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Abstract 

Parkinson’s disease (PD) is a neurodegenerative disorder with a complex 

aetiology including genetic risk factors, environmental exposure and aging. Recent 

genome wide association studies have been successful at identifying genetic variation 

that confers a risk for PD, yet despite this it is predicted that the large majority of the 

genetic attribution to the disease is still unknown. It is also noted that much of the 

identified risk loci lie within poorly annotated regions of the genome such as those 

containing repetitive sequences and transposable elements (TE)s, highlighting the 

importance of further investigation into such regions. Despite many reports that 

associate TE insertions with PD no study has comprehensively analysed the role of these 

elements in the disease.  

The work presented in this thesis sought to ask three main questions; first, are TE 

overrepresented at PD risk loci using a haplotype block based genome-wide analysis, 

second are non-reference TE associated with risk of PD using a newly developed TE 

detection tool and PD WGS data; and third, are TE differentially regulated in the blood 

or skin of individuals with PD. This work leveraged genetic and expression datasets to 

comprehensively address the role of TE in PD.  Along with identifying that specific TE are 

overrepresented at PD risk loci we also show that in the blood specific repetitive 

elements are differentially expression in PD.  Most significantly we characterized known 

non-reference TE presence/absence polymorphisms in collaboration with the 

International Parkinson’s Disease Genomic Consortium (IPDGC) in PD whole genome 
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sequencing data (WGS) from the Parkinson’s Progression Markers Initiative (PPMI) 

cohort using the TE detection tool MELT. We identify that TE insertions are a heritable 

and common form of genetic variation that lie within potentially important functional 

domains of the genome. Not only do many non-reference TE map to PD risk loci, but 

from our initial study we have identified that non-reference TE’s are in moderate linkage 

disequilibrium with PD risk variants, and thus a candidate causal variant that warrant 

further study at these loci. In summary, TE insertions are a major source and often 

overlooked form of genetic variation in the human genome. Collectively the research 

presented in this thesis suggests that not only could integrating TE variants be a valuable 

and critical step forward for furthering our understanding of existing risk PD variants, but 

it could also be valuable for establishing new risk regions. 
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1.1. Overview:  

Extensive genome-wide association and meta-analysis initiatives have identified 

ninety loci that confer a risk to Parkinson’s disease (PD)1. Despite this success, taken 

collectively it is predicted that these loci only explain around one third of the heritable 

component of PD.  Therefore, the majority of the common heritability of PD is unknown.  

Even for the known risk loci the true causal variant is yet to be established and little is 

understood regarding the underlying cellular and molecular processes through which 

they act. 

  Previous analyses have focused on the contribution of single nucleotide 

polymorphisms (SNP)s to disease risk, however structural variation (SV) is also a huge 

source and overlooked form of genetic variation in the genome. Comprehensively 

analysing SV is extremely challenging as the majority of these variants are repetitive and 

thus very difficult to uniquely map with short-read sequencing approaches.  Nonetheless 

with recent advances in both sequencing methods and bioinformatic programs it is 

becoming increasingly apparent that SVs contribute to gene regulation and are 

implicated in disease. This form of genetic variation varies greatly in size and is broadly 

split into classes: deletions, translocations, inversions, tandem duplications and 

transposable elements (TE)s. The latter will be the focus of this thesis.  

  TE derived sequences constitute the majority of the human genome and despite 

the fact that many of these insertions are ancient, a subset is still capable of mobilization, 

including the subfamilies; Alu, LINE-1 and SVA.   Relevant to PD specifically, TEs have 

already been associated with rare instances of Mendelian PD which are caused by copy 

https://paperpile.com/c/vqnRbp/iUiq6
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number variants (CNVs)2. In addition, an SVA insertion into the TAF1 gene is causative of 

X-linked dystonia-parkinsonism (XDP)3. Despite this, the role of TE in sporadic PD is yet 

to be addressed.  Therefore, in this thesis we leveraged new TE detection and expression 

quantification tools and PD whole-genome sequencing (WGS) and gene expression 

datasets and comprehensively analysed the role of TE in sporadic PD.  

First, we focused on an already characterized SVA that is in the reference genome 

and upstream of the PD associated PARK7 gene.  Previous work had demonstrated that 

two repetitive domains of the SVA were variable in copy number 4,5, giving rise to four 

distinct alleles. There was also an alternative transcriptional start site adjacent to the 

SVA which was active in multiple brain regions. Proxy SNPs were generated for three of 

the four alleles, so utilizing these we explored whether the SVA could be imputed. As 

SVA are large GC rich repetitive elements PCR genotyping is cost and time intensive, 

therefore bioinformatically calling the SVA would be beneficial and give power to 

subsequent association analyses. SVAs in the reference genome have also been shown 

to drive tissue and allele specific gene expression in vitro and in vivo4. In light of this we 

also hypothesized that the SVA may act as an expression quantitative trait loci (eQTL).  

We identified that the reference PARK7-SVA was imputable and utilizing a large 

WGS dataset demonstrated that it is a common form of SV that is currently uncaptured 

at the PARK7 locus (see chapter 2).  We also ran association analyses using PD WGS but 

did not identify any significant association between the SVA and risk of PD. EQTL analysis 

was also applied to brain-specific expression datasets. Although we confirmed that a 

longer brain specific PARK7 transcript was expressed from the transcriptional start site 

https://paperpile.com/c/vqnRbp/zqxo
https://paperpile.com/c/vqnRbp/MJpW
https://paperpile.com/c/vqnRbp/z1ua+brrR6
https://paperpile.com/c/vqnRbp/z1ua
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adjacent to the SVA, we did not identify that this expression was associated with the 

genotype of the SVA.  

  Given that SVAs can influence gene expression and have previously been 

reported to be enriched at Mendelian PD genes, we next performed a genome-wide 

haplotype-block based enrichment analysis. We also used ENCODE data to annotate 

whether reference SVA overlapped regulatory sites in the genome. Our goal was to gain 

insight into the genome-wide regulatory potential of reference SVA and establish 

whether they were enriched at regions of the genome that contributed to PD risk. We 

demonstrated that due to their genic nature (see chapter 3) reference SVA are 

overrepresented at current PD risk loci and commonly overlap regulatory sites. 

Therefore, reference SVA could be involved in disease mechanism at known risk loci.  

  LINE1 and Alu TEs are also known to alter gene expression, so we addressed 

whether they too were enriched at PD risk loci. Specifically, Alu elements have been 

reported to be enriched within genes that are associated with mitochondria function, 

which is a known pathway involved in the pathophysiology of PD6. Haplotype block-

based analyses did not identify enrichment of LINE1 and Alu at PD risk loci.  However, in 

support of the literature, Alu density positively correlated with mitochondria function 

gene density (see chapter 4A). 

Currently it is not possible to address how Alu variation contributes to PD risk 

through the mitochondria function pathway as this variation is not catalogued.  So 

Instead we utilized PD GWAS datasets to gain insight into the overall contribution of the 

genetic variation within mitochondria function associated genes to risk of sporadic PD. 

https://paperpile.com/c/vqnRbp/ViKf
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First, using polygenic risk score analysis we identified that variation within mitochondria 

function associated genes was significantly associated with risk of PD and later age at 

onset. We also identified that a proportion of the missing heritability of the PD can be 

explained by common variation within genes implicated in mitochondrial function. 

Finally, to identify possible functional genomic associations we implemented Mendelian 

randomisation which identified that fourteen mitochondrial function associated genes 

showed functional consequence associated with PD risk. Further analysis suggested that 

the 14 identified genes are not only involved in mitophagy but implicate new 

mitochondrial processes (see Chapter 4B). Our data suggests that therapeutics targeting 

mitochondrial bioenergetics and proteostasis pathways distinct from mitophagy could 

be beneficial to treating the early stage of PD. 

Beyond simple enrichment analysis we next characterized known TE 

presence/absence polymorphisms in collaboration with the International Parkinson’s 

Disease Genomic Consortium (IPDGC) in PD WGS from the Parkinson’s Progression 

Markers Initiative (PPMI) cohort using the TE detection tool MELT. We show that non-

reference TE insertions are a heritable and common form of genetic variation that lie 

within potentially important functional domains of the genome. Not only do many lie 

within PD risk regions, but from our initial study multiple risk variants are tagged by TEs. 

Most significantly a non-reference SVA is in moderate LD with a known PD risk variant 

and is most commonly inherited with the risk allele (see chapter 5).  

  Finally utilizing RepEnrich a TE expression quantification tool we explored 

differential expression of not only TE but all repetitive elements (RE) in the blood and 
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skin of PD patients. Despite reports that associate RE expression with PD no study has 

comprehensively analysed the role of these elements in the disease. Analysis of RNA-

sequencing data of 12 PD patients and 12 healthy controls identified tissue-specific 

expression differences and more significantly, differential expression of four satellite 

elements; two simple satellite III (repName = CATTC_n and _GAATG_n) a high-copy 

satellite II (HSATII) and a centromeric satellite (ALR_Alpha) in the blood of PD patients. 

In support of the growing body of recent evidence associating REs with 

neurodegenerative disease, this study highlights the potential importance of 

characterization of RE expression in such diseases (see chapter 6). For a general overview 

of the thesis see Figure 1.1. 
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1.2. Parkinson's disease: A brief history  

Due to an increasing population of aged individuals the prevalence of 

neurodegenerative disease is predicted to drastically rise. PD is the second most 

common neurodegenerative disease after Alzheimer’s disease (AD). The prevalence of 

PD is age-dependent, in which about 1% of the global population at 65 years of age and 

over, and about 4-5% of individuals at 85 years of age and over affected 7 . PD is also the 

most frequent movement disorder and the prevalence of the disease in some age groups 

is likely to double by 2030 8–10 . This therefore represents a medical and economic 

challenge for modern society with there being no available treatment that can stop or 

reverse the neurodegenerative process of the disease.  

PD was considered the typical example of a non-genetic disease until only two 

decades ago. This view was supported by the first published cross-sectional series of twin 

studies 11,12 and epidemiological studies which linked PD to environmental causes such 

as viral infection or neurotoxins. This was consistent with, a pandemic influenza virus 

was strongly associated with post-encephalitic parkinsonism, seen by many as evidence 

that viral infection may be a major cause of PD. In addition, the observation that drug 

users exposed to MPTP developed parkinsonian-like features strengthened the notion 

that PD was an environmental disease 13.   

However, evidence supporting a genetic basis of PD aetiology came when 

molecular genetics were implemented to dissect the underlying genetic cause of several 

families in which PD was inherited in an autosomal dominant or recessive manner. The 

first forms of monogenic PD were caused by highly penetrant mutations affecting 

https://paperpile.com/c/vqnRbp/76TUp
https://paperpile.com/c/vqnRbp/D0lg5+Jnfzo+A0DLY
https://paperpile.com/c/vqnRbp/vcFyC+G80Qm
https://paperpile.com/c/vqnRbp/DEy1B
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multiple members per family.  Although the insights gained from such mutations were 

seen as very valuable, these families were extremely rare. 

In 1997 the first genetic association with PD was identified with mutations in 

SNCA (encoding α-synuclein)14. This first key finding to suggest a heritable component of 

PD was followed by the identification of additional rare recessive forms associated with 

early-onset disease. However, all these known monogenic forms combined only explain 

about 30% of monogenic and 3–5% of genetically complex or “sporadic” cases.  

1.3. Parkinson’s disease is a complex genetic disease 

PD fits within the wide range of complex polygenic disorders influenced by both genetic 

and environmental factors. While only a small minority of PD cases are monogenic in 

nature, sometimes exhibiting variable penetrance, the vast majority of cases are 

considered to be genetically complex, presenting with multiple clinical presentations. It 

has been assumed that PD aetiology lies on a continuum, ranging from the monogenic 

inheritance observed in monogenic disease to complex inheritance associated with an 

interplay of genetic risk and likely environmental influence 15. 

The genetic attribution of PD is often ascribed to two non-mutually exclusive 

ideas: the common disease common variant (CDCV) hypothesis and the common disease 

rare variant (CDRV) hypothesis (also known as the multiple rare variant hypothesis).  The 

CDCV hypothesis would accept that the genetic basis of PD is a result of a contributing 

common variants that each exert relatively small effects on disease risk but that 

https://paperpile.com/c/vqnRbp/3duIf
https://paperpile.com/c/vqnRbp/UBhD
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cumulatively confer substantial risk. On the contrary, the CDRV hypothesis considers that 

a contributing risk component for complex disease will be rare genetic variants of small 

or moderate/large effect where highly functional, deleterious alleles might exist 16. This 

phenomenon may be particularly pronounced in late-onset diseases such as genetically 

complex PD, where selective pressures are not as profound (described in Figure 1.2). 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 The genetic architecture of complex diseases. (Adapted from Manolio et al., 
2009). 
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The development and improvement of technological approaches continues to 

challenge both paradigms by increasing the identification of very rare causative 

mutations underlying monogenic forms of disease through whole-genome and whole-

exome sequencing (WES) approaches and of common variants with small effects 

contributing to genetically complex, late-onset disorders through genome-wide 

association studies (GWAS).  

1.4. Currently known common genetic risk factors in PD 

Both candidate gene association studies and GWAS continuously validate that the 

most statistically significant signals associated with PD are common variants located 

close to SNCA, LRRK2, and MAPT as well as low-frequency coding variants in GBA. These 

genes are discussed below in more detail.  

1.4.1. SNCA  

Following the discovery of SNCA mutations which were causative of rare monogenic 

forms of PD, α-synuclein protein aggregates were identified as a major component of 

Lewy bodies, (a primary pathological hallmark of PD17. This finding showed overlap 

between the pathogenesis of monogenic and genetically complex PD. Interestingly, in 

the context of risk for PD, SNCA is pleomorphic i.e. both rare mutations and common 

variation at this locus alter risk for disease.  

https://paperpile.com/c/vqnRbp/r4C7R
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At one end of the risk spectrum deleterious point mutations in and multiplications of 

this gene cause a severe early-onset form of PD that follows an autosomal dominant 

pattern of inheritance 18,19.   Copy number variation caused by multiplications of PD 

associated loci will be detailed in a later section. At the other end of the  spectrum, it has 

been repeatedly reported that non-coding variation within this locus confers risk and 

predisposes to sporadic PD1,20. The first indication that the SNCA locus contained risk 

variants for sporadic  PD came from the association between the REP1 (a polymorphic 

dinucleotide repeat sequence) variant in the promoter region of the gene and PD 21.  

Further GWAS signals at SNCA showed an association with PD from intron 4 to after the 

3′ UTR region 22. Since then SNCA has been overwhelmingly established in GWAS, 

identifying additional signals and providing further insights about the genetic risk at this 

locus 20,23–25. Current research suggests between two to five semi-independent 

association signals accounting for heritable risk at this locus 1.  

1.4.2. LRRK2 

Genetic variants in LRRK2 account for the majority of all known heritable PD. The most 

common pathogenic variant in LRRK2, p.G2019S, is responsible for about 1% of patients 

with sporadic PD and 4% of patients with a family history of PD. LRRK2 p.G2019S exhibits 

incomplete and age-associated differences in penetrance. Collaborative studies have 

shown that the risk of PD for individuals who inherit the LRRK2 p.G2019S variant varies 

from 28% at 59 years to 51% at 60 years reaching up to 75% at 80 years of age.26 LRRK2 

p.G2019S frequency varies depending on ethnic background, with the highest 

https://paperpile.com/c/vqnRbp/z74VP+O5Ray
https://paperpile.com/c/vqnRbp/olKbl+iUiq6
https://paperpile.com/c/vqnRbp/g10dL
https://paperpile.com/c/vqnRbp/YKFhg
https://paperpile.com/c/vqnRbp/7djuK+lT3su+MHdcd+olKbl
https://paperpile.com/c/vqnRbp/iUiq6
https://paperpile.com/c/vqnRbp/5lBYF
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frequencies among North African Arab and Jewish populations 27,28 . A recent study 

reported a prevalence of 0.71% among Caucasians, 0.07% among Asians, and 30.2% 

among individuals of Arab origin with PD29 .  It is thought that LRRK2 p.G2019S originated 

from a common founder in the North of Africa and spread globally with the Ashkenazi 

Diaspora 30. 

Similarly, to SNCA, LRRK2 is also a pleomorphic locus. In addition to several disease-

causing mutations characterized by segregation with PD in large families and by 

functional studies, common variability has been repeatedly reported as a risk factor for 

PD. There are two lines of evidence supporting the idea that LRRK2 contains risk-

modifying variants. Firstly, it has been widely reported that two polymorphic LRRK2 

variants, p.G2385R and p.R1628P, are associated with a 2-fold risk of PD in Asian 

populations with a frequency of approximately 6% in cases 31–33.  Secondly, GWAS 

implicate non-coding variants proximal to LRRK2 with around a 1.2 fold increase risk for 

PD. This suggest that this risk may be mediated by an alteration in expression or splicing, 

although the precise mechanism involved is yet to be established.  

1.4.3. GBA 

Homozygous mutations observed in GBA, are causative of Gaucher’s disease, a 

lysosomal storage disorder with an autosomal recessive pattern of inheritance. A clinical 

observation in relatives of patients affected with Gaucher’s disease identified that first 

and second degree family members manifested an increased incidence of PD, pointing 

to GBA as a risk factor for PD 34,35 .  Further a multicentre study conducted by Sidransky 

https://paperpile.com/c/vqnRbp/cU2qa+IiSDf
https://paperpile.com/c/vqnRbp/QttOr
https://paperpile.com/c/vqnRbp/k3rNr
https://paperpile.com/c/vqnRbp/fiGdc+b1iXF+JJeJU
https://paperpile.com/c/vqnRbp/pgLU3+RzYM9
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et al. showed that heterozygous GBA mutations are the largest genetic risk factor for 

developing PD, enhancing an individual's risk by approximately 5-fold and highlighting 

the importance of the lysosomal pathway in the pathogenesis of PD36.  As GBA variants 

can appear with frequencies <5%, it was initially filtered out of GWAS analyses, 

(highlighting a possible limitation of GWAS). Only following a candidate gene approach 

was GWAS able to confirm its clear significance as a PD risk factor. GBA encodes a 

lysosomal glucocerebrosidase enzyme responsible for the synthesis of ceramide 37. A 

reduced expression level of GBA in addition to a significant decrease in the enzyme 

activity has been observed in PD patients carrying heterozygous mutations in GBA. 

Further, decreased rates in glucocerebrosidase activity have been found in the 

substantia nigra of PD patients in comparison with other brain regions 37,38.  

Multiple reports suggest that up to 10% of PD patients carry a GBA mutation and it 

has been reported that the penetrance and lifetime risk of developing PD for these GBA 

carriers varies in an age-dependent fashion from 20% at 70 years to 30% at 80 years 39 . 

Therefore, GBA mutations are a substantial common risk factor for PD. However, the 

frequency of GBA variants varies according to different ethnicities, being particularly 

frequent among Ashkenazi Jewish subjects. For example, the most common GBA variant 

(p.N370S) is present among those of European, American, or Middle Eastern origin but 

is not typically seen in Chinese or Japanese populations 40.  

https://paperpile.com/c/vqnRbp/YPftY
https://paperpile.com/c/vqnRbp/xN9Mj
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1.4.4. MAPT 

Mutations that are dominantly inherited in MAPT were first associated with forms of 

Frontotemporal dementia and Parkinsonism linked to chromosome 1741. MAPT 

mutations and tau pathology have been predominantly associated with dementias, 

therefore making the association observed between PD and the locus harbouring MAPT 

of particular interest. Along with the monogenic forms, several studies have deeply 

studied MAPT for variability that may infer risk for PD. There are two major haplotypes 

at the MAPT locus: the directly oriented haplotype H1 and the H2 haplotype, which has 

an inverted chromosome sequence 42.  The H2 haplotype is present in approximately 

20% of the European population and shows very limited genetic variability contrary to 

the H1 haplotype 43. To note, this locus represents the largest area of linkage 

disequilibrium (LD) known in the human genome, 44 which makes  identifying the true 

causal variation at this locus difficult.  

Within the past decade a growing body of evidence has suggested that the MAPT H1 

and its sub-haplotype H1c are associated with increased risk for PD. It is suggested that 

haplotype-specific differences in expression and potentially alternative splicing of MAPT 

transcripts affect cellular functions at different levels, which eventually increases 

susceptibility to PD45.  Further, MAPT is one of the top GWAS hits, although it seems to 

be limited to Europeans and not Asian populations. However, it is a challenge to 

determine how common variants at the MAPT locus increase the risk for PD. This is due 

to the locus harbouring many genes and the extended LD means that it is difficult to 

https://paperpile.com/c/vqnRbp/EJv85
https://paperpile.com/c/vqnRbp/Ro5pm
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localize the genetic signal. Thus, while MAPT is a strong candidate as the effector gene 

at this locus, it cannot be confirmed that this is the true biological mediator of risk. 

Therefore, dissecting this locus and identifying the true causal variant is still an ongoing 

problem.  

1.5. Identifying risk loci from GWAS: Where we are at 

The underlying idea of a GWAS is based on the CDCV paradigm with the objective of 

detecting common variants (MAF > 1%) in ethnically homogeneous populations. While 

critics suggest a genome-wide fishing expedition, the overwhelming majority of the 

genetics community would argue that the results gathered from such studies have 

marked a significant advancement from candidate gene studies and have driven the new 

era and concept of PD genetics. These advances are based on the premise that risk 

variants may occur within haplotype blocks shared with common variants through LD. 

Since common variants can be tagged through genotyping marker arrays, risk variants in 

linkage disequilibrium should manifest an association by proxy with tagged common 

variants and ultimately with PD. By increasing sample size and genotype marker 

frequency, lower-risk variants with a lower population-attributable risk can be detected. 

As the field has progressed, several GWAS 22,24,46–50 and meta-analyses 1,20,25 have been 

key at identifying common risk variability associated with sporadic PD. At present 

following the most recent meta-analysis involving over one million individuals 90 risk 

variants  have been established, across 78 loci 1 . The current known PD risk loci are 

shown the Manhattan plot in (Figure 1.3).  

https://paperpile.com/c/vqnRbp/9jM8o+mRSLd+KKxsn+a6LL7+wDUKd+YKFhg+lT3su
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https://paperpile.com/c/vqnRbp/iUiq6
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Figure 1.3 Manhattan plot. The nearest gene to each of the 90 significant variants. –log10P values were 
capped at Variant points are colour coded red and orange, with orange representing significant variants at 
P 5E-08 and 5E-9 and red representing significant variants at P < 5E-9. The X axis represents the base pair 
position of variants from smallest to largest per chromosome (1-22) (Nalls et al 2019). 
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Despite the considerable success of PD GWAS studies, only a relatively small 

proportion of the heritable component of PD can be explained from the ninety identified 

risk loci1. Genetic heritability is a measure of the extent to which genetics is involved in 

a given trait or phenotype51. Twin studies are a frequently used method for studying the 

heritability of a given phenotype, taking advantage of the nearly 100% shared genetic 

data of monozygotic (MZ) twin pairs and nearly 50% shared genetics data for dizygotic 

(DZ) twin pairs. Both are assumed to share the same environment and assuming that this 

unique environment equally contributes to the development of the phenotype of 

interest in MZ and DZ pairs, it is possible to estimate the variance contributed by genetic 

effects by comparing the phenotypic correlation in MZ and DZ pairs. The resulting 

estimate is a measure of “broad sense” heritability52.  

Historically, using twin studies to study the heritability of apparently sporadic PD has 

been problematic, with several early twin studies failing to show differences in 

concordance rates, as they were generally limited by small sample size and cross-

sectional design53. As previously mentioned, monogenic familial PD is often early onset 

and it has been suggested that this form of PD has a dissimilar aetiology and greater 

heritability component than the later onset forms of PD, which appear to be sporadic 

54,55. Given this factor a more recent PD twin study adjusted for age and showed 

significant rates of concordance for MZ pairs with early age at onset of PD, compared to 

a near lack of concordance for individuals with later onset PD. This strongly supports the 



 28 

role of genetics in early-onset PD; however again this study was limited by a small sample 

size56.  

Narrow-sense heritability is another estimate used to understand the heritability of a 

given phenotype and captures the proportion of genetic variation that is due to additive 

genetic values. For PD specifically, utilizing existing well powered PD GWAS datasets 

narrow-heritability estimates have identified that the heritable component of PD due to 

common genetic variability is estimated to be around 22%1. This means that for every 

individual with PD around 22% of the disease can be explained by shared common 

genetic variability. However, if this is calculated using only the 90 known risk loci 

(opposed to the former that was calculated with all the GWAS variants) then only a 

fraction of this 22% can be explained1. Therefore, there are many loci that contribute to 

PD risk that are still unknown and this is termed in the literature the “missing heritability” 

of PD57. It is highly likely that an important part of the “missing heritability” exists in rare 

variants with low or high degrees of risk and structural variation, both of which are 

difficult to detect using traditional GWAS methods. In addition to not capturing the latter 

variation, calculating heritability it this way is also limited due to the fact it does not take 

into consideration dominant or epistatic effects. Despite the limitations of heritability 

estimates, they illustrate that genetic variation significantly contributes to PD aetiology 

and most importantly they emphasize that there are still many genetic risk factors that 

are yet to be identified.  
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1.6. Structural Variation  

The majority of PD risk variants lie within non-coding regions of the genome with no 

known function and taken collectively they can only account for around 30% of the 

heritable component of the disease. Therefore, it is predicted that a portion of this 

“missing heritability” will likely be within regions that are currently not covered by such 

GWAS, such as structural variants (SV).  

The human-genome can differ by a single nucleotide polymorphism (SNP) to large 

chromosomal events. Following huge advancements in sequencing and bioinformatic 

techniques it is now apparent that human genomes differ more as a consequence of 

structural variation than as a result of a point mutation 52–57.  Originally SV’s were defined 

as deletions, insertions and inversions greater than 1 kb 58. However following the recent 

advances in SV discovery technologies the detection of smaller events is possible. As a 

result, the operational range of SVs and copy number variants (CNVs) has widened to 

include much smaller events (e.g. >50 bp in length). Evidently SVs greatly vary in size and 

are broadly split into classes of structural variation: deletions, translocations, inversions, 

TEs, tandem duplications and novel insertions (Figure 1.3). 

