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Abstract: Statins are a cornerstone in the pharmacological prevention of cardiovascular disease.
Although generally well tolerated, a small subset of patients experience statin-related myotoxicity
(SRM). SRM is heterogeneous in presentation; phenotypes include the relatively more common myalgias,
infrequent myopathies, and rare rhabdomyolysis. Very rarely, statins induce an anti-HMGCR positive
immune-mediated necrotizing myopathy. Diagnosing SRM in clinical practice can be challenging,
particularly for mild SRM that is frequently due to alternative aetiologies and the nocebo effect.
Nevertheless, SRM can directly harm patients and lead to statin discontinuation/non-adherence, which
increases the risk of cardiovascular events. Several factors increase systemic statin exposure and
predispose to SRM, including advanced age, concomitant medications, and the nonsynonymous
variant, rs4149056, in SLCO1B1, which encodes the hepatic sinusoidal transporter, OATP1B1. Increased
exposure of skeletal muscle to statins increases the risk of mitochondrial dysfunction, calcium signalling
disruption, reduced prenylation, atrogin-1 mediated atrophy and pro-apoptotic signalling. Rare variants
in several metabolic myopathy genes including CACNA1S, CPT2, LPIN1, PYGM and RYR1 increase
myopathy/rhabdomyolysis risk following statin exposure. The immune system is implicated in both
conventional statin intolerance/myotoxicity via LILRB5 rs12975366, and a strong association exists
between HLA-DRB1*11:01 and anti-HMGCR positive myopathy. Epigenetic factors (miR-499-5p,
miR-145) have also been implicated in statin myotoxicity. SRM remains a challenge to the safe and
effective use of statins, although consensus strategies to manage SRM have been proposed. Further
research is required, including stringent phenotyping of mild SRM through N-of-1 trials coupled to
systems pharmacology omics- approaches to identify novel risk factors and provide mechanistic insight.
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1. Introduction

Statins are oral hypolipidaemic drugs and amongst the most widely prescribed medications
worldwide [1]; in the United Kingdom (UK) alone, ~7 million patients take a statin [2]. The first agent,
mevastatin (ML-236B), was identified from Penicillium citrinum [3], but was never marketed due to
adverse effects. Lovastatin (LVT), isolated from Aspergillus terreus, received its marketing authorisation
in 1987 and was the first statin approved [4]. LVT also naturally occurs in certain foodstuffs including
red yeast rice [5] and oyster mushrooms [6].

Statins are the first line hypolipidaemic drug class for managing cardiovascular (CV) disease
(CVD), although ezetimibe, fibrates, bile acid sequestrants, and parenteral proprotein convertase
subtilisin/kexin type 9 (PSCK9) inhibitors are also used in specific situations. In the UK, atorvastatin
(ATV) 20 mg and 80 mg daily are the current first line guideline-recommended statins for primary and
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secondary CVD prevention, respectively [7]. However, due to historic prescribing, simvastatin (SVT)
remains the most commonly prescribed statin in the UK, followed by ATV [8].

Statins competitively inhibit 3-hydroxy-3-methylglutaryl-Coenzyme A reductase (HMGCR),
the rate limiting enzyme for de novo cholesterol synthesis in the mevalonate pathway (Figure 1).
In response, a compensatory upregulation in hepatic low-density lipoprotein (LDL) receptor cell
surface expression occurs [9], leading to a reduction in circulating LDL cholesterol (LDL-C) by
~30–63%, depending on statin and dose. Statins also reduce triglycerides (~20–40%) and raise
high-density lipoprotein-cholesterol (HDL-C) (~5%) to a modest extent [10]. Large meta-analyses of
statin randomized controlled trials (RCTs) have concluded that each 1 mmol/L reduction in LDL-C
with statin therapy is associated with a 22% reduction in the rate of major CV events (coronary deaths,
myocardial infarctions, strokes and coronary revascularisations) [11].

Beyond lowering cholesterol, statins have been associated with a range of beneficial pleiotropic
effects including anti-inflammatory, antioxidant and immunomodulatory effects, inhibition of platelet
activation, regulation of pyroptosis, and increased plaque stability [12–14]. For example, statins mediate
a dose-dependent decrease in C-reactive protein [15], may impact renal function [16,17], and attenuate
postpartum cardiovascular dysfunction in a rat preeclampsia model [18]. The mechanisms underlying
these effects are incompletely understood. However, decreases in other products of the mevalonate
pathway following statin-mediated HMGCR inhibition, including isoprenoid intermediates, dolichols,
heme A and coenzyme Q10 (CoQ10,) (Figure 1), are thought to play a role [12].
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Figure 1. Statin inhibition of the mevalonate pathway.

Seven statins are currently licensed: ATV, fluvastatin (FVT), LVT, pitavastatin (PIT), pravastatin
(PVT), rosuvastatin (RVT), and SVT. Statins can be sub-divided into: (i) those administered as the
therapeutically inactive lactone (LVT, SVT) versus those administered as active acid statin (ATV, FVT,
PVT, PIT, RVT); (ii) those that undergo extensive metabolism by the phase I cytochrome P450 (CYP)
system (ATV, FVT, LVT, SVT) versus those excreted predominantly unchanged (PIT, PVT, RVT), and
(iii) of the extensively metabolised statins, those primarily biotransformed by CYP3A4/5 (ATV, LVT,
SVT) or CYP2C9 (FVT). Table 1 provides an overview of the different statins.
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Table 1. Pharmacokinetic properties of the different statins.

Drug Property Atorvastatin Cerivastatin Fluvastatin Lovastatin Pitavastatin Pravastatin Rosuvastatin Simvastatin

Year approved 1996 1997 to 2001 1993 1987 2009 1991 2003 1991
Generic available Yes No Yes Yes No Yes No Yes
Daily dose (mg) 10–80 0.2–0.3 20–80 10–80 1–4 10–80 5–40 10–40
Equipotent dose (mg) 20 - >80 80 4 80 5 40
Marketed drug form Acid Acid Acid Lactone Acid Acid Acid Lactone
log P (N-octanol/H2O partition
coefficient) 1.11 (lipophilic) 1.70 (lipophilic) 1.27 (lipophilic) 1.70 (lipophilic) 1.49 (lipophilic) −0.84 (hydrophilic) −0.33 (hydrophilic) 1.60 (lipophilic)

Oral absorption (%) 30 >98 98 31 80 37 50 65–85
Bioavailability (%) 14 60 29 <5 51 17 20 5
Effect of food on bioavailability Decrease No effect Decrease Increase No effect Decrease No effect No effect
Time to Cmax (hours) 1–2 2–3 2.5–3 2 1 1–1.5 3–5 1–4
Protein binding (%) ≥98 >99 98 >95 >99 ~50 88 95
Volume of distribution 381 L 0.3 L/Kg 25 - 148 L 0.5 L/Kg 134 L 233 L
Extent of metabolism High High High High Low Low Low High

CYPs that metabolise statin acid form CYP3A
CYP2C8 † CYP2C8 CYP3A

CYP2C9
CYP2C8 †

CYP3A †
CYP3A CYP2C9

CYP2C8 †
CYP2C9
CYP3A †

CYP2C9
CYP2C19 †

CYP3A †
CYP3A
CYP2C8 †

CYPs that metabolise statin lactone form CYP3A CYP3A CYP3A CYP3A CYP3A
CYP2D6 † Not known

CYP3A
CYP2C9 †

CYP2D6 †
CYP3A

UGTs involved in lactonization of statin
acid form

UGT1A1
UGT1A3
UGT2B7

UGT1A3 Not known UGT1A1
UGT1A3

UGT1A3
UGT2B7 None identified UGT1A1

UGT1A3 None identified

Transporters for parent statin

OATP1B1, BCRP,
MRP1, 2, 4,
NTCP, P-gp,
OATP1A2, 1B3,
2B1

OATP1B1,
BCRP

OATP1B1, 1B3,
2B1, BCRP OATP1B1, P-gp

OATP1B1, 1B3,
BCRP, MRP2,
NTCP, P-gp

OATP1B1, 1B3, 2B1,
BSEP, BCRP, MRP2,
P-gp; OAT3 in renal
elimination

OATP1B1, BCRP,
BSEP, MRP1, 2, 4, 5,
P-gp, OATP1A2,
1B3, 2B1, NTCP;
OAT3 in renal
elimination

BCRP, P-gp (SVT
acid: OATP1B1)

Metabolites formed

2-OH ATV,
4-OH ATV,
ATV L,
2-OH ATV L,
4-OH ATV L

M-1 acid,
M-23 acid,
CVT L,
M-1 L,
M-23 L

5-OH FVT,
6-OH FVT,
N-deisopropyl
FVT,
FVT L

LVT acid,
6-OH LVT acid PIT L

6-epi PVT,
3α-OH PVT,
PVT L,
3α-OH PVT L

N-desmethyl RVT,
RVT L

SVT acid,
3′,5′-dihydrodiol,
6′-exomethylene
& 3-OH
acid metabolites

Elimination t1/2 (h) 14 2–3 3 2–5 12 1–3 19 2–3
Faecal excretion (%) 98 70 90 83 79 70 90 60
Renal excretion (%) <2 30 5 10 15 20 10–28 13
References [19–25] [19,25–28] [22,25,29] [19,22,25,30,31] [19,22,25,32,33] [22,25,34–38] [19,22,24,25,39–44] [19,22,25,45–48]

ATV = atorvastatin; BCRP = breast cancer resistance protein; BSEP = bile salt export pump; CVT = cerivastatin; CYP = cytochrome P450; FVT = fluvastatin; L = lactone; LVT = lovastatin;
M-1 = demethylation cerivastatin metabolite; M-23 = hydroxylation cerivastatin metabolite; MRP = multidrug resistance-associated protein; NTCP = sodium-taurocholate co-transporting
polypeptide; OATP = organic anion-transporting polypeptide; -OH = hydroxy; P-gp = P-glycoprotein; PIT = pitavastatin; PVT = pravastatin’ RVT = rosuvastatin’ SVT = simvastatin; UGT
= uridine 5′-diphospho-glucuronosyltransferase. † = denotes enzymes with a minor contribution to the known statin metabolism. Drug-metabolising adult CYP3A consists of CYP3A4 and
variable CYP3A5 expression, dependent on CYP3A5 genotype. The underlined transporters are considered particularly important to the disposition of the statin.
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There is notable interindividual variability in response to statin therapy with patients experiencing
variable cholesterol lowering efficacy, recurrent CV events [1,15], and a 45-fold variation in statin
plasma concentrations [49]. Importantly, a small subset of patients experience statin adverse drug
reactions (ADRs), including statin-related myotoxicity (SRM), new-onset diabetes mellitus [50], and
elevated liver transaminases [51,52]. Adverse effects on energy levels and exertional fatigue [53] and
reduced exercise capacity [54] have been reported, but not confirmed [55]. Similarly, there have been
post-marketing case reports of statin-induced memory loss and confusion, although overall, statins are
not currently thought to cause cognitive dysfunction [56,57].

It is important to study SRM because, firstly, it can directly harm patients [58,59]. Secondly,
despite the unequivocal CVD benefit of statins, statin discontinuation and non-adherence rates are high;
~43% of primary prevention and ~24% of secondary prevention patients become statin non-adherent
after a median of ~24 months [60]. Muscle pain increases the likelihood of statin non-adherence and
discontinuation [61] which, importantly, increases the risk of major CV events and mortality [62,63].

2. SRM Definitions

SRM is heterogeneous in presentation (Figure 2) and so case definitions vary between studies.
Therefore, a recent effort has standardised nomenclature and classified SRM into seven distinct
phenotypic categories [64]:

SRM 0 represents asymptomatic elevations in serum creatine kinase (CK) < 4 × the upper limit of
normal (ULN);

SRM 1 and 2 are common myalgias (aches, cramps and/or weakness) with no (SRM 1) or minor
CK elevations (< 4 × ULN, SRM 2);

SRM 3 represents increasingly infrequent myopathy with CK > 4 × but < 10 × ULN;
SRM 4 is severe myopathy with CK > 10 × but < 50 × ULN;
SRM 5 constitutes rare but potentially life-threatening rhabdomyolysis with either CK > 10 ×

ULN, muscle symptoms and renal impairment, or CK > 50 × ULN, and;
SRM 6 consists of very rare anti-HMGCR positive immune-mediated necrotizing myopathy, which

persists despite statin cessation [64].
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Classification and estimated frequencies are based on Alfirevic et al., 2014 [64], except the myalgia
frequency which is from Parker et al., 2013 [65].

Whilst these categories will standardise research, they are perhaps less meaningful as diagnostic
criteria in clinical practice. The National Lipid Association (NLA) defines statin intolerance as the
“inability to tolerate at least two statins: one statin at the lowest starting daily dose and another
statin at any daily dose, due to either objectionable symptoms (real or perceived) or abnormal
laboratory determinations, which are temporally related to statin treatment and reversible upon
statin discontinuation [66].” The European Atherosclerosis Society (EAS) states “the assessment of
statin-associated muscle symptoms includes the nature of muscle symptoms, increased CK levels and
their temporal association with initiation of therapy with statin, and statin therapy suspension and
re-challenge [67].”

3. SRM Clinical Presentation

SRM constitutes the most commonly reported statin adverse event, comprising approximately
two-thirds of all adverse events [68]. The most common muscular symptoms are pain, heaviness,
stiffness and cramps with or without subjective weakness [58,69]. Symptoms involving leg muscles
(thighs, calves) are most frequent, although back, neck, shoulder and generalised muscular symptoms
have also been described [58,69]. Tendonitis-associated pain has been reported [58]. Approximately
40% of patients with SRM note a potential trigger; most commonly, unusual physical exertion or a new
medication [58]. Muscular pains are intermittent in three quarters of SRM patients, and constant in
one quarter [58].

SRM is most common during the first year of treatment [70] with a median time to onset of one
month [51]; over 80% of patients report not experiencing similar symptoms before statin treatment [58].
The muscular symptoms in the majority of SRM cases (~70–80%) are sufficiently intense to disrupt
everyday activities [58,69]; this includes statin persistence and so, can present as MACE. The rarer
severe myopathies and rhabdomyolysis can directly lead to hospitalisation.

4. SRM Frequency

Amongst licensed statins, the frequency of SRM appears highest with SVT, followed by ATV,
and is lowest with FVT [58]. However, the true incidence of SRM is uncertain, occurring in 1.5–5%
of participants in RCTs (relative to placebo groups) [71], compared to ~10–33% in observational
studies [61,72]. This variability is potentially attributable to a range of factors, including different
myotoxicity definitions and follow up procedures, lead-in periods, inclusion of different patient groups,
and treatment blinding [73]. There is consensus that statins increase the risk of severe myopathy
and rhabdomyolysis [50]. Of note, cerivastatin (CVT) was voluntarily withdrawn in 2001 because of
52 cases of fatal rhabdomyolysis [74]. However, the variability in reported SRM rates has sparked
significant disagreement and controversy over the underlying benefit-risk profile of statins, particularly
in patients at the lower end of the CVD risk spectrum [75].

The greater difficulty lies in determining the aetiology of the commoner milder musculoskeletal
symptoms, and in particular, whether they are attributable to a statin and/or concurrent condition(s)
(e.g., viral illnesses). On the one hand, the frequency of muscle-related adverse events did not
differ between patients on ATV 10 mg daily or placebo in the large double-blind ASCOT-LLA RCT
(n = 10,180), but became significantly more common in patients taking ATV 10 mg daily (1.26% per
annum) compared to placebo (1.00% per annum) in the subsequent open label non-blinded extension
phase [76]. This observation was attributed to the nocebo effect. On the other hand, a six-month
double-blind RCT conducted in 420 healthy volunteers administered ATV 80 mg daily or placebo
found increased myalgia amongst the subjects on ATV compared to the placebo group (9.4% vs.
4.6%, respectively, p = 0.05) [65]. Moreover, N-of-1 (single-patient) placebo-controlled trials involving
patients with a history of SRM have reported that ~30–40% experience subsequent muscle-related
events only on statin and not placebo [77,78]. This suggests that the muscle symptoms experienced
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by a third of symptomatic patients are likely statin-induced, whilst the remainder are probably not.
The challenge is how to distinguish patients with true SRM from those with myalgia due to other causes.

5. SRM Pathogenesis

Several SRM risk factors have been identified and mechanisms proposed, but there is not yet
a unified pathophysiological understanding. Nevertheless, two inter-dependent mechanisms are
implicated: 1. increased statin systemic exposure due to clinical and pharmacogenomic factors, which
increase skeletal muscle exposure, and 2. intracellular skeletal myocyte entry and disruption of muscle
function (Figure 3).
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6. Factors Associated with Statin Pharmacokinetics and Myotoxicity

The absorption, distribution, metabolism and elimination (ADME) pharmacokinetic (PK)
characteristics of the different statins are listed in Table 1. Multiple clinical and pharmacogenomic
factors have been associated with statin PK, and a subset also with SRM. These are reviewed below,
with particular focus placed on the pharmacogenomic associations.

6.1. Clinical Factors

The clinical factors associated with statin PK and SRM are listed in Supporting Information Table S1,
and Table 2, respectively. Several, but not all, identified clinical risk factors for SRM are associated
with increased statin exposure (Table 2). Increasing dose increases statin exposure. Increasing age
correlates with modestly greater statin exposure, except for FVT and RVT [29,43]. Women generally
have modestly higher exposure to most statins, except for RVT and ATV. Whilst there is no difference
in mean RVT exposure between genders [79], women have modestly lower circulating ATV levels
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compared to men [21], attributable to higher hydroxylation metabolism. Patients of Asian ancestry have
an approximate 1.5–1.9-fold increase in median RVT exposure compared to Caucasian patients [80],
and so the US Food & Drug Administration (FDA) recommends that Asian patients start with just 5 mg
RVT daily [43]. All statins are predominantly excreted in faeces and so hepatic impairment can result
in several fold increased exposure to several statins (e.g., ATV, FVT) [21,29], although the influence
on RVT is more modest [81]. The association between alcoholism and SRM [82] may be partially
mediated by alcohol-induced hepatic impairment and reduced body mass leading to increased statin
exposure, although alcohol itself also causes myopathy [83]. Renal impairment is only associated with
increased statin exposure for statins that are at least 10% renally excreted, with little impact on ATV or
FVT [21,84]. Thus, the maximum effect of renal impairment is a 3-fold increase in RVT exposure [43].
Importantly, increasing dose, older age, female sex, low body mass index (BMI), liver disease and renal
impairment have all been associated with SRM [64].

Table 2. Clinical risk factors of statin-related myotoxicity.

Category Risk Factor Reference

Demographics
Advanced age (>80 years old) [51,82]

Female gender [51,85]
Low body mass index [73,82]

Ethnicity
Black African [70]

Caribbean
Co-morbidities

Alcohol abuse [82]
Chronic kidney disease [51,82,86,87]

Chronic liver disease [70,88]
Diabetes mellitus [88,89]

Hypertension [90]
Hypothyroidism [88]

Vitamin D deficiency [91–93]
Personal/family factors

Physical exercise [58,94,95]
Personal or family history of muscle pain [58]

Diet
Grapefruit juice (CYP3A inhibition) [96]

Drugs
Higher statin dose [70,73,97]

Corticosteroids [88]
CYP3A inhibitors (particularly for ATV, LVT, SVT)—e.g.,
amiodarone, ciclosporin, clarithromycin, erythromycin,

protease inhibitors (e.g., indinavir, ritonavir)
[98–104]

CYP2C9 inhibitors † (for FVT)—e.g., fluconazole [105]
OATP1B1 inhibition—e.g., gemfibrozil, ciclosporin [99]

Adapted from Alfirevic et al., 2014 [64]. † = in renal transplant patients and limited to the subgroup carrying CYP2C9* 2 or * 3.

6.2. Pharmacogenomic Factors that Affect Statin Pharmacokinetics

A broad overview of the major enzymes and transporters generally involved in statin disposition
is provided in Figure 4. Multiple genes alter statin PK, as summarised in Supporting Information
Table S2; key genes are CYPs, UGTs (uridine 5′-diphospho-glucuronosyltransferases), SLCO1B1 (solute
carrier organic anion transporter family member 1B1) and the efflux transporters ABCB1 (adenosine
triphosphate (ATP)-binding cassette subfamily B member 1) and ABCG2, which are reviewed below.
Table 3 lists studies that have investigated SRM pharmacogenomics. Overall, of the statin PK genes
investigated, only SLCO1B1 rs4149056 has been consistently associated with SRM.
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This figure shows the enzymes and transporters that can be involved in the first pass metabolism
of different statins [19,24,38,106–108]. ATV, LVT, and SVT are hydroxylated by CYP3A4/5, and FVT
by CYP2C9. Statin lactonization is mediated by UDP-glucuronosyltransferases. OATP1B1 is central
to the hepatic uptake of statins, although other transporters can be involved. BCRP and/or P-gp
are important in the intestinal and biliary efflux of statins, alongside other transporters. The major
enzymes/transporters discussed further in this review are underlined.
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Table 3. Pharmacogenomic investigations of statin-related myotoxicity.

Study Design Genes Variants Statin N Endpoint Main Results

Statin Pharmacokinetics

Bai 2019 [109] Co, CG

SLCO1B1
rs4149056
(521T > C,
p.V174A)

RVT 758 Muscle symptoms
+/− ↑CK

-OR 1.74 (95% CI 1.18–2.57), p = 0.0052
-No associations for ABCB1, ABCG2, CYP2C9, SLCO1B3

-GATM—see ‘Muscle-related’ section below

Carr 2019 [110] GWAS, then MA SVT, CVT, ATV
(+ others) 7764 CK > 10 × ULN or

rhabdomyolysis

-all statins: OR 2.99 (95% CI 2.34–3.82), p = 2.63 × 10−18

-SVT: OR 5.91 (95% CI 4.10–8.51), p = 1.46 × 10−21

-ATV: no clear associations

Carr 2013 [89] CC, CG SVT, ATV
(+ others) 448 Stop statin & CK >

4 × ULN

-all statins: OR 2.08 (95% CI 1.35–3.23), p = 0.005
-SVT: OR 2.13 (95% CI 1.29–3.54), p = 0.014
-COQ2—see ‘Muscle-related’ section below

Floyd 2019 [111] MA, WES SVT, CVT, ATV
(+ others) 2552 Muscle symptoms

& CK > 4 × ULN

-No genome-wide significant associations
-rs4149056 in non-fibrate users secondary analysis:
4.01-fold ↑ risk (95% CI 2.61–6.17), p = 5.46 × 10−11

Danik 2013 [112] RCT, CG RVT 4404 Myalgia No association detected

de Keyser 2014 [113] Co, CG SVT, ATV 1939 Statin dose
decrease or switch

-SVT: HR 1.74 (95% CI 1.05–2.88), p = 0.033
-ATV > 20 mg: HR 3.26 (95% CI 1.47–7.35), p = 0.004

-No associations for SVT or ATV in replication set

Link 2008 [86] CC, GWAS SVT 175
CK > 3 × ULN & 5
x baseline, plus ↑

ALT

-SVT 80 mg: OR 4.5 (95% CI 2.6–7.7)
-STV 40mg: OR 2.6 (95% CI 1.3–5.0), p = 0.004

Puccetti 2010 [114] CC, CG ATV, RVT 76

Muscular
intolerance

(muscle symptoms
or ↑ CK or ↑LFTs)

-ATV: OR 2.7 (95% CI 1.3–4.9), p < 0.001
-RVT: no association

-COQ2—see ‘Muscle-related’ section below

Marciante 2011 [115] CC, CGs &
GWAS CVT 917 Muscle symptoms

& CK > 10 × ULN

-OR 1.89 (95% CI 1.40–2.56), p = 3.62 × 10−5

-No associations for CYP2C8, UGT1A1/1A3
-RYR2—see ‘Muscle-related’ section below

Voora 2009 [85] RCT, CG ATV, SVT, PVT 452
Stop statin,

myalgia, or CK > 3
× ULN

-OR 1.7 (95% CI 1.04–2.8), p = 0.03.
-Risk highest in patients on SVT.

