) ,
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for s — 0 ,1 ,2. . . ,  i — 1,2, . . .  and r — 0,1,2, . . . .  Multiplying this system of 
equations by esei+ie2+re'\ d1 ,92, 0:i 6 M and summing over all values of s, i, r gives

o o  o o  o o

EEE d q s , i tr  8 0 1+ ifl ,+ r f l< ,

dt

o o  o o  o oZ Z Z Al(s -  M > r)ft-U r(f)ea*1+i* +rfls
s = l  2 = 1  r = 0  

o o  o o  o o

+  Z  Z  Z  ^ ( s + !. *. r)9a+i,ilr(i)eifll+" a+rfl3
s = 0  2 = 1  r = 0 
o o  o o  o o

+ E E E W S + 1>’ - 1 * r)qs+1^ r(t)esdl+ie2+r63
s = 0  z = 2  r = 0  
o o  o o  oo

+  E E E ^ s' ! +  1^ -  l)gs,i+i,r-1(i)esei+ie2+r03 
5 = 0  ¿ = 1  r = l  
o o  o o  oo

+ Z  Z  Z  s’ * +  1. i-)9s,i+i,r(i)eflfll+1®2+rfl3
5 = 0  ¿ = 1  r = 0  
o o  o o  oo

+  I ]  Z  Z  ^»(S> *> >■ + l ) f c , i , r + l ( i ) e i f l l + 1 * 2 + r fl3
5 = 0  2 = 1  r = 0  
o o  o o  oo

+ E E E ^ s _ 1 >!>r +  l )g ,- i liir+i(i)eatfl+<fl2+rfls
5 = 1  2 = 1  r = 0 

o o  o o  oo

" E E E Al(s ’ *> r)g8lilr(t)eail+i*2+rfl3
5 = 0  2 = 1  r = 0  
OO OO 00_ E E E ^ ( s> r ) < i s , i A t y ei+ie2+r93

5 = 1  2 = 1  r = 0  
OO OO 00

Z  Z  Z  A  (s> *> r)ft,i,r ( i ) ^ 1* " 2-**3
5  =  1 ¿ = 1  r = 0  

o o  o o  oo

-  Z  Z  Z  72(s, *> r)?*,i,r(i)esfll+<®2+rfls
s = 0  2 = 1  r = 0  

o o  o o  o o

Z  Z  Z  M 3- *> ’" K ^ W e ^ 02̂ 3
s = 0  2 = 1  r = 0  

o o  o o  o o

-  Z  Z  £  ^ (S , i, r)qStiA t)es6M +re3
5 = 0  ¿ = 1  r = l  
OO OO 00

_  Z  Z  £  **(s> *> i ’ ) ? s ,t . r ( i ) e ^ 1 + ie 2 + r e 3
s = 0  2 = 1  r = l

0 0  o o  o o+  (7  +A*)9.,i,. E E E  Q s , i , r ( j 1 2  3
s = 0  i = l  r = 0
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OO OO OO ,ŷ  ŷ  ŷ
5 = 0  2 = 1  r = 0  ^

o o  o o  o o

= E E E A i ( s > ®> O 9 s , i , r ( í ) e ( s + 1 ) e i + ¿ e 2 + r 0 3
5 = 0  2 = 1  r = 0

+ E E E ^ ( S- *’ r ) q s , i A t y { s - m + i 6 2 + r e 3
s = l  2 = 1  r = 0

+ E  E  E  ̂  ¿> O?.,i,r(i)e(S- 1)ôl + (i+1)0ï+rfl3
5 = 1  2 = 1  r = 0

+  £  £  £  7 2 ( s , i ,  r ) q s , i , r ( t ) e s e i + { i - m + i r + 1 ) e 3
s = 0  ¿ = 2  r = 0
o o  o o  o o

+ E  E E ̂ (s- O a s , ^ ( í ) e s 0 1 + ( ¿ - 1 )0 2 + r e 3
s = 0  2 = 2  r = 0
o o  o o  o o

+  E  E  E  M s, r ’ ) 9 s , ¿ , r ( í ) e s 0 1 + í 0 2 + ( r _ 1 ) 0 3

5 = 0  2 = 1  r = l

+ E  E  E  (̂s> *> r ) w ( i ) C(a+1,il+(<- lWi+rts
5 = 0  2 = 1  r = l
o o  o o  oo

-  E  E  E  Al(S’ *> r )9s,i,r(i)eSei+te2+r03
s = 0  2 = 1  r = 0
o o  o o  o o

- E E E ^  r ) ^ A t y 9 i + i 6 2 + r d 3
5 = 1  î = 1 r = 0  

o o  o o  o o

_  E  E  E  Ä  (s> ». 0 9 s,¿,r(í)esei+¿e2+re3
s = l  z = l  r = 0

OO OO OO

-  E  E  E  72 0», ®> r )^,¿,r(í)es01+i02+re3
s = 0  2 = 1  r = 0  

o o  o o  o o

-  E  E  E  t o ( s ,  i ,  r ) q s A t r ( t ) e s 9 M + ^

s=0  2 = 1  r = 0  
o o  o o  o o

-  E  E  E  M3̂ s ’ *> O?s,v-(i)es01+t02+r03
s = 0  2 = 1  r = l  
o o  o o  o o

" E S I ]  **(s> *> r)<?w(i)es01+i02+r03
5 = 0  2 = 1  r = l

OO OO OO

+ (7  +  E  E  E  ^,¿,r(í)esei+i02+r03
5 = 0  2 = 1  r = 0
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c o  o o  o o

EEE
5 = 0  i = 1 r = 0

d Q s , i , r  s 8 i + ie v + rdi

dt

OO CO OO

(e61 - l)EEEA'(s-̂ )3w(í)es01+tó2+r93
s —0  i—1 r = 0

o o  o o  o o

+ (e -ei -  1
s = l  2 = 1  r = 0  

o o  o o  oo

+(e0a" 01 -
5 = 1  2 = 1  r = 0 

0 0  o o  o o

+ ( e * 3 - 02 _  M ( t ) e s e ' + i e * + r d >

s = 0  2 = 2  r = 0
o o  o o

-  E E 7 2  ( s ,  !>  r ) ^ , i , r ( i ) e S 0 1 + 0 2 + r e 3
s = 0  r = 0

o o  o o  o o

+(e-02 - 1 ) ^ E E M s >*>r )tfs,¿,r(í)eS01+t02+re3
s = 0  2 = 2  r = 0

o o  oo

“ E E  ̂ (s, !> r)qsXr( t y ei+e2+re3
s = 0  r = 0

o o  o o  o o

+(e-03 - 1) E E E ̂ (s> Oft,i,r(i)esei+<Ö2+rfl3
s = 0  2 = 1  r = l  

o o  o o  o o

+(e01" 03 - 1) E E E **(s> *> O^,¿,,(í)esei+i02+re3
5 = 0  2 = 1  r = l  
o o  o o  o o