 

 

 

 

 

 

https://paperpile.com/c/vqnRbp/rBqgM+mZbk0+RO24A+WEdm6+zFg7C+0ofel
https://paperpile.com/c/vqnRbp/hb5W1


 30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4.The five classes of structural variation in the genome. Structural variation 
refers to genomic alterations that are larger than 1 kb in length, but advances in 
discovery techniques have led to the detection of smaller events. Currently, >50 bp is 
used as a standard cut off between indels and copy number variants (CNVs). The 
schematic shows deletions, novel sequence insertions, mobile-element insertions, 
tandem and interspersed segmental duplications, inversions and translocations in a test 
genome (lower line) when compared with the reference genome (Adapted from Alkanet 
al). 
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Although SVs are a huge source of genetic variation in the genome there are many 

challenges in characterising this form of variation in standard genetic analysis. Therefore, 

the successes in identifying SVs associated with disease is currently mainly limited to rare 

Mendelian forms of disease.  

There are now two distinct models proposed regarding the way in which SVs are 

associated with disease:  

1) Large variants (typically gains and loss of several hundred kb) that are rare in the 

population (MAF >1%) collectively account for a significant amount of the 

heritable component of that specific disease. This form of SV consequence has 

been observed in developmental diseases (such as autism 59 and intellectual 

disability 59,60) and other genetic disorders 61,62. 

2) Copy number variants (CNV) of multicopy gene families that contribute to risk of 

disease. This has been reported in phenotypes associated to immune gene 

function 63,64. CNVs can influence phenotype through several mechanisms such 

as; influence gene expression through simple gene dosage effect, insertions or 

deletions of regulatory regions and alterations of chromatin architecture 65. 

Significantly this is also observed in rare forms of Mendelian PD.  

1.7. Structural variation associated with Parkinson’s Disease 

There are several genes associated with Mendelian PD including; SNCA, PARK2, 

PINK1 and PARK7, have also been identified to contain CNVs that are causative of the 

disease in rare cases. The first report of a PD causing CNV was in 2003 with the significant 

https://paperpile.com/c/vqnRbp/tQ5QY
https://paperpile.com/c/vqnRbp/tQ5QY+DynXS
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https://paperpile.com/c/vqnRbp/AasaP
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discovery of a genomic multiplication at the SNCA locus 19. The genomic triplication at 

this locus causes a rapidly progressive form of autosomal dominant PD19.  However 

duplications of SNCA resemble sporadic PD phenotypically, with late age at onset and 

slower disease progression 66.  Recent studies have indicated that there is a reduced 

penetrance of disease in duplication carriers after observing several asymptomatic 

duplication carriers over 70 years of age without any signs of PD66.  

In addition, CNVs are also reported to cause PD in a recessive manner, which is 

observed with multiplications of PARK2, PINK1 and PARK7. PARK2 is one of the largest 

known genes in the genome (1.4 Mb genomic region) and resides in a region of high 

deletion frequency 67.  Around one third of all pathogenic PARK2 variants are CNVs 

occurring between exons 2 and 5, which form a recombination hotspot 68. Although 

much rarer PD causing multiplications have also been reported in PINK1, including even 

deletions of the entire gene69.  Finally very rare instances of early-onset PD  causing CNVs 

in PARK7 have been reported 61,70.  

But what causes the observed CNVs at Mendelian PD loci? One suggested 

instigator is transposable elements (TEs). Bose et al identified that globally TEs 

(specifically a class of TE called Alu)  are enriched at CNV breakpoints and suggested that 

this increases the regions susceptibility to genomic instability 71. Evidently an enrichment 

of TE at PD associated CNV breakpoints has been identified in SNCA, PARK2 , PINK1 and 

PARK7. Ross and colleagues reported that the presence of Alu and LINE1 elements at the 

SNCA locus may contribute to the genomic instability at this region which induces the 

disease causing copy number variation 72. Further two AluJo repeats have been 
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suggested to enclose putative breakpoints that are in part involved in complex 

rearrangement that causes the PD causing PINK1 CNV.  In regards to the PARK7 PD 

causing CNV  Alu repeat elements flank the deleted sequence of PARK7 on both sides, 

suggesting that unequal crossing-over was likely at the origin of this genomic 

rearrangement 73. Finally at the PARK2 locus in multiple patients Alu elements have 

mediated non-allelic homologous recombination which is the suggested causative 

mechanism of these events of  CNV 74. Therefore, it is evident from these events that 

enrichment of TEs at specific regions at PD loci could induce CNV causative of the disease.  

1.8. Transposable elements 

In 1948 “jumping genes” or TEs were first discovered by molecular geneticist 

pioneer Barbara McClintock 75. Decades later following huge advances in genetic 

technologies it is now established that TE derived sequence constitutes over half of the 

human genome 76. These elements are capable of moving to a new location in the 

genome and be subdivided based on their method of replication, i.e via an RNA 

(retrotransposable elements (RTEs)) or DNA (DNA transposons) intermediate. DNA 

transposons insert into the genome in a “cut-and-paste” manner. On the other hand, 

RTEs follow a so called “copy-and-paste” mechanism whereby the RTE is first transcribed 

into RNA and then inserted back into a different location of the genome. For a broad 

description of the subclasses of TE elements see (Figure 1.5). 
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Figure 1.5 Repetitive DNA classes in the human genome. The major class of repetitive DNA are TEs, which 
can be further divided into DNA transposons or RTE according to their mechanism of transposition, i.e 
through an RNA or DNA intermediate. Retrotransposons are the most abundant class in the human 
genome and can be further divided into long terminal repeats (LTR) and non –LTR retrotransposons. Non-
LTR elements have the ability to mobilise and can be further subdivided into SINE (e.g. Alu elements) and 
LINE (e.g. LINE-1 elements). The LTR class of RTE contains endogenous retroviruses (ERVs) such as HERV-
K.  
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1.9. Retrotransposons 

RTE are the main focus of this thesis and are further classified into long terminal 

repeats (LTR) or non-(LTR) elements.  The later resemble integrated mRNAs and have a 

distinct mechanism of transposition. Non-LTR RTE can be further classified as either long 

interspersed nuclear elements (LINEs) or short interspersed nuclear elements (SINEs). 

Collectively LINE and SINE elements comprise over 34% of the human genome.  

The majority of TE in the genome (~99%) have accumulated truncation events or 

mutations rendering them incapable of transposition. Despite this several subclasses of 

TEs  are still actively transposing, including; LINE-1 77,78, Alu 79,80 and SVA (SINE-VNTR-

Alu)81,82 . SVA and Alu elements are non-autonomous TEs, which are transposed in trans 

by the LINE1 machinery 83,84.  Not only can LINE 1 mobilize adjacent non-LTR TEs but the 

LINE-1 replication machinery can also facilitate the duplication of non-TE transcripts, 

typically protein coding genes. Further through the mechanism of retroduplication LINE-

1 can generate processed pseudogenes (PPG)s85 in the genome. At present 

approximately 130 pathogenic TE variants caused by these transposition events have 

been associated with rare Mendelian forms of disease 86. Consequently, as a result of 

this constant transposition, non-LTR are a huge source of uncaptured structural variation 

in the human genome. 
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1.9.1. Non-LTRs retrotransposons 

1.9.1.1. Long interspersed nuclear elements (LINE1)  

LINE-1 are the most abundant class of non-LTR and constitute nearly one fifth of 

the human genome. There are around half a million copies of LINE-1 in the genome 

and full length they are around 6kb. The structure of a full-length LINE-1 is shown in 

Figure 1.6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6 . Structure of transposable elements in the human genome (adapted from 
Savage et al 2019) 
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Typically LINE-1 consist of two open reading frames (ORF)87 and both ORF encoded 

proteins are required for transposition 88. The mechanism by which LINE-1 transposition 

occurs  is a process called target primed reverse transcription (TPRT)89.  In brief the LINE-

1 RNA is transcribed by RNA polymerase II which is regulated by a promoter within the 

5’UTR of the LINE-190.  This is then exported into the cytoplasm of the cell where the 

ORF1 and ORF2 proteins are translated. Next the ORF1p, ORF2p and LINE-1 RNA then 

form a ribonucleoprotein complex (LINE-1 RNP) which is transported back in to the 

nucleus. With its endonuclease activity the ORF2p nicks the bottom strand of the DNA at 

the consensus sequence 5’TTTTAA 3’, exposing a 3’ hydroxyl group. The ORF2p then uses 

as a primer to reverse transcribe the LINE-1 RNA, nicks the top strand of the DNA and 

then the newly reverse transcribed cDNA of the LINE-1 is integrated into the genome. 

Finally, the complementary strand of DNA is synthesised. TPRT can result in target site 

duplications (TSDs), 5’ truncations, 3 ’transductions and internal rearrangement and 

inversions. 

Over 99.9% of LINE-1s in the human genome are in-active due to mutation and 

translocation events. Despite this a recent study has reported that there are many intact 

LINE1 that still have the ability to facilitate their own transposition. Originally Brouha et 

al identified 90 L1 elements with intact ORFs from the 2001 working draft of the haploid 

human genome sequence. 82 of these elements were assayed for their transposition 

capabilities which identified that around half of were active in a cell culture transposition 

assay. This led to the initial prediction that there were  80-100 LINE-1 elements that are 

transposition competent in a given human genome, often termed “hot” LINE-1 77. 
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Expanding on this analysis Yang et al undertook a systematic characterization of LINE-1 

in the genome and identified that over two hundred LINE-1 were full-length, which has 

more than doubled the number of LINE-1 identified as still capable of transposition.  

These “hot” LINE-1 not only expand the human genome through their own replication 

but can also mobilise non-autonomous retrotransposons including Alus, SVA and PPGs. 

1.9.1.2.  Alu 

There are over 1.1 million Alu elements in the human genome 76. Termed Alu due 

the presence of the AluI restriction enzyme site in their sequence, Alus also contain an 

internal RNA polymerase III promoter to regulate their transcription 91. A conical Alu is 

typically around 300bp (approximately 280bp with a poly A tail) and are derived from 

7SL RNA (Figure 1.6).  Due to their small size Alus are usually well-tolerated when 

inserting into the genome and this also means they are easier to detect 

bioinformatically92.  

Alus can be broadly divided into five subfamilies based on evolutionary age. This 

has led to the suggestion that Alu subfamilies have originated through successive waves 

of fixation from active Alu sequences. The oldest Alu elements are the monomeric FAM, 

FRAM and FLAM sequences. The oldest Alu dimeric subfamilies are Alu ‐Jo and Alu ‐Jb 

which are estimated to be around eighty million years old. The intermediately aged Alu 

subfamilies belong to the Alu ‐S class, which can be further subdivided into families Sx, 

Sp, Sq, Sg and Sc, which are estimated to be 30–50 million years old. Finally the youngest 

subfamilies belong to the Alu ‐Y class, which are less than 15 million years old 93. Recent 
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studies have shown that Alu insertion variants can disrupt gene expression through a 

number of mechanisms such as alternative splicing and exonization94. 

1.9.1.3.  SINE-VNTR-Alu 

SVAs are the most recently evolved family of active non-LTR transposable 

elements, with approximately 2600-3000 SVA copies in humans 76. These hominid-

specific non-autonomous elements contain consensus sequences for LINE-1 

endonuclease recognition, and rely directly on active expression of the LINE-1 

machinery, ORF1p and ORF2p, in order to be mobilised in trans 95,96. The SVA family of 

transposable elements can be further divided into second subfamilies, named A – F1 in 

order of evolutionary age. SVA A is the oldest subfamily in evolutionary terms (~13.6 

million years) and SVA E, F (~3.5 and ~3.2million years, respectively), and F1 the 

youngest, whilst subfamilies D and B are the most abundant in the genome, accounting 

for ~40% and ~15% of the total number of SVA elements. The youngest subfamilies, SVA 

E, F, and F1, are all human specific 82. In addition to this, a  recent study that characterized  

SVA-D  (~9.6million years) identified that the large majority of SVA-D (78% )are also 

human-specific97 . 

Structurally, a canonical SVA is comprised of five main components (Figure 1.6), 

beginning with (1) a simple hexamer repeat of (CCCTCT)n at the 5’ end, which may be 

variable in copy number, followed by (2) an Alu-like region made up of two antisense Alu 

fragments separated by a region of intervening sequence, (3) one or two variable 

number tandem repeat (VNTR) regions, typically with a repeating sequence between 35 

https://paperpile.com/c/vqnRbp/7hIOa
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– 50 bp, (4) a SINE region derived from the 3’ LTR of the retroviral HERV-K10 element, 

and finally (5) a 3’ poly-A signal82. The seventh SVA family, known as F1, lacks the 5’ 

CCCTCT hexamer repeat, instead containing a 5’ transduction of exon 1 of the MAST2 

gene98. 

The insertion of SVA elements into the human genome has influenced our 

evolution through mechanisms such as insertional mutagenesis, recombination events, 

exonisation and modulation of gene expression 99,100. But these insertions can be friend 

or foe depending on where about in the genome they insert. On the one hand it is 

hypothesized that the presence of SVAs at neuropeptide gene loci points to a 

retrotransposon-mediated evolutionary mechanism which may have contributed to the 

development of human behavioural traits 101. However, SVA insertions can also be 

pathogenic, to date there are 8 disease-specific SVAs that have been implicated in 

conditions including, Fukuyama-type congenital muscular dystrophy, cystic fibrosis, 

haemophilia and several cancers 102. These pathogenic SVA insertions are disease causing 

due to various mechanisms such as exon skipping and decreased mRNA production.  

A relevant example of this can be seen with the disease-specific SVA-F insertion 

in intron 32 of the Transcription initiation factor TFIID subunit 1 (TAF1) gene which is 

causative of X-Linked Dystonia Parkinsonism (XDP). Not only does the SVA cause disease 

but it is also disease modifying as the size of the SVAs hexanucleotide CT repeat domain 

inversely correlates with XDP age at onset 103.  The disease-specific SVA-F insertion was 

previously found to alter sequence within TAF1 introns causing abnormal mRNA 

expression and significant dysregulation of a neural-specific TAF1 isoform, N-TAF1 in XDP 

https://paperpile.com/c/vqnRbp/gvSoy
https://paperpile.com/c/vqnRbp/y5Jvl
https://paperpile.com/c/vqnRbp/dw665+GM7f0
https://paperpile.com/c/vqnRbp/NRXkD
https://paperpile.com/c/vqnRbp/FygLo
https://paperpile.com/c/vqnRbp/wXrwl
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causative relative to control brain tissue 104. In addition, generated XDP and matched 

control induced pluripotent stem cell (iPSC) lines confirmed TAF1 transcript 

dysregulation and also found a significant decrease in expression of TAF1 transcript 

fragments that span the region of the SVA (intron 32-36). Remarkably in the most recent 

analysis CRISPR/Cas9 excision of the SVA rescued the aberrant transcriptional signature 

and normalized expression of TAF1 in patient-derived iPSCs 105. 

SVAs preferentially insert into gene dense and high GC regions of the genome 4,82, 

which consequently means they have a greater potential to affect gene regulation.  Our 

group first supported this with analysis focussed on human specific reference SVAs i.e. 

ones that are “fixed” in the genome, identifying that fixed SVA have the ability to 

differentially affect transcription. First this was demonstrated with the SVA-D 9.9kb 

upstream of the major transcriptional start site of the fused in sarcoma (FUS) gene. 

Genetic mutations in FUS have been associated with ALS and Frontotemporal Lobar 

Degeneration 5,106–108.  The SVA was shown to act as a classical transcriptional regulatory 

domain in the context of a reporter gene construct both in vitro in the human SK-N-AS 

neuroblastoma cell line and in vivo in a chick embryo model 5. Further a SVA 8kb 

upstream of the major transcriptional start site of the PD associated PARK7 gene was 

shown to modulate gene expression of a reporter gene 4.  Both of the mentioned studies 

also identified the reference SVAs that were characterised were variable in sequence 

length of repeat domains. This variation could contribute to differential expression at 

these loci through mechanisms as shown in Figure 1.7. 

 

https://paperpile.com/c/vqnRbp/6QTqD
https://paperpile.com/c/vqnRbp/aZ2P2
https://paperpile.com/c/vqnRbp/z1ua+gvSoy
https://paperpile.com/c/vqnRbp/OVeZ9+1FYS9+brrR6+ZWHik
https://paperpile.com/c/vqnRbp/brrR6
https://paperpile.com/c/vqnRbp/z1ua
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Figure 1.7. The effects of non-LTR TE insertions on host gene expression. Non-LTR 
retrotransposon insertions can affect gene expression through multiple mechanisms and 
the major mechanisms are outlined. (A) The control of host gene expression by sense 
and/or antisense promoters of neighbouring non-LTR retrotransposon insertions has 
been reported for LINE-1 and Alu elements, and the initial 328 bp of a specific subtype 
of SVAs has been reported to harbour promoter activity. Transcriptional start sites have 
been identified within LINE-1, Alu and SVA sequences.(B) LINE-1, Alu and SVA sequences 
contain binding sites for transcription factors that can have either positive or negative 
regulatory effects on the expression of neighbouring host genes depending on the 
protein complexes bound.(C) LINE-1, Alu and SVA insertions into exons can cause loss of 
function mutations.(D) Splice sites within LINE-1, Alu and SVA insertions residing in 
introns can result in new exons within host genes and alternative splicing (E) When two 
Alu repeats are inserted in the opposite orientation in close proximity, base pairing 
between the two repeats can occur in the mRNA forming double-stranded RNA. 
Adenosine deaminases can bind to the double-stranded RNA and deaminate adenosine 
to inosine (A to I editing) affecting transcript stability. As inosine is recognised by the 
translational and splicing machinery as guanosine, this RNA editing could lead to an 
amino acid substitution (if it occurs in the coding sequence), alternative splicing or 
modification of microRNA binding.(F) The adenosine-rich nature of LINE-1, Alu and SVA 
transcripts can introduce premature polyadenylation and/or RNA polymerase II 
transcriptional pause sites into genes, thereby resulting in termination of transcription 
within the retrotransposons' sequence or reducing their expression.(G) Epigenetic 
alterations at the integration site of a new retrotransposon insertion can restrict 
retrotransposon expression and include DNA methylation (LINE-1, Alu and SVAs contain 
multiple CpG sites) and heterochromatin formation which can also lead to the repression 
of neighbouring genes.(H) Full-length LINE-1 insertions that insert in the antisense 
orientation into an intron of a cellular gene can split the gene’s transcript into two 
smaller transcripts through a mechanism known as gene breaking. LINE-1, long 
interspersed nuclear element-1; LTR, long terminal repeat; SINE, short interspersed 
nuclear elements; SVA, SINE-VNTR-Alu; VNTR, variable number tandem repeat. (adapted 
from Savage et al 2019) 

1.10. Regulation of transposable elements in the genome  

As previously mentioned in isolated cases TE insertion events have been 

identified as causative of rare Mendelian forms of disease. Thus, with active TE this 

constant transposition can pose a continuous pathogenic threat to the human genome.  

Despite this threat many TEs have been “domesticated” throughout evolution bringing 

beneficial traits to the host. In regards to the human genome specifically It is now evident 
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that TE have been widely recruited and integrated and provide functional species-

specific regulatory networks 109,110. Thus, TEs provide an abundant source of cis 

regulatory sequences in the human genome, including  promoters 111–113 and enhancers 

114–117.  In fact, around one quarter of all experimentally validated human promoters 

contain TE derived sequence 112 and over  fifty thousand ERV sequences were found to 

initiate transcription 111.  TEs also contribute to trans-regulatory elements such as; small 

RNAs 118–120, transcription terminators 121 and most significantly, with the recent 

advancement of chromatin sequencing, it is clear that TE play a significant role in 

establishing chromatin architecture  61,122,123.  

As TEs can be highly disruptive to transcription, the human genome has 

developed multiple mechanisms to tightly suppress TEs pre and post transcription. TE 

Transcription is mainly suppressed as a result of  epigenetic silencing through different 

chromatin modulations such as; histone modification, DNA methylation and chromatin 

remodelling 124.  

TEs can be highly disruptive to transcription, therefore the human genome has 

developed multiple mechanisms to tightly suppress TEs pre and post transcription. TE 

transcription is mainly suppressed as a result of epigenetic silencing through different 

chromatin modulations such as; histone modification, DNA methylation and chromatin 

remodelling 124. TEs also contribute to trans-regulatory elements such as; small RNAs125–

127, transcription terminators128 and most significantly, with the recent advancement of 

chromatin sequencing, it is clear that TE play a significant role in establishing chromatin 

architecture 67,129,130.  

https://paperpile.com/c/vqnRbp/Vz1ud+KTyHB
https://paperpile.com/c/vqnRbp/0y7jR+hU33d+zJxsr
https://paperpile.com/c/vqnRbp/kJNCx+K34GY+ZwToH+Oimy9
https://paperpile.com/c/vqnRbp/hU33d
https://paperpile.com/c/vqnRbp/0y7jR
https://paperpile.com/c/vqnRbp/yvA9y+oLIJ6+w8c15
https://paperpile.com/c/vqnRbp/rRdEB
https://paperpile.com/c/vqnRbp/yFRjX+Xd0Hv+nrj69
https://paperpile.com/c/vqnRbp/eHoVv
https://paperpile.com/c/pYQEc3/FrKi7
https://paperpile.com/c/pYQEc3/FrKi7
https://paperpile.com/c/pYQEc3/eN6rX+7HHN7+mxwVk
https://paperpile.com/c/pYQEc3/eN6rX+7HHN7+mxwVk
https://paperpile.com/c/pYQEc3/dqE7U
https://paperpile.com/c/pYQEc3/XnBKr+Lx08g+bDQ3L
https://paperpile.com/c/pYQEc3/XnBKr+Lx08g+bDQ3L
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 Recent studies identified that TEs are associated with the three-dimensional 

organization of chromatin in the nucleus, such as the intrachromosomal colocalization 

of similar repetitive elements 131 , or the occurrence of TEs in domains or at domain 

boundaries 132–135. Chromosomal organization within the nucleus is strongly associated 

with cell-specific transcriptional activity. Globally, transcriptional repression or 

activation is accompanied by nuclear relocation of chromatin in a cell-type-specific 

manner. This process forms chromatin compartments of coordinated gene silencing or 

expression. Locally, chromatin is organized into sub-mega base pair domains of self-

contained chromatin proximity which are termed as topologically associated domains 

(TADs). TADS encompass interactions between regulatory elements such as enhancers 

and promoters, as well as between coregulated genes, which reflects cell-type-restricted 

programs136. These regions can be further divided into smaller, nested sub-TADs.  Going 

beyond algorithmic or data quality differences, there are several lines of evidence that 

suggest that TADs are functionally distinct from sub-TADs. Perhaps the best current 

insights into these issues relate to how each of these features are conserved between 

different cell types. On one hand there is little evidence that TADs vary between cell 

types, suggesting that they are largely invariant feature of genome organization 132,137,138. 

However, on the contrary sub-TADs appear to differ, at least partially, between different 

cell lineages and the cell-type-specific organization of sub-TADs appear to be related to 

cell type specific regulatory events. In this regard, it is believed that TADs represent a 

larger, more invariant feature of genome organization, within which cell type specific 

structures can form to influence lineage specific genome regulation139. 

https://paperpile.com/c/pYQEc3/AKUq
https://paperpile.com/c/pYQEc3/AKUq
https://paperpile.com/c/pYQEc3/8CSr+HzCR+BvOs+bZCf
https://paperpile.com/c/pYQEc3/8CSr+HzCR+BvOs+bZCf
https://paperpile.com/c/pYQEc3/3ITa
https://paperpile.com/c/pYQEc3/8CSr+43tf+rPk5
https://paperpile.com/c/pYQEc3/8CSr+43tf+rPk5
https://paperpile.com/c/pYQEc3/N4qy
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2.1 Introduction 

SVAs are one of the most polymorphic sources of recent structural variation in the 

human genome 101,125. Yet this form of genetic variation is currently completely 

uncaptured in any reference panel.  These elements preferentially insert into gene dense 

and active regions of the genome; hence they have a greater potential to modulate gene 

expression and can do so in an allele-like manner. Due to their high GC sequences (60-

70%) SVAs can be seen simplicity as large CpG islands, meaning that they can act as novel 

promoters or cryptic splice sites and have been shown to effect transcription of their 

neighbouring genes through these mechanisms 82.  

  Consistent with this our group previously demonstrated that a polymorphic SVA-

D upstream of PARK7, also termed DJ-1 (a gene associated with early-onset monogenic 

PD73) can direct gene expression within a reporter gene construct in two cell-lines (SK-N-

AS, a human neuroblastoma cell line and MCF-7 a breast cancer cell line)126,127. In 

addition, different domains of the SVA, such as the VNTR and SINE regions have different 

regulatory properties. Further characterization of the variation of the PARK7 SVA 

identified that there were four alleles, which were polymorphic in the VNTR (variable 

number tandem repeat) and hexamer repeat domains. 

In relation to VNTR variation, it has previously been shown by our group that 

VNTRs can be both differential regulators and biomarkers of disease based on genotype 

of the repeat. This variation can direct differential response to an environmental 

stimulus through affecting epigenetic parameters which we have shown with the 

serotonin transporter (SLC6A4) VNTR.   Not only is the SLC6A4 VNTR a genetic risk factor 

https://paperpile.com/c/vqnRbp/DWEES+NRXkD
https://paperpile.com/c/vqnRbp/gvSoy
https://paperpile.com/c/vqnRbp/UYUnm
https://paperpile.com/c/vqnRbp/tRSye+zM02Z
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for a number of neurological conditions, but it has also been shown that the repeat copy 

number mediates differential transcription factor binding, which causes a differential 

response to cocaine 128.  Therefore, one could imagine that variation within the sequence 

of existing reference SVAs (which is variation not currently captured in any reference 

panel) could influence gene expression (shown in Figure 2.1)  and be associated with 

disease in a similar manner 126,127.  

In the following chapter we focus on the PARK7 SVA-D cited above, which is 

located ~700bp upstream of the PARK7 minor transcriptional start site and from here 

will be termed the “PARK7-SVA”.  

 

 

Figure 2.1.SVAs can act as regulatory elements and affect expression of nearby genes in an allele-like 
manner. An example of this mechanism is shown above. The top SVA is the SVA which has the same 
sequence to as the reference genome SVA. Individual A has a variant of the SVA that has a longer hexamer 
repeat domain. This encodes binding of different transcription factors to composite sequences which 
repress gene expression.  Individual B has a variant of the SVA that has a longer VNTR domain, which acts 
as in enhancer. Overall this source of variation results in varied gene expression between individuals, yet 
this is isn’t catalogued in the genome. 

