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Abstract

With the electrification in transportation systems, Electric Vehicles (EVs) have developed

rapidly in recent years. At the same time, with large-scale EV integration to power

grids, the charging behaviours of EVs bring both challenges and opportunities to power

grids operation. This thesis focuses on the EV energy management in smart grids, and

the EV energy management problem is studied considering three stakeholders’ interests,

i.e. EV owner, aggregator and grid, respectively.

First, the economic relationship between EV owners and the aggregator is studied

(EV owners’ and aggregator’s interest). Two multi-objective optimisation methods are

applied to investigate the economic relationship between these two stakeholders and the

aggregator–owner economic inconsistency issue is presented. To mediate this issue, a

rebate factor is proposed in the model. The results show that a significant reduction in

the EV owners’ charging fee from self-scheduling can be achieved while the aggregator

profit is maximised.

Second, the EV aggregator bidding strategy in the electricity market is studied

(aggregator’s interest). By jointly considering the reserve capacity in the day-ahead

market and the uncertainty of reserve deployment requirements in the real-time market,

a scenario-based stochastic programming method is used to maximise the expected

aggregator profit. The risk of the deployed reserve shortage is addressed by introducing

a penalty factor in the model. In addition, an owner–aggregator contract is designed to

mitigate the economic inconsistency issue between EV owners and the aggregator. The

results show that the expected aggregator profit is guaranteed by maximising reserve
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deployment payments and mitigating the penalties and thus the uncertainty of the

reserve market is well managed.

Third, the EV integration in a transmission system is studied (grid’s interest) to

achieve the coordination between generators and EVs. To tackle the challenge of

large-scale EV integration problem, a bi-level scheduling strategy is proposed. The

bi-level strategy clearly defines the responsibility of transmission system operator and

the aggregator. An EV information grouping method is designed, which could efficiently

tackle the optimisation complexity problem. In addition, a detailed EV battery charging

model is built. The results show that the total cost of the systems is minimised and

EVs could shave the peak and fill the valley loads.

This thesis discusses the EV energy management problem considering three stake-

holders’ interests, respectively. The proposed strategies in this thesis clearly evaluate

and define the economic relationships and responsibility among EV owners, aggregator

and the grid in managing EV charging and discharging behaviours. Based on three case

studies conducted in this thesis, EV energy management could benefit the stakeholders

as follows: (1) the EV owner charging fee is minimised while their driving requirements

are satisfied; (2) the aggregator profit is maximised by participation in the electricity

market; (3) the cost of the system is minimised by achieving the coordination between

EVs and generators.
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Chapter 1

Introduction

1.1 Background

The energy crisis and environmental problems are becoming crucial issues for the

whole world and urgently require humans to take action to save energy and reduce the

Greenhouse Gases (GHG) emission. The emissions of GHG contribute to atmospheric

pollution, climate change, and global warming problems. Faced with this situation,

governments have made plans and policies to reduce GHG emissions. The EU is

responsible for 10% global GHG emissions, and an objective was set in 2009 to reduce

GHG emissions by 80–95% in 2050 [1]. In 2015, a historic announcement was made

about the post-2020 climate targets for the U.S. and China. The U.S. government

announced plans to reduce emission by 26-28% below 2005 levels by 2025 [2]. In the

thirteenth “five-year plan of development” of China, it is targeted that by 2020, the

carbon dioxide (CO2) emission per unit of GDP decreased by 18% compared to that of

2015 [3].

It has been reported that over 60% of the global primary demand is from electricity

generation and transportation (electricity generation accounts the majority of the coal

demand and transportation accounts the majority of the oil demand), and a significant

amount of the GHG and pollutant emissions are contributed by transportation [4, 5].

According to the United States Environmental Protection Agency, transportation
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accounted for 20% of GHG emissions of the U.S. in 2017, where light-duty vehicles

contributed 59% of emissions. Owing to high travelling demands, GHG emissions in the

transportation sector increased faster than those in other sectors from 1990 to 2017 [6].

Electric Vehicle (EV) is regarded as a good candidate in reducing GHG emissions

in the transportation sector [7]. Compared with traditional Internal Combustion

Engine (ICE) vehicle, EV is eco-friendly because it has the advantage of less dependence

on fossil fuels, lower noise levels and less GHG emissions. In addition, electricity is

the main power source of EVs, which is originated from central power plants. With

the integration of Renewable Energy Source (RES), EVs could be charged by using

clean energy, such that the GHG emissions could be further reduced. Based on these

advantages, EVs are developed all around the world nowadays.

1.1.1 Electric Vehicles

Typically, EV can be categorised into three types according to the electricity used

as the vehicle energy source: Hybrid Electric Vehicle (HEV), Plug-in Hybrid Electric

Vehicle (PHEV) and Battery Electric Vehicle (BEV).

• HEVs have both a small-size electric battery and an ICE, which is powered by

both electricity and gasoline. Because HEVs have no external socket, the electric

battery only can be charged by using the vehicle’s (regenerative) braking systems

and ICE.

• PHEVs have both a battery and an ICE. Compared with HEVs, PHEVs have

an external socket (plug) and a larger size battery. The battery is charged both

from the external electricity from the plug and the regenerative braking systems.

• BEVs have an electric battery and no ICE. The electric battery is charged only

from the external socket.

The recent global development progress of EVs is summarised in Table 1.1, which

shows the total number of EVs by country [8, 9]. It is noted that there are more than 5
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Table 1.1: Total number of EVs by country from 2011-2018 (thousands) [8, 9]
2011 2012 2013 2014 2015 2016 2017 2018

Australia 0.05 0.30 0.60 1.92 3.69 5.06 7.34 10.95
Brazil 0.06 0.15 0.32 0.68 1.11
Canada 0.52 2.54 5.66 10.73 17.69 29.27 45.95 90.10
Chile 0.01 0.01 0.02 0.03 0.07 0.10 0.25 0.41
China 6.98 16.88 32.22 105.39 312.77 648.77 1227.77 2306.3
Finland 0.06 0.24 0.47 0.93 1.59 3.29 6.34 12.05
France 3.03 9.29 18.91 31.54 54.49 84.00 118.77 165.48
Germany 1.89 5.26 12.19 24.93 48.12 72.73 109.56 177.07
India 1.33 2.76 2.95 3.35 4.35 4.80 6.80 10.30
Japan 16.14 40.58 69.46 101.74 126.40 151.25 205.35 255.10
Korea 0.34 0.85 1.45 2.76 5.95 11.21 25.92 59.60
Mexico 0.09 0.10 0.15 0.25 0.66 0.92 4.01
Netherlands 1.14 6.26 28.67 43.76 87.53 112.01 119.33 148.48
New Zealand 0.03 0.06 0.09 0.41 0.91 2.41 5.88 11.42
Norway 2.63 7.15 15.67 35.44 69.17 114.05 176.31 249.00
Portugal 1.78 17.03
South Africa 0.03 0.05 0.29 0.67 0.86 1.01
Sweden 0.18 1.11 2.66 7.32 15.91 29.33 49.67 78.63
Thailand 0.01 0.02 0.03 0.10 0.37 0.38 0.40 0.60
U.K. 2.89 5.59 9.34 24.08 48.51 86.42 133.67 184.03
U.S. 21.50 74.74 171.44 290.22 404.09 563.71 762.06 1123.37
Others 2.60 5.31 9.35 18.73 37.17 61.63 103.44 216.41

Total 61.33 179.03 381.30 703.65 1239.45 1982.04 3109.05 5122.46
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million EVs in the world and 45% were from China; the U.S. and the EU each accounted

for approximately 23% in 2018. It is estimated that there will be 200 million EVs in

China by 2050 and two-thirds of light-duty vehicles in the U.S. will be EVs by 2040

[10, 11].

Although the growth in the number of EV remained rapid from 2011 to 2018, the

number of vehicles per thousand people in China is still much lower than in developed

countries. In 2020, the number of vehicles per thousand people in China is expected to

be 176, which is far less than those in the U.S. (808) and west Europe (589) in 2012

[12]. Table 1.2 shows the estimated future development of EVs in China [13]. China

has huge potential of EV development and as a new type of load, the impact of the

charging behaviours of EVs on power grids should not be neglected.

Table 1.2: Estimation of EV development in China [13]
2020 2030 2040 2050

Total vehicle number (million) 250 370 381 410
Vehicles/1000 people 176 255 270 291
EV number (million) 5 16.6 42 135
EV penetration rate 2.6% 4.5% 11% 33%

1.1.2 Smart Grids and Demand Response

In the 19th century, the first Alternating Current (AC) power grid was built in the U.S.,

which was a centralised unidirectional system. The traditional power grids produces

electricity at centralised power plants, and the electricity is delivered to end-users based

on transmission and distribution networks.

The generated electricity from power plants, such as thermal plants and nuclear

plants, is delivered through transmission lines at a high voltage level under the usage of

step-up transformers. For the sake of loss minimisation, the high voltage reduces the

current of the transmission systems, such that the power loss caused by the resistance is

minimised. The Transmission System Operator (TSO) is responsible for the security of

the systems, where the generated electrical energy should equal the total demand and
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the transmission capacity should be ensured. When the demand exceeds the generation

capacity, the TSO disconnects certain loads to maintain the balance. Distribution

systems are connected with transmission systems through step-down transformers. By

using step-down transformers, the high voltage level is transferred to a low voltage level

and the electricity is distributed to end-users. The Distribution System Operator (DSO)

is responsible for the operation of distribution systems, maintaining their resilience and

security, and implementing necessary expansions of the distribution systems.

A smart grid is a modern electric grid, which utilises information and communica-

tion technologies to collect and monitor the electricity generation, transmission, and

distribution status. Compared with tradition power grids, smart grids involve a variety

of smart meters, smart appliances, and Distributed Generation (DG), etc. Figure 1.1

illustrates the general components of smart grids.

Energy storage 
systems

Electric vehicle

Residential

Commericial

Industrial

Thermal plant

Smart grids

Nuclear plant
Solar plant

Wind plant

Smart 
home

Distributed 
generations

Energy flow

Figure 1.1: Components of smart grids
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In smart grids, bidirectional power flow is enabled and the generation is decentralised,

owing to the installation of DG. Based on advanced metering infrastructure, e.g. smart

meter, the willingness of end-users’ participation in power grid operation is enhanced.

With the utilisation of smart meters in power grids, the power consumption, voltage,

and frequency could be monitored in real time. The data collected from the smart

meter provide an opportunity to the system operators to design different types of

tariffs for end-users. End-users could respond based on the tariffs and their own energy

consumption requirements.

Demand Response (DR) enables flexible load in power grids operation, by encouraging

end-users to change their electricity usage patterns. The concept of DR is defined by

the Federal Energy Regulatory Commission:

‘Changes in electric usage by end-users from their normal consumption patterns in

response to changes in the price of electricity over time, or to incentive payments

designed to induce lower electricity use at times of high wholesale market prices or when

system reliability is jeopardised.’ [14]. DR programmes could be generally classified into

two types:

• Price-based DR provides end-users with time-varying electricity prices, whereby

the electricity price is high during peak hours. End-users are thus encouraged

to use less electricity during these time. Price-based DR programmes include

Real-Time Price (RTP), Time of Use (TOU), and Critical Peaking Pricing (CPP).

• Incentive-based DR requires end-users to reduce their electricity consumption

during peak hours. End-users will be penalised if they fail or declare to reduce loads.

Incentive DR programmes include direct load control, interruptible/curtailable

service, and ancillary service, etc.

DR programmes provide opportunities of EV energy management in smart grids,

where the charging and discharging behaviours of EVs could be scheduled based on RTP.

With the utilisation of EV in smart homes and buildings, the flexibility of electric loads

will be significantly improved, and a variety of strategies could be implemented. Based
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on DR programmes and Vehicle-to-Grid (V2G) technology, the connection between

EV owners and systems operators (TSO and DSO) can be made based on real-time

information (price signals or incentive payments). Such DR programmes allow EV

owners to potentially shift charging load based on real-time information, which generate

economic benefits for EV owners.

1.1.3 Stakeholders in EV Energy Management

As discussed above, DR programmes and V2G technology enable EV energy management

in smart grids. Typically, the EV energy management relates to three stakeholders,

which are EV owners, EV aggregator and the grid. Three stakeholders are illustrated in

Figure 1.2.

Stakeholder 1: EV owners
 Charging cost 
 Battery degradation cost
 Driving requirements

Stakeholder 2: EV aggregator
 Profit maximisation
 Ancillary services

Stakeholder 3: Grid
 Power grid stability
 Generation and operation cost

EV energy 
management

Figure 1.2: Stakeholders in EV energy management

EV owners are concerned with the EV energy management problem, since it relates

to their economic benefits, including charging cost and battery degeneration cost. Based

on different DR programmes and the charging flexibility of EV batteries, EV energy

management provides an opportunity to minimise the charging fee for owners. In

addition, it has been reported that the high charging and discharging power (e.g. fast
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charging) could significantly increase the EV battery degradation. Thus, EV energy

management to reduce charging cost and degradation cost is the major concern of

owners.

EV aggregator represents the third party between EV and power grids, such as

carpark operator or charging station. Typically, ancillary services in electricity markets

are implemented on MW-basis generators, whereas single EVs could only provide limited

power (10–20 kW). Under this circumstance and to achieve a large-scale power rating,

the concept of the aggregator has been developed. This is a central entity and a

good candidate to participate in DR programmes by coordinating the charging and

discharging behaviours of an EV fleet. The aggregator could obtain profit in attending

electricity markets.

Grid is a general concept in this thesis, which represents several supporting organ-

isations in power grids operation from generation to distribution, such as generation

wholesalers, Independent Systems Operator (ISO)—i.e., TSO and DSO—and reliability

coordinators, etc [15]. Thus the interest of the grid includes operation cost, reliability

etc. Based on DR programmes and V2G technology, the charging and discharging

behaviours of EV will offer essential benefits to the grid.

1.2 Motivations

EV energy management is the first motivation of this research. With the rapid de-

velopment of EVs and the electrification of transportation systems, the EV charging

behaviours impose significant negative impacts on the operation of power grids, such as

voltage drop, energy losses, and transformer overloading. Studies have shown that when

the EV penetration level reaches 40% under uncoordinated charging, the distribution

transformers need to be replaced [16]. However, the charging processes of EVs are

flexible and can be scheduled, because EVs are parked for 96% of the time at homes

or offices [17]. Consequently, EV energy management is necessary and EVs are not

just electricity loads under management, but also can be regarded as dynamic Energy
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Storage Systems (ESS). In this case, EV is not only a type of green transportation tool,

but it can provide ancillary services to power grids (frequency regulation and spinning

reserve). Furthermore, studies have showed that the coordinate charging of EVs received

special attention from the grid and that with the utilisation of EVs, the stability of the

power grids could be enhanced. Moreover, from the long-term planning and updating of

the power grids viewpoint, the construction of the EV charging network, i.e. the sitting

and sizing of charging stations, relates both to power and transportation network. Thus,

the EV energy management is vital and it needs to be investigated.

The second motivation of this research is that the EV energy management relates

to three stakeholders, as discussed in Section 1.1.3. It is challenging to develop a

cooperative mechanism between the EV owners, aggregator and the grid. The EV energy

management problem not only involves different stakeholders but also is complicated by

several uncertainties, such as EV owners driving behaviours, price signals and power grids

requirements, etc. Therefore, designing a set of strategies, which could take different

stakeholders’ interest into consideration, is important in EV energy management.

1.3 Objectives

This thesis aims to propose a set of EV energy management strategies considering

stakeholders’ interest. Three objectives relate to three stakeholders’ interests in this

thesis are listed as follow:

• The first objective of this thesis is to evaluate the economic relationship between

two stakeholders. The issue is raised of an economic inconsistency between the

aggregator profit maximisation and EV owners’ charging fee minimisation.

A Multi-Objective Optimisation (MOO) method, i.e. Weighted Sum Method

(WSM), is used to incorporate two stakeholders’ benefits into one optimisation

problem. In addition, a rebate factor is introduced in the ε-constraint method,

which is used to guarantee owners’ benefits in aggregator scheduling.
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• The second objective of this thesis is to explore an aggregator bidding strategy

in Day-Ahead (DA) reserve and energy markets. The reserve deployment in

Real-Time Market (RTM) and its impact on DA bidding is considered.

A stochastic programming method is applied to handle the uncertainty of the

reserve deployment, where the uncertainty is represented by several scenarios

and probabilities. The risk of reserve deployment shortage is considered, where a

penalty factor is introduced in the optimisation model.

• The third objective of this thesis is to investigate the coordination between EV

(demand side) with the generators (generation side). The spatial information

of the power grids is formulated based on Direct Current (DC)-Optimal Power

Flow (OPF), which achieves coordination of aggregators at different locations

with generators.

A bi-level strategy is designed which clearly defines the relationship between and

responsibilities of the grid and the aggregator. In addition, the proposed EV infor-

mation method could effectively tackle the large-scale (complexity) optimisation

problem.

1.4 Thesis Structure

This thesis consists of seven chapters which address the EV energy management prob-

lem considering three stakeholders’ interest, and the relationships among the three

stakeholders are investigated.

Chapter 1 introduces the background information of the state-of-the-art of smart

grids and DR. With the development of EVs and the integration of EVs into the grids,

the motivation for this thesis is presented. For the EV energy management problem in

smart grids, three objectives are set in this thesis in terms of the different stakeholders’

interest.

Chapter 2 provides a review of ESS and EVs. A general review of EVs is presented

according to their categories and applications. The working principles of Pumped
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Chapter 3

Chapter 4
 Aggregator and EV owners interests 
 Mitigate the economic inconsistency issue between owners and aggregator
 Aggregator profit VS Owner charging fee

Chapter 5
 Aggregator interest of EVs participation in electricity markets
 Bidding strategy in uncertain electricity markets
 Maximise the expected profit

Chapter 6
 Grid interests of EV integration in a transmission power network
 Cooperation between EVs and generators
 Relationship and responsibility of TSO and the aggregator

EV information model

DC-OPF model

Mathematical Models Optimisation Techniques

Multi-objective optimisation

Stochastic programming

Rolling-horizon optimisation

Programming Methods

Mixed-integer linear programmingMixed-integer quadratic programming

EV charging/discharging model

Figure 1.3: Structure of the thesis

Hydroelectric Storage (PHS), Flywheel Energy Storage (FES), supercapacitors, lead-

acid batteries, and Li-ion batteries are discussed. After that, the application of EVs in

power grids based on V2G technology is reviewed.

Chapter 3 presents the mathematical models used in the thesis, including the

ESS model, EV charging and discharging model, EV information model, and DC-OPF

model. Then, three optimisation methods are introduced, which are MOO, stochastic

programming, and Rolling-Horizon Optimisation (RHO).

The general structure of this thesis is outlined in Figure 1.3. Three case studies are

discussed in Chapter 4, 5, and 6 based on the mathematical models and optimisation

techniques proposed in Chapter 3. The relationships and associations among the

chapters are explained as follows:
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Chapter 4 describes the economic inconsistency issue between the EV owners and

the EV aggregator in the Day-Ahead Market (DAM). The EV information model

as well as the EV charging and discharging model are involved in this chapter. A

scenario of the EV aggregator participation in DA energy and reserve markets for profit

maximisation is proposed and the economic inconsistency issue between aggregator

profit and EV owners’ charging fee is addressed. A rebate factor is introduced, which is

used to guarantee the owners’ benefits in participating in aggregator scheduling. MOO

method is utilised to balance the aggregator profit and owners’ charging fee. However,

the RT reserve market is not considered in this chapter.

Chapter 5 introduces an EV aggregator DA bidding strategy in attending the

DAM and RTM by considering reserve deployment. The economic inconsistency issue

examined in Chapter 4 is mitigated by using an owner–aggregator contract. The

uncertainty in the Reserve Deployment Requirements (RDR) announced by the grid is

formulated by various scenarios and probabilities. A stochastic programming method is

used in the model and achieves the maximisation of the expected aggregator profit.

Chapter 6 focuses on the cooperation between EV aggregators (demand side) and

generators (generation side) considering the interest of the grid (TSO in this chapter);

this is different from Chapter 5, which only discusses the bidding strategy only from

the aggregator viewpoint In order to reduce the computation complexity, a bi-level

strategy and an EV information grouping method are proposed in this chapter. The

relationship between two stakeholders—i.e., grid and EV aggregator—is examined by

clearly defining the responsibility of each stakeholder.

Chapter 7 draws the main conclusions of the thesis and discusses the potential

future work.

1.5 Summary

In this chapter, the background information of smart grids and the state of the art

of EVs is introduced. The challenges and motivations of this thesis are presented.
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After that, the objectives and contributions of this thesis are summarised. Finally, the

structure of the thesis and the relationships among the chapters are explained.
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Chapter 2

Review of ESS and EV Energy

Management in Power Grids

2.1 Introduction

ESS play a crucial role in modern power grids, owing to the integration of RESs.

The utilisation of ESS has become a necessary component in the solution of power

grid operation issues such as stability, power quality, and system balancing. In this

chapter, various ESS technologies are discussed based on their intrinsic characteristics,

including the working principle, application status, and future development prospects.

Furthermore, the advantages and disadvantages of ESS are evaluated from the perspective

of power grids. In particular, the integration of EVs in the power grid is reviewed. EV

energy management strategies are examined with respect to several aspects, such as

stakeholders, objectives, and optimisation methods. The effectiveness of EV energy

management in terms of power quality, peak load shaving, system balancing, and

frequency control is reviewed.

In recent years, faced by the growth in global electricity consumption, environmental

problems, and fossil fuel limitations, the penetration of RESs in the power generation

sector has been rapidly increasing, which has reduced the dependency on traditional
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sources and thus decreased waste gas and CO2 emissions. However, there are also

some disadvantages of RESs. One of the significant drawbacks of renewable sources

is intermittency. For example, solar and wind power are uncertain, varying, and

environmentally dependent. With a high penetration of renewable sources, various

economic and stability challenges of power grids may emerge, such as power generation

and consumption imbalance, as well as power quality and congestion management

problems.

Among solutions to solve a series of power grids problems, one of the effective and

promising approaches is to use ESS. ESS perform as an energy bank, which can convert

electrical energy from the power grid to a storable form of energy and convert the

stored energy back to electrical energy for the power grid when needed [18]. Different

types of ESS have different characteristics and thus perform differently to improve the

performance of power grids [19]. The main functions of ESS include:

• Load levelling: peak shaving and valley filling;

• Power quality improvement;

• Voltage and frequency control;

• Transmission congestion management;

In this thesis, a general review of ESS is given in Section 2.2, where the characteristics

of Battery Energy Storage Systems (BESS) is discussed. Then the application of EV

integration in power grids is discussed in Section 2.3, the EV energy management

strategies are reviewed in terms of different stakeholders’ interests.

2.2 Review of Energy Storage Systems

Various types of ESS can be categorised by several criteria from different viewpoints.

Generally, ESS can be grouped into three categories based on the discharge duration

and storage capacity. Figure 2.1 shows the category of typical ESS [20].

It can be seen from the figure that Compressed Air Energy Storage (CAES) and PHS

systems have the largest power and long discharging time, such that these two types of
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Figure 2.1: Discharging duration and capacity of energy storage systems [20]

ESS are suitable for bulk energy storage. BESS have relative shorter discharging time,

which can be used to support the grid. FES and supercapacitors have short discharging

time but very short response time, and thus they are suitable for improving power

quality.

Normally, the form of energy stored is the most widely used metric for ESS clas-

sification, based on which ESS can be classified into six categories: (1) mechanical,

(2) electrochemical, (3) chemical, (4) electrical, (5) thermal, and (6) hybrid. These

categories are shown in Figure 2.2 [21].