+ ( 7  + M)g.,i,. E E E Qs,iAty6l+id2+re3 ■
5 = 0  2 = 1  r = 0

Prom the definition of Ai(s, *, r), Mi(s, *, r), A(s,  i, r), 72(s, i, r ), m2(s, i, r), Ms(s, *, r)
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and u3(s ,i ,r)  in Table 7.2 we have

£ £ £ s6i+ie2+r83
dt

oo oo oo

(e*1 -  1 )»N
s = 0  i — 1 r = 0  

oo oo oo

+(e-ei - l^EEE^wW6̂ 2̂ 3
s = l  ¿ = 1  r = 0  
¿2 oo oo oo

+  (ee2" e i - 1 ) ^ E E E  siqs, U t Y 6l+i62+r63
s = l  2 = 1  r = 0  

oo oo oo+(ee3-02 - ̂ tEEE^^vŴ 1̂ 2̂ 3
5 = 0  i = 2  r = 0

OO 00

-V*EE ̂ i,(i)es9l+ri3
s = 0  r = 0

oo oo oo

+(e-̂  - ̂ ^EEE^âŵ 1̂ 2̂ 3
s = 0  1 = 2  r = 0

oo oo 

s = 0  r —0
oo oo oo

+ (e"e3 -
5 = 0  1 = 1  r = l  

OO 00 oo

+ (eei-e3 _  i ) v j 2 J2 J2 r^ ( t y 6i+id2+rd3
5 = 0  2 =  1 r = l

OO OO OO

+ (7 + A»)?.,i,. E E E ?»,<,r(i)esfll+i®2+rfl3.
5 = 0  1 = 1  r = 0

Using
OO OO OO

M(91 ,92,93,t) =  E[ese'+Ie2+w* \ I  > 0] =  Z E E * .  ^ e<s0i+202 +r03
5 = 0  2 = 1  r = 0

and

dM(9x, 02, 9̂ .*)
d9x

dM(9x92, 93i
d92

dM(9192,93) *)
893

82M(9U92,93>0
89xd92

OO OO OO

= E E E s&.‘(t)ea*1+<fla+rfl3>
5 = 0  2 = 1  r = 0

OO OO OO

E E E ^ w
5 = 0  2 = 1  r = 0

es6i +202+̂ 3

OO OO 00

= E E E si?*,i(i)ea®1+"2+r*3
5 = 0  1 = 1  r = 0
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dM
~dT ^N(ee‘ -  1) +  ^  -  1 ) ^  +  -  1)

del N
d2M

d0idd2

+ 7 (/»-»>  - 1) ( ~  -  E E f a . ' W ' " ’ * * * * )

s = 0  r = 0  

oo co

=0 r = 0

E E A ty di+r63 -  -ye62 E E ?.,i.r(i)eafli+rfls
s = 0  r = 0  s = 0  r = 0

+/x(e"e3 -  1 ) ^  +  ¡ V 1-03 “  1 ) ^ -  +  (7 +

<9M
~dt

+ ^ 62- 1^ + ^ e2- ^  +  ^ - 63- ^
dM

CO CO

sdi+rdz
s —0 r = 0

-7e03 E  E  (*)esfll+rfl3 +  (7 +
5 = 0  r = 0

<9M
<9f -  lJM +  M e-*1 -  1)“  + -  I ) -8“ "a^i iv dOidd2

/■) A /f oo oo
+i/(e01_e3 1)^ EE 95^(5, r\l)(t)es6l+r6z

 ̂ s = 0 r = 0
CO CO

“ 7 9 .,l,.^ 1 E E f c , « ( s ’ r l1 )(i )eSei+re3 +  ( 7  +
5 = 0  r = 0

where qstR{s, r|l)(f) =  is the conditional probability that S takes the value 
and R takes the value r given that 7 =  1. Using the transformation K(9i, 92, 83, t ) 
logM(Qi, 82,93, t) we have

174



dK
dt

r\ TS" /  OO OO ^+i/(eSl 03 - 1)̂ - + ( 1 _ e~K '2212 9s,i?(s, r|l)(i)e's6\ + r$ s

s = 0  r —0

+79..1,- (1 ~ e03e K EE Qs ,r ( s , r|l)(i)es01+r03 ] .
s = 0  r = 0

dK
dt l  ( e 2 -  e, -  0,02 +  \g[ +  +  l- e 2el -  t e t f  + \e\el + • • •)

(  d2K dK dK\ AT( n e2 \ /  Q\
[ d d M  + dex de2 )  + ^ V1 + 2 ! + ’ " )  + M V &1 + 2! + "

+ 7  ( » 3  -  » 2  -  « 3 0 2  +  +  ^  +  ^  “  \ w l  +  +  • ' )  ^

, 21 02 
+  M ( -^2 +  ^[ +

<9# (  0 el \ d K
90i +  ' ‘ ( - #3 + 2T+ " ) %

di f

+12 ^0, — 03 -  0.03 +  -0^ +  -0g +  ^0102 -  20301 +  ^0?03 H----- 1

+ M „. ( i - « - ' E E b (.|1) ( I ) ( i  +  30, +  703 + ^
+sr0i^3 +  ' ■ ■ ) ) +  79.,i -  f^ +  03 +  ^  +  -- -N) e_jfir ^  2 2

V  ̂ '  s=0 r=0

503

/  , ,2 f l2  2/32

I 1 +  s0i +  r03 H— -+  H— —5. +  sr0x03 +  •

Qs(s\l)(t)

(E.l)

Using the definition K (6u e2i 93,t) =  0 0 o K v A t f i f  3  where
denotes the (x, y, z)th cumulant function - for (x, y, 2) ^  (0,0,0) we have
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K(9,, $2, 3̂) O ^0,l,o( )̂^2 +  &l,0,o(í)$l +  &O,O,l(O03 +  &l,l,o(¿)$l$2
q2 q2

+ 1̂,0,1 (t)dl9s +  &0,1,1 (00203 +  ^2,o,o(i)-^7 +  &0,2,o(Ot7T
oi

2!
0,61

2!
+  k o ,0 ,2 ( í )—7 +  A4 4 4  ( 0 0 1 0 2 0 3  +  k i ß ß { t ) - —------b k2,l,o(t)

eje  2
2!
e\e. o3e¡

2!

+k2fl,i(t)—  I- ko^,i(t) — — b kifl^ ^ ) — — b k0:it2(t)2! 2!

2!
0 2 f
2!

