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Abstract

Malaria is one of the world’s most deadly diseases and is becoming an 
increasingly serious problem as malaria parasites develop resistance to drugs such as 
chloroquine and mefloquine. There is, therefore, considerable urgency to develop 
new classes of antimalarials. This study describes the synthesis of artemisinin 
analogues and novel quinolones which target the parasite food vacuole and 
cytochrome be \ complex respectively.

Artemisinin is an unusual 1,2,4-trioxane, which has been used clinically in 
China for the treatment o f multidrug resistant Plasmodium falciparum  malaria. The 
first goal of this study was to make some artemisinin analogues which combine both 
improved water solubility and metabolic stability with enhanced antimalarial 
activity. This involved the synthesis of alkylamino substituted pyrrole derivatives. 
An array of C-10 pyrrole derivatives of dihydroartemisinin were prepared using 
Mannich chemistry in two steps from dihydroartemisinin with good overall yield: It 
was proposed that the presence of the tertiary amine groups (attached to the pyrrole 
ring) of the target molecules would serve to aid localisation of the drug within the 
parasite food vacuole by an ion-trapping mechanism.

Initial antimalarial in vitro assessment (vs. K1 P.falciparum) demonstrates 
that these analogues are active in the low nanomolar region with a result that four out 
o f the 18 prepared have been selected for further in vivo antimalarial assessment. 
Ultimately, one of the compounds is more active than artesunate from the in vivo 
studies. Further iron degradation studies suggest that these pyrrole derivatives 
generate both primary and secondary carbon centered radicals in a manner similar to 
artemisinin.

Attempt to synthesise heterocyclic sulfone analogues of artemisinin lead to an 
interesting rearrangement, which was reproduced with sugars.

Quinones and quinolones are highly efficient antimalarials as they inhibit the 
mitochondrial respiration process of Plasmodium falciparum  by binding specifically 
to the cytochrome bc\ complex. A library o f naphthoquinone, 2- and 3-substituted 
quinolone analogues were synthesised and tested in vitro to study their structure- 
activity relationship.

Naphthoquinone derivatives were prepared in one-step via Mannich reaction.
2-Substituted-quinolones were made via a three-step synthesis employing a Copper 
or Suzuki coupling, followed by Ziegler alkylation and hydrolysis of quinoline. A 
four-step synthesis from 7-chloroquinol-4-one, with an extra step of parallel 
synthesis, gave a series o f quinolone derivatives substituted at the 3-position.

In vitro results showed that 2-substituted quinolones were more potent with 
IC50 values between 30 and 185 nM (vs. 3D7 strains), which was validated by 
molecular modelling; it was observed that the higher the Goldscore is, the more 
active the quinolone is. Further in vitro tests revealed 1000 fold difference in 
sensitivity between parasite and mammalian bc\ complex, indicating that these 
molecules should have good therapeutic indices.
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Chapter 1- General Introduction

1. Introduction

This chapter will present an introduction to malaria and the treatments used against 

this parasitic disease. The two principal biological targets will be introduced and a 

summary of inhibitors used against these targets will form the introduction to this thesis.

1.1. Introduction to malaria

1.1.1. The facts of Malaria

Malaria is one of the World’s most deadly diseases as it affects more than 6% of 

the global population (300 million cases) and it has been estimated that every 30 seconds 

a child dies from malaria. It is an infectious disease caused by the protozoan parasite 

Plasmodium, and is transmitted through the bite of the female Anopheles mosquito.

41% of the world’s population is exposed to malaria. Mortality is currently 

estimated at over a million people per year, this has risen in recent years, probably due 

to increasing resistance to antimalarial medicines,1 also resistance to insecticides by 

mosquitoes.2

Malaria can cause headache, fever, nausea and vomiting, painful joints and 

muscles. If the infection is not treated, it can progress rapidly by infecting and 

destroying red blood cells (anemia) and by clogging small blood vessels carrying blood 

to the brain (cerebral malaria) and other vital organs.

1.1.2. A disease of the developing world

Malaria affects tropical and subtropical areas of the world, 90% of malaria deaths 

occur in sub Saharan Africa.

On these two maps below (Figure 1), you can see that malaria coincides almost 

exactly with the distribution of poverty in the world.3 As a disease of the poorest nations, 

malaria remains a poor cousin of the major health problems of the developed world, and
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Chapter 1- General Introduction

funding for malaria control and research is dwarfed by that for heart disease, cancer, 

AIDS, and asthma.

Estimate of World Malaria Burden

Estimate of World Poverty

Source: RBM cauli. Sachs 1999

Figure 1. Comparison between Malaria burden and world poverty

Antimalarial drug development has been severely limited by the lack of interest 

shown by pharmaceutical companies in investing large sums for the development of 

drugs for a disease of a disadvantaged population. Indeed, nearly all available 

antimalarials have been developed through government (including military) research
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Chapter 1- General Introduction

programs (chloroquine, primaquine, mefloquine, Fansidar, halofantrine), the fortuitous 

identification of efficacy in natural product (quinine, artemisinins), or the identification 

of antimalarial potency in drugs marketed for other indications (folate antagonists, 

sulfanomides, antibiotics, atovaquone).

1.1.3. The malaria pathogen

Plasmodium, a unicellular eukaryotic cell of the protozoa group is the parasite 

responsible for malaria. Four main species cause human disease: Plasmodium 

falciparum  (maligniant tertian), vivax (benign tertian malaria), malariae (quartan 

malaria) and ovale (Ovale tertian).

Plasmodium falciparum is by far the most important species, as it is responsible for 

nearly all severe malaria. This parasite is an enormous problem in Africa and is endemic 

in most malarious regions of the world. P. falciparum  has demonstrated the ability to 

develop resistance to most available antimalarial drugs.4

Infection with P.vivax is also very common and although this infection causes 

relatively little severe disease, it is one of the most important causes of morbidity among 

parasitic infections, particularly in Southeast Asia, the Indian subcontinent, South and 

Central America and parts of Oceania. Drug resistance in P. vivax has been recognized 

only recently, but it is increasing, with vivax malaria resistance to chloroquine and other 

antimalarials noted in Southeast Asia, Oceania, India, and South America.

P. malariae and P. ovale are relatively uncommon causes of human malaria. These 

two parasites have a chronic liver phase (hypnozoite), in addition to the transient hepatic 

phase that precedes erythrocytic infection. Hypnozoites require specific therapy for 

eradication.

1.1.4. Parasite’s life cycle

The female Anopheles mosquito is the vector responsible for transmitting the 

parasite. Life cycle of the protozoa is complex occurring in both man and in the
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Chapter 1- General Introduction

mosquito. The life cycle comprises of both the sexual and asexual forms. The sexual 

cycle is in the mosquito, while the asexual cycle is in man (Figure 2).

MEROZOITE
RED CELL 
INFECTION

LIVER

Site of action of 
Quinolines, 

ndoperoxides and 
Quinolone 
methanols

MEROZOITE GAMETOCYTE 
(DEVELOPMENT IN 
FEMALE 
MOSQUITO)

Figure 2. Parasite’s life cycle

The parasite enters the host’s blood stream when the anopheline mosquito, 

harboring plasmodial sporozoites, bites for a blood meal. Within thirty minutes of the 

parasite’s sporozoites entering the bloodstream, they enter the parenchymal cells of the 

liver (pre-erythrocytic stage). This lasts 10-14 days, during which time they multiply. 

Hepatocytes rupture to release merozoites that enter red blood cells. These form motile 

intracellular parasites, known as trophozoites (erythrocytic stage). Mitotic divisions 

occur in the cells giving rise to schizonts. These red cells rupture, releasing mature 

merozoites, most of which go on to parasitise other red blood cells, with the release of 

merozoites and cells debris. Other sporozoites remain in liver cells in a resting stage 

(hypnozites) that can be activated in malaria relapses weeks or months later. Some
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Chapter 1- General Introduction

parasites fuse to form gametocytes in the red blood cells and their life cycle completes 

only in the mosquito.

Female and male come together within the mosquito to form zygote-oocyte 

(sporocyst). Division and multiplication of the sporocyst take place to produce many 

sporozoites. These then migrate to the salivary gland, waiting to infect again.

1.1.5. History of antimalarials

Malaria-like febrile illnesses (with names like “the ague” or “paludism”) have been 

described since Hippocrates as fevers that are periodic and associated with marshes and 

swamps. The word “malaria” comes from the Italian “mal’aria” for “bad airs”.

In 1880, Charles Louis Laveran first observed parasites in the blood of a patient 

suffering from malaria. Six years later Camillo Golgi, an Italian neurophysiologist 

observed that the parasites produced differing numbers of merozoites (new parasites) 

upon maturity and release of merozoites into the blood stream resulted in fever. During 

the 1890s, Giovanni Batista Grassi, Raimondo Filetti, William H. and Stephens named 

the four human malaria parasites. Ronald Ross later demonstrated that malaria parasites 

could be transmitted from infected patients to mosquitoes.

About 400 species of Anopheles mosquitoes exist; however, only about 70 of these 

are indicated in human malaria transmission at different levels and different areas.

Typically this age-long disease has been associated with difficulties in diagnosis 

and control. Although after long exposures some people become protected with acquired 

immunity, it is not possible to achieve a complete sterile immunity. It is thought that 

about 60% of people infected show no symptoms, making case studies difficult. P. 

falciparum  malaria can lead to death and is influenced by other infectious diseases such 

as measles, malnutrition can also play a role. Vector control such as pesticides and 

mosquito nets have had limited success, so the main combat technique is through drug 

treatment. The development of a successful drug treatment is challenging due to the 

complexity of the protozoa’s life cycle, both in man and in mosquito vector. Immunity 

would have been the next line of combat, but allelic diversity and antigenic variation 

makes it difficult to develop a suitable vaccine.

7



Chapter 1- General Introduction

Several factors contribute to the persistence of the severe worldwide malaria 

problem. Efforts to control mosquito vectors, which were quite successful in some areas 

many years ago, have been limited by financial constraints and insecticide resistance. 

Current programs to treat and control malaria, especially in highly vulnerable young 

children and pregnant women, are severely limited in most endemic regions. An 

effective malaria vaccine is not yet available despite significant effort and is unlikely to 

be available to those who most in need it the near future. The problem is further 

exacerbated by malaria parasites who have consistently demonstrated the ability to 

develop resistance to available drugs. Although great strides have been made in the 

understanding of malaria in recent years, the development of new strategies to control 

the disease remains significantly limited by an incomplete understanding of the biology 

of the parasite and of the host response to parasite infection.

1.1.6. Malaria chemotherapy

What is remarkable about malarial fevers is that two herbal treatments, cinchona 

bark and qinghao, were used to treat malaria effectively for hundreds of years prior to 

the understanding of the mosquito cycle. Both quinine (derived from cinchona bark) and 

artemisinin (from qinghao), which remain of prime importance in the control of malaria, 

are natural products (Figure 3).

1, quinine

Figure 3

2, artemisinin

At present, important antimalarial drugs include a number of quinolines, 

inhibitors of enzymes required for folate metabolism, some antibiotics, a series of
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Chapter 1- General Introduction

endoperoxides related to the natural product artemisinin, and the 

hydroxynaphthoquinone atovaquone (Figure 4). Notably among them were artemisinin 

and quinine derivatives, each with its own pharmaceutical limitations (Table 1).

3, R(|3)= Me, artemether
4, R(a)= COCH2 CH2 CO2 H, artesunate
5, R(a)= CH2Ph(C02H)-p, artelinic acid

6, R= C2H5, chloroquine
7, R= H, desethyl chloroquine

8, Amodiaquine

Cl OH

9, Mefloquine 10, C8R; C9S, quinidine 12, Halfan- halofantrine hydrochloride
11, C8S; C9R, quinine

H?N
OCH3

OCH,
II

13, Pyrimethamine 14, H, R Cl, Proguanil
15, R -  Cl, R2= Cl, chloroproguanil 16, Sulfadoxine

Cl

HjN NH,

S 
02

18, Dapsone

Figure 4: Example of some existing antimalarials.
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Drug Class Use Side effects

Chloroquine 4-

Aminoquinoline

Treatment and 

chemoprophylaxis 

of sensitive parasites

Cardiotoxicity, vomiting, 

rashes, itching and 

behavioral alterations.

Artemisinins Sesquiterpene

lactone

endoperoxides

Treatment of 

multidrug-resistant 

P .falciparum

Neurotoxic in animal

models

embryotoxic

Amodiaquine 4-

Aminoquinoline

Treatment of some 

chloroquine-resistant 

P.falciparum

Hepatitis and 

agranulocytosis

Quinine/

Quinidine

Quinoline

methanol

Treatment of 

chloroquine resistant 

P.falciparum

Fever, confusion, respiratory 

arrest and arrhythmias, 

cinchonism (tinnitus, giddiness, 

blurred vision), hyperglycemia 

and hypertension.

Mefloquine

(Lariam)

Quinoline

methanol

Chemoprophylaxis 

and treatment of 

P.falciparum

Anxiety, depression, 

hallucinations, acute psychosis 

and seizures, transcient CNS 

toxicity, giddiness, convulsions, 

insomnia, neuropsychiatrie 

reactions, gastrointestinal 

disturbances.

Primaquine 8-

aminoquinoline

Radical cure and 

terminal prophylaxis 

of P.vivax and ovale

Methaemaglobinaemia with 

cyanosis hemolysis

Pyrimethamine/

sulfadoxine

(Fansidar)

Folate

antagonist, sulfa 

combination

Treatment of some 

chloroquine-resistant 

P.falciparum

Haemolytic anemia and 

agranulocytosis, skin rashes 

and megaloblastic anemia,5 

Headache, itching, insomnia, 

muscle aches, convulsions, 

nausea, shortness of breath, 

cough, rash, diarrhea, blood 

disorders
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Chapter 1- General Introduction

Proguanil Folate

antagonist

Chemoprophylaxis 

(with chloroquine)

Stomach upset and mouth 

sores, skin rush

Doxycycline Tetracycline

antibiotic

Treatment of P .f 

(with quinine); 

chemoprophy laxi s

Headache and sun 

sensitivity

Halofantrine Phenantbrene

methanol

Treatment of some 

chloroquine resitant 

P.falciparum

Abdominal pain, 

gastrointestinal 

disturbances, headache, 

cough, cardiac deaths, 

hemolytic anemia and 

convulsions6

Atovaquone 

(Malarone, 

combined with 

proguanil)

Quinone Treatment and 

chemoprophylaxis of 

P.falciparum (with 

proguanil)

Rash, fever, vomiting, 

diarrhea and headache.

Table 1: Some existing antimalaria s, their uses and their side effects.

Most of the antimalarials are used in combination for a total clearance of the parasite in 

the host’s blood. For example, artemether/ lumefantrine (whose marketed name is 

Coartem), atovaquone/ proguanil (Malarone), artesunate/ amodiaquine (ASAQ) are such 

combinations.

1.1.7. Drug resistance

We are presently at a critical juncture in the history of the chemotherapy of malaria 

as an increasing drug resistance is leading to the need to rethink therapeutic approaches.

The World Health Organization (WHO) defines “drugs resistance” as the “ability 

o f parasite strains to survive and/or multiply despite the administration and absorption of 

a drug given in doses equal to or higher than those usually recommended but within 

tolerance of the subject”. This was modified to include the phrase “the form of the drug
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Chapter 1- General Introduction

active against the parasite must be able to gain access to the parasite or the infected
• 7 9erythrocyte for the duration of the time necessary for its normal action”.

Drug resistance involves mutations in the drug target so that the drug does not bind 

or inhibit the target, as well as expressing higher levels o f the target, which can be 

accomplished either through increased transcription and translation or gene 

amplification, resulting in the requirement for higher levels of drugs to achieve the same 

level of inhibition.

Plasmodium falciparum became resistant to the antimalarial drug chloroquine 

through mutations in a single parasite gene which acts both as a shield and a chink in the 

armor of P. falciparum by making the parasite less susceptible to chloroquine, but more 

susceptible to some others antimalarials. Chloroquine interferes with the detoxification 

of haematin in the parasite’s food vacuole. Resistance is associated with reduced 

accumulation of chloroquine in the vacuole, which results from reduced uptake of the 

drug, increased efflux, or a combination of the processes.10

It is becoming an increasingly serious problem as malaria parasites develop 

resistance to others drugs such as mefloquine. There is therefore considerable urgency to 

develop new classes of antimalarials.

1.1.8. New compounds, new approaches and new targets

Many approaches to antimalarial discovery are now available. Among important 

efforts that are currently ongoing are the optimization of therapy with available drugs, 

including use of combination therapy, the development of analogs of existing agents, the 

discovery o f natural products, the use of compounds that were originally developed 

against other diseases, the evaluation of drug resistance reversers and the consideration 

of new chemotherapeutic targets.

To optimize therapy with existing drugs, new dosing and formulations are 

developed. Combinations therapies (e.g. artemisinin derivatives, atovaquone, 

amodiaquine/sulfadoxine/pyrimethamine,11 chlorproguanil/ dapsone12) are under study 

as first-line therapies in areas with widespread resistance. Combining antimalarials are

12



Chapter 1- General Introduction

very effective and slow the progression of parasite resistance to new drugs (e.g.
i -5

artesunate/mefloquine).

Another approach to antimalarial chemotherapy is to improve upon existing 

antimalarials by chemical modifications of these compounds. Many existing 

antimalarials have been developed through this approach. For example, chloroquine, 

primaquine and mefloquine were synthesized from quinoline which derived from 

quinine;14 also new peroxides related to artemisinin15 and new folate antagonists16 are 

under study. Recent work has identified specific mutations in genes encoding target 

enzymes, which inhibits folate pathway enzymes.17

Natural products are the source of the most important drugs currently available to 

treat severe falciparum malaria, quinine and derivatives of artemisinin, therefore a plant 

product with specific clinical activity can be the starting point for a medicinal chemistry 

effort. Lately, it has been shown that curcumin, derived from turmeric (a yellow spice 

used in many Indian dishes) can be used against malaria, HIV and the virus that triggers 

cervical cancer.18

A fourth approach to antimalarials is to identify drugs that are developed or 

marketed as treatments for other diseases. The advantage is that the drug has already 

been given to humans, so will be quite inexpensive to develop as antimalarials.

Some drugs have been able to reverse the resistance of P. falciparum, which 

offers a new approach to chemotherapy. It appears that the inexpensive and efficient 

antimalarial may be resurrected by combination with effective resistance reversers.

Progress towards the characterization of the biology of malaria parasites has 

given rise to new targets for antimalarial therapy, which are considered based on their 

locations within the malaria parasite. The targets locations are the cytosol, the parasite 

membrane, the food vacuole, the mitochondrion and the apicoplast.

13



Chapter 1- General Introduction

1.2. Artemisinin

1.2.1. The discovery of artemisinin

Artemisinin (2) (qinghaosu) is an unusual 1,2,4-trioxane (Figure 5), which has 

been used clinically in China for the treatment of multidrug resistant Plasmodium 

falciparum malaria.19

Artemisia annua -sweet wormwood or qinghao (pronounced “ching-how”) -  was 

also used by Chinese herbal medicine practitioners for at least 2000 years, initially to 

treat hemorrhoids. The earliest description of qinghao herb for treatment of malaria- 

related symptoms is found in the writings of Ge Hong (281-340 AD), because of the 

antipyretic activity of the tea-brewed leaves.

In 1596, Li Shizhen, a famous herbalist, recommended this herb for fever, and
90specified that the extract must be prepared in cold water.

In 1967, the government of the people’s Republic of China established a program 

to screen traditional remedies for drug activities21 in an effort to professionalise 

traditional medicine. Qinghao was tested in this program and found to have potent 

antimalarial activity. In 1972, the active ingredient was purified and named qinghaosu 

(essence of qinghao). Qinghaosu and derivatives were then tested on thousands of 

patients. Artemisinin derivatives are now widely used in Southeast Asia and are starting
99to be used elsewhere.

Research from various groups have established that the 1,2,4-trioxane peroxide 

linkage and the dialkylperoxide (figure 4) are essential or responsible for the
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antimalarial activity of artemisinin and its derivatives because the deoxyartemisinin is 

completely devoid of biological activity.

A direct comparison of in vitro values reveals that arteflene activity is about 10% 

that of qinghaosu against a battery of resistant lines of P. falciparum.24 The carba- 

artemisinin analogue in which the non peroxidic oxygen atom in the trioxane 

pharmacophore in artemisinin is replaced by carbon has been constructed by an elegant 

total synthesis. This molecule has a simple peroxide pharmacophore, and displays an 

activity against P. falciparum that is about 4% of that of artemisinin.25 Thus, the trioxane 

pharmacophore is essential for the expression of optimal antimalarial activity.

So far no clinical resistance has been found against the artemisinin class of 

antimalarial drugs, and they are effective against multidrug-resistant strains of 

Plasmodium falciparum.

1.2.2. Mechanism of action of artemisinins

There is no definite explanation of the mechanism of action of artemisinin and 

related peroxide-containing compounds.

I.2.2.I. Parasite-specific proposed mechanisms of action

In vitro antimalarial activity of artemisinin was shown to be sensitive to steric 

effects, based on this observation Krishna and co-workers suggested that the molecule 

undergoes activation after binding to a specific site. ’ Eckstein-Ludwig and co

workers showed that artemisinin specifically inhibits PfATP6 (or parasite encoded 

Sarco/Endoplasmic Reticulum Ca2+-ATPase),28 which is responsible for the maintenance 

of calcium ion concentrations. It was suggested that artemisinin binds to the protein by 

hydrophobic interactions whilst leaving the peroxide bonds exposed (not covered by the 

binding pocket).29 This allows cleavage of the peroxide bridge by iron to generate 

carbon-centered radicals (as discussed later in section 1.2.2.2), leading to enzyme 

inactivation and parasite death.
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However, enantiomers of trioxanes structurally related to artemisinin showed 

equivalent levels of activity against chloroquine-sensitive, chloroquine-resistant, and 

multidrug-resistant strains of P. falciparum ,30 These results imply that activation of 

artemisinin does not depend on stereospecific interaction with a protein. In addition, 

introduction of bulky side groups to artemisinin may cause either a decrease in activity 

or increased activity, depending on which residues are added.31 Both points weaken the 

theory that a protein-binding site is crucial for artemisinin activity.

I.2.2.2. Non-specific proposed mechanisms of action

The endoperoxide bridge, present in artemisinin and all its derivatives, is 

essential for antimalarial activity. This was demonstrated by the lack of activity of 

deoxyartemisinin, a reduced form of artemisinin in which a single oxygen replaces the 

endoperoxide bridge.32 Based on this finding, the mechanism of action of artemisinin is 

believed to involve an interaction with ferriprotoporphyrin IX (“heme”), or ferrous ion, 

in the acidic parasite food vacuole which results in the generation of cytotoxic radical 

species.33

Carbon radicals are formed by heme located within the lipid bilayer and mediate 

the production of allylic C-radicals on unsaturated lipids. These become lipid peroxides 

in the presence of O2 going on to produce hydroxyl and superoxide radicals. These 

species can then cause oxidative damage to receptors and enzymes positioned in the 

vicinity of the lipid bilayer, which leads to vacuole rupture and parasite auto-digestion.34 

Treatment of erythrocytes with artemisinin caused a proportion of the cells to lyse 

dependent on the dose give though these experiments were performed at drug 

concentration up to 103-105 times higher than effective concentration tested in vitro.35

Endoperoxides are known to be unstable, especially in the presence of iron, and 

to breakdown to form free radicals. Studies using synthetic trioxanes and a magnesium 

centred synthetic metalloporphyrin were undertaken. These examined the nature of the 

coordination between the peroxide moiety and heme and the resulting cleavage of the 

peroxide bridge. It was found a close interaction between the peroxide bond and the 

metal center is required indicating that the activation of the peroxide moiety occurs
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through an innersphere electron transfer. Also, the ability to carry out alkylation is 

essential for the antimalarial activity of artemsinin.36,37

Two models of artemisinin antimalarial mechanism of action are suggested, both 

of which show formation of free radicals, mediated by iron (Scheme 1).

radical
ring contracted 
THF acetate

Fe(ll) to 01

Fe(ll) to 02 C3-02 bond 
scission

(lll)Fe—O deoxoartemisinin

(VI)Fe=0

4-hydroxy
deoxoartemisinin

Scheme 1. Iron degradation suggested mechanism
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1.2.3. Hemoglobin digestion in parasite’s food vacuole

The Plasmodium food vacuole houses the specialized components of malarial 

hemoglobin catabolism (Figure 6).

•3 o

Figure 6: Metabolic processes within the Plasmodium food vacuole

Hemoglobin is degraded by proteases, generating amino acids and free heme. The 

heme is crystallised to hemozoin,39 possibly by the action of histidine-rich proteins. Free 

heme could also [1] react with molecular oxygen, generating reactive oxygen species 

that are scavenged by host or [2] be degraded, liberating iron, some of which is probably 

utilised by the parasite.

Free heme is a toxic by-product of hemoglobin degradation. Free heme can cause 

enzyme inhibition, peroxidation of membranes, production of free radicals, and impaired 

leukocytes function.40, 41 Plasmodium falciparum has little or no heme oxygenase (the 

enzyme used by vertebrates to catabolize heme). All Plasmodium species have a unique 

capability to detoxify heme in the food vacuole by polymerizing it into a crystalline 

structure called hemozoin, or malarial pigment.42'44
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Inhibiting hemoglobin degradation within the food vacuole is a valid approach to 

antimalarial chemotherapy. Multiple plasmepsins45 and falcipains have been identified 

in the food vacuole. Plasmepsin-1 and plasmepsin-2 are able to cleave undenatured 

hemoglobin between phenylalanine and leucine residues; it is suggested that Falcipain- 

246 and falcipain-347 would digest native hemoglobin, therefore participate in the initial 

cleavage of hemoglobin.

1.2.4. Problems with artemisinin derivatives

Typical of most natural products, artemisinin is associated with limited 

availability, high cost, as well as poor oral bioavailability and short half life. For parent 

compounds, such as artesunate, which have very short half-lives (<10min), the 

antimalarial effect is less important than that of their metabolite, DHA, whose half-live27 

is somewhat longer (,-M h). Due to high recrudescent rates resulting from their short 

plasma half lives as a monotherapy, it is recommended that artemisinin should be 

combined with more slowly eliminating drugs such as mefloquine or lumefantrine.48'50

The main goal of research described in this thesis was the synthesis of new 

artemisinin analogues that combine both improved water solubility and metabolic 

stability with enhanced antimalarial activity.

The first part of the project was focused on the synthesis of alkylamino substituted 

pyrrole analogues. The second part involved the synthesis of sulfone derivatives

1.3. Inhibitors of parasite respiration

Atovaquone (20), a naphthoquinone antimicrobial agent, is classed as a quinone. 

Its combination with Proguanil (21), trademarked Malarone, has been developed during 

the 1990’s and has been approved for treatment of falciparum malaria in more than 30 

countries (Figure 7). Atovaquone affects parasite’s mitochondrial functions 

selectively,51 and is used to treat pneumonia and toxoplasmosis. Atovaquone couldn’t be 

used as monotherapy because the parasite developed a mutation of a cytochrome b gene
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localized in the mitochondrial genome.52 Addition of proguanil solved the resistance
53problem and this synergistic agent has overcome the rate of treatment.

20, Atovaquone
Figure 7
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21, Proguanil

Malarone is the best current drug to treat resistant strains of Plasmodium 

falciparum. It is expensive due to the stereochemistry of atovaquone and a synthetic 

route that includes 6 steps.54

1.3.1. Development of Atovaquone

Atovaquone is a naphthoquinone belonging to a family of compounds that have 

been investigated as antimalarials for over 50 years. During World War II, research on 

new antimalarials (Figure 8), including investigations on naphthquinone, has been 

carried out, in order to find an alternative to quinine. Hydrolapachol, derived from 

lapachol,55 was found to have an antimalarial activity. Hundreds of lapachol analogues 

were then synthesised and tested, which led into lapinone, needed in large doses to treat 

vivax malaria.

In the 1960s, coinciding with the emergence of chloroquine resistance, there was a 

renewed interest in developing hydroxynaphthquinone analogues, such as menoctone 

whose clinical trials were disappointing.56 Parvaquone was first synthesized and was 

identified as a good anti theilerial as well as menoctone.57 Modifications of the 

cyclohexyl moiety of parvaquone gave rise to atovaquone, which is metabolically stable 

and has a broad-spectrum against a number of encaryotic pathogens, including malaria
• 58parasites.
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Cultured Plasmodium falciparum isolates from different parts of the world were 

inhibited by atovaquone at low molecular concentrations (IC50 0.7-4.3 nM), although 

some strains of Plasmodium falciparum were relatively resistant. In vivo tests were 

carried on mice infected with P. yoelii and P. berghei, on Aotus monkeys infected with 

P. falciparum, the drug was found to be highly effective in curing malaria. When 

atovaquone was given to patients with P. falciparum in the United Kingdom, a prompt 

clinical response with removal of the parasites from the blood was observed, however 

most patients developed recrudescent malaria.59 Some extensive studies in Thailand,53 

and in Zambia,60 demonstrated that the parasite was completely cleared of the blood for 

two thirds of the patients, while the other third developed recrudescent malaria. 

Sensitivity to atovaquone was assessed from several recrudescing patients. Although all 

of the parasites isolated upon admission of the patients were sensitive to atovaquone 

with an IC50 of ~ 3.3 ng/mL, the paired recrudescent parasites showed high level of 

resistance (ICsoof >3000 ng/mL).53 Atovaquone as a stand-alone antimalarial, was found 

to be unacceptable.

A search for a partner drug with atovaquone was necessary to reduce the chance of 

drug resistance development. Atovaquone combined with a number of other 

antimalarials (tetracycline, doxycycline, pyrimethamine and proguanil) were 

investigated, few drugs had additive effects, while others had antagonistic effects.61 

Proguanil was found to have the best synergistic action when tested against three 

different P. falciparum isolates. Proguanil is cheap to produce, has a favorable safety 

profile and has been used as an antimalarial for almost 50 years, although it failed to 

clear the parasites on its own for 90% of the patients in Thailand.53
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A mechanism explaining the synergy between atovaquone and proguanil has been
fOrecently proposed.

1.3.2. Mechanism of Atovaquone action

Atovaquone is a substituted 2-hydroxy-naphthoquinone that is used therapeutically 

to treat Plasmodium falciparum malaria, Pneumocystis carinii pneumonia, and 

Toxoplasma gondii toxoplasmosis. It is thought to act on these organisms by inhibiting 

the cytochrome bc\ complex,63 atovaquone binds tightly and competitively to the 

ubiquinol oxidation site of the cytochrome bc\ complex, between the cytochrome b and 

the iron-sulfur protein.64

Cytochrome bc\ complex is found in the mitochondria of Plasmodium falciparum. 

Mitochondria’s function is to generate an electrochemical gradient across the inner 

membrane, which is then used as an energy source for the myriad of synthetic and 

transport activities associated with motochondria. Atovaquone is a potent and selective 

inhibitor of the cytochrome bc\ complex of mitochondria electron transport in P. 

falciparum, which leads to the death of the parasite.65

Electron transfer processes (Equation 1) are of great importance in many 

metabolic pathways of living organisms. They are essential for the parasite’s respiration, 

in which energy gained by oxidation of nutrients is converted into energy of the 

anhydride bond of ATP. Energy conversion is achieved by coupling the transfer of 

electrons to the translocation of protons across a lipid membrane. The generated 

electrochemical proton gradient is used for ATP synthesis.

The mitochondrial respiratory chain consists of four large multisubunit membrane 

protein complexes embedded in the inner mitochondrial membrane that are linked by the 

freely diffusible electron carriers ubiquinone (UQ) and cytochrome c (Cyt c) (Figure 9).
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Figure 9
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Ubiquinone, co-enzyme Q (27), is found in the inner membrane of the 

mitochondria and take part in the electron transport chain. Indeed, cytochrome bc\ 

complex, also called ubiquinol-cytochrome c oxidoreductase or complex III, catalyses 

the respiration chain which takes place in the inner membrane of the mitochondria. 

Complex III included the Rieske iron-sulfur protein, cytochrome b and cytochrome c\. 

The transfer of electrons from ubiquinol to cytochrome c and the associated proton 

translocation is highlighted in the following equations (Equation 1 - Scheme 2):

C oQ H 2 + 2 Fein-cytochrom e c ------► CoQ + 2 Fen-cytochrom e c

Equation 1. Redox equation of ubiquinone with iron in cytochrome c

Scheme 2. Oxidation of Ubiquinol
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To understand the mechanism of electron transfert in cytochrome bc\ complex, 

several crystal structures of this complex have been obtained. The complex III, including

have been described.

1.3.3. New lead molecules against cytochrome Aci-complex

As the structure of the cytochrome bc\ complex is well known, we can show by 

computational modelling the binding of atovaquone to the bc\ complex. Some studies 

have screened a library of 2-hydroxy-naphthquinones substituted at position 3 with 

aromatic, cyclic, and non-cyclic alkyl chains for inhibition of bc\ complex activity. 

Some compounds of this library have been tested in order to establish a quantitative 

structure/ activity relationship (SAR) based on side chain length. These comparisons 

allow a starting point to develop some new inhibitors of the cytochrome bc\ complex, 

such as 2-hydroxy-naphthquinone with linear alkyl side-chain at position 3 (Figure

1.4. Conclusion.

As a result of parasite drug resistance, and lack of drug development, there are 

more people dying of malaria now than there were 20 years ago. Recognition of this 

problem by the international community and the engagement of the pharmaceutical 

industry and other key stakeholders, has catalysed the concerted search for new 

antimalarial drugs with novel targets.70'72

cytochrome bc\ and ubiquinol, was purified from beef heart mitochondria66,67 and from 

the yeast.68 The chemical composition and spectrophotometric properties of the crystal

O
Figure 10
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The two following chapters elaborate the synthesis of semi-synthetic analogues 

from dihydroartemisinin and synthetic quinolones to target the hemoglobin degradation 

pathway and the cytochrome bc\ complex.
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2. Synthesis of C-10 heterocyclic derivatives of dihydroartemisinin (DHA)

2.1. Introduction

The artemisinins (1-5) are the most efficient and fast acting antimalarial drugs used 

in malaria chemotherapy. However, derivatives 2-5 are cleared from blood within 2 

hours and parasites that are not all killed within this time can re-emerge resulting in 

recrudescence o f the disease in the patient. In order to prevent recrudescence,1 the 

artemisinins are used in combination therapies with drugs that have longer half lives (eg 

amodiaquine, mefloquine, sulfadoxine/pyrimethamine or lumefantrine).2'5

The therapeutic value of artemisinin (1), qinghaosu, is limited to a great degree by 

its low solubility in both oil and water. Therefore a number of more soluble derivatives 

have been developed, such as DHA (2), artemether (3),6 arteether (4)7 and sodium
O Q

artesunate (5) ’ to enhance their absorption (Figure 1).

Figure 1. Existing artemisinin derivatives.

Lipophilic artemisinins, such as artemether and arteether, although they are more 

potent than artemisinin, produce fatal central nervous system toxicity in high dose in rats
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and dogs.10' 12 Because of their lipophilicity, it is proposed that these derivatives get into
13the brain and form free radicals, which destroy neurones.

To treat advanced cases of P.falciparum malaria, a water-soluble derivative of 

artemisinin is required, which can be delivered quickly by intramuscular injection. The 

water-soluble sodium artesunate is currently the drug of choice14 and is administered in 

combination therapy most often with mefloquine.15

The major challenge in this field is to prepare a semi-synthetic analogue from 

DHA in only one or two high yielding steps to provide analogues with a log P of less 

than 3.25 and which is more metabolically stable than artesunate (5) or artemether (3).16 

In this project we have explored an approach to new, more water-soluble analogues of 

DHA based either on polar C-10 pyrrole derivatives or on carboxyl isosteres linked to 

the C-10 position of artemisinin.

2.2. Pyrrole analogues

2.2.1. Introduction

Several “mechanism-based approaches” have been investigated for improving the 

antimalarial activity of artemisinin derivatives. These include the incorporation of 

groups to enhance the stability of proposed “parasitisidal intermediates” and the covalent 

attachment of “iron chelator functionality” to enhance the interaction of the peroxide 

bridge with available “free iron” in the food vacuole of the parasite.17

A major drawback of many semi-synthetic analogues including artemether is that 

they undergo rapid metabolism in vivo, yielding initially DHA (2) via cytochrome P450- 

mediated dealkylation.18 This results in a short half-life since DHA is rapidly 

glucuronidated to produce a glucuronide (7) that is excreted into the bile and the urine.19 

A recent synthesis by O ’Neill and Stachulski has confirmed that the mammalian 

metabolite of DHA (7) has C-10a configuration (Scheme l).20
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3 6 2 7

Scheme 1. i) Cytochrome P450, monohydroxylation (Phase I metabolism); ii) 

elimination of CH20 ; iii) glucuronidation (Phase II metabolism).

The C-10 carba linkage (Figure 2) increases stability and is expected to produce a 

molecule with a longer half-life.

R= alkyl, aromatic

Figure 2. Artemisinin’s analogue with C-10 carba linkage

It has been proposed that the incorporation of an amino functionality will enhance 

drug activity by increasing the cellular accumulation within the acidic (pH 4.7) parasite 

food vacuole by “ion trapping” (Figure 3).21 The higher concentration of drug available 

for interaction with heme, which enhances generation of the required alkylating species, 

may have been responsible for the increased antimalarial activity observed in the study 

led by O’Neill and co-workers.22 In this work, several amino alkyl analogues of 

artemisinin were shown to be more potent than artemisinin or artemether in in vitro 

cultures of Plasmodium falciparum.
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Figure 3. Protonation of amine functionality on artemisinin within the parasite Food 

Vacuole (FV). Once the drug has acquired a positive charge by protonation it is 

effectively “ion-trapped” within this organelle.

2.2.2. Synthesis of pyrrole analogues of artemisinin

This section focuses on the synthesis of C-10 pyrrole analogues of 

dihydroartemisinin. We chose the synthesis of C-10 pyrrole analogues with Mannich 

side chains as target molecules for the following reasons:

• C-10-aryl artemisinins or C-10-hetaryl systems cannot generate DHA by 

hydrolysis or metabolism.

• The Mannich side chain provides molecules that have the potential to be 

formulated as salts.23

• Amines should accumulate more in the acidic digestive vacuole of the
. 21 24parasite. ’

Three different approaches were explored for the synthesis; first, the C-10 

heterocyclic analogues 8-9 were synthesised directly from 2 in the presence of a Lewis 

acid using the nucleophilic //-pyrrole and A-methylpyrrole (Scheme 2). This particular 

heterocycle was chosen as the electron rich ring provides scope for the introduction of 

electrophiles at the C-5 position following incorporation on to the artemisinin scaffold.
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2 R= H: 8, 77%
R= Me: 9, 84%

Scheme 2. Reagents and conditions: i) BF3.Et20, pyrrole or iV-methylpyrrole, DCM, - 

50°C, 30 mins.

The stereochemistry at the C-10 position was determined by *H NMR 

spectroscopy. The signal due to H10 appears as a doublet at 4.49 ppm with a 3Jhio-h9 

value of 10.8 Hz, which is indicative of a trans-trans diaxial relationship between H10 

and H9.25 This stereochemistry is believed to be purely steric as the bulky pyrrole ring 

prefers to attack the oxonium intermediate in an equatorial position and adopt an anti 

position to the methyl group (Figure 4).

U U
o o

Me Me
Figure 4. Newman projection of C-10a and p pyrrole analogue.