-No apparent association for PVT
-No associations for CYP2C8, 2C9, 2D6, 3A4

Xiang 2018 [116] MA, CG SVT, CVT, RVT,
ATV, PVT 11,008

Multiple-
myalgia to

rhabdomyolysis

-SVT: OR 2.35 (95% CI 1.08–5.12), p = 0.032
-CVT: OR 1.95 (95% 1.47–2.57), p < 0.001

-RVT: OR 1.69 (95% CI 1.07–2.67), p = 0.024
-ATV or PVT: no associations

Elam 2017 [69] CC, CG
SLCO1B1 rs4149056

SVT, ATV, RVT 19
Statin myalgia
confirmed by
re-challenge

-↑myalgia with rs4149056 variant allele (p = 0.039)
-↑myalgia with rs12422149 variant allele (p = 0.001)

-RYR2—see ‘Muscle-related’ section belowSLCO2B1 rs12422149
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Table 3. Cont.

Study Design Genes Variants Statin N Endpoint Main Results

Statin Pharmacokinetics

Ferrari 2014 [117] CC, CG SLCO1B1 rs4149056,
rs2306283 ATV, RVT, SVT 66

CK > 3 × ULN,
irrespective of

symptoms

- rs4149056: OR 8.5 (95% CI 1.7–42.3), p = 0.001
- rs2306283: OR 0.3 (95%CI 0.06–0.91), p = 0.022

-ABCB1: OR 4.5 (95% CI 1.4–14.7), p = 0.001
-No association for ABCG2

ABCB1 1236C > T,
3435C > T

Fiegenbaum 2005 [118] Co, CG ABCB1
1236C > T,

2677G > A/T,
3435C > T

SVT 116 Myalgia -↑ endpoint risk with ABCB1 variants (p < 0.05)
-No associations with CYP3A4, 3A5

Hoenig 2011 [119] Co, CG ABCB1 3435C > T ATV 117 Myalgia ↑ risk carrying T compared to C allele (p = 0.043)

Mirosevic Skvrce 2015 [120] CC, CG

SLCO1B1 rs4149056

ATV 130

Adverse reactions
(61.7%

myotoxicity);
myalgia to

rhabdomyolysis

-rs4149056: OR 2.3 (95% CI 1.03–4.98), p = 0.043
-rs2231142: OR 2.75 (95% CI 1.10–6.87), p = 0.03

-No association for CYP3A4*22ABCG2 rs2231142

Mirosevic Skvrce 2013 [105] CC, CG ABCG2 rs2231142
FVT 104

Adverse reactions
in renal transplant

patients
(90.4%

myotoxicity)

-rs2231142: OR 4.89 (95% CI 1.42–16.89)
-*2 or *3 carriers: OR 2.44 (95% CI 1.05–5.71), p = 0.037

-↑ risk of endpoint in CYP2C9*2 or *3 carriers on a
CYP2C9 drug inhibitor: OR 6.59, p = 0.027

CYP2C9 *2, *3

Becker 2010 [121] Co, CG CYP3A4 *1B SVT, ATV 1239 Statin dose
decrease or switch

-SVT/ATV: HR 0.46 (95% CI 0.24–0.90), p = 0.023
-SVT only: HR 0.47 (95% CI 0.23–0.96), p = 0.039

-No association for ABCB1

Frudakis 2007 [122] CC, CG CYP2D6 *4 ATV, SVT 263 Stop statin due to
muscle events

-ATV: OR 2.5 (95% CI 1.5–4.4), p = 0.001
-SVT: OR 1.7 (95% CI 0.9–3.2), p = 0.067

Mulder 2001 [123] Co, CG CYP2D6 *3, *4, *5,
*2xN SVT 88 Stop statin ↑ risk with CYP2D6 variants (RR = 4.7);

a gene-dose trend

Wilke 2005 [124] CC, CG CYP3A4/5 3A4*1B,
3A5*3 ATV 137 Myalgia No main associations detected

Zuccaro 2007 [125] CC, CG CYPs Several ATV, SVT, PVT
(+ others) 100 Muscle symptoms

+/− ↑CK No associations for CYP2C9, 2D6, 3A5

Muscle-related

Bai 2019 [109] Co, CG GATM rs9806699 RVT 758 Muscle symptoms
+/− ↑CK OR 0.62 (95% CI 0.41–0.94), p = 0.024

Mangravite 2013 [126] deQTL CG CCs GATM rs9806699
rs1719247 SVT 4413 Muscle symptoms

& CK > 3 × ULN
-rs1719247 in LD with top deQTL, rs9806699: r2 = 0.76

-MA: OR 0.60 (95% CI 0.45–0.81), p = 6.0 × 10-4

Carr 2013 [89] CC, CG COQ2 rs4693075 SVT, ATV
(+ others) 448 Stop statin & CK >

4 × ULN COQ2 rs4693075: no associations

Oh 2007 [127] CC, CG COQ2 rs6535454
rs4693075

ATV, RVT
(+ others) 291

Muscle symptoms
+ stop statin or CK

> 3 × ULN

-rs6535454: OR 2.42 (95% CI 0.99–5.89), p = 0.047
-rs4693075: OR 2.33 (95% CI 1.13–4.81), p = 0.019
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Table 3. Cont.

Study Design Genes Variants Statin N Endpoint Main Results

Muscle-related

Puccetti 2010 [114] CC, CG COQ2 rs4693075 ATV, RVT 76
Muscular intolerance
(muscle symptoms or
↑ CK or ↑LFTs)

-RVT: OR 2.6 (95% CI 1.7–4.4), p < 0.001
- ↑ risk of muscular symptoms and ↑ CK with ATV: OR

3.1 (95% CI 1.9–6.4), p < 0.001

Ruano 2011 [128] CC, CG
COQ2 rs4693570

ATV, SVT, RVT
(+ others) 793 Myalgia

-COQ2 rs4693570 (p = 0.000041) or ATP2B1 rs17381194
(p = 0.00079) associated with ↓ risk.

-DMPK rs672348 (p = 0.0016) associated with ↑ risk.
ATP2B1 rs17381194
DMPK rs672348

Vladutiu 2006 [129] CC, CG
CPT2 Several

ATV, CVT, LVT,
SVT

358
Muscle symptoms; CK

↑ reported

Overall, a fourfold ↑ in the number of mutant alleles
(AMPD1 > CPT2/PYGM) in cases vs. statin-tolerant

controls.
PYGM R49X, G204S

AMPD1 Q12X, P48L,
K287I

Tsivgoulis 2006 [130] CRs, CG DMPK CTG repeats PVT, ATV, SVT 4
Muscle symptoms or

fatigue & CK ↑
-1 case of each of type 1 myotonic dystrophy (DMPK),

glycogen storage disease V (muscle histochemical
diagnosis), mitochondrial myopathy (muscle biopsy &
biochemical diagnosis), and Kennedy disease (NR3C4)

diagnosed after starting statin and becoming
symptomatic

NR3C4 CAG repeats

Echaniz-Laguna 2010 [131] Co, CG NR3C4 CAG repeats SVT, PVT, ATV
(+ others) 52

Abnormal EMG &
pathological analysis,
if muscle features last
> 3 months after statin

ceased

-5 patients diagnosed with paraneoplastic polymyositis,
Kennedy disease (NR3C4), glycogen storage disease IX
(PHKA1), motor neuron disease, and necrotic myopathy

of uncertain aetiology
PHKA1 Not specified

Knoblauch 2010 [132] CS, CG CNBP CCTG repeat ATV, SVT
(+ others) 3

Muscle symptoms that
last after statin ceased

+/− ↑CK

-All 3 cases diagnosed with type II myotonic dystrophy
after becoming symptomatic after starting statin

treatment

Voermans 2005 [133] CR, CG GAA IVS1-13T > G
525del T SVT 1 Muscle symptoms &

CK ↑

-1 case of a compound heterozygote for glycogen
storage disease II diagnosed after becoming

symptomatic on SVT

Zeharia 2008 [134] CC, CG LPIN1 sequenced Unknown 20 Myopathy with ↑CK In 2 of 6 cases, exonic nucleotide substitutions thought
harmful were found, vs. 0 in 14 statin-tolerant controls.

Vladutiu 2011 [135] CC, CG RYR1 34 mutations Not specified 493
Muscle

symptoms-often last
post statin, +/− ↑CK

RYR1 mutations in 3 of 197 severe & 1 of 163 mild statin
myopathies, vs. 0 of 133 statin-tolerant controls

Isackson 2018 [136] WES
RYR1 Pathogenic

variants
ATV, RVT, SVT

(+ others) 126 Muscle symptoms &
CK > 5 × ULN

12 of 76 (16%) of SRM patients had probably pathogenic
variants in RYR1 or CACNA1S, which was 4-fold higher

than in statin-tolerant controls.
CACNA1S

Elam 2017 [69] CC, CG RYR2 rs2819742 SVT, ATV, RVT 19
Statin myalgia
confirmed by
re-challenge

-↑myalgia with rs2819742 variant allele (p = 0.016)
-No associations with GATM, COQ2, HTR3B, HTR7

Marciante 2011 [115] CC, CGs &
GWAS RYR2 rs2819742 CVT 917 Muscle symptoms &

CK > 10 × ULN OR 0.48 (95% CI 0.36-0.63), p = 1.74 × 10−7
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Table 3. Cont.

Study Design Genes Variants Statin N Endpoint Main Results

Immune-system related

Limaye 2015 [137] Co, CG HLA-DRB1*11
Typing to
‘two-digit’
resolution

Not specified 207

Anti-HMGCR
antibodies in
patients with

idiopathic
inflammatory

myositis or
immune-mediated

necrotizing
myopathy

-Anti-HMGCR antibodies in 19 of 207 myopathy cases
-HLA-DRB1*11 more frequent in myopathy patients

positive vs. negative for anti-HMGCR antibodies:
OR 56.1 (95% CI 5.0–7739), p = 0.001

-3 anti-HMGCR positive myopathy patients had high
resolution typing and all carried HLA-DRB1*11:01

Mammen 2012 [138] CC, HLA typing
HLA-DRB1*11

Typing
resolution:

-Intermediate;
-High in

DR11
Not specified 733

Anti-HMGCR
antibodies in
patients with

myositis/myopathy

-OR for HLA-DRB1*11:01 in anti-HMGCR myopathy
patients vs. controls: ~24.5 (p = 3.2 × 10−10) and

~56.5 (p = 3.1 × 10−6) in white & black ethnicities,
respectively

-HLA-DQA1 and DQB6 less frequent in white
anti-HMGCR positive patients than controls
(p = 5.5 × 10−4, p = 2.1 × 10−5, respectively)

DQA Intermediate
resolutionDQB

Siddiqui 2017 [139] Co, CG LILRB5 rs12975366 SVT, RVT
(+ others) 1034

-1. Non-adherence &
↑CK

-2. Statin intolerant
& switched ≥ 2 other

statins

-1: OR 1.81 (95% CI 1.34–2.45)
-2: OR 1.36 (95% CI 1.07–1.73)

Pain perception

Ruano 2007 [140] CC, CG HTR3B rs2276307 ATV, SVT, PVT 195 Myalgia -↑risk for rs2276307 (p = 0.007) & rs1935349 (p = 0.026)
-No associations for HTR1D, 2A, 2C, 3A, 5A, 6, SLC6A4HTR7 rs1935349

Other

Isackson 2011 [141] GWAS EYS
rs1337512,
rs9342288,
rs3857532

ATV (+ others) 399

Muscle
symptoms-often last

post therapy, +/−
↑CK

EYS SNPs conferred ↑ risk (p = 0.0003–0.0008), but did
not survive multiple testing correction for GWAS.

CC = case-control study; CG = candidate gene; CI = confidence interval; CK = creatine kinase; Co = cohort study; CR = case report; CS = case series; deQTL = differential expression
quantitative trait loci; GWAS = genome-wide association study; HR = hazard ratio; MA = meta-analysis; OR = odds ratio; RCT = randomized controlled trial; WES = whole-exome
sequencing. Studies are ordered to preferentially group those that investigated the same gene(s) together.
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6.2.1. CYP Phase 1 Hydroxylation

Metabolism is responsible for the clearance of 70% of the top 200 used drugs [142], a subset
of 12 of the 57 putatively functional CYPs within the human CYP superfamily carry out 75% of
drug biotransformations [143], and CYP3A metabolises the largest number of different drugs [142].
ATV, LVT and SVT are themselves extensively metabolised by CYP3A, with greater contributions
from CYP3A4 than CYP3A5 [144]. Although no common missense variants are known for CYP3A4,
the intronic variant, rs35599367 (*22, 522-191C > T), is associated with reduced CYP3A4 hepatic
mRNA and enzymatic activity [145]. CYP3A4*22 increases the formation of non-functional CYP3A4
alternate splice variants with partial intron six retention, specifically in human liver but not small
intestine [146]. CYP3A4*22 is present with a minor allele frequency (MAF) of ~5% in Europeans, but
is low/rare (~1%) in African and Asian populations [147]. CYP3A4*22 is associated with reduced
ATV hydroxylation [148] and ethnicity-restricted increases in SVT/SVT acid concentrations [48].
Although nuclear receptors are highly conserved [149], a single nucleotide polymorphism (SNP)
within peroxisome proliferator-activated receptor-α (PPARA), rs4253728, has also been associated with
reduced human hepatic CYP3A4 protein levels [148] and reduced metabolism of ATV [148] and likely
SVT [150].

CYP3A5*3 is a loss of function allele defined by rs776746 (6986G > A), which introduces a cryptic
mRNA splice site resulting in a non-functional truncated protein [151], and has MAFs of ~18%, 69%
and 94% in African, Asian and European populations, respectively [147], indicating allelic reversal.
CYP3A5*3/*3 has been associated with increased SVT and ATV L exposures [152,153].

Increased exposures to LVT [154,155] and SVT [156] have been tentatively reported in association
with CYP2D6 reduction/loss-of-function alleles (e.g., *5, *10, *14). However, in vitro studies have not
identified LVT/SVT as CYP2D6 substrates [47,157,158], which puts these CYP2D6-LVT/SVT associations
into doubt. Carrying CYP2C9*3 has been associated with increased exposures to FVT and PIT, but not
RVT or SVT (Table S2). CYP2C9*2 was not associated with FVT exposure [159]. CYP2C9*2 and *3 are
both reduction-of-function nonsynonymous variants that reduce xenobiotic metabolism by ~30–40%
and ~80–90%, respectively [160]. The MAF of CYP2C9*3 is 7%, 4% and rare in Caucasian, Asian, and
African populations, respectively.

Variants in CYP3A4/5 and CYP2D6 have been inconsistently associated with SRM or statin
tolerability in some candidate gene studies [121–123] but not others [85,118,125]. Carrying CYP2C9*2
or *3 may increase the risk of FVT adverse events (mainly myotoxicity), particularly when also
receiving a CYP2C9 drug inhibitor [105]. However, all patients in this FVT study were renal transplant
recipients [105], and so the generalisability of these findings remains unknown. None of these genes
have yet been identified in SRM genome-wide association studies (GWAS) [86,115,141]. Thus, whilst
CYP genetic variants are linked to altered statin exposure, their relationship with SRM remains uncertain.

6.2.2. UGT1A3 Phase 2 Glucuronidation

The UGT family is involved in phase II drug metabolism and consists of subfamilies UGT1A,
UGT2A and UGT2B [161]. UGTs catalyse glucuronidation, typically transforming small lipophilic
molecules into more hydrophilic metabolites, which are easier to excrete. Statin lactonization can
occur either non-enzymatically at low intestinal pH [162], conceivably via a coenzyme A-dependent
process [163], or via an unstable acyl glucuronide intermediate that undergoes spontaneous cyclization
to a lactone analyte [164]. Statin lactone species are considered more myotoxic than their acid
counterparts [165]. Depending on the statin, UGT1A3, 1A1 and UGT2B7 can be involved in acyl
glucuronidation [19]. However, UGT1A3 has been consistently shown to have the highest in vitro statin
lactonization rates [19]. UGT1A3*2 is associated with increased UGT1A3 hepatocyte protein expression
and *2/*2 volunteers have higher exposures of both ATV lactone and 2-hydroxy ATV lactone [161,166].
The common low expression UGT1A1 dinucleotide tandem repeat promoter polymorphism, *28,
has been associated with both decreased area under the ATV lactone concentration-time curve (AUC) [167]
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and increased lactonization [161]; this discrepancy is likely attributable to the extensive linkage
disequilibrium within the UGT1A locus—for example, between UGT1A1*28 and UGT1A3*2 [161].

UGT1A1/1A3 variants have been sequenced to investigate CVT myotoxicity, but no association was
identified [115]. To date, they have not been included in SRM candidate gene studies, nor identified in
SRM GWAS.

6.2.3. SLCO1B1 Influx Transporter

SLCO1B1, located on chromosome 12p12.2, encodes organic anion-transporting polypeptide
1B1 (OATP1B1), which is a major hepatocyte-specific sinusoidal influx xenobiotic transporter.
The nonsynonymous SNP, rs4149056 (521T > C, p.V174A), in exon five results in decreased intrinsic
OATP1B1 transport activity [168]. The rs4149056 MAF is approximately 1%, 8% and 16% in African,
Asian and European populations, respectively [147]. Importantly, rs4149056 521CC homozygosity has
been associated with increases in statin AUC of 286% (LVT acid) [169], 221% (SVT acid) [170], 208%
(PIT) [171], 144% (ATV) [172], 91% PVT [173], and 65% (RVT) [172]. However, rs4149056 has not been
associated with FVT [173] or parent LVT [169] and SVT exposures [170].

Importantly, rs4149056 was identified in a seminal GWAS to be strongly associated with myopathy
in 85 cases compared to 90 controls, all of whom were on SVT 80mg daily [86]. The odds ratio (OR)
for myopathy in 521CC versus 521TT patients was 16.9 (95% confidence interval (CI) 4.7, 61.1), and a
gene-dose trend was evident with an OR of 4.5 (95% CI 2.6–7.7) per C allele [86]. In patients on 40 mg
SVT daily, the myopathy relative risk remained but was halved to ~2.6 (95% CI 1.3–5.0) per C allele,
in keeping with a dose-related ADR [86]. This association between SVT myopathy and rs4149056 has
been replicated [89,174] and confirmed in recent large meta-analyses [110,116]. Furthermore, rs4149056
has also been linked to milder adverse outcomes encompassing myalgia, prescription reductions
and/or minor biochemical (e.g., CK) elevations indicative of SVT intolerance [69,85,113,175].

In adsition to SVT, historical cases of CVT-related rhabdomyolysis have been associated with
rs4149056 [115]. Furthermore, a recent whole-exome sequencing endeavour reported that SLCO1B1
rs4149056 is associated with statin myopathy (mainly SVT or CVT cases), which reached multiple
testing significance when limited to patients not on a fibrate; however, no novel rare coding signals were
detected [111]. Intriguingly, SLCO1B1 rs4149056 has been recently associated with RVT myotoxicity
(a composite of myalgias to rhabdomyolysis) in Han Chinese patients [109,176], although it was not
previously associated with myalgias in patients of European descent receiving RVT [112]. A recent
meta-analysis, largely including these studies, further suggested an association between rs4149056 and
RVT myotoxicity [116]. Given the increased RVT exposure reported in Asian compared to Caucasian
patients, which is partially but not completed explained by ABCG2 rs2231142 (see Section 6.2.4) [80],
Asian patients are perhaps more sensitive to further SLCO1B1-mediated increases in RVT exposure.

Overall, it has been suggested that rs4149056 might be relevant for severe myopathy (e.g., CK >

10 × ULN) due to several statins, with an effect size likely greatest for SVT (or LVT) and lowest for FVT,
based upon the degree to which the rs4149056 minor C allele increases exposure to each statin [110].
Nevertheless, rs4149056 has not yet been clearly associated with PVT myotoxicity [85,116], and whilst
an association between rs4149056 and ATV myotoxicity has been suggested [85,113] or reported [114],
several other studies found no evidence [89,110,116,174,176–178]. Reasons for ongoing uncertainty
regarding the role of rs4149056 in ATV myotoxicity include fewer ATV cases in studies (especially
cases on high dose ATV) [89] and ATV appears less intrinsically myotoxic than SVT [165], as well as
the impact of rs4149056 on exposure being smaller for ATV than SVT acid [172]. The latter is plausibly
because ATV utilises OATP1B3, 2B1 and 1A2, as well as OATP1B1, for hepatocyte uptake [25].

In summary, the influence of rs4149056 on myotoxicity risk is clear for SVT, but incompletely
resolved for the other licensed statins. Importantly, the FDA revised the SVT product label to reduce SVT
80 mg use because of the elevated myotoxicity risk [179]. Furthermore, the Clinical Pharmacogenetics
Implementation Consortium (CPIC) guidelines recommend a lower SVT starting dose or an alternative
statin, alongside consideration of routine CK surveillance, in patients already known to carry at least
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one 521C allele [180]. The Dutch Pharmacogenetic Working Group (DPWG) has published guidance for
SLCO1B1 rs4149056 and both SVT and ATV [181]. The DPWG SVT guideline first line recommendation
is an alternate statin in 521C carriers, whilst the ATV guidance only recommends an alternate statin in
521C carriers with additional SRM clinical risk factors [181].

6.2.4. ABCB1 and ABCG2 Efflux Transporters

ABCB1 and ABCG2 are both members of the superfamily of ATP-binding cassette (ABC)
transporters and encode the efflux transporters P-glycoprotein (P-gp) and breast cancer resistance
protein (BCRP), respectively. Both P-gp and BCRP are located in the apical (luminal) membrane of
enterocytes and the canalicular membrane of hepatocytes, as well as other locations including the
blood–brain barrier [182] and placenta [183,184]; they have broad substrate specificity.

ABCB1 has three common SNPs, rs1128503 (1236T-C, synonymous), rs2032582 (missense, 2677T-G)
and rs1045642 (synonymous, 3435T-C); TTT homozygotes have ~55–60% increased exposure to both
ATV and SVT acid [185]. The ABCB1 T alleles have been associated with symptom-independent
elevated CK levels [117] and muscle symptoms [118,119] in some candidate gene studies, but not with
prescribing changes suggestive of statin intolerance [121], nor in SRM GWAS [110,115].

The nonsynonymous ABCG2 SNP, rs2231142 (421C > A, p.Q141K), has MAFs of 1%, 10–29% and
9% in African, Asian, and European populations, respectively [147]. The 421AA genotype has been
associated with a 2.4-fold increased exposure to RVT, ~2-fold increased exposures to ATV, FVT, and
SVT, but no increased exposures to PIT or PVT [108]. Interestingly, carrying rs2231142 421A has been
associated with an increased risk of myotoxicity with ATV [120], and in renal transplant recipients
receiving FVT [105]. Both of these studies were small case control candidate gene studies and have not
been confirmed in GWAS, although SRM GWAS analyses have included relatively few FVT cases to
date [86,110,111,115].

6.3. Drug–Statin Interactions

Drug–statin interactions are common, can lead to several fold increases in statin exposure, and
are established SRM risk factors. Ciclosporin is a potent inhibitor of CYP3A4 [186] and several
transporters including OATP1B1, OATP1B3, OATP1B2, ABCG2, and P-gp [99,187], and universally
increases systemic exposure of all statins (Table S1). Gemfibrozil and its glucuronide metabolite inhibit
CYP2C8 and OATP1B1 and increase statin acid levels (except FVT). Importantly, ciclosporin and
gemfibrozil are strongly associated with SRM [99]. CYP3A inhibitors (e.g., amiodarone, itraconazole,
clarithromycin) consistently increase the systemic exposure of the CYP3A-metabolised statins (ATV,
LVT, SVT) and are significant SRM risk factors [98,99]. Similarly, grapefruit juice, which inhibits CYP3A,
has been linked to SVT rhabdomyolysis [96]. The novel cytomegalovirus viral terminase inhibitor,
letermovir, increased ATV AUC by over 200%, attributable to inhibition of OATP1B1/3 and CYP3A, and
is expected to increase exposure to other statins too [188]. Several antiretroviral drugs increase statin
exposure through inhibition of CYP3A and/or OATP1B1, including protease inhibitors (e.g., lopinavir,
saquinavir, tipranavir) and pharmacokinetic enhancers (e.g., ritonavir, cobicistat) [189]. As stated
above, CYP2C9 inhibitors (e.g., fluconazole) may interact with CYP2C9*2 or *3 carriage to increase
FVT myotoxicity [105]. Beyond PK interactions, other drugs themselves linked with myotoxicity,
including corticosteroids and colchicine, may also augment the risk of SRM [88,190]. In recognition
of the importance of these interactions, specific recommendations for the management of clinically
significant statin–drug interactions have been published [190].

