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Abstract

Development of New Digital Signal Processing Procedures and Applications 

To Speech, Electromyography and Image Processing

by

Nan Lu

The design of digital signal processing (DSP) procedures combines the areas of 

mathematics, technology, art and intuition. With recent advances in computer 

technology, DSP has been applied to many fields in science and technology. To 

extract useful information from different signals under varying circumstances 

will have different demands on DSP procedures. The procedures have to ex­

tract useful information from large amounts of the data, restore the missing 

information from damaged signals, or recognize specific information from a 

noisy environment. The more advanced device certainly need more advanced 

procedure to be integrated to achieve the best performance, especially for the 

real-time applications. The thesis summarizes research work in the develop­

ment of new and advanced procedures for real-time DSP with applications in 

speech, electromyography (EMG) and image signal processing.

The work on DSP procedures was initially inspired by the field of Chaos 

Theory. The beginning of the thesis introduces chaos theory, explaining how 

the theory leads to the development of advanced tools for DSP with a new 

developed noise reduction procedure applied to sinusoidal experimental signal. 

Generalised from this theory, a new procedure was proposed and applied to the 

processing of distorted speech signals, in which a phase space reconstruction- 

based method is developed to restore missing information to the original speech 

signal. The experimental results show that the recovered speech obviously 

more speech recognizable. The signal processing techniques generalised from 

chaos theory combined with other signal processing methods are also applied 

to EMG signal processing. A new procedure for EMG signal classification was
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developed for pattern recognition to distinguish term and preterm labor signals. 

The classification accuracy can reach 64.1% which is a very encouraging result.

Real-time detection of moving objects within a complex environment is a 

fundamental problem faced by image processing. The optical flow based ap­

proach is a possible solution. A study to develop motion detection procedures 

has been carried out with sponsorship from the BlurStar Technology Co. Ltd. 

Two new advanced motion detection procedures were developed for the real­

time video surveillance under a noisy environment. One works by calculation 

of accumulative optical flow and double background filtering. Another is based 

on a parallel motion detection strategy which combines temporal difference and 

pyramidal structure-based optical flow. Experimental results show that both of 

the procedures can separate the background interference and foreground mov­

ing object successfully and raise the alarm when a suspicious object appears. 

Both procedures have a high capability of anti-interference and preserves high 

accurate rate detection at the same time, and they are also much faster than 

conventional detection procedures. Both procedures are now in the test stage 

to be implemented in industrial applications for real-time video surveillance.

The contributions of the PhD project can be summarized as follows: 1) 

Development of a new noise reduction procedure based on chaos theory to 

improve signal-to-noise ratio. 2) Development of a new speech processing pro­

cedure based on phase space reconstruction to recover missing information 

from distorted speech signals. 3) Initial investigation of a new classification 

procedure for EMG to differentiate normal and abnormal signals. 4) Develop­

ment of two new advanced motion detection procedures based on an optical 

flow calculation which detect moving objects accurately and quickly in a noisy 

environment.
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Chapter 1

Introduction

1.1 Overview of digital signal processing

Digital signal processing (DSP) is an area of science and engineering that 

has developed rapidly over the past 30 years. This rapid development is a result 

of the significant advances in digital computer technology and integrated-circuit 

fabrication. The rapid developments in integrated-circuit technology, starting 

with medium-scale integration (MSI) and progressing to large-scale integra­

tion (LSI), and now, very-large-scale integration (VLSI) of electronic circuits 

has spurred the development of powerful, smaller, faster and cheaper digital 

computers and special-purpose digital hardware [1], These inexpensive and 

relatively fast digital circuits have made it possible to construct highly sophis­

ticated digital systems capable of performing complex digital signal processing 
functions and tasks.

Not only do digital circuits yield cheaper and more reliable systems for 

signal processing, they have other advantages as well. In particular, digital 

processing hardware allows programmable operations. The implementation of 

DSP procedures in the devices embedded hardware enabled many exciting tech­

nology developments in our life. The development of new DSP procedures is 

largely driven by the need in different areas and tasks of applications. Through 

procedures, one can more easily modify the signal processing functions to be 

performed by the hardware. Thus digital hardware and associated procedures
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1.1 Overview o f digital signal processing 2

provide a greater degree of flexibility in system design. The work described 

in the thesis is motivated by searching solutions or better DSP procedures 

for solving the problems arisen from the real world. The description of the 

research work will start from the historical review of DSP and fundamental 

theory required for the work described in the thesis.

1.1.1 The history of digital signal processing

Since the Second World War, if not earlier, engineers and scientists have 

speculated on the applicability of digital techniques to perform signal process­

ing tasks. For example, at the end of the 1940s, Shannon, Bode and other 

researchers in Bell Telephone Laboratories discussed the possibility of using 

digital circuit elements to implement filter functions [2]. At this time, there 

was, unfortunately, no appropriate hardware available for implementation of 

digital signal processing procedures. Hence, the cost, the size and the reliability 

are strongly favored of conventional analog implementations to filters.

During the middle of 1950s, Professor Linville at Massachusetts Institute 

of Technology (MIT) discussed digital filtering at graduate seminars [3]. By 

then, control theory, based partly on works by Hurewicz become established as 

a subject discipline, and sampling and its spectral effects were well understood 

[4], A number of mathematical tools, such as z-transform, which had existed 

since Laplace’s time, were now used in the electronic engineering community 

Technology at that point, however, was only able to deal with low-frequency 

control problems or low-frequency seismic signal processing problems. While 

seismic scientists made notable use of digital filter concepts to solve problems, 

it was not until the middle of the 1960s that a more formal theory of digital 

signal processing (DSP) began to emerge. During this period, the advent of the 

silicon integrated circuit technology made complete digital systems possible, 

but still quite expensive.

The first major contribution in the area of digital filter synthesis was made 

by Kaiser at Bell laboratories [5]. His work showed how to design useful filters 

using bilinear transform (BLT). Further, in about 1965, the famous paper by

2



1.1 Overview of digital signal processing 3

Cooley and Turkey was published [6]. In this paper, fast Fourier transform 

(FFT), an efficient and fast way of performing the discrete Fourier transform 

(D FT), was demonstrated.

At this time, hardware better suited for implementing digital filters was de­

veloped and affordable circuits started to be commercially available. Long finite 

impulse response (FIR) filters could now be implemented efficiently, thereby 

becoming a serious competitor to the infinite impulse response (HR) filters, 

having better passband properties for a given number of delays. At the same 

time, new opportunities emerged. It was now possible to achieve time varying, 

adaptive and non-linear filters that could not be built using conventional ana­

log techniques. One such filter is Kalman filter named after R.E. Kalman [7]. 

The Kalman filter is a model-based filter that filters the signal according to its 

statistical rather than its spectral properties.

In the area of adaptive filters, B. Widrow is an important name, especially 

when talking about the least mean square (LMS) algorithm [8]. Widrow also 

made significant contributions in the area of neural networks as early as in the 

1960s and 1970s. Today, there are many commercial products around which 

utilize the advantages of digital signal processing including essentially perfect 

reproducibility, guaranteed accuracy and suitable for large volume production.

1.1.2 Applications of digital signal processing

It is a well known fact that digital signal processing is used in many areas. 

Here lists a few of them:

1. Telecommunications. Wireless or mobile phones are rapidly replacing wired 

(landline) telephones, both of which are connected to a large-scale telecom­

munication networks. They are used for voice communication as well as 

data communications. So also are the computers connected to a different 

network that is used for data and information processing. Computers are 

used to generate, transmit, and receive an enormous amount of information 

through the Internet and will be used more extensively over the same net­

work. In the coming years for voice communications also. This technology

3



1.1 Overview o f digital signal processing 4

is known as voice over Internet protocol (VoIP) or Internet telephony. At 

present, we can transmit and receive a limited amount of text, graphics, 

pictures and video images from mobile phones, besides voice, music, and 

other audio signals -  all of which are classified as multimedia -  because of 

limited hardware in the mobile phones and not the software that has already 

been developed. However, the computers can be used to carry out the same 

functions more efficiently with greater memory and large bandwidth. We 

see a seamless integration of wireless telephones and computers already de­

veloping in the market at present. The new technologies being used in the 

above mentioned applications are known by such terms as CDMA, TDMA, 

spread spectrum, echo cancellation, channel coding, adaptive equalization, 

ADPCM  coding and data encryption and decryption, some of which are 

used in the software to be introduced in the third-generation (G3) mobile 

phones.

2. Speech Processing. The quality of speech transmission in real time over 

telecommunication networks from wired (landline) telephones or wireless 

(cellular) telephones is very high. Speech recognition, speech synthesis, 

speaker verification, speech enhancement, text-to-speech translation, and 

speech-to-text dictation are some of the other applications of speech pro­

cessing.

3. Consumer Electronics. We have already mentioned cellular or mobile phones. 

Then we have HDTV, digital cameras, digital phones, answering machines, 

fax and modem, music synthesizers, recording and mixing of music signals 

to produce CD and DVDs. Surround-sound entertainment systems includ­

ing CD and DVD players, laser printers, copying machines, and scanner are 

found in many homes. But the TV set, PC, telephones, CD-DVD players, 

and scanners are present in our homes as separate systems. However, the 

T V  set can be used to read email and access the Internet just like the PC; 

the PC can be used to tune and view TV  channels, and record and play 

music as well as data on CD-DVD in addition to their use to make tele­

phone calls on VoIP. This trend toward the development of fewer systems

4



1.1 Overview of digital signal processing 5

with multiple applications is expected to accelerate in the near future.

4. Biomedical Systems. The variety of machines used in hospitals and biomed­

ical applications is staggering. Included are X-ray machines, MRI, PET 

scanning, bone scanning, CT scanning, ultrasound imaging, fetal monitor­

ing, patient monitoring, and ECG and EEC mapping. Another example 

of advanced digital signal processing is found in hearing aids and cardiac 

pacemakers.

5. Image Processing. Image enhancement, image restoration, image under­

standing, computer vision, radar and sonar processing, geophysical and seis­

mic data processing, remote sensing, and weather monitoring are some of the 

applications of image processing. Reconstruction of two-dimensional (2D) 

images from several pictures taken at different angles and three-dimensional 

(3D) images from several contiguous slices has been used in many applica­

tions.

6. Military Electronics. The applications of digital signal processing in military 

and defense electronics systems use very advanced techniques. Some of the 

applications are GPS and navigation, radar and sonar image processing, 

detection and tracking of targets, missile guidance, secure communications, 

jamming and countermeasures, remote control of surveillance aircraft, and 

electronic warfare.

7. Aerospace and Automotive Electronics. Applications include control of air­

craft and automotive engines, monitoring and control of flying performance 

of aircraft, navigation and communications, vibration analysis and antiskid 

control of cars, control of brakes in aircrafts, control of suspension, and 

riding comfort of cars.

8. Industrial Applications. Numerial control, robotics, control of engines and 

motors, manufacturing automation, security access, and videoconferencing 

are a few of the industrial applications.

5
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Obviously there are some overlaps among these applications in terms of 

devices and systems. It is also true that basic mathematical operations are 

common in all the applications and systems. Needless to say, the number of 

new applications to the existing applications will continue to grow at a very 

rapid rate in the near future.

1.1.3 Filters

Filtering [9] is the most common form of signal processing used in all the 

applications, to remove unwanted frequency components and to improve mag­

nitude, phase, or group delays in the parts of the spectrum of a signal. The 

literature reports on filters can be classified into two sets: (1) to derive the 

transfer function of the filter such that the magnitude, phase, or group delay 

approximates the given frequency response specifications and (2) procedures 

to design the filters using the hardware components.

In signal processing, the function of a filter is to remove unwanted parts of 

the signal, such as random noise, or to extract useful parts of the signal, such 

as the components lying within a certain frequency range. The following block 
diagram illustrates the basic idea.

raw (unfiltered) 
signal

► FILTER filtered
signal

Figure 1.1: Filter block diagram

There are two main kinds of filter, analog and digital. They are quite 

different in their physical makeup and in how they work.

An analog filter uses analog electronic circuits made up from components 

such as resistors, capacitors and operational amplifier (op amps) to produce 

the required filtering effect. Such filter circuits are widely used in applications 

such as noise reduction, video signal enhancement, graphic equalisers in hi-fi 

systems, and many other areas. There are well-established standard techniques 

for designing an analog filter circuit to satisfy the given requirement. At all

6



1.1 Overview o f digital signal processing 7

stages, the signal being filtered is an electrical voltage or current which is 

the direct analogue of the physical quantity (e.g. a sound or video signal or 

transducer output) involved.

A  digital filter uses a digital processor to perform numerical calculations 

on sampled values of the signal. The processor may be a general-purpose com­

puter such as a PC, or a specialised DSP (Digital Signal Processor) chip. The 

analog input signal must first be sampled and digitised using an ADC (analog 

to digital converter). The resulting binary numbers, representing successive 

sampled values of the input signal, are transferred to the processor, which car­

ries out numerical calculations on them. These calculations typically involve 

multiplying the input values by constants and adding the products together. If 

necessary, the results of these calculations, which now represent sampled values 

of the filtered signal, are output through a DAC (digital to analog converter) to 

convert the signal back to analog form. Note that in a digital filter, the signal 

is represented by a sequence of numbers, rather than a voltage or current. The 

following diagram shows the basic setup of such a system.

V

unfiltered
analog
signal

ADC -------- ►
sampled
digitised

signal

PROCESSOR

digitally
filtered
signal

DAC -►
filtered
analog
signal

Figure 1.2: Digital filter system

Advantages of digital filters

The following list gives some of the main advantages of digital over analog 

filters.

1. A  digital filter is programmable, i.e. its operation is determined by a program

7



1.1 Overview o f digital signal processing 8

stored in the processor’s memory. This means that the digital filter can 

easily be changed without affecting the circuitry (hardware). An analog 

filter can only be changed by redesigning the filter circuit.

2. Digital filters are easily designed, tested and implemented on a general- 

purpose computer or workstation.

3. The characteristics of analog filter circuits (particularly those containing 

active components) are subject to drift and are dependent on temperature. 

Digital filters do not suffer from these problems, and so are extremely stable 
with respect both to time and temperature.

4. Unlike their analog counterparts, digital filters can handle low frequency 
signals accurately. As the speed of DSP technology continues to increase, 

digital filters are being applied to high frequency signals in the RF (radio 

frequency) domain, which in the past was the exclusive preserve of analog 

technology.

5. Digital filters are very much more versatile in their ability to process signals 

in a variety of ways; this includes the ability of some types of digital filter 

to adapt to changes in the characteristics of the signal.

Categories of digital filters

Since digital filters consist of computer program code, there are an infinite 

number of possible filter architectures and variations. The common filter archi­

tectures can be divided into three categories: linear, adaptive, and non-linear 

filters.

1. Linear filter

Much of the available theory deals with linear filters, where the filter out­

put is a (possibly time-varying) linear function of the filter input. There are 

basically two distinct theoretical approaches to the design of such filters: 

classical and optimal.

The classical approach aimed at designing frequency-selective filters such as

8
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lowpass/bandpass/notch filters etc. For a noise reduction application, for 

example, it is based on knowledge of the gross frequency spectrum of both 

the useful signal and the noise components. It is applicable mainly when 

the signal and noise occupy clearly different frequency bands. A classic fil­

ter example is that of bandpass filtering a frequency rich chirp signal. The 

frequency components of the chirp within a selected band can be extracted 

through a number of linear filtering methods. This example shows that lin­

ear methods in signal processing can indeed be markedly effective.

Optimal filter design [10], on the other hand, is based on optimization the­

ory, where the filter is designed to be best (in some sense). If the signal and 

noise are viewed as stochastic processes, based on their statistical parame­

ters, an optimal filter is designed that, for example, minimizes the effects of 

the noise at the filter output according to some statistical criterion. This is 

mostly based on minimizing the mean-square value of the difference between 

the actual filter output and some desired output.

In fact, linear signal processing enjoys the rich theory of linear systems, and 

in many applications linear signal processing algorithms prove to be opti­

mal. Most importantly, linear filters are inherently simple to implement, 

perhaps the dominant reason for their widespread use.

2. Adaptive filter

The theory of adaptive filter [11] is derived from optimal filter design. The 

adaptive filter is a self-designing filter and an alternative method to linear 

filter. An adaptive filter has an adaptation algorithm that is meant to mon­

itor the environment and vary the filter transfer function accordingly. The 

algorithm starts from a set of initial conditions that may correspond to com­

plete ignorance about the environment and attempts to find the optimum 

filter design based on the actual signals received. In a stationary environ­

ment the filter is expected to be like optimal filter. In a non-stationary 

environment, the filter is expected to track time variations and vary its 

filter coefficients accordingly.

3. Non-linear filter

9
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Nonlinear methods in signal and image processing [12] have become in­

creasingly popular over the past thirty years, there are two general families 

of nonlinear filters: the homomorphic and polynomial filters, and the order 

statistic and morphological filters [13]. Analysis and design of homomorphic 

and polynomial filters resemble traditional methods used for linear systems 

and filters in many ways. Other statistic and morphological filters can not 

be analyzed efficiently using generalizations of linear techniques. The me­

dian filter is an example of an order statistic filter, and is probably the 

oldest and most widely used order statistic filter. Morphological filters are 

based on a form of set algebra known as mathematical morphology. Most 

morphological filters use extreme order statistic (minimum and maximum 

values) within a filter window, so they are closely related to order statistic 

filters.

Although linear filters will continue to play an important role in signal 

processing, nonlinear filters are emerging as viable alternative solutions. The 

major forces that motivate the implementation of nonlinear signal process­

ing procedures are the growth of increasingly challenging applications and the 

development of more powerful computers. Emerging multimedia and commu­

nications applications are becoming significantly more complex. Consequently, 

they require the use of increasingly sophisticated signal processing procedure. 

At the same time, the ongoing advances of computers and digital signal proces­

sors, in terms of speed, size and cost, makes the implementation of sophisticated 

procedures practical and cost effective.

1.2 Methodologies in digital signal processing

In digital signal processing, engineers usually study digital signals in one of 

the following domains: time domain (one-dimensional signals), spatial domain 

(multidimensional signals), frequency domain, and phase space domain. They 

choose the domain in which to process a signal by making an informed guess 

(or by trying different possibilities) as to which domain best represents the 

essential characteristics of the signal. A sequence of samples from a measuring

10
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device produces a time or spatial domain representation, whereas a discrete 

Fourier transform produces the frequency domain information, that is the fre­

quency spectrum. Chaotic method transforms the signals from time domain 

into phase space domain to show their dynamical information, called as phase 

space reconstruction.

1.2.1 Time and space domains

The most common processing approach in the time or space domain is 

enhancement of the input signal through the method of filtering. Filtering 

generally consists of some transformation of a number of surrounding samples 

around the current sample of the input or output signal. There are various 

ways to characterize filters, for example:

• A “linear” filter is a linear transformation of input samples; other filters 

are “non-linear” . Linear filters satisfy the superposition condition, i.e. if 

an input is a weighted linear combination of different signals, the output 

is an equally weighted linear combination of the corresponding output 

signals.

• A “causal” filter uses only previous samples of the input or output signals; 

while a “non-causal” filter uses future input samples. A non-causal filter 

can usually be changed into a causal filter by adding a delay to it.

• A “time-invariant” filter has constant properties over time; other filters 

such as adaptive filters change in time.

• Some filters are “stable” , others are “unstable” . A stable filter produces 

an output that converges to a constant value with time, or remains 

bounded within a finite interval. An unstable filter produces output 

which diverges.

• A “finite impulse response” (FIR) filter uses only the input signal, while 

an “infinite impulse response” filter (HR) uses both the input signal and

11
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previous samples of the output signal. FIR filters are always stable, while 

HR filters may be unstable.

Classic filters

Two of the most commonly used classical filters are Butterworth filters and 

Chebyshev filters.

• Butterworth filters. A smooth response at all frequencies and a mono­

tonic decrease from the specified cutoff frequencies characterize the fre­

quency response of Butterworth filters. Butterworth filters are maximally 

flat -  the ideal response of unity in the passband and zero in the stop- 

band. The half power frequency or the 3dB down frequency corresponds 

to the specified cutoff frequencies.

• Chebyshev filters. Chebyshev filters minimize peak error in the passband 

by accounting for the maximum absolute value of the difference between 

the ideal filter and the filter response. The frequency response character­

istics of Chebyshev filters have an equal ripple magnitude response in the 

passband, monotonically decreasing magnitude response in the stopband, 

and a sharper roll-off than Butterworth filters. The cutoff frequency for 

Chebyshev filters is defined as the end of the passband.

The advantage of Chebyshev filters over Butterworth filters is that Cheby­

shev filters have a sharper transition between the passband and the stopband 

with a lower order filter. This produces smaller absolute errors and higher 

execution speed.

Mathematical morphology

Mathematical morphology (MM) is a branch of digital signal processing 

and a non-linear approach developed from set theory and geometry [14]. In 

contrast with the integral transform algorithm like Fourier and Wavelet analy­

sis, the MM filtering technique handles a signal in a completely different way. 

It was widely used in the area of image processing, machine vision and pattern

12
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recognition due to its robustness in preserving the main shape while suppress­

ing noise. When acting upon complex shapes, morphological operations are 

able to decompose them into meaningful parts and separate them from the 

background, as well as preserve the main shape characteristics. Furthermore, 

the mathematical calculation involved in MM includes only addition, subtrac­

tion and maximum and minimum operations without any multiplication and 
division.

The underlying basis of the MM filtering technique is to process signals by a 

function known as the structure element (SE) in general or structuring function 

for a 1-D signal. With various combinations of the fundamental morphological 

operators, Dilation and Erosion, the technique is able to preserve or suppress 

the feature represented by the SE and obtain a signal with only components 

of interest. Therefore, such an algebraic system with its operators and their 

combinations allows the underlying shapes to be identified, reconstructed and 

enhanced from their noisy, distorted forms.

MM has several advantages over other techniques especially when applied 

to signal/image processing [15] which can preserve the edge information, use 

shape-based processing, design to be idempotent and compute efficiently.

1.2.2 Frequency domain

Signals are converted from time or space domain to the frequency domain 

usually through Fourier transform. Fourier transform converts the signal in­

formation to a magnitude and phase component of each frequency. Often the 

Fourier transform is converted to the power spectrum, which is the magnitude 

of each frequency component squared. The most common purpose for analysis 

of signals in the frequency domain is analysis of signal properties. The engineer 

can study the spectrum to get information of which frequencies are present in 

the input signal and which are missing.

13
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Fourier transform

Fourier transform was proposed by Joseph Fourier in 1807 [16]. The Fourier 

transform’s utility lies in its ability to analyze a signal in the time domain for 

its frequency content. The transform works by translating a function in the 

time domain into a function in the frequency domain. Fourier transforms are 

based on the concept that real world signals can be approximated by a sum 

of sinusoids, each at a different frequency. The more sinusoids included in the 

sum. the better the approximation. Such a sum of sinusoids is called a trigono­

metric Fourier series. The terms of the Fourier series for simple waveforms can 

be found using calculus. The frequency of each sinusoid in the series is an 

integer multiple of the frequency of the signal being approximated. These are 

referred to as the harmonics of the original waveform.

Fast fourier transform

The most popular computer algorithm for generating a frequency spectrum 

is the Fast Fourier Transform (FFT), which was proposed by Cooley and Tukey 

in 1965 [17]. FFT is a milestone for digital signal processing. As the name 

implies, the FFT is very efficient but it does have one quirk that affects the 

way it is used. The FFT reduces the number of computations needed for N  
points from 2N 2 to 2Nlog2N.

Wavelet transform

Wavelet transform provides an excellent time-frequency description for sig­

nal processing applications. Wavelets [18] are mathematical functions that cut 

up data into different frequency components, and then study each component 

with a resolution matched to its scale. They have advantages over traditional 

Fourier methods in analyzing physical situations where the signal contains dis­

continuities and sharp spikes. Wavelets were developed independently in the 

fields of mathematics, quantum physics, electrical engineering, and seismic ge­
ology.

Wavelets are functions that satisfy certain mathematical requirements and
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are used in representing data or other functions. The fundamental idea behind 

wavelets is to analyze according to scale which plays a special role in wavelet 

analysis. Wavelet algorithms process data at different scales or resolutions [19]. 

If we look at a signal with a large “window” which is for the low-frequency 

components, we would notice gross features. Similarly, if we look at a signal 

with a small “window” which is for the high-frequency components, we would 
notice small features.