Secondly, the synthesis of 8 was made via an intermediate, 10 formed by treatment 

of DHA with acetic anhydride in DMAP.22 The better anomeric leaving group allows 

smooth formation of the oxonium ion 11 which was easily intercepted with the 

nucleophilic pyrrole ring, with little formation of the by-product anhydroartemisinin 12.
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BF3.Et20  catalysed reaction of 10 with the pyrrole led to the formation of the product 8 

in good yield and some side-product anhydroartemisinin (Scheme 3).

Scheme 3. Reagents and conditions', i) DMAP, pyridine, acetic anhydride, DCM; ii) 

BF3.Et20 , DCM, -50°C, 30 mins; iii) pyrrole, DCM, -50°C, 30 mins.

Formation of anhydroartemisinin (12) followed the mechanism below (Scheme 4). 

This by-product is formed by dehydration in the absence of a nucleophile.

Scheme 4. Mechanism of formation of AHA; i) BF3.Et20 , DCM, ii) Deprotonation.

Thirdly, acylation of 2 with benzoyl chloride with pyridine as the nucleophilic 

catalyst22 gave 13. Treatment of the pyrrole catalysed by BF3.Et20  gave 8 via SnI with
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the oxonium ion 11 as an intermediate. The a  configuration is preferred for 8 because 

pyrrole is bulky, therefore it attacks the oxonium in equatorial (Scheme 5).

2 13, 93%

11 8, 37%

Scheme 5. Reagents and conditions: i) PhCOCl, pyridine, DCM, 0°C; ii) BF3.Et20, 

pyrrole, DCM, -50°C, 30 mins.

We observed that the a  configuration is the major product for 10 and 13 because 

the C-10 position of artemisinin is analogous to a sugar anomeric center, with the 

anomeric hydroxyl predominantly equatorial,26 therefore the acylation takes place 

mainly in equatorial position.

It can be concluded that there is no benefit from synthesis via 10a  and (3-acetate 

and lOa-benzoate derivatives as the overall yields were not as good as the direct route to 

obtain 8 with 77% yield.

We were particularly interested in the pyrrole synthesis because the electron-rich 

ring is suitable for a wide range of electrophilic manipulations. We therefore attempted 

the synthesis of a variety of analogues from 8 and 9 based on Mannich chemistry to 

incorporate an amino-alkyl side-chain.
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Due to the amino functionality in these analogues and improved water-solubility, 

we anticipated improved in vitro and in vivo antimalarial activities based on the 

observations made with other semi-synthetic amino-alkyl artemisinin derivatives. ’ ’

2.2.3. Analogues made via Mannich reaction

Mannich reactions carried out under classical aqueous reaction conditions may 

evolve depending on the nucleophilicity of the substrate and more particularly on the pH 

of the solvent system. The failure of an attempted Mannich reaction may be attributed 

either to the weak electrophilicity of the particular intermediate involved or conversely 

to the low nucleophilicity of the substrate.

The Mannich reaction can be performed in many ways.29, 30 Heaney and co

workers formed iminium salts (16) from in situ reactions of aminals (14) or aminols 

ethers (17) with heterocycles and chlorosilanes (Scheme 6).31

R2N NR2 + MeSiCI3

14

R2N OR’ '+ MeSiCI3

17

©

Cl Cl Cl
, / \©  siR2N X  

R R
15

R,©
o 'N =R © 

Cl
16

Cl Cl
r -n -'s;"I

R

Cl

R2N

e ci p,
- g ' Si-I

R
18

Scheme 6

R,©
N =

R' ©
Cl
16

Cl Cl\ /
_SL R’O ^

We chose to carry out this reaction on the pyrrole ring in acidic conditions using 

formaldehyde and several secondary amines. The mechanism involves the preliminary 

formation of an iminium salt 23 from the amine and formaldehyde (19). Acid-catalysed 

elimination of water gave 23. The electrophilic salt adds to the pyrrole ring’s 2-position 

because the intermediate 24 is more stable due to its linear conjugated system to give 25 

(Scheme 7).
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Scheme 7. Mechanism of the Mannich reaction.

32 33The application of Mannich reactions has been widely reported in literature. ’ 

We performed this reaction by sequentially dissolving 8 or 9 at r.t. in ethanol, followed 

by addition of the secondary amine (3.2 equiv.), formaldehyde (3.2 equiv.) and acetic 

acid (1.0 mL in 5.0 mL EtOH). The reaction mixture was then left for half an hour and 

quenched with sodium hydroxide. The crude product was extracted with DCM and the 

organic phase washed with brine. Purification by flash chromatography gave the 

Mannich product (Scheme 8).

R= H: 8 
R= Me: 9

R= H: 26-31 
R= Me: 32-38

Scheme 8. Reagents and conditions', i) CH20 , secondary amine, AcOH, EtOH, r.t., 30 

mins.

41



The above conditions were used to prepare 26-31 from 8 in acceptable yields 

(Table 1). The Mannich reactions gave lower yields with the amines diethylamine, 

piperidine and pyrrolidine.

Similarly, 32-38 were synthesised from 9 in very good yields (Table 1). The high 

yields could be explained by the fact that the //-methyl group gives electronic density to 

the pyrrole ring by inductive effect, suggesting that the TV-methylpyrrole ring is a better 

nucleophile than //-pyrrole. Due to the better nucleophilicity of A-methylpyrrole, the 

yields for the Mannich reactions from 9 are higher than reactions from 8.

Chapter 2- Synthesis of C-10 heterocyclic derivatives of dihydroartemisinin

Repetition of the Mannich reaction with commercial Eschenmoser’s salt (Scheme 

9) gave 39 and 40 in 70% and 86% yields respectively.

R= H: 8 R= H: 39, 70%
R= Me: 9 R= Me: 40, 86%

Scheme 9. Reagents and conditions: i) [CH2N(CH3)2]+f , acetonitrile, r.t., 24 hrs.

Sulfone formation

There are several ways to oxidise sulfides into sulfones, such as mCPBA,34 oxone35 

and urea hydrogen peroxide.36’37 Thioether 37 was oxidized to its corresponding sulfone 

(41) by treatment with catalytic amount of TPAP and NMO in DCM in 35% yield 

(Scheme 10).
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H ? H ?

N S 0 2

37 41, 35%

Scheme 10. Reagents and conditions: i) TPAP, NMO, DCM, r.t., 24 hrs.

Storage of the Mannich derivatives for a month at r.t. indicated some instability. 

They were re-purified by column chromatography. Although the Mannich derivatives 

were kept in the freezer, they would partly decompose after few months and had to be 

purified before antimalarial assessment. It was observed that the pyrrole derivatives 

containing either a piperazine, morpholine or thiomorpholine ring system were more 

stable than those having single nitrogen in the Mannich side-chain.

The table below shows the artemisinin derivatives prepared (Figure 5), their 

corresponding calculated log P and yields (Table 1). Solubility is expressed by log P 

(where P= partition coefficient between octanol and water). Ideally the log P must be 

lower than the neurotoxic artemether (3.3-3.5) or arteether (3.99) to resolve the problem 

of blood-brain barrier penetration. Log P values of no more than 3.25 are desirable.16 

Polar groups can be used to enhance aqueous solubility; these may be hydrogen-bond 

donor and/or acceptor groups. Therefore 41, with calculated log P of 2.21, is the most 

water soluble compound; also the morpholine derivatives (27 and 32) appear to have 

lower log P.
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Table 1: Semi-synthetic artemisinins prepared

Compound Structure -R Structure -R ’ logP Yield (%)

8 -H - 3.56 77

9 -Me - 3.80 84

26 -H
—h/

4.24 24

27 -H

O'1 3.16 70

28 -H
—r /  \ l —

3.32 60

29 -H
— u ^N—

3.97 70

30 -H
- o

4.29 35

31 -H

0
z1

_____
1

3.88 24

39 -H /
—N

\
3.56 70

32 -Me

O'1 3.40 75

33 -Me ¡6 1 3.55 83

34 -Me
—t /  Vi—^

4.21 76

35 -Me
- o

4.53 88

36 -Me
“ O

4.11 97

37 -Me
—Nx Z ys

4.12 90

38 -Me _o~o 4.06 54

40 -Me /
—N

\
3.80 86

41 -Me Csl
0

0
z1 2.21 35
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R= H: 26-31,39  
R= Me: 32-38 ,40 ,41

Figure 5. Artemisinin derivatives made.

2.2.4. Failed approach to iV-sulfonyl pyrrole Mannich analogues

To increase the polarity of DHA derivatives, we attempted functionalisation of the 

nitrogen of the pyrrole ring with a polar group such as toluene sulfonyl. Deprotonation 

of 8 with NaH followed by addition of para-toluene sulfonyl chloride gave 42. 

However, the Mannich reaction on 42 failed possibly due to the fact that toluene 

sulfonyl, being an electron withdrawing substituent, takes the electronic density of the 

pyrrole ring, therefore preventing attack of the iminium salt (Scheme 11).

Scheme 11. Reagents and conditions: i) NaH, para-toluene sulfonylchloride, toluene, 

0°C, 2 hrs. ii) AMsopropylpiperazine, formaldehyde, acetic acid, ethanol, r.t., 30 mins.

Alternatively, we prepared 29 by performing the Mannich reaction on 8 with 

isopropylpiperazine in 70% followed by treatment of 29 with para-
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toluenesulfonylchloride in basic conditions. Again the second step failed, perhaps due to 

the fact that the nitrogen of pyrrole ring is too hindered to be functionalised (Scheme 

12).

Scheme 12. Reagents and conditions: i) formaldehyde, acetic acid, ethanol, r.t., 30 mins, 

ii) NaH,/?ara-toluene sulfonylchloride, toluene, 0°C, 2 hrs.

From the small library of artemisinin analogues made, a selection was screened for 

their antimalarial activity.

2.2.5. Antimalarial activity

2.2.5.I. In  vitro testing

The antimalarial activity of the Mannich derivatives was firstly evaluated in vitro 

against chloroquine resistant K1 and then chloroquine sensitive 3D7 strains of P. 

falciparum by [3H]-hypoxanthine incorporation using some artemisinins and 

chloroquine as positive controls.

The activity in vitro of a drug is measured with its IC50. The term IC50 represents 

the concentration of an inhibitor (one of the Mannich derivatives) that is required for 

50% growth inhibition of the parasite in vitro. The analogues that were initially selected 

for in vitro evaluation were molecules, 27-29, 32-34, 38 and 41 where high yields were 

obtained. These compounds were also shown to be more stable in solution than 

analogues such as 26, 30 and 31 which showed a tendency to degrade in solution.
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The in vitro tests’ results against K1 (Tables 2 and 3) showed that there may be a 

correlation between measured IC50 and calculated log P as 41 is the most hydrophilic 

(log P= 2.21) and has the lowest relative IC50 (Rel. ICso= 0.27). Several derivatives have 

remarkable activity against P. falciparum. They all displayed better activity than 

artemisinin; for example 32 displayed a superior activity than the clinically used semi

synthetic artemether.

R= H: 27-29 
R= Me: 32-34,38,41

Compounds Structure -R Structure - R ’ logP IC50 (nM) Rel. IC50

Artemisinin

(1)

3.17 0.98 1.00

Artemether

(3)

3.51 0.53 0.54

27 -H
—r /  \>

3.16 0.59 0.60

28 -H 1

0
1 3.32 0.91 0.93

29 -H
—t /  \ l —^

3.97 0.65 0.66

32 -Me
—t /  \ )

3.40 0.36 0.37

Table 2: In vitro results of artemisinin analogues, strain chloroquine-resistant K1
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Compounds Structure -R Structure -R ’ logP IC50 (nM) Rel. IC50

Artemisinin

(1)

3.17 2.40 1.00

A rtem ether

(3)

3.51 1.27 0.53

33 -Me 1

0
1 3.55 0.77 0.32

34 -Me
—N/  Yl—^ 4.21 1.44 0.60

38 -Me -O-O 4.06 1.58 0.66

41 -Me
—t /  ^S02

2.21 0.65 0.27

Table 3: In vitro results of artemisinin analogues, strain ch oroquine-resistant K1

The rest of the pyrrole analogues were tested against 3D7 strain (Table 4). 

Compounds 8, 9, 35-37 and 40 have better activity than artemisinin. Interestingly, this 

suggests that ,/V-methylpyrrole analogues have a better activity than H-pyrrole analogues 

(26, 30, 31 and 39).

The low nanomolar activities observed with most of the analogues prepared 

suggests that incorporation of the polar side-chain is tolerated and does not reduce 

antimalarial potency.
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Compounds Structure -R Structure-R’ Log P IC50 (nM) Rel. IC50

Artemisinin - - 3.17 12.8 1.00

Chloroquine - - 3.73 29.6 2.31

Artesunate - - 3.04 9.5 0.74

8 -H - 3.56 7.4 0.58

26 -H —ti
4.24 75.8 5.92

30 -H
- 6

4.29 59.4 4.64

31 -H
- O

3.88 16.9 1.32

39 -H /
—N

\
3.56 20.5 1.60

9 -Me - 3.80 5.2 0.41

35 -Me
- O

4.53 6.1 0.47

36 -Me
- O

4.11 3.7 0.29

37 -Me —1/ 4.12 7.2 0.56

40 -Me /
—N

\
3.80 11.6 0.91

Table 4: In vitro results of artemisinin analogues, strain chloroquine-sensitive 3D7

Cytotoxicity studies were also made measuring the in vitro activities against 

mammalian KB cells (Table 5). The observed IC50S were in the micromolar which is 

good because the therapeutic index is really high. The therapeutic index is therefore high 

which proves the selectivity of 3D7 strain inhibition.
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Compounds Structure -R Structure-R’ ICS0 (nM) 

3D7

IC50 (p-M) 

KB

T.I.

(KB/3D7)

Artemisinin - - 12.8 >354.19 >0.04

Chloroquine - - 29.6 112.52 0.26

Artesunate - - 9.5 39.29 0.24

8 -H - 7.4 62.56 0.12

26 -H —H 75.8 48.16 1.57

30 -H
- Ô

59.4 143.47 0.41

31 -H
- O

16.9 47.01 0.36

39 -H /
—N

\
20.5 43.61 0.47

9 -Me - 5.2 60.36 0.09

35 -Me
- o

6.1 39.25 0.15

36 -Me
- O

3.7 42.24 0.09

37 -Me

0
1

______i

7.2 137.86 0.05

40 -Me /
—N

\
11.6 41.04 0.28

Table 5: In vitro resu ts of artemisinin analogues, strains chloroquine-sensitive

3D7 and mammalian KB and therapeutic index (T.I.)

2.2.5.2. In  vivo testing

A selection of the compounds were screened for their in vivo activity against 

Plasmodium berghei. First a single dose 4-days Peter’s suppressive test was performed 

using 30mg/kg of the compound (Table 6). All the compounds tested displayed a good 

activity, with 32 and 33 completely eliminating the parasites.
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Compounds -R -R’ log P % inhibition 

for 30 mg/kg

Artemether (3) - - 3.51 100

Artesunate (5) - - 3.04 100

28 -H 1

,
0

3.32 97.7

29 -H
—f /  \ l —^

3.97 90.5

32 -Me
0

1 3.40 100

33 -Me

!

6
1 3.55 100

Table 6: C earance of parasites with 30 mg/kg cose

Encouraged by the single dose experiments, we carried out dose response on 

compound 32 to determine ED50 and ED90, which are the point where a precise 

concentration of the drug given will respectively clear 50% and 90% of the parasites. In 

the case of 32, 1.77 mg/kg cleared 50% of the parasite and 5.20 mg/kg was enough to 

kill 90% of the parasites (Table 7).

Mannich

analogues

IC50/nM Clearance of 

parasites at 30 

mg/kg

ED50 mg/kg ED90 mg/kg

32 0.36 100% 1.77 5.20

Artemether 0.93 100% 5.88 10.57

Artesunate ND 100% 3.23 >10

Table 7: Dose response results for 32

Compound 32 is three times more potent than artemether and twice as active as 

artesunate in this in vivo experiment.
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2.2.6. Iron degradation

Artemisinins act via mechanisms that are distinct from other antimalarial drugss. 

Antimalarial activity may arise from alkylation of vital intraparasitic biomolecules by 

free radicals generated within the malaria parasite through an iron (Il)-induced 

degradation process.39-41 The parasite’s death in the presence artemisinin is more likely 

to involve specific radicals and targets rather than non specific cell damage caused by 

freely diffusing oxygen and carbon centred radical species. The following section details 

the investigation of specific “transitory” species that may be responsible for the 

antimalarial mechanism of action of artemisinin.

The peroxide within the 1,2,4-trioxane system of artemisinins is essential for 

antimalarial activity. Therefore carbaartemisinin analogue 44, which has been 

constructed by an elegant total synthesis, displays an activity against P. falciparum that 

is ~4% of that of artemisinin.42 Also artemisinins lacking a peroxidic oxygen atom such 

as the desoxy compounds 45 and 46,43 and the 1-carba analogue 47, in which one 

oxygen of the peroxide bridge is replaced by carbon,44 are also devoid of activity. 

However, 10-deoxo-10-dihydroartemisinin derivative 48 in which the peroxide is intact 

retains antimalarial activity, and in fact is more active than artemisinin against the 

malaria parasite in vitro45 (Figure 6). Thus, the trioxane pharmacophore is essential for 

the expression of optimal antimalarial activity.

44 45 46 47 48

Figure 6. Analogues 44-47 with no antimalarial activity and compound 48 more active 

than artemisinin.
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It is important to note that the antimalarial activity of artemisinin appears to be reduced 

by iron chelators, such as pyridoxal benzoylhydrazone and 1,2-dimethyl-3- 

hydroxypyrid-4-one.46 This suggests that free or “chelatable” iron(II) is required for 

bioactivation, as opposed to ferrous haem, because the iron chelators would be unable to 

bond with iron(II) within the porphyrin ring system of heme.

Since artemisinin is an unsymmetrical endoperoxide, the oxygen atoms of the 

peroxide linkage can associate with reducing ferrous ions in two ways. Association of Fe 

(II) with oxygen 1 provides an oxy-radical (49) that goes on to produce a primary 

carbon-centered radical (50) to give furano acetate (51). Alternatively, association with 

oxygen 2 provides an oxy radical species (52) that, via a 1,5-H shift, can produce a 

secondary carbon-centered radical (53) to afford hydroxyl deoxo product (54) (Scheme 

13).47

1

Scheme 13
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The ferrous iron-mediated degradation of 32 was examined with iron (II) sulfate 

and iron (II) chloride. Degradation of 32 gave two main products (Scheme 14). Isolation 

of 55 and 56 point to the fact that carbon-centered radicals might be involved in the 

mechanism of these artemisinin derivatives.

Scheme 14. Reagents and conditions: i) FeSC>4, acetonitrile/water: 1/1, 1 hr, r.t. or i) 

FeCl2.4H20, acetonitrile, 30 mins, r.t.

Iron (II) Yield for (55) Yield for (56)

FeS04 72% 21%

FeCl2 42% 23%

Table 8: Yields obtained for Iron (Il)-Induced Degradation of Endoperoxide 32.

The furano acetate was produced in higher yields (Table 8) than 

deoxohydroxyartemisinin, which would suggest Fe (II) associates mainly with 01. Thus, 

it is likely that these Mannich analogues behave in a manner similar to artemether and 

artemisinin, and we propose that their potent antimalarial activity may be mediated by 

the formation of carbon radical species in the parasite’s food vacuole.
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2.2.7. Summary on C-10 pyrrole Mannich analogues

A small library of weakly basic and polar C-10 pyrrole analogues has been 

prepared with modular chemistry amenable to parallel synthesis methods.

The antimalarial tests revealed that morpholine and yV-methylpiperazine analogues 

have superior biological profiles to clinically used sodium artesunate. The measurements 

of ED90 and ED50 are encouraging for morpholine analogue (32), therefore further 

investigations, including pre-clinical toxicological evaluation need to be carried out to 

fully assess the potential of this compound. Lipophilic artemisinins are likely to be 

neurotoxic. With a log P of 3.05, the morpholine compound 57 has been found to be 

highly neurotoxic (Figure 7).28 It would be interesting to evaluate the toxicity of 32 

which is less lipophilic with an extra pyrrole ring.

Initial studies employing ferrous (II) salts indicate that this class of semi-synthetic 

artemisinin generate both primary and secondary carbon centered radicals in a manner 

similar to artemisinin. Further work is required to establish the role of these 

intermediates in the mechanism of action.

H

32 57

Figure 7
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2.3. Synthesis of sulfone analogues

2.3.1. Introduction

Artemisone (60) has been produced from DHA in multikilogram-scale reactions by 

Haynes and co-workers.28 Treatment of DHA (2) first with a mixture of NaBr and 

TMSC1 in toluene gave the intermediate (58) which was then treated in situ with 

thiomorpholine to provide the sulfide (59). 59 was finally oxidised to 60 using 

TPAP/NMO (Scheme 15).

59 60

Scheme 15. Reagents and conditions: i) TMSC1, NaBr, Toluene, 0°C, ii) 

thiomorpholine, Et3N, CH2CI2, iii) NMO, TPAP (cat.), CH2CI2, 20°C.

Artemisone displays favorable physicochemical properties, such as log P 2.49, and 

negligible neuro- and cytotoxicities. In addition to enhanced bioavailability, artemisone 

has an ED90 of 1.5 mg/kg against Plasmodium berghei and 3.9 mg/kg against 

Plasmodium yoelii and is significantly more active than artesunate, chloroquine and 

pyrimethamine.
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A number of groups have explored the introduction of a sulfonyl unit into synthetic 

endoperoxides. For example Bachi and co-workers48 studied the effect of varying 

functional groups on bicyclic endoperoxides and it was found that compounds bearing a 

sulfide group, in this case thiophenol, showed very poor antimalarial activity. Upon 

oxidation to a sulfone functional group considerably enhanced activity was observed 

(Scheme 16).

OH OH OH OH

Scheme 16. Reagent and conditions: i) raCPBA, r.t.

Also, Posner and co-workers reported that various sulfone endoperoxides have 

higher antimalarial activity than the corresponding sulfides (Scheme 17).49

SAr
65a, Ar= Ph, > 2500 nM 
66a, Ar= p-MeOPh, > 2500 nM 
67a, Ar= p-CIPh, 2500 nM

H

68a, Ar= Ph, 56 nM 
69a, Ar= p-MeOPh, 89 nM 
70a, Ar= p-CIPh, 110 nM

65P, Ar= Ph, 59 nM 68P, Ar= Ph, 33 nM
66p, Ar= p-MeOPh, 43 nM 69p, Ar= p-MeOPh, 30 nM
67p, Ar= p-CIPh, 25 nM 70p, Ar= p-CIPh, 23 nM

Scheme 17. Sulfur containing 1,2,4-trioxanes and their in vitro activity.
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We were interested in preparing analogues with both sulfide and sulfone groups at 

the anomeric position. The first target molecule was the C-10-thiophenol derived 

sulphide 71.

Oh and co-workers50 have reported a two step synthesis of this compound from 

DHA. Thioacetal 71 was prepared by allowing 2 to react with thiophenol in the presence 

ofB F3.Et20 . The thioacetal product was oxidised to produce 72 in good yields (Scheme 

18).

Scheme 18. Reagents and conditions', i) Thiophenol, BF3.Et20, DCM, r.t., 20 mins, ii) 

H2O2/UHP, TFAA, NaHC03, acetonitrile, r.t., 10 mins.

2.3.2. Mechanism of thioacetal formation

The synthesis of thioacetal derivatives involves the use of Lewis acid such as 

boron trifluoride. This Lewis acid catalyses oxonium generation from DHA and 

interception by a nucleophilic thiol produces predominantly the kinetic alpha product in 

equatorial configuration and the thermodynamic beta product in axial configuration 

(Scheme 19).

58



Chapter 2- Synthesis of C-10 heterocyclic derivatives of dihydroartemisinin

kinetic thermodynamic

Scheme 19. Reagents and conditions', i) BF3.0Et2, DCM; ii) RSH, DCM, r.t., 10 mins.

As previously noted by several groups,51, 52 the stereochemistry of the a  and ¡3 

isomers is determined by the chemical shift of H-10 and coupling constant between H-9 

and H-10. The major product obtained in this reaction is the a-isomer as indicated by a 

chemical shift at 4.7 ppm and a large coupling constant (J=  11.0 Hz) indicating a trans 

diaxial relationship, while minor product is the P-isomer with H-10 at 5.6 ppm and J -  

5.3 Hz. As noted, the P-isomer is the thermodynamic product, any tetrahydropyran 

bearing an electronegative substituent in the 2-position will prefer that substituent to be 

axial, this is known as the anomeric effect. The low-lying antibonding orbital C-S cr* is 

stabilised with the oxygen lone pair overlapping, which can only take place if the 

substituent is axial (Figure 8).
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:>
8 hio about 4.7 ppm.

d (H10-H9) = 11 Hz.

8 H10 about 5.6 ppm 

d (H10-H9) = 5-5 Hz

Figure 8. Chair conformation of a  and (3-isomers

The S-acetalisation on DHA was carried on with several heterocycles. We were 

expecting only a  and (3-isomers, however we observed other side products such as the 

epi-isomer and anhydroartemisinin (12) (Scheme 20).

71, R= thiophenol
73, R= 5-mercapto-1 -methyl-1 H-tetrazole
74, R= 3-mercapto-4-methyl-4H-1,2,4-triazole
75, R= 2-mercaptopynmidine
76, R= 2-mercapto-5-methyl-1,3,4-thiadiazole
77, R= 2-mercaptoimidazole

Scheme 20. Reagents and conditions: i) BF3.Et20, RSH, various solvents, 30-60 mins.

The following table (Table 9) presents the products obtained for reactions with the 

mercapto-heterocycles employed:
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-R 10a-

isomer

1 Op- 

isomer

epi-

isomer

AHA DHA Solvents Time

mins

71 75% 20% - - - DCM 30

73 45% 8% 22% 19% - DCM 30

74 37% 56% Acetonitrile

+DCM

30

75 20% 6% 10% 55% - Acetonitrile 30

76 7% 20% 8% 10% 20% Diethylether 60

77 - - 86% 6% - Acetonitrile 60

Table 9: Yields obtained in each configuration with each heterocycle.

Most of the mercapto heterocycles are insoluble in DCM, therefore we tried the 

nucleophilic substitution in other aprotic solvents (Table 9):

DHA was first reacted with thiophenol in DCM to give 25% of the thermodynamic 

product (7ip) and 75% of the kinetic product (71a), which is expected as the reaction 

was quenched after 30 mins (Scheme 21).50

Scheme 21. Reagents and conditions', i) BF3.Et20, PhSH, DCM, 30 mins.

Due to the electrowithdrawing nitrogens on the tetrazole 79, the nucleophilic 

substitution with DHA is slower. This is why some side products epz-isomer and AHA 

were obtained for the reaction between DHA and 79 (Scheme 22).
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i

N
N'M

N
N

/ N'N
N

N
N

/ N- N/  N

73p, 8% 73a, 45% 73epi, 22% 12,19%

Scheme 22. Reagents and conditions', i) BF3.Et20, DCM, 30 mins.

The mercapto heterocycles 74-77 are insoluble in DCM, therefore the reactions 

were carried out in other aprotic solvents in the presence of the Lewis acid BF3.Et20 

(Table 7).

3-mercapto-4-methyl-4H-l,2,4-triazole (80) was reacted with DHA in a mixture 

1/1: DCM/acetonitrile to give 56% AHA as major product and 37% of epz'-isomer 

(Scheme 23). This result could be explained by the poor solubility of 80, therefore the 

competing dehydration reaction predominates without nucleophile to give the product 

anhydroartemisinin (12). The epz'-isomer is formed with nucleophilic attack of 80 on 

the axial position of AHA, followed by inverson of the methyl group on C-9 (Scheme 

23).
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80 AHA 74epi, 37%  12,56%

Scheme 23. Reagents and conditions', i) BF3.Et20, DCM/acetonitrile, 30 mins.

The similar reaction with mercaptopyrimidine (81) gave a mixture of the 4 

products. The fact that AHA is the major product means that the mercapto heterocycle 

81 is not completely solubilised in acetonitrile (Scheme 24).

S Ti N S . .ITY  Xs!

75P, 6% 75a,20% 75epi, 10% 12, 55%

Scheme 24. Reagents and conditions', i) BF3.Et20, acetonitrile, 30 mins.

2-Mercapto-5-methyl-l,3,4-thiadiazole (82) reacted with DHA for an hour because 

the reaction in diethylether was slower. This explains why the P-isomer is the major
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product (20%) (Scheme 25). Also 20% of the starting material DHA was recovered. 

Diethyl ether seems to slow the reaction, BF3.Et20 is possibly chelating with the O of 

the reaction solvent. More polar solvent might stabilise the oxonium intermediate, which 

is observed for SnI reactions.

___ H ! ___H ? H !
/ ^ o V ^w  + TQJ +

J ^ O
b h

6. +

s Y n; n

si
V ; n

n
s Y n; n

si
76p, 20% 76a, 7% 76epi, 8% 12, 10%

Scheme 25. Reagents and conditions: i) BF3.Et20, diethylether, 60 mins.

In the reaction between imidazole (83) and DHA, mostly the ep/-isomer was 

observed as a product (Scheme 26), which means that AHA is formed at first followed 

by the nucleophilic attack (Scheme 27). This result suggests that 83 is less nucleophilic 

than 78 and 79. Beside 81 and 83 have similar molecular structures, which imply that if 

81 would have reacted with DHA for an extra 30 mins, the epz-isomer may have been 

obtained in higher yield.
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2 83 77epi, 86% 12,6%
Scheme 26. Reagents and conditions', i) BF3.EÎ20, 83, acetonitrile, 30 mins.

The épimérisation of the C-9 centre may result from a rapid equilibration between 

oxonium ions 11 and 84, through the anhydroartemisinin (12) which can be protonated 

by the |3-face, before the S-acetalisation (Scheme 27). The stereochemistry of 9-epi- 

isomer was determined with 'H  NMR: the signal of the methyl 16 at C-9 is strongly 

deshielded in (example with 73epi: <5 1.03 ppm instead of 0.73 (a)-0.87(P) ppm), which 

is typical of the epz-artemisinin series (configuration a o f Me-16).54

ep/'-isomer

Scheme 27. Mechanism o f épimérisation: i) Reaction with BF3.EÎ20; ii) Deprotonation; 

iii) épimérisation; iv) ■S'-acetalisation with RSH.
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DHA is very sensitive to the strong Lewis acid, B F 3 ,  and this leads to rapid El 

elimination of water from DHA. We thought using a catalytic amount of B F 3 . E t 2 0  

would form the oxonium intermediate in smaller amounts to allow the mercapto 

heterocycles to intercept more efficiently, but this method didn’t give any product at all. 

Therefore the method of choice was using one equivalent of B F 3 . E L O ,  and the key to 

higher yields included solubilisation and a mercapto heterocycle with good 

nucleophilicity.

2.3.3. Oxidation of C-10 anomeric sulfide derivatives and discovery of a 

new rearrangement reaction

The thioacetal product 71 can be oxidised to 72 by oxidation with H20 2/urea 

complex (UHP), trifluoroacetic anhydride (TFAA) and NaHC03 in good yields (Scheme 

28) 50.

Scheme 28. Reagents and conditions', i) UHP (3 equiv.), TFAA (3 equiv.), NaHC03 (5 

equiv.), CH3CN, -30°C, 10 mins.

We tried the conversion of the a-isomer of 73 into its sulfone analogue through 

several ways. Oxidation with UHP and TFAA didn’t give any product, whereas 

oxidation with mCPBA gave several products none of which was the desired product. 

Alternatively, we tried the oxidation with oxone using water as the solvent35 but we 

exclusively formed anhydroartemisinin (12) (Scheme 29).
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i

85%

Scheme 29. Reagents and conditions', i) oxone, NaOH, water, r.t., 1 hr.

Repeat of the oxidation with oxone in methanol/ water gave P-artemether in 90% 

(Scheme 30). We assumed that the sulfone (85) may have been formed and then lost in 

an SnI reaction.

3, 90%
Scheme 30. Reagents and conditions', i) oxone, NaOH, water/MeOH: 1/1, r.t., 1 hr.

Further, we attempted the oxidation with TPAP (Scheme 31) but observed an 

unusual rearrangement product as shown in Scheme 32. The single-crystal X-ray of 86 

(Appendix 1) obtained by slow evaporation of solvent (hexane /DCM) is shown in 

Figure 9 below.
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___ H ?
— Æ  T ^ l

\  O'.JL I o J  J
- ' 'u i i 7/H

90%
O^/k^

S .  ,N ,
Y  ;.n ° ^ r N;,N

N ^ n N -N/ /
73 86

Scheme 31. Reagents and conditions', i) TPAP, NMO, molecular sieves, DCM, r.t., 

overnight.

Figure 9. Crystallographic structure of 86.

From the x-ray crystal structure, we explained the formation of 86 by the 

mechanism shown in Scheme 32. First, the oxonium ion 11 was formed, after 

elimination of the sulfone group. The nitrogen of the heterocycle then attacked the 

oxonium followed by hydration to give 86 (Scheme 32).
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Scheme 32. Proposed mechanism of rearrangement.

Since this reaction is unprecedented in the literature we decided to investigate the 

generality of this type of rearrangement and set out to perform the same reaction on 

sugar derivatives as described below.

2.3.4. Sugar chemistry

D-Galactose P-pentaacetate (89) was first converted into its sulfide (90) by 

treatment with 5-mercapto-l-methyl-l//-tetrazole. However the oxidation of sulfide (90) 

did not give the expected rearrangement product, but the sulfone 91 (Scheme 33). Due 

to the neighbouring group participation of the acetate next to the anomeric carbon, the 

sulphide has P-configuration. Neighbouring group participation can occur because the 

acetate substituent on the 2 position is in equatorial, therefore the acetate oxygen lone 

pair can reach the a* orbital of the sulphide C -0 bond.
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AcO

OAc, OAc

OAc’
OAc

OAc^OAc
U L o  °2AcO S /

OAc V ~ N
V N

89 90, 92% 91, 35%

Scheme 33. Reagents and conditions: i) BF3.EÎ20, Mercaptotetrazol, DCM, r.t., 20 

mins, ii) TPAP, NMO, molecular sieves, DCM, r.t., overnight.

We anticipated the p-configuration of 90/91 was not suitable for the tetrazole 

moiety to behave as a leaving group, hence we attempted the same reactions with 2- 

deoxy-D-galactose (92).

The sugar (92) was reacted with isobutyryl chloride in pyridine to give protected 

2-deoxy-D-galactose (93), exclusively as the (3-isomer in quantitative yield.55 Lewis acid 

catalysed reaction of 93 with mercaptotetrazole gave 94 in axial configuration in 64% 

yield. Finally TPAP oxidation of 94 gave the rearranged compound 95 in 25% yields, 

48% of the starting material was recovered (Scheme 34).

\94, 64% 95, 25%

Scheme 34. Reagents and conditions: i) 'PrCOCl, pyridine, -12°C, 30 mins, ii) 

BF3.EÎ20, (32), DCM, r.t., 20 mins, iii) TPAP, NMO, molecular sieves, DCM, r.t., 

overnight.
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We assumed the sulfone group in the equatorial position (eg 91) doesn’t leave 

because of its stability. However, 94 has its anomeric substituent in axial, the C-S bond 

is longer and weaker and breaks more easily. Therefore when it gets oxidised into 

sulfone, the sulfone being a good leaving group led to the rearrangement.

2.3.5. Conclusion and future work

A small number of sulfide derivative of artemisinin were prepared. The reactions 

led to a mixture of isomers; this is a serious drawback, because it requires laborious 

column chromatography to obtain the individual pure isomers.

Oxidation of sulfides into sulfones results in elimination and formation of 

anhydroartemisinin with heteroaryl analogues; it appears that the C-10 anomeric 

sulfones cannot be considered as drug development candidates due to their instability.

An interesting rearrangement was observed upon oxidation of 73. We repeated the 

experiment with a sugar and observed the same rearrangement with the product 95.

To investigate the generality of this behaviour, it would be interesting to react 

tetrahydro-2//-pyran-2-ol (96) with 5-mercapto-1 -methyl- lH-tetrazole (79) and oxidise 

the corresponding sulfide (97) into sulfone (98) (Scheme 35).

\
96 97 98

Scheme 35. Reagents and conditions: i) BF3.EÎ20, heterocycle 79, DCM, 30 mins.; ii) 

TPAP, NMO, molecular sieves, DCM, r.t., overnight.
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2.4. Experimental

Air- and moisture-sensitive reactions were carried out in oven-dried glassware 

sealed with rubber septa under a positive pressure of dry nitrogen or argon from a 

manifold or balloon. Similarly sensitive liquids and solutions were transferred via 

syringe. Reactions we stirred using Teflon-coated magnetic stir bars. Organic solutions 

were concentrated using a Buchi rotary evaporator with a diaphragm vacuum pump.

Purification of reagents and solvents

Anhydrous were either obtained from commercial sources or dried and distilled 

immediately prior to use under a constant flow of dry nitrogen. DCM was distilled from 

CaH2. All other reagents were used as received from commercial sources unless 

otherwise indicated.

Purification of products

Analytical thin layer chromatography was performed with 0.25 mm silica gel 60F 

plates with 254nm fluorescent indicator coated aluminium sheets from merck. Plates were 

visualised by ultraviolet light or by treatment with iodine, p-anisaldehyde, ninhydrin or 

potassium permanganate followed by gentle heating. Chromatographic purification of 

products was accomplished by flash chromatography, as described by Still and co

workers.56

Analysis

Melting points were determined in open tubes in a Gallenkamp, Melting Point 

Apparatus, and are uncorrected. NMR spectra were recorded on a brucker AC 200 (1H, 

200 MHz) and a Brucker AMX 400 (1H, 400 MHz; 13C, 100 MHz) spectrometer. 

Chemicals shifts are described in parts per million (ppm) downfield from an internal 

standard of trimethylsilane. Multiplicities are recorded as broad peaks (br), singlet (s), 

doublets (d), triplets (t), quartets (q), doublet of doublets (dd), doublet of triplets (dt) and 

multiplets (m). Coupling values are in Hz. Mass spectra were recorded on a VG 

analytical 7070E machine and Frisons TRIO spectrometers using electron ionisation
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(El), chemical ionisation (Cl) or electron spray (ES). Infrared spectra were recorded on

a PerkinElmer RX1 FT-IR spectrometer and are reported in wavenumbers (cm"1).

Microanalyses (%C, %H, %N) were performed in the University of Liverpool

Microanalysis laboratory. Reported atomic percentages are within error limits ± 0.5%. In

instances where purity was not determined by elemental analysis, compounds displayed

only one observable spot by t.l.c. at the reported Rf.