(CCCTCT)n Alu-like VNTR SINE-R Poly(A)

(CCCTCT)n Alu-like VNTR SINE-R Poly(A)B

(CCCTCT)n Alu-like VNTR SINE-R Poly(A

)
A

REPRESSED

ENHANCED 

https://paperpile.com/c/vqnRbp/xZgZd
https://paperpile.com/c/vqnRbp/tRSye+zM02Z
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Along with identifying that the PARK7-SVA directed gene expression in an allele-

like and tissue-specific manner, Savage et al also validated that a novel transcript was 

expressed from the distal promoter. Further, utilizing affymetrix human exon array data 

from an extended probe set they confirmed that there was significant expression 

detected at the probes located over the PARK7-SVA in all brain regions analysed 

(cerebellum, frontal cortex, hippocampus, medulla, occipital cortex, putamen, 

substantia nigra, temporal cortex, thalamus and white matter). Consequently proxy SNPs 

were developed so that in future studies genotyping and expression quantitative loci 

(eQTL) analysis could be performed bioinformatically 127. The PARK7 locus is shown in 

detail below in Figure 2.2.  

 

 

 

 

 

 

 

 

 

 

 

 

https://paperpile.com/c/vqnRbp/zM02Z


 50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 The PARK7 locus: A) Schematic of the reference PARK7-SVA. The SVA-D is variable in the 
hexamer repeat and VNTR domains (blue). The repeat variation for each allele is described in the adjacent 
table. B) The PARK7-SVA region is highlighted in red. A novel transcript arises from the region which is 
shown by the Ensembl Gene Predictions track. The presence of a distal promoter at this region is supported 
by the GeneHancer track (which detects an additional promoter (red)) and the ENCODE functional 
annotation (showing histone peaks over the region). Encode 450k methylation data shows that the CpG 
probe adjacent to the promoter is differentially methylated.  
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As bioinformatic and sequencing technologies advance it is becoming 

increasingly apparent that overlooked structural variants (such as SVAs) are in fact 

involved in disease and can act as major regulators of gene expression in the human 

genome. With that in mind in this chapter we utilized the previously generated PARK7-

SVA proxy SNPs to call the SVA genotype and then comprehensively analysed possible 

association between the variation in the SVA sequence and PD.  Further we implemented 

eQTL analysis and assessed whether it modulated gene expression in an allele-like 

manner.   
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2.2 Aims 

● Identify if a reference SVA is imputable using previously generated proxy SNPs 

for the PARK7-SVA 

● Run association analysis to address whether the SVA is associated with risk of PD 

● Run QTL analysis to identify if the SVA directs gene expression in the normal brain 

in an allele-like manner.  
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2.3. Methods  

2.3.1. Subjects  

2.3.1.1. Parkinson’s Progression Markers Initiative (PPMI) cohort 

PARK7 encodes DJ-1 which is a protein that protects cells from oxidative stress (a 

major pathogenesis of PD) and mutations within PARK7 cause an extremely rare form of 

early onset PD. Therefore, we wanted to address whether the PARK7-SVA was associated 

with risk of PD. For this we used the publicly available and very characterized PPMI 

cohort:  

https://www.ppmi-info.org/access-data-specimens/download-data/ 

2.3.1.2. North American Brain Expression Consortium (NABEC) cohort: 

We utilized the publicly available NABEC cohort to characterize the variation of the 

PARK7-SVA and address whether the SVA is an eQTL in the brain. The NABEC cohort data 

is an extensive resource generated from neurotypical individuals that includes 

genotyping, RNA-sequencing, CAGE-sequencing, and CpG DNA methylation data. 

Available here:   

https://www.ncbi.nlm.nih.gov/projects/gap/cgibin/study.cgi?study_id=phs001300.v1.p1  

As the later do not contain the exact same individuals a detailed description of the 

datasets used will be given in subsequent sections.  To note, the NABEC WGS that was 

utilized in this study is not currently publicly available but will be deposited on dbGaP 

when data release is possible 

https://www.ppmi-info.org/access-data-specimens/download-data/
https://www.ppmi-info.org/access-data-specimens/download-data/
https://www.ncbi.nlm.nih.gov/projects/gap/cgibin/study.cgi?study_id=phs001300.v1.p1
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2.3.2. Samples and quality control  

WGS was generated in the following manner. The DNA was received at NIH Laboratory 

of Neurogenetics and prepared using picogreen quantification, to a total of 2ug of DNA, 

concentrated at 30ng/ul, with a minimum volume of 40ul and sent for sequencing to 

Macrogen. At Macrogen one microgram of each DNA sample was fragmented by Covaris 

System and further prepared according to the Illumina TruSeq DNA Sample preparation 

guide to obtain a final library of 300-400 bp average insert size. Libraries were 

multiplexed and sequenced on Illumina HiSeq X platform. 

Paired-end read sequences were processed in accordance with the pipeline standard 

developed by the Centers for Common Disease Genomics129 . This standard allows for 

whole-genome sequence (WGS) processed by different groups or centers to generate 

"functionally equivalent" (FE) results130 . The GRCh38DH reference genome was used for 

alignment as specified in the FE standardized pipeline131 . The Broad Institute’s 

implementation of this FE standardized pipeline, which incorporates the GATK (2016) 

Best Practices132, is publicly available and is used for WGS processing. Single-nucleotide 

polymorphisms (SNP) and InDel variants were called from the processed WGS data 

following the GATK (2016) Best Practices using the Broad Institute’s workflow for joint 

discovery and Variant Quality Score Recalibration (VQSR)133 . 

For quality control each sample was checked using common methods for 

genotypes and sequence related metrics. Plink v1.9 134 was used to check each sample’s 

genotype missingness rate (< 95%), heterozygosity rate (exceeding +/- 0.15 F-stat), and 

gender. The King v2.1.3 kinship tool 134,135 was used to check for the presence of 

https://paperpile.com/c/vqnRbp/0ti42
https://paperpile.com/c/vqnRbp/kJU1T
https://paperpile.com/c/vqnRbp/FMP40
https://paperpile.com/c/vqnRbp/AQ3sL
https://paperpile.com/c/vqnRbp/BKEaI
https://paperpile.com/c/vqnRbp/9nTyA
https://paperpile.com/c/vqnRbp/9nTyA+nMiZH
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duplicate samples and to check concordance with existing genotypes for the PPMI 

subjects for whom data are available. Sequence and alignment related metrics generated 

by the Broad’s implementation of the FE standardized pipeline were inspected for 

potential quality problems. This included the sample’s mean sequence depth (< 30X) and 

contamination rate (> 2%), as reported by VerifyBamID, and SNP count as reported by 

Picard’s CollectVariantCallingMetrics (< 3 StDev)136  based on the sample’s genomic VCF 

(gVCF). 

2.3.3. Genotyping of the PARK7-SVA  

Savage et al previously developed proxy SNPs for the PARK7-SVA by genotyping 

the SVA in CEU HapMap DNA which had corresponding SNP data.  The analysis of the 

individuals in the CEU HapMap cohort with alleles 1 and/or 3 (the most common of the 

alleles) identified that at the SNP rs2493215 a genotype of G was a proxy for  the PARK7-

SVA allele 1 and a genotype of A was a proxy for PARK7-SVA allele 3 with a (r2 =0.909). 

When the analysis was expanded to include individuals with allele 2 and 4 it was shown 

that the A genotype also corresponded to these alleles. The genotype data was analysed 

further in Haploview software to include all four alleles of the PARK7-SVA, which 

identified a SNP (rs226476) that would tag allele 2 with a r2 = 0.903 a genotype of T 

corresponds to allele 2 and a genotype of G corresponds to alleles 1, 3 and 4.  Using these 

two SNPs in combination alleles 1, 2 and 3 can be tagged by their specific genotypes.  We 

extracted rs226476 and rs2493215 from both the PPMI and NABEC individuals WGS and 

from these genotypes typed the genotype of the PARK7-SVA.             

https://paperpile.com/c/vqnRbp/8KotM
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2.3.4. Association analysis with the PARK7-SVA 

All statistical analyses were performed in the R Statistical environments (R 

version 3.4.1 (2017-06-30). Principal components (PCs) were created from the directly 

assayed genotypes using Plink v1.9 10 . For the PC calculation, variants were filtered for 

MAF (>0.01), genotype missingness (<0.05) and Hardy–Weinberg equilibrium (P =>1E- 

6). To assess whether the genotype of the PARK7-SVA was associated with PD risk, a 

linear regression model using the following formula was used (adjusting for usual 

covariates; age sex and PC1-PC5): 

PD ~ PARK7-SVA_genotype + age + sex + PC1-PC5 

  

2.3.5. PARK7 expression data from the frontal cortex of the NABEC cohort  

2.3.5.1. RNA-seq data 

A full description of the NABEC frontal cortex RNA-Seq data generation is 

given by Gibbs et al137. Reads were processed using two different pipelines to 

assess whether the PARK7-SVA was an eQTL for the reference PARK7 transcripts 

and also the novel brain specific transcript (described by Savage et al.).126,127 

2.3.5.1.1. Refseq annotation quantification  

Profiling of 22,184 mRNA transcripts was performed using HumanRef-8 

Expression BeadChips (Illumina) as previously described 138. Raw intensity values 

https://paperpile.com/c/vqnRbp/nN0dx
https://paperpile.com/c/vqnRbp/tRSye+zM02Z
https://paperpile.com/c/vqnRbp/KbFjW


 57 

for each probe were transformed using the rank invariant normalization method 

139–141 and then log2 transformed for mRNA analysis.  

2.3.5.1.2. Ensembl annotation quantification  

The standard Illumina pipeline was used to generate fastq files. Ensembl 

GRCh37 annotated transcript abundance was quantified using Salmon142 in a 

non-alignment-based mode, and quantile normalized TPM (Transcript per 

million) values were used for covariates adjustment by PEER tool.143,144  

2.3.5.2. Methylation data  

To determine if the PARK7-SVA was an mQTL we accessed the NABEC methylation 

data. For this CpG methylation status was determined using HumanMethylation27 

BeadChips (Illumina), which measured methylation at 27,578 CpG dinucleotides at 

14,495 genes138. 

2.3.5.3. CAGE-Seq 

CAGE is a gene expression technique used to produce a snapshot of the 5′ end of the 

messenger RNA population in a sample. A full description of the generation of the NABEC 

CAGE-Seq used for our eqtl analysis has been previously described by Blauwendraat et 

al145. In brief frozen human frontal lobe material was collected for the 106 NABEC 

individuals. Total RNA was extracted from the frontal lobe of each individual using Life 

Technologies TRIzol. Libraries were constructed using a published CAGEseq protocol 

adapted for next generation sequencing 146 CAGEseq data were processed using a 

https://paperpile.com/c/vqnRbp/Rz63i+VYt2I+rTOmk
https://paperpile.com/c/vqnRbp/eBx4F
https://paperpile.com/c/vqnRbp/CF4G8+Zop99
https://paperpile.com/c/vqnRbp/KbFjW
https://paperpile.com/c/vqnRbp/xPZSA
https://paperpile.com/c/vqnRbp/Si477
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previously described analysis pipeline 147. Finally, mapped CAGEseq reads were grouped 

into CAGE-clusters using a series of Python scripts designed at the RIKEN Omics Science 

Center148 and single base pair promoters within 20 bp of each other were merged into 

one CAGE-cluster. Raw counts were normalized dividing the number of CAGEseq reads 

observed at a given CAGE-cluster by the total number of mapped tags in the library and 

multiplied by 1 million (tags per million, tpm). 

 

 

 

 

 

 

 

 

 

 

https://paperpile.com/c/vqnRbp/qehM8
https://paperpile.com/c/vqnRbp/YzRPX
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2.4. Results  

2.4.1. The PARK7-SVA represents a common form of uncaptured structural variation 

at the PARK7 locus  

Using the proxy SNPs developed by Savage et al the PARK7-SVA was genotyped in the 

PPMI and NABEC cohorts. The PPMI cohort was utilized to be able to identify association 

with risk of PD and the NABEC was used to allow downstream etql analysis. Savage et al 

previously genotyped the PARK7-SVA with PCR in the CEU HAPMAP individuals. Although 

we were unable to call the rarest allele (allele 4) in our analysis, when comparing allele 

frequencies between this present study and Savage et al, our data was consistent with 

that reported in the CEU HAPMAP population (Table 3.1 & Table 3.2).  
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Table 2.1. Genotype Frequencies of the PARK7-SVA variants in the PPMI NABEC and 
CEU HAPMAP cohorts. Table displaying the frequency of each genotype within the 87 
individuals genotyped from the CEU Hapmap cohort (Savage et al) which coincides with 
the genotyping of the 386 individuals in the NABEC cohort.  It was not possible to 
generate a tagging SNP for allele 4 therefore it was not included in the bioinformatic 
genotyping of the NABEC and PPMI cohorts. 

 

 

 

Table 2.2. Allele frequencies the PARK7-SVA variants observed in the previously 
reported CEU Hapmap cohort and the NABEC PPMI cohorts 

Allele 

Allele frequency (%) 

Previously 
reported CEU 

HAPMAP(n=87) 
(Savage et al) 

NABEC (n=386) PPMI (n=562) 

1 46.6 44.8 46.2 
2 9.2 3.5 4.2 
3 40.8 51.7 49.6 
4 3.4 - - 

 

 

PARK7-d-p-SVA 
genotype 

Genotype frequency (%) 
Previously reported CEU 
HAPMAP(n=87) (Savage 

et al) 

NABEC 
(n=386) 

PPMI (n=562) 

1/1 21.8 24.1 126 
1/2 4.6 2.6 26 
1/3 40.2 38.9 241 
1/4 4.6 - - 
2/2 4.6 0.0 2 
2/3 3.4 4.4 17 
2/4 1.1 - - 
3/3 18.4 30.1 150 
3/4 1.1 - - 
4/4 0.0 - - 
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2.4.2. The variants of the PARK7-SVA are not associated with risk of Parkinson 

disease  

Using the PPMI PARK7-SVA genotypes next R was used to identify if the PARK7-SVA 

variants were associated with risk of PD. Using a linear regression model that adjusted 

for known covariates (sex, age and P1C-PC5) no significant association was found (Table 

3.3).  

 

Table 2.3.Initial analysis suggests there is no association between the PARK7-SVA 
variants and risk of PD in the PPMI cohort. Reporting p value of association analysis and 

standard 
error 

(SE). 

 

 

 

2.4.3. Initial analysis suggests the PARK7-SVA is not a significant eQTL for the Refseq 

PARK7 transcripts in the frontal cortex of the brain  

The NABEC cohort is a publicly available expression data set. The RNA-seq was 

extracted and was aligned to the three Refseq PARK7 transcripts shown in Figure 3.3. 

(Refseq ID: UC001aou (AOU), UC001aox (AOX), UC001aov (AOV)) and quantified for each 

NABEC individual. Linear regression was used to identify if the PARK7-SVA was an eQTL 

in the normal brain, i.e. did the different alleles of the SVA drive differential expression 

PARK7-SVA genotype P SE 

1/2 1.90E-01 1.28E+00 
1/3 9.70E-01 -3.00E-02 
2/2 9.90E-01 2.00E-02 
2/3 6.60E-01 -4.40E-01 
3/3 6.30E-01 4.80E-01 
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of the RefSeq transcripts. Although there were observed differences in expression the 

PARK7-SVA was not a significant eQTL (Figure 2.3) for the RefSeq transcripts.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. Initial analysis suggests the PARK7-SVA is not a significant eQTL in the 
frontal cortex for the RefSeq transcript A) UCSC image showing the three Refseq 
transcripts analysed and SVA D. B) Box-plots showing the expression levels of the three 
reference PARK7 transcripts (AOU, AOX, AOV) for the NABEC cohort. There is no 
significant association between the PARK7-SVA genotype and expression. 
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2.4.4. The longer PARK7 transcript is highly expressed in the frontal cortex of the 

brain but initial analysis suggests the PARK7-SVA is not a significant eQTL 

The PARK7-SVA is adjacent to the distal promoter/minor transcriptional start site of 

the PARK7 longer transcript.  Previous studies using Affymetrix human exon arrays report 

that the longer transcript can be detected in the brain (Ensembl ID: 

ENST00000493373)126, however no other literature or data was found to support the 

expression of this transcript. Therefore, to expand upon this in this present study the 

GTEX portal was used to further delineate tissue-specific expression of PARK7. As shown 

in Figure 2.4 the longer brain specific transcript is  the second most highly expressed 

PARK7 transcript in the human brain 149. 

 

 

https://paperpile.com/c/vqnRbp/tRSye
https://paperpile.com/c/vqnRbp/S1vti
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Figure 2.4.The PARK7 longer transcript that originates from the PARK7-SVA region is 
the second most highly expressed PARK7 transcript in brain tissue according to GTEX 
A) GTEX portal generated data showing expression levels in brain tissue of the PARK7 
transcripts B)Schematic demonstrating the position of the SVA-D and the PARK7 
reference transcript  and the structure of the transcripts in order of how highly they are 
expressed in brain tissue according to GTEX (colour coordinated with A). Vertical lines 
represent exons, orientation is 5’ -> 3’. 
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Reference SVAs have been shown to act as eQTLs to neighbouring genes.  In light of this 

eQTL analysis was implemented to identify if the PARK7-SVA directed expression of the 

brain-specific longer transcript in the brain in an allele-like manner. Using Salmon142 a 

non-alignment-based mode and the longer transcript was quantified in the NABEC 

frontal cortex RNA-Seq data (Ensembl ID:ENST00000493373). In the NABEC we can 

confirm that the longer transcript is highly expressed in the frontal cortex of the brain 

however the PARK7-SVA is not a significant eQTL as shown in Figure 2.5.  

 

 

 

 

 

 

 

https://paperpile.com/c/vqnRbp/eBx4F
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Figure 2.5.  Initial analysis suggests the PARK7-SVA is not a significant eQTL for the 
longer PARK7 transcript that originates from the alternative transcriptional start site 
A) UCSC image showing the Ensembl annotated longer transcript (highlighted in Red) 
(Ensembl ID: ENST00000493373) and SVA-D. B) Box-plots showing the expression levels 
of the longer PARK7 transcript for the NABEC cohort. There is no significant association 
between the PARK7-SVA genotype and expression. 
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2.4.5 Initial analysis suggests the PARK7-SVA is not a significant mQTL for the PARK7 

promoter in the frontal cortex of the brain 

Due to the repetitive nature of SVAs they encode multiple sites for methylation. Thus, if 

the SVA is variable within the repetitive domains then this could alter methylation in that 

region.  The PARK7-SVA is variable within its VNTR therefore we reasoned that this may 

cause differential methylation at the minor transcriptional start site. 450k methylation 

data for the NABEC cohort was utilized and the cg probe most adjacent to the SVA was 

analysed. To note, typically arrays are designed to avoid probes being placed within 

repetitive regions like an SVA, hence there is no cg probe within the PARK7-SVA itself.  

As shown in Figure 2.6 there was no significant association between the PARK7-SVA 

genotype and methylation status of the adjacent cpg probe. However, the data does 

show that the region is hypomethylated supporting the UCSC, GTEX and RNA-Seq data 

that indicate that the region is transcriptionally active in the brain 
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Figure 2.6. The Cg24251814 probe proximal to the PARK7-SVA is hypo methylated but 
the SVA is not a significant mQTL. The Cg24251814 probe proximal to the PARK7-SVA is 
hypo methylated but the SVA is not a significant mQT A) UCSC image showing the 
location of the PARK7-SVA (highlighted red) and the location of the CpG tested (green 
:CpG:62) which is in the region of the PARK7 minor transcriptional start site. The ENCODE 
methylation tracks also show that there is differential methylation over the site. B) 
Boxplot of the methylation over the distal promoter and SVA genotype. The PARK7-SVA 
is not a significant mQTL at these regions. 
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2.4.6. CAGE-sequencing identifies that the longer brain-specific PARK7 transcript is 

highly expressed in the frontal cortex, but initial analysis suggests the PARK7-SVA is 

not an eQTL for its expression 

The aim of this chapter was the explore a novel transcriptional start site and 

further identify if the PARK7-SVA was an eQTL for a novel brain-specific PARK7 transcript. 

At the beginning of our analysis the NABEC RNA-Seq was the only expression data-set 

available.  RNA-Seq is not the ideal data to use when studying the effect of TEs on gene 

expression as you cannot discover novel transcriptional start sites, which are believed to 

be a major consequence of TE variation. This is because when RNA-Seq is generated the 

reads are randomly fragmented and are then aligned to a reference. CAGE-seq is a 

method which offers highly accurate and detailed gene expression analysis by targeting 

transcription start site (TSS) rather than whole genes. For a subset of the NABEC 

individuals CAGE-seq data was available (n=106). Therefore, we took advantage of newly 

available CAGE-seq data as it is particularly useful for our analysis as it captures the 5' 

regions of mRNA which allows for the identification of novel transcriptional start sites.  

The CAGE-seq was extracted for the PARK7 region and further analysis identified 

transcriptional activity at the proximal and distal promoter regions (Figure 2.7). EQTL 

analysis was implemented to identify if the SVA variation directed gene expression in an 

allele-like manner. As shown in Figure 2.7 differential expression was observed, however 

it was not statistically significant.  
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Figure 2.7. CAGE-Seq of the NABEC cohort (n=106) confirmed expression from the minor 
(distal promoter) and major (proximal promoter) transcriptional start site. The 
detected minor TSS (distal promoter) was located 604bp downstream to the PARK7 SVA-
D (chr1:8,014,244. Hg/19) A) UCSC image of the PARK7-SVA/PARK7 region. The blue 
arrows indicate the minor (distal promoter) and major (proximal promoter). B) Boxplot 
showing the expression over the distal promoter Vs SVA genotype. The PARK7-SVA is not 
a significant eQTL at these regions. C) Boxplot showing the expression over the proximal 
promoter Vs SVA genotype. The PARK7-SVA is not a significant eQTL at these regions. 
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2.5. Discussion:  

PARK7 is a causative gene for early onset familial PD150. In regard to its relationship 

with sporadic PD, although PARK7 is not a reported risk locus 151, excess oxidation of 

PARK7 (which renders PARK7 inactive) has been observed in patients with sporadic forms 

of the disease, suggesting that PARK7 may also participate in the onset and pathogenesis 

of the sporadic form of the disease 152.  Therefore, characterizing existing variation at the 

PARK7 locus which contributes to differential transcription of PARK7 could be of 

importance of further understanding the underlying disease aetiology.  

  SVAs are known to disrupt transcription through a number of mechanisms such 

as causing alternative splicing, exon shuffling, formation of secondary structure, 

recombination events and generation of differentially methylated regions102.  Because 

of this they are assumed to be silenced in the genome. At the PARK7 locus a reference 

SVA-D lies 8kb upstream of the major transcriptional start site of PARK7. Previous work 

has extensively characterized the uncatalogued variation with the SVA, identifying four 

alleles of the SVA which are variable in its VNTR and hexamer repeat domains.  In vivo 

this variation directed expression of a reporter gene in an allele-like manner. Further 

bioinformatic analysis of the SVA region showed characteristics such as a CpG island, 

active histone marks and DNase 1 hypersensitivity clusters indicating a distal promoter 

in this region adjacent to the PARK7-SVA. The presence of a distal promoter was 

supported by Affymetrix data which detected expression in multiple brain tissues and 

Ensembl predictions indicated a novel transcript originating from this site126. In this 

chapter we set out to expand on the previous analysis leveraging newly available brain 

https://paperpile.com/c/vqnRbp/mYxFa
https://paperpile.com/c/vqnRbp/EXJHH
https://paperpile.com/c/vqnRbp/FKjVF
https://paperpile.com/c/vqnRbp/FygLo
https://paperpile.com/c/vqnRbp/tRSye
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and PD specific datasets to identify if this variation caused differential expression in the 

human brain and whether this variation was associated with risk of PD.  

First, using GTEX, RNA-Seq, CAGE-Seq and methylation data we confirmed that a 

brain-specific PARK7 transcript, which originates from the minor transcriptional start 

site, was highly expressed in the frontal cortex. Following extensive eQTL analysis we did 

not find a significant association between PARK7 expression and SVA genotype for the 

Refseq or novel transcripts. Though it should be noted that this present study could not 

test the status of the rarest variant (allele 4) as our study bioinformatically genotyped 

the SVA using the proxy SNPs previously generated by Savage et al. Savage et al utilized 

the HAPMAP CEU GWAS data which did not detect rarer variants (previously as defined 

MAF>5%) therefore it was not possible to establish a proxy for allele 4 which had a MAF 

of 3.4%. Evidently the 4th allele is masked within our obtained genotypes and therefore 

this could bias the current data126.  Taking this into account although our current analysis 

suggests that the SVA alleles 1-3 are not associated with differential expression of PARK7 

in the brain or associated with PD, further characterization including the rare variant 

(allele 4) is needed. Large WGS datasets are now available which have more power to 

accurately call rare variants compared to existing GWAS data. Therefore, if it is possible 

to generate proxy SNPs for the fourth allele, then the analysis undertaken in this chapter 

should be repeated.   

In addition, we identified that the PARK7-SVA was not significantly associated 

with risk of PD. Although this is not surprising given the fact that this gene was originally 

associated with risk of PD through a candidate gene approach and has not been 

https://paperpile.com/c/vqnRbp/tRSye
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identified as a risk locus following recent GWAS’s.  We focused on this locus to bypass 

months/years of functional studies, taking advantage of the fact that the SVA variation 

and function had already been deeply characterized by Savage et al. The main advantage 

being that proxy SNPs had been generated which allowed for bioinformatic analysis in 

well-powered datasets, meaning we could explore the effects of reference SVA variation 

on gene expression. However, the work carried out by Savage et al was conducted before 

the first PD GWAS, when the only “PD associated” genes were genes that had been 

associated with monogenic forms of disease. Hence PARK7 was only nominated as a gene 

associated with apparently sporadic PD risk following a candidate gene approach. A 

candidate gene approach is in essence, the antithesis of genome wide unbiased 

approaches. As illustrated by numerous failed candidate gene based PD studies the 

likelihood of nominating the correct gene to be tested and testing the right variants 

within it is next to none, particularly as through GWAS it has been identified that the 

typical risk effect sizes associated with variants are too small to be seen by the majority 

of studies. 