2.2.1 Energy Storage Systems in Power Grids

In the 21st century, global electric power systems are facing a dramatic revolution, owing

to the growth in load demand and the large integration of renewable sources. This

situation raises challenges for the security and flexibility of power systems. One of the

effective solutions of these issues is to use ESS, which can be utilised in each part of

power grids. Figure 2.3 shows that ESS can be used in each part of power grids.
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ESS in Power Generation

PHS and CAES units are referred to as bulk energy storage systems, which are particu-

larly suitable for energy management on the power generation side of the system at a

scale of over 100 MW. Because these two systems have long lifetimes and unlimited cycle

stability. PHS and CAES have good performance in balancing demand and supply, load

levelling, and spinning reserve, in cooperation with renewable energy sources [22]. In

many countries, PHS is integrated with wind power generation systems to form hybrid

ESS named wind hydro pumped storage systems.

Owing to the characteristics of large capacity, one of the drawbacks of PHS and

CAES systems is their negative impact on the environment. The construction of PHS

requires a large area of land. Moreover, PHS needs two large reservoirs and dams. Long

construction time (more than 10 years) and high initial construction cost (hundreds

to thousands of millions of dollars) are also two constraints on the wide application of

PHS.

Similarly, CAES has geographic and environmental constraints on its wide application.

In general cases, CAES is suitable for power plants near rock mines and salt caverns.
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ESS in Power Transmission

Traditional transmission systems operate in a single direction, where the electrical power

is delivered from power plants to customers. Owing to the penetration of DGs, the

transmission systems have become bidirectional [23], which requires cooperation with

ESS for the purpose of system stability. Supercapacitors, FES, and BESS are designed

to be installed in transmission and distribution systems, as they have the characteristics

of high power density and fast response speed.

Owing to the rapidly increasing load demand, transmission lines need to be upgraded

urgently. Especially during peak hours, the load demand is beyond the maximum

capacity of the transmission line. Long construction periods (normally 10 to 15 years)

[24] and high cost are the two main constraints on transmission line upgrades. Another

problem is that the peak demand lasts for a short time, such that during most of the

time, the transmission line capacity is not fully used, leading to a certain waste. In

light of these problems, ESS can be installed across the transmission line. ESS can be

charged during off-peak hours, and during peak hours, energy is sent directly to the

load, thus decreasing the transmission line congestion level [25].

ESS in Power Distribution

In distribution systems, BESS have the advantages of modularity, low space occupation,

movability, and easy construction. Lead-acid batteries and sodium batteries have a large

power rating and relatively long operation time. Such battery units in transmission and

distribution systems can be used for load peak shaving.

Li-ion batteries with a high power density and short response time would be especially

suitable for power system frequency regulation. BESS could control the real power and

thus regulate the frequency. BESS could also help to reduce the absolute value of the

area control error and improve the stability of the system [26]. Moreover, BESS could

cooperate with supercapacitors and work as hybrid ESS, which could satisfy various

system application requirements [27].
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2.2.2 Battery Energy Storage Systems

The first battery was invented around the 1800s in Italy, which consisted of zinc and

copper in a salt sink separated by cardboard. A battery stores electricity in the form of

chemical energy. Chemical reactions occur inside the battery and generate a flow of

electrons between two electrodes through the external circuit. If an external voltage is

applied across the two electrodes, the reaction is reversed and the battery is charged.

There are various types of battery systems, such as lead–acid batteries, nickel–

cadmium (NiCd) batteries, sodium–sulphur (NaS) batteries, sodium–nickel–chloride

(ZEBRA) batteries, and lithium-ion (Li-ion) batteries. The Li-ion battery system is a

new and developing technology which has huge potential in the future.

Lead-acid Battery

The lead-acid battery was invented by the French physicist Gaston Planté in 1859, and

it has the longest history among the secondary/rechargeable batteries.

The positive and negative electrodes of the lead-acid battery are composed of PbO2

and Pb, respectively, and the electrolyte solution is H2SO4. The redox reaction of the

lead-acid battery is shown in (2.1)–(2.3)

Pb + PbO2 + 4H+ + 2SO 2–
4
⇀↽ 2PbSO4 + 2H2O (2.1)

Oxidation at the anode (negative electrode):

Pb + SO 2–
4
⇀↽ PbSO4 + 2e– (2.2)

Reduction at the cathode (positive electrode):

PbO2 + SO 2–
4 + 4H+ + 2e– ⇀↽ PbSO4 + 2H2O (2.3)

As a widely used rechargeable battery with a long application history, the lead-

acid battery is installed all around the world, owing to its advantages of small daily
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self-discharge rate (<3%), fast response time, low cost, relatively high cycle efficiency

(63–90%), technical maturity, abundant materials and large-scale manufacturing. It

has been applied in the fields of communication, transportation, grid utility, renewable

energy smoothing and backup power supply, etc. [28]. The largest lead-acid BESS is

a 40-MWh system installed in Chino, California [18]. However, there are still some

drawbacks of lead-acid batteries, which limit their installation as utility-scale ESS, such

as low energy density (50–90 Wh/L), sensitivity to room temperature, relatively low

recycling counts (up to approximately 2000), and employed toxic materials [29].

Currently, several advanced lead-acid batteries have been developed, which have fast

response times close to those of FES and supercapacitors [30].

Lithium-ion Battery

The Li-ion battery was invented by Bell Labs in the 1960s and the first commercial

product was produced by Sony company in the 1990s. The Li-ion battery is a good

candidate for energy storage and EVs, as it has a short response time (approximately 20

ms), low dimensions (∼1500–10,000 W/L), and relatively high energy and power density

(∼75–200 Wh/kg, ∼150–2000 W/kg). In addition, it has relatively high conversion

efficiency of up to 97%. However, the Li-ion battery has the drawbacks of high cost

(>$600/kWh) and the cycle Depth of Discharge (DOD) impacts the battery lifetime

[18].

The structure of the Li-ion battery consists of a graphite carbon anode and lithiated

metal oxide (LiCoO2, LiNiO2, LiMn2O4, and LiFePO4) cathode. During the charging

period, Li atoms in the cathode become ions and migrate to the carbon anode. The

ions then combine with external electrons in the anode. During the discharging periods,

this process is reversed, and a chemical reaction occurs at the two electrodes, which

generates an electron flow in the external circuit. The electrochemical reaction inside

the Li-ion battery during operation is represented by (2.4)–(2.6):

C + LiXXO2
⇀↽ LinC + Li1–nXXO2 (2.4)
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Oxidation at the anode (negative electrode):

LiXXO2
⇀↽ Li1–nXXO2 + nLi+ + ne– (2.5)

Reduction at the cathode (positive electrode):

C + nLi+ + ne– ⇀↽ LinC (2.6)

Li-ion batteries have the characteristics of high power density and energy density, and

they are being widely developed for transportation and other small-scale applications.

Table 2.1 and Table 2.2 summarise the technical and economic characteristics of

different ESS.

2.3 EV Integration in Power Grids

The previous section discusses the categorisation and generally applications of ESS,

especially the working principle of BESS is introduced, i.e., lead-acid batteries and

Li-ion batteries. As discussed in Section 1.2, the security of power grid operations

is threatened by the large scale of EV integration. On the other hand, EV energy

management strategies could enable EVs to work as dynamic BESS. Owing to the

dynamic characteristics of EVs, the EV energy management is more challenging than

BESS. The following parts of this section review the EV energy management problem

in current research.

2.3.1 EV Types and Charging Levels

Three types of vehicles competed for market share at the beginning of the 20th century,

which are steam-powered engines, ICEs, and EVs [32]. Owing to the drawbacks of the

EVs such as relatively short driving range and long charging periods, ICEs began to

dominate the market. Nowadays, with the development of battery technology, EVs are

becoming popular again. Certain types of EVs in the existing market are shown in
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Table 2.3 in terms of charging power, battery capacity, and range [32].

Table 2.3: EV types and characteristics [32]

Model
Charging power

(kW)
Battery capacity

(kWh)
Range (miles)

Nissan Leaf 6.6 30 107
Tesla model S 10 100 315
Chevrolet Bolt 7.2 60 238
BYD e6 8 64 260

Typically, three charging levels are defined by the EV industry [33], and Table 2.4

summarises the three typical charging levels [34].

Table 2.4: EV charging standards [34]
Charging level Voltage and current Rated power Time required

Level 1 charging 220 V, 13 A 2.9 kW 6–7 h

Level 2 charging
220 V, 16 A 3.5 kW 4–5 h
220 V, 32 A 7.0 kW 2–3 h

Level 3 charging 400 A 50.0 kW 0.5 h

• Level 1 charging is referred to as normal charging, which has relatively low

charging power 220 V/13 A in most European countries, 230 V/13 A in the U.K.,

and 23 V/10 A in Switzerland. It usually uses a single-phase grounded outlet.

• Level 2 charging is normal charging, which has relatively high charging power.

This charging method is usually used at private or public outlets. Three-phase

distribution grids are used and the power ranges from 10 to 20 kW. It is reported

that most EV owners are expected to charge their EVs overnight at home, and

thus levels 1 and 2 are the primary charging options for owners.

• Level 3 charging is DC fast charging, under which EVs could be fully charged in

less than one hour. Owing to the charger size and cooling systems in the charger,

this type of charging usually uses external chargers. The charging power could

reach more than 50 kW. These systems are typically equipped at gas stations and

highway rest areas.

26



Chapter 2. Review of ESS and EV Energy Management in Power Grids

2.3.2 Vehicle-to-Grid Technology

The concept of V2G technology is defined as a system which could control the bidi-

rectional energy flow between an EV and the power grid [35], when the EV is parked.

Several entities are involved in the application of V2G, which include the grid (TSO

and DSO), aggregator, and owners. The grid broadcasts a signal and sends requests

to vehicles through a third-party aggregator. The aggregator determines the actual

charging and discharging of each EV. On one hand, the aggregator should meet the

owners’ requirements in EV management; on the other hand, the aggregator should

respond to the grid’s signals.

The following sections discuss the application of V2G from the grid perspective.

Frequency Regulation

Studies have indicated that EVs could operate as ESS and contribute to the frequency

regulation of the grid [36–39]. The DSO is responsible for keeping the distribution

network operating at a constant frequency (50 or 60 Hz, depending on the country).

With the cooperation of the charging and discharging of EVs to regulate the frequency,

the active power imbalance issues of the generation and consumption could be mitigated.

In frequency regulation, three types of control methods are defined by the Union

for the Coordination of Transmission of Electricity, which are primary, secondary, and

tertiary control [40]. When the DSO announces regulation up signals, EVs are required

to operate in discharging status. If regulation down is needed, EVs are required to

charge their batteries. It has been reported that EVs are most profitable under primary

control [41].

Spinning Reserve

Spinning reserve and regulation are regarded as ancillary services for the power grid. It

has been reported that ancillary services account for approximately $ 12 billion in the

U.S. annually (5–10% of electricity cost), with 80% of this from regulation [42].
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Spinning reserve capacity is sold in units MWh, where 1 MWh means that 1 MW of

reserve capacity is on stand-by for 1 h, and there is no actual energy produced. When

the reserve is called, the generator should deliver the actual energy. Compared with

regulation and reserve, the main difference is that regulation is called more often (400

times per day) with short duration (minutes at a time); in comparison, spinning reserve

is called less frequently and it has a relatively long duration (minutes to hours).

Renewable Energy Sources Integration

Nowadays, researchers are interested in the operation of V2G with RESs. Amongst

various RESs, wind power and solar power are potential solutions for GHG emission

reduction. Meanwhile, RESs have the characteristics of being climate-dependent and

highly stochastic [43]. EV aggregators acting as ESS have the advantages of no start-up

and shut-down cost and fast response speed in solving the intermittency issue of RES.

Tavakoli et al. [10] consider the cooperation between a wind source company and

EV aggregator. The results show that the EV aggregator could compensate wind power

deviations. A comparative study has been done on the impact of energy exchange

between a wind power generation company and EV aggregation for wind power deviation

compensation. Mohamed et al. [44] proposed a real-time management strategy for an

EV carpark with PV power systems. The model aim is to minimise the total charging

cost of EVs and the impacts of EV charging on the power grid. The results show that

the total feeder loss is reduced from 5.59% to 4.53%. Gao [45] presents V2G operation

in distribution systems with integrated wind sources. An EV charging strategy is

proposed for the aggregator to minimise the total operation cost of the grid and to

provide frequency regulation services.

2.3.3 EV Energy Management Strategies

Different types of EV energy management strategies can be classified into two categories

according to decision-making location. Decisions are made by a central operator

(aggregator) in centralised strategies and by individual EVs in decentralised strategies
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[46]. The concepts of centralised and decentralised control strategies are illustrated in

Figure 2.4.

(a) Centralised








(b) Decentralised

 






EV Aggregator Information flow

Figure 2.4: Centralised and decentralised strategies in EV energy management

Centralised strategies are utilised in commercial charging stations or carparks, where

chargers are owned by the charging stations and carparks, and decentralised strategies

are utilised by residential EV owners who own chargers by themselves.

Centralised Strategy

In centralised strategies, decisions are made by aggregators (at the system level), i.e. each

EV sends its information to the aggregator, and then the EV aggregator determines the

operation of the EVs over time. To form a scheduling strategy, the aggregator needs to

centralise relevant information: EV battery information, EV driving patterns, DR signals,

and power grid constraints. The aggregator directs and controls the charging/discharging

of EVs, as shown on the left side of Figure 2.4. Centralised scheduling strategies

include Linear Programming (LP) [10, 47–52], quadratic programming [53], dynamic

programming [54, 55], and stochastic programming [48, 56–58].

Centralised strategies can usually find the globally optimal solution and manage EV

stochastic behaviours well. However, centralised strategies rely on high communication
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infrastructure between the EVs and aggregator, and high computational complexity

is another problem with a large number of EVs. Moreover, maintaining EV end-user

privacy is a problem, because EV users need to share their private driving information

with the aggregator [46].

Decentralised Strategy

In decentralised strategies, the charging and discharging decisions are made by EVs

autonomously based on information provided by the grid, e.g. price signals. Then, each

EV scheduling result is submitted to the grid, individually. Normally, there are several

iterations between the grid and EVs until an agreement has been reached [46].

Decentralised strategies have no scalability or user privacy issues, and the EV

battery can be modelled in a detailed way based on decentralised strategies. However, a

detailed representation of the EV battery requires high local intelligence. Moreover, the

scheduling results of decentralised strategies cannot find the global optimal solution, as

the optimisation usually gets trapped at a local optimal solution.

Table 2.5 summarises the main advantages and drawbacks of centralised and decen-

tralised strategies.

Table 2.5: Advantages and disadvantages of centralised and decentralised methods
Advantage Disadvantage

Centralised

• Global optimal • Complex communication
infrastructure

• Network capacity • Privacy violations
• Optimisation complexity

Decentralised

• Less communication
infrastructure

• Uncertainty in the final results

• Protect privacy • Sub-optimal
• Less complexity
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2.3.4 Stakeholders’ Interests in EV Energy Management

Numerous previous studies of the EV energy management are mainly categorised based

on three stakeholders: EV owners, EV aggregator and the grid.

EV Owners

The EV owners are interested in minimising their charging fee for charging EVs, in

addition, the driving limits and degradation of EV battery are also two important factors

to be taken into consideration in EV energy management [59]. The smart charging

strategy of EVs in response to the RTP has been studied in [11, 60, 61] to minimise

the EV charging cost, including energy purchasing cost and the income of injecting

energy back to the grid. The authors in [62, 63] developed home energy management

systems structure, where household applications are scheduled in cooperation with EVs

to minimise the total energy consumption cost based on DR programmes. In addition,

the integration of DGs is considered. In [64], an accurate linear battery charging model

is formulated, where the real-life battery charging constraints are imposed. The results

demonstrated that the charging cost is reduced. Dynamic programming is used in [65] to

minimise the EV owners’ charging fee based on price signals without increasing battery

degradation. The authors of [51] considered EV charging in an unbalanced electrical

distribution system with distributed generation, to minimise the energy purchasing

cost of EVs. In [66], the battery degradation cost is involved in an EV charging and

discharging scheduling model. In the model, the degradation rate is related to the total

discharging energy, and thus an iterative Mixed-Integer Linear Programming (MILP)

algorithm is adopted. In addition, a sensitivity analysis of the charging and discharging

strategy is carried out in terms of the discharging reward, charging period, and battery

capital cost. In [67], an online constrained optimisation algorithm is proposed to

minimise EV owners’ charging fee, the power generation limits of the AC grid and power

flow issues are considered in the EV energy management problem.

The common issue in these studies is that the relationship between EV owners with

other stakeholders are ignored. In this thesis, the economic relationship between EV
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owners with EV aggregator is discussed in details in chapter 4, and an owner-aggregator

contract is designed in chapter 5.

EV Aggregator

The research on the EV aggregator profit maximisation problem has been widely studied.

In [68], the authors used a stochastic programming approach to examine the impact

of different DR programs on EV parking lot profit. The results demonstrated that by

participating in a selected combination of DR programmes, the parking lot profit can

be significantly increased. Several studies have addressed the EV aggregator or ESS

bidding strategy in electricity markets (regulation and reserve markets) [69, 70]. In

[71], an aggregator providing ancillary services to the power grid is proposed. A robust

algorithm is applied in the model by considering the uncertainty in energy and reserve

prices based on LP. Furthermore, a battery degradation cost model is presented. The

results showed that the aggregator revenue can be increased by 7.8% with the aid of ESS.

In [72], ESS providing frequency regulation to power grids in cooperation with wind

power is analysed. A real-time cooperative strategy of the ESS is proposed to maximise

the profit in both energy and reserve markets. In this study, the optimal bidding of the

ESS is implemented by assuming that all parameters are known in advance without

uncertainty. Reference [73] considered the EV aggregator bidding strategy in both

energy and reserve markets. In this study, the acceptance of the EV owners in providing

reserve is modelled; however, the RT reserve deployment in impacting DA bidding is

not well discussed. A two-stage stochastic programming model is proposed in [56] to

minimise the net expected energy cost of the aggregator. The price deviation in the first

stage (DAM) and several possible EV parking scenarios in the second stage (RTM) are

considered in the model. However, the uncertainty in the reserve capacity deployment

requirements at different times from the grid perspective is not considered. In [74, 75],

the authors used a Robust Optimisation (RO) method to formulate the uncertainty in

the prices, but the uncertainty in the grid’s requirements is neglected. Kazemi et al. [76]

addressed the uncertainty of ancillary services based on a RO method. It is assumed
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that the ESS should deploy reserve in the RTM based on the RDR from the grid, and

the uncertainty in the amount of the RDR is considered in the model. However, the

authors only considered the amount of the RDR, and the impacts of the reserve being

required to deploy at different times on the aggregator bidding and profit are neglected.

The common issue in these studies is that the uncertainty of reserve deployment

requirements in terms of time and amount are not considered. In this thesis, the impact

of the uncertainty of the RTM in DA bidding is taken into account, and the aggregator

bidding strategy in the DAM is presented in chapter 5.

Grid

Considering the grid interest, EVs are regarded as ESS to provide ancillary services to

the grid. In [45, 77, 78], the EVs charging and discharging behaviours are scheduled

from the viewpoint of power grids to reduce the total operating cost or ensure the power

grids stability by reducing power fluctuation level. The power grids constraints such as

total load limits, voltage drop and phase balances are involved in these models. The

cooperative EVs charging with power grids and transportation networks have been

widely investigated [79]. The authors in [80] proposed a stochastic security constrained

unit commitment model coupled with a traffic model, which jointly consider the EVs

charging impact to both power grids and the traffic network. In [81], an EV charging

station planning scheme is proposed by coupling transportation network and distribution

network. A spatial-temporal model is built in [82] to investigate the optimisation of

EVs in distribution systems, where the mobility of EVs in the transportation network

is considered. Lian et al. [83] optimised the operation of ESS in response to frequency

regulation signals from the grid. An economic analysis is performed based on the battery

lifetime (degradation cost) and the U.K. frequency regulation market. A hierarchical

framework of EV charging is proposed in [84] to minimise the system peak loads at

the provincial and city levels. The interrelationship between various levels is identified

in terms of energy transactions and information exchange. In [52], Micro Grid (MG)

energy management systems were built involving household load, EVs, and renewable
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sources. The model aimed to minimise the economic cost of energy exchange between

the MG and the main grid.

Moreover, some researchers used MOO methods to address the trade-off between EV

owners and the grid. Crow et al. [85] applied an augmented ε-constraint-based MOO

method to tackle the conflict between owners and systems operator in economically

charging and maintaining system load profiles. The battery degradation cost minimisa-

tion is considered in the model. In [86], the operation strategy of MGs involving PV

and EVs is presented. The ε-constraint method followed by fuzzy decision-making is

applied to jointly minimise the operation cost of EVs and voltage deviation.

The common issue in these studies is that several objectives are involved in one

objective function, but the responsibility of each stakeholder is not clearly defined. A

bi-level strategy is proposed in chapter 6, which clearly defines the responsibility of the

TSO and EV aggregator.

Table 2.6 and 2.7 summarise the related works and the proposed work based on five

aspects: stakeholder viewpoint, objective and optimisation algorithm.

Summary

A general summary can be made that previous studies mainly focus on the optimal

operation of EV charging and discharging from the viewpoint of different stakeholders:

EV owners, aggregator and the grid. However, there has been little work reported on

investigating the relationship between these stakeholders from the perspective of the

economic benefits. Because EVs belong to each EV owner, the economic benefits of each

EV owner is an important part of the economic interactions among the stakeholders.

Therefore, it is not practical to consider the energy and information interactions from

the viewpoint of a single stakeholder.
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Chapter 2. Review of ESS and EV Energy Management in Power Grids

2.4 Summary

In this chapter, different ESS including their characteristics, current status, and ap-

plications have been reviewed, and ESS will play a vital rule in future power grids.

The utilisation of ESS in power grids is analysed from the viewpoints of generation,

transmission, and distribution. The utilisation of various types of ESS is necessary,

owing to the large penetration of renewable energy and distributed generation.

In addition, the application of EVs as dynamic ESS in power grids is reviewed. The

EV energy management problem is reviewed in terms of centralised and decentralised

strategies. Finally, EV energy management is reviewed according to three stakeholders

in smart grids, i.e. the owners, aggregator and grid.
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Chapter 3

Mathematical Modelling and

Optimisation Techniques

3.1 Introduction

In this chapter, the mathematical modelling and optimisation techniques are introduced.

Four models are presented in this chapter, which include the ESS, single EV, EV

information, and DC-OPF models. Two programming methods are introduced in

Section 3.2. In Section 3.3, the charging and discharging model of a Li-ion battery is

formulated by taking charging power limits and SOC limits into account. The dynamic

charging characteristics of the Li-ion battery are also involved in the model. After that,

in Section 3.4, a single EV charging and discharging model is built based on the ESS

model in Section 3.3. To involve the EV driving requirements in the EV charging and

discharging modelling, the EV information model is introduced in Section 3.5. In order

to enable EV participation in power grid operation, a transmission network is modelled

in Section 3.6, based on the DC-OPF model.

To achieve the optimisation of these models, three optimisation techniques are

utilised, namely MOO, stochastic programming, and RHO. Section 3.7 introduces two

methods: WSM and ε-constraint method. Then, two optimisation methods, which
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could be used to address uncertainties, are presented in Section 3.8 and 3.9. Stochastic

programming method is introduced in Section 3.8, which formulates the uncertainty

as several scenarios and involves the probability of each scenario in the optimisation.

Section 3.9 discusses the RHO method, which is an iterative, online optimisation method.

The optimisation results are fixed and updated in each iteration.

3.2 Programming Methods

Mixed-Integer Linear Programming

MILP is a mathematical optimisation method of a linear objective function, subject to

linear equality and linear inequality constraints, and some variables are restricted to

integers. The MILP problem can be formulated as follow:

Minimise cTx

subject to Ax ≤ b

xi ∈ Z ∀i ∈ I

(3.1)

where x is the vector of variables to be optimised; c and b are vectors; and A is a

matrix. I is a nonempty subset.

MILP is suitable for the modelling of the ESS and EV, because the charging status,

discharging status and idling status can be represented by integer (binary) variables

and the charging/discharging power can be represented by continuous variables.

