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Abstract

The Anopheles barbirostris subgroup includes six mosquito species that are almost 
identical in adult morphology: Anopheles barbirostris, An. campestris, An. donaldi, An. 
hodgkini, An. pollicaris and An. franciscoi. Some of these species are implicated in the 
transmission of malaria and filariasis in Southeast Asia. Specimens of the Barbirostris 
Subgroup are also confused in the field with those from the Hyrcanus Group. Such 
mistakes in identification are an obstacle to the implementation of effective vector 
control.

A phylogenetic analysis of 756 bp of Cytochrome Oxidase I (COI) in the mitochondrial 
genome revealed five clades for the specimens of the Barbirostris Subgroup studied.
The same clades were shown using Neighbour Joining and Maximum Parsimony trees, 
although internal branch points were different. A parsimony-based nested clade analysis 
also showed five separate networks, congruent with the phylogenetic clades, The 
analysis of COI showed a high level of genetic differentiation between clades (F St =  
0.74-0.91, p < 0.00001) suggesting that each clade may represent a different species.

Analysis of the nuclear rDNA ITS2 region revealed five clades, congruent with those 
from the COI analysis. In all specimens of the Barbirostris Subgroup, ITS2 was >1.5kb, 
the largest so far recorded in any insect. The ITS2 of Clades I, IV and V differed in size. 
Clades II and III had an ITS2 of similar size, but they differed by 35 fixed nucleotide 
substitutions. Populations from Mae Hong Son (Thailand) and Kalimantan in clade I, 
differed by 27 fixed substitutions, this was reflected in the high level of genetic 
differentiation in the COI (F St = 0.63, p <0.01). However, the dataset for this clade was 
too small to arrive at conclusions about the species status of these allopatric populations. 
The extreme length of the ITS2 was a most interesting finding and resulted from the 
presence of four or five internal repeats of c.220bp within the ITS2, each repeat 
comprised of two c.l 10 bp sub-repeats of variable homology. Immediately 3’ of these 
repeats was an AT-rich 26 bp region homologous to regions of transposable genetic 
elements (tges) found in An. gambiae. This transposition event must have occurred prior 
to the divergence of the species within the Barbirostris Subgroup. The absence of 
repeats and the tge-like sequence in species of the Hyrcanus group suggests that this 
region may have played a role in the duplication event that led to the complex internal 
repeats in the ITS2 of the Barbirostris Subgroup.

A morphological examination of adult specimens was carried out, to determine the 
relationship between morphological forms and molecular clades. For well-preserved 
specimens, current morphological criteria are adequate to distinguish between the 
Barbirostris and Hyrcanus Groups. Within the Barbirostris Subgroup, clades I, II and III 
were morphologically compatible with Anopheles barbirostris Van der Wulp,. with 
clades I and III found in sympatry in Thailand and clades I and II in sympatry in Java. 
This suggests that Anopheles barbirostris Van der Wulp is a species complex 
comprising at least 3 species (clades I, II and III). There is limited information on host 
preferences for clades I and II, but clade III appears to be zoophilic. Clade V was 
identified as the anthropophilic species Anopheles campestris. Clade IV is a zoophilic 
species with morphological characters intermediate between those of An. campestris and 
An. barbirostris, with which it is found in sympatry in Sa Kaeo (Thailand). Clade IV 
appears to be a new species.
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CHAPTER 1

1 Introduction

Among the vector-bome diseases, malaria, dengue and filariasis are the most 

important in Southeast Asia. Mosquitoes of the genus Anopheles are vectors of two 

o f these, malaria and lymphatic filariasis. Malaria is endemic in all countries of the 

Southeast Asian region except the Maldives. The burden o f malaria in the region is 

second only to Sub-Saharan Africa, with over 30 000 deaths from malaria reported 

annually. The region also includes more than half of the global burden of lymphatic 

filariasis.

Vector control and clinical management of patients are the two main strategies to 

control mosquito-bome diseases, since there are currently no effective vaccines, 

except for Japanese encephalitis and yellow fever (the latter not being found in 

Southeast Asia) (Chadee et al., 2007). Filariasis control strategies are based on mass 

drug administration, which have proven successful in some regions (Weil and 

Ramzy, 2007) but there is a need to combine this with vector control in Southeast 

Asia. The increased prevalence of drug resistance in malaria parasites in various 

regions o f the world has greatly impaired treatment. As a result, efforts to control 

malaria are now focused on mosquito control strategies (Hemingway, 2004).

An understanding of the distribution of vector species, their habitats and in 

particular their resting and feeding preferences is necessary for the development of 

effective control programmes. Such studies are dependent on the correct 

identification o f species. For instance, spraying insecticides inside houses has 

proved very effective against An. gambiae s.s., which feeds mainly indoors on 

humans and rests there once fed. In contrast, the degree to which An. arabiensis 

feeds on non-human hosts and rests outdoors reduces the efficacy of these strategies 

in Kenya (Tirados et al., 2006). In Pakistan, the density and life expectancy of 

Anopheles culicifacies and An. stephensi decreased notably after the application of 

insecticides to the surfaces o f cattle, due to the zoophilic behaviour of these species 

(Rowland et al., 2001). Tirados et al. (2006) suggested a similar strategy to deal with
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An. arabiensis in Kenya. Thus the identification of these morphologically identical 

species was essential to the design of new control strategies.

In Southeast Asia, vector control programmes face the problem of the high number 

o f species involved in malaria transmission (Van Bortel et al., 2001) and the 

presence o f species complexes (Manguin et ah, 2002; Phuc et ah, 2003; Surendran et 

ah, 2006; Walton et ah, 1999a). These complexes comprise species with identical or 

similar morphology, or overlapping morphological characters. If members of species 

complexes are confused, their roles in malaria transmission cannot be determined.

The Anopheles barbirostris Group (Reid, 1962) includes some of the less studied 

species in Southeast Asia; they are also difficult to identify. Thirteen species have 

been formally identified within this Group (Harbach, 2004). This thesis will focus 

on the Barbirostris Subgroup, the species of which have almost identical 

morphology although they vary remarkably in their behaviour. An. campestris (Reid, 

1962) is highly anthropophilic and has been reported to be an important vector of 

malaria and filariasis (Harrison and Scanlon, 1975; Reid, 1968). An. barbirostris 

(Van der Wulp, 1884) is the most variable of the species of this Subgroup, with 

vector and non-vector forms having been reported (Lien et al., 1977). Despite the 

comprehensive studies carried out in the past, current morphological keys fail to 

distinguish vector and non-vector forms of this species (Reid, 1979). Little is known 

o f the other four members of the Barbirostris Subgroup, An. donaldi, An. pollicaris, 

An. hodgkini and An. franciscoi, which are mainly forest species (Reid, 1962).

The differentiation of these species is crucial to establish effective malaria and 

filariasis control programmes in the Southeast Asian region. However, since the 

studies o f Reid (Reid, 1942; Reid, 1962; Reid, 1968; Reid, 1979), there has been 

little research on this Group. Baskoro (2001) carried out a study o f Anopheles 

barbirostris Van der Wulp in Indonesia. He recognised at least four different clades 

within Anopheles barbirostris, based on the analysis of two molecular markers, and 

regarded these as separate species. The research reported in this thesis was intended 

to extend Baskoro’s work to include a wider geographical area.
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Members o f the Barbirostris Subgroup have become the subject o f study in 

Thailand, where Anopheles campestris was implicated in the increase in malaria 

cases in the province of Sa Kaeo (Apiwathnasorn et al., 2002; Limrat et ah, 2001). 

These authors reported difficulties in differentiating Anopheles campestris from An. 

barbirostris Van der Wulp.

This project has focused on the phylogenetic analysis of two molecular markers, the 

mitochondrial Cytochrome Oxidase I (COI) subunit and the nuclear rDNA Internal 

Transcribed Spacer 2 (ITS2). Morphological examination o f specimens was carried 

out, where possible, to relate morphological features to clades identified from the 

phylogenetic studies.

1.1 Objectives

The main objectives of the research reported in this thesis were:

1. To use the molecular markers, COI and ITS2, to determine the number of 

distinct clades within the Barbirostris Subgroup, with a particular focus on 

those identifiable morphologically as Anopheles barbirostris and An. 

campestris.

2. To use the same molecular markers to determine if  An. barbirostris Van der 

Wulp is a species complex.

3. To compare the consistency of the morphological keys used to differentiate 

the Barbirostris Subgroup from the closely related Hyrcanus Subgroup by 

reference to molecularly determined clades.

4. To determine the genetic structure of species of the An. barbirostris Group 

in Thailand, using the mitochondrial marker, COI.
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5. To attempt to determine if species within the Barbirostris Subgroup are 

undergoing demographic expansion or are at equilibrium.
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CHAPTER 2

2 Literature Review

This chapter briefly reviews the malaria problem in Southeast Asia and the species 

involved in its transmission. It also deals with the species concept and how cryptic 

or sibling species may be recognised. Finally, the methods currently used for 

identifying species are reviewed.

2.1 The malaria problem in Southeast Asia

In the 24th Meeting of Southeast Asian Ministers of Health, held in Bangladesh 

(2006), malaria was identified as a problem of high priority in Southeast Asia 

(WHO, 2006). Even though in general the malaria transmission in this region has 

diminished and the number of deaths declined, the proportion o f fatal cases of 

Plasmodium falciparum has increased progressively (WHO, 2006).

The region faces serious problems related with drug resistance and increases in the 

number o f cases of malaria due to P. falciparum; Southeast Asia has been described 

as the global epicentre of multidrug resistant malaria (Singhasivanon, 2003).

2.1.1 Incidence of malaria in Southeast Asia

Malaria is endemic in all countries of the Southeast Asian Region except the 

Maldives, which have remained free of malaria since 1984. In 2004 the reported 

incidence rate of malaria in Southeast Asia was 1.85 cases per 1000 inhabitants, 

with 3768 deaths per annum, the lowest annual rate reported since 1985 (WHO, 

2007) (Figure 2.1). Similarly, in Vietnam, after the alarming incidence rates of 

malaria mortality and morbidity reached in 1991 (Hung et al., 2002), there has been 

more than two-fold drop in the number of cases and deaths over the period 1996- 

2001 (Singhasivanon, 2003). Although the morbidity and mortality has been 

reduced, the current level o f malaria is still considered to be unsatisfactory (WHO,
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2006). It is believed that the number o f malaria cases in this region are actually 

underestimated, considering the number o f patients that are treated in the private 

sector or, even more, those who undergo self-treatment (Singhasivanon, 2003).

In Malaysia, an increasing number o f patients with malaria have tested positive for 

Plasmodium knowlesi, a malaria parasite o f long-tailed macaque monkeys (Singh et 

al., 2004). The authors maintain that molecular methods are a prerequisite for 

correct identification o f the malaria parasite, since P. knowlesi is morphologically 

indistinguishable from P. malariae. Another human case o f P. knowlesi has also 

been reported in Thailand (Jongwutiwes et al., 2004). This increases the already 

complex malaria situation in Southeast Asia.

Figure 2.1 Malaria cases in Southeast Asia from 1999 to 2004 (WHO, 2007).

Trends of Malaria in SEA Region,
1977- 2004*

2.1.2 Drug resistance

The global epicentre of the drug resistance is the Mekong area, which comprises 

countries that share some part o f the waters o f the Mekong river: Cambodia, China 

(Yunnan province) Laos, Myanmar, Thailand and Vietnam (Singhasivanon, 2003).
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Southeast Asia has more cases of multidrug resistance than any other region with the 

parasite resistant to most o f the available antimalarials.

The border between Thailand and Cambodia has the most severe multidrug resistant 

P. falciparum (Looareesuwan et al., 1992). Despite intensive efforts to understand 

the resistance mechanisms, they are still not completely understood. It is thought 

that due to suboptimal levels of drugs, either from insufficient dosing regimes or due 

to the long half-lives of certain drugs that remain in circulation, malaria resistance is 

aggravated. (Rathod et al., 1997). The problem is aggravated due to the fake 

antimalarial drugs circulating in some countries (Dondorp et al., 2004). In Thailand, 

recrudescence and drug failures occur unexpectedly even in carefully controlled 

clinical settings (Looareesuwan et al., 1999). Drug resistance in P. vivax has been 

less studied (White, 2004).

2.1.3 Social implications

Malaria is not just a public health problem; it is also related to development as well 

as social, ecological and environmental changes. “Asia has the highest proportion of 

people below the poverty line and malaria is perpetuating the vicious cycle of 

poverty from which they are unable to escape” (WHO, 2006). These social 

implications prompted the governments of Laos, Cambodia and Vietnam to 

implement aggressive malaria control programmes and to declare malaria as a 

priority in public health programmes; as a result the malaria morbidity and mortality 

incidence has decreased dramatically in recent years (Trung et al., 2004).

Vietnam faced its most critical malaria situation in the period from the late 1980s to 

early 1990s. However, as a consequence o f the application o f effective vector 

control programmes during the last decade, malaria was declared absent in many 

areas o f northern Vietnam. The strategy included the following main lines of attack: 

the inclusion o f artemisin drugs for the treatment o f patients, malaria diagnosis and 

treatment without charge, the widespread use o f bednets among the population and 

finally an education policy, to involve the community in the prevention and control 

o f malaria (Hung et al., 2002). Additionally, Vietnam underwent economic and
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social changes that have considerably improved the quality o f life o f the population. 

The successful results were mainly focused in the northern part o f the country. In 

central Vietnam, where the major populations are minority ethnic groups, malaria 

remains a major public health problem.

The effect o f human migration on malaria transmission is more critical in the 

regions where the main vectors have not yet been eradicated (Verle et al., 1998). In 

East Timor, approximately 850 000 people were displaced as a consequence of the 

way of independence from Indonesia in 1999 and forced into refugee camps. “Many 

o f the population were internally displaced into the jungle and mountain areas, 

whilst the militia and Indonesian forces pushed thousands more over the border into 

West Timor” (Kolaczinski and Webster, 2003). Deforestation has also become a 

serious problem in Southeast Asia. In Thailand the forest cover dropped from about 

50% in 1960 to 18% in 1990 (Rattanarithikul et al., 2005). An increased number of 

breeding sites for mosquito species is a common consequence in deforested areas. 

However, the extensive deforestation in northern Thailand is said to have reduced 

the number of breeding sites of the two main vectors Anopheles dirus and An. 

minimus. (Singhasivanon, 2003).

2.2 Anopheles species complexes and the importance of their identification

Since it was first determined that human malaria was transmitted by mosquitoes of 

the genus Anopheles it became clear that malaria was not observed in some areas 

where all the conditions were appropriate for its establishment. This was called 

“Anophelism without malaria” (Fantini, 1994) and was the beginning of the study of 

cryptic species in Anopheles. Cryptic or sibling species have been defined as 

morphologically similar or identical populations that are reproductively isolated 

(Mayr, 1991). These species commonly differ in important biological 

characteristics, including their preference for different hosts and resting sites (White, 

1977a) and hence their role in malaria transmission. The first species complex 

discovered in mosquitoes was the An. maculipennis complex (Hackett and Misiroli, 

1935). Subsequently other important Anopheles species have been identified as 

species complexes.
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In Africa, the first recognition of the Anopheles gambiae complex was based on 

mating barriers between its members (Davidson et al., 1967) and subsequently these 

were differentiated by polytene chromosome analysis (Coluzzi et al., 2002; Coluzzi 

et al., 1979). The complex includes seven species, the most important of which are 

An. gambiae s.s. and An. arabiensis, of these, An. gambiae is the more important 

due to its high anthropophily and indoor biting behaviour, whereas An. arabiensis 

feeds on humans but also extensively on cattle and can rest outdoors, particularly in 

man-made structures (reviewed by Service and Townson, 2002).

In the alst completed review there were 444 formally described Anopheles species 

and 40 unnamed species that are members of species complexes (Harbach, 2004). 

The number o f species within complexes of Anopheles species is likely to be an 

underestimate (Service and Townson, 2002).

Some of the most important species complexes in the Oriental Region include: 

Anopheles culicifacies Giles, a complex of five sibling species, designated as species 

A, B, C, D and E. Species A, C, D and E are vectors of malaria in India. Differences 

in susceptibility to malaria parasites have been reported; in Sri Lanka species E has 

been successfully infected with P. falciparum, while species B has proved to be 

refractive to infection (Surendran et al., 2006). Species of the Anopheles fluviatilis 

James and the Anopheles minimus Theobald complexes comprise at least three 

sibling species each, closely related and important malaria vectors in the Oriental 

Region (Singh et al., 2006). These species are commonly confused in the field but 

the design o f diagnostic tests, based on DNA amplification, facilitates their 

identification (Phuc et al., 2003). Anopheles dirus Peyton and Harrison is another 

group of species that has been found to comprise a species complex and includes 

major vectors of malaria in Southeast Asia (Baimai et al., 1987; Peyton, 1989; 

Walton et al., 1999a). Recently, a revision of this complex has revealed seven 

species (Sallum et al., 2005). Finally Anopheles barbirostris Van der Wulp, one of 

the species studied here was not considered to be a main malaria vector. There is 

evidence that this taxon comprises a species complex (Baskoro, 2001), which may 

include vectors of malaria and filariasis and non-vector forms.
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Effective vector control programmes rely on a comprehensive knowledge of the 

vector species. Heterogeneities in malaria vector behaviour may result in differences 

in epidemiological importance (Trung et al., 2005), since these behaviours largely 

define vectorial status. For instance, in Southeast Asia, the late biting behaviour of 

An. minimus s.s. (Harbach et al., 2006) ensured that bed nets were an effective 

control measure, whilst the outdoor biting, and early feeding behaviour of An. dims 

s.s. (Sallum et al., 2005) made insecticide-impregnated bed nets and indoor residual 

spraying less suitable for its control (Trung et al., 2005).

Preventive control strategies in Southeast Asia must deal with the complexity of the 

vector system caused by the number of species potentially involved in malaria 

transmission and the large number o f species complexes (Trung et al., 2004; Van 

Bortel et al., 2001).

2.3 The concept of species

Species are units of comparison in almost all subfields of biology, from anatomy to 

behaviour, development, ecology, evolution, genetics, molecular biology, 

palaeontology, physiology and systematics (de Queiroz, 2005). Scientists have tried 

to define species from different perspectives, and there are currently 24 such 

concepts (Hey, 2001; Tibayrenc, 2006). However, a species definition that is 

applicable to all organisms is unlikely to become available. Some researchers even 

question if species actually exist in reality (Kunz, 2002). The most important 

concepts were summarized by Mallet et al. (2006) and are presented in Table 2.1. 

Four o f them are described in detail in the following pages.
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Table 2.1 Partial listing o f species concepts and other ideas about species. Taken 

from Mallet et al. (2006).

Name of species concept 
(alphabetically arranged)

“Biological” or reproductive 
isolation species concept

Cladistic Concept 

Cohesion Concept

Darwin’s morphological oncept

Diagnostic (phylogenetic) 
species concept

Ecological concept

Evolutionary concept

Genealogical concept

General lineage concept

Genotypic (genomic) cluster 
criterion

Phenetic concept

Polytypic species

Population concept

Brief definition

Taxa possessing reproductive isolation with 
respect to other species. Characterized by 
reproductive isolating mechanisms 
Species are unbranched segments or 
lineages in an organismal phylogeny

A taxon characterized by cohesion 
mechanisms, including reproductive 
isolation, recognition mechanisms, 
ecological niche, as well as by genealogical 
distinctness
“Varieties” between which there are no or 
few morphological intermediates

A species “is an irreducible (basal) cluster of 
organisms, diagnosably distinct from other 
such clusters, and within which there is a 
parental pattern of ancestry and descent”

“A lineage which occupies an adaptive zone 
minimally different from that of any other 
lineage...”
A lineage evolving separately and “with its 
own unitary evolutionary role and 
tendencies”
Species are mutually monophyletic in the 
genealogies at all (or at a consensus of) gene 
genealogies in the genome

Species are independent lineages, according 
to de Queiroz: all other species concepts 
agree on this fundamental principle; conflict 
about species concepts refers mainly to 
criteria applying to different stages of 
lineage divergence

Sympatric species are clusters of genotypes 
circumscribed by gaps in the range of 
possible multilocus genotypes between them

Clusters of individuals circumscribed 
using multivariate statistical analysis

Taxa having many “types,” i.e., geographic 
subspecies. Geographic populations 
are part of the same species if they 
intergrade in areas of overlap

Populations are the real units of evolution, 
not species, because gene flow is 
generally weak. Morphological and

Reference

Poulton 1904, Mayr, 
1970

Hennig 1968, Ridley, 
2004

Templeton, 1998

Darwin, 1859

Cracraft, 1989

Van Valen, 1976

Simpson, 1951

Baum and Shaw, 1995

de Queiroz, 1998

Mallet, 1995, 2001

Sokal and Crovello, 
1970

1890 onwards, 
reviewed by:
Mayr, 1970; 
Mallet, 1995, 2004

Ehrlich and 
Raven, 1969 

CONTINUE...
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genetic uniformity of species is 
explained by stabilizing selection 
acting separately in each population

Recognition concept Species possess a shared fertilization Paterson, 1985
system, known as “specific-mate 
recognition systems”

Taxonomy without species Species are no more real than any other Mishler, 1999;
species hierarchical level in the tree of life. Hendry et al., 2000
Species and other taxonomic ranks
should be replaced either by “rank-free
taxonomy” (which can name each node
in a bifurcating phylogeny—Mishler),
or by genotypic clusters described
according to their genetic divergence
from other clusters (Hendry et al.)

2.3.1 The “biological” (BSC) or reproductive isolation species concept

Edward Bagnall Poulton was the first to tackle the problem of the species definition 

in an evolutionary context. Poulton proposed to investigate how the meaning of 

“species” has changed from “that of the years before 1858, when the Darwin- 

Wallace conception of natural selection was launched upon the world” and laid out 

the research programme for spéciation largely adopted today. Poulton argued that 

species were syngamic (i.e. formed reproductive communities), the individual 

members o f which were united by synepigony (common descent) (Mallet, 2004).

Later, in 1942, Ernst Mayr published Systematics and the Origins o f the Species, 

which was the first comprehensive conceptual analysis of biological species. All 

subsequent debates about the biological species concept refer to Mayr (1942). This 

is the species definition he gave at that time:

“A species consists of a group of populations which replace each other geographically or 

ecologically and of which the neighbouring ones intergrade or hybridize wherever they are in 

contact or which are potentially capable of doing so (with one or more of the populations) in 

those cases where contact is prevented by geographical or ecological barriers “
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The validity o f the BSC has been under endless debate (Andersson, 1990; Noor, 

2002), the principal criticism being its inability to deal with uniparentally 

reproducing organisms (Andersson, 1990). However because speciation is still 

conceptualized at the level of individual, the biological species concept (BSC) is still 

considered by some as the “gold standard” (Wu, 2001).

2.3.2 Ecological species concept

“A species is a lineage (or closely related set o f lineages) which occupies an 

adaptive zone minimally different from that of any other lineage in its range and 

which evolves separately from all lineages outside its range” (Vanvalen, 1976). In 

other words two different organisms cannot occupy the same ecological niche at the 

same time. Andersson (1990) identified the ecological species concept as the most 

useful, in comparison with the Evolutionary and Biological species concepts. He 

affirmed “it has the potential to make a direct connection between environment and 

phenetic variation patterns and provides a useful conceptual framework for 

experimentation and observation at the interface between taxonomy and ecology and 

has the potential to explain on a universal basis variation in diversity and 

reproductive patterns”.

2.3.3 Evolutionary species concept

This concept was first purposed by Simpson (1951) who defined species as “a 

lineage (an ancestral descendant sequence o f populations) evolving separately from 

others and with its own unitary evolutionary role and tendencies”. This was 

subsequently modified by Wiley (1978). According to Andersson (1990), this 

concept fails to explain why different lineages are phenetically different. It fails, 

therefore, to explain why species arise, and why there are differences in diversity 

and reproductive strategies. (Andersson, 1990).

13



2.3.4 Phylogenetic (Diagnostic) species concept (PSC)

This concept was first presented by Cracraft in 1989. The author maintained: “a 

phylogenetic species is an irreducible (basal) cluster o f organisms, diagnosably 

distinct from other such clusters, and within which there is a parental pattern of 

ancestry and descent” (Cracraft, 1989). The main disadvantage of this definition is 

that, if  these criteria are applied strictly, either small groups of individuals, or even 

single specimens, could be defined as separate species, leading to ‘ ‘taxonomic 

inflation”  Mallet et al. (2006). On average, the PSC has recognized 48% more 

species than has the BSC (Agapow et al., 2004). This concept has been described as 

a “fine-grained” strategy and far from the “broad-brush” biological species concept 

(Isaac et al., 2004). Considering that phylogenetic tools have been widely used to 

solve species problems in the last years, it is important to recognize the limits to 

diversity under the PSC.

The Biological species concept has been the most widely used to define species 

complexes in Anopheles. However, at present, the number of new species is on the 

increase as a result of the use of DNA-based techniques. Harbach (2004) pointed out 

that one o f the problems involved in identifying species by DNA sequence 

comparison, lies in the fact that many of the sequences submitted into databases like 

GenBank may be from specimens that have been wrongly identified. This author 

maintained that “the modem techniques must be integrated with classical 

morphological analysis to determine the correct identification o f available names for 

species concepts, previously based solely on anatomical characters” (Harbach, 

2003).

Regardless o f the species concept used for Anopheles, it is indisputable that the 

identification of sibling species can influence the efficiency of control measures. 

Many control programmes are unsuccessful as they fail to target the particular 

Anopheles species involved in malaria or filariasis transmission. In the following 

pages, a review of the molecular methods employed in the identification of species 

is presented.
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In Anopheles mosquitoes, many of the currently known species were originally 

identified using morphological characters. However, anopheline mosquitoes suffer 

from the limitation that many species differ in very few characteristics of adult or 

immature morphology (White, 1977b). Moreover, morphological variation inside 

species has also been observed (Hwang et al., 2004; Krzywinski and Besansky, 

2003) and this has added to the confusion in the identification. The following are 

some o f the most common molecular techniques used in the identification of 

species.

2.4.1 Allozymes

In the mid-1960s, protein electrophoretic techniques generated a revolution in 

population genetics and evolutionary biology; allozymes were the most widely used 

molecular markers previous to the appearance of PCR-based techniques. Allozymes 

of a given enzyme are heterozygous products of different alleles at a specific locus 

(Loxdale and Lushai, 1998). This method is based on the property of proteins to 

migrate at different rates in a supporting media when applying them electric current, 

due to differences in their net charge; as a result, different electrophoresis patterns 

are obtained among populations. In insects, allozymes have proven to be useful to 

differentiate sibling species, for instance members of the Anopheles gambiae 

complex (Mahon et al., 1976), Drosophila sibling species (Ayala and Powell, 1972), 

cryptic species of An. albitarsis in Brazil (Narang et al., 1993). They are still being 

used in population studies (Kaya and Isik, 2006; Takada et al., 2006; Uyeda and 

Kephart, 2006; Weisrock and Larson, 2006), although their utility has been clearly 

replaced by DNA-based studies.

2.4.2 DNA molecular markers

The main advantage of DNA molecular markers when compared with protein based 

techniques is that greater levels of polymorphism are detected. In addition DNA 

markers can be used with small amounts of insect material, and with stored, dry or

2.4 Molecular markers for species studies in malaria vectors
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old samples (Loxdale and Lushai, 1998; Townson et al., 1999). The first DNA based 

technique to become popular was restriction enzyme analysis. This appeared in the 

1970s and was widely used in population genetic studies. It was subsequently 

followed by fingerprinting approaches and mitochondrial DNA in the 1980s. In the 

early to mid-1990s, PCR primers and advances in sequencing technology greatly 

increased the rate of collection of DNA data, to the point where the majority of 

phylogenetic studies involve a molecular component (Caterino et al., 2000; 

Macdonald and Loxdale, 2004; Simon et al., 2006).

DNA molecular markers have been widely used to answer evolutionary questions in 

recent years and their contribution has enhanced the value o f morphological and 

ecological data, making substantial contributions to the evolutionary biology of 

insects in the process (Caterino et al., 2000). Although the multiple molecular 

genetic studies have resulted in little change in the internal classification o f the 

genus Anopheles (Harbach, 2004), their contribution in addressing questions about 

anopheline phylogenetics, biogeography, the nature of species boundaries, and the 

forces that have structured genetic variation within species is doubtless (Krzywinski 

and Besansky, 2003).

It is, however, a requisite for the success of phylogenetic studies, to select an 

appropriate genetic marker (Lunt et al., 1996). This should provide consistent and 

contrastable information about evolutionary processes and phylogenetic 

relationships among organisms. In the following pages a brief description o f the 

most commonly used molecular markers is presented.

2.4.3 Mitochondrial DNA (mtDNA) markers

Mitochondrial DNA (mtDNA) is a small, single, covalently closed circular molecule 

(Avise et al., 1987), except in some cnidarians that seem to have one or two linear 

molecules (Warrior and Gall, 1985). It is usually about 16-20 kilobases long.

Despite some variation in size, the coding function o f the mitochondrial genome 

remains relatively stable in animals. In general, mitochondrial DNA codes only for 

genes involved in the mitochondrial translation apparatus, electron transport, and
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oxidative phosphorylation (Ballard and Rand, 2005). The mitochondrial genome 

typically encodes for 13 protein subunits o f the oxidative phosphorylation, the two 

rRNAs o f the mitochondrial ribosome, and the 22 tRNAs necessary for the 

translation o f the proteins encoded by mtDNA (Boore, 1999). The most distinctive 

feature o f metazoan mitochondrial genomes is their extremely compact gene 

organization. Apart from the replication origin region, the genome comprises 

discrete genes. Introns, pseudogenes, repetitive DNA, and sizeable spacer genes are 

absent (Avise et al., 1987; Saccone et al., 1999).

Due to its ease of isolation, high copy number, the absence (or reduced rates) of 

recombination (Birky, 2001), conservation of sequence and structure across 

metazoa, and the range o f mutational rates in different regions of the molecule 

(Harrison, 1989), the use of mtDNA has become standard for many phylogenetic 

studies (Caterino et al., 2000; Simon et al., 2006). It has been used as a valuable tool 

for filling the gap between population genetics and systematics (Avise et al., 1987) 

and is believed to be useful to address long-standing contentious issues in dipteran 

phylogeny (Cameron et al., 2007).

Among the many mitochondrial genes that have been studied, the protein coding 

regions Cytochrome Oxidase subunits I (COI) and II (COII) have been extensively 

used for phylogenetic inference alone or in combination with other sequences, and 

have proven to be phylogenetically informative in many insect groups (Chen et al., 

2003). Other mitochondrial markers widely used in insect molecular systematics are: 

16S and 12S rDNA subunits, followed by genes COIII, NADH dehydrogenase 5 and 

cyt b to a lesser extent and finally genes ND2, ND4 and ND1 which have received 

only isolated attention (Caterino et al., 2000). Further discussion of COI is presented 

in Chapter 4; in this section, the utility of other markers is discussed.

2.4.3.1 Cytchrome oxidase II (COII)

This is the terminal member of the mitochondrial inner membrane electron transport 

chain; one of three mitochondrially-encoded subunits. Its functions are to generate 

the adenosine triphosphate (ATP) required for cellular processes. The COII gene
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region has been used to understand the phylogenetic relationships in Lepidoptera 

species (Silva-Brandao et al., 2005) and Diptera species (Ekrem and Willassen,

2004; Han and Ro, 2005). It has also proved useful in studying the genetic structure 

o f Africanized honeybees in Brazil and Uruguay and to understand how they were 

introduced into the New World (Collet et al., 2006). Although it has not been as 

widely used in Anopheles species as COI, COII appears valuable in the 

identification o f some Anopheles species (Chen et al., 2004; Goswami et al., 2005; 

Junkum et al., 2005; Park et al., 2003).

2.4.3.2 Subunits 12S and 16S

The molecular marker 16S has been mainly applied to phylogenetic studies in 

micro-organisms. In insects it is used in studies o f mid-category levels, i.e. families 

or genera (Black and Piesman, 1994). It has not been used as extensively as other 

molecular markers, but there is evidence that this region can be important in 

phylogeny reconstruction for fossil specimens. In the termite Mastotermes 

electrodominicus preserved in Oligo-Miocene amber (25 million to 30 million years 

old) the analysis o f the 16S together with the nuclear 18S rDNA confirmed 

morphological cladistic analyses of living dictyopterans (termites, cockroaches and 

mantids) (Desalle et al., 1992).

The 12 S gene region has proved to be highly conserved and therefore useful to infer 

phylogenetic relationships among higher categorical levels, phyla or subphyla 

(Ballard et al., 1992).

2.4.3.3 NADH Dehydrogenase subunits 4 and 5 (ND4 &ND5)

ND5 is one o f the fastest-evolving mitochondrial genes (Clary and Wolstenholme, 

1985). In contrast with other widely used molecular markers like cyt b and 12S/16S 

rRNA genes, the main advantages that ND5 offers are (1) ease o f alignment, (2) 

length (ca. 3.4 kb), and (3) it contains more phylogenetically informative variation at 

1st and 2nd codon positions. Moreover, the ND4/ND5 gene regions are usually easy 

to amplify and sequence (Miya et al., 2006).
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In mosquitoes, ND5 have been used to infer the genetic structure o f Aedes 

albopictus in Brazil (Birungi and Munstermann, 2002), Anopheles farauti s.s. in 

Vanuatu (Reiff et al., 2007) and it was used in the detection of population expansion 

o f An. arahiensis and An. gambiae in Africa (Donnelly et al., 2001). In a study on 

phylogeny reconstruction of anopheline mosquitoes, the abundant variation at all 

codon positions found in the ND5 gene, allowed recovery o f the basal and most of 

the recent relationships (Krzywinski et al., 2001).

The subunit ND4 has received only isolated attention; however, it has proved to be 

valuable for understanding the genetic structure of the dengue vector Aedes aegypti 

in Venezuela (Herrera et al., 2006) and it has been useful for exploring interactions 

within and among populations of the vector of onchocerciasis Simulium ochraceum 

s.l. in Mexico (Rodriguez-Perez et al., 2006).

2.4.3.4 Cytochrome b (cyt b)

In anophelines, this molecular marker proved to be extremely conserved at the 

protein level, showing also a rapid saturation at synonymous positions. This 

probably accounted for the lack of a meaningful phylogenetic signal in the cyt b 

gene (Krzywinski et al., 2001)

The high rate of substitution in the mitochondrial genome generates a rich source of 

variable characters, which may produce high levels of heteroplasmy and homoplasy 

that characterize this molecule (Engstrom et al., 2004)

2.4.3.5 Heteroplasmy

Surveys o f mtDNA variation in natural populations o f animals have revealed that 

heteroplasmy, defined as the presence of more than one type o f mtDNA within cells, 

is a common event (Bermingham et al., 1986; Kann et al., 1998; Kijewski et al., 

2006; Kmiec et al., 2006; Morel et al., 2006; Nardi et al., 2001; Shigenobu et al., 

2005). It has been related to multiple diseases in humans, including cancer 

(Chinnery et al., 2002). Reports of heteroplasmy have come from insects o f different
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orders. Heteroplasmy have been detected within individuals of Cochliomyia 

macellaria (Diptera: Calliphoridae) (doValle and deAzeredoEspin, 1995) and 

Cochliomyia hominivorax (Vargas and Espin, 1995). It has also been found in 

coding regions in grasshoppers of the genus Chitaura (Walton et al., 1997). In the 

genus Anopheles, heteroplasmy has been reported in Anopheles gambiae (Caccone 

et ah, 1996). This event is particularly common in the control region (Kann et al., 

1998), although it has also been reported in different regions o f the mitochondrial 

genome ND2-COIII (Kijewski et ah, 2006), the cytochrome oxidase I (Steel et al., 

2000; Walton et al., 1997).

Much o f the variation in mtDNA haplotypes in individuals is the result of insertions, 

deletions and duplications in the mitochondrial genome (Kann et al., 1998). There 

was concern that heteroplasmy might be extensive and complicate mtDNA study, 

but empirical experience proved that these cases were unusual and therefore of little 

impact in routine study of animal mtDNA (Avise et al., 1987).

2.4.3.6 Pseudo mitochondrial genome

Nuclear mitochondrial pseudogenes are defined as nuclear copies of mitochondrial 

sequences that show high similarity with mtDNA sequences (Lopez et al., 1994). In 

some species they have been detected to occur in very high copy numbers and can 

be preferentially amplified with respect to mtDNA, even when using universal 

primers (Benesh et al., 2006). Such pseudogenes account for some instance of false 

mitochondrial sequence heteroplasmy (Abbott et a l ,  2005; Parr et al., 2006). 

According to Benansson et. al. (2000) “They complicate the use of mtDNA as a 

molecular marker in evolutionary studies. They have been reported in a variety of 

organisms, predominantly in mammals and birds (Benesh et a l ,  2006). Nuclear 

mitochondrial pseudogenes have been found in the genus Anopheles (Richly and 

Leister, 2004), however their existence cannot be underestimated since they are 

present in other insects (Bensasson et al., 2000). According to Benesh et al. (2006), 

recognition o f nuclear mitochondrial pseudogenes is necessary in any study utilizing 

mtDNA. Heteroplasmic mtDNA can be differentiated from pseudogenes due to their
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absence o f stop codons, indels or radical amino acid changes (Magnacca and 

Danforth, 2006). These strategies were applied in this study.