  It should be emphasized that the work in this chapter illustrates that reference 

common SVA variation is imputable from current WGS data.  This is evident as our 

observed allele frequencies were in line with previous studies of the same population, 

supporting the fact that bioinformatically we were able to accurately call the SVA. Initial 

characterization of the polymorphism within specific reference SVAs is a challenge due 

to their high GC content and repetitive nature of these elements. Reference SVA 

commonly lie within genic regions of the genome and can modulating gene expression 
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126,153.  Through this SVA could be involved in complex disease but this variation is not 

currently in any reference.   Fortunately, here we were able to take advantage of the 

already extensively studied PARK7 SVA but to comprehensively address the impact of 

reference SVA variation in the genome it would not be as straight forward. Each 

individual harbour a minimum of 2600 reference SVAs in their genome and the variation 

within these domains is completely uncatalogued.  Thus, to assess the impact of 

reference SVA variation genome-wide this analysis would require extensive resources. 

The work in this chapter illustrates that this can be minimized if the genome wide SVA 

analysis is performed in DNA that has existing WGS. For example, one could characterize 

a subset of SVA of interest in a small sample size and if proxy SNPs can be generated then 

this would allow for imputation and hence allow accurate calling of the SVA in large-scale 

WGS dataset. This would mean the analysis was scalable, able to include rarer variants 

and also that the analysis had the power to address association with disease.  

In summary in this chapter we expanded on the existing characterization of a 

variable reference SVA-D at the PD associated PARK7 locus. We confirmed that a longer, 

brain-specific transcript was highly expressed from the distal PARK7 promoter which is 

adjacent to the SVA-D. In addition, we addressed whether the SVA could direct 

differential PARK7 expression in the brain in an allele-like manner. Although our initial 

analysis did not find the SVA to be a significant eQTL or associated with PD risk we could 

not test the status of the rarest allele and therefore future studies using WGS are 

needed. Most importantly this chapter highlights that reference SVA variation can be 

imputed which will allow for large-scale analysis in future studies.    

https://paperpile.com/c/vqnRbp/tRSye+5RQ8g
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3.1 Introduction 

Previous studies have established that SVAs preferentially insert into genic regions of 

the genome, with reports that ~ 60% reside in a gene or +- 10kb154. In addition, SVAs are 

reported to be enriched in regions of high GC density, which in all, may suggest that they 

preferentially insert into transcriptionally “active” regions.  SVAs are the most recently 

evolved non-LTR TEs and therefore they are a huge source of human-specific variation in 

the human genome 97,154. Human-specific TE insertions are a considered to be on the two 

key driving forces in evolution of human-specific regulatory networks155. This evolution 

of more complex gene regulatory mechanisms in humans is likely to contribute to species 

and tissue specific gene regulation that allowed diversity with regard to epigenetic 

modulation and response to environmental changes 156. Currently there are at least 2600 

known SVA in the reference that are “fixed” in every individual’s genome and as we have 

described in the later chapter, reference SVA harbour common variation that is yet to be 

catalogued. 

In addition to the SVA in our reference genome (that can be variable in repeat size), 

with the advances of bioinformatic and sequencing techniques, it is now evident and well 

documented that many more “non-reference” SVAs exist157. These non-reference SVAs 

are usual rare in the human population and the observed variation is predominantly 

present/absent in an individual rather than overall length of SVA. Non-reference TE 

insertions have been implicated in over one hundred different forms of Mendelian 

disease 157,158. Further non-reference TE have been shown to act as eQTL159 and can 

contribute to complex genetic disease risk 160. 

https://paperpile.com/c/vqnRbp/ftmOz
https://paperpile.com/c/vqnRbp/ftmOz+Nn4Qp
https://paperpile.com/c/vqnRbp/DN1UW
https://paperpile.com/c/vqnRbp/JaMPo
https://paperpile.com/c/vqnRbp/uYak0
https://paperpile.com/c/vqnRbp/uYak0+67vHc
https://paperpile.com/c/vqnRbp/sbFef
https://paperpile.com/c/vqnRbp/P6Qmz
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In regard to non-reference SVAs specifically, a relevant example of how a non-

reference SVA insertion can contribute to disease is the de novo SVA insertion in intron 

32 of the TAF1 gene which is causative of XDP. XDP is a form of Parkinsonism that is 

endemic to the Philippines. The SVA insertion causes aberrant TAF1 transcription 

through alternative splicing and intron retention which leads to the disease 161.  In 

addition, not only is the SVA shown to be disease causing but the variation within the 

SVA itself is shown to be disease modifying.  Bragg et al directly linked sequence variation 

within the XDP-specific SVA sequence to phenotypic variability in clinical disease 

manifestation. Therefore, non-reference TEs can contribute to both Mendelian and 

complex forms of genetic disease and can be both disease causing and modifying 103.  

  Sporadic PD is a complex genetic disease for which the underlying genetic 

mechanism is still unknown. Pre GWAS, only the genes that harboured mutations that 

caused Mendelian forms of PD were reported as being “PD associated”. Noting that a 

reference SVA was located upstream of PARK7 (a PD associated gene) Savage et al 

performed enrichment analysis and showed that reference SVAs were over-represented 

at the five recognized Mendelian PD genes162. 

Now, following the most recent PD GWAS meta-analysis, which consisted of over 

one million individuals, 90 independent risk loci have been identified1.  Although this 

international-based effort more than doubled the number of PD variants identified, it is 

still not understood how these variants contribute to disease risk. In fact, the majority of 

the hits lie within non-coding regions of unknown function. Therefore, further 

https://paperpile.com/c/vqnRbp/dHvTt
https://paperpile.com/c/vqnRbp/wXrwl
https://paperpile.com/c/vqnRbp/mhEL4
https://paperpile.com/c/vqnRbp/iUiq6
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characterization of the risk loci is crucial to identifying how these regions are involved in 

PD. 

In light of the growing body of evidence that identifies that TEs are associated 

with differential gene expression and Mendelian and complex genetic disease, in this 

chapter we set out to 1) deeply characterize reference and non-reference SVAs in the 

human genome to identify for the first time if the latter follow the same distribution   

pattern and 2) using the later information identify if SVA insertions are enriched at PD 

risk loci.  
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3.2 Aims 

● Assess the genome-wide distribution of reference SVA using a haplotype 

block analysis to address insertion preferences  

● Replicate using non-reference SVA to identify if this human specific 

genetic variation shares the same insertion preference as reference SVA  

● Annotate reference SVA to gain insight on the global regulatory potential  

● Identify distribution of reference and non-reference SVA at PD risk loci  
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3.3 Methods 

3.3.1. Haplotype block analysis 

To characterise SVA distribution across the genome and to assess whether insertions 

were enriched in specific regions (such as PD risk loci) we split the genome into haplotype 

blocks.  Our approach differed from other studies that rather divide the genome into 

uniform 1MB regions. Haplotype blocks for the human genome,  GRch37/hg19,  were 

previously defined by Berisa et al, which were extracted and used for the analysis163, for 

the European population, as this is the origin of PD risk meta-analysis that identified the 

90 risk locus.  This resulted in 1703 blocks in total with an average block size of 1.6 Mb 

(SD = 1.2Mb).  

3.3.1.1 Calculating reference SVA and non-reference RIP SVA density 

For the reference SVAs the positions of all repetitive elements in the genome were 

generated using the RepeatMasker GRch37/hg19 Library downloaded from the UCSC 

genome browser:  

 http://hgdownload.cse.ucsc.edu/goldenpath/hg19/bigZips/chromOut.tar.gz 

  

Here the GRch37/hg19RepeatMasker track was used to annotate SVA position rather 

than the most recent annotation (GRC38, hg38) as the most recent annotation contains 

many SVA “fragments” which are < 1kb in length.  This likely means that these are not 

conical SVAs and do not contain the functionally important repetitive domains such as 

the VNTR region.  Therefore, for the basis of this initial analysis which is focused on the 

https://paperpile.com/c/vqnRbp/n8zqb
http://hgdownload.cse.ucsc.edu/goldenpath/hg19/bigZips/chromOut.tar.gz


 81 

potential regulatory potential of these elements the fragments should be excluded. The 

coordinates for SVAs were extracted from the RepeatMasker track, which gave a total of 

2676 elements. The SVA positions were next overlaid with the defined haplotype blocks 

and the number of SVAs per haplotype block calculated using the ‘countOverlap’ 

function in the R package ‘GenomicRegions’. As the haplotype blocks differed in size, the 

number of SVAs per block was scaled, whereby the number of SVAs was divided by the 

encompassing block size (bp).  This was repeated for the non-reference TE elements 

which were instead extracted from the Ewing non-reference TE  resource, with a total of 

640 non-reference  SVA157: 

https://figshare.com/articles/Additional_file_2_Table_S1_of_Transposable_element_d

etection_from_whole_genome_sequence_data/4418360/1 /1 

3.3.1.2 Calculating GC content  

GC content data for every haplotype block in the genome was downloaded from the 

UCSC genome browser GRch37/hg19 in which GC content was calculated per every 5bp 

of the genome. 

http://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/hg19.gc5Base.wib 

Thus, to determine the GC content for each haplotype block all the encompassing 5bp 

regions within a block were combined and the mean of each block was calculated with 

R.  

https://paperpile.com/c/vqnRbp/uYak0
https://figshare.com/articles/Additional_file_2_Table_S1_of_Transposable_element_detection_from_whole_genome_sequence_data/4418360/1
https://figshare.com/articles/Additional_file_2_Table_S1_of_Transposable_element_detection_from_whole_genome_sequence_data/4418360/1
http://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/hg19.gc5Base.wib
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3.3.1.3 Calculating open chromatin region density    

To assess SVA distribution in regions of open chromatin we utilised the ENCODE open 

chromatin synthesis dataset generated by; Duke University’s Institute for Genome 

Science and Policy, University of North Carolina at Chapel Hill, University of Texas at 

Austin, European Bioinformatics Institute and University of Cambridge, Department of 

Oncology and CR-UK Cambridge Research Institute.   

This data consisted of DNase 1 sites across 15 cell lines using DNase-chip. All regions 

with p < 0.05 were extracted and classed as significant DNase1 hypersensitive sites. All 

hypersensitive sites for all samples were pooled together and merged used bedtools164. 

The positions were next overlaid with the defined haplotype blocks and the number of 

open chromatin regions per haplotype block was calculated using the ‘countOverlap’ 

function in the R package ‘GenomicRegions’. Again, as the haplotype blocks differed in 

size, the number of open chromatin regions per block was scaled by dividing total 

number of open chromatin regions with block size. 

3.3.1.4 Calculating gene density  

To calculate gene density per haplotype block RefSeq gene annotations were 

downloaded from the UCSC genome browser (GRch37/hg19) and intersected with the 

haplotype block regions using the ‘countOverlap’ function in the R package 

GenomicRegions and was scaled by dividing the number of genes in each block by the 

block size (bp). 

https://paperpile.com/c/vqnRbp/98MQn
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3.3.1.4 Defining PD risk regions 

The positions of the 90 independent PD risk variants were extracted and overlaid with 

haplotype blocks so that blocks could be classified as PD and non-PD associated risk 

regions. In some instances, multiple variants lay in the same haplotype block. 

Consequently 85 haplotype blocks of the 1703 genome-wide were classified as ‘PD 

associated risk regions.’  Descriptive statistics for the PD and non-PD blocks are given in 

Table 3.1 

 

Table 3.1.  Descriptive statistics for PD and non-PD haplotype blocks 

  Non-PD PD 

 N 1618 85 

Average 

Block size (Mb) 1.6 (1.18) 1.8 (0.75) 

SVA (per Mb) 0.80 (1.13) 1.30 (1.30) 

Gene density (per Mb) 23.30 (2.27) 37.80 (35.60) 

Open chromatin regions 566.01(202.54) 625.13(168.50) 

GC % 42.02 (3.56) 41.48 (2.81) 

All measures in mean (standard deviation)  

3.3.1.5 Statistical analysis  

All statistical analyses were performed in the R Statistical environments (R version 3.4.1 

(2017-06-30). Once all data was incorporated into the linear regression model (scaled 

SVA, scaled open chromatin density, scaled gene density and mean GC content) the 
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association between these factors and SVA density was assessed with the following 

formula:  

scaled_reference_sva ~ scaled_open_chromatin_density + scaled_gene_density + mean_GC_content 

In addition to identify if SVAs were enriched in the defined  PD risk associated regions  

the following formula was used:                                                                                                                                                                                                                                                                                                                                                                                                                                    

scaled_reference_sva ~ PD_risk_region + scaled_gene_density + mean_GC_content + 

scaled_open_chromatin_density 

3.3.2. ANNOVAR annotation 

SVAs were annotated with ANNOVAR software (v2.1.1) or gene and region-based 

annotation. The  gene-based annotation was used to infer whether the variant was 

exonic , intronic, splicing, 3’- untranslated region (UTR), 5’-UTR, or intergenic165. Region-

based annotation was used to infer whether the SVA overlapped with variants already 

associated with a phenotype through existing GWAS studies using the GWAS catalogue 

and also whether the SVA overlapped with ENCODE-annotated regions. The ENCODE -

annotation is a powerful resource which we used to identify if the SVA were located in 

regulatory regions such as, enhancers, repressors, promoters, or insulators etc. The 

chromHMM predictions were downloaded for the GM12878 B-lymphocyte cell line 

which was generated by the International HapMap Project (accessible through GEO 

Series accession number (GEO: GSE53628). The chromHMM data annotates 15 possible 

states which are described in (Table 3.2) 

 

 

https://paperpile.com/c/vqnRbp/DkwvA
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Table 3. 2 Descriptive of HMM chromatin state 

HMM Chromatin state 

State 1 - Active Promoter 

State 2 - Weak Promoter 

State 3 - Inactive/poised Promoter 

State 4 - Strong enhancer 

State 5 - Strong enhancer 

State 6 - Weak/poised enhancer 

State 7 - Weak/poised enhancer 

State 8 – Insulator 

State 9 - Transcriptional transition 

State 10 - Transcriptional elongation 

State 11 - Weak transcribed 

State 12 - Polycomb-repressed 

State 13 - Heterochromatin; low signal 

State 14 - Repetitive/Copy Number Variation 

State 15 - Repetitive/Copy Number Variation 
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3.4 Results 

3.4. Genome-wide analysis of the distribution of reference and non-reference SVA 

elements 

It has been repeatedly reported that SVA elements insert into regions of the 

genome that have high GC content, are gene dense and contain regions of open 

chromatin. To date, all previous studies into insertion preference have focused on the 

reference SVA elements that are “fixed” in the genome and so are defined by the 

GRch37/hg19 reference annotation. However, following the improvement of TE 

detection tools and an increased recognition of the importance of TEs, databases and 

resources have now been curated that inform of the presence of newly identified TEs 

that have been detected through thousands of independent NGS initiatives. Non-

reference TE are a major source of human-specific variation in the genome and have 

recently been associated with already identified disease loci. Ewing et al have provided 

one of the most extensive and descriptive non-reference TE resources. Utilizing this 

resource and using a haplotype block-based genome-wide analysis we extracted the SVA 

non-reference TEs to determine if this human-specific form of TE variation followed the 

same distribution bias as the known reference SVA elements.     

  To asses TE insertion preference previous studies have traditionally divided the 

genome into 1MB regions for investigation. However, in our analysis we focused on 

splitting the genome into haplotype blocks (defined by Berisa et al), with the rationale 

that defining regions based on LD-aware cut offs, rather than the uniform “1MB” would 



 87 

be more suitable approach for investigating genomic factors. Next SVA coordinates were 

extracted from UCSC to note the “reference” SVA locations and the Ewing non-reference 

TE resource was used to extract the “non-reference” SVA locations. For each haplotype 

block; mean GC content, gene density, number of open chromatin regions, reference 

SVA content and non-reference SVA content was calculated.  Finally, a linear regression 

model was constructed in order to investigate possible association between the stated 

genomic factors and SVA content. 

  Following our haplotype block analysis, we report that our data is in line with 

what have been previously reported for insertion distribution for reference SVA 

elements, i.e.  SVA elements are positively correlated with gene density and open 

chromatin regions. However, we did not detect a significant association between GC 

content and SVA density in our model (p= 0.125, β = - 0.035). The most influential 

genomic factor for determining SVA content was gene density (p =2.34E-50, β = 0.036), 

followed by number of regions of open chromatin (p =6.64E-04, β = 0.079) (Table 3.3 & 

Figure 3.1).  
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Table 3.3. Linear regression model showing reference and non-reference SVAs are 
most enriched in gene dense regions of the genome 

 Reference SVA Non-reference SVA 

 p β p β 

Gene density 2.34E-50* 0.364 4.72E-20* 0.230 

Regions of open 
chromatin 

6.64E-04* 0.079 5.06E-02* 0.001 

GC 1.26E-01 -0.035 9.58E-01 0.047 
* Indicates significance (p-value < 0.05)  

 

 

 

 

 

 

Figure 3.1. Gene (A/y-axis) and open chromatin regions density (B/y-axis) are positively 
correlated with reference SVA density (x-axis). Grey dots represent the log10 of SVA 
density for each haplotype block in the genome and the red line represent the line of 
regression.  
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Using the same approach, we constructed a model with non-reference SVA to assess if 

these elements mirrored this distribution bias. Although less significant, we observed the 

same insertion preference as the most influential genomic factor for determining non-

reference SVA content was gene density (p =4.72E-20, β = 0.023), followed by number 

of regions of open chromatin (p =5.06E-02, β = 0.001). A list of the ten most SVA and 

non-reference SVA dense haplotype blocks, i.e the blocks in which SVAs most cluster can 

be found in (Table 3.4 & Table 3.5).  
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Table 3.4. The top ten most reference SVA dense haplotype blocks in the genome 
(hg/19).  

Chr Start Stop Blocksize 
SVA 

count 
Gene 
count 

Gc 
Mean 

Scaled 
SVA 

Scaled 
gene  

density 

Scaled 
open 

Chromatin 
density 

chr19 20905757 22732896 1827139 18 66 47 9.85E-06 3.61E-05 4.00E-04 
chr19 19877471 20905757 1028286 10 17 47 9.72E-06 1.65E-05 4.74E-04 
chr19 22732896 23467746 734850 7 13 47 9.53E-06 1.77E-05 1.97E-04 
chr7 972752 1353067 380315 3 33 41 7.89E-06 8.68E-05 5.15E-04 
chr9 6557589 7154923 597334 4 11 41 6.70E-06 1.84E-05 9.11E-04 

chr20 31614823 32813441 1198618 8 42 46 6.67E-06 3.50E-05 6.15E-04 
chr7 139933177 140235210 302033 2 11 43 6.62E-06 3.64E-05 4.44E-04 
chr1 44969183 46899501 1930318 12 115 40 6.22E-06 5.96E-05 6.51E-04 
chr4 10240 694715 684475 4 56 38 5.84E-06 8.18E-05 5.13E-04 
chr7 2062398 2772227 709829 4 44 40 5.64E-06 6.20E-05 5.95E-04 

 

 

 

 

 Table 3.5. The top ten most non-reference SVA dense haplotype blocks in the genome 
(hg/19). 

Chr Start Stop Blocksize Scaled non-ref SVA 
Gene 
count 

Gc 
Mean 

Scaled open 
Chromatin 

density 

chr7 5416232 5854526 438294 4.56E-06 11 40 6.62E-04 
chr19 36469295 37527033 1057738 3.78E-06 109 48 4.59E-04 
chr11 70926292 72286017 1359725 3.68E-06 77 41 5.24E-04 
chr4 9326479 10699152 1372673 3.64E-06 76 38 4.20E-04 
chr6 32682664 33236497 553833 3.61E-06 51 39 7.53E-04 
chr6 31571218 32682664 1111446 3.60E-06 168 39 6.87E-04 

chr10 69900148 70195991 295843 3.38E-06 37 43 6.66E-04 
chr19 19877471 20905757 1028286 2.92E-06 17 47 4.74E-04 
chr5 79393144 80481471 1088327 2.76E-06 27 40 7.04E-04 

chr11 8333274 9087317 754043 2.65E-06 41 41 7.36E-04 
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To further understand on a gene-level if non-reference TE distribution followed 

the same pattern as reference SVAs we used ANNOVAR to annotate the positions of both 

the reference and non-reference TE SVAs. ANNOVAR annotates whether the SVAs lie 

within exons, intergenic regions, introns, or non-coding RNA genes. In support of 

previous studies our data identified that reference SVAs predominantly reside within 

intergenic regions of the genome (n = 1386, 51.79%), followed by introns (n = 1044, 

39.01%) and finally exons (n = 2, 0.07%) (Table 3.6). 

Table 3.6. ANNOVAR gene-based annotation for reference and non-reference SVAs. 

 

We also report that 34 reference SVAs (1.27%) reside upstream of a gene (+ 1kb) 

and 22 downstream (0.82%) (-1kb). In addition, we identify that many reference SVAs 

are located within non-coding RNA genes (n = 178, 6.65%) and 3’ and 5’ UTRs (n = 7, 

0.26% and n =3, 0.11% respectively). This distribution pattern was mirrored by non-

reference SVAs, although to note, more SVAs were found within exons (n= 5, 0.78%). 

This observed increase in insertion into exons is most likely due to the fact that the non-

reference resource has been curated from thousands of NGS studies, which traditionally 
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have a bias towards the study of exomes. Therefore, these regions have higher 

sequencing depth and coverage and so are more likely to detect TE variants.  

3.4. SVA elements lie within regulatory regions of the genome 

SVAs have been shown to act as independent regulatory domains that drive 

differential gene expression in an allele and tissue-specific manner. Although this has 

mainly been demonstrated with studies focused on characterizing the regulatory 

potential of specific reference SVAs on an individual basis. Therefore, to gain further 

insight into the potential influence of all reference SVAs we conducted a genome-wide 

analysis utilising chromatin state ENCODE data to begin to understand the global 

regulatory potential of these elements.  

The regions of the SVAs in the reference genome (NCBI build 36.1/hg18) were 

annotated using ANNOVAR against the ENCODE ChromHMM predictions for the 

GM12878 cell line. Although the GM1878B-lymphocyte cell line is not the most relevant 

for addressing transcriptional activity in the brain, it was used in this analysis it is a well-

curated resource that would allow general transcriptional activity genome-wide.  This 

epigenetic resource is used to identify non-coding variation that disrupts enhancers, 

repressors and promoters by classifying regions into the 15 core chromatin states 

described in (Table 3.7).  As expected, our data identifies that the majority of reference 

SVA elements (64.74%) lie within regions of heterochromatin in this particular cell line 

and so in theory should be heavily silenced in the genome. Interestingly nearly a quarter 

of all SVAs are weakly transcribed (24.97%) and 3.57% lie within active regulatory regions 
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such as promoters, enhancers and repressors. Finally, the remaining 2.52% were classed 

as “repetitive/copy number variation” regions, which by ChromHMM classification 

means that there is an abundance of nearly all marks and the regions typically fall within 

repetitive sequences. 

 

Table 3.7. ANNOVAR functional annotation for reference SVAs. 

HMM Chromatin state 
% Reference 

SVA 

State 1 - Active Promoter 0.08 
State 2 - Weak Promoter 0.26 

State 3 - Inactive/poised Promoter 0.08 
State 4 - Strong enhancer 0.04 
State 5 - Strong enhancer 0.08 

State 6 - Weak/poised enhancer 0.90 
State 7 - Weak/poised enhancer 1.31 

State 8 – Insulator 0.15 
State 9 - Transcriptional transition 0.19 

State 10 - Transcriptional elongation 4.21 
State 11 - Weak transcribed 24.97 

State 12 - Polycomb-repressed 0.49 
State 13 - Heterochromatin; low signal 64.74 

State 14 - Repetitive/Copy Number Variation 2.14 
State 15 - Repetitive/Copy Number Variation 0.38 

 

3.4. Known GWAS variants are located within reference SVA elements  

We annotated reference SVAs using the GWAS catalogue to identify if they 

mapped to regions that’s have already been associated with a given phenotype by 

previous GWASs.  It should be mentioned here that although we have highlighted that 

the allele length of SVAs has been shown to be both diseases associated and modifying, 

this form of variation is currently not captured in any existing reference panel. Therefore, 
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the variation that is reported in the GWAS catalogue is most likely a single nucleotide 

polymorphism rather than an association due to sequence length of the SVA. 

Nonetheless assessing overlap with existing GWAS hits is relevant as 1) the majority of 

GWAS hits for complex diseases represent loci rather than specific base pair changes 2) 

allele-size of the SVA could still be tagged by the SNP if that is the true signal and  3) the 

individual regulatory domains of an SVA such as the VNTR or CT element could be 

modified if there is just a single base pair change and this could affect function.   

According to the ANNOVAR GWAS catalogue annotation we report that reference 

SVAs harbour 77 variants previously reported by GWASs as associated with a phenotype.  

A full list of the overlapping GWAS associations can be found in Table 3.8. The list 

includes multiple associations with risk of neurological (e.g. Schizophrenia, Post-

traumatic stress disorder and Alzheimer's (AD)), autoimmune and inflammatory disease. 

The list also includes associations that have been reported as disease modifying, such as 

age of onset and accelerated cognitive decline in AD.  

. 