Mixed-Integer Quadratic Programming

As a special type of mathematical programming problem, Mixed-Integer Quadratic

Programming (MIQP) is a type of nonlinear programming. In MIQP, the objective

function is to optimise a quadratic function, subject to linear constraints, with some
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integer variables. The MIQP problem can be formulated as follow:

Minimise
1

2
xTQx + cTx

subject to Ax ≤ b

xi ∈ Z ∀i ∈ I

(3.2)

where Q is a real symmetric matrix.

MIQP is used to formulate the DC-OPF model, because the relationship between the

generation cost with the output power of generators can be represented by a quadratic

function, see Equation (3.38). The other models and optimisation techniques discussed

in this thesis are formulated based on MILP method.

In this thesis, MILP and MIQP methods are used for the modelling and optimisation.

The MILP and MIQP problems, including objective functions and constraints, are

modelled and solved by the intlinprog and quadprog solvers in MATLAB. The modelling

and optimisation are conducted on a PC with Intel Core i5 CPU, 3.20 GHz and 8.00

GB installed memory.

3.3 ESS Charging/Discharging Model

The concept of State of Charge (SOC) is used to measure the charge content of the

battery, which is a dimensionless number ranging from 0 to 1. The battery SOC at time

t is defined as

SOC(t) =
Qb +∆Q

Q0
=
Qb

Q0
+

1

Q0

∫ t

0
I(t)dt (3.3)

where Q0 and Qb stand for the total capacity and the amount of charge at the initial

time of the battery (with unit Ah). I(t) denotes the charging current of the battery at

time t.
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The discretised form of Equation (3.3) is shown in Equation (3.4)

SOCt =
Qb

Q0
+

∑t
1 It∆t

Q0

= SOCb +

∑t
1 ItVb∆t

Q0Vb

= SOCb +

∑t
1 pt∆t

E0

(3.4)

where SOCb is the battery SOC at the initial time, E0 is the energy capacity of the

battery, Vb is the battery voltage, pt stands for the power flow into or out of (charging

or discharging power) the battery at time t, and ∆T is the time interval.

For a typical ESS charging/discharging scheduling problem, the objective function

is defined to minimise the total cost among times from 1 to M , which consists of two

parts: 1) charging cost and discharging income Jess
1 and 2) battery degradation cost

Jess
2 . The objective function is shown in (3.5a)

Minimise Jess
1 + Jess

2 (3.5a)

Jess
1 =

M∑
t=1

(r+
t p

+
t − r

−
t p
−
t )∆T (3.5b)

Jess
2 =

M∑
t=1

Dess(p+
t + p−t )∆T (3.5c)

where r+
t and r−t are the charging and discharging RTP at time t, p+

t and p−t are the

variables of charging and discharging power of the ESS at time t, and Dess represents

the degradation rate of the ESS.

3.3.1 Constant Maximum Charging Power Constraint

Constraints (3.6) and (3.7) ensure that, at each time t, the charging and discharging

operations of the ESS p+
t and p−t are limited between zero and the maximum charging

and discharging power

0 ≤ p+
t ≤ P

ess
i+t ∀t (3.6)
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0 ≤ p−t ≤ P
ess
i−t ∀t (3.7)

where it is assumed that the ESS have the same maximum charging and discharging

power, and the maximum power is assumed as a constant value P
ess

.

Constraint (3.8) prevents from the ESS charging and discharging simultaneously,

i+t + i−t ≤ 1 ∀t (3.8)

where i+t and i−t are both binary variables.

The relationship between the charging/discharging power of ESS with the battery

SOC is described in (3.9) and (3.10)

SOCess
t = SOCess

t−1 +
(p+

t − p
−
t )∆T

Eess
∀t, t 6 = 1 (3.9)

SOCess
t = SOCb +

(p+
t − p

−
t )∆T

Eess
t = 1 (3.10)

Considering the battery capacity of the ESS, constraint (3.11) is used to prevent

the battery from over charging or discharging

SOC ≤ SOCess
t ≤ SOC ∀t (3.11)

where SOC and SOC stand for the upper and lower bound of the battery SOC, respec-

tively.

Considering the ESS operation on the next day, constraint (3.12) guarantees that

the battery SOC of the ESS at the end of the time (t = M) is not less than a specific

value SOCe:

SOCess
t ≥ SOCe t = M (3.12)

3.3.2 Linear CC-CV Maximum Charging Power Constraint

In Section 3.3.1, the maximum charging power is assumed as a constant value, as shown

in constraint (3.6). A more accurate linear Constant Current-Constant Voltage (CC-CV)
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battery charging model is presented in this section, where the relationship between the

maximum charging power and the SOC is represented in Figure 3.1.

SOC

P

0 1cccvSOC

CC phase CV phase

Figure 3.1: Linear CC-CV maximum charging power limits

It can be seen from the figure that the battery charging process consists of two

parts: the CC phase and CV phase. In the CC phase, when the SOC is less than

SOCcccv (0 ≤ SOC < SOCcccv), the maximum charging power is assumed as a constant

value, denoted by P . In the CV phase, when SOCcccv ≤ SOC ≤ 1, the maximum

charging decreases linearly from P to 0 as the SOC increases from SOCcccv to 1. The

mathematical representation of the liner CC-CV battery charging model is shown in

Equations (3.13) and (3.14):

0 ≤ p+
t ≤ P

ess
i+t ∀t (3.13)

0 ≤ p+
t ≤ P

ess 1− SOCess
t

1− SOCcccv
i+t ∀t (3.14)

where SOCcccv represents the battery SOC at which the CC phase switches to the CV

phase.

3.3.3 Dynamic Maximum Charging Power versus SOC Constraint

Detailed battery maximum charging power constraints are presented in this section.

Figure 3.2 shows the piecewise linearised relationship between the maximum charging

power and the SOC under normal charging mode. In the CC phase, the charging current
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SOC

P

1R 2R 3R 4R

1F
2F

3F

4F

Figure 3.2: Piecewise linear approximation of the maximum charging power

is maintained at a constant value and the charging voltage increases gradually with the

SOC. As a result, the maximum charging power slowly increases. In the CV phase, the

charging voltage is maintained at a constant value and the charging current decreases.

Thus, the charging power decreases as the SOC increases.

Figure 3.2 indicates that the nonlinear function is approximated by three segments.

Therefore, the dynamic maximum charging power is modelled as follows:

0 ≤ p+
t ≤

(
Fs+1 − Fs

Rs+1 −Rs
SOCess

t−1 +
FsRs+1

Rs+1 −Rs

)
i+t ∀t, t 6 = 1, s (3.15)

0 ≤ p+
t ≤

(
Fs+1 − Fs

Rs+1 −Rs
SOCb +

FsRs+1

Rs+1 −Rs

)
i+t t = 1,∀s (3.16)

Equation (3.15) divides the battery SOC into S − 1 segments, where S is the number of

the red breakpoints in Figure 3.2.

Because there are multiplication terms in (3.15) and (3.16), these two constraints

can be linearised based on the big-M method as follows:

0 ≤ p+
t ≤

Fs+1 − Fs

Rs+1 −Rs
SOCess

t−1 +
FsRs+1

Rs+1 −Rs
∀t, t 6 = 1, s (3.17)

0 ≤ p+
t ≤

Fs+1 − Fs

Rs+1 −Rs
SOCb +

FsRs+1

Rs+1 −Rs
t = 1,∀s (3.18)

0 ≤ p+
t ≤ Mbigi

+
t ∀t (3.19)
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where Mbig is a sufficiently large constant value. The big-M method works as follow:

• When i+t = 0, according to constraint (3.19), p+
t is forced to zero, and the ESS

operate in discharging status or idling status.

• When i+t = 1, constraint (3.19) is relaxed, such that constraints (3.15) and (3.16)

are equivalent to (3.17) and (3.18). Under this circumstance, the ESS operate in

charging status, and the charging power p+
t is limited by constraints (3.17) and

(3.18).

3.4 Single EV Charging/Discharging Model

As a type of dynamic ESS, EVs could operate in V2G mode to minimise the charging

fee while satisfying EV owners’ driving requirements. The optimisation model of EVs is

similar to the ESS model represented in Section 3.3. The optimisation model of a single

EV is given as follows.

The objective function of EV n shown in (3.20a) has the same format as the ESS

model, i.e. minimise the charging fee including the charging and discharging cost Jev
n,1

and the battery degradation cost Jev
n,2:

Minimise Jev
n,1 + Jev

n,2 (3.20a)

Jev
n,1 =

M∑
t=1

(
r+
t p

+
n,t − r

−
t p
−
n,t

)
∆T (3.20b)

Jev
n,2 =

M∑
t=1

Dev
(
p+
n,t + p−n,t

)
∆T (3.20c)

where p+
n,t and p−n,t denote the charging and discharging variables of EV n at time t and

Dev
n is the degradation rate of the EV battery.

The EV scheduling constraints are illustrated in Figure 3.3, and the mathematical

formulations of these constraints are given in Equations (3.21)-(3.31).

Equations (3.21) and (3.22) mean that EV n can only be scheduled during the
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Arrival time Departure time

Available timeOff the grid Off the grid

SOC

0

SOC

a
nSOC

d
nSOC

Time

SOC

Figure 3.3: Single EV charging/discharging scheduling constraints

available time (tan ≤ t < tdn). The charging and discharging variables are forced to be

zero when EV n is off the grid (t < tan or t ≥ tdn).

i+n,t =


0 1 ≤ t < tan

{0, 1} tan,t ≤ t < tdn

0 tdn ≤ t ≤M

(3.21)

i−n,t =


0 1 ≤ t < tan

{0, 1} tan,t ≤ t < tdn

0 tdn ≤ t ≤M

(3.22)

i+n,t + i−n,t ≤ 1 ∀t (3.23)

where i+n,t and i−n,t are binary variables, which indicate whether the EV n is in the

charging status, discharging status, or idling status.

The dynamic maximum charging power limits are considered in the EV scheduling

problem. The linearised maximum charging power limits are formulated in constraints
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(3.24)-(3.26):

0 ≤ p+
n,t ≤

Fs+1 − Fs

Rs+1 −Rs
SOCn,t−1 +

Rs+1Fs

Rs+1 −Rs
∀s, t, t 6 = tan (3.24)

0 ≤ p+
n,t ≤

Fs+1 − Fs

Rs+1 −Rs
SOCa

n +
Rs+1Fs

Rs+1 −Rs
∀s, t = tan (3.25)

0 ≤ p+
n,t ≤ Mbigi

+
n,t ∀t (3.26)

0 ≤ p−n,t ≤ P
ev
n i
−
n,t ∀t (3.27)

The relationship between the charging/discharging power and the SOC of the EV n

during the available time is formulated in (3.28) and (3.29):

SOCn,t = SOCn,t−1 +

(
p+
n,t − p

−
n,t

)
∆T

Eev
n

tan,t < t < tdn (3.28)

SOCn,t = SOCa
n +

(
p+
n,t − p

−
n,t

)
∆T

Eev
n

t = tan (3.29)

Equation (3.30) indicates that the battery SOC is not taken into account (assumed

to be zero) when EV is off the grid, and the battery SOC is bounded by SOC and SOC

during available time (connected to the grid):

SOCn,t =


0 t < tan[
SOC,SOC

]
tan ≤ t ≤ tdn

0 t > tdn

(3.30)

To ensure the next day’s driving requirements of EV owner n are satisfied, constraint

(3.31) guarantees the EV battery SOC at the departure time is not less than the target

value SOCd
n:

SOCt ≥ SOCd
n t = tdn (3.31)
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3.5 EV Information Model

The Truncated Gaussian Distribution (TGD) has been widely used to model EV

transportation behaviours [68, 78, 80]. To model EV transportation behaviours, it is

assumed that the arrival time (tan), departure time (tdn), and battery SOC at arrival

time (initial SOC, SOCa
n) follow TGDs.

Equations (3.32)–(3.34) are used to generate the arrival/departure time and the

initial SOC of the EV n,

tan = f(x) = fTG

(
x;µa, σ

2
a,
(
ta,min
n , ta,max

n

))
∀n (3.32)

tdn = f(x) = fTG

(
x;µd, σ

2
d,
(
td,min
n , td,max

n

))
∀n (3.33)

SOCa
n = f(x) = fTG

(
x;µsoc, σ

2
soc,
(
SOCa,min

n , SOCa,max
n

))
∀n (3.34)

where fTG denotes the TGD. The mean value and the variances of the random variable

are represented by µ and σ2, respectively. ta,min
n and ta,max

n represent the minimum

and maximum arrival time. td,min
n and td,max

n represent the minimum and maximum

departure time. SOCa,min
n and SOCa,max

n represent the minimum and maximum initial

SOC.

Equation (3.35) guarantees the generated EV information is logical. That is, the

departure time should be later than the arrival time:

tdn > tan ∀n (3.35)

In addition, the generated EV information should be enough for the EV to be

charged to the target SOC during parking time:

SOCa
n +

P
ev
n

(
tdn − tan

)
Eev

n

≥ SOCd
n ∀n (3.36)

If the target SOC is not met, the EV may adopt as-fast-as-it-can mode, which means
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the EV should operate in charging status until the departure time. This kind of EVs

are not considered in this thesis, because these EVs have no flexibility and can not be

scheduled.

3.6 DC-Optimal Power Flow Model

The OPF is a classic nonlinear optimisation problem, that determines the best operating

level of generators or the minimal power losses in power grids to meet the load demand,

subject to physical constraints [96, 97]. The concept of DC-OPF is originally from the

1960s and it denotes the linearised form of AC-OPF [98], where the reactive power and

sinus terms are not considered in the DC-OPF.

In the DC-OPF model, the objective function is usually defined as the minimisation

of the total generation cost of all generators in the power grid. The optimisation is

subject to the power network constraints and the equipment operation limits. The

objective function of the DC-OPF model is written as:

Minimise
∑
i∈G

f
(
pG
i

)
(3.37)

which is the summation of all generators costs in the system, and the generation cost of

the generator at bus i is calculated based on Equation (3.38):

f
(
pG
i

)
= aip

G
i

2
+ bip

G
i + ci ∀i ∈ G (3.38)

where pG
i represents the output power of the generator at bus i.

The generation limit constraint of the generator is formulated in (3.39):

PG
i ≤ pG

i ≤ P
G
i ∀i ∈ G (3.39)

where PG
i and P

G
i are the minimum and maximum generation limits of the generator

at bus i, respectively.
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The equality constraint (3.40) stands for the power balance of the system, which

means that at each bus i, the total generation minus the power flow from bus i to

another bus j equals to the load demand:

pG
i −

∑
i,j

PT
i,j = PL

i ∀i (3.40)

where PT
i,j stands for the real power flow on the transmission line from bus i to bus j

and PL
i denotes the load demand at bus i.

To avoid the transmission line overloading, constraint (3.41) represents that the

power capacity is limited by the transmission line capacity:

−FT
i,j ≤ PT

i,j ≤ FT
i,j ∀i (3.41)

where FT
i,j stands for the capacity of the transmission line between bus i and j.

As mentioned before, the DC-OPF model is a linear approximation of the AC-

OPF model. To achieve the approximation, the small-angle approximation and other

relaxation methods are applied [96, 99]. In order to determine the real power flow on

the transmission line PT
i,j , three assumptions are made in the DC-OPF:

• The shunt conductance of the transmission line is negligible.

• The ohmic resistance of the transmission line is much smaller than the reactance;

therefore, the resistance can be ignored.

• The voltage at each bus is assumed as Vi = Vj = 1 p.u., and the voltage angle

sin θ is small enough, so that sin θ ≈ θ.

Based on these assumptions, the real power flow on the transmission line between

bus i and bus j is simplified as in Equation (3.42):

PT
i,j = −sin (θj − θi)

Xi,j
≈ θi − θj

Xi,j
(3.42)
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Thus, the power flow in branch i, j can be represented by the voltage angles in busses i

and j (details deductions steps can be found in reference [100]).

Finally, the power balance constraint and the transmission line capacity limits shown

in Equations (3.40) and (3.41) are linearised, and the linearised constraints are written

as follows:

pG
i −

∑
i,j

θi − θj
Xi,j

= PL
i ∀i (3.43)

−Fi,j ≤
θi − θj
Xi,j

≤ Fi,j ∀i (3.44)

3.7 Multi-Objective Optimisation

MOO is an area of multiple-criteria decision-making method, which involves more than

one objective function to be optimised (maximised or minimised), subject to a set of

constraints. In MOO, the multiple objectives do not coincide, which means that an

optimal solution for one objective is sub-optimal for another. Unlike single-objective

optimisation, MOO provides a set of solutions which reflects the trade-off between

different objectives. Thus, from the viewpoint of the decision-maker, MOO provides a

better understanding of the system. MOO has been applied in many fields in engineering

and the sciences. For example, in the transportation sector, the designer needs to balance

the trade-off of two objectives by maximising the performance while minimising the

energy and emission of the vehicle.

The general MOO problem is expressed in (3.45), which has L objective functions:

Minimise F (X) = [f1 (X) , f2 (X) ,· · · , fL (X)]

subject to gj (X) ≥ 0 j = 1, 2,· · · , J

hk (X) = 0 k = 1, 2,· · · ,K

with X = [x1, x2,· · · , xi,· · · , xI ]

xi ≤ xi ≤ xi i = 1, 2,· · · , I

(3.45)
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where F represents the objective functions, X is an I-dimensional vector representing the

decision variables, and the variables are bounded by xi and xi. There are J inequality

constraints and K equality constraints in this MOO problem.

In contrast with single-objective optimisation problems, there is no unique optimal

solution for MOO problems. Instead, there is a set of acceptable trade-off optimal

solutions: a Pareto front [101]. Figure 3.4 illustrates the concept of the Pareto front of

the bi-objective optimisation problem f1 (X) and f2 (X) (both for minimisation). As

1f

2f

Pareto front

2 2( ) ( )f f2 1X X

1 1( ) ( )f f2 1X X
1X

2X


     1 2min min ,F f f   X X X

Feasible region 

Figure 3.4: Pareto front of a bi-objective optimisation problem (both minimisation)

shown in Figure 3.4, the green area represents the feasible region Γ of the bi-objective

optimisation problem and the red curve represents the Pareto front. Any point in

the Pareto front is considered as Pareto optimal, where Pareto optimal is defined as

follows:

Definition 3.7.1. A point X1 ∈ Γ is Pareto optimal if and only if there does not exist

another point X2 ∈ Γ such that fl(X2) ≤ fl(X1) for all l and fl(X2) < fl(X1) for at

least one l [102].
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3.7.1 Weighted Sum Method

The most common approach to solve a MOO problem is the WSM. The WSM assigns a

weight wl to each objective function and minimises the sum of all objective functions

with weights, i.e.,
∑L

l=1wlfl(X), subject to the optimisation constraints.

The general mathematical formulation of the WSM is shown in (3.46):

Minimise F (X) =

L∑
l=1

wlfl (X)

subject to gj (X) ≥ 0 j = 1, 2,· · · , J

hk (X) = 0 k = 1, 2,· · · ,K

with X = [x1, x2,· · · , xi,· · · , xI ]

xi ≤ xi ≤ xi i = 1, 2,· · · , I
L∑
l=1

wl = 1

0 ≤ wl ≤ 1 ∀l

(3.46)

where wl is the weight of the objective function fl (X). The value of each weight is

defined before the optimisation and it is chosen in proportion to the relative importance

of the objective. The value of weights ranges from 0 to 1 and the total sum of all weights

equal to 1.

The advantages of the WSM are simple and straightforward; however, it also has

some disadvantages. First, the value of weights are difficult to choose without prior

information. Second, it is impossible to obtain the Pareto front if the MOO problem

is non-convex. Figure 3.5 illustrates the feasible region and the Pareto front of a

non-convex bi-objective optimisation problem. It can be seen from the figure that, the

Pareto front between F (X1) and F (X2) is not accessible using the WSM.
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1f

2f

Pareto front
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Figure 3.5: WSM for a non-convex bi-objective optimisation problem

3.7.2 ε-Constraint Method

Another common approach to solve MOO problems is the ε-constraint method. This

method is designed to optimise the primary objective (single objective function) while

treating other objective functions in the form of inequality constraints. The parameter

εl is utilised to set the bound of the inequality constraints, which indicates the worst

value that fl (X) can take. The mathematical formulation of the ε-constraint method is

given in (3.47):

Minimise fl′ (X) ∀l′ ∈ {1, 2,· · · , L}

subject to fl (X) ≤ εl ∀l, l 6 = l
′

gj (X) ≥ 0 j = 1, 2,· · · , J

hk (X) = 0 k = 1, 2,· · · ,K

with X = [x1, x2,· · · , xi,· · · , xI ]

xi ≤ xi ≤ xi i = 1, 2,· · · , I

(3.47)

where fl′ (X) is the primary objective function, which must be optimised.

The ε-constraint method overcomes the disadvantage of the WSM; it is able to

identify the Pareto front even though the MOO problem is non-convex. An example
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is given in Figure 3.6. In this bi-objective optimisation problem, f1 (X) is chosen as

1f

2f

Pareto front

2,1 2,2

Feasible region 

     1 2min min ,F f f   X X X

Figure 3.6: ε-constraint method for a non-convex bi-objective optimisation problem

the primary objective function and f2 (X) is treated as constraint, i.e. f2 (X) ≤ ε2. By

setting different value of ε2 (ε2,1 and ε2,2 in the figure), the Pareto front is obtained.

The advantage of the ε-constraint method is clear; this method is applicable to

either convex or non-convex MOO problems. However, one issue of this method is that

there is no feasible solution for some values of εl, e.g., if εl is too small, there may be

no feasible solution.

3.8 Stochastic Programming

Stochastic programming is an optimisation approach that involves uncertainty. In the

deterministic optimisation problem, all parameters are assumed to be known without

uncertainty. However, real-world problems usually include some unknown parameters,

and the optimisation problem can be solved by using RO when the parameters are known

within certain bounds. Stochastic programming takes advantage of the probability

distributions of the unknown parameters, and minimises/maximises the expectation of

the objective function. Stochastic programming has been applied in broad areas.
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The most common stochastic programming problem is two-stage stochastic program-

ming, the general mathematical formulation of which is given in (3.48):

Minimise cTx+ E [Q (x, ξ)]

subject to Ax ≤ b

x ≥ 0

(3.48)

where the Q (x, ξ) is an objective function as follows:

Minimise Q (x, ξ) = d(ξ)Ty

subject to T (ξ)x+W (ξ)y ≤ h(ξ)

y ≥ 0

(3.49)

In (3.48), the objective function consists of two parts: the first-stage cost cTx plus the

expected cost in the second stage E [Q (x, ξ)]. In the first stage, x is the here-and-now

variable which should be determined before the realisation of the uncertain data ξ. In

the second stage, y is the wait-and-see variable, and y can be optimised only after the

uncertain data ξ is realised.

Generally, the uncertain data ξ is described by a finite number of scenarios Ω and

the probability of each scenario is written as πω, ∀ω = {1, 2,· · · , Ω}. The concept of the

probability of each scenario is illustrated in Figure 3.7.

Here-and-now
 variables

Probability
Wait-and-see 

variables

1

2



2y

1y

y


x

Figure 3.7: Two-stage stochastic programming
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After that, the expected cost in the second stage is written as:

E [Q (x, ξ)] =

Ω∑
ω=1

πωd
T
ωyω (3.50)

Finally, the two-stage stochastic programming problem can be represented by a linear

deterministic equivalent problem with a finite number of scenarios. The mathematical

formulation of the linear deterministic equivalent problem is given in (3.51):

Minimise cTx+
Ω∑
ω=1

πωd
T
ω yω

Subject to Ax ≤ b

T ωx+Wωyω ≤ hω, ∀ω

x ≥ 0

yω ≥ 0 ∀ω

(3.51)

3.9 Rolling-Horizon Optimisation

To take the uncertainty into consideration, an Model Predictive Control (MPC)-based

RHO method is introduced in this section. The RHO method solves a deterministic

optimisation problem iteratively by advancing the optimisation horizon. At time t, the

RHO optimises the objective function subject to constraints in terms of the predicted

system information in the range [t, t+H], where H is the optimisation horizon. Owing

to the uncertainty of the predicted information, only the first step of the optimisation

result is implemented, and the system states are updated. After that, the RHO repeats

the optimisation from a new state, i.e. from t+1 to t+H+1, and the system information

must be re-predicted. The prediction horizon keeps advancing; thus, the RHO is also

known as Receding-Horizon Optimisation. The RHO method has been applied in

several areas and it has shown good performance in managing uncertainties. However,

the RHO method cannot achieve the globally optimal solution. Figure 3.8 illustrates

the concept of the RHO method.
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Time

Iteration 1

Iteration 2

Iteration 3

Iteration 4. . .

