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Abstract

Detecting a target of interest such as a breast tumour is the primary focus of 
microwave imaging but once detected an additional useful property to have is some 
measure of the target shape. A combination of a pseudo-random noise (PN) sequence 
and filter has been employed to pick out the edges of a target that when used to create 
an image shows the target's shape clearly. A variety of target shapes are investigated 
with each image giving a good detection and showing the target's shape. Imaging 
through an outer shell to an inner target and showing both the shell and target on the 
image is successful with the PN sequence and filter but fails when using a wideband 
pulse and integrating along its length, picking up only the inner target.

A H-matrix transform previously used for communication channel capacity 
calculations has been investigated for use as an imaging tool. Transforming the H- 
matrix produces an image that shows the coupling between angles of an antenna 
array. The image is an angular map showing the direction of any targets present. 
Further expansion produced an altered version that allowed focussing down to the 
antenna element limit instead of the antenna array limit. In the process of converting 
from an angular to a Cartesian coordinate system segmenting of the antenna array 
data into smaller groups before the transform and then combining afterwards narrows 
the angular location of the target and gives a limited range measure.
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Chapter 1

Introduction, Objectives and Summary

1.1 Introduction

The definition of an image is “a visible impression obtained by a camera, displayed 

on a video screen, or produced by reflection or refraction” [1]. Imaging is the process 

of making an image and microwave imaging uses the microwave band of the 

electromagnetic (EM) spectrum (wavelengths of 1-300mm) instead of the visible 

spectrum (wavelength of 400-700nm) to create images. So the essence of this thesis is 

to create images using microwave signals. Microwaves have an advantage over 

visible wavelengths in that they can penetrate through a range of materials including 

human tissue making them useful for breast cancer detection as they can penetrate and 

see inside the breast.

The thesis covers the stages to generate images from microwave signals using 

computer models and simulations for the purpose of detecting breast cancer. The 

microwave signals used consist of a range of pulses and pseudo-random noise (PN) 

sequences at frequencies up to 10GHz. These are generated using the software 

package Matlab(tm) from Mathworks. Computer models are built in Matlab to 

represent real situations which are then simulated using the Finite Difference Time 

Domain (FDTD) method. FDTD is a method that simulates the propagation of 

electromagnetic waves, including reflection and refraction. Using the computer 

models and FDTD the propagation of microwave signals transmitted from an antenna
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through an environment (such as the inside of the breast) can be simulated and the 

signals at receiving antennas calculated.

The received signals are calibrated and processed to detect reflected signals, 

calibration and processing are considered later in the chapter. Images are created from 

the calibrated and processed data by migration techniques. The migration used is 

geometric and involves shifting and summing individual data points from each of the 

received signals based on signal propagation speed and antenna locations. Two 

related fields have been drawn on for the signal processing method. Firstly, analysis 

of the indoor radio propagation channel [2-3] indicates that in many cases they can be 

modelled by a Finite Impulse Response (FIR) filter approximation containing 

complex attenuation factors and delays. There is also the use of equalisation methods 

and encoded signals in antenna measurements [4-5] to eliminate echoes from close 

objects to simulate open space. Those ideas were adapted into a signal processing 

method that detects rather than suppresses echoes leading to signal processing that 

takes a different form than normal. It focusses on preserving a targets shape through 

the use of PN-sequences and a filter. This method detects the edges of targets so when 

used to create an image through migration shows a targets shape better than 

conventional methods.

An alternative method to create images is also shown using the H-matrix. The 

H-matrix gives the coupling between antenna elements in an array at a single 

frequency. A full investigation into a transform of the H-matrix is carried out that 

produces images showing the angular direction of any targets present. This is an 

extension of work designed to calculate the capacity of communication channels but 

focussed on the images produced by an intermediate step [6].
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1.1.1 Calibration

Calibration for microwave imaging [7-8] is the process by which any unwanted 

elements are removed from the system being looked at whether it is interference from 

the surrounding structure holding the antenna or skin reflections. This leads to the 

best possible signal data. In transmit and receive systems (with reference to radar) the 

various antenna combinations can be summed up into three different groups. Mono­

static systems use a single antenna used for both transmission and reception. The 

main problem is missing some of the early part of the received signal because the 

antenna is still transmitting when part of the signal to be received arrives, but it is 

easy to set up and calibrate. Bi-static systems use a single transmitter and a single 

receiver and it is also relatively easy to calibrate. A multi-static system is the 

approach used, they have at least three antenna elements in any combination of 

transmitter and receiver but are more difficult to calibrate.

With reference to breast cancer detection and a multi-static system there are 

several methods commonly used for calibration [9]. The first method is imported from 

ground penetrating radar (GPR) and involves windowing the signal to remove 

unwanted parts. For this technique to work the pulse length and transmitter and 

receiver locations need to be carefully chosen because wanted signals can be 

windowed out. A second method is the use of a breast phantom (or no target) to 

generate calibration signals. The calibration signals are then subtracted from the real 

signals to remove skin reflections and direct signals between antennas. In theory this 

is good but in practice is highly patient dependent due to wide variation in tissue 

properties [10].
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The method used here is to obtain calibration for a limited set of data signals 

operating in a multi-static way. The method involves setting up of a grid of 

transmitting and receiving antennas but processing the data in pairs to remove skin 

reflections or direct signals. Calibration using a phantom is acceptable for controlled 

simulations but the inherent variability of patients makes it unlikely that a universally 

effective phantom could be developed. In addition due to the very small signals that 

are generated as reflections from a target it is vitally important to remove any large 

signals that could interfere. This method provides a way to remove some of the 

strongest signals that cause problems and will also allow the use of much wider 

propagation angle antennas.

1.1.2 Signal Detection

Wideband pulses used in ranging applications through to breast cancer detection have 

a common problem in that the pulse itself is not necessarily the same shape when it is 

received and can have widely varying strengths if multiple targets are present. 

Travelling through a medium or when the signal is reflected from objects means that 

the received signal is difficult to match up to what was transmitted. Common 

techniques to detect when the pulse is received include integration over the pulse 

length to detect the pulse as a region of higher than normal activity or correlation 

methods [5] (including both frequency and phase modulated pulses). One of the 

problems is signal masking where a stronger received pulse makes a weaker pulse 

difficult to detect.

Wideband pulses when applied to imaging applications such as ground 

penetrating radar (GPR) or breast cancer detection give good detection of a target of 

interest but the target's shape is generally not fully distinguishable. Shape information
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is a useful property to have for classification purposes. Use of uniquely identifiable 

signals such as maximal length pseudo random noise sequences taken from channel 

analysis methods should help to narrow down a signal detection to a smaller time 

window representing a targets edge. If this can be retained through the entire process 

then target surfaces can be picked out and shapes can be distinguished.

1.2 Literature Review

Breast cancer is a serious disease that affects many women each year. Approximately 

1 in 9 women will be diagnosed with breast cancer over their lifetime and the 

incidence of breast cancer in the UK in 2001 ran to 15% of cancers detected 

(excluding non-malignant melanoma). Looking only at women breast cancer 

accounted for 30% [10]. Early detection is a key part of survivability so different 

approaches have been tried to detect breast cancer each having their own particular 

advantages and disadvantages.

1.2.1 Current Methods

The current benchmark in breast cancer detection is x-ray mammography [11] . X- 

rays readily penetrate human tissue so can be used for imaging systems. X-ray 

imaging detects the contrast in densities between different tissues, denser tissues 

attenuate the x-rays more so appear as under exposed areas on the film. A breast 

tumour presents a contrast to surrounding tissues using x-ray mammography so can 

be detected. Mammography does have its problems however. Women with dense 

breasts are difficult to x-ray [12] due to a smaller contrast in densities between tumour 

and normal tissue and the higher level of attenuation through the tissue. 

Mammography also requires compression of the breast for best results, this is
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uncomfortable and sometimes painful [13-14]. X-ray radiation is ionizing so may 

cause damage to human cells; there are limits on the amount of radiation allowed so 

limiting the number of x-rays over a given period of time. Microwave radiation is 

non-ionising causing only thermal effects [15]. Digital X-ray technology has been 

introduced to mammography that gives improved detection over previous analogue 

methods [16]. Still with these improvements other technologies are being investigated 

with the aim of better detecting breast cancer. Ultrasound imaging is used as an 

additional tool to differentiate between fluid filled and solid cysts for instance [17]. 

MRI (Magnetic Resonance Imaging) is a possible screening tool and is available now 

but is expensive and used mainly for high risk younger women where conventional 

methods are not as effective [18-19]. Microwave imaging is a technique that shows 

promise as a possible replacement or complimentary method of detecting breast 

cancer [20].

1.2.2 Tissue Properties

There have been several attempts to characterise the dielectric properties of human 

female breast tissue, most looking at excised tissue. Figure 1.1 shows an image of 

excised breast tissue ready for dielectric property measurement [21].
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Figure 1.1 - Photograph o f a tissue specimen showing malignant tissue (white region, upper right) and 

normal fat tissue (yellow region, lower left). The black ink spots mark the measurement sites. The 

black ink around the perimeter o f the specimen denotes the margins o f  the excised tissue [21]. 

MRI data can be used to produce a map of the locations of the different tissue types in 

the breast but the dielectric properties cannot be determined and need to be measured 

separately. The breast is made up of different tissue types and all need to be taken into 

account. The main tissue types of interest are fat, normal tissue, benign tumour and 

malignant tumour. The contrast between malignant tumour and fat and normal tissue 

is required. A data set gathered at 3.2 GHz [22] found that over the samples of fat the 

dielectric constant varied from 2.8 to 7.6 and conductivity from 0.54 to 2.9mS cm'1. A 

correlation between increasing dielectric constant and conductivity was found. A 

similar occurrence was found with normal tissue but with the dielectric constant 

varying from 9.8 to 46 and conductivity from 3.7 to 34mS cm'1. Water content for fat 

was found to be around 20% by weight while normal tissue around 50%. Similar
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correlations were found in benign and malignant tumours. Benign tumours showed a 

dielectric constant range from 15 to 67 and conductivity from 7 to 49mS cm"1 and 

malignant tumours showed a dielectric constant range from 9 to 59 and conductivity 

from 2 to 34mS cm"1. There are a wide range of dielectric property measurements that 

overlap including normal tissue properties overlapping malignant tumour properties 

and sometimes malignant tissue has shown distinct regions of differing properties in a 

single patient [22]. As the frequency changes, the properties of the tissue change also, 

this data is from a single frequency but other data sets exist for a frequency range up 

to 3 GHz. As tissue properties change with frequency and better resolution can be 

obtained with higher frequencies these data sets have been used to extrapolate values 

for increased frequencies and are being verified experimentally [23]. The values from

[22] are the basis for any simulated results but more recent investigations into this 

area have new findings and over a greatly increased and much more relevant 

frequency range. The findings are outlined in [21] and [23] and would be the basis on 

which future work in this area should be based in terms of dielectric properties but 

have come too late for this investigation. The main findings are summarised as the 

very large spread of values for normal breast tissues compared to a relatively narrow 

spread for malignant cancers leading to much smaller differences between them in 

some cases and hence a much harder to detect target in microwave imaging terms.

1.2.3 Localisation Techniques

The two main forms of microwave imaging for breast cancer detection are to identify 

the dielectric properties of the breast and hence show a tumour as a region of higher 

dielectric properties or to directly detect and localise scattered waves. The first 

technique requires solving a complex inverse scattering problem while the second is
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much simpler. A transmitter transmits an ultra-wideband pulse into the breast and the 

reflections from any discontinuities in the breast are detected using one or more 

antennas. An example antenna array from [24] is shown in Figure 1.2.

Figure 1.2 - Photograph o f the symmetrical curved antenna array with 16 elements for breast cancer

detection. [24]

Signal processing algorithms then localise the tumour. Techniques using shift and 

sum algorithms are the most common [7-8, 25-34] and are similar to geometric 

migration techniques used in ground penetrating radar. Versions using more complex 

migration techniques such as Kirchoff and wavefront migration are a possible area to 

study. A promising fairly recent technique is contrast source inversion (CSI) [35-36] 

for detecting objects where the contrast between the target and medium is large. As it 

is an inversion technique it gives the dielectric properties of the target directly and has 

led to some good theoretical and experimental results [35-38]. There are key points 

that all techniques should cope well with. The first is detecting more than one target, 

this is tricky as one of a multi-target group will usually be much stronger and mask
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the others. The second is coping with the effects of varying tissue permittivity as real 

breast and tumour tissue is not homogeneous. Investigations into these two issues 

[33-34] show that they do need to be accounted for in any algorithm.

1.2.4 Signal Processing

The algorithm used to extract a specific reflected signal from the background of other 

reflected signals is difficult. There are several different methods that aim to extract or 

otherwise enhance the reflected signal that is required while degrading the 

background signals. GPR methods are well established and have been used as a 

starting point for signal processing. In GPR systems a large proportion of signal 

processing is applied to the received waveform, the A-scan. Applied to the A-scan 

data is a variety of signal processing methods designed to improve the data [25]. 

Noise presents a problem in all GPR systems so the first objective of a signal 

processing algorithm is to suppress noise. A noise reduction filter such as local 

averaging over the data or multiple sets of data is a common technique.

Clutter is a term referring to other reflections that are not wanted when 

looking for a specific targets reflection. A common technique to reduce this is to 

subtract the average of data sets in the area of interest. Attenuation and spreading loss 

is a problem with all antenna based systems. Compensation for this natural process 

can be performed using a time varying gain method where the further the signal has 

travelled the greater the gain that is applied to that data point. It does however cause 

signal distortion if it is not applied correctly. Low and high pass filtering is a useful 

procedure when dealing with real antenna systems to remove interactions between the 

antenna and ground and high frequency interference [25]. All of these methods could 

be adapted to a microwave based system to detect breast cancer.
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There are of course differences between GPR and microwave imaging that 

have led to different algorithms being implemented; filtering, calibration and the use 

of specific waveforms are common differences. A radar technique based on mono­

static operation has been tested [26]. It uses an antenna array where each antenna 

element is placed on the breast surface. Each antenna element is in turn excited by a 

short pulse. The same antenna element receives the reflected signal which contains 

the wanted target response, transmitted signal and skin reflections. As the skin 

reflections and transmitted signals are not wanted, a calibration procedure is carried 

out to remove them. The calibration step involves subtracting the average of the 

waveforms from all the antenna elements from each individual waveform and then 

low pass filtering the resultant signal using a moving average. Due to the positioning 

of the antenna elements (touching the skin) the average signal waveform is comprised 

mostly of the transmitted signal and skin reflected signals so subtracting removes 

them from the processed signal. The localization technique is an adaptation from 

synthetic aperture radar and consists of time delaying and summing points from the 

waveforms so that a synthetic focus is achieved at an arbitrary point. Performing this 

for all points in a search domain leads to the appearance of the scattering object or 

objects. The waveform itself is chosen so that its centre point is zero, integrating the 

waveform then transforms that point to a maximum which helps with signal 

registration. In addition compensation for radial spreading of the signal is applied and 

attenuation compensation can be used [7, 27].

Multi-static systems using techniques requiring subtraction-less calibration 

show good results [31-32], However without calibration there is additional clutter 

present. Feature extraction techniques are another interesting area with two potential
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uses. Firstly they can be used to extract relevant information out of the data itself such 

as the hyperbola observed in GPR data [39]. Extracting relevant features after a 

migration technique would also be useful as it allows quicker identification of 

relevant targets for further study.

1.2.5 Computer Models and Breast Phantoms

There are several different variations used in the construction of a computer model to 

generate data to test an algorithm. The simplest of which is a static model with fixed 

dielectric properties for all key components. It is the quickest to set up and the data it 

produces is the easiest to obtain acceptable results with. Upgrading this model to have 

frequency dependent dielectric properties and variation of ±10% around a set value is 

the next step [7, 27]. Taking this model and individually modelling different 

component parts of the breast like separate fatty and normal tissues and including 

glandular tissues and the chest wall leads to a very complex model [29] that is quite 

realistic.

However there is a current trend to use MRI derived models from a particular 

human [26,28,40], The MRI data is used to map the distribution of tissue types in the 

breast before each tissue type is assigned it's own dielectric properties based on 

dielectric property measurement results [10,21,23]. The data is then inputted to a 

modelling and simulation algorithm such as Finite Difference Time Domain (FDTD) 

and simulated as per any other model. The result is a model that should be as close to 

an anatomically correct model as you can get but there is still the limitations of the 

modelling and simulation algorithm itself. Moving to a physical breast phantom is the 

next logical step but nothing quite matches up to real breast tissue, so simpler designs 

that match some properties at a limited frequency range are used. In its simplest form
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only the contrast between tumour, tissue, and skin is implemented [29]. More 

complex forms try to approximately match the real dielectric properties with a 

corresponding material such as soy bean oil used to approximate fatty tissue [41].

1.3 Objectives

The objectives of the research are to develop a system to detect breast cancer using 

microwave imaging and provide improvements to imaging in general. Breast cancer 

detection requires an antenna, a test subject and a range of signal processing 

algorithms. The test subject consists of a computer model with fixed dielectric 

properties. The details of each model are given within the results section for the test in 

question. Sets of data have been generated using the computer model to help with the 

algorithm design and to test it. The antenna in the FDTD software is a hard source, 

Microwave Studio uses a dipole antenna and both use electric field probes as 

receivers.

The algorithm has to enhance the reflected signal from a tumour while 

suppressing other reflections. This is the signal processing part of the algorithm. It 

also needs to locate in three dimensions any tumours present which is the localisation 

part of the algorithm. The two will be separate with the ability to alter and test 

different signal processing and localisation parts independently but as a whole the 

algorithm is the main focal point. Data for testing and refining the algorithm will be 

obtained using computer models to represent the breast. In short the main focus is to 

develop an algorithm that processes a data set and localises a target, that of a breast 

tumour. The main complimentary part to that is a simulation tool based on FDTD in 

which models are simulated to generate data that is used to test the algorithm.
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1.4 Summary

1.4.1 Chapter 2

This chapter discusses the development of FDTD code and makes comparisons 

between the FDTD code and a commercial package to ensure comparable results. An 

unresolved problem that was encountered with the 3D version of the code is also 

looked at in the time and frequency domains with commercial package comparisons 

that show distortion of the signals that is not present when using 2D FDTD 

simulations.

1.4.2 Chapter 3

This chapter covers the theory behind M-sequences including numerical and 

analytical results of their use and how to generate them. A look at missing symbols in 

a sequence shows the robustness of the sequence and the minimal amount of problems 

that this causes for sufficiently long sequences. Noise and simultaneous transmissions 

are separate sections which both produce similar effects that show an increase in 

background noise after processing but the target signal remains detectable. It 

continues into the development of a filter to match a received signal to a transmitted 

signal with comparisons to correlation that favour the filter. As part of the filter 

development the filter parameters are also investigated to determine suitable values. 

Finally range resolution is looked at and shows that the filter has reduced sidelobes 

compared to the other methods looked at.
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1.4.3 Chapter 4

This covers a direct transform of a H-matrix for imaging purposes. The original 

method is described with example images showing the limitations of the method with 

regard to close targets. An altered method is presented to allow imaging of close 

targets that brings the minimum distance down to the antenna element limit instead of 

the array limit.

1.4.4 Chapter 5

This chapter looks at conventional methods of imaging starting with a phantom free 

calibration technique based on averaging that is used in subsequent image generation. 

Comparisons are made between pulse integration, correlation and filter methods as 

described in Chapter 3 but now using FDTD simulated results. These results use a flat 

array and a full circular array and show that pulse integration is good for overall 

detection but additional shape information is present in the other two methods. Of 

these the filter shows the better detection that is good enough to distinguish a variety 

of shapes. An investigation into averaging to trade off some fineness of detection for 

detection strength shows an increase in the filters detection performance at a small 

fineness of detection cost. Finally a small section looks at using the filter to identify 

relative permittivity of a homogeneous block of material in a known medium. The 

theoretical location of the blocks rear reflection is shown to match up to the simulated 

results location over a variety of relative permittivities down to a relative permittivity 

difference of 1.
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1.4.5 Chapter 6

The last chapter gives overall conclusions and a number of suggestions for further 

work from general FDTD usability improvements through signal symbol 

investigations and improved calibration.
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Chapter 2

Finite Difference Time Domain Method

2.1 Introduction

Data for testing is an important aspect to consider and due to the versatility offered 

using simulated data rather than real data was the method chosen. Finite Difference 

Time Domain (FDTD) [42] is a well tested and widely used method of 

electromagnetic simulation. A FDTD code was written in Mathworks Matlab(tm) 

software that allowed direct input of excitation signals (such as Pseudo random Noise 

(PN) sequences) and also output of signals into Matlab's workspace for further 

processing. This offered more efficient work flow from signal generation through 

simulation to data processing and plotting using functions and scripts in a single 

package. To ensure correct operation a commercial electromagnetic simulation 

package was used to validate the results, CST Microwave Studio [43].

2.2 FDTD Algorithm

FDTD is a method used to simulate the propagation of electromagnetic waves. The 

method used is based on the three-dimensional Yee algorithm [42], The boundary 

condition implemented is the Mur absorbing boundary condition [44] which is 

computationally efficient and would be sufficient for testing. It also uses the Courant 

[42] stability condition to determine the maximum time step allowed (which in this 

case for a given maximum frequency value would be fixed). This ensures that no 

interpolation is required for using data across multiple separate simulations with the 

same maximum frequency. Also where relevant the code would also allow the
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implementation of randomised deviation of dielectric properties throughout a 

medium. Validation of the code is through comparison with CST Microwave studio.

The FDTD code is designed to run well on Matlab so it is coded to take 

advantage of Matlab's strengths. The standard code is run in loops with each loop 

performing a single time iteration. In each loop the electric and magnetic fields are 

calculated for that time iteration based on previous iterations. Normally the electric 

and magnetic field calculations are performed in a loop also but for Matlab loops tend 

to be slow unless written in a particular way and containing only functions that can be 

accelerated. A matrix calculation form for the electric and magnetic fields was 

implemented that is much quicker than running loops but has a higher memory 

requirement. Furthermore due to some behaviour and results considered unusual, 2D 

simulations were primarily used with the problems with 3D simulations considered 

later in the chapter.

2.2.1 FDTD Validation Results

The FDTD code and CST Microwave Studio were set up similarly and simulated. 

FDTD is 2D and used a hard source (single cell) for the excitation. A hard source is 

where at each time step the electric field value corresponding to the excitation signal 

is assigned directly to a cell. CST Microwave Studio is 3D and requires an antenna 

for simulation so a dipole antenna was used. A differentiated Gaussian pulse was used 

as an excitation signal. The antenna present in CST Microwave Studio changes the 

excitation when transmitted from the antenna so it was exported and used in the 

FDTD code as the hard source excitation. For both simulations an ideal probe at a 

distance of 0.05m from the source received the signal which was the measured
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electric field. The simulation took place in a medium with dielectric properties of sr=9 

and ct=0. Figure 2.1 shows a comparison between the two simulations, the differences 

would be due to using a hard source in the FDTD code compared to an antenna in 

Microwave Studio. There is also a slight delay present when using an antenna as a 

source that shows up as a constant delay over all distances.

Figure 2.1 - Comparison between CST Microwave Studio and FDTD simulation o f excitation signal in

lossless material
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Figure 2.2 - Comparison between CST Microwave Studio and FDTD simulation o f excitation signal in

lossy material

Using the same excitation signal in both CST Microwave Studio and FDTD code but 

simulating in a lossy material (background medium of er= 9, o=0.4) gives a close 

signal match as shown in Figure 2.2. However the signal arrives slightly earlier with 

the FDTD code than with CST Microwave Studio probably due to a delay in the 

signal being transmitted by the antenna compared to a hard source. The FDTD code 

simulates too slowly so eliminates the possibility of using it for an iterative matching 

algorithm.