The wavelet analysis procedure is to adopt a wavelet prototype function, 

called an analyzing wavelet or mother wavelet. Temporal analysis is performed 

with a contracted, high-frequency version of the prototype wavelet, while fre­

quent analysis is performed with a dilated, low-frequency version of the same 

wavelet. Because the original signal or function can be represented in terms of 

a wavelet expansion (using coefficients in a linear combination of the wavelet 

functions), data operations can be performed using just the corresponding 

wavelet coefficients. And if you further choose the best wavelets adapted to 

your data, or truncate the coefficients below a threshold, your data is sparsely 

represented. This sparse coding makes wavelets an excellent tool in the field 
of data compression.

1.2.3 Phase space domain

In mathematics and physics, a phase space, introduced by Willard Gibbs 

[20] in 1901, is a space in which all possible states of a system are represented, 

with each possible state of the system corresponding to one unique point in 

the phase space. In a phase space, every degree of freedom or parameter of 

the system is represented as an axis of a multidimensional space. For every 

possible state of the system, or allowed combination of values of the system’s 

parameters, a point is plotted in the multidimensional space. Often this suc­

cession of plotted points is analogous to the system’s state evolving over time. 

In the end, the phase diagram represents all that the system can be, and its 

shape can easily elucidate qualities of the system that might not be obvious 

otherwise. A phase space may contain very many dimensions.

15



1.2 Methodologies in digital signal processing 16

Chaos theory

Much of what is known about digital signal processing methods has been 

learned using linear system theory. However, many signals are apparently 

random or aperiodic in time. Traditionally, the randomness in signals has been 

ascribed to noise or interactions between very large numbers of constituent 

components.

One of the most important mathematical discoveries of the past few decades 

is that random behavior can arise in deterministic nonlinear system with just 

a few degrees of freedom. This discovery gives new hope to providing simple 

mathematical models for analyzing, and ultimately controlling, signal process­

ing systems.

In mathematics and physics, chaos theory [21] describes the behavior of 

certain nonlinear dynamical systems that under certain conditions exhibit a 

phenomenon known as chaos. Among the characteristics of chaotic systems is 

sensitivity to initial conditions (popularly referred to as the butterfly effect). As 

a result of this sensitivity, the behavior of systems that exhibit chaos appears to 

be random, even though the system is deterministic in the sense that it is well 

defined and contains no random parameters. Examples of such systems include 

the atmosphere, the solar system, plate tectonics, turbulent fluids, economics, 

and population growth.

Chaos theory is applied in many scientific disciplines: mathematics, biol­

ogy, computer science, economics, engineering, philosophy, physics, politics, 

population dynamics, psychology, signal processing,robotics, etc.

16
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1.3 Motivation and objectives

In contrast with traditional signal processing methods, the technique based 

on chaos theory processes signals from a different perspective and it is a non­

linear approach that is developed based on embedding theory and attractor 

reconstruction. The chaos theory generalised methods attracted a great atten­

tions in signal processing research due to its advantage in high sensitiveness to 

the minimal changing of the signal. When acting upon the regular signal con­

taminated by the very low level noise which is difficult to be detected by other 

methods, chaos theory generalised techniques are able to decompose the signal 

into meaningful parts and separate the noise component from the original sig­

nal in the phase space, as well as preserve the main clear signal characteristics. 

This distinct advantage motivated me to study chaos theory and to investigate 

more efficient ways for signal processing to reveal the characteristics of the 

noise embedded in signal by applying the chaos theory principles.

Real-time detection of moving object is very important for video surveil­

lance. It has attracted a great interest from computer vision researchers due 

to its promising applications in many areas. The research in this area is still in 

its early developmental stage and leaves many unsolved interesting topics for 

researchers to explore, especially in the area of improving the robustness when 

it is applied in a complex environment. I started to be interested in this area by 

helping processing a set of video signal from police station. Afterwards, with 

the encouragement and support from the company, I extended my project to 

the topic of moving object detection with a variable moving background.

The overall goal of the project is to develop new advanced digital signal 

processing procedures with applications to EMG, speech and image signals. 

The goal is to be achieved by realizing the following objectives.

Based on the chaos theory, a new noise reduction procedure has been pro­

posed for the sinusoidal experimental signal. Although many other methods 

can effectively reduce the noise, the new procedure has a considerable advan­

tage in computation time and instant response to signal changes in comparison 

with other techniques. The objective of this learning is to process the signal
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for noise reduction using chaos theory generalised techniques.

A procedure with its application discussed in this thesis is speech signal 

restoration whose main idea is based on chaos theory. With the developing of 

communications technologies, it requires reliable transmission and reproduc­

tion of audio and speech signals. However, in many cases the speech signals 

received may be partly corrupted. It is very importance to separate the clear 

speech signal from the background noise and improve its quality before any 

processing. The objective of this research work is to reduce the corrupting 

noise component of a noisy speech signal while preserving the original clean 

speech quality as much as possible.

Another procedure with its application also discussed in this thesis is the 

Electromyography signal classification which uses the chaos theory generalised 

techniques combined with other signal processing methods. Proper diagnosis 

of labor is one of the major challenges faced by obstetricians. There are no 

accurate and objective methods to predict the onset of labor, to differentiate 

true and false labor both for term and for preterm patients, and to determine 

whether false labor will progress to true labor and on what time scale. The 

objective of this studying is to find some ways to distinguish the abnormal 

preterm labour (PTL) signals from normal term labour (TL) signals.

Two procedures discussed in this thesis are about motion detection. Mo­

tion detection under noisy environment background is a fundamental problem 

of video processing. The noisy environment is normally caused by some in­

terferences from the nature world. Separation of the background interference 

noise and foreground moving object is an important issue and has been an very 

challenge topic. The objective of this research work is to detect moving object 

efficiently under noisy environment background.

18
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1.4 Major contributions of this thesis

The major contributions of this thesis are the development of new digital 

signal processing procedures for speech, electromyography and image process­

ing which include noise reduction, information restoration, feature extraction 

and classification, and motion detection, which are summarised as:

• Chaos theory is studied in the field of digital signal processing in order to 

develop a new noise reduction procedure. Improved signal-to-noise ratio 

(SNR) value has been achieved for the sinusoidal signal contaminated by 

low level noise. This study proves that it is feasible to use chaos theory 

generalised techniques in digital signal processing.

• A new speech signal processing procedure based on chaos theory is devel­

oped for speech signal restoration. A phase space reconstruction-based 

method is proposed to effectively identify the distorted segments of the 

speech signal and to recover the missing information of the signal in phase 

space. The recovered signal obviously more speech recognizable by using 

the new procedure. [22, 23]

• A procedure for electromyography signal processing using chaos theory 

generalised techniques combined with other signal processing methods 

is developed for signal classification. A synthesized method is proposed 

for signal preprocessing, feature extraction and classification. Although 

the result of classification accuracy is not high as expected, the result 

has demonstrated the potential of the method and it convinced that the 

method should be studied further. [24, 25]

• Two motion detection procedures which integrate different image pro­

cessing methods and strategies are developed. Both procedures were 

designed to detect moving objects under noisy environment. The results 

show that two procedures can separate the background interference and 

foreground moving objects successfully and are suitable for the applica­

tion of real-time video surveillance. [26, 27, 28, 29, 30, 31]
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1.5 Thesis outline

The thesis is organised as follows:

C h ap ter 2 This chapter introduces the chaos theory. The essential concepts 

of dynamical systems are given and some examples of chaotic dynamical sys­

tems are presented. The chaos theory generalised techniques used for phase 

space reconstruction are introduced, such as attractor, time delay, embedding 

dimension, embedding method and singular value decomposition method. The 

definitions and calculations for two invariant characteristics of chaotic dynam­

ics systems, fractal dimension and Lyapunov exponents are discussed.

C h ap ter 3 In this chapter, a new noise reduction procedure based on chaos 

theory is developed. In this procedure, the noisy signal is transformed from 

the time domain to the phase space domain and the noise components can be 

eliminated by projecting the signal from the main phase space into a subspace 

which can separate the noise component from the clear signal. In this way, 

the signal is transformed back to the time domain. The experimental results 

show that the better noise reduction result can be achieved by using this new 

procedure.

C h apter 4 Chapter 4 contributes to an application for speech signal pro­

cessing based on chaos theory. A phase space reconstruction-based procedure 

is developed for restoration of noise contaminated speech signal. The method 

embeds the noisy signal into a high dimensional reconstructed phase space 

where the singular value decomposition (SVD) method is used to identify the 

distorted segments and the space interpolation method is used to reconstruct 

the signal trajectory in the phase space. Then, a time aligned weighted av­

erage method is used to transform the signal back to the time domain. The 

experimental results show that the recovered speech signal is obviously more 

speech recognizable.

20
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Chapter 5 In this chapter, the chaos theory generalised techniques are ap­

plied to electromyograph signal processing and a combined signal processing 

method is introduced. A new method is developed which integrates numbers 

of signal processing methods. Pattern recognition techniques are developed for 

the EMG signal classification. In this method, the signal is preprocessed by 

using wavelet transform to get rid of the noise. Then, the correlation dimension 

value is calculated along the signal to extract the contraction patterns of the 

signal and the average wavelet packet energy of contraction patterns is calcu­

lated by using wavelet packet transform method. Finally, the artificial neural 

network (ANN) method is used to classify the normal and abnormal signals. 

The experimental results show that the accuracy of classification result is very 
encouraging.

Chapter 6 Chapter 6 describes the work in application of image processing 

for motion detection. A procedure based on accumulative optical flow and 

double background filtering is developed for real-time video surveillance un­

der noisy environment background. The temporal difference method is used 

firstly to detect initial possible motion area. Secondly, the optical flow is cal­

culated based on the result of the temporal difference method to obtain the 

accurate motion area. Thirdly, a double background filtering method with 

morphological processing is used to get rid of the background interference. Fi­

nally, motion area detection methods are used to detect the moving object. 

The experimental results show that the procedure proposed can separate the 

background interference and foreground moving object very well.

Chapter 7 In this chapter, further development on image processing for 

motion detection is introduced. A procedure based on bidirectional motion 

detection strategy using temporal difference and pyramidal structure-based 

optical flow is developed. The temporal difference method is used initially for 

the whole image to detect coarse motion areas. The image is then decomposed 

into coarse levels based on Guassian pyramid construction and the optical 

flow method is performed independently at each resolution level of the image
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pyramidal structure for the motion area estimation. Finally, the moving object 

can be detected by combining the results of parallel motion detection strategy. 

The result shows that the procedure is much faster than conventional mono­

resolution detection methods and it also preserves high accurate rate detection 

at the same time.

C h apter 8 The conclusion of the thesis is made and some recommendations 
are given for future work.
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Chapter 2

Chaos Theory

2.1 Introduction to chaos theory

Chaos theory has been developed from its obscure roots in the seventies 

and become one of the most fascinating fields in existence. At the forefront 

of much research on physical systems, the approaches generalised from chaos 

theory has already been applied to fields such as arrhythmic pacemakers, image 

compression, and fluid dynamics. The main ideas of some procedures developed 

in this thesis have been inspired by chaos theory.

Formally, chaos theory is defined as the study of complex nonlinear dynamic 

systems. The dynamical system concept is a mathematical formalization for 

any fixed “rule” which describes the time dependence of a point’s position in 

its ambient space. Examples include the mathematical models that describe 

the swinging of a clock pendulum, the flow of water in a pipe, and the number 

of fish each spring in a lake. A dynamical system has a state determined 

by a collection of real numbers, or more generally by a set of points in an 

appropriate state space. Small changes in the state of the system correspond 

to small changes in the numbers. The numbers are also the coordinates of a 

geometrical spacea manifold. The evolution rule of the dynamical system is a 

fixed rule that describes what future states follow from the current state. The 

rule is deterministic: for a given time interval only one future state follows 

from the current state. Thus chaos theory is, very generally, the study of
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2.1 Introduction to chaos theory 25

forever changing complex systems based on mathematical concepts of recursion, 

whether in the form of a recursive process or a set of differential equations 
modelling a physical system.

The most commonly held misconception about chaos theory is that chaos 

theory is about disorder. The “chaos” in chaos theory is order-not simply 

order, but the very ESSENCE of order. It is true that chaos theory dictates 

that minor changes can cause huge fluctuations. But one of the central concepts 

of chaos theory is that while it is impossible to exactly predict the state of a 

system, it is generally quite possible, even easy, to model the overall behavior 

of a system. Thus, chaos theory lays emphasis not on the disorder of the 

system-the inherent unpredictability of a system-but on the order inherent in 

the system-the universal behavior of similar systems.

Chaos theory predicts that complex nonlinear systems are inherently un­

predictable, but, at the same time, chaos theory also insures that the way to 

express such an unpredictable system lies not in exact equations, but in repre­

sentations of the behavior of a system. Thus, chaos theory, which many think 

is about unpredictability, is at the same time about predictability in even the 
most unstable systems.

The techniques generalised from chaos theory have been used to model 

biological systems, which are of course some of the most chaotic systems imag­

inable. Systems of dynamic equations have been used to model everything from 

population growth to epidemics to arrhythmic heart palpitations. In fact, al­

most any chaotic system can be readily modeled-the stock market provides 

trends which can be analyzed with strange attractors more readily than with 

conventional explicit equations; a dripping faucet seems random to the un­

trained ear, but when plotted as a strange attractor, reveals an eerie order 

unexpected by conventional means. In a word, chaos theory gives people a 

wonderfully interesting way to become more interested in mathematics.

The term chaos as used in mathematics was coined by the applied math­

ematician James A. Yorke [32], The availability of cheaper, more powerful 

computers broadens the applicability of chaos theory. Currently, chaos theory 

continues to be a very active area of research.
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2.2 History of chaos theory

The first discoverer of chaos can plausibly be argued to be Jacques Hadamard, 

who in 1898 published an influential study of the chaotic motion of a free parti­

cle gliding frictionlessly on a surface of constant negative curvature [33]. In the 

system studied, Hadamard was able to show that all trajectories are unstable, 

in that all particle trajectories diverge exponentially from one-another, with 

positive Lyapunov exponent. In the early 1900s, Henri Poincar while studying 

the three-body problem [34], found that there can be orbits which are nonpe­

riodic, and yet not forever increasing nor approaching a fixed point. Much of 

the early theory was developed almost entirely by mathematicians, under the 

name of ergodic theory [35]. Later studies, also on the topic of nonlinear differ­

ential equations, were carried out by G.D. Birkhoff [36], A.N. Kolmogorov [37], 

M.L. Cartwright [38], J.E. Littlewood [39], and Stephen Smale [40]. Except for 

Smale, these studies were all directly inspired by physics: the three-body prob­

lem in the case of Birkhoff, turbulence and astronomical problems in the case of 

Kolmogorov, and radio engineering in the case of Cartwright and Littlewood. 

Although chaotic planetary motion had not been observed, experimentalists 

had encountered turbulence in fluid motion and nonperiodic oscillation in ra­

dio circuits without the benefit of a theory to explain what they were seeing.

Chaos theory progressed more rapidly after 1950s, when it first became evi­

dent for some scientists that linear theory, the prevailing system theory at that 

time, simply could not explain the observed behavior of certain experiments 

like that of the logistic map [41]. The main catalyst for the development of 

chaos theory was the electronic computer. Much of the mathematics of chaos 

theory involves the repeated iteration of simple mathematical formulas, which 

would be impractical to do by hand. Electronic computers made these repeated 

calculations practical. One of the earliest electronic digital computers, ENIAC, 

was used to run simple weather forecasting models.

An early pioneer of the theory was Edward Lorenz whose interest in chaos 

came about accidentally through his work on weather prediction in 1961 [42], 

Lorenz was using a basic computer, a Royal McBee LGP-30, to run his weather
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simulation. He wanted to see a sequence of data again and to save time he 

started the simulation in the middle of its course. He was able to do this by 

entering a printout of the data corresponding to conditions in the middle of 

his simulation which he had calculated last time.

To his surprise the weather that the machine began to predict was com­

pletely different from the weather calculated before. Lorenz tracked this down 

to the computer printout. The printout rounded variables off to a 3-digit num­

ber, but the computer worked with 6-digit numbers. This difference is tiny 

and the consensus at the time would have been that it should have had prac­

tically no effect. However Lorenz had discovered that small changes in initial 

conditions produced large changes in the long-term outcome.

Yoshisuke Ueda independently identified a chaotic phenomenon as such by 

using an analog computer on November 27, 1961 [43]. The chaos exhibited 

by an analog computer is truly a natural phenomenon, in contrast with those 

discovered by a digital computer. Ueda’s supervising professor, Hayashi, did 

not believe in chaos throughout his life, and thus he prohibited Ueda from 

publishing his findings until 1970 [44].

2.3 Introduction to dynamical systems

Dynamics is the study of change, and a dynamical system is any system 

that evolves in time. When we speak of dynamical systems, we are talking 

about a system of equations that describe how each variable changes with 

time. Dynamical systems whose behavior changes continuously in time are 

mathematically described by a coupled set of first-order autonomous ordinary 

differential equations as follows:

dx i
dt 

dx 2
dt

f i {x 1,x 2, . . . , x n,t) 

f 2{x u x 2, • • • ,x n,t)
(2.3.1)

dxn
dt

fn {.X  1 , X 2 , . . . , X n , ¿)
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or in a more compact form as:

dx ,
—  =  F(x, ¡1) (2.3.2)

where the components of the vector x =  [aq, x2l • ■ • ,x n]T are the dynamical 

variables of the system, the components of the vector p  are parameters, and the 

components of the vector field F  are the dynamical rules governing the behavior 

of the dynamical variables. Dynamical systems whose behavior changes at 

discrete time intervals are described by a coupled set of first-order autonomous 
ordinary difference equations as follows::

x(n +  1) =  G(x(n), p) (2.3.3)

In this equation G describes the dynamical rules and time is represented by 

the integer n. A discrete dynamical system may be obtained from a continuous 

dynamical system (2.3.2) by sampling the solution of the continuous dynamical 

system at regular time intervals. Under modest smoothness assumptions about 

the dynamical rules, the solutions of dynamical systems are unique and the 

dynamical system is deterministic; that is, the state of the dynamical system 

for all times is uniquely determined by the state at any one time.

One of the surprising and far-reaching mathematical discoveries of the past 

few decades has been that the solutions of deterministic nonlinear dynamical 

systems may be random. This behavior is called deterministic chaos. The 

discovery of deterministic chaos is surprising because randomness has been 

traditionally associated with unknown external disturbances (noise). What 

makes the discovery far reaching is that most dynamical systems are nonlin­

ear and most nonlinear systems have random solutions. Deterministic chaos 

has immediate ramifications for constructing mathematical models for systems 

characterized by random signals. A fundamental question in this regard is: Are 

all random signals equally random? It turns out that they are not. Random 

signals generated by noise are fundamentally different from random signals gen­

erated by deterministic dynamics with small numbers of dynamical variables. 

The difference is not revealed by statistical analysis but is instead revealed by 

dynamical analysis based on phase space reconstruction.
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2.4 Phase space

Phase space is an abstract mathematical space spanned by the dynamical 

variables of the system. The state of the dynamical system at a given instant in 

time can be represented by a point in this phase space. If there are n dynamical 

variables, then the state at a given time can be represented by a point in the 

Euclidean space En. As the dynamical variables change their values in time, the 

representative point traces out a path in the phase space which is a continuous 

curve in the case of a continuous dynamical system and a sequence of points 

in the case of a discrete dynamical system.

2.4.1 Attractors

An attractor is an attracting set that contains a dense orbit. A system must 

be dissipative in order to have an attractor. Since phase space volume elements 

decrease in time in dissipative systems, it follows that attractors must occupy 

zero volume in phase space. A limit cycle attractor is a periodic attractor.

A strange attractor is an aperiodic attractor with additional properties that 

(1) phase space paths through all points on the attractor diverge on average 

at an exponential rate and (2) the dimension of the set of points comprised by 
the attractor is not an integer.

With a dynamic system, a phase space is a space spanned by the state 

variables of a dynamical system. The trajectory is the solution of a dynamical 

system in phase space. For a dissipative nonlinear system, the solution of a 

d-dimensional nonlinear dynamical system is usually confined to a relatively 

low dimensional phase space. This is one of the reasons for the great interest 

shown in low dimensional chaotic strange attractors.

29
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The Lorenz attractor [45] and the Rossler attractor [46] are two examples 

of low dimensional chaotic strange attractors. The Lorenz equations [45] are 
defined as:

f x \ ( - a a  0 ^ ( x \

y = 7 —  1 —  X y

W x  - ß j W

(2.4.1)

where (cr, 7 ,/?) are the system parameters. Figure 2.1 shows the time series 

for the equation (2.4.1) and Fig.2.2 shows the attractor of Lorenz system in a 

3-dimensional phase space when (<7, 7 ,/?) =  (10,28,8/3).

The Rossler system consists of three differential equations as follows:

f x \ ^0 - 1  - 1 ^ 1 x \ ( o \

ÿ = 1 a  0 y + 0

w 0 - ß j w

where (a, 7 , ¡3) are the system parameters. Figure 2.3 shows the time series for 

the equation (2.4.2) and Fig.2.4 shows the attractor of the Rossler system in a 

3-dimensional phase space when (a, 7 , ¡3) =  (0.2,0.2,5.7).
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Sample Index

Figure 2.1: The time series of the x(t) component (8000 points) from the 
Lorenz model

Figure 2.2: Lorenz attractor, (cr, 7 ,/?) =  (10,28,8/3).
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Figure 2.3: The time series of the x(t) component (5000 points) from the 
Rossler model

Figure 2.4: Rössler attractor, (cr,j,ß) =  (0.2,0.2,5.7).
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2.4.2 Low dimensional discrete dynamical systems

In contrast to nonlinear continuous autonomous system, the minimum di­

mension for the existence of chaos for discrete dynamical systems (2.3.3) is 

d =  1 [47]. The famous, logistic map [47] is a one-dimensional discrete dynam­

ical system defined as follows:

where r is the system parameter. The logistic map is one of the most simple 

form of a chaotic process. Basically, this map, like any one-dimensional map, 

is a rule for getting a number from a number which receives a real number 

between 0 and 1, and returns a real number in [0,1] again. The parameter r 
is fixed, but if one studies the map for different values of r (up to 4, else the 

unit interval is no longer invariant) it is found that r is the catalyst for chaos. 

Figure 2.5 shows the logistic map for various values of r when the initial value 

s is 0.4. The horizontal axis shows the values of the parameter r while the 

vertical axis shows the possible long-term values of s.

Sn+l — rsn(l sn) (2.4.3)

S

Figure 2.5: The logistic map from r =  2.5 to r =  4.0
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There is two-dimensional discrete dynamical system such as the Henon map 

[47]. The Henon map is given by:

X n+1 

Vn+1
tiXri 1 \ (  Xn \ /  1

■b o )  \yn)  U
(2.4.4)

where a and b are the constants. When a =  1.4 and b =  0.3, the Henon map 

gives a two-dimensional strange attractor as shown in Fig.2.6.

Figure 2.6: The Hénon map for a =  1.4 and b =  0.3
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2.5 Phase space reconstruction

The essential problem in nonlinear time series analysis is to determine 

whether or not a given time series is a deterministic signal from a low-dimensional 

dynamical system. If it is, then further questions of interest are: What is the 

dimension of the phase space supporting the data set? Is the data set chaotic? 

The key to answering these questions is embodied in the method of phase space 

reconstruction, which has been rigorously justified by the embedding theorem 

of Takens [48].

2.5.1 Embedding theory

A fundamental idea in nonlinear analysis is that the dynamics of a system 

can be studied in a phase space [49]. A point in this space characterizes the 

state of the system at any moment of time. The phase space can be constructed 

by a procedure that starts from raw data and builds vectors by iteration of a 

time delay. Takens’ embedding theorem asserts that if a time series is one 

component of an attractor that can be represented by a smooth d-dimensional 

manifold (with d an integer) then the properties of the attractor are equivalent 

to the properties of the embedding formed by the m-dimensional phase space 

vectors. Specifically, a scalar time series xn,n =  1 can be unfolded

in a multidimensional phase space using time delay coordinates. The delay 

coordinate construction approach, based on Takens’ theorem [48], is applied to 
a series of data:

A) [®i> ®t+T> • • • i 3'i+(m—l)r] (2.5.1)

where r  is called the delay time and m is the embedding dimension. Different 

choices of r  and m yield different reconstructed trajectories.