, ^ ° 2A d3 , , ,  0 Ä  , , , 0 1 0 2 0 ?
+  ̂ 2,1,1  ( 0  --------- 1" & l , 2 , l ( 0  ^ --------H & 1,1 , 2 ( 0  ^ ---------- !"2! 2!

air
5 i

d K
501

d K
502

5 iT
df3

d 2K  
501502

¿ o ,i ,o (O 0 2  +  ¿ i ,o ,o ( í ) 0 i  +  ¿ o ,o , i ( O 03 +  ¿ i , i , o ( í ) 0 i 0 2  +  ¿ i , o , i ( O 0 i 03• • 9 2  ■ 02 • 02 •+&O,l,l(í)0203 +  ¿2,0,0 (O ^ - +  ¿0,2,0 (O^j- +  ¿0,0,2 (0 7 ¡f +  ¿l,l,l(í)010203

+ ¿ l,2 ,o (í)^ - +  ¿2,l,0( 0 ^ p  +  ¿2,0,1 ( t ) ~ -  +  ¿0,2,1 ( 0 ^  +  *l,O,2(í)-0103

v0?0203
2! 2!

; , ,01020?
+  ¿ 1 , 1 , 2 ( 0 — -------- b • •

2!
, i. M w ¡  . L - W »  . : , . M < h+ « 0 , 1 , ^ ------1- fcl,2,l(¿)— 2, ..........2,

^1,0, o ( 0  +  fc l , l ,o ( í )02  +  & l ,O ,l( í)03 +  ^2 ,o ,o(í)01  +  f c l , l , l ( í )0203

0? 0?
+  & l ,2 ,o (0 '^ 7  +  ^ 2, l , o ( í )0102 +  ^ 2,0,1^ )0 10 3  +  ^1,0,2 ( 0 ^  +  &2,1,1 ( í ) 0 1020;2! , 02203 0201 +  '+  ̂ 1,2,1 (0 + 1̂,1,2 (0  2|

& 0 ,l ,o (0  +  ^ l , l ,o ( í ) 0 1  +  ^ O , l , l ( í )03 +  ^O,2,o(¿)02 +  f c l , l , l ( í )0103

02 02 $2/3
+  ̂ l ,2 ,o ( í )0 1 0 2  +  & 2 , l , o ( 0 ^ j  +  ^ O ,2 ,l(¿)0302 +  ^0,1,2 (¿)  +  ^ 2 , l , l ( 0 '  1 32!

$  ú2

+  fcl,2,l(í)010203 +  ^l,l,2(í)~^j^ +  ’ ’ '

ko,0,l(t) +  1̂,0,1 (¿)01 +  0̂,1,1 (¿)02 +  &O,O,2(¿)03 + 1̂,1,1 ( )̂0102

Ol 92 $2$
+ k 2f l í, { t ) —  +  ^ 0 , 2 , l ( 0 ^ -  +  ^ 1 , 0 , 2 ( 0 0 1 0 3  +  ^ 0 , 1 , 2 ( 0 0 2 0 3  +  & 2 , l , l ( 0 ~ p p

0  0 2
+ ^ 1 ,2 ,1  ( O +  ^ 1 , 1 ,2 ( 0 0 1 0 2 0 f  +  ' ' '

^1,1, o ( 0  +  & l , l , l ( O 03 +  ^ l ,2, o ( O 02 +  ^ 2, l , o ( O 01 +  ^ 2,1,1 (00103
92

+̂ 1,2,1 (00203 +  ^1,1,2(0^ +  ’ ' '
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d K  O K
d6\ d 9 2 (̂ i,o,o(i) + &i,i,o(i)02 + kijatx{t)93 + k2flto(t)d1 + kiXi(t)9293

9% 92+  1̂,2,0 +  ^2,l,o(i)^1^2 +  ^2,0,l(£)$l$3 +  1̂,0,2 (̂ ) +  2̂,1,1 ( t ) 9 \ 9 29 3

+  i 1A. W ^ r  +  W i ) ^  +  - )

{ko,i,o{t) ~k ^i,i,o(0^i ”1" ^o,i,i(^)$3 +  ko,2f l ( t ) 9 2 +  1̂,1,1 { t ) 9 i 9 %
Q2 <32 o 2q

+  ki,2,o{t)9\92 +  A:2>iJo ( i ) +  ^0,2,1 {k)9392 +  k3>i>2(t)-^ +  k2i\ti(t)-+  fcl,2, l ( i ) W 3 +  A :i,i ,2 (i)^  +  - . ^  ki,o,o(t)ko,i,o(t) +  fcii0l0(i)A:i,i,o(i)^ +  ^o,i,o( )̂ î,i,o( )̂^2 “t'̂ 'i.o.o (̂ ) ̂ 0,1,1 CO $5 +  k0:lto(t)ki,o,i(t)93 +  /co,i,o (̂ ) ̂ >>2,0,0 (̂ )̂ i +ki,o,o(t)ko,2,o(t)92 +  koli lo ( t ) k i ti , i ( t ) 9 29 3 +  /si,o,o(O^i,i,i(O0i#3 + 
ko,i,o{t)k2iiio(t)9i92 +  kififi(t)k1 '20(t)9i92 +  &o,i,o(0 2̂,o,i(0 ^i$3 +^l,0,o(i)^0,2,l(i)^2^3 +  ^l,l,o(i)2̂ 1̂ 2 +  &1,1, o(t)ko, l,l(t)9293 

+ki,i,o(t)kifi,i(t)9193 +  ki:ifi(t)k0̂ 0(t)9l +  kl!lfi(t)k2:0fi(t)9f 

+2kith0(t)kl x l (t)9i9293 +  khlfi(t)k1X0(t)919l +  klili0(t)k2ilfl(t)9l92

+ k i ' i f l { t ) k 2flti ( t ) 9 \ 9 3 +  k-iti f i ( t ) k o 2 ii { t ) 9 \ 9 3 +  A:i0,i (¿)A;o,i,i (¿) f̂
+kifl,i{t)k3t2fl(t)9293 +  koii%i(t)k2fifi{t)9i93 +  /si,o,i (i)^i,i,i 

+ k O X i { t ) k \ X i { t ) 9 29 \ +  k 0x i ( t ) k 2 ti f l ( t ) 9 i 9 29 3 +  k i f i i ( t ) k i X 0 ( t ) 9 i 9 29 3

+kQ,i,i(t)k2fti{t)9x9\ +  klfiii(t)k0:2 1 (t)929l +  &o,i,o(0 ^i,2,o(0 ^j02 Q2 q 2 '
+kifl,o(t)k2,i,o(t)-^  +  klfi,o(t)k0,i,2( t ) ~  + k0Afi(t)k1A2{ t ) ^  + ■■■Substituting these into equation (E.l) gives
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¿ ¡0 ,l ,o (¿ )$ 2  +  ¿ i ,0 ,o ( ¿ ) 0 l  +  ¿ 0 ,0 , l ( í ) ^ 3  +  k l , l , o { t ) 9 i 6 2  +  ¿ I , 0 , l ( í ) ^ 1^3 