Artemisinin numbering scheme used throughout this analysis:50
15

10a-(l/F-Pyrrol-2-yl)artemisinin (8),

A solution of DHA (2) (250 mg, 0.88 mmol) in DCM (15 mL) -50 °C was treated 

sequentially with pyrrole (295 mg, 4.40 mmol) and BF3.Et20 (187 mg, 1.32 mmol) and 

stirred at -50 °C for 1 hour. The mixture was quenched with sat NaHC03, extracted with 

DCM and washed with brine, then dried with MgSCU and concentrated in vacuum. The 

crude product was purified by flash chromatography (10% EtOAc/ «-Hex) to give a 

clear oil (125 mg, 11%): Rf= 0.36 (25% EtOAc/ «-Hex); 'H NMR (400 MHz, CDC13) 4  

8.64 (1H, s, NH), 6.76 (1H, dd, J =  2.5, 1.6 Hz, N-CH), 6.07 (1H, dd, J =  2.5, 5.5 Hz, 

pyr CH), 6.03 (1H, m, pyr CH), 5.40 (1H, s, H12), 4.49 (1H, d, / =  10.8 Hz, H10), 2.57 

(1H, m, H9), 2.39 (1H, dt, J =  13.7, 4.1 Hz, H4a), 1.42 (3H, s, H14), 2.08-1.20 (10H, 

m), 0.97 (3H, d, J=  6.3 Hz, H I5) and 0.63 (3H, d, 7.1 Hz, H I6) ppm; 13C NMR (100
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MHz, CDCI3) Sc 130.2, 117.7, 107.39, 106.8, 104.3, 92.1, 80.7, 72.1, 51.9, 45.9, 37.4,

36.4, 34.2, 33.1, 31.6, 26.1, 24.8, 22.6, 21.3, 20.3, 14.1 and 14.0 ppm; MS (Cl), [M- 

2CH2-OH]+ (100) 288; HRMS calcd for Q9H28NO4 [M+H]+ 334.2018, found 334.2012; 

IR umax= 3264 (on-h, Pyrrole); 2922 (uc-h); 880, 828 (uo-o) cm '; Anal. C20H29NO4 requires 

C 68.44%, H 8.16%, N 4.20% found C 68.02%, H 8.24%, N 4.14%.

10a-(l-Methyl-pyrrol-2-yl)artemisinin (9).

6 '
2 9

A solution of dihydroartemisinin (300 mg, 1.05 mmol) in DCM (25 mL) at room 

temperature was treated sequentially with /V-methylpyrrole (0.47 mL, 5.29 mmol) and 

BF3.Et20  (0.19 mL, 1.51 mmol) and stirred for 10 min at r.t. and then cooled at -50 °C 

for 20 min. The mixture was quenched with sat NaHCC>3, extracted with DCM and 

washed with brine, then dried with MgSC>4 and concentrated in vacuum. The crude 

product was purified by flash chromatography (10% EtOAc/ «-Hex) to give a colourless 

crystal (378 mg, 84%): Rf=0.42 in 25% EtOAc/ «-Hex; 'H NMR (400 MHz, CDC13) <5k 

6.54 (1H, t, J=  2.2 Hz, N-CH), 5.90 (2H, m, pyr CH), 5.38 (1H, s, H12), 4.50 (1H, d, J  

= 11.3 Hz, H10), 3.84 (3H, s, N-CH3), 2.83 (1H, m, H9), 2.39 (1H, dt, J= 14.0, 4.1 Hz, 

H4a), 1.39 (3H, s, H14), 2.08-1.20 (10H, m), 0.98 (3H, d, J= 6.3 Hz, H15) and 0.61 

(3H, d, J= 7.2 Hz, H16) ppm; 13C NMR (100 MHz, CDC13) Sc 130.2, 124.2, 109.9,

106.6, 104.6, 92.3, 81.1, 72.9, 52.4, 46.3, 37.8, 36.7, 35.4, 34.6, 31.3, 26.4, 25.2, 21.3, 

20.7and 14.8 ppm; IR omax= 2926, 1732, 1498, 1457, 1376, 1272, 1114, 1100, 880 (O- 

O) and 828 (O-O) cm-1; MS (Cl), [M-2CH2-OH]+ (100) 302; HRMS calcd for 

C20H30NO4 [M +Hf 348.2175, found 348.2174; Anal. C20H29NO4 requires C 69.14%, H 

8.41%, N 4.03% found C 69.27%, H 8.45%, N 3.99%.
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10a-(Benzoate)artemisinin (13).

2 13
DHA (500 mg, 1.76 mmol) was dissolved in DCM (20 mL) and stirred for 30 minutes. 

Anhydrous pyridine (0.9 mL, 11.13 mmol) was added and the reaction vessel cooled to 

0°C under nitrogen for 15 minutes. Benzoyl chloride (0.3 mL, 2.58 mmol) was added 

and the reaction mixture was allowed to warm to room temperature and left stirring for 

20 hours. The reaction mixture was then dissolved in ethyl acetate (100 mL) and washed 

with citric acid (7%, 100 mL), sat NaHC03 and H2O. The organic extracts were dried 

over MgSCL and concentrated in vacuum. The crude product was then purified by flash 

chromatography (10% EtOAc/ «-Hex) to give a white solid (13) (0.63g, 94%): 'H NMR 

(400 MHz, CDCI3) &  8.12 (2H, dd, J=  7.0, 1.2 Hz, Ph), 7.54 (1H, m, Ph), 7.41 (2H, m, 

Ph), 6.03 (1H, d,J =  9.8 Hz, H10), 5.54 (1H, s, H12), 2.77 (1H, m, H9), 2.40 (1H, td, J  

= 14.4, 4.0 Hz, H4a), 2.05 (1H, m), 1.88 (1H, m), 1.77-1.57 (3H, m), 1.51-1.35 (5H, m), 

1.43 (3H, s, H I4), 0.99 (3H, d, J  = 6.1 Hz, H15) and 0.94 (3H, d, J=7.1 Hz, H16) ppm; 

,3C NMR (100 MHz, CDCI3) Sc 133.3, 130.6, 130.1, 129.6, 128.29, 104.4, 92.5, 91.6, 

81.9, 80.2, 51.6, 45.3, 37.3, 36.2, 34.12, 31.0, 26.0, 24.6, 22.1, 20.2, 12.2 ppm; IR omax= 

2924 (C-H), 1737 (0=0), 877, 831 (O-O) cm'1; HRMS (Cl) C23H32NO6 [M+NH4]+ 

requires 406.2230, found 406.2232; Anal. C22H28O6 requires C 68.04%, H 7.22%, found 

C 67.79%, H 7.30%.

General procedure of the Mannich reaction with (8) and (9). Formaldehyde (0.1 mL, 

3.2 equiv.) and a secondary amine (3.2 equiv.) solution were added to (8) or (9) (150 

mg, 1 equivalent) in anhydrous ethanol (5 mL). Then glacial acetic acid (1.0 mL) was 

added to the reaction mixture, which was left at r.t. for 30 min. The reaction was basified 

(pH 8) with 2M sodium hydroxide solution (5 mL). The mixture was extracted with
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EtOAc (3x25 mL) and combined organic extracts washed with brine. The organic phase 

was dried over MgS04, filtered and concentrated under reduced pressure to afford a 

crude product that was purified by flash chromatography using 5% methanol/ 

dichloromethane.

10a-(5-((Diethylamino)methyl)~l//-pyrrol-2-yl)artemisimn (26).

See general procedure for Mannich reaction above. Colourless sticky solid (24%); 

Rf=0.04 in 10% MeOH/ DCM; 'H NMR (400 MHz, CDC13) &  9.50 (1H, s, NH), 5.99 

(1H, t, J= 2.8 Hz, pyr CH), 5.93 (1H, t, J= 2.8 Hz, pyr CH), 5.37 (1H, s, H12), 4.42 (1H, 

d, J= 11.0 Hz, H10), 3.69 (2H, AB quartet, J= 13.5 Hz, CH2-N), 2.62 (4H, m, N-CH2), 

2.57 (1H, m, H9), 2.39 (1H, dt, J= 13.7, 4.1 Hz, H4a), 1.42 (3H, s, H14), 2.08-1.20 

(10H, m), 1.09 (6H, t, J= 7.2 Hz, dieth CH3), 0.97 (3H, d, J= 6.3 Hz, H15) and 0.63 (3H, 

d, .7=7.1 Hz, H16) ppm; 13C NMR (100 MHz, CDC13) ¿c 123.3, 106.8, 104.2, 92.1, 80.6, 

72.0, 52.0, 46.1, 45.9, 37.4, 37.4, 36.3, 34.2, 33.0, 29.7, 29.7, 26.0, 24.8, 22.7, 21.4,

20.3, 14.1, 10.7 ppm; MS (ES+), [M+H]+ (100) 419; HRMS calcd for C24H39N20 4 

[M+H]+ 419.2910, found 419.2927.
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10a- (5-(Morpholinomethyl)-l/f-pyrrol-2-yl)artemisinin (27).

See general procedure for Mannich reaction above. Orange solid (60%): mp -  33 

°C; Rf=0.75 in 10% MeOH/ DCM;]H NMR (400 MHz, CDC13) ¿h 8.85 (1H, s, NH), 

5.93 (1H, t, J= 3.2 Hz, pyr CH), 5.89 (1H, t, J= 3.2 Hz, pyr CH), 5.38 (1H, s, H12), 4.42 

(1H, d, J=10.8 Hz, H10), 3.70 ( 4H, t, J= 4.6 Hz, morph CH2-0), 3.47 (2H, s, morph 

CH2-N), 2.57 (1H, m, H9), 2.43 (4H, m, N-CH2), 2.39 (1H, dt, J=13.7, 4.1 Hz, H4a),

1.42 (3H, s, H I4), 2.08-1.20 (10H, m), 0.97 (3H, d, J= 6.3 Hz, H15) and 0.63 (3H, d, 

J= 7.1 Hz, H16) ppm; 13C NMR (100 MHz, CDC13) Sc 130.3, 127.5, 107.6, 107.0,

104.2, 92.3, 80.7, 72.1, 67.0, 55.8, 53.3, 52.0, 45.9, 37.4, 36.3, 34.2, 33.0, 26.0, 24.8,

21.4, 20.3 and 14.1 ppm; IR, u max= 3372, 1650, 1456, 1376, 1303, 1152, 1120, 1057, 

926, 880, 865, 849, 828, 770, 722 cm-1; MS (ES+), [M+Na]+ (100) 455; HRMS calcd for 

C24H36N205Na [M+Na]+ 455.2522, found 455.2536; Anal. Calcd for C24H36N20 5: C, 

66.64%; H, 8.39%; N, 6.48%; Found C, 66.44%; H, 8.44%; N, 6.45%.

10a- (5-((4-Methylpiperazin-l-yl)methyl)-l//-pyrrol-2-yl)artemisinin (28).
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See general procedure for Mannich reaction above. Yellow crystal (60%): mp -  36 

°C; Rf=0.32 in 10% MeOH/ DCM; 'H NMR (400 MHz, CDC13) <Sh 9.07 (1H, s, NH), 

5.94 (1H, d, 7=3.2 Hz, pyr CH), 5.90 (1H, d, 7=3.2 Hz, pyr CH), 5.38 (1H, s, H12), 4.42 

(1H, d, 7=10.8 Hz, H10), 3.51 (2H, s, CH2), 2.57 (1H, m, H9), 2.55 (8H, m, pipz CH2),

2.39 (1H, dt, 7=13.7, 4.1 Hz), 2.31 (3H, s, N-CH3), 1.42 (3H, s, H14), 2.08-1.20 (10H, 

m), 0.97 (3H, d, 7=6.2 Hz, H15) and 0.63 (3H, d, 7=7.1 Hz, H16) ppm; 8 * * * * 13C NMR (100 

MHz, CDC13) Sc 130.8, 127.8, 108.1, 107.4, 104.6, 92.5, 81.1, 72.5, 55.6, 55.0, 52.9,

52.4, 46.3, 37.8, 36.7, 34.5, 33.4, 30.0, 26.4, 25.1, 21.7, 20.7 and 14.4 ppm; MS (ES+), 

[M+H]+ (100) 446; HRMS calcd for C25H4oN30 4 [M+H]+ 446.3019, found 446.3004; IR 

Umax=  3268 (O n -H, Pyrrole)) 2926 (O c -h ) ,  1705 (U c =n ) 5 880, 826 (Oo-o) cm '•

10a- (5-((4-Isopropylpiperazin-l-yl)methyl)-l//-pyrrol-2-yl)artemisinin (29).

8 29

See general procedure for Mannich reaction above. Colourless crystal (70%); mp = 

45 °C; Rf=0.17 in 10% MeOH/DCM; ‘HNM R (400 MHz, CDC13) ¿k 9.26 (1H, s, NH),

5.96 (1H, t, 7=2.7 Hz, pyr CH), 5.92 (1H, t, 7=2.7 Hz, pyr CH), 5.38 (1H, s, H12), 4.42

(1H, d, 7=10.8 Hz, H10), 3.57 (2H, s, CH2), 2.88 (1H, m, 'Pr CH), 2.72 (8H, m, pipz 

CH2), 2.57 (1H, m, H9), 2.39 (1H, dt, 7=13.7, 4.1 Hz, H4a), 1.42 (3H, s, H14), 1.2-2.1 

(10H, m), 1.12 (6H, d, 7=6.5 Hz, 'Pr CH3), 0.97 (3H, d, 7=6.2 Hz, H15) and 0.63 (3H, d, 

7=7.1 Hz, H I6) ppm; 13C NMR (100 MHz, CDC13) ¿c 131.3, 130.1, 126.6, 108.7,

107.3, 104.6, 92.5, 81.1, 72.5, 55.4, 55.3, 52.3, 48.15, 46.3, 37.8, 36.7, 34.5, 33.4, 26.4,

25.1, 21.7, 20.7, 18.7, 18.5, 18.4 and 14.5 ppm; MS (ES+), [M+H]+ (100) 474; HRMS 

calcd for C27H44N30 4 [M+H]+ 474.3332, found 474.3318.

78



Chapter 2- Synthesis of C-10 heterocyclic derivatives of dihydroartemisinin

10a- (5-(Piperidin-l-ylmethyl)-l//-pyrrol-2-yI)artemisinin (30).

H ?

CNH

See general procedure for Mannich reaction above. Colourless sticky solid (65%); H 

NMR (400 MHz, CDC13) &  9.30 (1H, s, NH), 5.99 (1H, d, .7=2.8 Hz, pyr CH), 5.94 

(1H, d, 7= 2.8 Hz, pyr CH), 5.37 (1H, s, H12), 4.42 (1H, d, .7=10.8 Hz, H10), 3.64-3.58 

(2H, AB quartet, 7= 14.4 Hz, CH2), 2.59 (1H, m, H9), 2.52 (4H, m, pipd CH2), 2.39 (1H, 

dt, .7=13.7, 4.1 Hz, H4a), 1.67 (4H, m, pipd CH2), 1.48 (2H, d, .7=3.9 Hz, pipd CH2),

1.42 (3H, s, H I4), 1.2-2.1 (10H, m), 0.97 (3H, d, .7=6.3 Hz, H15) and 0.63 (3H, d, .7=7.1 

Hz, H I6) ppm; 13C NMR (100 MHz, CDC13) ¿c 131.7, 109.1, 107.1, 104.6, 92.5, 81.0,

72.4, 60.7, 56.0, 54.0, 52.4, 46.3, 37.8, 36.7, 34.6, 33.5, 26.4, 25.1, 24.1,21.7, 21.4, 20.7 

and 14.4 ppm; IR omax= 3250 (uN.H, pyrrole), 2933 ( u C-h ) ,  1707 ( u c=n ) ,  880, 827 (o0-o) cm'

10a-(5-(Pyrrolidin-l-ylmethyl)-l/7-pyrrol-2-yl)artemisinin (31).

See general procedure for Mannich reaction above. Orange oil (70%); Rf=0.5 in 10% 

MeOH/ DCM; 'H NMR (400 MHz, CDC13) Sh 10.54 (1H, s, NH), 6.08 (1H, t, 7=2.8 Hz, 

pyr CH), 6.04 (1H, t, 7=2.8 Hz, pyr CH), 5.31 (1H, s, H12), 4.35 (1H, d, 7=10.6 Hz,
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H10), 4.04-4.14 (2H, AB quartet, 7= 14.9 Hz, CH2), 3.10 (4H, m, pyro CH 'Pr CH2), 

2.57 (1H, m, H9), 2.39 (1H, dt, 7=13.7, 4.1 Hz, H4a), 2.00 (4H, m, pyro CH2), 1.42 (3H, 

s, H14), 1.2-2.1 (10H, m), 0.97 (3H, d, 7=6.3 Hz, H15) and 0.63 (3H, d, 7=7.1 Hz, H16) 

ppm; 13C NMR (100 MHz, CDC13) Sc 134.1, 120.2, 111.4, 106.6, 104.2, 92.2, 80.6,

71.9, 52.2, 52.0, 51.4, 50.5, 45.9, 37.3, 36.3, 34.1, 33.3, 26.0, 24,7, 23.2, 23.0, 21.4,

20.3, 14.1 ppm; MS (ES+), [M+H]+ (100) 417; HRMS calcd for C24H37N204 [M+H]+ 

417.2753, found 417.2739.

10a- (l-Methyl-5-(morpholinomethyI)-pyrrol-2-yl)artemisinin (32).

See general procedure for Mannich reaction above. Orange solid (89%); mp= 126 

°C; Rf= 0.48 in 10% MeOH/ DCM; 'H NMR (400 MHz, CDC13) Sh 5.93 (2H, m, pyr 

CH), 5.43 (1H, s, H I2), 4.53 (1H, d, 7=11.1 Hz, H10), 3.88 (3H, s, N-CH3), 3.72 (4H, t, 

7=4.4 Hz, morph CH2), 3.52-3.45 (2H, AB quartet, 7=12.8 Hz, CH2), 2.90 (1H, m, H9), 

2.47 (4H, m, morph CH2), 2.39 (1H, dt, 7=14.0, 4.1 Hz, H4a), 1.39 (3H, s, H14), 2.08-

1.20 (10H, m), 0.98 (3H, d, 7=6.3 Hz, H15) and 0.61 (3H, d, 7=7.2 Hz, H16) ppm; l3C 

NMR (100 MHz, CDC13) Sc 131.1, 129.6, 108.9, 108.4, 104.6, 92.3, 81.1, 73.2, 67.3,

55.1, 53.4, 52.4, 46.3, 37.8, 36.7, 34.6, 32.1, 31.2, 26.4, 25.2, 21.9, 21.3 and 14.8 ppm; 

IR ,u=  1757, 1458, 1376, 1347, 1263, 1226, 1207, 1151, 1120, 1100, 1084, 1054, 1042, 

1004, 979, 940, 926, 895, 880, 864, 852, 828, 800, 743 cm’1; MS (ES+), [M +Naf (100) 

469; HRMS calcd for C25H38N20 5Na [M+Na]+ 469.2678, found 469.2664; Anal. Calcd 

for C,6H26N20 3: C, 67.24%; H, 8.58%; N, 6.27%; Found C, 67.03%; H, 8.71%; N, 

6.13%.
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10a- (l-Methyl-5-((4-methylpiperazin-l-yl)methyl)-pyrrol-2-yl)artemisinin (33).

See general procedure for Mannich reaction above. Yellow crystal (83%); mp =115 

°C; Rf= 0.25 in 10% MeOH/ DCM; 'H NMR (400 MHz, CDC13) <5k 5.89 (1H, d, 7= 3.5 

Hz, pyr CH), 5.86 (1H, d, 7= 3.5 Hz, pyr CH), 5.39 (1H, s, H12), 4.47 (1H, d, 7=1 1.1 Hz, 

H10), 3.82 (3H, s, pyr N-CH3), 3.45-3.38 (2H, AB quartet, 7= 13.5 Hz, CH2), 2.85 (1H, 

m, H9), 2.35-2.70 (8H, m, pipz CH2), 2.39 (1H, dt, ,7=14.0, 4.1 Hz, H4a), 2.34 (3H, s, 

pipz N-CH3), 1.41 (3H, s, H I4), 2.08-1.20 (10H, m), 0.98 (3H, d, 7=6.2 Hz, H15) and

0.56 (3H, d, 7=7.1 Hz,H16)ppm; 13C NMR (100 MHz, CDC13) ¿fc 130.9, 130.5, 108.5,

108.3, 104.5, 92.3, 81.1, 73.1, 55.4, 54.8, 52.5, 52.4, 46.3, 45.9, 37.8, 36.7, 34.5, 32.1,

31.2, 26.4, 25.1, 21.3, 20.7 and 14.8 ppm; IR, omax= 2670, 1456, 1376, 1302, 1159, 

1100, 1057, 1041, 975, 890, 849, 828, 762, 722 cm'1; MS (ES+), [M+H]+ (100) 460; 

HRMS calcd for C26H42N304 [M+H]+ 460.3175, found 460.3176; Anal. Calcd for 

C26H4iN30 4: C, 67.94%; H, 8.99%; N, 9.14%; Found C, 68.08%; H, 9.05%; N, 9.08%.

10a- (5-((4-Isopropylpiperazin-l-yl)methyl)-l-methyI-pyrrol-2-yl)artemisinin (34).

H ? __ H ?

9 34

See general procedure for Mannich reaction above. Colourless solid (76%); mp= 68
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°C; Rf= 0.21 in 10% MeOH/ DCM; 'H NMR (400 MHz, CDC13) So. 5.89 (1H, d, 7= 3.5 

Hz, pyr CH), 5.87 (1H, d, 7= 3.5 Hz, pyr CH), 5.39 (1H, s, H12), 4.48 (1H, d, 7= 11.3 

Hz, H10), 3.81 (3H, s, N-CH3), 3.51-3.42 (2H, AB quartet, 7=13.5, CH2), 3.05 (4H, m, 

pipz CH2), 2.85 (1H, m, H9), 2.73 (5H, m, pipz CH2), 2.39 (1H, dt, .7=14.0, 4.1 Hz, 

H4a), 1.39 (3H, s, H14), 1.25 (6H, d, 7=6.5 Hz, iPr CH3), 2.08-1.20 (10H, m), 0.98 (3H, 

d, 7=6.3 Hz, H15) and 0.61 (3H, d, 7=7.2 Hz, H I6) ppm; ,3C NMR (100 MHz, CDC13) 

Sc 131.1, 130.0, 108.8, 108.5, 104.6, 92.3, 81.1, 73.2, 56.5, 54.4, 53.8, 48.7, 46.3, 37.8,

36.7, 34.5, 32.1, 31.2, 26.4, 25.1, 21.3, 20.7, 18.0 and 14.8 ppm; IR, u max= 3894, 3816, 

3710, 3544, 3024, 2929, 2856, 2360, 1610, 1460, 1232, 1029 and 756 cm '1; MS (ES+), 

[M+H]+ (100) 488; HRMS calcd for C28H46N30 4 [M+H]+ 488.3488, found 488.3507; 

Anal. Calcd for C28H45N30 4: C, 68.96%; H, 9.30%; N, 8.62%; Found C, 68.53%; H, 

9.42%; N, 8.40%.

10a-(l-Methyl-5-(piperidin-l-ylmethyl)-pyrrol-2-yl)artemisinin (35).

See general procedure for Mannich reaction above. Yellow solid (88%); Rf= 0.34 in 

10% MeOH/ DCM; mp= 80 °C; 'H  NMR (400 MHz, CDC13) ¿k 5.95 (1H, m, pyr CH), 

5.38 (1H, s, H I2), 4.48 (1H, d, 7=11.2 Hz, H10), 3.84 (3H, s, N-CH3), 3.60 (2H, m, ppd 

CH2), 2.85 (1H, m, H9), 2.52 (4H, m, pipd CH2), 2.39 (1H, dt, 7=14.0, 4.1 Hz, H4a), 

1.67 (4H, m, pipd CH2), 1.46 (2H, m, pipd CH2), 1.39 (3H, s, H14), 2.08-1.20 (10H, m),

0.98 (3H, d, 7=6.2 Hz, H I5) and 0.58 (3H, d, 7=7.1 Hz, H I6) ppm; IR, omax= 3948, 

3836, 3710, 3589, 3539, 2931, 2343, 1462, 1122, 1037, 827, 758 and 679 cm'1; MS 

(ES+), [M+H]+ (100) 445; HRMS calcd for C26H4,N20 4 [M+H]+ 445.3066, found 

445.3058; Anal. C26H4oN20 4 requires C 70.24%, H 9.14%, N 6.22% found C 70.10%, H
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9.14%, N 6.22%.

10a-(l-Methyl-5-(pyrrolidin-l-ylmethyl)-pyrrol-2-yl)artemisinin (36).

See general procedure for Mannich reaction above. Pale yellow dry foam (97%); 

mp= 70 °C; Rf= 0.29 in 10% MeOH/ DCM; 'H NMR (400 MHz, CDC13) S» 6.03 (1H, 

d, 7=3.7 Hz, pyr CH), 5.97 (1H, d, 7=3.6 Hz, pyr CH), 5.38 (1H, s, H12), 4.48 (1H, d, 

7=11.2 Hz, H10), 3.87 (3H, s, N-CH3), 3.85 (2H, s, CH2), 2.86 (1H, m, H9), 2.82 (4H, 

m, pyro CH2), 2.39 (1H, dt, 7= 14.0, 4.1 Hz, H4a), 1.89 (4H, m, pyro CH2), 1.39 (3H, s, 

H I4), 1.2-2.1 (10H, m), 0.98 (3H, d, 7=6.4 Hz, H15) and 0.61 (3H, d, 7=7.2 Hz, H16) 

ppm; 13C NMR (100 MHz, CDC13) ¿c 131.2, 129.8, 109.0, 104.6, 92.3, 81.0, 72.9,

53.8, 53.2, 52.4, 50.3, 46.3, 37.8, 36.7, 34.5, 32.4, 31.2, 26.4, 25.2, 23.6, 21.3, 20.6 and

14.8 ppm; IR, umax= 3834, 3759, 3323, 2970, 2345, 1658, 1458, 1377, 1321, 1199, 1124, 

1095, 1049, 881 (O-O), 825 (O-O), 762 and 681 cm'1; MS (ES+), [M+H]+ (100) 431; 

HRMS calcd for C25H39N20 4 [M+H]+ 431.2910, found 431.2907.

10a-(l-Methyl-5-(thiomorpholinomethyl)-pyrrol-2-yl)artemisinin (37).

See general procedure for Mannich reaction above. Yellow oil (90%); Rf= 0.92 in
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10% MeOH/ DCM; 'H NMR (400 MHz, CDC13) 5u 5.90 (1H, d, 7=3.5Hz, pyr CH), 

5.86 (1H, d, 7= 3.5 Hz, pyr CH), 5.38 (1H, s, H12), 4.46 (1H, d, 7=11.1 Hz, H10), 3.81 

(3H, s, N-CH3), 3.46 and 3.41 (2H, AB quartet, 7=12.8 Hz, CH2), 2.85 (1H, m, H9), 2.69 

(4H, m, thiomorph), 2.64 (4H, m, CH2-S), 2.39 (1H, dt, .7=14.0, 4.1 Hz, H4a), 1.39 (3H, 

s, H I4), 1.2-2.1 (10H, m), 0.98 (3H, d, 7=6.3 Hz, H15) and 0.61 (3H, d, 7=7.2 Hz, H16) 

ppm; 13C NMR (100 MHz, CDC13) Sc 131.2, 129.8, 108.9, 108.4, 104.5, 92.3, 81.0,

73.1, 55.5, 54.8, 52.4, 46.3, 37.8, 36.7, 34.6, 32.1, 31.2, 28.3, 26.4, 25.2, 21.3, 20.6 and

14.8 ppm; IR, o= 3892, 3759, 3712, 3356, 2972, 2814, 2370, 2331, 1658, 1460, 1414, 

1371, 1333, 1279, 1203, 1124, 1099, 1051, 948, 880, 823 and 762 cm'1; MS (ES+), 

[M+Na]+ (100) 485; HRMS calcd for C25H38N20 4SNa [M +Naf 485.2450, found 

485.2460; Anal. Calcd for C24H36N20 4S: C, 64.25%; H, 8.09%; N, 6.24%; Found C, 

64.19%; H, 8.12%; N, 6.22%

10a-(l-Methyl-5-((4-(pyrrolidin-l-yl)piperidin-l-yl)methyl)-pyrrol-2- 

yl)artemisinin (38).

H ? H :

See general procedure for Mannich reaction above. Colourless sticky solid (54%); 

R r  0.10 in 10% MeOH/ DCM; ’H NMR (400 MHz, CDC13) Sa 5.90 (1H, d, 7= 3.5 Hz, 

pyr CH), 5.84 (1H, d, 7= 3.5 Hz, pyr CH), 5.38 (1H, s, H12), 4.46 (1H, d, 7=11.1 Hz, 

H10), 3.78 (3H, s, N-CH3), 3.42-3.36 (2H, AB quartet, 7=13.5, CH2), 3.17 (4H, m, pipd 

CH2), 2.99 (4H, m, pyro CH2), 2.85 (1H, m, H9), 2.82 (1H, m, pipd CH), 2.39 (1H, dt, 

7=14.0, 4.1 Hz, H4a), 2.08 ( 4H, m, pyro CH2), 1.92 (4H, m, pipd CH2), 1.39 (3H, s, 

H I4), 2.08-1.20 (10H, m), 0.98 (3H, d, 7= 6.3 Hz, H I5) and 0.61 (3H, d, 7= 7.2 Hz, 

H16) ppm; 13C NMR (100 MHz, CDC13) Sc 131.2, 130.9, 108.1, 108.0, 104.5, 92.3,

81.0, 73.1, 62.6, 55.0, 52.6, 52.3, 51.7, 46.4, 37.8, 36.7, 34.6, 32.0, 31.6, 31.3, 26.4,
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25.2, 23.6, 21.3, 20.6 and 14.8 ppm; IR, o max= 1703, 1458, 1376, 1263, 1151, 1041, 965, 

880, 828, 743 cm'1; MS (ES+), [M+H]+ (100) 514; HRMS calcd for C30H48N3O4 

[M+H]+ 514.3645, found 514.3657.

10a-(5-((DimethyIamino)methyl)-l//-pyrrol-2-yl)artemisinin (39).

Eschenmoser’s salt (124 mg) was dissolved in the minimum amount of anhydrous 

acetonitrile and added drop wise over a period of 30 mins to a solution of (8) (140 mg) 

in anhydrous acetonitrile (10 mL). The mixture was left to stir at room temperature for 

24 h. The mixture was then basified (pH 8) with 2M NaOH solution (3.0 mL). The 

organic layer was then separated and the aqueous layer extracted with EtOAc (3><25 

mL). The combined organic layers were washed with saturated H20  and brine. The 

organic phase was then dried over MgSCL, filtered and concentrated under reduced 

pressure to afford a crude product that was purified by silica gel chromatography using 

10 to 30% MeOH/ DCM as eluent: This gave 39 (70%); Colourless sticky solid, Rf= 

0.01 in 10% MeOH/ DCM; 'H NMR (400 MHz, CDCI3) Sh 9.70 (1H, s, NH), 6.02 (2H, 

m, pyr CH), 5.37 (1H, s, H12), 4.43 (1H, d, 7=10.8 Hz, H10), 3.78-3.69 (2H, AB 

quartet, 7= 13.4 Hz, CH2), 2.63 (1H, m, H9), 2.46 (6H, s, N-(CH3)2), 2.39 (1H, dt, 

7= 13.7, 4.1 Hz, H4a), 1.42 (3H, s, H14), 2.08-1.20 (10H, m), 0.97 (3H, d, 7= 6.3 Hz, 

H15) and 0.63 (3H, d, 7=7.1 Hz, H16) ppm; IR, u max= 3461, 2918, 2360, 1588, 1456, 

1376, 1278, 1226, 1196, 1151, 1127, 1098, 1085, 1058, 1043, 940, 925, 894, 880, 848, 

826, 772, 723 cm"1; MS (ES+), [M+H]+ (100) 391; HRMS calcd for C22H35N204 

[M+H]+ 391.2597, found 391.2598.
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10a-(5-((DimethyIamino)methyl)-l-methyl-pyrrol-2-yl)artemisinin (40).

9 40
Eschenmoser’s salt (124 mg) was dissolved in the minimum amount of anhydrous 

acetonitrile and added dropwise over a period of 30 mins to a solution of (9) (140 mg) in 

anhydrous acetonitrile (10 mL). The mixture was left to stir at r.t. for 24 h. The mixture 

was then basified (pH 8) with 2 M NaOH solution (3mL). The organic layer was then 

separated and the aqueous layer extracted with EtOAc (3x25 mL). The combined 

organic layers were washed with saturated H2O and brine. The organic phase was then 

dried over MgS04, filtered and concentrated under reduced pressure to afford a crude 

product that was purified by silica gel chromatography using 10 to 30% MeOH/ DCM as 

eluent: This yielded 40 (70%); yellow sticky solid, Rf= 0.01 in 10% MeOH/ DCM; 'H 

NMR (400 MHz, CDC13) Sr 5.93 (1H, d, 7= 3.5 Hz, pyr CH), 5.90 (1H, d, J=3.5 Hz, pyr 

CH), 5.38 (1H, s, H I2), 4.48 (1H, d, 7=11.2 Hz, H10), 3.81 (3H, s, N-CH3), 3.4 (2H, s, 

CH2), 2.7 (1H, m, H9), 2.37 (1H, dt, 7=14.0, 4.1 Hz, H4a), 2.22 (6H, s, N-(CH3)2), 1.39 

(3H, s, H I4), 2.08-1.20 (10H, m), 0.98 (3H, d, 7=6.4 Hz, H15) and 0.61 (3H, d, 7=7.2 

Hz, H16) ppm; 13C NMR (100MHz, CDC13) ¿c 131.2, 130.6, 108.5, 104.5, 92.3, 81.0,

72.9, 55.7, 52.4, 50.7, 46.3, 45.0, 37.8, 36.7, 34.5, 31.9, 31.1, 26.3,25.1, 21.3, 20.6 and 

14.7ppm; IR 0= 3366 (N-H), 2924 (C-H), 2360, 1708 (C=N), 1498, 1458, 1376, 1320, 

1297, 1278, 1248, 1227, 1196, 1151, 1128, 1100, 1085, 1055, 1043, 976, 940, 927, 880 

(O-O), 851, 828 (O-O), 775, 721, 708 cm'1; MS (ES+), [M+Na]+ (100) 427; HRMS 

calcd for C23H36N204Na [M+Na]+ 427.2581, found 427.2573; Anal. Calcd for 

C23H36N20 4: C, 68.29%; H, 8.97%; N, 6.92%; Found C, 67.88%; H, 9.06%; N, 6.82%.
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10a-(l-Methyl-5-(sulfonylmorpholinomethyl)-pyrrol-2-yl)artemisinin (41).

To a solution of (37) (100 mg, 0.22 mmol), prepared as previously described, in DCM at 

r.t. under nitrogen was added NMO (76 mg, 0.65 mmol), powered molecular sieves 

(500mg) and TPAP (10 mg, cat.). The mixture was stirred at r.t. over night after which it 

was filtered through a pad of silica and the residue was washed with EtOAc (3x 15mL). 

The filtrate was concentrated in vacuum. The residue was then purified by flash 

chromatography (Si02; 35% EtOAc/ «-Hex) to give 41 as a yellow solid (38 mg, 35%); 

mp= 77 °C; Rf= 0.92 in 10% methanol/ dichloromethane; 'H NMR (400 MHz, CDCI3) 

Sh 5.90 (1H, d, J= 3.5 Hz, pyr CH), 5.88 (1H, d, J= 3.5 Hz, pyr CH), 5.38 (1H, s, H12), 

4.48 (1H, d, J=11.3 Hz, H10), 3.82 (3H, s, N-CH3), 3.59-3.49 (2H, AB quartet, .7=13.7 

Hz, CH2), 3.00 (4H, m, thiomorph CH2), 2.95 (4H, m, thiomorph CH2), 2.85 (1H, m, 

H9), 2.39 (1H, dt, J=14.0, 4.1 Hz, H4a), 1.39 (3H, s, H14), 2.08-1.20 (10H, m), 0.98 

(3H, d, J=6.3 Hz, H15) and 0.57 (3H, d, J= 7.2 Hz, H16) ppm; ,3C NMR (100 MHz, 

CDCI3) Sc 131.2, 129.8, 109.2, 108.6, 104.6, 92.3, 81.0, 73.2, 55.5, 54.8, 52.4, 46.3,

37.8, 36.7, 34.6, 32.1, 31.2, 28.3, 26.4, 25.2, 21.3, 20.6 and 14.8 ppm; MS (ES+), 

[M+Na]+ (100) 517; HRMS caled for C25H38N20 6Na [M +Naf 517.2348, found 

517.2344.

Purification of para-toluene sulfonyl chloride.56

S 0 2CI

The reagent is placed in the thimble of a soxhlet apparatus containing dry petroleum 

ether. After several hours of extraction under an inert atmosphere, the chloride will have 

dissolved in the solvent and the unwanted acid will be left behind in the soxhlet thimble.
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On cooling the solvent mixture, the acid chloride crystallises and can be collected by 

filtration.

10a-(l-(Phenylsulfonyl)-l/7-pyrrol-2-yl)artemisinin (40).

To a solution of (8) (227 mg, 0.68 mmol) in anhydrous THF at 0°C was added sodium 

hydride (41 mg, 1.02 mmol). The reaction mixture was stirred for 40 mins. Then the 

purified para-toluene sulfonyl chloride (259 mg, 1.36 mmol) was added to the reaction 

mixture. After 2 hrs the reaction was quenched with a sat NaHC03. The aqueous layer 

was extracted with EtOAc (3><25mL). The combined organic extracts were washed with 

brine (3><25 mL). The organic phase was then dried over MgSC>4 and concentrated under 

reduced pressure to afford a crude product that was purified by flash chromatography 

using 5% EtOAc/ «-Hex as eluent. This yielded 42 as a yellow oil (50 mg, 15%); Rf= 

0.47 in 25% EtOAc/ «-Hex.; 'H NMR (200 MHz, CDC13) 7.81 (2H, d, 7=8.5 Hz, tol 

CH), 7.22 (2H, m, tol CH), 6.44 (1H, m, pyr CH), 6.26 (2H, m, pyr CH), 5.37 (1H, s, 

H12), 5.13 (1H, d, 7=10.7 Hz, H10), 2.69 (1H, m, H9), 2.39 (1H, dt, 7=14.0, 4.1 Hz, 

H4a), 2.37 (3H, s, tol CH3), 1.39 (3H, s, H14), 2.08-1.20 (10H, m), 0.98 (3H, d, 7=6.0 

Hz, H I5) and 0.61 (3H, d, 7=7.1 Hz, H I6) ppm; MS (ES+), [M+Na]+ (100) 510; HRMS 

calcd for C26H33N 0 6S [M+ N a f  510.1926, found 510.1949.
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F eS 04-mediated degradation of 10a-(l-methyl-5-(morpholinomethyl)-lH-pyrrol-2- 

yl)artemisinin with iron (II) sulphate.

To a solution of 32 (0.11 g, 0.25 mmol) in acetonitrile (5 mL) and water (5 mL) was 

added FeS04.7H20  (86 mg, 0.31 mmol). The reaction was left stirring at r.t. for 1 hour 

before being filtered through celite and washed with acetonitrile. Concentration under 

reduced pressure and flash column chromatography using DCM: MeOH / 9 :1 as eluent 

yielded the products 55 as yellow oil (0.08 g, 72%) and 56 as yellow oil (0.05 g, 21%). 

FeCh-mediated degradation of 10a-(l-methyl-5-(morpholinomethyl)-lH-pyrrol-2- 

yl)artemisinin with iron (II) chloride. To a solution of 32 (0.15 g, 0.34 mmol) in 

acetonitrile (13 mL) was added FeCl2.4H20  (74 mg, 0.34 mmol) under nitrogen 

atmosphere. The reaction was left stirring at room temperature for 30 min before being 

filtered through Celite and washed with acetonitrile. Concentration under reduced 

pressure and flash column chromatography using EtOAc/w-Hex: 5/95 as eluent yielded 

55 (0.09 g, 42%) and 56 (0.03 g, 23%).