A reconstructed phase space matrix Y  of dimension m and lag r  is -called
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a trajectory matrix and defined by:

' X i X i X\+r Xi_f-(m_i)r

Y =
X 2

=
X2 3̂ 2+t *̂ 2+(m—l)r

1---
--- * £ 1__
__

_

X m ^M+t ^M+(m—1)t

(2.5.2)

where the row vectors Xi, with i =  1 , . . . ,  M, represent individual points in the 

reconstructed phase space. The number of the points is M  =  N  — (m — 1 )t .

2.5.2 Optimal delay time

A one-to-one embedding can be obtained for any value of the delay time 

r  >  0. However, a very small delay time will result in near-linear reconstruc­

tions with high correlations between consecutive phase space points and very 

large delays might obscure the deterministic structure linking points along a 

single degree of freedom. If the delay time is commensurate with a character­

istic time in the underlying dynamics, then this too may result in a distorted 
reconstruction.

Figure 2.7 shows the phase space reconstructions using six different time 

delays of r  =  1 ,3 ,5 ,7 ,9 ,11 for the y coordinate from the Lorenz equation 
(2.4.1).

From Fig.2.7(a), the delay time r  is too small, the dynamics is restricted 

to the diagonal of the embedding space. From Fig.2.7(b)-(c), the delay time r  

leads to a well-utilized embedding space. For a larger delay time the charac­

teristic structures tend to disappear. From Fig.2.7(d)-(f), the delay time t is 

so large that causes the coordinates to disjoin by stretching and folding.

36
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Figure 2.7: Phase space reconstruction of the Lorenz system using the y co­
ordinate for six values of the delay time r. (a)-(f) with embedding dimension 
three and r  =  1,3, 5, 7,9,11.
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Autocorrelation function

There have been various proposals for choosing an optimal delay time based 

on the behavior of the autocorrelation function [50]. These include the earliest 

time r  at which the autocorrelation drops to a fraction of its initial value or 

has a point of inflection. These definitions seek to find times where linear 

correlations between different points in the time series are negligible, but they 

do not rule out the possibility of more general correlations. The autocorrelation 

function can be used for two purposes: detect non-randomness in data and 

identify an appropriate time series model if the data are not random.

Given measurements, Yi, Y2, . . . ,  YN at time ii, t2l ■.., tN, the lag k auto­
correlation function is defined as:

-  Y){Yi+k ~ Y)
rk =  -----------------------  (2.5.3)

Z ( Y i - Y y
i= 1

where Y  is the mean value of Y*. Instead of correlation between two different 

variables, the autocorrelation is the correlation which is between two values of 

the same variable at times U and ti+k. Figure 2.8 shows the autocorrelation 

function for the signal x(t) component of the Lorenz model with the parameters 

(a, 7 ,/3) =  (16,45.92,4).

If we used the first zero crossing of this autocorrelation function to select 

the time delay r  for time delay embedding, r  ~  40.

Average mutual information

Fraser and Swinney [51] argue that a better value for r  is the value that 

corresponds to the first local minimum of the mutual information where the 

mutual information is a measure of how much information can be predicted 

about one time series points given full information about the other. The mu­

tual information between measurement a, drawn from a set A — {a ,}  and 

measurement bj drawn from a set B — {fy } is the amount learned by the
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Lorenz Model: <j=16,y=45.92,P=4

Figure 2.8: Autocorrelation function for the x(t) component of the Lorenz 
model

measurement of at about the measurement of bj. In bits, it is:

PAB{au bj)
log2 PA(ai)PB(bj)

(2.5.4)

where PaB{o,, b) is the joint probability density for measurements A and B 
resulting in values a and b. PA(a:) and PB(b) are the individual probability 

densities for the measurements of A and of B.

If the measurement of a value from A resulting in ai is completely inde­

pendent of the measurement of a value from B  resulting in bj, then PAB(a,b) 

factorizes: Pab {cl, b) =  PA(a)Ps(b) and the amount of information between the 

measurements, the mutual information, is zero, as it should be. The average 

over all measurements of this information statistic, called the average mutual 

information between A measurements and B  measurements, is:

IaB =  Ĵ2/PAB{ai,bj)\og2
&i}bj

F*AB  î  b j )  

PA{ai)PB{bj)
(2.5.5)

Figure 2.9 shows the average mutual information I(T ) for the signal x(t) 

component of the Lorenz model with the parameters (a, 7 , /?) =  (16,45.92,4).
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Figure 2.9: Average mutual information for the x(t) component of the Lorenz 
model

The first minimum of this function is at r  =  10.

2.5.3 Optimal embedding dimension

There have been many discussions on how to determine the optimal em­

bedding dimension from a scalar time series based on Takens’ theorem or its 

extensions [52, 53, 54]. The crucial problem is how to select a minimal embed­

ding dimension for the phase space. If the embedding dimension is too small, 

one cannot unfold the geometry of the (possible strange) attractor, and if one 

uses an embedding dimension too high, most numerical methods characterizing 

the basic dynamical properties can produce unreliable or spurious results.

False nearest neighbor method

A method to determine the minimal sufficient embedding dimension m was 

proposed by Kennel et al. [52], It is called the false nearest neighbor (FNN) 

method. The idea is quite intuitive. Suppose that the minimal embedding

Lorenz Model: o=16,7*45.92,(i=4
■n--------r~
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O Average mutual information 
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dimension for a given time series Xi is mo- This means that in a mo-dimensional 

delay space the reconstructed attractor is a one-to-one image of the attractor 

in the original phase space. Thus the neighbors of a given point are mapped 

onto neighbors in the delay space. Due to the assumed smoothness of the 

dynamics, neighborhoods of the points are mapped onto neighborhoods again. 

Of course the shape and the diameter of the neighborhoods is changed. But 

suppose now you embed in an m-dimensional space with m < mo. Points are 

projected into neighborhoods of other points to which they wouldn’t belong to 

higher dimensions. These points are called false neighbors. If the dynamics is 

applied now, these false neighbors are not typically mapped into the image of 

the neighborhood, but somewhere else, so that the average “diameter” becomes 
quite large.

The idea of the false nearest neighbors method is the following. Each point 

Xi in the time series look for its nearest neighbor Xj in a m-dimensional space. 

Calculate the distance ||£j — Xj||. Iterate both points and compute using:

o | |£ i+ i- f j+ ill
rtj =  — ¡7-r;-----TT;—I\Xi — æj|| (2.5.6)

If Ri exceeds a given threshold Rt, this point is marked as having a false 

nearest neighbor. The criterion that the embedding dimension is high enough 

is that the fraction of points for which R  > R  is zero, or at least sufficiently 

small. Figure 2.10 shows the percentage of false nearest neighbors for the 

dynamical variable x(t) of the Lorenz model with the parameters (a, 7 , (3) =  
(16,45.92,4).

The percentage of false nearest neighbors goes to zero at m =  3, and 

as expected remains zero from there on. So m =  3 is the necessary integer 

dimension for unfolding the attractor from x(t) data.
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Figure 2.10: The percentage of false nearest neighbors for the dynamical vari­
able x(t) of the Lorenz model.

2.6 Invariant characteristics of dynamics

Classifying dynamical systems is a critical part of the analysis of measured 

signals. There are two major invariant characteristics of dynamics which have 

emerged as classifiers: fractal dimensions and Lyapunov exponents, respec­
tively.

Fractal dimensions are characteristic of the geometric figure of the attrac­

tor and relate to the way that points on the attractor are distributed in a 

m-dimensional space. Lyapunov exponents tell how orbits on the attractor 

move apart (or together) under the evolution of the dynamics. Both are in­

variant under the evolution operator of the system, and thus are independent 

of changes in the initial conditions of the orbit, and both are independent of 

the coordinate system in which the attractor is observed. This means we can 

evaluate them reliably in the reconstructed phase space.
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2.6 .1  Fractal dimensions

A geometrical object can be fully represented by a set of points in a Eu­

clidean space En provided that n is sufficiently large to be able to uniquely 

locate the position of each point in the object. Each set in En has a dimension 

d that is an integer in the range [0,n], If the set is all of E", then d =  n. In 

Euclidean geometry, points have dimension d =  0, lines have dimension d =  1, 

plane surfaces have dimension d =  2, solid have dimension d — 3, etc.

A fractal dimension D is any dimension measurement that allows noninte­

ger values [55]. A fractal is a set with a noninteger fractal dimension. Standard 

objects in Euclidean geometry are not fractals but have integer fractal dimen­

sions D  =  d. The primary important of fractals in dynamics is that strange 

attractors are fractals and their fractal dimension D  is simply related to the 

minimum number of dynamical variables needed to model the dynamics of the 

strange attractor.

Grassberger-Procaccia algorithm

The Grassberger-Procaccia algorithm [56, 57] is used for estimating the 

correlation dimension from a given set of points randomly distributed. It is 

based on the following approximation: The probability that two points of the 

set are in the same cell of size r is approximately equal to the probability that 

two points of the set are separated by a distance | • | less than or equal to r. 
Thus C(r) is approximately given by:

where Xi and Xj are two arbitrary points of the phase space, and C(r) is the 

standard correlation integral, and 9 is the Heaviside function as defined by:

The approximation in Eq.(2.6.1) is exact in the limit N  —> oo; however, this 

limit cannot be realized in practical applications. The limit r —> 0 used in the

N  N

(2.6.2)
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definition of D2 is also not possible in practice, instead, Procaccia and Grass- 

berger propose the (approximate) evaluation of C (r) over a range of values of 

r and then deduce £>2 from the slope of the straight line of best fit in the linear 

scaling region of a plot of log[C(r)] versus log[r].

The most common metric employed to measure the distance | • | in Eq.(2.6.1) 

is the Euclidean metric,

Xi -  Xj I
m

N
-  X j { k ) ) 2

k=1

We then assume that for small r, C (r) behaves as follows:

(2.6.3)

C (r) ss rDc (2.6.4)

Dc is then called the correlation dimension and it can be estimated using

l°g[C(r)]
Dc =  lim- . r ,r—>0 log[rJ (2.6.5)

where C(r) is the correlation function of the attractor, i.e. a measure of the 

probability that two points on the attractor are separated by a distance of r. 

For small r, the function log[C(r)] is approximately linear in log[r] and thus, Dc 
is simply given by the slope of the log-log curve. For a system to be chaotic, Dc 
should be fractal and should converge with an increasing embedding dimension.

Figure 2.11 shows the curves log[C(r)] versus log[r] evaluated from each of 

the one variables x{n) from the Lorenz system. The curves are shown using 

vectors in both m =  3 and m =  4.

Ten thousand data points were used and t =  10 selected by average mutual 

information was utilized in making time delay vectors for spaces of dimension 

m =  3 and m =  4. We already know from false nearest neighbors that this 

attractor is unfolded in m =  3, so m =  4 is a consistency check. The slope of 

this graph yields the correlation dimension D2.

Figure 2.12 is a plot of
r1]ncr\fl(

( 2 .6 .6)
dlog[C(r)]

dlog[r]
versus log[r] for each of the data sets x(n) from the Lorenz system.

We see consistency in a range of log(r) with a slope slightly around two.
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x(t) from Lorenz Model; 10,000 Points; x=10

Figure 2.11: The correlation function C (r) as a function of r for data from the 
x (t) component of the Lorenz attractor.

x(t) from Lorenz Model; 10,000 Points;x=10

Figure 2.12: The derivative of the correlation function log[C'(r')] created from 
x(t) taken from the Lorenz model with respect to log(r).
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2.6 .2  Lyapunov exponents

Lyapunov exponents quantify the average exponential separation between 

nearby phase space trajectories. An exponential divergence of initial nearby 

trajectories in the phase space coupled with folding of trajectories is the generic 

mechanism for generating deterministic randomness and unpredictability. In­

deed, the existence of a positive Lyapunov exponent for almost all initial condi­

tions in a bounded dynamical system is a widely used definition of deterministic 

chaos.

Calculating Lyapunov exponents from a time series

The first algorithm for calculating Lyapunov exponents from a time series

was proposed independently in 1985 [58]. The first step in these method is

to construct an appropriate embedding of the experimental time series using

the method of time delays described in Section 2.5. The maximum Lyapunov

exponent can now be calculated as follows [59, 60, 61, 62]. Choose a reference
- ( i )

point labeled X (0 ) and the “closest” neighboring point labeled X  (0) from 

the set of reconstructed phase space vectors and calculate

||AAo(0)|| = ||A(0)-A(1)(0)|| (2.6.7)
-  - ( i )

Evolve the two points X (0 ) and X  (0) forward in the reconstructed phase 

space for a time Tì and calculate the new separation distance

||AX(T1)|| =  ||A(T1) - A 1)(T1)|| (2.6.8)
_ ( 2)

An approximate renormalization is now performed by finding a point X  (0)
- ( 2)

that satisfies the dual requirement that (1) A  (0) is a neighboring point to 

X(Ti) and (2)
-  -  —* (2)

AXo(Ti) = X{Ti) -  X  (0) (2.6.9)

and AX(Ti)  are in approximately the same direction. The two points X (Tj) 
— * (2)

and X  (0) are now evolved for a time T2 in the reconstructed phase space to 

calculate
-  -  —> (2)

\\AX(T1+ T 2)\\ = \\X(T1+ T 2) - X  (T2)|| (2.6.10)
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The renormalization process of finding a neighboring point to the current point 

that has a similar orientation to the previous replacement point is repeated N  
times and then the maximum Lyapunov exponent is calculated as:

This calculation should then be averaged over several different initial starting 

points. In implementing the method, it is important to not accept as the

than the delay time r. This is to avoid choosing adjacent points on the same 

trajectory. Thus the times T\, . . . ,  Tjv should be greater than r. On the other 

hand, these times should be small enough to obtain exponential separations.

Figure 2.13 shows the illustration diagram about the Lyapunov exponent 

calculation from experimental data [60].

Figure 2.13: A schematic representation of the evolution and replacement pro­
cedure used to estimate Lyapunov exponents from experimental data.

The largest Lyapunov exponent is computed from the growth of length 

elements. When the length of the vector between two points becomes large, a 

new point is chosen near to the reference trajectory.

(2.6 .11)

'closest” neighboring point that is temporally separated by a distance less

x (r3)

basic trajectory
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2.7 Summary

This chapter gives an introduction to chaos theory including theoretical 

background and mathematical definitions. The chaos theory is a theory de­

scribing erratic behavior in certain nonlinear dynamical systems. In mathe­

matics and physics, chaos theory describes the behavior of certain nonlinear 

dynamical systems that under certain conditions exhibit a phenomenon known 

as chaos. In other word, chaos theory is a kind of method which is used to 

find out the invariable characteristics from the random signal for control and 

prediction. The embedding theory is used to transform the signal from time do­

main into phase space domain where the attractor of the signal is constructed. 

Time delay and embedding dimension are two parameters that influence the 

phase space reconstruction. The optimal choice for both of them can easily and 

correctly explore the dynamical features of signals in phase space. The frac­

tal dimensions and lyapunov exponent are two invariant characteristics of the 

signal attractor which can help us determine, control and predict the changing 

trend of a signal. The research results have demonstrated that this technique 

can be used as effective means of digital signal processing.

The methods and concepts introduced in this chapter give a new way for 

signal processing. In the following three chapters, three different procedures are 

developed for noise reduction, speech signal processing and electromyography 

signal processing which are based on the basic theory introduced in this chapter.
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Chapter 3

A Noise Reduction Procedure 
In Phase Space

The overall objective of noise reduction is to find the clear original signal 

that is consistent with the data. In this chapter, a phase space reconstruction 

based procedure is proposed for restoration of signals which are contaminated 

by noise. The procedure embeds the noisy signal into a high-dimensional re­

constructed phase space and follows three steps. The first step is phase space 

reconstruction in which Takens’ Theorem is applied to map the signal from 

time domain into a high-dimensional phase space domain. The second step 

is phase space projection which includes local singular value decomposition 

(LSVD) and global singular value decomposition (GSVD) for noise elimination 

in phase space. The third step is signal inverse transformation and a time- 

aligned average method is used to transform the signal from the phase space 

domain back to the time domain. The procedure has been applied to a sinu­

soidal signal with added random noise and the experimental results show that 

the noise can be eliminated and the SNR is increased to an impressive high 

value.
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3.1 Introduction

Different methods have been developed for optimal separation of the wanted 

signals from noise, which include linear signal processing techniques such as 

Wiener filtering and Kalman filtering as well as nonlinear methods such as 

manifold decomposition and phase space projection [63]. Every method of 

noise reduction assumes that it is possible to distinguish between noise and 

a clean signal on the basis of some objective criteria. Conventional methods 

such as linear filters use power spectrums for this purpose. Low pass filters 

assume that a clean signal has some typical low frequencies, and also it is true 

for high pass filters. It follows that these methods are convenient for a periodic 

or a quasi-periodic signal. In the case of chaotic signals, linear filters cannot be 

used for noise reduction for the signals without a substantial disturbance to the 

clear signal because chaotic signals have a broad-band spectrum which overlaps 

noise and the clean signal. New methods of noise reduction have recently been 

developed and they are based on the theory of nonlinear dynamical systems 

[64, 65, 66, 67].

Experimental time series are a mixture of deterministic component and 

random noise. A method for separation of the noise contribution directly in 

the phase space is proposed. In fact, the philosophy for the method is that 

it is not necessary to always consider solving the problem only arising from 

separating a deterministic signal from random fluctuations. It is possible that 

the “noise” may arise from a high dimension, deterministic dynamical system. 

The noise reduction problem, therefore, is a question of how to separate the 

low-dimensional dynamics from a complex signal. A relationship is derived be­

tween phase space projection methods commonly used in nonlinear dynamical 

systems and subspace decomposition methods commonly used in linear signal 

processing. From this relationship, it has been shown that phase space tech­

niques such as local singular value decomposition (LSVD) and global singular 

value decomposition (GSVD) can remove noise in phase space and preserve the 

clean signal.

50



3.1 Introduction 51

The flowchart of the procedure is shown in the Fig.3.1:

Figure 3.1: The flowchart of the nonlinear noise reduction (NNR) procedure
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523.2 Description o f noise reduction procedure

As can be seen, the procedure consists of seven steps:

(1) Phase Space Reconstruction: attractor reconstruction from the noise-corrupted 

time series, mapping the data into phase space;

(2) Nearest Neighbor Searching: searching the nearest neighbor points within 

the fixed radius for each point in the phase space;

(3) Local Singular Value Decomposition (LSVD): the LSVD method is used 

to project the points onto the primary subspace;

(4) New Trajectory Reconstruction: the median point of the nearest neighbor 

points is selected as the output in the phase space.

(5) Global Singular Value Decomposition (GSVD): the GSVD method is used 

to project the all tractory points onto the primary and secondary subspaces 

in the phase space;

(6) Transform Back To Time Domain: the time-aligned median method is used 

to transform the signal back from phase space domain to time domain.

(7) SNR Calculation: the Signal-Noise-Ratio (SNR) value is calculated.

3.2 Description of noise reduction procedure

The main feature of the procedure is to reconstruct the attractor of the 

contaminated signal in the phase space for noise elimination. The signal is 

projected onto a subspace spanned by eigenvectors associated with the higher 

eigenvalues. The noise can be reduced by projecting the trajectory points 

onto the subspace spanned by a suitable collection of singular vectors on the 

attractor. The combination of local and global nonlinear filters, LSVD and 

GSVD, is applied. The local filter is used for each point on the trajectory 

within a small region (neighborhoods) of the attractor and the global filter is 

used to all the points along the attractor. At last, the signal is transformed 

back to the original time domain which is the reversed procedure of the phase 

space reconstruction.
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3.2.1 Signal composition

To demonstrate the development of the procedure, a periodic sinusoidal 

signal contaminated by noise is chosen as the initial studying. The noise is a 

random process of which the elements are uniformly distributed in the inter­

val (-0.03, +0.03). Fig.3.2 shows the original clear signal, the noise and the 

composite signal.

Time(ms)
(c)

Figure 3.2: Signal simulation, (a) Original signal; (b) Noise; (c) Composite 
signal.
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3.2 Description o f noise reduction procedure 54

3.2.2 Phase space reconstruction

The embedding method introduced in section 2.5.1 is adopted. In this 

procedure, the embedding dimension m is set as 3 and the time delay r  is set 

as 1. Figure 3.3 shows the phase space reconstruction in three dimensional 

phase space for both clear and composite signal.

Figure 3.3: Phase space reconstruction, (a) Original signal; (b) Phase space 
reconstruction of (a), r  =  l ,m  =  3; (c) Composite signal; (d) Phase space 
reconstruction of (c), r  =  1, m =  3.
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From the results we can see that the trajectory points of the clear sinusoidal 

signal in phase space are formed into a single ellipse. But for the contaminated 

signal, the shape of the trajectory points in phase space is very different. So 

the phase space reconstruction can make the difference between clear and con­

taminated signals and this difference is difficult to be detected in time domain 

but more obviously in phase space.

3.2.3 Nearest neighbor searching

A neighborhood is a local subspace of attractor global phase space. By 

taking a reference point xref  on any trajectory, the neighborhood is defined as 

the n-dimensional subspace that includes the number of points nearest to xref 
within a neighborhood radius r. If the first reference point is xo, its n nearest 

points form the neighborhood will be:

U =  { x i , . . .  ,x n| : \xi -  x0| <  r,i =  1 ,2 , . . .  , n }  (3.2.1)

where n is the maximum number of points in each neighborhood.

In the task of range searching, after the reference point xre/  is selected, all 

points in the data set X  that have the distance r or smaller than r from xre/  

are chosen as the nearest neighborhood points. Sometimes range searching is 

called a fixed size approach. Fig.3.4 illustrates how the neighbor points are 

searched for the attractor in a two dimensional space.

Figure 3.4: The Range Searching Map
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3.2.4 Subspace projection for noise reduction

Phase space projection method for signal noise reduction has been proposed 

in recent years [68, 69, 70]. The main idea behind the method can be described 

as follows: Firstly, noisy signal is mapped onto an appropriate phase space 

where the signal should form an attractor. Because of the existence of noise, 

the orbits of contaminated signal in phase space will depart from the original 

attractor. Shadowing theorem [71] says that an accurate trajectory always 

exists along with an inaccurate trajectory. Then singular value decomposition 

(SVD) method is used to adjust the orbit in phase space and let the orbit be 

more close to the true attractor’s orbit [72, 73]. From the results of Fig.3.3, 

it can be seen that the trajectory of contaminated signal deviated from the 

trajectory of the clean signal. So if the trajectory of the contaminated signal 

can be adjusted closely to the trajectory of the clean signal, the noise should 

be eliminated through this procedure.

Local singular value decomposition (LSVD)

Singular value decomposition (SVD) is the widely-used multivariate sta­

tistical technique in digital signal processing. The purpose of singular value 

decomposition is to reduce the size of a dataset containing a large number of 

values to a dataset containing significantly fewer data numbers. The reduced 

dataset still contains the variability features presented in the original data. 

One application of the SVD method is the subspace projection for noise re­

duction in the phase space. The subspace projection of a given signal data 

matrix contains information about the signal energy and the noise sources. By 

using a subspace projection, it is thus possible to divide approximately the ob­

served noisy data into the subspaces of the original signal and additional noise. 

A summary of the noise reduction technique using the subspace projection is 

given in the following part and the corresponding Matlab code can be found 

in Appendix E.l.

Let X  be the available data in the form of an L x M  matrix:

X  =  [Xu X 2i. . . , X M] (3.2.2)
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where the column vector Xi(i =  1 ,2 , . . . ,  M) is written as:

Xi =  [xi(0), Xi( 1 ) , . . . ,  Xi(L — 1)]T (T  : transpose). (3.2.3)

Then, the singular value decomposition (SVD) of the autocorrelation matrix 

of X  (for M < L) is given by:

X TX  =  VAVt (3.2.4)

where the matrix V =  \p\,v2, • • • ,% ] is orthogonal such that VTV — Im and 

A =  diag(oi, a2, . . . ,  om), with eigenvalues o\ > 02 >  • • • >  <jm >  0. The 
columns in V  are the eigenvectors of X TX.  The eigenvalues in A contain some 

information about the number of signals, signal energy, and the noise level. It 

is well known that if the signal-to-noise ratio (SNR) is sufficiently high, the 

eigenvalues can be arranged in an order of the following:

<7! > (j2 > • • • > crs >  as+i > as+2 • • • > <yM (3.2.5)

and the autocorrelation matrix X TX  can be decomposed as: 

X TX  =
r 1

\---0< P -,
Vs VM-s\

_ 0 Aj\t-s_

? 1 Co (3.2.6)

where As contains the s largest eigenvalues associated with s signal fractions 

with the highest energy (i.e., cti, a2, . . . ,  as) and AM- S contains (M  — s) eigen­

values crs+i, crs+2, . . . ,  ctm- It is then considered that Vs contains s eigenvectors 

associated with the main signal energy, whereas Vm - s contains (M  — s) eigen­

vectors associated with the minor signal energy. The subspace spanned by the 

columns of Vs is thus referred to as the signal principal subspace, whereas that 

spanned by the columns of Vm - s corresponds to the signal secondary subspace.