+ ¿ 0 , 1 , 1  ( í ) 0 2 # 3  +  ¿2,0,0 ( í ) ^ J  +  ¿ 0 ,2 ,o ( ¿ ) ^ |  +  ¿ 0 ,0 ,2 (^ )7 ^  +  • • • =

^ 2  -  ö i  -  ö i ö 2 +  - ö 2 +  - 6\ +  —Ö2 Ö2 -  - ö i $ 2  +  | ö i ö 2 H----- ^

^ ¿¡1,1,o (¿ )  +  fc l , l , l ( i )Ö 3  +  ^1,2 ,0( i ) Ö 2 +  ¿¡2, l ,o ( i ) ö i  +  /ü2>l , l ( i ) ö i Ö 3  +  fc l ,2 , l ( i )ö 2Ö3

Ö2
+  ¿ ¡1 , 1 ,2 ( 0 ^  +  ¿ ¡l,0 ,o (¿ )¿ ¡0 ,l,o (¿)  +  ¿ ¡ l ,0 ,o (¿ ) ¿ ¡l , l ,o ( ¿ )0 l  +  ¿ ¡0 ,l ,o ( ¿ ) ¿ ¡l ,l ,o ( ¿ )$ 2  +  

¿ ¡l ,0 ,o (¿ )¿ ¡0 ,l ,l( ¿ )0 3  +  ¿ ¡0 ,l ,o ( ¿ ) ¿ ¡l ,0 ,l( ¿ )0 3  +  ¿ ¡0 ,l ,o (¿ )¿ ¡2 ,0 ,o (¿ )$ l +  ¿¡l,0 ,o(¿)¿¡0 ,2,0  ( ¿ ) ö 2

+ ¿ ¡ 0 , l ,o ( ¿ ) ¿ ¡ l , l , l ( ¿ ) 0 2 0 3  +  ¿ ¡l,0 ,o ( ¿ ) ¿ ¡ l , l , l ( ¿ ) 0 l 0 3  +  ¿¡0 , l ,o (¿ )¿ ¡2 , l ,o ( ¿ ) 0 l 0 2 

+ ¿ ¡ l , 0 ,o ( ¿ ) ¿ ¡l ,2 ,o (¿ )0 l 0 2 +  /Co,l,0 ( í ) ^ 2 ,0 , l  (^ )ö i Ö3 +  ¿ ¡l,0 ,o (¿ )¿ ¡0 ,2 , l ( ¿ ) 0 2 0 3

+  ¿¡1,1 ,o( ¿ ) 2 $ 1$ 2  +  ¿ ¡ l , l ,o (¿ )¿ ¡O ,l,l ( ¿ ) 0 2 0 3  +  ¿ ¡l , l ,o ( ¿ ) ¿ ¡l ,O ,l( ¿ ) 0 l 03  

+ ¿ ¡ i ,i ,o(¿ )¿ ¡o,2,o( ¿ ) 0 2 +  ¿ ¡i ,i ,o (¿ )¿ ¡2 ,o ,o (¿ )0 i +  2/Ciii !o ( í)A ;i]i íi ( í ) 0 i 0 2 03 

+ ¿ ¡ l , l ,o ( ¿ ) ¿ ¡ l ,2 ,o ( ¿ ) 0 l0 2 +  ¿ ¡1 , 1 ,o(¿ )¿ ¡2 ,1 ,o( ¿ ) 0 i 0 2 +  ¿ ¡ l , l ,o ( ¿ ) ¿ ¡2 ,0 , l( ¿ ) 0 i0 3 

+  ¿ ¡l , l ,o ( ¿ ) ¿ ¡0 ,2 , l ( ¿ ) 0 2 0 3  +  ¿4 ,0,1 ( ¿ )¿ ¡0 , l , l ( ¿ ) 0 3  +  ¿ ¡l ,0 , l ( ¿ ) ¿ ¡0 ,2 ,o ( ¿ ) 0 2 0 3  

+ ¿ ¡ 0 , l , l ( ¿ ) ¿ ¡2 ,0 ,o (¿ )0 l 0 3  +  ¿ ¡l ,0 , l ( ¿ ) ¿ ¡ l , l , l ( ¿ ) ^ 1^3  +  ¿¡0 ,1,1 ( í ) ¿ ¡ l , l , l  ( i ) ö 2 ö 2

ö 2
+¿¡0,l,o(¿)¿¡l,2,o(¿)^y +  ¿¡0,l,l(¿)¿¡2,0,l(¿)0l02 + ¿¡l,0,l(¿)¿¡0,2,l(¿)0202

ö 2 ö 2
+  ¿¡l,0,o(¿)¿¡2,l,o(¿)7jj +  ¿¡l,0,o(¿)¿¡0,l,2(¿)-^J +  ¿¡O,l,l(¿)¿¡2,l,o(¿)0l0203

ö 2 \
+  ¿ ¡l,0 , l ( ¿ ) ¿ ¡ l ,2 ,o (¿ )0 l 0 2 0 3 +  ¿¡0 , l ,o ( í ) ¿ ¡ l ,0 ,2 ( 0 ^  +  ' ' ' J

+ ß N  ^ ö i  +  H----- ^  +  ß  ö l  +  ----- ^  (  ¿ ¡l,0 ,o (¿) +  ¿4 ,1,0 ( i ) ö 2

ö 2
+  ̂ 1 ,0,1 ( i)Ö 3 +  ¿¡2 ,0 ,o (¿ )0 l  +  ¿ ¡1 , 1 , 1  ( i ) ö 2 Ö3 +  ¿ ¡l ,2 ,o ( ¿ ) ^ y  +  ¿¡2 , l ,o ( £ ) ö iö 2

ö 2 Ö2 Ö fl fl2
+  ¿¡2 ,0,1 ( t ) 9i 93 +  ¿¡1,0 ,2 ( 0 ^  +  ¿¡2 ,1,1 ( ¿ ) ö lö 2 Ö3 +  ¿¡1,2,1 ( í ) ~ j — +  ¿¡1 ,1,2 ( 0 “ ^  +  ' ' ■

+ / i  ö 2 +  + y  +  • • • ^  ^  ¿¡0 ,1,o (¿ )  +  ¿ ¡ l , l ,o ( í ) 0 i  +  ¿¡0 , l , l ( í ) 0 3  +  ¿¡0 ,2 ,o ( ¿ ) 0 2

+ ¿ ¡ 1 , 1 , 1  W Ö 1Ö 3 +  ¿ ¡l ,2,o ( i ) ö i ö 2 +  ¿ ¡2 , l ,o ( ¿ ) ^ J  +  ¿¡0,2,1 (¿)Ö3Ö2 +  ¿ ¡o ,l,2 (¿)-^ |