 

 

 

 

 

 

 

Table 3.8. ANNOVAR GWAS catalogue annotation. Reference SVAs harbour 77 variants 
previously reported by GWASs as associated with a phenotype 
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hg/18 ref SVA coordinates 

GWAS catolog reference CHR start stop 

Inflammatory skin disease chr1 12067823 12069304 
Hair shape,Male-pattern baldness chr1 152116612 152118218 

Inflammatory skin disease chr1 152167947 152169745 
Daytime sleep phenotypes chr1 172540262 172541856 

Pediatric autoimmune diseases chr1 197374169 197375722 
Mean corpuscular volume chr1 198552755 198553613 

Post-traumatic stress disorder chr1 202159959 202161610 
Serum alkaline phosphatase levels chr1 21349715 21351405 

Cognitive empathy chr1 247194848 247196269 
Heel bone mineral density chr1 27143733 27145832 

 chr10 35264856 35266229 
Mean corpuscular hemoglobin,Red blood cell 

count,Cholesterol, total 
chr10 46006824 46008669 

DNA methylation variation (age effect) chr10 97568477 97570296 
Inflammatory skin disease chr10 99911664 99913385 
Heel bone mineral density chr11 47118555 47119876 

Depressed affect chr11 47913823 47915299 
Schizophrenia,Autism spectrum disorder or schizophrenia chr11 57483053 57485227 

Sum eosinophil basophil counts,Allergic rhinitis,Food 
allergy,Eosinophil counts,Asthma,Allergic 

sensitization,Allergic disease (asthma, hay fever or 
eczema),Eosinophil percentage of white cells,Neutrophil 

percentage of granulocytes,Peanut allergy,Eosinophil 
percentage of granulocytes,Allergy 

chr11 76292966 76294455 

Lung function (FEV1) chr11 86442568 86444195 
Magnesium levels chr12 48944995 48946287 
Anorexia nervosa chr12 56468875 56470558 

Monocyte count,Granulocyte percentage of myeloid white 
cells,NT-proBNP levels in acute coronary syndrome 

chr12 89896855 89898398 

Accelerated cognitive decline after conversion of mild 
cognitive impairment to Alzheimer's disease (Alzhiemer's 

diagnosis trajectory interaction) 
chr13 33289761 33291843 

White blood cell count (basophil) chr14 23576903 23577709 
Breast cancer chr14 32596377 32597593 

Tonsillectomy,Intraocular pressure chr14 38023856 38025752 
Lung adenocarcinoma chr15 49841523 49843482 

Post bronchodilator FEV1/FVC ratio in COPD,Post 
bronchodilator FEV1,Nicotine dependence,Post 

bronchodilator FEV1/FVC ratio 
chr15 78812597 78813341 

Schizophrenia chr16 89872756 89873422 
Highest math class taken chr17 45497278 45499010 

Schizophrenia chr17 78510656 78511882 
3-hydroxypropylmercapturic acid levels in smokers chr18 14009955 14011906 

Granulocyte percentage of myeloid white cells,Monocyte 
count,Monocyte percentage of white cells 

chr19 18115825 18117465 

Late-onset Alzheimer's disease chr19 20174330 20176102 
Self-reported math ability chr19 38613904 38615679 

Anti-saccade response chr19 39345610 39347376 
Blood protein levels chr19 45424339 45425280 
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Blood protein levels chr19 55419344 55420010 
Sporadic neuroblastoma chr2 215699019 215701152 

Mean corpuscular hemoglobin concentration chr2 25945507 25947023 
Heel bone mineral density chr2 26132611 26134535 

Aspartate aminotransferase levels chr2 27779578 27781830 
Heel bone mineral density,Total body bone mineral density chr2 42240869 42242785 

Glaucoma (primary open-angle) chr2 55932823 55933562 
Dysmenorrheic pain chr2 85714115 85716186 

Glomerular filtration rate in chronic kidney disease chr2 86775310 86777587 
Heel bone mineral density chr20 32286283 32288520 
Cancer,Cancer (pleiotropy) chr20 32719596 32721485 

Blood protein levels chr20 32816398 32819224 
Blood protein levels chr20 37006728 37008588 
Blood protein levels chr22 36686483 36687742 

Interleukin-1-receptor antagonist levels chr3 129057288 129059709 
Depressive symptoms (MTAG),Depressive symptoms chr3 174805020 174805714 

White blood cell count chr3 196488023 196489567 
Ankle injury chr3 20588777 20590323 

Coronary artery calcified atherosclerotic plaque (90 or 130 
HU threshold) in type 2 diabetes 

chr3 39696718 39698146 

DNA methylation variation (age effect) chr3 50348025 50350444 
Blood protein levels chr3 9981015 9982467 

Triptolide cytotoxicity chr4 64902315 64903851 
Hepatitis A chr5 157463380 157465107 

Post bronchodilator FEV1/FVC ratio in COPD chr5 43745274 43747246 
Pulse pressure chr5 43823986 43825510 

High light scatter reticulocyte percentage of red cells,High 
light scatter reticulocyte count 

chr5 53676571 53678077 

Interleukin-18 levels chr5 68516327 68517028 
Lung function (FVC),Lung function (FEV1) chr5 77391828 77394120 

Depressive symptoms (MTAG) chr6 105438437 105439902 
Heel bone mineral density chr6 152219535 152221254 

Photic sneeze reflex chr6 165156588 165158141 
Autism spectrum disorder or schizophrenia chr6 27620654 27622181 

Itch intensity from mosquito bite chr6 29899781 29901531 
General cognitive ability chr6 30189273 30190496 

Blood protein levels chr6 31943432 31944815 
Plateletcrit chr7 129302607 129304028 

Eotaxin levels chr7 75581285 75582657 
Facial morphology (factor 5, width of mouth relative to 

central midface) 
chr9 136979898 136984303 

Alzheimer disease and age of onset chr9 79675073 79676561 
Eosinophil percentage of white cells chr9 86418137 86420398 

Facial morphology (factor 14, intercanthal width),Eye 
morphology 

chrX 72287130 72290389 

 

 

3.4.  PD risk loci are enriched with SVA elements due to their genic nature 
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It has previously been shown that SVA elements are over-represented at genes 

that can cause monogenic forms of PD4.  However, if all known monogenic forms are 

combined this only explains around 30% of Mendelian and 3–5% of genetically complex 

PD cases. Fortunately for the remaining (genetically unexplained) cases substantial 

progress in understanding the genetic basis of the disease has been made in recent years. 

As a result, 90 PD associated independent risk loci have now been identified. Despite this 

significant step forward in our understanding of these genetically complex cases, at this 

stage little is known about how these risk loci contribute to disease mechanism. We have 

just shown that these elements have regulatory potential genome-wide therefore we 

characterized the SVA content within PD risk loci. We hypothesised that it could be 

possible that SVAs could be playing a role, even a concerted role, in regulation of these 

identified risk loci and thus the genetic mechanism of PD.  

Using the haplotype block analysis, we determined that overall PD loci (defined 

by the encompassing haplotype block of the 90 risk variants) contained more reference 

SVAs than non-PD blocks (Figure 3.2), which was not observed with non-reference SVAs, 

although this list could be incomplete. However, as previously described the most 

important factor in determining SVA content is gene density. Therefore, we reasoned 

that this over-representation could simply be due to the nature of previous PD GWAS 

studies, which have been bias towards covering genic regions. In light of this we adjusted 

our model for the known insertion preferences which included; gene density, GC content 

and regions of open chromatin. Consequently, when we adjusted for these covariates, 

we found no significant association between reference SVA content and PD risk loci. 

https://paperpile.com/c/vqnRbp/z1ua
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Figure 3. 2. Reference SVA are over-represented at PD risk loci A) Plot of the SVA density 
within PD risk loci Vs non-PD associated haplotype blocks. y=scaled SVA count (SVA count 
per block/ size of block). B) in comparison non-reference SVAs are not over-represented 
(p=4.58E-01).  

 

 

Table 3.9. Linear regression model showing reference SVAs are most enriched in high 
gene and chromatin site density 

 Ref SVA Non-ref SVA 

 P β P β 

Gene density 2.14E-50* 3.61E-01 4.40E-20* 2.48E-01 

Regions of open 
chromatin 

6.40E-04* 7.92E-02 4.66E-02* 7.92E-02 

PD meta 5 risk loci 2.73E-01 2.48E-02 4.79.E-01 -1.68E-02 

GC 1.47E-01 -3.35E-02 5.05E-01 1.68E-02 

* Indicates significance (p-value < 0.05)  

 

So, in sum, PD blocks contain more reference SVAs than non-PD blocks but do 

not contain significantly more than other regions of similar gene density and open 

chromatin (Table 3.9) (p=2.73E-01). Regardless, this does not suggest that SVAs aren’t 
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biologically relevant at these loci.  On the contrary it is apparent that SVAs within PD risk 

loci are in regulatory regions and therefore could be playing a regulatory role as 

demonstrated in (Figure 3.3-3.6). But this does suggest that all currently known GWAS 

loci will be “enriched” for these elements, not necessarily due to a disease-specific 

phenomenon, but more likely due to current GWASs being bias towards covering genic 

regions.  
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Figure 3.3. UCSC image showing the reference SVA D at n the BCKDK PD risk locus. The 
UCSC genome browser image highlights the region of the SVA (red). Each track is named. 
Showing; PD risk region, SVA region, Refseq and Ensembl gene annotation. ENCODE 
functional annotations of histone marks and Dnase Hypersensitivity also shown. The 
GeneHancertrack shows interaction between the SVA and the BCKDK gene and adjacent 
KAT8 gene.  
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Figure 3. 4. UCSC image showing the reference SVA F and SVA D at the MAPT/KANSL1 
PD risk locus: The UCSC genome browser image highlights the region of the SVAs (red). 
Each track is named. Showing; PD risk region, SVA region, Refseq and Ensembl gene 
annotation. ENCODE functional annotations of histone marks and Dnase hypersensitivity 
also shown. The GeneHancertrack shows interaction between the SVA D and the PD 
associated gene LRRC37A. 
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Figure 3. 5. UCSC image showing the reference (from left to right) SVA C, SVA F and SVA 
D at the BAG3/INPP5F risk locus: The UCSC genome browser image highlights the region 
of the SVAs (red). Each track is named. Showing; PD risk region, SVA region, Refseq and 
Ensembl gene annotation. ENCODE functional annotations of histone marks and Dnase 
Hypersensitivity also shown. The SVA C lies upstream of the RGS10 gene promoter a PD 
associated gene. The SVA F is within the promoter region of the INPP5F gene and the 
SVA D lies within intron 4.  
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Figure 3.6. UCSC image showing the intronic reference SVA C at the LRRK2 PD risk locus: 
The UCSC genome browser image highlights the region of the SVA (red). Each track is 
named. Showing; PD risk region, SVA region, Refseq and Ensembl gene annotation. 
ENCODE functional annotations of histone marks and Dnase Hypersensitivity also shown. 
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3.5 Discussion 

SVAs are not randomly distributed in the human genome. Previous studies have 

reported that they preferentially insert into regions of high gene density and GC content 

82,126. However, the majority of studies that report this preference have split the genome 

into uniform one mega base regions.  In this present study we adopted a different 

approach and divided the genome into haplotype blocks with the rationale that defining 

regions based on LD-aware cut offs, rather than the uniform “1MB” would be more 

suitable approach for investigating genomic factors. With our haplotype block genome-

wide enrichment analysis we confirmed that gene density was the most influential factor 

for determining SVA density. In addition, it has been suggested that SVA’s preferentially 

insert into regions of active chromatin 166. Although collectively TEs are reported to 

preferentially insert into regions of open chromatin this had not yet been systematically 

addressed for reference SVAs. Thus, in this chapter we built a comprehensive genome-

wide map of open chromatin sites and report that SVA density positively correlates with 

open chromatin site density, consistent with the idea that SVA inserting into active 

regions of the genome.  

  As described in the previous chapter for the individual reference SVAs that have 

already been characterized, SVA are polymorphic regulatory domains that can direct 

differential gene expression in a tissue and allele specific manner, as exemplified by the 

SVA-D upstream of PARK75,126. In light of this, in this present analysis all reference SVA 

were annotated for possible functional consequence, to gain an understanding of the 

global regulatory potential of these elements. ANNOVAR annotation identified that the 

https://paperpile.com/c/vqnRbp/tRSye+gvSoy
https://paperpile.com/c/vqnRbp/hBUjR
https://paperpile.com/c/vqnRbp/tRSye+brrR6
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majority of reference SVA lie in regions of heterochromatin (64%) implying they are 

silenced in the genome. However, the analysis also identified that many of the SVA lie 

within transcriptionally active regions such as sites of strong enhancers. Significantly we 

also report that one quarter of reference SVA reside in regions that are weakly 

transcribed, from the GM12878 cell-line ENCODE annotation, which suggests that 

globally many SVA could be involved in gene regulation of their neighbouring gene. As a 

limitation to this analysis it should be noted that the current annotation is based on data 

from only one cell line (GM1878 B-lymphocyte). However, this ENCODE generated cell-

line dataset was chosen as it is well-curated and sufficient to gain general insight into the 

global regulatory potential of reference SVAs. Further studies utilizing and comparing 

regulatory overlap in different cell-lines would aid in the understanding of the tissue-

specific nature of SVA regulatory properties. Reference SVAs were also annotated for 

GWAS hits to identify if they had already been associated with a phenotype in previous 

studies. As shown in Table 3.8 reference SVA harbour over 70 existing GWAS variants 

which have been associated with risk of multiple neurological conditions (such as 

Schizophrenia, Post-traumatic stress disorder and AD), autoimmune and inflammatory 

diseases and therefore could be involved in disease mechanism and further analysis into 

this variation is needed.  

  For the newly described non-reference SVA’s, we identified that the newer SVAs 

followed the same distribution pattern as the reference SVA. The haplotype block-based 

genome-wide analysis confirmed that the new non-reference SVA follow the same 

distribution pattern as reference SVA i.e. into active regions that are gene dense. The 
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polymorphism for non-reference SVA is presence/absence polymorphism rather than 

difference in repeat size. Therefore, one could imagine that between individuals the 

insertion of a 3kb regulatory domain has more potential to have an impact on gene 

expression at that region.  

In this chapter we have demonstrated that globally SVA correlate with 

transcriptionally active regions of the genome. As of yet the variation within the 

reference SVAs is not incorporated into any reference panel, neither is the huge source 

of human-specific genetic variation contributed by the non-reference SVA. Expanding on 

the analysis performed by Savage et al, which identified that reference SVAs were over-

represented at monogenic PD genes 167, we hypothesized that SVAs more generally could 

be involved in the aetiology of sporadic PD and set out to systematically identify any 

potential correlation between SVAs and the currently known PD risk loci. Using 

regression modelling for all the haplotype blocks in the genome we show that reference 

SVA are over-represented at PD loci due to their genic nature.  

Further in-depth analysis of the SVA containing PD risk loci identified that 

reference SVA lie within potentially important regulatory domains of PD associated 

candidate genes, such as BCKDK (branched chain ketoacid dehydrogenase kinase). As 

shown in Figure 3.3 at the BCKDK locus an SVA-E is located 400bp upstream of the major 

transcriptional start site. Also as shown in Figure 3.5 three reference SVA are located at 

the INPP5F/BAG3 (inositol polyphosphate-5-phosphatase F and BCL2 Associated 

Athanogene 3 respectively) LOCUS; First an SVA C lies upstream of the RGS10 gene 

promoter a PD associated gene. In addition, an SVA F is within the promoter region of 

https://paperpile.com/c/vqnRbp/78VKA


 107 

the INPP5F gene and the SVA D lies within intron 4. LRRK2 is a monogenic and sporadic 

associated PD gene and as shown in Figure 3.6 contains an intronic SVA-C./ Savage et al 

have already identified that the SVA is polymorphic and therefore this could be 

contributing to the alternative splicing transcripts at this locus. Finally, the 

MAPT/KANSL1 locus harbours two reference SVAs upstream of the promoter of KANSL1; 

an SVA-F and SVA-D (Figure 3.4). SVA are both over-represented and lying in regions that 

could have an impact on regulatory networks, to further understand how these loci could 

be contributing to disease risk a large-scale high-throughput analysis of the variation at 

these loci is required.   

In this chapter we have comprehensively assessed the distribution of reference 

SVAs and confirmed that they can reside in active regions of the genome and therefore 

have global regulatory potential. We have also shown that many of the reference SVAs 

have already been associated with risk of disease as they already harbour GWAS variants. 

Using regression modelling we also show that the newer non-reference SVA follow the 

same distribution bias as reference SVA. This is significant as these elements are 

presence/absence in the genome and therefore have a greater potential to impact on 

gene expression in a distinct manner.  Finally, we explored the relationship between SVA 

and known PD risk loci, expanding on a previous analysis that identified enrichment of 

reference SVA at monogenic PD genes. We report that due to their genic nature PD loci 

have a higher number of SVA than non-PD and lie within functional regions that could be 

involved with disease. Reference and non-reference SVA variation has not been 

catalogued, so their association with disease is yet to be established. This chapter 
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highlights that to fully understand how PD loci are contributing to disease it is crucial to 

begin to study and incorporate this source of genetic variation into genetic analysis.   
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4.1. Introduction 

In the previous chapter, reference and non-reference SVA were characterised at 

PD risk loci demonstrating that reference SVA were over-represented at-risk loci and 

potentially involved in regulatory mechanisms at these regions. This analysis was an 

expansion of previous work from our group that identified that SVA were enriched at 

monogenic PD genes and capable of directing gene expression in an allele-specific 

manner. Together with SVA, Alu and LINE1 elements also make up the non-LTR TEs, 

which are capable of modulating transcription and epigenetic parameters. Yet these 

elements too are completely uncatalogued in the genome.  

In this chapter we focus on Alu elements specifically, in genes associated with the 

mitochondria function pathway. The deleterious activity of Alu elements has already 

been implicated as a contributing factor for the manifestation of disease and for many 

of these disorders this activity is operating on genes that are essential for proper 

mitochondrial function, which is major pathogenesis of PD. 

It has recently been demonstrated that genes that have been associated with 

mitochondria function are enriched for primate specific Alu elements. In light of this 

Parson et al proposed the “Alu-neurodegeneration” hypothesis, which suggests that this 

Alu enrichment could in part explain human-specific sporadic neurodegenerative 

disorders, such as AD and PD6,168. The hypothesis being that Alu elements can influence 

efficient and accurate transcription and/or post-transcription of genes through several 

transposon-induced mechanisms, therefore this enrichment would make this pathway 

more vulnerable to this Alu specific effect (Figure 4.1).  An example of this activity is 

https://paperpile.com/c/vqnRbp/ViKf+9zYh
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observed in the TOMM40 gene, encoding a b-barrel protein critical for mitochondrial 

preprotein transport which plays an essential role in mitochondrial stability. Variants 

within TOMM40 have been implicated in a number of neurologic disorders, ranging from 

mild cognitive impairment to major neurodegenerative diseases including LOAD and 

PD169,170.  This region is hypothesized to be vulnerable to Alu-related mechanisms that 

contribute to genomic instability including alternative splicing and modification of pre-

mRNA transcripts which has been associated with disease171.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://paperpile.com/c/vqnRbp/fO39+1eKk
https://paperpile.com/c/vqnRbp/Rsgb
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Figure 4.1 Deleterious Alu activity impacting on genes associated with mitochondria 
function can disrupt mitochondrial function in the CNS and contribute to a number of 
diseased phenotypes. Figure adapted from (Larsen et al 2018). 



 113 

In relation to the mitochondria pathway and PD specifically, although there have 

been great advances in understanding both the genetic architecture and cellular 

processes involved in PD, the exact molecular mechanisms that underlie PD remain 

unknown 172. However, it is suggested that PD has a complex aetiology, involving several 

molecular pathways, and understanding these specific pathways will be key to 

establishing mechanistic targets for therapeutic intervention.  While several key 

pathways are currently being investigated, including autophagy, endocytosis, immune 

response and lysosomal function, 20,25,173,174mitochondrial function was the first 

biological process to be associated with PD 175,176. 

An interest in mitochondrial function and PD began with the observation that 

exposure to the drug 1-methyl-4-phenyl-1,2,3,4-tetrahydropyridine (MPTP) can cause 

rapid parkinsonism and neuronal loss in the substantia nigra (SN) of humans, and that 

this is mediated through inhibition of complex I of the mitochondrial electron transport 

chain 174,177,13. Subsequent work suggested that individuals with sporadic PD have 

reduced complex I activity not only in the SN, but in other brain regions and peripheral 

tissues 178. Genetic studies focusing on monogenic forms of PD provided further support 

for the involvement of mitochondrial dysfunction in the disease. Pathogenic mutations 

that lead to autosomal recessive forms of PD have been reported in PINK1, PARK2, 

PARK7, CHCHD2and VPS13C and the proteins they encode are all now known to be 

involved in the mitochondrial quality control system and in particular mitophagy 179–182.  

  

https://paperpile.com/c/vqnRbp/h3a8i
https://paperpile.com/c/vqnRbp/olKbl+MHdcd+YLTV5+hb18J
https://paperpile.com/c/vqnRbp/N8IkR+u7T1d
https://paperpile.com/c/vqnRbp/hb18J+pCOfw
https://paperpile.com/c/vqnRbp/DEy1B
https://paperpile.com/c/vqnRbp/olz3s
https://paperpile.com/c/vqnRbp/NZgyt+VKXuj+UCibE+HCqGQ
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In this chapter we have two aims a) identify if Alu elements were enriched at 

mitochondria associated genes using newly developed datasets and b) comprehensively 

address the role of mitochondrial function in sporadic PD by leveraging improvements in 

the scale and analysis of PD genome wide association study (GWAS) data with recent 

advances in our understanding of the genetics of mitochondrial disease.  The availability 

of large scale genome wide association data in PD cases and the rapid identification of 

genetic lesions that underlie mitochondrial disease provide an opportunity to 

systematically assess the role of genetic variability in mitochondrial linked genes in the 

context of risk for PD183.In this chapter we combine these new resources with current 

statistical tools, such as polygenic risk scoring and Mendelian randomization, to explore 

the role of mitochondrial function in both PD risk and age at onset of disease to obtain 

novel insights.  

 

 

 

 

 

 

 

 

 

 

https://paperpile.com/c/vqnRbp/ruGP4
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4.2. Aims 

Section A  

● Generate a comprehensive resource of young Alu elements  

● Using the young Alu resource validate whether Alu are enriched in 

regions of the genome that are mitochondria function associated gene 

dense  

Section B 

● Run polygenic risk score analysis to identify whether collectively 

mitochondria function associated genes are associated with sporadic PD 

risk.  

● Run polygenic risk score analysis Identify whether collectively 

mitochondria function associated genes are associated with sporadic PD 

age at onset.  

● Calculate heritability estimates to identify if novel PD heritability lies 

with mitochondria function associated genes.  

● Implement Mendelian Randomisation to establish if expression of any of 

the mitochondria function associated genes is associated with PD risk.     
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4.3. Methods   

4.3.1. Generation of mitochondria associated gene lists  

Gene lists were built to encompass different levels of evidence for involvement 

of the respective protein products in disease phenotypes that relate to mitochondrial 

function. The list of genes implicated in genetic mitochondrial disorders (“primary” gene 

list, n=196) (see Appendix 1) has the most stringent criteria of evidence that the 

respective genes is related to mitochondrial dysfunction. It consists of 102 nuclear genes 

listed in MITOMAP (downloaded 2015) and 94 sourced from literature review as 

containing mutations that cause with mitochondrial disease.  

The list of genes implicated in mitochondrial function (“secondary” gene list, n = 

1487 (see Appendix 2) was constructed using the OMIM API to identify all genes for which 

the word “mitochondria” (or derivatives) appeared in the free-text description, and by 

combining this information with MitoCarta v2.0 genes with no OMIM phenotype. This 

therefore gathered a list of plausible biological candidate genes, i.e. genes that are 

functionally implicated in mitochondrial function and morphology for which we may lack 

genetic evidence for mitochondrial disease association. 
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4.3.2. Generation of the young Alu resource  

As PD is a human-specific disease184, we reasoned that the youngest and most 

polymorphic Alu insertions in the human genome were more likely be involved in disease 

aetiology. To systematically assess this, we curated a list that contained all of the 

currently known young Alus in the reference and non-reference genome. 

For the reference genome Alus, the positions of all repetitive elements were 

generated using the RepeatMasker GRch37/hg19 Library downloaded from the UCSC 

genome browser:  

 http://hgdownload.cse.ucsc.edu/goldenpath/hg19/bigZips/chromOut.tar.gz 

Next, the coordinates of all “AluY” were extracted from the RepeatMasker track, 

which gave a total of 97823 elements. For the non-reference genome Alus, using the 

previously described (Chapter 3) Ewing non-reference “RIP” TE resource: 

https://figshare.com/articles/Additional_file_2_Table_S1_of_Transposable_element_detection_from_w

hole_genome_sequence_data/4418360/1  

 

We extracted the positions of all the known non-reference Alu insertions (n=24,294) and 

concatenated these with the extracted reference AluY which gave a total of 122,117 Alus.  

4.3.3. Haplotype-based analysis of Alu enrichment at mitochondria genes   

In Chapter 3 we used a haplotype-based genome-wide model to assess SVA distribution 

bias and enrichment of SVA at PD loci. Utilizing the same approach, we used our 

haplotype-based data to assess whether Alu elements were enriched at mitochondria 

associated genes. Similar to SVAs, Alus are known to insert into regions of open 

https://paperpile.com/c/vqnRbp/jr8u
http://hgdownload.cse.ucsc.edu/goldenpath/hg19/bigZips/chromOut.tar.gz
https://figshare.com/articles/Additional_file_2_Table_S1_of_Transposable_element_detection_from_whole_genome_sequence_data/4418360/1
https://figshare.com/articles/Additional_file_2_Table_S1_of_Transposable_element_detection_from_whole_genome_sequence_data/4418360/1
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chromatin and that are GC rich and gene dense. Therefore, this data was extracted from 

the previous model. In addition, we integrated Alu and mitochondria specific data as 

described below:  

4.3.3.1. Calculating mitochondria function specific gene density  

Both mitochondria gene lists (1 and 2 as described above) were combined to give a 

comprehensive mitochondrion function associated gene list (n =1432 unique genes).  

Gene regions for the corresponding genes were extracted from the UCSC genome 

browser (GRch37/hg19) RefSeq gene annotation. To incorporate these into the 

haplotype model these regions were then intersected with the haplotype block regions 

as defined by Berisa et al and described in Chapter 3 using the ‘countOverlap’ function 

in the R package GenomicRegions. The number of mitochondrion function associated 

genes was then scaled by dividing the number of mitochondria function specific genes in 

each block by the block size (bp). 