2.3 Comparison between 2D and 3D FDTD Simulations

This section compares the outputs from 2D and 3D FDTD simulations. The extra 

dimension in the 3D simulations requires a change in the step size to remain stable
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[42]. The time step is chosen to be at the Courant limit for each simulation given by

(2.1)

time step (2D) =

time step (3D) =

(2 .1)

In this case the cells are square so Sx=Sy=Sz=S and v is the velocity of propagation for 

the signal given by (2.2)

The corresponding Courant numbers are 0.707 for 2D and 0.577 for 3D. For the 

simulation set up given in Figure 2.3 the transmitter is a single cell hard source with 

the Ez field directly excited. The Ez field is read as the output at every cell over a 

specified distance for every time step. The simulation area is a 0.12m square for the 

2D simulation and 0.12m cube for the 3D simulation. The source and output cells for 

the 3D simulation take place at a z-axis height of 0.06m.

1

^ SrSoHrHo
(2.2)
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Figure 2.3 - Simulation set up

Two main excitation signals have been tested on both the 2D and 3D simulations, 

shown in Figure 2.4.
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Figure 2.4 - Excitation signals

The differentiated Gaussian pulse and the Ricker wavelet are given by (2.3)

Gauss = (( / - t / )-4XlO
_ l - 2 (4 7 t X l 0 9( i -r /Ricker:

(4jtX 109(t — of))2

(U-rf)-4xlQ-10)2\ 
(lXl(T10)2 /

2

Where d  is the time delay applied to the waveform.

(2.3)
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2.3.1 Simulation Results -  Differentiated Gaussian Pulse

Figure 2.5 - Received differentiated Gaussian pulse at 0.003m distance from source

Figure 2.6 - Received differentiated Gaussian pulse at 0.01m distance from source
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Figure 2.7 - Received differentiated Gaussian pulse 0.02m distance from source
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Figure 2.8 - 2D -  Received differentiated Gaussian pulse plotted against distance from source
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Figure 2.9 - 3D -  Received differentiated Gaussian pulse plotted against distance from source 

The signals match up quite well at short distances like in Figure 2.5 but quickly 

become very different as shown in Figures 2.6 and 2.7. Looking at the full distance 

range shows that the 2D results change very little in Figure 2.8 compared to a large 

change at a relatively small distance before becoming relatively constant over the rest 

of the distance for the 3D results in Figure 2.9. Characteristic dispersion patterns are 

also visible in the 3D results towards the larger distances but do not appear in the 2D 

results.

The frequency domain shows a correlation between the changes in signal 

shape to a change in dominant frequency for the 3D results in Figure 2.11. As the 2D 

signal doesn’t change shape the 2D frequency domain remains constant in Figure 

2 . 10.
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Figure 2.10 - 2D -  Normalised frequency o f received differentiated Gaussian pulse against receiver
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Figure 2.11 - 3D -  Normalised frequency o f received differentiated Gaussian pulse against receiver
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2.3.2 Simulation Results -  Ricker Wavelet

Figure 2.12 - Received 4GHz centre frequency Ricker wavelet at 0.003m distance from source

Figure 2.13 - Received 4GHz centre frequency Ricker wavelet at 0.01m distance from source

28



Figure 2.14 - Received 4GHz centre frequency Ricker wavelet at 0.02m distance from source
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Figure 2.15 - 2D -  Received 4GHz centre frequency Ricker wavelet plotted against distance from
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Figure 2.16 - 3D -  Received 4GHz centre frequency Ricker wavelet plotted against distance from

source

A similar thing occurs with the Ricker wavelet as for the differentiated Gaussian 

pulse. Short distances match well like in Figure 2.12 but quickly become different as 

in Figures 2.13-14. The 2D plot shows a near consistent signal over the distance in 

Figure 2.15 but again the 3D results in Figure 2.16 show a quick change in signal 

before settling.

Also like before, the signal change in the 3D simulation is mirrored by a 

change in the dominant frequency as shown in Figure 2.18 while showing no changes 

in Figure 2.17 for the 2D simulation.
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Figure 2.17 - 2D -  Normalised frequency o f received 4GHz centre frequency Ricker wavelet against

receiver distance
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Figure 2.18 - 3D — Normalised frequency o f received 4GHz centre frequency Ricker wavelet against
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Reducing the centre frequency of the Ricker wavelet from 4GHz to 2GHz in Figures 

2.19-20 produces the same results but the short distance after which the signal 

changes shape becomes larger to approximately 0.008m, double that of the higher 

frequency.

-9

Distance (m)

Figure 2.19 - 3D -  Received 2GHz centre frequency Ricker wavelet plotted against distance from

source
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Figure 2.20 - 3D -  Normalised frequency o f received 2GHz centre frequency Ricker wavelet against

receiver distance
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2.3.3 CST Simulation Results -  Differentiated Gaussian Pulse
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Figure 2.21 - CST -  Received differentiated Gaussian pulse plotted against distance from source
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Figure 2.22 - CST -  Normalised frequency o f received differentiated Gaussian pulse against receiver
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CST Microwave Studio shows similar results to the 3D FDTD code. It shows a 

change in the signal shape as before in Figure 2.21 incorporating the dispersion 

patterns at longer distances. The frequency spectrum in Figure 2.22 also shows the 

same change at a similar distance from the transmitter (0.005m). In this case the 

transmitted signal goes through a dipole antenna.

2.3.4 Section Conclusions

Dispersion effects are visible in the 3D simulations using the FDTD code and CST 

Microwave Studio. They are not visible in the 2D simulations. The change in signal 

shape happens very soon after transmission in the 3D simulations only. This occurs 

using a single celled hard source for FDTD and a dipole antenna in CST Microwave 

Studio. The change in signal is also frequency dependent and occurs further away for 

lower frequencies (with a fixed simulation environment). Other simulations not 

shown indicate that halving the simulation time step (and hence halving the Courant 

number) does not have any noticeable effect on either the 2D or 3D results with 

relation to causing or altering the change in signal. One noticeable finding is this 

behaviour occurs on the reactive near field boundary as given for electrically small 

antennas by Eq. (2.4)

A

2.4 Chapter Conclusions

Comparisons between the commercial package CST Microwave Studio and FDTD 

code has shown that the FDTD gives comparable results usable for simulation 

purposes to generate data. Even though the 3D FDTD version also gives comparable
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results to CST Microwave Studio there are question marks over its results so only 2D 

simulations will be used. On the FDTD code itself there are limitations.

The first limitation is memory requirements, it can only simulate up to 2.1 

million cells in the problem domain (with a 1.7GHz Pentium 4 class processor and 

1GB of memory this gives a simulation time of approximately 1 hour). There is a 

design trade off in this as the memory requirements are just under twice that of FDTD 

code written to utilise loops, the extra memory is used to calculate large sections of 

these loops directly in a matrix form that runs quicker under Matlab. This means with 

a problem domain of 0.2m x 0.1m x 0.2m the smallest cell size is 0.00125m which 

corresponds to 1/10/1 of 8GHz in the dielectric medium used. Ideally a smaller cell 

size down to 1/20A would be better but it cannot be simulated. This also limits the 

maximum frequency of the excitation signal to 8GHz.

2D simulations on the other hand do not have these problems for the size of 

the problem domain looked at. The boundary condition also has significant reflections 

under certain conditions making it less than ideal, as a greater spacing between the 

simulation objects and boundary is required leading to a larger simulation (more time 

and memory). In summary all simulations carried out to generate data will be using 

FDTD code with Mur boundary conditions in a 2D simulation.
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Chapter 3

PN-Sequences, Correlation and Filters

Pseudo random noise sequences, usually referred to as PN-sequences, are binary 

sequences that have properties linking them to random noise [45]. They have a 

number of useful properties that make them very important in communication 

systems. The goal in using PN-sequences is to create a uniquely identifiable signal 

that can be distinguished from background noise and to allow detection at very low 

signal levels. Wherever possible a subset of PN-sequences called M-sequences will be 

used. Some of the benefits of PN-sequences include noise resilience, multiple signal 

transmission and reception capabilities, encryption and its uniquely identifiable 

properties.

3.1 M-Sequences

This is a Pseudo-random Noise (PN) sequence of maximal length from a given length 

(n) of linear shift register. An M-sequence has a set of properties that meet 

randomness criteria as laid out in [46] and given below.

1. Balance

(a) Sequence length is given by 2”-1

(b) There are 2n l ones and 2" '-1  zeroes

2. Run

(a) 2" 2 runs of ones alternating with 2" 2 runs of zeroes

(b) 2” runs of each length for 1 < k < n—2

(c) 1 run of n- 1 zeroes and 1 run of n ones
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3. Two Level Correlation

(a) In a cyclic shift there are 2" M  agreements and 2” ' disagreements

(b) Using ±1 the normalized auto-correlation equals 1 for r  = qp and - \ /p  for 

all others (where q is any integer number and p  = 2”- l )

As an example a shift register of length n = 4 has the following properties

1. Balance

(a) Sequence length is 15

(b) It has 8 ones and 7 zeroes

2. Run

(a) There are 4 runs of ones alternating with 4 runs of zeroes

(b) There are 2 runs of length 1 and 1 run of length 2

(c) There is also a single rim of zeroes with length 3 and of ones with length 4

3. Two Level Correlation

(a) In a cyclic shift there are 7 agreements and 8 disagreements

(b) The normalised auto-correlation is 1 for r  = 15q or -1/15 for all others 

By logical extension of the alternating runs structure the last number in the sequence 

will always be different from the first.

3.2 Generation of a PN-Sequence

A common way to generate PN-sequences is to use a linear shift register and 

exclusive-or (XOR) some of the output bits to create the next input bit [46]. The PN- 

sequence is the actual output read from the last bit. Choosing which bits to take the 

XOR from determines the length of the PN-sequence. For a given Linear Shift 

Register of length n bits, the longest PN-sequence is 2”- l  and any PN-sequence of

38



this length is an M-sequence. An example of a 7 bit («=7) PN sequence generator that 

outputs an M-sequence is given in Figure 3.1. For any given n there are usually 

several different configurations to generate an M-sequence. This version XOR’s the 

last two positions in the linear shift register (bits 6 and 7) for the next input bit. The 7 

bits already in the shift register are a random seed value to ensure consistent operation 

and hence become the first 7 bits of the sequence. The only limitation on the seed 

value is that it cannot be all Os.

Figure 3.1 - 7 bit Linear Shift Register for M-sequence generation
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Longer or shorter sequences can be generated by altering the number of bits in the 

linear shift register and looking up published lists of which bits to take the XOR from. 

Longer sequences generally have more options and can generate many unique 

sequences of the same length.

3.3 Experimental Results looking at M-Sequence Properties

Using the generation method from the previous section a selection of M-Sequence 

lengths from 15 to 1023 were generated and then autocorrelated in two ways, cyclic 

autocorrelation where the sequence wraps around (ideal case) and standard 

autocorrelation using the single sequence only (Most likely case for a singularly 

transmitted signal). The most noticeable thing is the difference between the two cases 

away from the zero delay correlation point. The cyclic correlation does reduce down 

to the predicted theoretical value of -1/(2"-1) [46] but the standard autocorrelation 

with a single sequence shows some variation. It’s also noticeable that as the sequence 

length increases this variation reduces also.

Example

A short M-sequence consisting of 7 bits is correlated against itself as a single 

sequence. The M-sequence being used is [-1, 1, -1, 1, 1, 1, -1] padded with as many 

zeros as necessary at the start and end. Calculation for a single bit of the correlation 

consists of a bit by bit multiplication of the two overlapping sequences and then all 

the bits of the multiplication result are summed. A single correlation bit example is 

given in Table 3.1 and the complete correlation result is given in Table 3.2.
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Table 3.1 -  Calculation o f single bit for correlation

Bit Value

SumReference Sequence 0 0 0 0 -1 1 -1 1 1 1 -1 0
Correlating Sequence 0 -1 1 -1 1 1 1 -1 0 0 0 0

Bit Multiplication 0 0 0 0 -1 1 -1 -1 0 0 0 0 -2

Table 3.2 -Full correlation result

Bit Value
Reference
Sequence 0 0 0 0 0 0 0 -1 1 -1 1 1 1 -1 0 0 0 0 0 0 0

Correlation 0 1 -2 -1 -2 1 -2 7 -2 1 -2 1 -2 1 0 0 0 0 0 0 0

The worked correlation example shows no trailing off towards the edges when only a 

few bits of the two signals are overlapping and contributing to the correlation. 

Although there would be an upper limit on the values they could take (equal to the 

number of bits overlapping) it doesn't appear to have a significant visible effect on 

this example or the following numerical examples.
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Figure 3.2 - Autocorrelation for a sequence length o f 15 («=4)

Figure 3.3 - Autocorrelation for a sequence length o f  63 (n=6)
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Figure 3.4 - Autocorrelation for a sequence length o f 255 («=8)
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Figure 3.5 - Normalized magnitude o f  maximum error compared to sequence length
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The general trend is that the normalized maximum error is reducing with sequence 

length but it’s clear that the cyclical autocorrelation will yield better results with a 

lower error as shown in Figure 3.5 and that error will be of a fixed value as shown in 

Figures 3.2 to 3.4. It's clear that cyclical correlation is the better choice but it does 

require extra work to use. Firstly it will behave like single sequence correlation prior 

to the signal being received and only behave like the cyclical correlation if the 

sequence is repeated. Effectively this means to achieve the ideal result would require 

correlation against the centre signal in a transmitted signal consisting of at least 3 

identical sequences. There will also always be a small negative no correlation value 

but with longer sequences it's insignificant.

3.4 Pulse Correlation

Figure 3.6 - Pulse shape

The pulse shape shown in Figure 3.6 is given by Eq. (3.1). Note that the signal limits 

run from d~a/b to d+a/b for a total pulse width of 2a/b.
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0

/ ( * ) =

for x < d ~  — 
b

a + b [ x  — d )  for d  — ̂ - < x < d
b

a —b [ x  — d ) for d < x < d  +  ̂ ~
b

(3.1)

0 for d + ^ - < x  
b

The correlation integral (3.2) needs to be solved in several parts for this pulse.

1 T
R { A ) =  lim —-  J f { x ) f { x - A ) d x  (3.2)

T — »oo ^  A _j~

Figure 3.7 - Correlation Integral Combinations

Due to the various overlap segments, the integral is split into 7 parts, some of which 

are zero and the normalisation factor is also removed. Part 4 is a special case with two 

variations depending on the delay value A, different limits are used in the integration 

accordingly. Solutions for the integrals of each section is given in the appendix 

section A. 1.1.
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Figure 3.8 - Single pulse compared to correlation

R{à)= * J 4 L , * Mp+ 25Ì
2 1 1 3b

for <|zi| 
b

for \A\<— 
b (3.3)

, „ li |̂2 0_2| ^ , 4aJ a ^2a6 -+ab\A\ — 2a M l+'3b

The correlation result should be symmetric about A so Eq. (3.3) uses delay magnitude 

M| and is split due to section 4 having 2 parts. Its application to cross-correlation of a 

signal and a delayed copy of itself is simply R(A-d) where d  is the appropriate delay. 

Note that the correlation result for a pulse of width 2a/b has a width of 4a/b. Figure 

3.8 shows the result.
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3.4.1 PN Sequence Correlation

Figure 3.9 - Block Diagram

This section is based on [47]. A signal x(n) is passed through a channel H(z) and has a 

noise signal u(n) added with the result being y(n).

y ( n ) = h ( n ) * x ( n ) + u ( n )  (3.4)

The correlation between the input signal x(n) and the output.*^ is given by Eq. (3.4)

r^-a\ {h(n)*x(n)  + u(n)) (x{n-k) ) \  
r xy=£\{Hn)* x(n) ) (x{n-k) ) }+a{u(n) (x(n-k) ) }  
r xy=h{n)*E {x(«)(x( «-&))} + £ {u(n){x(n-k))}  
r xy=h{n)*rxx-krxu

If x(n) is a sufficiently long PN sequence encoded as +1 and - \ , r a tends to a unit 

impulse and the result is

+  ̂  (3.6)

If the noise term (rxu, the correlation between signal and noise) is small then rxy 

becomes the impulse response of the channel h(n).
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3.4.2 Correlation for a PN Sequence Constructed from Pulses

Using the defined pulse as a PN sequence symbol and constructing a PN sequence 

with no spacing between symbols leads to the cyclic correlation output for strong 

correlation values in Eq. (3.7) and no correlation values in Eq. (3.8).

\tL\4 -ab \á?+ 1 0  2" - l ) + £ ( y - M ]

4a3

R{A)
- a t  I f  - M l [ + 2a2( f  -M |j 3b

r  a ^ . afo r----<A<—
b b

^ a ^ . 2a for —<A< —  
o b

a 2a _ a and — —< J < —  
o b

(3.7)

The strong correlation values repeat at the sequence length so are used every qp 

symbols where p  is the sequence length (p=2n- l ) and q is any integer value.

bl \Af+ab\A\ 1 1 P 1 
W

L

12a
3b 6 l, b

2a i „A" . „ 2 / 2a 4a3
3b- aV “ w j +2a

6 3b

c  a  ^  * a for - —<A<— 
b b

C a ^  A 2a for —<A<—  b b
, 2a . ^ aand----- <A<----

b b

(3.8)

The no correlation values repeat at the symbol length (2a/b) but the strong correlation 

values take priority over the no correlation values if the limits are met. Figure 3.10 

shows the correlation over several symbol lengths compared to the single symbol 

correlation. Note the periodic feature and its fluctuations between -0.033 and -0.066,
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the lower limit of -0.066 being the 1/p value (where /?=15) for correlation of a 

maximal length PN sequence.

Figure 3.10 - Arbitrary pulse PN sequence correlation (p=15, a=  1, b=2)

The use of a maximal length PN sequence of pulses shows minor deterioration over a 

single pulse with regards to correlation but will provide significant other benefits.

3.5 Filtering

Using a PN sequence of pulses has shown minor deterioration in the output after 

correlation compared to a single pulse. The use of a filter and appropriate algorithm 

should provide a benefit in detecting a PN sequence without the small spreading 

associated with correlation and the small amount of deterioration. A Wiener filter and 

least mean square (LMS) algorithm will be used for this purpose. Figure 3.11 shows
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the block diagram where the goal is to make the filter an approximation of the channel 

the signal is sent through by matching an input (transmitted) signal to a desired

Figure 3.11 - Filter Block Diagram 

Table 3.3 -  Filter variables

Name Description
x(n) Input signal
W(z) Wiener filter

__ y(n) Estimated desired signal (wiener filter output)
d(n) Desired signal

___?inl___ Error signal \d(n)-y(n)]

For a {p- l)th order filter the Wiener filter is given as

p -1
W ( z )  — ̂  co(n)z~n (3.9)

n=o

From Figure 3.11 we get

p-1
y ( n ) = ^ < £ > ( l ) x ( n —l )  (3.10)

/=o

To find the filter coefficients the mean-squared error (MSE) needs to be minimised

£  = e{ \ e {n ) \ 2} = s [ \ d  { n ) ~  y ( n ) \ 2} (3.11)

50



To minimise MSE

d £  ___d_
dco (k ) dco ( k )  

de*(n)

■s\e' X n ) e ( n )  1

—s e{n)
dco ( k )

-0

Noting that

d e  (n ) * / \ ■x (n — k )
dco ( k )

e \ e ( n ) x * («  —fc)) =  0 forfc=0,1 , (p~ 1) 

Substituting for e(n) from Eq (3.10) and Eq. (3.11) gives

p -1

d ( « ) — Z  c o ( l ) x { n —l)
1=0

x  (n — k) =  0

e \ d ( n ) x  (n — k)}
P -1

— Z1 c o ( l ) e \ x ( n  — l ) x  ( n —k)} = 0
1=0

x(n) and d(n) are jointly wide-sense stationary (WSS) so

e[ d ( n ) x *  ( n - k ^ r ^ k )  

e { x ( n —l ) x * ( n —k ) } = r xx( k —l)

This leads to

p -1

1=0

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

r j o )  r * J l )  ••• r j p - l ) tw(o)
r „ ( l )  r j o )  •" r * J p - 2 ) ®(l) = r * (  !)

r J p ~ l ) r J p ~ 2 ) •"  r J ° ) m< o ( p~  l).

(3.20)
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Autocorrelation sequences are conjugate symmetric:

(3-21>

So eventually leading to the Wiener-Hopf equation

&xx<*> = r dx (3-22)

Table 3.4 -  Wiener-Hopf equation variables and sizes

Name Size Description
P - Filter order (number of filter coefficients)

Rxx p x p Hermitian Toeplitz matrix of auto-correlations
CO p X 1 Vector of filter coefficients

tdx p  X 1 Vector of cross-correlations between the desired signal d(n) and the 
observed signal x(n)

3.5.1 Example Solutions

Some example solutions are given in this section that can also show the difference 

between the final filter solution (co) and the correlation solution (r^)

3.5.1.1 Example 1 - jc=[1, 0, 0] and </=[0,1, 0]

This gives r«=[l, 0, 0] and r*=[0, 1, 0]. Inputting to the Wiener-Hopf equation gives

co (O) 0
cu(l) = 1
ß>(2)_ 0

<w(0) 1
tu(l) = 0
œ(2) ' 0

co(0) 1
®(l) = 0
w(2)_ 0

cu(o) 0
û>(l) — 1

0

0
1
0

0
1
0

0 0
0 1
1 0

0 0
0 1
1 0
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The solution for the filter is as expected with a delay of one unit indicated by i» (l)-l. 

Now take a more complex example.

3.5.1.2 Example 2 - jc=[0, 0.5,1, 0.5,0] and d=[0, 0 .5 ,1 ,0 .5 , 0]

The first two numbers in x and the first and last numbers in d are used to calculate rxx 

and rdx but are not included in the matrices. 

r„=[1.5, 1, 0.25] and r*=[l, 1.5, 1]

1.5 1.0 0 .2 5 ] co(0) 1.0
1.0 1.5 1.0 cy(l) = 1.5

0.25 1.0 1.5 " ( 2 ). 1.0

co (  o) 1.5 1.0 0.25
- i  •

1.0
iu ( l) = 1.0 1.5 1.0 1.5

_ft>(2)_ 0.25 1.0 1.5 L0

co (o) 1.6 - 1 . 6 0.8 [l.O
<w(l) = — 1.6 2.8 - 1 .6 1.5

_tw(2)_ 0.8 - 1 . 6 1.6 [1 .0

cu(0) 0
w (l) := 1

_ft>(2)_ 0

Again the solution is as expected. Note that the correlation process gives a wide 

detection [0, 0.25, 1, 1.5, 1, 0.25, 0], nominally over the 3 units that the signal 

occupies. The optimum filter output though is a single point. This is a potential 

advantage that a filter can have over correlation.

3.6 Adaptive Filter

The adaptive filter is a linear tap delay line version updated using the LMS algorithm 

with working based on [47-48]. It takes in the transmitted signal (x(n)) and tries to
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match it to the received signal, in this case the desired signal (d(n)). The coefficients

(o)(n)) are used directly to indicate approximate strength and delay of any received 

signal either direct or reflected. The updating of the coefficients requires calculation 

of the error first using Eq. (3.23) before calculating the update using Eq. (3.24). The 

first set of coefficients a>(n) are generated using random numbers.

e { n )  = d { n ) ~  con{ 1) a > n ( p ) ]

x ( n )  

x ( n  — p )
(3.23)

œ n+l= œ H+ (n )x (n ) (3-24)

The parameters that make up the filter control its performance. Along with the 

signals, the controlling parameters are p, the number of filter coefficients and //, the 

step size of the update algorithm. Also because the signals are of limited length in 

order to get stable performance the filter coefficient update needs to be used multiple 

times with the same signals (x(n) and d(n)). The number of times the update is used is 

also a controlling parameter called the number of iterations. If required every filter 

coefficient need not be used leading to a filter coefficient every 2 or more time steps 

as opposed to every time step, the coefficient spacing.

3.6.1 Influence of the M-Sequence Length

This is to test the performance of the filter with a variable length of sequence and to 

compare it’s performance to correlation. The filter was set up to use 1000 coefficients 

with single time unit precision and 100 signal iterations. A set of sequence lengths 

ranging from 15 to 1023 (p=2n— 1 for n from 4 to 10) was generated before being run 

through the filter and correlation procedures. Increasing the number of symbols from 

15 in Figure 3.12 to 255 in Figure 3.14 reduces the variation of the minimum value
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around the ideal value of 0 for the filter method. The filter though gives a smaller 

variation, not by much with short sequence lengths such as 15 but by a sequence 

length of 255 is rivalling the cyclic correlation. One problem with the filter is that 

single sequence correlation becomes zero when outside the area of interest while the 

filter still shows some variation that lessens with increased sequence length.