ö2fl fl fl2 \
+  ¿¡2 ,1,1 (¿ )  — ---- h ¿¡1,2,1 ( ¿ ) ö l ö 2 Ö3 +  ¿¡1,1,2 (¿)  +  - - - J -
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y 2 ° 2  ̂ 2 “ 2 2 3 4 “ ‘ y
(̂ 0,1, o( )̂ +  &l,l,o(í)01 + ^0,l,l(i)^3 + A:q,2,o(0^2 +  &l,l,l(í)0103 +  fcl,2,o(í)$l$2

Ö2 02 020
+  ̂ 2,1,0 (i)"^ + ^O,2,l(i)Ö302 +  &0,1,2 (0 ^  +  ^2,l,lW~^P +  l̂,2,l(¿)010203

0f

, , ,010?
+^1,1,2(<)—2Ï-

2!
(̂ 0,0,1 (í) +  1̂,0,1 (í)01 + &O,l,l(¿)02H--------J +  Ai ^ - 0 3 +  7^  +

q2
+  ̂ O,O,2(í)03 +  ^2,0,l( )̂^y +  1̂,1,1 (¿)010202+  ̂ 0,2,l( i) ^ 1 +  .̂1,0,2(^)0103 +  0̂,1,2(^)0203 +  1̂,1,2^)010203 +  2̂,1,1 (t)  

+ * 1 .2,1 0 ) ^  +  "

+  * ^0, -  03 -  0!03 +  ¿0? +  ^0? +  ¿010? -  ¿030? +  J0?0? +  ' • ' )

0̂,0,1 (t) +  1̂,0,1 (i)01 +  0̂,1,1 (i)02 +  ^0,0,2^)03 +  &1,1,1 (i)0102 + 2̂,0,1 (¿)

0(02
2!

g
2!

Q2 û2û a û2+  &0,2,l(i)^y +  A:i o,2(¿)0103 +  0̂,1,2(^)0203 +  &2,1,1 (í) +  fcl,2,l(í)-^p+  ̂ 1,1,2(^)010203 +  ••’ ) +  79 .,1,.(0 1 — ( 1 + 03 +  +7 +  - - ’g
2! 1 — ^O,l,o(̂ )02

l̂,O,o(í)01 ~ M),O,l(i)03 — l̂,l,o( )̂0102 — 1̂,0,1 (í)0103 — 0̂,1,1 (í)0203

^ 2 ,0 ,0  (i) -^y — ^ 0 , 2 , o ( i ) ^  ~ ^ 0 ,0 ,2 ( i ) ^ -  -  &l,l,l(i)010203 +  ^O.l.oW^
02+  ̂ l,0,o(¿) y  +  ^o,l,o(í) l̂,o,o(í)0102 +  fco,o,l(í) l̂,o,o(í)0103 +  &o,l,o(í)&o,o,l(í)0203 

+^0,0,1 (*) ~2 + ^  9s(s|l)(í) +  S01 + t@3 4— ^  H— ^  +  SJ-0103 +  • • - ^

1 — ( 1 ~ ô,l,o(̂ )02 ~ l̂,o,o(í)01 — 0̂,0,1 (í)03 ~ l̂,l,o(í)0102 — k 2 ß f l ( t ) ~ ^

e l e l^0,1,1 (^)0203 ^l,0,1 (00103 &0,2,o( 0  21 '̂0,0,2(í)'^Y — ^l,l,l(í)010203 +  ô,l,o(̂ ) 0o
2!+  ̂ l,0,o(í ) y  +  ^o,l,o(í)fcl,o,o(í)0102 +  ^o,o,l(í) l̂,o,o(í)0103 +  &o,l,o(í)^o,o,l(í)0203 

+^o,o,i(í )" '̂ +  ' ' ' ^  ■̂s(sl^)(0 +  S01 +  r&3 H----H-------- +  sr0!03 +  • • ■ ^



¿O, 1,0 (O ̂ 2 +  ¿l,O,o(0^1 "I" ¿0,0,1 (0^3 +  ¿1,1,0(0^1 ̂ 2 +  ¿1,0,1 (0^1^3

+  ¿0,1,1 ( t ) f e f e  +  ¿ 2 ,0 ,o ( í )^ j -  +  ¿ 0 ,2, o ( í ) ^  +  ¿0 ,0 ,2 ( í ) ^ f  H-------- -----

I  (fe -  fe -  fefe + \e¡ + ¿fe2 + ¿fefe -  ¿fefe + ¿fefe + ■ • ■ )
(&l,l,o(0 +  ^l,l,l(0^3 +  &l,2,o(0$2 +  k2:lfl(t)di +  A:2,i,i(í)0i03 +  fcl,2,l(í)#203

q2
+^1,1,2 (O ^  +  fcl,0,o(í)fco,l,o(*) +  fcl,0,o(0^1,l,o(0^1 +  ^0,l,o(0^1,l,o(0^2 +^l,0,o( 0  ̂ 0,1,1 (0^3 + &0,l,o(0^1,0,l(0^3 + &0,l,o(0^2,0,o(0^1 +  l̂,0,o(í)^0,2,o(¿)^2 
+^o,i,o(0^i,i,i(0^2$3 +  kißfi{t)kitit\{t)6id  ̂+  A:o,i ,o(¿) ̂ 2,1,0 ( )̂ î ̂ 2 +fcl,o,o(í)fcl,2,o(í)0l02 +  0̂,l,o(í)^2,0,l(í)^1^3 +  &l,0,o(0  &0,2,1 (0$2#3 +  1̂,1,0 (¿) 2 ̂ 1 ̂ 2 
+  fcl,l,o(í)fco,l,l(í)0203 + fcl,l,o(í)^l,0,l(í)0l^3 +  fcl,l,o(í)^0,2,o(í)^2 + ^l,l,o(í)^2,0,o(í)^l +2/Ci|x,0(̂ )̂ *1,1,1 (0 1̂ 2̂$3 H" &l,l,o(0 '̂l,2,o(0^1^2 1̂,1,0(¿) “̂2,1,0( ^ ) 2̂
+  ̂ l,l,o(0 ^2,0,l (0^1^3 +  /Sl,l,o(0^0,2,l(0^2^3 +  1̂,0,1 (0^0,1,1 (0^3 +  &l,O,l(Ô O,2,o(O 2̂03 

+^0,1,1 (í)fc2,O,o(í)0l #3 +  *4,0,1 (0*4,1,1 (0^1 $3 + &0,1,1 (0*4,1,1 (0^03 +  *ì),l,o(0*4,2,o(0

+ & 0 ,1,1 ( 0 ^ 2 ,0 , !  (0 ^ 1  # 3  +  *4 ,0,1 ( 0 *-0 ,2 ,1 ( 0 0 2 0 3  +  *4 ,0 ,o (0 * '2 , l ,o ( 0 '^ j' +  *4 ,0 ,o (0 *-0 , l , 2 ( 0
ej

9J
2!

e l

.01
2!