Then, the signal primary and secondary subspaces are mutually orthogonal 

and orthogonally projecting the observed noisy data onto the signal primary 

subspace leads to noise reduction. The data matrix after the noise reduction 

is written as Y =  [Yi, Y2, . . . ,  YM]T, where T, =  [^(0), yt( 1 ) , . . . ,  y^L -  1)], is 

given by:

Y = XVsV j  (3.2.7)

which describes the orthogonal projection onto the signal primary space.
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Neighborhood projection

For each point on the trajectory, there must be a neighborhood and the SVD 

method is used for each point until the entire attractor is covered. Fig.3.5 shows 

the whole procedure of trajectory projection by using the local SVD method 

in phase space.

Figure 3.5: Local singular value decomposition (LSVD). (a) Signal trajectory 
in phase space, r  =  l ,m  =  3; (b) Signal trajectory points in phase space; (c) 
A  neighborhood for a reference point; (d) Result of neighborhood projection 
using LSVD method; (e) New signal trajectory points in phase space; (f) New 
signal trajectory in phase space.
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In this procedure, we just take the first eigenvector in Vs which is associated 

with largest eigenvalue in As, by using (3.2.7) to project noisy signal onto the 

signal primary subspace within a neighborhood. The result is that the random 

points in the neighborhood will form a straight line in a three dimensional 

phase space. Fig.3.5(d) shows the result of neighborhood projection using 

LSVD method. Then the median point of this space line is selected as the 

output point for each point in this neighborhood. Fig.3.5(e) shows the result 

of new trajectory points.

Global singular value decomposition (GSVD)

After the local SVD method is applied, the noise still can not be eliminated 

entirely. By comparing with the trajectory of the clear signal in phase space, 

the points in the three dimensional phase space are located on the same plane. 

To clean noise from the signal further, the global SVD method is used and 

this time all the points in the phase space are projected onto the primary 

and secondary subspace so that all the points are on the same plane in the 

phase space. Fig.3.6(b) shows the result of trajectory of de-noised signal after 

local SVD method from an angle. Fig.3.6(d) shows the result of trajectory of 

de-noised signal after global SVD method from the same angle as Fig.3.6(b).
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(b)

(d)

Figure 3.6: Global singular value decomposition (GSVD). (a) Trajectory of 
de-noised signal after LSVD method; (b) Trajectory of de-noised signal after 
LSVD method from an angle; (c) Trajectory of de-noised signal after GSVD 
method; (d) Trajectory of de-noised signal after GSVD method from the same 
angle as (b).
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3.2.5 Transform back from phase space to time domain

Once transformed, the new trajectory matrix Y  no longer corresponds to a 

time-delay embedding in a single time series, and there is no unique mapping 

back to the one-dimensional signal. Each column of the transformed matrix 

represents a possible enhanced signal output. There are several methods for 

creating an enhanced time-series from the new trajectory matrix, including 

selecting a single column from it or performing a time-aligned averaging of the 

columns.

In this procedure, a time-aligned median method is used, in which the 

median value is selected for each column of the matrix as the result for output 

[63]. To illustrate this process, an example trajectory matrix Y  and aligned

trajectory matrix âligned are shown below for the case of T  == 1, m — 3, with

50 points in the time-series.

1 2 3 4 •• • 45 46 47 48"
Y t = 2 3 4 5 •• • 46 47 48 49 (3.2.8)

3 4 5 6 •• • 47 48 49 50

Ì 2 3 4 •.. 47 48
y t  —1 aligned 2 3 4 •.. 47 48 49 (3.2.9)

3 4 •.. 47 48 49 50

The resulting output time-series is given by:

y(i) =  median{yaiigned(i)} i =  1, 2, . . . ,  50 (3.2.10)

where y is the time series transformed back from phase space, Taiigned(i) is 

the zth column from âligned- Fig.3.7 shows the result of time-aligned median 

method.
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Figure 3.7: Signal return to time domain, (a) Composite signal in time domain; 
(b) Trajectory of composite signal in phase space; (c) Result of local SVD and 
globe SVD methods; (d) Result of de-noised signal transforming back to time 
domain.
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3.2.6 SNR calculation

As a measure of the noise-reduction performance, the signal-to-noise ratio 

(SNR) is used. SNR is an engineering term for the power ratio between a signal 

(meaningful information) and the background noise as:

S N R = ^ (3.2.11)
■* noise

Because many signals have a very wide dynamic range, SNRs are usually 

expressed in terms of the logarithmic decibel scale. In decibels, the SNR is 20 

times the base-10 logarithm of the amplitude ratio, or 10 times the logarithm 

of the power ratio:

SNR(dB) =  101og(§® ^ ) =  2 0 1 o g ( ^ ^ )  (3.2.12)
noise -^noise

where P  is average power and A is RMS amplitude. RMS is the square root of 

the mean of the squares of the values. The RMS for a collection of N  values 

{xx ,x2, • • • , x N} is:

3/rms —
A

i N 

1=1
xj

In this procedure, the SNR is defined as:

(3.2.13)

S N R = 10H n ^ k ? )  (3 '214)

where x is the time series of clean signal and xn is the time series of a signal 
after noise reduction.

► By calculation, the SNR value is 33.405 for the composite signal before any

signal processing has been applied and it will increase to 43.117 after local SVD 

method and it will increase to 45.914 finally after global method.
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3.3 Noise reduction procedure for higher dimensional phase space 64

3.3 Noise reduction procedure for higher di­

mensional phase space

The application of noise reduction procedure in three dimensional phase 

space has been discussed in previous sections. It can also be used in a higher 

dimensional phase space. Figure 3.8 shows the SNR results for the composite 

signal which is embedded into a higher dimensional phase space from 4 to 

10, respectively, and the time delay r  =  1. The both local and global SVD 

methods are used in three dimensional phase space. In the global SVD method, 

the signal is also projected onto primary and secondary subspaces.

CC
zin

3 4 5 6 7 8 9  10
Embedding Dimension

Figure 3.8: SNR results in higher dimensional phase space, r  =  1

From the Fig.3.8, we can see that the different embedding dimensions can 

influence the SNR value. And another parameter in phase space reconstruction, 

the time delay r, can also play an important role in the SNR calculation. 

Fig.3.9 and Fig.3.10 show the SNR results for the composite signal which is 

embedded into a higher dimensional phase space from 4 to 10 and the time 

delay t  — 2 and r  =  3, respectively.

O SNR after local SVD
*  SNR after global SVD
• SNR before processing
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43 > O SNR after local SVD
*  SNR after global SVO
• SNR before processing

6 7
Embedding Dimension

Figure 3.9: SNR results in higher dimensional phase space,r =  2

<r
zco

O SNR after local SVD 
*  SNR after global SVD 
« SNR before processing

5 6 7
Embedding Dimension

Figure 3.10: SNR results in higher dimensional phase space,r — 3
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Table 3.1 and Table 3.2 show SNR results of local and global SVD processing 

for the composite signal which is embedded into a higher dimensional phase 

space with embedding dimension m from 4 to 10 and time delay r  from 1 to 

10, in a tabular way.

Table 3.1: SNR values after local SVD

SNR Embedding Dimensions

Time Delay 3 4 5 6 7 8 9 10
1 43.12 43.48 43.64 43.48 43.07 42.98 43.02 42.79

2 42.03 43.13 43.03 43.22 43.59 43.69 43.78 43.65

3 43.14 42.58 42.75 42.97 43.02 42.85 42.93 42.71

4 41.50 41.68 42.47 43.07 44.18 44.10 43.59 43.00

5 42.04 42.84 42.66 42.69 43.15 42.35 41.78 41.42

6 43.66 43.19 43.72 43.15 42.92 42.38 42.02 41.62

7 42.31 42.60 42.69 42.47 42.09 41.77 41.72 41.28

8 41.52 41.84 41.98 41.92 42.09 41.10 40.76 40.53

9 41.79 42.02 41.73 41.61 41.16 40.84 40.50 40.32

10 34.61 37.64 40.17 41.19 41.50 41.55 41.18 41.13

Prom the table, we can see that the highest SNR value after local SVD 

processing is 44.18 when m =  7 and r  =  4.
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Table 3.2: SNR values after global SVD

SNR Embedding Dimensions

Time Delay 3 4 5 6 7 8 9 10
1 45.91 48.32 48.72 49.41 49.01 49.47 49.28 48.86

2 43.49 44.84 45.28 46.20 46.53 46.46 47.64 47.53

3 46.76 46.95 48.28 49.53 49.68 48.72 48.71 48.43

4 41.81 42.77 43.65 44.29 46.22 46.16 45.10 44.82

5 42.91 44.13 44.62 44.20 44.91 44.13 43.71 43.24

6 44.61 45.36 46.82 46.33 46.10 45.55 45.25 45.05

7 44.38 45.32 46.25 46.31 46.09 46.02 46.53 46.88

8 41.91 42.92 43.23 43.39 43.72 42.46 42.13 42.12

9 45.02 46.50 47.07 46.60 46.74 45.72 45.90 45.86

10 34.59 37.76 40.16 41.49 41.58 41.62 41.33 41.24

From the table, we can see that the highest SNR value after global SVD 

processing is 49.68 when m =  7 and r  =  3 which is higher than the result of 

local SVD processing.
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3.4 Summary

In this chapter, phase space reconstruction based method is proposed to 

address the problems of noise reduction in signal processing. A noise reduction 

procedure is developed from the inspiration of chaos theory. The procedure 

can be summarized into three main steps: Phase space reconstruction, which 

is used to map the signal from time domain into phase space domain; Phase 

space projection, which is used to get rid of noise components from the signal 

addressed in the phase space; Time domain transformation, which is used to 

transform signal back to time domain. The proposed procedure is an initial 

studying which is tested using a sinusoidal signal contaminated by noise. Re­

sults show that the procedure is effective for noise reduction in phase space 

and it is an important alternative way for signal noise reduction.

The noise reduction procedure proposed can also be applied to the higher 

dimensional phase space with different time delay to get the better result.

This noise reduction procedure requires no prior dynamical information for 

its implementation and no general properties for the time series. The procedure 

is purely geometric. The chaotic techniques and conceptions which are used in 

this procedure can also be applied to other types of signals, such as the speech 

signal and electromyography (EMG) signal.

(
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Chapter 4

Speech Signal Restoration Using 
Phase Space Reconstruction

In this chapter, a phase space reconstruction procedure is proposed for 

restoration of speech signals contaminated by noise. The procedure embeds 

the noisy signal into a high-dimensional reconstructed phase space which con­

sists of two steps. The first step is Singular Value Decomposition (SVD) which 

identifies the distorted segments of the signal and the second step is Space In­

terpolation to recover the missing information of the distorted signal segments. 

Then, the signal is transformed back from phase space to time domain. The ex­

perimental results show that SVD method can identify the distorted segments 

successfully and the recovered speech signal is obviously more speech recog­

nizable. The procedure described in the chapter is also suitable for real-time 

implementation which may be used to improve the sound quality of micro­

phones.

4.1 Introduction

With the development of communication technology, it demands to have 

reliable transmission and reproduction of audio and speech signals. However, 

in many cases, the speech signals may be partially corrupted or contaminated. 

This is mainly because the transmission channels often introduce additive noise

69



4.1 Introduction 70

to the signals transmitted. Sometimes, the recorded speech signal is already 

distorted before they were transmitted, for example, conversations recorded in 

a noisy environment. It is very important to separate the clear speech signal 

from the background noise and improve its quality before further processing 
applied.

There are some popular methods for speech signal enhancement and noise 

reduction, such as Ephraim-Malah minimum mean-square error (E-M MMSE) 

[74], log spectral amplitude (LSA) estimation [75], spectral subtraction [76] 

and beta-order MMSE [77]. One of the main approaches of these algorithms 

is to obtain the best possible estimates of the short time spectra amplitude 

(STSA) of a speech signal in a noisy environment.

The main problem with the application of these algorithms for filtering 

noise from corrupted speech signals is that they can not recover the useful 

information missing from the distorted signal. For example, the missing in­

formation is caused by speech saturation. Sometimes, recovering the missing 

information is more difficult than cleaning the contamination from a signal. 

Some research work has been studied for speech signal recovery [78, 79, 80]. 

The objective of this research work is to restore the missing information for 

the corrupted signal and then remove the noise without distorting the original 

speech signal. A novel procedure based on phase space reconstruction is pro­

posed to achieve the above goal. Some related research work has been reported 
in [81, 82, 83, 84, 85].

70

>



4.1 Introduction 71

The whole process of the procedure is shown in the flowchart in Fig.4.1.

Figure 4.1: The flowchart of the procedure for speech signal restoration
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As can be seen, the procedure is comprised of three parts:

(1) Detection of corrupted signal segments, including four steps: frame extrac­

tion, phase space reconstruction, SVD calculation and points distribution 

calculation, which is used to identify the corrupted part of the signal.

(2) Signal restoration, including two steps: interpolation points location and 

space interpolation, which is used to recover the missing information of a 

corrupted signal in phase space.

(3) Return to the time domain, the time-aligned weighted average method is 

used to transform the recovery signal from phase space back into the time 

domain.

4.2 Detection of corrupted speech signal seg­

ments

For most cases, noise reduction methods could be effectively used to re­

move noise from contaminated speech signals. However, in many cases, the 

distorted signal is not purely caused by add-on noise contamination but by 

losses of information from the signal. So the signal can not be restored by 

filtering. This motivated the work reported in this chapter and also the pro­

cedure development is inspired by the methods introduced in Chapter 3. The 

proposed procedure works in the way of that the damaged part of the speech 

signal is restored first and the filtering method is applied afterwards. There 

are two main steps in this procedure to recover the corrupted speech signal, 

namely, detection and restoration. The step of detection includes frame ex­

traction, phase space reconstruction, singular value decomposition (SVD) and 

point distribution calculation.
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4.2.1 Frame extraction and phase space reconstruction

To identify the corrupted part of a speech signal automatically, the original 

signal is divided into frames at the very first step. One frame is defined as 

a waveform segment which includes only one peak or crest and also all the 

data covered in the frame must be either positive or negative. Fig.4.2(a) shows 

the experimental signal and one particular frame extracted. The embedding 

method introduced in Chapter 2 is used to reconstruct the phase space of the 

speech signal with the embedding dimension m =  3 and the time delay r  =  1. 

Fig.4.2(b) shows the example of phase space reconstruction for one typical 

frame.

Figure 4.2: Phase space reconstruction, (a) Original speech signal and one 
frame extraction, (b) Phase space reconstruction of the frame, m =  3 ,r  =  1.
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4.2.2 Singular value decomposition

Singular Value Decomposition (SVD) method introduced in Chapter 3 is 

used to project the signal onto a signal primary subspace. In this procedure, 

SVD method is used for detection of the corrupted segment of the signal. 

Fig.4.3 shows the result of trajectory projection by using SVD method in the 

reconstructed phase space (m =  3 ,r  =  1) for one frame of the speech signal.

Figure 4.3: Trajectory projection, (a) Phase space reconstruction of the frame, 
m =  3, t =  1. (b) Trajectory projection by using SVD.

4.2.3 Points distribution calculation

Because only one eigenvector is used for projection, all points of trajectory 

after SVD method are then formed into a line in the phase space and the sum 

of distances between the trajectory points and this line is minimal. Fig.4.4(a) 

shows the space line. It can be seen that for the corrupted part of the signal, 

the distribution of the points along this space line is not uniform and most 

of them concentrate within a narrow scope. By calculating the distribution
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ratio of the trajectory points along this line, we can tell whether this part of 

the signal is corrupted or not. The line is initially divided into L number of 

equal intervals. The distribution ratio is the maximal ratio of the number of 

points at an interval (POLi) to the number of all points (M ) along the line. 

Fig.4.4(b) shows the point distribution along the space line. The distribution 

ratio for each interval is calculated by:

POL-
Ri =  i =  l , 2 , . . . ,L  (4.2.1)

where i is the index of intervals along the space line, Ri is the points distribution 

value for each interval, POLi is the number of points in each interval and M  is 

total number of points along the space line. So the maximal point distribution 

value /¿max can be obtained by:

fimax = max.{Ri} * = 1,2, . . . ,  L (4.2.2)

Figure 4.4: Distribution ratio of the trajectory points, (a) Trajectory projec­
tion by using SVD. (b) Points distribution calculation.

75



4.2 Detection o f corrupted speech signal segments 76

If Rmax is higher than the threshold preset, the corruption degree of the 

signal segment is considered as serious. According to this criterion, the cor­

rupted part of signal can be detected. Fig.4.5 shows the result of distribution 

ratio of all the frames. The frame whose the maximal distribution ratio above 

the threshold (60%) is identified as a corrupted frame.

H
S’usr
o .
CL

Figure 4.5: Distribution ratio of all frames, (a) Original speech signal and 
frames, (b) Points distribution ratio of all frames.

»

76

»



4.3 Signal restoration in phase space 77

4.3 Signal restoration in phase space

In this section, the second main step, restoration, is discussed. The space 

interpolation method is used in phase space for this work.

Interpolation is a method of constructing a new data point set from a known 

discrete data point set. There are a number of interpolation methods reported 

such as linear interpolation, polynomial interpolation, spline interpolation and 

multivariate interpolation. Because of the multi-dimensional nature of the 

phase space, the interpolation method used in this procedure is the multivariate 

interpolation in which the interpolation function has more than one variable, 

cubic interpolation in two dimensions [86].

4.3.1 Locations of interpolation points

To use space interpolation method in phase space, there are three points at 

least should be identified first: the start point, the end point and the middle 

point. But for a better recovery result, the points used are based on the signal 

waveform changing trend. Four points are initially selected: two start points 

and two end points. Firstly, the slope at each point is calculated by using the 
equation:

% i -  slope —
®i+l 1 (i =  2, 3 . . . , IV — 1) (4.3.1)

The changing value of the slope is defined as:
N - 2

C V S  ^   ̂1 (-EfO-slope •^(t+l)_slope| (4 .3 .2 )
i= 2

where rci_siope is the point slope value, N  is the length of the signal and CVS  
represents the absolute difference between adjacent elements of Xj_siope.

According to the characteristic of the corrupted part of the signal, the 

interpolation points should be those points whose slope values have a sharp 

change. If the CVS value changes sharply at the beginning or by the end of 

the frame, the points in those positions should be considered as the segment 

terminal points for interpolation. In this procedure, the sharp change is set as 

20% changing between two adjacent slopes. Fig.4.6 illustrates the results of 

interpolation point location.
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Figure 4.6: Interpolation points location

4.3.2 Results from application of the space interpolation 

method

Fig.4.7 shows the results after using the interpolation method in phase 

space.

Figure 4.7: Space interpolation method, (a) Result before using space inter­
polation method, (b) Result after using space interpolation method.
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4.4 Transform back from phase space to time 

domain

Once interpolation method has been applied, the new trajectory matrix no 

longer corresponds to a time-delay embedding in a single time series, and there 

is no unique mapping back to a one-dimensional signal. Each column of the 

transformed matrix represents a possible enhanced signal output. There are 

several methods for creating an enhanced time-series from the new trajectory 

matrix, including selecting a single column from it or calculating a time-aligned 

averaging of the columns which is introduced in Chapter 3.

In this procedure, a time-aligned weighted average method is chosen [63] 

which is a slightly different from the time-aligned median method we intro­

duced in Chapter 3. The new method uses higher weight given to the values 

in the center columns of the matrix and lower weight given to the values in 

the left-most and right-most columns. This corresponds to emphasizing the 

time-centered value of each projected point. Signal points near the beginning 

or end of the trajectory matrix have fewer representatives and are weighted ac­

cordingly. To illustrate this process, an example trajectory matrix X ,  aligned 

trajectory matrix ^aligned, and weighting matrix P  are shown below for the 

case of d =  3, r  =  1 with n=50 points in the time-series.

1 2 3 4 5 ••• 45 46 47 48
2 3 4 5 6 ••• 46 47 48 49

3 4 5 6 7 •.. 47 48 49 50

(4.4.1)

P T

1 2 3 4 5 ••• 48
X Taligned = 2 3 4 5 ••• 48 49 (4.4.2)

3 4 5 ••• 48 49 50

"l 0.5 0.25 0.25 0.25 0.25

0.5 0.5 0.5 0.5 0.5 0.5 (4.4.3)

0.25 0.25 0.25 0.25 0.5 1
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The resulting output time-series is given by:

d

Y(m) = T >  (m =  1 ,2 , . . . ,  n +  d — 1) (4.4.4)
i - 1

where Xi is the *th column from X aiigned, Pi is the corresponding weight vector 

from P. Each row of the weighting matrix sums to one. m is the index of 

output time-series. Fig.4.8 shows the result of time-aligned weighted average 

method.

Figure 4.8: Signal return to time domain, (a) Restoration result of one frame, 
(b) Restoration result of all frames.
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4.5 M M SE LSA estimator

MMSE LSA estimator is a short-time spectral amplitude (STSA) estimator 

for speech signals which minimizes the mean square error of the log spectra. 

The estimator is very effective in dealing with noisy speech signals, and it 

significantly improves the quality of speech.

MMSE LSA estimator is derived from an algorithm [74] which is proposed 

for enhancing speech degraded by uncorrelated additive noise when the noisy 

speech alone is available. This algorithm capitalizes on the major importance 

of the short-time spectral amplitude (STSA) of the speech signal in its percep­

tion, and utilizes a minimum mean-square error (MMSE) STSA estimator for 

enhancing the noisy speech.

While the distortion measure of mean-square error of the spectra (i.e., the 

original STSA and its estimator) used in [74] is mathematically tractable, and 

leads also to good results, it is not the most subjectively meaningful one. It is 

well known that a distortion measure which is based on the mean-square error 

of the log-spectra is more suitable for speech processing. Such a distortion 

measure is therefore extensively used for speech analysis and recognition. For 

this reason, it is of great interest to examine the STSA estimator which mini­

mizes the mean-square error of the log-spectra in enhancing noisy speech. The 

derivation of the above STSA estimator and its comparison with the MMSE 

STSA estimator derived in [75].

We found that MMSE LSA estimator is superior to the MMSE STSA es­

timator since it results in a much lower residual noise level without further 

affecting the speech itself. So the MMSE LSA estimator is used in this algo­

rithm. The whole computation process of MMSE LSA estimator is explained 

below and the corresponding Matlab code can be found in Appendix E.2.
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4.5.1 Gain function of MMSE LSA estimator

An observed noisy speech signal x(t) is assumed to be a clean speech signal 

s(t) degraded by uncorrelated additive noise n(t), i.e.,

x(t) =  s(t) +  n(t) 0 < t < T  (4.5.1)

Let Sk =  Akê ak) Nk and X k =  Rk^°k denote the kth spectral component 

of the clean speech signal s(t), noise n(t), and the observed noisy speech x(t), 
respectively, in the analysis interval [0, T], We are looking for the estimate 

of Ak, Ak, which minimizes the mean-square error of log-spectra between the 

speech spectral amplitude and the estimated speech spectral amplitude:

E{(\ogAk -  l o g i fc)2} (4.5.2)

given the observed signal (x (i) , 0 <  t <  T }, where E  indicates the expectation 

operator. Obviously, the estimator is given by:

Ak =  exp{£[lnA*|Xt, 0 <  t <  T}} (4.5.3)

Assuming the individual spectral components are statistically independent of 

one another, the expected value of Ak given {x(t), 0 <  t <  T }  is equal to the 

expected value of Ak given X k only. We therefore have

Ak =  exp {£ ,[lnAfc|Afc} (4.5.4)

The evaluation of E[lnAk\Xk] for the Gaussian model assumed here is con­

veniently done by utilizing the moment generating function of lnAfc given Xk- 
Let Zk — InA*;. Then the moment generating function &zk\xk(n) of Zk given 

Xk equals:

®zk\xk{tJ) =  E{exp(frZk)\Xk}
(4.5.5)

=  E M \ X k }

E{lnAk\Xk} is obtained from § z k\xk{lj) by:

E{\nAk\Xk} =  zk\xk{lA\ti=o (4.5.6)
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Therefore, our task is now to calculate $ zk\xk(p) and then to obtain E{\n.Ak\Xk) 
by using (4.5.6). From (4.5.5), $ zk\xk(p) is given by:

= E{Ai\Xt).
_  f , r  I T  <ihP(Xk\a k, ak)p(ctk , otk)<kxkd a k (4.5.7)

Jo Jo P ( ^ k  l̂ fc, OiA:)p(0'fc, CTfe)dQ!feCifl./;

where the symbol ak denotes the sample value of Ak. With the complex Gaus­

sian assumption of each individual spectral component of speech and noise, 

the conditional probability density function (PDF) of the observed spectral 

component given ak and ak, p (X k\ak, ak) is given by:

, \ 1 r \Xk - a kejotk\2^
p™ “ ‘ ’ “ t) =  ; i ( i fe 5 exp i— iuiT)— > (4 5 '8)

and the joint PDF of the speech spectral amplitude and phase, p(ak,a k), is 

given by:

<45-9)
where pn(k) =  E{\Nk\2}, ps(k) =  E{\Sk\2} and are the variances of the /cth 

spectral components of noise and speech signals, respectively. Substituting 

(4.5.8) and (4.5.9) into (4.5.7), and using the integral representation of the 

modified Bessel function of zero order, we have (4.5.10):

®zk\xk{p) =  r , f  r ( |  +  1 ) M ( - | ;  1; - v k) (4.5.10)

where T(h) is the gamma function and M (a, 7 , z) is the confluent hypergeo-

metric function, i.e.,

M (a ,7 ,z ) =  1 +  ~  +
a(a  +  1) z2 « ( a  +  l ) (a  +  2) z3 
7(7 +  1) 2! +  7(7 +  1)(7 +  2) 3! +  . . .

where r)(k) and vk are defined as follows:

(4.5.11)

(4.5.12)

r](k) =
1

Vs(k)

vk
1 + 7fc

(4.5.13)

(4.5.14)
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where and jk represent the a priori SNR and a posteriori SNR respectively, 

i.e.,
■nth's R?