. . .
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Figure 3.8: Illustration of the rolling-horizon optimisation method

The iterative process of the RHO is given as follows:

1. Initialise the start time t0 = 1 (initial state of the system), prediction horizon H

and number of iteration times;

2. The RHO mathematical formulation between [t0, t0 +H] is given in (3.52):

Minimise f (xt0) +

t0+H∑
t=t0+1

f̂ (x̂t)

subject to gj (X) ≥ 0 j = 1, 2,· · · , J

hk (X) = 0 k = 1, 2,· · · ,K

xt0 ≥ 0

x̂t ≥ 0 t = t0 + 1,· · · , t0 +H

with X = [xt0 , x̂t0+1,· · · , x̂t0+H ]

(3.52)

3. Implement the optimisation result xt0 at the current time t0 and advance the
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optimisation horizon

t0 = t0 + 1 (3.53)

4. Start the next iteration: repeat step 2 until the end.

3.10 Summary

This chapter introduces several models, including the ESS charging/discharging model,

single EV charging/discharging model, EV information model, and DC-OPF model. The

relationship between the charging/discharging power and the power limits, battery SOC,

and dynamic characteristics of EVs are modelled in Section 3.3 and 3.4. EV driving

behaviours are modelled based on TGD in Section 3.5, which are used to simulate the

dynamic characteristics of EV fleets. A transmission power network model is built in

Section 3.6, which enables the integration of EVs into the grid.

Finally, three optimisation techniques are reviewed, namely MOO in Section 3.7,

stochastic programming in Section 3.8, and RHO in Section 3.9.
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Chapter 4

Stakeholders’ Interest

Inconsistency between EV

Owners and Aggregator

4.1 Introduction

In this chapter, the relationship between EV owners and EV aggregator is analysed

considering these two stakeholders’ interest, i.e., charging fee minimisation and profit

maximisation.

Multi-stage scheduling strategy is common in EV energy management for EV

aggregator profit maximisation. In [87], a two-stage scheduling strategy is proposed to

maximise EV parking deck revenue. A marginal electricity price is determined in the

first stage to maintain the parking deck revenue, and in the second stage a MPC-based

online method is used to accommodate the uncertainty in EV driving behaviours. In

[103], the authors concentrated on two objectives: maximising parking lot revenue and

maximising the number of EVs fulfilling their requirements in a two-layer (DA and

RT) parking lot recharging system. In [68], the objective function consists of several

terms to maximise the aggregator revenue, which include the income of selling energy
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to EV owners and the cost of purchasing energy from EV owners. However, it is not

reasonable to merge the EV owners’ benefits with the EV aggregator benefits in one

objective function, as the different stakeholders’ economic interests are not the same. In

[49], the authors jointly considered the EV aggregator and EV owner by involving EV

owner’s charging fee limit as the key constraint in aggregator scheduling. However, the

EV owner’s charging fee is a parameter and the rationale of providing this parameter

is not provided. In [104], a rebate factor is introduced in the model to encourage EV

owners to participate in the power grid operation. However, the value of the rebate

factor is not determined, and the charging fee of EV owners participating in the power

grid operation is not discussed (the EV owners’ economic interests are not evaluated).

In this thesis, a three-stage EV energy management strategy is introduced. The

proposed strategy aims to maximise the EV aggregator profit without sacrificing EV

owners’ economic benefits. In the first stage, the charging and discharging operations of

EVs are scheduled from EV owners’ viewpoint (self-scheduling), with the objective to

minimise the charging fee of each EV owner, including the charging/discharging cost

and battery degradation cost. The second stage of the strategy aims to maximise the

EV aggregator profit versus rebate values by taking EV owners’ economic benefits into

account. The third stage is to apply the optimal rebate value from the second stage in

the real-time scheduling strategy. Considering the uncertainty in EV owners’ driving

behaviours, an MPC-based RHO method is applied in the third stage. These three

stages are linked as follow: the first-stage scheduling results of EV owner charging cost

are involved as constraints in the second-stage scheduling; then, the optimal rebate

value is determined in the second-stage scheduling, which is applied in the third-stage

scheduling.

The main contributions of this case study are highlighted as follows:

• The economic relationship between EV owners and the aggregator is analysed by

the utilisation of MOO method; the Pareto optimal results is obtained based on

the WSM.
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• The economic inconsistency issue is considered, i.e. the economic interests of the

EV owners and EV aggregator are analysed and the economic inconsistency issue

between these two stakeholders is presented. Moreover, a sensitivity analysis of

the factors impacting the economic inconsistency is presented.

• To mediate the economic inconsistency issue between the aggregator and EV

owners, a rebate factor is introduced. The optimal rebate value is found in

the second-stage scheduling, which maximises the aggregator profit under the

condition that there is no charging fee increment for EV owners compared with

the results from the first-stage scheduling.

4.2 Three-Stage Scheduling Strategy

This section introduces a three-stage scheduling strategy. The first and second stages

are day-ahead strategies and the third stage is a real-time strategy. The concepts of

first and second stages are illustrated in Figure 4.1.

EV 1

EV 2

EV n

Second-
stage 

scheduling

First-stage 
scheduling

Reserve price

Aggregator profit

Each EV 
charging fee

Rebate to 
each EV

Each EV 
information

Day-ahead price

Power 
grid

Day-ahead 
price

Reserve up/
down service

.  .  .

Figure 4.1: A block-diagram illustration for First- and Second-stage scheduling strategy

In the first stage, the interaction between the EV owners and the grid is formulated.

A day-ahead scheduling strategy (self-scheduling strategy) is presented with the aim

to minimise each EV owner’s charging fee based on RTP. After that, the energy and
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reserve interactions among the EV owners, aggregator, and the grid are modelled in

the second stage, where the EV aggregator participates in both energy and reserve

markets. As a coordinator between the grid and EV owners, the EV aggregator obtains

EV information (arrival time, departure time, and initial SOC) and charging fee from

the EV owners. Then, the EV aggregator schedules all EVs’ charging and discharging

operations based on RTP and reserve up/down prices. At the same time, the reserve

up/down capacities of the aggregator are determined and submitted to the grid. Finally,

the aggregator gains profit from the grid.

The relationship between energy scheduling and the reserved energy is illustrated

in Figure 4.2. The figure shows a typical single EV under V2G mode during the

Upper bound 

SOC

Arrival time Departure time

Departure 

SOC

Initial SOC

Lower bound 

SOC

Minimum SOC

Reserved energy Energy scheduling  Reserved energy bound

Figure 4.2: Energy scheduling and corresponding reserved energy

available time; the reserved energy (in kWh) shows the ability of the EV to increase or

decrease the current consumption energy temporarily based on the requirements of the

grid. At each time, there are three corresponding modes for each single EV: operating

power (charging, discharging, or idling modes), reserve up capacity and reserve down

capacity. By evaluating reserve up and down capacities at each time, the flexibility

of the EV is determined. The EV aggregator submits reserve up and down capacities

with multiple EVs together to the grid and thus participates in the power grid reserve
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market. The system operator could call for reserve, that is reserve deployment, from

the EV aggregator and thus maintain the power grid stability.

Figure 4.3 shows the relationship between the operating power, reserve up capacity

and reserve down capacity without considering the battery SOC or EV owner driving

requirements. The reserve down capacity (in kW) is defined as the difference between

the maximum charging power and the current operation power and the reserve up

capacity (in kW) is the difference between maximum discharging power and the current

operation power.

Maximum charging power

 Charging/discharging power

Maximum discharging power

Maximum reserve down capacity

Maximum reserve up capacity

Figure 4.3: Relationship between charging/discharging power with reserve up/down
capacity (without SOC and driving constraints)

4.2.1 First Stage: EV Owners’ Scheduling Strategy

The first stage is to minimise the day-ahead charging fee of each EV owner under V2G,

based on RTP and day-ahead EV information. The EV owners’ charging fee consists of

three parts: 1) charging cost for purchasing energy from the grid, 2) discharging income

for selling energy back to the grid, and 3) corresponding battery degradation cost both

for charging and discharging. Because EV operations are independent of each other [87],

the objective function of each EV owner can be integrated as follows:

Minimise Jev
1 + Jev

2 (4.1a)

Jev
1 =

M∑
t=1

N∑
n=1

(
r+
t p

+,e
n,t − r

−
t p
−,e
n,t

)
∆T (4.1b)
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Jev
2 =

M∑
t=1

N∑
n=1

Dev
(
p+,e
n,t + p−,en,t

)
∆T (4.1c)

where Jev
1 is the charging cost/discharging income and Jev

2 is the corresponding battery

degradation cost. M is the total number of time intervals; N is the total number of EVs;

r+
t are r−t are purchasing and selling RTP information of owners obtained from power

grids at time t; p+,e
n and p−,en are continuous variables, which stand for the charging and

discharging powers of EV n, respectively. Dev is the degradation rate of the EV battery

with the unit $/kWh and ∆T is the time interval. To enhance the energy interactions

between EVs and the grid, EV owners will be rewarded for discharging according to a

feed-in-policy [66], that is r−t = r+
t + r̂, where r̂ is a positive real number representing

the V2G reward tariff in $/kWh to encourage EV owners to inject energy back to the

grid (discharge).

The availability of EVs is represented in (4.2) and (4.3), which indicate that the

charging and discharging powers of EVs can only be scheduled during available time

(after arrival and before departure).

p+,e
n,t =



0 1 ≤ t < ta,dn Before arrival(
0, P

ev
n i

+,e
n,t

]
ta,dn ≤ t < td,dn Charging

0 ta,dn ≤ t < td,dn Idling or discharging

0 td,dn ≤ t ≤M After departure

∀n, t (4.2)

p−,en,t =



0 1 ≤ t < ta,dn Before arrival(
0, P

ev
n i
−,e
n,t

]
ta,dn ≤ t < td,dn Discharging

0 ta,dn ≤ t < td,dd,n Idling or charging

0 td,dn ≤ t ≤M After departure

∀n, t (4.3)

where i+,e
n,t and i−,en,t are binary variables representing the charging (i+,e

n,t =1, i−,en,t =0),

discharging (i+,e
n,t =0, i−,en,t =1) and idling (i+,e

n,t =0, i−,en,t =0) status of the EV during available
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time. td,dn and td,dn are day-ahead EV information for the arrival time and departure time

of EV n. These two constraints suggest that the charging and discharging operations of

EVs are restricted between 0 and P
ev
n when EVs are connected to the grid. When EVs

are off the grid, they cannot be scheduled and thus the charging/discharging power are

both set to 0.

Constraint (4.4) ensures that an EV only has one status during operation, i.e. an

EV cannot operate in the charging and discharging status simultaneously.

i+,e
n,t + i−,en,t ≤ 1 ∀t,∀n (4.4)

The relationship between charging/discharging power and the EV battery SOC is

described in (4.5), where Eev
n is the battery capacity of EV n.

SOCt
n = SOCt−1

n +

(
p+,e
n,t − p

−,e
n,t

)
∆T

Eev
n

ta,dn < t < td,dn ,∀n (4.5)

SOCt
n = SOCa,d

n +

(
p+,e
n,t − p

−,e
n,t

)
∆T

Eev
n

t = ta,dn ,∀n (4.6)

In constraint (4.7), SOC and SOC are the lower and upper bounds on the EV battery

SOC, to prevent the battery from over discharging or charging. Furthermore, constraint

(4.6) defines the initial SOC as equal to SOCa,d
n , where SOCa,d

n is obtained from the

EV information of EV n. To guarantee the EV owners’ driving requirements, each EV

should be charged to a level no less than the desired SOC value SOCd. It is assumed

that SOCd is a constant for all EVs.

SOC ≤ SOCt
n ≤ SOC ∀t,∀n (4.7)

SOCt
n ≥ SOCd t = tdd,n, ∀n (4.8)

Battery degradation is an important parameter to be considered under V2G for EV

owners. It is assumed that the EV charging and discharging behaviours could both lead
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to battery degradation, and the cost is formulated in the second part of the objective

function (4.1c), in which Dev represents the corresponding battery degradation rate

due to EV charging and discharging behaviours. It is calculated based on the battery

capital cost, cycle time, and DOD, which has been discussed in detail in [41]:

Dev =
Ccap

LcEev
n DoD

(4.9)

where Ccap, Lc, and Eev
n are the initial investment cost of the battery ($), battery

lifetime in cycles, and battery capacity (kWh).

4.2.2 Second Stage: Optimal Rebate for EV Aggregator

The second stage aims to maximise the day-ahead aggregator profit from the EV

aggregator’s viewpoint. According to the day-ahead EV information
[
ta,dn , ta,dn , SOCa,d

n

]
,

the objective function of the EV aggregator is formulated in (4.10a):

Maximise Idres − Cd
gri + Idown − Cd

reb
(4.10a)

which consists of four terms: 1) reserve income Idres for providing reserve up/down

services for power grid; 2) Cd
gri represents the cost of aggregator–grid energy interactions

(purchasing and selling energy); 3) Idown stands for the income of aggregator–owner

energy interactions; and 4) Cd
reb is the rebate fee provided by the aggregator to each EV

owner to guarantee their economic benefits.

The first term of (4.10a) is the reserve profit, which is obtained based on reserve

up/down prices, as shown in (4.10b):

Idres =

M∑
t=1

N∑
n=1

(
rupt pupn,t + rdwt pdwn,t

)
∆T (4.10b)

where rupt and rdwt are the reserve up and down prices at time t, and pupn,t and pdwn,t

are variables of the day-ahead reserve up and down capacities for EV n at time t,
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respectively.

The second term of (4.10a) is the energy interaction between the EV aggregator and

the grid, which includes the purchasing fee and selling income, and is given in (4.10c):

Cd
gri =

M∑
t=1

N∑
n=1

(
r+
t p

+,d
n,t − r

−
t p
−,d
n,t

)
∆T (4.10c)

The third term of (4.10a) describes the energy interaction between the EV aggregator

and EV owners, including purchasing fee and selling income, which is given in (4.10d):

Idown =
M∑
t=1

N∑
n=1

(
r+
t p

+,d
n,t − r

−
t p
−,d
n,t

)
∆T (4.10d)

The last term of (4.10a) is the rebate fee for all EV owners provided by the aggregator.

It represents the economic interaction between the aggregator and each EV owner, which

means that EV owners will receive rebate income both for charging and discharging

under aggregator scheduling. The equation is formulated in (4.10e):

Cd
reb =

M∑
t=1

N∑
n=1

α
(
p+,d
n,t + p−,dn,t

)
∆T (4.10e)

where α stands for the rebate factor with the unit $/kWh.

From the EV aggregator’s viewpoint, the scheduling has common constraints with

self-scheduling subject to (4.2)–(4.8), by substituting variables p+,e
n,t and p−,en,t by p−,dn,t

and p−,dn,t . Moreover, there are several constraints on the aggregator for providing reserve

service to the grid.

The reserve capacity is limited by the operating status and maximum charging and

discharging power. Constraint (4.11) shows that the sum of reserve down capacity

and operating power should be no more than the maximum charging power. The

reserve up capacity is determined based on (4.12); it shows that the difference between

the operating status and reserve up capacity should not be less than the maximum
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discharging power.

p+,d
n,t − p

−,d
n,t + pdwn,t ≤ P

ev
n ∀t,∀n (4.11)

p+,d
n,t − p

−,d
n,t − p

up
n,t ≥ −P

ev
n ∀t,∀n (4.12)

Constraint (4.13) and (4.14) define the range of the reserve up and down capacity of

the EV.

pupn,t =


0 1 ≤ t < ta,dn Before arrival[
0, 2P

ev
n

]
ta,dn ≤ t < td,dn

0 td,dn ≤ t ≤M After departure

∀n, t (4.13)

pdwn,t =


0 1 ≤ t < ta,dn Before arrival[
0, 2P

ev
n

]
ta,dn ≤ t < td,dn

0 td,dn ≤ t ≤M After departure

∀n, t (4.14)

The reserve up and down capacities not only depend on the operation status, but

also relate to the upper and lower bounds of the battery SOC, which are shown in (4.15)

and (4.16):

SOCt−1
n +

(
p+,d
n,t − p

−,d
n,t + pdwn,t

)
∆T

Eev
n

≤ SOC ∀t,∀n (4.15)

SOCt−1
n +

(
p+,d
n,t − p

−,d
n,t − p

up
n,t

)
∆T

Eev
n

≥ SOC ∀t,∀n (4.16)

In addition, the reserve up capacity is also limited by the driving requirement of EV

owners, such that the minimum SOC at each time is involved to ensure that the battery

SOC is not less than SOCd at the departure time, as shown by the constraints in (4.17):

SOCt−1
n +

(
p+,d
n,t − p

−,d
n,t − p

up
n,t

)
∆T

Eev
n

≥ SOCd − P
ev
n (M − t)∆T

Eev
n

∀t,∀n (4.17)
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where the right-hand side of the operator in (4.17) determines the minimum SOC during

the available time. The concepts of upper and lower bound and minimum SOC at each

time are illustrated in Figure 4.2.

To guarantee EV owners’ economic benefits, a rebate factor is introduced in the

model to ensure that the charging fee does not exceed the day-ahead self-scheduling

charging fee for all EV owners. The constraint is shown in (4.18):

N∑
n=1

M∑
t=1

(
r+
t p

+,d
n,t − r

−
t p
−,d
n,t

)
∆T +

N∑
n=1

M∑
t=1

Dev
(
p+,d
n,t + p−,dn,t

)
∆T

−
N∑

n=1

M∑
t=1

α
(
p+,d
n,t + p−,dn,t

)
∆T ≤ (1− β) (Jev∗

1 + Jev∗
2 ) ∀n

(4.18)

where β is a discount parameter offered by the EV aggregator to provide a lower charging

cost (compared with the self-scheduling result of Jev∗
1 + Jev∗

2 ) for EV owners, which can

thus attract more EVs to participate in aggregator scheduling.

The scheduling result of the second stage is to obtain the optimal rebate value α∗

which maximises the aggregator profit without sacrificing each EV owner’s economic

benefits. In addition, a non-optimal rebate factor in a range will still work for the model,

and only slightly affect the profit of the aggregator.

4.2.3 Third Stage: Real-time Aggregator Scheduling Strategy

This section presents the aggregator profit maximisation strategy in a real-time scenario.

The optimal rebate value α∗ obtained from the second stage is involved in this stage.

Because EV owner driving behaviours are difficult to predict, the strategy needs to be

rescheduled based on the dynamic real-time EV information. In this case, an MPC-based

algorithm is proposed in the third stage, i.e. the EV aggregator schedules the operation

behaviours based on real-time EV information, and only the first step is dispatched to

each EV. After that, EVs update their information. Finally, the EV aggregator repeats

the next step of scheduling.

In this stage, all variables and parameters are of two types, i.e. fixed or predicted EV
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information.
[
p+
n̄,t, p

−
n̄,t, p

up
n̄,t, p

dw
n̄,t

]
are variables of fixed EV information

[
tan̄, t

d
n̄, SOC

a
n̄

]
,

and
[
p+
ṅ,t, p

−
ṅ,t, p

up
ṅ,t, p

dw
ṅ,t

]
are variables of predicted EV information

[
taṅ, t

d
ṅ, SOC

a
ṅ

]
. Here,

n̄ and ṅ represent the fixed EV and predicted EV, respectively. Note that all variables

and parameters in the third stage have the same format as those in the second stage

and the objective function is given in (4.19):

Maximise Īres − C̄gri + Īown − C̄reb

+İres − Ċgri + İown − Ċreb

(4.19)

where the first four terms represent the aggregator profits for the fixed EV information

and the last four terms are the aggregator profit for the predicted EV information.

The scheduling strategy is implemented as follows.

1. EV owners receive the day-ahead price from the power grid for day-ahead self-

scheduling and obtain each owner charging cost based on the objective function

(4.1a), subject to (4.2)–(4.9). It is assumed that the da-ahead price is the same

with RTP.

2. The EV aggregator receives the day-ahead price, reserve price, day-ahead EV

information, and owners’ charging fee for day-ahead scheduling with the objective

function (4.10a), subject to (4.2)–(4.9) and (4.11)–(4.18). The optimal rebate

value α∗ is obtained.

3. Initialise the beginning time t0 = 1, and determine the charging fee of fixed EVs

J̄ev∗
1,t0

, J̄ev∗
2,t0

and predicted EVs J̇ev∗
1,t0

, J̇ev∗
2,t0

.

4. The EV aggregator schedules all EVs from t0 to the end based on the RTP, reserve

price and dynamic real-time EV information.

5. Implement the scheduling results of the first step to the fixed EVs and update

their EV information based on (4.20) and (4.21):

SOCa
n̄ = SOCa

n̄+

(
p+
n̄,t0
− p−n̄,t0

)
∆T

En̄

(4.20)
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(1− β)
(
J̄ev∗

1,t0+1 + J̄ev∗
2,t0+1

)
= (1− β)

(
J̄ev∗

1,t0 + J̄ev∗
2,t0

)
−

N̄∑
n̄

(
r+
t p

+
n̄,t0
− r−t p

−
n̄,t0

)
∆T

+
N̄∑
n̄

Dev
(
p+
n̄,t0

+ p−n̄,t0
)
∆T

−
N̄∑
n̄

α∗
(
p+
n̄,t0

+ p−n̄,t0
)
∆T ∀n̄

(4.21)

where J̄ev∗
1,t0+1 and J̄ev∗

1,t0+1 represent the new values of EV owners’ charging fee

during the update.

6. Re-predict the EV information
[
taṅ, t

d
ṅ, SOC

a
ṅ

]
, ∀ṅ = 1...Ṅ for EVs which are not

connected the grid. Update the charging fee of predicted EVs J̇ev∗
1,t0+1, J̇ev∗

2,t0+1.

7. Update the dynamic real-time EV information and the time based on (4.22). After

that, repeat the RHO process from Step 4.

t0 = t0 + 1 (4.22)

To summarise, the proposed three-stage scheduling strategy is illustrated by a

flowchart given in Figure 4.4.

In the first and second stages, the scheduling strategies are carried out based on

day-ahead EV information. In the third stage, because EV driving behaviours are

difficult to predict, a real-time EV information model is presented. An assumption is

made that the information of EVs already in the gird and those that will connect to the

grid in the following time interval ∆T will not change. Otherwise, EV information is

generated based on the TGD (EVs that are off the grid). The concept of the real-time

EV information model is shown in Figure 4.5.

In Figure 4.5, the arrival time of EV 1 is earlier than the current time (i.e. ta1 < t0),

therefore EV 1 is already in the grid and its EV information is fixed. In contrast, EV 2

is not in the grid, as the predicted arrival time is later the current time (i.e. ta2 > t0 + 1).
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Figure 4.4: Flowchart of the three-stage scheduling strategy
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Thus, the EV information of EV 2 is not fixed and it must be re-predicted for the next

scheduling round. For EV 3, it is assumed that the EV information can be predicted

accurately in the following ∆T period, and thus its information is also fixed because

the arrival time is between the current time and the next scheduling time (ta3 = t0 + 1).

4.3 Numerical Examples

4.3.1 Pareto Front of Stakeholders’ Interests

In this section, WSM is utilised to demonstrate the economic inconsistency issue between

the stakeholders. According to the WSM model discussed in Section 3.7.1, the objective

function is formulated by multiplying a weight factor w by each objective (charging fee

minimisation for EV owners and profit maximisation for the EV aggregator), as given

in (4.23):

Maximise w1

(
Idres − Cd

gri + Idown

)
− w2 (Jev

1 + Jev
2 ) (4.23)

subject to: (4.2)–(4.8), (4.11)–(4.17), and all variables in (4.1b)–(4.8) are substituted

by p+,d
n,t , p

−,d
n,t .