+^0,1,1 (0 ^2,l,o(0^1 ̂ 2̂ 3 +  *4,0,1 (0 *4,2,0 (00102 03 +  *ÍD,l,o(0 *4,0,2 (0  -̂-------

Q2
klflfl (0 +  fcl,l,o(0^2 +  *4,0,1 ( 0 0 3  +  ^2,0,o(0^1 +  *4,1,1 (0^2^3 +  *4,2,o(0^j +  ^2,l,o(0^1^2

fl2 n2a f¡ ú2
+  *:2 ,0,1 ( 0 ^ 1  ̂ 3  +  *4 ,0 ,2 ( O t ¡ J  +  &2 ,1,1 ( 0 ^ 1 0 2 0 3  +  *4 ,2,1 (0 “ | p  +  ^ l , l , 2 ( 0 “ | p  +  ' ' ■

+ ¡ x  í - 92 +  H----- i  (* ¡o ,i,o ( 0  +  fc i ,i ,o (0 0 i  +  * * ) ,i ,i (O 0 3  +  k 0t2f i ( t ) 92 +  A : i , i , i ( í ) 0 i 0 3

.01 , ^  „ , ,  , . J j  , , ,..6193
+ ^ i , 2 , o ( 0 ^ i ^ 2  +  ^ 2 , i ,o ( 0 ^ y  +  **0,2,1 ( 0 0 3 0 2  +  fc0, i i2 (0 t^  +  k 2, i , i ( t )

+ * 4 ,2 ,1  ( 0 ^ 1  ̂ 2 # 3  +  * 4 ,1 ,2 ( 0
M f

2!
2! 2!

+
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+ 7  («3 - e , -  m  + \ei +  \e\ +  \tzt\ -  ì& s i + \e\B\ + ...

^ o . l . o ( i )  +  f c l , l , o ( 0 $ l  +  ^ 0 , I , l ( i ) ^ 3  +  ^ 0 ,2 , o ( í ) ^ 2  +  k i i i ( t ) 0 i &3 +  &2 , l , o ( 0 7 7

$2 fl2/3+*0,2 ,1 ( 0 0 3 0 2 + fcii2io(i)0i0 2 + *0,1 ,2 (Ôj- + *2,1 , 1 (Oyp
fì tì2

+  *l,2,l(O010203 + + +  M ( -Ô3 +  §  +  '

2 !
*2,o,i(0 y  

92+*o,o,i(0 +  A:i>0,i(i) öi +  k0titi(t)62 +  *0 ,0,2 (t)93 +  *i,i,i(O0i02 + *0,2,1 (0  y

2 !i02ß /) /72+ * 1,0,2(00103 +  k Oil¡2( t ) 9 2 0 3  +  *1,1,2(0010203 +  *2,1,1 ( O y p  + *l,2,l(0 _1 2

+ "  ( « i  -  %  -  » .f e  +  \ ñ  +  \«l +  l ^ ì  -  \e3e\ +  ^ e ì  +  ■.■)

*0 ,0 ,1 CO +  * 1 ,0 ,1  (O ^i +  * 0 ,1 , 1  ( 0 0 2  +  *o,o,2 ( 0 0 3  +  * 1 , 1 , 1  ( t ) 6i  92 +  * 2,o ,i(0

+

9J
2 !

91v o2a
+ *0,2,1 (0  y  +  kii0i2(t)9i93 +  k0,i,2(t)9293 +  *2, i , i ( 0 y r  +  kiA¡2(t)9i929'.

2 !
+ )  +79.,i,.(0 ( l  -  ( l  +  03 +  y +  ■•■) (I -  k0X0(t)92

2 !
, , ,9i9¡

+ * i,2 ,i(0 y p

— * i,o ,o ( O 0 i  — *0 ,0 ,1 ( 0 0 3  — k i ti f l ( t ) 9i 92 — * 1 ,0 , 1  ( O 0 i  03 -  * 0 ,1 , 1  ( 0 0 2 0 3
Q2 q2 q2 ’ ’

' — *o.2.o(0 —  —  k n n o i t ) ^ :  — /Ci 1 iiriPiPot/Q  +  f r . x ,  „ m
2  ■ - i , u , u v - /  2

2̂ 2̂ ù2 ¿32 ù2
- * 2 ,0 , o ( O y  -  * 0 ,2 ,o ( O y  -  *0,0,2 ( 0  y  -  * 1 , 1 , 1  ( 0 ^ 1 0 2 0 3  +  ^ . l . o W y  +  ^ l , 0 , o ( O y  

+  *0,1,0 (0 *1 ,0 ,0  (0 0 1 0 2  +  *0,0,1 (0 *1 ,0 ,0  iß)9\93 +  *O ,l,o(O *O ,O ,l(O0203

+*0,0,1 (O^f +

91

1  +  0 i £ [ S | J  =  1 ]  +  0 3 ^ [ Ä | /  =  1 ]  +  | U [ S 2 | /  =  1 ]

+-fE [R 2\I =  1] +  E[SR\I =  1J0J03 +  • • •

+Ai 9 ., i, .(0 1 ^ 1  &O,l,o(¿)02 &l,0,o(^)^l &O,O,l(¿)03 ~~ ^ l,l,o (^)^1^2 — &2,0,o(^)

— ko,l,l(t)9293 -  fci,o,l(i)0 1 0 3  -  *O,2,o(0y -  *0,0,2 (0 §  -  *1,1,!(0 0 1 0 2 0 3  +  *o,l,o(O f
q2

+ * 1 , 0 ,0  ( 0  y  +  *0 ,1 ,0  ( 0 * 1 ,0 ,0  ( 0 0 1 0 2  +  * 0 ,0 , l ( 0 * l , 0,0 ( 0 0 1 0 3  +  * 0 ,1 ,0  ( 0  *0 ,0 ,1  ( 0  02  03

+ * 0,0,1 (0  y  +  • 1 + 0i£[S|/ =  1] +  93E[R\I =  1] +  °1e [S2\I =  1]
92

+^-E[R2\I =  1] +  E[SR\I =  1}9,93 +  • • ■
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Equating the corresponding coefficients of 9 i , 6 2, 9 \0 2 , 9 \ , d \  gives,
¿1 ,0,o(i) = V-N — + *i,o,o(£)*o,i,o(i)) — ¡J,kifito(t) + ̂ *0,0 ,1 (i)