2.4.3.7 Homoplasy or conserved evolution

Homoplasy occurs when the same character state evolves independently in two 

separate lineages (Brown, 1999). This phenomenon was first described for 

coincident morphological characters. In the same way, at the molecular level, we 

see repeated or back mutations at a specific nucleotide position. If in some specific 

positions in the genome rapid changes occur, by recurrent base substitutions or other 

events, then it is expected that some homoplasious changes will occur (Avise et al., 

1987). The occurrence o f homoplasy has been of concern since it can obscure the 

real number o f evolutionary events in a sequence data and many phylogenetic 

studies rely on mitochondrial data only. It has been responsible for incorrect 

phylogeny reconstruction in some species (Naylor and Brown, 1998).

On the other hand, several approaches for dealing with this situation have been 

successful. Character or character-state weighting have been used to deal with 

homoplasy in sequence data in parsimony analysis. For instance, homoplasy is 

thought to occur more frequently as a result of transitions than transversions; 

therefore, the weight given to transitions as phylogenetic characters should be lower 

than that given to transversions to (Meyer, 1994).

According to Avise (1987) “typical empirical surveys o f mtDNA effectively involve 

assays of at least several hundred base-pairs of information per individual. When 

viewed this way, any widespread and intricate similarities present in mtDNA are 

most unlikely to have arisen by convergent evolution and so they must primarily 

reflect phylogenetic descent rather than convergent mutation” In this respect, 

homoplasy is not the alarming problem in phylogenetic studies, as originally it was 

considered by some authors.
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2.4.4 Nuclear ribosomal DNA (rDNA)

Ribosomes are the sites of protein synthesis in all organisms, a complex composed 

of individual ribosomal RNA (rRNA) molecules and more than 50 proteins. The 

functional eukaryotic ribosomes are composed of a small and a large subunit.

Proteins in the two subunits differ, as do the molecules of rRNA. Within Diptera, the 

rDNA genes form a tandemly repeated transcriptional unit, which contains around 

500 copies (Collins et al., 1987). This has contributed to making this region one of 

the most widely used in molecular population studies. PCR amplification and 

sequencing can be performed more easily than when using single copies in the 

genome (Caterino et al., 2000). Each transcriptional unit comprises the intergenic 

spacer (IGS) and genes for the 18S, 5.8S and 28S ribosomal RNA (rRNA) separated 

by internal transcribed spacers (ITS1 and ITS2). A more comprehensive review of 

the different regions of the ribosomal DNA is presented in Chapter 5.

2.3.4.I. Concerted evolution in rDNA

Concerted evolution was first observed in the spacer sequences between 18S and 

28S gene regions in the rDNA of species of frogs of the genus Xenopus. The authors 

observed that the intergenic spacer (IGS) was identical in members of the same 

species but about 10% different between X. laevis and X  mulleri. The conclusion 

was that these gene regions had evolved together through a “correction” mechanism. 

This process later became known as concerted evolution: a pattern in which several 

hundred rDNA sequences within any one species show little or no genetic diversity 

whereas the sequences o f different species diverge (Brown et al., 1972). 

Subsequently, the concept of concerted evolution became accepted, and the genes 

affected were then considered of value in phylogenetics.

According to the model presented by Brown et al. (1972), concerted evolution 

occurs as a consequence of unequal crossover taking place randomly among 

members o f a gene family, a repeated pattern of this event has the effect of 

homogenizing the member genes. Other processes have been used to explain the 

random fixation of variants in species of concerted evolution: unequal chromatid (or
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chromosome) exchange gene conversion and gain and loss by transposition (Dover, 

1982). Gene conversion is the major mechanism contributing to the phenomenon of 

concerted evolution (Amstutz et al., 1985; Sugino and Innan, 2006). The main 

difference between gene conversion and unequal crossover is that the latter may 

increase or decrease the number of genes, whereas the former does not. The process 

of gene conversion is however not completely well understood (Nei and Rooney, 

2005).

In several recent studies, the rate of homogenization has proved to be low and as a 

result, significant levels of intraspecific rDNA polymorphisms are found. For 

instance, concerted evolution appears to be extremely ineffective in the grasshopper 

Podisma pedestris; this species presents several highly divergent ribosomal DNA 

groups within individuals of the same species (Keller et al., 2006). Although the 

validity o f the rDNA as a suitable molecular marker for phylogenetic studies has 

been questioned (Alvarez and Wendel, 2003), it is important to consider that most of 

these ineffective cases of concerted evolution have been reported in plants. That is 

why it is still extensively used in phylogenetic studies in insects.

2.5 The Anopheles barbirostris problem

Since first reported in 1884 by Van der Wulp Anopheles barbirostris has been 

described as a single “species.” As with the Maculipennis Group in Europe, it was 

variations in malaria vector capacity that made researchers suspect that this was in 

reality a species group. An exhaustive study performed by Reid (1962) in Malaysia 

lead to the conclusion that in fact this was a group of “half-a-dozen or more distinct 

though exceedingly similar-looking species”, the Barbirostris Group. This Group is 

placed in the Myzorhynchus Series.

Genus Anopheles

Subgenus Anopheles

Series Myzorhynchus

23



2.5.1 Morphological Description: Barbirostris Group and Barbirostris 

Subgroup

The Barbirostris Group is a well marked group of 13 species (Harbach, 2004), which 

resemble one another very closely, especially as adults. Reid (1968) described them 

as follows:

“Female with very shaggy all-black palps and a tuft of black scales on sternite VII of the 

abdomen. Other sternites usually with a few scattered white scales in both sexes. Sides of 

thorax often with some white scales associated with the groups of setae. Wing usually with a 

pale fringe spot at 5.2 and a few scattered pale scales on the basal half of the costa. Inner 

shoulder hair of larva branched from near the base, outer clypeal hairs usually bushy”.

Reid (1962) divided the group into 2 subgroups based on adult, larval and egg 

characters. Years later, two more species were included. They have not been placed 

in either o f these two groups.

An. freyi Meng

An. kore icus  Yamada and Watanabe

Barbirostris subgroup

An. barb irostris  van der Wulp

An. cam pestris  Reid

An. dona ld i Reid

An. francisco i Reid

An. hodgkin i Reid

An. po llica ris  Reid

Vanus subgroup

An. ahom i Chowdhury

An. barbum brosus  Strickland & Chowdhury

An. m analangi Mendoza

An. re id i Harrison

An. vanus Walker

Adult species from the Barbirostris and Vanus Subgroups are distinguished as 

follows:

“Wing with lower apical pale fringe spot wide, at least from 3 to 4.1; no ventral pale scales on 

abdomen (Vanus Subgroup).

Wing with lower apical fringe spot narrow, opposite 3 only; some ventral pale scales nearly 

always present on abdominal segments ll-VI (Barbirostris Subgroup) (Reid, 1968).
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More details related to the taxonomy and structure of the Barbirostris Subgroup are 

presented in Chapter 6.

2.5.2 Distribution

In contrast to the Bancroftii Group, which is more Australian in its range, the 

Barbirostris Group is oriental (Reid, 1968). The northernmost records in the west 

occur in Pakistan and Nepal, while in the east, members have been collected in 

Kwangtung, Szechwan and Yunnan provinces o f China, and Hainan and Taiwan.

The center o f distribution for the group appears to be Malaysia, but this may be a 

result of the large amount of work done by Reid in that country (Harrison and 

Scanlon, 1975).

In view o f the difficulties of identifying An. barbirostris Van der Wulp with 

accuracy unless early stages as well as adults are available, the range of this species 

is uncertain at present (Reid, 1968) but it is probably present in these countries: 

Bangladesh, Cambodia, China, India, Indonesia, Laos, Malaysia, Myanmar, Nepal 

(possibly), Pakistan, Sri Lanka, Thailand, Vietnam, East Timor. It is common in 

Peninsular Malaysia and appears to range throughout the Indonesian archipelago 

from Sumatra to Sulawesi (where it is certainly present) and the Moluccas. 

Anopheles barbirostris is very abundant and widely distributed in Thailand. It is 

likely to be found anywhere where a thorough search is made, except at higher 

elevations or in dense primary forest.

In some areas Gust north of Bangkok), in the rice plains along the Chao Phrya River, 

An. campestris is the predominant member of the Barbirostris Subgroup (Harrison 

and Scanlon, 1975). An. campestris appears to be largely confined to broad alluvial 

plains (therefore the name campestris) but there have been few studies using the 

early stages to corroborate findings in many countries. Outside Malaysia it has been 

positively identified only in Thailand (Harrison and Scanlon, 1975; Reid, 1968) and 

Cambodia (Harrison, 1975). Reid (1968) regarded An. campestris as absent from 

Sumatra and Java and the rest of the archipelago and confined to the mainland of 

Southeast Asia.
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The distribution of other members of the Barbirostris Subgroup is also unclear for 

the reasons mentioned before. An. donaldi has been reported in Thailand, but it is 

probably restricted to the southern region (Harrison and Scanlon, 1975). Reid (1968) 

affirmed that An. donaldi is locally common in central and southern Peninsular 

Malaysia. It is also the most common member o f the group in Borneo and may be 

present in Sumatra and Java. An. hodgkini and An. pollicaris are uncommon forest 

species. The former appears to be quite widespread, ranging apparently from 

Myanmar to Indochina, Thailand, Peninsular Malaysia and Borneo. The latter has 

been reported only in Malaysia and Thailand, although two pupae have been seen 

from Nepal (Harrison and Scanlon, 1975; Reid, 1968).

2.5.3 Biology

Members o f the Barbirostris Group occupy larval habitats usually associated with 

still water. O f the species in the Subgroup, only An. barbirostris and An. campestris 

larvae are normally found closely associated with human habitation in such habitats 

as rice fields, ditches and open temporary ground pools. The remaining species of 

this group are forest dwelling species with the larvae found in shaded stream pools 

(Harrison and Scanlon, 1975).

2.5.4 Feeding preferences

An. barbirostris was considered a zoophilic species, harmless to humans, except in 

Sulawesi, where this species was seen to be highly or at least moderately 

anthropophilic (4180 = 5%) (Lien et al., 1977), and on the island of Java (Reid et al., 

1979). In Thailand, this species had been observed biting people, but not on a large 

scale except in situations where the normal host animals were absent. However, in 

some regions of Southeast Asia “man-biting” varieties o f An. barbirostris have been 

reported in the past. Harrison and Scanlon (1975) pointed out the importance of 

studying these varieties to understand the real structure of the species group. In 

India, An. barbirostris is generally regarded as a zoophilic species though it will bite 

people occasionally. Human blood has been detected in female mosquitoes from the
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north o f Madras. It has been reported that in the absence o f cattle, An. barbirostris 

will readily bite humans (Rao, 1981).

Anopheles campestris has been ranked as the third species of Anopheles in Southeast 

Asia most attracted to humans. This is a truly anthropophilic species which under 

comparable conditions is more attracted to humans than to other animals. It enters 

houses to bite, and significant numbers may remain inside to rest by day, though 

probably the majority rest outside. These habits contrast with those of An. 

barbirostris, which it resembles so closely morphologically (Reid, 1968).

Some confusion exists related to the feeding preferences o f An. donaldi. Adult 

behaviour has proven to be very variable and sometimes unusual for a member of 

the Barbirostris Group. As with some members of the Umbrosus Group, An. donaldi 

actively bites in shaded forest during the day and then enters settlements and houses 

at night to feed (Harrison and Scanlon, 1975). Little is known about the feeding 

preferences of other members of the Barbirostris Subgroup.

2.5.5 Outdoor and indoor behaviour

In a study carried out in Thailand, Anopheles barbirostris was the species with the 

highest indoor biting activity. The number of specimens collected at human bait 

indoors was 111 compared with over 69 found outdoors. It has not been 

incriminated as a malaria vector in Thailand (Abu Hassan et al., 2001).

Anopheles campestris is highly endophagic. This species have been found biting 

humans indoors at a ratio of 4.4 : 1 over humans outdoors (Moorhouse, 1965). Of 

the specimens collected by Moorhouse (1965), 85% were caught between 20:00- 

02:00 hours. This study also showed An. campestris is endophilic when pyrethrum 

knockdown catches revealed 51 campestris resting in 15 o f 27 houses between 

16:00-17:30 hours.

In the words o f Harrison (1975), An. donaldi is reported to “readily bite man, but 

show a preference for cattle; enter houses to bite at night, but show a preference to

27



bite outside; leave houses before daylight; and bites in the shaded forest during 

daylight hours”.

2.5.6 Malaria vector status

In the past, An. barbirostris had been incriminated as a malaria vector in different 

regions o f Southeast Asia; however, since the recognition o f the Barbirostris Group 

(Reid 1962) some of these reports were corrected. For instance the “An. 

barbirostris” reported as a malaria vector from the west side of the Malaysian 

peninsula and that from Borneo are now recognized as An. campestris and An. 

donaldi, respectively (Harrison and Scanlon, 1975). In Sulawesi this species has 

been confirmed to be a malaria vector (Lien et al., 1977). Initial evidence indicated 

that this species could be composed by two different forms: the ordinary An. 

barbirostris and a vector form (Reid, 1968). However a careful morphological 

analysis by Reid et al. (1979) concluded all varieties are conspecific and belong to a 

single species: Anopheles barbirostris.

Anopheles campestris was incriminated as a vector of malaria in Malaysia (Reid, 

1968). In a more recent paper, An. campestris has been catalogued as an important 

malaria vector in Thailand, related to an outbreak in the province of Sa Kaeo. 

(Apiwathnasom et al., 2002).

2.5.7 Filaria vector status

It was not until the discovery o f a new filarial parasite of man in West Timor, 

Indonesia, that An. barbirostris was recognized as the vector of filaria 

(Atmosoedjono et al., 1977a). This species is also likely to be the main vector in 

East Timor due to its widespread occurrence and anthropophilic behaviour, showing 

exophagic and endophagic biting habits (WHO, 2000). Anopheles campestris and 

An. donaldi have been incriminated as vectors of filariasis. Anopheles donaldi is the 

vector of periodic Brugia malayi in the inland hills areas o f Peninsular Malaysia and 

is probably a vector of this parasite in Borneo (Reid 1968). Peninsular Malaysian 

An. donaldi were found to have a very low level of susceptibility to Wuchereria
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bancrofti (Wharton et al., 1963); however, de Zulueta (1957) considered this as a 

vector of this parasite in Borneo. It has been also described as a filarial vector in 

Flores (Atmosoedjono et al., 1977b).

Since the research for this thesis was completed, Saeung et al. (2007) have carried 

out a molecular phylogenetic study with laboratory reared specimens o f the 

Barbirostris Subgroup. A discussion of their findings in relation to those from this 

thesis is given in Chapter 8.
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CHAPTER 3

3 Material and Methods

3.1 Specimens received

Specimens were obtained either through Dr. Ralph Harbach of the Natural History 

Museum, London or from Ms. Kobkan Kanjanopas, a senior entomologist of the 

Ministry o f Health of Thailand. In addition two specimens were obtained from 

Vietnam. The list of localities where mosquitoes were collected is given in Table 

3.1. Field workers were given the following guidelines for killing and storage of 

specimens.

1. Once collected, leave mosquitoes in a tube in sunlight. This procedure is 

used to kill and dry mosquitoes at the same time. Alternatively they can be 

left in a freezer but care has to be taken to avoid condensed moisture inside.

2. Place dead mosquitoes in 1.5 mL eppendorf tubes (a maximum of 5 

mosquitoes per tube).

3. Put tubes containing mosquitoes in plastic bags containing silica gel and 

these bags in plastic containers provided. This is to absorb all the water and 

preserve them dry. Please observe that silica gel should always be blue. If it 

appears pink, please proceed to change it.

4. Mosquitoes were kept in the lab at room temperature. Silica gel colour was 

regularly checked.

Unfortunately, the field staff did not follow instructions 2 and 3 correctly. Instead of 

using eppendorf tubes, dozens of specimens were placed in plastic tubes. Moreover, 

the silica gel came pink. As a result many of the specimens had poor quality DNA, 

which was reflected in the difficulties found in PCR amplification.
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Table 3.1 List of dates and sites of collection of this study, collection methods and 

specimen codes.

Collection site Date of 
collection

Number
collected

No sequenced 
(No processed)

Collection
method

Specimen
codes

Indonesia
Palu, Central 
Sulawesi. Sulawesi. March, 1993 9 0(9) Na pal(n)..........
Padang, Cermin- 
Lampung. Sumatra.

September,
1993 8 6(8) Na 1 (n)

Aebubu-Paga-
Flores

March-April,
1994 18 0(18) Na f (n)

Lengkong Sukabumi. 
Western Java March, 1994 10 1(10) Na s2 (n), s7 (n)
Pelabuhan, Ratu- 
Sukabumi. W.Java

February,
2003 3 0(3) Na s7 (n) ______

Jambu, Central 
Java. April, 1994 13 0(12) Na j(n)
Lasung, Kalimantan May, 2003 13 9(13) Na a(n)
Kalimantan No data 4 4(4) Na k(n)
Thailand

Aranyaprathet.
Sakaeo May, 2006 113 57 (85)

Animal bait 
and resting

bsk(n), csk 
(n), S(n), * **

Mueng, Trat April, 2006 2 9 6 * 37 (84)
Animal bait 
and resting

btr (n), ctr 
(n), T(n) **

Mae Sariang, 
Mae Hong Son August, 2000 60 40 (24)

larvae as 
progeny 
broods and 
no data for 
adults th(n)

Mae Sod. Tak 2006 2 2(2)

adults as 
progeny 
broods ta(n)

Maeramat, Tak
September,
2006 22 7(14) Na ta(n)

Sangkhlaburi
Kanchanaburi

September,
2006 22 5(H ) Na kh(n)

Vietnam

Phuoc Long, Binh 
Phuoc

May, 2002 1 1(0) Na vl

Tuy Phong, Binh 
Thuan

October, 2003 1 1(1) Na v2

* Specimens were in bad condition as many were placed in the same tube.

** Specimen codes starting with “b” were identified as An. barbirostris in the field. 

Those with starting with “c” as An. campestris. In capital letters, those 

morphologically identified.

Na: information not available
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3.2 Collection sites

3.2.1 Sampling sites in Indonesia

The Indonesian archipelago is located between the Indian and the Pacific Oceans, 

close to the equatorial line and bridges two continents. It is composed o f 17,508 

islands with approximately 6000 of those inhabited. The major and most populated 

islands are Kalimantan (the Indonesian portion of the island of Borneo), Java, 

Sumatra, Sulawesi and Western New Guinea. Approximately 80% of the total 

population live in rural areas (Suroso et al., 2006). Indonesia is mainly mountainous 

with about 400 volcanoes. The land area is generally covered by thick tropical rain 

forests, where fertile soils are continuously replenished by volcanic eruptions. The 

weather and climate of Indonesia is typical of equatorial regions. Rainfall is heavy 

and well distributed around the year almost everywhere. Most places receive 180- 

280 mm per month throughout the year (NOAA, 2007). Although collections of 

specimens were carried out in six different regions o f Indonesia, we could only 

obtain results with specimens from Sumatra, Java and Kalimantan. Details of these 

collection sites are given below.

Lampung, Sumatra

This province is located in the southern tip of the island of Sumatra, the largest 

volcanic island in the Indonesian archipelago (Bellon et al., 2004). Lampung has 

undergone the largest changes in land use when compared with other regions of 

Indonesia due to a governmental colonization programme which led the population 

to increase more than 10-fold, rising from 376,000 inhabitants in 1930 to 5,250,000 

in 1986 (Imbemon, 1999).

Pelabuhan, Ratu-Sukabumi, Western Java

Java is a densely populated island in the Republic of Indonesia . Malaria has all but 

vanished from the populous cities but is still commonly found in some rural areas, 

with widespread rice cultivation contributing to the problem. Climate is warm (21- 

28 °C) and humid (70-95°C) with average rainfall up to 1500 mm. The main rainy 

season is in November to April.
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Collection sites in Southeast Asia.

1) Mae Hong Son, 2) Tak, 3) Kanchanaburi, 4) Sa Kaeo, 5) Trat, 6) Bin Phuoc, 

7) Bhin Thuan, 8) Sumatra, 9) Western Java, 10) Central Java, 11) Flores, 12) 

Kalimantan, 13) Sulawesi
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Lasung (Lasoen, Lasoeng), South Kalimantan

Kalimantan is the Indonesian part of the island of Borneo. Being crossed by the 

Equator, Kalimantan climate is warm all year, rainy seasons occur from January to 

March. The average temperature is 33.1 °C and the lowest is 22.0 °C. The average 

humidity ranges from 79% to 86%. Collections were carried out in Lasung place, 

situated in Kota Baru, South Kalimantan.

3.2.2 Sampling sites in Thailand

The kingdom of Thailand is situated in the centre of the Southeast Asian mainland. 

Laos and Cambodia border it in the east, Mynamar in the west and Malaysia in the 

south. The country is divided into 76 Provinces, which are the first order 

administrative units.

Thailand has two types o f climate. A savanna type climate, found in the north, 

north-east and central region; have a climate with three distinct seasons: rainy, from 

June to October; cool, from November to February; and hot of highest temperatures 

and sunny weather from March to May. The southern region has a characteristic 

tropical rainforest climate, a number of microclimates can be found. In this region, 

temperature is almost the same all the year, this is on average 28 °C, with March and 

April normally the driest months of the year.

Collection sites in this country are all located in border regions, where malaria is 

still prevalent.

Aranyaprathet, Sakaeo (Sa Kaeo, Sakaew)

This is one o f the six districts of Sakaeo province, located in the east of the country, 

on the border with Cambodia. The north of the province is covered with the forested 

mountains and the south is a mostly deforested foothill plains region.

Rainy season occurs from June to October. Main crops are rice, followed by maize, 

cassava and sugarcane (Apiwathnasorn et al., 2002). Sakaeo was selected as 

asampling site, taking into consideration the dramatic increase of malaria cases in 

the recent years. It was regarded as a low-risk area until 1996, and it currently
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reports one o f the 10 provinces with highest malaria indices in Thailand (Thimasarn 

etal., 1995).

Trat

This province is located in the southeastern subregion (subregion 4), in the border 

with Cambodia, close to the Gulf of Thailand. This province has reported the highest 

malaria incidence and the highest number of imported cases (Thimasam et al.,

1995), with most of these cases contracted in Cambodia. This province includes 

some hilly forested regions where malaria control is difficult to achieve.

Mae Sariang, Mae Hong Son

Mae Sariang is a small mountainous district located in the Mae Hong Son province, 

alongside the Yuam river in the northern subregion in Thailand (Rattanarithikul et 

ah, 2005), in the border with Myanmar. This province is one of the poorest of 

Thailand, mainly populated by hill tribe minorities, dedicated to growing rice. The 

area is commonly affected by floods.

Tak province

Tak province is located in the western second subregion (Rattanarithikul et ah, 

2005), in hidden mountainous area at the border with Mynamar, with the Moei river 

as a natural boundary. In this province, two collection sites are located:

Mae Sod (Mae Sot) district, Tak

This area is of particular interest for malaria control programmes due to having the 

highest malaria incidence in the country (Thimasarn et ah, 1995) and high levels of 

resistance levels of malaria by Plasmodium falciparum (Tasanor et ah, 2006).

Maeramat (Mae Ramat) district, Tak

It is one o f the eight districts o f the Tak province, population are mainly dedicated to 

field crops.
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Sangkhlaburi district, Kanchanaburi

Kanchanaburi is Thailand’s largest province, located contiguous to Tak province, in 

the western subregion, also in the Thai-Mynamar border. Sangkhlaburi is a rural 

district located 230 km to the north of the province. This region includes large 

valleys, plains, caves and waterfalls and many protected areas (Rattanarithikul et al., 

2005). This province contains a number of malaria-endemic remote villages along 

the Thai-Mynamar border (Thimasam et ah, 1995)

3.2.3 Sampling sites in Vietnam

Officially known as the Socialist Republic of Vietnam, is the easternmost nation on 

the Indochinese Peninsula. It borders China to the north, Laos to the northeast, and 

Cambodia to the southeast. Population is composed of various ethnic minority 

groups, living from subsistence farming, mainly rice and forest labour. Cases of 

Plasmodium vivax and P. falciparum occur in this region, with the majority of the 

cases taking place from October through December-January, during and after the 

rainy season (Hung et ah, 2002).

3.3 DNA extraction

Prior to DNA extraction mosquitoes were observed in the microscope. Spare 

segments o f body like legs, proboscis, antennae, etc were separated to avoid cross 

contamination among specimens. Presence of fungus was also observed.

The DNA extraction method was based on that described by Ballinger-Crabtree et 

ah (1992) with the modification used by Townson et ah (1999). This involved a 

more through processing of DNA through phenol/chloroform/isoamyl alcohol 

(Ballinger-Crabtree et ah, 1992; Townson et ah, 1999).

Reagents:

Lysis buffer, which was prepared using the following reagents:
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100 mM Tris-HCl

• 50 mM of Sodium Chloride

• 50 mM Ethylenediaminetetraacetic Acid (EDTA)

• 0.15 mM Spermine

• 0.5 mM Spermidine 

5 pL o f a solution of Proteinase K 

10% Sodium dodecyl sulphate (SDS)

Phenol:chlorophorm:isoamyl alcohol (25:24:1)

Chlorophorm:isoamyl alcohol. Ratio 24:1 

Ethanol 70% and 100%

10 M Ammonium acetate

Other solutions:

TE buffer (pH 8.0) 

l OmM T ris-H C l (pH8.0)

1 mM EDTA (pH 8.0)

3.3.1 Procedure:

• Grind individual mosquitoes/larvae/mosquito legs with a pestle in an 

eppendorf tube containing 270 pL lysis buffer, 5 pL of Proteinase K and 30 

pL of 10% SDS.

• Incubate overnight at 50 °C. In case of larvae maintained in alcohol, they 

were cleaned, before extraction, in double distilled water per 24 hours 

changing the water twice, in the process.

• Spin tubes briefly.

• Add equal volumes o f phenol: chlorophorm: isoamyl alcohol. Ratio 25:24:1. 

Components of this reagent form phases; it was shaken before use.

• Rotate gently for 20 minutes.

• Spin for 10 minutes at 14000 rpm at room temperature.

• Transfer upper phase to a fresh eppendorf and add equal volumes of 

chlorophorm:isoamyl alcohol. Ratio 24:1.
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• Mix gently and spin for 5 minutes at 14000 rpm room temperature.

• Remove upper phase and transfer to a fresh eppendorf.

• Add 0.2 volumes o f 10M ammonium acetate, mix very well by inverting the 

tube slowly several times.

• Add 2 volumes of 100% ethanol (stored at -20  °C); again mix well but 

gently. Place at -20  °C x 15 minutes.

• Spin at 4 °C for 30 minutes at 14000 rpm.

• Carefully discard the ethanol, avoid dislodging the pellet of DNA and wash 

with 200 pL of 70% ethanol (stored at -20  °C); the pellet should be visible 

either glassy, grey or pink.

• Spin at 4 °C x 5 minutes at 14000 rpm.

• Discard 70% ethanol (stored at -20 °C) carefully and allow the pellet to air 

dry for approximately 20-30 minutes at room temperature.

• Resuspend pellet in 200 pL of water or TE buffer (for whole adult or larval 

mosquitoes) or 20-30 pL (for mosquito legs).

• Samples were storage at 4 °C (a 20 pL aliquot) and - 80°C (remaining 

sample).

This is a variation of the method of Ballinger-Crabtree et al. (1992), this method 

incorporates the use of chloroform, taking advantage of the fact that proteins can be 

more efficiently denatured when two different solvents are used. It is also used to 

inhibit RNase activity. In addition, isoamyl alcohol reduces foaming during 

extraction (Maniatis et al., 1982).

DNA extraction method “DNA easy Blood and tissue kit” by QUIAGEN was also 

tested, however no clear advantages were observed over the method of Ballinger- 

Crabtree modified; therefore, the latter was selected for all DNA extractions.

3.4 Estimation of DNA concentration

DNA was then measured with the NanoDrop® ND-1000 Spectrophotometer.

1 pL of DNA sample is pipetted onto the end o f a fiber optic cable. A second fiber 

optic cable is then brought into contact with the liquid sample causing the liquid to
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bridge the gap between the fibre optic ends. Then the spectrometer utilizing a linear 

CCD array, analyze the light after passing through the sample. The instrument is 

controlled by special software run from a PC.

The reading at 260 nm allows calculation of the concentration of nucleic acid in the 

sample meanwhile; proteins show an absorption peak of 280 nm.

260/280: This ratio of absorbance was used to assess the purity o f DNA and RNA.

A ratio of ~1.8 is generally accepted as “pure” for DNA. If the ratio is appreciably 

lower, it may indicate the presence o f protein, phenol or other contaminants that 

absorb strongly at or near 280 nm.

260/230: This was a secondary measure of nucleic acid purity. The 260/230 values 

for “pure” nucleic acid are often higher than the respective 260/280 values. They are 

commonly in the range of 1.8-2.2. If the ratio is appreciably lower, this may indicate 

the presence o f co-purified contaminants.

Measure o f DNA was used to evaluate the efficiency of the extraction and 

purification methods.

3.5 PCR amplification of the Cytochrome Oxidase I (COI) mitochondrial 

gene region

A range o f different primers was needed to amplify this mitochondrial region. 

Primers bound with different efficiencies due to presence o f nucleotide substitutions. 

Primers designed and PCR conditions are described below:

3.5.1 Amplification of fragment COI-CULR

COI (Forward) 5’ (TTGATTTTTTGGTCATCCAGAAGT)3’ (Tm 64.3 °C) 

CULR (Reverse) 5’ (T AG AGCTT A A ATT C ATT GC ACT A AT C)3 ’ (Tm 60.5 °C)
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Primers COI and CULR (Crozier et al., 1989; Roehrdanz, 1993) modified by 

Townson (personal communication) amplified a fragment o f about 880 bp. Reaction 

mixture (50 pL) contained QIAGEN reagents as follow: lx  reaction buffer, 

containing Tris-Cl, KC1, and (NH4)2S 0 4; 0.2 mM of dNTPs; 125 nM of each 

primer; 1 unit of DNA polymerase; 1 . 5 - 3  mM of MgCl2 (depending on DNA 

quality) and finally 1-2 pL of DNA template. Thermal profile was as follows: 94 °C 

for 5 min, followed by 35- 40 cycles of 95 °C x 40 s., 50 °C x 1 min o f annealing 

temperature 72 °C x 1 min and a final extension temperature o f 72 °C x 10 minutes.

3.5.2 Amplification of fragment UEA3-UEA4

UEA3 (Forward) 5’ TATAGCATTCCCACGAATAAATAA (Tm 60.1 °C)

UEA4 (Reverse) 5’ AATTTCGGT C AGTT A AT AAT AT AG (Tm 54.2 °C)

Primers UEA3 and UEA4 (Lunt et al., 1996) were located upstream primers COI- 

CULR (See primers map). The 25 pL reaction mixture contained: 0.2 mM of 

dNTPs, 125 nM of each primer, 2 units of DNA polymerase and 1.95 mM MgCl2. 

The following thermal profile was used: an initial dénaturation temperature of 94 °C 

for 5 min, followed by 28-35 cycles of 95 °C x 40 s, 45-50°C x 1 min and 72 °C x 1 

min.

3.5.3 Designed primers

The following primers were designed using programme Primer3, v. 0.3.0 (available 

http://frodo.wi.mit.edu/cgi-bin/primer3/primer3 www.cgp. Basic primer properties, 

according to theoretical information, were also considered in their design. They 

were used with specimens o f difficult (low yield PCR) or impossible amplification 

(not amplified to date).

SEAF (Forward) CT AG AAGT AT AGT AG A A A AT GGGGC (Tm 59.2 °C)

SEAR (Reverse) TCATACAATAAATCCTAATAAACCAA (Tm 58.4 °C)

Based in DNA sequences of specimens collected from Southeast Asia.
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Kal COI (Reverse) TGGAAATGGGCAACAACATA (Tm 63.6 °C)

Based in sequences of specimens from Lasung, Kalimantan, Indonesia (lrst batch).

BarF 1 (Forward) C AC AT ATT ATT ACT C A AG A A AG AGG A (Tm 58.4 °C)

BarRl (Reverse) CAGGAAAATCAGAATATCGTCGAG (Tm 64.6 °C)

Based in sequences of specimens morphologically identified as An. barbirostris.

Optimal conditions of a PCR of these primers were similar to those defined for 

primers COI-CULR: A 25-50 pL reaction mixture containing, 0.2 mM of dNTPs, 

125 nM of each primer, 1 unit of DNA polymerase, 1.5-3 mM M gC f and 1-2 pL of 

DNA template. The PCR amplification conditions were defined as follows: Initial 

denaturation temperature of 94 °C for 5 min, followed by 30 - 35 cycles of 95 °C x 

40 s., 50-55 °C x 1 min of annealing temperature 72 °C x 1 min and a final 

extension temperature o f 72 °C x 10 minutes.

3.5.4 Degenerate Primers

Degenerate primers were used in a last attempt to sequence specimens that could not 

be amplified. Sequence data obtained in this project and available data from 

Genbank from An. coustani, An. pullus and An. sinensis (Hyrcanus Group) and An. 

barbirostris s.s. were retrieved and aligned. Substitutions were used to design 

degenerate sites.

KAL3 TGAGTCCCRTGTATTGTWGC (Tm 60.1 °C)

KAL2 T AC AT ART GG A A AT GRGC W AC (Tm 61,0°C)

Being W: A/T and R: G/A.

Since these primers were not useful in the amplification of difficult samples, they 

were not used in routine experiments. For this reason, PCR conditions and thermal 

profiles are not described in detail, however they were similar to those used for 

primers COI-CULR.
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3.6 DNA purification

After PCR amplification, products were concentrated and purified using QIAquick 

PCR Purification Kit Protocol (QIAGEN). This method is used to purify single- or 

double- stranded DNA fragments from PCR and other enzymatic reactions. In this 

project, it was employed to purify PCR products prior to being sent for sequencing.

It was only used for COI amplification products.

This method takes advantage of the fact that DNA adsorbs to the silica-membrane 

(in the column) in the presence of high salt while contaminants pass through it. 

Impurities are efficiently washed away, and the pure DNA is eluted with Tris buffer 

or water. DNA fragments ranging 100 bp-10 kb are separated from primer-dimers, 

nucleotides, polymerase and other contaminants.

Procedure was follow according to QIAquickSpin Handbook, available at:

http://wwwl.aiagen.com/literature/handbooks/PDF/DNACleanupAndConcentration

/OO Spin/1043789 HB.pdf. An exact description o f the procedure followed is 

detailed below:

Protocol

1. Add 5 volumes of Buffer PB to 1 volume of the PCR sample in an eppendorf tube 

and mix.

2. To bind DNA, apply the mix to the QIAquick column and centrifuge for 60 s. 

Discard flow-through.

3. To wash, add 0.75 ml of Buffer PE to the same column and centrifuge for 60 s.

4. Discard flow-through and place the column back in the same tube. Centrifuge the 

column for an additional 1 min.

5. Place QIAquick column in a clean 1.5 ml microcentrifuge tube.
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6. To elute DNA add 30 -50 pi of water to the centre of the membrane inside the 

column; let the column stand for 1 min and then centrifuge. We used 30 pi to obtain 

higher concentrations.

7. Finally DNA concentration in purified products was quantified in NanoDrop® 

ND-1000 Spectrophotometer.

3.7 PCR amplification of the Internal Transcribed Spacer 2 (ITS2) gene 

region

PCR amplification was based on the protocol used to amplify ITS2 in Anopheles 

minimus (Phuc et al., 2003). The fragment of interest, ITS2 is amplified using 

primers aligning in regions 5.8S and 28S, which are highly conserved regions 

(Paskewitz and Collins, 1990).

5.85 (Forward) 5’ (ATCACTCGGCTCATGGATCG) 3’

28s (Reverse) 5’ (AT GCTT A A ATTT AGGGGGT AGT C) 3’

In addition, another forward primer 5.8S (2) was used to confirm initial sequences 

obtained:

5.85 (Forward) 5’ (T GT G AACTGC AGG AC AC AT GG A AC) 3’

Reaction mixture components are, IX reaction buffer, containing 1.5 mM M gCf;

0.2 mM dNTPs, 25 ng o f each primers, 0.5 U of taq polymerase and 20-50 ng DNA 

polymerase. Thermal profile conditions were: initial denaturation temperature of 94 

°C x 5 min, 30-35 cycles of 94°C x 1 min, 55°C x 2 min annealing temperature, an 

extension temperature o f 72°C x 2 min and a final extension of 72°C x 10 min.

The ITS2 region in species of the Barbirostris Subgroup is large and internal primers 

were needed to obtain the entire sequence.
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BIF (Forward primer) 5’ GTTTCGCCCTCGGTATATCA 3’ (Tm 63.6 °C) 

BIR (Reverse primer) 5’ CAACACACGCCCTTCAACAT 3’ (Tm 65.9 °C)

Optimal conditions of a PCR were similar to those defined for primers 5.8S and 

28S: 25-50 pL reaction mixture containing, 0.2 mM of dNTPs, 25 ng of each 

primers, 1 unit of DNA polymerase, 1.5 mM M gC f and 1 pL of DNA template. The 

PCR amplification conditions were defined as follows: Initial denaturation 

temperature o f 94 °C for 5 min, followed by 27 - 30 cycles o f 94 °C x 1 min, 55 °C 

x 1 min of annealing temperature 72 °C x 1 min and a final extension temperature of 

72 °C x 10 minutes.