(4.5.15)c _  ^ ( fc) ^S k — / I \ ) Rl
Vn(k)' rjn(k)

So, the derivative of M (—¡i/2\ l;u*;) at /i =  0 is obtained by:

^  r = l

(4.5.16)

The derivative of T(/x/2 +  1) is conveniently obtained through the derivative 

of lnT(iJ./2 +  1) by using:

¿ r (f  + 1) = r(| + i)^ in r(| + 1) (4.5.17)

The derivative of lnT(fi/2 +  l)  is obtained by utilizing its series expansion given 

by:
// i, J5L( — uY

(4.5.18)M y ^ (~AQ7
2 + ¿ - i  2Tri” r ( f  +  i  ) =  - < £  +  £

r — 2

Qir

where

a r
00 1 

71=1
(4.5.19)

and c =  0.57721566490 is the Euler constant. Differentiating (4.5.18) term by 

term, and using (4.5.17) gives:

| r (e + D U ~ !
Now, by using (4.5.16) and (4.5.20) we obtain from (4.5.10): 

§^zk|x * ( m ) l/i=o =  ^ ln A fc -  , ( c  +  ^  " )

(4.5.20)

r= l r! r

=  2 n̂^fc ~*~
1 /'<x
« 0™fc +  /
Z ■'U/fe

O O g - t
(4.5.21)

di)

The integral in (4.5.21) is known as the exponential integral of Vk, and can be 

efficiently calculated. On substituting (4.5.21) into (4.5.6) and using (4.5.15) 

and (4.5.4), we get the desired amplitude estimator:

A  k =  — ext
1 + 6

. 1 f°° e“ * „
p { 2 l  T dt)R

(4.5.22)
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It is useful to consider Ak as being obtained from Rk, by a multiplicative 

nonlinear gain function which depends only on the a priori and the a posteriori 
SNR £k and 7k, respectively. This gain function is defined by:

G (& ,7*) =  4 *  (4-5.23)
rtk

It is interesting to note that the new gain function which results from 

(4.5.22) always gives a lower gain than the one which results from the estimator 

of [74], This is easy to prove by using Jensens inequality:

Ak =  exp{E[\nAk\Xk} < exp{\nE[Ak\Xk} =  E[Ak\Xk\ (4.5.24)

The STSA estimator which minimizes the mean-square error of the log- 

spectra is derived and is examined in enhancing noisy speech. The MMSE 

LSA estimator is superior to the MMSE STSA estimator derived in [74] since 

it results in a much lower residual noise level without further affecting the 

speech itself. In fact, the new estimator results in a very similar enhanced 

speech quality as that obtained with the MMSE STSA estimator of [74], which 

takes into account the signal presence of uncertainty.

4.6 Experimental results

The procedure proposed in this chapter has an advantage of without re­

quiring spectral models for speech and noise signals. This procedure can also 

suppress the noise during the process of signal restoration. The procedure 

shows a better performance when it is combined with other noise reduction 

methods in signal processing, such as log spectral amplitude (LSA) estimation 

which is introduced in previous section. The experimental results show that 

the speech signal processing with restoration and noise reduction can result in 

an improved quality of the signal processing. Fig.4.9 and Fig.4.10 show the 

results of LSA method without and with signal restoration, respectively.
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(b)

Figure 4.9: Noise reduction without signal restoration, (a) Original signal, (b) 
LSA method without restoration.

(b)

Figure 4.10: Noise reduction with signal restoration, (a) Signal after restora­
tion. (b) LSA method with restoration.
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The two circles in the Fig.4.9 and Fig.4.10 are the noise parts after using 

noise reduction method. From Fig.4.10, it can be seen that the noise part 

in the circles can be eliminated completely by using LSA method with signal 

restoration. In our procedure, the embedding dimension m is set as 3, time 

delay r  is set as 1 and the point distribution ratio is set as 60%.

The speech signal used in this experiment is a piece of telephone conver­

sation provided by a police station. The conversation recorded on the CD is 

almost not recognizable before processing. After the procedure developed in 

this thesis is applied, the whole set of the conversation can be recognized by 

the police officer apart from a few missing words. Certainly, the understand­

ing level of the speech depends on the listener, such as, the native English 

speaker or a person with English as his/her second language. We have asked 

a number of persons to listen the record and recite the contents of the record. 

The conversation can be understood by the listener with English as the second 

language.

i
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4.7 Summary

In this chapter, a phase space trajectory reconstruction method for speech 

signal restoration is proposed. The procedure is based on the theory of non­

linear dynamic system analysis, in which the signal is mapped (projected) 

into a high dimensional phase space. Firstly, the SVD method is used to de­

tect the corrupted signal segment. Secondly, the new trajectory of signal in 

phase space is reconstructed by using space interpolation method. Thirdly, 

the signal is transformed from phase space back into the time domain for the 

signal restoration. Finally, the restored signal is processed using noise reduc­

tion method. The experimental results demonstrate the effectiveness of this 

procedure to show that the result of noise elimination for restored signal is 

much better than that of signal without restoration. The main contributions 

of the procedure can be considered to have three folds:

(1) Finding an efficient way to detect the corrupted signal segments by using 

the SVD method.

(2) Using interpolation method in phase space to achieve the signal restoration.

(3) Proving the effectiveness the procedure that the better result of noise elim­

ination can be obtained for the signal with restoration.



Chapter 5

Uterine Electromyography 
Signal Feature Extraction and 
Classification

Uterine electromyography (EMG) signal has a potential to be used for early 

diagnosis of preterm labor clinically. But it is difficult to differentiate the pat­

terns of uterine contractions from EMG signals which will lead to preterm birth 

or not. In this chapter, a number of methods have been investigated with the 

aim of finding a possible effective procedure which includes a variety of signal 

processing methods to extract the features from uterine EMG signal and to 

classify the normal term labor from abnormal preterm labor signals. In this 

procedure, the signal is preprocessed to eliminate the noise and high frequency 

components using threshold de-noising and wavelet de-noising methods. Then, 

the fractal dimension value along the signal is calculated for the extraction of 

contraction patterns using techniques rooted from chaos theory which includes 

phase space reconstruction and singular value decomposition. Each contrac­

tion pattern of the signal is decomposed into sub-signals using wavelet packet 

transform method and the average wavelet packet energy of all the contraction 

patterns of each EMG signal is calculated. Afterwards, the signals are classified 

using artificial neural network method. The experimental results show that the 

classification accuracy of term labor signal and preterm labor signal can reach
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64.1%. Although it is not a result of confidence, it is an very encouraging for 

further study heading the right direction for procedure development.

5.1 Introduction

Electromyogram (EMG) measures the electrical activity of muscles to gather 

information about muscular and nervous systems. As the use of EMG is con­

venient, it is now becoming increasingly a powerful measure to get information 

and to diagnose problems and diseases about the muscular and nervous system. 

For example, it can diagnose some causes of muscle weakness or paralysis, mus­

cle or motor problems [87], sensory problems, nerve damage or injury. EMG 

is also used in other fields such as kinesiology, gait [88] and posture studies 

[89] and prosthesis design [90]. But up to now, most analysis methods of EMG 

are still based on linear and statistical analysis. Only a few people deal with 

nonlinear principle and method. In recent years, some research work have been 

reported in analysis of EMG signals using nonlinear methods which are based 

on chaos theory [91, 92, 93, 94].

Abdominal uterine electromyography is an electrophysiological signal rep­

resenting uterine activity during women pregnancy which has been studied for 

many years. Proper diagnosis of labor is one of the major challenges faced by 

obstetricians. There are no accurate and objective methods to predict the on­

set of labor, to differentiate the true and false labor both for term and preterm 

patients, or to determine whether the false labor will progress to true labor and 

on what time scale. At present, the progress of labor is monitored by record­

ing the changes in the cervical state and by measuring the rate, duration and 

amplitude of uterine contraction using a tocodynamometer or the intrauterine 

pressure catheter (IUPC). Owing to the poor predictive power of the tocody­

namometer and the invasive nature of the IUPC, neither technique has been 

beneficial in prediction of preterm tabor or the diagnosis of true labor at term 

[95].
Characterization of these uterine electrical events is possible non-invasively 

through recording of uterine EMG signals from the abdominal surface. In ad-
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dition to providing the usual information concerning the frequencies of uterine 

contractions, the analysis of the characteristics of electrical events measured 

by transabdominal EMG can assess the progression of uterine preparedness for 

labor. Recent studies have proved that it is able to provide reliable information 

about uterine contractions. More recent ones have shown that the characteri­

zation of the contractile activity during pregnancy would be of great value for 

the diagnosis of preterm delivery [96, 97, 98, 99, 100].

EMG signals have been processed in the steps as shown in the flowchart 

in Fig.5.1. As can be seen, the procedure is comprised of three main parts: 

Signal preprocessing, in which the threshold de-noising and wavelet transform 

methods are used to eliminate noise and get rid of the high frequency com­

ponent of the signal; Signal feature extraction, in which the fractal dimension 

value along the signal is calculated for the contraction pattern extraction and 

the average wavelet packet energy of each contraction pattern is calculated to 

be used for the classification; Signal classification, the term labor signal and 

preterm labor signal are classified using artificial neural network (ANN).

i
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Figure 5.1: Flowchart of the procedure
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5.2 Signal preprocessing

5.2.1 Threshold de-noising

As the original signal is always contaminated by noise, the pre-processing 

of the signal is necessary in most cases. A typical example of the original 

signal is shown in Fig.5.2(a). We can see that there are some high values of 

sharp sparks across the whole signal segment and the sparks have extreme large 

values which make it difficult to see the normal contraction patterns from the 

signal clearly. So the first step is to remove such kind of contaminations from 

the original signal. The method used here is called the threshold de-noising 

method in which a threshold value is set so that any signal values over the 

limit will be eliminated. Results are shown in Fig.5.2(b) and Fig.5.2(c).

5.2.2 Wavelet transform de-noising

The theory of wavelet de-noising [101, 102] is based on the multi-resolution 

analysis of wavelet transform which is a powerful time-frequency method for 

non-stationary signal analysis. The wavelet transform is a transformation of 

the original temporal signal into a wavelet basis space. The time-frequency 

wavelet representation is performed by repeatedly filtering the signal with a 

pair of filters that cut the frequency domain in the middle. Specifically, the 

wavelet transform decomposes a signal into an approximation signal and a 

detail signal. The approximation signal is subsequently divided into new ap­

proximation and detail signals. This process is carried out iteratively producing 

a set of approximation signals at different detail levels (scales) and a final gross 

approximation of the signal.

The detail Dj and the approximation A, at the level j  can be obtained 

by filtering the signal with an L-sample high pass filter g, and an L-sample 

low pass filter h. Both approximation and detail signals are down sampled by 

a factor of two. The whole procedure of wavelet transform can be found in 

Fig.5.3:
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Figure 5.2: Threshold de-noising. (a) Original signal; (b) Threshold line and 
noise points; (c) Result of threshold de-noising.
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Figure 5.3: Wavelet transform decomposition.

The formulas to calculate the both approximation and detail coefficients 

can be expressed as follows:

L-l
Aj[n] — H (Aj-i[n]) — h[k]Aj-i[2n — k] (5.2.1)

k=0

L-l
D M  =  G (D j-M )  =  E # l V i [ 2n -  *] (5-2.2)

k=0
where Ao[n], n — 0 , 1 , . . . ,  iV — 1 is the original temporal sequence, while H and 

G represent the convolution/down sampling operators. Sequences g[n] and h[n\ 
are associated with wavelet function ip(t) and the scaling function ip(t) through 

inner products:

g[n] =  V2ip(21 — n)) (5.2.3)

h[n] =  V2(p(2t — n)) (5.2.4)

We can select a set of thresholds and apply them to the signals at each of 

the scales. Then we use the inverse wavelet transform to reconstruct a new 

signal. The final reconstruction of the original signal can be computed by the 

details and the approximations, as described by the following equation, for 

fixed N :

S(t) =  AN(t) +  D\(t) +  D\{t) +  . . .  +  Z)yv(i) (5.2.5)

The wavelet transform can be used in order to perform artifact removal. Its

application is based on the spectral separation between the original signal and 

the artifact Thus, by using the wavelet decomposition (5.2.5), it is possible to
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remove the artifact by means of the de-noising procedure applied to the single 

wavelet details.
In our experiment, the bior 1.5 wavelet is selected as the mother wavelet 

and the signal is decomposed into 8 levels. Only the detail coefficients for the 

7th and 8th levels are kept. The results of decomposition are demonstrated in 

Fig.5.4.

The wavelet based de-noising method is summarized in the following three 

steps: (1) Choosing a wavelet and level N  and computing the wavelet decom­

position of the signal at level JV; (2) For each level, selecting a threshold and 

apply the threshold to the detail coefficients; (3) Computing the wavelet re­

construction based on the original approximation coefficients of level N  and 

the left detail coefficients of levels 1 to N.

Figure 5.4: Wavelet de-noising.
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After wavelet de-noising, the signal is normalized into a same amplitude 

scale for further processing. Fig.5.5 shows the result of signal normalization.

Figure 5.5: Signal normalization.

5.3 Feature extraction

5.3.1 Contraction pattern extraction

In this part, a different signal processing technique is investigated which 

is rooted from the nonlinear dynamic chaotic system theory. A fundamental 

idea in nonlinear analysis is that the dynamics of a system can be studied 

in a phase space. A point in this space characterizes the state of the system 

at any moment of time. EMG signals can be considered as a kind of chaotic 

signal or a time sequence, so it can be analyzed by using chaotic techniques 

and the generalised methods [103, 104], Fractal dimension is one of the chaotic 

characterizations used in the chaotic system to calculate the dimension of an 

attractor. For different parts of a signal, the fractal dimension values are 

different. By calculating the fractal dimension value, it is possible to separate 

the wanted signal from the noise components [105, 106, 107], There are three 

main steps, namely, phase space reconstruction, single value decomposition 

(SVD) and fractal dimension calculation whose basic conceptions have been 

introduced already in Chapter 2 and Chapter 3, respectively.
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Phase space reconstruction

Two particular signal patterns, non-contraction and contraction patterns, 

have been taken from the EMG signals and the phase space is reconstructed. 

The results are shown in Fig.5.6. Here, the embedding dimension m is set as 

3 and the time delay r  is set as 1.

Figure 5.6: Phase space reconstruction, (a) Contraction pattern signal; (b) 
Phase space reconstruction of contraction pattern signal, m =  3, r  =  1; 
(c) Non-contraction pattern signal; (d) Phase space reconstruction of non­
contraction pattern signal, m =  3, r  =  1.

Fractal dimension value calculation

Fractal dimensions have multiple definitions, but one thing is in common: 

their values are usually non-integer and fractional number, hence this dimen­

sion is referred to as fractal. The existing fractal dimensions include Hausdorff 

dimension, box dimension, information dimension, correlation dimension and
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so on. In this procedure, the correlation dimension Dc of time series is used as 

fractal dimension.

Dc introduced by Grassberger and Procaccia [108] is widely used in many 

fields for characterization of strange attractors. In fractal analysis, Dc deter­

mines how the distribution of signal set scales up/down with decreasing/increasing 

radius of each hypersphere. In the GP algorithm for DCi correlation integral 

function is applied as follows:

h(r) = m r r ijE  £  (5-31)' i=i j=ij&

where

{1, dn < r
i ^ j  (5.3.2)

0, dij > r

is Heaviside unit function, and d  ̂ is a Euclidean distance between points y* 

and yj in the reconstruction phase space. Dc can be estimated by:
Dc =  lim

r—>0
log (tcjr)) 

log (r)
(5.3.3)

Phase space projection

The SVD method is used for each point on the trajectory within a neigh­

borhood. After each point on an attractor is processed, the fractal dimension 

value of the new attractor can be recalculated. If this whole procedure repeats 

again and again, the fractal dimension value of the new attractor will change 

very different between contraction patterns and non-contraction patterns which 

show in Fig.5.7 and Fig.5.8.
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Figure 5.7: SVD method for contraction pattern, (a) Contraction pattern; (b) 
Phase space reconstruction; (c) New trajectory points after SVD method; (d) 
New fractal dimension value calculation.

Figure 5.8: SVD method for non-contraction pattern, (a) Non-contraction 
pattern; (b) Phase space reconstruction; (c) New trajectory points after SVD 
method; (d) New fractal dimension value calculation.
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From the results, we can see that there is a huge different between con­

traction pattern and non-contraction pattern for their fractal dimension value 

after iteration of SVD processing. For both contraction pattern signal and 

non-contraction pattern signal, the final fractal dimension values become sta­

ble after iteration of SVD processing, but the final fractal dimension value of 

contraction pattern signal is much higher than that of non-contraction pattern 

signal whose final fractal dimension value is down to zero.

Contraction pattern signal extraction

From the result of EMG signal fractal dimension value calculation, we know 

that the contraction pattern signal and noise signal have different fractal di­

mension values. So, the noise can be differentiated from the original EMG 

signals and the signal patterns due to contraction will be clearly seen. Our 

work focuses on the analysis of the contraction patterns, because we think 

they are caused by some factors which can be used to differentiate the pre­

term labor and term labor signals. The final fractal dimension value along the 

signal is calculated and is illustrated in Fig.5.9(b) and the contraction patterns 
extraction is shown in Fig.5.9(c).

>
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Figure 5.9: Contraction patterns extraction, (a) EMG signal after wavelet de- 
noising; (b) Fractal dimension values along the signal; (c) Contraction patterns.

102

)



5.3 Feature extraction 103

5.3.2 Wavelet packet transform

After contraction patterns were extracted from the original EMG signals, 

Wavelet packet transform is chosen for further analysis. In Section 5.3.2, we 

already used wavelet transform to process the signal, at that stage, the wavelet 

transform is used to get rid of the high frequency components of the signal. 

Wavelet packet transform is used to decompose the signal into different fre­

quency ranges for further analysis. Wavelet packet method [109] is a general­

isation of wavelet decomposition that offers a richer range of possibilities for 

revealing signal information. Unlike wavelet transform, wavelet packet trans­

form is implemented by a basic two-channel filter bank which can be iterated 

over either a low-pass or a high-pass branch. So the information in high fre­

quencies can be analyzed as well as that in low frequencies in wavelet packet 

transform. As a result, finer frequency bands can be gained by wavelet packet 

transform than by wavelet transform.

In wavelet analysis as shown in Fig.5.10(a), a signal is split into an approx­

imation and a detail. The approximation is then itself split into a second-level 

approximation and detail, and the process is repeated. For n-level decompo­

sition, there are n -1- 1 possible ways to decompose or encode the signal. In 

wavelet packet analysis, the details as well as the approximations can be split. 

This yields more than 22” 1 different ways to encode the signal. Wavelet packet 

decomposition is shown in Fig.5.10(b).

(a) (b)

Figure 5.10: Wavelet and wavelet packet decomposition, (a) Wavelet decom­
position; (b) Wavelet packet decomposition.
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5.3.3 Wavelet packet energy

Given a finite energy signal whose scaling space is assumed as ¡7°, wavelet 

packet transform can decompose U° into small subspaces U]n in dichotomous 

way. When s(t) is decomposed to nth resolution level with wavelet packet 

transform, the whole scaling space Uq with frequencies in the interval (0,2_1/ s] 

is divided into 2"  subspaces with frequencies correspondingly in the interval 

((n — 1)2J-1/ S, n2J'-1 / a], n =  1 ,2 , . . . ,  n. The subsignal at C/J1-1, the nth sub­

space on the jth  level, can be reconstructed by:

s? (<) =  E  B k 'M t )  (5-3-4)
k

where D%n is the wavelet packet coefficients at t/J1-1, ipjtk(t) is the wavelet 

function. Thus, s(t) can be rewritten as:

»(O =  (5-3-5)
n—1 n=l k

Since the wavelet is an orthogonal basis, the energy of the subsignal

s” (i) is calculated by:

En =  Y ,\Dkn\2 (5-3-6)
k

The total energy of s(t) is:

E = En (5.3.7)
n

In consequence, wavelet packet energy (WPE) [110] which quantifies the 

probability distribution of the spectral energy is:

Pn =  (5.3.8)

In our experiment, wavelet packet energy is calculated for each contrac­

tion pattern signal which is decomposed into 4th level using wavelet package 

transform and the first ten wavelet packet coefficients axe selected for wavelet 

packet energy calculation. Fig.5.11 shows the results of wavelet packet energy 

calculation for each of contraction pattern signals.
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(b) (c)

Figure 5.11: Wavelet packet energy calculation, (a) Contraction patterns; (b) 
and (c) Wavelet packet energy distribution for each of contraction pattern.

In order to find the general distribution rule of wavelet packet energy for 

every pattern of EMG signal, we evaluate the average wavelet packet energy 

of every EMG signal:

pn =  y D *  (5-3-9)
1 ¿=i

where is W PE at the nth subspace of the ith subject and l is the total 

number of contraction patterns of every EMG signal. Fig.5.12 shows the result 

of average wavelet packet energy.
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Figure 5.12: Average wavelet packet energy.

5.4 Signal classification

Some research work have been reported about EMG signal classification to 

help doctors differentiate the normal signals from abnormal signals [111, 112]. 

In this procedure, the artificial neural network (ANN) method is used [113, 

114, 115].

From the result of wavelet packet energy calculation, we can see that the 

contraction pattern signal is decomposed into 10 sub-signals. For each contrac­

tion pattern signal, it can be represented by 10 wavelet packet energy values. 

For each EMG signal, it can be represented by 10 average wavelet packet en­

ergy values. So for the whole term labor signals and preterm labor signals, 

they form a wavelet packet energy matrix X (n, 10) which can be used for the 

classification work, n is the number of data sets.

In our experimental data, there are total 39 sets of data, 11 PT signals 

and 28 TL signals. For each set of signal, there are 10 average wavelet packet 

energy distribution values. So the input of ANN is a matrix of 39 x 10.

We create a network with 10 input nodes, one hidden layer of 20 nodes 

and one output node. All neurons use the tansig transfer function, besides the 

output neuron which uses logsig. The training procedure is trainlm. Fig.5.13 

shows the architecture of artificial neural network.

106



5.4 Signal classification 107

Input Hidden Layer Output
Layer Layer

Output

Figure 5.13: Architecture of artificial neural network.