 4.3.3.2. Calculating young Alu content 

As detailed above, we generated a list of all known young Alu elements in the 

reference and non-reference genome and then overlaid these coordinates with the 

defined haplotype blocks. The number of young Alus per haplotype block was calculated 

using the ‘countOverlap’ function in the R package ‘GenomicRegions’. As the haplotype 

blocks differed in size, the number of young alus per block was scaled, whereby the 

number of young alus was divided by the encompassing block size (bp). 
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4.3.3.3. Statistical Analysis 

All statistical analyses were performed in the R Statistical environments (R 

version 3.4.1 (2017-06-30). Once all relevant data was incorporated into the linear 

regression model (scaled young Alu content, scaled mitochondria gene density, scaled 

open chromatin density, scaled gene density, and mean GC content) the following 

formula was used to assess if young Alu elements were enriched in mitochondria 

associated gene regions(adjusting for all already known insertion bias’ as covariates):  

scaled_young_alu ~ scaled_mitochondria_associated_genes + scaled_ _genes + scaled_open_chromatin_density + 

mean_GC_content 

4.3.4. Understanding the overall role of mitochondria function in sporadic PD with 

current GWAS data 

4.3.4.1. Samples and quality control of IPDGC datasets 

All genotyping data was obtained from IPDGC datasets, consisting of 41,321 

individuals (18,869 cases and 22,452 controls) of European ancestry. Detailed 

demographic and clinical characteristics are given in Table 4.1 and are explained in 

further detail in along with detailed quality control (QC) methods173,185. For sample QC,  

individuals with low call rate (<95%), discordance between genetic and reported sex, 

heterozygosity outliers (F statistic cut-off of > -0.15 and < 0.15) and ancestry outliers (+/- 

6 standard deviations from means of eigenvectors 1 and 2 of the 1000 Genomes phase 

3 CEU and TSI populations from principal components 186) were excluded. Further, for 

genotype QC, variants with a missingness rate of > 5%, minor allele frequency < 0.01, 

https://paperpile.com/c/vqnRbp/YLTV5+cleXU
https://paperpile.com/c/vqnRbp/ZH4l6
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exhibiting Hardy-Weinberg Equilibrium (HWE) < 1E-5 and palindromic SNPs were 

excluded. Remaining samples were imputed using the Haplotype Reference Consortium 

(HRC) on the University of Michigan imputation server under default settings with Eagle 

v2.3 phasing based on reference panel HRC r1.1 2016187,188. 

 

Table 4.1. Demographic and clinical characteristics for all IPDGC genotyping data  

 

 

 

Study Cases (n) 
Controls 

(n) 
Total (n) 

Case age at onset 
(mean, SD in years) 

Control age at last 
exam (mean, SD in 

years) 

IPDGC NeuroX (Nalls et al 2015, 
PMID:25444595) 

5533 5853 11386 61.22 (12.64) 64.34 (14.82) 

WTCCC PD GWAS (PMID:21044948) 1609 5195 6804 64.07 (12.04) NaN (NA) 

NIA PD GWAS (Simón-Sánchez et al 2009, 
PMID:19915575) 

883 3009 3892 58.21 (12.89) 63.29 (10.04) 

Spanish Parkinson's (IPDGC) part1 1920 1164 3084 60.07 (12.70) 69.02 (9.95) 

Dutch GWAS (PMID:21248740) 768 1987 2755 54.83 (11.1) 53.53(5.98) 

PROBAND 1815 NA 1815 66.24 (9.20) NaN (NA) 

Myers-Faroud (PMID:22451204) 873 850 1723 NaN (NA) NaN (NA) 

German GWAS (PMID:19915575) 741 944 1685 55.76 (11.55) 47.42 (12.38) 

McGill Parkinson's 583 906 1489 65.71 (9.78) 55.79 (10.69) 

Harvard Biomarker Study (HBS) 541 473 1014 66.25 (9.97) 69.93 (9.04) 

Baylor College of Medicine / University 
of Maryland 

789 195 984 64.9 (10.11) 65.45 (8.31) 

Oslo Parkinson's Disease Study 476 462 938 65.32 (9.28) 61.85 (11.06) 

Vance (dbGap phs000394) 621 303 924 77.44 (8.41) 81.88 (12.73) 

Finnish Parkinson's 386 493 879 55.27 (5.64) 92.35 (3.86) 

Parkinson's Disease Biomarker's Program 
(PDBP) 

543 284 827 64.59 (9.34) 62.23 (10.70) 

Parkinson's Progression Markers 
Initiative (PPMI) 

363 165 528 64.24 (9.65) 63.79 (10.59) 

Spanish Parkinson's (IPDGC) part2 200 169 369 67.25 (10.55) 58.09 (13.98) 

PROPARK 235 NA 235 55.69 (9.96) NaN (NA) 

TOTAL 18879 22452 41331   

https://paperpile.com/c/vqnRbp/Okz8o+kzndv
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4.3.4.2. Curation of genes implicated in mitochondrial disorders and associated with 

mitochondrial function 

Mitochondria specific gene lists were generated as described above.  To report 

only novel PD associations the 349 genes identified to be in LD with the PD risk variants 

of interest in the most recent PD meta-analysis were removed from both lists. Following 

the removal, the PD-associated genes the gene lists were n= 178 and n=1328 

respectively.            

4.3.4.3. Cohort-level heritability estimates and meta-analysis   

Genome-wide complex trait analysis (GCTA) was used to calculate heritability 

estimates for the four largest IPDGC cohorts (UK_GWAS, SPAIN3, NIA, and DUTCH) using 

non-imputed genotyping data for all variants within both mitochondria gene lists using 

the same workflow as 51. GCTA is a statistical method that estimates phenotypic variance 

of complex traits explained by genome-wide SNPs, including those not associated with 

the trait in a GWAS. Genetic relationship matrices were calculated for each dataset to 

identify the genetic relationship between pairs of individuals. Genetic relationship 

matrices were then input into restricted maximum likelihood analyses to produce 

estimates of the proportion of phenotypic variance explained by the SNPs within each 

subset of data. Principal components (PCs) were generated for each dataset using PLINK 

(version 1.9). In order to adjust for factors accounting to possible population 

substructure, the top twenty generated eigenvectors from the PC analysis, age, sex and 

prevalence were used as basic covariates. Disease prevalence standardized for age and 

https://paperpile.com/c/vqnRbp/7w704
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gender based on epidemiological reports was specified at 0.00251,189–192. Summary 

statistics from these estimates were produced for all four datasets and were included in 

the meta-analyses. Random-effects meta-analysis using the residual maximum 

likelihood method, was performed using R (version 3.5.1) package metafor to calculate 

p-values and generate forest plots193.   

4.3.4.4. Risk profiles versus disease status and age at onset 

Previous risk profiling methods have calculated polygenic risk scores (PRS) using 

only variants that exhibit genome-wide significant associated with disease risk. However, 

in the most recent PD meta-analysis, it was shown that using variants at thresholds below 

genome-wide significance improves genetic predictions of disease risk (51,173).  Mirroring 

this workflow, but rather using only variants within gene regions outlined in both the 

primary and secondary gene lists, the R package PRsice2 was used to carry out PRS 

profiling in the standard weighted allele dose manner. In addition, PRsice2 performs 

permutation testing and p-value aware LD pruning to facilitate identifying the best p-

value threshold for variant inclusion to construct the PRS. External summary statistics 

utilized in this phase of analysis included data from leave-one-out meta-analyses 

(LOOMAs) that exclude the study in which the PRS was being tested, avoiding 

overfitting/circularity to some degree. LD clumping was implemented under default 

settings (window size = 250kb, r2> 0.1) and for each dataset 10,000 permutations of 

phenotype-swapping were used to generate empirical p-value estimates for each GWAS 

derived p-value threshold ranging from 5E-08 to 0.5, at a minimum increment of 5E-08. 

https://paperpile.com/c/vqnRbp/hs4Nr+eR0qL+toqIU+K36Fi+7w704
https://paperpile.com/c/vqnRbp/kak7i
https://paperpile.com/c/vqnRbp/7w704+YLTV5
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Each permutation test in each dataset provided a Nagelkerke’s pseudo r2 after 

adjustment for an estimated prevalence of 0.005 and study-specific PCs 1-5, age and sex 

as covariates. GWAS derived p-value threshold with the highest pseudo r2 was selected 

for further analysis. Summary statistics were meta-analysed using random effects 

(REML) per study-specific dataset using PRSice2 194. For the age at onset risk profiling, 

the same workflow was followed, however instead, age at onset was used as a 

continuous variable, as previously reported185 

4.3.4.5. Mendelian randomization to explore possible causal effect of mitochondria 

function genes  

MR uses genetic variants to identify if an observed association between a risk 

factor and an outcome is consistent with causal effect  195. This method has been 

implemented in several recent genetic studies to identify association between eQTL, to 

more accurately nominate candidate genes within risk loci. Therefore, for this study, in 

the aim of identifying whether changes in expression of mitochondria function genes are 

potentially causally related to PD risk, two-sample MR was implemented. Both 

mitochondria gene lists were combined, and all genes already associated with PD (i.e. 

that have been identified to be in LD with PD risk loci in the last meta-analysis) were 

removed, leaving 1432 unique mitochondria function gene regions.  We utilized four 

large-scale methylation and expression datasets through the  summary data-based 

Mendelian randomization (SMR) (http://cnsgenomics.com/software/smr) resource. 

Summary statistics were compared to PD outcome summary statistics for the 

https://paperpile.com/c/vqnRbp/3AZc2
https://paperpile.com/c/vqnRbp/cleXU
https://paperpile.com/c/vqnRbp/5c9BS
http://cnsgenomics.com/software/smr/#Overview
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mitochondria variants of interest (extracted from  22,24,48,173,196–199) to identify possible 

association using the R package TwoSampleMR.   

Tissues were selected based on their relevance to the pathobiology of PD, which 

ultimately consisted of tissues from 10 brain regions, whole blood, skeletal muscle, and 

nerve. For the methylation QTLs “middle age” data was used, which was the oldest 

available time point.  For each mitochondria function variant of interest (considered here 

the instrumental variable), wald ratios were generated for each variable that tagged a 

cis-QTL (probes within each gene and meeting a QTL p-value of at least 5E-08 in the 

original QTL study) and for a methylation or expression probe with a nearby gene. Using 

the default SMR protocols, linkage pruning, and clumping were implemented. Finally, for 

each dataset p-values were adjusted by false discovery rate to account for multiple 

testing. 

4.4. Results  

4.4.1. Enrichment analysis of young Alus in mitochondria associated genes: Young 

Alu elements are significantly enriched at mitochondria function associated genes  

We utilized our haplotype block-based enrichment model (already defined in 

Chapter 3) to assess whether mitochondria associated genes were enriched for young 

Alu elements. In addition, we curated and incorporated both; an extensive mitochondria 

gene list and a young Alu resource that contained all known young Alu in the reference 

and non-reference genome. Using linear regression modelling and adjusting for known 

https://paperpile.com/c/vqnRbp/6C4jG+XpXsZ+YKFhg+KKxsn+lT3su+037xv+JNsN8+YLTV5
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insertion preferences (such as scaled mitochondria gene density, scaled open chromatin 

density, scaled gene density, and mean GC content) we determined that young Alu 

content and mitochondria associated gene density are positively correlated in the human 

genome (p = 1.17E-06, β =0. 122). To note, with the understanding that all non-LTR could 

impact on gene expression, reference and non-reference young SVA and LINE1 

enrichment was also tested. For reference and non-reference SVA there was no 

significant enrichment at mitochondria function associated genes (p = 9.56E-02, β 

=0.049). LINE1 TEs are enriched in supposed gene deserts in the genome 200. In line with 

this we found a negative correlation between young L1 and mitochondria function 

associated genes (p = 7.20E-03, β =-0.071).  

4.4.2. Characterization of the overall contribution of genes associated with the 

mitochondria pathway in sporadic PD using current GWAS datasets 

It is hypothesized that Alu enrichment at mitochondria function associated genes 

could contribute to human-specific sporadic neurodegenerative diseases (such as PD) 

through Alu-mediated mechanisms promoting differential mitochondria function 

associated gene transcription and translation. However, we cannot currently establish 

the contribution this variation has to sporadic PD predisposition and pathogenesis, as 

this source of genetic variation is not captured on any array or reference panel. 

Nonetheless, we can begin to assess the overall role that mitochondria function plays in 

sporadic PD by utilizing large-scale GWAS datasets.  

  

https://paperpile.com/c/vqnRbp/TyoW
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We comprehensively assessed the role of mitochondrial processes in sporadic PD 

by leveraging improvements in the scale and analysis of PD genome wide association 

study (GWAS) data with recent advances in our understanding of the genetics of 

mitochondrial disease.  The availability of large scale genome wide association data in 

PD cases and the rapid identification of genetic lesions that underlie mitochondrial 

disease provided an opportunity to systematically assess the contribution of these 

mitochondrial linked genes to risk for PD183. 

4.4.2.1. A component of the “missing heritability” of PD lies within mitochondria 

function genes 

The general workflow for the genetic analysis used in this chapter is shown in 

Figure 4.2. First, to study the importance of mitochondrial function in sporadic PD, we 

investigated the heritability of PD specifically within genomic regions that contained 

genes annotated as important in mitochondrial function. The construction of this 

annotation was driven by the principle that genomic regions, which are known to be the 

sites of mutations in individuals with rare mitochondrial diseases or are candidate 

regions for such mutations provide the best evidence for involvement in mitochondrial 

function.  

 

 

 

 

https://paperpile.com/c/vqnRbp/ruGP4
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Figure 4.2. Workflow of genetic analyses to address the contribution of the 
mitochondrial-function pathway to PD risk and age at onset 

 

Using GCTA, heritability estimates were first calculated for the four largest IPDGC GWAS 

datasets and including all variants (UK_GWAS, SPAIN3, NIA, DUTCH). Due to the low 

number of included cases, the heritability estimates in the other IPDGC datasets were 

deemed less reliable. Consistent with previous heritability estimates from both Keller 

and colleagues (2012; 24%) and Chang and colleagues (2017; 21%), our random effects 

meta-analysis for the four datasets identified 23% (95% CI 12-34, p= 2.72E-05) 

phenotypic variance associated with all PD samples (Table 4.2 & 4.3).There was a high 

degree of consistency across the cohorts. 
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Table 4.2. Cohort level heritability analysis for the primary and secondary 
mitochondrial gene lists. reporting estimates for the WTCCC PD GWAS 
(PMID:21044948), Spanish Parkinson's (IPDGC) part2, NIA PD GWAS (PMID:19915575), 
Dutch GWAS (PMID:21248740) cohorts. Showing heritability estimates generated using 
GCTA and standard error of the estimates (SE). 

 

 Primary Secondary 

 
 

Heritability 
estimate 

SE of heritability 
estimate 

Heritability 
estimate 

SE of heritability 
estimate 

WTCCC PD GWAS 
(PMID:21044948) 

0.00321 0.00277 0.00563 0.00688 

Spanish Parkinson's 
(IPDGC) part2 

0.00027 0.00314 0.00629 0.00932 

NIA PD GWAS 
(PMID:19915575) 

0.00945 0.00540 0.03616 0.01365 

Dutch GWAS 
(PMID:21248740) 

0.00000 0.00530 0.03562 0.01681 

 

 

Table 4.3.  Summary of random-effects meta-analysis for the primary and secondary 
mitochondrial gene lists. Here we show the random-effects meta-analysis of heritability 
estimates for; all SNPs in the genome (All SNPs), estimate calculated with for the SNPs 
within the primary mitochondria list genes (Primary) and the SNPs within the secondary 
mitochondria list genes (Secondary). 

 

 

Heritability 
Estimate 

from 
random-
effects 

Lower 95% 
confidence 

interval 

Upper 95% 
confidence 

interval 

P-value 
from 

random 
effects 

Heterogeneity 
of variance 

from random 
effects (%) 

Heterogeneity 
P-value 

All SNPs 0.2313 0.1233 0.3393 2.72E-05 0.0100 3.00E-03 

Primary 0.0026 -0.0011 0.0062 1.66E-01 0.0000 4.85E-01 

Secondary 0.0167 0.0007 0.0328 4.10E-02 0.0001 9.63E-02 
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After establishing the consistency of our heritability estimates we next calculated 

heritability using only variants located within genic regions specified as being of primary 

(n=176) or secondary (n=1463) importance in mitochondrial function. Genes within the 

primary or secondary lists, which had already been identified in the most recent PD 

meta-analysis were excluded 173. Initially, to assess the full contribution of mitochondrial 

processes we ran the analysis including and excluding known PD risk genes.  166 

However, as shown in Supplementary Fig. 1 there was little difference overall in the 

heritability estimates. Therefore, we chose to catalogue mitochondrial-specific genetic 

risk outside of known loci and focused on the analysis excluding these genes.  

The heritability estimate using a random-effects meta-analysis for the primary 

gene list was estimated to be a modest 0.26% (95% CI -0.11-0.66, p=0.166). However, 

the heritability estimate using a random-effects meta-analysis for the secondary list, 

namely genes implicated in mitochondrial function or morphology as well as disease, was 

estimated to be 1.67% (95% CI -0.07-0.32, p=0.041).  

4.4.2.2. Mitochondria function specific polygenic risk score is significantly associated 

with disease status  

We calculated PRS to capture the addictive effect of all common variants within 

genes implicated in mitochondria function on PD risk. PRS is a particularly powerful 

approach in this context because it is able to efficiently incorporate information from all 

hits including sub-significant hits, which may nonetheless be etiologically relevant. Again, 

initially we ran the analysis including and excluding the known PD risk genes 

https://paperpile.com/c/vqnRbp/YLTV5
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(Supplementary Fig. 2), but in order to ensure that we are reporting novel associations 

we focused on the lists excluding the known PD risk genes. 

Using this approach, the primary and secondary mitochondrial genomic 

annotations were found to be significantly associated with PD disease status. 

Remarkably, the primary gene list consisting of only 176 genes implicated in Mendelian 

mitochondrial disorders, was associated with PD with an odds ratio of 1.12 per standard 

deviation increase in the PRS from the population mean corresponding to an overall AUC 

of 0.53 (random-effects p-value = 6.00E-04, beta = 0.11, SE = 0.03).  The secondary gene 

list, which also included genes implicated in mitochondria function or morphology, was 

associated with PD with a higher odds ratio of 1.28 per standard deviation increase in 

the PRS from the population mean corresponding to an overall AUC of 0.56 (random-

effects p-value =1.9E-22, beta = 0.25, SE = 0.03) (Figure 4.3). Together, these analyses 

not only provide further support for importance of mitochondrial processes in PD, but 

potentially provide a tool for identifying PD patients most likely to benefit from 

treatments specifically targeting mitochondrial function. 
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Figure 4.3. Forest plots of PRS for Parkinson’s Disease across cohorts. Random effect 
meta-analysis results are shown as red diamonds and fixed effects are shown as blue, 
with the centreline of each diamond representing the summary PRS for that dataset.  
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4.4.2.3. Mitochondria function-specific polygenic risk score is significantly 

associated with later age at onset 

Although multiple lines of evidence point to the importance of mitochondrial 

dysfunction as a primary cause of PD, impaired mitochondrial dynamics appears to be 

common to a wide range of neurodegenerative diseases including Huntington’s 

disease201,202, amyotrophic lateral sclerosis203,204and Alzheimer’s disease205–208. The 

latter suggests that even when impaired mitochondrial function is not the primary event 

in disease pathogenesis; it is a common outcome and could contribute to disease 

progression. We sought to test this hypothesis by investigating the importance of 

common variation within our mitochondrial gene lists in determining the age at onset of 

PD (AAO). Given the significant lag period between PD pathophysiology and symptoms, 

AAO was used as an indirect measure of disease progression. This analysis was 

performed using PRS since it has been consistently found to be the main genetic 

predictor of AAO 173,209210,211  with higher genetic risk scores being significantly associated 

with an overall trend for earlier AAO of disease. While the primary mitochondrial gene 

list was not significantly associated with AAO of disease, the secondary gene list was 

correlated with AAO. Contrary to expectation, the cumulative burden of common 

variants within the 1326 genes comprising the PRS for PD risk, were positively correlated 

with AAO of PD. After meta-analysing, we found that each 1SD increase in PRS, led to a 

0.55 year increase in the AAO of disease corresponding to an overall AUC of 0.51  

(summary effect = 0.211, 95%CI (0.141-0.970), |2 =68.49%, p-value=9.00E-03, Figure 4.4).  

As the forest plots demonstrate, although there was a relatively high heterogeneity 

https://paperpile.com/c/vqnRbp/sQaQn+FxBYB
https://paperpile.com/c/vqnRbp/BrTF6+apaJx
https://paperpile.com/c/vqnRbp/NVjzR+cuttD+aNlGN+XpT1T
https://paperpile.com/c/vqnRbp/sBe5K+YLTV5
https://paperpile.com/c/vqnRbp/Nc5sZ+3VlPI
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across studies, the directionality and magnitude of effect on AAO were in concordance 

with the meta-analysis with the exception of the Oslo cohort. This could suggest that 

firstly, disease causation and progression are genetically separable processes in PD and 

that secondly the role of mitochondrial dysfunction in PD is likely to be highly complex 

with multiple distinct mitochondrial processes likely to be involved at different disease 

stages. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4.  Forest plots of PRS for the age at onset of Parkinson’s Disease across 
cohorts. Random effect meta-analysis results are shown as red diamonds and fixed 
effects are shown as blue, with the centreline of each diamond representing the 
summary PRS for that dataset.  
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4.4.2.4. Mendelian Randomisation suggests potential causal association of fourteen 

novel mitochondria function genes with PD risk  

Given the robust evidence for the involvement of mitochondrial function in 

sporadic PD, next we used two sample MR analysis to identify specific genes likely to be 

important in PD risk. Since we wanted to identify novel associations, we excluded genes 

already linked to PD through the most recent GWAS meta-analysis173. This resulted in 

the exclusion of 31 genes linked to mitochondrial function and in linkage disequilibrium 

with the top PD risk variants. Analysis of the remaining 1432 genes (generated by 

combining the primary and secondary gene lists) resulted in the identification of 

fourteen novel genes linked to mitochondrial function and causally associated with PD 

risk (Table 4.4). Of the fourteen genes, the expression of 5 genes (CLN8, MPI, LGALS3, 

CAPRIN2 and MUC1) was positively associated with PD risk in blood. Similarly, in brain 

PD risk was associated with increased expression of ATG14, E2F1, and EP300 in brain. 

However, negative associations in brain and blood expression were observed for 

MRPS34and PTPN1 and LMBRD1 respectively. Finally, elevated methylation of FASN in 

the brain was found to be positively associated with PD risk but elevated methylation of 

CRY2 was found to be inversely correlated.  

Six of the fourteen novel PD risk genes we identified (CLN8, EP300, LMBRD1, MPI, 

MRPS34 and MUC1) are already associated with a monogenic disorder. We noted that 

neurological abnormalities were a feature of the condition in five of the six cases with 

Combined Oxidative Phosphorylation Deficiency 32 due to biallelic mutations in MRPS34 

being perhaps of particular interest. In common with PD, this condition is associated with 

https://paperpile.com/c/vqnRbp/YLTV5
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abnormalities of movement, including dystonia and choreoathetoid movements. 

Mutations causing this condition result in decreased levels of MRPS34 protein causing 

destabilisation of the small mitochondrial ribosome subunit and suggesting the 

involvement of mitochondrial processes distinct from mitophagy and mitochondrial 

homeostasis in PD. In this context, it is noteworthy that MRPL43, another nuclear gene 

encoding for a component of the large mitochondrial ribosome subunit is also 

highlighted by the MR analysis. Thus, this analysis not only enabled us to identify specific 

genes of interest, but also pointed to the role of multiple mitochondrial processes in PD 

distinct from mitophagy. 
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Table 4.4. Significant functional associations of mitochondrial function associated 
genes via two-sample Mendelian randomization. Multi-SNP eQTL Mendelian 
randomization results focusing on the mitochondria associated genes (combining the 
primary and secondary gene lists). Showing the fourteen mitochondria function 
associated genes that are significantly associated with PD risk after FDR adjustment. 

 

 

Gene Beta SE 

P, 
FDR, 

adjust
ed 

Probe 
Data 

source 
Analyte 

Top 
QTL 
SNP 
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4.5 Discussion:  

Reference and non-reference Alu variation is yet to be catalogued and 

incorporated into standard genetic analysis of complex genetic disease. Therefore, the 

extent to which this variation contributes to disease phenotypes is yet to be determined. 

It has previously been reported that Alu elements are enriched in mitochondria function 

associated genes 6, which is supported in this chapter by our haplotype block analysis. 

Alus can have a deleterious impact on neighbouring/encompassing genes by altering 

splicing and affecting mRNA isoform prevalence. As we could not currently explore the 

role of Alu variation in mitochondrial associated genes (or how this contributes to 

disease risk), instead in Section B of this chapter existing GWAS datasets were utilized to 

assess overall the role of this pathway in sporadic PD.  

Utilising large-scale GWAS datasets, we first demonstrate that a proportion of  

the “missing heritability” of sporadic PD can be explained by additive common genetic 

variation within genes implicated in mitochondrial disease and function, even after 

exclusion of genes previously linked to PD through linkage disequilibrium with the top 

risk variants 20,25,49,50,151,212–214. In fact, using PRS, which efficiently incorporates 

information from sub-significant hits, we demonstrate that cumulative small effect 

variants within only 196 genes linked to monogenic mitochondrial disease significantly 

increased PD risk (with odds ratios of 1.12 per standard deviation increase in PRS from 

the population mean). These findings are important for two main reasons. Firstly, given 

that risk profiling performed in the recent PD meta-analysis did not identify a significant 

association with mitochondrial function 24,48–50,151,198,199,212183. Secondly, since the 

https://paperpile.com/c/vqnRbp/ViKf
https://paperpile.com/c/vqnRbp/a6LL7+wDUKd+2571J+DWDfo+lJZ2v+olKbl+MHdcd+EXJHH
https://paperpile.com/c/vqnRbp/a6LL7+wDUKd+2571J+KKxsn+lT3su+037xv+JNsN8+EXJHH
https://paperpile.com/c/vqnRbp/ruGP4
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primary gene list consisted solely of the 196 genes mutated in monogenic mitochondrial 

disorders, this analysis highlights the increasingly close relationship between Mendelian 

and complex disease1. 

In order to maximise the utility of this study, we used MR which identified 14 

specific mitochondrial genes of interest with putative functional consequences in PD risk. 

We found that although a number of the genes we identified are clearly linked to known 

PD-related pathways, such as lysosomal dysfunction in the case of CLN8 and LMBRD1 or 

autophagy in the case of ATG14, others appeared to point towards new processes. In 

particular, this analysis highlighted the mitochondrial ribosome through the 

identification of the genes, MRPL43 and MRPS34, encoding components of the large and 

small mitochondrial ribosome subunits respectively. Interestingly, biallelic mutations in 

MRPS34 are known to cause a form of Leigh syndrome, characterised by 

neurodegeneration in infancy with dystonia and choreoathetoid movements due to 

basal ganglia dysfunction. Furthermore, we note that a recent study that utilized whole 

exome sequencing (WES) data from two PD cohorts to investigate rare variation in 

nuclear genes associated with distinct mitochondrial processes, not only provided 

support for the involvement of mitochondrial function in sporadic PD, but also identified 

the  gene, MRPL43, which encodes a component of the large mitochondrial ribosomal 

subunit215. Consequently, these data implicate entirely distinct mitochondrial processes 

in PD risk.  