7. Statin Uptake into Skeletal Muscle

Elevated systemic statin exposure plausibly increases intra-myocyte statin concentrations. Statin
myocyte entry is likely facilitated by transporters, with statins being substrates for several sarcolemmal
transporters. These include OATP2B1, multidrug resistance-associated protein (MRP) 1, MRP4, MRP5
and MCT4 (monocarboxylate transporter-4) [24,191]. Interestingly, the minor allele of the SLCO2B1
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nonsynonymous variant, rs12422149 (935G > A, p.R312Q), has been associated with increased SVT acid
plasma clearance in population PK modelling [150], and with statin (mainly SVT) myalgia in a small
candidate gene study (n = 19) [69]; both of these findings are potentially consistent with increased
statin muscle uptake. It is also noteworthy that lipophilic statins (ATV, SVT) preferentially accumulate
in skeletal muscle relative to hydrophilic statins (PVT, RVT) [192], which may help explain the greater
myotoxicity of lipophilic statins [165]. The tissue distribution of transporters may also partially account
for the lack of statin cardiomyotoxicity [191].

8. Statin-Induced Myocyte Dysfunction

Several mechanisms of myotoxicity have been proposed, as outlined below. Studies that
investigated the role of muscle-related gene variants in SRM are detailed in Table 3.

8.1. Exercise

Physical exercise has been reported to trigger and exacerbate SRM [58]. Following the Boston
marathon, runners taking a statin had higher CK rises than runners not on a statin [193]. Interestingly,
increasing age was associated with higher CK elevations after the marathon only in those on a
statin [193]. In professional athletes with hypercholesterolaemia, only 20% could tolerate a statin long
term despite re-challenges with alternate statins and doses [194]. Thus, exercise and statins together
can potentiate muscle adverse events [195]. Nevertheless, a systematic review has reported that the
literature is inconsistent on whether statins objectively reduce exercise capacity and performance [55].
Interestingly, whilst the circulating levels of three muscle-specific microRNAs (miR-1, miR-133a,
miR-206) increased after running a marathon irrespective of statin use, the circulating level of a fourth
muscle microRNA, miR-499-5p, only increased 24 h after the marathon in runners taking a statin [196].
Follow-up studies in cultured C2C12 myotubes confirmed that extracellular miR-499-5p increases only
when carbachol-induced muscle contraction is combined with statin exposure [196]. These observations
suggest a role for epigenetics in statin-potentiated muscle injury, and suggest a biomarker for identifying
patients with exercise-exacerbated SRM. Nevertheless, this biomarker requires replication. Lastly, these
microRNA observations are from marathon runners and not necessarily applicable to more common,
moderate exercise. Intriguingly, it has been suggested by some rodent studies that graduated exercise
training can improve muscle tolerance to statin exposure [197,198]. Therefore, the findings that exercise
to different degrees may either exacerbate or protect against SRM suggests that further work is required
in this area to provide patients with clear advice on what to do in terms of exercise and statin use.

8.2. Pre-Existing Neuromuscular Disorders

Statin therapy can adversely interact with underlying neuromuscular disorders to exacerbate
symptoms in patients with diagnosed disorders, or unmask previously asymptomatic disorders [199].
Clinical conditions exacerbated or unmasked by statin exposure include myasthenia gravis,
dermato/polymyositis, inclusion body myositis, motor neuron disease, and MELAS (mitochondrial
encephalopathy, lactic acidosis, and stroke-like episodes) [200–202]. MELAS is a rare mitochondrial
disease generally associated with mutations in MT-TL1 (mitochondrially encoded tRNA leucine 1,
also known as TRNL1) and reported patients adversely affected by statin exposure had the MT-TL1
A3243G mutation [201,202]. In such cases, symptoms (muscle-related or otherwise) often persist after
statin cessation [129,203], which is an indication for further investigations in those patients not already
known to have a neuromuscular disorder.

Patients with untreated hypothyroidism, which causes hypercholesterolaemia and hypothyroid
myopathy, are at an increased risk of SRM. This SRM can resolve following statin discontinuation,
or persist until thyroid hormone replacement [204,205].

Several metabolic myopathies have been associated with SRM, and often, patients were
asymptomatic and unaware of the myopathy before starting statin treatment [130]. It is thought
that these conditions increase susceptibility to SRM through reducing the ability of skeletal muscle
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to compensate to statin-induced myotoxic effects. Metabolic myopathies with an identified genetic
mutation that has subsequently been found in patients presenting with SRM include: adenosine
monophosphate deaminase (AMPD1) deficiency (formerly myoadenylate deaminase deficiency) [129],
carnitine palmitoyltransferase 2 (CPT2) deficiency [129], glycogen storage diseases II (Pompe disease;
GAA deficiency) [133], V (McArdle disease, PYGM deficiency) [129] and IX (muscle phosphorylase
b kinase (PHKA1) deficiency) [131], malignant hyperthermia (RYR1, CACNA1S) [135,136], recurrent
childhood myoglobinuria (LPIN1 mutation) [134], and type I (DMPK) [130] and II (CNBP) [132]
myotonic dystrophy. In addition, immune-mediated rippling muscle disease presenting after statin
exposure has been reported [206], and mitochondrial myopathies presenting as rhabdomyolsis have
been unmasked following statin treatment, although mitochondrial genetic mutations were not
identified in these cases [130,207].

By way of example, the carrier frequency for McArdle disease was 12-fold higher in a cohort of
patients with lipid lowering (predominantly statin)-induced myopathy, compared to general population
controls [129]. One patient that developed muscular complaints only after CVT was homozygous
for PYGM 49XX, a genotype of McArdle disease [129]. McArdle disease is an autosomal recessive
disease due to complete deficiency of myophosphorylase (PYGM) activity. Myophosphorylase is a
cytoplasmic enzyme involved in glycogenolysis; myophosphorylase deficiency limits muscle oxidative
phosphorylation most likely due to impaired substrate delivery to mitochondria [208]. The roles
of other select myopathy genes (CPT2, RYR1, CACNA1S) are covered in more detail in the relevant
sections below. Overall, a background of carrying variants or incomplete penetrance of metabolic
myopathies appears to sensitive individuals to statin myotoxicity.

8.3. Mitochondrial Impairment

An important role for mitochondrial impairment in SRM is indicated by the case
reports [130,202,207] and series [129] that identified underlying mitochondrial dysfunction in patients
with (non-resolving) SRM. For example, CPT2 is located within the mitochondrial inner membrane
and undertakes oxidation of long-chain fatty acids in mitochondria alongside CPT1. The carrier
frequency of CPT2 variants associated with CPT2 deficiency was higher in SRM patients compared
to controls [129]. CPT2 deficiency is an autosomal recessive disorder and a patient with genetically
confirmed CP2 deficiency (113LL) was also identified in this study. This patient did have pre-existing
symptoms, exacerbated by CVT [129]. Importantly, in vitro transcriptomic analysis has demonstrated
that CPT2 is amongst the top 1% of genes whose mRNA levels are perturbed by 75 drugs (including
statins) that can cause rhabdomyolysis [209].

In vitro studies have demonstrated that the statin lactone species are markedly more myotoxic
than statin acids, and SVT lactone and FVT lactone are more myotoxic than ATV lactone and PVT
lactone [165]. Following ATV re-challenge, patients with previous SRM had higher systemic exposures
to ATV lactone and 4-hydroxy ATV lactone (plus increased 2-hydroxy and 4-hydroxy ATV metabolite
levels) compared to healthy controls [210]. Lactones have been shown to strongly inhibit (up to 84%)
mitochondrial complex III and reduce respiratory capacity within in vitro myoblasts [192]. Furthermore,
Q0 of complex III was identified in silico to be an off-target binding site for statin lactones (but not statin
acids) [192]. These observations were verified in muscle biopsies from SRM patients, in which complex
III enzyme activity was reduced by 18% [192]. Interestingly, CVT lactone showed the greatest degree
of complex III inhibition [192], in keeping with its pronounced rhabdomyolysis risk [74]. In contrast,
a recent study in healthy male volunteers found no major differences in mitochondrial respiratory
capacity after two weeks of daily SVT (80 mg) or PVT (40 mg). However, this study did find a trend
for increased sensitivity to the complex I-linked substrate, glutamate, after SVT treatment, which
might be an early indicator of adverse effects on skeletal muscle [211]. Moreover in primary human
skeletal muscle cells (myotubes), SVT has been shown to impair respiration at mitochondrial complex
I, increase mitochondrial oxidative stress through generation of reactive oxygen species (mitochondrial
superoxide and hydrogen peroxide), and result in myotube apoptosis [212]. Other studies have
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reported that statin exposure does not affect the mitochondrial membrane potential [192,213,214], and
so statins are unlikely to act as a mitochondrial uncoupler. Lastly, a recent in vitro study has reported
that CVT-induced muscle mitochondrial dysfunction is associated with decreased intracellular miR-145
and increased pro-apoptotic gene expression (APAF1, CASP10); enforced miR-145 expression reduced
the apoptotic cell population. However, this study was in a rhabdomyosarcoma cell line and requires
replication [215].

Overall, the evidence strongly supports mitochondrial dysfunction in SRM pathogenesis. However,
further clarity and unification on the mechanisms are required.

8.4. HMGCR Pathway Mediated Effects

Statin inhibition of HMGCR perturbs the mevalonate pathway (Figure 1). Whilst this perturbation
has been linked to possible beneficial pleiotropic effects [12], importantly, the decreases in CoQ10,
protein prenylation, and cholesterol itself have all also been implicated in SRM.

8.4.1. Coenzyme Q10 Depletion

CoQ10 is an important cofactor in mitochondrial respiration [216]. Primary CoQ10 deficiency
is a clinically and genetically heterogeneous condition, considered autosomal recessive, and has
been associated with isolated myopathy, encephalopathy, nephrotic syndrome, cerebellar ataxia and
severe infantile multisystemic disease [217]. In patients on statins, reduced circulating CoQ10 is
routinely observed [216] and a modest decrease in muscle CoQ10 has been suggested in some [218]
but not other studies [211,219]. COQ2 encodes para-hydroxybenzoate-polyprenyl transferase, and
defective COQ2 has been associated with primary CoQ10 deficiency, which can improve with early
CoQ10 supplementation [220]. COQ2 variants, and in particular rs4693075 (1022C > G), have been
investigated; some candidate gene studies [114,127], but not others [89], have reported an association
with SRM. Importantly, a recent meta-analysis of RCTs found that CoQ10 supplementation likely does
not reduce SRM, although larger trials are required to confirm this conclusion [221]. One possible
explanation for this null result is that the Q0 site of mitochondrial complex III is involved in the transfer
of electrons from CoQ10 to cytochrome c, and Q0 is also the off-target binding site for statin lactones
(Section 8.3) [192]. Therefore, statins appear to both reduce circulating CoQ10 and compete for its
pharmacodynamic (PD) target; thus CoQ10 supplementation alone may insufficiently counteract both
statin actions.

8.4.2. Reduced Protein Prenylation

Farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) are both downstream
metabolites of mevalonate, and facilitate post-translational prenylation of multiple proteins [222]. GGPP,
rather than FPP, is consistently implicated in in vitro statin myotoxicity [213,223–225]. Experimental
evidence has suggested that the statin-mediated decrease in GGPP reduces myotube ATP levels [213],
blocks prenylation of small GTPases including Rab [213,224,226] and RhoA [225], induces atrogin-1
expression [227], and stimulates apoptosis [213,225]. The possible pathways that culminate in apoptosis
include RhoA mis-localisation from the cell membrane to the cytoplasm (examined in fibroblasts) [225],
inhibition of AKT (protein kinase B) phosphorylation and activation [228] likely via both statin-mediated
ATP depletion through mitochondrial dysfunction and loss of Rab1 activity [229], and dose-dependent
caspase-3 activation [225].

8.4.3. Cholesterol Depletion

The depletion of cholesterol itself has been posited as an aetiological factor in SRM pathogenesis.
Slight skeletal muscle damage has been found by electron microscopy in skeletal muscle biopsies
from asymptomatic statin-treated patients, with a characteristic pattern involving T-tubular system
breakdown and sub-sarcolemmal rupture [230]; cholesterol extraction could reproduce these findings
in vitro in skeletal muscle fibres [230]. Nevertheless, although statins inhibit de novo cholesterol
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production in C2C12 myotubes, total intracellular cholesterol pools remain unchanged [219].
Furthermore, the PCSK9 inhibitors, alirocumab and evolocumab, even more potently reduce LDL-C than
statins, but do not currently appear to increase muscle-related adverse events [231,232]. This suggests
that SRM is more statin-specific than cholesterol-specific.

8.5. Atrogin-1 Upregulation

The F-box protein, atrogin-1, is a tissue-specific ubiquitin protein E3 ligase that appears central to
mediating the proteolysis associated with muscle atrophy observed in multiple diseases, including
diabetes and renal failure [233]. Atrogin-1 expression is significantly higher in muscle biopsies
from patients with SRM, and atrogin-1 knock down in zebrafish embryos prevented LVT-induced
myotoxicity [234]. Moreover, it has been shown that SVT-mediated inhibition of AKT phosphorylation
is associated with upregulation of atrogin-1 mRNA [229].

8.6. Calcium Signalling Disruption

RYR1 (chromosome 19) and RYR3 (chromosome 15) mediate the release of stored calcium ions from
skeletal muscle sarcoplasmic reticulum, and thereby, play a role in triggering muscle contraction [235].
Deleterious RYR1 variants are associated with anaesthesia-induced malignant hyperthermia, central
core disease [236] and multi-minicore disease [237]. CACNA1S encodes the alpha-1 subunit of the
L-type calcium channel (the dihydropyridine receptor) which associates with RYR1 in skeletal muscle,
and CACNA1S mutations are associated with malignant hyperthermia and hypokalaemic periodic
paralysis. Importantly, disease-causing mutations or variants in RYR1 and CACNA1S have been found
to be more frequent in statin myopathy patients than controls [135,136]. Furthermore, muscle biopsies
from patients with SRM express significantly higher RYR3 mRNA and have more severe structural
damage, including intracellular T-tubular vacuolisation, than both statin-naïve and statin tolerant
controls [238].

A recent study that examined statin-treated human and rat muscle tissue identified that statin
treatment causes dissociation of the stabilising protein, FKBP12, from RYR1 in skeletal muscle, and
this is associated with increased unwarranted calcium release sparks [197]. In vitro evidence further
suggested that uptake of calcium by mitochondria stimulates reactive oxygen/reactive nitrogen species
generation that, in turn, act on RYR1 to maintain and/or exacerbate this calcium release from the
sarcoplasmic reticulum. Nevertheless, although the calcium sparks were associated with upregulation
of pro-apoptotic signalling markers (caspase-3 and the proportion of TUNEL positive nuclei), statin
treatment had no impact on muscle force production [197], and so other susceptibility factors are
likely required for myotoxicity to manifest. In rats, running wheel exercise normalised FKBP12-RYR1
binding, which suggests a mechanism by which graduated exercise may improve statin tolerance.
Statin treatment also had minimal effect on calcium sparks from statin-treated rat cardiac tissue [197].

Lastly, the intronic variant, rs2819742 (1559G > A), in RYR2 (chromosome one) was suggestively
associated with CVT severe myopathy by GWAS [115]. The minor A allele was associated with reduced
myopathy risk (OR 0.48, 95% CI 0.36, 0.63, p = 1.74 × 10−7) [115]. Similarly, a small candidate gene
study (n = 19) also identified the G allele of RYR2 rs2819742 to be significantly more common in statin
myalgia cases to statin-tolerant controls, in keeping with the GWAS finding [69]. However unlike
RYR1/RYR3, RYR2 is expressed mainly in cardiac muscle tissue and deleterious RYR2 mutations are
associated with ventricular arrhythmias [239]. Therefore, the relevance of RYR2 rs2819742 to SRM
remains unclear.

8.7. Glycine Amidinotransferase (GATM)

A genome-wide expression quantitative expression loci (eQTL) analysis in lymphoblastoid cell
lines derived from 480 clinical trial subjects identified rs9806699 as a cis-eQTL for GATM, which
interacted with in vitro SVT exposure such that it was a significantly stronger eQTL under SVT-exposed
versus control conditions [126]. GATM is involved in creatine synthesis, and phosphorylation of
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creatine by CK is a major mechanism for muscle energy storage. The GATM locus was associated with
a reduced incidence of statin myopathy in two separate populations (combined SVT, ATV, PVT) with a
meta-analysis OR for rs1719247 of 0.60 (95% CI 0.45–0.81, p = 6.0 × 10−4) [126]. Several subsequent
SRM studies of SRM have not replicated this finding [110,111,240–242], although a recent candidate
gene study of RVT myotoxicity in Han Chinese patients found a similar marginal protective effect of
the GATM rs9806699 minor allele (p = 0.024) [109]. The lack of replication raises questions about the
role of GATM in SRM; functional studies of GATM in human primary muscle cells may help resolve
the discordant results.

8.8. Immunologically-Mediated Statin Myopathy

8.8.1. LILRB5

A GWAS of serum CK levels found strong signals with the muscle CK (CKM) gene and a missense
variant, rs12975366 (D247G), within leukocyte immunoglobulin-like receptor subfamily B member
5 (LILRB5) [243]; these results were replicated in statin users and non-users [243]. Subsequently,
D247 homozygosity has been associated with an increased risk of statin intolerance (a definition not
reliant on CK), and replicated in two of three separate cohorts of patients with either myalgia on RVT,
or statin myopathy (meta-analysis OR 1.34, 95% CI 1.16-1.54, p = 7 × 10−5) [139]. CK levels were
included as a covariate, where appropriate. Subgroup analysis in the included RCT interestingly
showed that, whilst D247 homozygosity was associated with myalgia with both placebo and RVT,
those carrying 247G only had an increased myalgia risk if on RVT. Thus, whilst D247 homozygosity
might confer an overall greater risk of myalgia, statin-induced myalgia appears associated with 247G.
A randomized cross-over experimental medicine study to further investigate this drug-gene interaction
is being undertaken [244]. Although the exact aetiology is unknown, the immune system is involved
in the repair of skeletal muscles and the influx of Foxp3 + T regulatory cells are crucial to muscle
regeneration [245]; interestingly, LILRB5 D247 may associate with FOXP3 expression [139].

8.8.2. HLA-DRB1*11:01

Interestingly, several research groups previously noted that symptoms and CK elevation in a
few patients with SRM persist and/or progress after statin discontinuation, and furthermore, these
patients benefit from immunosuppressive therapy [246–248]. These features are consistent with an
autoimmune phenomenon. In 2011, it was reported that these patients, as well as a minority without
prior statin exposure (less than 10% in myopathy patients ≥ 50 years old), are positive for anti-HMGCR
autoantibodies [249]. Muscle biopsies often show necrotizing myopathy with minimal lymphocytic
infiltration [137,250], and so anti-HMGCR positive myopathy is recognised as a distinct subtype of
immune-mediated necrotizing myopathy [251]. Pharmacogenomic studies have provided further
evidence of an autoimmune aetiology. Importantly, HLA-DRB1*11:01 has been significantly associated
with anti-HMGCR positive myopathy [137,138], and the ORs for the presence of HLA-DRB1*11:01 in
anti-HMGCR myopathy white or black patients, compared to controls, have been estimated to be ~25
and ~57, respectively [138]. HLA-DRB1*11:01 has also been associated with the development of anti-Ro
antibodies in neonatal lupus. Although the underlying aetiology of immune-mediated necrotizing
myopathy remains incompletely resolved, a potential role for anti-HMGCR in its pathogenesis is
suggested: muscle HMGCR expression is upregulated in anti-HMGCR positive myopathy patients [249],
circulating anti-HMGCR levels correlate with CK concentration and disease activity [252], and
anti-HMGCR can impair muscle regeneration and induce muscle atrophy [253].

8.9. Pain Perception

A family history of muscular symptoms with or without statin exposure increases the risk of
SRM [58,69]. A candidate gene study in 195 statin-treated patients, of whom 51 experienced at least
probable myalgia, found that rs2276307 and rs1935349 in the 5-hydroxytryptamine (5-HT, serotonin)
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receptor genes (HTR), HTR3B and HTR7, respectively, were significantly associated with myalgia
score [140]. This suggests that variants that may produce individual differences in pain perception
might play a role in statin-taking patients’ reports of muscle pain [140]. No 5-HT-related candidate SNP
was associated with serum CK level [140], suggesting that the associations are with pain perception
rather than the extent of muscle breakdown. Nevertheless, these associations have not been replicated
in SRM GWAS analyses [86,110,115], although these GWAS analyses used CK elevation (muscle
breakdown) within their case definition [86,110,115]. Moreover, these associations were not identified
in a small (n = 19) candidate gene study of statin myalgia [69]. Overall, an assessment in a larger cohort
with statin myalgia cases will help finalise the relevance of these findings.

8.10. Muscle Transcriptomics

The multifaceted and complex pathogenesis of SRM has been underlined by a recent study that
compared muscle transcriptomic profiles in 26 cases of strictly phenotyped statin myalgia undergoing
statin re-challenge (75% re-developed muscle symptoms) to 10 statin-tolerant controls, with most
taking SVT [69]. A robust separation in skeletal muscle differentially expressed genes was found that
highlighted the roles of mitochondrial stress, cell senescence and apoptosis, localised activation of
a pro-inflammatory immune response, and altered cell and calcium signalling mediated by protein
prenylation and Ras-GTPase activation, in statin myalgia [69]. For example, the insulin/IGF/PI3K/AKT
signalling network was the top perturbed canonical pathway. Within this network, calmodulin
(CALM) was upregulated [69]. CALM is a calcium sensing protein that interacts with RYR1, and the
calcium-calmodulin complex inhibits RYR1 [254]. Alternatively, inositol 1, 4, 5-triphosphate receptor 2
(ITPR2) can medicate calcium release from the sarcoplasmic reticulum [255], and was downregulated
within this network [69]. These differential patterns of regulation likely influence calcium signalling
and are conceivably an adaptive response to the increased RYR1-mediated calcium release sparks
identified following statin-dependent FKBP12 dissociation from RYR1 (described in Section 8.6) [197].
The two most strongly upregulated genes were antisense RNA to the HECT domain E3 ubiquitin
protein ligase 2 (HECTD2-AS1) and uncoupling protein 3 (UCP3). HECTD2 is pro-inflammatory,
whilst UCP3 is a mitochondrial anion carrier protein posited to protect against oxidative stress [69].
Although atrogin-1 ubiquitin E3 ligase was not differentially expressed in this study, several genes of
the ubiquitin ligase pathway (including HECTD2) did feature prominently in this study [69].

8.11. Vitamin D

The vitamin D family are a group of fat-soluble secosteroids that are instrumental in the regulation
of calcium and phosphate levels, and bone mineralisation; the most important forms in humans are
cholecalciferol (vitamin D3) and ergocalciferol (vitamin D2). The major natural source of vitamin
D is via the conversion of 7-dehydrocholesterol (endogenously synthesised from cholesterol) to
cholecalciferol by UV-B light, although ergocalciferol and cholecalciferol can also be obtained from
plant and animal-derived dietary sources, respectively [256]. Vitamin D is inactive and so undergoes
sequential hydroxylation, first to 25-hydroxycholecalciferol/25-hydroxyergocalciferol, which are the
major circulating forms but also inactive, and then to 1, 25-dihydroxycholecalciferol (calcitriol)/1,
25-dihydroxyergocalciferol (collectively 1, 25(OH)2D) that constitute the biologically active vitamin D
species [256]. 1,25(OH)2D acts through the vitamin D receptor, which is located in multiple tissues
including bone, kidney, intestine, parathyroid glands and skeletal muscle, to mediate genomic and
faster non-genomic actions [256,257].