All data sets are divided into two groups, one is for training and another 

is for testing. We use the Leave One Out (LOO) method that only one signal 

is taken out as the test signal and the rest of signal are put into the network 

to train. The network is trained to return 1 for the ” TL” -class and 0 for the 

” PT ” -class. Since there are only two classes we split this interval into two and 

let all values between 1 and 0.5 belong to the ” TL” -class and between 0.5 and 

0 to the ” PT” -class. Finally, the trained network is used to classify the test 

signal. Table 5.1 shows the result of classification.
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Table 5.1 Classification results

Index File Name Type Test ResuIt
1 3rdApril03(l) PT B3C1 PT 0.9579 TL Wrong
2 3rdJune03(l) PT B9C1 PT 0.0000 PT Correct
3 3rdJune03(l)A PT B3C1 PT 0.0173 PT Correct
4 10thDec03(2) PT BICI PT 0.6516 TL Wrong
5 10thDec03(2)B PT B2C1 PT 0.9980 TL Wrong
6 18thNov03(l) PT B1C2 PT 0.1699 PT Correct
7 18thNov03(l)B PT B1C2 PT 0.9940 TL Wrong
8 23rdJuly03(l) PT B8C2 PT 0.6910 TL Wrong
9 23rdMay03(l) PT B6C1 PT 0.9552 TL Wrong
10 27thFeb03(2)lG PT BICI PT 0.4312 PT Correct
11 27thFeb03(2)2G PT B4C2 PT 0.9980 TL Wrong
12 lstJuly03(l) TL B8C2 TL 0.7428 TL Correct
13 3rdApril03(l) TL B3C1 TL 0.0042 PT Wrong
14 4thJune04(l) TL B2C1 TL 0.7637 TL Correct
15 4thJune04(2) TL B1C2 TL 1.0000 TL Correct
16 6thApril04(l) TL B1C2 TL 0.9999 TL Correct
17 8thMar04(l) TL B3C2 TL 0.9898 TL Correct
18 llthMar03(l)2G TL B6C2 TL 0.9253 TL Correct
19 llthMar03(l)G TL B5C1 TL 1.0000 TL Correct
20 13thApril04(l) TL BICI TL 0.9932 TL Correct
21 13thApril04(2) TL BICI TL 0.9118 TL Correct
22 13thFeb03(l)G TL B3C1 TL 0.9987 TL Correct
23 15thJan04(l) TL B1C2 TL 0.0000 PT Wrong
24 15thJan04(2) TL B1C2 TL 0.7519 TL Correct
25 17thDec03(l) TL B2C1 TL 1.0000 TL Correct
26 19thMay04(l) TL B2C2 TL 0.5054 TL Correct
27 21stJune04(l) TL B2C2 TL 0.9986 TL Correct
28 23rdApril04(l) TL BICI TL 0.0413 PT Wrong
29 24thApril03(l) TL B3C2 TL 0.4658 PT Wrong
30 24thMar04(l) TL B3C1 TL 0.4609 PT Wrong
31 25thFeb04(l) TL BICI TL 0.0041 PT Wrong
32 26thApril04(2) TL BICI TL 0.8608 TL Correct
33 26thJune03(l) TL B2C2 TL 0.9793 TL Correct
34 27thFeb03(l)2P TL B6C2 TL 1.0000 TL Correct
35 27thJan04(l) TL BICI TL 1.0000 PT Wrong
36 30tbDec03(l) TL B1C2 TL 0.0000 TL Correct
37 30thDec03(l)B TL B1C2 TL 0.9946 TL Correct
38 30thMay03(l) TL B6C1 TL 0.9301 TL Correct
39 210104(1) TL B1C2 TL 1.0000 TL Correct

From the table, we can see that the classification accuracy reaches 64.1%. 

Although the result is not good enough for classification, it is encouraging to 

continue the work under the conditions of getting more quality data.
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Unfortunately, the funding to support a part-time researcher to collect data 

has been run out. It is impossible to obtain more organized test data. This 

study has indicated that further study using the methods should be continued. 

The work presented in this chapter developed a new method towards to uterine 

EMG signal processing.

5.5 Summary

There are three main steps in our procedure, signal preprocessing, signal 

feature extraction and signal classification. In signal preprocessing, the noise 

and high frequency components of the signal are eliminated by using threshold 

de-noising and wavelet de-noising methods. In the second step, each contrac­

tion pattern of the signal is extracted by calculating the fractal dimension 

values along the signal, then wavelet packet transform is used to decompose 

signal and the average wavelet packet energy of each EMG signal is calculated 

for feature extraction. At the last step, the artificial neural network method is 

used for the signal classification.

In the procedure, the main idea is that the difference between term labor 

signal and preterm labor signal can be the contraction patterns. So the analysis 

work is focused on the contraction patterns of the signal, try to extract some 

features for classification. Prom the result, we can see that the processing 

methods work well to separate the two kinds of signals. The classification 

accuracy of ANN is 64.1% which is encouraging, although it is still not good 

enough for this application. In this study, the data is from different patients 

observed at different time, so it is difficult to follow a patient from the beginning 

to the labor for the features extraction study. The initial study has shown some 

encouraging result, so the future work needs to get more organized and accurate 

experimental data from patients.
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Chapter 6

Motion Detection Based On 
Accumulative Optical Flow and 
Double Background Filtering

Real-time detection of moving objects is very important for video surveil­

lance. In this chapter, we present a novel real time motion detection procedure 

that is based on the integration of temporal difference, optical flow, double 

background filtering (DBF) and morphological processing methods to achieve 

enhanced performance. The temporal difference method is used to detect ini­

tial coarse motion areas for the optical flow calculation which is used for the 

real and accurate object motion detection. The DBF method is used to obtain 

and keep a stable background image to cope with variations on environmental 

changing conditions and is used to eliminate the background interference infor­

mation and separate the moving object from it. The morphological processing 

methods are used and combined with the DBF to get the further improved 

results. The most attractive advantage of this procedure is that it does not 

need to learn the background model from hundreds of images and can han­

dle quick image variations without prior knowledge about the object size and 

shape: The procedure has a high capability of anti-interference and preserves 

high accurate rate detection at the same time. It also needs less computation 

demands than other methods for real-time surveillance. The effectiveness of
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the proposed procedure for motion detection is demonstrated in a simulation 

environment and the evaluation results are reported in this chapter.

6.1 Introduction

In recent years, motion detection has attracted a great interest from com­

puter vision researchers due to its promising applications in many areas, such 

as video surveillance [116, 117], traffic monitoring [118] or sign language recog­

nition. However, it is still in its early developmental stage and needs to improve 

its robustness when applied in a complex environment.

Several techniques for moving object detection have been proposed in [119, 

120, 121, 122, 123], among them the three representative approaches are tem­

poral difference, background subtraction and optical flow. Temporal difference 

based on frame differences, attempts to detect moving regions by making use 

of the difference of the consecutive frames (two or three) in a video sequence. 

This method is highly adaptive to dynamic environments, but generally does a 

poor job  of extracting the complete shapes of certain types of moving objects. 

Background subtraction is the most commonly used approach in presence of 

still cameras. The principle of this method is to use a model of the background 

and compare the current image with a reference. In this way the foreground ob­

jects present in the scene are detected. The method of statistical model based 

on the background subtraction is flexible and fast, but the background scene 

and the camera are required to be stationary when this method is applied. 

Optical flow is an approximation of the local image motion and specifies how 

much each image pixel moves between adjacent images. It can achieve success 

of motion detection in the presence of camera motion or background changing. 

According to the smoothness constraint, the corresponding points in the two 

successive frames should not move more than a few pixels. For an uncertain 

environment, this indicates that the camera motion or background changing 

should be relatively small. The method based on optical flow is complex, but it 

can detect the motion accurately even without knowing the background. The 

main idea in the procedure proposed in the thesis is to integrate the advantages
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of these three methods.

In this procedure, the temporal difference method, optical flow method 

and double background filtering method with morphological processing is in­

tegrated. The main goal of this procedure is to separate the background in­

terference and foreground information effectively and detect the moving object 

accurately. In the first step, temporal difference method is used to detect 

the coarse motion object area for the optical flow calculation. Secondly, the 

DBF method is used to obtain and keep a stable background image to address 

variations on environmental changing conditions and is used to eliminate the 

background interference and separate the moving object from it. The morpho­

logical processing methods are used and combined with DBF to gain better 

results. Different from the paper [26], a new improved strategy is proposed 

which not only improves the capability of detecting the object in motion, but 

also reduces computation demands.

6.2 Overview of the motion detection proce­

dure

The procedure is depicted in the flowchart of Fig.6.1.

As can be seen, the whole procedure is comprised of four steps: (1) Tempo­

ral difference method, which is used to detect the initial coarse object motion 

area; (2) Optical flow detection, which is used based on the result of (1) to cal­

culate optical flow for each frame; (3) Double background filtering method with 

morphological processing, which is used to eliminate the background interfer­

ence and keep the foreground moving information; (4) Motion area detection, 

which is used to detect the moving object and give the alarming in time.
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Figure 6.1: Flowchart of motion detection procedure
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The final processing result is a binary image in which the background area 

and moving object area are shown as white color, the other areas are shown in 

black color. The experimental result in Fig.6.2 presents a set of images to help 

in understanding the processes achieved in the present method.

Figure 6.2: Result of motion detection; (a)Original image with moving object; 
(b)Result of motion detect with moving object.

In this chapter, the effectiveness of the proposed procedure for motion de­

tection is demonstrated for a simulation environment. The procedure is imple­

mented in Matlab. The size of the input video image is 320 x 240 pixels and 

the sample rate is 25 frames per second. In our experiment, the simulation 

environment is the background of a column strip curtain which is swing caused 
by nature winds.

6.3 Temporal difference detection method

Temporal difference [124, 125] is based on frame difference which attempts 

to detect moving regions by making use of the difference of two consecutive 

frames in a video sequence. It is computed based on the gray level matching 

of pixels. Namely, the difference between two consecutive frames is considered 

as pixels movements from a position in the current frame to another position 

in the next frame. However, it also can be considered as the state transition of 

pixels. For example, in a 256 level gray image, each pixel has 256 states. Along 

with time, the pixels state would transit from one to another arbitrarily. The
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diversity of state at each pixel indicates the intensity of motion at its position. 

This method is highly adaptive to static environment. So temporal difference 

is good at providing initial coarse motion areas.

In this method, the two subsequent 256 level gray images at time t and i +  1, 

I (x ,y , t )  and I(x, y, t +  1), are selected and the difference between images is 

calculated by setting the adaptive threshold to get the region of changes. The 

adaptive threshold Td can be derived from image statistics. In order to de­

tect cases of slow motion or temporally stopped objects, a weighted coefficient 

with a fixed weight for the new observation is used to compute the temporal 

difference image /¿(x , y ,f)  as shown in following equations:

Id{x, y , t +  1)
255, if( /a(x, y,t  +  l ) >  Td)

<
0, otherwise

(6.3.1)

and

Ia(x, y , t +  1) =  (1 — w)Ia(x, y, t)

+  w\I(x,y,t +  l) -  I ( x ,y , t )|
(6.3.2)

where w is a real number between 0 and 1 which describes the temporal range 

for different images. Ia(x, y, t — 1) is initialized to an empty image, Td is the 

threshold. In this procedure, after experimental test, the adaptive threshold 

Td in (6.3.1) is set as three times of mean value of Ia(x, y,t  +  1) in (6.3.2) can 

get best result.

Td — 3 x mean(/a(x, y,t  +  1)) (6.3.3)

And w in (6.3.2) is set as 0.5 which is always used in the most of situa­

tions for all the results. Figure.6.3 shows the results of temporal difference 

method under a simulation environment which has a static background of our 

laboratory.

From the results, we can see that the temporal difference is a simple method 

for detecting moving objects in a static environment and the adaptive threshold 

Td can restrain the noise very well.
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(g) (h)

Figure 6.3: Results of temporal difference method, (a) Background image; (b) 
Background image with moving object; (c) The result of temporal difference 
for (a), Td =  1 x mean(Ia(x, y , t  + 1)); (c) The result of temporal difference for 
(b), Td =  l x  mean(Ia(x,y, t  +  1)); (c) The result of temporal difference for
(a) , Td =  2 x mean(Ia(x ,y,t  +  1)); (c) The result of temporal difference for
(b ) , Td =  2 x mean(Ia(x ,y,t  +  1)); (c) The result of temporal difference for
(a) , Td =  3 x mean(Ia(x ,y,t  +  1)); (c) The result of temporal difference for
(b ) , Td =  3 x mean(Ia(x ,y,t  +  1)).
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6.4 Optical Flow Detection Method

Temporal difference is the simplest method to extract moving objects. But 

if the background is dynamic, it will become very sensitive to any movement 

and is difficult to differentiate the true and false movement. Compared with 

the temporal difference method, optical flow method is more accurate to the 

moving pixel, but its computation procedure is more complicated and requires 

more computing time. So in this procedure, the advantages of both methods are 

taken, firstly, the temporal difference method is used to detect possible motion 

area, secondly, the optical flow is calculated based on the result of temporal 

difference. The purpose of this integration way is to reduce the computation 

demands and keep the useful information at the same time.

Optical flow is a concept which is close to the motion of objects within 

a visual representation. The term optical flow denotes a vector field defined 

across the image plane. Optical flow calculation is a differential method for 

motion estimation. Such a method is to calculate the motion between two im­

age frames which are taken at an interval t at every pixel position. Estimating 

the optical flow is useful in pattern recognition, computer vision, and other im­

age processing applications [126, 127, 128]. In this procedure, an optical flow 

method entitled Lucas-Kanade is introduced. The whole computation process 

of optical flow is explained below and the corresponding Matlab code can be 

found in Appendix E.3.

6.4.1 Lucas-Kanade method

To extract a 2D motion field, Lucas-Kanade method is often employed 

to compute optical flow because of its accuracy and efficiency. Barron [129] 

compared the accuracy of different optical flow techniques on both real and 

synthetic image sequences. They found that the most reliable one was the 

first-order, local differential method of Lucas and Kanade. Liu [130] studied 

the accuracy and efficiency trade-offs in different optical flow algorithms. Liu’s 

study has been focused on the motion algorithm implementations in real world 

tasks. Their results showed that Lucas Kanade method is pretty fast. Galvin
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[131] evaluated eight optical flow algorithms. The Lucas-Kanade method con­

sistently produces accurate depth maps, and has a low computational cost and 

good noise tolerance.

The Lucas-Kanade method [132] is trying to calculate the motion between 

two image frames which are taken at time t and t +  St for every pixel position. 

As a pixel at location (x , y, t) with intensity I(x, y, t) will have moved by Sx, 
Sy and St between the two frames, the following image constraint equation can 

be given:

I (x , y, t) =  I(x +  Sx,y +  Sy, t -I- St) (6.4.1)

Assuming that the movement is small enough, the image constraint at 

I(x, y, t) with Taylor series can be derived to give:

I(x +  Sx,y +  Sy, t +  Si) =  I(x, y, t)
81 dl  dl  (6.4.2)

+  — Sx +  — Sy + ^-St +  H.O.T
ox dy dt

where H.O.T. means those higher order terms, which are small enough to be

ignored. From (6.4.1) and (6.4.2), the following can be obtained:

or:

d l .  d l .  d l . x n
a i 5 x + a^S s + a i St =  0

dl Sx dl  Sy dl  St _  
dx S t + dySt +  dt St

(6.4.3)

(6.4.4)

which will result in,
d l . ,  d l  d l . ,
~ v* +  +  m v‘ 0Qx  ' x ' a ,, ’ v ' fu ' l ~ (6.4.5)

where Vx and Vy are the x  and y components of the velocity or optical flow 

of I (x ,y , t )  and dl/dx, dl/dy and dl/dt are the derivatives of the image at 

(x, y, t) in the corresponding directions.

Equation (6.4.5) is called the optical flow constraint equation since it ex­

presses a constraint on the components Vx and Vy of the optical flow. The 

optical flow constraint equation can be rewritten as:

4"  lyVy —  It (6.4.6)
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or:
•j vx

Ix Iy\
Yv.

=  - I t (6.4.7)

We wish to calculate Vx and Vyt but unfortunately the above constraint 

gives us only one equation for two unknowns, so this is not enough by itself. 

To find the optical flow, another set of equations is needed which should be 

given by some additional constraints. The solution as given by Lucas and 

Kanade is a non-iterative method which assumes a locally constant flow.

The Lucas-Kanade algorithm assumes that motion vectors in a any given 

region do not change but merely shift from one position to another. Assuming 

that the flow (Vx, Vy) is a constant in a small window of size m x m with 

m >  1, which is centered at (x, y) and numbering the pixels as 1 . . .  n, a set of 

equations can be derived:

IX1VX 4“ lyi^y — It

l x 2V x  +  I y 2V y  =  ~  h
(6.4.8)

Ix nVx +  IynVy =  ~  h

With (6.4.8), there are more than three equations for the three unknowns and 

thus the system is over-determined. Hence:

or:

lit lyi

1x2 Iy2 

Ixn lyn

=  - I t

Av = —b

(6.4.9)

(6.4.10)

To solve the over-determined system of equations, the least squares method is 

used:

AtA v =  AT(—b)

v = {ATA)~1AT{-b)
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or:
v ; E U

-1
-J2Ixihi

7 , . _ £  Ixjyi £ 4 2, . -ElyJti.
(6.4.13)

with the sums running from i — 1 to n. And there is a limit condition for the 

calculation of motion vector in (6.4.13) as:

At A = £ 4 2,
_ £  Ixi lyi

£  IxJih

£ 4 2, .
(6.4.14)

Equation (6.4.14) must be an invertible matrix, which means that the op­

tical flow can be found by calculating the derivatives of the image in all three 

dimensions: ^-direction, y-direction and ¿-direction. One of the characteristics 

of the Lucas-Kanade algorithm is that it does not yield a very high density of 

flow vectors, i.e. the flow information fades out quickly across motion bound­

aries and the inner parts of large homogenous areas show little motion. The 

advantage for the method is its accuracy and robustness of detection in pres­

ence of noise.

6.4.2 Simplified Calculation

The theoretical calculation procedure of the Lucas-Kanade method is ex­

plained in the above section, but for the requirement of practical application, 

some operation characteristics between matrices can be used to simplify the 

complexity of calculation. For the calculation of invertible matrix in (6.4.13), 

the companion matrix method can be used:

M* 1 
\M\ det M

where M* is the companion matrix of M  and \M\ is the determinant of M.

M[  1][1] —M [1][0] 
—M [0][1] M [0] [0]
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6.4.3 Gradient Operator

Prom the operation expression of optical flow, the estimation of the gradi­

ents for ^-direction, y-direction and t-direction, has a great influence on the 

final results of optical flow calculation. The most common gradient operators 

used in optical flow calculation are Horn, Robert, Sobel, Prewitt, Barron and 

so on. In an ordinary way, the calculation of gradient on both t and x direc­

tions uses the same template. For different operators, the number of frames 

required for calculation of the time gradient is different. For example, the Horn 

operator needs two frames and Barron operator needs five frames at least. In 

this step, a better 3D Sobel operator is used which was proposed in [133]. This 

operator uses three different templates to do the convolution calculation for 

three frames in a row along the directions of x, y and t and to calculate the 

gradient along three directions for central pixels of the template in the middle 

frame. Fig.6.4 shows the operators.

Previous Frame Middle Frame Afterward Frame

Figure 6.4: 3D Sobel operator for optical flow calculation
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6.4.4 Display Results of Optical Flow Detection

The optical flow information for every frame of an image is calculated. As 

shown in Fig.6.5, the optical flow of frames It, It+i, ■ ■ ., h+n in a period time 

[t,t +  n] are represented as Fi, F2, . . . ,  Fn.

F j F n

Figure 6.5: Diagram of optical flow calculation

The result of optical flow is shown as a binary image and the adaptive 

threshold is selected to distinguish the moving pixel from the still pixel. The 

pixels whose optical flow values are greater than the threshold will be consid­

ered as moving pixels and are shown in white. The optical flow value and the 

adaptive threshold formulaes that we used can be written as:

and

and

Fn(i,j) =  yJVx2(i,3) +  V¿(i ,j )

F D n(i, j)
'255, if Fn(i, j ) > T 

0, OtherwiseV ’

T  =  median(Fn(z, j )  >  0)

(6.4.16)

(6.4.17)

(6.4.18)

where Fn(i, j ) is the optical flow value, FD n(i, j )  is the result of optical flow de­

tection and the adaptive threshold T  is select as median value of Fn(i, j ) whose 

value is above 0. Fig.6.6 shows the results of optical flow which is calculated 

based on the result of temporal difference. The simulation environment is a 

dynamical background which consists of swinging column bar curtains caused 

by winds.

From the results, we can see that the optical flow with adaptive threshold 

based on temporal difference result reserves the information of moving object
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very well, but because of the background interference of the image, the real ob­

ject movement still can not be separated from the background. So the method 

of double background filtering with morphological processing is introduced in 

the next section to deal with this problem.

%
Figure 6.6: Results of optical flow based on temporal difference result, (a) 
Background image; (b) Background image with moving object; (c) Result of 
temporal difference for (a); (d) Result of temporal difference for (b); (e) Result 
of optical flow for (c); (f) Result of optical flow for (d).
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6.5 Double background filtering with morpho­

logical processing

By using the optical flow method, two types of optical flow information are 

obtained, which are the interference information of image background and the 

information of image pixel with any possibility of real object movement. In the 

real situation, because of the environment such as light, vibration and etc., the 

interference information of the background still can be detected. Sometimes 

it is difficult for the real object movement to be differentiated from the back­

ground interference. In this section, the method of DBF with morphological 

processing is used to get rid of the background interference and separate the 

moving object from it. Firstly, the DBF method and its corresponding results 

are discussed. Then the morphological processing methods are introduced and 

the improved results are also demonstrated.

6.5.1 Double background filtering

In this chapter, a novel approach is developed to update the background. 

This approach is based on a double background principle [134, 135], long­

term background and short-term background. For the long-term background, 

the background interference information which has happened in a long time 

is saved. For the short-term background, the most recent changes are saved. 

These two background images are modified to adequately update the back­

ground image and to detect and correct abnormal conditions.

During practical tests, we found that although the optical flow of back­

ground interference can be detected without moving object, it is relatively 

stable for some specific areas on the image and the amount of this optical flow 

doesn’t change very much. For the area where the moving object appears, the 

amount of optical flow must change significantly in the specific area. Accord­

ing to these characteristics, the moving object should be easily detected if the 

information of the background and foreground can be separated. Fig.6.7 shown 

below explains the double background filtering method in a tabular way.
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The Double Background Filtering (DBF) method consists of four steps:

(1) O p tica l F low  A ccu m u lation  For F irst F ive Frames: The optical flow 

information of the first five frames is accumulated for saving the optical flow 

information of the background interference. Let A5 be the accumulation 

matrix, which is defined with the same size as the video images and set 

the initial value as zeros. To compute this matrix the formula below is 

applied:

A5(i, j )  +  1, if Fk(i,j) =  255
k =  1, 2,3 ,4,5

A5{i, j),  i îFk{i , j )  =  0
(6.5.1)

(2) O p tica l F low  A ccu m u lation  For Last T h ree Fram es: The optical 

flow information of the last three frames is accumulated for moving object 

detection. Let A3 be the accumulation matrix and computed as follow:

A3(iJ)  +  1, if Fk(i, j ) — 255
k =  8,9 ,10

A3(i, j),  i fFk(i, j )  =  0
(6.5.2)

(3) B ackgrou n d  F iltering: By comparing the results of steps (1) and (2) 

and eliminating the overlap optical flow, the rest should be the optical flow 

which represents the real movement. The procedure to detect whether a 

pixel B ( i , j ) belongs to an object with salient motion is described as follows

0, if A5( i , j ) >  0 and A3(i, j ) >  0
<

255, if A5( i , j ) =  0 and A3(i, j )  >  0
(6.5.3)

(4) B ackgrou n d  U pdating: This step is an updating function of the new 

value of the accumulation matrix, both A5 and A3 are set to zero, with the 

new video frame input, the four steps above are then repeated.

In this method, there are always two unused frames during the process, the 

purpose of this is to separate the background and moving object effectively. 

When the moving object appears in the last three frames, the information of
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moving object will not be lost while the background is updating. Fig.6.8 below 

shows the result of double background filtering method.

Fig.6.8(a) is the background image; Fig.6.8(b) is the background image 

with moving object; Fig.6.8(c) is the result of optical flow for (a); Fig.6.8(d) 

is the result of optical flow for (b); Fig.6.8(e) is the result of first five frames 

optical flow accumulation for (c); Fig.6.8(f) is the result of first five frames 

optical flow accumulation for (d); Fig.6.8(g) is the result of last three frames 

optical flow accumulation for (c); Fig.6.8(h) is the result of last three frames 

optical flow accumulation for (d); Fig.6.8(i) is the result of double background 

filtering for (c); Fig.6.8(j) is the result of double background filtering for (d);

From the results, we can see that for the background without moving ob­

ject, the background interference can not be eliminated completely and for 

the background with moving objects, although the moving object area can be 

detected, the background interference still exit. So how to get rid of the back­

ground interference and preserve the information of moving object at the same 

time is most important challenge we are facing. The morphological processing 

method is introduced in next section to solve this problem.