  Finally, and perhaps most remarkably using our mitochondrial gene lists we 

observe clear differences between disease causation and AAO in PD. Although PRS of the 

https://paperpile.com/c/vqnRbp/iUiq6
https://paperpile.com/c/vqnRbp/M2RoE
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primary mitochondrial gene list was not significantly associated with AAO, the PRS of the 

secondary mitochondrial gene list was positively correlated (p value =3.6E-05), indicating 

association with later age at onset.  This result is some-what surprising given that 

previous studies have shown that risk variants in key genes associated with mitochondria 

function, such as SNCA, LRRK2 and PRKN are associated with earlier age of onset. One 

possible, albeit speculative explanation for this observation could be that this variation 

is disease modifying only in conjunction with normal aging when mitochondria 

dysfunction naturally occurs. This contradiction highlights the need for replication of this 

correlation in future studies that leverage both; better powered AAO PD datasets and 

more detailed mitochondria function gene lists. However, given these findings it seems 

plausible that some mitochondrial processes may contribute to PD risk. Thus, this 

analysis is consistent with the findings of the most recent and largest AAO PD GWAS, 

which reported that not all the well-established risk loci are associated with AAO and 

suggested a different mechanisms for PD causation and AAO 185. 

Although in this study we comprehensively analysed the largest PD datasets 

currently available with very specific and inclusive mitochondrial function gene lists, 

there are a number of limitations to our analyses. Firstly, there was a relative amount of 

heterogeneity in age at PD diagnosis within the AAO GWAS studies used. This was due 

to certain cohorts AAO being self-reported and other cohorts specifically recruiting 

younger onset cases. Nonetheless, the highly significant p-value we obtain for the 

association mitochondrial genes and AAO of PD (p-value=3.56E-05) and the recognized 

importance of mitochondrial function in aging would suggest that this finding is likely to 

https://paperpile.com/c/vqnRbp/cleXU
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be robust. Furthermore, it is important to recognize that our understanding of 

mitochondrial biology is far from complete and this is evident by the fact that many 

individuals with probable genetic forms of mitochondrial disease remain undiagnosed. 

Also, a major limitation to this analysis is that we have only been able to assess the 

contribution of genetic variation within nuclear encoded genes, meaning their still 

remains a huge gap in our knowledge concerning how variation within mitochondria DNA 

(mtDNA) contributes to PD risk.  The importance of further understanding mtDNA 

variation is supported by recent studies that have shown that there are significantly 

elevated levels of heteroplasmic mtDNA mutations in dopaminergic neurons in the 

substantia nigra of PD patients compared to controls at very early pathological stages of 

PD231Finally, the statistical tools we have used in these analyses are currently limited. 

For example, MR relies on the availability of sufficient quantities of high quality eQTL 

data. However in PD research and in particular the IPDGC,  there is a future focus to; 

increase data-set sample size, report and characterize phenotypes such as AAO more 

accurately and continue to increase the number of identified mitochondrial disease and 

function genes, we will be able to further explore the role of specific mitochondrial 

processes in more detail and identify their distinct contribution to disease causation and 

progression.  

  In summary, in this chapter we provide robust evidence for the involvement of 

mitochondrial processes in sporadic PD, as opposed to its defined and well-established 

role in the monogenic forms of the disease. In relation to the 14 novel mitochondrial 

function genes that we have identified, our data suggests that it is not only mitochondrial 



 141 

quality control and homeostasis which contributes to PD risk but other key mitochondrial 

processes, such as the function of mitochondrial ribosomes, mirroring the biological 

complexity of mitochondrial disorders. Evidently in this analysis we have only been able 

to address the contribution of SNP variation, however we have now demonstrated that 

uncatalogued Alu variation is also enriched at these loci. This illustrates that it will be 

important in future studies to incorporate this type of variation into genetic analysis. Not 

only is it possible that Alus could in part explain the association signals (and effect 

regulatory networks associated with dysfunctional mitochondria function in disease) but 

in addition they could be independent hits. 
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Non-reference transposable elements colocalize at PD 

risk loci and are in moderate linkage disequilibrium with 

known PD risk variants 
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5.1 Introduction 

TE derived sequences have been reported to comprise over two thirds of the 

human genome but despite this they are poorly understood 216. In fact, TEs are 

commonly ignored in most genetic analysis. The majority are ancient and “fixed” in place 

in the genome. However, non-LTR elements (which are comprised of; Alu, LINE1 and SVA) 

and a small number of LTR  HERV-K endogenous retroviruses still possess the capability 

to mobilize 217. Due to this ongoing mobilization they are the largest source of human-

specific variation in the genome. Further, in rare instances non-LTR mobilization events 

can cause Mendelian forms of disease such as; XDP (SVA), cystic fibrosis (Alu) and 

haemophilia A (LINE1)86 . 

  We have previously described how reference non-LTR TEs can be polymorphic in 

sequence length and noted that this source of genetic variation is currently uncaptured 

in any reference panel. However, in the following chapter we leverage recently 

developed TE detection tools and instead focused on another form of uncaptured 

variation; the presence/absence of non-reference TE. The form of variation that we focus 

on in this chapter is further explained in Figure 5.1.   

 

 

 

 

https://paperpile.com/c/vqnRbp/U9UFz
https://paperpile.com/c/vqnRbp/qHw1X
https://paperpile.com/c/vqnRbp/NrNdv
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Figure 5.1. Observed TE variation in the human genome 1) TEs can be variable in primary 
sequence. An example is shown here where individual B has a higher copy number of the 
tandem repeats of the VNTR region of an SVA (turquoise). This is the most common form 
of variation for reference TE elements. 2). TEs can also be presence/absence in the 
genome. This is more commonly observed with newer non-reference TE. However, it is 
also now reported in certain reference TE. In this example individual A has the SVA 
insertion and individuals B does not. The MELT analysis here focusses on the later form 
of variation.  

 

 

TE variable in sequence 

TE Presence/Absence

1

2

(CCCTCT)n Alu-like VNTR SINE-R Poly(A)

(CCCTCT)n Alu-like VNTR SINE-R Poly(A)

A

B

(CCCTCT)n Alu-like VNTR SINE-R Poly(A)

A

B



 145 

The field has witnessed the recent development of new technologies that can 

now comprehensively call non-reference TE insertions genome-wide. This improvement 

in non-reference detection tools, in conjunction with the wealth of WGS data now 

available, has started to shed light on the sheer scale that these elements contribute to 

interindividual variation and health and disease.  An example of this came after the 

release of the 1000 genome project, which allowed for the detection of non-reference 

TE. These analyses identified that the 2504 individuals included harboured > 16 000 non 

reference TE variants 186,218,219. Hence, that is potentially more than sixteen thousand 

uncatalogued variants that exist within the population that have never been included in 

any GWAS or other large-scale genetic analysis.  

In regards to PD specifically, if non reference TE contribute to PD then why have 

they not been previously associated with risk of disease after extensive genetic study? 

Well the simple answer in part is that they have. In rare cases of Mendelian forms of  PD 

deleterious Alu activity at  PD loci such as PARK7/DJ-173 and PARK274 has been reported 

to be causative the disease. Another rare mutation that has been implicated in the 

autosomal dominant form of the disease is duplications (220 to 394 kb) and a triplication 

(1.61 to 2.04 Mb) of the SNCA gene. Ross and colleagues reported that the presence of 

Alu and LINE1 elements at the SNCA locus may contribute to the genomic instability at 

this region which induces the disease causing copy number variation 72.  Therefore, if 

non-LTR elements mobilize and cause major disruption within PD associated genes they 

can cause Mendelian forms of PD.  

 

https://paperpile.com/c/vqnRbp/C4qGw+ZH4l6+F9LS8
https://paperpile.com/c/vqnRbp/UYUnm
https://paperpile.com/c/vqnRbp/Q3a9p
https://paperpile.com/c/vqnRbp/oAzA8
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Concerning sporadic PD, as non-reference TE variation is filtered out of most 

genetic analysis their role is yet to be established. Currently over 90 risk variants have 

now been identified after extensive meta-analyses involving over one million individuals. 

Despite this effort, the majority of the common genetic variation that contributes to the 

heritability of PD is still unknown (~70-80%)1.  PD risk variants predominantly reside 

within non-coding regions of no clear function and are hypothesized to contribute a small 

effect to PD risk by influencing allele-specific gene expression.  Determining the 

functional and eventual causal mechanisms underlying these relationships has proven 

difficult. This is in part because it is still unknown whether a nominated hit is the true 

causal variant and also the target gene has not yet been established. Therefore, one 

possible source of genetic variation that could be contributing to PD risk is non-reference 

TEs. In addition to their impact through mobilization events non-reference TEs can also 

influence gene expression by providing a wide variety of regulatory sequences such as 

promoters, enhancers, transcription terminators and several classes of small RNAs and 

recent studies have shown that non-reference TEs  often act as  cis and trans eqtls219. 

Given the established link between rare non-reference TE insertions and 

Mendelian forms of PD and their ability to affect gene expression, we reasoned that 

common non-reference TE could be contributing to sporadic PD. Previously, it has not 

been possible to include non-reference TE calling in genetic analysis due to the lack of 

technology to call these variants in multiple genomes. For the current study we utilized 

newly developed non-reference TE detection tools to integrate non-reference TE and 

https://paperpile.com/c/vqnRbp/iUiq6
https://paperpile.com/c/vqnRbp/F9LS8
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SNP variants in PD WGS data in the aim of characterizing the role that non-reference TE 

could be playing in PD. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 148 

 

5.2 Aims 

• Run a TE detection tool to call non-reference TE in PD WGS data 

• Colocalization analysis to identify if any non-reference TE map to known PD risk 

loci  

• Linkage disequilibrium analysis to address whether only of the non-reference TE 

are in linkage with known GWAS variants  

• Linkage disequilibrium analysis to address whether only of the non-reference TE 

are in linkage with known PD risk variants 

• Initial association analysis to identify if any variants are associated with PD at 

genome-wide significance  
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5.3 Methods 

5.3.1. Samples and quality control  

A total of 790 individuals were included in this study from the PPMI and NABEC 

cohorts, 382 PD cases and 408 controls. The NABEC individuals were included to facilitate 

downstream (brain-specific) eQTL analysis. Originally there were 820 individuals 

included but to identify ancestry outliers PCs 1-10 were calculated in PLINK and using an 

in-house script in R, samples were then clustered using principal component analysis 

(PCA) to evaluate European ancestry as compared to the HapMap3 CEU/TSI populations 

(International HapMap Consortium, 2003). Subsequently any individual of non-European 

ancestry was removed. Therefore, the final 790 individuals were of European ancestry 

and did not carry mutations known to cause PD.  A description of how the WGS was 

generated and the quality control pipeline followed is described in (Chapter 2.3). 

5.3.2. TE detection and calling 

To detect and call non-reference TEs we originally tested the TE detection tool 

TEbreak. But despite a substantial effort we were unable to adapt the tool to run with 

our already generated GRCh38/hg38 BAMs and re-generating all the existing BAMs 

would not have been cost or time appropriate.  Instead we used the previously published 

Mobile Element Locator Tool (MELT) software package:  

http://melt.igs.umaryland.edu/manual.php 

http://melt.igs.umaryland.edu/manual.php
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MELT is a widely used tool that was built to identify non-reference present/absent TEs 

in large genome sequencing projects. Specifically, MELT was developed as part of the 

1000 Genomes Project and is currently one of the top TE detection tools that has high 

scalability.  In addition, due to the desired downstream analyses and large sample size, 

we deemed MELT a more suitable tool. This was because, unlike TEbreak, MELT outputs 

non-reference TE calls in a VCF format which can then be inputted straight into existing 

NGS analysis pipelines in a similar fashion as the output of SNP variant callers. 

Subsequently, MELT was run with the PPMI and NABEC datasets using default 

parameters. Due to time limitations (and apparent licensing restraints that stopped 

MELT being run on google cloud, (the platform where the BAMs were stored)) the MELT-

SINGLE method was used for each BAM individually. The -t option was used to increase 

the total number of genotyped sites and the accuracy of the genotype. This option uses 

a collection of non-reference TE sites that were previously identified in the 1000 genome 

project and known as “priors”. The priors file was available through the MELT software 

in GRCh37/hg19 build, therefore for our analysis the coordinates were extracted and 

lifted over to GRCh38/hg38 using the UCSC genome browser LiftOver tool. Finally, 

variants that had > 3 split reads were filtered. 

Calls were obtained for presence/absence Alu, LINE1, SVA and HERV-K.  Unlike 

the non-LTR TEs, HERV-K was not called in the 1000 genome project and therefore they 

did not have “prior” sites established. As the HERV-K consensus sequence has very high 

sequence homology the accuracy of the calls is reported to be much lower than the non-
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LTR elements. Therefore, we did not include the HERV-K genotypes in the current 

analysis.  

The non-reference TE calls (Alu, LINE1 and SVAs) for each individual were merged 

using bcftools v1.9220. This non-reference TE VCF was then merged with the SNP and 

indel calls to create one VCF which contained all variants for all individuals (n = 10109859 

variants) (Alus, LINE1s, SVAs, indel and SNPs). Next, Plink v1.9 221 was used to extract 

common variants (MAF >0.01) (n=47247856 variants)to ensure both the confidence of 

the genotype calls and the reliability of the association analyses. The overall workflow 

for the non-reference TE analysis is summarized in  (Figure 5.2).  

 

https://paperpile.com/c/vqnRbp/s4T8C
https://paperpile.com/c/vqnRbp/fjy2u
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Figure 5.2. Workflow and summary of non-reference TE PD analysis. 

5.3.3. LD analysis and non-reference TE annotation  

To identify LD between the common non-reference TEs and known PD risk loci, 

Plink v1.9 was used with the “--show-tags” option. Strong LD was defined as r2 ≥ 0.8 and 

D’ ≥  0.8. The detected common non-reference TE and there tagging SNPs (generated by 
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the --show-tags option with Plink v1.9 221) were annotated with ANNOVAR v2018-04-16 

software gene-based annotation to infer whether the non-reference TEs variant was 

exonic, intronic, splicing, 3’- untranslated region (UTR), 5’-UTR, or intergenic,  or for the 

tagging SNP variants a known GWAS variant.   

5.3.4 Colocalization with PD risk loci  

A variant does not need to be in LD with a disease associated SNP to be 

biologically important to disease mechanism. Therefore, we characterized the non-

reference TE content within already known PD risk loci.  PD risk loci were defined as the 

85 haplotype blocks which incorporated the 90 PD risk variants. The coordinates of these 

regions were extracted and bedtools v2.27.1 was used to intersect these positions with 

the common non-reference TEs.  

5.3.5. Preliminary non-reference TE association analysis 

We ran an initial association analysis to identify if any of the non-reference TEs 

were significantly associated with PD risk. For the association analysis, SNPs were 

included to use as a control so that the association results could be compared with the 

results from the last PD meta-analysis to confirm directionality. Principal components 

(PCs) were created from the directly assayed genotypes using Plink v1.9 221 . For the PC 

calculation, variants were filtered for MAF (>0.01), genotype missingness (<0.05) and 

Hardy–Weinberg equilibrium (P =>1E- 6 PCs were re-calculated in using Plink v1.9237 for 

the 790 individuals of European ancestry and using these a logistic regression model 

adjusted for sex, age and PCs 1-5 was used to estimate risk associated with the disease 

https://paperpile.com/c/vqnRbp/fjy2u
https://paperpile.com/c/vqnRbp/fjy2u
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for each variant. Where possible, age of onset was defined based on patient report of 

initial manifestation of parkinsonian motor signs (tremor, bradykinesia, rigidity or gait 

impairment). 
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5.4 Results 

5.4.1. Non-reference TEs are common structural variants  

Overall 7478 non-reference TEs were detected in the NABEC and PPMI individuals that 

have been previously described in the 1000 genome project. Of these, 2657 variants 

were common (MAF >0.01). Consistent with previous results, the majority of non-

reference TE variants show low allele frequencies, suggesting that the majority of  TE 

insertions can be highly disruptive 219,222(Figure 5.3). 

 

 

 

 

 

 

 

 

 

 

Figure 5.3. The distribution of MELT detected known non-reference TEs in WGS. (Top) 
Blue shaded lines represent non-reference TEs; Alu, LINE1, SVA (Bottom) red line 
represents allele frequencies of SNP variants from corresponding WGS. Grey dotted line 
represents MAF cut off (0.01) 
 

https://paperpile.com/c/vqnRbp/F9LS8+5FrUj
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In line with what is observed in the reference genome, for the common non-reference 

TE variants (n =2657) the most abundant class was Alu (n =2305/86.75%), followed by 

LINE1 (n=270/10.16%) and SVA (n=82/3.09%).  The majority of  non-reference insertions 

were intergenic (n =1442) and intronic (n =1136), however many were also located 

within exons (n=32) 5’UTRs (n=6), 3’UTRs and (n=16)  upstream  (n=15) and downstream 

(n=10) of genes (+-1kb) (Figure 5.4). But the reported gene annotation could potentially 

be skewed by the fact that the original VCF merge did not carry over the predicted 

sequence length. Therefore, the annotation only currently represents the region of the 

base change in the reference genome rather than the full region spanning the new 

insertion site.  

 

Figure 5.4. Characterization of common non-reference TEs in the genome. a) Overall 
abundance of common non-reference by TE type b) locations of common non-reference 
TE annotated with ANNOVAR package for exonic, intronic, intergenic, 5’UTR, 3’UTR, and 
whether +1kb (Upstream)or -1kb (Downstream) from a gene.  
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5.4.3. Prior non-reference TEs are not in strong LD with GWAS loci  

Currently the majority of GWAS associated variants represent an association 

signal, not a causal variant. In fact, for many loci very little is understood about how the 

signal contributes to risk of disease. Identifying the true causal variant is a difficult 

process, especially as reference panels do not currently include structural variants, such 

as non-reference TEs, which are a significant and disease relevant source of genetic 

variation in the human genome.   

Recent studies have started to assess the extent to which non-reference TEs tag 

GWAS associated variants, with many now reporting that several non-reference TEs are 

in strong LD with GWAS associated loci. Further they show that in specific cases, 

following functional analysis the non-reference TE has been identified as the likely causal 

variant.  In light of this, using our MELT generated non-reference TE calls for the PPMI 

and NABEC cohorts, we addressed possible linkage disequilibrium between these 

variants and known GWAS hits. 

Our approach involved an integrative analysis of non-reference and SNP variants. 

The LD structure of the resulting common TE insertions with adjacent common SNPs was 

then defined using Plink.  From the 2657 common prior non-reference TEs tested we did 

not find any in strong linkage disequilibrium (defined as r2 ≥ 0.8 and D’ ≥ 0.8) with known 

GWAS variants (according to ANNOVAR annotation) in this initial analysis.  
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5.4.3. Prior non-reference TEs are in moderate linkage disequilibrium with the known PD 

risk variants  

The most recent meta-analysis of PD GWAS data (which was the largest study of 

PD genetics to date and involved over one million individuals) defined 90 genome-wide 

significant risk loci.  Although this large-scale international-based effort more than 

doubled the number of known risk loci, the field have still not established how the 

majority of these hits contribute to disease risk. Many of these variants lie within non-

coding regions of no clear function.  

Although each of the identified risk loci are currently the strongest candidate for 

the causal variant at that region, it is possible (and one could argue likely) that this signal 

could in fact represent a signal from a variant that is not currently detected on an array; 

such as a structural variant. Therefore, in light of this, we next assessed the genetic 

relationship between the common prior non-reference TEs and the known PD risk loci. 

LD was calculated between the 2657 common prior non-reference TE variants and 90 

known PD risk loci using Plink. We did not find any strong correlation between the 

common prior non-reference TEs and PD risk variants (r2> 0.4). However, three of the 

non-reference TEs are in moderate LD with loci associated with PD (Table 5.1).   
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Table 5.1. Descriptive statistics of the three non-reference TEs that are in linkage 
disequilibrium with Parkinson’s disease associated variants 
 

 

 

 

 

Two of the prior non-reference TEs are in weak LD with two a PD risk loci rs6808178 and 

rs62053943. First the rs6808178 risk variant (p= 1.04E-10, β =-0.221) is weakly tagged by 

an Alu element (r2=0.34, D’= 0.74), which is only ~1kb upstream of the hit and intronic of 

LINC00693 (the noted nearest gene) (Figure 5.5). 

 

 

 

Nearest 

gene 

CHR BP PD SNP Beta P-value polyTE 

polyTE 

MAF 

R2 D’ 

RPS12 6 133210361 rs6808178 -0.22 1.04E-10 ALU_2247 0.49 0.34 0.74 

CRHR1 17 43744203 rs62053943 -0.27 3.58E-68 SVA_704 0.19 0.38 0.67 

LRRK2 12 40713873 rs11176013 - - ALU_9158 0.47 0.39 0.72 

LRRK2 12 40716510 rs10878371 - - ALU_9158 0.47 0.39 0.72 
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Figure 5.5. A common Alu non-reference TE is in linkage disequilibrium (LD) with a PD 
risk SNP (rs6808178, p=1.04E-10, β=-0.22). From top : genomic position of the non-
reference TE(blue) and risk variant (orange). Below= the LD block and genetic 
relationship of the variants of interest. * denotes effect allele.  
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In addition, the rs62053943 risk variant (p=3.58E-68, β =-0.270) is moderately tagged by 

an SVA at the MAPT locus (r2=0.38, D’= 0.66) (Figure.5.6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6. A common SVA non reference TE is in moderate linkage disequilibrium with 
a PD risk SNP (rs62053943 p=3.58E-68, β=-0.27).  From (top): genomic position of the 
non-reference TE (blue) and risk variant (orange). (Below) = the LD block and genetic 
relationship of the variants of interest. * denotes effect allele.  
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Finally, at the LRRK2 locus an Alu element is in weak LD with two SNPs that are associated 

with autosomal dominant PD (r2=0.39, D’=0.72) and these two variants (rs11176013 and 

rs10878371) are in complete LD (r2=1, D’=1) (Figure 5.7).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7. A common Alu non-reference TE is in linkage disequilibrium with PD 
associated SNPs (rs11176013 & rs10878371 at the LRRK2 locus. From top: genomic 
position of the non-reference TE (blue) and PD associated variants (orange). Below= the 
LD block and genetic relationship of the variants of interest. * denotes effect allele.   
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5.4.4. Colocalization of common non-reference TE at PD risk loci  

GWAS loci are enriched for TEs due to their genic nature, as reported by previous 

studies and our own data described in earlier chapters (Chapter 2 & 3). As TEs are yet to 

be catalogued at these loci, they are therefore an ignored form of genetic variation that 

could be involved in disease mechanism.  Although we have identified that the common 

prior non-reference TEs were not in strong LD with the known PD loci they may still be 

involved in disease mechanism.  Therefore, we assessed whether the common prior non-

reference TEs mapped within the known PD risk loci.  We report that overall, of the prior 

non-reference TEs detected in the NABEC and PPMI individuals, 367 elements mapped 

to known PD risk loci. Of these, 302 were Alu, 44 LINE1 and 21 SVA. When these variants 

were filtered to focus on common variants only (MAF >0.01), overall 165 mapped to 

known PD risk loci (146 were Alu, 13 LINE1 and 6 SVA) Figure 5.8.A.  Out of the 85 known 

PD risk haplotype blocks, 37 (44%) contained at least one common non-reference TE 

while the mean of number of common non-reference TE for all PD blocks was 1.6 (0-5). 

As shown in in Figure 5.8.B we observe an enrichment non-reference TE at PD risk loci, 

which isn’t surprising given the nature of GWAS and the bias they have towards genic 

regions. This supports what we noted in Chapter X whereby we identified that TE were 

enriched at genic regions of the genome and followed the same insertions pattern as the 

reference TEs.  To note, we also show that many non-reference TE are located within top 

PD risk loci at potentially important functional domains. An example of this is a non-
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reference TE Alu located at the INPP5F/BAG3 PD risk locus between the two genes as 

seen in Figure 5.8.C. Another example is shown in Figure 5.8.D where two non-reference 

TE Alus lie within the HLA locus.  
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Figure 5.8. Non-reference TEs colocalize with PD risk loci and lie within potentially 
important regulatory domains A: breakdown non-reference TE distribution for each 
class at PD risk loci, B: Plot of chromosomal locations of the non-reference TE. From 
outside-in; PD risk loci, non-reference; Alu, LINE1, SVA, C: Alu non-reference TE at the 
BAG3/INPP5F locus D: Alu non-reference TE at the HLA locus, orange highlight shows the 
position of the PD risk SNP at the HLA locus.   
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5.4.5.  Genome-wide association analysis 

Descriptive statistics of the PPMI/NABEC cohort are summarised in Table 5.2 below.  

 

Table 5.2. Demographic characteristics of the PPMI/NABEC cohort. 

Case Control 
Cases, 

% 
female 

Controls, 
% 

female 

Case, age at 
onset in 

years, mean 
(SD) 

Control, age at 
ascertainment in 
years, mean (SD) 

382 408 55% 35% 62 (9) 59(23) 

 

 

To identify if any variant was associated with risk of PD, GWA was performed with all 

called variants (SNP, indel and non-reference TE variants) adjusting for the appropriate 

covariates; study-specific PCs 1-5, age and sex. As shown by the Manhattan plots in 

Figure 5.9, we did not detect any genome-wide significant variants at p >5E-08, although 

this is not surprising given the low number of individuals analysed. To ensure that our 

results were in line with previous PD GWAS, the beta-values of the known genome PD 

risk hits were plotted from the most recent meta-analysis and our current GWAS 

(PPMI/NABEC). As shown in Figure 5.10 the beta-values were positively correlated 

(p=8.05E-04), supporting our association analysis.   
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Figure 5.9. Manhattan plot: All WGS SNP variants are shown in blue and grey, no variant 
of genome wide significance was detected.  Non-reference TEs variants are shown in 
green. The X axis represents the base pair position of variants from smallest to largest 
per chromosome (1-22).  
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Figure 5.10. Beta coefficient plot: coefficient values of the top PD risk variants from the 
most recent meta-analysis were plotted against the corresponding betas from our 
current GWAS(PPMI/NABEC). The beta-values were positively correlated (p=8.05E-04). 
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5.5 Discussion 

TE insertions are currently known to cause over a hundred human diseases, yet 

no study has considered the role of these elements in PD.  In fact, in order to obtain high 

confidence calls, the initial step of most genetic analysis is to perform filtering that 

removes TEs as standard. Meaning that the overall contribution of these elements to PD 

risk and risk of other complex genetic diseases is completely unknown. Following the 

recent development of programs that genotype these elements genome-wide, we 

performed the first characterization of non-reference TEs in PD to date. Using an 

integrative analysis of non-reference TE and SNP variants we ran association, co-

localization and LD analysis. We report that non-reference TE colocalize and are enriched 

at the currently known PD risk loci. In addition, we report that multiple non-reference TE 

are in linkage with unexplained PD risk variants. Taken together our results highlight that 

non-reference TEs are an important and potentially disease relevant form of genetic 

variation that should be further catalogued at these loci.  