Furano acetate (55): Yellow oil, Rf= 0.58 in 9:1/ DCM: MeOH; 'H- NMR (400 MHz) 

Sh 6.15 ( 1H, s, H I2), 6.05 (1H, d, 7=3.6 Hz, pyr CH), 5.88 (1H, d, 7=3.6 Hz, pyr CH), 

4.59 (1H, d, 7=11.1 Hz, H10), 4.27 (1H, t, 7=9.5 Hz, H4), 3.91 (1H, q, 7=8.0 Hz, H4), 

3.68 (4H, m, morph CH2), 3.61 (3H, s, N-CH3), 3.36 (2H, AB quartet, 7=13.5 Hz, CH2), 

2.74 (1H, m, H9), 2.38 (4H, m, morph CH2), 2.09 (3H, s, H14), 2.00-1.00 (9H, m), 0.95 

(3H, d, 7=6.6 Hz, H15) and 0.87 (3H, d, 7=7.0 Hz, H16) ppm; 13C-NMR (400MHz) Sc

169.8, 130.8, 108.8, 106.9, 92.9, 80.6, 71.8, 68.9, 67.5 (2C), 55.7, 55.5, 53.7 (2C), 48.5,
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35.9, 32.4, 31.0, 30.9, 30.4, 28.1, 22.5, 22.0, 21.0, 15.0 ppm; MS (ES+), [M+Na]+ (100) 

469; HRMS calc for C25H38N205Na [M+Na]+ 469.2678, found 469.2687. 

3a-Hydroxydeoxyartemisinin (56): Yellow oil, Rf=0.48 in 9:1/ DCM: MeOH; *H- 

NMR (400 MHz) <5k 5.92 (1H, d, 7= 3.5 Hz, pyr CH), 5.87 (1H, d, 7= 3.5 Hz, pyr CH), 

5.33 (1H, s, H I2), 4.53 (1H, d, 7=10.8, H10), 3.72 (3H, s, N-CH3), 3.66 (4H, m, morph 

CH2), 3.57 (1H, brs, -OH), 3.38 (2H, AB quartet, 7=16.4 Hz, CH2), 2.79 (1H, m, H9), 

2.37 (4H, m, morph CH2), 2.1-1.1 (9H, m), 1.55 (3H, s, H14), 0.90 (3H, d, 7=6.44 Hz, 

H15) and 0.65 (3H, d, 7=7.2 Hz, H16); l3C-NMR (400MHz) & 131.8, 130.0, 108.8,

108.6, 107.7, 95.7, 84.5, 77.1, 71.8, 70.1, 67.5 (2C), 55.5, 53.7 (2C), 42.9, 35.3, 34.8,

31.8, 30.8, 30.3, 22.5, 21.4, 21.0 and 14.6 ppm; MS (ES+), [M+Na]+ (100) 469; HRMS 

calc for C25H38N20 5Na [M+Na]+ 469.2678, found 469.2691.

lOa-Phenylthiodihydroartemisinin (71a) and 10(3-phenylthiodihydroartemisinin 

(71P).

Thiophenol (698 mg, 6.34 mmol) and BF3.Et20  (500 mg, 3.52 mmol) were added to a 

stirred solution of DHA (lg, 3.52 mmol) in DCM (50 mL) at r.t.. The solution was 

stirred for lOmin, after which it was diluted with DCM (100 mL), washed with sat 

NaHC03 and brine. The organic layer was separated, dried with M gS04, filtered and 

evaporated to dryness. The crude product was purified by flash chromatography (2% 

EtOAc/ «-Hex) to give 1.13g (85%) of 71a and 140mg (11%) of 7ip.

71a: white solid; R,= 0.18 in 5% EtOAc/ «-Hex; 'H NMR (400 MHz, CDC13) Sh 7.69 

(2H, dd, 7= 8.3, 1.8 Hz, Ph), 7.27 (3H, m, Ph), 5.34 (1H, s, H12), 4.74 (1H, d, 7= 10.8 

Hz, H10), 2.57 (1H, m, H9), 2.37 (1H, td, 7= 4.0, 13.3 Hz, H4a), 1.41 (3H, s, H I4), 

2.08-1.20 (10H, m), 1.03 (3H, d, 7= 7.0 Hz, H16) and 0.98 (3H, d, 7= 5.7 Hz, H15) ppm;
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13C NMR (100 MHz, CDCI3) Sc 133.9, 132.6, 128.9, 127.6, 104.7, 92.6, 83.9, 77.7,

52.2, 46.4, 37.8, 36.6, 34.5, 31.5, 26.3, 25.2, 21.8, 20.6 and 15.4 ppm; MS (ES+), 

[M+Na]+ (100) 399; HRMS calc for C2iH2804SNa [M+Na]+ 399.1600, found 399.1606. 

71P: white solid; Rf=0.25 in 5% EtOAc/ «-Hex; 'H NMR (400 MHz, CDCI3) 7.54 

(2H, dd, 7= 8.6, 1.5 Hz, Ph), 5.35 (1H, s, H12), 4.73 (1H, d, 7= 5.3 Hz, H10), 3.12 (1H, 

m, H9), 2.39 (1H, td, 7=4.0, 13.3 Hz, H4a), 1.40 (3H, s, H14), 2.08-1.20 (10H, m), 1.03 

(3H, d, 7= 7.0 Hz, H16) and 0.98 (3H, d, 7= 5.7 Hz, H15) ppm.

lOa-Tetrazolthiodihydroartemisinin (73a), 10p-tetrazolthiodihydroartemisinin 

(73P) and lOe/H-tetrazolthiodihydroartemisinin (73epi).

2 73

5-Mercapto-l-methyl-lH-tetrazol (368 mg, 3.17 mmol) and BF3.Et20 (0.2 mL, 1.76

mmol) were added to a stirred solution of DHA (500 mg, 1.76 mmol) in DCM (20 mL)

at r.t.. The solution was stirred for lOmin, after which it was diluted with DCM (100

mL), washed with sat NaHCC>3 and brine. The organic layer was separated, dried with 

M gS04, filtered and evaporated to dryness. The crude product was purified by flash

chromatography (5% EtOAc/ «-Hex) to give 73a (302 mg, 45%), 73p (54 mg, 8%) and

73epi (141 mg, 21%).

73a: white-yellow sticky solid; Rf= 0.23 in 25% EtOAc/ «-Hex; 'H NMR (400 MHz,

CDCI3) Sh 5.99 (1H, d, 7= 10.8 Hz, H10), 5.56 (1H, s, H12), 3.90 (3H, s, N-CH3), 3.31

(1H, m, H9), 2.40 (1H, td, 7=4.0, 13.3 Hz, H4a), 1.40 (3H, s, H14), 2.08-1.20 (10H, m),

0.99 (3H, d, 7= 6.0 Hz, H15) and 0.73 (3H, d, 7= 7.0 Hz, H16) ppm; 2 * * * * * * * * * * 13C NMR (100 

MHz, CDCI3) Sc 165.8, 105.0, 92.8, 82.4, 80.2, 60.8, 51.9, 45.8, 37.6, 36.5, 34.9, 34.3,

31.4, 26.1, 25.0, 21.9, 20.6 and 12.6 ppm; MS (ES+), [M+H]+ (100) 383; HRMS calcd 

for C,7H27N40 4S [M+H+] 383.1753, found 383.1752.
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730: white sticky solid; Rf= 0.35 in 25% EtOAc/ «-Hex; 'H NMR (200 MHz, CDCI3) Sh 

6.62 (1H, d, J= 6.3 Hz, H10), 6.05 (1H, s, H12), 3.89 (3H, s, N-CH3), 3.28 (1H, m, H9),

2.40 (1H, td, J= 4.0, 13.3 Hz, H4cc), 1.40 (3H, s, H14), 2.08-1.20 (10H, m), 0.99 (3H, d, 

J= 12.1 Hz, H15) and 0.87 (3H, d, J= 12.9 Hz, H16) ppm; MS (Cl) for C n ^ e N ^ S N a  

[M+Na]+ 405, [M+K]+ 421.

I'bepl. white-yellow sticky solid; Rf= 0.28 in 25% EtOAc/ «-Hex); 'H NMR (400 MHz, 

CDCI3) Sh 6.72 (1H, d, J= 10.5 Hz, H10), 5.56 (1H, s, H12), 3.90 (3H, s, N-CH3), 2.52 

(1H, m, H9), 2.39 (1H, td, J=4.0, 13.3 Hz, H4a), 1.40 (3H, s, H14), 2.08-1.20 (10H, m), 

1.03 (3H, d, J= 7.0 Hz, H16) and 0.98 (3H, d, J= 5.7 Hz, H15) ppm; 13C NMR (100 

MHz, CDCI3) <5fc 166.1, 102.8, 90.9, 83.4, 82.1, 51.0, 47.3, 38.6, 37.2, 36.2, 34.4, 34.0,

31.6, 30.9, 25.6, 24.7, 19.8 and 18.0 ppm.

10-e/M-Triazolthiodihydroartemisinin (14epi).

2 74

3-Mercapto-4-methyl-4H-l,2,4-triazol (183 mg, 1.76 mmol) and BF3.Et20 (0.1 mL, 0.88 

mmol) were added to a stirred solution of DHA (250 mg, 0.88 mmol) in DCM (10 mL) 

mix with acetonitrile (10 mL) at r.t.. The solution was stirred for 1 hr, after which it was 

diluted with DCM (100 mL), washed with sat-NaHC03 and brine. The organic layer was 

separated, dried with MgSC>4, filtered and evaporated to dryness. The crude product was 

purified by flash chromatography (5% EtOAc/ «-Hex) to give 250 mg (37%) of epi as a 

white solid; Rf= 0.15 in 25% EtOAc/ «-Hex; 'H NMR (200 MHz, CDCI3) 4i 7.79 (1H, 

s, CH [triazol]), 6.83 (1H, d, J= 10.2 Hz, H10), 5.50 (1H, s, H12), 3.56 (3H, s, N-CH3), 

2.31 (1H, m, H9), 2.39 (1H, td, J=4.0, 13.3 Hz, H4a), 1.40 (3H, s, H14), 1.2-2.1 (10H, 

m) and 0.94 (6H, m, H15-16) ppm; IR, u max= 2924, 2724, 1458, 1376, 1222, 1159, 1140,
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1104, 1082, 1050, 1011, 958, 931, 901, 888, 864, 847, 825, 723, 643 cm '1; MS (Cl), 

[M+H]+ (100) 382; HRMS calc for C18H28N04S [M+H]+ 382.1800, found 382.1808.

lOe/M-Pyrimidinthiodihydroartemisinin (75epi).

2-Mercaptopyrimidin (200 mg, 1.78 mmol) and BF3.Et20  (0.1 mL, 0.89 mmol) were 

added to a stirred solution of DHA (250 mg, 0.89 mmol) in DCM (10 mL) mixed with 

acetonitrile (10 mL) at r.t.. The solution was stirred for 15 min, after which the reaction 

was quenched with sat-NaHCC>3, extracted with DCM and washed with brine. The 

organic layer was separated, dried with M gS04, filtered and evaporated to dryness. The 

crude product was purified by flash chromatography (10% EtOAc/ «-Hex) to give a 

white sticky solid (20 mg, 6%): Rf= 0.64 in 25% EtOAc/ «-Hex; 'H NMR (400 MHz, 

CDC13) ¿h 8.50 (2H, d, J= 4.8 Hz, pyrm CH), 6.95 (1H, t, .7=4.8 Hz, pyrm CH), 5.89 

(1H, d, J= 11.4 Hz, H10), 5.44 (1H, s, H12), 2.77 (1H, m, H9), 2.37 (1H, td, .7=4.0, 13.5 

Hz, H4a), 1.41 (3H, s, H14), 2.08-1.20 (10H, m), 1.00 (3H, d, J= 7.3 Hz, H15) and 0.98 

(3H, d, .7=6.4 Hz, H16); 13C NMR (100 MHz, CDC13) Sc 171.6, 157.7, 117.2, 104.7,

92.9, 80.8, 80.7, 77.1, 52.3, 46.7, 37.7, 36.7, 34.4, 32.1, 26.4, 25.1, 21.7, 20.6 and 15.4 

ppm; IR u max= 1565, 1551, 1461, 1377, 1303, 1263, 1228, 1190, 1151, 1084, 1059, 

1054, 1049, 1044, 1039, 1035, 1002, 977, 926, 893, 879, 743 cm'1; MS (ES+), [M+H]+ 

(100) 379; HRMS calcd for Ci9H27N20 4S [M+H]+ 379.1691, found 379.1702.
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lOa-Thiadiazolthiodihydroartemisinin (76a), 10p -

thiadiazolthiodihydroartemisinin (76P) and lOe/M-thiadiazolthiodihydroartemisinin

('16epi).

2-Mercapto-5-methyl-l,3,4-thiadiazol (232 mg, 1.76 mmol) and BF3.Et20  (0.1 mL, 0.88 

mmol) were added to a stirred solution of DHA (250 mg, 0.88 mmol) in anhydrous Et20  

(60 mL) at r.t.. The solution was stirred for 1 hr, after which it was diluted with DCM 

(100 mL), washed with sat NaHC03 and brine. The organic layer was separated, dried 

with M gS04, filtered and evaporated to dryness. The crude product was purified by flash 

chromatography (2% EtOAc/ «-Hex) to give 76a (24.3 mg, 7%), 76p (69.5 mg, 20%), 

16epi (26.1 mg, 8%) and DHA (50.5 mg, 20%).

76a: White sticky solid, Rf= 0.35 in 25% EtOAc/ «-Hex; 'H  NMR (400 MHz, CDC13) 

Sh 6.36 (1H, d, 7= 10.4 Hz, H10), 5.55 (1H, s, H12), 2.62 (1H, m, H9), 2.50 (3H, s, 

thiadz CH3), 2.40 (1H, td, 7= 4.0, 13.3 Hz, H4a), 1.42 (3H, s, H14), 2.08-1.20 (10H, m), 

0.99 (3H, d, .7=6.3 Hz, H I5) and 0.72 (3H, d, 7= 12  Hz, H I6) ppm.

76P: White sticky solid, R r  0.35 in 25% EtOAc/ «-Hex; 'H  NMR (400 MHz, CDC13) 

Sh 5.42 (1H, s, H I2), 5.05 (1H, d, 7= 3.29 Hz, H10), 2.62 (1H, m, H9), 2.48 (3H, s, 

thiadz CH3), 2.40 (1H, td, 7= 4.0, 13.3 Hz, H4a), 1.42 (3H, s, H14), 2.08-1.20 (10H, m), 

0.93 (3H, d, 7= 6.3 Hz, H I5) and 0.86 (3H, d, 7= 1 2  Hz, H I6) ppm.

16epi\ White sticky solid, Rf= 0.39 in 25% EtOAc/ «-Hex; !H NMR (400 MHz, CDC13) 

Sh 6.93 (1H, d, 7= 6.6 Hz, H10), 6.07 (1H, s, H12), 3.22 (1H, m, H9), 2.46 (3H, s, 

thiadz CH3), 2.40 (1H, td, 7=4.0, 13.3 Hz, H4a), 1.42 (3H, s, H14), 1.2-2.1 (10H, m), 

0.99 (3H, d, 7=6.1 Hz, H16) and 0.95 (3H, d, 7= 7.4 Hz, H I5) ppm; MS (ES+), [M+H]+ 

(100) 399; HRMS calcd for Ci8H270 4N2S2 [M+H]+ 399.1412, found 399.1414.
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lOe/u-Imidazolthiodihydroartemisinin (l le p i).

H : H

2 77
2-Mercaptoimidazole (176 mg, 1.76 mmol) and BF3.Et20 (0.1 mL, 0.88 mmol) were 

added to a stirred solution of DHA (250 mg, 0.88 mmol) in acetonitrile (60 mL) at r.t.. 

The solution was stirred for 1 hr, after which it was diluted with DCM (100 mL), 

washed with sat NaHC03 and brine. The organic layer was separated, dried with 

MgSCL, filtered and evaporated EtOAc/ «-Hex) to give l le p i  (250 mg, 86%) as a white 

sticky solid; Rf= 0.05 in 25% EtOAc/ «-Hex; 'H NMR (200 MHz, CDC13) <5h 7.03 (2H, 

s, imidz CH), 5.44 (1H, s, H12), 4.73 (1H, d, J= 11.0 Hz, H10), 3.10 (1H, m, H9), 2.40 

(1H, td, J= 4.0, 13.3 Hz, H4a), 1.49 (3H, s, H14), 2.08-1.20 (10H, m), 0.96 (3H, d, 

.7=6.3 Hz, H15) and 0.92 (3H, d, J= 7.0 Hz, H16) ppm.

Anhydroartemisinin (12).53

A vigorously stirred solution of NaOH (0.22 mmol) and deionized water (15 mL) was 

treated with sulphide (0.18 mmol). The resulting suspension was stirred at ambient 

temperature for 20 mins. To this was added sodium bicarbonate (1.44 mmol) and 

acetone (5 mL). The oxone solution (145 mg in 0.54 mL of 4.10'4 M EDTA) was added 

over 5 min. The suspension was vigorously stirred for 1 hr at r.t. The reaction was 

quenched with sodium bisulfite (90 mg in 2 mL of deionized water) and stirred for 15 

minutes. The aqueous phase was isolated and extracted with EtOAc (10 mL). The

H H

OH
2 12
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organic layers were combined and washed with deionized water (15 rnL), washed with 

brine (15 mL), dried over anhydrous MgS04, filtered and concentrated via rotary 

evaporation. The crude product was purified by flash chromatography (10% EtOAc/ «- 

Hex) to give a white solid (41 mg, 85%); Rf= 0.50 in 25% EtOAc/ «-Hex; mp= 96°C; 'H 

NMR (400 MHz, CDC13) 6.18 (1H, q, 7= 1.3 Hz, H10), 5.54 (1H, s, H12), 2.45-2.35 

(1H, m), 2.10-2.00 (2H, m), 1.95-0.98 (17H, m), including 1.59 (3H, d, 7=1.1 Hz, H16),

1.42 (3H, s, H16) and 0.98 (3H, d, 7=5.8 Hz, H15) ppm; 13C NMR (100 MHz, CDC13) 

Sc 135.6, 108.8, 105.2, 90.3, 79.6, 52.1, 45.1, 38.1, 36.9, 34.8, 30.6, 26.5, 25.1, 20.9 and

16.8 ppm; IR o max= 2931, 2857, 2358, 1686, 1652, 1461, 1376, 1280, 1251, 1198, 1177, 

1158, 1141, 1112, 1079, 1029, 1016, 992, 954, 904, 879 (O-O), 848 (O-O), 828 and 722; 

MS (ES+), [M+H]+ (100) 267; HRMS calcd for Ci5H230 4 [M+H]+ 267.1596, found 

267.1604; Anal. Calcd for C ,5H220 4: C, 67.64%; H, 8.33%; Found C, 67.48%; H, 

8.35%.

10p-Artemether (3).

73 3
To a solution of 73 (145 mg, 0.38 mmol) prepared as described before in THF/ MeOH/ 

H20  (1/1/1) at r.t. was added oxone (654.1 mg, 1.1 mmol). The mixture was stirred for 1 

hour at r.t. then quenched with sat NaHC03, extracted with EtOAc and washed with 

brine. The organic layer was separated, dried with M gS04, filtered and evaporated to 

dryness. The crude product was purified by flash chromatography (10% EtOAc/ «-Hex) 

to give 3 as a white solid (110 mg, 90%): Rf= 0.50 in 25% EtOH/ hexane; [H NMR 

(400 MHz, CDC13) <5h 5.38 (1H, s, H12), 4.69 (1H, d, J=3.3 Hz, H10), 3.43 (3H, s, 

OCH3), 2.63 (1H, m, H9), 2.37 (1H, td, 7= 3.8, 13.52 Hz, H4a), 1.44 (3H, s, H14), 1.2- 

2.1 (10H, m), 0.95 (3H, d, 7= 6.4 Hz, H15) and 0.90 (3H, d, 7=7.5 Hz, H16) ppm; 13C

96



Chapter 2- Synthesis of C-10 heterocyclic derivatives of dihydroartemisinin

NMR (100 MHz, CDCI3) Sc 104.1, 103.4, 87.7, 81.1, 56.0, 52.5, 44.5, 37.4, 36.4, 34.6,

30.9, 26.2, 24.7, 24.5, 20.4 and 13.0 ppm; MS (Cl), [M+NH4-0CH3-0 2]+ (100) 253; 

HRMS calcd for C16H30O5N [M+NH4]+ 316.2124, found 316.2128; Anal. Calcd for 

Ci6H260 5: C, 64.43 %; H, 8.72 %; Found C, 63.91 %; H, 8.19 %.

10a-Tetrazoloxodihydroartemisinin (86).

73 86
To a solution of 73 (70 mg, 0.18 mmol) in DCM (10 mL) at r.t. in nitrogen was added 

NMO (64 mg, 0.54 mmol), activated powdered molecular sieve (500 mg, 4A), and 

TPAP (6 mg, cat.). The mixture was stirred at r.t. overnight after which it was filtered 

through a pad of S i02 and the residue was washed with EtOAc. The filtrate was 

concentrated in vacuum. The residue was then purified by flash chromatography (Si02; 

35% EtOAc/ «-Hex) to give 86 as a white crystal (60 mg, 91%); Rf= 0.10 in 25% 

EtOAc/ «-Hex; 'H  NMR (400 MHz, CDC13) 5.51 (1H, s, H12), 5.39 (1H, d, J= 10.8

Hz, H10), 3.63 (3H, s, NCH3), 3.31 (1H, m, H9), 2.39 (1H, td, J= 4.0, 13.3 Hz, H4a),

1.40 (3H, s, H14), 2.08-1.20 (10H, m), 0.99 (3H, d, J= 5.9 Hz, H16) and 0.98 (3H, d, 

J= 7.0 Hz, H15) ppm; 13C NMR (100 MHz, CDC13) Sc 151.1 (C=0), 104.6 (C-O), 92.1 

(C-O), 79.7 (C-O), 76.7 (C-O), 51.6, 45.4, 37.3, 36.2, 34.0, 31.6, 31.2, 30.1, 25.8, 24.6,

23.2, 21.4, 20.2 and 12.5 ppm; MS (ES+), [M+Na]+ (100) 389; HRMS calcd for 

C,9H26N405Na [M+Na]+ 389.1801, found 389.1783.
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2,3,4,6-Tetra-O-acetate-l-tetrazolthio-P-D-Galactose (90).

O
^ r  
o

/
V 'N
\\ ,N 
N'N

5-Mercapto-l-methyl-1/7-tetrazol (138 mg, 1.20 mmol) and BF3.Et20 (0.13 mL, 1.02 

mmol) were added to a stirred solution of 89 (260 mg, 0.66 mmol) in anhydrous DCM 

(20 mL) at r.t.. The solution was stirred for lOmin, after which it was diluted with DCM 

(100 mL), washed with sat NaHCC>3 and brine. The organic layer was separated, dried 

with MgSCL, filtered and evaporated to dryness. The crude product was purified by flash 

chromatography (10% EtOAc/ «-Hex) to give 90 as a yellow oil (272 mg, 92%): Rf= 

0.80 in 10% MeOH/ DCM.; 'H NMR (400 MHz, CDC13) <5k 5.42 (1H, d, J= 3.5 Hz, HI), 

5.37 (1H, m, H3), 5.30 (1H, m, H2), 5.09 (1H, ddd, J= 1.1; 3.6 and 8.8 Hz, H4), 4.06 

(3H, m, H5, H6), 3.98 (3H, s, tetz CH3), 2.13 (3H, s, acetate CH3), 2.08 (3H, s, acetate 

CH3), 1.97 (3H, s, -CH3 of acetate) and 1.96 (3H, s, acetate CH3) ppm; 13C NMR (100 

MHz, CDCI3) 5C 170.6, 170.4, 170.2, 169.2 (C=0), 150.7 (C-S), 85.4, 75.6, 72.1, 71.2,

68.2, 66.8, 61.4, 34.4 (N-C), 21.2, 21.1 and 21.0 (CH3 of acetate) ppm; MS (ES+), 

[M+Na]+ (100) 469; HRMS calcd for C ieH ^ O g S N a  [M+Na]+ 469.1005, found 

469.1008.

1,3,4,6-Tetra-O-isobutyryl-2-deoxy-p-D-Galactose (93).55

R= ¡PrCO

OR

2-Deoxy-D-galactose (0.25g, 1.5 mmol) was stirred at -12 °C (ice-methanol) in pyridine 

(1.25 mL, 15.3 mmol) and C H C I 3 (2 mL). A solution of isobutyryl chloride (lmL, ~9 

mmol) in C H C I 3 (2mL) was added dropwise over 30 minutes. The reaction was judged 

complete by t.l.c. 30 minutes after addition of isobutyryl chloride solution. The reaction 

mixture was diluted in Et20 , washed with water, with 1 M H C 1  solution and with brine.
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The organic layer was dried over MgS04, filtered and concentrated to give 93 as yellow 

oil (810 mg, 99%). Rf= 0.90 in 5:3:1/ EtOAc:/PrOH:H20 ; 'H NMR (400 MHz, CDC13) 

<5h 5.72 (1H, m, HI), 5.26 (1H, dt, 7= 1.1 and 2.9 Hz, H4), 5.02 (1H, m, H3), 4.05 (2H, 

m, H6), 3.97 (1H, dt, J= 1.1 and 6.8 Hz, H5), 2.65-2.36 (4H, m, -CH of isobutyryl), 1.96 

(2H, m, H2 )) and 1.22-1.03 (12H, s, -CH3 of isobutyryl) ppm; 13C NMR (100 MHz, 

CDC13) Sc 175.4, 174.9, 174.6, 173.9 (C=0), 90.6(C1), 71.0 (C4), 67.1, 63.5, 60.1, 33.0,

32.9, 32.8, 32.7, 29.8 (C2), 18.2, 18.1, 17.9, 17.9, 17.8, 17.8, 17.7 and 17.6 ppm; MS 

(ES+), [M+Na]+ (100) 467; HRMS calcd for C22H360 9Na [M+Na]+ 467.2257, found 

467.2257; Anal. Calcd for C22H360 9: C, 59.44%; H, 8.16%; Found C, 59.58%; H, 

8.18%.

l-Tetrazolthio-3,4,6-tri-0-isobutyryl-2-deoxy-P-D-Galactose (94).

R= ¡PrCO

A solution of 2-deoxy-D-Galactose-tetraisobutyryl (421 mg, 0.95 mmol) in DCM (20 

mL) -50°C was treated sequentially with 5-mercapto-l-methyl tetrazole (198 mg, 1.71 

mmol) and BF3.Et20  (0.14 mL, 1.14 mmol) and stirred at -50°C for 1 hr. The mixture 

was quenched with sat NaHC03, extracted with DCM and washed with brine, then dried 

with MgSC>4 and concentrated on rotary evaporator under vacuum. The crude product 

was purified by flash chromatography (10% EtOAc/ «-Hex) to give 94 (288 mg, 64%): 

Rf= 0.47 in 25% EtOAc/ «-Hex; *H NMR (400 MHz, CDC13) Sn 6.54 (1H, d, J= 5.7 Hz, 

HI), 5.83-5.78 (1H, m, H4), 5.52 (1H, m, H3), 4.24 (1H, m, H5), 4.08 (2H, m, H6), 3.91 

(3H, s, -CH3 oftetrazol), 2.71-2.46 (3H, m, -CH of isobutyryl), 2.26 (2H, m, H2), 1.25- 

1.22 (3H, m, -CH3 of isobutyryl) and 1.13-1.09 (6H, m, -CH3 of isobutyryl) ppm; 13C 

NMR (100 MHz, CDC13) Sc 176.3, 176.2, 176.0 (C=0), 165.2 (C=N), 81.0, 71.0, 65.8,

65.4, 61.4, 34.9, 34.5, 34.4, 34.4 (-CH iPr), 28.3 (-CH3 tetrazol), 19.5, 19.3, 19.3, 19.2, 

19.1 and 19.0 (-CH3 of iPr) ppm; MS (ES+), [M+Na]+ (100) 495; HRMS calcd for 

C2oH3,0 7N4Na [M+Na]+ 495.1889, found 495.1910.
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l-Tetrazol-oxo-3,4,6-tri-0-isobutyryl-2-deoxy-P-D-Galactose (95).

R= ¡PrCO

To a solution of (48) (288 mg, 0.61 mmol) in dichloromethane (15 mL) at r.t. in nitrogen 

was added NMO (214 mg, 1.83 mmol), activated powdered molecular sieve (500 mg, 

4A), and TPAP (20 mg, cat.). The mixture was stirred at r.t. overnight after which it was 

filtered through a pad of SiC>2 and the residue was washed with ethyl acetate. The filtrate 

was concentrated on rotary evaporator under vacuum. The residue was then purified by 

flash chromatography (Si02; 10% ethyl acetate/hexane to 50% ethyl acetate/hexane) to 

give a yellow oil (25%); Rf= 0.14 in 25% ethylacetate/ hexane; ’H NMR (400 MHz, 

CDC13) <5k 6.02 (1H, d, 7=5.9 Hz, HI), 5.83 (1H, m, H4), 5.49 (1H, m, H3), 4.06 (2H, m, 

H6), 3.64 (3H, s, -CH3 of tetrazol), 2.52-2.44 (3H, m, -CH of iPr), 2.22 (2H, m, H2) and 

1.30-1.10 (18H, s, -CH3 of iPr) ppm; 13C NMR (100 MHz, CDC13) Sc 176.7, 176.2, 

176.0 (C=0), 150.5 (N-C=0), 78.4, 70.6, 66.1, 65.6, 61.5, 34.5, 34.3, 34.1(CH, -iPr),

31.7, 28.4, 19.5, 19.3, 19.3, 19.2, 19.1 and 19.1 (CH3, iPr) ppm; MS (ES+), [M+Na]+ 

(100) 479; HRMS calcd for C2oH32N40 8Na [M+Na]+ 479.2118, found 479.2165.
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3. Targeting the cytochrome bc\ complex

3.1. Introduction

Quinones and quinolones are highly efficient antimalarials as they inhibit the 

mitochondrial respiration process of Plasmodium falciparum. By binding specifically 

to the cytochrome bc\ complex, they stop ubiquinone, also called co-enzyme Q, from 

entering the enzyme’s active site. They are reversible enzyme inhibitors that do not 

form covalent linkages to the active site.

The cytochrome bc\ complex is an enzyme catalyzing the transfer of electrons 

from ubiquinol to cytochrome c\ enabling the transfer o f protons across the inner 

mitochondrial membrane.1 The catalytic core of the enzyme is organised in redox 

prosthetic groups which are located within three subunits: cytochrome c\ and the 

iron-sulphur protein (ISP) which are membrane proteins with large, hydrophilic 

domains, and cytochrome b, a predominantly hydrophobic protein consisting of eight 

transmembrane helices which contains two hemes b of differing redox potential (low 

potential b\ and high potential bh) and forms the two quinol binding sites Qo (site of 

quinol oxidation) and Qi (site of quinol reduction). A quinol molecule binds at the 

Qo-site, is deprotonated, transfers one electron through the iron-sulphur protein and 

cytochrome C\ to cytochrome c and forms a highly unstable semiquinone species 

which immediately reduces b\. The electron is then transferred to bh, then to a quinol 

bound at the Qi site, forming a stable semiquinone species. A second quinol 

oxidation event at the Qo site completes the Q-cycle with the formation o f fully 

reduced quinol at the Qi-site. Overall, two molecules of quinol are oxidised to 

quinone at the Qo site and one molecule o f quinone is reduced to quinol at the Qi, 

site with the concerted transfer of two protons per qui'hol oxidised from the N 

(negative)- to the P (positive)-side o f the inner mitochondrial membrane. The 

reduced ISP delivers electrons to cytochrome c\ by macroscopic movement of its 

soluble cytoplasmic domain (alternately occupying the ‘6-‘ and ,c\-proximal’ 

positions). The Figure 1 was drawn using co-ordinates of yeast enzymes 

(lEZV.pdb).
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Figure 1. Cytochrome bc\ complex: yeast enzyme, PDB co-ords 1EZV

In 1983 Ozawa and co-workers were the first to crystallise the cytochrome bc\ 

complex from beef heart mitochondria.3 In 2002, Lange and co-workers described 

the electron transfer pathway between cytochrome bc\ complex and cytochrome c.4

Two successive one-equivalent reductions and two successive one-equivalent 

oxidations take place in the sites Qo and Qj via the radical semiquinone QH or its 

depronated form Q' (Scheme 1). These two sites are situated on opposite sides of the 

membrane linked by a transmembrane electron pathway.1
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Oxidation Reduction

Ubiquinol (3)

Scheme 1. Redox equation for ubiquinone

Inhibition of the cytochrome bc\ complex leads to a collapse o f the 

mitochondrial membrane potential (A'Fm) resulting in cell death. A number of 

inhibitors selective for bc\ Q0 and Q j  sites have been developed over recent years.

3.1.1. Known Inhibitors of cytochrome bc\ complex

3.1.1.1. Naphthoquinones

Some quinines (e.g. ubiquinones) have important roles in the biochemistry of 

energy production and serve as vital links in electron transport. Other quinines have 

been attributed a defense role as a result of their effectiveness at inhibiting the 

growth of bacteria, fungi or parasites.5,6

The 1,4-naphthoquinone structure is common in various natural products and 

is associated with biological activities including enzyme inhibition, anti-
O i l

inflammatory, anticancer, antimicrobial activity and antimalarial activities. ' The
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biological activity imparted by 1,4-naphthoquinones in most cases relies upon their 

ability to accept one and/or two electrons to form radical anion or diamon species.

Atovaquone (Figure 2) is a unique hydroxynaphthoquinone derivative with 

broad-spectrum activity against numerous protozoan parasites.13 It is structurally 

similar to ubiquinone and its mechanism of action has been completely elucidated for 

Plasmodium }A’15

Figure 2. Atovaquone.

A disadvantage is its bioavailability, although this has been improved with a 

suspension formulation. High cost is another disadvantage, because the synthesis of 

atovaquone results in a mixture of diastereoisomers.16

3.1.1.2. Quinolones

Quinolones are widely used antibacterial agents. They were first developed in 

the early 1960s with the non-fluorinated drug nalidixic acid and proceeded in the 

1980s to the first 6-fluorinated derivatives with enhanced activity against Gram

negative bacteria (e.g. norfloxacin, ofloxacin, ciprofloxacin). 17' 19Quinolones are also 

inhibitors of the cytochrome be \ complex, for example Aurachin C and D (Figure 

3).20

Figure 3. Quinolones, be\ complex’s inhibitors.
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3.1.1.3. Pyridinone

GSK pharmaceuticals have developed a novel class o f antimalarial compounds;

the non-chiral 4(lH)-pyridone derivative (GW844520) is a potent and selective

inhibitor of the cytochrome bc\ complex of mitochondrial electron transport in P.
21falciparum  (Figure 4).

7
Figure 4. GW844520 

3.1.1.4. Acridones

The acridone skeleton is present in natural products and has been studied for its 

biomedical activities as a treatment for cancer,22 viral infections23 and parasitic 

diseases including malaria.24,25

Riscoe and co-workers synthesised and tested acridone derivatives to develop a 

better understanding of the anti-malarial structure-activity relationships. The 

activity was optimal (ICso= 1.5 pM) with a long side chain terminated by a 

trifluoromethyl group (Figure 5). It is interesting to note that this side chain 

resembles the long relatively flexible isoprenyl side chain o f ubiquinone.

O

4
Figure 5. 3-(5,6,6,6-tetrafluoro-5-trifluoromethylhexyloxy)-6-chloroacridone

(IC50=1.5 pM)
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3.2. Synthesis

The aim o f this study was to explore the SAR of a series of 2- and 3-aryl 

quinolones and naphthoquinone and to determine the optimal position for 

substitution with a bi-aryl side-chain (Figure 6).

2-QUINOLONE TEMPLATE

O

x=  o , c h 2
Y= H, Cl, OCF3 
Z= H, F, CF3, OCF3

3-QUINOLONE TEMPLATE

R1= H, Cl 
X= O, CH2 
Y= H, Cl, OCF3 
Z= H, F, CF3, OCF3

HYDROXYNAPHTHQUINONE SERIES

The study sets out to create more drug-like templates than the quinolone27 or
'j/r

acridone analogues produced by Riscoe and co-workers, where the heterocyclic 

ring system is substituted with a long aliphatic or perfluorinated alkyl chain. It was 

proposed that the phenoxy or benzyl aryl side-chain may have the ability to occupy 

the same hydrophobic binding site such as inhibitors like stigmatellin. Stigmatellin is 

another inhibitor of the co-enzyme Q, which is the cytochrome c reductase (Figure

7).
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O

Figure 7. Stigmatellin

3.2.1. Quinolones substituted on the 2-position

Quinolones can be made by a variety of cyclisation reactions.28,29 A classical 

method for preparation o f 2-substituted-4-quinolones (13) is the Conrad-Limpach 

reaction.30 This is the best method when R is an alkyl (Scheme 2).

R=CH3, C3H7i C5H•( 1, C7H15

Scheme 2. Reagent and conditions: i) Benzene; ii) Heating.

The aim o f this synthesis was to obtain a bi-aryl at the 2-position o f the 

quinolone. A retrosynthesis study suggests we can start from the cheap commercially 

available 4-chloroquinoline or quinol-4-one which would react with an 

organolithium or a magnesium halide. The organolithium can be made from the 

corresponding bromide species with «-butyl lithium (Figure 7).
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Z

R2= Cl or OH 
R3=Li or MgBr 
X= O, CH2

R1= Cl or H

Y= H, Cl, OCF3 
Z= H, F, CF3, OCF3

X z

Br
+
(HO)2B

Figure 7. Disconnection

2-(4-Phenoxyphenyl)quinolin-4(lH)-one (18) was first prepared by the 

regioselective addition of a Grignard reagent to the TV-protected 4- 

silyloxyquinolonium triflate (16), followed by transformation to the quinolone

acceptable yields by the protection o f 4-hydroxyquinoline (14) with benzyl 

chloroformate under basic conditions. Conversion to the 4-silyloxyquinolonium 

triflates (16) was performed in situ by reaction of the TV-protected 4-quinolone with 

TIPSOTf at 20°C for lhr. Reaction o f the Cbz-protected 4-silyloxyquinolinium 

triflate (16) with the aryl magnesium halide gave the corresponding adduct (17) in 

45% yield. Transformation of the silyl enol ether (17) to the corresponding a,13- 

unsaturated ketone and removal of the Cbz protecting group was performed via a 

novel method. Treatment o f the Cbz-protected silyl enol ether with H2 and catalytic 

amounts of 10% Pd/C, afforded the corresponding quinolone alkaloid (18) in a single 

transformation in good yield. The transformation is initially believed to occur by 

reductive cleavage of the Cbz group followed by oxidation o f the silyl enol ether 

(Scheme 3).31

derivative (17).31 The TV-protected 4-quinolone (15) was readily prepared in
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Scheme 3. Reagents and conditions: i) Benzylchloroformate, NaH, THF, r.t., 

overnight; ii) TIPSOTf, r.t., 1 hr; no stirring; iii) 2,6-lutidine, PhOPhMgBr, 

DCM/THF, r.t., 2 hrs; iv) H2, 10% Pd/C, MeOH, r.t., 3 hrs.