The Pareto optimal of this optimisation problem is shown in Figure 4.6, based on

the WSM. It suggests the relationship between the aggregator profit and the EV owners’

charging fee.

It can be seen from the figure that both the aggregator profit and EV owners’

charging fee increase as the weight w1 increases from 0 to 1 (detailed numerical results

is available in Table C.1 in Appendix C). The marginal point is defined in this figure,

where the EV owners’ charging fee under aggregator scheduling is the same as the

self-scheduling charging fee. On the right-hand side of the marginal point, the owners’

charging fee is higher than self-scheduling results, while on the left-hand side, the EV

owners’ charging fee is less than self-scheduling results. The marginal point is achieved

when the weights are chosen as w1 = 0.33 and w2 = 0.67; at this point, the EV owners’
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Figure 4.6: Pareto front of aggregator profit and EV owners’ charging fee with demon-
stration of the self-scheduling results

charging fee is $ 329.60 and the aggregator profit is $ 51.80.

In addition, the results shown in Figure 4.6 suggest that on the right-hand side of

the marginal point, the EV owners’ charging fee significantly increases when w1 or ε

increase. On the left-hand side of the marginal point, the aggregator profit significantly

reduces when w1 or ε decrease. These results could be used as a reference in balancing

the economic interests of the two stakeholders and thus design a reasonable settlement

mechanism between EV owners and the aggregator.

4.3.2 Economic Interests of EV Owners

The EV owners (self) scheduling results in the first stage are depicted in Figure 4.7.

It can be seen from the figure that EVs have less charging power at the beginning

(13:00–17:00), because most EVs are off the grid, i.e. most EVs are not available during

this time. For the available EVs, they operate in charging status because the charging

price is relatively low (price is available in Figure B.1 in Appendix B). To operate
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in charging status during these times, it could cause EVs to store enough energy to

discharge in the following peak hours and thus earn profit. After that, during peak

hours (18:00–21:00), EVs operate in discharging status to inject energy back to the grid

to receive profit. However, the maximum discharging power appears at 19:00, with a
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Figure 4.7: Charging/discharging results of EVs and the average EV battery SOC
results under self-scheduling strategy

value of 684 kW, which is lower than the peak charging power (784 kW) at 3:00. There

are two reasons for this; first, there are still some EVs off the grid at 19:00, and second,

some EV battery SOC values are too low to operate in discharging status. During the

period 22:00–7:00, most EVs operate in charging status because these periods are in

off-peak hours. Finally, after 7:00, no EV operates in charging or discharging status,

because the battery SOC is enough to satisfy owners’ driving requirements.

The average battery SOC of the available EVs is also presented in Figure 4.7. It can

be seen from the figure that at each time, the SOC is strictly bounded between 0.1 and

1, which guarantees that EVs will not be overcharged or discharged. Moreover, in the

morning of the next day (around 7:00), the average SOC reaches 0.95, which guarantees
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EV owners’ next-day driving requirements.

The impact of the battery degradation rate on the self-scheduling results is shown in

Figure 4.8. To examine the charging fee of EV owners operating under V2G, different
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Figure 4.8: EV owners self scheduling results versus degradation rate

degradation rates are used in the model. Compared with the RTP information, it can

be observed that all EVs operate in charging status during off-peak hours (low price)

and operate in discharging status during peak hours (high price) under degradation

rates of 0.083 $/kWh and 0.086 $/kWh. However, there are no discharging behaviours

for all EVs under a degradation rate 0.090 $/kWh. This is because the V2G reward

tariff cannot cover the degradation cost for EV owners to operate under V2G.

Furthermore, Table 4.1 shows the total charging fee for all EVs including the charging

cost, discharging income and degradation cost versus degradation rate. It can be seen

from the table that the charging fee and discharging income both decrease with increased

degradation rate. This is because frequent energy interaction between EVs and the

grid leads to an increase in degradation cost. Therefore, the degradation rate has a
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Table 4.1: EV owners’ charging fee versus degradation rate
Degradation rate ($/kWh) 0.083 0.086 0.090

Charging cost ($) 51.98 34.78 30.39
Discharging income ($) 377.14 93.99 0
Degradation cost ($) 654.86 407.79 333.45
Total fee ($) 329.71 348.58 363.84

significant influence in EV charging and discharging scheduling, and EV owners would

like to be involved under V2G under the condition that the V2G reward tariff provided

by the power grid can cover their battery degradation cost.

4.3.3 Economic Interests of EV Aggregator

In this section, only the EV aggregator economic interests are taken into account (ignore

the economic interaction between aggregator and EV owners), so that the rebate factor

in (4.10a) and EV charging cost constraint (4.18) are not considered in EV aggregator

scheduling. In this case, the objective function of maximising EV aggregator profit

without rebate factor is given in (4.24):

Maximise Idres − Cd
gri + Idown

(4.24)

Because it is assumed that the RTP between owner–aggregator and aggregator–grid

are the same, two terms in (4.24) can be cancelled with each other (i.e. −Cd
gri+I

d
own = 0).

The aggregator scheduling results for the reserve up/down capacities are illustrated

in Figure 4.9. It can be seen from the figure that the reserve up/down capacities are

scheduled based on the corresponding prices, which describes the response ability of

the EV aggregator in meeting temporary power grid requirements. That is, the reserve

up/down capacities enable the aggregator to decrease or increase its current operating

power based on power grid demands. Figure 4.10 shows both charging and discharging

operations and reserve capacity results over twenty-four hours. The EV aggregator

enables the power grid to call for the reserve to absorb or inject energy back temporarily

and thus improves the power grids stability. Therefore, the EV aggregator gains profit
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Figure 4.9: Aggregator scheduling results for reserve up/down capacities
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Figure 4.10: Charging/discharging power and reserve up/down capacity for the EV
aggregator profit maximisation results
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by providing reserve up/down capacities to the power grid.

4.3.4 Economic Inconsistency Between Stakeholders

In this section, the economic inconsistency issue is presented, which is described as the

total charging fee increment rate. A sensitivity analysis of the impacting economic incon-

sistency is illustrated in terms of the degradation rate, maximum charging/discharging

power, and battery capacity.

The total charging fee for EV owners self-scheduling and aggregator scheduling

associated with different battery degradation rates are summarised in Table 4.2. It can

be observed from the table that the total charging fee for self and aggregator scheduling

both increase with increased degradation rate. Moreover, the economic inconsistency

issue becomes significant with a higher degradation rate (from +9.87% to +14.41%).

This is because the frequent energy interaction between the EV and power grids causes

a high battery degradation cost.

Table 4.2: Economic inconsistency versus degradation rate
Degradation rate ($/kWh) 0.083 0.086 0.090

Self scheduling ($) 329.71 348.58 363.83
Aggregator scheduling ($) 362.26 385.42 416.29
Increment rate +9.87% +10.56% +14.41%

The impact of the different charging and discharging power of EVs in influencing

the economic inconsistency issue is shown in Table 4.3. The results in this table suggest

that the economic inconsistency becomes significant (from +9.87% to +13.14%) as the

charging and discharging power increase.

Table 4.3: Economic inconsistency versus power
Charging/discharging power (kW) 8 10 12

Self scheduling ($) 329.71 325.16 322.14
Aggregator scheduling ($) 362.26 362.48 364.46
Increment rate +9.87% 11.48% +13.14%

In addition, the impacts of different battery capacity values are examined in the
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model. The scheduling results shown in Table 4.4 indicate that as the battery capacity

increases, the economic inconsistency issue is reduced; that is, the charging cost increment

rate decreases from +9.87% to +8.14%.

Table 4.4: Economic inconsistency versus capacity
Battery capacity (kWh) 64 72 80

Self scheduling ($) 329.71 375.12 420.87
Aggregator scheduling ($) 362.26 409.00 455.11
Increment rate +9.87% +9.03% +8.14%

4.3.5 Optimal Rebate Value

In the previous section, the existence of economic inconsistency between EV owners

and the aggregator is demonstrated, and the impacting factors are analysed. That is,

the EV owners’ charging fee increases under aggregator scheduling compared with EV

owners’ self-scheduling. In order to mediate the economic inconsistency issue, a rebate

factor is proposed in the model in the second-stage scheduling. This enables the model

to jointly consider the two stakeholders’ economic interests.

The relationship between the maximum EV aggregator profit and the value of the

rebate factor is described in Figure 4.11 and Figure 4.12. These figures suggest that

there exists an optimal rebate factor value which can achieve maximised aggregator

profit. The maximum aggregator profit is obtained as α∗ = 0.0046 $/kWh and α∗ =

0.0056 $/kWh under different discount values. For a relatively smaller rebate factor,

EV charging and discharging operations mainly depend on the self-scheduling, which

restricts the aggregator from responding to the power grid, and the aggregator has a

lower flexibility to schedule EVs based on the reserve up/down prices. On the contrary,

for a relatively higher rebate value, the aggregator has more incentive to involve EVs in

the reserve market. However, a higher rebate value requires a greater rebate fee to EV

owners from the EV aggregator, and thus reduces the aggregator profit.

In Figure 4.13, ten EV owners’ charging fee are presented both under self and

aggregator scheduling, with different values of the discount and corresponding optimal
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Figure 4.11: Maximum aggregator profit versus rebate values (β = 5%)
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Figure 4.12: Maximum aggregator profit versus rebate values (β = 7.5%)
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rebate values. It can be found from the figure that each EV owner charging fee under

aggregator scheduling is less than the that under self-scheduling (5% and 7.5% discount).

The results verified the effectiveness of the proposed rebate factor in the second-stage

scheduling. These results demonstrate that the proposed strategy motivates EV owners

to participate in aggregator scheduling, owing to the lower charging cost under aggregator

scheduling than self-scheduling. However, the aggregator profit significantly decreases

under a higher discount ($ 37.02 with 5% discount and $ 32.04 with 7.5% discount in

Figure 4.11 and 4.12).
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Figure 4.13: EV owners’ charging fee (self and aggregator scheduling) versus discount
values

4.3.6 MPC based Real-Time Scheduling Strategy

In the third-stage scheduling, the stochastic driving behaviours of EV owners are

considered in the model. That is, EV information cannot be predicted accurately, and

thus dynamic real-time EV information (fixed and predicted) is adopted during the

scheduling. The day-ahead and real-time scheduling results are presented in Figure 4.14
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with degradation rate Dev = 0.083 $/kWh and discount β = 5%. Because the day-ahead

EV information is fixed, the results of the second-stage scheduling (day-ahead aggregator

profit maximisation) are deterministic. On the contrary, the dynamic real-time EV

information must be re-predicted owing to the prediction errors. In this case, the

real-time scheduling results are not the same as the day-head results. In Figure 4.14, the
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Figure 4.14: DA and RT aggregator profit in a week

real-time scheduling strategy is repeated seven times to represent the daily aggregator

profit in a week, i.e. from RT1 to RT7. It is assumed that the day-ahead EV information

in the whole week is the same. Based on the results, the daily RT aggregator profits in

a week are $ 36.85, $ 34.19, $ 33.05, $ 36.70, $ 31.79, $ 36.05, and $ 32.87, which are

not equal to the DA aggregator profit of $ 34.22, because the real-time EV information

is stochastic.
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4.4 Summary

In this chapter, a three-stage EV energy management strategy is proposed considering

two stakeholders’ (EV owner and aggregator) interest: to minimise each EV owners’

charging fee and maximise aggregator profit. The energy, reserve, and economic

interactions among the power grid, EV aggregator, and EV owners are discussed.

The EV owners minimise their charging fee in the energy market based on RTP and

V2G reward tariffs provided by the power grid. The aggregator maximises its profit

by participating in the reserve market. Because the two stakeholders have different

objectives, the economic inconsistency issue is analysed.

The main outcomes of this chapter are summarised as follow:

• The model is simulated from the viewpoint of two stakeholders. In the first-stage

scheduling, each EV owner charging fee is minimised and the influence of the

battery degradation rate on the charging fee of the EV owner participating in

V2G is evaluated. By implementing a sufficient V2G reward tariff, EV owners

are willing to participate in V2G to enhance the energy interaction between the

power grid and EVs.

• The impact of degradation rate, maximum charging and discharging power, and

battery capacity on influencing the economic inconsistency issue is discussed.

• To mediate the economic inconsistency issue, the rebate factor is proposed in the

second-stage scheduling, which stands for the economic interaction between the

aggregator and EV owners. The results show the effectiveness of this strategy:

the EV owner charging cost under aggregator scheduling is less than that under

self-scheduling.

• An MPC-based real-time scheduling strategy is adopted in the third stage. The

stochastic driving behaviours of EV owners are considered in the model, which

makes the scheduling results more practical in real-world scenarios.
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Chapter 5

EV Energy Management in

Uncertain Electricity Markets

5.1 Introduction

In this chapter, the EV aggregator interest in EV (and ESS) participation in electricity

markets is analysed. It has been shown that the EV aggregator could get higher profit

from providing ancillary services or attending different DR programmes compared with

charging EVs during low-electricity-price hours [49, 68]. This chapter focuses on the

aggregator profit maximisation in the electricity market.

The aggregator profit maximisation problem in the electricity market is threatened

by uncertainties. The information gap between the predicted and the actual prices is

considered in [105] and the uncertainty of the RTP is addressed by using the RO method

[75]. Apart from the deviation of electricity prices, some studies have focused on the

cooperation between the aggregator or BESS with RESs and the uncertainty of the

renewable sources is represented by scenarios in the model [57]. In addition, EV owners’

driving behaviours are naturally random. The stochastic programming method was

utilised to consider the uncertainty of EV driving characteristics [56, 106]. Furthermore,

the uncertainty from the electricity market includes ancillary services such as RDR.
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To address the uncertainty of ancillary services, RO method is used in [76] to deal

with the uncertain amount of RDR. It is claimed that the probability density function

of the amount of RDR is difficult to build, owing to the characteristic of regulation and

reserve markets. A probability-based model is applied in [73] to assess the aggregator’s

capability of providing ancillary services to power grids. Two probabilities, i.e. the

probability that the DA bidding is accepted in the DAM and the probability that the

reserve is required to deploy in RTM are utilised in the model to represent the market

environment by taking battery degradation into consideration. A scenario-based model

is built in [107] to deal with the uncertain prices, and the probability of each price

scenario is calculated based on a Monte Carlo simulation. Nevertheless, the common

issue in the probability-based and scenario-based models is that the relationship between

the proposed reserve in the DAM and the deployed reserve in the RTM is not presented

and also different RDR are not taken into account. The impact of the uncertainty of

RDR is addressed by using stochastic programming in [69, 108] and the uncertainty of

EV owners’ behaviours and market prices are additionally considered. The risk of the

deviation between the DA bidding and the RT operation is considered in [72] and it is

assumed that the aggregator will be penalised if there is any difference between the RT

base load and the DA bidding base load plan.

To summarise, some researchers investigated the aggregator profit maximisation

in the electricity market by considering the uncertainty of prices, EV owners’ driving

behaviours, RESs, and RDR. However, there four issues in the EV scheduling problem

are ignored in the existing research:

• First, fewer studies considered the uncertainty of RDR in terms of the time and

amount aspects. In [76], a RT method is used to take the uncertainty of the

reserve deployment times in one day into account. However, it only considered the

worst-case scenario, which makes the results too conservative and the uncertainty

of the amount is not considered.

• Second, fewer studies investigated the relationship between the DA bidding and
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different RDR in the RTM. That is, the impact of the reserve deployment in

RTM on the DA bidding is neglected. The authors in [69, 108] discussed the EV

bidding strategy in the DAM and reserve market using stochastic programming

method; however the relationship between the DAM and the reserve market is

not considered.

• The risk of reserve deployment shortage due to the uncertain RTM is not appropri-

ately evaluated in most of the existing studies. Moreover, the impact of the reserve

deployment on EV charging/discharging is less discussed, such as [69, 72, 76].

• Finally, most existing studies focused on the EV charging/discharging from a single

stakeholder’s viewpoint but neglect the economic relationship between different

stakeholders, such as [73, 95]. The aggregator profit is maximised while the EV

owners’ economic benefits are sacrificed (charging fee increase). The economic

inconsistency issue between the aggregator and EV owners is not fully addressed,

which make the aggregator scheduling results unrealistic, as the EV owners are

unwilling to attend the aggregator schedule.

5.2 Electricity Markets

5.2.1 Reserve Market Participation

The EV aggregator could participate in regulation and reserve markets in the power

grid to obtain profit. The primary role of the aggregator is to satisfy EV owners’ driving

requirements; after that, it could provide ancillary services to maximise its profit [73].

The model of the aggregator providing reserve service to the power grid in the DAM

and RTM is common to the U.S. electricity markets, such as the performance-based

regulation mechanism in Pennsylvania, New Jersey and Maryland (PJM) and ERCOT

[109].

Figure 5.1 illustrates the framework of the aggregator participation in the reserve

market. In DAM, the aggregator must submit reserve up/down capacities and base
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Figure 5.1: Framework of the EV aggregator participation in the reserve market

load plans to the power grid. If the plan is accepted, the aggregator receives income

for stand-by reserve capacity. In RT operation of power grids, when the generation

cannot meet the demand, the reserve up capacity proposed by the aggregator could

be required to be deployed to offset such imbalances. If the demand is less than the

generation, then the reserve down capacity will be deployed, that is to increase aggregator

charging power or decrease discharging power and thus accommodate the imbalances.

The aggregator operating in the RTM should deploy enough reserve according to the

power grid requirements. The aggregator can receive additional payments for reserve

deployment [73].

This study is based on the reserve market model proposed in [106, 110] and ad-

ditionally considers the impact of uncertain reserve deployment requirements in the

RTM on the DA aggregator bidding. Moreover, the risk of the aggregator not being

able to deploy enough reserve (shortage) is considered in the model. Thus, a reserve

deployment shortage penalty factor is introduced in the model, which means that the

aggregator receives a penalty according to the difference between the deployed reserve
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and the power grid requirements.

For the primary role of the aggregator, not only should the EV owners’ driving

requirements be met but the economic benefits of each owner should also be guaranteed

[111]. To mitigate the economic inconsistency issue between EV owners and the

aggregator, an owner-aggregator contract is implemented after DAM and RTM. The

aggregator receives a discounted charging/discharging cost to each EV owner and

also offer additional battery degradation compensation to each owner. Moreover, the

aggregator provides a rebate to each EV owner for attending reserve market.

5.2.2 Uncertainty of Reserve Deployment Requirements

Reserve service is essential to ensure the security and reliability of the grid [112] by

requiring deploy reserve. That is, the aggregator should change the EVs operation

temporally based on the grid’s RDR. In this case, the EV energy management problem

is complicated by the uncertain RDR. In this section, the modelling of the uncertainty

of RDR is presented.

The uncertainty of the RDR in twenty-four hours can be represented by a series

of scenarios and the probability of each scenario. Figure 5.2 depicts a branch tree

structure, where binary numbers are used to represent whether the reserve is required

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

 1
 1

 1

 1  1

 1

 0

 0
 0

 0

 0

 0

 0

 1

. . .  Hour 2

Scenario 1
Scenario 2. . .

Require to deploy reserve? Yes (1), No (0)

DAM RTM

Hour 3Hour 1

Figure 5.2: Branch tree structure of the reserve deployment requirements scenarios

to be deployed or not at each hour (1 or 0, respectively). Under this circumstance,
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there are 224 = 16, 777, 216 scenarios in total, which lead to a large computational

burden for the stochastic programming method. It is not necessary to consider all

scenarios, because most scenarios have low probability and they have a low impact on

the optimisation results.

It is assumed that only reserve up is deployed in the model, and different RDR

scenarios can be generated based on the Monte Carol simulation method. Figure 5.3

illustrates the procedure to generate the RDR data for Q days.

Start

End

Y
 ? 

N

1
N

Initialization 1

Initialization 1

N

Sample a random number 

1 

Reserve deployment information of day

Y

1, , 2, , … ,

YDeployed
, 1 

Not deployed
, 0

′

?

Figure 5.3: Flowchart of RDR scenarios generation approach based on Monte Carlo
simulation

For the scenario generation process, the uniform distribution is utilised. That is, at

each time, a random number i is generated between 0 to 1 and compared with the hourly

reserve deployment probability π′t [69]. If the hourly probability is equal to or greater

than the random number, the reserve up capacity is deployed (xupt,q = 1). Otherwise, the

reserve is not deployed (xupt,q = 0).
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After that, all the scenarios in Q days are summarised in (5.1),


x̃up1,1 x̃up2,1 · · · x̃upM,1

x̃up1,2 x̃up2,2 · · · x̃upM,2
...

...
. . .

...

x̃up
1,Ω x̃up

2,Ω · · · x̃up
M,Ω

 (5.1)

where there are Ω scenarios among Q days and Vω days for each scenario (
∑Ω

ω=1 Vω = Q).

Finally, the probability of each scenario can be calculated based on (5.2):

πω =
Vω
Q

∀ω (5.2)

and the probability πω with the RDR
[
x̃up1,ω, · · · , x̃

up
M,ω

]
of each scenario will be involved

in the stochastic programming of the DA aggregator bidding model. The model is

discussed in detail in Section 5.3.1.

5.3 Aggregator Bidding Strategy in Electricity Markets

The EV owners’ (self) scheduling strategy is discussed in Section 4.2.1, and the EV

aggregator bidding strategy is discussed in this section.

5.3.1 Stochastic DA Aggregator Bidding Strategy

This section shows the stochastic DA aggregator bidding strategy based on different

scenarios.

The objective function of the aggregator is to maximise the expected profit in the
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energy and reserve markets by taking all scenarios into account (5.3a):

Maximisation Idres − Cd
gri︸ ︷︷ ︸

DAM

+

Ω∑
ω=1

πω
(
Irdep,ω − Cr

pen,ω − Cr
dev,ω

)
︸ ︷︷ ︸

RTM

+ (1− β) Jev∗
1 −

(
Cd
deg − Jev∗

2

)
︸ ︷︷ ︸

contract

(5.3a)

where the aggregator profit comes from three aspects: the DAM, RTM, and owner-

aggregator contract.

In the DAM, Idres represents the income of the proposed reserve up/down capacity

plan, which has been formulated in (4.10b), and the second term Cd
gri stands for the

purchasing cost and selling income, which is given in (4.10c). Cd
deg in (5.3b) is the

battery degradation cost due to the proposed charging and discharging of EVs,

Cd
deg = Dev

M∑
t=1

N∑
n=1

(
p+,d
n,t + p−,dn,t

)
∆T (5.3b)

In the RTM, Irdep,ω in (5.3c) represents the reserve deployment profit under scenario

ω: the aggregator receives additional payments by deploying reserve based on power

grid requirements,

Irdep,ω =

M∑
t=1

N∑
n=1

(
r̃upt p̃upn,t,ω + r̃dwt p̃dwn,t,ω

)
∆T (5.3c)

where r̃upt and r̃dwt stand for the deployed up/down reserve prices at time t.

Cr
pen,ω in (5.3d) represents the penalty for reserve deployment shortage under scenario

ω,

Cr
pen,ω =

M∑
t=1

(
γupsupt,ω + γdwsdwt,ω

)
∆T (5.3d)

where supt,ω and sdwt,ω stand for the reserve up/down shortage at time t.

The last term in Cr
dev,ω (5.3e) represents the cost of charging and discharging
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deviations in the RTM due to the uncertain RDR. It is assumed that the EV aggregator

could adjust the proposed DA base load plan in RT operation only after the reserve is

deployed,

Cr
dev,ω =

M∑
t=1

N∑
n=1

(
r+
t ∆p

+
n,t,ω − r

−
t ∆p

−
n,t,ω

)
∆T (5.3e)

where ∆p+
n,t,ω and ∆p+

n,t,ω are charging and discharging deviations of EV n at time t in

the RTM.

In the owner–aggregator contract, Jev∗
1 and Jev∗

2 represent the optimal charg-

ing/discharging cost and battery degradation cost from self-scheduling respectively.