3.7.1 Touchdown PCR

This technique was used to improve the quality of the PCR amplification, reducing 

the presence of the small spurious bands that appear together with the amplification 

of the region of interest. This was the case of the amplification of the ITS2 in 

specimens o f the Barbirostris Subgroup, due to its length and the presence of 

internal repeats (see Chapter 5).

The reaction mixture was the same as that described for ITS2. The PCR protocol 

was as follows:

Initial denaturation temperature o f 94 °C for 5 min, followed by 3 cycles o f 94 °C x 

30 s, 68 -  65 °C x 30 s and 72 °C x 1 min. A second time with 3 cycles o f 94 °C x 

30 s, 64 -  60 °C x 30 s and 72 °C x 1 min and a third time 3 cycles of 94 °C x 30 s 

59 -  56 °C x 30 s and 72 °C x 1 min. An annealing temperature of 72 °C x 1 min 

and a final extension temperature of 72 °C x 10 minutes.

3.7.2 Cloning of Internal transcribed Spacer 2 (ITS2) gene region

All ITS2 (including partial fragments of 5.8S and 28S genes) fragments amplified 

were cloned prior sequencing. Direct sequence was not possible; probably due to the 

presence internal repeats (see details in Chapter 5).
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System used was pGEM®-T Vector System (PROMEGA). It is based on the 

pGEM-5Zf(+) Vector(g) backbone. Sequence includes T7 and SP6 promoters to 

serve as sequencing primer binding sites or for in vitro transcription of either strand 

of the insert with the appropriate RNA polymerase.

Components

• 2X Rapid Ligation Buffer, T4 DNA ligase

• pGEM®-T Easy Vector (50 ng)

• T4 DNA ligase (3 Weiss units/pL)

• Escherichia coli JM109 High Efficiency Competent Cells. Kept at -80 °C

• SOC Media: 2 g Tryptone, 0.5 g Yeast Extract, 10 mM NaCl, 2.5 mM KC1,

5 mM MgCh, 5 mM M gS04 and 97 mL deionized water. Preparation was 

autoclaved and 20mM glucose added when cool. Media was then placed in 

15 mL tubes and kept at 4 °C.

• LB (Luria-Bertani) broth:lg bactotryptone, 0.5g yeast extract, lg  sodium 

chloride, 100 mL H 20, LB broth was autoclaved and kept at room 

temperature. To avoid contaminations 0.1 mL of ampicillin (100 pg/pL) was 

alternatively added once autoclaved and cooled.

• LB (Luria-Bertani) agar: 1L LB broth, 15 g agar. In addition lmL of ampicillin 

(100 pg/pL) was added after autoclaving. After homogenization, a volume of 

-1 0 -1 5  mL was placed on plastic Petri dishes.

• X-gal 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside is a substrate 

for beta-galactosidase, an enzyme that promotes lactose utilization. This 

enzyme hydrolyzes X-Gal into a colourless galactose and 4-chloro-3-brom- 

indigo, which forms an intense blue precipitate.

• IPTG (isopropyl-beta-D-thiogalactopyranoside) is an analogue o f lactose. It 

induces synthesis o f beta-galactosidase by inactivating repressor lac.

• Primers M l 3F 5’ (CGCCAGGGTTTTCCCAGTCACGAC) 3’. Located at 

position 2941 -2957 and M13R 5 '(T C AC AC AGG A A AC AGCT AT G AC) 3’ 

at 176 -197 of the T-easy vector sequence.
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3.7.3 Siepi: Ligation

In this process, the enzyme DNA ligase will stick together two fragments of DNA, 

in this case the T-easy vector (plasmid) with the ITS2 fragment amplified.

Procedure

1. Briefly centrifuge pGEM®-T Easy Vector and Control.

2. Set up ligation reactions as described below.

Component Standard Positive

Reaction Control

PCR product 1 pL (or more)

2X Rapid Ligation Buffer, T4 DNA ligase 5 pL 5 pL

pGEM®-T Easy Vector (50 ng) 0.5 pL 0.5 pL

Control Insert DNA 2 pL

T4 DNA ligase (3Weiss units/pl) 1 pL 1 pL

Deionized water to a final volume of 10 pL 10 pL

Ligation mixture was then incubated at 4 °C overnight.

When initial conditions are suboptimal, e.g. with low concentration of PCR product, 

a ratio optimization is important to calculate the amount of PCR product (insert) to 

be used in ligation reaction. The formula below was used with this purpose:

Ng of vector x kb size of insert x insert:molar ratio = ng o f insert 

kb size of vector

T-easy vectors are approximately 3 kb (size of vector) and are supplied at 50 ng/pl 

(ng o f vector). In addition a insert:molar ratio of 3/1 provide good initial parameters,
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hence established as ratio standard. Then, for a 1.5 kb ITS2 insert, the amount of 

insert required is

3.7.4 Step 2: Transformation

Into the galactosidase gene of the plasmid vector a region called polylinker has been 

inserted, which contains many restriction sites, useful for inserting donor fragments. 

This region does not interfere with the enzyme translation. If donor fragment is 

being inserted to the polylinker, translation of the enzyme is disrupted in the vector 

and it cannot degrade substrate X-gal. Then, colonies observed in successful 

transformations are colourless.

Procedure

1. Spin ligation reaction and add 1-2 pL in a 0.5 mL tube on ice.

2. Add 25 pL of JM109 High Efficiency Competent Cells, keeping reaction 

mixture on ice.

3. Mix gently by flicking, avoiding excessive pippeting.

4. Live mixture in ice for 25 pL.

5. Heat shock for 45 seconds at 42 °C. Place on ice for 2 minutes.

6. Add 450 pL of SOC media.

7. Incubate at 37 °C with shaking for 1.5 hours.

8. Using a drigalski spatula distribute homogeneously 10 pL of IPTG and 

XGal. This has to be done at least one hour prior inoculating cells.

9. Plate 50-100 pL of transformation culture into LB agar /amplicillin/IPTG, 

X-gal plates. Incubate overnight.

x 3 = 75 ng
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3.7.5 Step 3: PCR amplification

White colonies, those supposed to have the inserted fragment, were selected for 

screening; one portion streaked on new LB/amplicillin agar plates and another 

portion o f the same colony placed in 0.5 pL PCR tubes containing reaction mixture, 

which composition is detailed below:

The reaction mixture (15 pL) containing lx  reaction buffer (Bioline), 1.5 pL of 

Bioline taq polymerase, 0.03 mM dNTPs, 0.6mM of MgCl2, 0.3 pM of each primer. 

Thermal profile was set as follows: 95 °C for 10 min, followed by 35 cycles of 94 

°C x 30 s, 55 °C x 30 s of annealing temperature, 72 °C x 1.5 min and a final 

extension temperature of 72 °C x 10 minutes.

Those colonies containing the insert are recognized by their size after PCR 

amplification. Those with size of the fragment amplified (1.5-1.7) + fragment of 

vector amplified (-200 bp) = 1.7-1.9 kb were selected for purification and 

sequencing. Cultures were transferred from agar to 2 mL LB broth containing 2 pL 

amplicillin and growth overnight at 37 °C.

3.7.6 Step 4: DNA purification from cultures

System used was QIAprep Spin Miniprep Kit. This is the final step of the cloning 

process. This protocol has been designed for purification of plasmids DNA from 1-5 

mL of cultures of E. coli in LB medium and is based on alkaline lysis of bacterial 

cells followed by adsorption o f DNA onto silica in the presence o f high salt. More 

details can be found at:
http://wwwl.qiagen.com/literature/handbooks/PDF/PlasmidDNAPurification/PLS 

OP Minipren/1043788 HB OIAprep 122006.pdf. In this project, protocol was 

followed as described below:

1. Centrifuge bacterial cells for 10 min. Discard supernatant and resuspend 

pelleted bacterial cells in 250 pi Buffer PI (containing RNase). No cell 

clumps should be visible after resuspension of cells.
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2. Add 250 pi Buffer P2 and mix thoroughly by inverting the tube 4-6 times, 

until the solution becomes viscous and slightly clear. Do not allow the lysis 

reaction to proceed for more than 5 min.

3. Add 350 pi Buffer N3 and mix immediately and thoroughly by inverting the 

tube 4 -6  times.

4. Centrifuge for 10 min at 13,000 rpm

5. Apply the supernatants from step 4 to the QIAprep spin column by pipetting.

6. Centrifuge for 60 s. Discard the flow-through.

7. Add 0.5 ml of buffer PB to QIAprep spin column by adding and centrifuging 

for 60 s.

8. Wash QIAprep spin column by adding 0.75 ml Buffer PE and centrifuging 

for 60 s.

9. Discard the flow-through, and centrifuge for an additional 1 min to remove 

residual wash buffer.

10. Place the QIAprep column in a clean 1.5 ml microcentrifuge tube. To elute 

DNA, add 50 pi Buffer o f water to the centre of each QIAprep spin column, 

let stand for 1 min and centrifuge for 1 min. Samples were then sent for 

sequencing.

3.8 Sequencing of PCR products

PCR reactions were carried out with Big Dye Terminator Version 3.1 supplied by 

Applied Biosystems. In this method for automated fluorescent sequencing, 

fluorescent dye labels were incorporated into DNA extension products using 3' dye 

labeled dideoxynucleotide triphosphates (dye terminators). Applied Biosystems 

DNA sequencers detect fluorescence from four different dyes that are used to 

identify the A, C, G and T extension reactions. Each dye emits light at a different 

wavelength when excited by an argon ion laser.

The products were precipitated and washed twice with 70% isopropanol. The dried 

pellets were then resuspended in Applied Biosystems Hi-Di Formamide and run on 

an Applied Biosystems 3130x1 Genetic Analyzer using a 50cm capillary array
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containing POP-7 polymer. For each specimen, forward and reverse sequences were 

obtained.

3.9 Sequence analysis

Prior to analysis, chromatogram was observed to validate sequence information. For 

this purpose, I used programme Bioedit version 7.0.5.3. (This is a biological 

sequence editor that runs in Windows 95/98/NT/2000 and is intended to provide 

basic functions for protein and nucleic sequence editing, alignment, manipulation 

and analysis). It is available at http://www.mbio.ncsu.edu/BioEdit/bioedit.html.

Peaks in chromatogram had to be clear and without background (more than one peak 

in the same position). This programme allowed me to judge the quality o f the 

sequence and manually assign bases that the software was been unable to call. Those 

sequences with ambiguous unordered chromatogram were not employed in the 

analysis.

Example o f an optimal chromatogram of nucleotide sequences

Example o f chromatogram not used in analysis
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3.9.1 Sequence alignment

Using Bioedit, forward sequence was aligned with the “reverse complement” of 

reverse sequence and then compared to obtain a single consensus sequence.

A multiple alignment was then carried out with all consensus sequences obtained, 

followed by a protein sequence alignment. As mentioned previously, Bioedit was 

the programme selected to perform these tasks.

3.9.2 Measuring genetic distance

The simplest measure of distance between two pair of sequences is to count the 

number o f nucleotide sites at which the two sequences differ (Page and Holmes, 

1998) With this purpose, we used programme DnaSP, DNA Sequence 

Polymorphism, available online in the address: http://www.ub.es/dnasp/. Transition 

and transversion rates were also calculated with this programme.

To calculate the number of nucleotide substitutions and therefore evolutionary 

distances, mathematical models were used. The efficiency o f models Jukes Cantor 

(JC) and Kimura Two-parameter was tested with data obtained.

3.10 Phylogenetic inference

The following were the methods employed in the analysis o f sequence data.

3.10.1 Distance methods

• Cluster analysis (UPGMA and WPGMA) Unweighted-pair group method 

with arithmetic means and the weighted- pair method with arithmetic means

• Minimum evolution (ME)

• Neighbour joining (NJ)
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3.10.2 Discrete methods

• Maximum parsimony

• Maximum likelihood

The program MEGA 3.1 http://www.megasoftware.net/mega.html was used to 

computationally obtain phylogenetic trees using these methods. The evaluation of 

their applicability is discussed in following chapters.

3.10.3 TCS analysis

The TCS software package is distributed freely and is available at 

http://bioag.bvu.edu/zoology/crandall lab/programs.htm. This program collapses 

identical sequences into haplotypes and calculates frequencies o f the haplotypes in 

the sample. A more detailed explanation is presented in Chapter 4.

3.11 Morphological examination of specimens

Using keys by Harrison and Scanlon (1975) and Reid et al. (1968), a morphological 

examination was carried out, using a MEIJI techno binocular stereo microscope. 

Specimens were not mounted, they were observed in Petri dishes, using thin forceps 

for this purpose. Photographs of the specimens were taken to keep a record of the 

most important details observed. The morphological keys and other procedures are 

presented in detail in Chapter 6.
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CHAPTER 4

4 Phylogenetic analysis and population structure of species of the 

Barbirostris Subgroup based on the Cytochrome Oxidase I gene region

4.1 Introduction

This chapter describes studies in which the mtDNA subunit Cytochrome Oxidase I 

(COI) has been used to determine the phylogenetic relationships between members 

o f the Barbirostris Subgroup and to determine the populations structure. A further 

objective has been to use the DNA sequences (both COI and rDNA ITS2).

The Barbirostris Subgroup includes six species of almost identical morphology (An. 

barbirostris, An. campestris, An. donaldi, An. franciscoi, An. hodgkini and An. 

pollicaris (Reid, 1962). The precise identification of these species requires the 

examination o f the immature stages of associated reared adults. Since a 

morphological examination o f progeny broods can be tedious and time-consuming, 

this approach is not widely used in field studies. The consequence is that reports of 

the distribution of species of the Barbirostris Subgroup have not been confirmed for 

several regions in Southeast Asia (Apiwathnasom et al., 2002; Harrison and 

Scanlon, 1975; Limrat et al., 2001).

These findings will subsequently be combined with the analysis of ITS2 (Chapter 5) 

and the results of the morphological examination of specimens from Thailand 

(Chapter 6).

The mtDNA COI subunit possesses characteristics that make it particularly suitable 

as a molecular marker for evolutionary studies. It has been relatively well studied at 

the biochemical level, as it is the terminal catalyst in the mitochondrial respiratory 

chain (Lunt et al., 1996). There is little variation in the gene content (Harrison, 

1989) and its size and structure appear to be conserved across all aerobic organisms 

investigated (Saraste, 1990), with the exception of some Cnidaria, where it consists 

o f one or two linear molecules (Warrior and Gall, 1985). Based on these attributes,
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the COI was chosen in the “Barcoding of life” project as a preferred marker to 

delimit species in the animal kingdom (Hebert et al., 2003; Roe and Sperling, 2007). 

In Anopheles species, it has been widely used in molecular systematics and 

phylogenetic studies (Dusfour et al., 2004; Foley et al., 2007; Lehr et al., 2005; 

Linton et al., 2003; Sallum et al., 2007; Torres et al., 2006).

The COI amino acid sequence has been divided into twenty-five regions comprising 

five structural classes (Lunt et al., 1996). These regions evolve at different rates, and 

the patterns of sequence variability seem associated with functional constraints on 

the protein. The COOH-terminal was found to be significantly more variable than 

internal loops (I), external loops (E), transmembrane helices (M) or the NH2 

terminal. The central region of the COI (M5-M8) has lower levels of variability, 

which is related to several important functional domains in this region (Lunt et al., 

1996).

The variability of the different regions of the COI Sub-unit needs to be considered in 

inferring phylogenetic relationships among organisms. The most variable regions 

are more suitable for low-level analyses such as intraspecific variation or studies in 

closely related species; on the other hand, regions with lower levels o f sequence 

variability among organisms would be used for higher-level evolutionary studies, for 

example, at genus or family level.

In this study, the region amplified comprises a fragment from internal loop 3 to the 

COOH terminal region (see fig. 4.1). This fragment includes some of the most 

variable regions o f the COI according to Lunt (1996). To determine if the 

phylogenetic signal in this region is suitable for distinguishing Anopheles species 

from the Barbirostris Group, an analysis o f the evolutionary rates in different 

structural regions were carried out and are described in this chapter.

Although Bazin and collaborators doubted the value of ecological and biodiversity 

studies (Bazin et al., 2006), COI has proved the most useful molecular marker in 

studies of the population structure of Anopheles species (Mirabello and Conn,

2006a; O'Loughlin et al., 2007; Walton et al., 2000). Furthermore, in earlier studies
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of the Barbirostris Subgroup (Baskoro, 2001), COI sequences were found to be 

useful in defining clades within the Subgroup.

Figure 4.1 Schematic representation of the structural regions of the COI

internal loops (I), external loops (E) and transmembrane helices (M). Taken from 

Lunt et al. (1996)

E2

13 15 c o o h

This chapter reports the following results

1. The species composition of the Barbirostris Subgroup based on the analysis 

o f the COI gene fragment.

2. The genetic structure of species and populations within the Barbirostris 

Subgroup.

3. To demographic history of species within the Barbirostris Subgroup

4. Whether the nucleotide substitutions in COI in the Subgroup followed a 

neutral or non-neutral model of evolution.
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4.2 Material and Methods

4.2.1 Specimens

Specimens morphologically identified as Anopheles barbirostris were sent from 

Kalimantan, Sumatra and Java in Indonesia and Mae Hong Son, Kanchanaburi and 

Tak in Thailand. Samples from Sa Kaeo and Trat included An. barbirostris and An. 

campestris specimens.

4.2.2 Measuring DNA polymorphism

The procedure for DNA extraction, PCR amplification and sequence analysis are 

detailed in chapter III (Material and methods). This section focuses on the 

approaches used to analyse the data; including tests of neutrality, phylogenetics and 

population genetic structure.

For sequence data, the extent of polymorphism is determined by calculating the 

average number o f pairwise nucleotide differences n. Since the n value is likely to 

be larger for long sequences than for short, a better measure for comparisons of 

DNA sequence variation among loci is to calculate the nucleotide diversity n (Nei 

and Li, 1979), because this measure considers the length o f the sequence. This is 

estimated as 7t = U./L, where L is the length of the sequence studied.

Tajima (1989) used n value to estimate 0, the main parameter o f the neutral theory 

o f evolution (Mousset et al., 2004). 0 represents the amount o f variation of a DNA 

sequence in a population if evolution is entirely neutral. This parameter is estimated 

as ANe\x, for diploid organisms and in haploid genomes, like mitochondrial DNA, 0 

is estimated as 2Ne\i, where p is the mutation rate and Ne, the effective population 

size. This parameter can be used to test neutrality (see Tajima’s test). In this study, n 

and 0 estimates were calculated using DnaSP (Rozas and Rozas, 1999).
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4.2.3 Testing the neutrality hypothesis

The neutral theory of evolution was first proposed by Kimura (1968). This theory 

assumes that the majority o f mutations appear as a consequence of a stochastic 

process, genetic drift. These mutations will not affect fitness o f the organism. 

Although this theory was first based on the consistency in rates o f amino acid 

changes, this has also been supported by the study of degenerate genetic code, and 

the observation of synonymous and non-synonymous substitutions. The following 

tests were used to test neutrality in Barbirostris Group populations. All tests were 

performed using the DnaSP program.

4.2.3.1 The MacDonald-Kreitman test

MacDonald and Kreitman (1991) proposed a statistical method based on the study 

of polymorphisms in nucleotide sequences. If the observed substitutions are neutral, 

the ratios o f non-synonymous to synonymous substitutions are expected to be the 

same within and among species because both are the result of the same evolutionary 

processes. Differences between species are identified as fixed sites. If we have 

species A and B, a fixed site has the same nucleotide in all sequences from species 

A, but a different one in all sequences from species B. Differences within species 

are tested through observation of polymorphic sites, where a nucleotide substitution 

can be found at any variable site present within or between species. If the number of 

fixed replacements is high, it suggests that these excess replacement substitutions 

are the result o f positive selection (McDonald and Kreitman, 1991) and as a 

consequence, we reject the hypothesis of neutrality.

4.2.3.2 Tajima’s D test

The value of 0 can be calculated using the number of segregating sites or S or using 

71, the nucleotide diversity as explained above. According to Tajima (1989), if 

evolution is neutral, both parameters will give the same result. The most important 

difference between both values is that they are affected in different ways by natural 

selection. Deleterious mutants are maintained at low frequencies in a population. If

57



present in a population, they will strongly affect the number of segregating sites, and 

the value o f 0S will be more affected than the value o f 0^, since the latter is not 

affected by low frequency alleles. On the other hand, if  the population is subject to 

balancing selection, an increment of allele frequencies is expected and as a result the 

value of n should also be increased (Page and Holmes, 1998). The advantage o f this 

test is that it only requires polymorphism data from one species, in contrast to Mac 

Donald-Kreitman, which requires data from at least two species. In addition, if a 

population goes through a bottleneck, D may lead to erroneous conclusions (Tajima, 

1989).

4.2.3.3 Fu and Li (1993) tests

Fu and Li’s approach maintains that under negative selection, there will be high 

numbers o f mutations in the external, younger branches, because deleterious alleles 

are present in low frequencies; a similar situation would occur if  a new 

advantageous mutation is starting to be fixed in the population. Conversely if a 

balancing selection is operating at the locus, then the mutations would appear 

present in the internal branches and the external ones would be fewer in number. 

Thus, under positive selection the value expected for D* and F* would be negative 

values (Fu and Li, 1993).

4.2.4 Gene flow and genetic divergence

F-statistics was originally based in the determination heterozygosity (H) at different 

levels o f population structure (Wright, 1965). F-statistics is calculated in three 

hierarchical levels: FiS (interbreeding coefficient), Fit (overall fixation index), and 

FSt (fixation index). The Fst estimate has also been extrapolated to analyse 

nucleotide sequences using n, nucleotide diversity values (Nei, 1973). It 

immediately provides an estimate o f the degree o f subpopulation structure in any 

organism. In mitochondrial DNA, FST is expected to diverge four times faster than at 

a nuclear locus, considering it is maternally inherited and haploid. Hence, the values 

o f this parameter are normally four times larger for mtDNA (Page and Holmes, 

1998).
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The Bonferroni correction was used when several pairwise comparisons were 

performed simultaneously, to avoid type I errors (the error o f rejecting a null 

hypothesis when it is actually true). In this study, it was used when comparing F St 

between populations. If n hypotheses are being tested, the statistical significance (a) 

used for each hypothesis separately should be a  In. Both FST and Bonferroni 

corrections were performed using Arlequin 3.1.

4.2.5 Nested clade analysis

Nested analysis was performed using the TCS program (Clement et al., 2000), 

which employs the cladogram estimation algorithm proposed by Templeton (1998). 

This program presents important advantages compared to traditional methods to 

infer phylogeny. For example, the possibility of finding an ancestral haplotype in the 

population is considered and it also incorporates the possibility of recombination, 

but this is not needed in mtDNA. These variables are not included in the traditional 

methods like Maximum parsimony, Maximum likelihood and Neighbour-joining.

The program calculates the network based on the most parsimonious connections of 

haplotypes in the following way. It collapses all sequences in haplotypes and 

calculates each haplotype frequency in the sample. These frequencies are used to 

estimate the outgroup probabilities, which correlate with haplotype age. Following a 

pairwise comparison o f haplotypes, it evaluates the limits o f parsimony (Templeton 

et al., 1992) using a probability of 95%. The number of mutational differences 

associated with this probability just before 95% cut-off is defined as the maximum 

number o f mutational steps within a network (Clement et al., 2000). The program 

TCS 1.21 was used to construct the haplotype network of the specimens of the 

Barbirostris Subgroup.

4.2.6 Mismatch distribution

The mismatch distribution involves the analysis of the distribution of pairwise 

differences in a population. Populations under expansion commonly “leave a wave” 

in the mismatch distribution. Therefore, a smooth and unimodal distribution is
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characteristic of a bottleneck or population expansion; on the other hand, if the 

mismatch distribution is bimodal, the population is likely to be under equilibrium, 

and have a constant population size (Rogers and Harpending, 1992). The mismatch 

distribution has been used to infer the demographic history o f populations, 

particularly when using mitochondrial DNA, in which recombination events are rare 

or absent (Mousset et al., 2004). Values of the mismatch distribution were obtained 

with DnaSP 4.10.9 and significant deviation from the Poisson distribution was tested 

with a goodness-of-fit Chi square test.

4.2.7 Phylogenetic analyses

Two methods were used to infer phylogenetic trees, the Neighbour-joining tree (NJ) 

(Saitou and Nei, 1987) and the Maximum parsimony (MP).

The NJ tree is a clustering distance method that operates on the basis of pairwise 

distances between two taxa; this distance represents the estimate of the amount of 

divergence of these taxa. To determine the rate of substitution per site, the Kimura 

2-parameter model was used (Kimura, 1980). This model takes into consideration 

the fact that in nature, the rate of transition per site is greater than the rate of 

transversions. This rate appears particularly common in mitochondrial genes (Page 

and Holmes, 1998). The total rate of substitution per site is given by: a + 20, where 

a  and 0 are the different probabilities for transitions and transversions.

The Maximum Parsimony method operates using a matrix o f discrete characters, 

assigning one or more characters to each taxon (i.e., sequences in this study). This 

method finds the tree topology for a set of aligned sequences with the smaller 

number o f character changes, i.e. mutations (Salemi and Vandamme, 2003).

To evaluate the robustness of these methods, a bootstrap test (Felsenstein, 1985) was 

included in the analysis. This is a statistical method for estimating the statistical 

error, based on a re-sampling of the data. This procedure can be repeated hundreds 

o f times, but it is recommended that these should be between 200 and 2000 re­

samplings (Salemi and Vandamme, 2003). In this present study 500 re-samplings 

are used. Considerable confidence can be given if groups are supported by 70% or
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more; branches supported by less than 70% should be treated with caution (Zharkikh 

and Li, 1992). This method has improved significantly the precision of distance 

methods. In this study we have carried out a bootstrap analysis in both Neighbour­

joining and Maximum parsimony trees. The program used with this purpose was 

Mega 3.1.

4.3 Results

4.3.1 Phylogenetic analysis

4.3.1.1 Differentiation between Barbirostris and Hyrcanus Groups

Phylogenetic relationships among individuals were inferred using Neighbour-joining 

based on Kimura 2-parameter method for estimating nucleotide substitutions per site 

and Maximum parsimony to infer trees topologies. A total o f 109 haplotypes of 756 

bp length were obtained from 163 specimens, morphologically identified in the field 

as members o f the Barbirostris Subgroup. The An. gambiae COI sequence was 

included as an outgroup. A bootstrap test was performed with 500 replications to 

determine the robustness of the tree obtained (Figure 4.2 ).

Neighbour-joining (NJ) and Maximum parsimony (MP) trees show clear division of 

specimens in two main clades (Figure 4.2). Those with yellow labels were identified 

as members o f the Hyrcanus Group based on Blast comparisons with sequences of 

Hyrcanus Group species. This assumption was subsequently confirmed when the 

morphology o f mosquitoes was examined in the Natural History Museum in 

London. This revealed that those individuals involved at sampling mosquitoes in the 

field had made mistakes with identification in sampling sites in Thailand and in 

Indonesia, thereby emphasising the need for clear and unequivocal methods of 

identification.

Based on the phylogenetic analysis of COI from the 163 specimens received as 

members o f the Barbirostris Subgroup, 19 were identified as members of the 

Hyrcanus Group and 142 as members o f the Barbirostris Subgroup. Further analyses

61



are centred on the Barbirostris Subgroup specimens. A phylogenetic analysis of the 

Hyrcanus Group will be described in Chapter 7.

4.3.1.2 Phylogenetic relations inside the Barbirostris Group

W ithin the Barbirostris Group, 142 specimens were located in 5 distinct clades 

(named I-V) based on NJ and MP analyses. In both trees some of the branches show 

low bootstrap values (Figure 4.2); as a result relation among clades are poorly 

resolved.

The Maximum Parsimony (MP) analysis produced 105 possible topologies. 

Although clades I and II appear in the same cluster in MP tree, this is poorly 

supported (bootstrap value=23%). These clades appear separated in the NJ tree. In a 

similar way, the relation o f clade III with clades IV and V is different in the two 

methods o f tree reconstruction and a bootstrap test again indicates that the 

relationships are poorly resolved. The majority of specimens were assigned to clades 

III (55) and IV (64).

Considering that clade III included specimens morphologically identified as 

Anopheles barbirostris in the Natural History Museum as progeny broods, it is 

almost certain that these specimens are Anopheles barbirostris. The remaining 

clades comprise specimens only identified as adults and are therefore of doubtful 

identity. Among them, specimens from clades I and II were identified in the field as 

An. barbirostris, clade IV had a mixture o f specimens morphologically identified as 

An. barbirostris and An. campestris and finally clade V, comprised 6 individuals 

identified in SaKaeo (Thailand) as An. campestris. A more exhaustive analysis of 

the relation between morphological and molecular analysis is presented in Chapter

8.
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4.3.2 Sequence variation and genetic diversity

In this section, the genetic diversity of specimens from the Barbirostris Group is 

measured to address the issue of the genetic structure in this group of species. The 

analysis was performed on the 5 clades obtained from the phylogenetic analysis. 

With this objective, the estimates of S (number of segregating sites), n (the average 

number of nucleotide substitutions per site) and haplotype diversity (frequency of a 

haplotype in the dataset) are analysed.

Analysis was based on 142 sequences. All specimens were AT rich, the average 

content o f G+C was 29.1% and A+T 70.9%. As expected for mitochondrial coding 

genes, the most variable codon position was the third. Eighty-eight of the 

substitutions were located at this position, 9.6% in the first and 2% in the second. In 

addition, the number of transitions was higher than transversions in all clades (Table 

4.1).
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Figure 4.3 Haplotype distributions in specimens from the Barbirostris Subgroup. Of

the 109 haplotypes found in the dataset, 87 correspond to the Barbirostris Subgroup.
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..... T. .A. T. .A . T...... A. . .G. . .C.T. .TT. . .C. .
..... T. .A.T. .A.T.C. . .A.C.G. . .C.T. . T T --- C. .
......T. .A.T. . A G T . C ---A . C ...... C.T. .TT. .GC. .
..... T. -A.T. .AGT.C. . . A . C ......C.T. .TT. . .C. .
..... T. .A. T. .A.T.C. . . A . C . G ---C. T. .T T--- C. .
. .C..T..A.T. .A.T.C. . .A.C.GG. -C.T. . T T . . .CG.

G ..... T. .A.T. . A . T . C--- A.C.G. . .C.T. .TT. . .C. .
..... T. .A. T. .A G T...... A  G  C. T. . T T-- C. .
..... T. .A. T. .A. T .......A  G. . .C.T. .TT. . .C.
..... T. .A.T. . A . T .......A. . .G. . .C.T. .TT. . .C.
..... T. .A.T.GAGT.C. . .A. . .G . ..C.T. . T T ---C.
..... T. .A.T. .A . T .......A  G. . .C.T. .T T---C.
..... T. .A.T. .AGT.C. . . A . C ..... C.T. .T T .....
..... T. .A.T. .AGT.C. . .A . C..... C.T. .TT. . .C.

G ......T. .A.T. . A . T ......A. . .G. . .C.T. .TT. . .C.
. . .A.T. . A . T C . A G T ......A. . . G --- C.T. .TT. . .C.
..... T. .A. TC. A. T. . GCAA. . G G ......T  T C -----
..... T. .A.TC.A. . . .GCAA. . G G ...... T --- TCG. . .
......T. .A.TC.A.T. .GCAA. . G G ......T --- TCG. . .
......T. .A.TC.A.T. .GCAA. . G G ......T --- TCG. . .
......T. .A.TC.A. . . .GCAA. . G G ..... T. . .TCG. . .
..... T. . A . T C . A____ GCAA. . G G ......T  TCG.

.C.AG. 
¡.C.AG. 

.C.C.AG. 
. ...C.AG. 
C . . .C.AG. 
. . . .C.AG. 
. . .C.AG.
---C.AG.
.C.CGAG. 
..CC.AG. 
•C.C.AG. 
. . .C.AG.
---C.A. .
.C.C.AG. 
. . .C.AG. 
.A.C.AG.
___C.AG.

. .. .C.AG. 
CC..C.AG. 
...CC.AG. 
. . .C.AG. 
.C.C.AG. 
. .CC.AG. 
. .CC.AG.
___C.AG.
.C.C.AG. 
..C C . A . . 
.C G C .A G .
___C.AG.
---C.AG.
. . .C.AG. 
. . .C.AG.
---C.AG.
C..C.AG. 
.C.C.AG. 
.C.C.AG.
___C.AG.
. . .C.AG. 
. . .C.AG. 
. .CC.AG. 
C..C.AG. 
. . .C.AG. 
.. .C.A. . 
...C.AG. 
...C.AG. 
..CC.AG. 
..CC.AG. 
..CC.AG. 
..CC.AG. 
..CC.AG. 
.CC.AG.

C . . . T A . .. C . . 
C . . . T A . . . C . .
C. . . T A ---C. .
C . . A T A . G . C . . 
C . . A C A . . . C . .
C. . A T A .......
C ___TA. . .C. .
C . . .TA.
C ---GA. .
C . . A T A . . 
C . . . T A . . 
C . . . T A . . 
C . . . T A . . 
C.C.TA. .
C ___TA. .
C ---T. . .
C. . . TA. .1
C ---TA. .
C . . A T A . . 
C ...T A C . 
C . . . T A . . 
C . . . T A . . 
C . . A T A . . 
C. . .TA. . 
C. . .TA. .
C ___TA. .
C . . A T A . . 
C. .ATA. . 
.... TA. . 
C . . . T A . . 
C. . .TA. .
. . . .TA. . 
C. . .TA. .
C ___TA. .
C . . A T A . . 
C . . A T A . . 
C . . A T A . . 
C . . . T A . . 
C . . A T A . .
C ___TA. .
C ---TA. .
C . . A T A . . 
C . . A T A . . 
. C . . . A . .
. C ---A. .
. C ---A. .
. C ---A. .
. C . . .A. .

. .C.

. C . C . . G . .

. C . C .....

. C . C .....

. A. C .....

. C . C . . .C.

. C . C .....

. A. C .....

.A. C .....

. C . C .....

. A. C . -G. .

. C . C . G ---

. C . C .....
• C . C .....
. C . C .....

. .C........

. .C............

.. C . . C ----

- C .......C.
- C .........

- C ........
. C .........
. C ..... C.T.
• C .........
. C ........
. c ............
. c ............

. C . C . ..

. C . C ---

.C T C ....

. C . C . ---

. C . C . ---

. C . C . ... 

. C . C . ---

Z ..... C.C. . . .
Z ..... C.C. . . .
.......C . C . ---
Z ..... C.C. . . .
Z ..... A. C. .C.
Z ..... C.A. . . .
Z ..... C . C ____
Z C ---- C . C ----
Z ........ c . ___
.......C . C ----
.......C . C . ___
.......C . C ----
Z ..... C.C. . .
Z..... C . C -----
Z ..... C.C. . . .
........ C G ___
........ C G . ..
........ C G .G .
........ C G . ..
........ C . ...

. . . . C ........

. C ........
- C . C .......
. C ..... C.T.

. . . . C ........
---- C ........

Highlighted positions show nucleotide substitutions that appear to be unique to one clade: clade I: 

pink, clade II: green, clade III: blue, clade IV: grey and clade V: yellow. Nucleotide position numbers 

are defined according to the amplified fragment of 756 bp and are shown in the top row. Haplotypes 

numbers are shown in the left column,
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Polymorphic sites include for 94 of the 756 sites, of which 69 were parsimony 

informative (substitutions present in more than one specimen) and 25 were single 

substitutions (Table 4.2). The distinction between clades is evident from the 

nucleotide substitutions shown in Figure 4.3. Twelve substitutions, located at 

positions 24, 51, 147, 249, 252, 258, 327, 438, 458, 678, 690 and 697, appear fixed 

within and exclusive to a particular clade, whereas others appear to be shared among 

clades.

Eighty-seven haplotypes were found in the 142 specimens o f the Barbirostris Group 

studied in this project, using a 756 bp fragment of the cytochrome oxidase gene 

region. These included 10 larva obtained as progeny from 4 adult females captured 

in the field. Only one larva o f each of the 4 adults were included in further analysis 

since including the entire dataset would affect predictions on their population 

structure.

General haplotype diversity value was 0.984 ± 0.005. This value is high, but 

expected considering that the entire dataset includes specimens identified as An. 

barbirostris and An. campestris. A detailed analysis of the DNA polymorphism and 

further inferences of population structure were performed, taking into consideration 

the results obtained in the phylogenetic analysis, which show five distinctive clades.

O f the 87 haplotypes found, 64 are singleton, that is represented by a single 

individual and 6 were widespread in different geographic populations, 4 in clade III 

and 2 in clade IV (Table 4.2 and 4.3). High haplotype diversity values were obtained 

in all clades (Table 4.1), with the exception o f clade II that shows a single haplotype 

(Hapl 1) in seven specimens from the islands o f Sumatra (6) and Java (1) in 

Indonesia. Conversely, clade I comprised 10 different haplotypes in 10 specimens 

from Mae Hong Son (Thailand) and Kalimantan (Indonesia). In clade III, some 

haplotypes were widely distributed; particularly Hap 12, which appeared in all 

collections sites in Thailand, from the northernmost province of Mae Hong Son, 

through Kanchanaburi and Tak provinces, the western region bordering Myanmar, 

and into the eastern provinces of Sa Kaeo and Trat bordering Cambodia (Figure 4.4)
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Phylogenetic clades are separated by lines. Clades I, II and III are shown in this table. Clade II has 
one single haplotype. In bold, haplotypes distributed in various localities; underlined, samples 
obtained as progeny broods.