Figure 3.12 - Filter vs. Autocorrelation for a sequence length o f 15 («=4)
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Figure 3 .13- Filter vs. Autocorrelation for a sequence length of 63 («=6)

Figure 3.14 - Filter vs. Autocorrelation for a sequence length o f 255 («=8)
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Note that in Figures 3.12-3.14 there is a slight difference between the cyclic 

correlation and filter where the two settle to \/p and 0 respectively.

Sequence Length

Figure 3.15 - Normalized magnitude o f maximum error compared to sequence length 

The error plot shown in Figure 3.15 is lower for the filter than for the single sequence 

correlation regardless of the sequence length. The filter and correlation show larger 

errors than the cyclic correlation due to the filter process itself and using only parts of 

the sequence. The filter shows much better management of this leading to the lower 

error. The filter error also drops below the cyclic correlation from a sequence length 

of 255 upwards (due to the cyclic correlation having a permanent error of 1/p 

compared to the ideal 0 value from the filter). This should lead to better performance 

at detecting a received signal for any sufficiently long sequence length when using the
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filter instead of a correlation procedure. In the end the filter method is the best option 

in almost all cases. In order to use cyclic correlation the sequence must be transmitted 

at least three times, so it's clear that the effort to use cyclic correlation will always be 

worth it. This is because for three times the transmission time you get better 

performance than for a longer PN sequence using single sequence correlation. 

However if a longer PN sequence is used then the filter method offers better 

performance. In summary it is better to increase the PN sequence length and use the 

filter method than to use multiple transmissions of a shorter sequence to use cyclic 

correlation.

3.6.2 Filter Parameter Comparisons

The filter has a number of different parameters that affect performance. The key ones 

to investigate are the number of coefficients, coefficient spacing, update step size and 

number of iterations. The number of coefficients is directly related to the range of 

delay to detect a signal and also has an impact on computation time. Coefficient 

spacing is an additional factor that generates a reduced data solution where 

appropriate (so 1 coefficient for every X data points), one to one mapping will be 

used to match the one data point per symbol signal being used. Update step size and 

number of iterations relate to convergence of the filter to the optimum solution. To 

test these factors a 255 symbol long M-sequence is used with a delay of 500 units for 

the target signal.

3.6.2.1 Number of Coefficients

The number of coefficients determines the range of delay that can be detected, it is 

important that the number is larger than the expected delay so that the delayed signal
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is detected correctly. The detection peak value, no detection minimum, maximum and 

mean are given in Table 3.5 for a range of coefficient values (100 iterations and 0.001 

step size).

Table 3.5 -  Effects of Number of Coefficients

Number of 
Coefficients

Detection
Peak

No Detection

Minimum Maximum Mean

400 - -0.0885 0.133 -0.0015
600 0.9996 -0.0005 -0.0001 -0.0003
800 0.9980 -0.0015 0.0004 -0.0005
1000 0.9959 -0.0024 0.0015 -0.0006
1200 0.9945 -0.0036 0.0024 -0.0006

Increasing the number of coefficients shows a slight variation in detection peak and 

the no detection minimum, maximum and mean. This is a slight degradation due to 

the larger number of coefficients and the coverage of the data range that it uses.
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Figure 3.16 - Too few coefficients comparison

However when the number of coefficients drops below the delay value of 500, as 

highlighted in Figure 3.16, the detection is lost and the no detection results become 

much worse, the filter tries to find the best detection match but it actually lies outside 

of the accessible range. The detection is failed due to too few coefficients and 

produces a poor output.

3.6.2.2 Number of Iterations and Step Size

The updating of the filter’s coefficients is performed using the LMS algorithm. The 

number of iterations it takes to converge depends on how accurate the values need to 

be and the choice of update step size chosen. Using an M-sequence with a length of 

255 with several different step sizes and plotting overall error versus number of 

iterations gives a good idea of how much iteration is required.
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Figure 3.17 - Iterations and Step Size Error

Regardless of the step size a certain number of iterations are required before the error 

becomes sufficiently small. In this case the larger step sizes show faster convergence 

and a smaller overall error however there is a limit to how large it can be as one of the 

tested values, 0.01, was unstable. The convergence rate is also dependent on the 

signal so although a value of 0.005 looks the best a more conservative value of 0.001 

would help ensure stability for different signals and provide a good convergence. 

Tailoring to the expected signals used would be a good idea in practice.

3.7 Simultaneous Transmission

One of the useful properties of M-sequences is the ability to transmit multiple 

different sequences of the same length simultaneously and using correlation identify 

each individual sequence at the receiving end. Correlation of a sequence with a
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different sequence ideally results in zero correlation but in general will behave like 

noise and have an effect. In the worst case all the sequences could be received at the 

same time. Six 255 bit length sequences were generated and summed to give 2, 4 and 

6 sequence combinations. The processes were run on these to give a comparison 

between filter, correlation and cyclic correlation to examine the effects of extracting a 

single M-sequence from a group. The data represents the background noise generated 

by the process away from the detection, is normalised to the peak value of the 

detection and where a number of sequences are present the process is run for each 

individual sequence and the result averaged (So for six sequences each individual 

sequence is correlated against the sum of all six, statistics calculated and then 

averaged to get a single value). The statistics are given in Table 3.6.

Table 3.6 -  Effects of Number of Simultaneous Sequences

Number of 
Sequences Correlation Cyclic

Correlation Filter

Normalised Mean Value
1 -0.0020 -0.0039 -0.0008
2 -0.0020 -0.0039 -0.0012
4 -0.0019 -0.0039 -0.0014
6 -0.0019 -0.0039 0.0000

Normalised Maximum Value
1 0.0627 -0.0039 0.0004
2 0.2111 0.2296 0.2106
4 0.2957 0.3410 0.2932
6 0.3277 0.3582 0.3432

Normalised Minimum Value
1 -0.0667 -0.0039 -0.0024
2 -0.1741 -0.1259 -0.1434
4 -0.2499 -0.2539 -0.2772
6 -0.3217 -0.3365 -0.3302

The overall effect is that the individual sequences are detectable but with more 

sequences combined there is an increase in background noise after processing. It is 

also process independent as all show similar results with increasing numbers of
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simultaneous sequences. Taking a look at examples for a single sequence detected out 

of combined 2, 4 and 6 sequences shows some variations in the distributions of 

background noise.

Normalised Correlation Value

Figure 3.18 - Background value distribution from 2 Sequences using correlation
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Figure 3.19 - Background value distribution from 2 Sequences using cyclic correlation

Normalised Coefficient Value

Figure 3.20 - Background value distribution from 2 Sequences using the filter
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Correlation in Figure 3.18 gives a strong central near zero mean with an approximate 

normal distribution spreading to ±0.2. Cyclic correlation in Figure 3.19 has a similar 

central mean value but within the distribution only specific values occur leading to the 

isolated distribution graph. The filter in Figure 3.20 is similar in shape to the 

correlation distribution with a slightly narrower range but a longer small positive tail 

is present. This shows that there are occasional larger background values with the 

filter but they are still consistent with the ranges of the other two methods.

CO<1>Oc
CD

OoO
CD-Q
EZJ

- 0.2 - 0.1 0 0.1 0.2 0.3
Normalised Correlation Value

Figure 3.21 - Background value distribution from 4 Sequences using correlation
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Figure 3.22 - Background value distribution from 4 Sequences using cyclic correlation

Normalised Coefficient Value

Figure 3.23 - Background value distribution from 4 Sequences using the filter
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Both the correlation and filter distributions in Figure 3.21 and 3.23 show similar 

normal distribution shapes that are slightly wider than for 2 sequences and have a 

clearly visible small positive tail. Cyclic correlation in Figure 3.22 is skewed towards 

the negative side showing the differences in distributions with very similar statistical 

values.

Normalised Correlation Value

Figure 3.24 - Background value distribution from 6 Sequences using correlation
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Figure 3.25 - Background value distribution from 6 Sequences using cyclic correlation

Figure 3.26 - Background value distribution from 6 Sequences using the filter
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Figure 3.27 - Comparison o f single sequence detections from 6 Sequences 

The three 6 sequence distributions in Figures 3.24 to 3.26 match quite well with those 

using 4 sequences showing only an increased spreading. From Figure 3.27, the 

distributions and statistical values it is clear that single sequences can be quite easily 

detected from a group of sequences causing only an increase in background values 

that looks in most cases similar to noise (noise effects are covered later), even in a 

worst case scenario when all the signals are received simultaneously.

3.8 Missing Symbols

Using a system based purely on the M-sequence (without encoding it in a signal or 

after a sequence has been recovered) it is useful to consider what happens if a symbol 

is missing or misidentified. A missing symbol is one in which the correlation between 

that symbol and any other is zero and a misidentified symbol is when it is actually the

t-------------------- 1-------------------- 1-------------------- 1-------------------- r

Single Sequence Correlation
Cyclic Correlation
Filter

--1---------------1__________I__________I__________I_
-200 -100 0 100 200

Delay
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opposite symbol to what it should be. In a cyclic autocorrelation it is easy to work out 

the effects a single missing or misidentified symbol can cause using the properties of 

M-sequences described in Chapter 3.1 [46], Considering these properties a number of 

simple error relations have been analytically derived and then numerically validated.

3.8.1 Correlation Error at Peak

A correct correlation leads to 2”—1 agreements over 2"—1 symbols giving a 

normalised result of 1. If a number of symbols (b) are missing then the normalised 

output for this is given by Eq. (3.25) and similarly for misidentified symbols in Eq. 

(3.26)

2 ”— 1 1 2 ”- l
(3.25)

2 " —1 —2 b _ 1 2 b  

2 ”- l  2 ”—1
(3.26)

It can be seen that it translates to one minus the proportion of missing symbols to total 

symbols or twice the proportion of misidentified symbols to total symbols. This leads 

to the conclusion that no correct detection is possible if around half the symbols are 

misidentified.

3.8.2 General Correlation Error Maximums

Looking at the correlation away from the peak gives an idea of how robust the system 

is so incorrect target detections don’t become too large and interfere with the correct 

detection. Due to the structure of the M-sequence leading to agreements and 

disagreements during correlation the following worst case values are valid only when 

b is limited to a maximum of 2" 1 (the total number of agreements). Note that if b
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achieves this (unlikely) value then the misidentification will give a false correlation 

peak. Normalising to the correct detections peak gives worst case maximum and 

minimum for missing symbols

and misidentified symbols

± b  —1 
2"—1 —b

± 2 b —1

(3.27)

(3.28)
2 - 1 - 2 b

The maximum is achieved when all the symbol errors are contained in the 

disagreement symbols and conversely the minimum is when the symbol errors are 

contained in the agreement symbols. For a number of errors in the received signal it is 

quite unlikely that they would all simultaneously contribute to an agreement or 

disagreement and so produce a maximum or minimum although it is of course 

possible.

3.8.2.1 Single Error

The average correlation error for a single symbol error is as follows. The chances of 

the error falling on an agreement are given in Eq. (3.29) and disagreement in Eq.

(3.30).

2”~1 — 1 
2”—1

2"—1

(3.29)

(3.30)

Taking the average as the sum of all outcome probabilities multiplied by the value for 

that outcome gives the average correlation error in Eq. (3.31) and for a single missing
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symbol (6— 1) in Eq. (3.32) (Where a and d  represent agreement and disagreement 

respectively with P and O standing for probability and outcome result).

avg error - P [ e r r o r  [ a ) ) o [ a ) + P [ e r r o r [ d ) ) o [ d )  (3.31)

.n - 1
avg error = - b - l  U  2"

2"—1—b/  2 " - l
b - l

2 " - l - b

- 2 +
r - ,  \

°  \
\ 2 ”—2  J 12 ” 1 / \ 2 n- 2 /

(3.32)

2"— 1

The average result is the same for a misidentified symbol

3.8.2.2 Two Errors

Taking the previous notation but introducing a prefix number to a and d  to represent 

which symbol error it refers to gives the average error for two symbols.

avg error — P  [error (la))P [ e r r o r  (2a))o(2a)
+ p [ e r r o r  (la)) P [ e r r o r  (2d))o(la2d)
+ p [ e r r o r  (ld))p(em?r (2a))o(ld2a)  ̂ ^
+ P  [error (id))/3 [error (2d))O (2d)

When there are two errors the minimum and maximum correlation values remain as in 

Eq (3.27) and (3.28) (with 6=2), the average is expected to vary because there are 

now 4 ways to get two errors, two on agreement, two on disagreement and 2 ways to 

get one of each but as shown in Eq. (3.34) the solution can be simplified down to the 

same average solution found in Eq. (3.35).
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/ 2 n ' —1 \ ¡2 "  ! —2 \ - b - i  \
\ 2 " - l  / l 2 " -2 12” 1 b /

+

+

+

¡ 2 n * - l \l

2 n— 1 l\

I 2
2 n~  1

2 ”_1 to
\ 2 " - l 2”—2 2"—1—b

—22n 2+2" ' + 2”- 2 - b 2 2n 2 + b2"_1 + b2”- b 2 (3.34)

2"— 1) (2" —2) (2W— 1 — b

1 2( —22n_2+2"_1)1
(2”- l )
(b22n~

- L  '

1(2 "—2)1

z—b2"“
(2 "— 1 — b)
1 2^2n~2^_

1

2n~l )

2 "— 1) (2"—2 ) (2 "— 1 — b

¡-22n+2"+1+2"--2 + b2”-b2 )
(2”- l ) l(2"—2 )(2 ”—1—b)1

2 " - l

From this it is highly probable that in the usable range (small value of b) the average 

error for the cyclic correlation case when symbols are missing or misidentified will 

always be the solution given by Eq. (3.32) and (3.34). This also indicates that the 

maximum and minimum errors would be the limiting factor on the total number of 

permissible missing or misidentified symbols while retaining useful operation. In all 

cases a misidentified symbol is worse than a missing symbol due to the larger 

minimum and maximum errors that it would produce.
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3.8.3 Numerical Results

A short M-sequence of 15 symbols with symbol errors (missing) in the received 

signal is compared across the cyclic correlation, correlation and filter methods. Up to 

four symbol errors are looked at with every unique combination of location within the 

M-sequence used. From these the normalised mean, maximum and minimum values 

are calculated for the no detection results (with reference and normalisation to the 

peak detection) and distribution of values examined. The mean value for 15 symbols 

as predicted by theory would be -1/15 and this is the value for the cyclic correlation 

for up to the four symbol errors tested. The correlation and filter methods varied 

slightly depending on the number of missing symbols and also showed a smaller 

mean that tended towards the same value also over the range of missing symbols.

Table 3.7 -  Comparison o f mean values for missing symbols

Number of Symbols Missing
1 2 3 4

Cyclic Correlation -0.0667 -0.0667 -0.0667 -0.0667
Correlation -0.0333 -0.0333 -0.0333 -0.0333
Filter -0.0302 -0.0296 -0.0290 -0.0285

The minimum and maximum values are shown in Figure 3.28 and 3.29. They show 

that with regard to these values the cyclic correlation shows the lowest values with the 

filter slightly better than the correlation. It does show however that a number of 

missing symbols does degrade the system significantly. At only four missing symbols 

out of a total of 15 the background clutter away from a detection peak value of 1 

reaches -0.45 and 0.275 in the best case scenario with cyclic correlation with the filter 

and correlation performing worse. Again these worst case values match the theoretical 

values from the previous sections for the cyclic correlation case.
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Figure 3.28 - Missing symbols minimum normalised value

Figure 3.29 - Missing symbols maximum normalised value
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A further note of interest is the distribution of values (excluding detection peak), the 

worst case maximum and minimum values are rare within a single cyclic correlation 

and they may not appear at all. A large number of missing symbols is generally bad 

but within a long enough M-sequence the chances of a worst case maximum or 

minimum appearing become much smaller. The distributions show a decreased 

proportion of number of maximum and minimum values when moving from 3 

missing symbols in Figure 3.30 to 4 missing symbols in Figure 3.31.

6000
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Figure 3.30 - Value distribution for 3 missing symbols with cyclic correlation
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Figure 3.31 - Value distribution for 4 missing symbols with cyclic correlation 

Although the correlation and filter results are strictly worse they also show a decrease 

in frequency of occurrence when compared to the total for their worst case maximum 

and minimum values when increasing the number of missing symbols.

77



N
um

be
r 

o
f O

cc
ur

re
nc

es

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3
Normalised Correlation Value

Figure 3.32 - Value distribution for 3 missing symbols with correlation
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Figure 3.33 - Value distribution for 4 missing symbols with correlation
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Figure 3.34 - Value distribution for 3 missing symbols with filter
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Figure 3.35 - Value distribution for 4 missing symbols with filter
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For long M-sequences the distribution of values obtained for an increasing number of 

missing symbols looks like it will tend to a Gaussian distribution. This should also 

hold true within a single correlation or filter operation.

3.9 Noise and Samples per Symbol

Noise is a problem in any real system, the following tests give an idea of performance 

in the presence of noise for several possible signals of varying M-sequence lengths 

and samples (bits) per symbol. M-sequence lengths of 63, 127 and 255 are used along 

with 1, 2 and 4 bits per symbol. Random white Gaussian noise is generated with a 

mean of 0 and standard deviation of 0.05, 0.1 and 0.2.

Figure 3.36 - Correlation - Maximum background value against noise
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Figure 3.37 - Correlation - Minimum background value against noise

Figure 3.38 - Correlation - Mean background value against noise
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The correlation versions in Figures 3.36 to 3.38 show the expected result (with one 

anomaly in Figure 3.38), with the longer sequences with more symbols having overall 

smaller minimum, maximum and mean over the shorter sequences but getting 

progressively worse with increasing noise levels.

Figure 3.39 - Filter - Maximum background value against noise
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Figure 3.40 - Filter - Minimum background value against noise

x 103

Figure 3.41 - Filter - Mean background value against noise
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The filter results are very different with a much a tighter grouping and the longer 

sequence not necessarily being the best in all cases at any noise level. Generally the 

filter gives better overall results than correlation with smaller minimum, maximum 

and mean values for the three sequence lengths, ft can be noted though that the filter 

values are increasing more rapidly with higher noise than the correlation so with a 

high enough noise value the filter will be surpassed in performance by correlation. 

One question that arises is whether the increased performance of both methods is due 

to the sequences themselves or the actual physical length in data points. Applying 

four and two data points per symbol for 63 and 127 symbol sequences brings the total 

lengths of those two sequences up to approximately that of the 255 symbol sequence. 

The expectation is that sequence length rather than total length is the more important 

parameter.

Figure 3.42 - Correlation - Maximum background value against noise
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Figure 3.43 - Correlation - Minimum background value against noise

x 10"3

Figure 3.44 - Correlation - Mean background value against noise
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The correlation results in Figures 3.42 to 3.44 are broadly similar in maximum and 

minimum values with a significant degradation in mean for longer individual 

symbols. So for correlation the longer symbols (and hence lower frequency) does not 

alter the maximum and minimum values too much but does cause the mean value to 

become worse. The properties of the M-sequence indicate that the no correlation 

condition has a small negative value so the degradation of the mean is expected, that 

small negative value multiplied by the number of bits per symbol giving an 

approximate value of the mean.

Figure 3.45 - Filter - Maximum background value against noise
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Figure 3.46 - Filter - Minimum background value against noise

Figure 3.47 - Filter - Mean background value against noise
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The filter results again are different with a degradation in maximum and minimum 

values for longer symbols while showing an improved lower mean value. Where the 

correlation results are broadly comparable between multiple bits per symbol in 

maximum and minimum values the filter is not, producing worse results with 

increasing number of bits per symbol. Another feature of note is the plotted detection 

results for multiple bits per symbol. Figure 3.48 shows the comparison for correlation 

where the detection is spread over several data points for 4 bits per symbol when 

compared to 1 bit per symbol. This fits in with what was observed in an earlier section 

of this chapter for correlation, in this case with 4 bits per symbol the detection is 7 

bits wide. That is clearly not the case in Figure 3.49 which shows a single point 

detection for the filter but it does have significant ringing around it.

Figure 3.48 - Detection result with correlation
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Figure 3.49 - Detection result with filter

Figure 3.50 - Noisy detection result with correlation

89



Figure 3.51 - Noisy detection result with filter

When noise (0.2 STD) is included the correlation shows little difference in Figure 

3.50 but the filter in Figure 3.51 does show some change with the 1 bit per symbol 

case showing noticeable degradation.

3.10 Pulse Compression Comparison

Pulse compression is a technique that allows for the transmission of a low peak- 

power, long-duration coded pulse and attain the fine range resolution and improved 

detection performance of a short duration, high peak-power pulse system [49], It is a 

form of signal modulation using a wide bandwidth. The most common use for the 

technique is in radar applications including GPR. Range resolution is a measure of the 

minimum separation between two or more separate targets that exist along the same 

axis but at different ranges that can still be distinguished. At smaller separations the
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separate targets merge into one. Generally the frequency modulation method using 

chirp signals is used but a phase modulated method is used in some applications 

(weather radar [49]). In principle they should offer similar results but other 

considerations such as hardware availability dictate use. The range resolution of a 

signal using pulse compression is similar to a single pulse of the same bandwidth.

3.10.1 Comparison -  Chirp vs. Phase

A pulse of fixed length is used to compare a frequency modulated signal (chirp) and a 

phase modulated signal. The chirp signal is a frequency modulated sine wave where 

the linear frequency sweep is from 2.5 to 7.5GHz (it’s a down chirp so actually it 

starts at the higher frequency and is reduced) over a pulse length of 5ns. The phase 

modulated signal is encoded using binary phase shift keying (BPSK) with the PN 

sequence consisting of 25 symbols. The carrier and symbol rates are 5GHz leading to 

an approximate bandwidth of 2.5 to 7.5GHz. The total pulse lengths as well as 

bandwidths are approximately equal in order to give a good comparison. In addition 

the signals are bandpass filtered with the pass band from 2.5 to 7.5GHz. A 

comparison between the filtered and unfiltered signals are shown in Figure 3.52 for 

the chirp signal and Figure 3.53 for the PN signal.
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Figure 3.52 - Delayed chirp waveform

Figure 3.53 - Delayed PN waveform
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Signal demodulation for the chirp signal consists of a time domain convolution of the 

delayed signal with a time reversed reference signal. The phase method uses a 

matched filter demodulation as well as a cross-correlation and the filter method (latter 

two use a reference signal). An additional phase modulated signal consists of a direct 

PN sequence (also bandpass filtered). For the chirp pulse a time reversed reference 

signal is convolved with it while the PN waveform is correlated with a reference 

signal. The delay value prediction is given by the maximum output of these processes. 

Firstly the pulses are subject to a fixed delay of 0.88ns.

t i i i------- 1------- 1------- r

-0 8------- 1------- 1------- 1------- 1------- 1------- i------- 1------- 1_____i_____
0  0.2  0.4  0.6  0.8  1 1.2 1.4  1.6 1.8  2

Delay time (s) x10-s

Figure 3.54 - Predicted delay value comparison

Both signals and processing methods give similar results as indicated in Figure 3.54. 

The chirp has slightly lower negative first side lobes but is overall slightly quicker to 

decay. Both give the correct delay of 0.88ns as a maximum and the delay prediction is 

narrow compared to the pulse length. Comparisons between the phase signals will be
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examined in the next section but a quick comparison between the filter and chirp 

signals would be useful.

Figure 3.55 - Predicted delay value comparison

The filter gives lower ripples, particularly for the first sidelobes making it the better 

choice in this case as shown in Figure 3.55.