(1− β) Jev∗
1 stand for the discounted charging/discharging cost received from EV own-

ers. Moreover, the aggregator provides additional battery degradation payments to EV

owners
(
Cd
deg − Jev∗

2

)
.

The maximum range of EV charging/discharging operations and the relationship be-

tween charging/discharging power and the reserve capacity in the DAM were formulated

in (4.11)–(4.14).

Constraints (5.4) and (5.5) are used to ensure that the summation of the deployed

reserve and the charging/discharging deviations are less than the reserve capacity when

the reserve is deployed for each scenario,

0 ≤ p̃upn,t,ω +∆p−n,t,ω ≤ x̃
up
t,ωp

up
n,t ∀t, n, ω (5.4)

0 ≤ p̃dwn,t,ω +∆p+
n,t,ω ≤ x̃dwt,ωpdwn,t ∀t, n, ω (5.5)

Constraints (5.6), (5.7), (5.6), and (5.9) suggest that the DA reserve up/down

capacities of each EV, the deployed reserve, and the power deviation at each time should

not be less than zero,

p̃upn,t,ω ≥ 0 ∀n, t, ω (5.6)

p̃dwn,t,ω ≥ 0 ∀n, t, ω (5.7)
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∆p+
n,t,ω ≥ 0 ∀n, t, ω (5.8)

∆p−n,t,ω ≥ 0 ∀n, t, ω (5.9)

The relationships between the EV battery SOC limits and the DA charging/discharging

power, DA reserve capacities, RT deployed reserve, and RT charging/discharging devia-

tions are formulated in constraints (5.10) and (5.11):

SOCa
n +

∑m−1
t=1

(
p+,d
n,t − p

−,d
n,t − p̃

up
n,t,ω + p̃dwn,t,ω +∆p+

n,t,ω −∆p
−
n,t,ω

)
∆T

Eev
n

+

(
p+,d
n,m − p−,dn,m + pdwn,m

)
∆T

Eev
n

≤ SOC ∀n,m, ω

(5.10)

SOCa
n +

∑m−1
t=1

(
p+,d
n,t − p

−,d
n,t − p̃

up
n,t,ω + p̃dwn,t,ω +∆p+

n,t,ω −∆p
−
n,t,ω

)
∆T

Eev
n

+

(
p+,d
n,m − p−,dn,m − pupn,m

)
∆T

Eev
n

≥ SOCn,m ∀n,m, ω

(5.11)

Moreover, to guarantee that EVs are charged to the desired value at the departure

time, the minimum SOC of EV n at each time is calculated based on (5.12):

SOCn,m = max{SOC, SOCd − P
ev
n (M −m)∆T

Eev
n

} ∀m,n (5.12)

The relationships between the deployed reserve, charging and discharging deviations,

reserve shortages, and power grid RDR at time t under scenario ω are shown in (5.13)

and (5.14):

supt,ω +

N∑
n=1

p̃upn,t,ω =

N∑
n=1

∆p−n,t,ω + λupx̃upt,ω

N∑
n=1

pupn,t ∀t, ω (5.13)

sdwt,ω +
N∑

n=1

p̃dwn,t,ω =

N∑
n=1

∆p+
n,t,ω + λdwx̃dwt,ω

N∑
n=1

pdwn,t ∀t, ω (5.14)

The reserve down deployment is not considered in this model, and thus the values of
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the reserve down deployment amount and the reserve down deployment requirements

are both set to zero, that is, λdw = x̃dwt,ω = 0,∀t, ω.

The reserve deployment shortage variables at each time and scenario are defined in

(5.15) and (5.16)

supt,ω ≥ 0 ∀t, ω (5.15)

sdwt,ω ≥ 0 ∀t, ω (5.16)

5.3.2 Deterministic DA Aggregator Bidding Strategy

The objective function of the DA bidding strategy under deterministic RDR is shown

in (5.17):

Ω∑
ω=1

πω

(
Idres,ω − Cd

gri,ω − Cd
deg,ω + Irdep,ω − Cr

pen,ω − Cr
dev,ω

)
+ (1− β) Jev∗

1 + Jev∗
2

(5.17)

where Idres,ω, Cd
gri,ω, and Cd

deg,ω represent the reserve capacity income, base load cost,

and battery degradation cost in the DAM under scenario ω.

This is subject to constraints (4.11)–(4.14) and (5.4)–(5.16). Because this section

shows the deterministic strategy, the DA bidding plan is unique for each scenario. In this

case, the variables in p+,d
n,t , p−,dn,t , pupn,t, and pdwn,t in the stochastic strategy are substituted

by p+,d
n,t,ω, p−,dn,t,ω, pupn,t,ω, and pdwn,t,ω in the deterministic strategy.

5.3.3 No-Deployment-Considered Bidding Strategy

The objective function of the no-deployment-considered strategy is the same as that of

the stochastic strategy, that is the objective function (5.3a–5.3e) subject to constraints

(4.11)–(4.14) and (5.4)–(5.16). Because no reserve deployment is considered in this

strategy, the variables representing reserve deployment in the model are set to zero,

that is, p̃upn,t,ω = p̃dwn,t,ω = 0,∀n, t, ω. Algorithm 1 shows the calculation process of the

aggregator expected profit under the no-reserve-deployment-considered strategy.
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Algorithm 1: Expected profit under no-deployment-
considered bidding Strategy

Input: Price information, EV information;
Output: Expected profit;

1 Initialise price and EV information in DAM;
2 Submit the DA bidding plan based on

pupn,t, p
dw
n,t, p

+,d
n,t , p

−,d
n,t , ∀n, t;

3 Receive profit for reserve capacity Idres;
4 for q = 1; q ≤ Q; q + + do
5 for t = 1; t ≤ T ; t+ + do
6 if xupt,q = 1 then

7 Penalty: Cr
pen,q,t ← λup

∑N
n=1 p

up
n,t

8 else
9 No penalty: Cr

pen,q,t ← 0

10 end

11 end

12 Penalty in q day Cr
pen,q ←

∑M
t=1C

r
pen,q,t;

13 end

14 Total penalty Cr
pen ←

∑Q
q=1C

r
pen,q;

15 Expected profit:

Idres − Cd
gri − Cd

deg − Cr
pen/Q+ (1− β) Jev∗

1 + Jev∗
2 ;

5.3.4 Aggregator Bidding with the Utilisation of ESS

Compared with EV, ESS are always ready and potentially help reduce the penalty

arising from the reserve shortage. This section discusses the EV aggregator bidding

strategy with the utilisation of ESS. The objective function of EV aggregator with ESS

has the same format as (5.3a), which is defined in (5.18a):

Maximise Expev + Expess +
Ω∑
ω=1

πω (Iev,ess
ω − Cev,ess

ω ) + [(1− β) Jev∗
1 + Jev∗

2 ] (5.18a)
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The expected profit from EV and ESS are defined in (5.18b) and (5.18c):

Expev = −
M∑
t=1

N∑
n=1

(
r+
t p

+,d
n,t − r

−
t p
−,d
n,t

)
∆T +

M∑
t=1

N∑
n=1

(
rupt pupn,t − rdwt pdwn,t

)
∆T

−
M∑
t=1

N∑
n=1

Dev
(
p+,d
n,t + p−,dn,t

)
∆T

(5.18b)

Expess = −
M∑
t=1

(
r+
t p

+,d
t − r−t p

−,d
t

)
∆T +

M∑
t=1

(
rupt pupt − rdwt pdwt

)
∆T

−
M∑
t=1

Dess
(
p+,d
t + p−,dt

)
∆T

(5.18c)

where p+,d
t , p−,dt are the charging and discharging powers of the ESS in the DAM; pupt

and pdwt are the reserve up and down capacities of the ESS in the DAM.

In the RTM, the grid declares RDR to call for the reserve based on the DA proposed

reserve capacity. Iev,essω represents the income by deploying the reserve under scenario

ω. RPe,ω in the objective function was defined in (5.3d).

Iev,ess
ω =

M∑
t=1

N∑
n=1

[
r̃upt
(
p̃upn,t,ω + p̃upt,ω

)
+ r̃dwt

(
p̃dwn,t,ω + p̃dwt,ω

)]
∆T (5.19)

where p̃upt,ω and p̃dwt,ω stand for the deployed reserve up and down of the ESS in the RTM.

Cev,ess
ω =

M∑
t=1

(
γupsupt,ω + γdwsdwt,ω

)
∆T (5.20)

The scheduling constraints of the ESS are similar to those of the EVs, except that

the ESS are available all the time and the ESS have no target SOC other than the final

SOC. The scheduling constraints of the ESS are formulated as follows:

0 ≤ p+,d
t ≤ P ess

i+t ∀t (5.21)

0 ≤ p−,dt ≤ P ess
i−t ∀t (5.22)
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i+t + i−t ≤ 1 ∀t (5.23)

p+,d
t − p−,dt − pupt ≥ −P

ess ∀t (5.24)

p+,d
t − p−,dt + pdwt ≤ P

ess ∀t (5.25)

0 ≤ p̃upt,ω ≤ p
up
t,ω ∀t, ω (5.26)

0 ≤ p̃dwt,ω ≤ pdwt,ω ∀t, ω (5.27)

SOCb +

∑m
t=1

(
p+,d
t − p−,dt

)
∆T +

∑m−1
t=1

(
−p̃upt,ω + p̃dwt,ω

)
∆T − pupm∆T

Eess
≤ SOC

∀m,m 6 = 1, ω

(5.28)

SOCb +

(
p+,d

1 − p−,d1

)
∆T − pup1 ∆T

Eess
≤ SOC

(5.29)

SOCb +

∑m
t=1

(
p+,d
t − p−,dt

)
∆T +

∑m−1
t=1

(
−p̃upt,ω + p̃dwt,ω

)
∆T + pdwm ∆T

Eess
≤ SOC

∀m,m 6 = 1, ω

(5.30)

SOCb +

(
p+,d

1 − p−,d1

)
∆T + pdw1 ∆T

Eess
≤ SOC

(5.31)

SOCb +

∑M
t=1

(
p+,d
t − p−,dt − p̃upt,ω + p̃dwt,ω

)
∆T

Eess
≥ SOCe ∀ω (5.32)

With the utilisation of ESS, the constraints (5.13) and (5.14) are modified as follows:

supt,ω + p̃upt,ω +

N∑
n=1

p̃upn,t,ω = λupx̃upt,ω

(
pupt,ω +

N∑
n=1

pupn,t,ω

)
∀t, ω (5.33)

sdwt,ω + p̃dwt,ω +
N∑

n=1

p̃dwn,t,ω = λdwx̃dwt,ω

(
pdwt,ω +

N∑
n=1

pdwn,t,ω

)
∀t, ω (5.34)
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5.4 Numerical Examples

The results of the EV aggregator bidding strategy are discussed in this section. The

results of the EV aggregator bidding without ESS are discussed in Sections 5.4.2–5.4.5;

and the results of the EV aggregator bidding with ESS are presented in Sections

5.4.6–5.4.8.

The maximum charging/discharging power and capacity of EV and the ESS are

given in Table B.1 and B.2 in Appendix B. One hundred (N = 100) EVs are used in this

case study, and the EV information are generated based on TGD, where the relevant

data of TGD are available in Table B.4 in Appendix B.

5.4.1 Probabilities and Scenarios of Reserve Deployment Require-

ments

In the RTM, one year (Q = 365) of RDR data are generated and the hourly probabilities

are available in Table 5.1. It can be seen that the highest probability appears from

Table 5.1: Hourly probability of RDR
Time 13:00 14:00 15:00 16:00 17:00 18:00

Probability 0.089 0.091 0.099 0.121 0.122 0.156

Time 19:00 20:00 21:00 22:00 23:00 0:00

Probability 0.155 0.151 0.154 0.156 0.122 0.094

Time 1:00 2:00 3:00 4:00 5:00 6:00

Probability 0.015 0.015 0.015 0.015 0.015 0.015

Time 7:00 8:00 9:00 10:00 11:00 12:00

Probability 0.029 0.055 0.078 0.081 0.083 0.084

18:00 to 22:00. The reason is that these are peak hours in one day, and there is a higher

probability that the generation side cannot meet the energy consumption from the

demand side. Therefore, the power grid has a high probability of reserve up capacity

deployment requirements during these times to meet the generation and demand balance.

Figure 5.4 shows the 100 days data of the generated RDR data (365 days in total).

The figure suggests that the reserve up capacity is usually required to deploy between

18:00–22:00, which reflects the hourly probability in Table 5.1. From 7:00 until the end,
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Figure 5.4: Generated reserve deployment requirements for 100 days

it is assumed that no reserve is deployed. The reason for this is that aggregator has less

reserve capacity can be deployed, because most EVs are off the grid (departed from the

community) after 7:00.

A summary of the number of reserve deployment requirements in one day among

365 days is shown in Figure 5.5. The figure suggests that within 365 days, there are 70

days on which no reserve is required. There are 128 and 112 days on which the reserve

is required once and twice, respectively. In total, there are 310 days with no more than

two requirements. There are 35 days when reserve is required three times and 16 days

with four times. Finally, there are only two days when reserve is required five and six

times in one day.

According to the statistical information, the probability of each scenario πω is

illustrated in Figure 5.6. In total, there are 125 scenarios in 365 days, i.e. Ω = 125.

Scenario 1 represents that no reserve is required, which has the highest probability

π1 = 0.19.
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Figure 5.5: A summary of the number of times RDR in one day among 365 days
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Figure 5.6: Probability of each RDR scenario
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5.4.2 Aggregator Profit under Deterministic Strategy

The scheduling results of the aggregator profit under deterministic RDR are presented

in Figure 5.7. The results show that the minimum profit of the aggregator within 365
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Figure 5.7: Aggregator profit with different amount of RDR under deterministic DA
bidding strategy

days is $ 29.45, under the condition that no reserve is required in twenty-four hours.

The reason is that for no reserve deployment, the aggregator cannot get additional

payments from the RTM, even though there is no charging/discharging deviation or

deployed reserve shortage penalties in RT operation.

For reserve deployment with λup = 100% (λup stands for the percentage of the

required reserve up to be deployed to the proposed reserve up capacity), it can be seen

from the figure that the highest profit could reach $ 441.94, the reserve is required

six times in that day (Day 14 in Figure 5.5), which is significantly higher than that

without reserve deployed ($ 29.45). The reason for this is that the aggregator could

receive additional reserve deployment payments from the RTM. Moreover, the aggregator
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will not receive any penalties for reserve deployment shortage because the RDR are

deterministic, and there are already taken into account in the aggregator DA bidding

plan.

5.4.3 Aggregator Profit under Stochastic Strategy

Figure 5.8 presents the DA base load plan with different amounts of RDR in twenty-

four hours. It suggests that EVs are mainly in discharging status during peak hours

(17:00–21:00) and charging status during off-peak hours (22:00–6:00). For the different

amount of RDR, it has less impact on the DA base load plan. The DA base load plan

is similar to the charging/discharging plan under the self-scheduling strategy in Figure

4.7, except that the maximum discharging power of the stochastic programming method

(353 kW) is less than that of the self-scheduling (686 kW). This is because, in order to

deploy reserve capacity during peak hours, the proposed (DA plan) discharging power

during this time is reduced.
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Figure 5.8: DA base load plan with different amount of RDR under stochastic program-
ming strategy
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The DA reserve up capacity plan is shown in Figure 5.9. It can be seen that the

higher reserve deployment amount, the less reserve up capacity is proposed in the DA

plan. The reason for this is that the aggregator proposes less reserve capacity in order

to reduce the risk of reserve deployment shortage in the RTM.
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Figure 5.9: DA reserve up capacity plan with different amount of RDR under stochastic
programming method

Figure 5.10 illustrates the aggregator profit over 365 days under RDR with λup =

100%. In DA scheduling, the DA bidding plan is made based on 125 scenarios. In this

case, once the DA bids plan is determined, it is suitable for all scenarios in RT operation.

The results in Figure 5.10 show that the highest profit the aggregator could obtain is

$ 435.26, which is slightly less than that of the deterministic strategy ($ 441.94). In

addition, the lowest profit is $− 7.08 (70 days for no reserve is required), which is much

less than that of the deterministic strategy ($ 29.45).

Figure 5.11 shows the relationship between the expected profit and 95% confidence

interval (red) under different amount of RDR. For example, for 50% RDR, the expected

profit of these one-year data is $ 85.25, with the 95% confidence interval ranging from $
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Figure 5.10: Aggregator profit with different amount of RDR under stochastic DA
bidding strategy

77.47 to $ 93.03. It suggests that, with 95% probability, the expected profit for infinite

days which could not be determined, will be in the range of $ 77.47 to $ 93.03.

5.4.4 Aggregator Profit under No-Reserve-Deployment Considered

Strategy

In order to compare with the deterministic and stochastic strategies, the scheduling

results of aggregator profit without considering reserve deployment in DA scheduling

are presented in Figure 5.12. It can be seen from the figure that the highest profit the

aggregator could obtain is $ 29.45, which is mulch less than those of the stochastic ($

435.26) and deterministic strategies ($ 441.94). The lowest profit is $− 357.71, which

is much lower than those of the deterministic and stochastic strategies. The reason

for this is that the aggregator will not deploy reserve in the RTM and thus lead to

penalty. Therefore the profit is much lower than those of the deterministic and stochastic

strategies.
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Figure 5.11: Average aggregator profit and 95% confidence interval with different amount
of RDR under stochastic strategy

5.4.5 Effectiveness of the Stochastic Strategy

According to the results in the previous sections, the aggregator could obtain the highest

profit under the deterministic strategy. However, this is not practical in the real world,

because the aggregator cannot accurately estimate the RDR twenty-four hours ahead.

It is more practical to apply the stochastic strategy. In this case, this section makes a

comparison between the stochastic and deterministic strategies.

Figure 5.13 illustrates the expected aggregator profit in 365 days under different

amount of RDR. For 10% requirements (λup = 10%), the aggregator profit of stochastic

strategy is $ 75.42 and deterministic strategy is $ 88.52. The aggregator gets the highest

profit with 50% requirements with $ 85.24 and $ 98.96 for two strategies, respectively.

For the no- reserve-deployment considered strategy, the higher amount reserve is required

to deploy, the lower profit aggregator will receive. Since there is no-reserve-deployment

in this strategy, the aggregator will receive penalty based on the amount of RDR.
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Figure 5.12: Aggregator profit with different amount of RDR under DA bidding strategy
without considering reserve deployment

5.4.6 DA Bidding Plans of EVs and ESS

In this section, the DA bidding plan of the EV aggregator with the utilisation ESS is

presented, which includes the DA based load plan and the reserve up/down capacities

plan. It can be seen from Figure 5.14 that the blue curve represents the proposed

charging/discharging power of all EVs in the DAM; at the beginning (13:00–16:00), the

EVs have less charging power because most EVs are not connected to the grid. The

RTP is relatively lower during these time periods, and thus EVs operate in the charging

status. After that, the peak hours are from 18:00 to 21:00, when the total discharging

power increases to inject energy back to the grid and the EV aggregator could obtain

profit. Then, the maximum charging power appears at 0:00 and the EV aggregator could

charge all the EVs at the lowest price. After 2:00, the total charging power decreases

gradually; this indicates that some EVs have stored enough energy to meet the next

day’s driving requirements. The corresponding reserve up/down boundaries at each
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Figure 5.13: Expected aggregator profit of the stochastic, deterministic and no-reserve-
deployment considered strategies under different amount of RDR
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Figure 5.14: DA plan (base load and reserve up/down capacities) of the EVs
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hour are also indicated in the figure. The results suggest that the EVs propose more

reserve down capacity during 17:00–21:00 (most EVs operate in discharging status)

and more reserve up capacity during 22:00–3:00 (most EVs operate in charging status).

Because most EVs are not connected to the grid, EVs proposed less reserve up/down

capacities before 17:00 or after 7:00.

Compared with the EVs’ DA bidding plan, the ESS bidding plan is presented in

Figure 5.15. The figure shows the proposed charging/discharging power at each hour
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Figure 5.15: DA base-load plan and SOC of the ESS

and the corresponding SOC of the ESS. Unlike the EVs that charged during the off-peak

hours and discharged during peak hours, the base-load plan of the ESS do not follow

the RTP. The reason for this is that the ESS have more flexibility in providing reserve

service to the grid; also, ESS have no target SOC at the end of the time. In addition,

considering the dynamic change of the ESS battery SOC, at each time the SOC is

bounded between 0.1 and 1; the results indicate that the proposed strategy could

effectively manage the charging/discharging of the ESS and prevent it from overcharging
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or discharging.

5.4.7 Expected Deployed Reserve and Penalty of EVs and the ESS

In this section, the performance of EVs and the ESS in the RT reserve market are

discussed. According to the EV aggregator operation mechanism in the RTM, the

average deployed reserve results of EVs at each time are shown in Figure 5.16. The
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Figure 5.16: Average deployed reserve and reserve shortage of EVs

average deployed reserve is calculated based on one year of RDR data. It can be seen

from the figure that, at the beginning (13:00–15:00), the reserve is less deployed; the

reason for this is that most EVs are not available, i.e. EVs are not connected to the

grid. As the EV information model data given in Table B.4 in Appendix B, the mean

value of arrival time is 18:00 with 2 hours variance, thus most EVs are not available

during 13:00–15:00. From 17:00–22:00, the deployed reserve of the EVs is greater than

at other times, because these time periods are peak hours, i.e. the grid has a higher

probability (referring to Table 5.1) to call for the reserve to balance the generation and
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consumption. After 1:00, the deployed reserve decreases, because EVs cannot operate in

discharging status as the EV aggregator must guarantee that each EV could be charged

to the target SOC by departure time. Finally, after 9:00, no reserve is deployed because

most EVs have disconnected from the grid (the mean departure time is 7:00 and 2

hours variance) and the proposed reserve is close to zero. The average penalty of EVs

for reserve deployment shortage at each time is also represented in the figure. It can

be seen that EVs receive higher penalty between 23:00–5:00, which means EVs have

a higher risk of not being able to provide enough reserve as proposed. According to

the EVs charging/discharging results from Figure 5.14, most EVs operate in charging

status during these time periods (off-peak hours), EVs could not deploy all reserve up

capacity (operate in discharging status), because they must store enough energy to meet

the next day’s driving requirements.

The performance of the ESS in RT reserve market is shown in Figure 5.17. Compared
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Figure 5.17: Average deployed reserve and reserve shortage of ESS

with the peak deployed reserve of 100 EVs with 54.6 kWh, the peak deployed reserve of

the ESS is 47.1 kWh at 18:00, which is in the peak period. In addition, the ESS reserve
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is mainly deployed in the periods 13:00–1:00 and 7:00–12:00, which has more flexibility

than EVs. This is one of the advantages of the ESS, which is that it is available all the

time, but EVs are only available when connected to the grid. Moreover, the ESS is

much reliable than EVs in providing reserve service; the results in the figure indicate

that the penalty of the ESS is zero, which means that the ESS could deploy enough

reserve as proposed in the DAM.

In order to compare the performance of the EVs and ESS in providing reserve service

(assume λup = 100%) in the RTM, a summary is shown in Table 5.2. The total proposed

Table 5.2: Proposed, required and deployed reserve of EVs and the ESS in one-year
EVs ESS EVs with ESS

Proposed reserve up capacity (MWh) 3193.55 1138.80 4332.35

Required reserve up capacity (MWh) 181.45 119.04 300.49

Required percentage 5.68% 10.45% 6.93%

Actual deployed up reserve (MWh) 126.48 119.04 245.52

Deployed percentage 69.71% 100% 81.71%

reserve up capacity of the EVs in one year is 3193.55 MWh, which is 2.8 times the

ESS reserve up capacity (1138.80 MWh), because the total capacity of all EVs is much

greater than that of the single ESS. In this table, the required percentage is defined as

the required reserve according to the RDR over the proposed reserve capacity. It can

be seen that the required percentage of the EVs and the ESS are 5.68% and 10.45%,

respectively. This suggests that the proposed reserve of the ESS has a higher probability

to be required by the grid. According to the DA bidding plan shown in Figure 5.14 and

the hourly RDR probability in Table 5.1, the most reserve capacity of EVs is proposed

between 0:00–5:00; however, the grid has lower probability to call for the reserve up

capacity during these time periods, and thus the EVs have less required percentage

compared with the ESS.