T a b le  4 .2  L ist o f  h ap lo typ es w ith in  the B arbirostris G roup and the lo c a lit ie s  w here th ey  are found.

Haplotype N Specimens source
Kal Mae Sum Jav SaK Tra Tak Kan

Hap 1 1 kl
Hap 2 1 k2
Hap 3 1 k3
Hap 4 1 k4
Hap 5 1 thl-1
Hap 6 1 thl-3
Hap 7 1 thl-12
Hap 8 1 thl-13
Hap 9 1 thl-4
Hap 10 1 thl-7
Hap 11 7 111,112 371

113,115
133,131
132

Hap 12 14 th3 9.4 bsk33 T32.1 tal9 kh7,
th3 9.3 csk5 T37.1 ta21 kh9
thl.6 S9.1 T29.3 ta25

Hap 13 3 csk3
csk7
S15.2

Hap 14 5 th73.2 bsk26 ta24
th7 3.4 S11.2

Hap 15 2 bskl
S13.1

Hap 16 1 bsk20
Hap 17 1 thl.2
Hap 18 1 bsk5
Hap 19 1 thl.11
Hap 20 1 thl.14
Hap 21 1 thl. 5
Hap 22 1 thl. 8
Hap 23 1 thl. 9
Hap 24 1 bskl5
Hap 25 2 bskl3

S13.2
Hap 26 1 btrl4
Hap 27 1 bsk25
Hap 28 4 th41.4

th41■5 
th41.2 
th41.3

Hap 29 2 th69.2
th69.3

Hap 30 2 thl.10 khlO
Hap 31 2 Kh3,

kh4
Hap 32 1 talO
Hap 33 2 ta5,

ta6
Hap 34 1 S13.3
Hap 35 1 S15.4
Hap 36 1 S17.1
Hap 37 1 T31.2
Hap 38 1 bskl7
Kal*]Kalimantan , Mae=Mae Hong Son, Sum=Sumatra, Jav=Java, SaK=Sa Kaeo, Tra= Trat
Tak=Tak, Kan=Kanchanaburi.
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Table 4.3 List of haplotypes in clades IV and V and the localities where they are found. 

The clades are separated by lines. In bold, haplotypes distributed in various localities.

Haplotype N Specimens sourcenumber
SaKaeo Trat Sumatra

Hap 39 i bbs8
Hap 40 i bsk22
Hap 41 2 bsk23,S24.5
Hap 42 2 bsk24,S10.1
Hap 4 3 1 bsk27
Hap 44 2 bsk31,S27.3
Hap 45 1 btrl3
Hap 4 6 1 btr23
Hap 47 2 btr24,T38.1
Hap 48 5 S23.2 btr25,T35.1,T32.2,T2 9.2
Hap 49 1 csk6
Hap 50 1 Ctr4
Hap 51 3 bsk2, bsk6, S27.5
Hap 52 1 114
Hap 53 4 bsk4,bsk8,Sll.l,S30.1
Hap 54 1 bbs6
Hap 55 1 bsk3
Hap 56 2 ctr10,T30.1
Hap 57 1 ctr8
Hap 58 2 bsk7, S40.1
Hap 59 1 bsk9
Hap 60 1 bsklO
Hap 61 1 btr8
Hap 62 2 bskll btrll
Hap 63 1 btrl5
Hap 64 1 btrl6
Hap 65 1 btrl7
Hap 66 4 btrl8,btr22,T13.1,T36.1
Hap 67 3 btrl9,btr21,T12.3
Hap 68 1 csk2
Hap 69 1 ctr2
Hap 70 1 T35.2
Hap 71 1 T35.3
Hap 72 1 SI
Hap 73 1 S15.1
Hap 74 1 S19.1
Hap 75 1 S24.1
Hap 7 6 1 S24.4
Hap 77 1 T37.2
Hap 78 1 T22.1
Hap 79 1 T36.2
Hap 80 1 T7.1
Hap 81 1 T33.1
Hap 82 1 S25.1
Hap 83 1 S27.4
Hap 84 1 S24.2
Hap 85 1 cskll
Hap 8 6 1 csklO
Hap 87 1 cskl

Sum=Sumatra, SaK=Sa Kaeo, Tra= Trat.

69



The haplotype diversity value of clade IV = 0.98 ± 0.007 reflects the numerous 

haplotypes found within this clade (43 in 64 specimens). This included specimens 

from Sa Kaeo and Trat in Thailand and a single specimen obtained from Sumatra 

(Table 4.3). Finally, clade V comprised only 6 specimens, all collected in Sa Kaeo.

Table 4.1 show the results of genetic diversity for COI (mtDNA) among clades of 

the Barbirostris Group. Values of nucleotide diversity obtained varied from n = 0 in 

clade II, in which the COI fragment is the same in all specimens, to higher values in 

other clades: clade III (0.32%), clade V (0.37%) clade IV (0.88%) and clade I 

(0.80%).

4.3.3 Nested clade analysis

To infer the genealogical relationships among the 87 haplotypes in the Barbirostris 

Subgroup sampled in this study, a nested clade analysis (NCA), was used. This is an 

alternative to the traditional methods for inferring tree topologies (Templeton,

1998). Traditional methods make assumptions that are not valid at a population 

level; such as ancestral haplotypes are no longer in a population. The NCA accept 

the existence o f ancestral haplotypes, considering that the coalescent theory assumes 

that these would be the most frequent in a population (Crandall and Templeton, 

1993). The program used to perform analysis is TCS (Clement et al., 2000) and 

results are contrasted with those obtained from the phylogenetic analysis.

TCS analysis was carried out on sequences o f specimens from the Barbirostris 

Group (including An. barbirostris and An. campestris). The TCS programme 

calculated 11 as the maximum number of mutational steps to form a network (see 

section 1.2.5 for further explanation). This was obtained from testing the probability 

o f parsimony in each pairwise comparison until the probability exceeds the 95% 

level. Then, haplotypes which exceed more than 11 mutational steps were separated 

in a different network. TCS collapsed the haplotypes from the Barbirostris Subgroup 

into 5 different networks or clades (Figures 4.3 and 4.4). These networks were 

represented by the same specimens found in the 5 clades obtained in NJ and MP 

trees.
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Specimens from clade I comprise individuals from Kalimantan and Mae Hong Son. 

These two populations are separated by at least 6 mutational steps. Haplotype 4, 

which corresponds to a specimen from Kalimantan was identified by the program as 

the ancestral haplotype (Figure 4.4). Mae Hong Son individuals show one 

ambiguous connection as evidenced by the presence of loops (Figure 4.4). This 

separation of geographically separate populations is consistent with the NJ and MP 

trees. Clade II comprised a single haplotype (11) and formed a distinctive clade 

(Figure 4.4). Specimens in this clade were obtained from Sumatra and Java 

(Indonesia).

In clade III (see Figure 4.4), the most widely distributed haplotype (12) was 

identified as the ancestral haplotype. Thirteen of the 26 haplotypes differ from the 

ancestral form by just 1 mutational step, and 10 lineages in this clade are represented 

by a single haplotype (see haplotypes 34, 22, 13, 18, 15, 23, 25, 31, 27 and 36 in 

Figure 4.4). In general, 5 was the maximum number o f mutational steps observed 

within this clade. As a result, clade III shows a starbust pattern which may be an 

indication o f population expansion. This is discussed further below.

In contrast to clade III, in clade IV the ancestral haplotype lies on a node represented 

by a single specimen (haplotype 61) and none of the haplotypes are appreciably 

more abundant than the others (Figure 4.5). Lineages in this clade are made up of 

multiple haplotypes, with many missing nodes being inferred. Most haplotypes were 

found in a single geographic population, with the exception of haplotype 62, which 

comprised one specimen from Sa Kaeo and one from Trat. The different lineages 

observed in clade IV contain specimens from more than one collection site, 

indicating that no geographic clustering of haplotypes was observed. Numerous 

ambiguous connections were also observed in this network and no geographic 

clustering o f haplotypes was observed (Figure 4.5). Finally, a parsimony network of 

clade V is also presented (Figure 4.5). Although the number of specimens is too 

small to arrive at a firm conclusion, these specimens, all collected in Sa Kaeo, were 

distinctive enough to be located in a separate clade.
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4.3.4 Genetic differentiation and population structure

4.3.4.1 Estimate of genetic differentiation using FST values

In this section, the genetic differentiation among different clades and within is 

evaluated. With this purpose FST values (Nei, 1973) are calculated. FST values range 

from 0 to 1; an FST value of one would indicate complete genetic differentiation and 

a value of 0, no genetic differentiation. The significance o f the estimated genetic 

distances is tested using a permutation analysis (Hudson et al., 1992) of 1000 

replicates. To test the statistical significance, p-values are determined for a 

significance level (a) of 0.05. Where necessary, significant estimates were subject to 

Bonferroni correction for multiple comparisons to avoid type I errors.

The Fst values obtained from the pairwise comparison among five clades obtained 

from the phylogenetic analysis are shown in Table 4.4. High levels of 

differentiation, as shown by high FST values, indicate that clades are clearly distinct. 

The lowest FST value obtained was 0.74, between clades IV and V and between II 

and IV. The highest value was 0.86 between clades I and III (Table 4.4). To evaluate 

the statistical significance o f these values, a Bonferroni correction for multiple 

hypotheses was applied. As a result all FST obtained are statistically significant (p «  

0 .00001.

Table 4.4 F st values among clades. P-value was calculated using 1000 permutations

Clade I Clade II Clade ill Clade IV Clade V

Clade I -

Clade II 0.78*** -

Clade III 0.86*** 0.89*** -

Clade IV 0.75*** 0.74*** 0.82*** -

Clade V 0.79*** 0.91*** 0.89*** 0.74***

*** P < 0.001
The modified a value with a Bonferroni correction for 10 pairwise 
comparisons is a = 0.005, calculated p-values were all «  0.00001.
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The three most populated clades were analysed separately to determine the genetic 

structure among subpopulations. That is the geographic localities where specimens 

were collected. Clade I, with 10 specimens (subpopulations Mae Hong Son and 

Kalimantan, Clade III with 49 specimens (subpopulations Mae Hong Son, Sa Kaeo, 

Trat, Kanchanaburi and Tak) and Clade IV formed by 64 specimens (Sa Kaeo, Trat 

and Sumatra).

Clade I show the highest FST value = 0.63 between specimens from Kalimantan and 

Mae Hong Son. These subpopulations appear also clearly differentiated in the nested 

clade analysis (Figure 4.4) and phylogenetic analysis (Figure 4.2). The p-value 

obtained from the permutation analysis (1000 replicates) for populations in this 

clade was p < 0.001 (Table 4.5), indicating that specimens from clade I differ 

significantly between localities.

Table 4.5 Fst values obtained from the comparison between populations Mae Hong 

Son and Kalimantan in clade I.

I-Mae Hong Son I-Kalimantan

I-Mae Hong Son 0.00

I-Kalimantan 0.63** 0.00

** p < o.oi
a = 0.05

In Table 4.6, FST estimates obtained from the comparison among the five 

geographic populations in clade III (Mae Hong Son, Sa Kaeo, Trat, Kanchanaburi, 

and Tak) are shown. FST estimates were not significantly different between any of 

the populations, using a Bonferroni corrected a  = 0.005; permutation test=1000 

replicates. In fact, estimated FST values were not significant even without the 

Bonferroni correction. FST values were in general very low. This suggests that the 

different populations within this clade are genetically similar.
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Table 4.6 Fst values obtained from the comparison between five different 

subpopulations of clade III. Mae=Mae Hong Son, SaK=Sakaeo, Tra=Trat, 

Kan=Kanchanaburi and Tak=Tak.

III-Mae III-SaK III-Tra III-Kan III-Tak

III-Mae 0.00
III-Sak 0.056 0.00
III-Tra -0.064 -0.005 0.00
III-Kan 0.003 0.112 0.067 0.00
III-Tak 0.045 1 O o H-* -0.033 0.108 0.00

Bonferroni corrected a: 
a = 0.05/10= 0.005

Finally in clade IV, a low level o f genetic differentiation was found between 

populations o f Sa Kaeo and Trat. FST was not significant (see below) for an a  = 

0.025. As in previous cases, statistical significance was calculated using 1000 

permutations.

Table 4.7 Fst values between geographic populations within clade IV.

IV-Sa Kaeo IV-Trat

IV-Sa Kaeo 0.00

IV-Trat 0.011 0.00

Bonferroni 
a: = 0.05/2=

corrected
0.025

4.3.4.2 Estimate of genetic differentiation using the Kimura 2-parameter 

distance method (K 2-P)

The levels o f sequence divergence among the 5 clades were also tested using the 

Kimura 2-parameter distance method (Kimura, 1980). This model calculates
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distances between nucleotide sequences taking into consideration that the 

probability of a transition is greater than the probability of a transversion. It is 

expected that estimates from comparisons within species would give lower K 2-P 

than comparison between species. In this study, the Kimura 2-parameter was 

calculated for the 5 clades in the Barbirostris Group and is presented in Table 4.8.

The average K 2-P distance among clades was 2.93%, with the highest value 

between clades MTV (3.6%) and the lowest between clades II and V (1.9%). 

Conversely, the values obtained from the comparison within clades were much 

lower, the highest value was obtained in clade IV: K 2-P= 0.9%.

Table 4.8 K 2-parameter values between and within 5 clades of the Barbirostris 

Group.

Below diagonal, the comparison between clade. Above diagonal, estimates within 

clades.

Clade I Clade II Clade III CladelV Clade V

Clade I 0.008
Clade II 0.022 0

Clade III 0.031 0.026 0.004

Clade IV 0.036 0.028 0.036 0.009

Clade V 0.032 0.019 0.032 0.031 0.004

The two genetic divergence estimators used in this project, FST and Kimura 2- 

parameter, agree in showing high levels of genetic differentiation between clades 

than within clades (Tables 4.4 and 4.8).

4.3.5 Mismatch distribution. Testing recent demographic history

A mismatch distribution is the frequency distribution of pairwise differences in a 

population. If this is smooth and unimodal, represented by a Poisson distribution, it 

is indicative o f a model of sudden expansion. On the contrary, a multimodal 

distribution is characteristic of a population under mutation drift equilibrium (MDE)
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(Rogers and Harpending, 1992). The frequency of segregating sites was compared 

with frequencies expected under a model of population expansion. Simulated 

(expected) estimates were obtained with DnaSP.

The mismatch distribution was only applied to clades III and IV because there were 

too few specimens in the other clades. In each case, the distribution seems to fit well 

with its expected distribution under population expansion (Figure 4.6), even though 

there was a significant deviation from a Poisson distribution (y2 P<0.05). The 

pattern obtained does not resemble that seen for a population in equilibrium (see fig. 

5 in Rogers and Harpending, 1992).

The Raggedness Index (r) was calculated to evaluate the demographic expansion of 

both populations tested. This index takes larger values if the distribution is 

multimodal, representing a stationary population, whereas lower values are obtained 

if the distribution is smooth and unimodal, typical of an expanding population 

(Harpending et al., 1993). Raggedness indices were low, supporting the hypothesis 

o f population expansion in both clades. In clade III the value was higher (r < 0.056) 

than in clade IV (r < 0.0082). Results are consistent with visual observations (Figure 

4.6). Clade I showed a more ragged, bimodal distribution, but since the data set was 

limited in this clade (only ten specimens), further conclusions can not be drawn.
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Figure 4.6 Mismatch distribution of haplotypes in clade III (A) and clade IV (B).

Solid Unes correspond to expected distribution under sudden population expansion 

models, whereas dashed lines represent the observed values. Raggedness indexes 

were calculated with DnaSP. r < 0.056 (clade III) and r < 0.0082 (clade IV).
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4.3.6 Neutrality tests

According to the Me Donald-Kreitman test (M-K), under neutrality, the ratio of non- 

synonymous (NS) to synonymous (S) substitutions should be the same within and 

between species. Any significant difference between them is considered to be the 

result of deviation from neutrality, where a ratio <1 indicates purifying or stabilizing 

selection and a ratio of >1 suggest positive selection (McDonald and Kreitman, 

1991). As shown in Table 4.9, very few non-synonymous substitutions were 

observed in both polymorphic and fixed substitutions, indicating that the different 

clades in An. barbirostris do not deviate significantly from neutrality. The excess of 

non - synonymous substitutions may indicate a purifying selection in the COI gene 

region.

Table 4.9 The number of synonymous (S) and non- synonymous (NS) substitution 

P-values obtained using Fisher’s exact test.

Clade
Fixed

S NS

Polymorphic 

S NS p-value
I - II 9 1 17 1 ns
I - III 9 1 39 2 ns
I - IV 9 1 66 5 ns
I - V 14 1 22 2 ns
II - III 12 0 26 2 ns
II - IV 11 0 54 5 ns
II - V 14 1 22 2 ns
III - IV 11 0 69 6 ns
III - V 13 0 30 3 ns
IV - V 11 0 57 6 ns

The other tests of neutrality used in this study are Tajima’s D test (Tajima, 1989) 

and Fu and Li’s (1993) D* and F* tests. Tajima’s test assumes that under neutrality, 

the number o f segregating sites (0s) should be the same as the average number of 

nucleotide differences (0„) (Tajima, 1989), whereas Fu and Li’s test is based on
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comparison of mutations in the internal and external branches o f a rooted 

phylogenetic tree. In contrast to the Mac Donald-Kreitman test, these tests have the 

advantage of requiring only one population to test the neutrality hypothesis, whereas 

M-K requires two populations to be compared.

As shown in table 4.10, all values obtained were negative. However the majority of 

these results was non-significant with the exception of clade III, for which values 

were negative and statistically significant at the 5% significance level (p < 0.05). 

This is the result of an excess o f segregating sites with alleles at low frequencies. 

These results agree with Fu and Li’s F* test (Table 4.10), in which negative values 

were also significant for clade III. In contrast the value o f the D* test was not 

significant. Negative values indicate deviation of neutrality or they could be the 

result of the fixation of an advantageous mutation, the presence o f deleterious 

mutations or as a result o f a recent hitchhiking event or changes in the population 

size. The main disadvantages of these tests are that they depend on the hypothesis 

that populations have been under mutation-drift balance for a long time, which is 

unlikely to occur in most populations. Furthermore they assume that that all 

nucleotides are equally mutable, which is incorrect because the first, second and 

third codon positions mutate at different rates (Nei and Kumar, 2000). These pitfalls 

indicate that results have to be interpreted cautiously.

Table 4.10 Tests o f neutrality of the 5 clades in the Barbirostris Subgroup are 

shown. Result of Tajima’s D test and Fu and Li’s F and D tests are shown. Results 

were tested at the statistical significance a=0.05.

Populations
tested

Taj ima's D
D*

Fu and Li's
F*

Clade I -0.23 ns -0.20 ns -0.24 ns
Clade II - - -

Clade III - 2 . 0 4  * - 2 . 4 2 n s - 2 . 7 2 ★

Clade IV -1.58 ns -2.04 ns -2.23 ns

Clade V -0.50 ns -0.57 ns -0.59 ns

• P < 0.05
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4.3.7 Estimation of the time of coalescence

The parameter x was used to estimate the time since population growth in clade III, 

which shows evidence o f population expansion. This parameter is calculated as x = 

2\xt in populations under expansion (Slatkin and Hudson, 1991), where p is the 

mutational rate, estimated for mtDNA in Drosophila as 10'8 substitutions/site/year 

(Powell et al., 1986) and t is time in generations. The estimation of x was calculated 

(using DnaSP) as 1.827. Solving t=xl2 p = 120 833 generations. Assuming 10 

generations per year (Powell et al., 1986), an estimate used by Walton et al. (2000), 

for Anopheles dirus, the time of expansion of clade III occurred approximately 12 

083 years ago. These data have to be interpreted cautiously considering that clade III 

may be distributed in a much larger geographic area than Thailand.

4.3.8 Analysis of the evolutionary rates in different regions within cytochrome 

oxidase I

The identification of regions of maximum divergence should ensure a successful 

delineation of taxa, particularly in sister species, in which divergence is expected to 

be low (Roe and Sperling, 2007). In this section, the evolutionary rates of the COI in 

clades III and IV and in other Anopheles mosquitoes are studied, to ensure this 

mtDNA region is informative enough to delimit species.

Differences in genetic divergence within the different regions within the COI 

fragment amplified in this study were compared with those found by Lunt (1996). 

This author found differences in evolutionary rates within this gene region, based on 

comparisons of the amino acid substitutions. In this section, the general assumptions 

about the evolutionary rates within the COI obtained by Lunt (1996) are compared 

with the results obtained with Barbirostris Subgroup specimens and in other 

Anopheles species.

The 756-bp region studied was located from the internal loop 13, to the COOH 

terminal in the Cytochrome Oxidase I (see Figure 4.1); from position 764 to 1520, 

defined according to the data presented by Lunt (1996). For comparisons, nucleotide
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diversity values obtained for clades III and IV (i.e. those containing the most 

specimens) were used and nucleotide diversity values obtained from the alignment 

o f seven other Anopheles species: An. oswaldoi (Scarpassa and Conn, 2006), An. 

albimanus (Sallum et al., 2002), An. darlingi (Sallum et al., 2002), An. stephensi 

(Oshaghi et al., 2006), An. gambiae (Sallum et al., 2002), An. quadrimaculatus 

(Cockbum et al., 1990) and An. minimus A (Sallum et al., 2002).

As shown in Figure 4.7, region M8 was highly conserved among all Anopheles 

species included in the analysis, including those from clades III and IV of the 

Barbirostris Group. These results are consistent with those of Lunt, in that central 

regions M5-M8 (positions 559-967) had a low level of divergence, which Lunt 

postulated was due to functional constrains (Figure 4.7). Similarly, internal loops 4 

(967-1009) and M9 (1010-1069) are highly variable regions, results that are 

consistent with those presented by Lunt (1996). Inferences were based on the 

comparison of nucleotide diversity values (n).

Considerable differences have been observed when comparing COI sequences from 

Anopheles species and those obtained by Lunt. For instance, the transmembrane 

region M l 1 (1241-1297) has been reported to be highly conserved in different insect 

taxa (Lunt et al., 1996). The levels of nucleotide diversity in clade III are consistent 

with this, whereas those for clade IV are not (Figure 4.7). Moreover, Lunt defined 

the COOH as the most variable region; however in this study, this terminal region 

appear to be one o f the most conserved in clades III and IV and in the Anopheles 

species included in this analysis; in which only the last portion of these regions 

appear to be variable (Figure 4.7).
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Figure 4.7 Nucleotide diversity values in clades III (pink line), IV (blue line) and several 

Anopheles species (green line) are compared with those studied by Lunt in 1996 (red line)

Regions covered by this sequence analysis are situated from sites 764 (situated in internal 

loop 3) to position 1520 (region COOH). jr values in the internal loop 4 are high in both 

comparison groups; conversely COOH is not the most variable region as defined by Lunt. 

Nucleotide positions are defined according to Lunt (1996). Notice differences in scale of 

axis for (A) and (B).
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Figure 4.8 Amino acid variations defined by structural regions in the 756-bp COI region 

from region 13 to COOH. Amino acid variation is defined as the average number of 

substitutions per site.

Results for clades III and IV of Barbirostris Subgroup members are in blue, for the seven 

other Anopheles species (see text) in green line and those of Lunt et al. in red. Amino acid 

variability is similar in all Anopheles species. There are noticeable differences with the 

results of Lunt et al. (1996).
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O f the 512 amino acids coded for COI (Lunt et al., 1996), 252 amino acids are 

coded for the 756-bp fragment amplified in this study. Only two fixed amino acid 

substitutions were identified in this fragment. The first is a Tyrosine (TAT) located 

at position 1220-1222 (407 of amino acid sequence) unique to specimens of clade I 

replacing Serine (TCT), present in all remaining specimens (Fig. 4.9) and the second 

fixed amino acid substitution was a Threonine (ACT), in positions 1343-1345 (448 

o f amino acid sequence) present only in those specimens from clade I collected in 

Mae Hong Son. Specimens of this clade collected from Kalimantan and specimens 

from other clades of the Barbirostris Group showed a (GCT) Alanine at this position 

with the exception of two specimens from clade III, one collected in Mae Hong Son 

and the other in Trat (Figure 4.9). All positions are numbered as in Lunt, 1996.

The substitution resulting in Tyrosine replacing Serine is located in the internal loop 

15, which Lunt et al. (1996) regarded as a region of relative variability. Conversely, 

the second fixed substitution is situated in external loop 6 (E6), previously identified 

as a conserved region. Other substitutions (non-fixed) were located at amino acid 

positions 356 (in transmembrane helix M9), 391 (M10), 393 (Internal loop 15), 466 

(M l2), 467 (M l2) and 505 (COOH). These substitutions were all located at 

positions defined by Lunt et al. (1996) as relatively or highly variable regions, with 

the exception of the transmembrane helix M10, which he considered to be highly 

conserved (Figure 4.8).
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Figure 4.9 Amino acid substitutions within the 152 aa sequence coded for the 756 

bp fragment amplified in specimens from the Barbirostris Group.

Sites are defined according to Lunt et al. (1996) amino acid sequence.
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4.4 Discussion

4.4.1 Phylogenetic analysis

Cytochrome oxidase I is an efficient molecular marker for the differentiation of 

members o f the Barbirostris and Hyrcanus Groups, as shown in the Maximum 

parsimony (MP) and Neighbour-joining (NJ) trees (Figure 4.2). Members of these 

groups are commonly confused by field workers as seen in this study: 19 specimens 

from the Hyrcanus group were sent as specimens from the Barbirostris Group. This 

was surprising since there are reliable morphological characters to distinguish 

species o f the Barbirostris and Hyrcanus Groups. The relationship between the 

morphological and molecular results will be explained in detail in Chapter 6.

Tree topologies gave consistent results in identifying 5 distinctive clades within the 

Barbirostris Group, which were also supported by the five parsimony networks 

obtained with the nested clade analysis. However, the inferred phylogenetic 

relationships between clades were different between the trees. Clades II and III were 

grouped in the same cluster in the MP tree but not in the NJ tree and clade III 

appeared closely related to clades IV and V in the NJ tree but not in the MP tree. 

However, clades IV and V appear in the same cluster in both NJ and MP trees, 

although this relation is not well supported (Bootstrap values 48% and 49% 

respectively). One interesting finding was the division of clade I into two clusters, 

one comprising specimens from Mae Hong Son and the other specimens from 

Kalimantan, suggesting the influence of isolation by distance. No further 

conclusions about the phylogenetic relationships among clades can be made since 

low bootstrap values were obtained with both NJ and MP trees.

There are various explanations for low bootstrap values. They may arise due to 

differences in evolutionary rates within the cytochrome oxidase (Saito et al., 2000), 

when there is an excess in the number of taxa employed in the analysis (Rokas and 

Carroll, 2005) and appear to be common in cases where closely related species have 

not diverged extensively (Soltis and Soltis, 2003). To test if  low bootstrap values 

were related to differences in evolutionary rates o f the COI, the fragment amplified
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was split into regions of high and low variability (Figure 4.7) and these regions were 

then used to construct phylogenetic trees. Trees obtained from the comparisons of 

these regions separately did not improve on the results obtained from the entire 

amplicon (data not shown). The explanation that best fits these results is that the 

clades contain closely related species that have only recently diverged.

The interpretation of bootstrap values is open to discussion; nevertheless this test is 

widely used to support inferred phylogenetic relationships among taxa. The 

monophyly o f the Barbirostris Group is strongly supported (100% NJ and 99% MP), 

as indicated by the high bootstrap values obtained for the distinction between this 

clade and the Hyrcanus Group (Figure 4.2).

4.4.2 Sequence variation and haplotype diversity

The amplification of “pseudogenes” (mitochondrial-like sequences in the nuclear 

genome) represent a problem since they can confound phylogenetic and population 

genetic studies (Zhang and Hewitt, 1996). In this study no stop codons were found 

within fragments amplified, so the presence o f pseudogenes is disccounted. 

Sequences of the 5 clades were A+T rich (70.9%), and the percentage of these 

nucleotides are typical of values found in the mitochondrial genes of insects 

(O'Loughlin et al., 2007; Simon et al., 1994). Haematobia irritans 71.4%, Stomoxys 

calcitrans, 70.6%, Musca domestica 69.6% (De Oliveira et al., 2005) and in 

Anopheles species: 72.1% in An. darlingi (Mirabello and Conn, 2006a), 74.6 % for 

An. jeyporiensis (Chen et al., 2004), 71.0% in An. dirus (Walton et al., 2000) and 

72.0% in An. scanloni (O'Loughlin et al., 2007).

The haplotype diversity values were high within all clades. Such high values are 

common in Anopheles species. For instance, 50 haplotypes from 76 individuals in a 

fragment of the COII gene have been reported for An. feyporiensis (Chen et al., 

2004), 70 in 84 specimens in the same COI gene in An. dims (Walton et al., 2000); 

33 in 65 and 32 in 54 in ND5 sequences o f An. gambiae and An. arabiensis 

respectively (Besansky et al., 1997).
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4.4.3 Genetic structure

The parameter F-statistic (FST), employed to detect genetic differentiation among 

clades within the Barbirostris Subgroup, provided compelling evidence that the 5 

clades within this subgroup were distinct, since estimates were high in all 

comparisons, 0.74 -0.91 (p < 0.001, see Fig 4.4). A lower FSt estimate = 0.093 has 

been reported between An. arabiensis and An. gambiae in Africa. In Southeast Asia, 

a high Fst = 0.680 was obtained from the comparison between species C and D of 

Anopheles dims (Walton et al., 2000). These species were subsequently recognized 

as An. scanloni and An baimaii, respectively. Moreover, in An. scanloni, high levels 

of genetic differentiation (FST =0.47-0.63) have been reported between populations 

in Thailand, suggesting that An. scanloni could be more than one species 

(O'Loughlin et al., 2007) In Lutzomyia longipalpis the high FST values observed in 

sympatric populations = 0.395 were evidence that suggest that this taxon could be a 

species complex (Bauzer et al., 2007). If we compare these results on genetic 

differentiation to the studies in mosquitoes mentioned, it is likely that these clades 

are different species.

4.4.3.1 Genetic structure in clade I

The Fst values obtained from the comparison of populations within the clades were 

all very low with the exception of clade I. A high FST value = 0.645 (p < 0.01) was 

obtained when comparing specimens from Kalimantan (4 individuals) with Mae 

Hong Son (6 individuals) in this clade. Although the dataset for this clade is very 

limited, these two geographic populations appear distinct. This is also supported by 

high bootstrap values in the NJ and MP trees that support their separation (Figure 

4.2) and in the nested clade analysis in which these two populations appear 

separated by at least 6 mutational steps (Figure 4.4). Taking into account that these 

collection sites are separated by ~ 3000 km and have the sea as geographic barrier, 

high levels of genetic diversity were expected. It is not possible to determine if these 

populations represent distinctive species since the dataset is too small to arrive at 

further conclusions.
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4A .3 .2  Genetic structure in clade II

The presence o f a single haplotype among individuals from clade II was surprising, 

since specimens were collected from localities of Sumatra and Java, that are located 

~ 400 km from each other and are separated by the sea. The expansion of this clade 

may have occurred when these islands were connected by the Sunda shelf, which 

appeared as an extension of mainland Southeast Asia. Within a species, higher 

genetic diversity is observed in older populations than in their younger counterparts 

as observed in An. darlingi (Mirabello and Conn, 2006a) and An. albimanus 

(Molina-Cruz et ah, 2004). Therefore it may be possible that the seven specimens 

studied in clade II (6 from Sumatra and 1 from Java) are a younger portion of a 

larger population. However it is difficult to arrive to any conclusion due to the 

reduce data set in this clade.

4.4.3.3 Genetic structure in clade III

Specimens from this clade were identified as An. barbirostris, based on 

morphological identification of immature stages o f 10 of its individuals. A shallow 

genetic structure in clade III was seen in the nested clade analysis (Figure 4.4) and a 

weak effect o f distance on differentiation was observed in Thailand. For instance, 

haplotype 12 appeared from the network analysis to be the ancestral haplotype. This 

was the most widely distributed haplotype in clade III, comprising specimens from 

the provinces o f Mae Hong Son, Tak and Kanchanaburi to Sa Kaeo and Trat. 

Although several mountains are found in these provinces, they have relative low 

elevation (Rattanarithikul et al., 2005). The low level o f genetic differentiation could 

be explained by the fact that these provinces are separated by a broad and relatively 

flat land (Figure 4.9) that does not represent a significant geographic barrier, not 

withstanding the 800 km between the most widely separated sites, Mae Hong Son 

and Trat.

The effects of distance on the genetic diversity of Anopheles species appear to be 

less important than the presence of geographic barriers: levels o f genetic diversity in 

populations o f An. gambiae in Africa are low, even over distances o f 6000 km
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(Besansky et al., 1997). In contrast, the highest level of differentiation within this 

species was reported from populations <700 km apart but separated by the Rift 

Valley as geographic barrier (Lehmann et al., 1999).

The demographic expansion of clade III may be inferred from all the tests used: 1) it 

shows a starburst pattern, which appears to be typical o f populations under 

expansion. Walton et al. (2000) found a similar star-like genealogy of the haplotypes 

in An. dims A and D of the Anopheles dims complex in Asia and concluded that 

these populations o f these species were undergoing expansion. Similar results were 

also found in An. jeyporiensis in Asia, again suggesting recent range expansion 

(Chen et al., 2004). 2) haplotypes in clade III of the Barbirostris Subgroup are only 

separated by one or two mutational steps, which is consistent with this hypothesis 

(Slatkin and Hudson, 1991). 3) The pattern of mismatch distribution seen in this 

clade is typical of a population expansion, since this type of mismatch profile is 

almost never produce under equilibrium (Rogers and Harpending, 1992).

Based on these observations, it is believed that clade III has undergone population 

expansion. This is consistent with significant negative values obtained in the 

Tajima’s D and Fu & Li’s F* neutrality tests, obtained in this clade, as they appear 

associated to a recent population expansion (Kreitman, 2000), rather than to 

deviation from neutrality (see section 4.4).

4.4.3.4 Genetic structure in clades IV and V

Although specimens in clade IV appear collapsed into one single network, they do 

not show the starburst pattern, which in clade III indicated a recent population 

expansion. However the type of mismatch distribution observed in clade IV, which 

fits a Poisson distribution model (Rogers and Harpending, 1992), is an indication 

that this population may also be expanding. However, it is important to consider that 

specimens of this clade have only been found in Sa Kaeo and Trat in Thailand in 

addition to a single specimen from Sumatra. Sa Kaeo and Trat are only separated by
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a distance < 200 km. In this respect, it is difficult to make any generalization about 

the genetic structure of this clade.

No conclusions can be drawn about the genetic structure of clade V, since it 

comprised just six specimens from Sa Kaeo. However it is clearly separated from 

the other four clades.

4.4.3.5 Structural analysis of the Cytochrome Oxidase I gene region. 

Comments on the “Barcoding of life”

The relevance of the work of Lunt (1996) in insect phylogeny studies has increased 

since the introduction of the proposal for “barcoding of life” (Hebert et al., 2003). 

His findings have been cited in several studies (Erpenbeck et al., 2006; Roe and 

Sperling, 2007); and even taken as reference study in Barcoding websites 

http://www.dnabarcoding.ca/primer/COIProtein.html.

Some of the most widely used primers for the amplification o f COI are based on 

Lunt (1996) (Zhang and Hewitt, 1997). For instance, primer set UEA9-UEA10 has 

been employed to distinguish sibling species of members o f the Anopheles annulipes 

group (Foley et al., 2007), and to define the species status o f An. flavirostris (Torres 

et al., 2006). These primers amplify the terminal COOH region, defined by Lunt as 

the most variable in the COI enzyme. However, results in this present study show 

that COOH is highly conserved in clades III and IV, which are likely to be sibling 

species. In addition this region appears relatively conserved in the seven Anopheles 

species studied (Figure 4.7). Therefore, conclusions related to speciation based on 

this region should be interpreted with care. The main problem in drawing 

generalized conclusions from the work of Lunt (1996) is the limited number of taxa 

used in his analysis. He included only nine species: two from the Orthoptera, six 

Diptera and one Hymenoptera, these are surely insufficient to describe evolution 

patterns in all species of insects.

Supporters o f the Barcoding project proposed that the “Folmer partition”, which is a 

~ 640 bp fragment located at the 5’ end of the COI subunit, be used in the
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identification o f species of the animal kingdom. This was based on the belief that 

sequence divergence in the different regions within cytochrome oxidase I were very 

similar (Hebert et al., 2003). However a recent paper by Roe and Sperling (2006) 

examined the pattern of evolution of the cytochrome oxidase I and II in several 

species within the Lepidoptera and Diptera. These authors found that regions of 

maximum diversity were highly variable among the taxa surveyed and no single 

region of maximal divergence was found among 114 sequences examined. These 

results are consistent with those presented in this present study. The success of the 

use o f the COI to distinguish species within the Barbirostris Subgroup will be 

discussed in detail in Chapter 8.
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CHAPTER 5

5 Phylogenetic analysis within the Barbirostris Subgroup based on the

Internal Transcribed Spacer 2

5.1 Introduction

This chapter describes the analysis of the rDNA Internal Transcribed Spacer 2 

(ITS2) in specimens from the Barbirostris Subgroup. The use of this marker to 

identify species within the Barbirostris Subgroup and to resolve their phylogenetic 

relationships is presented. All members of the Barbirostris Subgroup were found to 

have a long ITS2 (>1.5 kb). The length o f the spacer in this Subgroup is due to the 

presence of repeat sequences within the ITS2, which vary in copy numbers and 

organization. A comprehensive analysis of these repeats and a discussion of their 

possible origin is also presented.