There is controversy regarding the impact of statins on vitamin D level [258]. Nevertheless, 1,
25(OH)2D induces CYP3A4 [259,260] and consistent with this finding, the oral availability and systemic
exposure of the CYP3A4 substrate, midazolam, trends higher in winter than summer [261]. Similarly,
vitamin D supplementation reduces ATV exposure [262]. However, paradoxically, low vitamin D levels
may blunt lipid-lowering response to ATV, perhaps because vitamin D derivatives can also inhibit
HMGCR [256]. Vitamin D deficiency causes osteomalacia/rickets, as well as muscle weakness and
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myopathy. Importantly, a meta-analysis has confirmed that plasma vitamin D levels are significantly
lower in statin-treated patients with myalgia, compared to those without [93]. Furthermore, several
(non-randomized) clinical studies have reported that vitamin D supplementation effectively reduces
incident SRM in patients previously statin intolerant undergoing re-challenge, particularly when
previously low vitamin D levels are documented to become normalised [91,263–265]. Based on these
findings, a double-blind adequately powered RCT is now required.

9. Management of SRM

As statins are widely prescribed, mild SRM is commonly encountered in clinical practice,
although statin rhabdomyolysis remains rare. For a patient presenting with SRM, an initial CK
level should be taken. During the consultation, the EAS recommend an evaluation of clinical risk
factors for SRM (Table 2), other causes of muscular complaints (e.g., polymyalgia rheumatica), and
to review the indication for statin therapy, particularly in those at low CVD risk [67]. The benefits
and risks of continuing, temporarily suspending, and discontinuing statin treatment need to be
weighed up. Additional patient counselling involves discussion about the nocebo effect and
complimentary therapeutic lifestyle changes (e.g., smoking cessation, blood pressure control, adopting
the Mediterranean diet) [67,266]. There is no gold-standard diagnostic method nor a validated
questionnaire for SRM, although a myalgia clinical index score has been proposed by the NLA [267].
Nevertheless, the majority of patients that discontinue statin treatment after a statin-related event can
subsequently tolerate some form of statin therapy if re-challenged [268]. In patients with SRM and an
ongoing statin indication, temporary statin withdrawal is often appropriate, followed by one or more
statin re-challenges (post washout), which can aid causality assessment. Re-challenges can use the
same statin (at same dose), an alternate statin at usual dose, lower doses (with potential up-titration),
and/or intermittent (non-daily) dosing using a high intensity statin with a long half-life (e.g., ATV,
RVT) [67]. The aim should be to treat with the maximum tolerated dose required for the indication [7].
Patients should also be informed that any statin at any dose lowers CVD risk [7]. Nevertheless, whilst
less intense approaches such as intermittent dosing are tolerated in at least 70% of patients, they lead
to a variable and likely lower proportion of patients reaching LDL-C goals [269], which should also be
discussed. In those that do not reach LDL-C goals, non-statin lipid lowering therapy can be considered
in combination with the maximally tolerated statin dose or as monotherapy; available options include
ezetimibe, a fibrate, or PCSK9 inhibitor. If considering fibrate therapy, fenofibrate is preferred, and
gemfibrozil should be avoided because of its interaction with statins to increase rhabdomyolysis
risk [67]. Alirocumab and evolocumab have demonstrated cardiovascular benefit in clinical outcomes
trials [231,270]. Moreover, in statin-intolerant patients, these PCSK9 inhibitors are tolerated by > 80%,
reduce LDL-C by 45–56%, and have fewer muscular adverse events than ATV re-challenge [232,271].
Nevertheless, the costs of PCSK9 inhibitors remain high. As a consequence, this often limits their use
to select patients with severe dyslipidaemia [272], and is prohibitive for broader adoption in CVD
prevention [273].

Recently, bempedoic acid has shown promise in patients unable to tolerate more than low-dose
statin therapy. Bempedoic acid is a novel oral agent under development that inhibits ATP citrate lyase,
and a phase 3 RCT showed it reduced LDL-C by 28.5% more than placebo, without a greater rate of
muscle-related events. Of note, ATP citrate lyase is upstream of HMGCR, but bempedoic acid is a
prodrug that requires very-long chain acyl-CoA synthetase-1 (ASCV1L) for bioactivation. ASCV1L
is expressed predominantly in the liver and so it is plausible that the limited active bempedoic acid
in muscle will reduce any potential for myotoxicity. It is also noteworthy that a large multicentre
implementation initiative is pre-emptively genotyping patients starting one of 39 drugs for over
45 pharmacogenomic variants, and prospectively determining the incidence of ADRs compared to
standard care [274]. For patients starting SVT (or ATV) with at least one SLCO1B1 rs4149056 minor
allele, the DPWG recommendations are provided to them and their healthcare team [274].
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10. Conclusions

Despite the development of PCSK9 inhibitors, and ongoing development of novel promising
therapeutics including bempedoic acid [275] and inclisiran [276], the undoubted efficacy, affordability,
availability, and widespread experience with statins ensure they will likely remain the cornerstone of
lipid lowering therapy for the foreseeable future. Thus, understanding and mitigating SRM remains
clinically relevant. The majority of SRM is mild and ceases quickly after statin cessation. In patients in
whom symptoms persist, a non-statin related diagnosis is most likely, although an unmasked metabolic
myopathy, or immune-mediated anti-HMGCR positive myopathy, should also be considered. SRM can
cause direct patient harm, and the links between muscular symptoms, suboptimal statin utilisation,
and increased MACE are clear [61–63]. Several factors that increase systemic statin exposure are
associated with SRM, including higher statin dose, advanced age, drug-drug interactions and, for SVT,
SLCO1B1 rs4149056. Increased systemic statin (lactone) exposure, in turn, predisposes to downstream
deleterious effects on skeletal muscle. The most important appear to be mitochondrial dysfunction,
calcium signalling disruption and reduced prenylation, whose sequelae include atrogin-1 mediated
atrophy, apoptosis, and likely reduced immune-mediated muscle regeneration.

At present, our potential to predict SRM is limited. The parsimonious ‘QStatin’ model for
statin moderate-severe myopathy [70] has been developed, which includes new statin use, ethnicity,
co-morbidities (liver disease, hypothyroidism, diabetes mellitus) corticosteroids, age and BMI,
although its area under the receiver operator curve of ~0.7 is modest [88]. The implementation
of SLCO1B1 rs4149056 testing [274] may help improve predictive power. Whilst the association
between HLA-DRB1*11:01 and anti-HMGCR positive myopathy is notably strong, HLA-DRB1*11:01
will likely be insufficient to predict this condition alone given its rarity, but HLA-DRB1*11:01 may have
utility in excluding the diagnosis.

Overall, further research is critically needed to identify, validate and integrate novel risk factors for
the different SRM phenotypes to improve predictive capability and harmonise understanding of SRM
pathogenesis. We propose that the integration of strict clinical phenotyping to identify statin-induced
myalgia through the N-of-1 trial paradigm [277], with systems pharmacology omics-based approaches,
should be beneficial. Replication of the miR-499-5p and miR-145 signals is needed. The interactions
between exercise and vitamin D status with statin use warrant further study. Increased research is
also needed into the gut microbiome, as it has recently been shown to be significantly perturbed by
statins [278,279] and might module statin response [280]. Much has been done; much work remains.

Supplementary Materials: The following are available online at http://www.mdpi.com/2077-0383/9/1/22/s1,
Table S1: Clinical factors associated with statin exposure, Table S2: Genetic variants associated with statin exposure.

Author Contributions: R.M.T. drafted the manuscript; M.P. and R.M.T. reviewed the manuscript; both authors
approved the final version. All authors have read and agreed to the published version of the manuscript.

Funding: R.M.T. was supported by the North West England Medical Research Council (MRC) Training Scheme in
Clinical Pharmacology and Therapeutics (Grant number: G1000417), and by a Postdoctoral Research Fellowship
from Health Education England Genomics Education Programme. The views expressed in this publication are
those of the authors and not necessarily those of HEE GEP. M.P. is Emeritus NIHR Senior Investigator.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Postmus, I.; Verschuren, J.J.; de Craen, A.J.; Slagboom, P.E.; Westendorp, R.G.; Jukema, J.W.;
Trompet, S. Pharmacogenetics of statins: Achievements, whole-genome analyses and future perspectives.
Pharmacogenomics 2012, 13, 831–840. [CrossRef] [PubMed]

2. NHS Choices. Nice Publishes New Draft Guidelines on Statins Use. Available online: http://www.nhs.
uk/news/2014/02February/Pages/NICE-publishes-new-draft-guidelines-on-statins-use.aspx (accessed on
19 October 2016).

3. Endo, A.; Kuroda, M.; Tsujita, Y. ML-236A, ML-236B, and ML-236C, new inhibitors of cholesterogenesis
produced by penicillium citrinium. J. Antibiot. 1976, 29, 1346–1348. [CrossRef] [PubMed]

http://www.mdpi.com/2077-0383/9/1/22/s1
http://dx.doi.org/10.2217/pgs.12.25
http://www.ncbi.nlm.nih.gov/pubmed/22594514
http://www.nhs.uk/news/2014/02February/Pages/NICE-publishes-new-draft-guidelines-on-statins-use.aspx
http://www.nhs.uk/news/2014/02February/Pages/NICE-publishes-new-draft-guidelines-on-statins-use.aspx
http://dx.doi.org/10.7164/antibiotics.29.1346
http://www.ncbi.nlm.nih.gov/pubmed/1010803


J. Clin. Med. 2020, 9, 22 24 of 37

4. Endo, A. The origin of the statins. Atherosclerosis. Suppl. 2004, 5, 125–130. [CrossRef] [PubMed]
5. Liu, J.; Zhang, J.; Shi, Y.; Grimsgaard, S.; Alraek, T.; Fonnebo, V. Chinese red yeast rice (Monascus purpureus) for

primary hyperlipidemia: A meta-analysis of randomized controlled trials. Chin. Med. 2006, 1, 4. [CrossRef]
6. Gunde-Cimerman, N.; Cimerman, A. Pleurotus fruiting bodies contain the inhibitor of 3-hydroxy-

3-methylglutaryl-coenzyme a reductase—Lovastatin. Exp. Mycol. 1995, 19, 1–6. [CrossRef]
7. NICE. Cardiovascular Disease: Risk Assessment and Reduction, Including Lipid Modification (Clinical

Guideline 181). Available online: https://www.nice.org.uk/guidance/cg181 (accessed on 23 October 2019).
8. National Statistics. Prescriptions Dispensed in the Community, England 2004-14. Available online: http:

//content.digital.nhs.uk/catalogue/PUB17644/pres-disp-com-eng-2004-14-rep.pdf (accessed on 19 July 2017).
9. Goldstein, J.L.; Brown, M.S. The LDL receptor. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 431–438. [CrossRef]
10. Rosenson, R.S. Statins: Actions, Side Effects, and Administration. Available online: https://www.uptodate.

com/contents/statins-actions-side-effects-and-administration (accessed on 15 March 2019).
11. Trialists, C.T. Efficacy and safety of more intensive lowering of LDL cholesterol: A meta-analysis of data

from 170,000 participants in 26 randomised trials. Lancet 2010, 376, 1670–1681.
12. Kavalipati, N.; Shah, J.; Ramakrishan, A.; Vasnawala, H. Pleiotropic effects of statins. Indian J. Endocrinol.

Metab. 2015, 19, 554–562.
13. Wu, L.M.; Wu, S.G.; Chen, F.; Wu, Q.; Wu, C.M.; Kang, C.M.; He, X.; Zhang, R.Y.; Lu, Z.F.; Li, X.H.; et al.

Atorvastatin inhibits pyroptosis through the lncrna nexn-as1/nexn pathway in human vascular endothelial
cells. Atherosclerosis 2019, 293, 26–34. [CrossRef]

14. Gorabi, A.M.; Kiaie, N.; Hajighasemi, S.; Banach, M.; Penson, P.E.; Jamialahmadi, T.; Sahebkar, A.
Statin-induced nitric oxide signaling: Mechanisms and therapeutic implications. J. Clin. Med. 2019,
8, 2051. [CrossRef]

15. Cannon, C.P.; Braunwald, E.; McCabe, C.H.; Rader, D.J.; Rouleau, J.L.; Belder, R.; Joyal, S.V.; Hill, K.A.;
Pfeffer, M.A.; Skene, A.M. Intensive versus moderate lipid lowering with statins after acute coronary
syndromes. N. Engl. J. Med. 2004, 350, 1495–1504. [CrossRef] [PubMed]

16. Verdoodt, A.; Honore, P.M.; Jacobs, R.; De Waele, E.; Van Gorp, V.; De Regt, J.; Spapen, H.D. Do statins induce
or protect from acute kidney injury and chronic kidney disease: An update review in 2018. J. Transl. Int.
Med. 2018, 6, 21–25. [CrossRef] [PubMed]

17. Esmeijer, K.; Dekkers, O.M.; de Fijter, J.W.; Dekker, F.W.; Hoogeveen, E.K. Effect of different types of statins
on kidney function decline and proteinuria: A network meta-analysis. Sci Rep 2019, 9, 16632. [CrossRef]
[PubMed]

18. Kraker, K.; O’Driscoll, J.M.; Schutte, T.; Herse, F.; Patey, O.; Golic, M.; Geisberger, S.; Verlohren, S.; Birukov, A.;
Heuser, A.; et al. Statins reverse postpartum cardiovascular dysfunction in a rat model of preeclampsia.
Hypertension 2020, 75, 202–210. [CrossRef]

19. Schirris, T.J.; Ritschel, T.; Bilos, A.; Smeitink, J.A.; Russel, F.G. Statin lactonization by uridine
5′-diphospho-glucuronosyltransferases (UGTs). Mol. Pharm. 2015, 12, 4048–4055. [CrossRef]

20. Jacobsen, W.; Kuhn, B.; Soldner, A.; Kirchner, G.; Sewing, K.F.; Kollman, P.A.; Benet, L.Z.; Christians, U.
Lactonization is the critical first step in the disposition of the 3-hydroxy-3-methylglutaryl-coa reductase
inhibitor atorvastatin. Drug Metab. Dispos. Biol. Fate Chem. 2000, 28, 1369–1378.

21. Pfizer Inc. Lipitor- Atorvastatin Calcium Trihydrate Tablet, Film Coated. Highlights of Prescribing Information.
Available online: http://labeling.pfizer.com/ShowLabeling.aspx?id=587 (accessed on 13 May 2019).

22. Catapano, A.L. Pitavastatin—Pharmacological profile from early phase studies. Atheroscler. Suppl. 2010, 11,
3–7. [CrossRef]

23. Black, A.E.; Sinz, M.W.; Hayes, R.N.; Woolf, T.F. Metabolism and excretion studies in mouse after single
and multiple oral doses of the 3-hydroxy-3-methylglutaryl-coa reductase inhibitor atorvastatin. Drug Metab.
Dispos. Biol. Fate Chem. 1998, 26, 755–763.

24. Knauer, M.J.; Urquhart, B.L.; Meyer zu Schwabedissen, H.E.; Schwarz, U.I.; Lemke, C.J.; Leake, B.F.; Kim, R.B.;
Tirona, R.G. Human skeletal muscle drug transporters determine local exposure and toxicity of statins. Circ.
Res. 2010, 106, 297–306. [CrossRef]

25. Generaux, G.T.; Bonomo, F.M.; Johnson, M.; Doan, K.M. Impact of SLCO1B1 (OATP1B1) and ABCG2 (BCRP)
genetic polymorphisms and inhibition on LDL-C lowering and myopathy of statins. Xenobiotica 2011, 41,
639–651. [CrossRef]

http://dx.doi.org/10.1016/j.atherosclerosissup.2004.08.033
http://www.ncbi.nlm.nih.gov/pubmed/15531285
http://dx.doi.org/10.1186/1749-8546-1-4
http://dx.doi.org/10.1006/emyc.1995.1001
https://www.nice.org.uk/guidance/cg181
http://content.digital.nhs.uk/catalogue/PUB17644/pres-disp-com-eng-2004-14-rep.pdf
http://content.digital.nhs.uk/catalogue/PUB17644/pres-disp-com-eng-2004-14-rep.pdf
http://dx.doi.org/10.1161/ATVBAHA.108.179564
https://www.uptodate.com/contents/statins-actions-side-effects-and-administration
https://www.uptodate.com/contents/statins-actions-side-effects-and-administration
http://dx.doi.org/10.1016/j.atherosclerosis.2019.11.033
http://dx.doi.org/10.3390/jcm8122051
http://dx.doi.org/10.1056/NEJMoa040583
http://www.ncbi.nlm.nih.gov/pubmed/15007110
http://dx.doi.org/10.2478/jtim-2018-0005
http://www.ncbi.nlm.nih.gov/pubmed/29607300
http://dx.doi.org/10.1038/s41598-019-53064-x
http://www.ncbi.nlm.nih.gov/pubmed/31719617
http://dx.doi.org/10.1161/HYPERTENSIONAHA.119.13219
http://dx.doi.org/10.1021/acs.molpharmaceut.5b00474
http://labeling.pfizer.com/ShowLabeling.aspx?id=587
http://dx.doi.org/10.1016/S1567-5688(10)71063-1
http://dx.doi.org/10.1161/CIRCRESAHA.109.203596
http://dx.doi.org/10.3109/00498254.2011.562566


J. Clin. Med. 2020, 9, 22 25 of 37

26. Jemal, M.; Rao, S.; Salahudeen, I.; Chen, B.C.; Kates, R. Quantitation of cerivastatin and its seven acid and
lactone biotransformation products in human serum by liquid chromatography-electrospray tandem mass
spectrometry. J. Chromatogr. B Biomed. Sci. Appl. 1999, 736, 19–41. [CrossRef]

27. Muck, W. Clinical pharmacokinetics of cerivastatin. Clin. Pharmacokinet. 2000, 39, 99–116. [PubMed]
28. Muck, W.; Park, S.; Jager, W.; Voith, B.; Wandel, E.; Galle, P.R.; Schwarting, A. The pharmacokinetics of

cerivastatin in patients on chronic hemodialysis. Int. J. Clin. Pharmacol. Ther. 2001, 39, 192–198. [CrossRef]
[PubMed]

29. Novartis. Lescol (Fluvastatin Dosium)—Highlights of Prescribing Information. Available online: https:
//www.pharma.us.novartis.com/sites/www.pharma.us.novartis.com/files/Lescol.pdf (accessed on 7 July 2019).

30. Merck & Co. Mevacor (Lovastatin) Tablets Description. Available online: https://www.accessdata.fda.gov/

drugsatfda_docs/label/2012/019643s085lbl.pdf (accessed on 19 December 2019).
31. Neuvonen, P.J.; Backman, J.T.; Niemi, M. Pharmacokinetic comparison of the potential over-the-counter

statins simvastatin, lovastatin, fluvastatin and pravastatin. Clin. Pharmacokinet. 2008, 47, 463–474. [CrossRef]
[PubMed]

32. Fujino, H.; Yamada, I.; Shimada, S.; Yoneda, M.; Kojima, J. Metabolic fate of pitavastatin, a new inhibitor of
HMG-CoA reductase: Human UDP-Glucuronosyltransferase enzymes involved in lactonization. Xenobiotica
2003, 33, 27–41. [CrossRef] [PubMed]

33. Kowa Pharmaceuticals. Livalo (Pitavastatin) Tablet—Highlights of Prescribing Information. Available online:
http://www.accessdata.fda.gov/drugsatfda_docs/label/2012/022363s008s009lbl.pdf (accessed on 7 July 2019).

34. Bristol-Myers Squibb Company. Pravachol (Pravastatin) Tablets—Highlights of Prescribing Information.
Available online: http://packageinserts.bms.com/pi/pi_pravachol.pdf (accessed on 7 July 2019).

35. Hoffman, M.F.; Preissner, S.C.; Nickel, J.; Dunkel, M.; Preissner, R.; Preissner, S. The transformer database:
Biotransformation of xenobiotics. Nucleic Acids Res. 2014, 42, 1113–1117. [CrossRef]

36. Van Haandel, L.; Gibson, K.T.; Leeder, J.S.; Wagner, J.B. Quantification of pravastatin acid, lactone and
isomers in human plasma by UHPLC-MS/MS and its application to a pediatric pharmacokinetic study.
J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016, 1012–1013, 169–177. [CrossRef]

37. Riedmaier, S. Pharmacogenetic Determinants of Atorvastatin Metabolism and Response (Dissertation).
Available online: https://publikationen.uni-tuebingen.de/xmlui/bitstream/handle/10900/49571/pdf/2011_
Dissertation_Stephan_Riedmaier.pdf?sequence=1 (accessed on 7 July 2016).

38. Hirano, M.; Maeda, K.; Hayashi, H.; Kusuhara, H.; Sugiyama, Y. Bile salt export pump (BSEP/ABCB11) can
transport a nonbile acid substrate, pravastatin. J. Pharmacol. Exp. Ther. 2005, 314, 876–882. [CrossRef]

39. McCormick, A.D.; McKillop, D.; Butters, C.J.; Miles, G.S.; Baba, T.; Touchi, A.; Yamaguchi, Y. Zd4522—An
HMG-CoA reductase inhibitor free of metabolically mediated drug interactions: Metabolic studies in human
in vitro systems (abstract 46). J. Clin. Pharmacol. 2000, 40, 1055.

40. Cooper, K.J.; Martin, P.D.; Dane, A.L.; Warwick, M.J.; Schneck, D.W.; Cantarini, M.V. The effect of fluconazole
on the pharmacokinetics of rosuvastatin. Eur. J. Clin. Pharmacol. 2002, 58, 527–531.

41. Cooper, K.J.; Martin, P.D.; Dane, A.L.; Warwick, M.J.; Schneck, D.W.; Cantarini, M.V. Effect of itraconazole on
the pharmacokinetics of rosuvastatin. Clin. Pharmacol. Ther. 2003, 73, 322–329. [CrossRef]

42. Finkelman, R.D.; Wang, T.D.; Wang, Y.; Azumaya, C.T.; Birmingham, B.K.; Wissmar, J.; Mosqueda-Garcia, R.
Effect of CYP2C19 polymorphism on the pharmacokinetics of rosuvastatin in healthy taiwanese subjects.
Clin. Pharmacol. Drug Dev. 2015, 4, 33–40. [CrossRef] [PubMed]

43. AstraZeneca. Crestor (Rosuvastatin Calcium Tablets)—Highlights of Prescribing Information. Available online:
http://www.accessdata.fda.gov/drugsatfda_docs/label/2010/021366s016lbl.pdf (accessed on 3 October 2019).

44. Jemnitz, K.; Veres, Z.; Tugyi, R.; Vereczkey, L. Biliary efflux transporters involved in the clearance of
rosuvastatin in sandwich culture of primary rat hepatocytes. Toxicol. In Vitro 2010, 24, 605–610. [CrossRef]
[PubMed]

45. Alakhali, K.; Hassan, Y.; Mohamed, N.; Mordi, M.N. Pharmacokinetic of simvastatin study in malaysian
subjects. ISOR J. Pharm. 2013, 3, 46–51. [CrossRef]

46. Merck & Co. Zocor (Simvastatin) Tablets—Highlights of Prescribing Information. Available online:
https://www.merck.com/product/usa/pi_circulars/z/zocor/zocor_pi.pdf (accessed on 17 October 2019).