The deployed percentage is defined as the actual deployed reserve of the EV ag-

gregator over the required reserve of the grid. In order to meet EV owners’ driving

requirements, the EVs’ should be charged to the target SOC by the departure time.

In this case, the EVs could not respond to the RDR all the time, and the deployed
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percentage of EVs is 67.91%. The deployed percentage of the ESS is 100%, which means

that the ESS could deploy enough reserve according to the grid requirements without

shortage. Based on these results, it can be concluded that the ESS is much more flexible

than the EVs in providing reserve services to the grid. With the utilisation of the ESS,

the required percentage increases from 5.68% to 6.93% and the deployed percentage

increases from 69.71% to 81.71%.

5.4.8 Profit Compositions under Stochastic Strategy

In this section, the expected daily profit of the EV aggregator is analysed. The expected

daily profit of EV aggregator is calculated based on the generated RDR one-year data.

Essentially, the EV aggregator profit comes from two sides: EVs and the ESS. To be

specific, EVs and the ESS can either obtain income or incur cost from the DAM and

the RTM, such as reserve capacity income, charging/discharging income, and deployed

reserve income. Furthermore, to take the social aspects into account, not only does the

EV aggregator guarantee owners’ driving requirements, but the economic benefits of

each owner are also considered.

Table 5.3 shows the income, cost, and penalty of EVs and the ESS from the DAM,

RTM, and aggregator–owner contract. The DA reserve capacity income of EVs is $

Table 5.3: EVs and the ESS income, cost and penalty
EVs only EVs with ESS

Daily expected cost/income
EVs EVs ESS

DA reserve up/down capacity income $ 53.38 $ 53.38 $ 16.52
DA charging/discharging cost/income $ 144.38 $ 144.38 $ 203.68
Battery degradation cost N/A N/A $ -144.00

DAM

Total $ 197.76 $ 197.76 $ 76.20

Deployed reserve income $ 93.48 $ 93.48 $ 87.31
Reserve shortage penalty cost $− 2.97 $− 2.97 $ 0RTM

Total $ 90.51 $ 90.51 $ 87.31

Charging income/cost from owners $− 350.57 $− 350.57 N/A
Degradation compensation $ 143.42 $ 143.42 N/AContract

Total $− 207.15 $− 207.15 N/A

$ 81.12 $ 163.51
Daily profit of the EV aggregator $ 81.12 $ 244.63
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53.38, which is significantly greater than that of the ESS ($ 16.52). However, compared

with the deployed reserve, the EVs and the ESS incomes are much closer, at $ 93.48

and $ 87.31 for EVs and the ESS, respectively. The reason is that the total capacity of

all EVs is 6.4 MWh (100 EVs with 64 kWh for each vehicle), which is much greater

than the ESS capacity (1500 kWh). Although EVs propose more reserve capacity than

the ESS, the deployed reserve income is slightly greater than the ESS. This is because

the operation of the ESS is much more flexible than that of the EVs, i.e. the ESS is

available for twenty-four hours, and could therefore respond to the grid’s requirements

at any time. Regarding the penalty of reserve shortage in the RTM, the penalties for

the EVs and the ESS are only $ 2.97 and $ 0, respectively, which are significantly less

than the income of the EV aggregator in participating in the DAM and RTM. Thus,

these results prove that the strategy proposed in this chapter could reduce the risk of

the EV aggregator not being able to deploy enough reserve as proposed in the DAM.

The proposed stochastic programming method effectively accounts for the uncertainty

of the reserve market in the DA bidding, and the expected profit of the EV aggregator

is maximised.

Another point that must be mentioned is that the battery degradation of the ESS

is $ 144.00 for both charging and discharging. However, the EV aggregator will not

be responsible for the battery degradation for all EVs, because EVs do not belong to

the EV aggregator. From the social aspect, the EV aggregator gets the full right in

scheduling charging/discharging operation of EVs under the condition that it must

reimburse the additional battery degradation cost to each owner compared with the

degradation cost obtained from the EV owners’ scheduling results. In addition, the

EV aggregator could receive the income from each EV owner for parking and charging

EVs to the target SOC at departure time. Finally, the average daily profit of the EV

aggregator is $ 244.63, including $ 81.12 from the EVs and $ 163.51 from the ESS.

Moreover, Table 5.3 shows the profit of the EV aggregator with and without ESS

utilisation. It can be seen from the table that the EV scheduling results are not affected

by the ESS, which means that the ESS do not cooperate with the EVs in providing
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reserve service to the grid, i.e. the ESS cannot reduce the EVs’ reserve shortage penalty,

even though the ESS have more flexibility in responding to the RDR. The reason for this

is that the ESS bidding strategy changes if the ESS are used to reduce the EVs’ reserve

shortage, and the EVs’ reserve shortage penalty is less than the ESS profit reduction.

5.5 Summary

In this chapter, considering aggregator’s interest, a DA aggregator bidding strategy

in an uncertain reserve market is proposed. The uncertainty of the reserve market is

addressed in terms of the amount and time of RDR based on a stochastic programming

method. The risk of the aggregator not being able to deploy enough reserve is considered

by introducing a penalty factor in the model. Moreover, an owner–aggregator contract

is designed to mitigate the economic inconsistency issue between EV owners and the

aggregator.

The main outcomes of this chapter are summarised as follow:

• The scheduling results verify that the proposed stochastic programming strategy

effectively managed the uncertainty of the RDR, such that the expected aggregator

profit is 13–16% less than the optimal profit under the deterministic strategy

based on data from one year.

• The proposed strategy could effectively reduce the risk of the reserve shortage,

the reserve shortage penalty of the EV aggregator is $ 2.97 ($ 2.79 for EVs and $

0 for the ESS).

• A comparison is made between EVs and the ESS in providing reserve services to

the grid. Results show that the ESS have more flexibility in making response to

the grid’s requirements, that is in average 10.45% is required to be deployed and

it could deploy enough reserve as proposed.

• With the utilisation of the ESS, the ability of the EV aggregator in providing

reserve services in improved, where the required percentage increases from 5.68%
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to 6.93% and the deployed percentage increases from 69.71% to 81.71%. However

the EVs’ reserve shortage cannot be reduced by the ESS, because the bidding

plan of the ESS will be affected and the total profit will be reduced.
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Chapter 6

EV Energy Management in a

Transmission Power Network

6.1 Introduction

In this chapter, the impact of EV integration in transmission systems is evaluated and the

grid interest, that is the TSO interest, in EV energy management problem is considered.

As EVs are connected directly to the distribution network, several studies have been

carried out to examine the impact of EV charging behaviours on the distribution

network [113–115]. A multi-stage optimal EV scheduling approach is applied in [89] to

examine the impact of EV charging behaviours on the grid. The performance of the

proposed strategy is evaluated based on three aspects: controllability, manageability,

and economics of the distribution network. The results show that the fluctuations

caused by the intermittent sources are smoothed and the network topology can be

reconfigured for better performance. Considering the uncertainty of the distribution

network, a distributed MPC method is proposed in [95] to minimise the total system

energy cost based on short-term predicted information. In [91], the authors investigated

the coordination between EVs with DGs and stochastic power flow is proposed to solve

the uncertainties of EVs and RESs. In [116], the authors developed a hierarchical
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coordination model to manage the active and reactive power in the distribution network.

The authors in [82] and [117] built spatio-temporal models to analyse the effects of

the charging behaviours of PHEVs on the transmission network. A bi-layer strategy

is proposed in [82], where the upper level stands for the unit commitment in the

transmission network and the lower level represents the OPF in a distribution network.

However, the power flow in the transmission network is not taken into account.

A number of studies have addressed the impact of EV charging behaviours on the

transmission network. In [118], the role of ESS in ensuring the adequacy and security of

the transmission systems is studied. The authors in [88] optimise the charging load of

PHEVs to reduce the transmission congestion and load curtailment. The authors in [119]

presented a network-based model to evaluate the PHEVs charging behaviours on the

GHG emissions for the California electricity transmission grid. A security-constrained

DC-OPF problem is studied in [120], where BESS are utilised to maintain the supply–

demand balance. In [121], the authors proposed a network-constrained unit commitment

problem in a transmission network and jointly considered the transportation information

of EVs in the model. Benders cut method is used to enable the model to handle

large-scale EV optimisation.

Recent studies aimed at investigating EV integration in transmission/distribution

networks have focused on single objectives [91, 117, 120, 121] and the TSO could

dispatch both generators and all EVs. Actually, a single EV cannot directly participate

in OPF or unit commitment owing to the limited capacity and charging power. Thus,

the aggregator acts as a third party between the TSO and EVs, which could participate

in DC-OPF and respond based on TSO requirements. Therefore, the cooperative

strategy between the TSO and the aggregator must be investigated. To clearly define

the responsibilities of the TSO and the aggregator, a bi-level strategy is proposed in

this study. Figure 6.1 illustrates the concept of the proposed bi-level strategy. In the

upper level, the TSO is responsible for the generator output power at each bus and the

power flow at each branch of the transmission network based on DC-OPF. In the lower

level, the aggregator manages the actual charging/discharging operation of each EV to
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Figure 6.1: Bi-level structure of the EV integration in the transmission network

satisfy EV owners’ driving requirements.

In this chapter, a bi-level EV energy management strategy in the transmission

network is studied. Two main contributions of this study are summarised as follows:

• First, the proposed bi-level strategy clearly defines the responsibility of the TSO

and EV aggregator in the power grid operation. This is the first work to jointly

consider the cooperation mechanism between the aggregator and TSO in DC-OPF

and the EV charging/discharging operation management problem.

• Second, an EV information grouping method is proposed in this study. The

proposed method could effectively reduce the optimisation complexity, which

could achieve large-scale EV integration into the power network.

6.2 Bi-Level Strategy

In the upper level, the TSO coordinates the output power of each generator on the

generation side and the grouped EVs on the load side to minimise the total cost of

the system, while taking power flow constraints into account. The optimisation results

determine the charging/discharging power of the EV groups at each bus i, where i ∈ L,

which are utilised as a reference for the real EV scheduling in the lower level.

In the lower level, the aggregator determines the actual charging/discharging power
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of each EV, while satisfying the TSO requirements.

6.2.1 EV Information Grouping Method

In the bi-level scheduling strategy, on one hand, the aggregator is responsible for the

charging/discharging operation of each EV directly; on the other hand, it needs to follow

the TSO requirements. Therefore, the aggregator must collect the EV information and

submit the grouped EV information to the TSO. Because the TSO is responsible for

the power flow to determine the output power of the generators (in MW) and it is

not realistic to manage the operation of each vehicle (in kW). Thus, the aggregator

should process the EV information before submitting it to the TSO. The grouped EV

information will be considered by the TSO in determining the power flow in the upper

level. Figure 6.2 shows the EV information grouping method, i.e. all EVs are aggregated

and categorised into several groups.

Arrival time

Departure time

Initial SOC

Arrival time

Departure time

Initial SOC

Group 3
Group 4

Group 1
Group 2

Group 5
Group 6

Group 7 Group 8

EV information 
grouping

Figure 6.2: Concept illustration of the EV information aggregation and grouping method

The EV information is categorised into several groups based on EVs’ three charac-

teristics: the arrival time (tan,t,i), departure time (tdn,t,i), and initial SOC at arrival time

(SOCa
n,i). The aggregator should define the feasible region of the group, e.g. arrival

time between 18:00–19:00, departure time between 7:00–8:00 am and initial SOC 0.3,

and determine the number of EVs in each group. The average charging/discharging

power and the average battery capacity of the EV group v at bus i are defined in (6.1)

122



Chapter 6. EV Energy Management in a Transmission Power Network

and (6.2):

Pi,v =

∑
n∈Ki,v

P
ev
i,n

ki,v
∀i, v (6.1)

Ei,v =

∑
n∈Ki,v

Ei,n

ki,v
∀i, v (6.2)

Algorithm 2 shows the method to calculate the number of EVs in each group.

Algorithm 2: EV information grouping method

Input: EV information {tai,n, tdi,n, SOCa
i,n}, ki,v = 0,∀i, n, v;

Output: EV groups information;
1 for i ∈ I do
2 for n = 1;n ≤ N ;n+ + do
3 for v = 1; v ≤ Vi; v + + do
4 if |tai,n − tai,v| ≤ 0.5∆T, |tdi,n − tdi,v| ≤ 0.5∆T, |SOCa

i,n − SOCa
i,v| ≤ 0.2

then
5 ki,v ← ki,v + 1;
6 else
7 ki,v ← ki,v;
8 end

9 end

10 end

11 end

12 Obtain the EV groups information: ki,v and {tai,v, tdi,v, SOCa
i,v} ;

13 Calculate the EV groups information based on Equations (6.1) and (6.2);

14 EV groups information: {tai,v, tdi,v, SOCa
i,v, ki,v, Pi,v, Ei,v},∀i, v;

6.2.2 Upper Level: DC-OPF with Grouped EV information

From the TSO viewpoint, the DC-OPF aims to meet all load requirements and minimise

the total cost at the same time. The total cost of the system includes the generator

output cost and the EV cost. Specifically, the EV cost consists of two parts, the

charging/discharging cost or income and the corresponding battery degradation cost.
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The objective function can be written as (6.3a):

Minimise
∑
i∈G

CG
i +

∑
i∈L

(
Cev

1,i + Cev
2,i

)
(6.3a)

CG
i =

M∑
t=1

(
ai · pG

i,t
2

+ bi · pG
i,t + ci

)
∆T ∀i ∈ G (6.3b)

where CG
i in (6.3b) stands for the generation cost of the generator at the bus i during

the whole scheduling time.

In Equations (6.3c) and (6.3d), Cev
1,i and Cev

2,i represents the EV charging and

discharging cost or income and the battery degradation cost of the EV fleets at bus i

during the scheduling time, respectively.

Cev
1,i =

M∑
t=1

Vi∑
v=1

ki,vPi,v

(
r+
t x

+
i,v,t − r

−
t x
−
i,v,t

)
∆T ∀i ∈ L, (6.3c)

Cev
2,i =

M∑
t=1

Vi∑
v=1

Devki,vPi,v

(
x+
i,v,t + x−i,v,t

)
∆T ∀i ∈ L. (6.3d)

Equation (6.4) represents the power balance of the system, for each bus i:

pG
i,t −

Ni,Nj∑
i,j,i6=j

θi,t − θj,t
Xi,j

= PL
i,t + pEV

i,t ∀t, i = 1 : B, (6.4)

where pEV
i,t stands for the total charging/discharging power of all EVs in bus i. The

generator output variable, the EV charging/discharging load are forced to zero when

there is no generator or load in bus i, i.e, pG
i,t = 0,∀i /∈ G and pEV

i,t = 0,∀i /∈ L.

−Fij ≤
Ni,Nj∑

i,j

θi,t − θj,t
Xij

≤ Fij ∀t. (6.5)
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Constraint (6.6) represents the generation output limits of the generator i at time t:

−PG
i ≤ pG

i,t ≤ P
G
i ∀t, i ∈ G (6.6)

The ramp rate limit constraint of the generator is shown in constraint (6.7):

−Ri ≤ pG
i,t − pG

i,t−1 ≤ Ri ∀t, i ∈ G (6.7)

Constraint (6.8) stands for range of the voltage angle of bus i at time t:

−π ≤ θi,t ≤ π ∀t, i = 1 : B (6.8)

In Equations (6.9) and (6.10), binary variables used in the DC-OFP model represent

the charging and discharging of the EV group:

x+
i,v,t =


0 1 ≤ t < tai,v

{0, 1} tai,v ≤ t < tdi,v

0 tdi,v ≤ t ≤M

∀v, t, i ∈ L (6.9)

x−i,v,t =


0 1 ≤ t < tai,v

{0, 1} tai,v ≤ t < tdi,v

0 tdi,v ≤ t ≤M

∀v, t, i ∈ L. (6.10)

When EVs are off the grid, i.e., t < tai,v or t > tdi,v, binary variables x+
i,v,t and x−i,v,t are

forced to zero, which means the EVs cannot be scheduled during these time intervals.

Constraint (6.11) is used to ensure that EV cannot be charged and discharged

simultaneously:

x+
i,v,t + x−i,v,t ≤ 1 ∀i ∈ L, v, t. (6.11)

125



PhD Thesis Bing Han

By taking the EV batteries into consideration, constraints (6.12) and (6.13) are used

to guarantee that at each time m, the battery should not greater than the upper SOC

limit or less than the lower SOC limit.

SOCa
i,v +

∑m
t=1 Pi,v

(
x+
i,v,t − x

−
i,v,t

)
∆T

Ei,v
≤ SOC, ∀i ∈ L, v,m, (6.12)

SOCa
i,v +

∑m
t=1 Pi,v

(
x+
v,t,i − x

−
v,t,i

)
∆T

Ei,v
≥ SOC, ∀i ∈ L, v,m. (6.13)

Considering the EV owners’ driving requirements, constraint (6.14) means that at

the departure time of EV tdi,v, the battery SOC should not be less than the target value

SOCd. The target value is manually set by the owner according to their own willingness

at the arrival time.

SOCa
i,v +

∑tdi,v
t=1 Pi,v

(
x+
i,v,t − x

−
i,v,t

)
∆T

Ei,v
≥ SOCd, ∀i ∈ L, v. (6.14)

The upper level scheduling results yield the output of the generators G and the

charging/discharging operations of EV groups v at each time t. The upper level results

are involved as a reference in the lower level aggregator scheduling strategy. The optimal

solution of EV groups are written as x+∗
i,v,t and x−∗i,v,t. Thus, the scheduled EV fleets

operation results of bus i at time t is obtained:

PEV
i,t
∗

=

Vi∑
v=1

ki,vPi,v

(
x+∗
i,v,t − x

−∗
i,v,t

)
∀t, i ∈ L. (6.15)

6.2.3 Lower Level: Aggregator Scheduling Strategy

In the lower level, the aggregator is responsible for the actual charging and discharging

operations of each EV. The objective function of the aggregator i is to minimise the total

cost of all EVs including charging/discharging cost and income and the corresponding
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battery degradation cost. The objective function of the aggregator i is formulated in

(6.16a)–(6.16c):

Minimise Jev
1,i + Jev

2,i ∀i ∈ L (6.16a)

Jev
1,i =

M∑
t=1

N∑
n=1

(
r+
t p

+
i,n,t − r

−
t p
−
i,n,t

)
∆T, ∀i ∈ L (6.16b)

Jev
2,i =

M∑
t=1

N∑
n=1

Dev
(
p+
i,n,t + p−i,n,t

)
∆T. ∀i ∈ L (6.16c)

Equations (6.17) and (6.18) are used to guarantee that the charging and discharging

of the EV is bounded between zero to the maximum power during available time:

z+
i,n,t =


0 1 ≤ t < tai,n

{0, 1} tai,n ≤ t < tdi,n

0 tdi,n ≤ t ≤M

∀i ∈ L, n, t, (6.17)

z−i,n,t =


0 1 ≤ t < tai,n

{0, 1} tai,n ≤ t < tdi,n

0 tdi,n ≤ t ≤M

∀i ∈ L, n, t, (6.18)

where z+
i,n,t and z−i,n,t are both binary variables.

Constraint (6.19) indicates the EV cannot be charged and discharged simultaneously:

z+
i,n,t + z−i,n,t ≤ 1 ∀i ∈ L, n, t. (6.19)

The linearised dynamic maximum charging power limits are considered in the lower

level scheduling in constraints (6.20)-(6.23):

0 ≤ p+
i,n,t ≤

Fs+1 − Fs

Rs+1 −Rs
SOCi,n,t−1 +

Rs+1Fs

Rs+1 −Rs
, ∀s, i ∈ L, t, t 6 = tai,n, (6.20)
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0 ≤ p+
i,n,t ≤

Fs+1 − Fs

Rs+1 −Rs
SOCa

i,n +
Rs+1Fs

Rs+1 −Rs
, ∀s, n, t = tai,n, (6.21)

0 ≤ p+
i,n,t ≤ Mbigz

+
i,n,t ∀n, t, i ∈ L, (6.22)

0 ≤ p−i,n,t ≤ P
ev
i,nz
−
i,n,t, ∀n, t, i ∈ L. (6.23)

where SOCi,n,t−1 represents the SOC of EV n in bus i at time t− 1. The linearisation

of the maximum charging versus SOC is discussed in 3.3.3

Constraints (6.24)–(6.26) represent the battery SOC upper and lower limits, and

the EV owners’ driving requirements, respectively, which have the same format with

(6.12)–(6.14) in the upper level TSO scheduling.

SOCa
i,n +

∑m
t=1(p+

i,n,t − p
−
i,n,t)∆T

Ei,n
≤ SOC ∀i ∈ L, n,m (6.24)

SOCa
i,n +

∑m
t=1(p+

i,n,t − p
−
i,n,t)∆T

Ei,n
≥ SOC ∀i ∈ L, n,m (6.25)

SOCa
i,n +

∑M
t=1(p+

i,n,t − p
−
i,n,t)∆T

Ei,n
≥ SOCd ∀i ∈ L, n. (6.26)

To guarantee that the aggregator scheduling results meet the TSO requirements,

constraint (6.27) means that at each time t, the total charging/discharging power of the

aggregator i is not greater or less than the upper-level results PEV
i,t
∗

with a deviation

range:

−σ
N∑

n=1

P
ev
i,n + PEV

i,t
∗ ≤

N∑
n=1

(p+
i,n,t − p

−
i,n,t) ≤ σ

N∑
n=1

P
ev
i,n + PEV

i,t
∗ ∀i, t. (6.27)

where σ
∑N

n=1 P
ev
i,n represents the deviation range of the aggregator i, which is the

production of the deviation parameter σ with the total rated power of all EVs of the

aggregator i.
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6.3 Numerical Examples

A IEEE 14-bus system is used in this case study to test the proposed strategy, and

the detailed 14-bus systems data can be obtained in [122], the relevant data including

generator characteristics, branch characteristics and locations of generators and load

is summarised in Table B.5–B.7 in Appendix B. Figure 6.3 shows the topology of the

modified 14-bus systems, where EVs are integrated into the transmission network at

different busses. It can be seen from the figure that EVs are distributed in load busses

Figure 6.3: IEEE 14-bus systems with EV integration

L, where L = {2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14}. Five generators are distributed in the

generator busses G, where G = {1, 2, 3, 6, 8}.
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6.3.1 Accuracy of the EV Information Grouping Method

To verify the accuracy of the proposed bi-level strategy, a comparison study of EVs

charging/discharging results is conducted between with and without EV information

grouping method. Considering the complexity of the optimisation problem by involving

EVs in the DC-OPF model, it is assumed that it has the same EV number at each bus,

i.e., N = 100. The number of groups at each bus Vi equals to the number of EVs without

the EV information grouping method and EV information is the same with the EV

grouping information, i.e, Vi = N, tai,v,t = tai,n,t, t
d
i,v,t = tdi,n,t, SOC

a
i,v = SOCa

i,n,∀i, v, n.

Figure 6.4 shows that the total EV charging/discharging power at bus 2 with and

without the EV information grouping method.
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Figure 6.4: Comparison of EV charging/discharging power with and without EV
information grouping method

The results in Figure 6.4 show that the two curves are very close. This indicates that

for the EVs with the same information (same arrival/departure time and initial SOC),

the charging/discharging powers are almost the same. The results demonstrate the
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rationality of the proposed EV information grouping method. That is, the aggregator

could categorise EV into several groups based on their information and the TSO could

determine the DC-OPF based on the grouped EV information.

6.3.2 Upper Level: TSO Scheduling Results

The TSO obtains the grouped EV information from the aggregator and determines the

output power of all generators and the charging/discharging power of all EV groups in

the transmission network. It is assumed that there are 1000 EVs at each bus, N = 1000.

Figures 6.5 and 6.6 show the output power of all generators and the charging/discharging

power of all EV groups at each load bus, respectively.