The mechanism of the final step of deprotection occurs with a cis-addition of 

H2 onto 17, followed by the elimination of toluene and carbon dioxide. Oxidative 

addition of the allyl anion to a Pd(0) complex forms the (7t-allyl)-palladium (20) in 

situ. Palladium enolate (20) undergoes reductive elimination to afford allyl ketone 

(18) and regenerate the Pd(0) complex (Figure 8).32

Figure 8. Reagents and conditions: i) elimination o f C 0 2 and toluene; ii) MeOPdLn; 

iii) p-elimination.
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2-Substituted-quinolones were also prepared via a three-step synthesis 

employing a Copper or Suzuki coupling to make the bromide species, followed by 

Ziegler alkylation33 and hydrolysis of a 4-substituted quinoline derivative to give the 

target quinolone (Scheme 4).

21, R = CH2Br, 23, Z= OCF3, Y= H
22, R= OH 24, Z= CF3, Y= H

25, X= CH2, Z= OCF3, Y= H, 30 %, Pd
26, X= CH2, Z= CF3, Y= H, 16 %, Pd
27, X= O, Z= OCH3, Y= H, 87 %, Cu

31, X= CH2, Z= OCF3, Y= H, 66 %
32, X= CH2, Z= CF3i Y= H, 43 %
33, X= O, Z= OCF3, Y= H, 77 %

28, X= CH2, Z= OCF3, Y= H, 42 %
29, X= CH2, Z= CF3i Y= H, 17 %
30, X= O, Z= OCF3, Y= H, 17 %

Scheme 4. Reagents and conditions: i) Suzuki (25-26) or Copper (27) coupling; ii) n- 

BuLi, 4,7-dichloroquinoline, THF, -78°C, 4 hrs; iii) CAN, acetone, r.t., 30 mins; iv) 

85 % H C 00H /H 20 , DMF, reflux, 4 hrs.

Details of step i;

Synthesis of the bromide derivatives 25 and 26 involves a Suzuki coupling.34

The Suzuki reaction, first published in 1979, is a palladium-catalysed cross 

coupling between a boronic acid and a halide or triflate. The Suzuki reaction is one 

of the most versatile and often used reactions for the selective construction of 

carbon-carbon bonds, in particular for the preparation of biaryl-containing 

molecules.35,36

The mechanism starts with the oxidative addition of the less hindered halide to 

the palladium(O) complex, which generates a palladium (II) intermediate. This is 

followed by transmetallation with the phenyl boronic acid, to release the product via 

reductive elimination, reducing the complex to catalyst palladium(O). An additional
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base, such as sodium carbonate, is required during the transmetallation step to 

capture the boronic acid (Scheme 5).

R -R ' R -B r

+ NaBr R'B(OH)2

Scheme 5. Catalytic cycle for Suzuki reaction.

The choice of the catalyst is one o f the keys to success for this reaction. Three 

palladium catalysts were used for this coupling in this chapter. A new palladium 

catalyst DAPCy (36) can be used for Suzuki coupling in aerobic conditions (Scheme 

6)-37

cy,
NH + Pd(OAc)2 

Cy

34 35

Cy N
/

Xy

H
Cy~

^Pd(OAc)2
NH
Cy
36, 97%

Scheme 6. Reagents and conditions: i) dioxane, r.t., 3 hrs.

Coupling between 4-trifluoromethoxyphenyl boronic acid and 4- 

bromobenzybromide with DAPCy as catalyst gave the expected product, also 

recovery o f unreacted bromide (21) and disubstituted side-product (37) (Scheme 7). 

Only 10% of the desired product (25) was obtained.
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Br OCF3

+

21
Br

B(OH)2
23

F3CO Br
+ F3CO

OCF3

25 37
Scheme 7. Reagents and conditions: i) DAPCy, K3PO4, EtOH, aerobic conditions, 

r.t. or i) PdCE, dppf, K3PO4, dioxane, 100°C.

Similar reaction with palladium dichloride (PdCE) with 1,1’- 

bis(disphenyldiphenylphosphino)ferrocene (dppf) as ligand and potassium phosphate
■ 30

tribasic gave similar mixture (25-37).

The Suzuki reaction conditions using DAPCy and PdCE/dppf led to no 

selectivity with both bromide groups o f 4-bromobenzylbromide, giving 2 products 

which were difficult to isolate. These results led to the use of another palladium 

catalyst, Pd[PPh3]4, which was used for the same coupling. The synthesis of this 

catalyst is obtained in quantitative yield in one step from palladium dichloride 

(Scheme 8).39

2 PdCl2 + 8 PPh3 + 5 NH2NH2.H20  ------- - 2 Pd(PPh3)4 + 4 NH2NH2.HC1 + N2 + 5 H20

Scheme 8. Reagents and conditions: i) DMSO, argon, 140°C, 3hrs.

The synthesis34 of 25-26 via Suzuki coupling with Pd[PPh3]4 gave a mixture of

4-bromobenzylbromide (21) and the desired product, since both these products are 

non-polar, they cannot be separated with column chromatography. An additionnal 

reaction o f the mixture with piperidine in toluene was required to give the amine 38, 

which is much more polar, allowing 25-26 to be easily purified via column 

chromatography (Scheme 9).
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25, R= CF3, 16 % 38
26, R= OCF3, 30 %

Scheme 9. Reagents and conditions: i) Na2C03, Pd[PPh3]4, EtOH/ toluene, reflux, 16 

hrs; ii) piperidine, toluene, reflux, 2 hrs.

Although Pd(PPh3)4 seems to be a better catalyst than DAPCy because o f no 

side-products, the yields obtained for Suzuki reaction modified by Langle and co

workers34 with 4-bromobenzylbromide catalysed by Pd(PPh3)4 are low. This suggests 

4-bromobenzylbromide may not be a good substrate for Suzuki coupling.

Copper coupling was also used as part of synthesis40, 41 to make the 

phenoxyphenyl bromide species 27-40 (Scheme 10).

22 23, Y= H, Z= OCF3 27, Y= H, Z= OCF3, 87 %
39, Y= Cl, Z=F 40, Y= Cl, Z= F, 88%

Scheme 10. Reagents and conditions: i) Cu(OAc)2, NEt3, DCM, mol.sieves, r.t., 48

hrs.

Evans and co-workers have speculated the plausible arylcopper phenoxide 

intermediate which undergo reductive elimination to the diaryl ether (Scheme 11). 40 

Copper coupling with pyridine42 as a base did not give good yields, triethylamine 

gave better yields.
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; AcC> OAc ¡i AcOv OAc
A r-B (O H )2 — Cu ---------  Cu ------ - ArOAr' + Cu(OAc)2

Ar 'B(OH )2 Ar OAr’
Scheme 11. Reagents and conditions', i) Cu(OAc)2; ii) Ar’OH, base.

Details of step ii. in')

4,7-Dichloroquinoline undergoes a Ziegler-alkylation with organolithium 

reagents at -78°C with high regioselectivity.43 2-Butylquinoline has been observed as 

a side product, which indicates the remaining «-butyllithium reacts also with 4,7- 

dichloroquinoline (Scheme 12). CAN, also called ammonium cerium (IV) nitrate, 

oxidise an amine to an imine, and becomes reduced to cerium (III) in the process.

Cl Cl

25, R= PhCH2pCF3-Ar
26, R= PhCH2pOCF3-Ar
27, R= PhOpOCF3-Ar

Cl Cl

28, R= PhCH2pCF3-Ar, 17% 41, 10%
29, R= PhCH2pOCF3-Ar, 42%
30, R= PhOpOCF3-Ar, 15%

Scheme 12. Reagents and conditions: i, ii) rc-BuLi, 4,7-dichloroquinoline, THF, - 

78°C, 4 hrs; iii) CAN, acetone, r.t., 30 mins.

W olf and Lerebours obtained similar 2-substituted-4-chloroquinoline in 67- 

90% yields with MeLi, rc-BuLi, fert-BuLi and PhLi. It is assumed that the decrease in 

yield is mainly a result of enhanced halogen-metal exchange under less cryogenic 

conditions since halogen-directed ortho-metalation in position 3 of quinoline was not 

observed.44 Our organolithiums which are prepared in situ have additional halogens 

and this could explain why our yields are lower than W olfs and Lerebours’.43
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Development of step iv.

Quinolones were obtained via hydrolysis of 4-chloroquinolines 28-30 and 

filtration o f the insoluble product (Scheme 13). It has been observed quinolones are 

very insoluble: 31 and 32 are only soluble in DMSO and 33 is insoluble. This 

solubility issue could reduce their activity profiles both in vitro and in vivo.

28, X= CH2l Z= OCF3, Y= H
29, X= CH2, Z= CF3, Y= H
30, X= O, Z= OCF3, Y= H

31, X= CH2, Z= OCF3, Y= H, 66 %
32, X= CH2, Z= CF3, Y= H, 43 %
33, X= O, Z= OCF3, Y= H, 77 %

Scheme 13. Reagents and conditions: iv) 85 % HCOOH/H2O, DMF, reflux, 4 hrs.

In an attempt to increase the solubility o f quinolones analogues we performed a 

similar synthesis from 4-chloro-7-trifluoromethylquinoline. Many side products were 

obtained for the Ziegler-alkylation, explaining the low yield of 6% (Scheme 14). 

«BuLi could deprotonate ortho to the chlorine or fluorine atom leading to a benzyne 

intermediate by elimination of chloride or fluoride.45

Cl Cl Cl

44, 49%
Scheme 14. Reagents and conditions: i) «BuLi, THF, -78°C, 4 hrs; ii) CAN, acetone, 

r.t., 30 mins; iii) 85 % H C 00H /H 20 , DMF, reflux, 4 hrs.
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3.2.2. 3-Substituted quinolones

A retrosynthetic analysis shows that quinolones substituted at the 3-position 

could be made from 3-bromoquinolone and a boronic acid via Suzuki coupling 

(Figure 9).

Figure 9. Disconnection.

As quinolones are insoluble, we either protected the 4-hydroxy function as a 

methyl or benzyl ether or converted the quinolone into a 4-chloroquinoline. A four- 

step synthesis from 7-chloroquinol-4-one gave a series of quinolone derivatives 

substituted at the 3-position. The boronic acid used in the third step had to be 

prepared via parallel synthesis (Figure 10).

Figure 10. Steps-, i) Bromination; ii) Protection of hydroxyl group/ chlorination; iii) 

Suzuki coupling with boronic acid; iv) Hydrolysis.

122



Chapter 3- Targeting the cytochrome b c \ complex

Details of step i (from Figure 10):

Bromination at the 3-position is essential for a further substitution on this position. 

We cannot brominate 4-chloroquinoline because it is not nucleophilic enough, 

therefore 7-chloro-4-methoxyquinoline (46) was synthesized from the corresponding 

4,7-dichloroquinoline (45) .46 However, inspite o f the addition of an electron 

releasing methoxy group in 46 bromination did not give the expected 3-bromo-4- 

methoxyquinoline (47)47 (Scheme 15).

Scheme 15. Reagents and conditions: i) NaOMe, MeOH, reflux, 2.5 days; ii) Br2,12 

(cat), CH3COOH, r.t., 2 hrs.

In contrast 7-chloro-quinol-4-one was successfully brominated in quantitative 

yield (Scheme 16).47

O O
.Br

Scheme 16. Reagents and conditions: i) Br2,12 (cat.), CH3COOH, r.t., 2 hrs.

We reasoned that for this reaction to occur the 4-position needs to be an 

hydroxyl group and a plausible mechanism is depicted in Scheme 17.

OH
Br

Scheme 17. Suggested mechanism for bromination.
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Details of step ii (from Figure 10V

3-Bromo-7-chloroquinol-4-one is highly insoluble in many organic solvents.

Therefore, we protected the hydroxyl group to increase solubility (Scheme 18); the

high acidity o f the hydroxyl group affords better yields for its protection.

Protection of hydroxyl groups as esters or ethers are the most used methods.

Fluoride is a catalyst for base-catalysed reactions and has a high capacity for

hydrogen-bond formation. However due to its hygroscopic property, this catalyst is

not easy to handle. To be less hygroscopic, caesium fluoride is absorbed on celite.4

O OBn
Br

48

'N

51, 60%

Scheme 18. Reagents and conditions: i) BnBr, CsF, DMF, r.t., overnight.

An alternative way to protect the hydroxyl group uses the Mitsonobu reaction, 

using benzyl alcohol as a nucleophile (Scheme 19).

Scheme 19. Reagents and conditions: i) BnOH, PPI13, DEAD, DMF, reflux, 16 hrs.

The chlorination of 3-bromo-7-chloroquinol-4-one gave 3-bromo-4,7- 

dichloroquinoline in very good yields which could be used for further Suzuki 

coupling (Scheme 20) .49’ 50

R= Cl: 49 R= Cl: 53, 77%
R=H : 52 R= H: 54 ,85%

Scheme 20. Reagents and conditions: i) POCI3, reflux, 30 mins.
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Explanation of step iii (from Figure 10):

Boronic acids required for Suzuki coupling were synthesised via lithiation and 

boronation (Scheme 21) .51

Y

(HO)2B Z
57, Y= H, Z= OCF3, 100%
58, Y= F, Z= CF3, 34%

Scheme 21. Reagents and conditions: i) Na2C03, Pd[PPh3]4, EtOH/ toluene, reflux, 

16 hrs; ii) piperidine, toluene, reflux, 2 hrs; iii) «-BuLi, B(OiPr)3, THF, -78°C to r.t., 

16 hrs, H30 +/H20 .

Lithiation-boronation didn’t work as well as expected, this might be explained 

by the fact that the extra fluoride can be a good leaving group, which makes the 

proton in the P-position more acidic; «BuLi can take an aromatic proton and this is 

followed by the fluoride group leaving to form a benzyne.45

As already noted several palladium catalysts can be used for Suzuki coupling. 

Firstly, palladium (II) acetate with triphenyl phosphine was used as catalyst to 

attempt the coupling. As the starting material was recovered, we reasoned it may be 

due to the base, triethylamine, being too weak (Scheme 22) .52,53

OBn

i*

Scheme 22. Reagents and conditions: i) Pd(OAc)2, PPh3, NEt3, DME, reflux, 16 hrs.
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Preformed Pd(PPh3)4 was then tried as a catalyst (Scheme 23). This proved 

successful however, if  more than 1 equivalent of boronic acid is added, substitution 

o f the chloride group at the 7-position also takes place.

OBn
Br

+ R-B(OH)2

59, R= PhF 
61, R= PhOPh

OBn

60, R= PhF, 80 %
62, R= PhOPh, 67 %

Scheme 23. Reagents and conditions: i) Na2C03, Pd(PPh3)4 , DME, reflux, 16 hrs.

Suzuki coupling with a chloride group at the 4-position of quinoline also gave 

good yields (Scheme 24).

Cl

Scheme 24. Reagents and conditions: i) Na2C03, Pd(PPh3)4, toluene, EtOH, reflux, 

16 hrs.

When an excess of catalyst was used in order to increase the yield of the 

reaction, C-Cl bond at the 4-position was broken, which gives the product 64 

(Scheme 25).
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Cl F

64, 45%

Scheme 25. Reagents and conditions: i) Na2C03, Pd(PPh3)4, toluene, EtOH, reflux, 

16 hrs.

Suzuki coupling with 4-hydroxyphenyl boronic acid gave a lower yield, which 

can be explained by the hydroxyl group on the boronic acid chelating with the Pd 

catalyst. 6 6  and 67 can be used for further copper coupling (Scheme 26).

53, R= Cl
54, R= H

Br

(HO)2B

OH

65 66, R= Cl, 90%
67, R= H, 45%

Scheme 26. Reagents and conditions: i) Na2CC>3, Pd(PPh3)4, toluene, EtOH, reflux, 

16 hrs.

A modular approach for the synthesis of 3-biaryletherquinoline (68-73) was 

used via Cu(OAc)2-mediated40, 42 arylation o f phenols 6 6  and 67 with aryl boronic 

acid in the presence o f triethylamine in good yields (Scheme 27).
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OH

66, R1= Cl, 45%
67, R1= H, 90%

68, R1= Cl, R2= H, R3= F, 63%
69, R1=CI, R2= H, R3= OCF3i 68%
70, R1=CI, R2= H, R3= CF3, 95%
71, R1=CI, R2= H, R3= tBu, 80%
72, R1=H, R2= OCF3, R3= H, 75%
73, R1=H, R2= Cl, R3= F, 50%

Scheme 27. Reagents and conditions: i) boronic acid, Cu(OAc)2, NEt3, DCM, mol. 

sieves, r.t., 24-48 hrs.

It was observed that the copper couplings left for 48 hours gave better yields 

than after 24 hours. In addition copper coupling doesn’t take place with substituents 

at the ortho position (Scheme 28).40

Scheme 28. Reagents and conditions: i) Cu(OAc)2, NEt3, DCM, mol. sieves, r.t., 24- 

48 hrs.

Details o f step iv (see Figure 101:

The final step was to obtain the quinolone analogues via deprotection of the 

benzyloxy or displacement o f the chloride group at the 4-position.

Deprotection of benzyl ether protected quinolone:

To deprotect 4-benzyloxyquinoline, BC13 was used as a Lewis acid.54 During 

the reaction, we observed a new spot by t.l.c. indicating the formation o f a new 

product. However, following work up only the starting material was obtained. A 

possible explanation for this was that the lone pair on 60 is complexing to produce 78 

which is then recovered following work-up (Scheme 29).

B(OH)2

66, R= H
67, R= Cl

74, R1= Cl, R2= CF3
75, R1=F, R2= F

76, R1= Cl, R2= CF3
77, R1=F, R2= F
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60

60

Scheme 29. Reagents and conditions: i) BCI3, DCM, r.t., 48 hrs; ii) MeOH, acetone.

Treatment of the benzyloxyquinolines 60 and 62 with H2 and catalytic amounts 

o f 10% Pd/C afforded the corresponding quinolone targets 79 and 80 in a single 

transformation.55 Although the expected hydrogenation took place, the C-Cl bond 

was also cleaved by Pd (Scheme 30).

OBn O

60, R= PhF 79, R= PhF, 49%
62, R= PhOPh 80, R= PhOPh, 45%

Scheme 30. Reagents and conditions: i) H2, Pd/C, MeOH, r.t., 30 mins.

Hydrolysis of 4-chloroquinolones:

To hydrolyse the chloride group at the 4-position, formic acid/water in 

refluxing DMF was used (Scheme 31).
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63, R1=CI, X=CH2, R2=H, R3=OCF3
68, R1=CI, X=0 , R2=H, R3=F
69, R1=CI, X =0 , R2=H, R3=OCF3
70, R1=CI, X =0 , R2=H, R3=CF3
71, R1=CI, X=0 , R2=H, R3=tBu
72, R1=H, X=0 , R2=OCF3, R3=H
73, R 1=H, X=0 , R2=CI, R3=F

81, R1=CI, X=CH2, R2=H, R3=OCF3i 64 %
82, R1=CI, X =0 , R2=H, R3=F, 73 %
83, R1=CI, X =0 , R2=H, R3=OCF3, 77 %
84, R1=CI, X =0 , R2=H, R3=CF3, 59 %
85, R1=CI, X =0 , R2=H, R3=tBu, 56 %
86, R1=H, X=0 , R2=OCF3, R3=H, 89 %
87, R1=H, X =0 , R2=CI, R3=F, 60 %

Scheme 30. Reagents and conditions: i) 85 % H C 00H /H 20 , DMF, reflux, 4 hrs.

3.2.3. Naphthquinone

Atovaquone is an expensive drug because its synthesis requires separation of 

the diastereoisomers. We set out to make a similar molecule to Atovaquone with 

nitrogen instead of carbon to remove the chiral centers (Figure 11).

4 88, R= CH
89, R= N

Figure 11. Atovaquone and target molecules.

Tandon and co-workers describe the synthesis of 2-A,A-dialkylamino- 1,4- 

naphthoquinones in one or two steps; the reaction of 1,4-naphthoquinone (90) and its 

bromo derivative (91) with some aliphatic secondary amines give the desired 

naphthoquinones derivatives. It is stated that better yields (although yields were not 

specified) were obtained from 91.56 The same way, naphthoquinone was brominated 

and substitution of the bromide with a variety o f amines was attempted, 

unfortunately only starting material was isolated (Scheme 31).

130



Chapter 3- Targeting the cytochrome bc\ complex

O O O

Scheme 31. Reagents and conditions: i) Br2,12 (cat), AcOH, r.t., 2 hrs; ii) amine, abs. 

EtOH, reflux, 5 hrs.

The Mannich reaction was used as an alternative to functionalise at the 3- 

position (Scheme 32). The yields observed were moderate but unoptimised.

O O

Scheme 32. Reagents and conditions: i) CH2O, amine, CH3COOH, abs EtOH, r.t., 2 

hrs.
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3.3. Antimalarial Activity and SAR Studies

EC50, or the half maximal effective concentration, measure the drug potency 

for which 50% of the population exhibits a response. For agonist/stimulator assays 

the most common measure is the EC50. We evaluated the in vitro activity o f 2- 

phenoxyphenylquinolone (18), 3-phenoxyphenylquinolone (80) and atovaquone (as a 

reference) against bc\ complex of Plasmodium falciparum  (EC50); for all quinolones, 

be 1 complex activity was determined by monitoring the reduction of cytochrome c 

with decylubiquinol (QH2) (Scheme 33) as electron donor. EC50 values were 

calculated using the four-parameter logistic method (Grafit).

For parasite assays IC50 is the most common measure of the in vitro activity, 

we measured the IC50S of 18, 93 and atovaquone against chloroquine-sensitive (3D7) 

strains.

Atovaquone has a much better activity than our two synthetic quinolones and 

naphthoquinone, we hoped the addition of functional groups on the quinolones 

analogues would increase their in vitro activities. The isomeric quinolones 

substituted on the 2 and 3 position show similar in vitro activities (Table 1). The in 

vitro activity observed for 93 was similar than the quinolones analogues, but many 

difficulties were observed with its synthesis due to the low solubility of 

naphthquinone and some instability, therefore we decided to concentrate on novel 

quinolone synthesis.

OH

OH
Scheme 33. Decylubiquinol
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Inhibitor Structure EC50 ± 

SEM (nM)

IC50 ± 

SEM (nM)

2-(4-phenoxy-

phenyl)quinol-4-one

(18)

0

QC’nCX0jQ

41 ± 8 244 ± 55

3-(4-phenoxy-

phenyl)quinol-4-one

(80)
r J j T O

H

56 ± 8 ND

2-((4-(4-

chlorophenyl)piperazin- 

l-yl)methyl)-3- 

hydroxynaphthalene- 

1,4-dione (93)
0  ^ C l

ND 350 ± 62

Atovaquone

0

3 ± 2 1 ± 0 .2

Table 1. In vitro activities: EC50 measures against enzyme bc\ complex of 

P.falciparum and IC50S against chloroquine-sensitive (3D7) strains.

To develop a better understanding o f the antimalarial structure-activity 

relationships of novel quinolones, we tested the ten analogues synthesised against P. 

falciparum  to obtain their I C 5 0  (Table 2 ).

There is a difference between I C 5 0  against parasite and E C 5 0  for inhibiting the 

enzyme bc\ complex. As we did not obtain the E C 5 0  of the quinolones tested, we 

assumed, in our analysis, that parasite inhibition is directly proportional to bc\ 

complex inhibition.

Comparison of in vitro activities for 31 and 33 demonstrates the bridge 

between the two phenyl rings is optimal with -CH2-. 31 is more active than 32,
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therefore the functional group -OCF3 may have a better interaction with the 

cytochrome bc\ complex than -CF3. The analogues substituted at the 2-position, 31- 

33, have better activities than these substituted at the 3-position 81-87. Looking at 

the in vitro results for the 3-substituted quinolones 81-87, the functional groups of 

choice would be -OCF3 at the met a position, or -C l meta and -F  para. Fluoro and 

tert-butyl analogues (82 and 85) are insoluble in DMSO, which could explain their 

lack of activity, also 84 has a bad solubility and shows no activity either.

The most potent compound, 31, shows an activity o f 30 nM. It appears that the 

best profile for a quinolone derivative is substitution at 2-position (Table 2 ).
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O

H

Compounds R 1 R2 RJ ic50
(nM)

31 -Cl "oxrCF3 -H 30

32 -Cl 'OXT'" -H 139

33 -Cl xxcr- -H 185

81 -Cl -H >

1000

82 -Cl -H XTTX >

1000

83 -Cl -H xra«„ >

1000

84 -Cl -H xnx, >

1000

85 -Cl -H >

1000

86 -H -H xm°CFj 387

87 -H -H 455

Table 2. In vitro antimalarial activity of library o f 10 novel quinolones against P. 

falciparum  chloroquine-sensitive 3D7.
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Further in vitro tests have been carried on quinolones 31-33, 81 and 83 against 

P. falciparum bc\ complex, yeast (wildtype and mutant) and the bc\ of rat liver 

preparations.

All quinolones tested have low in vitro activities in the nM against parasite and 

in the pM against mammalian bc\ which means that the quinolones inhibit 

selectively the parasite; thus the therapeutic index (TI) are very high (almost 1000 as 

the values are nM compared to pM), this is good as it should reduce the chances of 

toxicity.

2-substituted quinolone 31 looks very promising given the therapeutic index 

against the enzyme. Also the I C 5 0  of 3.5 nM against the bc\ complex of P.falciparum 

is really low, which means the drug is a good inhibitor o f the targeted enzyme (Table 

3).

Code Growth
inhibition
IC50, P . /  
3D7 (nM)

P.f. IC50 

bc\ (nM)
IC50 Yeast 
wildtype 

(pM)

IC50 Yeast 
(PF3 mutant) 

(pM)

IC50 bc\ Rat 
Liver (pM)

31 30.3 3.5 No effect 
(14)

No effect 
28

At 7.2,21% 
inhibition of 

activity

32 138 TBD TBD TBD TBD

33 185 TBD 2.36 1.30 At 7.2, 18% 
inhibition of 

activity
81 >1000 TBD No effect 

(2.5)
TBD At 7.2,31% 

inhibition of 
activity

83 >1000 TBD No effect 
(2.5)

TBD At 7.2, 10% 
inhibition of 

activity

Table 3. IC50S for selected compounds versus P .f  and bc\ complex.
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3.4. Molecular modelling

In addition to the synthesis and antimalarial assessment of analogues we were 

also interested in performing modelling studies in yeast bc\ model (a surrogate of 

Plasmodium falciparum bc\ complex).

These docking models illustrate that 2 and 3 phenoxyphenylquinolones are 

predicted to bind to the same area of the protein as atovaquone (Figure 12-15). The 

initial molecular modelling does not include the Rieske protein and the bc\ complex 

was considered as rigid whilst the target molecules were considered fully flexible.

We have looked at both tautomeric forms of all three compounds. In general 

(considering both isomeric forms) the 2-isomer is predicted to be bound more 

strongly than the 3 isomer, with the 2-isomer being slightly less strongly bound than 

atovaquone. However, the differences are really rather small and probably within the 

error of the function used to estimate binding strength.

The potential antiplasmodial activity is supported by favourable binding 

energies for in silico docking of naphthoquinone and quinolones to Q0.

Figure 12. In silico docking mode for atovaquone to P. falciparum bc\ Qo complex
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Figure 13. In silico docking mode for 3-phenoxyphenylquinolone to P. falciparum

bc\ Qo complex

*

\
\

Figure 14. In silico docking mode for 2-phenoxyphenylquinolone to P. falciparum
bc\ Qo complex
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Figure 15. Superposed in silico docking for atovaquone, 3-phenoxyphenylquinolone
and 2-phenoxyphenylquinolone

Since this study was based on a homology model that lacks the Rieske protein 

we decided to carry out molecular modelling using GOLD and the yeast bc\ 

complex.

GOLD (Protein-Ligand Docking) is a program for calculating the docking 

modes o f small molecules in protein binding sites. It is very highly regarded within 

the molecular modelling community for its accuracy and reliability.57

The starting point for this modelling was the stigmatellin-yeast crystal structure 

(pdb code 1KYO) which was downloaded from the database. The use of a yeast 

model serves as a surrogate for Plasmodium bc\ complex.
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Figure 16. Yeast bc\ complex crystal structure (pdb code 1KYO).

When atovaquone binds to the ubiquinol oxidation pocket of the yeast 

cytochrome bc\ complex, it binds specifically to HI 81 in the Rieske protein and by a 

water mediated hydrogen bond to glutamate 272 (E272) of cytochrome b. According 

to the molecular modelling, quinolone analogues interact in a similar way to 

atovaquone.58

Quinolone analogues 31, 32, 33, 85, 8 6  present the best fit docking pose with 

the quinolone. inside the binding pocket and the C2 / C3 side chain in the pocket 

channel. In 31, 32 and 33 (lowest IC50S) the carbonyl from the quinolyl moiety lies 

close to H181, whereas the NH faces E272. All three structures are superimposed. As 

for 85 and 8 6  the quinolyl moiety is inverted in the binding pocket when compared to 

the previous three, i.e. the carbonyl nearer to E272 and NH closer to H I81.
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Figure 17. Binding of Quinolone 31 yeast bc\ complex (pdb code 1KYO)

Figure 18. Binding of Quinolone 32 yeast bc\ complex (pdb code 1KYO)
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Conversely, quinolones 81, 82, 83, 84, 85 present the side chain inside the 

pocket and the quinolyl group in the channel. All five structures bind similarly in the 

Q o  site.

Figure 19. Binding of Quinolone 81 yeast bc\ complex (pdb code 1KYO)

Substitution at C2 appears to be preferential rather than at C3. 32 displayed a 

higher GOLDscore than its counterpart 81 (65.39 and 59.61 respectively) as did 33 

when compared to 83 (64.60 and 60.56 respectively). This docking study also 

favours JP-OCF3 (31) at the terminal aryl instead of J9-CF3 (32).

Additionally, despite the C3 substitution, 86 binds in a similar way to 33, 

except for the quinolyl moiety, which is inverted. The side chains dock in the same 

way.

A long side chain at C2 (or other that docks in an identical way) appears to be 

crucial for good antimalarial activity. The preferential orientation of the quinolyl 

moiety should be when the carbonyl lies closer to H I81. The major E-I enzyme 

interactions should arise from hydrophobic stacking. Hydrogen bonds cannot be

142



Chapter 3- Targeting the cytochrome b c \ complex

excluded but the good GOLDscore vs IC50 correlation should be indicative that this 

is a good model for this class o f compounds (Table 4-5).

According to the distance to the glutamate E272, we can see quinolones 81-84 

have no interaction, which could explain why their I C 5 0 S  are over 1 uM showing they 

have no activity. Quinolone 85 is close from E272 (3.63 A) and H I81 (4.26 A), 

although its lack of activity could be due to its insolubility.

Quinolones Distance to E272 / A Distance to H181 / A

31 4.00 from quinolyl NH 3.07 from C =0

32 4.00 from quinolyl NH 3.04 from C =0

33 3.95 from quinolyl NH 3.00 from C =0

81 - -

82 - 4.10 from spacer oxygen

83 - 3.46 from spacer oxygen

84 - 3.86 from spacer oxygen

85 3.63 from C=0 4.26 from quinolyl NH

8 6 3.29 from C =0 4.24 from quinolyl NH

87 - 3.92 from spacer oxygen

Table 4. Distance to glutamate 272 and HI 81.

A correlation between GOLDScore and I C 5 0 S  measured for the quinolones with 

an antimalarial activity against parasite (31-33, 86-87) is made. We can observe the 

lower is the GOLDScore, the lower the I C 5 0  measured, which confirms the utility of 

the molecular modelling (Table 5-Graphe 1).

Name Structure IC50 (nM) 3D7 GOLDscore
31 O

c'̂ ^OkXT0CF3
30 65.39
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32 0 139 64.79

33 0

a'CĈ x r ,‘
185 64.60

81
0

^ T ) C F 3

H

>1000 59.61

82 r JUD'°TX
H

>1000
Insoluble

57.01

83 rVr0 ' " ^
H

>1000 60.56

84 lY r0^
H

>1000
Insoluble

62.49

85

H

>1000
Insoluble

54.26

86 yya X r0CF3 387 61.63

87 A x rç ç
H

455 60.96

Table 5. IC50S and GOLDscore o f quinolone analogues.
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3.5. Conclusion

Novel synthetic routes to 2- and 3-aryl quinolone derivatives have been 

developed. Biological assessment o f these quinolones has identified the 2-aryl series 

as potent antimalarials.

As we observed some disubstituted quinoline on the 3- and 7-position 

following Suzuki coupling with Pd(PPh3)4, we tried the following three-step 

synthesis via methoxylation of 4,7-dichloroquinoline (45), followed by Suzuki-type 

coupling to afford 95 and hydrolysis to produce quinolone analogue (96). 

Unfortunately, the final hydrolysis step in the synthesis was unsuccessful (Scheme 

34).
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Cl

Scheme 34. Reagents and conditions: i) NaOMe, MeOH, reflux, 2.5 days; ii) 

Pd(PPh3)4, Na2C 0 3, PhOPhB(OH)2, DMF, reflux, 16 hrs; iii) 85 % H C 00H /H 20 , 

DMF, reflux, 4 hrs.

Solubility is one of the main issues for quinolone analogues and some o f the 

analogues (82, 84 and 85) are not soluble in DMSO which could explain their poor 

activity. To increase the solubility, we would like to synthesise some N- 

hydroxyquinolone analogues. With an IC50 of 30 nM, analogue 31 has the best 

activity and we attempted to increase its activity with the addition of a hydroxyl 

group on the Nitrogen. Although we obtained some product it is clear that the route 

will require optimisation, particularly at step ii of the synthesis (Scheme 35).

Scheme 35. Reagents and conditions', i) m-CPBA, DCM, r.t., 1 day; ii) 85 % 

H C 00H /H 20 , DMF, reflux, 16 hrs.
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It would also be interesting to synthesise some bi-aryl side-chains with an NH 

bridge (Figure 20), to complete the Structure Activity Relationship studied so far. 

We could synthesise the NH bridge o f these quinolone analogues using (tc- 

allyl)palladium complex,59 copper-catalysed A-arylation60 for example.

Initial molecular modelling predicted superior binding for quinolone analogues 

substituted at the 2-position, which was confirmed by the in vitro results showing 

that this template leads to inhibition of the target enzyme and the lowest IC50S 

observed for the 3-substituted quinolone analogues.

Further molecular modelling, using the reliable docking program GOLD, 

shows 2-substituted quinolone 31 had the highest GOLDscore, which is supported by 

the best in vitro activity result. The other quinolone analogues have high 

GOLDscore, unfortunately some of them have in vitro activities over 1000 nM, 

which could be the consequence of their poor solubility in DMSO.

O

H

Figure 20. Quinolone analogues with NH bridge.
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3.6. Experimental

Melting points were determined in open tubes in a Gallenkamp, Melting Point 

Apparatus, and are uncorrected. NMR spectra were recorded on a brucker AC 200 

(1H, 200 MHz) and a Brucker AMX 400 (1H, 400 MHz; 13C, 100 MHz) 

spectrometer. Chemicals shifts are described in parts per million (ppm) downfield 

from an internal standard of trimethylsilane. Multiplicities are recorded as broad 

peaks (br), singlet (s), doublets (d), triplets (t), quartets (q), doublet of doublets (dd), 

doublet of triplets (dt) and multiplets (m). Coupling values are in Hz. Mass spectra 

were recorded on a VG analytical 7070E machine and Frisons TRIO spectrometers 

using electron ionisation (El), chemical ionisation (Cl) or electron spray (ES). 

Microanalyses (%C, %H, %N) were performed in the University of Liverpool 

Microanalysis laboratory. Reported atomic percentages are within error limits ± 

0.5%. IR spectrums were run with a laser Fourier Transform Infra Red Spectrometer 

(Jasco-FT/IR-4100), solids were run in the solid state. In instances where purity was 

not determined by elemental analysis, compounds displayed only one observable 

spot by t.l.c. at the reported Rf.

Purification of solvents

Anhydrous solvents were either obtained from commercial sources or dried and 

distilled immediately prior to use under a constant flow of dry nitrogen. THF was 

distilled with Na and benzophenone. All other reagents were used as received from 

commercial sources unless otherwise indicated.

Purification of reagents.

meta-Chloroperbenzoic acid (ca. 77% pure as supplied by the Aldrich 

Chemical Company) was purified prior to use. Di-sodium hydrogen phosphate (4.32 

g, 30.0 mmol) and sodium dihydrogen phosphate (1.18 g, 8.7 mmol) were dissolved 

in distilled water (lOOOmL). Commercial mCPBA (25.0 g) was washed with the 

buffer (2><500 mL), filtered and dissolved in DCM (250 mL). The organic extracts 

were dried over anhydrous magnesium sulfate and the solvent was removed in vacuo, 

furnishing mCPBA (ca. 90-100% pure). This was dried under reduced pressure, over 

P 2 O 5  for 1 day. The product was obtained as a white flocculent solid (ca. 15 g).
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Benzyl 4-oxoquinoline-l(4H)-carboxylate.31

OH O

O ^ O ^ P h  
14 15

4-Hydroxyquinoline (1 g, 6.89 mmol) in THF was added to a stirred suspension of 

NaH (766 mg, 19.16 mmol, 60% in mineral oil) at r.t.. The resulting mixture was 

heated at 55 °C for 15 min. Benzyl chloroformate (1.6 mL, 10.25 mmol) was added 

and the mixture stirred at r.t. overnight (17 hr). T.l.c. indicated the presence of 

starting material and the reaction was warmed to 55 °C for 2hr. After this time the 

reaction mixture was poured into water and extracted with EtOAc. The organic layer 

was washed with water, brine and dried MgS04. Removal of solvent gave a dark 

yellow oil which was purified by column chromatography eluting with 40 % 

EtOAc/rc-Hexane affording a translucent oil which was crystallized from Et20/ n- 

Hexane, giving the title compound as a colourless solid (832 mg, 43%); 'H  NMR 

(CDC13, 400 MHz) Sh 8.67 (d, 1H, J =  9.0 Hz, H2), 8.37 (d, 2H, J =  8.5 Hz, CH), 

7.67 (m, 1H, CH), 7.49-7.42 (m, 6H, CH), 6.25 (d, 1H, J =  8.5 Hz, CH), 5.47 (s, 2H, 

CH2); 13C NMR (CDC13> 100 MHz) Sc 179.4, 151.7, 138.9, 138.6, 134.4, 133.3,

129.7, 129.4, 129.3, 126.9, 125.9, 120.4, 112.9, 70.9; MS (Cl), [M+H-Cbz]+ (100) 

146, [M+H]+ (35) 280.
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Benzyl

carboxylate.31

O

Cbz

15

2-(4’-phenoxyphenyl)-4-(triisopropylsilyloxy)quinoline-l(2H)-

Benzyl 4-oxoquinoline-l(4H)-carboxylate (500 mg, 1.79 mmol) was treated with 

TIPSOTf (962 pL, 3.58 mmol) without stirring under argon for 1 hr. DCM (9 mL),

2,6-lutidine (415 pL, 3.58 mmol) and the freshly prepared Grignard reagent (8.95 

mmol) in THF (10 mL) were added and the solution stirred at r.t. for 2 hrs. On 

completion the reaction mixture was quenched into iced water and extracted with 

DCM (3x10 mL). The organic extracts were washed with water, brine and dried 

Na2S04. Purification by column chromatography eluting with hexane increasing to 

10 % EtOAc gave the title compound as colourless crystals (485 mg, 45%); mp= 78 

°C; 'H  NMR (CDC13j 400 MHz) Sh 7.61 (d, 1H, J=  7.5 Hz, CH), 7.35-7.04 (m, 14H, 

CH), 6.94 (d, 1H,J =  7.5 Hz, CH), 6.82 (d, 2H ,J =  8.5 Hz, CH), 6.19 (d, 1H, J=  5.5 

Hz, CH), 5.34-5.23 (m, 3H, CH, CH2), 1.28 (3, 3H, 3 x CH), 1.13 (d, 9H, J=  7.0 Hz, 

3 x CH3), 1.05 (s, 9H, 3 x CH3); l3C NMR (CDC13, 100 MHz) Sc 157.4, 157.2, 154.7,

147.2, 136.5, 135.7, 135.5, 130.1, 129.0, 128.9, 128.6, 128.5, 128.4, 127.1, 124.6,

123.7, 122.9, 119.5, 118.9, 104.8, 68.4, 55.4, 18.5, 18.2, 13.2, 12.7; MS (ES+), 

[M+Na]+ (100) 628; HRMS calcd for C38H43N 0 4SiNa [M+Na]+ 628.2859, found

628.2830.