The ribosomal DNA (rDNA) is a family of genes that occur as tandemly repeated 

units of many copies per cell (Gerbi, 1985). Each repeat consists of the 18S, 5.8S, 

and 28S RNA genes, external transcribed spacers (ETS1 and ETS2), internal 

transcribed spacers (ITSland ITS2) and an intergenic spacer (IGS), formerly known 

as non-transcribed spacer (NTS) (Figure 5.1). In eukaryotes, the number o f repeats 

varies from 30 to 3000 (Prokopowich et al., 2003). In mosquitoes there are typically 

< 500 copies per genome (Collins et al., 1987).

Figure 5.1 Schematic representation o f the rDNA genes separated by transcribed 

spacers. Each repeat unit is separated by an IGS (or NTS).

The functional regions (18S, 5.8S and 28S genes) that produce ribosomal RNA are 

highly conserved whereas the spacer regions have higher mutational rates and hence
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a high interspecific and low intraspecific variability, which make them useful in 

systematics studies (Williams et al., 1988). The low intraspecific variation is the 

result of the process of concerted evolution (Dover, 1982), in which all the repeats 

evolve as a unit. Hence, if  a mutation occurs in a repeat, it spreads through the entire 

family o f genes. In the hypothetical case of absence of mutation, this process may 

eventually lead to complete homogenization (Nei and Rooney, 2005). A recent study 

based on whole-genome shotgun cloning has shown that repeat sequence variation is 

at very low level, confirming that rDNA does evolve via a process of concerted 

evolution (Ganley and Kobayashi, 2007). This model o f evolution is explained in 

detail in the literature review (see Chapter 2).

Ribosomal DNA is of considerable utility in the identification of Anopheles species 

(Collins and Paskewitz, 1996). The Internal Transcribed Spacer 2 (ITS2) has proved 

a valuable marker in molecular systematics in part due to the fact that it is flanked 

by highly conserved regions (5.8S and 28S), which allow the design of universal 

primers o f use in a wide range of organisms. For example, the primers designed for 

the amplification o f the ITS2 region of Anopheles gambiae (Paskewitz et al., 1993) 

have proved useful in numerous other Anopheles species.

The ITS2 has been used to identify cryptic species within An. quadrimaculatus 

(Cornel et al., 1996), species within the A. dims Group in Thailand (Walton et al., 

1999a), species of the Hyrcanus Group in Southeast Asia (Hwang, 2007; Ma and 

Xu, 2005), and to identify Palearctic members of the Anopheles maculipennis 

complex in northern Iran (Djadid et al., 2007). Differences in feeding preferences 

within the An. fluviatilis complex have been associated with individual species 

based on sequence variation of the ITS2 region (Manonmani et al., 2001).

Moreover, the results from the analysis of the spacer region appear consistent with 

results obtained from the analysis o f mitochondrial markers. Three closely related 

members o f the Anopheles moucheti complex, were differentiated with the 

combined use of the cytochrome oxidase b and spacers ITS1 and ITS2. Species 

within the Maculatus Group of species were also differentiated using ITS2 and COII 

(Ma et al., 2006).
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The results obtained from the ITS2 analysis will be compared with those from 

analysis o f COI and with previous results obtained in Anopheles barbirostris from 

Indonesia (Baskoro, 2001). Recently, Seung et al. (2007) published ITS2 sequences 

for members o f the Barbirostris Subgroup, which will also be used for comparative 

purposes.

Objectives

The main objective of this present chapter is to investigate the value o f ITS2 for 

differentiating species within the Barbirostris Subgroup. With this purpose, the 

following questions will be addressed:

1. Are the results with ITS2 consistent with those obtained from the analysis of 
the COI?

2. Are there advantages in the use of the ITS2 to differentiate species within the 
Barbirostris Subgroup, relative to COI?

3. Are the transposable genetic elements within the ITS2 responsible for its 
length?

5.2 Material and methods

In this chapter, 51 specimens were included in the analysis of the ITS2 (Table 5.3). 

They were obtained from the following localities: Kalimantan (n=2) and Sumatra 

(n=5) in Indonesia, and Mae Hong Son (n=10), Trat (n=14), Tak (n=6), Sa Kaeo 

(n=9) and Kanchanaburi (n=5) in Thailand. The method for DNA extraction, PCR 

amplification, cloning and sequencing are given in Chapter 3 (Material and 

Methods). Direct sequencing of PCR products from amplification with 5.8 and 28S 

primers was not possible because o f the large size of the amplicon (up to 1862 bp). 

As a consequence, PCR products were cloned and subsequently sequenced using 

newly designed internal primers (see Material and Methods).

97



5.3 Results

5.3.1 PCR amplification

Following the extraction procedure explained in Chapter 3, a PCR amplification of 

the ITS2 was carried out using primers in the 5.8S and 28S regions. The resulting 

amplicon comprised: 5.8S (partial)+ ITS2 (complete) + 28S (partial). All PCR 

products obtained were cloned and then sequenced.

All specimens identified as members of the Barbirostris Subgroup with the 

mitochondrial marker COI, showed an exceptionally large amplicon >1.5 kb, larger 

than any other Anopheles species. In contrast, specimens from the Hyrcanus Group 

showed a -700 bp PCR product (Figure 5.2), a size more typical o f Anopheles 

species (Table 5.1). This difference in size was sufficient to differentiate these two 

groups. In this chapter results are centred on the Barbirostris Subgroup. Data for the 

Hyrcanus Group of species are presented in Chapter 7.

The PCR amplification of the 5,8S-ITS2-28S fragment was complicated due to a 

variety of factors. These included 1) poor quality of DNA in some specimens, 2) 

inhibition of PCR, a not infrequent problem with mosquitoes of the Barbirostris 

Group, 3) the large size o f the ITS2, and 4) the presence within the ITS2 of an 

internal repeat structure. Even when some specimens were successfully amplified, 

the product was sometimes lost in the cloning process. Significant effort and time 

was spent in the amplification of this fragment.

Problems with secondary bands in PCR amplification were particularly common in 

specimens identified in the mitochondrial analysis as members o f clade I. Results 

were improved with the use of a touchdown PCR, starting with an annealing 

temperature of 68 °C, which was slowly reduced to 50 °C (see material and 

methods). With this technique, results were improved thereby, facilitating 

subsequent steps (Figure 5.3). In other specimens, the quality of the amplification 

was enhanced only by increasing the annealing temperature to reduce non-specific 

PCR amplification.
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Figure 5.2 Showing PCR products from amplification o f ITS2 (plus flanking 5.8S 

and 28S regions) run in 1% agarose gel with EtBr and visualized under UV.

Product size differences reflect differences in the length o f ITS2. Clades are those 

defined by COI sequencing (Chapter 4).

Lane 1: lOObp molecular ladder

Lane 2: unsuccessful amplification

Lane 3: unsuccessful amplification

Lane 4: amplicon for Barbirostris Subgroup (~1.6kb)

Lane 5: unsuccessful amplification

Lane 6: amplicon of Hyrcanus Group (~700bp)

Lane 7: amplicon of Hyrcanus Group (~700bp)

Lane 8: unsuccessful amplification

Lane 9: amplicon of Barbirostris Subgroup Clade II (~1.8kb)

Lane 10: amplicon of Barbirostris Subgroup Clade III (~1.8kb)

Lane 11: amplicon o f Barbirostris Subgroup Clade I (~1.6kb)

Lane 12: negative control

M 2 3 4 5 6 7 8 9  10 11 12
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m -
Figure 5.3 Comparison of products obtained with a standard PCR (A) and 

touchdown PCR (B) in the amplification o f the fragment 5.8S (partial) + ITS2 

(complete) + 28S (partial)

Bands obtained in the electrophoresis agarose gel show 

A

Lanes 2-7: specimens k3, k4, th l-1 , thl-3, th l4  and thl-12, respectively 

lanes 8: Positive control 

Lane 9: Negative control 

B

Lanes 2-4: specimens k3, k4 and th l-1, respectively 

Lanes 6: Positive control 

Lane 8: negative control

A Ml  2 3 4 5 6 7 8 9  10

B M2  2 3 4 5 6 7 8

1.5 kb 

--------------►
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Table 5.1 List of Internal Transcribed Spacer 2 sizes (bp) and the G+C content in 

several species of Anopheles mosquitoes. An. beklemishevi, An. crucians B and An. 

fluminensis also show long ITS2 fragments.

Species 

Clade I 

Clade II 

Clade III 

Clade IV 

Clade V

An. gambiae complex

An. freeborni

An. fluviatilis (species X)

An. fluviatilis (species Y)

An. beklemishevi

An. punctulatus

An. crucians A

An. crucians B

An. crucians C

An. crucians D

An. crucians E

An. bradleyi

An. fluminensis

An. minimus A

An. minimus C

An. maculipennis

An. sacharovi

An. nuneztovari

An. hyrcanus

An. crawfordi

An. bancroftii

ITS2 GC

1545 52.3%

1727 55.6%

1730 55.9%

1583 54.3%

1519 55.1%

426-427 55.00%

305-310 52.00%

372 ND

374 ND

638 46.6%

ND 61.3-70.9%

461 54.00%

872-1021 51.00%

204 54.00%

293 54.00%

195 56.00%

208 54.00%

596 56.5%

373 ND

375 ND

280 54.10%

300 49.00%

363-369 55.3-55.9%

436 44.90%

469 46.80%

430 ND

Reference 

This study 

This study 

This study 

This study 

This study

(Paskewitz et al., 1993) 

(Porter and Collins, 1991) 

(Manonmani et al., 2001) 

(Manonmani et al., 2001) 

(Kampen, 2005)

(Beebe et al., 1999) 

(Wilkerson et al., 2004) 

(Wilkerson et al., 2004) 

(Wilkerson et al., 2004) 

(Wilkerson et al., 2004) 

(Wilkerson et al., 2004) 

(Wilkerson et al., 2004) 

(Brelsfoard et al., 2006) 

(Phuc et al., 2003)

(Phuc et al., 2003) 

(Marinucci et al., 1999) 

(Marinucci et al., 1999) 

(Fritz et al., 1994)

(Ma and Xu, 2005)

(Ma and Xu, 2005) 

(Beebe et al., 2001)
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In total it was possible to amplify, clone and sequence a fragment of interest in the 

following specimens: Clade I: 2 specimens from Kalimantan and 4 from Mae Hong 

Son; clade II: 4 specimens from Sumatra; clade III: 5 from Sakaeo, 6 from Mae 

Hong Son, 6 from Tak and 5 from Kanchanaburi; clade IV: 14 from Trat, 2 from Sa 

Kaeo and 1 from Sumatra and finally clade V: 2 specimens from Sa Kaeo (The 

numbering of clades follows that in the COI analysis).

Different size PCR products were observed within the Barbirostris Subgroup. The 

fragments varied from -1 .6  kb in specimens from clades I, IV and V to ~1.8 in 

specimens from clades II and III (Figure 5.2).

5.3.2 Sequence analysis.

Forward and reverse sequencing of the inserts from cloned PCR products was 

carried out to obtain entire sequence of ITS2. However, typically this would yield a 

maximum product of -850 bp in each direction (forward and reverse), i.e. a total of 

-1 .7  kb. This was insufficient in many cases and internal primers successfully 

complete the whole 5.8S- ITS2-28S sequence (see Chapter 3). The alignment of 

sequences required considerable care due to the presence o f internal repeats (see 

below).

The sequences obtained were subjected to a BLAST (Basic Local Alignment Search 

Tool) analysis. This permits comparison of a query sequence with DNA database. 

The results o f this BLAST search showed that fragments o f the 5.8S and 28S 

regions were amplified in specimens from all clades since these regions are highly 

similar in all Anopheles mosquitoes. The highest score using the conserved 5.8S and 

28S were obtained from comparison with members of the Hyrcanus Group (Figure 

5.4). However, in contrast the ITS2 region was not similar to any dataset in Gen 

Bank (In proof: See subsequent references to Saeung et al., 2007).
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This revealed that the ITS2 sequence did not match any in the data base as of 

October 2007. For the conserved 5.8S and 28S regions, the highest score 

corresponded to An. sinensis a member o f the Hyrcanus Group, with 88% identity in 

the 5.8S and 84% in the 28S (see below).

Figure 5.4 BLAST analysis of the whole amplicon 5.8S (partial)-ITS2- 28S (partial).

BLAST OUTPUT

yb| A T 333273 .1 | Anuptueles s in e n s is  5 .8 3  tiiussujuaJ. PNA y e n « ,  p a r t i a l  s e q u e n c e , 
i i i t e ixjüI  t ia n s L ilb e iJ  sp a ce r  £ ,  tem pi e te  s e q u e n c e , and £83 t ib u s u w a l 
EHA g e n e , p a r t i a l  seq u en ce  
LeujyU:i-68£

S c o r a  = 178 b i t e  ¡ 196) ,  E r p a c t  = 9*-41
Id en tities
Strand=Plu:

5.8 S
Qi ipry 1

Sbjct 11

Qi Jpry fil

5J0]Ct 71

Ouery 117

Slrjct 127

a T r .A rT rn n r  tc a  t o  atd ìia t  caa r a n  r n r  a c t  t a a A c n r n r  rvrn r ta  a t h t ìia  a ct  n r  

I 1 1 1 1  1 1 1 1 1  1 1  I 1 1 1  1 1  1 1  i l  11  1 1 1 1  1 1 1  1 1 1  I 11  I 1 1 1 1  1 1 1  1 1  1 1  I i l  1 1 1 1
ATC&CTC GO : TCATGGATC G&T GAAGAC CGCAGC TAAATGCGC GTCATAATGTGAACT GC

AGGA PAD ATGGAA CAT TGA TAA DTT CA A T O  ATA T TA f Af CTf DTR---P fTf ACCRTA
I I I I I I I I I I I I I I I I III I I I I I I I I I III I I I I I I I I I I I I I III II II 

AGGALALAI- CAAUAX'l UAIAAU IT  GAA1UCATAT TCC AUC'rCC'rWiliftAUC’Ji-AU- -C A

III I I I I I I I I I I I I I III

sn 

70 

1 lfi

1 2 6

28 S
S c o r e  = 4 4 . 6  b i t s  ( 4 8 ) ,  E x p e c t  = 1 . 4  

I d e n t i t i e s  -  3 3 /3 9  < 8 4 4 5 ,  C a p s  - 0 / 3 9  (04 )  

Str smd=Plus/ Plus

Q u e r y  1 6 S 9  GCC TCAACT CAT GGGAGACTACCC C CXM ATTT AAGCAT 1 7 2 7  

I 111 111 I III I III I I I I I 11 111 I 11 111 I I 
3 b  j u t  6 1 6  GCC TCAAGT TAT GTG TGACAACCC CCT GAATTTAAGCAT 6 3 4
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Interestingly, slight discrepancies in relation to the exact start point of the ITS2 with 

respect to 5.8S were seen in the GenBank sequences, reflecting a degree of 

uncertainty as to where the 5.8S ends at the ITS2 begins. In this study, the limits of 

ITS2 were based on the Anopheles gambiae sequence (Paskewitz et al., 1993).

The sizes of the complete sizes 5.8S (partial) - ITS2 (complete) - 28S (partial) 

amplicon are shown in Table 5.2. This comprised a ~90 bp fragment from the 5.8S 

region, a complete ITS2 fragment and a 42 bp fragment from the 28S rDNA. A full 

list o f specimens and the localities from which they were collected are in Table 5.3.

Table 5.2 Size of the rDNA regions amplified (bp) using primers 5.8S and 28S.

Clade numbers are based on the results from the COI analysis. Note the size 

variation in ITS2.

Region
amplified Clade I Clade II Clade III Clade IV Clade V

5.8S 91 90 91 90 91

ITS2 -1545 -1727 -1730 -1583 -1519

28S 42 42 42 42 42

Total size 1674-1677 1858 1859-1862 1713-1718 1652

Alignment within clades was relatively easy due to the high sequence similarity. In 

contrast, sequences from different clades were “unalignable”, with the exception of 

those from clades II and III (Figure 5.6), which show a similar size. Only a few gaps 

and substitutions were observed among sequences from the same clade. Entire 

alignments are shown at the end of this chapter (Figures 5.5-5.8)

The two populations (Kalimantan + Mae Hong Son) that comprise clade I, differ by 

27 fixed substitutions and one fixed insertion/deletion event in the ITS2, together 

with one fixed substitution in the normally conserved region 5.8S (Figure 5.5).
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Table 5.3 List of specimens and size of ITS2 (bp)

Specimen ITS2 size (bp) Locality

Clade I k2 1677 Kalimantan (Indonesia)
k3 1676 "

thl.l 1676 Mae Hong Son (Thailand)
thl.3 1674 "

thl.4 1674 »

thl.7 1674 "

Clade II 112 1858 Sumatra (Indonesia)
113 1858 »

115 1858 »

133 1858 "

Clade III th39.3 i860 Mae Hong Son (Thailand)
thl.6 1860
thl.2 1861 "

thl.8 1861 "

thl.9 I860 "

thl.10 1860 »

bsk33 1861 Sa Kaeo (Thailand)
bsk5 1861
S17.1 1861
S11.2 1861 »

S24.3 1859 "

talO 1861 Tak (Thailand)
tal9 1861
ta21 1862
ta22 1861
ta23 1861
ta24 1860 "

kh3 1860 Kanchanaburi (Thailand)
kh4 1861
kh7 1860
kh9 1860 ••

khlO I860 "

Clade IV 114 1713 Sumatra (Indonesia)
btr7 1715 Trat (Thailand)
btr8 1715 "

btrlO 1714 -

btrll 1715 "

btrl6 1715 «

btrl7 1714
btrl8 1715 "

btrl9 1716 "

btr22 1716 "

btr23 1715 »

ctr2 1716 -

ctr4 1716 -

T35.1 1715 -

T35.2 1718 "

bsk3 1716 Sa Kaeo (Thailand)
S24.1 1716 ••

Clade V csklO 1652 Sa Kaeo (Thailand)
bsk34 1652 ••
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28S (partial). Arrows indicate start and end o f the internal transcribed spacer 2 in the

Figure 5.5 Clade I: alignment of the fragment 5.8S (partial) + ITS2 (complete) +

sequence.

t h l . l

t h l . 4

t h l . 7

t h l . 3

k 3

t h l . l

t h l . 4

t h l . 7

t h l . 3

k 3

t h l . l

t h l . 4

t h l . 7

t h l . 3

k 3

t h l . l

t h l . 4

t h l . 7

t h l . 3

k 3

t h l . l

t h l . 4

t h l . 7

t h l . 3

k 3

t h l . l

t h l . 4

t h l . 7

t h l . 3

\• i f  . . I .
100 
. . I

TGTGAACTGCAGGACACATGGAACATTGATAAGTTGAACGCATATTACACGTCGTGCCTCACGGCATGATGTACACATGGTTGAGTGCTTCAGTTCTTTT

g g a t t g t c g g a t a a g a g a g g t c t g g t t g g g a t c t c g c g t t g c c a g g c g a g c g c a a g c t c g t a t g g a g g g t c a c a t a g a a g c a g t g c c t t t g t c c g t a t c g

2 1 0  2 20  2 3 0  2 4 0  2 5 0  2 6 0  2 7 0  2 8 0  2 9 0  300

__I__I--- I--- I--- I--- I--- I--- I--- I--- I--- I--- I--- I--- I--- I--- I--- I--- I--- I--- I
t t g g t t t c g c c t t c g g t a t a t c a t g a c t g g t t c t t g a a c c a a a t g g g t c g c g c g c t a t c c g t g g a t a a c t g g a g g t g g c g t g g t c t a c t t t g t a g a c t t t

390

.. I..
400

.. I
GATCATCCTCCGCGACGGGTAGTTCGACCGGCCTGGACCGCTAAGTGTGCTATCAGAAAAGGTGTCATATGGTAGATTGCTAGTTGGGGTTGGGTGTGCA

ACGGACTGCTGGGCGCTGCCCTGTAGCATGGAACTTGGCTTGTCATGAGCTGTTCCGCACAATGCTACGGTGCGTGGTTCCCAGTAGGACGGGGTTACAC

CCGGGGTGTGTCTGCTGGCCCGTTGTGCTGCCCGTAGAAAAGATTGGCCAGTCATGAGCTATTTCTGGACTACGACGTAGTGCAGCGGGTGGTGGGCCAT

CCAATTTCGATGGGTGTGCAACGGACTGCTGGGCGCTGCCCTGTAGCATGGAACTTGGCTTGTCATGAGCTGTTCCGCACAATGCTACGGTGCGTGGTTC

7 7 0
. . I . .

CCAGTAGGACGGGGT TACACCCGGGGTGTGTC TGC TGGCCCGT TGTGC TGCCCGT AGAAAAGAT TGGCCAGTCATGAGCCATTT CTGGAC TACGACGT AG

t h l . 7

t h l . 3
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k 2

k 3

thl.l
t h l . 4

t h l . 7

t h l . 3

k2
k 3

t h l . l

t h l . 4

t h l . 7

t h l . 3

k 2

k 3

t h l . l

t h l . 4

t h l . 7

t h l . 3

k 2

k 3

t h l . l

t h l . 4

t h l . 7

t h l . 3

k 2

k 3

t h l . l

t h l . 4

t h l . 7

t h l . 3

k 2

k 3

t h l . l

t h l . 4

t h l . 7

t h l . 3

k 2

k 3

t h l . l

t h l . 4

t h l . 7

t h l . 3

k 2

k 3

t h l . l

t h l . 4

t h l . 7

t h l . 3

k 2

k 3

t h l . l

t h l . 4

t h l . 7

t h l . 3

__|__ |__|__ |__I__I--- I--- I--- I--- I--- I--- I--- I--- I--- I--- I--- I--- I--- I--- I
TGCAGCGGGTGGTGGGCCATCCAATTTCGATGGGTGTGCAACGGC CTGCTGGGCGCTGCCCTGTAGCATGGAACTTGGCTTGTCATGAGCTGTTCCGCA

9 10  920 930 9 40  95 0  9 60  9 70  980 990 100 0

__|__ |__|__ |__I--- I--- I--- I--- I--- I--- I--- I--- I--- I--- I--- I--- I--- *--- 1--- 1
CAATGCTACGGTGCGTGGTTCCCAGTAGGACGGGGTTACACCCgGGGTGTGTCTGCTGGCCCGTTGTGCTGCCCGTAGAAAAGATTGGCCAGTCATGAGC

.................................................................................................................   T A ...................

............................................................................................   T A ...................

..............................................................................................................   T A ...................

.....................................................................................................  T A ...................

1 0 1 0  102 0  1 0 3 0  1 0 4 0  1 0 5 0  1 0 6 0  1 0 7 0  1 0 8 0  109 0  1 100

__|__ |__I__I--- I--- I--- I--- I--- I--- I--- I--- I--- I--- I--- I--- I--- I--- 1--- 1--- 1
CATTTCTGGACTACGACGTAGTGCAGCGGGTGGTGGGCCATCCAATTTCGATGGGTGTGCAACGGCCTGCTGGGCGCTGCCCTGTAGCATGGAACTTGGC

I l i o  1120 1 1 3 0  1 1 4 0  1 1 5 0  1 1 6 0  117 0  118 0  1 190  120 0

__I__ I__I__I__I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I
TTGTCATGAGCTGTTCCGCACAATGCTACGGTGCGTGOTTCCCAGTAGGACGGGGTTACACCCAGGGTGTGTCTGCTGGCCCGTTGTGCTGCCCGTAGAA

1210

. I ..

..................................................................................................................................... G ..............  T .  . . ,

......................................................................................................................................G .............................................T .  . .

......................................................................................................................................G .............................................T .  . .

......................................................................................................................................G .............................................T .  . .

122 0  1 2 3 0  1 2 4 0  1 2 5 0  1 2 6 0  1 2 7 0  1280

.1---|--- |--- I--- I--- I--- I--- I--- I--- I--- I--- I--- I ••
1290 

. I .  -
1 3 0 0  

. I
AAGATTGGCCAGTCATGAGCCATTTCTTGACTACGACGTGGTGCAGCGGGTCGTGGGCCATCCAATTTCGTTTGGTGGTGACTTTCAAGTTCGGATCGCA

...............................................................................G .................................A .................................G ..............................................................................................................................................

...............................................................................G ................................ A .................................G ..............................................................................................................................................

...............................................................................G ................................ A .................................G ..............................................................................................................................................

...............................................................................G ................................ A .................................G ..............................................................................................................................................

1 3 1 0  132 0  1 3 3 0  1 340  1 350  1 3 6 0  137 0  1 380  139 0  1 400

__|__ |__I--- I--- I--- I--- I--- I--- I--- I--- I--- I--- I--- I--- I--- I--- I--- I--- I--- I
TTATGTTGAAAGGCGTGTGTTGGTGGATCACTTATTTATTTATTTTTTATTTATTTAAGTGTGATACTGACCAGTGTGTGGAGACATAATAGCAGTGAAG

..................................................................................................................................
. .............................................................................................................................

..................................................................................................................................

..................................................................................................................................
1410 1 420  1 4 3 0  1 4 4 0  1 4 5 0  1 4 6 0  147 0  148 0  1 490  150 0

__|__I__I__I--- I--- I--- I--- I--- I--- I--- I--- I--- I--- I--- I--- I--- I--- I--- I--- I
TAAACGAAATGTTCATCATCAAATTTTTTTCGGGGGTAACCCCAACTAGTAATCTACCGACACCTTTTTCTGTTACACACGGCCCAAAAGCCTGCTTTCT

..................................................................................................................................................................................................T ..................................................

T .  . -G

1 510  1 5 2 0  1 5 3 0  1 5 4 0  1 5 5 0  1 5 6 0  1 5 7 0  1 5 8 0  1 590  1 6 0 0

. |__|__I--- I--- I--- I--- I--- I--- I--- I--- I--- I--- I--- I--- I--- I--- I--- I--- I

................................................................................................................T T T . G T ........................................................................................................

................................................................................................................T T T . G T ........................................................................................................

................................................................................................................T T T . G T ........................................................................................................

................................................................................................................T T T . G T ........................................................................................................

1 6 1 0  162 0  1 6 3 0  I 1 6 4 0  1 6 5 0  1 6 6 0  1 6 7 0

__I__I--- I--- I--- I--- I--- IT • • • I--- I--- I--- I--- I--- I--- I--- I • • •
GTATGGTGAAAAGAAGGATCAATCCAAAAGTTAACTGTCGCCTCAACTCATGGGAGACTACCCCCTAAATTTAAGCAT

. ......................................................................................................

..................................A G .................................................................................................................. C .........................................................................

..................................A G .A .............................................................................................................C .........................................................................

..................................A G .A .............................................................................................................C .........................................................................

..................................A G .A .............................................................................................................C .........................................................................
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Figure 5.6 Total alignment of the fragment 5.8S (partial) + ITS2 (complete) + 28S 

(partial) o f specimens from clades II (specimens L11-L13,L15) and III (remaining 

sequences). Arrows indicate start and end o f the internal transcribed spacer 2 in the

sequence.

10 20  30 40  50  60 70  80 9 0 *  100
___I___ |___ |___ I___ I___ I--- 1....I--- I--- I....I--- I-- .1-- -I--- I....1....I....I....I-...I

L 3 3  T G T G A A C T G C A G G A C A C A T G  A A C A T C G A T A A G T T G A A C G C A T A T T A C A C G T C G T G C C C C A C G G C A T G A T G T A C A C A T G G T T G A G T G C T T C G G T G T T T G G

L12 ..........................................................................................................
L 1 3  ................................................................................................................................................................................................................................................................................................................................................................

b s k 3 3  ....................................................................G ...................................................................................................................................T ...............................................................................................................................................
5 1 7 . 1  .G .................................................................................................................................T ...............................................................................................................................................
t a 2 1   G ................................................................................................ T ...............................................................................................................................................

t a 2 2  ................................................................... G ......................................................................................................................................................................................................................................................................................
k h 7   G ................................................................................................ T ...............................................................................................................................................
t a l 9   G ................................................................................................ T ...............................................................................................................................................

t h l . 2  ................................................................... G ...................................................................................................................................T ...............................................................................................................................................
t h l . 6  ................................................................... G ...................................................................................................................................T ...............................................................................................................................................

k h 9   G ................................................................................................ T ...............................................................................................................................................
5 1 1 . 2   G ................................................................................................T ...............................................................................................................................................
t h l . 1 0  ...........................................................................................................................................................................................................T ...............................................................................................................................................

t h l . 9  ...........................................................................................................................................................................................................T ...............................................................................................................................................
t h 3 9 . 3   T .........................................
t h l . 8  ................................................................... G .................................................................................................................................. T ...............................................................................................................................................
t a 2 4  ................................................................. G ................................................................................................................................... T ....................C .......................................................................................................................

t a 2 3  ......................... T .....................................G ..................................................................................................................................T .................................................... T .......................................................................................
t a l O  ................................................................... G ..................................................................................................................................T .........................................................................................................C ..................................

k h 4  .................................T ..............................G ..................................................................................................................................T ................................................................................................................................................
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Figure 5.7 Total alignment o f the fragment 5.8S (partial) + ITS2 (complete) + 28S 

(partial) o f specimens from clade IV. Arrows indicate start and end o f the internal

transcribed spacer 2 in the sequence.

10 20 3 0 40 5 0 60

btrl9
bsk3
114
btrl6
btrl8
btr7
btrlO
btr22
btr8_
btrll
btr23_
btrl7
ctr4
ctr2
S24.1
T35.2
T35.1

btrl9
bsk3
114
btrl6
btrl8
btr7
btrlO
btr22
btr8_
btrll
btr23
btrl7~
ctr4
ctr2
S24.1
T35.2
T35.1

btrl9
bsk3
114
btrl6
btrl8
btr7
btrlO
btr22
btr8_
btrll
btr23_
btrl7
ctr4
ctr2
S24.1
T35.2
T35.1

7 0  8 0  9 0  1 0 0

............................. I__ I--- I----I--- I----I--- I----I--- I----I--- I----I--- I--- 1----1--- 1
T G T G A A C T G C A G G A C A C A T G  A A C A T C G A T A A G T T G A A C G C A T A T T A C A C G T C G T G C C T C A C G G C A T G A T G T A C A C A T G G C T G A G G G C T A C G G T A C T T T T

110 
. I .

1 2 0  1 3 0  1 4 0  1 5 0  1 6 0  1 7 0  1 8 0  1 9 0  2 0 0
.................| __ |__ |__I----I--- I----I--- I----I--- I----»--- I--- *--- «--- •--- I--- 1----1
G G A T T G A G G G A T A C G A G A G G T C T G G T T G G G G C C T C G T T T A G C C A G G T G G G C C T G C A A A C G C A A G C T C A T A T G G A G G G T T A C A T A G A A G C A G T G T C T T T G T

2 4 0  2 5 0  2 6 0  2 7 0  2 8 0  2 9 0  3 0 0
__|__ |__ |__ |__ I--- I--- I--- I----I--- I--- I--- I----I--- I--- I--- I--- I--- I----I--- 1

C C G T A T C G T G G G T T T C G C C C T C G G T A T A A C A T G A C T G G C T C T T A G C C A A A T G G G T C G C G C G C T A T C C G T G G A T A A C T G G T G G T G G C G T G G T C T A C T A G T T

210 220 2 3 0

btrl9
bsk3
114
btrl6
btrl8
btr7
btrlO
btr22
btr8_
btrll
btr23_
btrl7"
ctr4
ctr2
S24.1
T35.2
T35.1

3 1 0  3 2 0  3 3 0  3 4 0  3 5 0  3 6 0  3 7 0  3 8 0  3 9 0  4 0 0
. 1 _____ | _______| _______1 . . . .  I---------- I . . . .  1-----------I----------I-----------I----------1 . . . .  I-----------I-----------I----------I---------- I . . . .  I-----------I-----------I

A G A C T T C G A T C A T C C  T C C G C G A C G G G T  A G T  T C G A T C G G C C  T G G A C C G C G A A G T G T G C  A T C A G A G C G G T G T C A A T G G T A G C G T A C  T A G T T G G G G T T  T  T G G G

T
.A .

T

114



4 i o  4 2 0  4 3 0  4 4 0  4 5 0  4 6 0  4 7 0  4 8 0  4 9 0  5 0 0

_.1__ 1_.1__I__ I__ I--- I--- I--- I----I-- .1----I----I--- I--- I--- 1--- »--- I----»----»btrl9 TGTGTCAACGGACTGCTGTGCTGCCCGTGGCGAAGGTTGGCCÄTACTTGAGCCTTTCCGATGCTGCGACGTGGTCCAGTGGGACGGGGTCCATCCAATAT
bsk3 ..........................................................................................................
114 ..........................................................................................................
btrl6 ..........................................................................................................
btrl8 ..........................................................................................................
btr7 ..........................................................................................................
btrlO ...........................................................................................................................................................................................................................
btr22 ..........................................................................................................
btr8__ ..........................................................................................................
btrll ..........................................................................................................
b t r 2 3 _  .........................................................................................................................................................................................................................................................................................btrl7 ...............................................................................................................................
ctr4 ..........................................................................................................
ctr2 ..........................................................................................................
S24.1 ..........................................................................................................
T35.2 ..........................................................................................................
T35.1 ..........................................................................................................

btrl9
bsk3
114
btrl6
btrl8
btr7
btrlO
btr22
btr8_
btrll
btr23
btrl7“
ctr4
ctr2
S24.1
T35.2
T35.1

510 520 530 540 550 560 570 580 590 600
__I__ I__ I__ I__ I__ I----I--- I----I--- I----I--- I--- I--- I--- I--- I--- 1--- 1----I----Itgtgtttcgggtcgggtgtgtcgccgtctagtgtgcttcccatggaggttgattcgcgcctttgggtgggattagctgccgtggtgcggttcacagggac
................................................................................................................................................................... A .......................................................................................................................................................................................
i ’ ...................................................................................................... T . A ..................................................................................................................................................
................................................................................................................................................................... A .......................................................................................................................................................................................
’ * [ * .................................................................................................................................................... A ....................................................................................................................................................................................

. . . .....................................................................................................................................................A .......................................................................................................................................................................................

............................a ...........................................
] ] .....................................................................................................................................................A .....................................................................................................................................................................................
,  ’ .....................................................................................................................................................A .....................................................................................................................................................................................

...................................................................................................................................................................A ......................................................................................................................................................................................
] [ .....................................................................................................................................................A .....................................................................................................................................................................................

[ ] ' .....................................................................................................................................................A .....................................................................................................................................................................................
....................................................................................................................................... A .......................................................................................................................................................................................

..................................................................................................... .A ..................................................................................................................................................................................

A.
A.

6 1 0  6 2 0  6 3 0  6 4 0  6 5 0  6 6 0  6 7 0  6 8 0  6 9 0  7 0 0
__I__ I__ I__ I__ I__ I---- I----I---- I----I----I----I----I----I----I----i----I---- I---- I----I

b t r l 9  G G A G G C C A C C C A G G G T G C G T C A A C G G T C A G T T G T G C T A G C C G T G G C A A C G T G T G G C C A G T C A T G A G C C A T G C C G A G G C T G C G T G T T G G G C A A C A G G A C C G

b s k 3  ...............................................................................................................................................................................................................................................................................................................................................................
114 ..........................................................................................................
btrl6 ................................ A ........................................................................
btrl8 ..........................................................................................................
btr7 ..........................................................................................................
btrlO ..........................................................................................................
btr22 ..........................................................................................................
btr8_ ..........................................................................................................
b t r l l  ...............................................................................................................................................................................................................................................................................................................................................................
btr23_ ..........................................................................................................
btrl7 ..........................................................................................................
ctr4 ..........................................................................................................
C t r 2  ................................................................................................................................... ... ........................................................................................................................................................................................................................
524.1 ..........................................................................................................
T35.2 ..........................................................................................................
T35.1 ..........................................................................................................

7 1 0  7 2 0  7 3 0  7 4 0  7 5 0  7 6 0  7 7 0  7 8 0  7 9 0  8 0 0
I...-I....I....I... .I. . . .I. . . .I. . . .I. . . .I. . .-I

b t r l 9  G A G G C C A T C C T T T T A T T T C G G G G T G G G T G T G T C A A C G G A C T G C T G T G C T G C C C G T G G C G A A G A T T G G C C A T A C T T G A G C C T T T C C G A T G C T G C G A C G T G G

bsk3 ..........................................................................................................
114 ..........................................................................................................btrl6 ...............................................................................................................................
btrl8 ................... A .....................................................................................
btr7 .........................................................C ........................................ A ......
btrlO ................................................................................................ .........
btr22 ..........................................................................................................
btr8_ ..........................................................................................................
btrll ......... -...............................................................................................
btr23_ ..........................................................................................................
btrl7 ..........................................................................................................
ctr4 ..........................................................................................................
ctr2 ................................................ *........................................................
524.1 ..........................................................................................................
T35.2 ..........................................................................................................
T35.1 ..........................................................................................................