47. Prueksaritanont, T.; Ma, B.; Yu, N. The human hepatic metabolism of simvastatin hydroxy acid is mediated
primarily by CYP3A, and not CYP2D6. Br. J. Clin. Pharmacol. 2003, 56, 120–124. [CrossRef]

http://dx.doi.org/10.1016/S0378-4347(99)00390-4
http://www.ncbi.nlm.nih.gov/pubmed/10976657
http://dx.doi.org/10.5414/CPP39192
http://www.ncbi.nlm.nih.gov/pubmed/11380064
https://www.pharma.us.novartis.com/sites/www.pharma.us.novartis.com/files/Lescol.pdf
https://www.pharma.us.novartis.com/sites/www.pharma.us.novartis.com/files/Lescol.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/019643s085lbl.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/019643s085lbl.pdf
http://dx.doi.org/10.2165/00003088-200847070-00003
http://www.ncbi.nlm.nih.gov/pubmed/18563955
http://dx.doi.org/10.1080/0049825021000017957
http://www.ncbi.nlm.nih.gov/pubmed/12519692
http://www.accessdata.fda.gov/drugsatfda_docs/label/2012/022363s008s009lbl.pdf
http://packageinserts.bms.com/pi/pi_pravachol.pdf
http://dx.doi.org/10.1093/nar/gkt1246
http://dx.doi.org/10.1016/j.jchromb.2016.01.038
https://publikationen.uni-tuebingen.de/xmlui/bitstream/handle/10900/49571/pdf/2011_Dissertation_Stephan_Riedmaier.pdf?sequence=1
https://publikationen.uni-tuebingen.de/xmlui/bitstream/handle/10900/49571/pdf/2011_Dissertation_Stephan_Riedmaier.pdf?sequence=1
http://dx.doi.org/10.1124/jpet.105.084830
http://dx.doi.org/10.1016/S0009-9236(02)17633-8
http://dx.doi.org/10.1002/cpdd.135
http://www.ncbi.nlm.nih.gov/pubmed/27128002
http://www.accessdata.fda.gov/drugsatfda_docs/label/2010/021366s016lbl.pdf
http://dx.doi.org/10.1016/j.tiv.2009.10.009
http://www.ncbi.nlm.nih.gov/pubmed/19853032
http://dx.doi.org/10.9790/3013-31104651
https://www.merck.com/product/usa/pi_circulars/z/zocor/zocor_pi.pdf
http://dx.doi.org/10.1046/j.1365-2125.2003.01833.x


J. Clin. Med. 2020, 9, 22 26 of 37

48. Kitzmiller, J.P.; Luzum, J.A.; Baldassarre, D.; Krauss, R.M.; Medina, M.W. CYP3A4*22 and CYP3A5*3 are
associated with increased levels of plasma simvastatin concentrations in the cholesterol and pharmacogenetics
study cohort. Pharm. Genom. 2014, 24, 486–491. [CrossRef]

49. DeGorter, M.K.; Tirona, R.G.; Schwarz, U.I.; Choi, Y.-H.; Dresser, G.K.; Suskin, N.; Myers, K.; Zou, G.;
Iwuchukwu, O.; Wei, W.-Q.; et al. Clinical and pharmacogenetic predictors of circulating atorvastatin and
rosuvastatin concentration in routine clinical care. Circ. Cardiovasc. Genet. 2013, 6, 400–408. [CrossRef]

50. Collins, R.; Reith, C.; Emberson, J.; Armitage, J.; Baigent, C.; Blackwell, L.; Blumenthal, R.; Danesh, J.;
Smith, G.D.; DeMets, D.; et al. Interpretation of the evidence for the efficacy and safety of statin therapy.
Lancet 2016, 388, 2532–2561. [CrossRef]

51. Golomb, B.A.; Evans, M.A. Statin adverse effects: A review of the literature and evidence for a mitochondrial
mechanism. Am. J. Cardiovasc. Drugs 2008, 8, 373–418. [CrossRef]

52. The Electronic Medicines Compendium (eMC). Simvastatin 40 mg. Available online: https://www.medicines.
org.uk/emc/product/7167/smpc (accessed on 17 July 2019).

53. Golomb, B.A.; Evans, M.A.; Dimsdale, J.E.; White, H.L. Effects of statins on energy and fatigue with exertion:
Results from a randomized controlled trial. Arch. Intern. Med. 2012, 172, 1180–1182. [CrossRef]

54. Lee, D.S.; Markwardt, S.; Goeres, L.; Lee, C.G.; Eckstrom, E.; Williams, C.; Fu, R.; Orwoll, E.; Cawthon, P.M.;
Stefanick, M.L.; et al. Statins and physical activity in older men: The osteoporotic fractures in men study.
JAMA Intern. Med. 2014, 174, 1263–1270. [CrossRef]

55. Noyes, A.M.; Thompson, P.D. The effects of statins on exercise and physical activity. J. Clin. Lipidol. 2017, 11,
1134–1144. [CrossRef] [PubMed]

56. Gauthier, J.M.; Massicotte, A. Statins and their effect on cognition: Let’s clear up the confusion. Can. Pharm.
J. Rev. des Pharm. du Can. 2015, 148, 150–155. [CrossRef] [PubMed]

57. Samaras, K.; Makkar, S.R.; Crawford, J.D.; Kochan, N.A.; Slavin, M.J.; Wen, W.; Trollor, J.N.; Brodaty, H.;
Sachdev, P.S. Effects of statins on memory, cognition, and brain volume in the elderly. J. Am. Coll. Cardiol.
2019, 74, 2554–2568. [CrossRef] [PubMed]

58. Bruckert, E.; Hayem, G.; Dejager, S.; Yau, C.; Begaud, B. Mild to moderate muscular symptoms with
high-dosage statin therapy in hyperlipidemic patients—The primo study. Cardiovasc. Drugs Ther. 2005, 19,
403–414. [CrossRef] [PubMed]

59. Mendes, P.; Robles, P.G.; Mathur, S. Statin-induced rhabdomyolysis: A comprehensive review of case reports.
Physiother. Can. 2014, 66, 124–132. [CrossRef] [PubMed]

60. Naderi, S.H.; Bestwick, J.P.; Wald, D.S. Adherence to drugs that prevent cardiovascular disease: Meta-analysis
on 376,162 patients. Am. J. Med. 2012, 125, 882–887.e881. [CrossRef]

61. Wei, M.Y.; Ito, M.K.; Cohen, J.D.; Brinton, E.A.; Jacobson, T.A. Predictors of statin adherence, switching,
and discontinuation in the usage survey: Understanding the use of statins in america and gaps in patient
education. J. Clin. Lipidol. 2013, 7, 472–483. [CrossRef]

62. De Vera, M.A.; Bhole, V.; Burns, L.C.; Lacaille, D. Impact of statin adherence on cardiovascular disease and
mortality outcomes: A systematic review. Br. J. Clin. Pharmacol. 2014, 78, 684–698. [CrossRef]

63. Turner, R.M.; Yin, P.; Hanson, A.; FitzGerald, R.; Morris, A.P.; Stables, R.H.; Jorgensen, A.L.; Pirmohamed, M.
Investigating the prevalence, predictors, and prognosis of suboptimal statin use early after a non-st elevation
acute coronary syndrome. J. Clin. Lipidol. 2017, 11, 204–214. [CrossRef]

64. Alfirevic, A.; Neely, D.; Armitage, J.; Chinoy, H.; Cooper, R.G.; Laaksonen, R.; Carr, D.F.; Bloch, K.M.; Fahy, J.;
Hanson, A.; et al. Phenotype standardization for statin-induced myotoxicity. Clin. Pharmacol. Ther. 2014, 96,
470–476. [CrossRef] [PubMed]

65. Parker, B.A.; Capizzi, J.A.; Grimaldi, A.S.; Clarkson, P.M.; Cole, S.M.; Keadle, J.; Chipkin, S.; Pescatello, L.S.;
Simpson, K.; White, C.M.; et al. Effect of statins on skeletal muscle function. Circulation 2013, 127, 96–103.
[CrossRef] [PubMed]

66. Banach, M.; Rizzo, M.; Toth, P.P.; Farnier, M.; Davidson, M.H.; Al-Rasadi, K.; Aronow, W.S.; Athyros, V.;
Djuric, D.M.; Ezhov, M.V.; et al. Statin intolerance—An attempt at a unified definition. Position paper from
an international lipid expert panel. Expert Opin. Drug Saf. 2015, 14, 935–955. [CrossRef] [PubMed]

67. Stroes, E.S.; Thompson, P.D.; Corsini, A.; Vladutiu, G.D.; Raal, F.J.; Ray, K.K.; Roden, M.; Stein, E.; Tokgozoglu, L.;
Nordestgaard, B.G.; et al. Statin-associated muscle symptoms: Impact on statin therapy-european atherosclerosis
society consensus panel statement on assessment, aetiology and management. Eur. Heart J. 2015, 36, 1012–1022.
[CrossRef]

http://dx.doi.org/10.1097/FPC.0000000000000079
http://dx.doi.org/10.1161/CIRCGENETICS.113.000099
http://dx.doi.org/10.1016/S0140-6736(16)31357-5
http://dx.doi.org/10.2165/0129784-200808060-00004
https://www.medicines.org.uk/emc/product/7167/smpc
https://www.medicines.org.uk/emc/product/7167/smpc
http://dx.doi.org/10.1001/archinternmed.2012.2171
http://dx.doi.org/10.1001/jamainternmed.2014.2266
http://dx.doi.org/10.1016/j.jacl.2017.07.003
http://www.ncbi.nlm.nih.gov/pubmed/28807461
http://dx.doi.org/10.1177/1715163515578692
http://www.ncbi.nlm.nih.gov/pubmed/26150888
http://dx.doi.org/10.1016/j.jacc.2019.09.041
http://www.ncbi.nlm.nih.gov/pubmed/31753200
http://dx.doi.org/10.1007/s10557-005-5686-z
http://www.ncbi.nlm.nih.gov/pubmed/16453090
http://dx.doi.org/10.3138/ptc.2012-65
http://www.ncbi.nlm.nih.gov/pubmed/24799748
http://dx.doi.org/10.1016/j.amjmed.2011.12.013
http://dx.doi.org/10.1016/j.jacl.2013.03.001
http://dx.doi.org/10.1111/bcp.12339
http://dx.doi.org/10.1016/j.jacl.2016.12.007
http://dx.doi.org/10.1038/clpt.2014.121
http://www.ncbi.nlm.nih.gov/pubmed/24897241
http://dx.doi.org/10.1161/CIRCULATIONAHA.112.136101
http://www.ncbi.nlm.nih.gov/pubmed/23183941
http://dx.doi.org/10.1517/14740338.2015.1039980
http://www.ncbi.nlm.nih.gov/pubmed/25907232
http://dx.doi.org/10.1093/eurheartj/ehv043


J. Clin. Med. 2020, 9, 22 27 of 37

68. Raju, S.B.; Varghese, K.; Madhu, K. Management of statin intolerance. Indian J. Endocrinol. Metab. 2013,
17, 977–982.

69. Elam, M.B.; Majumdar, G.; Mozhui, K.; Gerling, I.C.; Vera, S.R.; Fish-Trotter, H.; Williams, R.W.; Childress, R.D.;
Raghow, R. Patients experiencing statin-induced myalgia exhibit a unique program of skeletal muscle gene
expression following statin re-challenge. PLoS ONE 2017, 12, e0181308. [CrossRef]

70. Hippisley-Cox, J.; Coupland, C. Unintended effects of statins in men and women in england and wales:
Population based cohort study using the qresearch database. BMJ 2010, 340, c2197. [CrossRef]

71. Kashani, A.; Phillips, C.O.; Foody, J.M.; Wang, Y.; Mangalmurti, S.; Ko, D.T.; Krumholz, H.M. Risks associated
with statin therapy: A systematic overview of randomized clinical trials. Circulation 2006, 114, 2788–2797.
[CrossRef]

72. Abd, T.T.; Jacobson, T.A. Statin-induced myopathy: A review and update. Expert Opin. Drug Saf. 2011, 10,
373–387. [CrossRef]

73. Davidson, M.H.; Robinson, J.G. Safety of aggressive lipid management. J. Am. Coll. Cardiol. 2007, 49,
1753–1762. [CrossRef]

74. Furberg, C.D.; Pitt, B. Withdrawal of cerivastatin from the world market. Curr. Control. Trials Cardiovasc.
Med. 2001, 2, 205–207. [CrossRef] [PubMed]

75. Godlee, F. Adverse effects of statins. BMJ 2014, 348, g3306. [CrossRef] [PubMed]
76. Gupta, A.; Thompson, D.; Whitehouse, A.; Collier, T.; Dahlof, B.; Poulter, N.; Collins, R.; Sever, P. Adverse

events associated with unblinded, but not with blinded, statin therapy in the anglo-scandinavian cardiac
outcomes trial-lipid-lowering arm (ASCOT-LLA): A randomised double-blind placebo-controlled trial and
its non-randomised non-blind extension phase. Lancet 2017, 389, 2473–2481.

77. Taylor, B.A.; Lorson, L.; White, C.M.; Thompson, P.D. A randomized trial of coenzyme Q10 in patients with
confirmed statin myopathy. Atherosclerosis 2015, 238, 329–335. [CrossRef] [PubMed]

78. Nissen, S.E.; Stroes, E.; Dent-Acosta, R.E.; Rosenson, R.S.; Lehman, S.J.; Sattar, N.; Preiss, D.; Bruckert, E.;
Ceska, R.; Lepor, N.; et al. Efficacy and tolerability of evolocumab vs ezetimibe in patients with muscle-related
statin intolerance: The GAUSS-3 randomized clinical trial. JAMA 2016, 315, 1580–1590. [CrossRef]

79. Zhou, Q.; Ruan, Z.R.; Yuan, H.; Xu, D.H.; Zeng, S. ABCB1 gene polymorphisms, ABCB1 haplotypes and
ABCG2 c.421C > A are determinants of inter-subject variability in rosuvastatin pharmacokinetics. Die Pharm.
2013, 68, 129–134.

80. Birmingham, B.K.; Bujac, S.R.; Elsby, R.; Azumaya, C.T.; Wei, C.; Chen, Y.; Mosqueda-Garcia, R.; Ambrose, H.J.
Impact of ABCG2 and SLCO1B1 polymorphisms on pharmacokinetics of rosuvastatin, atorvastatin and
simvastatin acid in caucasian and asian subjects: A class effect? Eur. J. Clin. Pharmacol. 2015, 71, 341–355.
[CrossRef]

81. Simonson, S.G.; Martin, P.D.; Mitchell, P.; Schneck, D.W.; Lasseter, K.C.; Warwick, M.J. Pharmacokinetics and
pharmacodynamics of rosuvastatin in subjects with hepatic impairment. Eur. J. Clin. Pharmacol. 2003, 58,
669–675. [CrossRef]

82. Pasternak, R.C.; Smith, S.C.; Bairey-Merz, C.N.; Grundy, S.M.; Cleeman, J.I.; Lenfant, C. Acc/aha/nhlbi clinical
advisory on the use and safety of statins. Circulation 2002, 106, 1024.

83. Simon, L.; Jolley, S.E.; Molina, P.E. Alcoholic myopathy: Pathophysiologic mechanisms and clinical
implications. Alcohol. Res. 2017, 38, 207–217.

84. Appel-Dingemanse, S.; Smith, T.; Merz, M. Pharmacokinetics of fluvastatin in subjects with renal impairment
and nephrotic syndrome. J. Clin. Pharmacol. 2002, 42, 312–318. [CrossRef] [PubMed]

85. Voora, D.; Shah, S.H.; Spasojevic, I.; Ali, S.; Reed, C.R.; Salisbury, B.A.; Ginsburg, G.S. The SLCO1B1*5 genetic
variant is associated with statin-induced side effects. J. Am. Coll. Cardiol. 2009, 54, 1609–1616. [CrossRef]
[PubMed]

86. Link, E.; Parish, S.; Armitage, J.; Bowman, L.; Heath, S.; Matsuda, F.; Gut, I.; Lathrop, M.; Collins, R. SLCO1B1
variants and statin-induced myopathy—A genomewide study. N. Engl. J. Med. 2008, 359, 789–799. [PubMed]

87. Schech, S.; Graham, D.; Staffa, J.; Andrade, S.E.; La Grenade, L.; Burgess, M.; Blough, D.; Stergachis, A.;
Chan, K.A.; Platt, R.; et al. Risk factors for statin-associated rhabdomyolysis. Pharmacoepidemiol. Drug Saf.
2007, 16, 352–358. [CrossRef]

88. ClinRisk Ltd. Qstatin—2014 Update Information. Available online: http://qintervention.org/QStatin-2014-
Update-Information.pdf (accessed on 24 July 2017).

http://dx.doi.org/10.1371/journal.pone.0181308
http://dx.doi.org/10.1136/bmj.c2197
http://dx.doi.org/10.1161/CIRCULATIONAHA.106.624890
http://dx.doi.org/10.1517/14740338.2011.540568
http://dx.doi.org/10.1016/j.jacc.2007.01.067
http://dx.doi.org/10.1186/CVM-2-5-205
http://www.ncbi.nlm.nih.gov/pubmed/11806796
http://dx.doi.org/10.1136/bmj.g3306
http://www.ncbi.nlm.nih.gov/pubmed/25134141
http://dx.doi.org/10.1016/j.atherosclerosis.2014.12.016
http://www.ncbi.nlm.nih.gov/pubmed/25545331
http://dx.doi.org/10.1001/jama.2016.3608
http://dx.doi.org/10.1007/s00228-014-1801-z
http://dx.doi.org/10.1007/s00228-002-0541-7
http://dx.doi.org/10.1177/00912700222011346
http://www.ncbi.nlm.nih.gov/pubmed/11865968
http://dx.doi.org/10.1016/j.jacc.2009.04.053
http://www.ncbi.nlm.nih.gov/pubmed/19833260
http://www.ncbi.nlm.nih.gov/pubmed/18650507
http://dx.doi.org/10.1002/pds.1287
http://qintervention.org/QStatin-2014-Update-Information.pdf
http://qintervention.org/QStatin-2014-Update-Information.pdf


J. Clin. Med. 2020, 9, 22 28 of 37

89. Carr, D.F.; O’Meara, H.; Jorgensen, A.L.; Campbell, J.; Hobbs, M.; McCann, G.; van Staa, T.; Pirmohamed, M.
SLCO1B1 genetic variant associated with statin-induced myopathy: A proof-of-concept study using the
clinical practice research datalink. Clin. Pharmacol. Ther. 2013, 94, 695–701. [CrossRef]

90. Cziraky, M.J.; Willey, V.J.; McKenney, J.M.; Kamat, S.A.; Fisher, M.D.; Guyton, J.R.; Jacobson, T.A.;
Davidson, M.H. Risk of hospitalized rhabdomyolysis associated with lipid-lowering drugs in a real-world
clinical setting. J. Clin. Lipidol. 2013, 7, 102–108. [CrossRef]

91. Ahmed, W.; Khan, N.; Glueck, C.J.; Pandey, S.; Wang, P.; Goldenberg, N.; Uppal, M.; Khanal, S. Low serum 25
(OH) vitamin D levels (<32 ng/ml) are associated with reversible myositis-myalgia in statin-treated patients.
Transl. Res. 2009, 153, 11–16.

92. Khayznikov, M.; Kumar, A.; Wang, P.; Glueck, C.J. Statin intolerance and vitamin d supplementation. N. Am.
J. Med. Sci. 2015, 7, 339–340.

93. Michalska-Kasiczak, M.; Sahebkar, A.; Mikhailidis, D.P.; Rysz, J.; Muntner, P.; Toth, P.P.; Jones, S.R.; Rizzo, M.;
Kees Hovingh, G.; Farnier, M.; et al. Analysis of vitamin d levels in patients with and without statin-associated
myalgia—A systematic review and meta-analysis of 7 studies with 2420 patients. Int. J. Cardiol. 2015, 178,
111–116. [CrossRef]

94. Thompson, P.D.; Zmuda, J.M.; Domalik, L.J.; Zimet, R.J.; Staggers, J.; Guyton, J.R. Lovastatin increases
exercise-induced skeletal muscle injury. Metabolism 1997, 46, 1206–1210. [CrossRef]

95. Meador, B.M.; Huey, K.A. Statin-associated myopathy and its exacerbation with exercise. Muscle Nerve 2010,
42, 469–479. [CrossRef] [PubMed]

96. Dreier, J.P.; Endres, M. Statin-associated rhabdomyolysis triggered by grapefruit consumption. Neurology
2004, 62, 670. [CrossRef] [PubMed]

97. Armitage, J. The safety of statins in clinical practice. Lancet 2007, 370, 1781–1790. [CrossRef]
98. Patel, A.M.; Shariff, S.; Bailey, D.G.; Juurlink, D.N.; Gandhi, S.; Mamdani, M.; Gomes, T.; Fleet, J.; Hwang, Y.J.;

Garg, A.X. Statin toxicity from macrolide antibiotic coprescription: A population-based cohort study. Ann.
Intern. Med. 2013, 158, 869–876. [CrossRef]

99. Neuvonen, P.J.; Niemi, M.; Backman, J.T. Drug interactions with lipid-lowering drugs: Mechanisms and
clinical relevance. Clin. Pharmacol. Ther. 2006, 80, 565–581. [CrossRef]

100. Lees, R.S.; Lees, A.M. Rhabdomyolysis from the coadministration of lovastatin and the antifungal agent
itraconazole. N. Engl. J. Med. 1995, 333, 664–665. [CrossRef]

101. Cheng, C.H.; Miller, C.; Lowe, C.; Pearson, V.E. Rhabdomyolysis due to probable interaction between
simvastatin and ritonavir. Am. J. Health Syst. Pharm. AJHP Off. J. Am. Soc. Health Syst. Pharm. 2002, 59,
728–730. [CrossRef]

102. Chanson, N.; Bossi, P.; Schneider, L.; Bourry, E.; Izzedine, H. Rhabdomyolysis after ezetimibe/simvastatin
therapy in an HIV-infected patient. NDT Plus 2008, 1, 157–161. [CrossRef]

103. Roten, L.; Schoenenberger, R.A.; Krahenbuhl, S.; Schlienger, R.G. Rhabdomyolysis in association with
simvastatin and amiodarone. Ann. Pharmacother. 2004, 38, 978–981. [CrossRef]

104. Saliba, W.R.; Elias, M. Severe myopathy induced by the co-administration of simvastatin and itraconazole.
Eur. J. Intern. Med. 2005, 16, 305. [CrossRef]

105. Mirosevic Skvrce, N.; Bozina, N.; Zibar, L.; Barisic, I.; Pejnovic, L.; Macolic Sarinic, V. CYP2C9 and ABCG2
polymorphisms as risk factors for developing adverse drug reactions in renal transplant patients taking
fluvastatin: A case-control study. Pharmacogenomics 2013, 14, 1419–1431. [CrossRef] [PubMed]

106. Kitamura, S.; Maeda, K.; Wang, Y.; Sugiyama, Y. Involvement of multiple transporters in the hepatobiliary
transport of rosuvastatin. Drug Metab. Dispos. 2008, 36, 2014–2023. [CrossRef] [PubMed]

107. Ho, R.H.; Tirona, R.G.; Leake, B.F.; Glaeser, H.; Lee, W.; Lemke, C.J.; Wang, Y.; Kim, R.B. Drug and bile acid
transporters in rosuvastatin hepatic uptake: Function, expression, and pharmacogenetics. Gastroenterology
2006, 130, 1793–1806. [CrossRef] [PubMed]

108. Elsby, R.; Hilgendorf, C.; Fenner, K. Understanding the critical disposition pathways of statins to assess
drug-drug interaction risk during drug development: It’s not just about OATP1B1. Clin. Pharmacol. Ther.
2012, 92, 584–598. [CrossRef]

109. Bai, X.; Zhang, B.; Wang, P.; Wang, G.-L.; Li, J.-L.; Wen, D.-S.; Long, X.-Z.; Sun, H.-S.; Liu, Y.-B.; Huang, M.;
et al. Effects of SLCO1B1 and gatm gene variants on rosuvastatin-induced myopathy are unrelated to high
plasma exposure of rosuvastatin and its metabolites. Acta Pharmacol. Sin. 2019, 40, 492–499. [CrossRef]

http://dx.doi.org/10.1038/clpt.2013.161
http://dx.doi.org/10.1016/j.jacl.2012.06.006
http://dx.doi.org/10.1016/j.ijcard.2014.10.118
http://dx.doi.org/10.1016/S0026-0495(97)90218-3
http://dx.doi.org/10.1002/mus.21817
http://www.ncbi.nlm.nih.gov/pubmed/20878737
http://dx.doi.org/10.1212/WNL.62.4.670
http://www.ncbi.nlm.nih.gov/pubmed/14981197
http://dx.doi.org/10.1016/S0140-6736(07)60716-8
http://dx.doi.org/10.7326/0003-4819-158-12-201306180-00004
http://dx.doi.org/10.1016/j.clpt.2006.09.003
http://dx.doi.org/10.1056/NEJM199509073331015
http://dx.doi.org/10.1093/ajhp/59.8.728
http://dx.doi.org/10.1093/ndtplus/sfn012
http://dx.doi.org/10.1345/aph.1D498
http://dx.doi.org/10.1016/j.ejim.2004.11.016
http://dx.doi.org/10.2217/pgs.13.135
http://www.ncbi.nlm.nih.gov/pubmed/24024895
http://dx.doi.org/10.1124/dmd.108.021410
http://www.ncbi.nlm.nih.gov/pubmed/18617601
http://dx.doi.org/10.1053/j.gastro.2006.02.034
http://www.ncbi.nlm.nih.gov/pubmed/16697742
http://dx.doi.org/10.1038/clpt.2012.163
http://dx.doi.org/10.1038/s41401-018-0013-y