+ ( 7  +  (fci,o,o(i) -  E [ S \ I  =  1]) (E.2)¿0,1,o ( t )  — j y ( k i , i f l ( t )  +  *i,o,o(i)*o,i,o(£)) ~  (a4 +  7 )*o,i,o(t)
+(7 + M)9.,i,.(i)fco,i,oW (E.3)*0,0,1 (i) =  7 *o,i,o(i) -  l i k o f i , i ( t )  -  v k 0lo , i ( t ) )  -  7 tf.,i,.(i ) ( 1 +  E [R \J  =  1])+(M +  7 k,i,.(*o,o,i(i) +  E [ R \ I  =  1]) -  79 .,i,.(i) (E.4)¿1,1,0(i) — ^p[*l,0,o(i)*l,l,o(i) ~ *1,1,o(t) — *l,0,o(i)*0,l,o(i) +  *2,l,o(i)
"h *0 ,1,0  ( t )  *2,0 ,0  ( 0  — * 0 , l , o ( 0 * l , l ,o W  — * l ,2 ,o ( i )  — * l ,0 ,o ( i) * 0 ,2 ,o ( t ) ]- ( 2/i +  7 )*i,i,0(i) -  ^*o,i,i(t) +  (7  +  M)9.,i,.(*)[*!,i,o(i)+*o,i,o(i)-E'[*S'|-̂  — 1] — *i,o,o(£)*o,i,o(i)] (E.5)¿1,0,1 (i) =  — ̂  (*1,1,1 +  *l,0,o(i)*0,l,l(i) +  *l,0,l(£)*0,l,o(£)) — 2yLi*10,l( )̂+ 7 *i,i,oC0  ~ ^(*o,o,i (i) +  *i,o,i (i) — *o,o,2(t))
+ ( 7  + M)<7.,i,.(0[*i,o,i(i) + *i,o,o(i)-E'[-R|4r = 1] + *o,o,i(t)-E'[S,|/ = 1]+ (7  +  M k ,i,( i )[-E [£,-Rl/ =  1] ~ *i,o,o(i)*o,i,o(i)]

¿0,1,1 (t)

¿2,0,0 (i)

¿0,2,0 (i)
¿0,0,2 (t)

- 7 ?.,i,.W (^[5 i?|/ =  l] +  E[5 |/ =  l])(*1,1,1 (i) +  *1,0,0(*)*0,1,1 (¿) +  *o,i,o(0 *i,o,i(0 ) — 2ŷ *oiiii(i) + 7 (*o,2,o(i) ~ *0,1,1 (i) — *0,1,0(¿)) — *̂0,1,i(i)
+ (7  +  /¿k,i,.(i) (*0,1,1 (0  ~  *o,i,o(i)*o,o,i(i)) +  79.,i,.(i )*o,i,o(i) 

(*1,1,0(i) +  *l,0,o(£)*0,l,o(£) — 2fc2,i,o(i) — 2*1,0,o(i)*l,l,o(£))

—2—/c°]ijo(i)*2,o,o(i) + M-W + Ai*i,o,o(̂) + ̂ *0,0 ,1 (t) + 2 i2/c101(i) 
—2 *̂2,o,o(i) + ( 7  + Atki.-W (*2,0,o(i) - *1,0,o(02)
+ ( 7  + /i)i.,i,.(i) (2fc1,0lo(t)̂ [5|/ = 1 ] - £[S2|/ = 1 ])

(*l,l,o(i) + *l,0,o(i)*0,l,o(i) + 2 *1,2,o(i) + 2 *o,l,o(t)*l,l,o(t))
+2 -̂ *i,o,o(t)*o,2,o(i) + ( 7  + At)(*o,i,o(̂ ) — 2 *o,2,oW)
+ ( 7  + (*o,2,o(i) — *0,1,o(̂)2)

(E.6)
(E.7)

(E.8)
(E.9)=  7 (*o,i,o( )̂ "h 2*0,i,i(t)) +  /2(*0,o,i(t) — 2fco,o,2(t)) +  ^ ( * 0 ,0 ,i ( t )  — 2*0,0,2(i))

-7?.,i,.(i) (1 +  2f?[i2|7 =  1] -  E[i?2|/ =  1])

+ (7 +  M k,i,.w  (*o,o,2(t)^[-R2|/ =  1] -  *0,0,i(i)2) (E.10)
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Appendix F

The derivative of the squared 
coefficient of variation with 
respect to 773

-£^(C V ?)  =  \/N ( - I R q -  2 t]3 -  8 r)2 +  r]%R 0 +  7?fR§ +  2 / ^ 7 7 3  +  6772773 -  2 6 r]2 T]3 R 0 -  

9 VÌ +  4 t7| +  24773772 -  877f.R0 +  8 t?2 R o  +  2877f773.R0 +  47?f 773 +14772773^ -  37?f 77̂  R q +  3t7| -  

107?f?73 +  8 r ) h i  ~ 20m v l  ~ ^ v l v ì  +  2 R oVs +  3 R 0v ì  -677!77f  R f  +  I877I77IRg -  1 6 r^ rj¡ R 0 +  

24772 7?fl?o + 1 0771773 R q -  677f77f.R0 +  677f77f.R0 +  877! -  6 772 77I iR0 +  677I77I +  4??fR>f  -  277I Rg -  

2t?2 -  4 R 20 7ì:ÌV 2 -  2 87?f 773 /? 2 +  4 77̂  773 +  6t?| 7?f R f  +  ST/fT /fR f -  87/f 773R0 +  4??f 7?3R f  -  4 R 0??! -  

9 V2 V3 R o +  3 -  3 R f 772)/(773 +  5772 -  6772773 +  4772T73.R0 +  r?| -  677f -  2t?|772 +  r?f R 0 -  l7?2i i 0 -  

877f773.R0 +  77?f 773 +  27?f -  277I773 -  2??f 7?| +  3 772 77! +  773772 +  2t?| 77I Rg - 1 7?f 7?f Rg +  3 77^773^0 +

Zv Ì V Ì R o -  1 +  t?2773/?.q -  2 V Ì v ì R o +  477f77f.R0 -  1t?3 -  2t/277!R 0 -  l ) / ? o / ( r /3 +

%  -  l ) /? 7 f / ( i? o  ~  1 )2(??3 +  %  -  l ) 2 -  1 / A ( 3 t73 +  2772 -  8772773 +  8772T73.R0 -  l r / f  -  l7?f +  

3773772 -  277f.R0 +  -  877f773/?.Q +  4?7f773 -  37?2773 Rg +  ??f77!R f  +  77! R 0 +  3771773 -  7?7f 7/f +

877277! +  2t?|77f -  IR0773 +  R 07?f +  5?7f7?f -  14?7f r?|Rg +  2 t?|77!R 0 -  2 ^ 1  R o  ~  2 V V̂3 R o +

M77f77f.R0 -  3??3 -  13772??f/2o ~  577I77I -  3 i? f 773772 +  2773 +  47?f773Rg +  27?f7?f +  2??f773 +  

27? l7?l -  5 V2 v t  -  2fli m  - 4 t?| Til R 0 -A r i l  v t  R o  ~  2t?|7?f 7?0 +  2t?| t?| Rg +  2 ^ 1  R 2 +  2?/f 7 7 ^  +  