3.10.1.1 Phase Signal Variation

Different phase signals will produce differently shaped delay prediction graphs, hence 

the use of 3 slightly different signals. The matched filter does not give a delay output 

like the other methods; it uses a direct time output. So if the end of the pulse is at 

1.5ns the filter produces its indicative output at that time. In order to match the graphs 

up, the matched filter graphs are shifted by the pulse length to give the correct delay.
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Figure 3.56 - Delay Prediction using phase modulation -  5GHz carrier 

Using a 5GHz carrier in Figure 3.56 means each symbol is made up of a single period 

of the sine wave with appropriate phase. The matched filter produces a single copy of 

that symbol at the start of the predicted delay point. The correlation output gives a 

maximum output at the correct delay. The filter gives an output similar to the 

correlation at the correct delay and overall has lower sidelobes making it the best of 

the phase methods.
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Figure 3.57 - Delay Prediction using direct PN sequence 

The direct PN sequence signal is greatly impacted by the bandpass filtering of the 

signal. The matched filter although giving a correct detection is poor due to the signal 

shape after bandpass filtering. Correlation also shows a small degradation in 

performance with an increased size of the sidelobes. The filter method shows near 

identical performance despite the difference in signals, which is quite a useful ability.

3.10.1.2 Range Resolution Comparison

To compare the relative performance benefits of each method a theoretical test of 

range resolution will be used. A delayed pulse will be located at 0.7ns with a second 

delayed pulse added with a delay varying from 0.7ns to 1.05ns. The overall 

performance will be judged on how close the two pulses can get before they merge 

together. As the symbol shape affects performance the two signal types used so far
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(BPSK with 5GHz carrier and direct PN sequence) will be compared along with the 

chirp pulse.

-9x 10

Figure 3.58 - Chirp Signal

The chirp signal shows a minimum separation of around 1.0ns. There are some 

problems though including strong negative troughs either side of the main detection 

peaks.
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Figure 3.59 - Matched filter using phase modulation -  5GHz carrier
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Figure 3.60 - Matched filter using phase modulation -  Direct PN sequence
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The matched filter shows its clear dependence on the symbol being used. The full sine 

wave symbol in Figure 3.59 shows both parts and ultimately makes it difficult to 

separate the pulses below 1.1ns. The direct PN sequence in Figure 3.60 is 

exceptionally difficult to separate the pulses due to the poor signal shape after 

bandpass filtering. Correlation in Figure 3.61 gives fairly good separation down to 

1.0ns but with slightly stronger sidelobes visible. Use of the direct PN sequence in 

Figure 3.62 though increases that minimum separation to 1.2ns.

Figure 3.61 - Correlation using phase modulation -  5GHz carrier
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Figure 3.62 - Correlation using phase modulation -  Direct PN sequence
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Figure 3.63 - Filter using phase modulation -  5GHz carrier
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Figure 3.64 - Filter using phase modulation -  Direct PN sequence 

The filter performance matches that of the chirp and correlation methods but with 

slightly weaker sidelobes. Both Figure 3.63 and Figure 3.64 have a range resolution 

of 1.0ns, despite the poor signal used in Figure 3.64 that caused problems for the 

matched filter in Figure 3.60.

3.10.1.3 Section Conclusions

The chirp and phase modulation methods appear similar in performance leading to 

selection based on other factors such as hardware considerations, if non-real time 

processing (like for most imaging applications) is used then a phase modulated pulse 

combined with the filter method gives the lowest sidelobes.

x 10
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3.11 Chapter Conclusions

The M-sequence has been introduced and explained with some of the potential 

benefits shown as well as its generation. Methods based on correlation and filtering 

techniques have been presented along with idealised performance in a range of 

situations. Various filter parameters have been investigated in order to provide an idea 

of what values to choose to give good performance. Multiple M-sequences received 

simultaneously and then extracted has been shown to be possible although the noise 

that it generates is significant but is essentially process independent as both 

correlation methods and the filter give similar results.

M-sequences with missing symbols have been examined to determine the 

effects that can have on signal detection and the background clutter that is created or 

increased. Most tests have shown the superiority of the filter method over correlation 

where cyclic correlation (the best) is not available. Cyclic correlation can be used 

when using repeated transmission of a sequence but the filter method performs better 

with longer sequences so it's a choice between a longer PN sequence and the benefits 

that provides and shorter repeated sequences to use cyclic correlation.

Missing symbols in the received signal have been found to have a degrading 

effect but can be managed by using longer sequences to reduce the chance of worst 

case maximum and minimum values appearing and producing false positive 

detections. Some examples including noise and longer symbols show noise 

degradation of the filter method and correlation but at sufficiently low noise levels the 

filter remains better particularly when longer symbol lengths are used and correlation 

causes the detection to spread out. The minimum time delay between two identical
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signals (relevant to range resolution) has also been found to favour the filter method 

over correlation in noise free circumstances due to the lower sidelobe levels.
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Chapter 4

Imaging Using a Direct Transform of the H-Matrix

This is based on a method described in [6], where it is used primarily as a way to have 

a visual representation of a communication channel and to better calculate channel 

capacity. The chapter expands on the method and takes it further, looking specifically 

at its performance in imaging and addressing its shortcomings in that field. It involves 

processing the H-matrix so that instead of coupling transmit and receive antennas it 

couples transmit and receive angles of the whole transmit and receive array. The 

transformed version is referred to as a virtual channel representation or virtual H- 

matrix. This can be used directly to show coupling in a given angular direction, which 

indicates a reflecting object to detect. The first sections cover the method as described 

and some shortcomings it has when related to imaging before a modified version is 

presented that enables the type of imaging interested in.

4.1 H-matrix Generation

The H-matrix defines the coupling between a transmitted signal and the 

corresponding received signal. The H-matrix is frequency domain and for T 

transmissions and Q receptions the H-matrix takes the form of a TxQ matrix (for a 

single frequency). The relationship between transmitted signal (5 ), received signal (x) 

and the H-matrix (H) is given in Eq. (4.1) and expanded in Eq. (4.2).

x = H s  (4.1)
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(4.2)
* 1 - HP, i '

• • • •

* G . h \,3 n \e  - n'p.e. s P

Figure 4.1 - Antenna Naming and distance relations (mono-static)

The H-matrix is generated using the radar equation for spreading loss and a phase 

term given in Eq. (4.3) where r is the distance from the antenna array element to the 

target, rq for the receiver to target distance and r, for the transmitter to target distance. 

The other variables are the targets reflection coefficient /"and signal wavelength A.

H .  , = I X -j2tt r + r ,

(4tc)3a* i r  i
'  ' q t

(4.3)
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4.2 H-Matrix Imaging

In order to transmit a signal in a particular direction you alter the phase of individual 

array elements so the signals constructively interfere in the desired direction and 

negatively interfere in other directions. In this case the phase alteration will be applied 

in the processing not the transmission stage. The simplest antenna array is a uniform 

linear antenna array (1-D) given in Figure (4.2) where d is the antenna spacing and <(> 

is the angle of transmission or reception.

Figure 4.2 - Antenna Array

The path length difference between adjacent antenna elements is given by Eq. (4.4)

This then translates into a phase difference {9) given in Eq. (4.5) where X is the 

signals wavelength

A n ten n as

a  — d c o s { 9 0 —(p) 
a  =  d s i n [ ( p )

(4.4)
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a dsm [(p )
X

■ 0 (4.5)

The transform that focuses a transmitted signal or directs a received signal to a given 

angle is given in Eq. (4.6). They are usually referred to as the array steering or array 

response vectors respectively.

a[e)~ h

1
e - J2Kd 

-J2k(T- 1)0
(4.6)

0 is periodic due to the sine function and a(6) is also periodic. However due to the 

inverse sine function 0 is limited to the range -/3<0<J3 in order to keep <f> within the 

function bounds as highlighted in Eq. (4.7) (bounds for (j) are then -7t/2<<zK7t/2).

d  sin(ç>)
0 -

X
-Psm((p), cp=sin  'l^ - J (4.7)

As a consequence of a(Q) being periodic with a period of 1 there are further 

limitations on 6 that reduce the acceptable range to -0.5<6><0.5. Values outside this 

range will lead to aliasing. The boundaries then are fully laid out in Eq. (4.8)

- 0 .5 < # < 0 .5 , s i n " -0.5 \ ^  . _i 0 .5
< ç> < sin (4.8)\ P ) \ P 1

This does imply that j6 cannot be between -0.5 and 0.5 and values less than -0.5 or 

greater than 0.5 reduce the angular spread of <f>. Two values are defined in Eq. (4.9) 

that form the limits to the later summations.

ë = M  an d  f = M (4.9)
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4.2.1 Initial Version

The relationship between the H-matrix (H) and the virtual H-matrix (Hv) is given in 

Eq. (4.10) with a rearranged form in Eq. (4.11) and the relevant terms are defined in 

Eq. (4.12) and Eq. (4.13)

H = £  x  H ,( i , / )« ,(§ ,. ,)«?(§r,() = AJ,HyA
q = - Q  t = - T

h ,= a ; h a ,

k M = l Q

1
~j27Ut

e T

-  j2 it( T — 1 )t 
T

1
- j2 itq

e Q

- j2 n {Q - \ ) q

— j2nt

e T

— j2 it(T  — \) t

, T

1
—j2nq

e Q

- j2 n ( Q - \ ) q

(4.10)

(4.11)

(4.12)

^ R , q

0 T t= Y  where —f  < t < T
(4.13)

Taking the Hv version in Eq. (4.11), substituting for the relevant matrices and 

rearranging to get the summation version leads to Eq. (4.14). The Hv subscripts x  and 

y  represent the matrix indices and are in the range l<x<T and \<y<Q corresponding to 

the actual angles from the transmitter and receiver, given in Eq. (4.13).

H„ = . f  y r r
y f Q y i f p ^ 471

(4.14)
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^ r ( j t )= s in  1

T + l )
>■2 j

Td an d  (pQ [ y ) = s m  1

ly 0 +1]*2 J
Qd

(4.15)

In Eq. (4.14) rq and r, vary depending on the location of the target. Keeping the 

assumption that the target is a large enough distance away for all the antenna element 

signals to be parallel (basis of the method) they can be replaced by a form of rre/M  

where A is the path length difference between a reference antenna (rref) and the 

required antenna rq/t. Choosing the reference antenna to be ri, the values for rq and r, 

are given in Eqs. (4.16-17).

{f - TA )
r , = r i + ( t - l ) ------------

(4.16)

r  q ~ r  l +  ( ^ — l ) ' g Q+1
(4.17)

Q
In these cases f  and g represent transmit and receive angles within which the target 

lies (angles given by Eq. (4.15) with / equals x and g  equals y). Substituting in for rq

and r, leaves the full version split into magnitude and phase as in Eq. (4.18-20).

Q T1 ^  1 J
J Q 4 T  q= 1 (= 1 

n 2

(4.18)

(4.19)
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M ) i
T + \ \

r  2  J (9-1)1

M )

T

I T + l ]

l

1 ( 9 - H

Q / 
e + i ) \

r  2 , r  2 )
T Q /

Further simplification of the phase term Eq. (4.20) leads to Eq. (4.21)

o _ ( 2ri | , / ( t - l ) ( x - g )  ( q - \ ) ( y + f - Q - \ )  
P^ - \ ~ T y \  T  + Q

(4.20)

(4.21)

The goal is for the complex terms for each received signal (H(qJ)) to take on the same 

value leading to a maximum in the sum of complex variables highlighted in Eq. 

(4.21). If the targets transmit reference g equals the viewing reference x and receive 

reference/ equals viewing reference y—Q—1 then the two terms cancel out leading to a 

maximum with those angles. However the effective reversal of reference y  is not a 

useful property for imaging and is caused by the complex conjugate transpose of the 

receive component in the original Hv Eq. (4.22).

H v =  A " H A r (4.22)

4.2.2 Equation Solution

The solution to Eq. (4.18-21) to get a maximum is when the last term is constant over 

the entire sum. With t and q varying independently a solution is when g  equals x and /  

equals y —Q- 1 making the last term equal to 1. A secondary solution is when g-x  and 

f+y-Q- 1 both equal an integer multiple of the corresponding number of antenna 

elements (T and Q). Regardless of the value of q or t it would always lead to an
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integer multiple of 2tt. This is the periodic limit of the method leading to aliasing and

can only be achieved when the target is located outside of the field of view of the 

antenna array. For a very large number of antenna elements, the limit on the arrays 

field of view is given by Eq. (4.23)

If the array has a front looking field of view from —tc/2 to 7t/2 then the correct antenna 

spacing for the algorithm to match is AJ2. If the spacing is increased to A, then the 

field of view would be reduced and become -0.523 rad to 0.523 rad. Targets that 

could be picked up outside that range would then alias into the image as g—x and f - y  

can now take on a value that is a multiple of T and Q respectively (due to g  and /  no 

longer lying within the standard ranges of 1 to T and 1 to Q). Going back to the main 

problem, making the assumption that the viewing reference (x and y -Q -1) matches 

the target reference ( f  and g) on both transmitting and receiving sides causes the last 

term of Eq. (4.21) to cancel out so removing the antenna location dependence (caused 

through q and t). This leaves the maximum value solution as Eq. (4.24)

(4.23)
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!  Q T
h  -  1 y  y

V(->
n 2 - A t (4.24)

If the assumption is carried on and /*/ is much larger than the A term (within the 

brackets) it can be reduced further to an approximate maximum given by Eq. (4.25)

_ Jqt rx2
h ,

(4tt )3(^i)4
(4.25)

This also raises the possibility that the distance to the target could be calculated using 

a rearranged version given in Eq. (4.26). The accuracy depends on the relative sizes of 

ri to the A term and whether an accurate prediction of the reflection coefficient can be 

made.

r  ,=i 4 o r r r

(4 n f H ^
(4.26)

Note however that the maximum of the A term increases with the total number of 

transmitters and receivers as illustrated in Figure 4.3. (Maximum occurs when both t 

and g equal T).
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Figure 4.3 - Relation between A term and antenna number 

The thing to note here is that with increasing antenna number there is the potential for 

significant alteration in the maximum output value and overall variation if the target is 

too close.

4.2.3 Generic Form Imaging

Replacing the modification term with a generic symbol representing the alteration for 

the transmitting component (0) and the receiving component (6q) gives Eq. (4.27). 

Then performing a transform of the delay terms r, and rq to a reference (r/) plus 

modification (6a for transmitting and 6b for receiving). Split the modification off and 

simplify to Eq. (4.28)

^  VM
Q

I I n -j2n
r,+  r ,

4 q 4 T  9=1 ,=1 (47!
-M0t+K (4.27)

r tir  2 t q
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H 1
(4.28)r X 2____________  J2*[ i )  j2*(em-o ,+ 8 t- e t )

da is a function of t and g, 0, is a function of t and jc, 0h is a function of q and /  and 6q 

is a function of q and y. Due to this dependency and the use of a complex sum the 

generic version shows a maximum when 0a + 0b equals G, + 6q (or both are integer 

multiples over the entire range for the periodic out of bounds solution). The solution 

for the non-generic parallel version has 0a equal 6, and 6b equal 9q to give the 

maximum. If the target is close enough to void the parallel assumption 6a and 6b 

change significantly so 6, and 6q must change to match.

Q

-II£ i £ i ( 4 * ) 3(

4.2.4 DFT Matrix

There is considerable similarity between the DFT matrix and the two matrices either 

side of Hv (in Eq. (4.11) and shown fully in Eq. (4.12)). Firstly the DFT operation is 

shown in Eq. (4.29) and expanded to a matrix multiplication in Eq. (4.30).

N - 1

x h= x„e
— J2xkn 

N for 0<£<N-1 (4.29)

V

1 r

• 
•

i

■

1

-  j2 i tk

e  N

■--
---

---
---

---
--

1 2
— j 2 n ( N — \ ) k

e  N
■

- . ¡ 2 x ( N - \ ) k  
„  N
e

(4.30)

Compare the transform matrix from the DFT shown in Eq. (4.31) to the version used 

by one of those used to generate Hv shown in Eq. (4.32).
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1
J n

—  J2Tik 
, N

- j 2 n ( N - \ ) k
N

1
- j 2 n k

— j 2 i t ( N  — \ ) k

(4.31)

1

l
- j 2 n t

— ¡2k (T — \ )t

e T

1
—j2TZt

—j 2 i t ( T  — \ ) t

(4.32)

The matrices are identical if T=N and t=k. In the DFT the range for k is 0<k<N-\ but 

the range for t differs as shown in Eq. (4.33).

T - i )  ( r - t )
T T

(4.33)

This range corresponds to a variant form of DFT, the centred DFT (CDFT). The 

operation in Eq. (4.11) has both a forward and an inverse component so the resultant 

Hv matrix remains in the frequency domain.

4.2.5 Operation

A target is at a set distance and direction from the antenna array. In order to transmit 

in that direction the transform given in Eq. (4.11) can be used on the received signals. 

It alters the phase of each signal so that they are all in phase along the path to the 

target. The target reflects the transmitted signals back which arrive at the receivers 

with different phases. The transform can be used again so the received signals all have 

the same phases for a given receiving direction. If there is a target in the selected 

direction for both the transmitting and receiving parts the phase alteration by the 

transform will align all the signal phases into approximately the same direction
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(complex plane) so the signals will add constructively in the sum to generate Hv. If 

there is no target in chosen direction then the signals will add destructively leading to 

a much smaller complex value for that direction in Hv. Taking the magnitude of Hv 

will then show the coupling between transmit and receive angles due to the 

constructive or destructive adding of the signals that make up that transmit/receive 

angle combination. Note that it is operating purely on the received signals and does 

not direct the beams during transmission.

4.3 Results

4.3.1 Single Target

X
A ntenna

Figure 4.4 - Simulation Set-up

The simulation is set-up according to Figure 4.4 with the target moved over a range of 

values and the number of antenna elements also varied. From the range of target 

positions three will be looked at, (-0.2, 0.1), (0, 0.3) and (0.1, 0.3). The corresponding 

angles (identical on transmitting and receiving sides) are -1.107 rad, 0 rad and 0.322
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rad. The frequency remained constant at 6GHz with half wavelength antenna element 

spacing in air. The H-matrix was generated using Eq. (4.3) transmitting and receiving 

at the same array with the targets reflection coefficient equal to 1. Result images have 

been altered so the transmission angle matches the received angle for a given target 

location (the output has the transmission angle matched to the negative received angle 

so the alteration is a reversal in polarity of one axis).

4.3.2 3-Element Array

The 3-element array has a limited resolution of only 3 transmit and 3 receive angles 

for 9 possibilities total. For transmitting and receiving from the same location with a 

single target only the 3 diagonal values of equal transmit/receive angles are relevant.

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
Transmit Angle (rad)

Figure 4.5 - 3-Element, (-0.2, 0.1) target
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Figure 4.6 - 3-Element, (0, 0.3) target
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Figure 4.7 - 3-Element, (0.1, 0.3) target
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Figure 4.5 shows the target is in one of the outer two angles (in this case negative 

side) and Figure 4.6 where the target is directly ahead of the array making it 

symmetrical. Figure 4.7 is a bit more interesting showing when the target is 

approaching the boundary between two angles giving a more spread out result. 

Overall the target is shown in the correct angular combination but the resolution is 

poor.

4.3.3 7-Element Array
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Transmit Angle (rad)

Figure 4.8 - 7-Element, (-0.2, 0.1) target
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Figure 4.9 - 7-Element, (0, 0.3) target

x 104

Transmit Angle (rad)

Figure 4.10 - Element, (0.1, 0.3) target
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Again in Figure 4.8 the target is in the one of the outer angles. Looking at Figure 4.9 

and Figure 4.10 shows the smaller target that comes with better resolution (7-element 

array gives 7 potential angles).

4.3.4 13-Element Array

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Transmit Angle (rad)

Figure 4.11 - 13-Element Array -  (-0.2, 0.1) target
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Figure 4.12 - 13-Element Array -  (0, 0.3) target

x 104
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Figure 4.13 - 13-Element Array -  (0.1, 0.3) target
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With more antenna elements Figure 4.11 shows that the target is now more visible, it 

could potentially be due to the increased resolution and is no longer in one of the 

outer angles but its angle is wrong so it fits in with the next two images. Figure 4.12 

and Figure 4.13 show the target breaking up over multiple adjacent angles. This is 

because the target is too close to the antenna array, there is an effective limit to how 

close the target can be and still be detected as a single detection. Moving the target 

further away in Figure 4.14 (angle 0 rad) and Figure 4.15 (angle 0.38 rad) shows that 

the single detection reappears at an appropriate distance.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Transmit Angle (rad)

Figure 4.14 - 13-Element Array -  (0, 0.5) target
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-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Transmit Angle (rad)

Figure 4 .15 - 13-Element Array -  (0.2, 0.5) target

4.3.5 Pre-Sum Phase Plots

A 9-element array was chosen with a target contained in the angle (0.46, 0.46) rad. A 

plot of the H-matrix in a magnitude and angle form is given in Figure 4.16.
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5e-005
90

Angle (degrees)

Figure 4.16 - H-Matrix -  Magnitude and Phase

The processed matrix for the transmitted and received angles matching that of the 

targets direction before the complex sum is given in Figure 4.17. It shows that the 

phases of all the elements converge towards a common phase. Experimental results 

don’t show perfect convergence but it is enough so that the complex sum gives a 

maximum. When there isn’t a match the elements spread out over the whole range 

leading to partial cancelling and a much smaller complex sum as shown in Figure 

4.18.
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Figure 4.17 - Correct angle choice -  Processed Magnitude and Phase

90
5e-005

Angle (degrees)

Figure 4 .18 - Incorrect angle choice -  Processed Magnitude and Phase
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4.3.6 Range Limit

As shown there is a minimum range limit at which a single target is resolved as a 

single target. This limit is important to recognise and can be experimentally acquired 

as it shows variability with array size. Using the same simulated set up a target is 

moved from close by the antenna array away along the zero angle transmit/received 

line. The range at which the adjacent angles show half strength compared to the main 

detection is recorded and the whole process is repeated for antenna array sizes from 3 

to 21.

Figure 4.19 - Minimum range vs. antenna array width
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Figure 4.20 - Minimum range vs. D 2/X

The minimum range shows an upward curve with array width in Figure 4.19. The 

second plot, Figure 4.20 shows that the minimum range is approximately proportional 

to D2/A. This relationship is usually used to describe the far-field to near-field relation 

for antenna arrays. It is also something of a problem because better resolution requires 

a larger number of antenna elements and hence a larger array leading to a potential 

problem with minimum range.

4.4 Modification

The transform alters the phase of the received signals to match the transmitting or 

receiving directions in order to maximise the magnitude of the sum for a given output 

element (that couples a particular transmitting angle with a receiving angle). 

Alteration of the transformation arrays Eq. (4.11) to create a version that incorporates
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a distance measure should be possible. There are two potential benefits, the first being 

particular distance values producing stronger coupling values hence giving a depth 

perception. Secondly it would allow larger arrays to focus closer reducing the far field 

limit to that of the antenna elements instead of the total array.

Using the same antenna array as in Figure 4.21, instead of having all the antenna 

element beams parallel they are moved inward to a focus point. The focus point is a 

distance S  away from the centre element giving the distance for the adjacent element 

of R. The key measure that determines the phase alterations of the transform is the 

difference between the path lengths of S  and R for a given angle <j>. R is calculated 

using the cosine rule in terms of d, S  an d /in  Eq. (4.34) (Ru is for antenna elements 

above the centre element and R, for below) with the path length phase difference, 0, 

then given in Eq. (4.35)

R  Focal Point

Figure 4.21 - Antenna Array

R u= ^ l d 2+ S 2- 2 d S s m ( ( p )
(4.34)

R ,= y l  d z+ S 2+ 2 d S  sin ((p)
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(4.35)
0  =

S - R
A

e -S'—V d 2+ S 2 —2 d S  s\n((p)  
I

Then substituting the new 6 value into an array steering/response vector and altering 

it for antenna positioning based on variable D gives Eq. (4.36) where D is given in 

Eq. (4.37)

a ( ( p ) = - l
V r

—j2K

-j2n

1
S -\lD [+ S 2-2DSsm(<p)

S - jD l+ S 2-2DSsm(<p)

(4.36)

D n—n d  for
2 2

(4.37)

Note that Eq. (4.36) also has a change of variable lfom 6 to ^ when compared to Eq. 