J. Clin. Med. 2020, 9, 22 29 of 37

110. Carr, D.F.; Francis, B.; Jorgensen, A.L.; Zhang, E.; Chinoy, H.; Heckbert, S.R.; Bis, J.C.; Brody, J.A.; Floyd, J.;
Psaty, B.M.; et al. Genome-wide association study of statin-induced myopathy in patients recruited using
the UK clinical practice research datalink. Clin. Pharmacol. Ther. 2019, 106, 1353–1361. [CrossRef]

111. Floyd, J.S.; Bloch, K.M.; Brody, J.A.; Maroteau, C.; Siddiqui, M.K.; Gregory, R.; Carr, D.F.; Molokhia, M.;
Liu, X.; Bis, J.C.; et al. Pharmacogenomics of statin-related myopathy: Meta-analysis of rare variants from
whole-exome sequencing. PLoS ONE 2019, 14, e0218115. [CrossRef]

112. Danik, J.S.; Chasman, D.I.; MacFadyen, J.G.; Nyberg, F.; Barratt, B.J.; Ridker, P.M. Lack of association between
SLCO1B1 polymorphisms and clinical myalgia following rosuvastatin therapy. Am. Heart J. 2013, 165,
1008–1014. [CrossRef]

113. De Keyser, C.E.; Peters, B.J.; Becker, M.L.; Visser, L.E.; Uitterlinden, A.G.; Klungel, O.H.; Verstuyft, C.;
Hofman, A.; Maitland-van der Zee, A.H.; Stricker, B.H. The SLCO1B1 c.521T > C polymorphism is associated
with dose decrease or switching during statin therapy in the rotterdam study. Pharm. Genom. 2014, 24, 43–51.
[CrossRef]

114. Puccetti, L.; Ciani, F.; Auteri, A. Genetic involvement in statins induced myopathy. Preliminary data from an
observational case-control study. Atherosclerosis 2010, 211, 28–29. [CrossRef]

115. Marciante, K.D.; Durda, J.P.; Heckbert, S.R.; Lumley, T.; Rice, K.; McKnight, B.; Totah, R.A.; Tamraz, B.;
Kroetz, D.L.; Fukushima, H.; et al. Cerivastatin, genetic variants, and the risk of rhabdomyolysis. Pharm.
Genom. 2011, 21, 280–288. [CrossRef] [PubMed]

116. Xiang, Q.; Chen, S.Q.; Ma, L.Y.; Hu, K.; Zhang, Z.; Mu, G.Y.; Xie, Q.F.; Zhang, X.D.; Cui, Y.M. Association
between SLCO1B1 T521C polymorphism and risk of statin-induced myopathy: A meta-analysis. Pharm. J.
2018, 18, 721–729. [CrossRef] [PubMed]

117. Ferrari, M.; Guasti, L.; Maresca, A.; Mirabile, M.; Contini, S.; Grandi, A.M.; Marino, F.; Cosentino, M.
Association between statin-induced creatine kinase elevation and genetic polymorphisms in SLCO1B1,
ABCB1 and ABCG2. Eur. J. Clin. Pharmacol. 2014, 70, 539–547. [CrossRef] [PubMed]

118. Fiegenbaum, M.; da Silveira, F.R.; Van der Sand, C.R.; Van der Sand, L.C.; Ferreira, M.E.; Pires, R.C.;
Hutz, M.H. The role of common variants of ABCB1, CYP3A4, and CYP3A5 genes in lipid-lowering efficacy
and safety of simvastatin treatment. Clin. Pharmacol. Ther. 2005, 78, 551–558. [CrossRef]

119. Hoenig, M.R.; Walker, P.J.; Gurnsey, C.; Beadle, K.; Johnson, L. The C3435T polymorphism in ABCB1
influences atorvastatin efficacy and muscle symptoms in a high-risk vascular cohort. J. Clin. Lipidol. 2011, 5,
91–96. [CrossRef]

120. Mirosevic Skvrce, N.; Macolic Sarinic, V.; Simic, I.; Ganoci, L.; Muacevic Katanec, D.; Bozina, N. ABCG2 gene
polymorphisms as risk factors for atorvastatin adverse reactions: A case-control study. Pharmacogenomics
2015, 16, 803–815. [CrossRef]

121. Becker, M.L.; Visser, L.E.; van Schaik, R.H.; Hofman, A.; Uitterlinden, A.G.; Stricker, B.H. Influence of genetic
variation in CYP3A4 and ABCB1 on dose decrease or switching during simvastatin and atorvastatin therapy.
Pharmacoepidemiol. Drug Saf. 2010, 19, 75–81. [CrossRef]

122. Frudakis, T.N.; Thomas, M.J.; Ginjupalli, S.N.; Handelin, B.; Gabriel, R.; Gomez, H.J. CYP2D6*4 polymorphism
is associated with statin-induced muscle effects. Pharm. Genom. 2007, 17, 695–707. [CrossRef]

123. Mulder, A.B.; van Lijf, H.J.; Bon, M.A.; van den Bergh, F.A.; Touw, D.J.; Neef, C.; Vermes, I. Association of
polymorphism in the cytochrome CYP2D6 and the efficacy and tolerability of simvastatin. Clin. Pharmacol.
Ther. 2001, 70, 546–551. [CrossRef]

124. Wilke, R.A.; Moore, J.H.; Burmester, J.K. Relative impact of CYP3A genotype and concomitant medication on
the severity of atorvastatin-induced muscle damage. Pharm. Genom. 2005, 15, 415–421. [CrossRef]

125. Zuccaro, P.; Mombelli, G.; Calabresi, L.; Baldassarre, D.; Palmi, I.; Sirtori, C.R. Tolerability of statins is not
linked to CYP450 polymorphisms, but reduced CYP2D6 metabolism improves cholesteraemic response to
simvastatin and fluvastatin. Pharmacol. Res. 2007, 55, 310–317. [CrossRef] [PubMed]

126. Mangravite, L.M.; Engelhardt, B.E.; Medina, M.W.; Smith, J.D.; Brown, C.D.; Chasman, D.I.; Mecham, B.H.;
Howie, B.; Shim, H.; Naidoo, D.; et al. A statin-dependent qtl for gatm expression is associated with
statin-induced myopathy. Nature 2013, 502, 377–380. [CrossRef] [PubMed]

127. Oh, J.; Ban, M.R.; Miskie, B.A.; Pollex, R.L.; Hegele, R.A. Genetic determinants of statin intolerance. Lipids
Health Dis. 2007, 6, 7. [CrossRef] [PubMed]

http://dx.doi.org/10.1002/cpt.1557
http://dx.doi.org/10.1371/journal.pone.0218115
http://dx.doi.org/10.1016/j.ahj.2013.01.025
http://dx.doi.org/10.1097/FPC.0000000000000018
http://dx.doi.org/10.1016/j.atherosclerosis.2010.02.026
http://dx.doi.org/10.1097/FPC.0b013e328343dd7d
http://www.ncbi.nlm.nih.gov/pubmed/21386754
http://dx.doi.org/10.1038/s41397-018-0054-0
http://www.ncbi.nlm.nih.gov/pubmed/30250148
http://dx.doi.org/10.1007/s00228-014-1661-6
http://www.ncbi.nlm.nih.gov/pubmed/24595600
http://dx.doi.org/10.1016/j.clpt.2005.08.003
http://dx.doi.org/10.1016/j.jacl.2011.01.001
http://dx.doi.org/10.2217/pgs.15.47
http://dx.doi.org/10.1002/pds.1866
http://dx.doi.org/10.1097/FPC.0b013e328012d0a9
http://dx.doi.org/10.1067/mcp.2001.120251
http://dx.doi.org/10.1097/01213011-200506000-00007
http://dx.doi.org/10.1016/j.phrs.2006.12.009
http://www.ncbi.nlm.nih.gov/pubmed/17289397
http://dx.doi.org/10.1038/nature12508
http://www.ncbi.nlm.nih.gov/pubmed/23995691
http://dx.doi.org/10.1186/1476-511X-6-7
http://www.ncbi.nlm.nih.gov/pubmed/17376224


J. Clin. Med. 2020, 9, 22 30 of 37

128. Ruano, G.; Windemuth, A.; Wu, A.H.; Kane, J.P.; Malloy, M.J.; Pullinger, C.R.; Kocherla, M.; Bogaard, K.;
Gordon, B.R.; Holford, T.R.; et al. Mechanisms of statin-induced myalgia assessed by physiogenomic
associations. Atherosclerosis 2011, 218, 451–456. [CrossRef] [PubMed]

129. Vladutiu, G.D.; Simmons, Z.; Isackson, P.J.; Tarnopolsky, M.; Peltier, W.L.; Barboi, A.C.; Sripathi, N.;
Wortmann, R.L.; Phillips, P.S. Genetic risk factors associated with lipid-lowering drug-induced myopathies.
Muscle Nerve 2006, 34, 153–162. [CrossRef]

130. Tsivgoulis, G.; Spengos, K.; Karandreas, N.; Panas, M.; Kladi, A.; Manta, P. Presymptomatic neuromuscular
disorders disclosed following statin treatment. Arch. Intern. Med. 2006, 166, 1519–1524. [CrossRef]

131. Echaniz-Laguna, A.; Mohr, M.; Tranchant, C. Neuromuscular symptoms and elevated creatine kinase after
statin withdrawal. N. Engl. J. Med. 2010, 362, 564–565. [CrossRef]

132. Knoblauch, H.; Schoewel, V.; Kress, W.; Rosada, A.; Spuler, S. Another side to statin-related side effects.
Ann. Intern. Med. 2010, 152, 478–479. [CrossRef]

133. Voermans, N.C.; Lammens, M.; Wevers, R.A.; Hermus, A.R.; van Engelen, B.G. Statin-disclosed acid maltase
deficiency. J. Intern. Med. 2005, 258, 196–197. [CrossRef]

134. Zeharia, A.; Shaag, A.; Houtkooper, R.H.; Hindi, T.; de Lonlay, P.; Erez, G.; Hubert, L.; Saada, A.; de Keyzer, Y.;
Eshel, G.; et al. Mutations in lpin1 cause recurrent acute myoglobinuria in childhood. Am. J. Hum. Genet.
2008, 83, 489–494. [CrossRef]

135. Vladutiu, G.D.; Isackson, P.J.; Kaufman, K.; Harley, J.B.; Cobb, B.; Christopher-Stine, L.; Wortmann, R.L.
Genetic risk for malignant hyperthermia in non-anesthesia-induced myopathies. Mol. Genet. Metab. 2011,
104, 167–173. [CrossRef] [PubMed]

136. Isackson, P.J.; Wang, J.; Zia, M.; Spurgeon, P.; Levesque, A.; Bard, J.; James, S.; Nowak, N.; Lee, T.K.;
Vladutiu, G.D. Ryr1 and cacna1s genetic variants identified with statin-associated muscle symptoms.
Pharmacogenomics 2018, 19, 1235–1249. [CrossRef] [PubMed]

137. Limaye, V.; Bundell, C.; Hollingsworth, P.; Rojana-Udomsart, A.; Mastaglia, F.; Blumbergs, P.; Lester, S.
Clinical and genetic associations of autoantibodies to 3-hydroxy-3-methyl-glutaryl-coenzyme a reductase
in patients with immune-mediated myositis and necrotizing myopathy. Muscle Nerve 2015, 52, 196–203.
[CrossRef] [PubMed]

138. Mammen, A.L.; Gaudet, D.; Brisson, D.; Christopher-Stine, L.; Lloyd, T.E.; Leffell, M.S.; Zachary, A.A.
Increased frequency of drb1*11:01 in anti-hydroxymethylglutaryl-coenzyme a reductase-associated
autoimmune myopathy. Arthritis Care Res. 2012, 64, 1233–1237.

139. Siddiqui, M.K.; Maroteau, C.; Veluchamy, A.; Tornio, A.; Tavendale, R.; Carr, F.; Abelega, N.U.; Carr, D.;
Bloch, K.; Hallberg, P.; et al. A common missense variant of LILRB5 is associated with statin intolerance and
myalgia. Eur. Heart J. 2017, 38, 3569–3575. [CrossRef]

140. Ruano, G.; Thompson, P.D.; Windemuth, A.; Seip, R.L.; Dande, A.; Sorokin, A.; Kocherla, M.; Smith, A.;
Holford, T.R.; Wu, A.H. Physiogenomic association of statin-related myalgia to serotonin receptors. Muscle
Nerve 2007, 36, 329–335. [CrossRef]

141. Isackson, P.J.; Ochs-Balcom, H.M.; Ma, C.; Harley, J.B.; Peltier, W.; Tarnopolsky, M.; Sripathi, N.;
Wortmann, R.L.; Simmons, Z.; Wilson, J.D.; et al. Association of common variants in the human eyes
shut ortholog (EYS) with statin-induced myopathy: Evidence for additional functions of EYS. Muscle Nerve
2011, 44, 531–538. [CrossRef]

142. Wienkers, L.C.; Heath, T.G. Predicting in vivo drug interactions from in vitro drug discovery data. Nat. Rev.
Drug Discov. 2005, 4, 825–833. [CrossRef]

143. Gordon, A.S.; Tabor, H.K.; Johnson, A.D.; Snively, B.M.; Assimes, T.L.; Auer, P.L.; Ioannidis, J.P.; Peters, U.;
Robinson, J.G.; Sucheston, L.E.; et al. Quantifying rare, deleterious variation in 12 human cytochrome P450
drug-metabolism genes in a large-scale exome dataset. Hum. Mol. Genet. 2014, 23, 1957–1963. [CrossRef]

144. Park, J.E.; Kim, K.B.; Bae, S.K.; Moon, B.S.; Liu, K.H.; Shin, J.G. Contribution of cytochrome P450 3A4 and
3A5 to the metabolism of atorvastatin. Xenobiotica 2008, 38, 1240–1251. [CrossRef]

145. Wang, D.; Guo, Y.; Wrighton, S.A.; Cooke, G.E.; Sadee, W. Intronic polymorphism in CYP3A4 affects hepatic
expression and response to statin drugs. Pharm. J. 2011, 11, 274–286. [CrossRef] [PubMed]

146. Wang, D.; Sadee, W. CYP3A4 intronic snp rs35599367 (CYP3A4*22) alters RNA splicing. Pharm. Genom. 2016,
26, 40–43. [CrossRef] [PubMed]

147. Yates, A.; Akanni, W.; Amode, M.R.; Barrell, D.; Billis, K.; Carvalho-Silva, D.; Cummins, C.; Clapham, P.;
Fitzgerald, S.; Gil, L.; et al. Ensembl 2016. Nucleic Acids Res. 2016, 44, D710–D716. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.atherosclerosis.2011.07.007
http://www.ncbi.nlm.nih.gov/pubmed/21868014
http://dx.doi.org/10.1002/mus.20567
http://dx.doi.org/10.1001/archinte.166.14.1519
http://dx.doi.org/10.1056/NEJMc0908215
http://dx.doi.org/10.7326/0003-4819-152-7-201004060-00025
http://dx.doi.org/10.1111/j.1365-2796.2005.01515.x
http://dx.doi.org/10.1016/j.ajhg.2008.09.002
http://dx.doi.org/10.1016/j.ymgme.2011.07.001
http://www.ncbi.nlm.nih.gov/pubmed/21795085
http://dx.doi.org/10.2217/pgs-2018-0106
http://www.ncbi.nlm.nih.gov/pubmed/30325262
http://dx.doi.org/10.1002/mus.24541
http://www.ncbi.nlm.nih.gov/pubmed/25521389
http://dx.doi.org/10.1093/eurheartj/ehx467
http://dx.doi.org/10.1002/mus.20871
http://dx.doi.org/10.1002/mus.22115
http://dx.doi.org/10.1038/nrd1851
http://dx.doi.org/10.1093/hmg/ddt588
http://dx.doi.org/10.1080/00498250802334391
http://dx.doi.org/10.1038/tpj.2010.28
http://www.ncbi.nlm.nih.gov/pubmed/20386561
http://dx.doi.org/10.1097/FPC.0000000000000183
http://www.ncbi.nlm.nih.gov/pubmed/26488616
http://dx.doi.org/10.1093/nar/gkv1157
http://www.ncbi.nlm.nih.gov/pubmed/26687719


J. Clin. Med. 2020, 9, 22 31 of 37

148. Klein, K.; Thomas, M.; Winter, S.; Nussler, A.K.; Niemi, M.; Schwab, M.; Zanger, U.M. PPARA: A novel
genetic determinant of CYP3A4 in vitro and in vivo. Clin. Pharmacol. Ther. 2012, 91, 1044–1052. [CrossRef]

149. Kozyra, M.; Ingelman-Sundberg, M.; Lauschke, V.M. Rare genetic variants in cellular transporters, metabolic
enzymes, and nuclear receptors can be important determinants of interindividual differences in drug
response. Genet. Med. 2017, 19, 20–29. [CrossRef]

150. Tsamandouras, N.; Dickinson, G.; Guo, Y.; Hall, S.; Rostami-Hodjegan, A.; Galetin, A.; Aarons, L. Identification
of the effect of multiple polymorphisms on the pharmacokinetics of simvastatin and simvastatin acid using a
population-modeling approach. Clin. Pharmacol. Ther. 2014, 96, 90–100. [CrossRef]

151. Elens, L.; van Gelder, T.; Hesselink, D.A.; Haufroid, V.; van Schaik, R.H. CYP3A4*22: Promising newly
identified CYP3A4 variant allele for personalizing pharmacotherapy. Pharmacogenomics 2013, 14, 47–62.
[CrossRef]

152. Shin, J.; Pauly, D.F.; Pacanowski, M.A.; Langaee, T.; Frye, R.F.; Johnson, J.A. Effect of cytochrome P450 3A5
genotype on atorvastatin pharmacokinetics and its interaction with clarithromycin. Pharmacotherapy 2011,
31, 942–950. [CrossRef]

153. Kim, K.A.; Park, P.W.; Lee, O.J.; Kang, D.K.; Park, J.Y. Effect of polymorphic CYP3A5 genotype on the
single-dose simvastatin pharmacokinetics in healthy subjects. J. Clin. Pharmacol. 2007, 47, 87–93. [CrossRef]

154. Yin, O.Q.; Chang, Q.; Tomlinson, B.; Chow, M.S. The effect of CYP2D6 genotype on the pharmacokinetics of
lovastatin in Chinese subjects. Clin. Pharmacol. Ther. 2004, 75, P18. [CrossRef]

155. Yin, O.Q.; Mak, V.W.; Hu, M.; Fok, B.S.; Chow, M.S.; Tomlinson, B. Impact of CYP2D6 polymorphisms on the
pharmacokinetics of lovastatin in Chinese subjects. Eur. J. Clin. Pharmacol. 2012, 68, 943–949. [CrossRef]
[PubMed]

156. Choi, H.Y.; Bae, K.S.; Cho, S.H.; Ghim, J.L.; Choe, S.; Jung, J.A.; Jin, S.J.; Kim, H.S.; Lim, H.S. Impact of CYP2D6,
CYP3A5, CYP2C19, CYP2A6, SLCO1B1, ABCB1, and ABCG2 gene polymorphisms on the pharmacokinetics
of simvastatin and simvastatin acid. Pharm. Genom. 2015, 25, 595–608. [CrossRef] [PubMed]

157. Prueksaritanont, T.; Gorham, L.M.; Ma, B.; Liu, L.; Yu, X.; Zhao, J.J.; Slaughter, D.E.; Arison, B.H.; Vyas, K.P.
In vitro Metabolism of Simvastatin in Humans [sbt]Identification of metabolizing enzymes and effect of the
drug on hepatic P450s. Drug Metab. Dispos. 1997, 25, 1191–1199. [PubMed]

158. Iyer, L.V.; Ho, M.N.; Furimsky, A.M.; Green, C.E.; Green, A.G.; Sharp, L.E.; Koch, S.; Li, Y.; Catz, P.; Furniss, M.;
et al. In vitro metabolism and interaction studies with celecoxib and lovastatin. Cancer Res. 2004, 64, 488.