2-(4’-Phenoxyphenyl)quinolin-4(lH)-one.

The silyl enol ether (380 mg, 0.63 mmol) and Pd/C (10 mol %) were suspended in 

anhydrous MeOH (30 mL) under an atmosphere of H2 and stirred at r.t. for 3 hrs. 

CHC13 was added to the metallic looking suspension until all the precipitate had
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dissolved (~30 mL). The mixture was filtered through celite. Removal of solvent 

gave a pale solid which was filtered and washed with Et20 to afford the title 

compound (109 mg, 55%); mp= 263 °C; 'H  NMR (DMSO-de,400 MHz) S ^ W .l  (bs, 

1H, NH), 8.10 (d, 1H, J =  7.0 Hz, CH), 7.87 (d, 2H, J=  8.0 Hz, CH), 7.76 (d, 1H, J  = 

8.5 Hz, CH),7.67 (t, 1H, J=  7.0 Hz, CH), 7.47 (t, 1H, J =  7.5 Hz, CH), 7.34 (t, 1H, J  

= 7.5 Hz, CH), 7.23 (t, 1H, J =  7.5 Hz, CH), 7.17 (d, 2H, J =  8.5 Hz, CH), 7.13 (d, 

1H, J =  8.0 Hz, CH), 6.33 (s, 1H, CH); 13C NMR (DMSO-d6> 100 MHz) Sc 159.3,

156.1, 132.1, 130.6, 129.7, 125.1, 124.7, 123.6, 119.8, 119.0, 118.7, 107.3, 99.5; MS 

(Cl), [M+H]+ (100) 314; HMRS calcd for C2iH i6N 0 2 [M+H]+ 314.1181, found 

314.1192; Anal. Calcd for C2iH i5N 0 2: C, 80.50 %; H, 4.83 %; N, 4.47 %; Found C, 

80.52 %; H, 4.83 %; N, 4.44 %.

General procedure l .34
Y

l-Bromo-4-(bromomethyl)benzene (1.05 eq.) and arylboronic acid (1.00 eq.) were 

dissolved in EtOH and toluene and aqueous Na2CC>3 (1M) was added and the 

resulting mixture was deoxygenated with a stream of argon. After 20 min, Pd(PPh3)4 

(0.05 equiv) was added, and mixture was brought to reflux, allowed to stir under 

argon for 12 hrs and cooled to r.t. . The solution was filtered through celite, washed 

with Et20  (50 mL). The aqueous layer was extracted with Et20  (3><30mL), and the 

organic phases were combined and washed with 1 M. NaOH (20mL) followed by 

brine (20 mL). The ethereal solution was dried over MgSCL and evaporated. 

Purification of the crude product by flash chromatography with pur PE gave a 

mixture of starting material and product. The mixture was dissolved in toluene (20 

mL) and reacted for 2 hrs with piperidine (2.00 eq. of the estimated starting material 

left) under reflux. The reaction was judged completed and the solvent was 

evaporated. Purification of the crude product by flash chromatography with PE gave 

the pur product.
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l-Bromo-4-(4’-(trifluoromethoxy)benzyl)benzene.

4-(Trifluoromethoxy)phenylboronic acid (2.50 g, 12.75 mmol) reacted with 1- 

Bromo-4-(bromomethyl)benzene according to the general procedure 1 to give a 

colorless oil (1.22 g, 30 %); *H NMR (400 MHz, CDC13) Sh 7.40 (2H, d, J= 8.5 Hz, 

CH-CBr), 7.14 (4H, m), 7.02 (2H, d, J= 8.2 Hz, CH-CO) and 3.90 (2H, s, -CH2) 

ppm; 13C NMR (100 MHz, CDC13) 6C 148.2, 139.8, 139.6, 132.4, 131.1, 130.5,

122.2, 121.5, 120.7 and 41.0 ppm; MS (Cl), [M-Br]+ (100) 251; HRMS calcd for 

C ,4HioBrF30  [M]+ 329.9867, found 329.9863.

l-Bromo-4-(4’-(trifluoromethyl)benzyl)benzene.

jcr* • “ ix - B r 'C F ,
21 24 26

4-(Trifluoromethyl)phenylboronic acid ( 2.00 g, 10.53 mmol) reacted with 1-bromo- 

4-(bromomethyl)benzene according to the general procedure 1 to give a colorless 

oil (518 mg, 16 %); *H NMR (400 MHz, CDC13) Sh 7.53 (2H, d, J -  8.2 Hz, CH- 

CBr), 7.41 (2H, d, J= 8.4 Hz, CH-), 7.25 (2H, d, J= 8.2 Hz, CH-), 7.03 (2H, d, J= 8.5 

Hz, CH-CCF3) and 3.96 (2H, s, -CH2) ppm; 13C NMR (100 MHz, CDC13) ¿fc 144.9, 

139.4, 132.2, 131.1, 129.6, 126.0, 125.9, 123.3, 120.8 and 41.5 ppm; MS (Cl), [M- 

Br-H f(lO O ) 235; HRMS calcd for Ci4H i0BrF3 [M]+ 313.9918, found 313.9913.

General procedure 2.40
Y

A 50 mL round bottom flask was charged with 4-bromophenol (1.00 eq.), Cu(OAc)2 

(1.00 eq.), arylboronic acid (2.00 eq.) and powdered 4 A molecular sieves. The
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reaction mixture was diluted in DCM to yield a solution approximately 0.1 M in 

phenol, and triethylamine (5.00 eq.) was added. After stirring the colored 

heterogeneous reaction mixture for 18 hrs at 25 °C under ambient atmosphere, the 

resulting slurry was filtered and the product was isolated from the organic filtrate by 

flash chromatography (1/9: EtOAc/PE) to give the product.

l-Bromo-4-(4’-(trifluoromethoxy)phenoxy)benzene.

22 23 27

4-(Trifluoromethoxy)phenylboronic acid (714 mg, 3.47 mmol) reacted with 4- 

bromophenol according to the general procedure 2 to give a colorless oil (409 mg, 

71 %): ’H NMR (400 MHz, CDC13) Sh 7.53 (2H, d, J= 9.0 Hz, CH-CBr), 7.18 (2H, 

d, J= 9.1 Hz, CH), 6.99 (2H, d, J= 9.2 Hz, CH) and 6.89 (2H, d, J= 8.9 Hz, CH- 

COCF3) ppm; 13C NMR (100 MHz, CDC13) Sc 158.5, 155.8, 142.1, 133.4, 131.1,

121.5, 117.0, 116.5 and 111.9 ppm.

The bromide reagent (1.00 eq.) was dissolved in THF (13 mL) in a 2-necked 100 mL 

round bottom flask and flushed with argon. The solution was cooled at -78°C and n- 

BuLi (1.6 M, 1.10 eq.) was added dropwise and left to stir for 45 mins. 4,7- 

dichloroquinoline (0.80 eq.) in solution in THF (7 mL) was added to the 

organolithium dropwise and left at -78 °C for 4 hrs. The reaction was quenched with 

10% NH2OH (15 mL), the reaction mixture was then extracted with DCM (3><10 

mL) and washed with water. The organic phase was dried over MgSC>4 and the 

solvents were evaporated. The residue was dissolved in acetone (3.5 mL) and reacted 

with CAN in water (2.00 g in 10 mL) for 30 mins. The mixture was extracted with 

DCM (3x30 mL), washed with water (3x10 mL) and dried over MgSC>4. Purification
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with column chromatography in 1 % EtOAc/VzHexane gave the product as a white 

solid.

4,7-Dichloro-2-(4’-(4” -(trifluoromethoxy)benzyl)phenyl)quinoline.

l-Bromo-4-(4’-(trifluoromethoxy)benzyl)benzene (646 mg, 1.95 mmol) reacted with

4,7-dichloroquinoline (309 mg, 1.56 mmol) according to the general procedure 3 to 

give white crystals (300 mg, 42 %); 'H  NMR (400 MHz, CDCI3) 8.16 (1H, s, H8), 

8.15 (1H, d, J= 7.8 Hz, H5), 8.07 (2H, d, J= 8.3 Hz, H12), 7.93 (1H, s, H3), 7.53 

(2H, dd, J= 8.9 and 2.1 Hz, H6), 7.34 (2H, d, J= 8.5 Hz, H I3), 7.23 (2H, d, J= 8.9 

Hz, H15), 7.15 (2H, d, J= 8.7 Hz, H16) and 4.07 (2H, s, H14) ppm; MS (ES+), 

[M+H]+ (100) 448; HRMS calcd for C23H,5N0F3C1 [M+H]+ 448.0483, found 

448.0491.

4,7-Dichloro-2-(4,-(4” -(trifluoromethyl)benzyl)phenyl)quinoline.

l-Bromo-4-(4’-(trifluoromethyl)benzyl)benzene (438 mg, 1.40 mmol) reacted with

4,7-dichloroquinoline (222 mg, 1.12 mmol) according to the general procedure 3 to 

give white crystals (83 mg, 17 %); 'H  NMR (400 MHz, CDC13) ¿k 8.17 (1H, s, H8), 

8.15 (1H, d, J= 1A  Hz, H5), 8.07 (2H, d, J= 8.2 Hz, H12), 7.93 (1H, s, H3), 7.56 

(2H, d, J= 8.5 Hz, H I6), 7.56 (1H, d, J= 7.4 Hz, H6), 7.33 (4H, m, H13-H15) and 

4.12 (2H, s, H14) ppm; MS (ES+), [M+H]+(100) 432; HRMS calcd for C23H15NF3CI 

[M+H+] 432.0534, found 432.0535.
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4,7-Dichloro-2-(4’-(4” -(trifluoromethoxy)phenoxy)phenyl)quinoline.

l-Bromo-4-(4-(trifluoromethoxy)phenoxy)benzene (200 mg, 0.6 mmol) reacted with

4,7-dichloroquinoline (95 mg, 0.5 mmol) following general procedure 3 to give a 

colourless oil (32 mg, 15%); *H NMR (400 MHz, CDC13) <3k 8.17-8.14 (2H, m, H5- 

H8), 8.14 (2H, d, J= 8.9 Hz, H12), 7.93 (1H, s, H2), 7.56 (1H, dd, J= 2.1 and 9.0 

Hz, H6), 7.22 (2H, d, J= 9.1 Hz, H I5), 7.15 (2H, d, J= 8.8 Hz, H I3) and 7.08 (2H, d, 

J= 9.11 Hz, H16) ppm; MS (ES+), [M+H]+ (100) 450; HRMS ealed for 

C22H13NO2F3CI2 [M+H]+ 450.0275, found 450.0260; Anal. Calcd for

C22H12NO2F3CI2: C, 58.69%; H, 2.69%; N, 3.11%; Found C, 58.61%; H, 2.72%; N, 

3.07%.

General procedure 4.

Cl O

formic acid in water (5 mL). The mixture was refluxed for 24 hrs. After cooling 

down, some precipitate appeared, and the mixture was poured into water (lOOmL) 

and filtered to afford the product

7-Chloro-2-(4’-(4” -(trifluoromethoxy)benzyl)phenyl)quinolin-4(lH)-one.

Cl O

4,7-Dichloro-2-(4-(4-(trifluoromethoxy)benzyl)phenyl)quinoline (259 mg, 0.58 

mmol) was treated according the general procedure 4 to give the corresponding
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quinolone as white crystals (164 mg, 66 %): mp= 278 °C; *H NMR (400 MHz, 

D M SO -^) Sh 8.08 (1H, d, J= 8.7 Hz, H5), 7.77 (2H, d, J= 8.3 Hz, H12), 7.77 (1H, d, 

J= 2.1 Hz, H8), 7.47 (2H, d, J= 8.2 Hz, H15), 7.41 (2H, d, J= 8.6 Hz, H13), 7.35 

(1H, dd, J= 8.7 and 2.1 Hz, H6), 7.97 (2H, d, J= 8.0 Hz, H16), 6.37 (1H, s, H3) and 

4.09 (2H, s, H14) ppm; IR u max = 3963, 3926, 3739, 3625, 3269, 2976, 2898, 2364, 

2337, 1917, 1631, 1593, 1575, 1543, 1500, 1458, 1400, 1356, 1257, 1230, 1159, 

1099, 1080, 1053, 1018, 902, 879, 808 and 735 cm '1 ; MS (ES+), [M+H]+(100) 430; 

HRMS calcd for C23H16N 0 2F3C1 [M+H]+ 430.0822, found 430.0831.

7-Chloro-2-(4’-(4” -(trifluoromethyl)benzyl)phenyl)quinolin-4(lH)-one.

Cl O

4,7-Dichloro-2-(4-(4-(trifluoromethyl)benzyl)phenyl)quinoline (75 mg, 0.17 mmol) 

was treated according the general procedure 4 to give the corresponding quinolone 

as white crystals (30 mg, 43 %); mp= 280 °C; *H NMR (400 MHz, D M SO -^) 

Sh 8.08 (1H, d, J= 8.5 Hz, H5), 7.79 (2H, d, J= 7.9 Hz, H16), 7.79 (1H, d, J= 2.0 Hz, 

H8), 7.68 (2H, d, J= 8.0 Hz, H I5), 7.51 (2H, d, J= 8.2 Hz, H12), 7.48 (2H, d, J= 8.2 

Hz, H13), 7.35 (1H, dd, J= 8.6 and 1.7 Hz, H6), 6.37 (1H, s, H3) and 4.16 (2H, s, 

H I4) ppm; MS (ES-), [M-H]' (100) 412; HRMS calcd for C23H i4NOF3C1 [M-H]' 

412.0716, found 412.0728.

7-Chloro-2-(4’-(4” -(trifluoromethoxy)phenoxy)phenyl)quinolin-4(lH)-one.

To 4,7-dichloro-2-(4-(4-(trifluoromethoxy)phenoxy)phenyl)quinoline (30 mg, 0.06 

mmol) was treated according the general procedure 4 to give the corresponding 

quinolone as white crystals (20 mg, 77 %); mp= 296 °C; IR Umax = 3880, 3355, 3074,

156



Chapter 3- Targeting the cytochrome b c \ complex

2974, 2333, 1907,1633, 1595, 1539, 1498, 1415, 1358, 1303, 1251, 1216, 1163, 

1099, 1080, 1014, 929, 906, 875, 816, 750 and 665 cm’1; MS (ES+), [M+H]+ (100) 

432; HRMS caled for C22H,4N03F3C1 [M+H+] 432.0614, found 432.0596; Anal. 

Caled for C22H13NO3F3CI: C, 61.20%; H, 3.03%; N, 3.24%; Found C, 60.99%; H, 

3.07%; N, 3.20%.

Synthesis of i/*ans-(Cy2NH)2Pd(OAc)2 (DAPCy) .37

Under a nitrogen atmosphere, Cy2NH (0.73 g, 4.0 mmol) was added dropwise into a 

solution of Pd(OAc)2 (0.45 g, 2.0 mmol) in dioxane (20 mL) at r.t.. The mixture was 

stirred at r.t. for 3 hrs, during which a yellow precipitate occurred. The solvent was 

removed under reduced pressure. The resulting solid was crystallized from 

DCM/hexane to give the product as brown crystal (0.98 g, 84 %); mp=140 °C; 'H 

NMR (CDCI3) Sh 6.93 (2H, bs, NH), 2.82 (4H, d, J= 9.9 Hz, CH), 2.44 (4H, m), 

1.93-1.67 (3OH, m), 1.23 (12H, m); 13C NMR (CDC13) <5fc 181.0, 67.5, 55.4, 32.5, 

32.4, 26.5, 26.3, 26.1 and 24.6 ppm; MS (ES+), [M+H]+(100) 587; HRMS ealed for 

C28H53N20 4Pd [M+H]+ 585.3046, found 585.2991; Anal. Calcd for C28H53N20 4Pd: 

C, 57.28%; H, 8.93%; N, 4.77%; Found C, 57.67%; H, 9.05%; N, 4.59%.

4-(trifluoromethoxy)-4'-(4” -(trifluoromethoxy)benzyl)biphenyl.

Br
1

OCF3i JA
?  * 9
^ B r B(OH )2

19 21

F3CO

O C F ,
35

4-Bromobenzylbromide (243 mg, 0.97 mmol), potassium phosphate tribasic (824 

mg, 3.88 mmol) and Pd(II)Cl2 (35 mg, 0.05 mmol) were placed in a 2-necked 100 

mL round bottom flask. Anhydrous dioxane was added to the mixture. Vacuum and
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argon cycles were applied 3 times. The mixture was stirred for 10 mins at r.t., then 4- 

(Trifluoromethoxy)phenylboronic acid was added to the reaction mixture. Vacuum 

and argon cycles were applied 10 times. The mixture was heated at 100°C for 4 hrs 

(followed by t.l.c.) finally cooled to r.t., diluted with «-hexane and filtered through 

MgS04-silica gel. The filtrate was washed with 15% EtOAc/Hex, solvents were 

evaporated and the crude product was purified via column chromatography with PE 

to give the product as colorless oil (68 mg, 21 %): 'H  NMR ( C D C I 3 )  7.52 (2H, d, 

J= 8.7 Hz, CH-), 7.41 (2H, d, J= 8.4 Hz, CH-), 7.28 (2H, d, J= 8.7 Hz, CH-), 7.13 

(4H, m, -CH), 7.01 (2H, d, J= 8.4 Hz, CH-C-OCF3) and 3.90 (2H, s, -CH2) ppm; 13C 

NMR (100 MHz, C D C I 3 )  Sc 149.8, 148.7, 139.8, 139.6, 139.0, 137.2, 132.4, 132.2,

131.8, 131.1, 129.9, 127.4, 122.9, 122.2 and 41.0 ppm; MS (Cl), [M]+ (100) 412; 

HRMS calcd for C2iH14F602Pd [M]+ 412.0898, found 412.0884.

Tetrakis(triphenyIphosphine)palladium(0).39

2  P d C l2 +  8 P P h 3 +  5 N H 2N H 2.H 20  ------------- 2  P d (P P h 3) 4 +  4  N H 2N H 2.H C I +  N 2 +  5 H 20

Palladium dichloride (1.36 g, 7.7 mmol), triphenylphosphine (10.21 g, 38.3 mmol) 

and DMSO (90 mL) are mixed placed in a two-necked flask under argon. The 

mixture is heated at 140°C until complete dissolution occurs (~30 mins). Hydrazine 

hydrate (1.5 mL, 30.7 mmol) is then rapidly added over 1 min. A vigorous reaction 

takes place with evolution of nitrogen. The dark solution is then immediately cooled, 

crystallisation begins to occur at 125°C. Once at r.t. the mixture is filtered under 

argon, the yellow solid is washed successively with dry ethanol and diethyl ether. 

The product dried overnight under high vacuum is yellow crystal (8.06 g, 92%); mp=

116°C.39

4-(4’-Bromophenoxy)-2-chloro-l-fluorobenzene.

Cl

40

3-Chloro-4-fhiorophenylboronic acid (401 mg, 2.29 mmol) reacted with 4- 

bromophenol (198 mg, 1.15 mmol) following the general procedure 2 to give a 

colorless oil (303 mg, 88 %): *H NMR (400 MHz, CDC13) Sa 7.45 (2H, d, J= 9.0 Hz,
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CH-CBr), 7.03 (1H, dd, 7= 6.1 and 2.9 Hz, CH), 6.87 (2H, d, 7= 9.0 Hz, CH) and 

6.86 (2H, m) ppm.

4 -Chloro - 2- (4’- (3” -chloro- 4” -fluorophenoxy) phenyl)- 7 -(trifluoromethyl) 

quinoline.

According to the general procedure 3 l-Bromo-4-(3-chloro-4- 

fluorophenoxy)benzene (300 mg, 1.0 mmol) reacted with 4-chloro-7- 

trifluoromethylquinoline (184 mg, 0.80 mmol) to yield the desired compound as a 

colourless oily solid (28 mg, 6 %): *H NMR (400 MHz, CDCI3) 5h 8.29 (1H, d, 

7=8.4 Hz, H5), 8.15 (1H, s, H8), 7.93 (2H, d, 7=8.6 Hz, H12), 7.62 (1H, d, 7=8.5 Hz, 

H6), 7.51 (1H, dd, 7= 9.0 and 9.1 Hz, H16’), 7.45 (1H, m ,H 15), 7.23 (2H, d, 7= 8.79 

Hz, H13), 7.17 (1H, m, H15’) and 6.52 (1H, s, H3) ppm; IR u max = 3687, 3645, 3400, 

2976, 2925, 2513, 2362, 2333, 1917, 1581, 1548, 1487, 1428, 1400, 1302, 1270, 

1248, 1221, 1169, 1124, 1059, 975, 920, 902, 877, 841, 823, 769, 731 and 688 cm’1; 

MS (ES+), [M +H f (100) 452; HRMS calcd for C22H12NOF4CI2 [M+H]+ 452.0232, 

found 452.0238.

2-(4’-(3” -Chloro-4” -fluorophenoxy)phenyl)-7-(trifluoromethyl)quinolin-4(lH)-
one.

Cl O

4-Chloro-2-(4-(4-(trifluoromethoxy)phenoxy)phenyl)-7-trifluoromethylquinoline (27 

mg, 0.06 mmol) is hydrolysed following the general procedure 4 to give white 

crystals (13 mg, 49 %); mp= 289 °C; *H NMR (400 MHz, DMSO-d6) 4 i 8.73 (1H, d, 

7= 8.7 Hz, H5), 8.15 (1H, s, H8), 7.93 (1H, d, 7=8.6 Hz, H12), 7.62 (1H, d, 7= 8.5 

Hz, H6), 7.51 (1H, dd, 7= 9.0 and 9.1 Hz, H16’), 7.44 (1H, m, H15), 7.23 (2H, d, 

7=8.7 Hz, H13), 7.16 (1H, m, H15’) and 6.52 (1H, s, H3) ppm; IR o max = 3832, 3340,
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2967, 2316, 1643, 1602, 1547, 1489, 1413, 1371, 1298, 1224, 1190, 1122, 1057, 879, 

819, 735 and 686 cm '1; MS (ES+), [M+Na]+ (100) 456; HRMS calcd for 

C22H12N02F4ClNa [M +N af 456.0390, found 456.0388.

In a 100 mL three-necked flask, equipped with a thermometer, a reflux condenser 

and a septum, sodium methoxide (409 mg, 7.60 mmol) and 4,7-dichloroquinoline (1 

g, 5.10 mmol) were dissolved in MeOH (20 mL) under heating and magnetic stirring. 

The reaction mixture was left under reflux for 2 days and quenched with water (20 

mL). The crude product was extracted with DCM (3x30 mL) and the combined 

organic phase were washed with water and dried with MgSC>4. After evaporation of 

the solvent, 7-chloro-4-methoxyquinoline was collected as a white solid (988 mg, 

100%): exp mp= 132 °C; lit mp= 129-135°C; Rf= 0.47 (5% MeOH/ DCM); 'H  NMR 

(400 MHz, CDCI3) <Sk 8.75 (1H, d, J= 5.1 Hz, H2), 8.13 (1H, d, J= 8.7 Hz, H5), 8.02 

(1H, d, J= 1.9 Hz, H8), 7.44 (1H, dd, 8.9 and 2.1 Hz, H6), 6.73 (1H, d, J= 5.3 Hz, 

H3) and 4.05 (3H, s, -OMe) ppm; 13C NMR (100 MHz, CDC13) Sc 162.7, 152.9, 

150.4, 136.8, 128.3, 126.9, 123.8, 120.5, 100.7 and 56.2 ppm; IR omax = 3895, 3735, 

3685, 36560, 3625, 3512, 2987, 2366, 1913, 1616, 1572, 1504, 1450, 1425, 1379, 

1311, 1163, 1122, 1070, 981, 887, 843 and 818 cmT; MS (Cl), [M+H]+ (100) 194; 

HRMS calcd for C10H9NOCI [M+H]+ 194.0373, found 194.0372.

3-Bromo-7-chloroquinolin-4(lH)-one.47

O O

To a solution of 7-chloroquinolin-4(lH)-one (1 g, 5.60 mmol) in acetic acid (25 mL) 

containing a crystal o f iodine, bromine (0.30 mL, 5.60 mmol) was added dropwise. 

The reaction was left for 2 hours with good stirring. A crystalline yellow solid was
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collected, and this solid was stirred with concentrated ammonium hydroxide (15 

mL). The crude bromide compound was collected and washed with MeOH (30 mL) 

to give a white solid: (1.2 g, 85 %); mp= 354°C; 'H  NMR (400 MHz, CDCI3) 8.52 

(1H, s, H2), 8.13 (1H, d, J= 8.7 Hz, H5), 7.65 (1H, d, J=2.0 Hz, H8) and 7.42 (1H, 

dd, J=8.7 and 2.0 Hz, H6 ppm; 13C NMR (100 MHz, CDC13) Sc 171.3, 141.2, 140.5,

136.9, 128.0, 124.8, 123.2, 118.1 and 105.1 ppm; IR u max = 3878, 3741, 3687, 3595, 

3355, 3070, 2974, 2887, 2567, 2360, 2333, 1844, 1583, 1562, 1506, 1457, 1400, 

1350, 1184, 1137, 1093, 1066, 875, 827, 758 and 683 cm '1; MS (Cl), [M-Br]+ (100) 

180; HRMS calcd for C9H6NOClBr [M+H]+ 257.9321, found 257.9315.

3-Bromoquinolin-4-ol.

O O

To a solution of quinolin-4(lH)-one (1 g, 6.88 mmol) in acetic acid (20 mL) 

containing a crystal of iodine, bromine (0.4 mL, 5.6 mmol) was added dropwise. The 

reaction was left for 2 hours with good stirring. A crystalline yellow solid was 

collected, and this solid was stirred with concentrated ammonium hydroxide (15 

mL). The crude bromide compound was filtered to give a white solid (1.37 g, 89 %): 

'H  NMR (400 MHz, CDC13) Sh 8.47 (1H, s, H2), 8.14 (1H, dd, J= 8.2 and 0.9 Hz, 

H5), 8.09 (1H, td, J=8.5 and 1.5 Hz, H7), 7.77 (1H, d, J= 8.4 Hz, H8) and 7.65 (1H, 

td, J= 8.2 and 1.1 Hz, H6) ppm; 13C NMR (100 MHz, CDC13) Sc 140.5, 139.6, 132.3,

125.6, 124.6, 124.3, 118.9 and 104.5 ppm; MS (Cl), [M-Br]+(100) 146; HRMS calcd 

for C9H7NOBr [M+H]+ 223.9711, found 223.9712.

4-(Benzyloxy)-3-bromo-7-chloroquinoline.48
O OBn

To a stirred solution o f 3-bromo-7-chloroquinolin-4(lH)-one (200 mg, 0.8 mmol) 

and CsF-celite (1.16 mmol) in DMF (20 mL), the benzyl bromide (265 mg, 1.6 

mmol) was added. Then the mixture was continued for stirring at r.t. up to
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completion o f the reaction, indicated by t.l.c. monitoring. The reaction mixture was 

filtered, the solvent evaporated and the residue dissolved in EtOAc (50 mL). 

Precipitates were filtered off, washed with ethyl acetate (20 mL) and the filtrate 

evaporated under reduced pressure. The product was purified by column 

chromatography on silica gel using 5% MeOH/DCM to give a white solid (162 mg, 

60 %): mp= 202 °C; Rf=0.85 (30 % EtOAc/PE; 'H  NMR (400 MHz, CDC13) 4  8.44 

(1H, d, J= 9.1 Hz, H5), 8.03 (1H, s, H2), 7.42-7.32 (5H, m, H6, H8, meta and para  

H of Bn), 7.16 (2H, m, ortho H of Bn) and 5.29 (2H, s, 0-C H 2) ppm; 13C NMR (100 

MHz, CDC13) 4  172.1, 143.6, 140.2, 139.0, 129.6, 129.5, 128.9, 126.2, 125.3, 124.1,

115.8, 106.6 and 56.6 ppm; IR omax = 3882, 3733, 3350, 2974, 2885, 2331, 1946, 

1579, 1458, 1379, 1331, 1225, 1090, 1053, 883, 833, 773, 739 and 694 cm '1; MS 

(ES+), [M+Na]+ (100) 370; HRMS calcd for Ci6Hi,NOClBrNa [M+Na]+ 369.9610, 

found 369.9601.

To phosphorus oxychloride (2.0 mL, 21.45 mol), was added 3-bromoquinolin-4-ol 

(290 mg, 1.13 mmol) with stirring. The mixture was refluxed for 30 min. After 

cooling the solvent was evaporated in vacuum and the resulting syrup was stirred 

with some crushed ice (200 mL). After 1 hr, the solid formed was filtered off, 

washed with cold water (50 mL), and dissolved in DCM (50 mL). The solution was 

washed once with ice-cold NaOH (1M, 30 mL) and dried over MgSCL. The solution 

was filtered and the solvent was evaporated to afford the product as a white solid 

(263 mg, 85%): exp mp= 76 °C; 'H  NMR (400 MHz, CDC13) 41 8.95 (1H, s, H2), 

8.19 (1H, dd, J= 9.1 and 0.6 Hz, H5), 8.11 (1H, d, J=1.9 Hz, H8) and 7.62 (1H, dd, 

J= 8.9 and 2.1 Hz, H6) ppm; ,3C NMR (100 MHz, CDC13) 4  152.9 (C-N), 151.4,

141.6, 137.2, 129.6, 128.9, 126.0, 125.9 and 118.3 (C-Br) ppm; IR omax = 3664, 

3396, 3049, 2989, 2331, 1909, 1604, 1550, 1473, 1433, 1354, 1331, 1290, 1246, 

1149, 1126, 1082, 985, 924, 885, 848, 812, 764 and 696 cm '1; MS (ES+), [M+H]+ 

(100) 276; HRMS calcd for C9H5NCl2Br [M+H]+275.8982, found 275.8993; Anal.
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Calcd for C9H4NCl2Br: C, 39.03 %; H, 1.46 %; N, 5.06 %; Found C, 39.03 %; H, 

1.48%; N, 5.02%.

3-Bromo-4-chloroquinoline.49

OH Cl

52 54
To phosphorus oxychloride (2.0 mL, 21.45 mmol), was added 3-bromoquinolin-4-ol 

(252 mg, 1.13 mmol), the mixture was refluxed for 30 min. After cooling the solvent 

was evaporated in vacuum and the resulting syrup was stirred with some crushed ice 

(200 mL). After 1 hr, the solid formed was filtered off, washed with cold water (50 

mL), and dissolved in DCM (50 mL). The solution was washed once with ice-cold 

NaOH (1M, 30 mL) and dried over M gS04. The solution was filtered and the solvent 

was evaporated to afford the product as a white solid (200 mg, 77 %): exp mp= 

58°C; 'H  NMR (400 MHz, CDC13) 8.93 (1H, s, H2), 8.22 (1H, ddd, J= 8.4, 1.4 

and 0.6 Hz, H5), 8.09 (1H, ddd, J= 8.4, 1.2 and 0.5 Hz, H8), 7.77 (1H, td, J= 8.4 and 

1.4 Hz, H7) and 7.65 (1H, td, J= 8.4 and 1.2 Hz, H6) ppm; 13C NMR (100 MHz, 

CDC13) Sc 152.1, 147.6, 141.9, 130.7, 130.3, 129.0, 127.8, 124.8 and 118.4 ppm; IR 

Umax = 3961, 3880, 3782, 33989, 3033, 1953, 1614, 1558, 1483, 1348, 1246, 1167, 

1111, 981, 937, 852, 823, 752 and 677 cm '1; MS (Cl), [M-Br]+ (100) 164; HRMS 

calcd for C9H6NClBr [M+H]+ 241.9372, found 241.9377; Anal. Calcd for 

C9H5NClBr: C, 44.58 %; H, 2.08 %; N, 5.78 %; Found C, 44.58 %; H, 2.11 %; N, 

5.76 %.

l-(4 ’-Bromobenzyl)-2-fluoro-4-(trifluoromethyl)benzene.

1-Bromo-4-(bromomethyl)benzene (652 mg, 2.60 mmol) and 2-fluoro-4- 

(trifluoromethyl)phenylboronic acid (516 mg, 2.48 mmol) reacting following the 

general procedure 2 to give white crystals (271 mg, 33 %): 'H  NMR (400 MHz, 

C D C I 3 )  Sh 7.40 (2H, d, J= 8.5 Hz, CH-CBr), 7.33-7.20 (4H, m), 7.02 (2H, d, J= 8.2
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Hz, CH-CO) and 3.97 (2H, s, -CH2) ppm; 13C NMR (100 MHz, CDC13) Sc 162.1,

159.6, 138.0, 132.2, 131.9, 130.6, 127.8, 125.1, 122.4, 121.6, 121.0, 113.2 and 34.6 

ppm; MS (Cl), [M]+ (100) 332; HRMS calcd for Ci4H9BrF4 [M]+ 331.9824, found 

331.9828.

General procedure 5.

To a solution of bromide reagent (1.00 eq.) in anhydrous THF (15 mL) under N2 at - 

78°C, solution of «-BuLi in hexane (1.6 M, 1.60 eq.) was added. After 1 hr stirring, 

the clear solution was treated with triisopropylborate (0.86 mL, 3.74 mmol) and 

stirred for a further hour, allowed to warm at r.t. over 3 hrs. The reaction was left 

over night and then quenched with HC1 (1M, 15 mL). The mixture was extracted 

with Et20  (3x20 mL) and washed with water (3x20 mL). Purification of the crude 

product by flash chromatography with 20 % EtOAC:PE gave the product.

4-(4’-(Trifluoromethoxy)benzyl)phenylboronic acid.

26 57

l-Bromo-4-(4-(trifluoromethoxy)benzyl)benzene (619 mg, 1.87 mmol) treated with 

the general procedure 5 gave the product as white crystals (550 mg, 100%): mp= 

158°C; 'H  NMR (400 MHz, CDC13) 7.54 (2H, d, J= 8.0 Hz, CH-CB), 7.27 (2H, d, 

J= 8.5 Hz, CH), 7.19 (2H, d, J= 8.0 Hz, -CH), 7.15 (2H, d, J= 8.0 Hz, CH-CBr) and 

3.99 (2H, s, -CH2) ppm; 13C NMR (100 MHz, CDC13) Sc 135.3, 131.8, 129.6, 122.4 

and 42.4 ppm; IR umax = 3849, 3818, 3369, 2976, 2902, 2480, 2335, 1911, 1608, 

1560, 1510, 1409, 1340, 1305, 1251, 1221, 1151, 1107, 1020, 921, 862, 816, 752, 

727 and 694 cm '1; MS (El), [M-B(OH)]+ (100) 268; HRMS calcd for C ,4HnBF30 3 

[M-H]+ 295.0753, found 295.1202.

4-(2,-Fluoro-4,-(trifluoromethyl)benzyl)phenylboronic acid.
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l-(4-Bromobenzyl)-2-fluoro-4-(trifluoromethyl)benzene (850 mg, 2.56 mmol) 

treated with the general procedure 5 gave the product as white crystals (260 mg, 34 

%): 'H  NMR (400 MHz, CDC13) 7.67 (2H, d, J= 8.0 Hz, CH-CB), 7.40 (2H, m),

7.21 (2H, d, J= 7.6 Hz, CH), 7.17 (1H, m, CH) and 4.07 (2H, s, -CH2) ppm.

4-(Benzyloxy)-7-chloro-3-(4’-fluorophenyl)quinoline.

OBn
Br

52

4-(Benzyloxy)-3-bromo-7-chloroquinoline (200 mg, 0.57 mmol) and 4- 

fluorophenylboronic acid (40 mg, 0.29 mmol) were dissolved in DME (10 mL) and 

aqueous Na2C 0 3 (1M, 2 mL) was added, the resulting mixture was deoxygenated 

with a stream of argon. After 20 min, Pd(PPh3)4 (0.05 equiv) was added, and mixture 

was brought to reflux, allowed to stir under argon for 12 h and cooled to r.t. . The 

solution was filtered through celite, washed with Et20  (10 mL). The aqueous layer 

was extracted with Et20  (3><20 mL), and the organic phases were combined and 

washed with NaOH (1 M, 10 mL) followed by brine. The ethereal solution was dried 

over M gS04 and evaporated. Purification o f each crude product by flash 

chromathography using 10 % EtOAc/PE yielded the corresponding product as white 

crystals (85 mg, 80 %): Rf= 0.63 (50 % PE/EtOAc; 'H  NMR (400 MHz, CDC13) 

Sh 8.48 (1H, d, J= 8.4 Hz, H5), 7.76 (1H, s, H2), 7.64 (2H, dd, J= 8.9 and 5.5, CH of 

Bn), 7.39-7.29 (5H, m, H6, H8, H of Bn and PhF), 7.18 (2H, d, J= 8.2 Hz, CH of 

Bn), 7.09 (4H, t, J= 8.7 Hz, H of PhF) and 5.33 (2H, s, 0-C H 2) ppm; 13C NMR (100 

MHz, CDC13) Sc 175.7, 163.9, 161.4, 142.6, 140.7, 139.0, 134.9, 131.2, 131.2, 130.8,

130.7, 129.8, 129.0j 126.5, 126.2, 125.0, 122.5, 115.9, 115.7 and 115.5 ppm; MS 

(ES+), [M+Na]+ (100) 386; HRMS caled for C22H 15NOFNaCl [M+Na]+ 386.0724, 

found 386.0716.

4-(Benzyloxy)-3,7-bis(4’-fluorophenyl)quinoline.52
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4-(Benzyloxy)-3-bromo-7-chloroquinoline (600 mg, 1.73 mmol) and 4- 

fluorophenylboronic acid (339 mg, 2.42 mmol) were dissolved in DME (20 mL) and 

aqueous Na2C03 (1M, 4 mL) was added, the resulting mixture was deoxygenated 

with a stream of argon. After 20 min, Pd(PPh3)4 (0.05 equiv) was added, and mixture 

was brought to reflux, allowed to stir under argon for 12 hrs and cooled to r.t.. The 

solution was filtered through celite, washed with Et20  (15 mL). The aqueous layer 

was washed with Et20  (3x20 mL), and the organic phases were combined and 

washed with NaOH (1 M, 10 mL) followed by brine. The ethereal solution was dried 

over MgSCL and evaporated. Purification o f each crude product by flash 

chromathography using 10 % EtOAc/PE yielded the corresponding phenol as white 

crystals (403 mg, 41 %): mp= 201°C; Rf= 0.58 (50 % PE/EtOAc; ‘H NMR (400 

MHz, CDC13) Sh 8.60 (1H, d, J= 8.3 Hz, H5), 7.83 (1H, s, H2), 7.69 (2H, dd, J= 8.9 

and 5.5, CH of Bn), 7.53 (1H, dd, J= 8.5 and 1.7, H6), 7.44 (1H, s, H8), 7.43-7.33 

(5H, m, H of Bn and PhF), 7.23 (2H, d, J= 8.2 Hz, CH of Bn), 7.11 (4H, t, J= 8.5 

Hz, H o f PhF), 7.11 (4H, t, J= 8.5 Hz, H o f PhF) and 5.44 (2H, s, 0-CH 2) ppm; 13C 

NMR (100 MHz, CDCI3) Sc 175.7, 164.3, 163.4, 161.8, 144.0, 142.3, 139.9, 136.2,

135.1, 131.2, 130.4, 129.4, 129.1, 129.0, 128.6, 128.4, 126.3, 126.2, 123.1, 121.7,

116.1, 115.9, 115.3, 115.1 and 114.1 ppm; MS (ES+), [M+Na]+ (100) 446; HRMS 

ealed for C28H,9NOF2Na [M+Na]+ 446.1332, found 446.1317.