127
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Figure 6.8: Results of double background filtering method.
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6.5.2 Morphological image processing

Morphological image processing is a collection of techniques for digital im­

age processing based on mathematical morphology which is a nonlinear ap­

proach that is developed based on set theory and geometry [136]. Morphologi­

cal image processing techniques are widely used in the area of image processing, 

machine vision and pattern recognition due to its robustness in preserving the 

main shape while suppressing noise. When acting upon complex shapes, mor­

phological operations are able to decompose them into meaningful parts and 

separate them from the background, as well as preserve the main shape charac­

teristics. Furthermore, the mathematical calculation involved in mathematical 

morphology includes only addition, subtraction and maximum and minimum 

operations without any multiplication and division. There are two fundamen­

tal morphological operations which are dilation and erosion and many of the 

morphological algorithms are based on these two primitive operations.

Dilation of the set A by set B which is usually called as structure element, 

denoted by A © B, is obtained by first reflecting B about its origin and then 

translating the result by x. All x  such that A and reflected B  translated by x 
that have at least one point in common form the dilated set.

A @ B =  {x\{B)x O A ^  0 }  (6.5.4)

where B  denotes the reflection of B  and (B)x denotes the translation of B  by 

x. Thus, dilation of A by B  expands the boundary of A. Erosion of A by B, 
denoted by A © B, is the set of all x  such that B translated by x  is completely 

contained in A.

A Q B  =  {x\{B)x C A}  (6.5.5)

Thus, erosion of A by B  shrinks the boundary of A. In this procedure, we 

also use two other important morphological operations which are defined in 

terms of erosion and dilation: opening and closing. A is said to be opened by 

B  if the erosion of A by B is followed by a dilation of the result by B.

A o  B  =  (A © B) © B}  (6.5.6)
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Opening generally smoothes the contour of an object, breaks narrow isth­

muses, and eliminates thin protrusions. Similarly, A is said to be closed by B 
if A  is first dilated by B  and the result is then eroded by B. Thus,

A  • B =  {A © B) 0  B}  (6.5.7)

Closing also tends to smooth sections of contours but, as opposed to open­

ing, it generally fuses narrow breaks and long thin gulfs, eliminates small holes, 

and fills gaps in the contour.

In this procedure, three morphological operators, dilation, opening and 

closing are used. Dilation is applied firstly to the image with the accumulation 

optical flow of the first five frames. The dilation operator expands the area 

of background interference to make it eliminated efficiently in the third step 

of DBF method. The other two operators, opening and closing, are applied 

to the image with the accumulation optical flow of last three frames. The 

opening operator is used first to eliminate the noise which consists of isolated 

points and closing operator is used immediately after filling up the holes and 

gaps. The structure element in both operations is SE =  {1,1,1;  1,1,1; 1, 1, 1}. 

Fig.6.9 shows the results of DBF with morphological processing.

Fig.6.8(a) is the background image; Fig.6.8(b) is the background image 

with moving object; Fig.6.8(c) is the result of optical flow for (a); Fig.6.8(d) 

is the result of optical flow for (b); Fig.6.8(e) is the result of first five frames 

optical flow accumulation after dilation for (c); Fig.6.8(f) is the result of first 

five frames optical flow accumulation after dilation for (d); Fig.6.8(g) is the 

result of last three frames optical flow accumulation after opening and closing 

for (c); Fig.6.8(h) is the result of last three frames optical flow accumulation 

after opening and closing for (d); Fig.6.8(i) is the result of double background 

filtering with morphological processing for (c); Fig.6.8(j) is the result of double 

background filtering with morphological processing for (d);

From the results, we can see that the DBF method with morphological 

processing can preserve the moving object area very well and eliminate the 

background interference completely. The result of this processing can be very 

helpful for further motion area detection.
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Figure 6.9: Results of double background filtering method with morphological 
processing.
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6.6 Motion area detection

After applying the step of DBF method with morphological processing, the 

optical flow information of the background interference should be eliminated 

and only the optical flow information of real moving object is left. During the 

experimental test, we find that the appearance of a moving object can make a 

big influence on the instantaneous rate of change between the foreground mo­

tion information and the accumulative background optical flow information. 

In this procedure, we use the result of DBF method with morphological pro­

cessing as the foreground motion information FM.  Because the result of DBF 

method with morphological processing comes from the last three frames accu­

mulative optical flow information so that the result of the first seven frames 

accumulative optical flow information is used as the accumulative background 

optical flow information ABOFi.  So we can define the instantaneous rate of 

change for the moving object appearance IRC a as follows:

F M
IRCa =  ~ABOF\ X 10° % (6 61 )

Fig.6.10 and Fig.6.11 show the result of IRCa during the experiments for 

the background with and without moving object, respectively.

From the results, we can see that, for the background without moving 

object, IRCa has a small value with little changing. But if there is moving 

object appearance, the value of IRCa will increase sharply and last for several 

frames time. By taking advantage of this feature, we can use this IRCa value 

to detect the movement of moving object and give the alarm without delay. 

In our experiment, the alarm threshold Ta is set as 0.25 and the abnormity 

alarm will occur whenever the IRCa value is above Ta. It can be described as 

follows:

A  =
1,

0,

if IRCa > Ta 

Otherwise
(6.6.2)
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(c) Frame Index
(d)

Figure 6.10: Results of IRC a for the background without moving object, (a) 
Background image; (b) Result of optical flow; (c) Result of DBF method; (d) 
Result of IRCa -

Figure 6.11: Results of IRCa for the background without moving object, (a) 
Background image; (b) Result of optical flow; (c) Result of DBF method; (d) 
Result of IRCa ■
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6.7 Experimental Results

To test the sensitivity of the procedure to the speed of the moving object 

and the distances of the object to the camera, a serried of experiments has 

been conducted. In the experiments, the background scenario is kept the same 

- the vibrated strip curtains caused by winds. Five different speeds of the 

moving object (very slow, slow, normal, fast and very fast) and six different 

distances between camera and the moving object (20cm, 40cm, 60cm, 100cm, 

150cm and 200cm) are chosen and tested. The results are shown in Fig.6.13, 

Fig.6.14, Fig.6.15, Fig.6.16, Fig.6.17 and Fig.6.18, respectively, and the figure 

numbering for the whole set of testing results is listed in Fig.6.12.

Speed

Results Very Slow Slow Normal Very Fast Fast

20cm Figure 6.13(a) Figure 6.13(b) Figure 6.13(c) Figure 6.13(d) Figure 6.13(e)

40cm Figure 6.14(a) Figure 6.14(b) Figure 6.14(c) Figure 6.14(d) Figure 6.14(e)

60cm Figure 6.15(a) Figure 6.15(b) Figure 6.15(c) Figure 6.15(d) Figure 6.15(e)

100cm Figure 6.16(a) Figure 6.16(b) Figure 6.16(c) Figure 6.16(d) Figure 6.16(e)

150cm Figure 6.17(a) Figure 6.17(b) Figure 6.17(c) Figure 6.17(d) Figure 6.17(e)

200cm Figure 6.18(a) Figure 6.18(b) Figure 6.18(c) Figure 6.18(d) Figure 6.18(e)

Distance

Figure 6.12: Testing results for the procedure.
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(a) Speed: very slow; Distance: 20cm (b) Speed: slow; Distance: 20cm

(e) Speed: very fast; Distance: 20cm

Figure 6.13: Experimental results under different speeds, distance is 20cm.
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(e) Speed: very fast; Distance: 40cm

Figure 6.14: Experimental results under different speeds, distance is 40cm.
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(e) Speed: very fast; Distance: 60cm

Figure 6.15: Experimental results under different speeds, distance is 60cm.
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(e) Speed: very fast; Distance: 100cm

Figure 6.16: Experimental results under different speeds, distance is 100cm.
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(c) Speed: normal; Distance: ISOcm

(e) Speed: very fast; Distance: 150cm

Figure 6.17: Experimental results under different speeds, distance is 150cm.
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(e) Speed: very fast; Distance: 200cm

Figure 6.18: Experimental results under different speeds, distance is 200cm.

140



6.8 Summary 141

6.8 Summary

In this chapter, a new procedure is proposed for motion detection combining 

temporal difference method, optical flow method, double background filtering 

method and morphological processing methods. The procedure integrates the 

advantages of all the methods and presents a fast and robust motion detection 

procedure. The temporal difference method is introduced first to detect the 

initial coarse motion object area. Then the optical flow method is applied based 

on the result of temporal difference method to calculate any possible movement 

pixel for each video frame. Because of the temporal difference method, the 

calculation demand for the optical flow is reduced greatly and the moving area 

is still detected accurately. Then, an improved motion detection procedure is 

proposed based on a double background filtering technique with morphological 

processing. The DBF method is used to obtain and keep a stable background 

image to cope with the appearance of the moving object and is used to eliminate 

the background interference and separate the foreground moving object from 

it. The morphological processing methods are used and combined with DBF 

to gain the better results. Finally, the calculation of the instantaneous rate of 

change for the moving object appearance is used for the motion detection.

The experimental results show that the procedure can detect the moving 

objects successfully under the complex background with different speeds of the 

moving object and different distances between the camera and moving object. 

But with the increasing of the speed of the moving object and the distance 

between the camera and moving object, the accuracy of the detection will 

decrease. With our experimental environment, the procedure works very well 

under different speeds of moving object when the distance between the camera 

and the moving object is within 150cm, but it may not work well when the 

distance between camera and moving object is over 150cm and the speed of 

moving object is faster than normal. The procedure may not work if the speed 

of moving object is too fast to be captured by the camera, or the distance 

between camera and moving object is too far away to make the object too 

small to be seen.
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Chapter 7

Parallel Motion Detection 
Strategy Using Temporal 
Difference and Pyramidal 
Structure-Based Optical Flow

Real-time detection of moving object is very important for video surveil­

lance. In this chapter, we present a novel motion detection procedure using 

parallel motion detection strategy which is consists of the temporal difference 

detection and pyramidal structure-based optical flow detection. Firstly, the 

temporal difference method is used for the whole image to detect coarse mo­

tion areas. Secondly, the image is decomposed into coarse levels based on 

Guassian pyramid construction and the optical flow method is performed in­

dependently at each resolution level of the image pyramidal structure for the 

motion area estimation. Finally, the moving object can be detected by com­

bining the results of parallel motion detection strategy. Analysis is given as to 

the efficiency and accuracy of our new detection procedure. It shows that the 

procedure is much faster than conventional mono-resolution detection methods 

and it needs less computation demands than other methods for the real-time 

surveillance and it also preserves high accurate rate detection at the same time. 

Experimental results demonstrate good performance of the proposed procedure
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in this chapter.

7.1 Introduction

Detection of moving objects in video streams is known to be a significant 

and difficult research problem. Several techniques for moving object detection 

have been studied for years, among them the three representative approaches 

are temporal difference, background subtraction and optical flow. Our recently 

research works have been focusing on how to integrate the advantages of these 

methods [26, 27].

In the case of motion detection and analysis, the vast amount of visual 

information is a challenge to the processing capabilities of most computers. 

However, it is commonly believed that in most cases only a small fraction of 

the available visual information is relevant to the visual activities of a motion 

detection system performing particular vision tasks. For an artificial visual 

detection system, it is expected to be able to selectively discard the redundancy 

visual information and intelligently keep the concentration of the detection 

system on the area where a target moving object appears in the images.

Previous work on multi-resolution motion detection has been reported. 

In [137, 138], multi-resolution visual energy change information represented 

in Laplacian and Gaussian image pyramids was used in motion detection 

and tracking. Particularly in [138], Burt implemented a coarse-to-fine multi­

resolution target search scheme in a pipeline architecture that is based on 

specially purposed parallel processors, demonstrating an efficient solution to 

the parallel multi-resolution motion sensing problem. However, because a rel­

atively complex technique of the integration of Gaussian and Laplacian image 

pyramids was used, Burt’s method is not efficient in image representation. 

In addition, because of the specific parallel computing architecture employed, 

Burt’s vision system is not easily applied in general application cases. More­

over, quantitative analysis of the efficiency improvement brought about by the 

utilization of the multi-resolution technique was not reported neither in these 

two works. Some research work on multi-resolution motion detection which
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is based on pyramidal structure for motion detection and tracking has been 

reported to improve the efficiency of calculation [139, 140, 141, 142, 143, 144], 

In this chapter, we present a parallel motion detection strategy which is 

based on the temporal difference detection and pyramidal structure-based op­

tical flow detection. The main goal of this procedure is to separate the back­

ground and foreground effectively and detect the object in motion accurately. 

The parallel motion detection strategy is introduced to detect the motion area. 

It includes two steps: (1) Temporal difference method, which is used for the 

whole image to detect coarse motion areas. (2) Pyramidal structure-based op­

tical flow, which is used independently at each resolution level of the image 

pyramidal structure for the motion area estimation. And, the moving object 

can be detected by combining the result of parallel motion detection strategy 

which is proposed not only improves the capability of detecting the object 

in motion, but also reduces the computation demands. Theoretical investiga­

tion together with the experimental results presented in this chapter show the 

superiority of our procedure over conventional methods.
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The procedure is depicted in the flowchart of Fig. 7.1.

Figure 7.1: Flowchart of the motion detection procedure

As can be seen, the whole procedure is comprised of two steps: (1) Parallel 

motion detection strategy which includes two methods, temporal difference de­

tection and pyramidal structure-based optical flow detection, is used to detect 

motion areas; (2) Motion area extraction, the motion area is extracted from 
the result of step (1).
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7.2 Parallel motion detection strategy

7.2.1 Temporal difference detection and optical flow de­

tection

Temporal difference detection and optical flow detection are two popular 

methods for detecting moving objects in video sequences. The temporal differ­

ence method is highly adaptive to dynamic environments, but generally does a 

poor job  of extracting the complete shapes of certain types of moving objects. 

The method based on optical flow is complex, but it can detect the motion 

accurately even without knowing the background. The main idea in this paper 

is to integrate the advantages of these two methods with multi-resolution tech­

nique. So the parallel motion detection strategy is proposed. Both temporal 

difference detection and optical flow detection methods which are the same as 

the those introduced in Chapter 6 are integrated in the procedure.

7.2.2 Pyramidal structure-based optical flow detection

A multi-resolution (image pyramid) is a data structure within which an 

input image is represented at successively reduced resolutions. The motiva­

tion for computing a structure description is to transform the information in 

each image into a representation in which searching and matching are more 

efficient at a fixed computational cost. Many researchers have shown that 

the efficiency of the searching and matching process can be dramatically im­

proved by performing the search at multiple resolutions. Many basic image 

operations can also be performed efficiently within pyramid structures [145]. 

Some pyramid-based “computational tools” have been proposed like Gaussian 

pyramid, recursive interpolation, Laplacian pyramid, and hierarchical discrete 

correlation.
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Gaussian pyramid construction

The hierarchical image structure we used in this procedure is Gaussian 

pyramids [146]. The first step in Gaussian pyramid construction is to low- 

pass filter the original image go to obtain image <71. The gi is a ’’ reduced” 

version of go in that both resolution and sample density are decreased. In a 

similar way, g2 is formed as a reduced version of t?i, and so on. Filtering is 

performed by a procedure equivalent to convolution with one of a family of 

local, symmetric weighting functions. An important member of this family 

resembles the Gaussian probability distribution, so the sequence of images 

g0, <?i,. . . ,  gn is called the Gaussian pyramid. A graphical representation of 

this process in one dimension is given in Fig.7.2.

Figure 7.2: The illustration for the Guassian image pyramid.

The level-to-level averaging process is performed by the function REDUCE.

gk =  R E D U C E D )  (7.2.1)
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and

N N

9k(i,j) =  REDUCE(gk-i) E  E  w(p, q)gk-i(2i +  p , 2j  +  q) (7.2.2)
p——N q = —N

where w(p, q) is the weighting window function which consists of the Gaussian 

coefficient.

The Gaussian coefficient is widely used in the Gaussian filter due to its 

excellent features. One of the principal reasons for using the Gaussian as a 

smoothing filter is that it has the frequency response of low-pass feature which 

means that it can remove high spatial frequency components from an image. 

The Gaussian filter is a 2-D convolution used to eliminate noise in the form of:

a(x’y’c)=¿ ¡exp K  i ^ ~ ) } (72 3)
where o  is called a scale parameter and the Gaussian distribution with o  =  1 
is shown in Fig.7.3.

Figure 7.3: Gaussian distribution with o — 1.
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From Fig.7.3, we can see that the Gaussian filter outputs a weighted average 

of each pixel’s neighborhood, with the average weighted more towards the value 

of the central pixels. With the increasing of o, the signal will become more 

smooth, but the edge may become more blurring. In our experiment, o  is set 

as 1 and the noise can be eliminated effectively. Compared to the same size 

mean filter’s uniformly weighted average, the Gaussian filter provides gentler 
smoothing and preserves edges better.

The idea of Gaussian smoothing is to use this 2-D distribution as a point- 

spread function, and this is achieved by convolution. Since the image is stored 

as a collection of discrete pixels we need to produce a discrete approximation to 

the Gaussian function before we can perform the convolution. We selected the 

5 x 5  Gaussian coefficient pattern in this method because it provides adequate 

filtering at low computational cost. Table 7.1 shows a size of 5 x 5 decimal­

valued convolution kernel that approximates a Gaussian filter with o — 1.

Table 7.1: Gaussian convolution kernel with o  =  1

0.002915 0.013064 0.021539 0.013064 0.002915
0.013064 0.05855 0.096532 0.05855 0.013064

0.002915 0.096532 0.15915 0.096532 0.002915
0.013064 0.05855 0.096532 0.05855 0.013064
0.002915 0.013064 0.021539 0.013064 0.002915
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Image up-sampled among resolution levels

Because the image pyramids are generated in accordance with the rule of 

dyadic resolution reduction, one pixel in an image layer with a lower resolution 

in the image pyramid corresponds to 2 x 2 pixels in its beneath image layer 

with a higher resolution, as shown in Fig.7.4.

Figure 7.4: The relationship between the pixels in different resolution levels.

Sequentially, the projection of a pixel (i, j )  in the fc-th resolution level onto 

the m-th level (m < k) is a square image area consisting of 2fc_m x 2fc_m pixels. 

The coordinates of the pixel of the projected image area u,v  is related to i , j  
with the following equation:

u =  2 k~mi 

v =  2 k~mj
(7.2.4)

Thus, the information up-sampled among different image layers for pixel 

correspondence, search path selection, and result exchanges should obey the 

relationship defined in (7.2.1).
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Coarse-to-fine optical flow estimation

In order to reduce the computational complexity, a Gaussian pyramid is 

built to provide a range of coarse to fine views of the image. The motion 

information is first derived at the lowest resolution level, that is, at the top of 

the pyramid. Once these motion vectors have been estimated, they are utilized 

as the prediction motion vectors at the next higher resolution level where these 

predictions are refined. This process is repeated until the full resolution level is 

reached. The optical flow detection is used to do the motion estimation in this 

pyramidal motion estimation technique and the computational load is reduced 

because of the smaller image size at the lower levels of resolution, and because 

of the utilization of the motion information that has already been obtained at 

a given resolution in predicting the motion information at a higher resolution.

Therefore, a hierarchical coarse-to-fine optical flow estimation is introduced 

in our procedure, as is illustrated in Fig.7.5. It consists of two parts: (1) 

pyramid construction with image down-sample; (2) optical flow calculation 

with image up-sample.
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Morphological processing

Mathematical morphology operator, dilation, which is introduced in Chap­

ter 6 is used to expand the motion areas detected by pyramid-structure based 

optical flow estimation to make them more visible.

Motion area extraction

With the coarse-to-fine method described above, rough optical flow fields 

can be obtained. In order to acquire accurate boundaries of moving objects, a 

method which is proposed in [147] is introduced by using the result of parallel 

motion detection strategy. The motion area 7m can be obtained from the 

combination results of temporal detection 7p and pyramidal structure-based 

optical flow detection IoFd- It can be denoted as the equation below:

Im =  (h (x , y, t ) )k (I0Fd(x, y, t)) (7.2.5)

Summary

The pyramidal structure-based optical flow detection process is outlined as 

below: (1) Construct the Gaussian pyramids of three successive images; (2) 

Compute the optical flow at the coarsest resolution level; (3) Map the optical 

flow pixels obtained in the last step onto the next resolution level; (4) Compute 

the optical flow based on the result of (3) at the current resolution level; (5) 

Check if the detection process has reached at the finest resolution level. If so, 

then stop the detection process and output the detection results; otherwise, go 

back to Step (3).

The method also possesses two advantages over the mono-resolution target- 

search methods: (1) An iterative detection process is performed in the multi­

resolution domain to increase the accuracy of the location of the target; (2) 

The search at each resolution level (with the possible exception of the coarsest 

one) can be restricted within one or more particular areas to reduce the total 

computational cost of the search process.
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7.3 Experimental results

In this section, the effectiveness of the proposed procedure for motion de­

tection is demonstrated for a simulation environment whose background is a 

vibrated column curtain caused by winds. The procedure runs using MATLAB 

program. The size of the video image is 320 x 240 pixels and the sample rate 

is 25 frames per second.

Fig.7.6 illustrates the procedure on a video sequence in which a moving 

object is moving under a complex background. Fig.7.6(a) shows original video 

image. Fig.7.6(b) shows the result of video image after using temporal differ­

ence detection. Fig.7.6(c) shows the result of the first level of Guassian pyramid 

construction, gi. Fig.7.6(d) shows the result of the second level of Guassian 

pyramid construction, g2. Fig.7.6(e) shows the result of optical flow detection 

based on g2. Fig.7.6(f) shows the result of upsample for g2) g2up. Fig-7.6(g) 

shows the result of optical flow detection based on g2up. Fig.7.6(h) shows the 

result of upsample for gi,giup. Fig.7.6(i) shows the result of morphological 

processing for giup. Fig.7.6(j) show the result of motion detection for a moving 
object.

154



7.3 Experimental results 155

Figure 7.6: Experimental results.
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In this chapter, the same experiments are organized as described in Chapter 

6 to test the effectiveness of the procedure. Five different speeds of the moving 

object (very slow, slow, normal, fast and very fast) and six different distances 

between camera and moving object (20cm, 40cm, 60cm, 100cm, 150cm and 

200cm) are chosen. The results are shown in Fig.7.8, Fig.7.9, Fig.7.10, Fig.7.11, 

Fig.7.12 and Fig.7.13, respectively, and the figure numbering for the whole set 

of testing results is listed in Fig.7.7.

Speed

Results Very Slow Slow Normal Very Fast Fast

20cm Figure 7.8(a) Figure 7.8(b) Figure 7.8(c) Figure 7.8(d) Figure 7.8(e)

40cm Figure 7.9(a) Figure 7.9(b) Figure 7.9(c) Figure 7.9(d) Figure 7.9(e)

60cm Figure 7.10(a) Figure 7.10(b) Figure 7.10(c) Figure 7.10(d) Figure 7.10(e)

100cm Figure 7.11(a) Figure 7.11(b) Figure 7.11(c) Figure 7.11(d) Figure 7.11(e)

ISOcm Figure 7.12(a) Figure 7.12(b) Figure 7.12(c) Figure 7.12(d) Figure 7.12(e)

200cm Figure 7.13(a) Figure 7.13(b) Figure 7.13(c) Figure 7.13(d) Figure 7.13(e)

Distance

Figure 7.7: Testing results for the procedure.

i
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(e) Speed: veiy fast; Distance: 20cm

Figure 7.8: Experimental results under different speeds, distance is 20cm.
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(e) Speed: very fast; Distance: 40cm

Figure 7.9: Experimental results under different speeds, distance is 40cm.
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(e) Speed: very fast; Distance: 60cm

Figure 7.10: Experimental results under different speeds, distance is 60cm.
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(e) Speed: very fast; Distance: 100cm

Figure 7.11: Experimental results under different speeds, distance is 100cm.
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(e) Speed: very fast; Distance: 150cm

Figure 7.12: Experimental results under different speeds, distance is 150cm.
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(e) Speed: veiy fast; Distance: 200cm

Figure 7.13: Experimental results under different speeds, distance is 200cm.

162



7.4 Conclusions 163

7.4 Conclusions

In this chapter, a new procedure based on parallel motion detection strategy 

which includes temporal difference detection and pyramidal structure-based 

optical flow detection is proposed. The procedure integrates the advantages of 

two motion detection methods, temporal difference and optical flow, and multi­

resolution technique and presents a fast and robust motion detection procedure. 