8 Í 0 020 830 84 0  850 860 870 880 89 0  900
i i i 1 ____ 1 _____ 1_____ 1 _____ 1_____ 1_____ 1 _____ 1_____ 1_____ 1_____ 1_____ 1_____ 1_____ i -------- 1

b t r l 9 TCCAGTGGGACGGGGTGCACCCGGGTGTOTCAACGGTTTGCTGIGTTCTOCCCGTGGTGGTAGGATTGGCCAGTCATGAGCCAGTCCGAAGCCGCGACGT

kf*3
i l

1 1 7 6*
1 1
bL 0̂

L t i l 7

T 35  2
c

T 3 5 .1

115



9 1 0  9 2 0  9 3 0  9 4 0  9 5 0  9 6 0  9 7 0  9 8 0  9 9 0  1 0 0 0

__|__ |__ --------------------- I---- I----I----I---------------------------------------------------- Ibtrl9 GGGCCAGTAAGTCGGGGGCCATCCAATTTCGACGCGTGGTGTGTCAACGGACTGCTGTGCTGCCCGTGGCGAAGATTGGCCATACTTGAGCCTTTCCGA.T
bsk3 .................................................................................................
1 1 4  ................................................................................................................................................................................................................................................................................................................................................................
btrl6 .................................................................................................
btrl8 ......................................................................................... c ......
btr7 .................................................................................................
btrlO ............................................................................................................................................................................................................................
btr22 ..........................................................................................................
btr8_ .................................................................................................
btrll .................................................................................................
b t r 2 3 _  .................................................................................................................................................................. .......................................................................................................................
btrl7 .................................................................................................
ctr4 .................................................................................................
ctr2 .................................................................................................
S24.1 .................................................................................................
T35.2 .................................................................................................
T35.1 .................................................................................................

1010 1020 1030 1040 1050 1060 1070 1080 1090 1100
b t r l 9  GCTGCGACGTGGTCCAGTGGACGGGGTCCACCAGGGTGTGTCAATGGTTTGCTGTGTTCTGCCCGTGGTGTTAAGATTGGCCAGTCATGAGCCAGTCCGA

bsk3 .................................................................................................
114 .................................................................................................
btrl6 .................................................................................................
btrl8 .................................................................................................
b t r 7  .........................................................................................................................................................................................................................................................................................
btrlO .................................................................................................
btr22 ............................................................ C ............................................
btr8_ .................................................................................................
btrll .................................................................................................
btr23_ .................................................................................................btrl7 ...............................................................................................................................
ctr4 .................................................................................................
ctr2 .................................................................................................
S24.1 .................................................................................................
T35.2 .................................................................................................
T35.1 .................................................................................................

1110 1120 1 130  1140 1150 1 160  1170 1180 119 0  1200

btrl9 AGCCGCGACGTGGGCCAGCAAGCTGGGGGCCATCCACAATTTTTTTCGGGTGGGGTGTGTTGTCATCGTGCCGTGCTGCCCGCGGGGCGAGCTTCGGTCC
bsk3 ..........................................................................................................
114 .................................................................................................btrl6 ...............................................................................................................................
btrl8 ..........................................................................................................
btr7 ..........................................................................................................
btrlO ..........................................................................................................
btr22 ..........................................................................................................
btr8_ ..........................................C ..............................................................
btrll ........................................................................c .................................
btr23_ ..........................................................................................................
btrl7 ..........................................................................................................
ctr4 ......................................................................................................... .
ctr2 ..........................................................................................................
S24.1 .................................................................................................
T35.2 ...................................................................A .............................
T35.1 .................................................................................................

1 2 1 0  1 2 2 0  1 2 3 0  1 2 4 0  1 2 5 0  1 2 6 0  1 2 7 0  1 2 8 0  1 2 9 0  1 3 0 0--- | .... I----I----I — . | I .... I ----I----| | . — I .... I--- I
btrl9 TTCGGGGCCGTTGTCTTGCTGACGCGGTGTGGTCGGTGCTGATGGTGGCCACCTCTGGTGGTGACTTTCAACTTCGGATCGCATTATGTTGAAGGGCGTG
bsk3 ..........................................................................................................
114 .................................................................................................btrl6 ...............................................................................................................................btrl8 ...............................................................................................................................
btr7 .................................................................................................
btrlO ...................................................................................... A .........
btr22 .................................................................................................
btr8_ .................................................................................................
btrll .................................................................................................
btr23_ .................................................................................................
btrl7 .................................................................................................
ctr4 .................................................................................................
ctr2 .................................................................................................
S24.1 .................................................................................................
T35.2 ..........................................................................................................
T35.1 .................................................. T..............................................

1310 1320 1330 1340 1350 1360 1370 1380 1390 1400
btrl9 TTGTTGGTGGATCACTTATTTATTTATTTTTTATTTATTTAAGTGTGATACCGACCAGTGTGTGGAGACATAATAGCAGTGATGTAACCGAAATGTCATC
bsk3 ..........................................................................................................
114 .... .....................................................................................................btrl6 ................................................................................*..............................................
btrl8 ..........................................................................................................
btr7 ..........................................................................................................
btrlO ..........................................................................................................
btr22 ..........................................................................................................
btr8_ ..........................................................................................................
btrll ..........................................................................................................
btr23_ ..........................................................................................................
btrl7 ..........................................................................................................
ctr4 ..........................................................................................................
ctr2 ..........................................................................................................
S24.1 .................................................................................................
T35.2 .................................................................................................
T35.1 .................................................................................................

116



btrl9
bsk3
1X4
btrl6
btrl8
btr7
btrlO
btr22
btr8_
btrll
btr23
btrl7*
ctr4
ctr2
S24.1
T35.2
T35.1

1 4 X 0  1 4 2 0  1 4 3 0  1 4 4 0  1 4 5 0  1 4 6 0  1 4 7 0  1 4 8 0  1 4 9 0  1 5 0 0. . . . |__------------------- I----I--- I--- I--- | --- |--- |--- I--- I--- I--- I--- -------------- IATCTTTTTTTCGGGGGTAACCCCAACTAGTACGCTACCGACACCAATCTGTTGCACATGGTCCAAAAGCCTGCTTTCTATGAGAGGTATTCTTTTTTTTT
......................................................... G .................. .............................
............................................ T ............................................................

e

G

btrl9
bsk3
114
btrl6
btrl8
btr7
btrlO
btr22
btr8_
btrll
btr23
btrl7*
ctr4
ctr2
S24.1
T35.2
T35.1

btrl9
bsk3
114
btrl6
btrl8
btr7
btrlO
btr22
btr8_
btrll
btr23
btrl7*
ctr4
ctr2
S24.1
T35.2
T35.1

1510 1520 1530 1540
. ... I .... 1

1550
___ 1____ 1

1560
___ 1____ 1 . .

1570 
. . 1____

1580 1590  
. 1____ 1_____ 1---- 1

1600 
--- 1

CAAAAACCGTCGACCAGATCATTGGGTTASAGTTTTTCAAAATTTTTTGGAAGCTCTCGCTAAATGGTTTOGACAGGGGGOTTTCTATGCAAATTTTTT

A ,. GG. ... ...... T.G. . ___ GCG.C........
nrs ...... T.G.. . .TA. ___ CG.C-----C. . .

...... T.G.. . .TA. .... CG.C.......
A . GG. . ...... T.G.. , .TA. ___ CG.C_____C. . .

cun ...... T.G. . . .TA. ... CG.C.......
T ...... T.G.. . .TA. ___ CG.C.........

...... T.G.. . .TA. ___ CG.C.........

...... T.G.. . .TA. ___ CG.C.........
r ...... T.G.. . .TA. ___ CG.C.........

...... T.G.. . .TA. ___ CG.C.........

...... T.G.. . .TA. ___ CG.C.........

...... T.G.. . .TA. ___ CG.C.........- ...... T.G.. . .TA. ___  CG.C....C...

...... T.G.. ___ CG.C.........

1610 1620 1630 1640
--- 1---- |

1650
. . . . I . . . . I

1660 1670
1

1680 1690  
. I . . . . I . . . . I . . . . I

1700  
--- 1__|__ |__ | | I--- I--- I--- I--- | | | I .... I .... I .... IX | I .... I .... I---ICGATTTGCTGAGCTTCCCTATGAAATTGTATGGGAGTCGATAGGTTTGCGAAAATTAAAGAGCAATCCAAAACPTCCGTTGCCTCAGCTCATGTGAGACTA

.............................................................. A.
...................................................A.

A ............................................................ A
.............................................................. A.
.A.... T...................C ................................. A.
.............................................................. A.

..................................................................................................................................................A.
! ! ! ! . ! ! . ! . ! ........................................................................................................................................................................ a ...................................................................................A
.............................................................. A.
.............................................................. A.
.............................................................. A.
.............................................................. A.
.A.... ........................................................A
..................................................................................................................................................................... A.

............................................... A

1 7 1 0

btrl9 CCCCCTAAATTTAAGCAT
bsk3 ..................
114 ..................
btrl6 ..................btrl8 ......................
btr7 ..................
btrlO ..................
btr22 ..................
btr8_ ..................
btrll ..................
btr23_ ..................
btrl7 ..................
ctr4 ..................
ctr2 ..................
S24.1 ..................
T35.2 ..................
T35.1 ..................

117



Figure 5.8 Total alignment o f the fragment 5.8S (partial) + ITS2 (complete) + 28S 

(partial) o f specimens from clade V. Arrows indicate start and end o f the ITS2 in the

sequence.
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1110 1120 1130  1140  1150  1160 1170  1180  1190  1200---| ---- | ---I--- |--- I--- I--- I--- I----|--- | ----I---- I---I---- I---I---- | ---| ---- | ---| ---- |
GGATCTGGCCATTCGTGAGCTGATCCGCACAATGCTACGGTGTGTGGTTCCCGGTAGGACGGGGTACATCCAATTTTTTTGGGTGGGATACGTGTCCATC

1210 1220 1230  1240  1250  1260  1270  1280  1290  1300---|---- | --- | --- |--- |--- I--- I--- I--- I--- I--- I---- I---I---- I---I---- I---|---- | ---| ---- |
GTGC TGTGC TGGCCGTGGGGCAAGATTCGGTCCAT TGGGC TGTGGTCT TGCTGACGCGGTGTAGTGTCAGTGC TGTTGGGGGC TATCCCATGGTGGTGAC

1310 1320 1330  1340  1350  1360  1370  1380  1390  1400---i---- | --- |--- |--- |--- |--- |--- | ----| --- | ----I---- | --- | ---- I---I---- I---| ---- |---|---- |
TTTCAAGTTCGGATCGCATTGTGTTGAAGGGCGAGTGTTGGTGGATCACTTATTTATTTATTTTTATTTATTTAAGTGTGATACTGACCAGTGTGTGGAA
.................... A ....................................................................................

1410 1420  1430  1440  1450  1460  1470  1480  1490 1500
------- | ---------- | ------- | -------- I -------- I -------- I ---------I ---------I ---------I ---------I ---------I ----------I ------- I ----------I ------- I ----------I ------- | ----------| ------- | ---------- |
ACATAAAAGCAGTGAAGTAACCGAAATGTTCACCATCATAATTTTTTTCGGGGGTAACCTCGACTAGTAATCTACCGACACCTTTTTCTGTTACACATGG
..... T...................................................................................................

1510 1520 1530  1540  1550  1560 1570  1580  1590 1600---| ---- | --- | --- |--- |--- |--- |--- I--- |--- I--- I---- I---I----I---I---- I---|---- | ---| ---- |
TCCAAAAGCCTGCTTCTATGAGAGGGTATCTTTATTTTCTCCAGCACACACCCGAAACTTAACTGTCGAGGAATGTGGAATGTTGAAAATGAAGATCAAT

1 6 1 X  1620 1630  1640  1650
—  i —  r.  . . . i  —  i —  i —  i —  i —  i —  i —  i . . .
CCAAAAGTCCGTTGCCTCAACTCATGGGAGACTACCCCCTAAATTTAAGCATA
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Since the sample sizes are small, no firm conclusion is possible but the differences 

between the two populations are large, even for allopatric populations within a 

species (see discussion). In clades II and III, the ITS2 is almost the same size 

(-1730), but there are 30 fixed substitutions and 5 fixed insertion/deletion events in 

the ITS2 sequence. In addition, one substitution is present in the conserved 5.8S 

region (Figure 5.6).

Haplotype diversity in the entire dataset was high, with 47 haplotypes in 51 

specimens. The majority of haplotypes comprised a single specimen, with the 

exception of haplotype 5, in clade I (formed by specimens thl.3 , th l.4  and thl.7) 

and haplotype 11 in clade IV (formed by specimens btrl7, ctr2 and ctr4). The 

number o f gaps was directly proportional to the number of specimens found in each 

clade: Clade I (4 gaps), clade II (2 gaps), cladelll (7), clade IV (8) and clade V (0). 

The G+C content of the ITS2 was similar in all clades, 52.3% (clade I), 55.6% 

(clade II), 55.9% (clade III), 54.3% (clade IV) and 55.1% (clade V). Among the 

substitutions, the ratio of transitions/transversions was high in clades II and III 

(2.73), clade IV (2.37) and clade V (8). For clade I the number of transversions was 

equal.

To sum up: taking into consideration differences in sizes and the presence of fixed 

substitutions, the entire dataset of specimens from the Barbirostris Subgroup can be 

divided in five clades: I, II, III, IV and V, which comprise the same specimens 

observed in the clades obtained from the cytochrome I analysis (Chapter 4).

5.3.3 DNA repeats analysis

The exceptional length o f the ITS2 region was due to the presence o f repeated 

elements, size and organization of which varied in the different clades. These 

repeats were located at the centre o f the ITS2, occupying between 55% to 61% of 

the total length of the spacer. Each repeat was approximately 220 bp in length with 

evidence o f individual duplication (see below). In the following sections there is a 

broad description of the arrangement of the repeats in each clade, as they varied in 

number, size and similarity. Analysis is presented on ITS2 size and the arrangement
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of repeats, starting with clades I, V and IV (ITS2 = 1519 -  1583 bp) followed by 

clades II and III (ITS2 = 1727 bp).

5.3.3.1 Repeats in clade I

Detailed examination of ITS2 sequences in the six specimens of this clade, show 

that they contain 4 consecutive and almost perfect repeats. In Figure 5.4, repeats of 

specimen k2 are shown as an example. They were all 220 bp in length and showed a 

similarity of 96.8% (between repeats 1 and 4) and 99.5% (for repeats 1 and 2). 

Repeat 4 was the most variable, with a minimum of 4 substitution differences from 

repeats 1, 2 and 3. Seven substitutions were seen between repeats, of which 4 were 

transversions and 3 were transitions; most of the substitutions observed between the 

repeats appear in the second half o f the sequence (Figure 5.9).

A GGGTGTG motif occurs at the beginning of each repeat, again close to its central 

point (Figure 5.9). When the repeats o f the 220 bp fragment are subdivided into two 

parts o f ~110 bp by the motif GGGTGTG, the partitions show a 53% similarity 

(Figure 5.10).
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Figure 5.9 Alignment o f the repeats found in clade I (specimen k2)

The repeats are consecutive and have been numbered according to their position in 

the sequence. The GGGTGTG motif is underlined. It appears at the beginning and in 

the middle o f each repeat.

K2 repeats1 
K2 repeats2 
K2 repeats3 
K2 repeats4

1 0  2 0  3 0  40  5 0  60

G G G T G T G C A A C G G A C  T G C T G G G C G C  T G C C C  TGT A G C  A T G G A A C  T T G G C  T T G T C A T G A G C  T

C
C

K2 repeats1 
K2 repeats2 
K2 repeats3 
K2 repeats4

70  80  90  1 0 0  1 1 0  1 2 0----| ---- | -----| ---- | -----I---- | -----I-----I-----I---- I---- I---- I
G T T C C G C A C A A T G C T A C G G T G C G T G G T T C C C A G T A G G A C G G G G T T A C A C C C G G G G r G I G T

..........................................................................A ...........

K2 repeats1 
K2 repeats2 
K2 repeats3 
K2 repeats4

1 3 0  1 4 0  1 5 0  1 6 0  1 7 0  1 8 0--- | ---- | ---- | ---- | ---- I---- I-----I---- I---- I---- I-----I---- I
C T G C T G G C C C G T T G T G C T G C C C G T A G A A A A G A T T G G C C A G T C A T G A G C T A T T T C T G G A C T
...............................................................C ..............
...............................................................C ..............
...............................................................C ....... T. . . .

1 9 0  2 0 0  2 1 0  2 2 0

K2 repeats 1 A C G A C G T A G T G C A G C G G G T G G T G G G C C A T C C A A T T T C G A T
K2 repeats2 .........................................................
K2 repeats3 .........................................................
K2 repeats4 ........G.............. C ....................... T.

Figure 5.10 Alignment o f the subrepeats in clade I. The motif GGGTGTG was used 

to divide sequence into 8 subrepeats.

K2 subrepeatla 
K2 subrepeatlb 
K2 subrepeat2a 
K2 subrepeat2b 
K2 subrepeat3a 
K2 subrepeat3b 
K2 subrepeat4a 
K2 subrepeat4b

K2 subrepeatla 
K2 subrepeatlb 
K2 subrepeat2a 
K2 subrepeat2b 
K2 subrepeat3a 
K2 subrepeat3b 
K2 subrepeat4a 
K2 subrepeat4b

10 20 30 40 50 60

GGGTGTGCAACGGACTGCTGGGCGCTGCCCTGTAGCATGGAACTTGGCTTGTCATGAGCT 
........ TCTGCTGGCC . G T T . T ................ A.A A ............C A .............

. .TCTGCTGGCC.GTT.T.............................

.......................C...........................................................
. .A.AA........ .CA................. . .C

. .TCTGCTGGCC.GTT.T.............................

.......................C...........................................................
. .A.AA........ .CA................. . .C

. .TCTGCTGGCC.GTT.T............................. . .A.AA........ .CA................. . .C

70 80 90 100 110

GTTCCGCACAATGCTACGGTGCGTGGTTCCCAGTAGGACGG GGTTACACCCG 
A. .T. TGG.C.A.G. . .TA.T.CA.CGGGTG. .G..C.ATCCAA. .T.GAT

A. .T. TGG.C.A.G-. .TA.T.CA.CGGGTG. . G. .C.ATCCAA. T. GAT 
....................A

A. .T. TGG.C.A.G.. .TA.T.CA.CGGGTG. . G. .C.ATCCAA. T. GAT 
....................A

A. .T. TTG.C.A.G...TG.T.CA.CGGGTC. . G. .C.ATCCAA. T. GTT
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5.3.3.2 Repeats in clade V

In this clade two specimens were sequenced. The repeats show a similar 

arrangement to clade I, with two marked differences:

1) The first 3 repeats are very similar throughout whereas repeat 4 diverges in 

sequence after position 112, where the motif GGGTGGT (a slight variation o f motif 

GGGTGTG) is found (Figure 5.11). The similarity o f the repeats varied from 64.7% 

(between repeats 1 and 4) to 98.6% (between 1 and 2).

2) Repeats show different sizes: 224 bp in repeats 1 and 2, 223 bp in repeat 3 and 

222 bp in repeat 4, in contrast with the uniform 220 bp repeats found in clade I (Fig 

5.4). Considering only the repeat regions, there were 8 transitions and 5

trans versions.

Figure 5.11 Alignment o f the repeats found in clade V (specimen bk34 is used as 

example). Motifs GGGTGTG and GGGTGGT are underlined. Dots indicate same 

nucleotide.

1 0  2 0  3 0  4 0  5 0  60

t>slc34 repea tl 
bsk.34 repeat2 
bsk34 repeat3 
bsk34 repeat4

----| ---- | ---- | -----| -----| -----| -----| -----| -----1-----| -----| -----|
G G G T G T G C A A C G G T C T G C T G G G C G C T G C C C T G T A G C A T G G A T C T G G C C A T T C G T G A G C T G  

................................................................................................................................................................................................ A .

A

bsk34 repeatl 
bsk34 repeat2 
bsk.34 repeat3 
bsk34 repeat4

7 0  8 0  9 0  1 0 0  1 1 0  1 2 0

A T C C G C A C A A T G C T A C G G T G T G T G G T C C C C G G T G G G A C G G G G T T A C A C C C A G G g r G G r r c

.................................................................................... T ..............................................................................................................

.................................................................................... T .......................................................................................................C .

.................................................................................... T ...................A ......................................... T . . .  A T T  . T T  . . G

bsk34 repeatl 
bsk34 repeat2 
bsk34 repeat3 
bsk34 repeat4

1 3 0  1 4 0  1 5 0  1 6 0  1 7 0  1 8 0

T G C T G C C C G C T G T G C T G C C C G T A G C C T A G A T T G G C C A G T C A T G A G C C A G T C A G C G G C T G C

.................................................................................T .................................................................................................................

.................................................................................T .................................................................................................................

G . T G . G A T A . G T G T . C A T . G T G C T G T G C T G G C C . T G G . G „ . A . . T T . G . . . C A T T . G G CT

bsk34 repeatl 
bsk34 repeat2 
bsk34 repeat3 
bsk34 repeat4

1 9 0  2 0 0  2 1 0  2 2 0

G A C G T G G T G C A G T C G G G A C G T G G T C C A T C C T T T C G G T T G G G T T T

.........................................T .............................A ...................A A . T C .....................C

. T G . . C T . . . T . A . . C . G T . . A . . G T C A G T G C . G T T G G . . .
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5.3.3.3 Repeats in clade IV

Arrangement of repeats did not follow a clearly organized pattern, as observed in 

previous clades. To understand their arrangements, insertions were separated where 

m otif GGGTGTG (or slight variations) was found; so instead o f separating them into 

4 DNA repeats, they were split into 8 (Figure 5.12). M otif GGGTGTG was also 

located at the beginning o f the 8 repeats, with the exceptions o f repeat 3 and repeat 

6, in which this motif shows slight variations in the sequence: GGGTGCG and 

TGGTGTG respectively 1, 3, 5 and 7.

Repeats la , 2b and 3b show high similarity, although they differ in size (116, 98 and 

97 bp respectively). Repeats 3a and 4a show high similarity but differ in size.

Figure 5.12 Alignment o f the subrepeats found in clade IV (specimen ctr2).

Each o f the four repeats has been divided into subrepeats where the motif 

GGGTGTG or variant occurs.

ctr2 subrepeatla 
ctr2 subrepeatlb 
ctr2 subrepeat2a 
ctr2 subrepeat2b 
ctr2 subrepeat3a 
ctr2 subrepeat3b 
ctr2 subrepeat4a 
ctr2 subrepeat4b

10
.... 1___1.... 1.

20
.. 1___1

30
___1___

40
1___1___ 1 .

50 60 
. . . 1___1___ 1

GGGTGTG1CAACGGACTGCTGTG CTGCCCGTGGCGA AGGTTGGCCATACTTGAGCC
..T...A. ..A. .TT .A. . C..GCCTT.G.GTGG
. .AG.... ..A. C.TG... . . . GT . A....

...... A. . .
............ TT .....TT .T.GTAG.A.... . . . GT . A....
T............. ...... A. . .
......... T..TT .....TT . T. TTA. . A. . .. . . . GT . A....
...... TGT.ATCG .-C... ..... C. .G.CGAGCT.C.■ T.C.T. G.G. . .

70
---| | 1

80 90
I....I...

100
. 1 —  1.... 1

110 120 
. | |---|

ctr2 subrepeat la 
ctr2 subrepeat lb 
ctr2 subrepeat 2a 
ctr2 subrepeat 2b 
ctr2 subrepeat 3a 
ctr2 subrepeat 3b 
Ctr2 subrepeat 4a 
ctr2 subrepeat 4b

TTTCCGATGCTGCGACGTGGTCCAGTGGGACGGGGTCCATCCAATATTGTGTTTCGGGTC 
GA.TA.C. . .C.T.GT.C. . .T. .CA......A.G. . .C. . .
A.G__ G. ....TGT.. G.A.CA. .AC. .A.G.___

............ c.

. TT . TA. T. CGGGGT

AG....A. .C...... G. . . ..AA.T. . . .G... ___T.C.ACGCG

AG....A. .C...... G___CAA.CT . . .G . ..CA. ..T.T..CG..TG
G..GTCT... . . ACG. .GT .GGTCG.T.CT AT.GTGGC.ACC.C.G...G GACTT
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5.3.3.4 Repeats clades II and III

Clades II and III have the largest ITS2 o f all the clades (-1730 bp). They share a 

similar arrangement o f repeats. The size o f ITS2 was about 200 bp longer in these 

clades than in clades I, IV and V, due to the insertion of two additional imperfect 

DNA repeats. In these clades, the repeats show a complicated arrangement. Repeat 

numbers correspond to their consecutive arrangement in the sequence.

The m otif GGGTGTG and its variant GGGTGGG are common to all repeats. There 

is high similarity among repeats la , 3a, 4b; lb , 3b, 5a and 2a, 2b and 4a (Figure 5.13 

and Figure 5.14).

Figure 5.13 Alignment o f the subrepeats found in clade II (specimen 133).

The m otif GGGTGTG (underlined) or minor variant was used to divide the sequence 

into 10 subrepeats. Repeat numbers correspond to their consecutive position within 

the sequence.

10 20 30 40 50 60

133 subrepeat la GGGTGTGACTTCTGCCCGTT GTGCTGCCCGTAGC TACGTTTGGCCAGTATTGGCTAT
133 subrepeat lb ..... T.AAAG.TTT.C......C.... C. . . CCG. AA. . .TGC. .CAGT. .C. C
133 subrepeat 2a ..... T. AA. G. T. T. C. GG. C..............T..................
133 subrepeat 2b ..... T. AG. G. T . T. C. GG. C.................................
133 subrepeat 3a ..... T.AA..............................................
133 subrepeat 3b . . . , .G.T.AAAG.TTT.C..... C.... C. . . CCG.AA. . .TGC. .CAGT. .C.C
133 subrepeat 4a ..... T.AG G.T.T.C.GG.C.................................
133 subrepeat 4b ..... T. . A ..............................................
133 subrepeat 5a ..... T.AATG.TTT.C......C.... C... CCG. AA. . .TGC. .CAGT. .C.C
133 subrepeat 5b ..... TTG. -AT.GT.C............G.GG .A.CC.C.GTCT. G.. . .G

133 subrepeat la 
L33 subrepeat lb 
L33 subrepeat 2a 
L33 subrepeat 2b 
L33 subrepeat 3a 
L33 subrepeat 3b 
L33 subrepeat 4a 
L33 subrepeat 4b 
L33 subrepeat 5a 
L33 subrepeat 5b

70 80 90 100 110 120

TCCTCTGGCTATGACGTGGT GCAGTCGGGACGGGGTCCATCCAAGAGTGTGTTTTGGG
. TCGGA.T.GC.G.TC. .A C.G. .AA.CTG.A. .CA......
.......... G C ........ TCC . . . .A. . A C G____C.ATC.A.CC.
........... C ........ TCC___ A. . ACGA. . TC . ACC .
........... C ........  C ............T T . G . . . C . . . CTT
. TCGGA.T.GC.G.TC. .A C . G . . AA. CTG. A. . C .....T.
........... C .........TCC. . . .A. .ACGA. .TC.ACC GGG
........... C ........  C ............T. .G. . .C. . .CTTT.CG.

. TCGGA.T.GC.G.CC. .A C ___ AA.CTG____C ....... CTT.TC.GG . .
GG . . .T. . . GACG. .GT. .AGT.G. . ACT. G T ___ A ...... CTTG. . .GT
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Figure 5.14 Alignment of the repeats found in clade III (specimen ta21).

Repeat numbers correspond to their consecutive position within the sequence and 

are arranged in the same way as those in clade II. The motif GGGTGTG 

(underlined) or its variant was used to divide the sequence into 10 subrepeats.

10 20 30 40 50 6C

ta21 subrepeat la GGGTGTGPJZ TTCTGCCCGTT GTGCTGCCCGTAGC TACGTTTGGCCAGTATTGGCTAT
ta21 subrepeat lb ..... T.AAAG.TTT.C. c....c.. . CCG.AA. . .TGC. .CAGT. .C.C
ta21 subrepeat 2a ....... AA.G.T.T.C. GG.C. . .T..................
ta21 subrepeat 2b ....  T.AG.G.T.T.C. GG.C.
ta21 subrepeat 3a . . . T. AA..... . . .C.
ta21 subrepeat 3b ... .G.T.AAAG.TTT.C. c....c.. . CCG.AA...TGC..CAGT..C.C
ta21 subrepeat 4a ..... T.AG.G.T.T.C. GG.C.
ta21 subrepeat 4b .T. A ....... .C.
ta21 subrepeat 5a ..... T.AATG.TTT.C. c....c.. . CCG.AA...TGC..CAGT..C.C
ta21 subrepeat 5b ..... TTG..AT.GT.C. .....G.GG..A.CC.C.G.C .TCG....G.

70 80 90 100 110 120

ta21 subrepeat la TCCTCTGGCTATGACGTGGTCCA GTCGGGACGGGGTCCATCCAAGAGTGTGTTTGGG
ta21 subrepeat lb TTCGGA.T.GC.G.TC..A. G ..AA.CTG.A .CA....
ta21 subrepeat 2a ........ GC..... . .T.CCAGTA..... . G...... CCA
ta21 subrepeat 2b ........ GC..... . .T. CCAGTA....A ....C...T
ta21 subrepeat 3a ......... C..... . .T. .
ta21 subrepeat 3b TTCGGA.T.GC.G.TC. .A. . G ..AA.CTG.A .C....T. .T
ta21 subrepeat 4a ......... C..... ....C. .T
ta21 subrepeat 4b ....... c.c..... . .T. . ....... T .G...C...CT.T.CG.AGCAT
ta21 subrepeat 5a TTCGGA.T.GC.G.TC. .A. . . ..AA.CTA.. .C ..C....CTT.AC.GG TCA
ta21 subrepeat 5b GG T.GCT.ACGC.GT..A ...GGTACT.. T.. .A.... CTTG. . .GTCA.

A diagrammatic representation o f the repeats found in the different clades is 

presented in Figure 5.15.
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5.3.4 Phylogenetic analysis

The Neighbour-joining method was used to infer tree topology with the ITS2 data 

set, using the Kimura 2-parameter to calculate distance between sequences. A 

bootstrap analysis was performed to test the reliability o f tree topology. Bootstrap 

values are presented as numbers at internal nodes. The programme used was Mega3, 

with a bootstrap test o f 500 replications.

5.3.4.1 Phylogenetic tree obtained using only “alignable regions”

A phylogenetic analysis using the entire data set was extremely problematic due to 

the difference in size o f the sequences and the presence and organization of the 

repeats. Hence, the internal repeats were omitted and alignment was based on the 

first 300 bp o f the ITS2 at the 5’ end previous to repeat 1 and the 250 bp located 

immediately after the last repeat at the 3’ end. These regions were joined and a NJ 

phylogenetic analysis performed. Although alignment was possible, it demanded 

significant effort since these regions were o f different sizes.

There are five distinct clades in the NJ tree (Figure 5.16). All clades appear to be 

highly supported. Clades II and III appear to be closely related (72% bootstrap 

value) and also clades I and V (100%). This reflects the relationships shown in the 

analysis o f the repeats. Clade IV appears as a distinctive clade, separated from the 

others but closer to clades II and III. Specimens in clade I from Kalimantan and 

Thailand, appear also as independent clades supported by 100% of the bootstrap 

analysis. These populations within clade I were well based on the number of fixed 

substitutions between them.

Phylogenetic analysis was also performed using the entire ITS2 fragments, including 

repetitive elements and as a result, clades obtained and the relations among them 

(data not shown) were the same as those obtained in this analysis.
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Figure 5.16 Unrooted Neighbour-joining tree (using K 2-parameter). The tree was 

constructed using only the alignable region of the ITS2: i.e. a -300 bp fragment 

preceding the first repeat (5’end) and -250 bp subsequent to the end of the last 

repeat (3’ end).

0.01

Fifty-one specimens of different localities are included in the analysis. There is no 

outgroup since no similar sequences were found in GenBank.
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5.3.4.2 Tree topology obtained using fragments 5.8S and 28S.

The 5.8S and 28S regions are commonly used to infer higher level phylogenetic 

relationships, such as between genera or families, due to their lower evolutionary 

rate in relation to ITS2. However, considering that some substitutions were also 

observed within these regions, its use for the differentiation o f sibling species within 

the Barbirostris Subgroup was evaluated. The sequence of regions of the 5.8S and 

28S were then pasted together, resulting in a ~130 bp fragment used to construct an 

NJ tree with the K 2-P substitution model. A bootstrap test was performed with 500 

replicates. Clades in the Figure 5.17 show lower bootstrap values than those 

obtained in the ITS2 tree (Figure 5.16), reflecting the small length of sequence used.

Sequences obtained by Baskoro (2001) o f several specimens morphologically 

identified as An. barbirostris were included in the analysis. As can be observed in 

Figure 5.18, the sequences presented by Baskoro (2001) appear within clade I. 

These specimens were collected from several islands in Indonesia and identified as 

adult females in the field, with exception of species Y, which was from Thailand 

(Baskoro, 2001). Specimens studied by Seung et al. (2007) where identified as 

larvae o f An. campestris (HB) and An. barbirostris (AB1 and AB2). They were all 

collected in Thailand (see position of these specimens in Figure 5.18)
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Figure 5.17 Neighbour-joining (K-2 parameter) phylogenetic tree obtained with the 

~ 130 bp fragment based on the 5.8S and 28S regions.

Bootstrap values are positioned next to nodes, these are lower than those obtained 

with the ITS2 tree.
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Figure 5.18 Neighbour-joining tree using 51 sequences of the entire ITS2 fragment 

in this study, plus those obtained by Baskoro (2001) and Saeung et al. (2007).

ckh9

kh4

cL th

j ----- csk10
H bsk34
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— th1.10
— ta19
— bsk5 

-8 1 1 .2
— kh10 

■ th1.6
th39.3
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— kh3
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— kh7 

SeunaABI
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-  T35.2
-  btr18 
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BaskoroZ
k2

k3
BapkorpX 

BaskoroW 

thl .7 

th1.3 
— th1.1 

th1.4

Clade V

Clade I

0.05

Specimens X, W and Z fit well in clade I, whereas Y fits in clade V (Baskoro, 

2001). Species identified by Saeung et al. (2007) as An. barbirostris AB1 were 

located in clade III, those identified as An. barbirostris AB2 in clade IV, and those 

identified as An. campestris HB, were located in clade V.
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5.4 Discussion

5.4.1 Sequence variation

The five clades based on the sequence analysis of the Internal Transcribed Spacer 2 

(ITS2) are consistent with results obtained using the Cytochrome Oxidase I 

(presented in chapter IV). The 51 specimens studied fell into the same clades in both 

ITS2 + COI analysis. No model of pairwise comparison could be used since 

sequences were of different sizes; however, it was obvious that the genetic 

divergence between clades was much higher than within clades. Moreover, the 

pattern o f repeats and subrepeats and the presence of multiple fixed substitutions 

confirmed the division o f the entire dataset into the same clades found in the COI 

analysis.

The existence of nucleotide substitutions among individuals within clades may 

indicate that in the Barbirostris Subgroup the process of mutations is faster than 

homogenization. Assuming that the 5 different clades are distinct species, the 

process of concerted evolution would not be perfect. Concerted evolution (Dover, 

1982) appears to occur in several Anopheles species, in which the ITS2 shows little 

or no variation. For instance, the analysis of the ITS2 in members o f the Maculatus 

Group of Anopheles species showed no intraspecific variation within the 5 species 

studied: An. maculatus, An. dravidicus, An. pseudowillmori, An. sawadwongporni 

and a new unnamed species. This was surprising considering that these specimens 

were collected from distant localities in Southeast Asia (Walton et al., 2007). In 

another study, the ITS2 in 5 Anopheles species in South America {An. evansae, An. 

nuneztovari, An. rangeli, An. strodei and An. trinkae) was studied. Intraspecific 

sequence variation was only present in two distant populations o f An. rangeli (Fritz, 

1998).

On the other hand, evidence shows that in other species o f Anopheles there is 

substantial variation in the ITS2 within species and even within individuals. In the 

Anopheles hyrcanus group, intraspecific variation was reported in An. junlianensis,
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An. liangshanensis, and An. pullus (Ma and Xu, 2005). Beebe et al. (2000) found 13 

different ITS2 haplotypes in Anopheles farauti s.s. and hypothesised that these 

intraspecific differences may be related to either the presence of multiple loci for the 

rDNA gene family, or the slow homogenization of these regions. Moreover, 

intragenomic variability has been observed in An. aquas alls, showing some single 

nucleotide differences between clones o f ribosomal spacers ITS1 and ITS2 obtained 

from the same individual (Fairley et al., 2005). Intragenomic heterogeneity in the 

ITS2 o f the South American species An. nuneztovari has also been reported . 

Therefore the detection o f intraspecific variability of the ITS2, reflected in the high 

haplotype diversity within clades in specimens studied from the Barbirostris 

Subgroup, is not surprising.

The G+C content of the ITS2 in the species studied from the Barbirostris Subgroup 

(52.3-55.9%) is consistent with values obtained for other Anopheles species; An. 

crucians A 54%, An. crucians B 51%, An. bradleyi 54% (Wilkerson et al., 2004), 

An. nuneztovari 55.3- 55.7% (Fritz et al., 1994). Lower G+C content values have 

been obtained in An. beklemishevi 46.6% (Kampen, 2005) and higher values in An. 

punctulatus 61.3-70.9% (Beebe et al., 1999). There is no relation between G+C 

content and sequence length. In An. crucians and An. beklemishevi, the ITS2 is 

larger than in other Anopheles mosquitoes, but its G+C content is quite similar to 

that o f other mosquitoes.