159. Kirchheiner, J.; Kudlicz, D.; Meisel, C.; Bauer, S.; Meineke, I.; Roots, I.; Brockmoller, J. Influence of CYP2C9
polymorphisms on the pharmacokinetics and cholesterol-lowering activity of (−)-3s,5r-fluvastatin and
(+)-3r,5s-fluvastatin in healthy volunteers. Clin. Pharmacol. Ther. 2003, 74, 186–194. [CrossRef]

160. Lee, C.R.; Goldstein, J.A.; Pieper, J.A. Cytochrome P450 2C9 polymorphisms: A comprehensive review of the
in-vitro and human data. Pharmacogenetics 2002, 12, 251–263. [CrossRef]

161. Riedmaier, S.; Klein, K.; Hofmann, U.; Keskitalo, J.E.; Neuvonen, P.J.; Schwab, M.; Niemi, M.; Zanger, U.M.
UDP-Glucuronosyltransferase (UGT) polymorphisms affect atorvastatin lactonization in vitro and in vivo.
Clin. Pharmacol. Ther. 2010, 87, 65–73. [CrossRef]

162. Kearney, A.S.; Crawford, L.F.; Mehta, S.C.; Radebaugh, G.W. The interconversion kinetics, equilibrium, and
solubilities of the lactone and hydroxyacid forms of the HMG-CoA reductase inhibitor, CI-981. Pharm. Res.
1993, 10, 1461–1465. [CrossRef]

163. Li, C.; Subramanian, R.; Yu, S.; Prueksaritanont, T. Acyl-coenzyme a formation of simvastatin in mouse liver
preparations. Drug Metab. Dispos. 2006, 34, 102–110. [CrossRef]

164. Prueksaritanont, T.; Subramanian, R.; Fang, X.; Ma, B.; Qiu, Y.; Lin, J.H.; Pearson, P.G.; Baillie, T.A.
Glucuronidation of statins in animals and humans: A novel mechanism of statin lactonization. Drug Metab.
Dispos. 2002, 30, 505–512. [CrossRef]

165. Skottheim, I.B.; Gedde-Dahl, A.; Hejazifar, S.; Hoel, K.; Asberg, A. Statin induced myotoxicity: The lactone
forms are more potent than the acid forms in human skeletal muscle cells in vitro. Eur. J. Pharm. Sci. 2008,
33, 317–325. [CrossRef] [PubMed]

166. Cho, S.K.; Oh, E.S.; Park, K.; Park, M.S.; Chung, J.Y. The UGT1A3*2 polymorphism affects atorvastatin
lactonization and lipid-lowering effect in healthy volunteers. Pharm. Genom. 2012, 22, 598–605. [CrossRef]
[PubMed]

http://dx.doi.org/10.1038/clpt.2011.336
http://dx.doi.org/10.1038/gim.2016.33
http://dx.doi.org/10.1038/clpt.2014.55
http://dx.doi.org/10.2217/pgs.12.187
http://dx.doi.org/10.1592/phco.31.10.942
http://dx.doi.org/10.1177/0091270006295063
http://dx.doi.org/10.1016/j.clpt.2003.11.067
http://dx.doi.org/10.1007/s00228-011-1202-5
http://www.ncbi.nlm.nih.gov/pubmed/22281720
http://dx.doi.org/10.1097/FPC.0000000000000176
http://www.ncbi.nlm.nih.gov/pubmed/26367500
http://www.ncbi.nlm.nih.gov/pubmed/9321523
http://dx.doi.org/10.1016/S0009-9236(03)00121-8
http://dx.doi.org/10.1097/00008571-200204000-00010
http://dx.doi.org/10.1038/clpt.2009.181
http://dx.doi.org/10.1023/A:1018923325359
http://dx.doi.org/10.1124/dmd.105.006650
http://dx.doi.org/10.1124/dmd.30.5.505
http://dx.doi.org/10.1016/j.ejps.2007.12.009
http://www.ncbi.nlm.nih.gov/pubmed/18294823
http://dx.doi.org/10.1097/FPC.0b013e3283544085
http://www.ncbi.nlm.nih.gov/pubmed/22555810


J. Clin. Med. 2020, 9, 22 32 of 37

167. Stormo, C.; Bogsrud, M.P.; Hermann, M.; Asberg, A.; Piehler, A.P.; Retterstol, K.; Kringen, M.K. UGT1A1*28
is associated with decreased systemic exposure of atorvastatin lactone. Mol. Diagn. Ther. 2013, 17, 233–237.
[CrossRef] [PubMed]

168. Nies, A.T.; Niemi, M.; Burk, O.; Winter, S.; Zanger, U.M.; Stieger, B.; Schwab, M.; Schaeffeler, E. Genetics is a
major determinant of expression of the human hepatic uptake transporter OATP1B1, but not of OATP1B3
and OATP2B1. Genome Med. 2013, 5, 1. [CrossRef] [PubMed]

169. Tornio, A.; Vakkilainen, J.; Neuvonen, M.; Backman, J.T.; Neuvonen, P.J.; Niemi, M. SLCO1B1 polymorphism
markedly affects the pharmacokinetics of lovastatin acid. Pharm. Genom. 2015, 25, 382–387. [CrossRef]

170. Pasanen, M.K.; Neuvonen, M.; Neuvonen, P.J.; Niemi, M. SLCO1B1 polymorphism markedly affects the
pharmacokinetics of simvastatin acid. Pharm. Genom. 2006, 16, 873–879. [CrossRef]

171. Ieiri, I.; Suwannakul, S.; Maeda, K.; Uchimaru, H.; Hashimoto, K.; Kimura, M.; Fujino, H.; Hirano, M.;
Kusuhara, H.; Irie, S.; et al. SLCO1B1 (OATP1B1, an uptake transporter) and ABCG2 (BCRP, an efflux
transporter) variant alleles and pharmacokinetics of pitavastatin in healthy volunteers. Clin. Pharmacol. Ther.
2007, 82, 541–547. [CrossRef]

172. Pasanen, M.K.; Fredrikson, H.; Neuvonen, P.J.; Niemi, M. Different effects of SLCO1B1 polymorphism on the
pharmacokinetics of atorvastatin and rosuvastatin. Clin. Pharmacol. Ther. 2007, 82, 726–733. [CrossRef]

173. Niemi, M.; Pasanen, M.K.; Neuvonen, P.J. SLCO1B1 polymorphism and sex affect the pharmacokinetics of
pravastatin but not fluvastatin. Clin. Pharmacol. Ther. 2006, 80, 356–366. [CrossRef]

174. Brunham, L.R.; Lansberg, P.J.; Zhang, L.; Miao, F.; Carter, C.; Hovingh, G.K.; Visscher, H.; Jukema, J.W.;
Stalenhoef, A.F.; Ross, C.J.; et al. Differential effect of the rs4149056 variant in SLCO1B1 on myopathy
associated with simvastatin and atorvastatin. Pharm. J. 2012, 12, 233–237. [CrossRef]

175. Donnelly, L.A.; Doney, A.S.; Tavendale, R.; Lang, C.C.; Pearson, E.R.; Colhoun, H.M.; McCarthy, M.I.;
Hattersley, A.T.; Morris, A.D.; Palmer, C.N. Common nonsynonymous substitutions in SLCO1B1 predispose
to statin intolerance in routinely treated individuals with type 2 diabetes: A Go-DARTS study. Clin. Pharmacol.
Ther. 2011, 89, 210–216. [CrossRef] [PubMed]

176. Liu, J.-E.; Liu, X.-Y.; Chen, S.; Zhang, Y.; Cai, L.-Y.; Yang, M.; Lai, W.-H.; Ren, B.; Zhong, S.-L. SLCO1B1 521T
> C polymorphism associated with rosuvastatin-induced myotoxicity in Chinese coronary artery disease
patients: A nested case—Control study. Eur. J. Clin. Pharmacol. 2017, 73, 1409–1416. [CrossRef] [PubMed]

177. Santos, P.C.; Gagliardi, A.C.; Miname, M.H.; Chacra, A.P.; Santos, R.D.; Krieger, J.E.; Pereira, A.C.
SLCO1B1 haplotypes are not associated with atorvastatin-induced myalgia in brazilian patients with
familial hypercholesterolemia. Eur. J. Clin. Pharmacol. 2012, 68, 273–279. [CrossRef] [PubMed]

178. Hubacek, J.A.; Dlouha, D.; Adamkova, V.; Zlatohlavek, L.; Viklicky, O.; Hruba, P.; Ceska, R.; Vrablik, M.
SLCO1B1 polymorphism is not associated with risk of statin-induced myalgia/myopathy in a czech population.
Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2015, 21, 1454–1459.

179. Food and Drug Administration. FDA Drug Safety Communication: New restrictions, contraindications, and
dose limitations for Zocor (simvastatin) to reduce the risk of muscle injury. Available online:
http://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-new-restrictions-
contraindications-and-dose-limitations-zocor (accessed on 19 December 2019).

180. Ramsey, L.B.; Johnson, S.G.; Caudle, K.E.; Haidar, C.E.; Voora, D.; Wilke, R.A.; Maxwell, W.D.; McLeod, H.L.;
Krauss, R.M.; Roden, D.M.; et al. The clinical pharmacogenetics implementation consortium guideline
for SLCO1B1 and simvastatin-induced myopathy: 2014 update. Clin. Pharmacol. Ther. 2014, 96, 423–428.
[CrossRef]

181. KNMP. Pharmacogenetic Recommendations. Available online: https://www.knmp.nl/patientenzorg/

medicatiebewaking/farmacogenetica/pharmacogenetics-1/pharmacogenetics (accessed on 17 July 2019).
182. Krajcsi, P. Drug-transporter interaction testing in drug discovery and development. World J. Pharmacol. 2013,

2, 35–46. [CrossRef]
183. Ceckova-Novotna, M.; Pavek, P.; Staud, F. P-glycoprotein in the placenta: Expression, localization, regulation

and function. Reprod. Toxicol. 2006, 22, 400–410. [CrossRef]
184. Mao, Q. BCRP/ABCG2 in the placenta: Expression, function and regulation. Pharm. Res. 2008, 25, 1244–1255.

[CrossRef]
185. Keskitalo, J.E.; Kurkinen, K.J.; Neuvoneni, P.J.; Niemi, M. ABCB1 haplotypes differentially affect the

pharmacokinetics of the acid and lactone forms of simvastatin and atorvastatin. Clin. Pharmacol. Ther. 2008,
84, 457–461. [CrossRef]

http://dx.doi.org/10.1007/s40291-013-0031-x
http://www.ncbi.nlm.nih.gov/pubmed/23580084
http://dx.doi.org/10.1186/gm405
http://www.ncbi.nlm.nih.gov/pubmed/23311897
http://dx.doi.org/10.1097/FPC.0000000000000148
http://dx.doi.org/10.1097/01.fpc.0000230416.82349.90
http://dx.doi.org/10.1038/sj.clpt.6100190
http://dx.doi.org/10.1038/sj.clpt.6100220
http://dx.doi.org/10.1016/j.clpt.2006.06.010
http://dx.doi.org/10.1038/tpj.2010.92
http://dx.doi.org/10.1038/clpt.2010.255
http://www.ncbi.nlm.nih.gov/pubmed/21178985
http://dx.doi.org/10.1007/s00228-017-2318-z
http://www.ncbi.nlm.nih.gov/pubmed/28812116
http://dx.doi.org/10.1007/s00228-011-1125-1
http://www.ncbi.nlm.nih.gov/pubmed/21928084
http://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-new-restrictions-contraindications-and-dose-limitations-zocor
http://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-new-restrictions-contraindications-and-dose-limitations-zocor
http://dx.doi.org/10.1038/clpt.2014.125
https://www.knmp.nl/patientenzorg/medicatiebewaking/farmacogenetica/pharmacogenetics-1/pharmacogenetics
https://www.knmp.nl/patientenzorg/medicatiebewaking/farmacogenetica/pharmacogenetics-1/pharmacogenetics
http://dx.doi.org/10.5497/wjp.v2.i1.35
http://dx.doi.org/10.1016/j.reprotox.2006.01.007
http://dx.doi.org/10.1007/s11095-008-9537-z
http://dx.doi.org/10.1038/clpt.2008.25


J. Clin. Med. 2020, 9, 22 33 of 37

186. Amundsen, R.; Asberg, A.; Ohm, I.K.; Christensen, H. Cyclosporine A- and Tacrolimus-Mediated Inhibition
of CYP3A4 and CYP3A5 In Vitro. Drug Metab. Dispos. 2012, 40, 655–661. [CrossRef]

187. Zhang, L. Transporter-Mediated Drug-Drug Interactions (DDIs). Available online: https://www.fda.
gov/downloads/Drugs/DevelopmentApprovalProcess/DevelopmentResources/DrugInteractionsLabeling/

UCM207267.pdf (accessed on 18 July 2017).
188. Merck Sharp & Dohme Corp. Prevymis (Letermovir) Highlights of Prescribing Information. Available

online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/209939Orig1s000,209940Orig1s000lbl.
pdf (accessed on 7 November 2019).

189. Wiggins, B.S.; Lamprecht, D.G., Jr.; Page, R.L., II; Saseen, J.J. Recommendations for managing drug-drug
interactions with statins and HIV medications. Am. J. Cardiovasc. Drugs 2017, 17, 375–389. [CrossRef]
[PubMed]

190. Wiggins, B.S.; Saseen, J.J.; Page, R.L., II; Reed, B.N.; Sneed, K.; Kostis, J.B.; Lanfear, D.; Virani, S.; Morris, P.B.
Recommendations for management of clinically significant drug-drug interactions with statins and select
agents used in patients with cardiovascular disease: A scientific statement from the american heart association.
Circulation 2016, 134, e468–e495. [CrossRef] [PubMed]

191. Sirvent, P.; Bordenave, S.; Vermaelen, M.; Roels, B.; Vassort, G.; Mercier, J.; Raynaud, E.; Lacampagne, A.
Simvastatin induces impairment in skeletal muscle while heart is protected. Biochem. Biophys. Res. Commun.
2005, 338, 1426–1434. [CrossRef] [PubMed]

192. Schirris, T.J.; Renkema, G.H.; Ritschel, T.; Voermans, N.C.; Bilos, A.; van Engelen, B.G.; Brandt, U.;
Koopman, W.J.; Beyrath, J.D.; Rodenburg, R.J.; et al. Statin-induced myopathy is associated with
mitochondrial complex iii inhibition. Cell Metab. 2015, 22, 399–407. [CrossRef]

193. Parker, B.A.; Augeri, A.L.; Capizzi, J.A.; Ballard, K.D.; Troyanos, C.; Baggish, A.L.; D’Hemecourt, P.A.;
Thompson, P.D. Effect of statins on creatine kinase levels before and after a marathon run. Am. J. Cardiol.
2012, 109, 282–287. [CrossRef]

194. Sinzinger, H.; O’Grady, J. Professional athletes suffering from familial hypercholesterolaemia rarely tolerate
statin treatment because of muscular problems. Br. J. Clin. Pharmacol. 2004, 57, 525–528. [CrossRef]

195. Parker, B.A.; Thompson, P.D. Effect of statins on skeletal muscle: Exercise, myopathy, and muscle outcomes.
Exerc. Sport Sci. Rev. 2012, 40, 188–194. [CrossRef]

196. Min, P.-K.; Park, J.; Isaacs, S.; Taylor, B.A.; Thompson, P.D.; Troyanos, C.; D’Hemecourt, P.; Dyer, S.; Chan, S.Y.;
Baggish, A.L. Influence of statins on distinct circulating micrornas during prolonged aerobic exercise. J. Appl.
Physiol. 2016, 120, 711–720. [CrossRef]

197. Lotteau, S.; Ivarsson, N.; Yang, Z.; Restagno, D.; Colyer, J.; Hopkins, P.; Weightman, A.; Himori, K.; Yamada, T.;
Bruton, J.; et al. A mechanism for statin-induced susceptibility to myopathy. JACC Basic Transl. Sci. 2019, 4,
509–523. [CrossRef]

198. Bouitbir, J.; Daussin, F.; Charles, A.L.; Rasseneur, L.; Dufour, S.; Richard, R.; Piquard, F.; Geny, B.; Zoll, J.
Mitochondria of trained skeletal muscle are protected from deleterious effects of statins. Muscle Nerve 2012,
46, 367–373. [CrossRef]

199. Rosenson, R.S.; Baker, S.K. Statin Muscle-Related Adverse Events. Available online: https://www.uptodate.
com/contents/statin-muscle-related-adverse-events (accessed on 2 October 2019).

200. Brunham, L.R.; Baker, S.; Mammen, A.; Mancini, G.B.J.; Rosenson, R.S. Role of genetics in the prediction of
statin-associated muscle symptoms and optimization of statin use and adherence. Cardiovasc. Res. 2018, 114,
1073–1081. [CrossRef] [PubMed]

201. Thomas, J.E.; Lee, N.; Thompson, P.D. Statins provoking melas syndrome. Eur. Neurol. 2007, 57, 232–235.
[CrossRef] [PubMed]

202. Tay, S.K.H.; DiMauro, S.; Pang, A.Y.W.; Lai, P.-S.; Yap, H.-K. Myotoxicity of lipid-lowering agents in a
teenager with melas mutation. Pediatr. Neurol. 2008, 39, 426–428. [CrossRef] [PubMed]

203. Cartwright, M.S.; Jeffery, D.R.; Nuss, G.R.; Donofrio, P.D. Statin-associated exacerbation of myasthenia gravis.
Neurology 2004, 63, 2188. [CrossRef]

204. Al-Jubouri, M.A.; Briston, P.G.; Sinclair, D.; Chinn, R.H.; Young, R.M. Myxoedema revealed by simvastatin
induced myopathy. BMJ 1994, 308, 588. [CrossRef]

205. Scalvini, T.; Marocolo, D.; Cerudelli, B.; Sleiman, I.; Balestrieri, G.P.; Giustina, G. Pravastatin-associated
myopathy. Report of a case. Recent. Progress. Med. 1995, 86, 198–200.

http://dx.doi.org/10.1124/dmd.111.043018
https://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/DevelopmentResources/DrugInteractionsLabeling/UCM207267.pdf
https://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/DevelopmentResources/DrugInteractionsLabeling/UCM207267.pdf
https://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/DevelopmentResources/DrugInteractionsLabeling/UCM207267.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/209939Orig1s000,209940Orig1s000lbl.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/209939Orig1s000,209940Orig1s000lbl.pdf
http://dx.doi.org/10.1007/s40256-017-0222-7
http://www.ncbi.nlm.nih.gov/pubmed/28364370
http://dx.doi.org/10.1161/CIR.0000000000000456
http://www.ncbi.nlm.nih.gov/pubmed/27754879
http://dx.doi.org/10.1016/j.bbrc.2005.10.108
http://www.ncbi.nlm.nih.gov/pubmed/16271704
http://dx.doi.org/10.1016/j.cmet.2015.08.002
http://dx.doi.org/10.1016/j.amjcard.2011.08.045
http://dx.doi.org/10.1111/j.1365-2125.2003.02044.x
http://dx.doi.org/10.1097/JES.0b013e31826c169e
http://dx.doi.org/10.1152/japplphysiol.00654.2015
http://dx.doi.org/10.1016/j.jacbts.2019.03.012
http://dx.doi.org/10.1002/mus.23309
https://www.uptodate.com/contents/statin-muscle-related-adverse-events
https://www.uptodate.com/contents/statin-muscle-related-adverse-events
http://dx.doi.org/10.1093/cvr/cvy119
http://www.ncbi.nlm.nih.gov/pubmed/29878063
http://dx.doi.org/10.1159/000101287
http://www.ncbi.nlm.nih.gov/pubmed/17389800
http://dx.doi.org/10.1016/j.pediatrneurol.2008.09.002
http://www.ncbi.nlm.nih.gov/pubmed/19027590
http://dx.doi.org/10.1212/01.WNL.0000145708.03876.C3
http://dx.doi.org/10.1136/bmj.308.6928.588


J. Clin. Med. 2020, 9, 22 34 of 37

206. Baker, S.K.; Tarnopolsky, M.A. Sporadic rippling muscle disease unmasked by simvastatin. Muscle Nerve
2006, 34, 478–481. [CrossRef]

207. Chariot, P.; Abadia, R.; Agnus, D.; Danan, C.; Charpentier, C.; Gherardi, R.K. Simvastatin-induced
rhabdomyolysis followed by a melas syndrome. Am. J. Med. 1993, 94, 109–110. [CrossRef]

208. De Stefano, N.; Argov, Z.; Matthews, P.M.; Karpati, G.; Arnold, D.L. Impairment of muscle mitochondrial
oxidative metabolism in mcardles’s disease. Muscle Nerve 1996, 19, 764–769. [CrossRef]

209. Hur, J.; Liu, Z.; Tong, W.; Laaksonen, R.; Bai, J.P. Drug-induced rhabdomyolysis: From systems pharmacology
analysis to biochemical flux. Chem. Res. Toxicol. 2014, 27, 421–432. [CrossRef]

210. Hermann, M.; Bogsrud, M.P.; Molden, E.; Asberg, A.; Mohebi, B.U.; Ose, L.; Retterstol, K. Exposure of
atorvastatin is unchanged but lactone and acid metabolites are increased several-fold in patients with
atorvastatin-induced myopathy. Clin. Pharmacol. Ther. 2006, 79, 532–539. [CrossRef] [PubMed]

211. Asping, M.; Stride, N.; Sogaard, D.; Dohlmann, T.L.; Helge, J.W.; Dela, F.; Larsen, S. The effects of 2 weeks of
statin treatment on mitochondrial respiratory capacity in middle-aged males: The lifestat study. Eur. J. Clin.
Pharmacol. 2017, 73, 679–687. [CrossRef] [PubMed]

212. Kwak, H.-B.; Thalacker-Mercer, A.; Anderson, E.J.; Lin, C.-T.; Kane, D.A.; Lee, N.-S.; Cortright, R.N.;
Bamman, M.M.; Neufer, P.D. Simvastatin impairs adp-stimulated respiration and increases mitochondrial
oxidative stress in primary human skeletal myotubes. Free Radic. Biol. Med. 2012, 52, 198–207. [CrossRef]
[PubMed]

213. Wagner, B.K.; Gilbert, T.J.; Hanai, J.I.; Imamura, S.; Bodycombe, N.E.; Bon, R.S.; Waldmann, H.; Clemons, P.A.;
Sukhatme, V.P.; Mootha, V.K. A small-molecule screening strategy to identify suppressors of statin myopathy.
ACS Chem. Biol. 2011, 6, 900–904. [CrossRef]

214. Wagner, B.K.; Kitami, T.; Gilbert, T.J.; Peck, D.; Ramanathan, A.; Schreiber, S.L.; Golub, T.R.; Mootha, V.K.
Large-scale chemical dissection of mitochondrial function. Nat. Biotechnol. 2008, 26, 343–351. [CrossRef]

215. Saito, S.; Nakanishi, T.; Shirasaki, Y.; Nakajima, M.; Tamai, I. Association of miR-145 with statin-induced
skeletal muscle toxicity in human rhabdomyosarcoma RD cells. J. Pharm. Sci. 2017, 106, 2873–2880.
[CrossRef]

216. Deichmann, R.; Lavie, C.; Andrews, S. Coenzyme Q10 and statin-induced mitochondrial dysfunction.
Ochsner J. 2010, 10, 16–21.

217. Quinzii, C.M.; Hirano, M. Primary and secondary CoQ10 deficiencies in humans. Biofactors 2011, 37, 361–365.
[CrossRef]

218. Lamperti, C.; Naini, A.B.; Lucchini, V.; Prelle, A.; Bresolin, N.; Moggio, M.; Sciacco, M.; Kaufmann, P.;
DiMauro, S. Muscle coenzyme Q10 level in statin-related myopathy. Arch. Neurol. 2005, 62, 1709–1712.
[CrossRef]

219. Mullen, P.J.; Luscher, B.; Scharnagl, H.; Krahenbuhl, S.; Brecht, K. Effect of simvastatin on cholesterol
metabolism in C2C12 myotubes and HepG2 cells, and consequences for statin-induced myopathy. Biochem.
Pharmacol. 2010, 79, 1200–1209. [CrossRef]

220. Montini, G.; Malaventura, C.; Salviati, L. Early coenzyme Q10 supplementation in primary coenzyme Q10
deficiency. N. Engl. J. Med. 2008, 358, 2849–2850. [CrossRef] [PubMed]

221. Banach, M.; Serban, C.; Sahebkar, A.; Ursoniu, S.; Rysz, J.; Muntner, P.; Toth, P.P.; Jones, S.R.; Rizzo, M.;
Glasser, S.P.; et al. Effects of coenzyme Q10 on statin-induced myopathy: A meta-analysis of randomized
controlled trials. Mayo Clin. Proc. 2015, 90, 24–34. [CrossRef] [PubMed]

222. Moßhammer, D.; Schaeffeler, E.; Schwab, M.; Mörike, K. Mechanisms and assessment of statin-related
muscular adverse effects. Br. J. Clin. Pharmacol. 2014, 78, 454–466. [CrossRef] [PubMed]

223. Flint, O.P.; Masters, B.A.; Gregg, R.E.; Durham, S.K. HMG CoA reductase inhibitor-induced myotoxicity:
Pravastatin and lovastatin inhibit the geranylgeranylation of low-molecular-weight proteins in neonatal rat
muscle cell culture. Toxicol. Appl. Pharmacol. 1997, 145, 99–110. [CrossRef] [PubMed]

224. Sakamoto, K.; Honda, T.; Yokoya, S.; Waguri, S.; Kimura, J. Rab-small gtpases are involved in fluvastatin
and pravastatin-induced vacuolation in rat skeletal myofibers. FASEB J. 2007, 21, 4087–4094. [CrossRef]
[PubMed]

225. Itagaki, M.; Takaguri, A.; Kano, S.; Kaneta, S.; Ichihara, K.; Satoh, K. Possible mechanisms underlying
statin-induced skeletal muscle toxicity in l6 fibroblasts and in rats. J. Pharmacol. Sci. 2009, 109, 94–101.
[CrossRef]

http://dx.doi.org/10.1002/mus.20575
http://dx.doi.org/10.1016/0002-9343(93)90129-D
http://dx.doi.org/10.1002/(SICI)1097-4598(199606)19:6&lt;764::AID-MUS12&gt;3.0.CO;2-L
http://dx.doi.org/10.1021/tx400409c
http://dx.doi.org/10.1016/j.clpt.2006.02.014
http://www.ncbi.nlm.nih.gov/pubmed/16765141
http://dx.doi.org/10.1007/s00228-017-2224-4
http://www.ncbi.nlm.nih.gov/pubmed/28246888
http://dx.doi.org/10.1016/j.freeradbiomed.2011.10.449
http://www.ncbi.nlm.nih.gov/pubmed/22080086
http://dx.doi.org/10.1021/cb200206w
http://dx.doi.org/10.1038/nbt1387
http://dx.doi.org/10.1016/j.xphs.2017.04.005
http://dx.doi.org/10.1002/biof.155
http://dx.doi.org/10.1001/archneur.62.11.1709
http://dx.doi.org/10.1016/j.bcp.2009.12.007
http://dx.doi.org/10.1056/NEJMc0800582
http://www.ncbi.nlm.nih.gov/pubmed/18579827
http://dx.doi.org/10.1016/j.mayocp.2014.08.021
http://www.ncbi.nlm.nih.gov/pubmed/25440725
http://dx.doi.org/10.1111/bcp.12360
http://www.ncbi.nlm.nih.gov/pubmed/25069381
http://dx.doi.org/10.1006/taap.1997.8174
http://www.ncbi.nlm.nih.gov/pubmed/9221829
http://dx.doi.org/10.1096/fj.07-8713com
http://www.ncbi.nlm.nih.gov/pubmed/17634390
http://dx.doi.org/10.1254/jphs.08238FP