R= OBn or Cl

Quinoline (1.05 eq.) and 4-phenoxyphenylboronic acid (1.00 eq.) were dissolved in 

DME (10 mL) and aqueous Na2CC>3 (1M, 4 mL) was added, the resulting mixture
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was deoxygenated with a stream of argon. After 20 min, Pd(PPh3)4 (0.05 equiv) was 

added, and mixture was brought to reflux, allowed to stir under argon for 12 hrs and 

cooled to r.t. . The solution was filtered through celite, washed with Et20 (20 mL). 

The aqueous layer was extracted with Et20 (3x20 mL), and the organic phases were 

combined and washed with NaOH (1M, 10 mL) followed by brine. The ethereal 

solution was dried over MgSCL and evaporated. Purification of each crude product 

by flash chromathography using 10 % EtOAc/PE gave the expected product.

4-(Benzyloxy)-7-chloro-3-(4’-phenoxyphenyl)quinoline.

4-(Benzyloxy)-3-bromo-7-chloroquinoline (430 mg, 1.24 mmol) and 4- 

phenoxyphenylboronic acid (265 mg, 1.24 mmol) reacted following the general 

procedure 6 to yield some white crystals (364 mg, 67 %): Rf= 0.81 (10 % 

EtOAc/PE); *H NMR (400 MHz, CDC13) <5k 8.50 (1H, d, J= 8.5 Hz, H5), 7.79 (1H, 

s, H2), 7.64 (2H, d, J= 8.9 Hz, CH of Bn), 7.39-7.30 (7H, m), 7.19 (2H, d, J= 8.2 

Hz, CH of Bn), 7.07-7.03 (4H, m) and 5.34 (2H, s, 0-C H 2) ppm; 13C NMR (100 

MHz, CDC13) Sc 175.8, 157.6, 157.1, 142.5, 140.7, 138.9, 134.9, 130.5, 130.2, 130.1,

129.9, 129.8, 129.0, 126.5, 126.2, 124.9, 123.6, 122.8, 119.3, 119.2, 115.9 and 57.0 

ppm; MS (ES+), [M+Na]+ (100) 460; HRMS calcd for C28H2oN02NaCl [M+Na]+ 

460.1080, found 460.1070.

4,7-Dichloro-3-(4’-(4” -(trifluoromethoxy)benzyl)phenyl)quinoline.

3-Bromo-4,7-dichloroquinoline (263 mg, 0.95 mmol) and 4-(4-

(trifluoromethoxy)benzyl)phenyl boronic acid (300 mg, 0.90 mmol) reacted 

following the general procedure 6 to yield white crystals (316 mg, 71 %): mp= 

74°C; ‘H NMR (400 MHz, CDC13) Sa 8.84 (1H, s, H2), 8.28 (1H, dd, J= 9.1 and 0.4 

Hz, H5), 8.14 (1H, d, J= 2.1 Hz, H8), 7.63 (1H, dd, J= 9.1 and 2.1 Hz, H6), 7.48
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(2H, d, J= 8.2 Hz, H12), 7.33 (2H, d, J= 8.6 Hz, H13), 7.27 (2H, d, J= 9.7 Hz, 

H15), 7.18 (2H, d, J= 8.9 Hz, H16) and 4.08 (2H, s, H14) ppm; 13C NMR (100 

MHz, CDC13) <5c 153.0, 148.6, 146.9, 142.5, 141.4, 140.2, 139.6, 136.5, 134.3, 133.5,

130.7, 130.5, 129.5, 129.4, 129.0, 126.6, 121.6 and 41.4 ppm; IR u = 3928, 3866, 

3737, 3681, 3338, 2974, 2894, 2366, 2339, 1913, 1610, 1552, 1510, 1450, 1338, 

1251, 1224, 1155, 1093, 1051, 983, 898, 856, 814, 771, 717 and 677 cm 'l; MS 

(ES+), [M+H]+ (100) 448; HRMS calcd for C23H i5NOF3C12 [M+H]+ 448.0483, 

found 448.0464.

7-Chloro-3-(4,-(2” -fluoro-4” -(trifluoromethyl)benzyl)phenyl)quinoline.

3-Bromo-4,7-dichloroquinoline (176 mg, 0.63 mmol) and 4-(2-fluoro-4- 

(trifluoromethyl)benzyl)phenylboronic acid (280 mg, 0.60 mmol) reacted following 

the general procedure 6 to yield white crystals (113 mg, 45 %); 'H  NMR (400 

MHz, C D C I 3 )  Sh 9.15 (1H, d, J= 2.3 Hz, H2), 8.25 (1H, d, J= 2.3 Hz, H4), 8.13 (1H, 

d, J= 1.9 Hz, H8), 7.81 (1H, d, J= 8.7 Hz, H5), 7.64 (2H, d, J= 8.3 Hz, H12), 7.53 

(1H, dd, J= 2.1 and 8.7 Hz, H6), 7.37 (2H, d, J= 8.2 Hz, H13), 7.33 (2H, m, CH), 

7.06 (1H, m, CH) and 4.12 (2H, s, H14) ppm; 13C NMR (100 MHz, CDC13) 

<5t 151.2, 148.0, 139.4, 136.3, 135.6, 134.1, 133.3, 132.0, 131.9, 130.4, 130.1, 129.6, 

128.6, 128.6, 128.1, 126.8, 121.6, 116.0, 113.5, 113.3 and 34.9 ppm; MS (ES+), 

[M+H]+ (100) 416; HRMS calcd for C23H 15NF4C1 [M+H]+ 416.0829, found 

416.0813.
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3-Bromo-4-chloroquinoline (1.05 equiv) and 4-hydroxyphenylboronic acid (1.00 

equiv) reacted following the general procedure 6 to yield white crystals (480 mg, 

45%): mp= 192 °C; Rf= 0.26 (30% EtOAc/PE); *H NMR (400 MHz, CDC13) 

Sh 8.86 (1H, s, H2), 8.31 (1H, ddd, J= 8.3, 1.6 and 0.5 Hz, H5), 8.13 (1H, ddd, 

.7=8.4, 1.2 and 0.5 Hz, H8), 7.88 (1H, td, J=8.4 and 1.5 Hz, H7), 7.63 (1H, td, .7=8.3 

and 1.3 Hz, H6), 7.45 (2H, d, J= 8.6 Hz, H12) and 6.94 (2H, d, .7=8.8 Hz, H13) ppm; 

13C NMR (100 MHz, CDC13) Sc 158.1, 152.1, 147.5, 138.3, 133.1, 131.6, 130.5,

129.7, 128.8, 126.4, 126.0, 124.5 and 116.0 ppm; IR omax = 3670, 3348, 2974, 2885, 

2333, 1917, 1608, 1583, 1552, 1516, 1471, 1439, 1375, 1338, 1280, 1228, 1178, 

1149, 1091, 1055, 881, 816, 771 and 725 cm '1; MS (Cl), [M+H]+(100) 256; HRMS 

ealed for C i5H nNOCl [M+H]+ 256.0529, found 256.0522.

R= Cl or H

A flask is charged with 4-(4-chloroquinolin-3-yl)phenol (1.0 equiv), Cu(OAc)2 (1.0 

equiv), arylboronic acid (2.0 equiv) and powdered 4 A molecular sieves. The 

reaction mixture is diluted with DCM to yield a solution approximately 0.1 M in 

phenol, and triethylamine (5.0 equiv) is added. After stirring the colored 

heterogeneous reaction mixture for 18 hrs at 25 °C under ambient atmosphere, the 

resulting slurry is filtered and the diaryl ether is isolated from the organic filtrate by 

flash chromatography (10% EtOAc/PE).
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„OH
4,7-Dichloro-3-(4’-(4” -fluorophenoxy)phenyl)quinoline.

66

See general procedure 7. White solid (85 mg, 63%); Rf=0.91 in 1/1; EtOAc/PE; 'H 

NMR (400 MHz, CDC13) Sr 8.86 (1H, s, H2), 8.27 (1H, d, J= 9.0 Hz, H5), 8.14 (1H, 

d, J=2.1 Hz, H8), 7.64 (2H, d, J=8.4 Hz, H12), 7.63 (1H, dd, J= 2.2 and 9.0 Hz, H6), 

7.56 (2H, d, J= 8.7 Hz, H15), 7.19 (2H, m, H16) and 7.16 (2H, d, J= 7.2 Hz, H13) 

ppm; 13C NMR (100 MHz, CDC13) ¿c 160.1, 156.8, 152.8, 148.7, 140.2, 136.7,

132.9, 132.1 (2C), 132.0 (2C), 129.0, 127.7, 126.5, 119.8 (2C) and 119.1 (2C) ppm; 

MS (ES+), [M+H]+ (100) 384; HRMS ealed for C2iH i3NOFC12 [M+H]+ 384.0358, 

found 384.0341; Anal. Calcd for C21H 12N0FC12: C, 65.64%; H, 3.15%; N, 3.65%; 

Found C, 65.50%; H, 3.24%; N, 3.55%.

4,7-Dichloro-3-(4’-(4” -(trifluoromethoxy)phenoxy)phenyl)quinoline.

See general procedure 7. White solid (104 mg, 68%); Rf=0.81 (50% EtOAc/PE); ]H 

NMR (400 MHz, CDC13) Sr 8.85 (1H, s, H2), 8.27 (1H, d, J= 9.0 Hz, H5), 8.14 (1H, 

d, J= 2.0 Hz, H8), 7.63 (1H, dd, J= 2.1 and 9.0 Hz, H6), 7.52 (2H, d, J=8.8 Hz, H12), 

7.24 (2H, d, J= 9.0 Hz, H15), 7.15 (2H, m, H13) and 7.12 (2H, m, H16) ppm; 13C 

NMR (100 MHz, CDC13) Sc 157.8, 155.4, 152.9, 148.7, 145.4, 140.2, 136.6, 133.0,

131.8, 131.4, 129.4, 129.0, 126.5, 125.3, 123.2, 120.8, 118.9 and 100.0 ppm; MS 

(ES+), [M+H]+ (100) 450; HRMS calcd for C22H 13N 0 2F3C12 [M+H]+ 450.0275, 

found 450.0266; Anal. Calcd for C22H i2N 0 2F3C12: C, 58.69%; H, 2.69%; N, 3.11%; 

Found C, 58.40%; H, 2.73%; N, 2.98%.
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4,7-Dichloro-3-(4’-(4” -(trifluoromethyl)phenoxy)phenyl)quinoline.

See general procedure 7. White solid (152 mg, 90%); Rf=0.91 (50% EtOAc/PE); 'H 

NMR (400 MHz, CDC13) <5k 8.84 (1H, s, H2), 8.28 (1H, d, J= 9.0 Hz, H5), 8.14 (1H, 

d, J= 2.0 Hz, H8), 7.63 (1H, dd, J=2.1 and 9.0 Hz, H6), 7.50 (2H, d, J=8.8 Hz, H12) 

and 7.09 (6H, m, H13-H15-H16) ppm; 13C N M R (100 MHz, CDCI3) ¿fc 158.7, 153.0,

152.5, 148.7, 140.2, 136.5, 133.1, 131.7, 130.7, 129.4, 129.0, 126.6, 125.4, 121.8, 

121.7, 118.1, 117.1 and 116.8 ppm; MS (ES+), [M+H]+(100) 434; HRMS calcd for 

C22H13NOF3CI2 [M+H]+ 434.0326, found 434.0306; Anal. Calcd for C22H12NOF3CI2: 

C, 60.85%; H, 2.79%; N, 3.23%; Found C, 60.36%; H, 2.85%; N, 2.97%.

4,7-Dichloro-3-(4,-(4” -(terf-butyl)phenoxy)phenyl)quinoline.

See general procedure 7. White solid (140 mg, 80%); RfK).79 (50% EtOAc/PE); 

‘H NMR (400 MHz, CDC13) Su 8.85 (1H, s, H2), 8.28 (1H, d, J= 9.0 Hz, H5), 8.14 

(1H, d, J= 2.1 Hz, H8), 7.63 (1H, dd, J=2.\ and 9.0 Hz, H6), 7.49 (2H, d, J=8.7 Hz, 

H12), 7.40 (2H, d, J= 8.8 Hz, H15), 7.12 (2H, d, J= 8.7 Hz, H13), 7.05 (2H, d, J= 8.7 

Hz, H I6) and 1.35 (9H, s, CH3 of ieri-butyl) ppm; 13C NMR (100 MHz, CDC13) Sc

158.8, 154.2, 153.1, 148.6, 147.4, 140.1, 136.5, 133.3, 131.6 (2C), 130.4, 129.3,

129.0, 127.2 (2C), 126.7, 126.6, 125.4, 121.2, 119.6 (2C), 118.4 (2C) and 31.9 (3C) 

ppm; MS (ES+), [M+H]+ (100) 422; HRMS calcd for C22H22NOCI2 [M+H]+ 

422.1078, found 422.1074.
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4 -Chloro-3-(4’-(3” -chloro-4”-fluorophenoxy)phenyl)quinoline.

See general procedure 7. White solid (91 mg, 50%); Rf=0.70 (50% EtOAc/PE); *H 

NMR (400 MHz, CDCI3) Sa 8.86 (1H, s, H2), 8.36 (1H, ddd, 7= 0.6, 1.4 and 9.0 Hz,

H5), 8.15 (1H, ddd, 7= 0.7, 1.3 and 8.4 Hz, H8), 7.80 (1H, dt, 7=1.4 and 8.4 Hz, H6), 

7.49 (2H, dt, 7=1.4 and 8.4 Hz, H7), 7.54 (2H, d, 7= 8.7 Hz, H12), 7.19-7.16 (2H, m, 

H15-H16’), 7.12 (2H, d, 7=8.8 Hz, H13) and 6.99 (1H, m, H15’) ppm; 13C NMR 

(100 MHz, CDCI3) Sc 158.3, 157.7, 151.7, 150.6, 140.3, 132.8, 132.0, 131.9, 130.6,

128.5, 126.8, 125.1, 122.0, 119.5, 118.6, 117.8 and 117.5 ppm; MS (ES+), [M+H]+ 

(100) 384; HRMS calcd for C2iH i3NOFC12 [M+H]+ 384.0358, found 384.0376.

4-Chloro-3-(4’-(3” -(trifluoromethoxy)phenoxy)phenyl)quinoline.

OH OCF3

See general procedure 7. White solid (184 mg, 75%); Rf=0.59 (30% EtOAc/PE); 

*H NMR (400 MHz, CDC13) 8.87 (1H, s, H2), 8.34 (1H, ddd, 7= 0.7, 1.4 and 8.4 

Hz, H5), 8.15 (1H, dd, 7=0.7 and 8.4 Hz, H8), 7.78 (1H, dt, 7=1.4 and 8.4 Hz, H6), 

7.68 (2H, dt, 7=1.1 and 8.3 Hz, H7), 7.55 (2H, d, 7= 8.7 Hz, H12), 7.38 (1H, t, 7=8.1 

Hz, H15), 7.17 (2H, d, 7=8.7 Hz, H13) and 7.04-6.98 (3H, m, H15’-H16’ and H17’) 

ppm; 13C NMR (100 MHz, CDC13) ¿fc 171.5, 158.3, 157.1, 151.8, 150.6, 148.4, 

140.2, 132.8, 132.3, 132.2, 132.0, 131.0, 130.5, 128.4, 126.8, 125.1, 119.3, 117.6, 

116.1 and 112.5 ppm; MS (ES+), [M+H]+ (100) 416; HRMS calcd for 

C22H ,4N 0 2F3C1 [M+H]+ 416.0665, found 416.0670.
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R

R= F or pF-Ar

Quinoline reagent was dissolved in MeOH (10 mL), and 10% Pd-C was added, the 

mixture was then hydrogenated for 30 mins and filtered on scintered funnel, the 

resulting solid was washed with DCM (10 mL) to afford the product.

3-(4’-Fluorophenyl)quinolin-4(lH)-one.
F

79
4-(Benzyloxy)-7-chloro-3-(4-fluorophenyl)quinoline (175 mg, 0.48 mmol) was 

treated following general procedure 8 to give a white crystal (57 mg, 49 %): mp= 

282 °C; *H NMR (400 MHz, MeOD-d4) 4 1 8.37 (1H, dd, J= 8.1 and 0.8 Hz, H5), 

8.11 (1H, s, H2), 7.75-7.66 (3H, m, CH of PhF and H6), 7.61 (1H, d, J= 8.0 Hz, CH 

of Bn), 7.44 (2H, t, J= 8.16 Hz, H7) and 7.16 (2H, t, J= 8.16 Hz, CH of PhF) ppm; 

13C NMR (100 MHz, DM SO-4) 4  175.0, 162.5, 139.6, 138.5, 132.8, 132.0, 130.4,

126.1, 125.9, 123.7, 119.1, 118.6 and 115.0 ppm; IR u max = 3901, 3816, 3354, 3068, 

2974, 2362, 2333, 1861, 1624, 1554, 1504, 1348, 1296, 1228, 1153, 1095, 1055, 

1018, 895, 808, 777, 750, 694, 663 cm '1; MS (Cl), [M+H]+ (100) 240; HRMS calcd 

for CisHnNOF [M+H]+ 240.0825, found 240.0825.

3-(4’-Phenoxyphenyl)quinolin-4(lH)-one.

4-(Benzyloxy)-7-chloro-3-(4-phenoxyphenyl)quinoline (200 mg, 0.47 mmol) was 

treated following general procedure 8 to give a white crystal (70 mg, 45%): *H
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NMR (400 MHz, DMSO-J6) ¿h 12.05 (IH , s, -NH), 8.23 (1H, d, J= 9.3 Hz, H5), 

7.78 (2H, d, J= 6.6 Hz, OC-C-CH), 7.65 (2H, m, -CH of PhOPh), 7.44-7.31 (4H, m), 

7.15 (1H, t, J= 7.02 Hz, H8) and 7.07-7.01 (3H, m) ppm; MS (ES-), [M-H]' (100) 

312; HRMS calcd for C2iH i4N 0 2 [M-H]' 312.1025, found 312.1011.

General procedure 9.63

R= H or Cl

The 3-substituted-4-chloroquinoline was dissolved in DMF and a solution of 85% 

formic acid in water (5 mL) was added. The mixture was refluxed for 24 hrs. After 

cooling down, some precipitate appears, and the mixture was poured into water 

(lOOmL) and filtered to afford the product.

7-Chloro-3-(4’-(4” -(trifluoromethoxy)benzyl)phenyl)quinolin-4(lH)-one.63

See general procedure 9. White solid (135 mg, 64 %): mp= 275°C; *H NMR (400 

MHz, DMSO-d6) Sh 8.18 (IH , s, H2), 8.18 (1H, d, J= 8.7 Hz, H5), 7.64 (2H, d, J= 

8.2 Hz, H I2), 7.62 (1H, d, J= 2.1 Hz, H8), 7.39 (2H, d, J= 8.5 Hz, H13), 7.35 (2H, 

dd, J= 8.7 and 1.9 Hz, H6), 7.28 (4H, m, H15-H16) and 4.00 (2H, s, H14) ppm; IR 

u max = 3903, 3849, 3687, 3354, 2974, 2887, 2478, 2333, 1913, 1625, 1556, 1502, 

1462, 1406, 1352, 1317, 1255, 1211, 1167, 1089, 1053, 887, 813, 775, 696 and 671 

cm’1; MS (ES+), [M+H]+ (100) 430; HRMS calcd for C23H 16N 0 2F3C1 [M+H]+ 

430.0822, found 430.0808; Anal. Calcd for C23H ,5N 0 2F3C1: C, 64.27%; H, 3.52%; 

N, 3.26%; Found C, 63.88%; H, 3.47%; N, 3.19%.
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7-Chloro-3-(4’-(4” -fluorophenoxy)phenyl)quinolin-4(lH)-one.

See general procedure 9. White solid (56 mg, 73%): mp= 330 °C; IR o max -  3955, 

3787, 3737, 3650, 3625, 3338, 2974, 2893, 1919, 1628, 1556, 1504, 1458, 1346, 

1263, 1213, 1087, 1051, 1010, 883, 829 and 767 cm’1; MS (ES+), [M+H]+(100) 366; 

HRMS calcd for C2iH,4N02FC1 [M+H]+ 366.0697, found 366.0693.

7-Chloro-3-(4’-(4” -(trifluoromethoxy)phenoxy)phenyl)quinolin-4(lH)-one.

See general procedure 9. White solid (59 mg, 61%): mp= 316°C; 'H NMR (400 

MHz, D M SO -4) 4  8.73 (1H, d, J= 8.7 Hz, H5), 8.07 (IH , s, H2), 8.06 (1H, s, - 

NH), 7.73 (1H, d, J=8.7 Hz, H12), 7.60 (1H, d, J= 2.0 Hz, H8), 7.28 (1H, dd, J= 2.0 

and 8.7 Hz, H6), 7.27 (2H, dd, J=  0.8 and 9.0 Hz, H I5), 7.08 (2H, d, .7=7.1 Hz, H16) 

and 7.05 (2H, d, J=8.8 Hz, H13) ppm; 13C NMR (100 MHz, CDC13) Sc 174.8, 156.2,

155.1, 147.5, 143.7, 140.3, 138.2, 136.8, 132.2, 130.2, 128.0, 123.8, 122.8, 120.29,

119.5, 118.8 and 117.6 ppm; IR u max = 3880, 3849, 3687, 3357, 3068, 2974, 2887, 

2478, 2350, 1915, 1556, 1502, 1462, 1410, 1348, 1304, 1275, 1250, 1211, 1161, 

1088, 1053, 1014,889, 831,767 and 690 cm '1; MS (ES+), [M+H]+(100) 432; HRMS 

calcd for C22Hi4N03F3Cl [M+H]+ 432.0614, found 432.0611.

7-Chloro-3-(4,-(4” -(trifluoromethyl)phenoxy)phenyl)quinolin-4(lH)-one.

CF3
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See general procedure 9. White solid (27 mg, 59%): mp= 318 °C; 'H  NMR (400 

MHz, DMSO-i4) Sh 8.27 (1H, s, H2), 8.21 (1H, d, 7= 8.73 Hz, H5), 7.83 (1H, d, 

7=8.82 Hz, H I2), 7.75 (2H, d, .7=9.02 Hz, H16), 7.64 (1H, d, 7=1.99 Hz, H8), 7.37 

(1H, dd, 7= 2.09 and 8.73 Hz, H6) and 7.17 (4H, m, H13-H15) ppm; IR o max = 3583, 

3001, 2947, 2329, 1916, 1614, 1556, 1506, 1329, 1242, 1169, 1132, 1107, 1066, 833 

and 775 cm '1; MS (ES+), [M+H]+ (100) 416; HRMS caled for C22H14NO2F3CI 

[M+H]+ 416.0665, found 416.0649.

3-(4’-(4” -ferf-Butylphenoxy)phenyl)-7-chloroquinolin-4(lH)-one.

See general procedure 9. White solid (65 mg, 56%): mp=328°C; ]H NMR (400 

MHz, DMSO-76) A  8.20 (IH, s, H2), 8.19 (1H, d, 7= 7.9 Hz, H5), 7.72 (1H, d, 

7= 7.9 Hz, H I2), 7.64 (IH, s, H8), 7.41 (2H, d, 7= 7.8 Hz, H15), 7.35 (1H, d, 7= 7.9 

Hz, H6), 7.01 (2H, d, .7=7.9 Hz, H16), 6.96 (2H, d, 7=7.9 Hz, H13), 2.50 (1H, m, - 

CH of fBu) and 1.28 (9H, s, -CH3 of fBu) ppm; 13C NMR (100 MHz, CDC13) ¿fc

174.5, 156.0, 154.7, 146.1, 140.4, 138.8, 136.4, 131.1, 130.3, 128.3, 127.0, 124.7,

123.9, 120.2, 118.5, 118.3, 117.7, 34.4 and 31.6 ppm; IR umax = 3880, 3851, 3687, 

3398, 3068, 2972, 2322, 1909, 1628, 1556, 1504, 1462, 1408, 1350, 1246, 1174, 

1109, 1053, 1014, 889, 829, 769 and 694 cm '1 ; MS (ES+), [M+H]+ (100) 404; 

HRMS calcd for C25H23NO2CI [M+H]+ 404.1417, found 404.1432.

3-(4’-(3” -(Trifluoromethoxy)phenoxy)phenyl)quinolin-4(lH)-one.

See general procedure 9. White solid (90 mg, 89%): mp= 234 °C; !H NMR (400 

MHz, DMSO-76) Sh 8.22 (1H, dd, 7= 1.5 and 8.2 Hz, H5), 8.21 (1H, s, H2), 7.83 

(1H, d, 7=8.8 Hz, H I2), 7.67 (1H, dt, 7=1.5 and 8.3 Hz, H7), 7.60 (1H, d, 7=8.3 Hz,
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H8), 7.52 (1H, t, .7=8.2 Hz, H15), 7.36 (1H, dt, J= 1.1 and 8.1 Hz, H6), 7.14 (2H, d, 

.7=8.8 Hz, H13) and 7.07-7.01 (3H, m, H15’-H16’ and H17’) ppm; 13CNMR 

(100MHz, DMSO-d6) Sc 175.0, 158.9, 149.2, 148.0, 139.7, 138.5, 132.5, 131.9,

131.8, 130.5, 126.0, 125.9, 123.7, 119.3, 119.2, 118.6, 117.1, 115.6 and 111.2 ppm; 

IR o max = 3880, 3849, 3687, 3398, 2970, 2322, 1915, 1599, 1556, 1516, 1481, 1352, 

1290, 1259, 1209, 1151, 980, 870, 819, 775, 750 and 700 cm '1; MS (ES+), [M+H]+ 

(100) 398; HRMS caled for C22H15N 0 3F3 [M+H]+ 398.1004, found 398.1001; Anal. 

Caled for C22H14NO3F3: C, 66.50%; H, 3.55%; N, 3.53%; Found C, 66.48%; H, 

3.61%; N, 3.44%.

3-(4’-(3” -Chloro-4” -fluorophenoxy)phenyl)quinolin-4(lH)-one.

See general procedure 9. White solid (52 mg, 60%): mp= 250 °C; 'H  NMR (400 

MHz, D M S O 40 <5h  8.22 (1H, dd, J= 1.3 and 8.3 Hz, H5), 8.20 (IH, s, H2), 7.80 

(1H, d, .7=8.8 Hz, H12), 7.67 (1H, dt, .7=1.5 and 8.3 Hz, H6), 7.59 (1H, d, .7=8.2 Hz, 

H8), 7.46 (1H, t, .7=9.1 Hz, H16’), 7.35 (1H, dt, J= 1.2 and 8.2 Hz, H6), 7.30 (1H, 

dd, .7=2.9 and 6.2 Hz, H15), 7.09 (2H, d, .7=8.8 Hz, H13) and 7.09-7.05 (1H, m, 

H15’) ppm; IR o max = 3957, 3757, 3676, 3625, 3338, 2974, 2891, 2337, 1612, 1589, 

1556, 1491, 1346, 1296, 1265, 1215, 1167, 1091, 1049, 1014, 926, 845, 821, 762, 

702 and 669 cm '1; MS (ES+), [M+H]+ (100) 366; HRMS ealed for C2iH i4N 0 2FC1 

[M+H]+ 366.0697, found 366.0690; Anal. Calcd for C2iH i2N 0 2FC1: C, 68.95%; H, 

3.58%; N, 3.83%; Found C, 69.20%; H, 3.57%; N, 3.74%.

Z-Bromo-S-hydroxynaphthoquinone.1
O

OH

64

Br

OH

90 91

To a solution of 2-hydroxynaphthoquinone (1.00 g, 5.7 mmol) in acetic acid (25 mL) 

containing a crystal o f iodine was slowly added bromine (1 eq). After 2 hrs a
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crystalline yellow solid was collected and stirred with NH4OH (15 mL). An orange 

crystal was collected from filtration (1.50 g, 100%). Rf =0.54 (10% MeOH/DCM); 

mp= 196 °C; !H NMR (200 MHz, D M SO -4) 4  7.91 (1H, dd, J=7.42, 1.64 Hz), 7.81 

(1H, dd, J=7.42, 1.64 Hz), 7.68 (1H, dt, J=7.42, 1.64 Hz), 7.56 (1H, dt, J=7.42, 1.64 

Hz) ppm; 13C NMR (100 MHz, D M SO -4) 4  184.0 (C-OH), 174.2 (C=0), 168.1 

(C=0), 135.4, 134.0, 131.1, 130.9, 126.0, 125.9 ppm; MS (Cl), [M+NH4-Br]+ (100) 

192; HRMS calcd for C 10H9O3BrN [M+NH4]+ 269.9766, found 269.9758.

2-((4,-(4” -Chlorophenyl)piperidin-l’-yl)methyl)-3-hydroxynaphthoquinone.

O O

To a solution o f 2-hydroxynaphthoquinone (67 mg, 0.39 mmol) in absolute ethanol 

(30 mL) was added formaldehyde (23 mg, 0.77 mmol) and 4-(4- 

chlorophenyl)piperidine (180 mg, 0.77 mmol). The reaction was quenched after 1 hr 

with NaOH (10 mL). The mixture was extracted with DCM (3><20 mL) and washed 

with brine (3x20 mL). Purification o f the crude product by flash chromatography 

(10% MeOH/DCM) gave the product as an orange solid (48 mg, 30%); mp= 148 °C; 

'H  NMR (400 MHz, CDC13) 4 1 8.01 (2H, d, J= 7.60 Hz, CH-C-CO), 7.54 (1H, d, J= 

7.4 Hz, CH), 7.30 (2H, m, CH-C-C1), 7.17 (2H, m, CH), 4.22 (2H, s, CH2), 3.91 

(2H, m, CH2), 2.98 (2H, m, CH2), 2.77 (1H, m, CH2), 2.39 (2H, m, CH2) and 2.04 

(2H, m, CH2) ppm; 13C NMR (100 MHz, CDC13) 4  183.2, 181.7, 142.5, 134.0, 

133.0, 131.9, 131.4, 129.2, 128.5, 127.1, 126.2, 126.1, 109.0, 54.7, 40.2 and 31.3 

ppm; IR o max = 3986, 3745, 3558, 3014, 2848, 2516, 2353, 1678, 1587, 1527, 1365, 

1277, 1234, 1012, 933, 821, 737, 696 and 659 cm '1; MS (ES-), [M-H]' (100) 380; 

HRMS calcd for C22H 19N 0 3C1 [M-H]' 380.1053, found 380.1063.
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2-((4’-(4” -Chlorophenyl)piperazin-l’-yl)methyl)-3-hydroxynaphthoquinone.

90

To a solution of 2-hydroxynaphthoquinone (260 mg, 1.48 mmol) in absolute ethanol 

(30 mL) was added formaldehyde (0.33 mL, 4.74 mmol) and 4-(4- 

chlorophenyl)piperazine (1.28 g, 4.74 mmol). The reaction was quenched after 1 hr 

with NaOH (10 mL). The mixture was extracted with DCM (3><20 mL) and washed 

with brine (3x20 mL). Purification o f the crude product by flash chromatography (10 

% MeOH/DCM) gave the product as an orange solid: (238 mg, 42 %); mp= 148 °C; 

'H  NMR (400 MHz, CDC13) Sh 8.01 (1H, d, J= 7.8 Hz, CH-C-CO), 7.63 (1H, d, J= 

7.6 Hz, CH-C-CO), 7.57 (1H, m, CH), 7.35 (1H, m, CH-C-C1), 7.23 (2H, m, CH), 

6.86 (2H, m, CH), 4.17 (2H, s, CH2), 3.52 (4H, m, CH2) and 3.42 (4H, m, CH2) 

ppm; 13C NMR (100 MHz, CDC13) Sc 183.0, 181.5, 149.0, 134.1, 131.8, 131.7,

129.6, 126.7, 126.3, 126.2, 118.6, 53.2 and 48.0 ppm; IR umax = 3882, 3803, 3635, 

3573, 3064, 2947, 2592, 2316, 1678, 1587, 1529, 1359, 1277, 1226, 1072, 928, 802 

and 737 cm’1; MS (ES+), [M+H]+ (100) 383; HRMS calcd for C2iH20N2O3C1 

[M+H]+ 383.1162, found 383.1154.

4-Methoxy-7-(4’-phenoxyphenyl)qumoline.

OMe OMe

7-chloro-4-methoxyquinoline (100 mg, 0.52 mmol) and 4-(phenoxy)phenylboronic 

acid (167 mg, 0.78 mmol) were dissolved in DMF (15 mL) and aqueous Na2C03 

(1M, 1 mL) was added, the resulting mixture was deoxygenated with a stream of 

argon. After 20 min, Pd(PPli3)4 (32 mg, 0.03 mmol) was added, and mixture was 

brought to reflux, allowed to stir under argon for 12 hrs and cooled to r.t.. The 

solution was filtered through celite, washed with Et20  (20 mL). The aqueous layer 

was washed with Et20  (3x20 mL), and the organic phases were combined and
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washed with NaOH (1M, 10 mL) followed by brine (2x20 mL). The ethereal solution 

was dried over MgS04 and evaporated. Purification o f the crude product by flash 

chromatography with pur PE gave the product as a white crystal (100 mg, 58 %): 'H 

NMR (400 MHz, CDC13) Sh 8.77 (1H, d, J= 5.3 Hz, H2), 8.29 (1H, d, 7=1.8 Hz, 

H8), 8.23 (1H, d, 7= 8.7 Hz, H5), 7.75 (1H, dd, 7= 8.6 and 1.8 Hz, H6), 7.72 (2H, d, 

7= 8.7 Hz, CH), 7.37 (2H, m, CH), 7.15-7.07 (5H, m, CH) and 6.75 (2H, d, 7= 5.4 

Hz, H3) ppm; 13CNMR (100 MHz, CDC13) Sc 163.3, 157.9, 157.3, 151.8, 149.0,

142.6, 135.4, 130.2, 129.2, 125.8, 125.6, 124.0, 122.8, 120.5, 119.6, 119.5, 100.4 and 

56.3 ppm; MS (Cl), [M+H]+ (100) 328; HRMS calcd for C22H i8N 0 2 [M+H]+ 

328.1337, found 328.1341.

4,7-Dichloro-2-(4’-(4” -(trifluoromethoxy)phenoxy)phenyl)quinoline N-oxide.

4,7-Dichloro-2-(4-trifluorophenoxy)phenyl)quinoline (70 mg, 0.15 mmol) and m- 

CPBA (150 mg, 0.86 mmol) in anhydrous DCM (15 mL) was stirred for 3 hrs at r.t. 

The solution was washed with a solution o f Na2C 0 3 (0.5 M, 2x5 mL) and H20  (5 

mL), dried with MgSC>4 and concentrated under reduced pressure. The residue was 

purified by flash chromatography (EtOAc/ PE: 10/90, R f = 0.20) to give //-oxide 

quinolone product as a white crystal (35 mg, 50 %); mp= 126 °C; 'H NMR (400 

MHz, CDC13) <5h  8.89 (1H, d, J= 2.1 Hz, H8), 8.16 (1H, d, 7=8.9 Hz, H5), 8.01 (2H, 

d, J= 8.9 Hz, CH), 7.70 (1H, dd, J= 8.9 and 2.0 Hz, H6), 7.62 (1H, s, H3), 7.24 (2H, 

d, J= 9.1 Hz, CHCCN), 7.13 (2H, d, 7= 8.9 Hz, CH) and 7.10 (2H, d, 7= 9.0 Hz, 

CHCO) ppm; MS (ES+), [M+H]+ (100) 466; HRMS calcd for C22H 13N 0 3F3C12 

[M+H]+ 466.0225, found 466.0234.
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7-Chloro-l-hydroxy-2-(4’-(4” -(trifluoromethoxy)phenoxy)phenyl)quinolin-

4(lH)-one.
Cl o

O C F 3

To yV-oxide quinoline (46 mg, 0.09 mmol) in DMF (10 mL) was added a solution of 

85% formic acid in water (3 mL). The mixture was refluxed for 24 hrs. After cooling 

down, some precipitate appears, and the mixture was poured into water (50 mL) and 

filtered to afford the product as a white solid (5 mg, 11 %); 'H  NMR (400 MHz, 

DMSO-J6) Sh 8.08 (1H, d, J= 8.7 Hz, H5), 7.90 (2H, d, J= 8.5 Hz, Ph), 7.77 (1H, d, 

J= 2.0 Hz, H8), 7.45 (2H, d, J= 9.0 Hz, Ph), 7.32 (1H, dd, J= 9.0 and 1.6 Hz, H6),

7.22 (4H, m, Ph) and 6.40 (1H, s, H3) ppm; MS (ES-), [M-H]' (100) 446; HRMS 

calcd for C22H12NO4F3CI [M-H]' 446.0407, found 446.0395.
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4. Final Discussion

The aims of this thesis were the synthesis of polar artemisinin derivatives and 

quinolone analogues and a study of their antimalarial activities. For the novel quinolones 

prepared, we also investigated their SAR in connection with some molecular modelling.

4.1. Artemisinin

Artemisinin-derived molecules such as artesunate, arteether, artemether, or 

dihydroartemisinin (DHA) are extremely potent antimalarials that produce very rapid 

therapeutic response against the parasite's asexual erythrocytic (red blood cell) stage. 

These compounds also have a strong activity against the parasite blood-stage gametocytes 

(sexual stage), which can potentially help to reduce the rate of malaria transmission. 

Artemisinin-derived molecules are being used in recently developed artemisinin 

combination therapies (ACTs). There is some evidence that use of such combinations can 

retard the development of resistance to the partner drug and the WHO recommend the use 

of ACTs to all countries experiencing resistance to conventional monotherapies.1

ACTs mix fast-acting and rapidly-cleared artemisinin-derived drugs with other 

antimalarials with longer half-lives. The co-formulation of artemether in fixed 

combination with lumefantrine is known as Coartemtm or Riamettm. Lumefantrine has an 

elimination half-life of up to 6 days in malaria patients, and is intended to eradicate 

parasites not killed by the faster acting artemether.2 In use for many years and the first- 

line treatment in several parts of SE Asia, the combination o f artesunate and mefloquine 

is sold under the name Artequintm. Artesunate is also approved in combination with 

amodiaquine or sulfadoxine/pyrimethamine.

ACTs have been used in Southeast Asia, Africa, and other parts of the world and it 

is believed that they may slow the spread of drug resistance and reduce the overall 

malaria transmission rates.

The first aim of this thesis was to develop new classes of semi-synthetic 

artemisinins. Firstly, we tried to make some sulfone derivatives in order to decrease the 

lipophilicity of the lipophilic parent. Unfortunately the use of sulfonyl groups at the C-10 

anomeric position was not tolerated. In these C-10 sulfonyl we observed elimination that
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resulted in the formation o f anhydroartemisinin as a by-product. We secondly synthesised 

a small library of pyrrole analogues. Their antimalarial studies showed some promising 

results. One o f our compounds (1) selected was more potent than artemether and sodium 

artesunate (Figure 1) in in vivo studies in Plasmodium Berghei.