(4.6). The correspondence between 6 and <j> is no longer as in Eq. (4.7) so the array 

steering and response vectors that make up the transform matrices have to use <f> as the 

basis. The first version uses the same 9 range substituted in for </>. For this version the 

final form is given in Eq. (4.38-40) with the reference antenna element set to antenna 

1 although in practice the centre antenna element ((7M)/2) is usually preferable for 

this method.

(t.g) (4.38)
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L  e + i \
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1 e  /j
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T  +  l
x -----------

+ i 1
[ d [ t — \))2+ K 2t +  2 K t X l t  — i )

2
T  /

X
L  e + M

+ i 2
1 Q

(4.40)

The actual distance of the target from the reference antenna is given by S  (subscript t 

for transmitter and q for receiver). The corresponding term in the modification part is 

denoted by variable K. Note that the maximum now occurs when jc equals /  y  equals
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g, K, equals S, and Kq equals Sq. The assumption that the target is far enough away to 

simplify the magnitude term though no longer applies so there is no simple solution.

4.4.1 Results

4.4.1.1 Single Target

Using the same data as that for the previous results section based around the set-up in 

Figure 4.4 the new modified focussed method is used. There is an additional 

parameter that needs to be specified, that of the focussing distance (K). There would 

normally be independence between K  for the transmitting and receiving antenna 

arrays but for a single combined transmit receive array (mono-static) used here a 

single value can be used. Note that the results for a large value of K approach that of 

the parallel method. The value of K  chosen for long focussing is AM 00m, in most 

cases the images for this value of K are approximately equal to those produced using 

the parallel version. For short focussing a value of AM).25m is used putting the focus 

distance in the middle of the range of target locations.

4.4.1.2 3-Element Array

The three element array like the parallel version has a limited resolution. With only a 

limited number of elements there is no visible improvement between the long 

focussing (AM00m) and short focussing (A=0.25m). Comparisons between this and 

the parallel version show slight variation for the (-0.2, 0.1) target shown in Figures 

4.22-23 but no visible difference for the other two target positions shown in Figures 

4.24-27.
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-0.6 -0.4 -0.2 0 0.2 0.4 0.6
Angle from Transmitter (rad)

Figure 4.22 - 3-Element array -  (-0.2, 0.1) target, X=100m
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Figure 4.23 - 3-Element array -  (-0.2, 0.1) target, A==0.25m
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Figure 4.24 - 3-Element array -  (0, 0.3) target, K=100m

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
Angle from Transmitter (rad)

Figure 4.25 - 3-Element array -  (0, 0.3) target, AM).25m
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Figure 4.26 - 3-Element array -  (0.1, 0.3) target, A^lOOm

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
Angle from Transmitter (rad)

Figure 4.27 - 3-Element array -  (0.1, 0.3) target, AM).25m
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4.4.1.3 7-Element Array

This array size starts showing some improvements over the parallel version. The first 

target at (-0.2, 0.1) shows a slight shrinkage of the target between the long (Figure 

4.28) and short (Figure 4.29) focussing but it is relatively minor. The second target at 

(0, 0.3) has a fairly large reduction in target size between the two focussing values 

(Figures 4.30-31) which also occurs for the last target at (0.1, 0.3) in Figures 4.32-33.

x 10'3
1

0.8

0.6

Hf 0-4CO
I—

I  0.2
CDO

E
£  -0.2 
_CD

<  -0.4 

- 0.6

- 0.8

-1
-1 -0.5 0 0.5 1

Angle from Transmitter (rad)

Figure 4.28 - 7-Element array -  (-0.2, 0.1) target, AT=100m
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Figure 4.29 - 7-Element array -  (-0.2, 0.1) target, A=0.25m
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Angle from Transmitter (rad)

Figure 4.30 - 7-Element array -  (0, 0.3) target, AT=100m

137



A
ng

le
 fr

om
 R

ec
ei

ve
r 

(ra
d)

 
A

ng
le

 f
ro

m
 R

ec
ei

ve
r 

(ra
d)

Angle from Transmitter (rad)

Figure 4.31 - 7-Element array -  (0, 0.3) target, AM).25m
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Angle from Transmitter (rad)

Figure 4.32 - 7-Element array -  (0.1, 0.3) target, A^l 00m
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Angle from Transmitter (rad)

Figure 4.33 - 7-Element array -  (0.1, 0.3) target, AM).25m 

4.4.1.4 13-Element Array

With the parallel version this array showed problems with targets too close to the 

array breaking up with some positioning distortion. The modified focussed version 

should fix these problems. The break up of the target is clearly visible with the long 

focus in Figure 4.36 and Figure 4.38 while the target in Figure 4.33 is offset from its 

true angle. The corresponding short focus images have considerably smaller targets 

(Figure 4.37 and Figure 4.39) and correct angular positions (Figure 4.35).
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Figure 4.34 - 13-Element array -  (-0.2, 0.1) target, K=100m

Angle from Transmitter (rad)

Figure 4.35 - 13-Element array -  (-0.2, 0.1) target, A>0.25m
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Figure 4.36 - 13-Element array -  (0, 0.3) target, K =  100m
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Figure 4.37 - 13-Element array -  (0, 0.3) target, A"=0.25m
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Figure 4.38 - 13-Element array -  (0.1, 0.3) target, AM 00m

Figure 4.39 - 13-Element array -  (0.1,0.3) target, AM).25m
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4.4.1.5 Range Limit and Focussing Distance

The range limit to achieve good target detection for the parallel version and will also 

apply to the longer focussed method is approximately proportional to D2/A. This will 

clearly not apply to the short focussed version as that works with close targets when a 

short focussing distance is used. The same method as before is used, with a number of 

different array sizes calculated and the minimum distance used is when the values for 

angles adjacent to the target angle are less than half of the target angles value. In 

addition the focussing distance is assumed to match that of the target distances (and 

should give best case scenario results).

Figure 4.40 - Minimum range vs. antenna array width using matched focussing 

The minimum distance is greatly reduced in Figure 4.40 to an approximately straight 

line (Integer number of array elements at half wavelength spacing causes graph 

stepping) as opposed to the upward curve in Figure 4.19. This new minimum gives an
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approximate proportionality to D instead of D2 making an overall improvement at 

correct detection of close targets.

4.4.1.5.1 Influence of IT

The selection of K has an impact on the image produced. Large values tend towards 

the parallel method with its limitations and there is potential for problems with very 

small values relative to the targets actual distance. Two versions are looked at, both 

using a single target at 0.5m distance, 13 antenna elements used to transmit and 

receive and all at half wavelength spacing at 6GHz. One target is perpendicular to the 

array centre (0 rad) and the other at an offset angle (tt/4 rad). The images are 

calculated using a range of values of K  from 0.025m to 4m. Several 2D and ID cuts 

through the arrays are presented to show the variation with K.

Angle from Transmitter (rad)

Figure 4.41 - 0 rad target, K = 0.5

144



A
ng

le
 f

ro
m

 R
ec

ei
ve

r 
(ra

d)
 

A
ng

le
 fr

om
 R

ec
ei

ve
r 

(ra
d)

x  10'®

-1 -0.5 0 0.5 1
Angle from Transmitter (rad)

Figure 4.42 - 0 rad target, £=1.275
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Angle from Transmitter (rad)

Figure 4.43 - 0 rad target, £=5.025
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Figures 4.41-43 show the differences associated with K in regard to the target 

bleeding through to adjacent angles. Note that the optimum choice of K  like in Figure 

4.41 is not the value that corresponds to the targets distance exactly as shown by 

improved results for a larger K  value as in Figure 4.42. Figure 4.43 moves closer to 

the parallel version and shows similar results to that.

x 10'6

Angle from Transmitter (rad)

Figure 4.44 - 7i/4 rad target, A"=0.5
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Figure 4.45 - n!4 rad target, AT= 1.275
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Figure 4.46 - 7t/4 rad target, K = 5 .0 2 5
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Figures 4.44-46 show the effects of K  for an off angle target that doesn’t lie in the 

centre of one of the angles used. In this case the best results are when the target

distance and K match like in Figure 4.44 with slightly degrading results for larger 

value of K.

0.5 1 1.5 2 2.5 3 3.5 4
K(m)

Figure 4.47 - 2D vertical cut through the 0 rad target centre
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Figure 4.48 - 2D diagonal cut through the 0 rad target centre 

The vertical cut in Figure 4.47 and diagonal cut in Figure 4.48 show several key 

points. The first point is that very small values of K that cause focussing a significant 

distance in front of the target do not work at all. The vertical cut in Figure 4.47 shows 

a stronger bleeding to adjacent angles than the diagonal cut in Figure 4.48, 

particularly for larger K values. The optimum value appears in the K= 0.7 to K= 1.2 

range which is slightly larger than the targets distance of 0.5m.
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Figure 4.49 - 2D vertical cut through the n!A rad target centre
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Figure 4.50 - 2D diagonal cut through the 7t/4 rad target centre
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For the offset target the optimum value of K  differs to the range K=0.4 to K=0.5. 

Much smaller values than these show considerable clutter in Figures 4.49-50 and 

larger values show a steeper decrease from the peak than for the 0 rad target. Again 

the vertical cut shows slightly more adjacent angle bleeding in Figure 4.49 than the 

diagonal cut in Figure 4.50.

Figure 4.51 - ID cut through the 0 rad target centre
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x 10'5

Figure 4.52 - ID cut through the rt/4 rad target centre 

Taking a ID cut through targets centre shows a strong initial upward section with a 

few clutter elements but then goes to a peak and a slow decrease to a steady state 

value, that being the parallel versions solution. The 0 rad target in Figure 4.51 has a 

slower ascent with peak significantly further away than the actual targets distance. For 

the tc/4 rad target in Figure 4.52 the peak is much closer to the actual targets distance 

but does precede it and the peak is also proportionally larger than the eventual steady 

state value compared to the 0 rad target.

4.5 Comparison and Analysis

Ignoring the individual processes and values used to calculate Hv as well as the power 

related complex conjugate the fundamental version can be given as Eq. (4.63) where 

a, b, c and d  are array indices.

152



(4.41)
T Q

H V{ d)~ ^ l  ^  ^  (a,b)A (c , a)A [d,b) 
a =  1 ¿>=1

A is given by Eq. (4.64) and 0(Xjy) given by Eq. (4.65) for the parallel implementation 

and Eq. (4.66) for the focussed implementation.

_  1 ^ - j 2 n B {xy]

A^ r 4 x e

°(x,yr ( x - i )
y- x-i

(4.42)

(4.43)

0M  = P

X - l  A\  . „2 2PA,1 + P Z X y- x-i
i

(4.44)

9fX,y) of either version is merely the path length difference between the current element 

(x) and a reference element for a given value of y  (in this case element 1, the lowest 

element for Eq. (4.65) and the centre element for Eq. (4.66)). y  is used for a linear 

angular spread in Eq. (4.65) and as a component part in Eq. (4.66).

Assuming a 5x5 array gives the following values for Hv in Eq. (4.67), AfX,yj in Eq. 

(4.68), 6(X,y) parallel in Eq. (4.69) and 0(xy) focussed in Eq. (4.70).

H v = Hvm ^ [ \ , \ ) A [ \ , \ ) A [ \ , \ ) ^ ' ^  [ \ , 2 ) A [ \ , \ ) A { \ ^ ) ' ^ ^  { \ , 3 ) A { 1,l ) A ( l , 3)

A (l ,4) +  N (U5) A ( l  l ) 4 l .  5) " * ■ ^ ( 2 ,1 ) A ( l , 2 ) A ( u )

^ ( 2 , 2 ) A {1,2) A [ l ,2) ^ ( 2 ,3 ) ^ (1 ,2 )^ (1 ,3 ) ^ ( 2 , 4 ) A ( l ,2) a m

“ * " ^ ( 2 ,5 ) A (l ,2) A ( 1 5 ) A ( \ ,  3 ) A ( l ,  1) " * " ^ ”(3,2) A ( l , 3 ) A ( l , 2 )

"*“ ^ ( 3 ,3 ) A ( l , 3 ) A ( l ,3) ^ ( 3 ,4 ) A ( \ , 3 ) A ( l ,4) ” *” ^ ( 3 ,5 ) A (l ,3) A ( l , 5 )

+ h m a m A l u ) +  H  (4,2) A ( \ , 4 ) A ( \ ,2) ” *” ^ ( 4 ,3 ) A ( l , 4 ) A ( l , 3 )

+  -^"(4,4) A ( \ , 4 ) A ( l , 4 ) "*” ^ ( 4 ,5 ) A ( l , 4 ) A ( l , 5 ) +  H ( 5 , D A ( l ,5) A ( v )

+  # M A ( h 5 ) A ( l ,2) +  ^  (5,3) ^ ( l , 5 ) ^ ( l , 3) +  H (5,4) A ( l ,5) a M

+  / / (5,5) A ( h 5 ) A (U5)

(4.45)
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(4.46)
1 ~j2MU.y\

(4.47)

> - i f ( x - 3 ) ( y - 3 ) (4.48)

Looking specifically at each element a pattern exists. The ninth element of Eq. (4.67) 

has the following procedure

• Take the value of 77(2, 4)

• 77(2, 4) is the signal from transmitter 2 to the target and back to receiver 4.

• Perform a multiplication by A( 1, 2)

• ^4(1, 2) is the phase difference between a transmission from transmitter 2 and a 

transmission from the reference transmitter (Tx 3)

• Perform a multiplication by ,4(1, 4)

• A(l, 4) is the phase difference between reception from receiver 4 and 

reception from the reference receiver (Rx 3)

Basically the value of H(X,y) is phase altered by the expected difference between the 

element transmitter and receiver and the reference transmitter and receiver before 

being complex summed. As the target can appear anywhere within angle to angle 

range the system very rarely produces an exact phase match over all received signals 

after processing.

4.6 Angular to Cartesian

One of the possible problems is that sometimes a Cartesian based reference is easier 

to work with than the angular version the method produces. A straight conversion will
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lead to a simple triangular idea of where the target is getting larger as distance 

increases like in Figure 4.53. A more useful idea is to segment the H-matrix and 

generate many angular images with slightly different origin points before combining 

them all to narrow down the angular spreading after the conversion. For this a 9- 

element array with half wavelength spacing at 6GHz is used. A perfectly reflecting 

target is positioned 0.4m away from the centre of the array and offset by 0.2m (0.4m, 

0.2m on the graphs). The H-matrix is generated using the radar equation and is then 

split into small subsets of data, with each subset having the transform applied to it 

(parallel version). The subset is a group of adjacent elements and the transmitting and 

receiving subsets don't need to be the same (but for simplicity have the same number 

of elements) This leads to 49 groups of 3, 36 groups of 4, 25 groups of 5, 16 groups of 

6, 9 groups of 7, 4 groups of 8 and 1 group of 9. These groups have different angular 

spreads and different origin points.
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Figure 4.53 - 5-Element array in Cartesian form

The 5-element array is a good indicator of the sort of thing seen, with a single sharp 

triangle of potential locations stretching away from the array. When you take the sum 

of a 5-element array from the top edge of a 9-element array and a 5-element array 

from the bottom edge the potential location of any target is reduced as in figure 4.54. 

Similarly the sum of all 5-element subsets of a 9-element array has a comparable 

result with a smoother transition.
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Figure 4.54 - Sum o f  edge 5-Element arrays
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Figure 4.55 - Sum o f all 5-Element arrays
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There are then various combinations to work through with the same method, the goal 

being to separate the origin points of the centre of the subsets used to gain an idea of 

distance by using a single array instead of two separate arrays. The sum of all 3 to 9- 

element subset groupings gives the result in Figure 4.56.

0 0.1 0.2 0.3 0.4 0.5 0.6
Distance (m)

Figure 4.56 - Sum o f all 3-9-Element subset groupings 

The most likely target location is narrowed to a thin sliver centred over the actual 

target location showing that a limited distance measure is possible. It is also possible 

to pick out some different frequencies from a signal, using them with appropriate 

antenna element spacing (like every second element for half frequency) and 

combining it later with subsets from other frequencies. The major disadvantage 

though to this method is the high speed for the transform itself is lost in the 

conversion process making it no faster than a target localising method in the Cartesian 

domain.

158



4.7 Chapter Conclusions

The virtual H-Matrix as a tool for imaging has been largely unexplored. This chapter 

has looked at the overall performance for imaging and introduced a variation that 

improves close range focussing. The main benefit to a direct transform of the H- 

matrix is the speed at which it operates but it comes with significant drawbacks. This 

method offers a fast way to generate imaging results that pinpoint the direction of the 

target in terms of angles from the transmitter and receiver array. The results show 

clear targets and a focussing method allows larger arrays to be used without closer 

targets breaking up.

A change from angular to Cartesian form shows that some distance measure is 

also possible (while still only using a single frequency) at the expense of the quick 

processing speed of the transform and further narrowing down the angular location of 

the target. The main problem is the low resolution related to the number of antennas 

in the array and hence the array size required for higher resolutions. Looking at the 

influence of the focal distance value (k) shows that the matching of focal distance to 

target distance isn't perfect and that a distance measure is not easily obtainable via 

observation of k. Low resolution is really the main weakness leading to a suggestion 

that it would be best employed to give angular information that is then combined with 

another method for distance and a more finely tuned direction. One more important 

aspect to consider is the potential benefits for pattern recognition as the angular 

image produced looks completely different to Cartesian images. Setting a 

conventional system up like in the following chapter so that it is compatible with this 

method could lead to hybrid methods or additional characterisation information for 

pattern recognition systems.
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Chapter 5

Conventional Imaging Methods 

5.1 Calibration

This calibration method is designed to not require an initial reference set of data 

obtained by performing a target scan with no target present which means it can be 

used where this initial scan would be problematic. It is similar to a range of skin 

subtraction algorithms covered in [9], As such the results show more clutter than 

would be present with a no target scan subtraction calibration method. This 

calibration uses an average subtraction to remove unwanted direct path signals 

between transmitter and receiver as shown in Figure 5.1. The receiver or receivers are 

placed equidistant from the transmitter and moved as a group to all scanning 

locations. The average of all received signals is then subtracted from each individual 

signal. Every signal has a common component from the direct signal that should be 

identical because the relative location difference between transmitter and receiver 

stays the same. So the common direct signal component is removed leaving only the 

external wanted signal component to be processed. Any other signal components that 

remain constant over all the scanning locations such as a uniform linear surface when 

scanning locations run parallel to it will also be removed.
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Receiver Transmitter Receiver 

Surface

•Antennas moved parallel 
to surface
•Dashed red signal paths 
removed by calibration 
leaving black signal paths

Figure 5.1 - Calibration Set-up

Target

5.2 System Set-up

The data is generated using an FDTD algorithm. Compared to a standard wideband 

pulse the encoded PN sequence requires a much longer transmission for effectiveness 

and hence a longer simulation. Coupled with the large simulation area and multiple 

simulations for each transmitter location, a 2D FDTD simulation is the optimum 

solution to data generation. Comparisons between conventional wideband pulsed 

excitation and an encoded PN sequence require a simulation for each excitation as 

well. Multiple set-ups are also used, each with a common set of transmitter locations 

but with the addition of flat/curved skin surfaces, round/square targets and variable 

tissue properties.
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surface either flat and parallel to the transmitter locations (at 0.01m distance) or 

curved (of radius 0.05m, 0.06m distance from the centre of the transmitter locations). 

The background material can also be altered by applying a variation in relative 

permittivity and conductivity to each cell that makes up the tissue (inside the skin 

surface).

5.3 Excitation

(/—300xl0~12)2

7 = (i-3 0 0 x l0 - '2)e |75xlr"1 (5'1)

A differentiated Gaussian pulse shown in Figure 5.3 and generated using Eq. 5.1 was 

used as the conventional wideband pulse excitation and a BPSK encoded PN 

sequence shown in Figure 5.4 as the new excitation. As the PN sequence needs to be
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as long as possible for best performance the signal used was twice as long as the 

differentiated Gaussian pulse with the differentiated Gaussian pulse effectively zero 

over this extra length.

X 10'11

Figure 5.3 - Differentiated Gaussian Pulse Excitation
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Figure 5.4 - BPSK encoded PN Sequence Excitation

5.4 Localisation

The localisation technique is a standard shift and sum algorithm [25].

N

p ( x , y , z ) = Y J c k s k { T k ) (5-2)
k= 1

So for a point p  the value is given by the sum of values from each signal (sk) at the 

corresponding delay time (Tk). This delay time is calculated using an estimate of the 

propagation velocity and point p's  position, taking into account travel time from the 

transmitter to point p  and back to the receiver. There is also a compensation factor (ck) 

that is used to provide compensation for radial spreading loss

c k=({Txk{ x ) - p { x ) ) 2+(Txk{y)~ p ( y ) ) 2+(Txk{z)~  p{z) )2) 
X { { p { x ) - R x k{x))2+ { p { y ) - R x k{ y ) f + { p { z ) - R x k{z))2)
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A modification is made to (5.2) for the wideband pulse as excitation (5.4). As 

distortion of the pulse occurs when travelling through a medium the integral along the 

pulse length starting at the delay time is used. A maximum occurs when the calculated 

delay time matches up exactly with the reflected signal. In addition an offset is 

introduced to the delay time to ensure the centre of any reflected signal is detected.

T

p ( x , y , z ) = $ \ c ksx( t + T k)\ (5.4)
o

5.4.1 Results and Discussions

These results are the signals that will be used for localisation. The wideband pulse 

signal is used directly while the encoded PN sequence uses filter output. The filter 

output is designed to offer a direct way to pick up the surface of the target while the 

wideband pulse and integration is to give the strongest detection. All have been 

calibrated prior to processing as appropriate. The set-up involves two 6mm square 

targets in locations already given above in Figure 5.2 with no skin present or tissue 

variation. Whenever a reflecting target is present a characteristic hyperbola shape is 

observed when the signals are presented directly side by side as in Figure 5.5 and 5.6, 

the strength of which shows the strength of detection. The integrated pulse shows a 

good detection of one of the targets but the second further target is mostly obscured 

and the overall detection is quite wide.
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Receiver Number

Figure 5.5 - Side by side plot o f  calibrated signals for integrated pulse 

Using a PN sequence and filter leads to a much narrower but weaker detection with 

more noticeable calibration artefacts. The second target though is visible and 

recognisable as a target.
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5 10 15 20 25 30 35 40
Receiver Number

Figure 5.6 - Side by side plot o f  calibrated signals for PN sequence and filter 

Targets further away are naturally reduced due to spreading and attenuation losses. 

Spreading loss can be accounted for in the localisation algorithm. Also affecting 

detection is the strength of reflection due to dielectric permittivity interface variation 

and target size. The filter output gives a direct value for the delay while the wideband 

pulse has an offset due to the pulse centre not being at time zero. The first test uses 

square targets with the two different excitation signals and processing methods. For 

each image the transmitter locations are between 0.05m and 0.15m in the x-axis and 

at 0.02m in the y-axis. The targets are located at (0.075,0.07) m and (0.125,0.05) m 

respectively.
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Figure 5.7 - Pulse, 6mm square targets without spreading loss compensation
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Figure 5.8 - Pulse, 6mm square targets with spreading loss compensation
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The main target in Figure 5.7 shows as quite a large anomaly with some smearing 

along the y-direction and a general distortion of the target location. The further target 

is also very weak and hard to locate. Figure 5.8 when spreading loss is compensated 

for brings the first target back to its correct location and reduces smearing. The 

second target also shows up more but it is still slightly weaker and smeared.

x 10

Distance (m)

Figure 5.9 - PN sequence, 6mm square targets without spreading loss compensation
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X10

Distance (m)

Figure 5.10 - PN sequence, 6mm square targets with spreading loss compensation 

The filter using a PN code signal gives very sharp results in Figure 5.9. The front and 

rear reflections are detected and are complete with the correct reflection coefficient 

sign. The front reflection is exactly where it is supposed to be with the rear reflection 

displaced backwards by a small amount. The second target is also weak like with the 

pulse but when using spreading compensation in Figure 5.10 this is much improved 

with both targets approaching the same level of detection strength. There is though a 

small amount of additional clutter. As the target looks like it has angular features, 

shape identification may be possible so 3 mm radius circular targets were used in 

another simulation. This time spreading loss compensation is applied to all the images 

shown as it gives the best overall image and in addition a correlation image from the 

PN sequence is included to provide the filter method with a same signal comparison.
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Figure 5.12 - PN sequence, 3mm radius circular targets, correlation
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Figure 5.13 - PN sequence, 3mm radius circular targets, filter 

Figure 5.11 shows the circular targets with less smearing than the square targets but 

overall is similar in relative strength of detection between the closer and further 

targets. Correlation in Figure 5.12 shows the targets but has a significant amount of 

trailing clutter and is probably the worst of the three images. The targets in Figure 

5.13 show up as more rounded than for the 6mm square targets. Image strength of the 

round targets is about 70% of the square targets. Up to now skin has been omitted but 

it is an important factor. A flat skin surface is introduced to assess how well the 

detection works after penetrating the skin and also the usefulness of the calibration 

procedure.