5.4.2 Phylogenetic analysis

5.4.2.1 Based on ITS2, fewer internal repeats

The number o f fixed substitutions in the ITS2 fragment to differentiate populations 

o f Kalimantan and Mae Hong Son in Thailand was 28 (including insertion/deletion 

events) and 35 between clades II and III. The number of fixed substitutions in other 

clades could not be determined since the sequences could not be aligned. Both the 

COI gene region and the ITS2 analyses agreed on the subdivision o f the two 

populations o f clade I, which comprised specimens from Thailand and Kalimantan 

(Figure 5.16). In Figure 5.18, specimens from Kalimantan appear closely related to
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Baskoro’s species X, whereas specimens from Mae Hong Son (Thailand) to species 

W. However, with only 2 specimens from Kalimantan and six from Mae Hong Son, 

it is difficult to evaluate the species status of these populations.

One of the main disadvantages of the use of the Internal Transcribed Spacer 2 in 

phylogenetic studies is that it cannot be contrasted with amino acid data, as it is 

possible to do with mitochondrial markers. On the other hand, it is considered 

valuable due to its small size in the majority of organisms, which is typically 200- 

400 bp (Walton et al., 1999b; Young and Coleman, 2004). The ITS2 has proved 

valuable for identification o f members of species complexes, with the exception of 

the Anopheles gambiae complex, where ITS2 is not informative (Scott et al., 1993). 

Sibling species An. freeborni and An. hermsi were differentiated by 11 substitutions 

in -460 bp o f the fragment 5.8S-ITS2-28S, the majority o f substitutions having been 

seen in the ITS2. whereas An. hermsi and An. oxidentalis differed at 28 sites in a 

fragment o f similar size (Porter and Collins, 1991). On the other hand, in sibling 

species such as An. dirus and An. scanloni in Thailand, one fixed substitution is used 

to differentiate these species (O'Loughlin et al., 2007). If the results obtained in this 

chapter are judged in comparison to data from other Anopheles species, populations 

o f Thailand and Kalimantan in clade I, clade II and III, IV and V would be different 

species. This hypothesis will be discussed in detail in chapter 8.

There are some discrepancies between the COI and the ITS2 phylogenetic analyses, 

with respect to the internal branching. The close relation o f clades II and III 

observed in the ITS2 analysis (Figures 5.16-5.18) was not observed in the 

phylogenetic analysis using the COI (Figure 4.2). In the COI tree they appear as 

distinctive and non-related clusters, whereas in the ITS2 they appear closely related, 

as they show the same size of ITS2 and the same pattern o f repeats arrangement. 

Conversely, clades IV and V appear closely related in the COI analysis but as 

distinctive clades in the ITS2 analysis.
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5.4.2.2 Variation in the partial fragments 5.8S and 28S

In contrast to the internal transcribed spacer 2, which is more informative when 

examining different species within Diptera (Young and Coleman, 2004), the 5.8S 

and 28S regions have provided valuable information for distinguishing genera and 

families (Miller et al., 1997). For instance the 5.8S has been used to investigate the 

origin o f the family Culicidae (Miller et al., 1997). In this study, small fragments of 

the 5.8S (91bp) and 28S (5.8S) were joined together and its value to infer tree 

topologies was evaluated.

The NJ phylogenetic tree constructed with fragments 5.8S and 28S shows lower 

resolution in the bootstrap analysis than the ITS2 tree. Surprisingly, these conserved 

regions contained enough phylogenetic signal to distinguish the same 5 clades, 

which is consistent with the ITS2 tree and with results obtained from the COI 

analysis. Nevertheless, clade II appears much closer to clade III in the 5.8S+28S tree 

than in the ITS2 tree (see Figures. 5.16 and 5.17). This is related to the fact that 

fragments 5.8S and 28S evolve more slowly than the ITS2 (Hillis and Dixon, 1991) 

and can be very similar even in distantly related organisms (Nei and Rooney, 2005).

5.4.3 DNA repetitive elements

The remarkable size of the ITS2 in members of the Barbirostris Subgroup is a result 

o f the presence o f repeat sequences that differ in the number o f repeats and the 

extent o f their homology. In some clades, the repeats share a high homology, 

whereas in others, considerable sequence divergence has occurred.

Long ITS2 regions have been found in other organisms, although it does not appear 

to be a frequent event in nature. The longest ITS2 so far in any species has been 

reported in the phytopathogen mildew Plasmopara halstedii, which has a 2212 bp 

ITS2. This exceptional size was attributed to the presence o f repetitive elements 

(krThines et al., 2005). Bremia lactucae, another phytopathogen fungus, has a 2086 

bp ITS2, the length again being due to repetitive elements in the sequence (Choi et 

al., 2007). In arthropods, long ITS2 regions (>1000 bp) have been found in
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rhipicephaline ticks (Barker, 1998; Murrell et al., 2001), probably resulting from 

the presence DNA repeats.

In Anopheles species, repetitive DNA regions o f considerable size (>100 bp) have 

been documented in three species. The first report was for Anopheles crucians 

species B (Wilkerson et al., 2004), yet another species with a long ITS2 (1012bp).

Its length was the result of a complex array o f repeats in different combinations. 

Another Anopheles species with a long ITS2 is An. beklemishevi, a member of the 

Maculipennis Group which has an ITS2 of 638 bp containing 2 repeats of about 140 

bp o f similar though not identical sequence (Kämpen, 2005). Finally, An. 

fluminensis from Bolivia, has been reported to have three repeats of 125 bp each 

within an ITS2 of 596 bp (Brelsfoard et al., 2006).

The above three Anopheles species and An. barbirostris, which share the feature of a 

relatively long ITS2, are all in the subgenus Anopheles, but they are not closely 

related to each other (Harbach, 2004). They also occur in different geographic 

regions: An. fluminensis in Bolivia, An. beklemishevi in northern Eurasia and An. 

crucians B in North America, and An. barbirostris in Southeast Asia. Hence, the 

presence o f a large ITS2 region cannot be explained as the consequence of a 

common evolutionary origin, as postulated by Beebe et al. (1999) to explain the long 

ITS2 in the An.dirus and An. punctulatus complexes. Furthermore there are species 

close to each o f the above species with a long ITS2 that have a much shorter ITS2 

sequence, for example An. barbumbrosus which is in the Barbirostris Group 

(Baskoro, 2001). An explanation for the longer ITS2 sequences must be sought 

elsewhere.

In clade I, the 4 repeats in ITS2 are almost perfect (96.8-99.5% similar) and have the 

same size (220 bp), whereas the repeats found in clades II, III and IV show 

considerable variability in size and sequence similarity. Imperfect repeats appear to 

be common in organisms with a large ITS2, but their similarity also varies 

depending on the species. For instance the 179-194 bp DNA repeats in B. lactucae, 

have a low homology (48-69%), whereas the repeats in P. halstedii, are c. 90% 

similar (Thines, et al., 2005; Choi et al. 2007). Repeats in the ITS2 of rhipicephaline
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ticks are 104-109 bp long and imperfect (Murrell et al., 2001); these were explained 

to be the result o f duplication events.

Differences in the similarity levels of repeats may be related to the way in which 

ITS2 is evolving. There are two possible explanations for the differences found in 

the sequence and size among repeats in the different clades o f the Barbirostris 

Subgroup. 1) they could be the result of imperfect duplication events of the original 

fragment or 2) they could be the result of a perfect duplication, which generates 

fragments of the same size, and these later undergo mutational changes which would 

alter their size, arrangements and similarity. The latter was the explanation given for 

the repeats found in An. beklemishevi (Kampen, 2005) and it may be a contributing 

factor in the repeats of the species of the Barbirostris Subgroup. However, an 

explanation for the generation of the repeats may be found by looking at what is 

known about the nature o f repeats in the rDNA of other organisms.

Variations in the size o f spacer regions have been documented in other regions of 

the ribosomal DNA, including the Intergenic spacer (IGS). Variation in length of 

this region was seen in parthenogenetic Daphnia pulex subjected to divergent 

selection in the laboratory (Gorokhova et al., 2002). Clonal lines with elevated 

juvenile growth rates showed an increased preponderance o f long IGS variants. The 

repeats were found to possess a promoter region that was thought to augment the 

rate o f rDNA transcription. The authors concluded that longer IGS regions provide 

these organisms with the plasticity required to adapt to different environments.

There is no evidence that similar promoters occur in the ITS2 region of the 

mosquitoes.

5.4.3.1 Repetitive regions in the ITS2 of the Babirostris Subgroup and a 

possible role for transposable elements

Clades do not share the same repeats, but there are some structural features common 

to the repeats in all clades that suggest they may have a common origin. Thus all 

show the motif GGGTGTG or similar variants (Figures 5.5-5.8) at the start of the 

repetitive region. However I was unable to find similar motifs in neither other

137



studies o f insertions within ITS2 (Gorokhova et al., 2002; Hlinka et al., 2002; 

Kampen, 2005; krThines et al., 2005; Murrell et al., 2001), nor through a BLAST 

search, using Anopheles and Drosophila datasets.

In Drosophila melanogaster, mobile elements are thought to occupy 10-20% of the 

entire genome (Engels, 1992). They have been reported in many insect species, 

including Anopheles species. These elements have been classified as 1) DNA 

transposons, which mobilize from one region to another by a direct cut and paste 

mechanism, 2) LTR (Long terminal repeats) retrotransposons and 3) Non-LTR (non- 

long terminal repeats) retrotransposons. LTR and non-LTR retrotransposons are first 

transcribed into RNA, the reverse transcribed and reintegrated into the genome. 

Some mobile elements such as Alu (in humans) and LI lead to deletion and 

duplication events between the repeats through DNA mispairing and unequal 

crossing over (Kazazian, 2004).

One feature of particular interest was an AT-rich motif just downstream (3’) of the 

last repetitive element in the ITS2. The motif

TATTTATTTATTTTT(T)ATTTATTTAA was found to be highly conserved in 

sequences o f all clades. A BLAST search for this A-T rich motif showed a 96% 

similarity with a region 26 bp P-element like transposon (see below) found in PEST 

clone AgaP4ref (Quesneville et al., 2006)

Example of Blast result:

A-T rich motif 1 TATTTATTTATTT-TTTATTTATTTA 25
I I I I I II I I I I II I I I II I I I II II

p-like element AgaP4ref 5226 TATTTATTTATTTATTTATTTATTTA 5251

This region was also identical to a 16 bp region found in a transposase gene of a hAT 

Herves transposable genetic element in An. gambiae (Subramanian et al., 2007). 

Herves elements are considered important for their potential use in genetically 

modifying mosquitoes (O'Brochta et al., 2006). It seems likely that the AT-rich 

region is a relict o f TGE, that was active before the divergence o f the Barbirostris
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Subgroup. This genetic element may have been responsible for the duplication 

leading to the repeats found in the ITS2 of species of the Barbirostris Subgroup.
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CHAPTER 6

6 Morphological characterization of adult female specimens of the 

Barbirostris Subgroup from Sa Kaeo and Trat (Thailand).

6.1 Introduction

In this chapter, the morphological examination of specimens from the Barbirostris 

Subgroup and Hyrcanus Group is described. Specimens were identified as An. 

barbirostris and An. campestris in the field. However these identifications could not 

be related to the 5 molecular clades described in chapters 4 and 5. The 

morphological examination is re-examined in this chapter and results are compared 

with molecular data. The ultimate objective is to be able to relate species or other 

taxa based on morphological characters with the entities recognizable from DNA 

sequence data. Before describing the results o f the morphological examination, the 

literature dealing with the systematics of the Barbirostris Group and related groups 

is reviewed.

Van der Wulp described An. barbirostris in 1884 based on a female collected from 

Mount Ardjoeno in Eastern Java (Van der Wulp, 1884). Subsequently this species 

was reported as a non-vector species in several countries in Southeast Asia, until 

1935, when An. barbirostris was found to be transmitting malaria in Malaysia 

(Hodgkin and Johnston, 1935). This lead Reid (1942) to link these differences found 

in vector status with morphological differences in the vector form reported in 

Malaysia and a non-vector form found in Java (Venhuis, 1939). Reid described 

these varieties as “dark-winged” and “light-winged An. barbirostris, the former 

being more anthropophilic than the latter (Reid, 1942).

Following several years of research, Reid (1962) described five species of almost 

identical morphology within the Barbirostris Group as members of the Barbirostris 

Subgroup. Among them, the previously described light-winged An. barbirostris was 

then linked to the original An. barbirostris described by Van der Wulp in 1884 and 

the dark-winged anthropophilic form, received the name An. campestris. In addition,
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other forest species were also described: An. donaldi, An. hodgkini, An. pollicaris 

and An. franciscoi (the last species only in the Philippines). Reid’s work has been 

used as a reference in several other keys of Anopheles in Southeast Asia (Reid,

1968; Harrison and Scanlon, 1975; Rattanarithikul et al., 2005). Below, the 

diagnostic characters o f An. barbirostris (Van der Wulp, 1884) and An. Campestris 

(Reid, 1962) are described.

Reid (1968) summarized the most important diagnostic characters to distinguish An. 

barbirostris from An.campestris in the following way:

“White ventral scales on the abdomen numerous, not confined to the median tufts on each 

sternite but scattered between these tufts and a row on the lateral sternal margins ; wing 

darker, usually more than half the scales dark between the basal dark mark on 5 and the 

apical dark mark on 5 .2 .......................................................... cam pestris

White ventral scales fewer, confined, at least in specimens from the west side of Malaya, to 

the median tufts and a few on the lateral sternal margins, these last usually difficult to see in 

dried specimens ; wing paler, usually less than half the scales dark between the basal dark 

mark on 5 and the apical dark mark on 5 .2 ................................................................ barb irostris”

The differentiation of these species is crucial to establish effective malaria and 

filariasis control programmes. However, since the studies of Reid, several problems 

have been reported in the distinction of these species. For instance, the wing pattern 

used to distinguish between An. barbirostris and An. campestris was considered “not 

valid” in Thailand by Harrison and Scanlon (1975) and does not appear in more 

recent illustrated key for Anopheles mosquitoes (Rattanarithikul et al., 2005). As a 

consequence, the distribution of the Barbirostris Subgroup species appear uncertain 

in several countries in Southeast Asia.

Lien et al. (1968) carried out a brief survey of the mosquitoes o f southern Sulawesi, 

Indonesia. They found that larval and pupa stages fall within the range of An. 

barbirostris as defined by Reid (1968); however the adults showed some 

characteristics in common with An. campestris and An. barbirostris-.

Adult female (4 females examined): Wing darker, more than 1/2 the scales dark between the
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basal dark mark on 5 and the apical dark mark on 5.2 as in An. campestris', however, white 

ventral scales few in number, confined to the median tufts, and a few on the lateral sternal 

margins as in An. barb irostris" (Lien et al., 1977).

From the characteristics found in the larval and pupal stages, Lien et al. (1977) 

concluded that the specimens were An. barbirostris, not An. campestris or An. 

donaldi.

An. barbirostris may sometimes resemble An. donaldi. Specimens collected from a 

shaded breeding place at Kuala Krai, Ulu Kelantan (Thailand), where An. donaldi 

was expected, proved to be An. barbirostris on examination o f the pupal and larval 

exuviae, though one or two of the adult females had a pale fring spot at 2.1 as in An. 

donaldi; a similar series has been seen from Trat Province, south-west Thailand. 

(Reid, 1968).

In 2004, an outbreak o f malaria in the province o f Sa Kaeo in Thailand was 

attributed to members of the Barbirostris Subgroup (Limrat et al., 2001). However, 

the authors found it impossible to distinguish between An. barbirostris and 

An.campestris. Although the vector was subsequently identified as An. campestris 

(Apiwathnasorn et al., 2002), the authors emphasised the importance of a better 

understanding of the vector species in the area.

These species can be also confused not only with members within the group but also 

with species from related groups. Reid (1962) referred to them as very similar in 

general appearance to those from the An. bancroftii group. However the two groups 

have different distributions, the Bancroftii Group being more oriental and 

Barbirostris Group more occidental, coinciding only in the Philippines and in 

Sulawesi (Reid, 1968). Confusion with species from the Umbrosus Group has also 

been reported, but only male specimens (Harrison and Scanlon, 1975). In this 

present study, mistakes in differentiating between the Barbirostris and Hyrcanus 

Groups are reported (see Chapter 4). In theory, specimens from the Hyrcanus Group 

are simply identified by observing a patch of dark scales on each side o f the clypeus, 

which are absent in Barbirostris Group specimens. The characters used to 

differentiate the Barbirostris and Hyrcanus Groups are also evaluated.
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6.2 Material and methods

The morphological analysis was based on adult female specimens collected from the 

provinces o f Sa Kaeo and Trat in Thailand. Specimens were examined under a 

MEIJI techno binocular stereo microscope. Individuals in bad conditions (with 

visible fungus or broken legs, abdomens or wings) were separated from the analysis. 

Specimens were not mounted since they were dry and fragile and furthermore, were 

required for subsequent PCR. Specimens were observed in Petri dishes, using thin 

forceps. Photographs o f the specimens were taken to keep a record o f the most 

important details.

The morphological analysis was performed as follow: 1) specimens were 

differentiated as members from the Hyrcanus or Barbirostris Groups, using the 

morphological key by Harrison and Scanlon summarized in Figure 6.3. Specimens 

identified as members o f the Barbirostris Group were separated and species 

identified using the keys of Reid (1962) and summarised in Figure 6.5, Harrison & 

Scanlon (1975) and the illustrated key of Anopheles mosquitoes from Thailand 

(Rattanarithikul et al., 2005). The general morphological features o f Anopheles 

species are shown in Figures 6.1 and 6.2.

Following their identification, specimens were collected in sterile Eppendorf tubes. 

Subsequently, each specimen was subjected to DNA extraction, PCR amplification 

and sequencing of the COI and ITS2 regions to relate the morphological characters 

with molecular data. Cross contamination was avoided by the surface decontaminant 

DNA AWAY™  (molecular BioProducts) to remove DNA from forceps and surfaces.
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Figure 6.1. Lateral view of An. sinensis (Hyrcanus Group) showing morphological 

characters, taken from Harrison and Scanlon (1975).

A. Female: 1. labium (proboscis) 2. labellum 3. maxillary palpus 4. clypeus scales 5. flagellomere 6. pedicel7. 
vertex 8. occiput 9. anterior pronotum 10. propleural setae 11. upper midcoxal setae 12. halter 13. sternum VII 
scale tuft 14. cercus B. Male: 1. labium (proboscis) 2. maxillary palpus, segment 4 3. flagellomere 12 4. pedicel 
5. anterior promontory of scutum 6. scutum 7. scutellum 8. hindcoxa 9. hindtrochanter 10. hindfemur 11. tergum 
III 12. sternum III 13. basimere 14. distimere
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Figure 6.2. Veins and markings o f the anopheline wing, taken from Reid (1968).

1

1, venation ; 2, usual position of light and dark areas in subgenus C&a. 1. A, apex of wing ; a, alula ; af, anterior 
forked cell; B, base of wing ; b, bifurcation ; C, costa ; cu 2-3, cross vein betweenveins z and 3 (other cross 
veins similarly except humeral); F, fringe ; lz, humeral cross vein ; $f, posterior forked cell; Y, remigium (or 
stem vein); SC, subcosta ; s, squama; I, first longitudinal vein (Radius, R r); 2, second longitudinal (Radial 
sector, Rs) ;2.1, upper or anterior branch of 2nd longitudinal (Rs); 2 -2, lower or posterior branchof 2nd 
longitudinal (Rs) ; 3, third longitudinal (R4+5) ; 4, fourth longitudinal (Media,M) ; 4.1, upper branch of 4th 
longitudinal (M l); 4.2, lower branch of 4th longitudinal 1212) ; 5, fifth longitudinal (Cubitus, C u); 5.1, upper 
branch of 5th longitudinal (Cur) ;5.2, lower branch of 5th longitudinal (Cuz) ; 6, sixth longitudinal (Anal, An). 2. 
Ad, apical dark mark ; Ap, apical pale spot (often merging with apical fringe spot); Asp, accessory sector pale 
spot; bs, border scales ; Fs, pale fringe spot; Hd, humeral darkmark ; HP, humeral pale spot; lbfd, middle dark 
mark ; Pd, preapical dark mark ; Phd, prehumeral dark mark or marks ; Php, prehumeral pale spot; Pp, preapical 
pale spot; Psd, presector dark mark ; Psp, presector pale spot; SF, sector pale spot; Sep, subcostal pale spot.
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6.3 Results

6.4 Morphological differentiation of adult females from the Hyrcanus and 

Barbirostris Groups

The presence of a tuft of scales on the clypeus (Figure 6.4) is the main character to 

differentiate Hyrcanus Group from the Barbirostris Group, which lacks this tuft. A 

second diagnostic feature is the distribution o f white scales on the flagellomeres of 

the antennae (Harrison and Scanlon, 1975). However, as the antennae were lost in 

many o f the specimens in my study, this character could not be observed. Mistakes 

in the identification carried out by field workers were shown by subsequent DNA 

analysis.

From the 58 specimens examined in total in this chapter, field workers identified 49 

specimens as Barbirostris and 11 as members o f the Hyrcanus Group. I re-examined 

the morphology of these specimens using the morphological key by Harrison and 

Scanlon (1975) (Figure 6.5) and found 4 mistakes in the identification of the groups 

(Table 6.1). Specimens identified by field staff as An. campestris, (2) An. 

barbirostris (1) and An. barbumbrosus (1) showed scales on the clypeus,

Table 6.1. Specimens from Hyrcanus Group morphologically identified.

S pecim en L ocality F ield  w ork er  
id en tifica tion

Id en tifica tion  in 
this study

HT8.1 Trat Hyrcanus Group Hyrcanus Group

HT8.2 Trat Hyrcanus Group Hyrcanus Group

HT8.3 Trat Hyrcanus Group Hyrcanus Group
HT8.4 Trat Hyrcanus Group Hyrcanus Group

HT8.5 Trat Hyrcanus Group Hyrcanus Group

HS43.1 Sakaeo Hyrcanus Group Hyrcanus Group

HS36.1 Sakaeo Barbumbrosus G. Hyrcanus Group

HS36.2 Sakaeo Hyrcanus Group Hyrcanus Group

HS40.2 Sakaeo An. campestris Hyrcanus Group

HS40.3 Sakaeo An. campestris Hyrcanus Group

HT25.3 Trat An. barbirostris Hyrcanus Group
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Figure 6.4. Photos showing the absence or presence o f clypeus scales in the 

Barbirostris (A) and Hyrcanus (B) Groups respectively.

Absence of scales
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typical o f Hyrcanus Group species. The molecular analysis corroborated that field 

workers made mistakes in the identification o f specimens mentioned and that these 

were in fact from the Hyrcanus Group.

6.4.1 Morphological differentiation of specimens within the Barbirostris 

Subgroup

6.4.1.1 Subgroup identification (Figure 6.5)

The first step was to distinguish between the two subgroups comprising the 

Barbirostris Group: Barbirostris and Vanus Subgroups. The fringe spots on the wing 

serve to differentiate these subgroups (see Figure 6.5); However scales on the apical 

part of the wing were easily lost in dry specimens and this character could not be 

seen in any specimen. The presence of scales on the abdomen was used instead. 

Barbirostris Subgroup specimens show scales on the abdominal sterna, whereas An. 

barbumbrosus (Vanus Subgroup) does not. As a result, 47 specimens were identified 

as Barbirostris Subgroup and no specimens from the Vanus Subgroup were seen.

6.4.1.2 Identification of species within the Barbirostris Subgroup based on 

morphology

Forty-seven specimens o f the Barbirostris Subgroup from Thailand were identified 

to species level (Table 6.2). There were nineteen differences between the 

identifications by field workers and those of the author. Seventeen specimens 

identified as An. barbirostris by field workers were based on the diagnostic 

morphological characters identified as An. campestris. Two specimens identified as 

An. pollicaris /donaldi /hodgkini by the author had been identified by field workers 

as An. campestris.

To differentiate An. campestris and An. barbirostris from An. donaldi, An. hodgkini 

and An. pollicaris, the character: presence/absence of pale bands in midtarsomeres 

(tarsomeres o f midlegs) was used. This character is not the principal one for the 

differentiation of these species (Figure 6.5), but it had to be used because the apex of

150



the wings had been lost. O f the 47 specimens examined, only 2 showed pale bands 

on the midtarsomeres. Although bands were evident under the microscope, they 

appear faint to the naked eye and may explain why field staff considered these to be 

absent. Specimens with these bands were identified as possible An. pollicaris 

/donaldi /hodgkini by the author. The identification of the remaining 45 specimens 

was carried out following step 3 (Figure 6.5).

As described in the morphological key (Figure 6.5), An. barbirostris is identified by 

white ventral scales confined to the median tufts and few on the lateral sternal 

margins (Figure 6.6). An. campestris has numerous white scales on the abdomen, 

not confined to median tufts but scattered between these tufts and a row on the 

lateral external margins (Harrison and Scanlon, 1975; Reid, 1962). The main 

disadvantage with this character is that some An. campestris specimens can lose 

their abdominal scales and then resemble An. barbirostris.

The number of scales on the abdominal stemites is considered by Harrison and 

Scanlon (1975) and by Rattanarithikul et al. (2005) as the only character to 

distinguish adults of An. campestris and An. barbirostris. The authors identification 

o f these species was based on this character. As a result 18 specimens were 

identified as An. barbirostris and 27 were identified as An. campestris.

151



Table 6.2 List of specimens of the Barbirostris Subgroup morphologically identified
in this study. Squares indicate differences in identification.

Number Specimen Locality Field worker Identification in Molecular
Identification this study identity

1 SI 1.2 Sakaeo An. barb irostris A n.. barb iro str is Clade III
2 S13.1 Sakaeo An. barb irostris An. barb iro str is Clade III
3 S13.2 Sakaeo An. barb irostris An. barb iro str is Clade III
4 S15.2 Sakaeo An. barb irostris An. barb iro str is Clade III
5 S15.4 Sakaeo An. barb irostris An. barb iro str is Clade III
6 S17.1 Sakaeo An. barb irostris An. barb irostris Clade III
7 T6.1 Trat An. barb irostris An. barb iro str is Clade III
8 S9.1 Sakaeo An. barb irostris An. barb iro str is Clade III
9 T10.2 Trat An. barb irostris An. barb iro str is Clade III
10 T10.3 Trat An. barb irostris An. barb iro str is Clade III
11 T29.3 Trat An. barb irostris An. barb iro stris Clade III
12 T31.2 Trat An. barb irostris An. barb iro stris Clade III
13 T37.1 Trat An. barb irostris An. barb iro str is Clade III
14 T38.2 Trat An. barb irostris An. barb iro str is Clade III
15 S27.5 Sakaeo An. cam pestris An. cam pestris Clade IV
16 S19.1 Sakaeo An. barb irostris An. barb iro str is Clade IV
17 T31.1 Trat An. barb irostris An. barb iro str is Clade IV
18 T33.1 Trat An. barb irostris An. barb iro str is Clade IV
19 T35.2 Trat An. barb irostris An. barb iro str is Clade IV
20 SI Sakaeo An. barb irostris An. cam pestris Clade IV
21 S10.1 Sakaeo An. barb irostris An. cam pestris Clade IV
22 SI 1.1 Sakaeo An. barb irostris An. cam pestris Clade IV
23 S15.1 Sakaeo An. barb irostris An. cam pestris Clade IV
24 S24.1 Sakaeo An. cam pestris An. cam pestris Clade IV
25 S24.4 Sakaeo An. cam pestris An. cam pestris Clade IV
26 S24.5 Sakaeo An. cam pestris An. cam pestris Clade IV
27 S27.1 Sakaeo An. cam pestris An. cam pestris Clade IV
28 S27.3 Sakaeo An. cam pestris An. cam pestris Clade IV
29 S30.1 Sakaeo An. cam pestris An. cam pestris Clade IV
30 T12.3 Trat An. barb irostris An. cam pestris Clade IV
31 T13.1 Trat An. barb irostris An. cam pestris Clade IV
32 T22.1 Trat An. barb irostris An. cam pestris Clade IV
33 T29.2 Trat An. barb irostris An. cam pestris Clade IV
34 T30.1 Trat An. barb irostris An. cam pestris Clade IV
35 T32.2 Trat An. barb irostris An. cam pestris Clade IV
36 T35.1 Trat An. barb irostris An. cam pestris Clade IV
37 T35.3 Trat An. barb irostris An. cam pestris Clade IV
38 T36.1 Trat An. barb irostris An. cam pestris Clade IV
39 T36.2 Trat An. barb irostris An. cam pestris Clade IV
40 T37.2 Trat An. barb irostris An. cam pestris Clade IV
41 T38.1 Trat An. barb irostris An. cam pestris Clade IV
42 T7.1 Trat An. barb irostris An. cam pestris Clade IV
43 S23.2 Sakaeo An. cam pestris An. don a ld i/po llicaris Clade IV
44 S40.1 Sakaeo An. cam pestris An. don a ld i/po llica r is Clade IV
45 S24.2 Sakaeo An. cam pestris An. cam pestris Clade V
46 S25.1 Sakaeo An. cam pestris An. cam pestris Clade V
47 S27.4 Sakaeo An. cam pestris An. cam pestris Clade V
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Those with more than 50% of scales pale between the apical dark marks of veins 5-

5.2 were called “pale wings” and those with less than 50% “dark wings”

Table 6.3 List of specimens whose wings were examined.

Number Specimen Locality Morphological
identification

Molecular
identity

Wing
pattern

1 T10.2 Trat An. barb irostris Clade III pale
2 T29.3 Trat An. barb irostris Clade III pale
3 T37.1 Trat An. barb irostris Clade III pale
4 T38.2 Trat An. barb irostris Clade III pale
5 T6.1 Trat An. barb irostris Clade III pale
6 T31.1 Trat An. barb irostris Clade IV pale
7 T33.1 Trat An. barb irostris Clade IV pale
8 S30.1 Sakaeo An. cam pestris Clade IV pale
9 T12.3 Trat An. cam pestris Clade IV pale
10 T13.1 Trat An. cam pestris Clade IV pale
11 T22.1 Trat An. cam pestris Clade IV dark
12 T29.2 Trat An. cam pestris Clade IV pale
13 T36.1 Trat An. cam pestris Clade IV pale
14 T36.2 Trat An. cam pestris Clade IV pale
15 T37.2 Trat An. cam pestris Clade IV pale
16 T38.1 Trat An. cam pestris Clade IV pale
17 T7.1 Trat An. cam pestris Clade IV pale
18 S25.1 Sakaeo An. cam pestris Clade V dark
19 S27.4 Sakaeo An. cam pestris Clade V dark
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Figure 6.6. Photographs of abdominal scales in specimens from Clade III.

Specimens show pale scales confined as a median tuft. Specimen S91 was

originally identified as campes tris.
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Figure 6.7. Photographs of abdominal scales in specimens from Clade IV.

Specimen in red was originally identified as An. barbirostris Van der Wulp.
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Figure 6.8. Photographs of abdominal scales in specimens from Clade IV.
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Figure 6.9. Photographs of abdominal scales in specimens from Clade V.
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Figure 6.10. Wing pattern of specimens of clade III.
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Figure 6.11. Wing pattern of specimens of clade IV.
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Figure 6.12. Wing pattern of specimens of clade V.
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6.5 Discussion

6.5.1 Distinction between Barbirostris and Hyrcanus Groups

The presence or absence o f scales on the clypeus is a reliable character to 

distinguish between the Hyrcanus and Barbirostris Groups. Several o f the mistakes 

made by field workers could be related to the fact that the scales on the clypeus 

appear sometimes not to be attached to the clypeus surface (Harbach, personal 

communication). The other simplest explanation is the absence of trained staff for 

the identification of mosquitoes in this region.

6.5.2 Morphological identification of species and their relation to the clades 

within the Barbirostris Subgroup

All specimens from Clade III showed characters like An. barbirostris (Reid, 1962): 

few pale scales confined to median tufts on the stemites and wings paler (Figure 6.6 

and Figure 6.10). Only one specimen, S9.1, was originally identified as An. 

campestris based on the pattern of pale scales on the abdomen. However when re­

examining its morphology in the photographs, I observed that this specimen was in 

fact An. barbirostris. The mistake in the identification was due to some few scales 

are located in a lateral row on the abdominal stemites (Figure 6.5). Based on this 

evidence, it would appear that specimens from clade III are An. barbirostris.

The majority of specimens in Clade IV were morphologically identified as An. 

campestris based on the pattern of pale scales on the abdomen (Figure 6.7 and 

Figure 6.8) but surprisingly these also showed “pale wings” as in An. barbirostris 

(Figure 6.11 and Table 6.3). Wing pattern was used by Reid (1962) to differentiate 

these species, but this character was considered “not valid” and only 80-85% 

reliable in Thailand by Harrison and Scanlon (1975). These authors affirmed that 

“many Thai An. campestris had pale wings”. Moreover, a more recent illustrated key 

by Rattanarithikul et al. (2005) did not include this wing character to differentiate 

campestris and barbirostris. The observations on the pale wings in An. campestris 

reported by Harrison and Scanlon (1975) agree with observations in this present
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study in specimens from clade IV. This shows intermediate characters between An. 

barbirostris and An. campestris. Clade IV also comprised 4 specimens 

morphologically identified as An. barbirostris by the author. This was based on the 

low number o f pale scales on the abdomen. As these scales are easily lost in dry 

specimens, my confusion in the identification of some individuals was not 

surprising.

Following Reid’s (1962) key, two specimens in clade IV were identified as An. 

pollicaris/donaldi/franciscoi based on the presence of pale bands on the midtarsi. 

The presence o f bands on the midtarsomeres is a character that is considered 

“usually” absent in An. barbirostris and An. campestris (Harrison and Scanlon, 

1975; Reid, 1962), and as a result “not reliable”. The fact that variation of this 

character did not relate to any molecular differences in the specimens indicates that 

this morphological character should not be used in the identification of these 

species.

Specimens from clade V were morphologically identified as An. campestris, based 

on both pale scales on the abdomen (Figure 6.9) and “dark-wings.” (Figure 6.12), as 

described by Reid (1962). However, it is important to consider that only three 

specimens examined corresponded to this clade (wings were observed only in two 

specimens) and this may be insufficient to arrive at further conclusions.

To sum up, differentiating species within the Barbirostris Subgroup based on adult 

morphology is complicated as indicated by Reid (1962) and Harrison and Scanlon 

(1975). This chapter presents evidence for morphological differentiation of 

specimens o f clades III, IV and V.
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CHAPTER 7

7 Molecular analysis of ITS2 and COI in specimens of the Hyrcanus Group

7.1 Introduction

This chapter presents an analysis o f the internal transcribed spacer 2 (ITS2) and 

cytochrome oxidase I (COI) in several specimens from the Hyrcanus Group. 

Specimens from this group were originally identified as members of the Barbirostris 

Subgroup by field workers, but errors in the identification were detected first by 

sequence analysis (see chapters 4 and 5) and subsequently by morphological re­

examination of some specimens (see chapter 6).

The Anopheles hyrcanus species group (Hyrcanus Group) is the most species-rich 

group within the Myzorhynchus Series (Harbach, 2004). Anopheles hyrcanus was 

first described by Pallas in 1771 as Culex hyrcanus (Harrison and Scanlon, 1975) 

and subsequently assigned to the An. hyrcanus group (Reid, 1953). Twenty-seven 

species were included in the Hyrcanus Group in the latest revision of the 

classification of the genus Anopheles (Harbach, 2004) and subsequently 2 more 

species have been reported (Rueda, 2005).

Species o f the Hyrcanus Group are widely distributed in the Palaearctic and Oriental 

regions, from Spain and North Africa in the west to Japan in the east and through 

India, the Malay Archipelago, the Philippines, Sulawesi and Moluccas in the south 

(Reid, 1968). Some of the species have been incriminated as vectors of malaria and 

filariasis (Manh et al., 2000; Sen, 1956; Simpson, 1951).

The Hyrcanus Group includes species with highly variable morphology and the 

identification of related species has been considered taxonomically problematic (Ma 

and Xu, 2005). Molecular markers are an important addition to traditional methods 

based on morphology and, in particular, ITS2 appears to be valuable for the 

identification of species in the group (Hwang, 2007; Ma and Xu, 2005; Min et al., 

2002). Based on analysis of ITS2 in the species An. pullus and An. yatsushiroensis,
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the synonymy of these species was demonstrated (Hwang et al., 2004). These 

authors supported that uncertainties in the extent o f dark scales on the wings may be 

seasonal, perhaps linked to temperature. This molecular marker ITS2 was also used 

to detect two new species within the Hyrcanus Group, which were “unknown 

species 1,” and “unknown species 2 (Li et al., 2005). Both species were 

morphological similar to An. sinensis, but their ITS2 was 9.1% and 10.7 % different 

from An. sinensis, respectively (Li et al., 2005). This led Rueda (2005) to examine 

the morphology of these species and name them Anopheles belenrae (unknown 

species 1) and Anopheles kleini (unknown species 2).

7.2 Material and methods

The cytochrome oxidase I region, in the mitochondrial genome and ITS2, in the 

nuclear ribosomal DNA, were amplified following the procedures described in 

chapter 3. ITS2 sequences were cloned prior to sequencing, whereas COI fragments 

were sequenced directly.