It can be seen from Figure 6.5 that the red curve represents the total generation

without EVs, where the peak hours appear in 17:00–20:00 and the total output power is

around 700 MW. The off-peak hours appear in 22:00–6:00 and the total output power

is around 600 MW. With EV participation, the load during peak hours is reduced

(significant reduction from 18:00 to 20:00), and most EVs operate in charging status

during off-peak hours.

Compared with the results in Figure 6.6, the EV groups perform as ESS, that is

EV groups operate in charging status during peak hours (17:00–20:00) and discharging

status during off-peak hours (22:00–6:00). These results suggest that the TSO achieves

the coordination between generators on the generation side and EVs on the load side,

where the peak output is shaved under such coordination.

The power flow at each branch and the voltage angle at each bus of the transmission

network are given in Figure 6.7 and 6.8 (detailed numeral results are given in Table

C.2–C.5 in Appendix C). It can be seen from Figure 6.7 that branch 1 (from bus 1 to

bus 2) has the maximum power flow with 204.47 MW on average for one day. This is

because generator 1 has the maximum average output power, the generated power is

mainly transmitted from bus 1 to bus 2, and less power is transmitted from bus 1 to

bus 5 (where the average power flow is 89.08 MW). See Table B.6 in Appendix B; the

impedance of branch 1 X1,2 = 0.059 is less than that of branch 2 X1,5 = 0.223; and the
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Figure 6.5: Output power of each generator in one day
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average absolute value of the voltage angle at bus 2 and bus 5 are 0.12 rad (6.68°) and

0.19 rad (10.83°). In this case, according the Equation (3.42), the generated power from

bus 1 is mainly transmitted through branch 1.
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Figure 6.7: Power flow in each branch of the transmission network in one day

Figure 6.8 shows the voltage angle in each bus at each time. The maximum absolute

value of the voltage angle is 0.39 rad (22.34°), which is small enough that follows the

approximation made in Equation (3.42).

6.3.3 Lower Level: Aggregator Scheduling Results

The EV aggregator determines the actual charging/discharging operation of each EV in

the lower level. Figure 6.9 shows the total charging/discharging power of 1000 EVs in

bus 2 and the average SOC over one day. It implies that EVs are discharged during

peak hours and charged during off-peak hours. The corresponding SOC reaches 0.95 at

8:00, which guarantees the EV owners’ driving requirements.

Figure 6.10 shows the total load of the transmission systems with and without EV
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integration. It can be seen from the figure that the peak load is reduced (peak shaving)

and the off-peak load increases (valley filling) with EV integration.
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Figure 6.10: Total load of the transmission network with and without EV integration

6.3.4 Aggregator Scheduling with Deviations

In this proposed bi-level strategy, a deviation range σ defined in constraints (6.27) is used

to ensure the aggregator can meet the TSO requirements. Figure 6.11 gives the grouped

EVs charging/discharging power (TSO results) and the actual EVs charging/discharging

power under different deviation range values, σ = 3%, σ = 80% and infinite. It can

be seen from Figure 6.11 that, when σ = 3%, the aggregator scheduling results nearly

follow the TSO results with smaller deviations. When the deviation is infinite, the

differences exist between 15:00–17:00 and the charging power is greater than that of

σ = 3%. The reason is that, in order to reduce the total load between 15:00–17:00, less

EVs operate in charging status under σ = 3%. However, with infinite deviations, in

order to inject more energy back to the grid during off-peak hours, EVs need to operate
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Figure 6.11: TSO results and aggregator results under different deviation ranges

in charging status to store more energy before off-peak hours.

6.3.5 Effectiveness of the Bi-Level Strategy

The performance of the proposed strategy and the EV information grouping method are

evaluated in this section. Table 6.1 shows the generator cost with/without the proposed

bi-level strategy. In order to make a comparison, the uncoordinated charging scenario

is used, that is all EVs follow the ‘first come first served’ rule and it is assumed that

no discharging in this scenario. The coordinated charging represents the scenario that

the charging and discharging of all EVs are determined by the TSO and EV aggregator

according to the bi-level strategy. It can be seen from Table 6.1 that, the generation

cost of all generators in the transmission systems in twenty-four hours are $ 538,591 and

$ 543,178 under coordinated charging, which is less than the uncoordinated charging

scenario ($ 542,486 and $ 549,631) under 700 and 1000 EVs in each load bus respectively.

The reason is that, the charging load of EVs are scheduled from peak hours to off-peak
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Table 6.1: A comparison of generator cost with/without the proposed strategy (bi-level
strategy)

700 EVs in each
load bus

1000 EVs in each
load bus

Uncoordinated charging ($) 542,486 549,631
Coordinated charging ($) 538,591 543,178
Total cost reduction ($) 3895 6453

hours under coordinated charging scenario, moreover EVs operate in discharging status

and the peak load is shaved. These results can be found in Figure 6.10. Based on the

objective function given in (6.3b), it can be noticed that during peak hours the marginal

generation cost is much greater than that in off-peak hours. Thus, by coordinating the

charging and discharging of the EV groups, the generation cost could be minimised.

The proposed EV information grouping method could effectively handle the optimi-

sation complexity. As shown in Table 6.2, the optimisation time consumption with the

EV information grouping method is 3.48 seconds (there are 766 groups in all busses),

while it takes 7.21 s without the EV information grouping method when there are 100

EVs in each load bus. There is a significant difference when 1000 EVs in each load bus.

Table 6.2: A comparison of model complexity and solutions times with/without the EV
information grouping method

Number of
groups

Number of
variables

Number of
constraints

Time

100 EVs in each load
bus (no grouping)

N/A 29,548 74,622 7.21 s

100 EVs in each
load bus (grouping)

766 20,016 50,428 3.48 s

1000 EVs in each
load bus (no grouping)

N/A 286,182 726,107 > 1 h

1000 EVs in each
load bus (grouping)

2246 56,346 142,688 21.53 s

It can be seen from the table that by using the EV information grouping method, the

complexity of the model is much reduced, where there are 2,246 EV groups in all busses,

and the number of variables and constraints are reduced from 286,182 and 726,107 to
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56,346 and 142,688, respectively. Therefore, the optimal solution is found in 21.53 s

under the EV information grouping method. On the contrary, the optimal solution

could not be found in 1 hour without the EV information grouping method, since there

are too many variables and constraints.

6.4 Summary

In this chapter, a bi-level EV energy management strategy in a transmission network is

presented considering the grid (TSO) interest. The TSO is responsible for the generator

output and power flow of the transmission network in the upper level. The aggregator

determines the actual charging/discharging operations of each EV at the lower level.

Some conclusions in this chapter are drawn as follows:

• The proposed bi-level strategy could minimise the total cost of the system and

the EV charging/discharging could shave the peak and fill the valley loads. Under

the proposed strategy, the generation cost is reduced by $ 6453 and $ 3895 with

1000 and 700 EVs in each load bus.

• The proposed EV information grouping method could effectively reduce the

optimisation complexity with a negligible difference in the optimal solution, where

the optimisation time consumption reduces from > 1h to 21.53 s with 1000 EVs

in each load bus.

• It is found that, for the EVs with the same information, the scheduling results of

EVs’ charging/discharging power are almost the same. Thus the EV information

grouping method is accurate in the TSO scheduling.
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Conclusions and Future Work

7.1 Summary of Contents

Faced with the fast development of EVs, the charging behaviours of EVs will bring

a series problems for the power grids operation. On the other hand, EV energy

management strategies enable EVs to perform as ESS and thus provide benefits for

stakeholders. Under certain background, a series of strategies are proposed in this thesis

for EV energy management in smart grids. Special consideration has been given to

the three stakeholders’ interest (EV owners, aggregator, and grid), which has imposed

significant impact on EV energy management. Three case studies are presented in

this thesis based on stakeholders’ interest. Considering EV owners’ and aggregator’s

interest, the economic inconsistency issue raised between two stakeholders is discussed

and mitigated based on a three-stage scheduling strategy. Considering aggregator’s

interest, an aggregator bidding strategy in uncertain electricity markets is proposed and

the aggregator profit is maximised. Considering the grid’s interest, a bi-level strategy is

proposed and the total generation cost of the system is minimised.

The contents of each chapter are summarised as follows. Chapter 1 introduces

the background information of smart grids, and the state of the art of EVs. The

motivations, objectives and the structure of this thesis are presented. Chapter 2 is a

review of ESS and EVs. A categorisation of ESS and a general working principle of
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certain types of ESS are discussed. The EV energy management strategies are reviewed

from different stakeholders’ viewpoints. Chapter 3 presents the mathematical models

of ESS, a single EV charging/discharging model, and a DC-OPF model. The MOO,

RHO, and stochastic programming methods used in this thesis are introduced. Chapter

4 investigates the economic relationship between EV owners and the aggregator, MOO

methods are applied to balance the trade-off between the EV owners’ charging fee

minimisation and the aggregator profit maximisation. Chapter 5 focuses on the EV

aggregator profit maximisation problem in uncertain electricity markets. Stochastic

programming method is applied to address the uncertainty of the RTM. Chapter 6

develops a bi-level strategy, the responsibilities of the TSO and aggregator are clearly

defined. An EV information grouping method is designed, which could effectively reduce

the optimisation complexity.

7.2 Main Conclusions and Findings

The main conclusions and findings of the three case studies in this thesis are summarised

as follows:

• Economic Inconsistency Issue: Considering EV owners’ and aggregator’s

interest, the economic inconsistency issue between the two stakeholders is addressed

and the issue is mitigated by introducing a rebate factor in the model.

– The economic relationship between EV owners and the aggregator is evaluated

and the Pareto optimal of the optimisation problem has been achieved. It

is found that, on the right hand side of the marginal point, the EV owners’

charging fee significantly increases when w1 or ε increase, and on the left

hand side of the marginal point, the aggregator profit significantly reduces

when w1 or ε decrease. This can provide a reference to design a reasonable

settlement mechanism between the two stakeholders.

– To mitigate the economic inconsistency issue between the stakeholders, a

rebate factor is introduced, which can be regarded as an update of the ε-
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constraint method. The proposed three-stage strategy could guarantee EV

owners benefits while the aggregator profit is maximised.

– An RHO method is proposed in the aggregator scheduling strategy. By using

the proposed online optimisation method, the EV information is updated and

corrected hourly, which effectively handles the problem of the uncertainty of

EV owners’ driving behaviours.

• Bidding Strategy in Electricity Markets: Considering the aggregator’s inter-

est, an EV aggregator bidding strategy in uncertain electricity markets is proposed

based on a scenario-based stochastic programming method. The impact of the

uncertainty of the RTM on the bidding in the DAM is taken into consideration.

– The proposed strategy could maximise the expected profit of the aggregator,

and thus the uncertainty of the electricity market is well managed. The

uncertainty of the reserve market is represented as several scenarios and these

scenarios are generated based on a Monte Carlo simulation.

– The risk of the aggregator in reserve deployment shortage is taken into

consideration, where a penalty is involved in the model. The proposed

strategy could effectively balance the reserve deployment benefits and penalty,

and thus the optimal bidding strategy could be determined.

– A comparison is made between the performance of EVs and ESS in providing

reserve service; it is found that the required and deployed percentage of EVs

are much less than those of ESS, because of EVs’ transportation characteristics

and driving requirements compared with ESS.

• EVs in Transmission Systems: Considering the grid’s interest, the impact of

EVs’ charging and discharging behaviours on the operation of transmission systems

is investigated and the proposed bi-level strategy could achieve the cooperation

between EVs on the load side and generators on the generation side.

– The proposed strategy achieves a significant cost reduction of the generators,
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i.e., the generation cost reduces by $ 6453 in one day with 1000 EVs at each

load bus under bi-level strategy compared with uncoordinated charging.

– The responsibilities of the TSO and the aggregator in the power grid operation

are defined. The proposed EV information grouping method could reduce

the number of variables and constraints of the optimisation problem, and

thus the optimisation complexity is significantly reduced.

– For EVs with the same information, the charging/discharging scheduling

results are almost the same. It is reasonable to use the EV groups in the

upper level.

7.3 Future Work

The theoretical analysis presented in thesis evaluates the performance of EVs charging

and discharging to power grids. This research could be further developed in the following

aspects:

• EVs in Distribution Systems: EVs are directly connected with distributions

systems. Therefore, the cooperation mechanisms of the EV aggregator with the

DSO and the DSO with the TSO, which can guarantee each stakeholder’s benefits,

should be developed. It is worth examining the impact of EVs’ charging behaviours

on the AC-OPF to distribution systems and the relationships between DSO with

the EV aggregator need to be investigated.

It is worth considering the cooperation of DGs and smart buildings with EVs in

distribution systems. As the penetration level of renewable energy increases and

due to its uncertainty, EVs are expected to take responsibility for smoothing the

output of renewable energy, and thus the whole power grid will benefit.

• Coupling Between the Power Network and Transportation Network:

In this thesis, a temporal model is built to examine the operation of power grids,

which involves spatial constraints in the optimisation. For real planning of power
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grids, both temporal and spatial information should be considered, where the

optimal sitting and sizing of charging stations need to be optimised.

Distribution systems could be mainly classified into commercial, residential, and

industrial areas, where these areas are geographically connected based on the

transportation network. Thus, it is worth jointly consider the power network and

the transportation network in the charging stations’ siting and sizing problem.

• An Accurate EV Battery Model: In this study, considering the characteristics

of the Li-ion battery, the relationship between maximum charging power with

SOC is formulated as linear constraints in the optimisation model. However,

for simplification, the battery degradation rate is assumed as a constant. It is

practical to consider the relationships of battery degradation rate with charging

power and SOC, especially during fast-charging mode.

• Advanced EV Information Grouping Methods: In this thesis, only one

type of EV is considered in numerical examples, it is worth building more realistic

EV model, with varies types of EVs and different driving patterns.

Therefore, it is worth exploring advanced EV information grouping method based

on artificial intelligence and machine learning techniques, such as K-means method.

The trade-off between the computational complexity with the scheduling accuracy

should be examined.
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Parameters and Data

A typical residential community is considered in numerical examples in Chapter 4–6, and

the EV energy management strategies are applied from 13:00 to 13:00 next day. Private

EVs with normal charging in residential area (fast charging is common in commercial

area) are considered in this thesis. It is assumed that EV owners are all residential

customers, that is most EVs arrive in the evening and leave in the morning next day

(detailed information is given in Table B.4).

B.1 EV Battery Information

The total time period is twenty-four hours (13:00–13:00 next day) and the scheduling

interval is set to ∆T = 1 h. Thus, the total number of time intervals is M = 24. The

upper and lower bounds on the SOC are SOC = 1 and SOC = 0.1 (these parameters

are generic and can be easily changed according to the requirements) for all EVs and

the depth of discharge is set as DoD = 1.

It is assumed that EVs in these models are all with BYD e6 type; the EVs charg-

ing/discharging parameters are summarised in Table B.1.

Table B.1: EV battery parameters
P

ev
n Eev

n Dev SOC SOC SOCd

8 kW 64 kWh 0.083 $/kWh 0.1 1 0.95
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The relevant parameters of ESS are summarised in Table B.2.

Table B.2: ESS battery parameters
P

ess
Eess Dess SOCb SOCe

120 kW 1500 kWh 0.08 $/kWh 0.5 0.5

B.2 Piecewise Linear Approximation of Maximum Charg-

ing Power

In the dynamic EV charging/discharging model, the dynamic maximum charging power

limits are approximated by four linear curves in Figure 3.2. The value parameters R1−5

and F1−5 are summarised in Table B.3

Table B.3: Piecewise linear approximation of maximum charging power
R1 R2 R3 R4 R5

0 0.74 0.82 0.926 1

F1 F2 F3 F4 F5

7.34 8.00 6.35 3.09 0

B.3 Real-Time Pricing

The hourly RTP (charging price) and the hourly reserve capacity prices are shown in

Figure B.1 [73]. The aggregator could receive an additional reward (feed-in-tariff) at

the time for injecting energy back to the grids and the reward is set as r̂ = 0.16$/kWh.

The reserve shortage penalty values are set as γup = γdw = 0.13$/kWh.

B.4 EV Driving Information

The EV owners’ driving patterns are assumed to follow the TGD, i.e. the arrival

time, departure time and the battery SOC at arrival time follow the TGD. Table B.4

illustrates the EV driving information parameters [68].
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Figure B.1: RTP (charging price) and reserve up/down capacities prices

Table B.4: EV Information Model Data
Mean Variance Min Max

Initial SOC 0.3 0.1 0.1 1
Arrival time 18:00 2h 13:00 13:00 next day
Departure time 7:00 2h 13:00 13:00 next day
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B.5 Power Grids Information

Table B.5 summarises the characteristics of five generators including cost coefficients

and the maximum/minimum output power limits.

Table B.5: Generator characteristics
Generator ID ai ($/MW2h) bi ($/MWh) ci ($/h) PG

i (MW) P
G
i (MW)

Gen 1 0.04 20 0 0 332.4
Gen 2 0.25 20 0 0 140
Gen 3 0.01 40 0 0 100
Gen 6 0.01 40 0 0 100
Gen 8 0.01 40 0 0 100

The impedance (in p.u.) and the transmission capacity of each branch of the

transmission network are shown in Table B.6. It can be seen that there are 20 branches

of the systems.

Table B.6: Branch characteristics

Branch From bus i To bus j
Impedance Xi,j

(p.u.)
Capacity Fi,j

(MW)

1 1 2 0.059 300
2 1 5 0.223 300
3 2 3 0.197 300
4 2 4 0.176 300
5 2 5 0.173 300
6 3 4 0.171 300
7 4 5 0.042 300
8 4 7 0.209 300
9 4 9 0.556 300
10 5 6 0.252 300
11 6 11 0.199 300
12 6 12 0.256 300
13 6 13 0.130 300
14 7 8 0.176 300
15 7 9 0.110 300
16 9 10 0.084 300
17 9 14 0.270 300
18 10 11 0.192 300
19 12 13 0.200 300
20 13 14 0.348 300
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Table B.7 illustrates total bus number of the transmission network B = 14 and the

distribution of the load and generators at each bus.

Table B.7: Load and generator units locations
Bus ID 1 2 3 4 5 6 7

Load (MW) N/A 21.7 94.2 47.8 7.6 11.2 N/A
Generator ID Gen 1 Gen 2 Gen 3 N/A N/A Gen 6 N/A

Bus ID 8 9 10 11 12 13 14
Load (MW) N/A 29.5 9 3.5 6.1 13.5 14.9

Generator ID Gen 8 N/A N/A N/A N/A N/A N/A
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Numerical Results

The relationship between aggregatgor profit and EV owners charging fee with different

value of weights is shown in Table C.1.

Table C.1: Aggregator profit and EV owners’ charging fee versus weights in WSM
Aggregator
Profit ($)

EV owners
charging fee ($)

Weight
w1

Weight
w2

29.86 324.38 0 1.00
33.94 324.63 0.10 0.90
40.48 325.71 0.20 0.80
49.25 328.45 0.30 0.70
51.80 329.60 0.33 0.67
53.68 330.64 0.40 0.60
58.64 334.65 0.50 0.50
60.56 336.98 0.60 0.40
62.34 340.11 0.70 0.30
63.08 342.27 0.80 0.20
63.34 343.80 0.90 0.10
63.80 353.03 1.00 0

Table C.2 and C.3 summarise the detailed power flow of each branch of the trans-

mission network at each hour. Table C.4 and C.5 show the voltage angle of each bus at

each hour.
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Appendix C. Numerical Results

Table C.4: Voltage angle of bus 1–7 in one day (rad)
Time Bus 1 Bus 2 Bus 3 Bus 4 Bus 5 Bus 6 Bus 7

13:00 0 -0.12 -0.31 -0.24 -0.20 -0.24 -0.21
14:00 0 -0.13 -0.32 -0.25 -0.21 -0.27 -0.23
15:00 0 -0.14 -0.34 -0.27 -0.23 -0.30 -0.26
16:00 0 -0.13 -0.35 -0.28 -0.24 -0.33 -0.28
17:00 0 -0.13 -0.36 -0.29 -0.25 -0.35 -0.30
18:00 0 -0.13 -0.37 -0.30 -0.25 -0.37 -0.31
19:00 0 -0.13 -0.36 -0.29 -0.25 -0.35 -0.30
20:00 0 -0.13 -0.35 -0.28 -0.24 -0.32 -0.28
21:00 0 -0.12 -0.31 -0.25 -0.21 -0.26 -0.23
22:00 0 -0.11 -0.27 -0.21 -0.17 -0.22 -0.19
23:00 0 -0.10 -0.26 -0.20 -0.17 -0.22 -0.19
0:00 0 -0.10 -0.26 -0.20 -0.17 -0.22 -0.20
1:00 0 -0.11 -0.27 -0.20 -0.17 -0.20 -0.18
2:00 0 -0.11 -0.27 -0.20 -0.17 -0.20 -0.18
3:00 0 -0.11 -0.26 -0.20 -0.17 -0.20 -0.18
4:00 0 -0.10 -0.26 -0.20 -0.17 -0.21 -0.18
5:00 0 -0.10 -0.26 -0.20 -0.17 -0.21 -0.18
6:00 0 -0.10 -0.26 -0.20 -0.17 -0.21 -0.18
7:00 0 -0.10 -0.26 -0.20 -0.17 -0.20 -0.18
8:00 0 -0.10 -0.26 -0.20 -0.17 -0.20 -0.18
9:00 0 -0.11 -0.27 -0.21 -0.17 -0.20 -0.17
10:00 0 -0.12 -0.30 -0.23 -0.19 -0.24 -0.21
11:00 0 -0.12 -0.31 -0.24 -0.20 -0.24 -0.22
12:00 0 -0.12 -0.31 -0.24 -0.20 -0.25 -0.22
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Table C.5: Voltage angle of bus 8–14 in one day (rad)
Time Bus 8 Bus 9 Bus 10 Bus 11 Bus 12 Bus 13 Bus 14

13:00 -0.04 -0.31 -0.32 -0.29 -0.29 -0.30 -0.36
14:00 -0.06 -0.33 -0.34 -0.32 -0.32 -0.33 -0.39
15:00 -0.09 -0.37 -0.38 -0.35 -0.36 -0.37 -0.43
16:00 -0.11 -0.39 -0.41 -0.38 -0.39 -0.40 -0.46
17:00 -0.12 -0.42 -0.43 -0.41 -0.42 -0.43 -0.49
18:00 -0.14 -0.43 -0.45 -0.42 -0.44 -0.44 -0.51
19:00 -0.13 -0.42 -0.43 -0.41 -0.42 -0.43 -0.49
20:00 -0.10 -0.39 -0.40 -0.38 -0.38 -0.39 -0.45
21:00 -0.05 -0.33 -0.34 -0.31 -0.32 -0.33 -0.39
22:00 -0.03 -0.27 -0.28 -0.26 -0.26 -0.27 -0.32
23:00 -0.06 -0.27 -0.28 -0.25 -0.26 -0.27 -0.31
0:00 -0.07 -0.27 -0.28 -0.26 -0.26 -0.27 -0.31
1:00 -0.01 -0.26 -0.27 -0.24 -0.25 -0.25 -0.31
2:00 -0.01 -0.26 -0.27 -0.24 -0.25 -0.26 -0.31
3:00 -0.02 -0.26 -0.27 -0.24 -0.25 -0.26 -0.31
4:00 -0.03 -0.27 -0.27 -0.25 -0.25 -0.26 -0.31
5:00 -0.04 -0.27 -0.27 -0.25 -0.25 -0.26 -0.31
6:00 -0.04 -0.27 -0.27 -0.25 -0.25 -0.26 -0.31
7:00 -0.02 -0.26 -0.27 -0.25 -0.25 -0.26 -0.31
8:00 -0.02 -0.26 -0.27 -0.24 -0.25 -0.26 -0.31
9:00 0 -0.26 -0.27 -0.24 -0.24 -0.25 -0.31
10:00 -0.03 -0.30 -0.31 -0.28 -0.29 -0.30 -0.36
11:00 -0.04 -0.31 -0.32 -0.29 -0.30 -0.30 -0.37
12:00 -0.04 -0.31 -0.32 -0.29 -0.30 -0.31 -0.37
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