J. Clin. Med. 2020, 9, 22 35 of 37

226. Ronzier, E.; Parks, X.X.; Qudsi, H.; Lopes, C.M. Statin-specific inhibition of Rab-GTPase regulates
cPKC-mediated IKs internalization. Sci. Rep. 2019, 9, 17747. [CrossRef]

227. Cao, P.; Hanai, J.-I.; Tanksale, P.; Imamura, S.; Sukhatme, V.P.; Lecker, S.H. Statin-induced muscle damage
and atrogin-1 induction is the result of a geranylgeranylation defect. FASEB J. 2009, 23, 2844–2854. [CrossRef]

228. Mullen, P.J.; Zahno, A.; Lindinger, P.; Maseneni, S.; Felser, A.; Krähenbühl, S.; Brecht, K. Susceptibility to
simvastatin-induced toxicity is partly determined by mitochondrial respiration and phosphorylation state of
Akt. Biochim. Biophys. Acta Mol. Cell Res. 2011, 1813, 2079–2087. [CrossRef]

229. Bonifacio, A.; Sanvee, G.M.; Bouitbir, J.; Krähenbühl, S. The AKT/mTOR signaling pathway plays a key role
in statin-induced myotoxicity. Biochim. Biophys. Acta Mol. Cell Res. 2015, 1853, 1841–1849. [CrossRef]

230. Draeger, A.; Monastyrskaya, K.; Mohaupt, M.; Hoppeler, H.; Savolainen, H.; Allemann, C.; Babiychuk, E.B.
Statin therapy induces ultrastructural damage in skeletal muscle in patients without myalgia. J. Pathol. 2006,
210, 94–102. [CrossRef] [PubMed]

231. Sabatine, M.S.; Giugliano, R.P.; Keech, A.C.; Honarpour, N.; Wiviott, S.D.; Murphy, S.A.; Kuder, J.F.; Wang, H.;
Liu, T.; Wasserman, S.M.; et al. Evolocumab and clinical outcomes in patients with cardiovascular disease.
N. Engl. J. Med. 2017, 376, 1713–1722. [CrossRef] [PubMed]

232. Moriarty, P.M.; Thompson, P.D.; Cannon, C.P.; Guyton, J.R.; Bergeron, J.; Zieve, F.J.; Bruckert, E.; Jacobson, T.A.;
Kopecky, S.L.; Baccara-Dinet, M.T.; et al. Efficacy and safety of alirocumab vs ezetimibe in statin-intolerant
patients, with a statin rechallenge arm: The odyssey alternative randomized trial. J. Clin. Lipidol. 2015, 9,
758–769. [CrossRef] [PubMed]

233. Gomes, M.D.; Lecker, S.H.; Jagoe, R.T.; Navon, A.; Goldberg, A.L. Atrogin-1, a muscle-specific f-box protein
highly expressed during muscle atrophy. Proc. Natl. Acad. Sci. USA 2001, 98, 14440–14445. [CrossRef]

234. Hanai, J.; Cao, P.; Tanksale, P.; Imamura, S.; Koshimizu, E.; Zhao, J.; Kishi, S.; Yamashita, M.; Phillips, P.S.;
Sukhatme, V.P.; et al. The muscle-specific ubiquitin ligase atrogin-1/mafbx mediates statin-induced muscle
toxicity. J. Clin. Investig. 2007, 117, 3940–3951. [CrossRef]

235. Protasi, F.; Takekura, H.; Wang, Y.; Chen, S.R.; Meissner, G.; Allen, P.D.; Franzini-Armstrong, C. Ryr1 and
ryr3 have different roles in the assembly of calcium release units of skeletal muscle. Biophys. J. 2000, 79,
2494–2508. [CrossRef]

236. Robinson, R.; Carpenter, D.; Shaw, M.A.; Halsall, J.; Hopkins, P. Mutations in ryr1 in malignant hyperthermia
and central core disease. Hum. Mutat. 2006, 27, 977–989. [CrossRef]

237. Jungbluth, H. Multi-minicore disease. Orphanet J. Rare Dis. 2007, 2, 31. [CrossRef]
238. Mohaupt, M.G.; Karas, R.H.; Babiychuk, E.B.; Sanchez-Freire, V.; Monastyrskaya, K.; Iyer, L.; Hoppeler, H.;

Breil, F.; Draeger, A. Association between statin-associated myopathy and skeletal muscle damage. CMAJ
2009, 181, E11–E18. [CrossRef]

239. Laitinen, P.J.; Brown, K.M.; Piippo, K.; Swan, H.; Devaney, J.M.; Brahmbhatt, B.; Donarum, E.A.; Marino, M.;
Tiso, N.; Viitasalo, M.; et al. Mutations of the cardiac ryanodine receptor (RYR2) gene in familial polymorphic
ventricular tachycardia. Circulation 2001, 103, 485–490. [CrossRef]

240. Luzum, J.A.; Kitzmiller, J.P.; Isackson, P.J.; Ma, C.; Medina, M.W.; Dauki, A.M.; Mikulik, E.B.;
Ochs-Balcom, H.M.; Vladutiu, G.D. Gatm polymorphism associated with the risk for statin-induced
myopathy does not replicate in case-control analysis of 715 dyslipidemic individuals. Cell Metab. 2015, 21,
622–627. [CrossRef] [PubMed]

241. Carr, D.F.; Alfirevic, A.; Johnson, R.; Chinoy, H.; van Staa, T.; Pirmohamed, M. Gatm gene variants and statin
myopathy risk. Nature 2014, 513, E1. [CrossRef] [PubMed]

242. Floyd, J.S.; Bis, J.C.; Brody, J.A.; Heckbert, S.R.; Rice, K.; Psaty, B.M. Gatm locus does not replicate in
rhabdomyolysis study. Nature 2014, 513, E1–E3. [CrossRef] [PubMed]

243. Dube, M.P.; Zetler, R.; Barhdadi, A.; Brown, A.; Mongrain, I.; Normand, V.; Laplante, N.; Asselin, G.; Feroz
Zada, Y.; Provost, S.; et al. CKM and LILRB5 are associated with serum levels of creatine kinase. Circ.
Cardiovasc. Genet. 2014, 7, 880–886. [CrossRef] [PubMed]

244. ClinicalTrials.gov. Statin Immune Study (Immunostat) nct02984293. Available online: https://clinicaltrials.
gov/ct2/show/NCT02984293 (accessed on 24 July 2019).

245. Kuswanto, W.; Burzyn, D.; Panduro, M.; Wang, K.K.; Jang, Y.C.; Wagers, A.J.; Benoist, C.; Mathis, D. Poor
repair of skeletal muscle in aging mice reflects a defect in local, interleukin-33-dependent accumulation of
regulatory t cells. Immunity 2016, 44, 355–367. [CrossRef] [PubMed]

http://dx.doi.org/10.1038/s41598-019-53700-6
http://dx.doi.org/10.1096/fj.08-128843
http://dx.doi.org/10.1016/j.bbamcr.2011.07.019
http://dx.doi.org/10.1016/j.bbamcr.2015.04.010
http://dx.doi.org/10.1002/path.2018
http://www.ncbi.nlm.nih.gov/pubmed/16799920
http://dx.doi.org/10.1056/NEJMoa1615664
http://www.ncbi.nlm.nih.gov/pubmed/28304224
http://dx.doi.org/10.1016/j.jacl.2015.08.006
http://www.ncbi.nlm.nih.gov/pubmed/26687696
http://dx.doi.org/10.1073/pnas.251541198
http://dx.doi.org/10.1172/JCI32741
http://dx.doi.org/10.1016/S0006-3495(00)76491-5
http://dx.doi.org/10.1002/humu.20356
http://dx.doi.org/10.1186/1750-1172-2-31
http://dx.doi.org/10.1503/cmaj.081785
http://dx.doi.org/10.1161/01.CIR.103.4.485
http://dx.doi.org/10.1016/j.cmet.2015.03.003
http://www.ncbi.nlm.nih.gov/pubmed/25863251
http://dx.doi.org/10.1038/nature13628
http://www.ncbi.nlm.nih.gov/pubmed/25230669
http://dx.doi.org/10.1038/nature13629
http://www.ncbi.nlm.nih.gov/pubmed/25230668
http://dx.doi.org/10.1161/CIRCGENETICS.113.000395
http://www.ncbi.nlm.nih.gov/pubmed/25214527
https://clinicaltrials.gov/ct2/show/NCT02984293
https://clinicaltrials.gov/ct2/show/NCT02984293
http://dx.doi.org/10.1016/j.immuni.2016.01.009
http://www.ncbi.nlm.nih.gov/pubmed/26872699


J. Clin. Med. 2020, 9, 22 36 of 37

246. Needham, M.; Fabian, V.; Knezevic, W.; Panegyres, P.; Zilko, P.; Mastaglia, F.L. Progressive myopathy with
up-regulation of MHC-I associated with statin therapy. Neuromuscul. Disord. 2007, 17, 194–200. [CrossRef]
[PubMed]

247. Grable-Esposito, P.; Katzberg, H.D.; Greenberg, S.A.; Srinivasan, J.; Katz, J.; Amato, A.A. Immune-mediated
necrotizing myopathy associated with statins. Muscle Nerve 2010, 41, 185–190. [CrossRef]

248. Christopher-Stine, L.; Casciola-Rosen, L.A.; Hong, G.; Chung, T.; Corse, A.M.; Mammen, A.L. A novel
autoantibody recognizing 200-kd and 100-kd proteins is associated with an immune-mediated necrotizing
myopathy. Arthritis Rheum. 2010, 62, 2757–2766. [CrossRef]

249. Mammen, A.L.; Chung, T.; Christopher-Stine, L.; Rosen, P.; Rosen, A.; Casciola-Rosen, L.A. Autoantibodies
against 3-hydroxy-3-methylglutaryl-coenzyme a reductase (HMGCR) in patients with statin-associated
autoimmune myopathy. Arthritis Rheum. 2011, 63, 713–721. [CrossRef]

250. Mammen, A.L. Statin-associated autoimmune myopathy. N. Engl. J. Med. 2016, 374, 664–669. [CrossRef]
251. Pinal-Fernandez, I.; Casal-Dominguez, M.; Mammen, A.L. Immune-mediated necrotizing myopathy. Curr.

Rheumatol. Rep. 2018, 20, 21. [CrossRef] [PubMed]
252. Werner, J.L.; Christopher-Stine, L.; Ghazarian, S.R.; Pak, K.S.; Kus, J.E.; Daya, N.R.;

Lloyd, T.E.; Mammen, A.L. Antibody levels correlate with creatine kinase levels and strength in
anti-3-hydroxy-3-methylglutaryl-coenzyme a reductase-associated autoimmune myopathy. Arthritis Rheum.
2012, 64, 4087–4093. [CrossRef] [PubMed]

253. Arouche-Delaperche, L.; Allenbach, Y.; Amelin, D.; Preusse, C.; Mouly, V.; Mauhin, W.; Tchoupou, G.D.;
Drouot, L.; Boyer, O.; Stenzel, W.; et al. Pathogenic role of anti-signal recognition protein and
anti-3-hydroxy-3-methylglutaryl-coa reductase antibodies in necrotizing myopathies: Myofiber atrophy and
impairment of muscle regeneration in necrotizing autoimmune myopathies. Ann. Neurol. 2017, 81, 538–548.
[CrossRef] [PubMed]

254. Huang, X.; Fruen, B.; Farrington, D.T.; Wagenknecht, T.; Liu, Z. Calmodulin-binding locations on the skeletal
and cardiac ryanodine receptors. J. Biol. Chem. 2012, 287, 30328–30335. [CrossRef]

255. Wiel, C.; Lallet-Daher, H.; Gitenay, D.; Gras, B.; Le Calvé, B.; Augert, A.; Ferrand, M.; Prevarskaya, N.;
Simonnet, H.; Vindrieux, D.; et al. Endoplasmic reticulum calcium release through itpr2 channels leads to
mitochondrial calcium accumulation and senescence. Nat. Commun. 2014, 5, 3792. [CrossRef]

256. Gupta, A.; Thompson, P.D. The relationship of vitamin d deficiency to statin myopathy. Atherosclerosis 2011,
215, 23–29. [CrossRef]

257. Bikle, D.D. Vitamin d metabolism, mechanism of action, and clinical applications. Chem. Biol. 2014, 21,
319–329. [CrossRef]

258. Mazidi, M.; Rezaie, P.; Vatanparast, H.; Kengne, A.P. Effect of statins on serum vitamin d concentrations:
A systematic review and meta-analysis. Eur. J. Clin. Investig. 2017, 47, 93–101. [CrossRef]

259. Thummel, K.E.; Brimer, C.; Yasuda, K.; Thottassery, J.; Senn, T.; Lin, Y.; Ishizuka, H.; Kharasch, E.; Schuetz, J.;
Schuetz, E. Transcriptional control of intestinal cytochrome P-4503A by 1α,25-Dihydroxy vitamin D3.
Mol. Pharmacol. 2001, 60, 1399–1406. [CrossRef]

260. Wang, Z.; Schuetz, E.G.; Xu, Y.; Thummel, K.E. Interplay between vitamin d and the drug metabolizing
enzyme CYP3A4. J. Steroid Biochem. Mol. Biol. 2013, 136, 54–58. [CrossRef]

261. Thirumaran, R.K.; Lamba, J.K.; Kim, R.B.; Urquhart, B.L.; Gregor, J.C.; Chande, N.; Fan, Y.; Qi, A.;
Cheng, C.; Thummel, K.E.; et al. Intestinal CYP3A4 and midazolam disposition in vivo associate with vdr
polymorphisms and show seasonal variation. Biochem. Pharmacol. 2012, 84, 104–112. [CrossRef] [PubMed]

262. Schwartz, J.B. Effects of vitamin d supplementation in atorvastatin-treated patients: A new drug interaction
with an unexpected consequence. Clin. Pharmacol. Ther. 2009, 85, 198–203. [CrossRef] [PubMed]

263. Glueck, C.J.; Lee, K.; Prince, M.; Milgrom, A.; Makadia, F.; Wang, P. Low serum vitamin d, statin associated
muscle symptoms, vitamin d supplementation. Atherosclerosis 2017, 256, 125–127. [CrossRef] [PubMed]

264. Jetty, V.; Glueck, C.J.; Wang, P.; Shah, P.; Prince, M.; Lee, K.; Goldenberg, M.; Kumar, A. Safety of 50,000-100,000
units of vitamin d3/week in vitamin D-Deficient, hypercholesterolemic patients with reversible statin
intolerance. N. Am. J. Med. Sci. 2016, 8, 156–162. [PubMed]

265. Kang, J.H.; Nguyen, Q.N.; Mutka, J.; Le, Q.A. Rechallenging statin therapy in veterans with statin-induced
myopathy post vitamin d replenishment. J. Pharm. Pract. 2017, 30, 521–527. [CrossRef]

266. Alonso, R.; Cuevas, A.; Cafferata, A. Diagnosis and management of statin intolerance. J. Atheroscler. Thromb.
2019, 26, 207–215. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.nmd.2006.10.007
http://www.ncbi.nlm.nih.gov/pubmed/17241784
http://dx.doi.org/10.1002/mus.21486
http://dx.doi.org/10.1002/art.27572
http://dx.doi.org/10.1002/art.30156
http://dx.doi.org/10.1056/NEJMra1515161
http://dx.doi.org/10.1007/s11926-018-0732-6
http://www.ncbi.nlm.nih.gov/pubmed/29582188
http://dx.doi.org/10.1002/art.34673
http://www.ncbi.nlm.nih.gov/pubmed/22933019
http://dx.doi.org/10.1002/ana.24902
http://www.ncbi.nlm.nih.gov/pubmed/28224701
http://dx.doi.org/10.1074/jbc.M112.383109
http://dx.doi.org/10.1038/ncomms4792
http://dx.doi.org/10.1016/j.atherosclerosis.2010.11.039
http://dx.doi.org/10.1016/j.chembiol.2013.12.016
http://dx.doi.org/10.1111/eci.12698
http://dx.doi.org/10.1124/mol.60.6.1399
http://dx.doi.org/10.1016/j.jsbmb.2012.09.012
http://dx.doi.org/10.1016/j.bcp.2012.03.017
http://www.ncbi.nlm.nih.gov/pubmed/22484315
http://dx.doi.org/10.1038/clpt.2008.165
http://www.ncbi.nlm.nih.gov/pubmed/18754003
http://dx.doi.org/10.1016/j.atherosclerosis.2016.11.027
http://www.ncbi.nlm.nih.gov/pubmed/28007301
http://www.ncbi.nlm.nih.gov/pubmed/27114973
http://dx.doi.org/10.1177/0897190016674407
http://dx.doi.org/10.5551/jat.RV17030
http://www.ncbi.nlm.nih.gov/pubmed/30662020


J. Clin. Med. 2020, 9, 22 37 of 37

267. Rosenson, R.S.; Baker, S.K.; Jacobson, T.A.; Kopecky, S.L.; Parker, B.A. The National Lipid Association’s
Muscle Safety Expert Panel. An assessment by the statin muscle safety task force: 2014 update. J. Clin.
Lipidol. 2014, 8, S58–S71. [CrossRef]

268. Zhang, H.; Plutzky, J.; Skentzos, S.; Morrison, F.; Mar, P.; Shubina, M.; Turchin, A. Discontinuation of statins
in routine care settings: A cohort study. Ann. Intern. Med. 2013, 158, 526–534. [CrossRef]

269. Keating, A.J.; Campbell, K.B.; Guyton, J.R. Intermittent nondaily dosing strategies in patients with previous
statin-induced myopathy. Ann. Pharmacother. 2013, 47, 398–404. [CrossRef]

270. Schwartz, G.G.; Steg, P.G.; Szarek, M.; Bhatt, D.L.; Bittner, V.A.; Diaz, R.; Edelberg, J.M.; Goodman, S.G.;
Hanotin, C.; Harrington, R.A.; et al. Alirocumab and cardiovascular outcomes after acute coronary syndrome.
N. Engl. J. Med. 2018, 379, 2097–2107. [CrossRef]

271. Stroes, E.; Colquhoun, D.; Sullivan, D.; Civeira, F.; Rosenson, R.S.; Watts, G.F.; Bruckert, E.; Cho, L.; Dent, R.;
Knusel, B.; et al. Anti-PCSK9 antibody effectively lowers cholesterol in patients with statin intolerance:
The GAUSS-2 randomized, placebo-controlled phase 3 clinical trial of evolocumab. J. Am. Coll. Cardiol. 2014,
63, 2541–2548. [CrossRef] [PubMed]

272. Oren, O.; Kludtke, E.L.; Kopecky, S.L. Characteristics and outcomes of patients treated with proprotein
convertase subtilisin/kexin type 9 inhibitors (the mayo clinic experience). Am. J. Cardiol. 2019, 124, 1669–1673.
[CrossRef] [PubMed]

273. Patel, R.S.; Scopelliti, E.M.; Olugbile, O. The role of PCSK9 inhibitors in the treatment of hypercholesterolemia.
Ann. Pharmacother. 2018, 52, 1000–1018. [CrossRef] [PubMed]

274. Van der Wouden, C.H.; Cambon-Thomsen, A.; Cecchin, E.; Cheung, K.C.; Davila-Fajardo, C.L.; Deneer, V.H.;
Dolzan, V.; Ingelman-Sundberg, M.; Jonsson, S.; Karlsson, M.O.; et al. Implementing pharmacogenomics
in europe: Design and implementation strategy of the ubiquitous pharmacogenomics consortium. Clin.
Pharmacol. Ther. 2017, 101, 341–358. [CrossRef]

275. Ray, K.K.; Bays, H.E.; Catapano, A.L.; Lalwani, N.D.; Bloedon, L.T.; Sterling, L.R.; Robinson, P.L.;
Ballantyne, C.M. Safety and efficacy of bempedoic acid to reduce LDL cholesterol. N. Engl. J. Med.
2019, 380, 1022–1032. [CrossRef]

276. Ray, K.K.; Stoekenbroek, R.M.; Kallend, D.; Leiter, L.A.; Landmesser, U.; Wright, R.S.; Wijngaard, P.;
Kastelein, J.J.P. Effect of an siRNA therapeutic targeting PCSK9 on atherogenic lipoproteins. Circulation 2018,
138, 1304–1316. [CrossRef]

277. Herrett, E.; Williamson, E.; Beaumont, D.; Prowse, D.; Youssouf, N.; Brack, K.; Armitage, J.; Goldacre, B.;
MacDonald, T.; Staa, T.V.; et al. Study protocol for statin web-based investigation of side effects (statinwise):
A series of randomised controlled N-of-1 trials comparing atorvastatin and placebo in UK primary care.
BMJ Open 2017, 7, e016604. [CrossRef]

278. Maier, L.; Pruteanu, M.; Kuhn, M.; Zeller, G.; Telzerow, A.; Anderson, E.E.; Brochado, A.R.; Fernandez, K.C.;
Dose, H.; Mori, H.; et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 2018, 555,
623. [CrossRef]

279. Khan, T.J.; Ahmed, Y.M.; Zamzami, M.A.; Mohamed, S.A.; Khan, I.; Baothman, O.A.S.; Mehanna, M.G.;
Yasir, M. Effect of atorvastatin on the gut microbiota of high fat diet-induced hypercholesterolemic rats.
Sci. Rep. 2018, 8, 662. [CrossRef]

280. Morelli, M.B.; Wang, X.; Santulli, G. Functional role of gut microbiota and PCSK9 in the pathogenesis of
diabetes mellitus and cardiovascular disease. Atherosclerosis 2019, 289, 176–178. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jacl.2014.03.004
http://dx.doi.org/10.7326/0003-4819-158-7-201304020-00004
http://dx.doi.org/10.1345/aph.1R509
http://dx.doi.org/10.1056/NEJMoa1801174
http://dx.doi.org/10.1016/j.jacc.2014.03.019
http://www.ncbi.nlm.nih.gov/pubmed/24694531
http://dx.doi.org/10.1016/j.amjcard.2019.08.016
http://www.ncbi.nlm.nih.gov/pubmed/31740018
http://dx.doi.org/10.1177/1060028018771670
http://www.ncbi.nlm.nih.gov/pubmed/29667842
http://dx.doi.org/10.1002/cpt.602
http://dx.doi.org/10.1056/NEJMoa1803917
http://dx.doi.org/10.1161/CIRCULATIONAHA.118.034710
http://dx.doi.org/10.1136/bmjopen-2017-016604
http://dx.doi.org/10.1038/nature25979
http://dx.doi.org/10.1038/s41598-017-19013-2
http://dx.doi.org/10.1016/j.atherosclerosis.2019.07.023
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	SRM Definitions 
	SRM Clinical Presentation 
	SRM Frequency 
	SRM Pathogenesis 
	Factors Associated with Statin Pharmacokinetics and Myotoxicity 
	Clinical Factors 
	Pharmacogenomic Factors that Affect Statin Pharmacokinetics 
	CYP Phase 1 Hydroxylation 
	UGT1A3 Phase 2 Glucuronidation 
	SLCO1B1 Influx Transporter 
	ABCB1 and ABCG2 Efflux Transporters 

	Drug–Statin Interactions 

	Statin Uptake into Skeletal Muscle 
	Statin-Induced Myocyte Dysfunction 
	Exercise 
	Pre-Existing Neuromuscular Disorders 
	Mitochondrial Impairment 
	HMGCR Pathway Mediated Effects 
	Coenzyme Q10 Depletion 
	Reduced Protein Prenylation 
	Cholesterol Depletion 

	Atrogin-1 Upregulation 
	Calcium Signalling Disruption 
	Glycine Amidinotransferase (GATM) 
	Immunologically-Mediated Statin Myopathy 
	LILRB5 
	HLA-DRB1*11:01 

	Pain Perception 
	Muscle Transcriptomics 
	Vitamin D 

	Management of SRM 
	Conclusions 
	References