The parallel motion detection strategy is the main part of the procedure, in 

which, on the one hand, the temporal difference method is used to initially 

detect any possible motion areas in the video image, on the other hand, the 

optical flow method combined with Gaussian pyramidal structure is used to 

do the motion areas estimation. Finally, the motion area is extracted from 

combination results of temporal difference detection and pyramidal structure- 

based optical flow detection.

The experimental results showed that the procedure can distinguish the 

moving object successfully from the complex background with different speeds 

of the moving object and different distances between the camera and moving 

object. But with the increase of the speed of the moving object and the distance 

between the camera and moving object, the accuracy of the detection will 

decrease. Under our experimental environment, the procedure works very well 

under different speeds of moving object when the distance between camera and 

moving object is within 150cm, but it may not work well when the distance 

between camera and moving object is over 150cm and the speed of moving 

object is faster than normal. Of course, the procedure may not work if the 

speed of moving object is too fast to be captured by the camera, or the distance 

between camera and moving object is too far away to make the object too small 

to be seen.
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Chapter 8

Conclusions and Future Work

This chapter concludes the thesis. It summarizes the major achievements 

of the presented research work in the field of new procedure development for 

digital signal processing. In this chapter, possible directions for further inves­

tigations are also indicated.

8.1 Conclusion

At the beginning of the thesis, the background, motivations, objectives 

and significance of this research work are all presented. According to the 

different practical situations and requirements, this research work has been 

focused on the development of new digital signal processing procedures with 

the applications to speech, electromyography and image processing.

Chaos theory has been introduced including the theoretical background and 

mathematical definitions. The chaos theory is a scientific theory describing 

erratic behavior in certain nonlinear dynamical systems. In mathematics and 

physics, chaos theory describes the behavior of certain nonlinear dynamical 

systems that under certain conditions exhibit a phenomenon known as chaos. 

On the other word, chaos theory is kind of method which is used to find out 

the invariable characteristics from the random signal for control and predict. 

Based on chaos theory, a new noise reduction procedure has been developed. 

Compared to the traditional methods, my research work provides a new way
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to process the signal for noise reduction. The procedure consists of three main 

steps: phase space reconstruction, phase space projection and transforming 

back to the time domain. The main idea of the procedure is to reconstruct 

the attractor of the contaminated signal in the phase space for identification of 

noise contributions. The simulation results have shown that the experimental 

noisy signal can be cleaned by the new procedure and the SNR value increased 

obviously after the procedure using. It is also demonstrated that this chaos 

theory generalised technique can be used as an alternative and effective means 

of the digital signal processing.

The main problem with the application to filtering the noise from the cor­

rupted speech signals is that some useful information is missing from the dis­

torted signal. Sometimes, recovering the missing information is more difficult 

than cleaning the contamination from a signal. Based on chaos theory, a proce­

dure of phase space trajectory reconstruction for speech signal restoration has 

been developed. The procedure is based on the theory of nonlinear dynamic 

system analysis, in which the signal is transformed (projected) into a high di­

mension phase space and the space interpolation method is used to reconstruct 

the new trajectory back into the time domain for the signal restoration. The 

simulation results have shown that, by applying our method to do the sig­

nal restoration, the result of noise reduction and the signal quality have been 

improved satisfactorily.

Uterine electromyography (EMG) signal is a complex nonlinear signal which 

can be used in clinical for early diagnosis of preterm labour. But the uter­

ine EMG signal is difficult to differentiate uterine contractions which lead to 

preterm birth. A procedure of EMG signal processing has been developed 

for signal classification by using chaos theory generalised techniques and other 

signal processing methods. There are three main steps in the procedure, sig­

nal pre-processing, signal feature extraction and signal classification. In this 

procedure, the main idea is that the difference between term labour signal 

and preterm labour signal can be the contraction patterns. So the analysis 

work is focus on the contraction patterns of the signal, try to extract some 

features to do the classification work. The classification accuracy of artificial
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neural network (ANN) is 64.1% which is an encouraging result. Due to lack of 

the organized data, the work needs to continue before any conclusions can be 
drawn.

In the image processing, two procedures have been developed for moving 

object detection under the noisy environment. The first one is based on accu­

mulative optical flow and double background filtering. The second one is based 

on parallel motion detection strategy using temporal difference and pyramidal 

structure-based optical flow. Both procedures integrate the advantages of dif­

ferent motion detection methods and use different strategies to achieve better 

performance. The two procedures, both of them have high capability of anti­

interference and preserves high accurate rate detection at the same time. They 

also needs less computation demands than other traditional methods for the 

real-time video surveillance. The results show that both of procedures can sep­

arate the background interference and foreground moving object very well, and 

detect motion area successfully from the complex background under different 

speeds of the moving object and different distances between the camera and 
moving object.

8.2 Suggestions for future work

With an understanding presented in this thesis, we know that the procedure 

development is very important to the digital signal processing and the following 
aspects would be worthy of further investigation:

• With some constraints, in new noise reduction procedure, the sinusoidal 

signal is used as the experimental signal to test the effectiveness of the 

idea for noise reduction which is based on chaos theory. More other 

types of signal, especially the random signals, are to be included into 

the framework. A more general framework without any constraint is also 

desirable in the future although more effort is certainly needed.

• Time delay and embedding dimension are two parameters that influence 

the phase space reconstruction. In our procedures, the time delay and
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embedding dimension which are used for signals are 1 and 3, respectively. 

The combination of different time delay and different embedding dimen­

sion can construct different phase spaces. The optimal choosing for both 

of them can easily and correctly explore the dynamical features of signal 

in phase space and to find out the better solution.

• In the procedure of speech signal processing, besides the speech signal 

itself, the characteristic of human voice should be considered as a factor 

and combined with our method to do the processing.

• In the procedure of EMG signal processing, different feature extraction 

methods and classification methods are to be investigated. Of course, 

the more accurate and better quality data are needed.

• In the procedures of image processing, the procedure complexity should 

be taken into account because of the real-time application. Simplifying 

the computation of the procedure and keeping the high detection accu­

racy should be investigated. The procedure also needs to be developed 

to suit for variety of different noisy environment.
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Appendix A

TSTOOL Software Package

Introduction

TSTOOL is a software package for nonlinear time series analysis. It is im­

plemented mainly in Matlab, with some time-critical parts written in C /C -H - 

(as mex-functions).

Objectives

1. Implement existing algorithms for nonlinear time-series analysis

2. Develop new methods for specific data analysis problems

3. Create an expandable platform for signal processing

Function

TSTOOL can be used for computing:

• Time-delay reconstruction

• Lyapunov exponent(s)

• Fractal dimensions
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• Mutual information

• Surrogate data tests

• Nearest neighbor statistics

• Return times

• Poincare sections

• Nonlinear prediction

How to install TSTOOL

TSTOOL is based on Matlab, so it will run on any platform for which 

Matlab is available. Some paxts of TSTOOL are coded in C + +  and require 

therefore an ANSI C + +  compliant compiler (e.g. gcc 2.95) to be compiled.

The Web Linking

TSTOOL Home Page:

http://w w w .physik3.gwdg.de/tstool/index.html
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Appendix B

Video Processing Development 
Program (VCAPG2 for 
MATLAB)

Introduction

VCAPG2 is DirectShow based video capture DLL that support various 

types of video capture cards. VCAPG2 is a new version of MATLAB resident 

video capture program, which employs Microsoft’s DirectShow libraries rather 

than the older Video for Windows (VfW) library. In order to run VCAPG2, 

you will need to install the DirectX runtime libraries. The vcapg2 requires 

a video capture device, such as a USB camera to be installed and working 

properly. This code has been developed and tested with DirectX 8.1 and 9.0 

with MATLAB6.1/6.5.

Features

Features are:

1. Up to 6 video capture cards can grab images at one command.

2. Supported video capture devices are including IEEE1394 based DV CAM,
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USB Camera as well as old VFW  based Camera.

3. VCAPG2 can run up to almost twice as fast as VfW  based program.

How to install VCAPG2

Just copy vcapg2.dll to your MATLAB current directory. You can check 

MATLAB current directory by usiing ‘pwd’ command. After that you just 

type ‘vcapg2’ will appear preview window.

The Web Linking

VCAPG2 Home Page:

http://www.ikko.k.hosei.ac.jp/ matlab/matkatuyo/vcapg2.htm
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Appendix C

EMG Data for Signal 
Calssification

All EMG data in our experiment, term labor signals and pre-term labor 

signals, are plotted in Fig.C.l, Fig.C.2, Fig.C.3 and Fig.C.4 respectively.

Data Rie: isMulyOtyl) "ft BSC2 Dels File: MAprtlOXIï TL B3C1

Oats Rie: 4dvJim04(1) T l B2C1 Dato File: 4mJune04i2) T l B1C2

Figure C .l: Term labor Data.
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Figure C.2: Term labor Data.

173



EMG Data for Signal Calssification 174

Data FOa: 24thMai04(1)TL B3C1 Data. Fite. Mtt»Feto04|l| TL B1C1

Data File: 27thFeb03ilj2P 71 B6C2 Data File; 27thJanM(li TU BICI

Date File: 30lhOee$3<l>TL B1C2 Oata.FUe: 30mDec03(1)B TL B1C2

Figure C.3: Term labor Data.
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Figure C.4: Pre-term labor Data.
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Appendix D

Publication Award

The paper below has been selected as “The Best Paper Award of The 2007 

International Conference of Signal and Image Engineering” .

N . Lu, J. Wang, Q.H. Wu and L. Yang, Motion Detection Based On Accumu­

lative Optical Flow and Double Background Filtering, Proceedings of World 
Congress on Engineering 2007, London, UK, Vol.l, pp.602-607, 2-4 July, 2007.

The World Congress on Engineering (WCE 20071

'  iTic 2001InternationalConference o f 
Signaùaridlmage ¡Engineering*

<Best ¡Paperflwardof

2 -4 lu ly2 0 0 7.Lo n d o n .U .K .

Figure D.l: The Best Paper Award.
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Appendix E

Matlab Codes

E .l Singular Value Decomposition Algorithm

function [u,s,v] = svdsim(a,tol)

7. SVDSIM simple SVD program
7.
% A simple program that demonstrates how to use the QR 
7. decomposition to perform the SVD of a matrix. A may be 
% rectangular and complex.
7.
7. usage: [U,S,V]= SVDSIM (A)
% or S = SVDSIM(A)
7.
7. with A = U*S*V’ , S>=0 , U’*U = Iu , and V’*V = Iv
7.
7. The idea is to use the QR decomposition on A to gradually 
7. "pull" U out from the left and then use QR on A transposed to 
7. "pull" V out from the right. This process makes A lower 
7, triangular and then upper triangular alternately. Eventually,
7. A becomes both upper and lower triangular at the same time,
7« (i.e. Diagonal) with the singular values on the diagonal.
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7. Matlab’ s own SVD routine should always be the f ir s t  choice to 

7. use, but this routine provides a simple "algorithmic 

7. alternative" depending on the users’ needs.

7» Paul Godfrey 

% October 23, 2006

i f  ~ e x ist( ’ t o l ’ , ’ var’ ) 

tol=eps*1024;

end

7« reserve space in advance

sizea=size(a); loopmax=100*max(sizea); loopcount=0;

7. or use Bidiag(A) to in itia lize  U, S, and V 

u =eye(sizea(l)); s=a’ ; v=eye(sizea(2));

Err=realmax; while Err>tol & loopcount<loopmax ;

7. loglO([Err to l loopcount loopmax]) ;  pause 

[q ,s]=q r(s ’ ) ; u=u*q;

[q ,s]=q r(s ’ ) ; v=v*q;

7. exit when we get "close" 

e=triu (s ,1 ) ;

E=norm(e(:) )  ;

F=norm(diag(s)); 

i f  F==0, F=1; end 

Err=E/F;

loopcount=loopcount+l;

end

7. [Err/tol loopcount/loopmax]
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% f ix  the signs in S

ss=d iag(s); s=zeros(sizea); for n = l: length(ss) 

ssn=ss(n); 

s(n,n)=abs(ssn); 

i f  ssn<0

u ( : ,n )= -u (: ,n ) ;

end

end

i f  nargout<=l 

u=diag(s);

end

return

E.2 M M SE log-STSA Algorithm

function output=MMSESTSA85(signal, f s , IS)

*/. output=MMSESTSA85(signal, f s , IS)

% Short time Spectral Amplitude Minimum Mean Square Error Method 

% for Denoising noisy speech, based on log-Spectral MMSE Ephraim 

% et al (1985) paper under the same t i t le ,  signal is  the input 

°/0 noisy speech, fs  is  its  sampling frequency and IS (which is  

*/. optional) is  the in itia l silence estimate (The default value 

•/. is  0.25 which means that i t  is assumed that the f ir s t  0.25  

*/. seconds of the signal is  speech inactive- period and may be 

*/. used for in itia l noise parameter estimation). The output is  

*/. the restored estimate of clean speech.

% Author: Esfandiar Zavarehei 

°/„ Created: Jan-04
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“/. Last Modified: 24-01-05

i f  (nargin<3 | isstruct(IS))

IS=.25; “/.In itial Silence or Noise Only part in seconds

end

W=f ix( .025*fs) ; “/»Window length is  25 ms

SP=.4; “/»Shift percentage is  40“/, (10ms) “/.Overlap-Add method 

“/»works good with this value(.4 )  

wnd=hamming(W);

"/, IGNORE FROM HERE ..................................................................

i f  (nargin>=3 & isstruct(IS))

“/»This option is for compatibility with another programme 

W=IS.windowsize 

SP=IS. shiftsize/W ;

°/»nfft=IS.nfft; 
wnd=IS.window; 

i f  is fie ld C lS .’ IS ')

IS=IS.IS;

else

IS=.25;

end

end

7» ................................................................................. UP TO HERE

pre_emph=0; s ig n a l= filte r([1 -pre_emph],1 .s ig n a l); 

NIS=fix((IS*fs-W)/(SP*W) +1);

“/.number of in itia l silence segments

y=segment(signal,W.SP.wnd);

“/»This function chops the signal into frames Y =fft(y );
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YPhase=angle(Y( 1 :f  ix (en d /2)+ l, :) )  ; °/0Noisy Speech Phase 

Y =abs(Y (l:fix(end /2)+l, : ) )  ; "/.Specrogram 

number0fFrames=size(Y,2); FreqResol=size(Y,1);

N=mean(Y(: , 1 :NIS)’ ) ’ ; “/»initial Noise Power Spectrum mean 

LambdaD=mean( (Y( : , 1 :NIS)’ ) . ~2)’ ;

“/in i t ia l  Noise Power Spectrum variance

alpha=.99 ;

7. used in smoothing xi (For Deciesion Directed method for 
7, estimation of A Priori SNR)

NoiseCounter=0 ;

NoiseLength=9 ;

“/«This is  a smoothing factor for the noise updating

G=ones(size(N)) ; “/.In itia l Gain used in calculation of the new xi 
Gamma=G;

X=zeros(size(Y)) ; “/.In itia lize  X (memory allocation) 

h=waitbar(0,’ Wait. . . ’ ) ;

for i=l:numberOfFrames

7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.VAD and Noise Estimation START 
if i<=NIS 7» If initial silence ignore VAD 

SpeechFlag=0;
NoiseCounter=100 ; 

else 7, Else Do VAD

[NoiseFlag, SpeechFlag, NoiseCounter, Dist]=vad(Y(: ,i ) ,N ,  

NoiseCounter) ; “/»Magnitude Spectrum Distance VAD

end
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i f  SpeechFlag==0 "/«If not Speech Update Noise Parameters 

N=(NoiseLength*N+Y(: ,  i))/(N oiseLength+l);

"/»Update and smooth noise mean 

LambdaD=(NoiseLength*LambdaD+(Y(: ,  i ) . ~2))

. /(1+NoiseLength);

"/»Update and smooth noise variance

end

mmmmmmxv ad and Noise Estimation END

gammaNew=(Y(: , i )  . “2) ./LambdaD; "/»A postiriori SNR 

xi=alpha*(G.* 2 ) .*Gamma+(l-alpha). *max(gammaNew-l,0 ) ;

"/«Decision Directed Method for A Priori SNR

Gamma=gammaNew; 

nu=Gamma.*xi./(l+xi);

°/»A Function used in Calculation of Gain

G= (x i . / (1 + x i)) . *exp(. 5*expint(nu)) ;

"/»Log spectral MMSE [Ephraim 1985] 
X ( : ,i )= G .* Y ( : , i ) ;  "/»Obtain the new Cleaned value

waitbar(i/numberOfFrames,h,

num2str(fix(100*i/number0fFrames)) ) ;

end

clo se(h );

output=0verlapAdd2(X, YPhase,W, SP*W) ;

"/»Overlap-add Synthesis of speech 
o u tp u t= filter(l,[1  -pre_emph].output);

%Undo the effect of Pre-emphasis

function



E.2 MMSE log-STSA Algorithm 183

ReconstructedSignal=0verlapAdd2(XNEW, yphase,windowLen, ShiftLen); 

% Y=OverlapAdd(X,A,W,S);

% Y is the signal reconstructed signal from its spectrogram. X 
7. is a matrix with each column being the fft of a segment of 
°/0 signal. A is the phase angle of the spectrum which should 
7. have the same dimension as X. if it is not given the phase 
7. angle of X is used which in the case of real values is zero 
7« (assuming that its the magnitude). W is the window length of 
% time domain segments if not given the length is assumed to be 
7» twice as long as fft window length. S is the shift length of 
7. the segmentation process for example in the case of non 
7. overlapping signals it is equal to W and in the case of 7.50 
7. overlap is equal to W/2. if not givven W/2 is used. Y is the 
% reconstructed time domain signal.
7. Sep-04
7. Esfandiar Zavarehei

if nargin<2
yphase=angle(XNEW); 

end if nargin<3
windowLen=size(XNEW,1)*2; 

end if nargin<4
ShiftLen=windowLen/2; 

end if fix(ShiftLen)"=ShiftLen 
ShiftLen=fix(ShiftLen);
disp(’The shift length have to be an integer as it is the 

number of samples.’)
disp( [’shift length is fixed to ’ num2str(ShiftLen)])

end

[FreqRes FrameNum]=size(XNEW);
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Spec=XNEW. *exp(j *yphase);

i f  mod(windowLen,2) °/0i f  FreqResol is  odd

Spec= [Spec;flipud(conj(Spec(2 :end,: ) ) ) ] ;

else

Spec=[Spec;flipud(conj(Spec(2 :en d -1 ,: ) ) ) ] ;  

end sig=zeros((FrameNum-l)*ShiftLen+windowLen,1); weight=sig;

for i=l:FrameNum

start=(i-1)*ShiftLen+1; 

spec=Spec(: , i ) ;

s ig (s ta r t : start+windowLen-l)=sig(start: start+windowLen-1)

+real(ifft(spec,windowLen)) ;

end ReconstructedSignal=sig;

function Seg=segment(signal, W, SP.Window)

% SEGMENT chops a signal to overlapping windowed segments 

% A= SEGMENT(X,W,SP,WIN) returns a matrix which its  columns are 

% segmented and windowed frames of the input one dimentional 

% signal, X. W is the number of samples per window, default 

1 value W=256. SP is the sh ift percentage, default value SP=0.4. 

% WIN is the window that is  multiplied by each segment and its  

1 length should be W. the default window is hamming window.

% 06-Sep-04 

% Esfandiar Zavarehei

i f  nargin<3 

SP=.4;

end i f  nargin<2 

W=256;
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end i f  nargin<4

Window=hamming(W);

end

Window=Window(:) ;  %make it  a column vector

L=length(signal); SP=fix(W.*SP);

N=f ix( (L-W)/SP +1); "/»number of segments

Index=(repmat(l:W ,N,l)+repmat((0:(N-l))’ *SP,1,W ))’ ; 

hw=repmat(Window,1,N); Seg=signal(Index).*hw;

function [NoiseFlag, SpeechFlag, NoiseCounter,

Dist]=vad(signal.noise, NoiseCounter, NoiseMargin,Hangover)

1 [NOISEFLAG, SPEECHFLAG, NOISECOUNTER, DIST]=vad(SIGNAL,NOISE,

NOISECOUNTER,NOISEMARGIN, HANGOVER) 
7» Spectral Distance Voice Activity Detector SIGNAL is the the 

7, current frames magnitude spectrum which is  to labeld as noise 

7. or speech, NOISE is  noise magnitude spectrum template 

7. (estim ation), NOISECOUNTER is the number of imediate previous 

7. noise frames, NOISEMARGIN (default 3 ) is  the spectral distance 

7« threshold. HANGOVER (default 8 ) is the number of noise segments 

7« after which the SPEECHFLAG is reset (goes to zero). NOISEFLAG 

7. is  set to one i f  the the segment is  labeld as noise 

7« NOISECOUNTER returns the number of previous noise segments,

7. this value is  reset (to zero) whenever a speech segment is  

7« detected. DIST is the spectral distance.

7« Saeed Vaseghi

7. edited by Esfandiar Zavarehei 

7. Sep-04

i f  nargin<4
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NoiseMargin=3; 

end i f  nargin<5 

Hangover=8 ; 

end i f  nargin<3

NoiseCounter=0;

end

FreqResol=length(signal);

SpectralDist= 20*(loglO(signal)-loglO(noise) ) ;  

SpectralDist(f ind(SpectralDist<0))=0 ;

Dist=mean(SpectralDist); i f  (Dist < NoiseMargin) 

NoiseFlag=l;

NoiseCounter=NoiseCounter+l;

else

NoiseFlag=0;

NoiseCounter=0;

end

7, Detect noise only periods and attenuate the signal 

i f  (NoiseCounter > Hangover)

SpeechFlag=0;

else

SpeechFlag=l ;

end

E.3 Lucas-Kanade Optical Flow Algorithm

function [u, v] = LucasKanade(iml, im2, windowSize);

% LucasKanade lucas kanade algorithm, without pyramids
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(only 1 le v e l) ;

*/. REVISION: NaN vals are replaced by zeros

[fx , fy , f t ]  = ComputeDerivativesCiml, im2);

u = zeros(size(im l)) ;  v = zeros(size(im 2)) ;

halfWindow = floor(windowSize/2); for i = 

halfWindow+1: s iz e (fx ,1)-halfWindow

for j = halfWindow+1: s iz e (fx ,2 )-halfWindow

curFx = fx(i-halfWindow:i+halfWindow,

j-halfWindow:j+halfWindow);

curFy = fy(i-halfWindow:i+halfWindow,

j-halfWindow:j+halfWindow);

curFt = ft(i-halfWindow:i+halfWindow,

j-halfWindow:j+halfWindow);

curFx = curFx’ ;

curFy = curFy’ ;

curFt = curFt’ ;

curFx = curFx( : ) ;

curFy = curFy( : ) ;

curFt = -curFt ( : ) ;

A = [curFx curFy];

U = pinv(A’ *A)*A’ *curFt;

u ( i ,j )= U ( l) ; 

v (i ,j)= U (2 ) ;
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end;

end;

u(isnan(u))=0; v(isnan(v))=0;

% u=u(2:size(u,l), 2:size(u,2)); 
*/. v=v(2:size(v,l), 2:size(v,2));

0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/

function [fx , fy , ft ]  = ComputeDerivatives(iml, im2);

% ComputeDerivatives Compute horizontal, vertical and time 

7. derivative between two gray-level images.

i f  (s ize (im l,l)  "= size(im 2,l)) | (size(im l,2) “= size(im 2,2)) 

error(’ input images are not the same s ize ’ ) ;  
end;

i f  (size(im l,3)~=l) | (size(im 2,3)~=l)

error( ’ method only works for gray-level images’ ) ;  
end;

fx = conv2(iml,0 .2 5 *[-1  1; -1  1])+conv2(im2, 0 .2 5 * [ -l  1; -1  1]) ;  

fy = conv2(iml,0 .2 5 *[-1  -1 ; 1 1])+conv2(im2, 0 .2 5 * [ -l  -1 ; 1 1 ] ) ;  

f t  = conv2(iml,0.25*ones(2))+conv2(im2, -0 .25*on es(2));

7. make same size as input

fx = fx ( l : s iz e ( fx ,1 ) -1 , 1 :s i z e ( f x ,2 ) - l ) ; fy = fy (l : s iz e (fy , 1 ) -1 , 

l :s i z e ( f y ,2 ) - l ) ; f t = f t (1 :s iz e ( f t , 1 ) -1 , 1 :s i z e ( f t ,2 ) - l ) ;
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