6772T7f.R0 -  2 n i v l R l  +  67? fr/fR f +  77f773.R0 +  7?f773R f  +  R 07/f +  7T72r / fR f  -  l '/? fR 0 -  1 -  

m v t R -l  ~  1 v Ì V Ì r o)/(V3 +  5772 -  6772773 +  4773773^0 +  ?7f -  6?7f -  277f772 +  ?7f R 0 -  I772.R0 -  

8 v h s R o +  7??fr?3 +  27/f -  2 rj%r)3 -  277!?/! +  377277! +  77!??! +  2t?f7?f Rg -  77f7/fR f +  3 ^ rj3 R 0 +  

2 v h l R o ~  lV 2 V ÌR o  +  v lV s R l  ~  2 v l v ì R o +  477f ?7f i? 0 -  lr? f -  2 m v l R o ~  l ) 2Ro/(7?3 +  772 -

i ) / 7? ! / ( * o  -  1 )2('R3 +  f]2 ~  1 )2(1 -  6772 +  4 t?2-R0 +  2773 -  4772773 -  8 t)\R q +  777! -  277! -  

677,3t?22 +  QVÌV2 +  27?f773 +  477!7/3R f  -  2 ti\t]3 R q +  3t7 |R 0 +  677f77f.R0 -  37/27?! R 0 +  7/fRg _  

4 t72773R0 +  87?f773R 0 — 37?f — 4772773R0) — l /N (3 r]3 +  2 r}2 — 8772773 +  8 r]2 rj3 R 0 -  lr jj -  17/f +
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3ì?|% -  2rilR0 +  V2R0 -  8rj%r]3R0 + Avlvo -  3r/2ry3jR̂  +  vlvlRo + vlRo +  ̂ VÌVs -  7vlvl + 

8t?2ì?| + ‘¿vivi -  IRoVs + Rovi + 5vlvlRl - 14vlvlRl + ¿vlvlRo -  ¿V2VÌR0 -  ¿vlvlRl + 
1477|i?|i?o -  3??| -  13r)2VÌRo ~ 5rivi ~ 3Rlvlv2 + 2t?| +  ^vlVoRl +  ¿vivi +  ‘¿vivi + 

‘¿vivi -  5r?2i?3 -  ‘¿vtvz-^vtvlRo-^vlvtRo -  ¿vlvlRo+ ¿vlvlRl+ ¿vtvlRl + ¿vlvtR-l+ 
&V2VÌR0 -  ¿vlvlRl +  Svivi Ri + vWiRo +  vlvsRl +  Rovi + 7V2VÌRl -  1t?!R0 -  1 -  
V2VÌRI -  1 vlvlRo) ! (% + 5772 -  6773773 +  V̂2VzRo + V Ì- 6vi -  2773772 +  vlRo -  Ì-V2R0 -  
8vlVoRo + 7vlvo +  2 vi -  ¿vivo ~ ¿vivi + ¿>V2VÌ + vìvi + ¿vlvlR-l ~ ^vlvlR-l +  3vlV'iRo + 
2vlvlRo -  IV2V3R0 + VÌVERI -  ¿vlvlRo + ̂ VÌVÌRo -  ^vì -  ¿V2VÌR0 -  l)R o /(%  +  7?2- 

l )2/ v ll(Ro -  1)2(t?3 + V2 -  l ) 2 -  2/A^(3t?3 +  2772 -  8772773 +  8772773.R0 -  I77I -  I77I +  377I772 -  

2t?2 R0 +  772Ro -  8vÌV:ìRo +  477I773 -  3772773Ri + vlvlRl +  vlRo +  377I773 -  777I77I +  877277I +  

¿vivi -  1RoV3+RoVÌ+5vIvÌRI -  ̂ v lv l R iv ìv i  Ro — 277377! Ro- 2 vlv$Rl + l^vìvlRo -  
3 vl -  13772?7|Ro -  5vlvì ~ 3RlvlV2 + ¿V3 +  v̂lvoR-l + ¿vivi +  2t? ^  +  277̂ 771 -  ò^v3 -  

¿vivo -  ^vlvlRo -  4??227?3Ro -  ¿vlvlRo +  2vlvlRl +  ¿viviRi +  2??2??3Rq +  6V2VÌRo -  
¿vlvlRl + SvlvlRl +  vlvlRo +  vivoRl + Rovi +  7 V2vlR-l -  1t?!R0 - 1 -  ^ v lR l  -

ì-VlvlRl)/(Vo +  5t?2 -  6772773 +  47727? 3R0 +  77I -  677I -  2t?|772 +  vi Ro -  l ^ R o  -  877I773R0 +  

7 vìvo +  277I -  277I773 -  277I77I +  3772773 +  77I77I +  27?|t?3Rg -  77|t7|R§ +  SvlvoRo + ¿vlvlRo -  

V2VIR0 +  vIv^Rq -  ¿vlvlRo +  4vlvlRo -  Ivi -  2772773Ro -  l)R o /(%  +  772 -  l)/vl/(Ro -  
1)2(??3??2 -  l ) 2 +  2/7V(3t73 +  2772 -  8772773 +  8772773R0 -  I773 -  I77I +  377|t72 -  2t?!R0 +  

772R0 -  8vlvzRo + 47?227?3 -  3772773R0 +  vlvlRo + VlRo + ?>vlvo ~ 7VÌvl + $V2vl + ¿vivi ~ 
Rovo +  Rovi +  ^vlvlRl -  147?22772R o +  2772?7| R o -  ¿ ^ ¡ R q -  ¿VÌVERI +  14?727?3Ro -  3??! -  

137727?!Ro -  5?irli -  3Rg7?|772 + 2t?| +  4 t72773R !  + 27?^! +  2r}^i + 2 ^ 1  -  bv2VÌ ~  2VÌVo ~

^vlvlRo -  4vlvlRo -  ¿vlvlRo + ¿vlvlRo + ¿viviRi + ¿viviRi) +  67727?!R0 -  ¿vlvlRl + 
^vlvlRl +  vlvoRo+ vlvoRl +  Rovi +  7V2vlRl -  W3R0 - 1  -  V2VÌRI -  ^vlvlRl)Kvo +  
5 7 7 2 -6 7 7 2  773-4-4772 773 Ro+ 77I - 677! -¿vlv2+vlR o-I772R0 -8vlvoRo+7vlvo+2vl-¿vivo ~ 
¿vivi+ 377277I + vivi + ¿vlvlRl - 1  vivi Ri+ 377I773R0 +  ¿vlvlRo -  IV2VIR0 + vivo Ri -  
¿vlvlRo +  4vlvlRo ~ 1^! ~  ¿V2VIR0 ~ l)Ro/(Vo +  772 — 1 ) / 773/ ( R0 — 1 )2(773 +  772 — 1 )
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