-8
x 10
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Figure 5.14 - Pulse, 3mm radius circular targets with skin
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Figure 5.15 - PN sequence, 3mm radius circular targets with skin, correlation
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x 10

Distance (m)

Figure 5.16 - PN sequence, 3mm radius circular targets with skin, filter 

The skin causes some problems including an increase in clutter for the PN sequence 

methods in Figure 5.15 and 5.16 along with a general decrease in target image 

strength and a small offset. The image strength is reduced compared to the 

corresponding without skin image. This fits in with an expected reduction due to 

reflection from the skin travelling to and from the target. There is also an offset due to 

a slowdown caused by travelling through the skin itself. The offset though is slight at 

less than 3mm. By comparison the integrated pulse method doesn't show a great deal 

of difference to the without skin version as shown by Figure 5.14. Due to the nature 

of the calibration method a flat array does not work with a curved skin surface as 

indicated by Figure 5.17 where a fragmented image of the skin is visible (including 

mirror image at the bottom) but the targets are very faint and it's very cluttered.
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Figure 5.17 - PN sequence, 3mm radius circular targets with curved skin, filter 

Due to the presence of the rear reflection of the target visible in the PN sequence 

based methods it is interesting to look at a high contrast example where the targets 

permittivity is increased to an arbitrarily large value.
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ore 5.18 - PN sequence, 3mm radius high contrast circular targets with skin, correlation
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Figure 5.19 - PN sequence, 3mm radius high contrast circular targets with skin, filter
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When compared to earlier images there appears to be a front positive shadow 

particularly the correlation in Figure 5.18. The rear reflection disappears completely 

with the likely explanation that the speed through the target is now so slow that the 

signal doesn't return to a receiver in time via the back reflection (the actual rear 

reflection would then be off image). The target detection strength on both is also 

significantly increased due to the better target reflection.

5.5 Identification of Target Shape

With a sharp edge detection an array of transmitters encompassing a target over a full 

(or nearly full) 360 degrees should allow an accurate representation of the shape of 

the target to be discerned. With only one sided scanning so far it is possible to tell a 

square target from a round one (comparing Figures 5.10 to 5.13) due to the square 

targets flat rather than rounded inside edge. Extrapolated to all around a target the 

same features should be visible allowing for shape identification. In total 5 shapes 

will be tested given in Figure 5.20, ranging from the three simple geometric shapes 

(Circle, square and triangle) to the more complex circle cluster and enclosed square.
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Circular Target

Triangular Target

□

Square Target

Circle Cluster Target

Enclosed Target

Figure 5.20 - Target shapes tested

Figure 5.21 - Simulation Set-up
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The simulation set-up given in Figure 5.21 consists of a ring of transmitter locations 

with a radius of 0.02m and 20° increments. At each location a transmission is made 

with the adjacent transmitter locations acting as ideal receivers. The calibration is 

performed as normal and processed to give the localization graph before the areas 

outside of the transmitter location ring are removed. This leaves a graph containing 

only the area within the transmitter ring. The background material is set to £>=9, cf=0 

with the targets as £>=40, o=4. With a complete ring around the target and over a short 

distance spreading loss compensation is not needed.
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Figure 5.22 - Pulse, circle target
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Figure 5.23 - PN sequence, circle target, correlation
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Figure 5.24 - PN sequence, circle target, filter
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Unsurprisingly the Gaussian pulse does give a rounded target detection with an 

approximately accurate size in Figure 5.22. The filter though clearly shows a round 

edge consistent with a circle target in Figure 5.24 although some calibration artefacts 

can be seen around the edges. The correlation in Figure 5.23 looks similar to the filter 

but with a thicker stronger detection. Also note that the correlation and filter show a 

positive outer ring around the negative target detection representing the reflection 

from inside the target travelling out (analogous to the rear reflection from the previous 

section)
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Figure 5.25 - Pulse, square target
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Figure 5.26 - PN sequence, square target, correlation
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Figure 5.27 - PN sequence, square target, filter

182



The pulse in Figure 5.25 shows a strong detection but is still mostly round with only 

slightly more angular edges compared to the round target in Figure 5.22 so it’s not 

possible to determine the shape. Correlation in Figure 5.26 shows something of an 

angular square shape but has protruding comers. The filter again gives a clearly 

square target image in Figure 5.27 but continues with more clutter present.
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Figure 5.28 - Pulse, triangle target
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Figure 5.29 - PN sequence, triangle target, correlation
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Figure 5.30 - PN sequence, triangle target, filter
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The pulse method shows a target that is recognisably triangular with somewhat 

rounded edges in Figure 5.28. Correlation in Figure 5.29 matches more closely to the 

pulse method than filter with a nearly solid triangular detection and additional 

component just off the long edge (outward reflection). The filter results though show 

the edges of the triangle target clearly in Figure 5.30 but with clear contributory arcs 

showing as clutter.

Distance (m)

Figure 5.31 - Pulse, cluster target
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Figure 5.32 - PN sequence, cluster target, correlation

v10

Figure 5.33 - PN sequence, cluster target, filter
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This is the first of the harder shapes to detect. The pulse result in Figure 5.31 shows a 

target but shape is poor indicating a much larger and fragmented target. Correlation 

gives a good detection picking out some of the edges in Figure 5.32 but the filter 

result in Figure 5.33 shows quite visible ends of the shape with a weaker but still 

visible outline of the target shape connecting them. Clutter is still fairly high though.
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Figure 5.34 - Pulse, enclosed target
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Figure 5.35 - PN sequence, enclosed target, correlation
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Figure 5.36 - PN sequence, enclosed target, filter
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An enclosed target appears to be the trickiest target to image. In essence the outer 

shell is imaged first and then the internal target is imaged through the shell. The filter 

gives mixed results in Figure 5.36 with the outer circle picked out well with the inner 

square target roughly square shaped but fairly weak detection wise. Correlation in 

Figure 5.35 has a strong positive anomaly that doesn't quite pick out the actual target 

which should be negative and offset down and to the left (some of it is partially 

visible but not recognisably the target). The pulse results in Figure 5.34 show the 

square target strongly but no shape information and the outer circle is lost completely.

5.5.1 Section Conclusions

It is clear that the reasons for using a pulse method are for the excellent detection of a 

target. Although there are sometimes some anomalies around the target location (such 

as the cluster target) the target is clear in every image. Use of a PN sequence with 

correlation or filter processing produces a weakened target detection but the shape of 

the target is an important differentiating factor from the pulse method. Shape could be 

very useful in many imaging applications as it gives an indication of what the target 

could be as well as its location. With more identifiable information available further 

processing involving shape such as pattern recognition can be used. One of the 

noticeable benefits is the detection of both the outer circular shape and the internal 

square shape with the enclosed target test. The pulse method missed the outer target 

but it was picked up by the other methods and layered detections like these better aid 

identification. A further aid to identification is the polarity of the detections as that 

can give indications of the differences between the two media and so provides 

additional information that can help to identify what the target is composed of.
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5.5.2 Trading Fineness for Strength of Detection

The fineness of detection means that sometimes the detection itself is weak. An 

object’s shape is of no use if the object cannot be detected. Use of averaging or 

smoothing filters should spread the detection out over a longer period maximising the 

overlap and hence detection strength of the localisation algorithm. Correlation would 

give a similar result but it is sometimes too harsh. It is already used for the Gaussian 

method so some tests on the filter output should indicate if this could improve 

performance.

Figure 5.37 - Integral length comparison for a circle target 

A single received signal for the circle target was selected, calibrated and ran through 

the filter. The output was then subjected to integration over various window lengths 

shown in Figure 5.37. The target detection is easily identified as the region between 

0.5 and Ins (front side reflection negative, rear side positive). Increasing the integral
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length leads to a relative increase in detection strength over surrounding clutter and 

calibration artefacts. It also widens the potential location of the target's edges. 5, 10, 

20 and 40 points where then used on the whole data set with the localisation 

performed after to give a new set of images. These images show some improvements 

and some degradation over the initial results depending on integral length. The best of 

these results are shown with an indication of the integral length used, again without 

spreading loss compensation applied.
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Figure 5.38 - Circle target -  Integral length 10
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Figure 5.39 - Square target -  Integral length 10
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Figure 5.40 - Triangle target -  Integral length 10
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Figure 5.41 - Cluster target -  Integral length 10
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Figure 5.42 - Enclosed target -  Integral length 20
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Use of short integral window lengths doesn’t lead to much improvement. At an 

integral length of 10 a significant improvement can be made in detection strength with 

minimal loss of fineness as shown in Figures 5.38 to 5.41. For the most difficult to 

image target where the target is enclosed, a longer integral length of 20 gives better 

results showing the outer shell and a clearly square inner target in Figure 5.42. Use of 

the filter method to discern target shape works well. The simpler shapes give best 

results but through trading-off some of the fineness for a stronger detection the more 

complex shapes also image well. Use of a differentiated Gaussian pulse with a GPR 

method leads to generally stronger detection but shape information is mostly lost. The 

trade off is user preference and in most cases a shorter integral will give best results 

but for imaging through another target a slightly longer integral brings out the weaker 

inner target better.

5.6 Identification of Relative Permittivity

As the filter method can detect the front and back reflections from a target object it 

should be possible to image an unknown object to identify its relative permittivity 

value and maybe also its conductivity. A target object of unknown relative 

permittivity of a selected shape is suspended in a known medium. It is scanned as for 

detection purposes but the rear reflection will appear displaced from its actual 

location because the target object will slow or speed up the transmitted wave speed.

194



Figure 5.43 - Relative Permittivity Identification

The shift and sum processing method uses an estimate of the wave propagation 

velocity to take the time signal and convert it into distance. The wave, on hitting the 

target material will both refract and be altered in speed. Hence any use of an estimate 

of wave propagation velocity would lead to an inaccurate position of the rear 

reflection from the target. However the target material has a known thickness 

identified as T in Figure 5.43 so the difference between the actual and predicted rear 

reflection gives an idea about the relative permittivity of the target object.

n = ̂ e rn r

b = — s\n(a)
nm (5-5)

A  l ^ s t a n ^ )
A 2  — T  tan (b )

The distance between transmitter (Tx) and receiver (Rx), the value d, is fixed. Target 

to Tx/Rx separation (s) is also fixed. Angles a and b are related and depend only on
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the indices of refraction (n, for the target and nm for the medium). The medium is pre­

selected so the refractive index is known leaving the only unknown as the value of the 

refractive index for the target n,. This is directly related to the dielectric permittivity 

of the medium. Combining some of the equations leads to a relationship given in Eq. 

(5.6) that can be solved iteratively for any given value of target er to obtain a value for 

angle a, which leads to b.

d  =  2 { s t a n ( a )  + T  t an{b) )  (5.6)

The total travelled distance by the signal can then be worked out

Distance (D )=2 y j ( s t an{ a ) ) 2+ s 2+ 2 T  tan = sin(a) + T 2 (5.7)

This distance value could then be used for loss calculations or predictions. The 

distance in the known medium is expressed as the first part as in Eq. (5.8) and the 

section in the target as the second part as in Eq. (5.9).

Distance in Known Medium { D m)—2 vU tan (a) ) 2+ s 2 (5-8)

Distance in Unknown Medium ( D t)= 2 • T  tan V i sin(a)
\2

+ T 2 (5-9)

The front distance is through the known medium so wave speed is reduced by a 

known amount while the wave speed for the second section through the unknown 

medium will be a variable. Converting distance to time based on the estimated wave 

speeds yields an equation for the total time travelled.

Time Travelled = —J 1 + ‘
V  V'  m  '  t

where V w— 1 and V 1
(5.10)

V£o£tMoHt
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The system by which the target is localised to a point or points in space does not 

know nor take into account the unknown targets properties. It merely converts back to 

distance using the estimated wave speed, which is that through the known medium. 

The total perceived distance travelled then is given by

Perceived Distance Travelled ( P ) =  V m

= D  + L h3 . = d  + D t ^ t^  m 1 y  m

D m , D ]

s
_l

r , l (5.11)

The position of the perceived rear reflection from the unknown target will be given by

I / P \ 2 I d ) 2Perceived Rear Reflection — J — —j (5-12)

The actual rear reflection should be at T+s. The difference between the actual rear 

reflection and the perceived rear reflection would enable the deduction of the relative 

permittivity (sr) of an unknown material through the use of a graph of £>vs. reflection 

difference. A series of simulations were carried out with a slightly different set-up 

given in Figure 5.44. The dielectric permittivity (sr) was altered allowing a look at the 

effects this causes and to compare the rear reflection location as predicted by theory 

to the simulated results.
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Figure 5.44 - Simulation Set-up
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Figure 5.45 - Image o f  target with s r=  10

198



D
is

ta
nc

e 
(m

) 
D

is
ta

nc
e 

(m
)

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

x10

0.06 0.08 
Distance (m)

Figure 5.46 - Image o f target with £=30
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Figure 5.47 - Image o f  target with £.=50
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The minute difference between a background dielectric value of 9 and a target value 

of 10 still enables detection as shown in Figure 5.45. The front reflection is strong (at 

0.03m) if a little fuzzy but the rear reflection is indistinct. Remarkably the detection 

strength for the target has increased by a relatively small amount when compared to a 

large change in the targets dielectric permittivity in Figure 5.46. It does show an 

increase though of approximately 2x1 O'8. The front of the target is now clearly visible 

as a flat edge and the rear reflection has taken shape. Another small increase in 

detection by 2x1 O'8 and an even clearer rear reflection shown in Figure 5.47 are 

present.

Dielectric Permittivity

x 107

Figure 5.48 - Rear Reflection Comparison Cut showing predicted location o f rear reflection 

Multiple simulations were performed and then a cut was taken through the data to 

observe the change in rear reflection location with dielectric permittivity shown in 

Figure 5.48. A predicted location is also traced based on the theory above. The front
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reflection remains at a constant position across the dielectric range observed although 

it does increase in strength. The rear reflection shows a strong correlation with the 

theory at the more clearly defined larger permittivity values. Although complex, 

various permutations lead to a generalised equation that would give an approximate 

estimate of the other parameters through known parameters and an experimental 

result (in this case the known dielectric permittivity or target thickness would lead to 

the other if the other parameters are known also). It appears possible then to image an 

unknown material under controlled conditions to identity its dielectric permittivity, at 

least for homogeneous materials.

5.7 Conclusions

A limited calibration method that generates its own reference signal for calibration 

subtraction has been shown to offer satisfactory results. Comparisons between 

integration of a differentiated Gaussian pulse to correlation or filter processing of a 

PN sequence has shown that the filter offers a better detection of a target's edges than 

either of the other methods. Further investigation has shown that as well as a detection 

of a target, the targets shape can also be discerned. Flat arrays only on one side of the 

target can show that the target is flat or curved while 360 degree arrays pick up the 

full shape of the target. One of the faults of the filter method is that of weaker 

detections, a potential solution to this is using a smoothing operation conducted on the 

data before localisation. The results show that this brings out a stronger detection but 

doesn't greatly impact the shape, leaving a good level of both detection and shape 

information when compared to using the pre-smoothed data with the filter or 

correlation methods. The PN sequence with filter method offers an alternative to
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using a wideband pulse and integration that specifically aims to show a targets shape. 

This makes it useful where shape information is important or as a complimentary 

method that can be used after a target has been detected to identify a targets shape. 

The PN sequence and filter method was also the only one to image both the outer 

shell and inner target while retaining the shape of both.
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Chapter 6

Conclusions and Further Work 

6.1 Conclusions

In summary a set of techniques and methods that show benefit to imaging in general 

with particular reference to breast cancer detection has been presented. The majority 

of the work is on improving conventional methods but a new alternative angular 

method using a H-matrix transform has also been looked at. A summary and key 

conclusions for each section are reproduced below.

Comparisons between the commercial package CST Microwave Studio and 

the FDTD code has shown that the FDTD gives comparable results usable for 

simulation purposes to generate data although there are still some limitations on 

domain size and frequency with a limited boundary condition. The M-sequence has 

been introduced and explained with some of the potential benefits shown as well as its 

generation. Methods based on its use including correlation and filtering have been 

presented along with idealised performance in a range of situations including missing 

symbols, noise and filter parameter effects. Taking the FDTD generated data and 

using M-sequences for a range of tests led to use of a satisfactory calibration method 

that generates its own reference signal for calibration subtraction. Comparisons 

between pulse integration, correlation and filtering has shown that the correlation and 

filtering methods using M-sequence data lead to a detection of a target's edges at the 

cost of detection strength. Pulse integration still has the best detection strength but 

differentiating targets based on shape is difficult. Comparing the two methods using
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M-sequence data has shown that the filter performs better overall by limiting the size 

of the sidelobes associated with correlation.

Theoretical work has been carried out on a H-matrix transform that bridges the 

gap between the abstract H-matrix and the environment its generated from. The 

original work [6] has been expanded and extended for imaging purposes. This 

transform gives an angular representation of the H-matrix that shows coupling of 

angles instead of antennas and a full investigation into its use as an imaging tool has 

been carried out. A modified version has been presented that allows focussing down 

to antenna limits instead of array limits. The transform is very fast but low image 

resolution limits its use.

6.2 Further Work

Data generation is a key part of this project and there are certainly improvements that 

could be made to the process by which this data was generated. The simulation itself 

could be much improved by a number of methods. Looking at the large array of 

available commercial packages for electromagnetic simulations is something that 

should be done, the pace of progress in these software packages is rapid so there is a 

good chance of suitable packages being available. Improvements to the FDTD code 

used is an area of improvement. Usability is poor so some improvements could be 

made there like building a user interface and an upgrade to 3D FDTD instead of just 

2D. The boundary condition is something that needs to be updated to a better 

performing version (like the Perfect Boundary Condition) and incorporation of a 

method to build antennas into the simulation instead of using single cell sources 

would be another good inclusion.
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The use of M-sequences needs more investigation with reference to correlation 

and the matching filter. A look at how the methods perform under various bandwidth 

limited scenarios would be useful to determine which method is better and under what 

circumstances. A look at which symbols to use and their effects on the correlation or 

filter output should be looked at as the standard Gaussian type pulses don't appear to 

work very well. Limitations on the LMS method for the filter is an obvious area for 

improvement to increase robustness, particularly with reference to noisy scenarios. 

One of the advantages of M-sequences is that multiple can be transmitted and 

received simultaneously, transmitted signals are long so a speed up can be produced. 

Finding the right balance between M-sequence length and number of simultaneous 

transmissions possible is an area to look at and is well suited to experimental testing. 

Also how much of an improvement if any does an M-sequence offer over an 

averaging of the same symbol transmitted multiple times sequentially.

Looking at the calibration method and curved arrays there exists a possibility 

to use more than just the adjacent antennas to receive by averaging all equidistant 

receiving antenna. This would offer improvements by using many more signals but 

how does only part of a curved array effect it compared to a full 360° array and will 

some cross target signals skew the calibration leading to performance degradation. 

Finally the H-matrix transform has several options open to look into. The first is 

looking at differently shaped antenna arrays that may offer better performance. Trying 

to combine it with other methods such as those conventional methods covered is 

another option. Probably the easiest action for further study is testing it in a 

simulation such as using FDTD. This would also provide a good test for multiple 

simultaneous M-sequences as they are ideal for generating H-matrices. Then a proper
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comparison to conventional methods could be made using the same data set.
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Appendix

A.1 Mathematical Work

A.1.1 Pulse Correlation
This is the workings for the sections for the pulse correlation problem in Chapter 3. 

Eq. (A.l) splits the problem down into the required sections and lists the integrals to 

solve. Sections 1, 2, 6 and 7 are always zero leaving 3 sections to integrate (with two 

parts for section 4). The solutions to those sections are given in Eqs.(A.2-5)

(1)
"-b

R ( A )  = J (0)(0)ifc
—  00

(2)

d-^+A
b

R ( A )  =  J { a + b ( x —d ) ) { 0 ) d x
■ a 

d ~b

(3)
d

R { A )  — J ( a  + b ( x —d ) ) ( a + b { x —d  — A ) ) d x

(4a)

d~T + A 
d+A

R ( A ) — J ( a — b ( x —d ) ) { a - \ - b { x —d  — A ) ) d x

(4b)

Cl

“+ï

R ( A ) =  J ( a —b { x —d ) ) { a + b { x —d  — A ) ) d x

(5)

d-?-+A
b

d+j
R ( A ) =  J ( a —b { x —d ) ) { a — b { x —d  — A ) ) d x

(6)

d+A 
d+t~ + A

D

R ( A ) =  J (0 ) ( a —b [ x  — d  — A

(7)

d+l
00

R { A ) =  J (0)(0 ) d x
d+^+A

b
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A.l.1.1 Section 3

R{A)— J  (a+b{x—d))(a + b (x—d —A))dx
d ~ + Ab

d

—  J (b2x2+x(2ab—b2A — 2b2d)+(a2 — abA—2abd+b2dA+b2d 2))dx
d~T+Ab

d ——+Ab

i 2  3 2
—y —\-^-(2ab—b2 A — 2b2 d) + x{a2 —ab A — 2abd + b2dA +b2d 2)

b2d 3 , d 2+ ^ - (2 a b —b2 A —2b2 d)+d (a2—ab A—2abd+b2dA+b2d 2)

bÌ d ~ ì + A f  . H + A f
3 2

(2 ab—b2 A— 2b2 d)

d — ̂ + A  \(a2—abA—2abd +bzdA+b2d2)
¡ 2  , 3  2 , 3b A a A a 

6 2 3b

A.l.1.2 Section 4a
d + A

R(A)= f  (a — b (x —d )) (a + b (x—d —A))dx

d + A

—  J (—b2x2+x(b2 A +2b2d) + (a2—ab A — b2dA —b2d 1 ))dx

d  +A 
d

,2 3  i
X '+~r(b2 A + 2b2 d)+ x(a2—ab A —b2 dA—b2 d 2)
3 2

\3

= _ 6 (.c/+.J ) + ( ^ + J ) (b2A+2b2d)+{d + A){a2- a b A - b 2d A - b 2d 2)

l2j 3 ¿2 
2

—-r-— ab A2+a2 A

( b2 A + 2b2 d )+d  ( a2 - ab A - b2 dA -  b2 d2 ) \

(A.2)

(A.3)
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A.l.1.3 Section 4b
d+7

R(A)— J (a—b(x—d)){a + b (x—d —A))dx
d ~ + A0

d+ -b

—  J (—b2 x2 + x(b2 A+2b2 d)+(a2—abA— b2 dA—b2d 2))dx

d+T
d — r+Ab

, 2 3 2
+ ^-{b2A+2b2d)+ x{a2- a b A - b 2d A - b 2d 2)

b2\d  + d + ^ \
+- -(b2A + 2b2d ) + l d + ^ \ { a 2- a b A - b 2d A -b 2d 2)

b2\ d - “ +A I I d - ^ + Aa

-(b2A+2b2d )

d ~ + A \ { a 2- a b A - b 2d A - b 2d2)

b2A3 , 2 ~ 2 A 4a3 =— —— habA —2a A + - —
6 3b

A.l.1.4 Section 5
d+f

R(A)= J (a—b ( x —d)){a—b ( x —d —A))dx
d +A

d+j
=  J (b2 x2+ x(—2ab—b2 A —2b2 d) + (a2 + ab A+2abd +b2 dA+b2 d2))dx

d +A

b
'  d +A

, 2  3 2

* +-^-(— 2ab—b2 A— 2b2 d )+x{a2+abA + 2abd+b2 dA+b2 d 2)

{ -2  ab -  b2 A - 2 b 2 d)

+ -^j(a2+ab A+2abd +b2 dA+b2 d 2)

J i i d + 4 + { d ^ l (_ 2ab- b^ 2bI(J)

/ K i j N F ,
3 ' 2 ^

-(d+A){a2+ab A+2abd +b2 dA+b2 d 2)
b2 A3 a2 A a3 

6 2 3b

(A.4)

(A.5)
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A.2 Matlab Code

A.2.1 2DFDTD
This FDTD code was used to generate most of the simulated data with minor 
modifications to give alternate transmitter or receiver locations and target locations or 
values. It is based on the 3D FDTD code given later.