In total, 28 specimens from the Hyrcanus Group were studied in this present study. 

Twenty-two were originally identified as members of the Barbirostris Group: 14 

identified as An. barbirostris, 7 as An. barbumbrosus and 1 as An. campestris and 

six specimens were identified in the field as species from the Hyrcanus Group. 

These specimens were obtained from Kalimantan in Indonesia and the localities of 

Sa Kaeo, Tak and Trat in Thailand (Table 7.1). For comparison, 13 ITS2 and 2 COI 

sequences available in Gen Bank were also included (Table 7.2).

Multiple sequence alignments were carried out using Clustal W and phylogenetic 

trees were obtained using the Neighbour-joining method, with a Kimura two- 

parameter distance model. A bootstrap test of 500 replicates was used to assess the 

reliability o f branches. The COI tree used the corresponding An. gambiae sequence 

as an outgroup.
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Table 7.1. A list of specimens from the Hyrcanus Group analysed in this study. Many of 

these were erroneously identified by field staff as members of the Barbirostris Group. 

Specimens HT8.1, HT8.2 and HT8.3 from Trat in Thailand were examined by the author 

prior to sequencing and identified as Hyrcanus Group from their morphology.

S pecies L ocality Id en tifica tion  in th e  field S eq uence am plified

a ll Kalimantan An. barb irostris ITS2

al3 Kalimantan An. barb irostris ITS2, COI

al4 Kalimantan An. barb irostris COI

a22 Kalimantan An. barb irostris ITS2, COI

a21 Kalimantan An. barb irostris ITS2, COI

a23 Kalimantan An. barb irostris ITS2, COI

a24 Kalimantan An. barb irostris ITS2, COI

a25 Kalimantan An. barb irostris ITS2, COI

a26 Kalimantan An. barb irostris ITS2, COI

bbsl Sa Kaeo An. barbum brosus COI

bbs3 Sa Kaeo An. barbum brosus COI

bbs4 Sa Kaeo An. barbum brosus COI

bbs5 Sa Kaeo An. barbum brosus COI

bbs7 Sa Kaeo An. barbum brosus COI

bbs9 Sa Kaeo An. barbum brosus COI

btr20 Trat An. barb irostris ITS2, COI

tal Tak An. barb irostris ITS2, COI

ta2 Tak An. barb irostris ITS2, COI

sal Sa Kaeo An. barb irostris ITS2, COI

sa2 Sa Kaeo An. barb irostris ITS2, COI

HS36.1 Sa Kaeo An. barbum brosus COI

HS36.2 Sa Kaeo Hyrcanus Group COI

HS40.3 Sa Kaeo An. cam pestris COI

HS43.1 Sa Kaeo Hyrcanus Group COI

HT8.1 Trat Hyrcanus Group ITS2

HT8.2 Trat Hyrcanus Group ITS2

HT8.3 Trat Hyrcanus Group ITS2

HT8.4 Trat Hyrcanus Group COI

HT8.5 Trat Hyrcanus Group COI

165



Table 7.2. List o f sequences o f species obtained from GenBank.

Species Region Accession number Author

An. sinensis COI AY339281 (Hwang et al., 2004)

An. gam biae COI AF417706 (Sallum et al., 2002)

An. pu llu s COI AY339279 (Hwang et al., 2004)

An. lesteri ITS2 AY576906 (Gao et al., 2004)

An. belen rae ITS2 DQ137142 (Park et al. 2003)

An. kw eiyangensis ITS2 AF261150 (Ma and Xu, 2005)

An. hyrcanus ITS2 EF613304 (Djadid et al., 2007)

An. p u llu s ITS2 AY339274 (Hwang et al., 2004)

An. sinensis ITS2 AY339278 (Hwang et al., 2004)

An. engarensis ITS2 AB159604 (Sawabe et al. 2004)

An. sin ero ides ITS2 AB159605 (Sawabe et al. 2004)

An. kleini ITS2 DQ177501 (Park et al. 2003)

An. liangshanensis ITS2 AF146750 (Ma and Xu, 2005)

An. ju n lian en sis ITS2 AY316155 (Ma and Xu, 2005)

An. craw ford i ITS2 AF261949 (Ma and Xu, 2005)

An. ped itaen ia tu s ITS2 AF543862 (Gao et al., 2004)
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7.3 Results

7.3.1 Analysis of the Internal Transcribed Spacer 2 (ITS2)

The phylogenetic relationships among members of the Hyrcanus group were studied 

with a Neighbour-joining tree, using ITS2 sequences. The fragment amplified 

included 5.8S (partial fragment), ITS2 (complete) and 28S (partial fragment). Only 

ITS2 was used in the phylogenetic analysis. Boundaries o f the ITS2 were defined by 

comparison with those in Anopheles gambiae (Paskewitz et al., 1993).The trees 

constructed were unrooted, since ITS2 sequences of these closest groups in 

GenBank, An. koreicus (Barbirostris Group) and An. bancroftii (Bancroftii Group) 

were unalignable.

Specimens sal, sa2 collected from Sa Kaeo, Thailand and originally identified as 

An. barbirostris were located in the same phylogenetic clade as An. sinensis (Figure 

7.1). These differed by only two nucleotides from the sinensis sequence deposited in 

GenBank: AY339281 (Hwang et al., 2004).

Specimens ta l and ta2 were also received as An. barbirostris. Molecular analysis of 

the ITS2 proved that these specimens were related to An. peditaeniatus. This was 

based on sequence comparisons and phylogenetic analysis. ITS2 sequences for An. 

peditaeniatus deposited in GenBank belonged to a specimen collected from central 

China (Gao et al., 2004).

Specimens HT8.2 and HT8.3 and btr20 were morphologically examined by the 

author and identified as Hyrcanus Group species. The ITS2 Neighbour-joining tree 

showed that these formed a distinctive clade, which could not be related to any ITS2 

sequence deposited in GenBank and that appear distant from the other 12 species 

compared (Figure 7.1). These appear closely related to the clade formed by 

specimens from Kalimantan (a l l ,  a21, a23, a25, a l3 , a26, a22, a24), whose identity 

could also not be determined.
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The length o f the ITS2 in sequences studied varied, being 448 bp in specimens 

identified as An. peditaeniatus, 465 bp in An. sinensis, 476 bp in specimens H8T3, 

btr20, HT8.2 and 503 bp in specimens from Kalimantan. All ITS2 sequences were 

AT-rich (53.4- 56%).

7.4 Analysis of cytochrome oxidase I (COI)

The COI sequences were 756 bp long. Sequences were AT rich, ranging from 

69.31% (a25) to 71.43% (HT8.5). The main disadvantage of using this marker in the 

Hyrcanus group is the limited number of sequences available in GenBank. Only 

sequences o f species An. sinensis and An. pullus were found. Most studies have used 

the ITS2 gene region for identification purposes.

The method used to infer tree topology was Neighbour-joining, with a Kimura 2- 

parameter substitution model. The tree was rooted and the COI sequences o f An. 

gambiae and o f the 5 clades of the Barbirostris Subgroup were used as outgroups 

(Figure 7.2). Six clades were obtained. Specimens sal and sa2 were located in the 

same clade as An. sinensis AY339278 from Korea and only differed from it by 6 

nucleotide substitutions in the 525 bp region compared. The remaining specimens 

could not be related to sequences deposited in GenBank.
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Figure 7.1. Neighbour-joining tree using ITS2 sequences o f specimens from the 

Hyrcanus Group.
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Sequences for named species were obtained from GenBank. Those for the numbered 

specimens were sequenced as part of the study. Specimens starting with a capital letter were 

morphologically identified Hyrcanus Group species.
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Figure 7.2. Neighbour-joining tree using COI sequences.

0.01

Sequences for named species were obtained from GenBank. Those for the numbered 

specimens were sequenced as part of the study. Specimens starting with a capital letter were 

morphologically identified Hyrcanus Group species. B*=clades I-V of the Barbirostris 
Subgroup.
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7.5 Discussion

The identity o f some specimens was deciphered by means of phylogenetic analysis. 

Specimens sal and sa2 (from Sa Kaeo) were An. sinensis, as demonstrated with the 

analysis o f the COI and ITS2 regions. Originally these had been identified as An. 

barbirostris by field staff. The reference sequence from GenBank belonged to a 

specimen o f An. sinensis collected in Korea (Hwang et ah, 2004). It is interesting to 

observe that, considering the large distance between localities in Thailand and Korea 

(about 3000 km), the Thai specimens only differed in 2 nucleotide substitutions in 

the ITS2 sequences and in 6 nucleotides in 525 bp of the COI fragment. An. sinensis 

is widely distributed in the orient: it is found in Assam, Myanmar, Thailand, 

Peninsular Malaysia, Sumatra (Indonesia), Cambodia, Vietnam and China (WHO 

1984).

Based on the comparison o f ITS2 sequences, specimens tal and ta2 collected from 

Tak were identified as An. peditaeniatus. Interestingly these specimens only differed 

in 2 nucleotide substitutions with relation to the GenBank sequence, which belong to 

a specimen collected from China. Both trees presented agreed that specimen HT8.1 

is in the same clade as these specimens and as a result, likely to be An. 

peditaeniatus.

Both An. sinensis and An. peditaeniatus appear widely distributed in Thailand, and 

have been reported in every province o f the country (Rattanarithikul et al., 2005). 

Subsequent to their molecular identification of specimens ta l, ta2 and sal, sa2, the 

morphology o f other specimens kept by the providers was re-examined and their 

identity confirmed as An. peditaeniatus and An. sinensis respectively. This 

demonstrates that these species can be reliably identified with molecular markers 

ITS2 and COI.

The identity o f the remaining specimens is still unknown, as they did not resemble 

any sequences from GenBank. Those collected in Kalimantan (Indonesia) are likely 

to be An. nigerrimus (Ralph Harbach, personal communication), but considering the 

poor condition of specimens when morphologically identified, it is difficult to reach
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conclusions. Species An. nitidus and An. argyropus have also been recorded in 

Indonesia (O'Connor, 1980) and should be also considered as the possible species of 

specimens from Kalimantan. The ITS2 tree shows that these “unknown” species are 

distant to all Hyrcanus Group species sequences recorded to date (Figure 7.1). It is 

possible that these specimens belong to An. nigerrimus or An. nitidus from the 

Nigerrimus Subgroup, although no sequences from this group have been recorded in 

GenBank. It is also possible that these specimens may belong to a species not yet 

recorded. Similarly, the “unknown” species from Thailand may belong to species 

whose ITS2 and COI sequences have not been deposited in GenBank, for example 

An. argyropus, An. nigerrimus, An. nitidus, An. paraliae and An. pursati.

Much additional taxonomic work is required on the Hyrcanus Group if we are to 

determine the distribution and phylogenetic relationships o f almost 30 species. Such 

studies are also essential if  we are to determine their potential role in the 

transmission o f vector borne diseases (Manh et al., 2000; Reid, 1968).
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CHAPTER 8

8 General discussion

A previous study of Anopheles barbirostris Van der Wulp by Baskoro (2001) 

uncovered evidence for cryptic species within this taxon in Indonesia and Thailand. 

Based on sequences of the mtDNA COI region, Baskoro identified four major 

clades, some of which occurred in sympatry and others which were allopatric. The 

same clades also showed major differences in sequences in the nuclear rDNA ITS-2 

spacer region. Baskoro regarded these clades as species to which he applied the 

letters W, X, Y and Z. Species W and X occurred in sympatry in Java and Flores, 

Indonesia, whereas Z was only found in Sulawesi. A sample from one site in 

Thailand yielded species Y. Two specimens from China appeared to be distinct from 

these four species.

The original objective o f the current thesis was to extend the work of Baskoro 

(2001) to a broader area of South-East Asia, with the emphasis mainly on Anopheles 

barbirostris. However, during the course o f molecular studies o f field-collected 

material, it became apparent that another species o f the Barbirostris Subgroup, An. 

campestris, was being confused with An. barbirostris, and that this confusion 

extended not only to other species in the larger Barbirostris Group, but possibly to 

other anopheline mosquitoes in Southeast Asia. As a result the focus of the work 

became broader to include the species with which An. barbirostris was being 

confused. It also became clear that taxonomic entities inferred from molecular data 

needed to be related to the diagnostic morphological characters in standard 

taxonomic keys.

This chapter reviews the results from the analysis of cytochrome oxidase I (COI) 

and Internal transcribed spacer 2 (ITS2) and discusses these in relation to the 

morphology o f members of these clades.
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During the final stages o f the writing up of this thesis, a study was published 

describing cytogenetic and molecular systematic studies o f species o f the 

Barbirostris Subgroup in Thailand (Saeung et al., 2007). The authors inferred that 

there were two species in what they described as ‘the An. barbirostris complex’. 

Hence, in this chapter it is important to compare my results with those of Saeung et 

al. as well as those of (Baskoro, 2001).

At most sample sites there were insufficient specimens to draw conclusions about 

the population structure within the clades. However, because this has been a subject 

of intensive study in other anopheline vectors, the data on population structure 

obtained are briefly considered.

The findings from this molecular systematics study have possible implications for 

the epidemiology and control of malaria and lymphatic filariasis, and this is also 

briefly discussed.

8.1 Species identification, distribution and feeding preferences

A comprehensive analysis of regions COI and ITS2 showed that the species within 

the Barbirostris Subgroup identified as An. barbirostris and An. campestris belong 

to 5 distinct clades. Based on the evidence presented in previous chapters, each of 

these 5 clades corresponds to a different species, i.e. five species in total. The 

subsequent morphological examination of specimens from Sa Kaeo and Trat showed 

that clades III, IV and V have distinctive morphology. As a result, three species have 

been found to correspond to the current taxon An. barbirostris, one species 

corresponds to An. campestris and one appears to be a previously unrecognised 

species with some features o f both campestris and barbirostris. Below is a summary 

of these findings.

8.1.1 Anopheles barbirostris (Van der Wulp, 1884)

Adult female specimens from clade III showed the morphology o f An. barbirostris, 

as described by Reid (1962): a tuft of pale scales confined only to the middle of the
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abdominal stemites, and pale scales on wing veins 5-5.2. Specimens from this clade 

were originally identified as both larvae and adult specimens in the Natural History 

Museum; hence an assumption that they were An. barbirostris was justified. The 

comparison of the ITS2 sequence data of clade III with sequences published by 

Seung et al. (2007) showed that this clade is the same as the karyotypic form B of 

An. barbirostris identified by these authors. Based on this evidence we can affirm 

that clade III is one of the species within the An. barbirostris complex. The two 

specimens from China examined by Baskoro (2001) seem close to clade III. The 

region o f COI sequenced by Baskoro was shorter (600 bp) than that used in the 

present study, resulting in a 756-bp region o f only partial overlap.

The large number of specimens of clade III that were captured using animal bait, 

both in this study and that o f Saeung et al., indicates that clade III is a zoophilic 

species as described by Reid (1962). Therefore, its role in malaria and filariasis 

transmission may be limited, at least in the regions studied. Anopheles barbirostris 

(clade III) appears widely distributed in Thailand, in the provinces of Mae Hong 

Son, Tak, Kanchanaburi, Trat Sa Kaeo (collections sites o f this present study), 

Chiang Mai, Ubon Ratchathani and Petchaburi (specimens collected by Saeung et 

al. 2007). It also appears to be present in the province o f Yunan, in south China 

based on Baskoro’s COI data used in the present analysis (full data not shown).

Specimens from clades I and II showed adult female morphology similar to An. 

barbirostris. Clade I specimens were collected from Mae Hong Son (Thailand) and 

Kalimantan (Indonesia) and those from clade II were found in the islands of Sumatra 

and Java (Indonesia). Baskoro (2001) carried out a study o f An. barbirostris in 

Indonesia. The forms found by Baskoro, named species W, X and Z are closely 

related to those from clade I in the present study. Species W and X were founf living 

in sympatry in Java and Flores, whereas species Z was found in Sulawesi. On the 

other hand, species Y (from Thailand), was found to be in clade V. In this study, 

specimens from Kalimantan appear close to Baskoro’s species X, whereas those 

from Mae Hong Son to species W. Baskoro’s species Z appears in one separate 

cluster (Figure 5.18).
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Figure 8.1 Geographic distribution of the 5 clades (species) o f the Barbirostris 

Subgroup in Thailand and Indonesia in this study.
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Based on the morphological examination of adult specimens, clade I appears to be a 

second form of An. barbirostris, widely distributed in Indonesia and also present in 

Thailand. Clade I is also found in the province of Binh Thuan, Vietnam; detected by 

COI sequence comparison of a partial fragment of 500 bp. The clade II specimens 

have been identified as An. barbirostris by morphological examination of seven 

adult specimens. Clade II would be a third form of An. barbirostris. It is likely that 

clade I or II are conspecific with the An. barbirostris described by Van der Wulp.

The evidence presented in this thesis strongly suggests that An. barbirostris is a 

species complex. This would help explain the differences reported in the vector 

status o f this taxon. Zoophilic and anthropophilic forms of An. barbirostris have 

been reported in the past (Lien et al., 1977). However these variations in vector 

status could not be associated with distinctive morphological characters (Reid,

1979). Subsequent studies demonstrated that An. barbirostris comprises four distinct 

chromosomal forms, three of these in Thailand, A, B, C (Baimai et al., 1995; Saeung 

et al., 2007) and a fourth in Java, D (Baimai et al., 1995). The authors maintained 

that it was difficult to know if forms in Thailand were the result of intraspecific or 

interspecific differences but form D from Java was thought to be a distinct species. 

By sequence comparison with the ITS2 sequence presented by Saeung et al. (2007), 

it is concluded that forms B and C are the same species, i.e. clade III (Anopheles 

barbirostris Van der Wulp), whereas form A is in clade IV.

To summarise, at least three species are found within Anopheles barbirostris Van 

der Wulp, clades I, II and III. Clade I is widely distributed in the Indonesian 

archipelago, Thailand and Vietnam; clade II was found on the islands of Sumatra 

and Java in Indonesia and clade III from Thailand and China. Some of these species 

were found in sympatry in Mae Hong Son, Thailand (clades I and III) and in Java 

(clade I and II) (Figure 8.1). There is limited information regarding the host 

preferences o f these species, except for clade III which appears to be primarily 

zoophilic. This would suggest that the species represented by clade III do not have a 

major role in the transmission of malaria and filariasis in Southeast Asia.
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8.1.2 Anopheles campestris Reid (1962)

Although only three specimens were morphologically examined in Clade V, they 

appear to be An. campestris as described by Reid (1962). These showed numerous 

white ventral scales on the abdomen and their wings were darker than An. 

barbirostris, with more than 50% of dark scales on wing veins 5-5.2. Sequence 

comparison demonstrated that clade V is the “An. campestris-like” group of Saeung 

et al. (2007), identified at the pupal stage. These specimens were reared in the lab as 

progeny broods from the adult females collected in the field using human-baits, 

suggesting that their behaviour was primarily anthropophilic (Saeung et al., 2007).

In this present study specimens from the province of Sa Kaeo were collected using 

animal bait and only 10% were An. campestris, reflecting the anthropophilic nature 

o f this species. Apiwathnasom et al. (2002) found that in the provinces of Sa Kaeo, 

the proportion of An. campestris in animal landing catches was only 7.1% of the 

total number of all females captured, but 78.6% when using human landing catches.

An. campestris has been reported in Thailand (Harrison and Scanlon, 1975), 

Cambodia (Harrison and Klein, 1975) and Malaysia (Reid, 1968). In this present 

study, specimens from An. campestris (clade V) were collected only from Sa Kaeo, 

Thailand; it did not appear in the samples from other collection sites, possibly 

because most collections were from animal bait. An. campestris inhabits places of 

low elevation in Thailand (Harrison and Scanlon, 1975), from 1 to 200 m elevation. 

Altitude may be an important limiting factor in its distribution and could explain 

why there are no records o f this species from the mountainous northern provinces 

Thailand.

Even though An. campestris were characterized at the molecular level by Saeung et 

al. (2007), the authors failed to place this species in the correct taxonomic position. 

This so called “An. campestris-like form” was placed within the An. barbirostris 

complex. However, all the available evidence suggests that An. campestris should be 

placed not within the An. barbirostris complex, but as a member o f the Barbirostris 

Subgroup, as originally suggested by Reid (1962). This present study confirms the 

existence o f An. barbirostris complex, but this would comprise three sibling species
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of very similar, if  not identical morphology, clade I, clade II and clade III, in 

addition to those previously identified in Indonesia (Baskoro, 2001).

8.1.3 Unknown species in clade IV

Interestingly, clade IV included specimens with “abdominal sterna with many white 

scales scattered between median patch and lateral rows” (Rattanarithikul et al., 

2005), as described for An. campestris, but also showed pale wings as described for 

An. barbirostris (Reid, 1962). This clade corresponds to the karyotypic form A of 

An. barbirostris described by Saeung et al. (2007), which were identified 

morphologically as pupae. Saeung et al. (2007) showed that this species is zoophilic, 

which appears consistent with the high number o f specimens obtained from animal- 

bait traps used in this present study. This does not correspond to the highly 

anthropophilic behaviour described for An. campestris.

It is indisputable that clade IV represents a different species. However as it has some 

morphological characters from both An. campestris and An. barbirostris, its relation 

to either o f these species is confusing. Considering that larvae and pupae are the best 

stages for identification o f An. campestris (Harrison and Scanlon, 1975; 

Rattanarithikul et al., 2005), clade IV would be identified as a new species within 

the An. barbirostris complex. Nonetheless, taking into consideration that ITS2 size 

in clade IV specimens (1583 bp) is different from that reported for An. barbirostris 

(clade III~1730) and for An. campestris (clade V~ 1519) and that morphological 

examinations in the field are mainly based on the examination o f adult specimens, I 

suggest that clade IV should be identified as a new species within the Barbirostris 

Subgroup. It differs from those described to date, as it appears not only distinctive 

on molecular criteria but also at the morphological level (pale-winged campestris).

A study with more comprehensive morphological examination and a larger number 

of specimens is required to finally settle the status of this species.
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8.1.4 Comments on morphological characters

Current morphological keys for identification of Anopheles barbirostris and An. 

campestris in Thailand as adult stages (Harrison and Scanlon, 1975; Rattanarithikul 

et al., 2005) cannot distinguish the zoophilic clade IV from the anthropophilic clade 

V, since they are only based on the examination of ventral pale scales on the 

abdomen. A revision o f these keys is necessary.

The presence of pale bands on the midtarsomeres was said by Reid (1962) to 

separate other members of the Barbirostris Subgroup from An. campestris and An. 

barbirostris. However, in this study specimens with the molecular features of An. 

campestris were found to have pale bands on the midtarsomeres, suggesting that this 

is not a reliable character. The validity of other morphological characters to 

distinguish species has been thrown into doubt by molecular data. The fringe spots 

on the wings were considered the key character to differentiate An. pullus and An. 

yatsushuroensis (Miyasaky, 1951 In Hwang et al. 2004). However, the analysis of 

ITS2 demonstrated the synonymy of these species (Hwang et al., 2004). This 

character appears to vary with season, possibly influenced by temperature. Wing 

fringe morphology has also been used to distinguish An. bancroftii from An. 

pseudobarbirostris, but a restriction length polymorphism and a heteroduplex 

analysis o f the ITS2, showed no correlation between genotypes and fringe patterns 

(Beebe et al., 2001). The fringe spots are also key characters used to distinguish 

members of the Barbirostris Subgroup (see Figure 6.5). The validity of this character 

should be tested using molecular sequence data. This was impossible in the present 

study due to the poor state of many of the specimens received. However, some 

morphological characters evaluated in the present study, like the presence/absence 

of scales in the clypeus have proved efficient to separate the Barbirostris and 

Hyrcanus Groups.

The presence o f a sunken patch of 7-10 sensilla borne in an unusual location in the 

antenna has been reported in An. barbirostris by examination with electron 

microscope (Kaur, 2005). Such sensilla have not been reported in other species of 

Anopheles, Culex or Aedes. Whether this character occurs in more than one species
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within the An. barbirostris species complex or is present in An. campestris has yet to 

be determined.

Both molecular markers used in this present study agreed in the identification of 5 

distinctive clades (species) in the Barbirostris Subgroup (species identified 

morphologically as An. barbirostris and An. campestris). The main disadvantage in 

the use o f the ITS2 was the difficulty of amplification and subsequent sequencing, 

due to its large size and the presence of internal repeats. There was high interspecific 

and low intraspecific variability, confirming that ITS2 is a valuable tool to identify 

species within the Barbirostris Subgroup.

The differences in sizes o f ITS2: Anopheles barbirostris (clade 111=1730 bp), An. 

campestris (clade V= 1519 bp) and “pale winged” An. campestris (Clade IY= 1583 

bp) could be used to distinguish these species, as difference in sizes could be 

visualised with a simple PCR, followed by examination on 1% agarose gel. 

However, its use in the identification of these species would depend on the absence 

of clades I and II in these regions, since these showed very similar sizes for ITS2: 

1545 and 1727 bp respectively. PCR-based techniques have proven valuable to 

distinguish sibling species of Anopheles species (Cornel et al., 1996; Goswami et al., 

2005; Manguin et al., 2002; Phuc et al., 2003; Porter and Collins, 1991).

The use o f restriction enzymes in a restriction length polymorphism PCR (RFLP) 

may allow a rapid identification of the 5 species, as they may present a different 

restriction profile. Nevertheless, the success o f this technique depends on the quality 

of the PCR product, being affected by the presence o f spurious products. This study 

showed that a touchdown PCR enhance the quality of the amplification and reduced 

the presence of spurious products and is highly recommended in the design of a 

diagnostic test. Time constraints in this research prevented the evaluation of RFLP 

as a species diagnostic tool.

The COI has proven valuable in resolving the phylogenetic relationships in 

Anopheles species. However, it does not appear useful in all Anopheles species. One 

of the principal disadvantages with mtDNA is the presence o f shared haplotypes
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between sibling species. In the Anopheles dirus complex, species An. dims and An. 

baimaii (previously known as An. dims A and D respectively) share several 

haplotypes. Similarly, members of the Anopheles gambiae complex: An. gambiae, 

An arabiensis and An. bwambae show a large number of shared haplotypes 

(Besansky et al., 1997; Donnelly et al., 2001). No shared haplotypes were found 

among species of the Barbirostris Subgroup.

It has been suggested that Cytochrome Oxidase Subunit I be considered the standard 

region to identify animals by the Barcoding o f Life Consortium. However, in 

addition to the disadvantages cited above, it has been found that the evolutionary 

rates in the structural regions o f the COI can vary between species (Roe and 

Sperling, 2007). Hence, the value of COI to delimit species will vary. The present 

study also showed evidence o f the variation in the evolutionary rates of these 

regions in different Anopheles species. Roe and Sperling (2007) maintained that 

Barcoding o f life is likely to be more efficient in the identification of species that 

diverged earlier but appears less appropriate to distinguish sibling species. They 

recommended that care be taken to choose an appropriate region to analyse, to 

obtain reliable inferences. In this present study, COI appears useful to distinguish 

between different species within the Barbirostris Subgroup.

8.2 Population structure of species of the Barbirostris Subgroup

Based on the analysis o f the COI gene region, this study provided evidence for 

population expansion o f Anopheles barbirostris (clade III) in Thailand and of its 

deviation from mutation drift equilibrium (MDE). Due to the limited number of 

specimens and collection sites for the other clades, it was not possible to draw 

conclusions about the population structure o f other clades.

In Anopheles mosquitoes, deviation from MDE and population expansion have been 

associated with their relationship to human populations. Donelly et al. (2002) 

maintained that primary vectors, including Anopheles species, share some attributes 

in common. These are 1) wide geographical distribution, 2) high local abundance, 3) 

dispersal and colonization ability, 4) adaptation to invade human-made
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environments, 5) high anthropophily and 6) high susceptibility to parasites 

(Donnelly et al., 2002). The authors maintained that the agricultural revolution, 

between 5000 -  10 000 years ago, may have played an important role in the 

dispersal and specialization of Anopheles mosquitoes as vectors o f malaria. In 

Africa, agricultural practices are though to contribute to the phenomenon of recent 

expansion in Anopheles gambiae in Africa (Coluzzi, 1982; Donnelly et al., 2001). 

One exception is Anopheles darlingi, a primary malaria vector in South America. 

The distribution of this vector is more likely to have been determined by climatic 

changes than human-mediated environmental change, since this species is less 

dependant in humans for blood meals or larval habitats (Mirabello and Conn, 

2006b).

Donnelly et al. (2002) suggested that the major vectors of malaria have a shallow 

genetic structure (reflected by low Fst values), with a limited effect of distance on 

differentiation. This review was based on empirical estimations of F§t values in the 

principal vectors in Africa, South America and Asia, and culicine mosquitoes such 

as Culex pipiens and Aedes aegypti (Donnelly et al., 2002). The authors highlighted 

the need for more studies in secondary vectors to arrive at conclusions. In the 

present study, low Fst values obtained within clade III also indicate a shallow 

genetic structure and show clear evidence of population expansion in Thailand. This 

is not consistent with the assumption that this species is not a primary vector of 

malaria or filariasis. However, this species/clade may be present in other countries 

in Southeast Asia as its identification at the molecular level has not been reported 

previously; therefore general assumptions about its genetic structure would require 

more extensive sampling.

The time since population expansion of Anopheles barbirostris (clade III) has been 

estimated from the data in this thesis to occur approximately 12 000 years ago, 

based on the assumptions of Powell (1986) (see section 4.3.7), later than the 

expansion o f human populations, which is postulated to have occurred between 60 

000 and 262 000 years ago (Rogers and Harpending, 1992; Slatkin and Hudson, 

1991). Thus, it is likely that agricultural activities played a role in the evident 

population expansion found in Anopheles barbirostris (clade III) in Thailand.
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Nonetheless, considering that this species utilizes a variety of oviposition sites 

(Harrison and Scanlon, 1975) and that females do not depend on human blood, 

agricultural practices may have played a secondary role in the distribution of this 

clade.

The limited number of specimens obtained in clade I (four from Kalimantan and six 

from Thailand) make it impossible to arrive at firm conclusions about the population 

structure o f this clade. Specimens studied by Baskoro (2001) from Flores, Java and 

Sulawesi appear to be closely related to clade I, and this suggests a wide distribution 

o f this clade in the Indonesian islands and adjacent continental regions. Relatively 

recent geological events may be responsible for the current distribution of clade I. 

During the glaciation periods, large quantities o f the water were bound up in ice, the 

sea level fell between 100 and 200 meters and the Sunda shelf and the islands of 

Sumatra, Java and Bali became an extension of the mainland (Mayr, 1944 In O ’ 

Connor, 1980). Under these circumstances, the migration of continental species to 

the islands was facilitated and this may explain why clade I populations are similar 

in populations from Mae Hong Son, Thailand and Kalimantan, which are separated 

by ~ 3000 km.

8.3 Factors determining size and sequence of the ITS2 in species from the 

Barbirostris Subgroup

A large ITS2 (>1.5 kb) was found in all species within the Barbirostris Subgroup in 

this study. Anopheles barbirostris, with clades II and III, showed the largest ITS2 of 

-1730 bp. This is the largest ITS2 reported from arthropods to date. The presence of 

repeats within the ITS2 is the reason for its outstanding size. The closely related 

Anopheles bancroftii group and Anopheles hyrcanus group have a much smaller 

ITS2 (< 600 bp) and hence can easily be differentiated through a simple PCR, 

followed by an electrophoresis in 1% agarose gel.

In chapter 5, a study of the repeat structure o f ITS2 is presented. The central region 

of ITS2 is made up of four repeat sequences (c. 220 bp) of varying sequence 

similarity in different clades. Each of these repeats is a partial duplication of a 110
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bp region. On the 3’ end of the last of these four repeats in all Barbirostris Subgroup 

clades and specimens examined, was a sequence which is almost identical to a 27 bp 

region o f the transposase found in transposable elements (TGEs) of other 

mosquitoes (Quesneville et al., 2006)

This is not a complete transposase, let alone a complete transposable element, but it 

may be assumed that this sequence is the relict of a once active TGE. It is possible 

that this may have played a role in duplication o f the repeats within the ITS2 region, 

producing the increase on its size. Mobile elements are numerous in many animal 

species and are thought to play an important role in speciation (Kazazian, 2004), but 

whether they played any role in the evolution o f the structure o f the ITS2 region 

within the Barbirostris Subgroup is not known.

8.4 Implications of this study for vector control

Anopheles campestris has been considered as the third most anthropophilic 

Anopheles species in Southeast Asia (Reid, 1968). It has been incriminated as an 

important vector of filariasis and malaria in Malaysia. However, in Thailand, An. 

campestris was not thought to be a vector o f human disease until very recently. 

Based on its abundance, anthropophilic behaviour and capacity to complete the 

sporogonic cycle of Plasmodium vivax, Apiwathnasorn (2002) concluded that An. 

campestris was an important vector in Sa Kaeo, Thailand. In areas where An. 

campestris is a malaria vector, Plasmodium vivax tends to be the most abundant 

malaria species (Reid, 1962).

Programmes to control Anopheles campestris have been successful because o f its 

highly endophagic behaviour; it is readily controlled by house spraying. This species 

is apparently “one of the few vectors in the world that has behavioural traits that 

permit rapid elimination by chemical control methods” (Harrison and Scanlon,

1975). Confusion in the identification o f this species could lead to misdirected 

control if  there is confusion with other closely related species. The present study has 

found two species that would be identified in the field as An. campestris, the
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anthropophilic clade V and the zoophilic clade IV. This would justify the 

development of simple PCR-based diagnostic tests to help distinguish these species.

An. barbirostris is considered an important vector of malaria and Brugian filariasis 

in Sulawesi, Flores and Timor (Atmosoedjono et al., 1977b; Lien et al., 1977; Reid, 

1979; WHO, 2000), whereas it appears to be a non-vector species in other regions 

(Reid, 1962). A recent survey of the Anopheles fauna in northern Sumatra reported 

the presence of An. barbirostris and it was incriminated as a potential mosquito 

vector (Syafruddin et ah, 2007). Variations in the vector status of this species could 

not be related to morphological characters in the past (Reid, 1979). With the 

development of molecular tools, it should eventually be possible to clarify the vector 

status o f the species in the An. barbirostris complex.

Since clades III and IV appear to be predominantly zoophilic, their importance in 

the transmission of vector-borne diseases in humans may be limited. There was 

limited information on methods of collection for specimens o f clade I and clade II, 

and no information on their feeding preferences. Clade I seems to be related to 

species studied by Baskoro (2001) in Flores, Java and Sulawesi in Indonesia. 

Baskoro showed that specimens from these localities were attracted to humans, 

particularly those from Flores and Sulawesi (see table 4.2 in Baskoro, 2001), 

however their zoophilic behaviour was not evaluated. Coincidently “vector forms” 

of An. barbirostris have been previously reported in these islands (Lien et al., 1977; 

Reid, 1979). Considering that the analysis of the ITS2 showed that clade I is more 

closely related to the anthropophilic clade V (An. campestris) than to other clades, it 

is possible that the “vector forms” of An. barbirostris belong in clade I. Nonetheless, 

to confirm this hypothesis, a more comprehensive study would be required.

8.5 Conclusions

Anopheles barbirostris Van der Wulp is a species complex. It comprises at least 3 

different species identified as clade I, clade II and clade III. Clade III appears to be 

zoophilic and is widely distributed in Thailand. Clade III is also present in southern
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China. There is limited information regarding the feeding preferences of clades I and

II.

Clade I is the most widely distributed species. It is found in Thailand and in 

Kalimantan, Java, Flores and Sulawesi, in Indonesia. This clade may comprise 3 

species X, W and Z, as named by Baskoro (2001). More exhaustive work is needed 

to determine the species status o f this clade and populations therein.

Anopheles (clade IV) is a zoophilic species, with morphology that does not 

completely correspond to any species within the Barbirostris Group. This species is 

also distinct, at the molecular level, from both An. barbirostris and An. campestris.

Anopheles campestris has been characterized at the molecular level as clade V.

There is evidence of the population expansion o f Anopheles barbirostris clade III in 

Thailand

8.6 Further studies

A weakness of this study was the limited information on the ecology and behaviour 

of the specimens collected, reflecting a more general problem when using specimens 

collected by others. Considering that the Barbirostris Subgroup comprises some 

important vectors of malaria and filariasis, future studies should incorporate 

comprehensive field work, to determine host preferences and biting behaviour. It 

will be important to identify more fully the vector and non-vector forms of An. 

barbirostris, particularly in Indonesia, where vector forms have been reported.

Further studies o f the Barbirostris Subgroup will require specimens from a wider 

range o f countries, particularly those where the Barbirostris Subgroup appears to be 

associated with malaria and filariasis transmission. Such studies should include 

other members of the Barbirostris Subgroup not examined in this study, Anopheles 

donaldi, An. franciscoi, An. pollicaris and An. hodgkini.
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Crossing experiments have been carried out between An. campestris and Anopheles 

barbirostris, demonstrating the reproductive isolation of these species (Saeung et al., 

2007). Crosses between the different members that comprise the An. barbirostris 

complex (clade I, II and III) with Anopheles campestris (clade V) and clade IV 

could help confirm their identity as separate species.

The true identity of Anopheles barbirostris Van der Wulp (1884) has to be 

established. In this study, two clades (I and II) are likely to be conspecific with this 

species, since they were found in Java. A comprehensive study o f the specimens 

found in Mount Ardjoeno, the type locality, in Eastern Java is required.
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