ED50 mg/kg 1.77

ED90 mg/kg 5.20

O

2 3

5.88 3.23
10.57 >10

O
T)Na

Figure 1. Artemisinin derivatives with their in vivo activities.

Currently the best semi-synthetic artemisinins in the literature are artemisone3, 

Posner’s semi-synthetic dimers4 and some lipophilic derivatives produced by Singh.5 In 

studies with Aotus monkeys infected with P.falciparum F VO isolate, which is resistant to 

chloroquine and antifolates, artesunate and artemisone (4) were examined at a dose of 10 

m g.kg'1 for 3 days. The artemisone-treated group cleared parasites within 24 hrs after 

commencement o f treatment, whereas parasites were still present 48 hrs after treatment 

with artesunate.3 In three consecutive daily oral doses of 30 mg/kg starting on day 1 after 

infection, tolyl dimer (5) are curative, in sharp contrast to artesunate, which increased 

survival versus control by less than 1 day.3 Singh’s compound (6) is more than twice as 

active as P-arteether and artesunic acid; The fluorene derivative provided 100% 

protection at 24 mg/kg for 4 days and 80% at 12 mg/kg for 4 days.5

Our morpholine derivative (1) is more potent than Singh’s compound (6) and dimer 

(5). With only a 2-step synthesis from DHA, our compound is the most straightforward to 

obtain, and less lipophilic than 5 and 6. Artemisone is still the least lipophilic of these 4 

lead compounds and has slightly higher antimalarial activities (Table 1).
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Name Structure Number of 

synthesic 

steps

Log P In  vivo activity 

Peter’s 4-day test 

Oral dose per day

Artemisone

(4)

A rt

ÔS
0 2

3 2.49 P. Berghei 

ED90= 3.1 mg. kg’1

Trioxane

dimer

(5)

Art A rt

Y
”X l.

4 8.90 P. Berghei 

100% clearance at 

30 mg.kg'1

Fluorene

derivative

(6 )

Art

ôyY]
0

3 6.61 P. Yoelii nigeriensis 

100% clearance at 

24 mg.kg'1

Morpholine

derivative

(1 )

Art

¿Tro
2 3.40 P. Berghei 

ED90= 5.2 mg.kg'1

Table 1. Comparison of in vivo activities o f our morpholine compound with current 

semi-synthetic artemisinins.

The peroxide group, present in the form of 1,2,4-trioxane, is essential for the 

antimalarial activity of these compounds. The disadvantage o f all semi-synthetic 

artemisinin compounds is that their production requires artemisinin as starting material 

and currently the plant yields of artemisinin remain relatively low. Based on the idea of 

activation by iron(II), a series of trioxalanes or trioxanes have been made to produce 

‘bioactive’ C-centred radicals.

Vennerstrom and co-workers described a synthetic peroxide antimalarial drug 

called trioxolanes. After a single 3mg. kg '1 oral dose in the murine P. berghei model, 

trioxolanes 7 is clearly more active than artesunate, artemether, chloroquine and 

mefloquine. Further studies showed the compound, dubbed 02211, had a half-life 

significantly longer than dihydroartemisinin, and an overall acceptable toxicity profile.6
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Several synthetic trioxanes have shown promising antimalarial activity both in vitro 

and in vivo.7'11 O’Neill and co-workers use thiol-olefin co-oxygenation (TOCO) 

chemistry to afford a series of functionalized 1,2,4-trioxanes, for example 8, in good 

yields.12’13

Trioxepanes were also synthesised via TOCO chemistry14 and keto trioxepane 9 

shows 100% and 98% suppression o f parasitaemia by intramuscular and oral routes 

against P. yoelii in Swiss mice, respectively, but none of the treated mice survived 

beyond day 14.15

1,2,4,5-Tetraoxanes have been proven to be superior to 1,2,4-trioxolanes in terms of 

stability and to be superior to trioxane analogues in terms of both stability and activity. 

Potent tetraoxane antimalarials have been prepared, In vivo, amines 10 and 11 cured all 

mice at higher doses with a minimum curative dose MCD of < 37.5 (mg/kg)/day (Figure 

2).16

0 - 0  /— v NHR)CVo-o N—'
10, R= H
11, R= CeHn

Figure 2. Trioxalane, Trioxane, Trioxepane, Tetraoxane.

O ’Neill and co-workers present evidence that all endoperoxide antimalarial 

compounds share a common free-iron-dependent mechanism of activation in malaria 

parasites, regardless of their other structural features; they demonstrate that tagged 

endoperoxide antimalarial compounds accumulate only in infected erythrocytes within 

the cytoplasm and the digestive vacuole of the parasite17,18 supporting the interaction with 

specific protein targets such as the SERCA orthologue (PfATP6).19 Further work is 

required to investigate the mechanism of action o f lead semi-synthetic analogue (1) and to 

compare synthetic analogues such as the tetraoxanes, this forms the basis of future work.
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4.2. Quinolone

The second aim of this thesis was to investigate the SAR of novel quinolones. The 

outcome o f this study was that 2-substituted quinolones have a better profile than their 3- 

substituted analogues with IC50 values ranging from 30 to 185 nM. It would be interesting 

to synthesise some 6- and 7-substituted quinolones and evaluate their in vitro activities to 

complete this SAR study (Figure 3).

H H
14, 6 -substitutedquinolone 15, 7-substitutedquinolone

Figure 3. 2, 3 and 7-substituted quinolones and their IC50S.

Recently Riscoe et al prepared over 30 acridones and these compounds were tested 

to elaborate an understanding of the anti-malarial structure-activity relationships. The 

most potent compounds (16-17) are composed of an extended alkyl group terminated by 

one or more CF3 groups (Figure 4). It seems that the optimal location of CF3 containing 

alkyl element is at the 3 position of the tricyclic acridone. Some of these acridones have 

IC50 values in the picomolar range when tested against the mefloquine resistant (D6) 

strains of P.falciparum, which is more potent than any drug in clinical use today 

(including the quinolines and endoperoxides).
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O

H
16, 3-(5,5,5-trifluoropentyloxy)- 
6 -chloroacridone (0.3 nM)

O

17, 3-(5,6,6,6-tetrafluoro-5-trifluoromethylhexyloxy)- 
6 -chloro-acridone (~1 pM)

Figure 4. Acridones

Riscoe and co-workers are also developing novel quinolones bearing extended alkyl 

and alkoxy side chains (18-19). Their antiplasmodial activities against the mefloquine 

resistant (D6) strains of P.falciparum reach some IC50 values of 1.2 nM (Figure 5). 

Further mechanistic studies lead to the conclusion that these quinolone derivatives target 

the parasite’s cytochrome bc\ complex as cross-resistance was noted in the atovaquone- 

resistant clinical isolate Tm90-C2B.

O

19, IC50= 1.25 nM

Figure 5. 3-Ethoxycarbonyl-7-(6,6,6-trifluorohexyloxy)-4(l//)-quinolone (18) and 7- 

Methoxy-2-methyl-3-(l 1,11,1 l-trifluoroundecyl)-4(17/)-quinolone (19).

While their mechanism of action has not been established yet, we can consider a 

structural resemblance o f acridones and quinolones with two well-known antimalarials, 

atovaquone and floxacrine (Figure 6).
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O 0 0

20, Atovaquone 21, Floxacrine

Figure 6. Existing antimalarials.

Naphthoquinone and some quinolones target bc\, Nevertheless fluoroquinolones are 

antibiotics which do not target bc\, their targets are DNA gyrases and topoisomerases. 

Similar molecules, such as aminoquinolines and quinine, accumulate in the acidic food 

vacuole by an ion-trapping or weak-base mechanism.

The recent, growing failure of atovaquone treatment and increased mortality of 

patients with malaria or Pneumocystis pneumonia has been linked to the appearance of 

mutations in the cytochrome b gene,23 although other case o f Malarone treatment failure 

have been reported in the absence of these mutations suggests that other mechanisms 

might also be involved.24

It is important to understand the molecular basis o f the drug resistance and to 

develop new drugs that avoid resistance. Trumpower and co-workers have screened a 

library of 2-hydroxynaphthoquinones (Figure 7) and found that compounds with alkyl 

side-chain effectively inhibit the yeast bc\ complex. Experimentally measured IC50 values 

showed strong correlations with their molecular modelling into the crystal structure of the 

yeast cytochrome bc\ complex, which provides structural and quantitative explanations 

for their binding efficacy to target the enzyme.25

O

Figure 7. Library of naphthoquinones screened by Trumpower and co-workers.
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Chemical synthesis of additional novel quinolones continues in an effort to expand 

our knowledge of the structure-activity relationships and to optimise the pharmacophore 

to the fullest o f its antimalarial potential. Given the advances in computational 

approaches to drug discovery, it is likely that novel acridones and quinolones will be 

designed that are active against atovaquone resistant malaria parasites. The challenge in 

future work will be to produce inhibitors of the be \ complex that have more polar 

characteristics suitable for oral administration. The 2-arylquinolone series described in 

this thesis produces a template suitable for further optimisation and studies are underway 

to incorporate solubilising amine functionality into the quinolone template.
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Appendix 1. Crystal data and structure refinement for 86 (Chapter 2).

Identification code 86

Empirical formula C17H28 N4 05

Formula weight 368.43

Temperature 100(2) K

Wavelength 0.71073 A
Crystal system Orthorhombic

Space group P 21 21 21

Unit cell dimensions a = 10.4618(8) A a= 90° 

b= 17.0721(14) A p= 90°. 

c = 20.4445(17) A y = 90°

Volume 3651.5(5) A3

Z 8

Density (calculated) 1.340 Mg/m3

Absorption coefficient 0.099 mm'1

F(000) 1584

Crystal size ? x ? x ? mm3

Theta range for data collection 1.55 to 28.44°.

Index ranges -13<=h<=7, -22<=k<=21, -25<=1<=27

Reflections collected 20759

Independent reflections 8291 [R(int) = 0.0717]

Completeness to theta = 28.44° 93.5 %

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 8291 /0 /4 7 7

Goodness-of-fit on F2 0.717

Final R indices [I>2sigma(I)] R1 = 0.0427, wR2 = 0.0746

R indices (all data) R1 =0.1084, wR2 = 0.0824

Absolute structure parameter -2.5(10)

Largest diff. peak and hole 0.271 and -0.320 e.A’3
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Table 2. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A2x 103) 

for 86. U(eq) is defined as one third of the trace of the orthogonalized UIJ tensor.

X y z U(eq)

C(1) 5783(3) 3114(2) 8524(2) 39(1)

C(2) 4433(3) 4346(2) 8492(2) 29(1)

C(3) 3737(3) 5685(2) 8871(1) 26(1)

C(4) 3276(3) 6001(2) 9528(1) 26(1)

C(5) 2532(3) 5367(2) 9922(2) 40(1)

C(6) 2484(3) 6751(2) 9403(1) 24(1)

C(7) 1178(3) 6569(2) 9091(2) 35(1)

C(8) 425(3) 7315(2) 8936(2) 33(1)

C(9) 1186(3) 7860(2) 8498(1) 28(1)

C(10) 393(3) 8597(2) 8338(2) 47(1)

C (ll) 2473(3) 8074(2) 8824(1) 26(1)

C(12) 3268(3) 7335(2) 9002(1) 22(1)

C(13) 3883(3) 6957(2) 8406(1) 23(1)

C(14) 5406(3) 7974(2) 8535(2) 28(1)

C(15) 6770(3) 8070(2) 8309(2) 35(1)

C(16) 4659(3) 8750(2) 8545(2) 34(1)

C(17) 3228(3) 8662(2) 8401(2) 34(1)

C(18) -1843(3) 5705(2) 9703(2) 49(1)

C(19) -747(3) 4537(2) 9174(2) 34(1)

C(20) -72(3) 3131(2) 9048(2) 28(1)

C(21) 696(3) 2584(2) 9483(1) 27(1)

C(22) 1701(3) 3028(2) 9886(2) 38(1)

C(23) 1304(3) 1953(2) 9034(1) 25(1)

C(24) 2422(3) 2262(2) 8624(2) 34(1)

C(25) 2986(3) 1625(2) 8195(2) 33(1)

C(26) 1990(3) 1259(2) 7751(1) 30(1)

C(27) 2631(3) 624(2) 7317(2) 42(1)

C(28) 861(3) 929(2) 8143(1) 25(1)

C(29) 279(3) 1529(2) 8619(1) 21(1)

C(30) -620(3) 2118(2) 8296(1) 24(1)

C(31) -2098(3) 1057(2) 8333(1) 23(1)
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C(32) -3549(2) 999(2) 8292(1) 26(1)

C(33) -1415(3) 358(2) 8015(1) 24(1)

C(34) -145(3) 566(2) 7702(2) 29(1)

N(l) 5388(2) 3882(1) 8748(1) 30(1)

N(2) 5946(2) 4228(1) 9268(1) 36(1)

N(3) 5406(3) 4879(2) 9371(1) 36(1)

N(4) 4481(2) 4976(1) 8920(1) 27(1)

N(5) -1337(3) 4893(2) 9686(1) 31(1)

N(6) -1570(3) 4400(2) 10173(1) 49(1)

N(7) -1135(3) 3711(2) 10023(1) 40(1)

N(8) -649(2) 3774(1) 9398(1) 30(1)

0(1) 3750(2) 4233(1) 8031(1) 40(1)

0(2) 4537(2) 6247(1) 8554(1) 26(1)

0(3) 4238(2) 7606(1) 9464(1) 27(1)

0(4) 5513(2) 7620(1) 9158(1) 30(1)

0(5) 4793(2) 7434(1) 8096(1) 26(1)

0(6) -376(2) 4790(1) 8672(1) 45(1)

0(7) -1086(2) 2708(1) 8736(1) 26(1)

0(8) -433(2) 1074(1) 9108(1) 25(1)

0(9) -1837(2) 1141(1) 9003(1) 24(1)

0(10) -1720(2) 1781(1) 8013(1) 24(1)

201



Table 3. Bond lengths [Â] and angles [°] for 86.

C(l)-N(l) 1.448(3)

C(2)-0(l) 1.199(3)

C(2)-N(l) 1.378(4)

C(2)-N(4) 1.388(3)

C(3)-0(2) 1.429(3)

C(3)-N(4) 1.443(3)

C(3)-C(4) 1.527(4)

C(4)-C(6) 1.547(4)

C(4)-C(5) 1.557(4)

C(6)-C( 12) 1.528(4)

C(6)-C(7) 1.540(4)

C(7)-C(8) 1.531(4)

C(8)-C(9) 1.515(4)

C(9)-C(10) 1.542(4)

C(9)-C(l 1) 1.547(4)

C(11)-C(17) 1.543(4)

C(11 )-C( 12) 1.555(4)

C(12)-0(3) 1.462(3)

C(12)-C(13) 1.521(4)

C(13)-0(5) 1.405(3)

C(13)-0(2) 1.424(3)

C(14)-0(4) 1.413(3)

C(14)-0(5) 1.438(3)

C(14)-C(15) 1.508(4)

C(14)-C(16) 1.537(4)

C(16)-C(17) 1.533(4)

C(18)-N(5) 1.484(3)

C(19)-0(6) 1.179(3)

C(19)-N(5) 1.358(4)

C(19)-N(8) 1.385(4)

C(20)-O(7) 1.433(3)

C(20)-N(8) 1.443(3)

C(20)-C(21) 1.519(4)

C(21)-C(22) 1.536(4)
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C(21)-C(23) 1.551(4)

C(23)-C(24) 1.533(4)

C(23)-C(29) 1.547(4)

C(24)-C(25) 1.518(4)

C(25)-C(26) 1.517(4)

C(26)-C(28) 1.535(4)

C(26)-C(27) 1.553(4)

C(28)-C(34) 1.519(4)

C(28)-C(29) 1.539(4)

C(29)-0(8) 1.469(3)

C(29)-C(30) 1.527(4)

C(30)-0(10) 1.411(3)

C(30)-O(7) 1.436(3)

C(31 )-0(9) 1.405(3)

C(31)-O(10) 1.454(3)

C(31)-C(32) 1.523(4)

C(31)-C(33) 1.536(3)

C(33)-C(34) 1.517(4)

N(l)-N(2) 1.349(3)

N(2)-N(3) ■ 1.264(3)

N(3)-N(4) 1.347(3)

N(5)-N(6) 1.327(3)

N(6)-N(7) 1.299(3)

N(7)-N(8) 1.378(3)

0(3)-0(4) 1.473(3)

0(8)-0(9) 1.489(2)

0(1)-C(2)-N(1) 129.7(3)

0(1)-C(2)-N(4) 129.9(3)

N(l)-C(2)-N(4) 100.4(3)

0(2)-C(3)-N(4) 106.2(2)

0(2)-C(3)-C(4) 110.3(2)

N(4)-C(3)-C(4) 113.9(2)

C(3)-C(4)-C(6) 108.4(2)

C(3)-C(4)-C(5) 111.6(2)

C(6)-C(4)-C(5) 113.2(2)
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C(12)-C(6)-C(7) 112.7(2)

C(12)-C(6)-C(4) 109.9(2)

C(7)-C(6)-C(4) 112.1(2)

C(8)-C(7)-C(6) 111.9(2)

C(9)-C(8)-C(7) 111.3(3)

C(8)-C(9)-C(10) 110.1(3)

C(8)-C(9)-C(l 1) 110.3(2)

C(10)-C(9)-C(l 1) 111.5(2)

C(17)-C(l 1)-C(9) 111.0(2)

C(17)-C(l 1)-C(12) 112.6(2)

C(9)-C(l 1 )-C( 12) 112.0(2)

0(3)-C(12)-C(13) 111.0(2)

0(3)-C(12)-C(6) 103.5(2)

C(13)-C(12)-C(6) 112.3(2)

0(3)-C(12)-C(l 1) 105.4(2)

C(13)-C(12)-C(l 1) 112.5(2)

C(6)-C(12)-C(l 1) 111.5(2)

0(5)-C(13)-0(2) 105.3(2)

0(5)-C(13)-C(12) 113.7(2)

0(2)-C(13)-C(12) 113.2(2)

0(4)-C(14)-0(5) 108.8(2)

0(4)-C(14)-C(15) 104.4(2)

0(5)-C(14)-C(15) 107.5(2)

0(4)-C(14)-C(16) 113.4(2)

0(5)-C(14)-C(16) 109.5(2)

C(15)-C(14)-C(16) 113.1(3)

C(17)-C(16)-C(14) 114.2(3)

C(16)-C(17)-C(l 1) 117.1(3)

0(6)-C(19)-N(5) 131.0(3)

0(6)-C(19)-N(8) 127.4(3)

N(5)-C(19)-N(8) 101.5(3)

O(7)-C(20)-N(8) 107.1(2)

O(7)-C(20)-C(21) 110.0(2)

N(8)-C(20)-C(21) 113.5(3)

C(20)-C(21 )-C(22) 111.8(2)

C(20)-C(21 )-C(23) 107.3(2)
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C(22)-C(21 )-C(23) 112.3(2)

C(24)-C(23)-C(29) 113.0(2)

C(24)-C(23)-C(21 ) 113.4(2)

C(29)-C(23)-C(21) 111.4(2)

C(25)-C(24)-C(23) 111.5(3)

C(26)-C(25)-C(24) 112.0(3)

C(25)-C(26)-C(28) 111.5(2)

C(25)-C(26)-C(27) 109.4(3)

C(28)-C(26)-C(27) 112.0(3)

C(34)-C(28)-C(26) 111.8(2)

C(34)-C(28)-C(29) 111.9(2)

C(26)-C(28)-C(29) 113.0(3)

O(8)-C(29)-C(30) 109.3(2)

0(8)-C(29)-C(28) 106.2(2)

C(30)-C(29)-C(28) 114.1(2)

0(8)-C(29)-C(23) 103.0(2)

C(30)-C(29)-C(23) 110.9(2)

C(28)-C(29)-C(23) 112.6(2)

0(10)-C(30)-0(7) 105.5(2)

0 ( 10)-C(30)-C(29) 114.3(2)

O(7)-C(30)-C(29) 113.6(2)

O(9)-C(31)-O(10) 107.5(2)

0(9)-C(31)-C(32) 104.8(2)

0 ( 10)-C(31 )-C(32) 107.6(2)

0(9)-C(31)-C(33) 113.7(2)

O(10)-C(31)-C(33) 110.0(2)

C(32)-C(31 )-C(33) 112.9(2)

C(34)-C(33)-C(31) 113.8(2)

C(33)-C(34)-C(28) 116.8(2)

N(2)-N(l)-C(2) 111.1(2)

N(2)-N(l)-C(l) 121.5(3)

C(2)-N(l)-C(l) 127.4(3)

N(3)-N(2)-N(l) 108.9(2)

N(2)-N(3)-N(4) 108.3(2)

N(3)-N(4)-C(2) 111.3(2)

N(3)-N(4)-C(3) 122.5(2)
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C(2)-N(4)-C(3) 126.0(3)

N(6)-N(5)-C(19) 112.2(3)

N(6)-N(5)-C(18) 120.6(3)

C(19)-N(5)-C(18) 126.7(3)

N(7)-N(6)-N(5) 109.4(3)

N(6)-N(7)-N(8) 106.1(3)

N(7)-N(8)-C(19) 110.6(3)

N(7)-N(8)-C(20) 123.7(3)

C(19)-N(8)-C(20) 125.6(3)

C(13)-0(2)-C(3) 112.7(2)

C(12)-0(3)-0(4) 111.00(18)

C(14)-0(4)-0(3) 108.6(2)

C(13)-0(5)-C(14) 113.1(2)

C(20)-0(7)-C(30) 112.4(2)

C(29)-0(8)-0(9) 111.21(17)

C(31 )-0(9)-0(8) 108.95(18)

C(30)-0(10)-C(31) 112.5(2)

Symmetry transformations used to generate equivalent atoms
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Table 4. Anisotropic displacement parameters (A2x 103) for 86. The anisotropic 

displacement factor exponent takes the form: -27t2[ h2 a*2Un + ... + 2 h k a* b* U12 ]

U" U22 U33 U23 U 13 U12

C(l) 30(2) 29(2) 60(3) -4(2) -4(2) 7(2)

C(2) 25(2) 23(2) 38(2) 0(2) -1(2) 7(2)

C(3) 21(2) 23(2) 36(2) 3(2) -9(2) 6(2)

C(4) 24(2) 28(2) 27(2) 2(2) -1(2) -2(2)

C(5) 36(2) 34(2) 50(2) 7(2) 3(2) 4(2)

C(6) 18(2) 29(2) 24(2) 0(2) -2(2) 2(2)

C(7) 23(2) 30(2) 51(2) 0(2) -2(2) -5(2)

C(8) 17(2) 41(2) 40(2) -5(2) -5(2) 3(2)

C(9) 24(2) 33(2) 27(2) 0(2) -5(2) 9(2)

C(10) 26(2) 44(2) 71(3) 6(2) 0(2) 8(2)

C (ll) 24(2) 18(2) 37(2) -5(2) -2(2) 3(2)

C(12) 18(2) 25(2) 22(2) -6(2) -3(2) -2(2)

C( 13) 21(2) 22(2) 27(2) 3(2) -3(2) 1(2)

C(14) 22(2) 32(2) 31(2) -1(2) -4(2) -5(2)

C(15) 26(2) 31(2) 47(2) 7(2) 3(2) -7(2)

C(16) 27(2) 28(2) 45(2) 2(2) 3(2) -1(2)

C(17) 29(2) 23(2) 51(2) -1(2) -2(2) 8(2)

C(18) 39(3) 33(2) 74(3) -12(2) 4(2) -6(2)

C( 19) 23(2) 49(2) 30(2) 1(2) 3(2) -13(2)

C(20) 22(2) 28(2) 34(2) -3(2) -9(2) 3(2)

C(21) 23(2) 25(2) 33(2) 1(2) -10(2) -4(2)

C(22) 33(2) 36(2) 44(2) -3(2) -16(2) -4(2)

C(23) 21(2) 27(2) 26(2) 3(2) -8(2) 1(2)

C(24) 17(2) 42(2) 44(2) 9(2) -4(2) -3(2)

C(25) 15(2) 44(2) 40(2) 14(2) 0(2) -3(2)

C(26) 25(2) 40(2) 26(2) 6(2) -1(2) -2(2)

C(27) 27(2) 59(3) 42(2) -4(2) 9(2) 2(2)

C(28) 21(2) 32(2) 22(2) 7(2) 0(2) 1(2)

C(29) 16(2) 26(2) 22(2) 11(2) -1(2) -2(2)

C(30) 18(2) 29(2) 27(2) 3(2) -2(2) -2(2)

C(31) 23(2) 24(2) 21(2) 2(2) -1(2) -6(2)
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C(32) 17(2) 28(2) 33(2) 1(2) -2(2) -3(2)

C(33) 20(2) 26(2) 26(2) -3(2) 4(2) 1(2)

C(34) 26(2) 34(2) 27(2) 2(2) 4(2) 2(2)

N(l) 23(2) 29(2) . 39(2) -7(1) -8(1) 4(1)

N(2) 22(2) 32(2) 55(2) 2(2) -17(2) 6(2)

N(3) 36(2) 26(2) 46(2) -10(1) -14(2) -1(2)

N(4) 21(2) 25(2) 36(2) 0(1) -11(1) 5(1)

N(5) 27(2) 35(2) 31(2) -4(1) 7(1) -10(2)

N(6) 37(2) 71(2) 38(2) -10(2) 12(2) -9(2)

N(7) 40(2) 35(2) 45(2) -9(2) 13(2) -6(2)

N(8) 26(2) 25(2) 38(2) 4(1) 0(1) -4(1)

0(1) 37(2) 36(1) 47(2) -14(1) -20(1) 12(1)

0(2) 22(1) 19(1) 37(1) 3(1) 5(1) 5(1)

0(3) 20(1) 32(1) 29(1) -3(1) 1(1) -3(1)

0(4) 20(1) 38(1) 31(D 0(D -1(1) -5(1)

0(5) 20(1) 28(1) 28(1) -1(1) 3(1) 1(1)
0(6) 47(2) 49(2) 40(2) 3(1) 14(1) 9(1)
0(7) 18(1) 25(1) 36(1) -1(1) -8(1) -3(1)
0(8) 16(1) 31(1) 28(1) 8(1) -7(1) 2(1)

0(9) 16(1) 30(1) 26(1) 2(1) -3(1) 1(1)
0(10) 18(1) 23(1) 30(1) 7(1) -7(1) ' -4(1)
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Table 5. Hydrogen coordinates ( x 104) and isotropic displacement parameters (A2x 10 3) 

for 86.

X y z U(eq)

H(1 A) 5449 2714 8822 59

H(1B) 6718 3086 8516 59

H(1C) 5448 3022 8083 59

H(3) 2977 5582 8587 32

H(4) 4046 6152 9789 31

H(5A) 3128 4961 10069 60

H(5B) 1877 5131 9641 60

H(5C) 2123 5611 10302 60

H(6) 2315 6998 9838 29

H(7A) 1311 6268 8682 41

H(7B) 673 6238 9393 41

H(8A) -386 7174 8716 39

H(8B) 213 7589 9348 39

H(9) 1371 7579 8079 34

H(10A) 305 8918 8733 71

H(10B) -456 8440 8184 71

H(10C) 826 8900 7997 71

H(11) 2266 8346 9244 31

H(13) 3192 6836 8083 28

H(15A) 7216 7567 8344 52

H(15B) 7201 8460 8583 52

H(15C) 6778 8245 7852 52

H(16A) 4762 8995 8981 40

H(16B) 5038 9109 8218 40

H(17A) 3133 8505 7937 41

H(17B) 2825 9183 8449 41

H(18A) -1256 6040 9950 73

H(18B) -2684 5706 9914 73

H(18C) -1923 5904 9255 73

H(20) 506 3348 8703 33
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H(21) 95 2318 9792 32

H(22A) 1273 3334 10227 57

H(22B) 2180 3381 9598 57

H(22C) 2289 2653 10088 57

H(23) 1672 1547 9333 30

H(24A) 2121 2699 8345 41

H(24B) 3094 2468 8919 41

H(25A) 3680 1850 7924 40

H(25B) 3364 1213 8476 40

H(26) 1654 1678 7456 36

H(27A) 2003 417 7006 64

H(27B) 2947 198 7594 64

H(27C) 3347 857 7077 64

H(28) 1211 494 8418 30

H(30) -134 2388 7941 29

H(32A) -3935 1432 8536 39

H(32B) -3829 499 8480 39

H(32C) -3815 1027 7833 39

H(33A) -1268 -48 8352 29

H(33B) -1982 130 7677 29

H(34A) -313 935 7338 35

H(34B) 219 84 7508 35

H(2) 6582 4033 9497 43

H(3A) 5601 5211 9685 43

H(6A) -1960 4521 10541 58

H(7) -1147 3288 10270 48
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Table 6. Torsion angles [°] for 86.

0(2)-C(3)-C(4)-C(6) 61.3(3)

N(4)-C(3)-C(4)-C(6) -179.3(2)

0(2)-C(3)-C(4)-C(5) -173.5(2)

N(4)-C(3)-C(4)-C(5) -54.1(3)

C(3 )-C(4)-C(6)-C(12) -54.4(3)

C(5)-C(4)-C(6)-C(12) -178.7(2)

C(3)-C(4)-C(6)-C(7) 71.8(3)

C(5)-C(4)-C(6)-C(7) -52.5(3)

C( 12)-C(6)-C(7)-C(8) -52.5(3)

C(4)-C(6)-C(7)-C(8) -177.1(2)

C(6)-C(7)-C(8)-C(9) 56.2(3)

C(7)-C(8)-C(9)-C( 10) 178.8(2)

C(7)-C(8)-C(9)-C(l 1) -57.8(3)

C(8)-C(9)-C(ll)-C(17) -177.1(2)

C( 10)-C(9)-C( 11 )-C( 17) -54.4(3)

C(8)-C(9)-C(l 1 )-C( 12) 56.1(3)

C( 10)-C(9)-C( 11 )-C( 12) 178.7(2)

C(7)-C(6)-C( 12)-0(3) 163.0(2)

C(4)-C(6)-C( 12)-0(3) -71.1(3)

C(7)-C(6)-C( 12)-C( 13) -77.2(3)

C(4)-C(6)-C( 12)-C( 13) 48.7(3)

C(7)-C(6)-C(12)-C(l 1) 50.2(3)

C(4)-C(6)-C(12)-C(l 1) 176.1(2)

C( 17)-C( 11 )-C( 12)-0(3) 70.2(3)

C(9)-C( 11 )-C( 12)-0(3) -163.9(2)

C( 17)-C( 11 )-C( 12)-C( 13) -50.9(3)

C(9)-C( 11 )-C( 12)-C( 13) 75.0(3)

C( 17)-C( 11 )-C( 12)-C(6) -178.2(2)

C(9)-C(l 1)-C(12)-C(6) -52.2(3)

0(3)-C( 12)-C( 13)-0(5) -53.6(3)

C(6)-C( 12)-C( 13)-0(5) -168.9(2)

C(1 l)-C(12)-C(13)-0(5) 64.2(3)

0(3)-C( 12)-C( 13)-0(2) 66.5(3)

C(6)-C( 12)-C( 13)-0(2) -48.8(3)
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C( 11 )-C( 12)-C( 13)-0(2) -175.7(2)

0(4)-C( 14)-C( 16)-C( 17) -93.1(3)

0(5)-C( 14)-C( 16)-C( 17) 28.6(4)

C( 15 )-C( 14)-C( 16)-C( 17) 148.3(3)

C( 14)-C( 16)-C( 17)-C( 11 ) 53 9(4)

C(9)-C( 11 )-C( 17)-C( 16) -162.6(3)

C( 12)-C( 11 )-C( 17)-C( 16) -36.1(4)

O(7)-C(20)-C(21 )-C(22) -173.7(2)

N(8)-C(20)-C(21)-C(22) -53.7(3)

O(7)-C(20)-C(21 )-C(23) 62.7(3)

N(8)-C(20)-C(21 )-C(23) -177.3(2)

C(20)-C(21 )-C(23)-C(24) 73.7(3)

C(22)-C(21 )-C(23)-C(24) -49.6(3)

C(20)-C(21 )-C(23)-C(29) -55.1(3)

C(22)-C(21 )-C(23)-C(29) -178.4(2)

C(29)-C(23)-C(24)-C(25) -52.1(3)

C(21 )-C(23)-C(24)-C(25) 179.9(2)

C(23)-C(24)-C(25)-C(26) 56.6(3)

C(24)-C(25)-C(26)-C(28) -56.6(3)

C(24)-C(25)-C(26)-C(27) 179.0(2)

C(25)-C(26)-C(28)-C(34) 179.6(2)

C(27)-C(26)-C(28)-C(34) -57.4(3)

C(25)-C(26)-C(28)-C(29) 52-3(3)

C(27)-C(26)-C(28)-C(29) 175.3(2)

C(34)-C(28)-C(29)-0(8) 72.6(3)

C(26)-C(28)-C(29)-0(8) -160.1 (2)

C(34)-C(28)-C(29)-C(30) -47.9(3)

C(26)-C(28)-C(29)-C(30) 79.4(3)

C(34)-C(28)-C(29)-C(23) -175-4(2)

C(26)-C(28)-C(29)-C(23) -48.0(3)

C(24)-C(23)-C(29)-0(8) 162.0(2)

C(21 )-C(23 )-C(29)-0(8) -69.0(3)

C(24)-C(23)-C(29)-C(30) -81.2(3)

C(21 )-C(23)-C(29)-C(30) 47.8(3)

C(24)-C(23)-C(29)-C(28) 48.0(3)

C(21 )-C(23)-C(29)-C(28) 177.0(2)
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O(8)-C(29)-C(30)-O( 10) -55.7(3)

C(28)-C(29)-C(30)-O( 10) 63.1(3)

C(23)-C(29)-C(30)-O( 10) -168.6(2)

O(8)-C(29)-C(30)-O(7) 65.5(3)

C(28)-C(29)-C(30)-O(7) -175.8(2)

C(23)-C(29)-C(30)-O(7) -47.4(3)

0(9)-C(31 )-C(33)-C(34) -93.8(3)

0 (  10)-C(31 )-C(33)-C(34) 26.8(3)

C(32)-C(31 )-C(33)-C(34) 147.0(2)

C(31 )-C(33)-C(34)-C(28) 58.4(3)

C(26)-C(28)-C(34)-C(33) -168.8(3)

C(29)-C(28)-C(34)-C(33) -40.9(4)

0 ( 1 )-C(2)-N( 1 )-N(2) 179.1(3)

N(4)-C(2)-N( 1 )-N(2) -1.2(3)

0 ( 1 )-C(2)-N( 1 )-C( 1 ) -2.0(5)

N(4)-C(2)-N( 1 )-C( 1 ) 177.8(3)

C(2)-N( 1 )-N(2)-N(3) 0.9(3)

C(l)-N(l)-N(2)-N(3) -178.1(3)

N(l)-N(2)-N(3)-N(4) -0.1(3)

N(2)-N(3)-N(4)-C(2) -0.6(3)

N(2)-N(3)-N(4)-C(3) -175.5(3)

0(1)-C(2)-N(4)-N(3) -179.1(3)

N( 1 )-C(2)-N(4)-N(3) 1.1(3)

0 ( 1 )-C(2)-N(4)-C(3) -4.5(5)

N(l)-C(2)-N(4)-C(3) 175.7(3)

0(2)-C(3)-N(4)-N(3) 77.3(3)

C(4)-C(3)-N(4)-N(3) -44.4(4)

0(2)-C(3)-N(4)-C(2) -96.8(3)

C(4)-C(3)-N(4)-C(2) 141.5(3)

0(6)-C(19)-N(5)-N(6) -178.2(4)

N(8)-C( 19)-N(5)-N(6) 0.3(3)

0(6)-C( 19)-N(5)-C( 18) 9.4(6)

N(8)-C( 19)-N(5)-C( 18) -172.1(3)

C( 19)-N(5)-N(6)-N(7) 1.3(4)

C( 18)-N(5)-N(6)-N(7) 174.2(3)

N(5)-N(6)-N(7)-N(8) -2.3(3)
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N(6)-N(7)-N(8)-C( 19) 2.6(3)

N(6)-N(7)-N(8)-C(20) -179.9(3)

0(6)-C(l 9)-N(8)-N(7) 176.9(3)

N(5)-C( 19)-N(8)-N(7) -1.7(3)

0(6)-C( 19)-N(8)-C(20) -0.6(5)

N(5)-C(19)-N(8)-C(20) -179.2(3)

O(7)-C(20)-N(8)-N(7) 85.4(3)

C(21 )-C(20)-N(8)-N(7) -36.2(4)

O(7)-C(20)-N(8)-C( 19) -97.5(3)

C(21 )-C(20)-N(8)-C( 19) 141.0(3)

0(5)-C(l 3)-0(2)-C(3) -179.6(2)

C( 12)-C( 13)-0(2)-C(3) 55.6(3)

N(4)-C(3)-0(2)-C(13) 173.6(2)

C(4)-C(3)-0(2)-C(l 3) -62.4(3)

C( 13)-C( 12)-0(3)-0(4) 14.1(3)

C(6)-C(l 2)-0(3)-0(4) 134.9(2)

C( 11 )-C( 12)-0(3)-0(4) -107.9(2)

0(5)-C(14)-0(4)-0(3) -73.7(3)

C(15)-C( 14)-0(4)-0(3) 171.8(2)

C( 16)-C( 14)-0(4)-0(3) 48.3(3)

C( 12)-0(3)-0(4)-C( 14) 46.0(3)

0(2)-C(l 3)-0(5)-C( 14) -96.2(2)

C( 12)-C( 13)-0(5)-C( 14) 28.3(3)

0(4)-C( 14)-0(5)-C( 13) 33.2(3)

C( 15)-C( 14)-0(5)-C( 13) 145.7(2)

C( 16)-C( 14)-0(5)-C( 13) -91.2(3)

N(8)-C(20)-0(7)-C(30) 171.8(2)

C(21 )-C(20)-0(7)-C(30) -64.5(3)

0 ( 10)-C(30)-0(7)-C(20) -177.7(2)

C(29)-C(30)-0(7)-C(20) 56.4(3)

C(30)-C(29)-O(8)-O(9) 17.4(3)

C(28)-C(29)-0(8)-0(9) -106.2(2)

C(23)-C(29)-0(8)-0(9) 135.3(2)

0 ( 10)-C(31 )-0(9)-0(8) -74.8(2)

C(32)-C(31 )-0(9)-0(8) 170.96(19)

C(33)-C(31)-0(9)-0(8) 47.2(3)
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C(29)-0(8)-0(9)-C(31 ) 44.5(3)

O(7)-C(30)-O( 10)-C(31 ) -97.7(2)

C(29)-C(30)-O( 10)-C(31 ) 27.8(3)

0(9)-C(31 )-0(l 0)-C(30) 35.6(3)

C(32)-C(31 )-0( 10)-C(30) 147.9(2)

C(33)-C(31 )-0( 10)-C(30) -88.7(3)

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for 86 [À and °],

D-H...A d(D-H) d(H...A) d(D...A) <(DHA)

N(2)-H(2)...N(6)#1 0.88 2.46 3.204(4) 143.0

N(2)-H(2)...N(5)#1 0.88 2.65 3.178(4) 119.3

N(2)-H(2)...N(7)#1 0.88 2.68 3.535(4) 165.3

Symmetry transformations used to generate equivalent atoms: 

#1 x+l,y,z
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