% It outputs 2 received signals, the time axis and the transmitted 
signal. It's
% inputs are the transmitter and receiver coordinates, the target 
type flag,
% signal flag and a variation flag
[outputl,output2,time_axis,signal_z]=FDTD_2D_flat_c(tx_x,rxl_x,rx2_x, 

tx_y,rxl_y,rx2_y,t_type,sig_val,variation)
% Constants, Epsilon and Sigma both vary within the grid 
% Mu is constant
eps_0=8.8542e-12; mu_0=l.2566e-6; 
tissue_eps=9; tissue_mu=l; tissue_sigma=0; 
tumour_eps=40; tumour_mu=l; tumour_sigma=4; 
wave_speed=l/sqrt(eps_0*tissue_eps*mu_0*tissue_mu);
% Cell size ideally at least 1/20 of a wavelength 
cell_size=0.0005;
% Courant stability condition calculation for the time stepping 
time_step = 1.0/(wave_speed*sqrt(1/(cell_sizeA2)+1/(cell_sizeA2)+1)) ;
% Set this for the length of time to simulate 
simulation_time=5e-9;
% This next section generates the PN sequence, 31 bits. It uses a 
shift
% register with taps XOR'd together to give the next input.
PN_bandwidth=5e9; 
seq_length=(2A5)-1; 
counter=l; 
seed=[0 1 1 0 1 ] ;  
for q=l:seq_length 

for p=l:5
if p==l

temp(p)=xor(seed(5),seed(3)); 
if temp(p)==l

PN_sequence(counter)=1; 
elseif temp(p)==0

PN_sequence(counter)=-l;
end
counter=counter+l;

else
temp(p)=seed(p-1);

end
end
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end
%Specifying the size of the working domain 
Nx=round(0.16/cell_size) ;
Ny=round(0.16/cell_size);
% Cell locations for the transmitter and 2 receivers
tx_cell=round(tx_x/cell_size);
ty_cell=round(tx_y/cell_size);
rx_cell_l=round(rxl_x/cell_size);
rx_cell_2=round(rx2_x/cell_size);
ry_cell_l=round(rxl_y/cell_size);
ry_cell_2=round(rx2_y/cell_size);
% Basic Tissue parameters
eps_z=(ones(Nx-1,Ny-1)*tissue_eps*eps_0); 
sigma_z=(ones(Nx-1,Ny-1)*tissue_sigma);
% Setting up the targets. It generates a range of targets based on 
% input parameters. It also allows randomised tissue parameters 
% within a circular
% area and generates a circular skin surface. The targets are 
% 1 - Circle
% 2 - Square
% 3 - Triangle
% 4 - 3 linked filled circles
% 5 - A square with enclosing circle
for p=l:Nx-l

for q=l:Ny-l
circle_val=sqrt((p-(0.08/cell_size))A2

+ (q- (0.08 / cell_size ))A2); 
target_val_l=sqrt((p-(0.07/cell_size) ) A2

+ (q-(0.07/cell_size))A2);
tvl=sqrt((p-(0.07/cell_size))A2+(q-(0.07/cell_size))A2); 
tv2=sqrt((p-(0.0765/cell_size))A2+(q-(0.0765/cell_size))A2) 
tv3=sqrt((p-(0.0857/cell_size))A2+(q-(0.07 65/cell_size))A2) 
encloser=sqrt((p-(0.075/cell_size))A2

+(q-(0.075/cell_size))A2); 
if circle_val>=(0.04/cell_size)

& circle_val<=(0.042/cell_size) 
eps_z(p,q)=tumour_eps*eps_0; 
sigma_z(p,q)=tumour_sigma;

end
if circle_val<(0.04/cell_size) & variation==l

eps_z(p,q)=((((rand-0.5)/5)*tissue_eps)+tissue_eps)
*eps_0;

sigma_z(p,q)=((((rand-0.5)/5)*tissue_sigma)
+tissue_sigma)

end
if t_type==l & target_val_l<=(0.005/cell_size) 

eps_z(p,q)=tumour_eps*eps_0; 
sigma_z(p,q)=tumour_sigma; 

elseif t_type==2 & p>=(0.065/cell_size)
& p<=(0.075/cell_size) & q>=(0.065/cell_size)

& q<=(0.075/cell_size)
eps_z(p,q)=tumour_eps*eps_0; 
sigma_z(p,q)=tumour_sigma;

s e e d = t e m p ;
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elseif t_type==3 & p>=(0.065/cell_size)
& p<=(0.075/cell_size) & q>=(0.065/cell_size)

& q<=(0.075/cell_size) & p>=q 
eps_z(p,q)=tumour_eps*eps_0; 
sigma_z(p,q)=tumour_sigma; 

elseif t_type==4 & (tvl<=(0.005/cell_size) |
tv2<=(0.005/cell_size) | tv3<=(0.005/cell_size)) 

eps_z(p,q)=tumour_eps*eps_0; 
sigma_z(p,q)=tumour_sigma; 

elseif t_type==5 & ((p>=(0.065/cell_size)
& p<=(0.075/cell_size) & q>=(0.065/cell_size)
& q<=(0.075/cell_size))|(encloser>=(0.02/cell_size) 

& encloser<=(0.022/cell_size))) 
eps_z(p,q)=tumour_eps*eps_0; 
sigma_z(p,q)=tumour_sigma;

end
end

end

% Setting up the variables required 
counter=l;
Ez_grid=zeros(Nx+l,Ny+l) ;
Ez_grid_core=zeros(Nx-l,Ny-l);
Hx_grid=zeros(Nx+1,Ny);
Hx_grid_core=zeros(Nx-l,Ny);
Hy_grid=zeros(Nx,Ny+1);
Hy_grid_core=zeros(Nx,Ny-l);
old_adj_Ez_left=zeros(Ny+1); 
old_Ez_left=zeros(Ny+1); 
old_adj_Ez_right=zeros(Ny+1); 
old_Ez_right=zeros(Ny+1);
old_adj_Ez_back=zeros(Nx+1); 
old_Ez_back=zeros(Nx+1); 
old_adj_Ez_forward=zeros(Nx+1); 
old_Ez_forward=zeros(Nx+1);
% Grid Mapping
% H Grids start at n=l corresponding to (n-0.5)*time_step 
% E Grids start at n=l corresponding to (n-1) *time__step
% Signal generation, either a Differentiated Gaussian Pulse 
% (sig_val==l) or PN % sequence (sig__val==2) 
pulse_unit=round(0.5e-9/(6*time_step)); 
for n=l:(round((simulation_time)/ (time_step))) 

time_axis(n)= (n-1)*time_step; 
if sig_val==l

signal_z(n)=(((n-1)*time_step)- (4*75e-12))
*exp(-((((n-1)*time_step)- (4*75e-12))A2)/ (75e-12A2)); 

elseif sig_val==2
signal_z(n)=sin(2*pi*5e9.*time_axis(n))

*PN_sequence(floor(time_axis(n)/(l/PN_bandwidth))+1);
end

end
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% The simulation itself. It uses a matrix multiplication method to 
% speed up the % Matlab process over loops, although it does require 
% additional variables.
for n=l:(round((simulation_time)/(time_step)))

Ez_grid(tx_cell,ty_cell)=signal_z(n);
mu_x=tissue_mu*mu_0; 
alpha_x=time_step/(cell_size*mu_x); 
old_Hx = Hx_grid;
Hx_grid=old_Hx+alpha_x*(-diff(Ez_grid, 1,2));
mu_y=tissue__mu*mu_0; 
alpha_y=time_step/(cell_size*mu_y); 
old_Hy = Hy_grid;
Hy_grid=old_Hy+alpha_y*(diff(Ez_grid, 1,1));
% 1st Order Mur boundary Conditions for H
% Due to the nature of the grid there is never any need to 
% calculate the boundary conditions for the H field because the E 
% field vectors that are required for correct calculation at the 
% edges of the H grid are present.
for p=2:Nx

Hx_grid_core(p-1, :)=Hx_grid(p, ;) ;
end
for q=2:Ny

Hy_grid_core(:,q-1)=Hy_grid(:,q);
end
beta_z=(1-((sigma_z*time_step)./(2*eps_z)))

. /  (1+ ( (sigma__z*time_step) . /  (2*eps_z) ) ) ; 
delta_z=((time_step./eps_z))./(1+((sigma_z*time_step)

./(2*eps_z)))./cell_size;
old_Ez_core = Ez_grid_core;
Ez_grid_core=(beta_z.*old_Ez_core)
+ (delta_z. * (diff (Hy_grid_core, 1,1) - diff (Hx_grid_core, 1,2)));

for 1=2:Nx
for m=2:Ny

Ez_grid(1, m,:)=Ez_grid_core(1-1,m-1, :);
end

end
mur_coeff=((wave_speed*time_step)-cell_size)

/((wave_speed*time_step)+cell_size);
% Grid Limit Terminolgy for Mur ABC
%
% A
% / \ / /I
% Top | | / / 1 bottom ||
% 1 1 / \ /
% 1 1/ \/
%
% z i
% 1
% / /I 1
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% Left <«== / / 1 Right ==> /
% 1 1 / y /% | 1/
%
%
% / /I A% Foward // / / 1 back //
% // 1 1 / //
% \/ 1 1/

% 1st order Mur boundary conditions for E 
for j=l:Ny+l

Ez_grid(1,j)=old_adj_Ez_left(j)
+mur_coeff*(Ez_grid(2,j)-old_Ez_left(j));

Ez_grid(Nx+1,j)=old_adj_Ez_right(j)
+mur_coeff* (Ez_grid(Nx, j)-old_Ez_right(j)); 

old_adj_Ez_left(j)=Ez_grid(2,j); 
old_Ez_left(j)=Ez_grid(1, j); 
old_adj_Ez_right(j)=Ez_grid(Nx,j); 
old_Ez_right(j)=Ez_grid(Nx+1, j);

end
for i=l:Nx+l

Ez_grid(i,1)=old_adj_Ez_back(i)
+mur_coeff*(Ez_grid(i,2)-old_Ez_back(i));

Ez_grid(i,Ny+1)=old_adj_Ez_forward(i)
+mur_coeff*(Ez_grid(i,Ny)-old_Ez_forward(i)); 

old_adj_Ez_back(i)=Ez_grid(i,2); 
old_Ez_back(i)=Ez_grid(i, 1); 
old_adj_Ez_forward(i)=Ez_grid(i, Ny); 
old_Ez_forward(i)=Ez_grid(i,Ny+1);

end
The following comments are removed sections that allow extraction 
of each time step frame and graphing in order to construct a video 
file showing the signal propagation

k=5*counter; % Number (in this case 5) denotes which frames to 
plot and add to animation

% if n==k
fprintf('Time step is %1.0d of

%1.Od\n',n,round(simulâtion_time/time_step));
%Graph Plotter for Animation 

% for i=l:Nx+l
% / for j=l:Ny+l
% Ez_plot(i,j)=Ez_grid(i,j);
% end
% end
% surf(Ez_plot)

%caxis([-1 1])
%caxis([-0.1 0.1])

% caxis([-1 1])
% view([0 90])
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% anim(counter) = getframe;
% counter=counter+l;
% end

outputl(n,1)=Ez_grid(rx_cell_l,ry_cell_l); 
output2(n,1)=Ez_grid(rx_cell_2,ry_cell_2);
% for f=l:abs((tx_cell-rx_cell)/2)-5;
% output2(n,f)=Ez_grid(tx_cell+f,ty_cell+f,tz_cell);

end
% distance__axis=[1:abs(tx_cell-rx__cell)]*cell_size;
% movie2avi(anim,'c:\barry\FDTD.avi','compression','none','EPS',10) ;

A.2.2 3DFDTD
The 3D FDTD code is the basis for the previous 2D code but there were some 

perceived problems with the output results as explained in Chapter 2 but it is possible 

that it is normal behaviour. The speed of simulation is much slower and memory 

requirements are much higher than for 2D.

% It outputs 2 received signals, the time axis and the transmitted 
% signal. It's inputs are the transmitter and receiver coordinates 
% and signal flag
Function [outputl,output2,time_axis,signal_z] =
FDTD_3D_c(tx_x,rxl_x, rx2_x,tx_y,rxl_y,rx2_y,tx_z,rxl_z,rx2_z,sig_val)
% Constants, Epsilon and Sigma both vary within the grid 
% Mu is constant
eps_0=8.8542e-12; mu_0=l.2566e-6; 
tissue_eps=9; tissue_mu=l; tissue_sigma=0;%0.4; 
tumour_eps=40; tumour_mu=l; tumour_sigma=4; 
wave_speed=l/sqrt(eps_0*tissue_eps*mu_0*tissue_mu);
% Cell size ideally at least 1/20 of a wavelength but difficult due 
% to 3D domain size and memory limits 
cell_size=0.001;
% Courant stability condition calculation for the time stepping 
time_step = 1.0/(wave_speed*sqrt(1/(cell_sizeA2)+1/(cell_sizeA2)

+1/(cell_sizeA2)))
% Set this for the length of time to simulate 
simulation_time=5e-9;
% This next section generates the PN sequence, 31 bits. It uses a 
% shift register with taps XOR'd together to give the next input.
PN_bandwidth=5e9; 
seq_length=(2A5)-1; 
counter=l; 
seed=[0 1 1 0 1 ] ;  
for q=l:seq_length 

for p=l:5
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i f  p :

temp(p)=xor(seed(5),seed(3)); 
if temp(p)==l

PN_sequence(counter)=1; 
elseif temp(p)==0

PN_sequence(counter)=-l;
end
counter=counter+l;

else
temp(p)=seed(p-1);

end
end
seed=temp;

end

%Specifying the size of the working domain 
Nx=round(0.16/cell_size);
Ny=round(0.16/cell_size);
Nz=round(0.16/cell_size);
% Cell locations for the transmitter and 2 receivers
tx_cell=round(tx_x/cell_size);
ty_cell=round(tx_y/cell_size);
tz_cell=round(tx_z/cell_size);
rx_cell_l=round(rxl_x/cell_size);
ry_cell_l=round(rxl_y/cell_size);
rz_cell_l=round(rxl_z/cell_size);
rx_cell_2=round(rx2_x/cell_size);
ry_cell_2=round(rx2_y/cell_size);
rz_cell_2=round(rx2_z/cell_size);
% Basic Tissue parameters 
sigma=(ones(Nx,Ny,Nz))*tissue_sigma; 
eps=(ones(Nx,Ny,Nz))*tissue_eps*eps_0; 
eps_x=(ones(Nx,Ny-1,Nz-1)*tissue_eps*eps_0); 
sigma_x=(ones(Nx,Ny-1,Nz-1)*tissue_sigma); 
eps_y=(ones(Nx-1,Ny,Nz-1)*tissue_eps*eps_0); 
sigma_y=(ones(Nx-1,Ny,Nz-1)*tissue_sigma); 
eps_z=(ones(Nx-1,Ny-1,Nz)*tissue_eps*eps_0); 
sigma_z=(ones(Nx-1,Ny-1,Nz)*tissue_sigma);
% Setting up the targets. Much simpler than the 2D FDTD targets that
% were added later to that code only
target_x=round(0.07/cell_size);
target_y=round(0.07/cell_size);
target_z=round(0.07/cell_size);
target_width=round(0.005/cell_size);
for r=-target_width:target_width

for s=-target_width:target_width
for t=-target_width:target_width

eps_x(target_x+r,target_y-l+s,target_z-l+t)
=tumour_eps*eps_0;

sigma_x(target_x+r,target_y-l+s,target_z-l+t)
=tumour_sigma;

eps_y(target_x-l+r,target_y+s,target_z-l+t)
=tumour_eps*eps_0;

sigma_y(target_x-l+r,target_y+s,target_z-l+t)

= =1
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end

=tumour_sigma;
eps_z(target_x-l+r,target_y-l+s,target_z+t)

=tumour_eps*eps_0
sigma_z(target_x-l+r,target_y-l+s,target_z+t)

=tumour_sigma;
end

end

% Setting up the grid variables 
counter=l;
Ex_grid=zeros(Nx,Ny+1,Nz+1); 
Ex_grid_core=zeros(Nx,Ny-l,Nz-l); 
Ey_grid=zeros(Nx+1,Ny,Nz+1); 
Ey_grid_core=zeros(Nx-l,Ny,Nz-l); 
Ez_grid=zeros{Nx+1,Ny+1,Nz); 
Ez_grid_core=zeros(Nx-1,Ny-1,Nz); 
Hx_grid=zeros(Nx+1,Ny,Nz); 
Hx_grid_core=zeros(Nx-1,Ny,Nz); 
Hy_grid=zeros(Nx,Ny+1,Nz); 
Hy_grid_core=zeros(Nx,Ny-1,Nz); 
Hz_grid=zeros(Nx,Ny,Nz+1); 
Hz_grid_core=zeros(Nx,Ny,Nz-l);
old_adj_Ex_bottom=zeros(Nx,Ny+1,1); 
old_adj_Ey_bottom=zeros(Nx+l,Ny,1); 
old_adj_Ez_bottom=zeros(Nx+1,Ny+1,1); 
old_Ex_bottom=zeros(Nx,Ny+l,1); 
old_Ey_bottom=zeros(Nx+l,Ny,1); 
old_Ez_bottom=zeros(Nx+1,Ny+1,1); 
old_adj_Ex_top=zeros(Nx,Ny+l,1); 
old_adj_Ey_top=zeros(Nx+1,Ny,1); 
old_adj_Ez_top=zeros(Nx+1,Ny+1,1); 
old_Ex_top=zeros(Nx,Ny+1,1); 
old_Ey_top=zeros(Nx+l,Ny,1); 
old_Ez_top=zeros(Nx+1,Ny+1,1);
old_adj_Ex_left=zeros(1,Ny+1,Nz+1); 
old_adj_Ey_left=zeros(l,Ny,Nz+l); 
old_adj_Ez_left=zeros(1,Ny+1,Nz); 
old_Ex_left=zeros(1,Ny+1,Nz+1); 
old_Ey_left=zeros(1,Ny,Nz+1); 
old_Ez_left=zeros(1,Ny+1,Nz); 
old_adj_Ex_right=zeros(1,Ny+1,Nz+1); 
old_adj_Ey_right=zeros(l,Ny,Nz+l); 
old_adj_Ez_right=zeros(l,Ny+l,Nz); 
old_Ex_right=zeros(1,Ny+1,Nz+1); 
old_Ey_right=zeros(l,Ny,Nz+l); 
old_Ez_right=zeros(1,Ny+1,Nz);
old_adj_Ex_back=zeros(Nx,l,Nz+l); 
old_adj_Ey_back=zeros(Nx+1,l,Nz+l); 
old_adj_Ez_back=zeros(Nx+1,1,Nz); 
old_Ex_back=zeros(Nx,1,Nz+1); 
old_Ey_back=zeros(Nx+1,1,Nz+1); 
old_Ez_back=zeros(Nx+1,1,Nz); 
old_adj_Ex_forward=zeros(Nx,l,Nz+l);
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old_adj_Ey_forward=zeros(Nx+1,l,Nz+l); 
old_adj_Ez_forward=zeros(Nx+1,1, Nz); 
old_Ex_forward=zeros(Nx, l,Nz+l); 
old_Ey_forward=zeros(Nx+1,1,Nz+1); 
old_Ez_forward=zeros(Nx+1,1, Nz);
% Grid Mapping
% H Grids start at n=l corresponding to (n-0.5)*time_step 
% E Grids start at n=l corresponding to (n-1)*time_step
% Signal generation, either a Differentiated Gaussian Pulse 
% (sig_val==l) or PN % sequence (sig_val==2) 
pulse_unit=round(0.5e-9/(6*time_step)); 
for n=l:(round)(simulation_time)/(time_step))) 

time_axis(n)= (n-1)*time_step; 
if sig_val==l

signal_z(n)=(((n-1)*time_step)-(4*75e-12))
*exp(-((((n-1)*time_step)- (4*75e-12))A2)/(75e-12A2)); 

elseif sig_val==2
signal_z(n)=sin(2*pi*5e9.*time_axis(n))

*PN_sequence(floor(time_axis(n)/(l/PN_bandwidth))+1);
end

end

% The simulation itself. It uses a matrix multiplication method to 
% speed up the Matlab process over loops, although it does require 
% additional variables which in the 3D case represents significant 
% additional memory requirements 
for n=l:(round((simulation_time)/(time_step))) 

time_axis(n)= (n-1)*time_step;
Ez_grid(tx_cell,ty_cell,tz_cell)=signal_z(n);
mu_x=t i s s ue_mu *mu_0; 
alpha_x=time_step/(cell_size*mu_x); 
old_Hx = Hx_grid;
Hx_grid=old_Hx+alpha_x*(diff(Ey_grid,1,3)-diff(Ez_grid,1,2));
mu_y=tissue_mu*mu_0; 
alpha_y=time_step/(cell_size*mu_y); 
old_Hy = Hy_grid;
Hy_grid=old_Hy+alpha_y*(diff(Ez_grid, 1,1)-diff(Ex_grid, 1, 3)) ;
mu_z=tissue_mu*mu_0; 
alpha_z=time_step/(cell_size*mu_z); 
old_Hz = Hz_grid;
Hz_grid=old_Hz+alpha_z*(diff(Ex_grid,1,2)-diff(Ey_grid,1,1));
% 1st Order Mur boundary Conditions for H
% Due to the nature of the grid there is never any need to 
% calculate the boundary conditions for the H field because the E 
% field vectors that are required for correct calculation at the 
% edges of the H grid are present.
Hx_grid_core(1:Nx-1,:,:)=Hx_grid(2:Nx, :, :);
Hy_grid_core(:,l:Ny-l,:)=Hy_grid(:, 2:Ny, :);
Hz_grid_core(:,:, 1:Nz-l)=Hz_grid(:, :, 2 :Nz) ;
beta_x=(1-((sigma_x*time_step)./(2*eps_x)))
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./(1+((sigma_x*time_step)./(2*eps_x))); 
delta_x=((time_step./eps_x))

./(1+((sigma_x*time_step)./(2*eps_x)))/cell_size;
Ex_grid_core=(beta_x.*Ex_grid_core)
+ (delta_x. * (dif f (Hz_grid_core, 1,2)- diff (Hy_grid_core, 1,3)));

Ex_grid(:,2:Ny,2 :Nz)=Ex_grid_core(:,1:Ny-l,1 :Nz-1);
beta_y=(l-((sigma_y*time_step)./(2*eps_y)))

./(1+((sigma_y*time_step)./(2*eps_y))); 
delta_y=((time_step/eps_y))

./(1+((sigma_y*time_step)./(2*eps_y)))./cell_size;
Ey_grid_core=(beta_y.*Ey_grid_core)
+ (delta_y. * (diff (Hx_grid_core, 1,3)- diff (Hz_grid_core, 1,1)));

Ey_grid(2 :Nx, :,2 :Nz)=Ey_grid_core(1:Nx-l,:,1 :Nz-1);
beta_z=(l-((sigma_z*time_step)./(2*eps_z)))

./(1+((sigma_z*time_step)./(2*eps_z))); 
delta_z=((time_step/eps_z))

./(1+((sigma_z*time_step)./(2*eps_z)))./cell_size;
Ez_grid_core=(beta_z.*Ez_grid_core)
+ (delta_z. * (diff (Hy_grid_core, 1,1) - diff (Hx_grid_core, 1,2)));

Ez_grid(2 :Nx,2:Ny, :)=Ez_grid_core(1 :Nx-1,1 :Ny-1,:);
mur_coeff=((wave_speed*time_step)-cell_size)

/((wave_speed*time_step)+cell_size);

% Grid Limit Terminolgy for Mur ABC
%
% A
Q.
"O / \ / /I
% Top | I / / 1 bottom ||
% 1 1 / \ /
% 1 1/ \/
%
% z 1
% 1
% / /I 1
% Left <== / / 1 Right ==> /
% 1 1 / y /
% 1 1/
%
%
% / /I A
% Foward // / / 1 back //
% // 1 1 / //
% \/ 1 1/
%

% 1st order Mur boundary conditions for E
Ex_grid(1 :Nx,1 :Ny+1,1)=old_adj_Ex_bottom(1 :Nx,1 :Ny+1,1) 

+mur_coeff* (Ex_grid(1:Nx, 1 :Ny+1,2)
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-old_Ex_bottom(1 :Nx,1 :Ny+1, 1)) ;
Ex_grid(1 :Nx,1 :Ny+1,Nz+1)=old_adj_Ex_top(1:Nx, 1 :Ny+1,1) 

+mur_coeff*(Ex_grid(1 :Nx,1 :Ny+1,Nz)
-old_Ex_top(1:Nx,1 :Ny+1,1)) ;

old_adj_Ex_bottom{1 :Nx,1 :Ny+1,1)=Ex_grid(1 :Nx,1 :Ny+1,2); 
old_Ex_bottom(1 :Nx,1 :Ny+1,1)=Ex_grid(1 :Nx,1:Ny+1,1); 
old_adj_Ex_top(1 :Nx,1 :Ny+1,1)=Ex_grid(1 :Nx,1 :Ny+1,Nz); 
old_Ex_top(1:Nx,1 :Ny+1,1)=Ex_grid(1 :Nx,1 :Ny+1,Nz+1);
Ey_grid(1 :Nx+1,1 :Ny, 1)=old_adj_Ey_bottom(1 :Nx+1,1 :Ny, 1) 

+mur_coeff* (Ey_grid(1 :Nx+1,1 :Ny,2)
-old_Ey_bottom(1:Nx+l,1:Ny, 1));

Ey_grid(1 :Nx+1,1 :Ny,Nz+1)=old_adj_Ey_top(1 :Nx+1,1 :Ny, 1) 
+mur_coeff* (Ey_grid(1 :Nx+1,1 :Ny,Nz)
-old_Ey_top(1 :Nx+1,1 :Ny, 1) ) ;

old_adj_Ey_bottom(1:Nx+l,1 :Ny,1)=Ey_grid(1:Nx+l,1 :Ny, 2); 
old_Ey_bottom(1 :Nx+1,1 :Ny,1)=Ey_grid(1 :Nx+1,1:Ny,1); 
old_adj_Ey_top(1 :Nx+1,1 :Ny,1)=Ey_grid(1 :Nx+1,1 :Ny,Nz); 
old_Ey_top(1 :Nx+1,1 :Ny,1)=Ey_grid(1 :Nx+1,1 :Ny, Nz + 1);
Ez_grid(1 :Nx+1,1 :Ny+1,1)=old_adj_Ez_bottom(1 :Nx+1,1 :Ny+1,1) 

+mur_coeff* (Ez_grid(1:Nx+l,1 :Ny+1,2)
-old_Ez_bottom(1 :Nx+1,1:Ny+l, 1)) ;

Ez_grid(1 :Nx+1,1 :Ny+1,Nz)=old_adj_Ez_top(1 :Nx+1,1 :Ny+1,1) 
+mur_coeff* (Ez_grid(1:Nx+l,1 :Ny+1,Nz-1)
-old_Ez_top(1:Nx+l, 1:Ny+l, 1)) ;

old_adj_Ez_bottom(1 :Nx+1,1 :Ny+1,1)=Ez_grid(1:Nx+l,1 :Ny+1,2); 
old_Ez_bottom(1 :Nx+1,1 :Ny+1,1)=Ez_grid(1 :Nx+1,1 :Ny+1,1); 
old_adj_Ez_top(1 :Nx+1,1 :Ny+1,1)=Ez_grid(1:Nx+l,1 :Ny+1,Nz-1); 
old_Ez_top(1 :Nx+1, 1 :Ny+1,1)=Ez_grid(1 :Nx+1,1 :Ny+1,Nz);
Ex_grid(1,1:Ny+1,1 :Nz+1)=old_adj_Ex_left(1,1:Ny+1,1 :Nz+1) 

+mur_coeff* (Ex_grid(2,l:Ny+l,l:Nz+l)
-old_Ex_left(1,1:Ny+1,1 :Nz+1));

Ex_grid(Nx,1 :Ny+1,1 :Nz+1)=old_adj_Ex_right(1,1:Ny+1,1 :Nz+1) 
+mur_coeff* (Ex_grid(Nx-1,1 :Ny+1,1 :Nz+1)
-old_Ex_right(1,1:Ny+1,1 :Nz+1)); 

old_adj_Ex_left(1,1:Ny+1,1 :Nz+1)=Ex_grid(2,1:Ny+1,1 :Nz+1); 
old_Ex_left(1,1:Ny+1, 1 :Nz+1)=Ex_grid(1,1:Ny+1,1 :Nz+1); 
old_adj_Ex_right(1,1:Ny+1,1 :Nz+1)=Ex_grid(Nx-1,1 :Ny+1,1 :Nz+1) 
old_Ex_right(1,1:Ny+1,1 :Nz+1)=Ex_grid(Nx,1 :Ny+1,1 :Nz + 1);
Ey_grid(1,1 :Ny,1:Nz+1)=old_adj_Ey_left(1,1:Ny,1:Nz+l) 

+mur_coeff* (Ey_grid(2,1:Ny,1 :Nz+1)
-old_Ey_left(1,1:Ny,1 :Nz+1));

Ey_grid(Nx+1, 1:Ny, 1 :Nz + 1)=old_adj_Ey_right(1,1:Ny,1:Nz+l) 
+mur_coeff*(Ey_grid(Nx,1 :Ny,1 :Nz+1)
-old_Ey_right(1,1:Ny, 1 :Nz+1 ) ) ; 

old_adj_Ey_left(1,1:Ny,1 :Nz+1)=Ey_grid(2,1:Ny,1 :Nz+1); 
old_Ey_left(1,1:Ny,1 :Nz+1)=Ey_grid(1,1 :Ny,1 :Nz+1); 
old_adj_Ey_right(1,1:Ny,1 :Nz+1)=Ey_grid(Nx,1 :Ny,1 :Nz+1); 
old_Ey_right(1,1:Ny,1 :Nz+1)=Ey_grid(Nx+1,1 :Ny,1 :Nz+1);
Ez_grid(1,1 :Ny+1,1:Nz)=old_adj_Ez_left(1,1:Ny+1,1 :Nz) 

+mur_coeff*(Ez_grid(2,1:Ny+1,1 :Nz)
-old_Ez_left(1,1:Ny+1,1:Nz));

Ez_grid(Nx+1,1:Ny+l, 1 :Nz)=old_adj_Ez_right(1,1:Ny+l,1 :Nz) 
+mur_coeff* (Ez_grid(Nx,1 :Ny+1,1 :Nz)
-old_Ez_right(1,1:Ny+1,1 :Nz));
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o\° 
o\o

old_adj_Ez_right(1,1:Ny+l,1:Nz)=Ez_grid(Nx,1:Ny+1,1:Nz); 
old_Ez_right(1,1:Ny+1,1:Nz)=Ez_grid(Nx+1,1:Ny+l,1:Nz);
Ex_grid(1:Nx,1,1:Nz+1)=old_adj_Ex_back(1:Nx,1,1:Nz+1)

+mur_coeff*(Ex_grid(l:Nx,2,l:Nz+l)
-old_Ex_back(1:Nx,1,1:Nz+1)) ;

Ex_grid(1:Nx,Ny+1, 1:Nz+1)=old_adj_Ex_forward(1:Nx,1,1:Nz+1) 
+mur_coeff*(Ex_grid(1:Nx,Ny,1:Nz+1)
-old_Ex_forward(1:Nx,1,1:Nz+1)); 

old_adj_Ex_back(l:Nx,l,l:Nz+l)=Ex_grid(1:Nx,2,1:Nz+1); 
old_Ex_back(1:Nx,1,1:Nz+1)=Ex_grid(1:Nx,1,1:Nz+1); 
old_adj_Ex_forward(1:Nx, 1,1:Nz+1)=Ex_grid(1:Nx,Ny, 1:Nz+1); 
old_Ex_forward(1:Nx,1,1:Nz+1)=Ex_grid(1:Nx,Ny+1,1:Nz+1);
Ey_grid(1:Nx+1,1,1:Nz+1)=old_adj_Ey_back{1:Nx+1,1,1:Nz+1) 

+mur_coeff* (Ey_grid(1:Nx+1,2,1:Nz+1)
-old_Ey_back(1:Nx+1,1,1:Nz+1));

Ey_grid(1:Nx+1,Ny,1:Nz+1)=old_adj_Ey_forward(1:Nx+1,1,1:Nz+1) 
+mur_coeff* (Ey_grid(1:Nx+1,Ny-1,1:Nz+1)
-old_Ey_forward(1:Nx+1,1,1:Nz+1)); 

old_adj_Ey_back(1:Nx+1,1,1:Nz+1)=Ey_grid(1:Nx+1,2,1:Nz+1); 
old_Ey_back(1:Nx+1,1,1:Nz+1)=Ey_grid(1:Nx+1,1,1:Nz+1); 
old_adj_Ey_forward(1:Nx+1,1,1:Nz+1)=Ey_grid(1:Nx+1,Ny-1,1:Nz+l); 
old_Ey_forward(1:Nx+1,1,1:Nz+1)=Ey_grid(1:Nx+1,Ny,1:Nz+1);
Ez_grid(1:Nx+1,1,1:Nz)=old_adj_Ez_back(1:Nx+1,1,1:Nz)

+niur_coef f * (Ez_grid (1: Nx+1,2, 1: Nz)
-old_Ez_back(1:Nx+1,1,1:Nz));

Ez_grid(1:Nx+1,Ny+1,1:Nz)=old_adj_Ez_forward(1:Nx+1,1,1:Nz) 
+mur_coeff*(Ez_grid(1:Nx+l,Ny,1:Nz)
-old_Ez_forward(1:Nx+1, 1, 1:Nz)); 

old_adj_Ez_back(1:Nx+1,1,1:Nz)=Ez_grid(1:Nx+1,2,1:Nz); 
old_Ez_back(1:Nx+1,1,1:Nz)=Ez_grid(1:Nx+1,1,1:Nz); 
old_adj_Ez_forward(1:Nx+1,1,1:Nz)=Ez_grid(1:Nx+1,Ny,1:Nz); 
old_Ez_forward(1:Nx+l,1,1:Nz)=Ez_grid(1:Nx+1,Ny+1,1:Nz);

% The following comments are removed sections that allow extraction 
of each time step frame and graphing in order to construct a video 
file showing the signal propagation
% k=5*counter; % Number (in this case 5) denotes which frames to 
% plot and add to animation
% if n==k

fprintf('Time step is %1.0d of
%1.Od\n',n,round(simulation_time/time_step));

% Graph Plotter for Animation 
% for i=l:Nx+1
% for j=l:Ny+1
% Ez_plot(i,j)=Ez_grid(i,j,tz_cell);
% end
% end
% surf(Ez_plot)
% caxis([-500e-l 500e-l])
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%

%
%

%

caxis([-0.1 0.1]) 
caxis([-0.5e-3 0.5e-3]) 
view([0 90])
anim(counter) = getframe; 
counter=counter+l;

%end
outputl(n,1)=Ez_grid(rx_cell_l,ry_cell_l,rz_cell_l); 
output2 (n,1)=Ez_grid(rx_cell_2,ry_cell_2,rz_cell_2);
%for f=l:abs((tx_cell-rx_cell)/2)-5;
% output2(n,f)=Ez_grid(tx_cell+f,ty_cell+f,tz_cell);
%end

%distance_axis=[1:abs(tx_cell-rx_cell)]*cell_size;
%movie2avi(anim,'c:\barry\FDTD.avi','compression','none','FPS',10);

A.2.3 PN Generator
The PN generator code creates a maximal length PN sequence for a given bit length 

(4-10 and 16) with an error return message for out of bounds values for the bit length 

chosen. It uses a shift register and XOR'd taps to generate the next input leading to 

the sequences generation.

function [PN_sequenceJ =PN_generator(L)
seq_length=(2AL)-1;
switch L 

case 4
counter=l; 
seed=[0 110]; 
for q=l:seq_length

for p=l:L 
if p==l

temp(p)=xor(seed(4),seed(3)); 
if temp(p)==l

PN_sequence(counter)=1; 
elseif temp(p)==0

PN_sequence(counter)=-l;
end
counter=counter+l;

else
temp(p)=seed(p-1);

end
end
seed=temp;

end

end
case 5
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counter=l; 
seed=[0 1 1 0 1]; 
for q=l:seq_length 

for p=l:L 
if p==l

temp(p)=xor(seed(5) , seed(3)) 
if temp(p)==l

PN_sequence(counter)=1 ; 
elseif temp(p)==0

PN_sequence(counter)=-l;
end
counter=counter+l;

else
temp(p)=seed(p-1);

end
end
seed=temp;

end
case 6

counter=l; 
seed=[0 1 1 1 1 0 ] ;  
for q=l:seq_length 

for p=l:L 
if p==l

temp(p)=xor(seed(6),seed(5)) 
if temp(p)==l

PN_sequence(counter)=1; 
elseif temp(p)==0

PN_sequence(counter)=-l;
end
counter=counter+l;

else
temp(p)=seed(p-1);

end
end
seed=temp;

end
case 7

counter=l;
seed=[0 1 1 1 1 0 1 ] ;  
for q=l:seq_length 

for p=l:L 
if p==l

temp(p)=xor(seed(7) , seed(6)) 
if temp(p)==l

PN_sequence(counter)=1; 
elseif temp(p)==0

PN_sequence(counter)=-l;
end
counter=counter+l;

else
temp(p)=seed(p-1);

end
end
seed=temp;

end
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case 8
counter=l;
seed=[0 1 1 1 0 0 1 0 ] ;  
for q=l:seq_length 

for p=l:L 
if p==l

temp(p)=xor(xor(xor(seed(8),seed(7)),
seed(6)),seed(1))

if temp(p)==l
PN_sequence(counter)=1; 

elseif temp(p)==0
PN_sequence(counter)=-l;

end
counter=counter+l;

else
temp(p)=seed(p-1);

end
end
seed=temp;

end
case 9

counter=l;
seed=[0 1 1 1 1 0 0 1 1 ] ;  
for q=l:seq_length 

for p=l:L 
if p==l

temp(p)=xor(seed(9),seed(5)) ; 
if temp(p)==l

PN_sequence(counter)=1; 
elseif temp(p)==0

PN_sequence(counter)=-l;
end
counter=counter+l ;

else
temp(p)=seed(p-1);

end
end
seed=temp;

end
case 10

counter=l;
seed=[0 1 1 1 1 0 0 1 1 0 ] ;  
for q=l:seq_length 

for p=l:L 
if p==l

temp(p)=xor(seed(10),seed(7)); 
if temp(p)==l

PN_sequence(counter)=1; 
elseif temp(p)==0

PN_sequence(counter)=-l;
end
counter=counter+l;

else
temp(p)=seed(p-1);

end
end
seed=temp;
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case 16
counter=l;
seed=[0 1 1 0 1 0 0 0 1 1 1 1 0 0 1 1 ] ;  
for q=l: seq__length 

for p=l:L 
if p==l

temp(p)=xor(xor(xor(seed(16),seed(14)),
seed(13)),seed(11)) ;

if temp(p)==l
PN_sequence(counter)=1; 

elseif temp(p)==0
PN_sequence(counter)=-l;

end
counter=counter+l ;

else
temp(p)=seed(p—1);

end
end
seed=temp;

end
otherwise

fprintf('The shift register length entered to calculate the 
PN sequence is not recognised (Choices:4-10,16)'); 

return
end

A.2.4 Filter Generation
Filter generation uses the LMS algorithm to match an input signal (variable in) to a 

desired signal (variable desired). It outputs the filter coefficients as well as the 

resultant filter output for the given input and the error signal (difference between filter 

output and desired output).

function [coeff,y_out,error]=filter_gen_2b
(desired,in,spacing,num_coeffs,offset,num_iterations)

L_in=length(in); 
coeff=zeros(num_coeffs, 1); 
new_coeff=zeros(num_coeffs,1);
% Step size is an important parameter that has an impact on stability 
% and final result 
step_size=0.001;
% Variable required for alternate absolute sum error tracking by 
% iteration abs_error_sum=1000000;
for iterations=l:num iterations

Page Number 225



for k=l:L_in
for p=l:num_coeffs

% temp is a holder to allow for the correct location of the filter 
% coefficients based on the coefficient spacing and an offset (both 
% input variables)

temp=spacing*(p-1)+offset; 
if k>temp & k-temp<=L_in 

x_val(p,1)=in(k-temp);
else

x_val(p,1)=0;
end

end
% The LMS algorithm

y_out(k,1)=coeff'*x_val;
error(k,1)=desired(k,1)-y_out(k, 1) ;
new_coeff=coeff+(step_size*error(k,1)'*x_val);
coeff=new_coeff;

end
% Method that allows reduction in the step size for a finer result 
% when the absolute error sum stabilizes. Number of iterations 
% required is usually very large before it activates and is slow 

% new_abs_error_sum=sum(abs(error));
% if new_abs_error_sum<abs_error_sum 
% abs_error_sum=new_abs_error__sum;
% elseif new_abs_error_sum>abs__error_sum 
% step_size=step_size/2;
% end

% These are for recording the absolute error sum and coefficients 
% over a number of iterations, they need to be added to the output 
% variables if needed

% abs_error_sum=sum(abs(error));
% recorder(iterations)=abs_error_sum;
% coeff_it(:,iterations)=coeff;

end

A.2.5 Localisation
The localisation code has had many iterations, this is the last and was used for the 

shape detection results with 2D FDTD simulation results. It covers both filter (and 

correlation) along with integration over the pulse length.

% time is a vector of time values for the data values. The values 
% variable contains the signal data and contains any number of 
% signals [n signals, signal length]. The antenna variable contains 
% the antenna locations for each of the signals [n signals, 6] in 
% metres and 3D.
function [full_array]=location_3D_shape(time,values, antenna) 
c=3e8;
eps_0=8.8542e-12;
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mu 0=1.2566e-6; 
eps_r=9; 
mu_r=l ; 
f=6e9; 
w=2*pi*f; 
sigma=0.4; 
lambda=c/f;
y=((mu_0*mu_r*eps_0*eps_r)/2); 
z=(sigma/(w*eps_0*eps_r));
alpha=w*sqrt (y* (sqrt (l+zA2) -1) ) ; 
beta=w*sqrt(y*(sqrt(l+z^2)+1));
gamma=alpha+(j*beta);
time_step=time(2)-time(1); 
distance_step=le8*time_step;
% offset is a variable to aid alignment of signals, filter uses 0 
offset=round(0.25e-9/time_step);%0.55
%offset=0;%round(0.2788e-9/time_step); %for migrated
box_x=round(0.15/distance_step); 
box_x_axis=[1:box_x]*distance_step; 
box_y=round(0.15/distance_step); 
box_y_axis=[1:box_y]*distance_step; 
box_z=round(0.l/distance_step); 
box_z_axis=[1:box_z]*distance_step;
full_array=zeros(box_x,box_y,1);
[dmax,null]=size(antenna) ; 
max_transit=length(values(1,:)); 
k_length=round(0.5e-9/time_step);
% Uncomment for 3D generation
% for a=l:box_z
a=round(0.0575/distance_step); 

for b=l:box_y
for c=l:box_x

% Used for filter
%temp_holder=0;

% Used for integration over a pulse
temp_holder=zeros(1,k_length+l);
for d=l:dmax

tx=round(antenna(d,1)/distance_step); 
ty=round(antenna(d,2)/distance_step); 
tz=round(antenna(d,3)/distance_step); 
rx=round(antenna(d,4)/distance_step); 
ry=round(antenna(d,5)/distance_step); 
rz=round(antenna(d,6)/distance_step);
transit_l=sqrt{((tz-a)A2)+((ty-b)A2)+((tx-c)A2)); 
transit_2=sqrt(((rz-a)A2)+((ry-b)A2)+((rx-c)A2)); 
total transit=round(transit 1+transit 2+offset);
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transit_tx_real=round(transit_l)*distance_step; 
transit_rx_real=round(transit_2)*distance_step;

First block is for integration over a pulse
This is an alternate spreading loss compensation factor, in 

% temp__holder the divide by sp_loss__factor can be replaced by divide 
% by E
% E=abs((exp(-gamma*transit_rx_real))/transit_rx_real)

tabs((exp(-gamma*transit_tx_real))
/transit_tx_real); 

sp_los s_factor=(1/transit_tx_real)
* (l/transit_rx_real);

for k=l:k_length+l
if total_transit+k<=max_transit

temp_holder(1,k)=temp_holder(1, k)
+((l/sp_loss_factor)
*values(d,total_transit+k));

end
end

%

%

%
%
%

Second block is for filter
E=abs((exp(~gamma*transit_rx_real))/transit_rx__real) 
tabs((exp(-gamma*transit_tx_real)) 

/transit__tx_real) ;
sp_loss_f actor=l; % (l/transit_tx__real)

* (l/transit_rx_real); 
if total_transit<=max_transit

temp_holder=temp_holder+((l/sp_loss_factor) 
^values (d, total__transit) /dmax) ;

end
end

For Filter
full_array (c, b, 1) =temp__holder ;

For pulse integration
full_array(c,b,1)=trapz(abs(temp_holder));

end
end

end to match the for a=... statement above for 3D generation
%end

A.2.6 H-Matrix Transform
The H-Matrix transforms are both given, selection is by selecting which alphas to use. 

The original is marked (1), the modified with (2).

function [Hv,angle_r_phi,angle_t_phi,alpha_r,alpha_t] =
H_matrix_gen_D(c,f,Tx,Rx,H_matrix,dist)

lambda=c/f;
alpha_Tx=(Tx(1,2)-Tx(1,1))/lambda; 
alpha_Rx=(Rx(1,2)-Rx(1,1))/lambda;
Q=length(Rx);
P=length(Tx);
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P_bar=(P-l)/2;
Q_bar=(Q-1)/2;
angle_t=[-P_bar:P_bar]/P; 
angle_r=[-Q_bar:Q_bar]/Q; 
angle_r_phi=asin(angle_r/alpha_Rx); 
angle_t_phi=asin(angle_t/alpha_Tx);
alpha__t=zeros (P, P) ; 
alpha_r=zeros(Q,Q);
for p=l:P

for q=l:P
% Two variants, the original (1) and the modified (2). Uncomment as 
% required
% (1) alpha_t(q,p) = (1/sqrt(P))*exp(-j*2*pi*(q-1)*((p-l-P_bar)/P));
% (2) alpha_t(p,q) = (1/sqrt(P))*exp(-j *2*pi*(dist-sqrt(((Tx(1,p)) .A2) 
% +((dist)A2)-2.*(Tx(l,p)).*(dist).*sin(angle_t_phi(q))))/lambda);

end
end
for p=l:Q

for q=l:Q
% Two variants, the original (1) and the modified (2). Uncomment 
% matching
% (1) alpha_r(q, p) = (1/sqrt(Q))*exp(-j*2*pi*(q-1)*((p-l-Q_bar)/Q));
% (2) alpha_r(p,q) = (1/sqrt(Q))*exp(-j *2*pi*(dist-sqrt(((Rx(1,p)).A2) 
% +((dist)A2)-2.*(Rx(l,p)).*(dist).*sin(angle_r_phi(q))))/lambda);

end
end
% Virtual H-matrix transform 
Hv=alpha_r.'*H_matrix*alpha_t;
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