  Consistent with the literature we identified that the majority of non-reference 

TEs are observed in low frequencies (i.e. low minor allele frequencies), suggesting that 

in general new TE insertions are highly disruptive and subject to strong purifying 

selection. This is in line with previous studies that have generated MELT calls for different 

HAPMAP populations and observed the same allele frequency distribution218,222. In terms 

of the general non-reference TE abundance , again in accordance of Rishishwar et al we 

show that non-reference TE abundance is similar to what is observed in the reference 

genome, i.e. Alu elements are the most common followed by LINE1 and SVAs 222. Of the 

https://paperpile.com/c/vqnRbp/C4qGw+5FrUj
https://paperpile.com/c/vqnRbp/5FrUj
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common non-reference TE, through our gene-based annotation we show that although 

non-reference TE are most frequently located intergenic, nearly half of all the common 

non-reference TEs are located within or 1kb+- of a gene. This is significant given the fact 

that non-reference TE can impact on gene expression significantly via a number of 

mechanisms such as; interrupting coding sequences and splicing and introducing novel 

promoters 94. Therefore, one could imagine that this form of genetic variation could have 

a significantly different functional consequence between individuals for gene expression.  

In relation to our ANNOVAR GWAS annotation we did not find any non-reference 

TE variants in strong LD with known GWAS hits (r2 ≥ 0.8 and D’ ≥ 0.8). This is contrary to 

previous reports that have found TE elements to more generally be in strong LD with 

GWAS variants. One example is a comprehensive study by Payer et al, whereby they 

extensively catalogued and genotyped Alu elements at GWAS loci. Through this they 

identified that 44 non-reference TE Alus were in LD with GWAS hits that are associated 

with a range of diseases such as Multiple sclerosis, Crohn’s disease and many different 

types of cancers 94.  A number of reasons could explain why this wasn’t replicated in our 

PPMI/NABEC MELT analysis. First our “strong LD” cut off was more stringent than 

previous studies (such as the later that instead used a R2 cut off of 0.7). In addition, in 

our present study we focused only on the common Alu elements that were already 

detected in the 1000 genome project, hence we currently have limited detection power. 

Due to time restraints caused by licensing issues we were only able to run MELT-Single, 

meaning that the only genotypes we could call at high confidence were the ones with a 

prior ID so the majority of the non-reference TE Alus were not called in our analysis. 

https://paperpile.com/c/vqnRbp/7hIOa
https://paperpile.com/c/vqnRbp/7hIOa
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Future studies will focus on running MELT-group which will produce calls for all non-

reference TEs and thus substantially increase our detection power. When discussing the 

LD, it is also important to note that the r2 and D’ values may be inaccurate. This may be 

due to that fact that the current calling method only calls the presence/absence of the 

non-reference TE. As we have described throughout, TEs are also commonly polymorphic 

in their sequence length. Therefore, this uncaptured form of variation within these 

regions may skew the LD values. In addition, non-reference TE are normally observed in 

much lower frequencies then their proxy SNPs and this difference in allele frequency can 

weaken the LD values.   

Focusing on the contribution of these elements to risk of PD specifically, we 

report that many non-reference TE map to PD risk loci. Further we identify that common 

non-reference TEs are in moderate linkage with unexplained PD risk variants. 

Remarkably in one case we observe that the present non-reference TE is most commonly 

inherited with the PD risk allele. As shown in Figure 5.11 a non-reference TE SVA is 

present upstream of CRH1, which the nearest gene to the rs62053943 PD risk variant 

(p=3.58E-68, β=-0.27). This locus contains genes that have already been extensively 

studied in neurodegenerative disease such as MAPT (which is the gene that encodes for 

tau that is the predominant component of neurofibrillary tangles that are 

neuropathological hallmarks of AD) and KANSL122,197,223.  Despite that fact that this locus 

has already been heavily studied there is still little known about how it contributes to 

risk of PD. 94 To note, de novo SVA insertions have been shown to cause genetic disease 

by disrupting gene expression and causing alternative splicing.  In addition, the size of 

https://paperpile.com/c/vqnRbp/XpXsZ+YKFhg+zeJ6b
https://paperpile.com/c/vqnRbp/7hIOa
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the SVA repeat can be a disease modifier, as observed with the TAF1 de novo SVA 

insertion causative of XDP, whereby repeat length correlates with age at onset 103. Here 

we report that a common ~2/3kb non-reference SVA insertion (MAF = 0.19) is most 

commonly inherited with the risk haplotype (T). Therefore, this is suggestive that the SVA 

insertion could be contributing to disease risk at this locus. Further study and validation 

are needed to understand the relationship between the SVA and risk of PD.  
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heartAtrialAppendRP11-669E14.6
heartAtrialAppendRP11-669E14.6

esophagusMucosaCTB-39G8.3
skinExposedRP11-669E14.6
skinExposedRP11-669E14.6
skinExposedRP11-669E14.6
heartAtrialAppendRP11-669E14.6
testisRP11-798G7.5
2 tissuesRP11-798G7.8
liverCRHR1-IT1
adiposeVisceralRP11-798G7.8
brainCortexPLEKHM1
brainCaudateARHGAP27
brainCortexPLEKHM1
adiposeSubcutPLEKHM1
brainCerebelHemiRP11-798G7.8
2 tissuesRP11-798G7.5
2 tissuesRP11-798G7.5

brainNucAccumbensCRHR1-IT1
muscleSkeletalMAPT

skinExposedRP11-669E14.6
breastMamTissueRP11-798G7.5
testisMAPT-AS1
2 tissuesARHGAP27
xformedlymphocytesRP11-259G18.3
lungRP11-669E14.6
colonSigmoidLRRC37A
2 tissuesRP11-798G7.5

esophagusMucosaCTB-39G8.3
esophagusMucosaPLEKHM1
brainPutamenCRHR1-IT1
2 tissuesLRRC37A2
brainCortexRP11-259G18.2
2 tissuesARHGAP27
arteryAortaRPS26P8
esophagusMuscularRP11-707O23.5
brainCaudateARHGAP27
prostateKANSL1-AS1
liverRP11-669E14.4
brainCerebelHemiRP11-259G18.1
2 tissuesRP11-798G7.5
uterusDND1P1
brainCerebellumPLEKHM1
arteryTibialRPS26P8

xformedlymphocytesCRHR1-IT1
brainCortexLRRC37A2
brainCerebelHemiMAPT
2 tissuesLRRC37A
2 tissuesRP11-798G7.5

esophagusMucosaCTB-39G8.3
brainFrontCortexDND1P1

brainPutamenCRHR1-IT1
brainPutamenLRRC37A2
brainCaudateARHGAP27
brainPutamenRP11-259G18.1
testisMAPT-AS1
xformedlymphocytesLRRC37A2
spleenRP11-707O23.5
thyroidRP11-798G7.5
2 tissuesDND1P1
2 tissuesCRHR1-IT1
4 tissuesRP11-259G18.2
arteryCoronaryLRRC37A2
spleenRP11-707O23.5
brainCaudateARHGAP27
esophagusJunctionRP11-259G18.3
brainCerebelHemiRP11-259G18.1

heartLeftVentriclLRRC37A
2 tissuesMAPT
2 tissuesRP11-798G7.5

esophagusMucosaCTB-39G8.3
brainAnCinCortexDND1P1

esophagusMucosaPLEKHM1
brainPutamenLRRC37A2
brainCortexRP11-259G18.2
colonSigmoidLRRC37A
3 tissuesRP11-798G7.5

esophagusMucosaARHGAP27
smallIntestineRP11-259G18.3

wholeBloodCRHR1-IT1
2 tissuesARHGAP27
xformedlymphocytesRP11-259G18.3
4 tissuesRP11-798G7.5

esophagusMucosaCTB-39G8.3
esophagusMucosaPLEKHM1
liverLRRC37A2
2 tissuesARHGAP27
xformedlymphocytesRP11-259G18.3
4 tissuesRP11-798G7.5

esophagusMucosaCTB-39G8.3
esophagusMucosaPLEKHM1
liverLRRC37A2
2 tissuesARHGAP27
xformedlymphocytesRP11-259G18.3
colonSigmoidLRRC37A
muscleSkeletalMAPT

wholeBloodRP11-798G7.5
esophagusMucosaCTB-39G8.3
esophagusMucosaPLEKHM1
brainPutamenCRHR1-IT1
liverLRRC37A2
spleenRP11-707O23.5
brainCaudateARHGAP27
liverRP11-669E14.4
skinNotExposedRP11-259G18.1
brainCaudateDND1P1
brainFrontCortexPLEKHM1
liverLRRC37A2
2 tissuesARHGAP27
muscleSkeletalMAPT
nerveTibialRP11-798G7.5

brainPutamenCRHR1-IT1
2 tissuesARHGAP27
muscleSkeletalMAPT
nerveTibialRP11-798G7.5
2 tissuesARHGAP27
xformedlymphocytesRP11-259G18.3
muscleSkeletalMAPT
colonSigmoidLRRC37A

esophagusMucosaCTB-39G8.3
esophagusMucosaPLEKHM1
brainPutamenCRHR1-IT1
liverLRRC37A2
nerveTibialRP11-798G7.5
brainAnCinCortexCRHR1-IT1

heartLeftVentriclCRHR1-IT1
arteryAortaRP11-259G18.1
brainCaudateARHGAP27
2 tissuesRP11-259G18.1
2 tissuesARHGAP27
xformedlymphocytesRP11-259G18.3
colonSigmoidLRRC37A

esophagusMucosaCTB-39G8.3
brainPutamenCRHR1-IT1
brainNucAccumbensARHGAP27
muscleSkeletalMAPT
5 tissuesLRRC37A
testisRP11-293E1.1
xformedfibroblastsRP11-798G7.5

esophagusMucosaCTB-39G8.3
esophagusMucosaPLEKHM1
xformedlymphocytesNSFP1
xformedlymphocytesCRHR1-IT1
arteryAortaRP11-259G18.1
2 tissuesARHGAP27
2 tissuesLRRC37A
testisRP11-293E1.1
3 tissuesRP11-798G7.5
2 tissuesDND1P1
xformedlymphocytesNSFP1
3 tissuesARHGAP27
6 tissuesLRRC37A
testisRP11-293E1.1
2 tissuesRP11-798G7.5
brainAnCinCortexDND1P1
skinNotExposedRPS26P8
xformedlymphocytesNSFP1
heartAtrialAppendLRRC37A2
3 tissuesARHGAP27
5 tissuesLRRC37A
testisRP11-293E1.1
2 tissuesRP11-798G7.5
brainAnCinCortexDND1P1
skinNotExposedRPS26P8
xformedlymphocytesNSFP1
heartAtrialAppendLRRC37A2

brainNucAccumbensARHGAP27
2 tissuesLRRC37A
testisRP11-293E1.1
xformedfibroblastsRP11-798G7.5

brainAnCinCortexDND1P1
xformedlymphocytesNSFP1
liverLRRC37A2
2 tissuesARHGAP27
8 tissuesLRRC37A
xformedfibroblastsRP11-798G7.5

esophagusMucosaCTB-39G8.3
brainAnCinCortexDND1P1
xformedlymphocytesNSFP1
2 tissuesLRRC37A2
4 tissuesLRRC37A
testisRP11-293E1.1
xformedfibroblastsRP11-798G7.5

3 tissuesDND1P1
xformedlymphocytesNSFP1
3 tissuesLRRC37A2
3 tissuesLRRC37A
testisRP11-293E1.1
xformedfibroblastsRP11-798G7.5
brainFrontCortexDND1P1

xformedlymphocytesNSFP1
2 tissuesLRRC37A2
brainCaudateARHGAP27
esophagusJunctionRP11-259G18.3
skinNotExposedRP11-259G18.1
lungMAPT
2 tissuesRP11-798G7.5

esophagusMucosaCTB-39G8.3
brainCortexDND1P1
2 tissuesARHGAP27
4 tissuesLRRC37A
muscleSkeletalMAPT
testisRP11-293E1.1
2 tissuesRP11-798G7.5
2 tissuesDND1P1
skinNotExposedRPS26P8
xformedlymphocytesCRHR1-IT1
xformedlymphocytesLRRC37A2
colonSigmoidLRRC37A
2 tissuesARHGAP27
xformedlymphocytesRP11-259G18.3

esophagusMucosaCTB-39G8.3
brainPutamenCRHR1-IT1
colonSigmoidLRRC37A
2 tissuesARHGAP27
xformedlymphocytesRP11-259G18.3

esophagusMucosaCTB-39G8.3
brainPutamenCRHR1-IT1
brainCaudateARHGAP27
skinNotExposedRP11-259G18.1
lungMAPT
2 tissuesRP11-798G7.5

esophagusMucosaCTB-39G8.3
brainCortexDND1P1
brainCortexMAPT
2 tissuesLRRC37A
nerveTibialRP11-798G7.5
2 tissuesDND1P1
3 tissuesARHGAP27
2 tissuesRP11-259G18.3

esophagusMucosaCTB-39G8.3
esophagusJunctionDND1P1
liverCRHR1-IT1
testisARHGAP27
esophagusJunctionDND1P1
liverCRHR1-IT1
brainCaudateARHGAP27
spleenRP11-707O23.5
brainCaudateARHGAP27
pancreasRP11-259G18.3
brainCaudateDND1P1
brainCaudateARHGAP27
3 tissuesRP11-259G18.3

esophagusMucosaCTB-39G8.3
arteryAortaRPS26P8
xformedlymphocytesLRRC37A2
2 tissuesRP11-798G7.5
2 tissuesDND1P1
brainCerebelHemiRP11-707O23.5
2 tissuesRP11-259G18.3
adrenalGlandPLEKHM1
spleenCRHR1-IT1
brainCortexLRRC37A2

brainCerebelHemiMAPT

colonSigmoidLRRC37A
2 tissuesRP11-798G7.5
prostateDND1P1
2 tissuesARHGAP27
3 tissuesRP11-259G18.3

esophagusMucosaCTB-39G8.3
esophagusMucosaPLEKHM1
spleenCRHR1-IT1
brainCortexRP11-259G18.2
2 tissuesLRRC37A2
lungRP11-669E14.6
brainCerebelHemiMAPT
colonSigmoidLRRC37A
2 tissuesRP11-798G7.5
prostateDND1P1
2 tissuesARHGAP27
3 tissuesRP11-259G18.3

esophagusMucosaCTB-39G8.3
esophagusMucosaPLEKHM1

2 tissuesCRHR1-IT1
brainCortexRP11-259G18.2
2 tissuesLRRC37A2
brainCerebelHemiMAPT
lungRP11-669E14.6
testisRP11-798G7.5
brainPutamenRP11-259G18.1
3 tissuesLRRC37A

lungRP11-798G7.5
prostateDND1P1
2 tissuesRP11-259G18.3

esophagusMucosaPLEKHM1
2 tissuesCRHR1-IT1
2 tissuesLRRC37A2
arteryAortaRP11-259G18.1
colonSigmoidLRRC37A
testisRP11-798G7.5
prostateDND1P1
skinNotExposedRPS26P8
2 tissuesRP11-707O23.5
2 tissuesRP11-259G18.3

esophagusMucosaCTB-39G8.3
2 tissuesPLEKHM1
2 tissuesCRHR1-IT1
2 tissuesLRRC37A2
colonSigmoidLRRC37A
testisRP11-798G7.5
prostateDND1P1
skinNotExposedRPS26P8
2 tissuesRP11-707O23.5
2 tissuesRP11-259G18.3

esophagusMucosaCTB-39G8.3
2 tissuesPLEKHM1
2 tissuesCRHR1-IT1
2 tissuesLRRC37A2

xformedfibroblastsRP11-259G18.1
thyroidRP11-798G7.5
liverCRHR1-IT1
2 tissuesARHGAP27
2 tissuesRP11-259G18.3
3 tissuesLRRC37A

brainCerebelHemiMAPT

2 tissuesRP11-798G7.5
esophagusMucosaCTB-39G8.3
prostateDND1P1

esophagusMucosaPLEKHM1
3 tissuesCRHR1-IT1
brainCortexRP11-259G18.2
4 tissuesLRRC37A2
skinNotExposedARL17B

xformedfibroblastsRP11-259G18.1
lungRP11-669E14.6

xformedfibroblastsRP11-259G18.1
brainHippocampusLRRC37A
lungRP11-669E14.6
3 tissuesRP11-798G7.5

esophagusMucosaARHGAP27
2 tissuesCRHR1-IT1
uterusDND1P1
pituitaryCRHR1-IT1

uterusRP11-259G18.2
lungFAM215B

pituitaryRP11-259G18.3
lungRP11-669E14.6
2 tissuesRP11-798G7.5
2 tissuesCRHR1-IT1
2 tissuesLRRC37A4P

4 tissuesMAPT

brainPutamenRP11-259G18.2

2 tissuesLRRC37A2

esophagusMucosaRP11-707O23.5

esophagusMucosaMAPT

3 tissuesRP11-798G7.5
brainHippocampusCRHR1-IT1

brainCerebellumRP11-798G7.5
brainCerebelHemiRP11-259G18.1

esophagusJunctionARL17B

arteryCoronaryLRRC37A

skinExposedRP11-798G7.5
spleenRP11-707O23.5
brainCerebelHemiRP11-259G18.1
thyroidRP11-669E14.6
2 tissuesRP11-798G7.5
arteryTibialRP11-669E14.6

testisRP11-798G7.5

skinNotExposedRPS26P8
skinNotExposedRPS26P8

arteryTibialRP11-669E14.6
testisRP11-798G7.5
xformedfibroblastsRP11-259G18.1

colonTransverseMAPT

testisRP11-798G7.5

testisMAPT-AS1

xformedfibroblastsRP11-259G18.1

colonTransverseMAPT

testisRP11-798G7.5

testisMAPT-AS1

2 tissuesRP11-669E14.6

muscleSkeletalPLEKHM1
brainCerebelHemiFMNL1

arteryAortaMAPT

brainCortexDND1P1

arteryTibialRPS26P8

liverCRHR1-IT1
pituitaryRP11-707O23.5

esophagusMucosaAC091132.1
2 tissuesRP11-259G18.1

brainFrontCortexMAPT

lungRP11-798G7.5
2 tissuesCRHR1-IT1
pituitaryRP11-707O23.5

esophagusMucosaAC091132.1
2 tissuesRP11-259G18.1

brainFrontCortexMAPT

lungRP11-798G7.5
2 tissuesCRHR1-IT1

esophagusMucosaAC091132.1
2 tissuesRP11-259G18.1

brainFrontCortexMAPT

2 tissuesRP11-669E14.6
esophagusMucosaCTB-39G8.3

brainPutamenRP11-707O23.5

2 tissuesDND1P1

adiposeVisceralCRHR1-IT1
5 tissuesLRRC37A4P
thyroidLRRC37A2
3 tissuesRP11-259G18.2

esophagusMucosaRP11-707O23.5
ovaryKANSL1-AS1

colonTransverseMAPT

smallIntestineDND1P1

brainCerebelHemiFMNL1

stomachCRHR1-IT1
2 tissuesRP11-259G18.2

esophagusMucosaLRRC37A2
esophagusMucosaAC091132.1

esophagusJunctionARL17B

2 tissuesLRRC37A
brainCerebelHemiRP11-798G7.5
2 tissuesDND1P1
testisRPS26P8
brainCerebelHemiSPPL2C
brainCerebelHemiLRRC37A4P
lungFAM215B
brainCerebellumMAPT-AS1
esophagusJunctionRP11-259G18.3
testisRP11-293E1.1
brainCerebelHemiPLEKHM1

2 tissuesFMNL1

brainAnCinCortexCRHR1-IT1
brainAnCinCortexLRRC37A2
pituitaryKANSL1-AS1
brainCerebellumAC091132.1

2 tissuesMAPT

3 tissuesRP11-798G7.5

3 tissuesDND1P1

brainFrontCortexLRRC37A4P
xformedlymphocytesARHGAP27
pituitaryRP11-259G18.3
pituitaryCRHR1-IT1
4 tissuesLRRC37A2
esophagusMuscularRP11-707O23.5
brainCaudateKANSL1-AS1
liverRP11-669E14.4

pancreasRP11-259G18.1

brainCerebellumMAPT

4 tissuesRP11-798G7.5

3 tissuesDND1P1

brainPutamenCRHR1-IT1
adrenalGlandLRRC37A2
brainCaudateARHGAP27
3 tissuesRP11-259G18.1

brainFrontCortexMAPT

2 tissuesRP11-798G7.5

2 tissuesDND1P1

breastMamTissueRPS26P8
5 tissuesCRHR1-IT1

vaginaLRRC37A4P
2 tissuesRP11-259G18.2

brainCaudateDND1P1

adiposeVisceralCRHR1

4 tissuesRP11-707O23.5
4 tissuesRP11-259G18.3
4 tissuesKANSL1-AS1

heartLeftVentriclLRRC37A

smallIntestineDND1P1

brainCerebellumFMNL1

2 tissuesCRHR1-IT1
2 tissuesLRRC37A4P

xformedlymphocytesKANSL1

5 tissuesRP11-259G18.2
esophagusMucosaLRRC37A2
4 tissuesKANSL1-AS1

2 tissuesLRRC37A

4 tissuesDND1P1

3 tissuesLRRC37A4P
4 tissuesRP11-707O23.5

esophagusMucosaARHGAP27
4 tissuesRP11-259G18.3
3 tissuesCRHR1-IT1

brainCerebellumFMNL1

esophagusMuscularLRRC37A2
9 tissuesRP11-259G18.2

adiposeSubcutCRHR1

adiposeSubcutRP11-259G18.3
3 tissuesCRHR1-IT1
3 tissuesKANSL1-AS1
liverRP11-669E14.4
brainCerebellumAC091132.1
testisRP11-259G18.1

3 tissuesMAPT

esophagusJunctionRP11-798G7.5

3 tissuesDND1P1

2 tissuesCRHR1-IT1
5 tissuesLRRC37A2
2 tissuesRP11-259G18.2
brainCortexKANSL1-AS1
skinNotExposedRP11-259G18.1

3 tissuesMAPT

skinNotExposedLRRC37A

thyroidDND1P1

xformedlymphocytesNSFP1

3 tissuesRP11-707O23.5
esophagusMucosaARHGAP27
6 tissuesCRHR1-IT1
skinNotExposedLRRC37A2
4 tissuesRP11-259G18.2

brainCortexMAPT

brainNucAccumbensCRHR1-IT1

brainCortexMAPT

3 tissuesKANSL1-AS1
brainCerebellumAC091132.1

brainPutamenRP11-259G18.1

5 tissuesLRRC37A

2 tissuesRP11-669E14.6

2 tissuesMAPT

3 tissuesDND1P1

brainNucAccumbensLRRC37A4P
arteryTibialRP11-707O23.5

2 tissuesARHGAP27
pituitaryRP11-259G18.3
3 tissuesLRRC37A2
2 tissuesRP11-259G18.2
2 tissuesCRHR1-IT1
arteryAortaRP11-259G18.1

esophagusMuscularRP11-669E14.6
3 tissuesRP11-798G7.5

thyroidDND1P1

pituitaryRPS26P8

heartLeftVentriclRP11-707O23.5
esophagusMucosaARHGAP27
esophagusMucosaCTB-39G8.3

esophagusMucosaPLEKHM1

adrenalGlandCRHR1-IT1
esophagusMucosaAC091132.1

esophagusJunctionARL17B

esophagusJunctionRP11-798G7.5

esophagusJunctionDND1P1

testisRPS26P8

brainCerebellumMAPT-AS1
esophagusJunctionRP11-259G18.3
testisRP11-293E1.1
brainCerebelHemiPLEKHM1

2 tissuesFMNL1

brainAnCinCortexCRHR1-IT1
brainAnCinCortexLRRC37A2
brainCortexRP11-707O23.5
spleenRP11-259G18.3
2 tissuesRP11-259G18.1
prostateLRRC37A

adrenalGlandDND1P1

breastMamTissueRPS26P8
4 tissuesCRHR1-IT1
6 tissuesLRRC37A4P
3 tissuesLRRC37A2
2 tissuesRP11-707O23.5

testisARL17B

arteryAortaRP11-259G18.1
2 tissuesLRRC37A
arteryTibialRP11-669E14.6

breastMamTissueRP11-798G7.5

2 tissuesDND1P1

testisPLEKHM1
3 tissuesCRHR1-IT1
testisLRRC37A4P
3 tissuesRP11-259G18.2
7 tissuesLRRC37A2

esophagusMucosaAC091132.1
2 tissuesRP11-798G7.5

esophagusJunctionDND1P1

2 tissuesRPS26P8

brainCerebelHemiSPPL2C

esophagusMucosaARHGAP27
testisRP11-293E1.1
adrenalGlandPLEKHM1
stomachLRRC37A2

2 tissuesRP11-707O23.5
xformedlymphocytesARHGAP27

2 tissuesMAPT

2 tissuesCRHR1-IT1
brainHippocampusLRRC37A2

adiposeSubcutCRHR1

adiposeSubcutRP11-259G18.3

esophagusJunctionDND1P1

3 tissuesCRHR1-IT1

adiposeSubcutCRHR1

7 tissuesRP11-707O23.5
5 tissuesRP11-259G18.3
7 tissuesKANSL1-AS1

2 tissuesLRRC37A

brainCerebellumRP11-798G7.5

10 tissuesDND1P1

brainCerebellumPLEKHM1
arteryAortaRPS26P8

2 tissuesCRHR1-IT1
nerveTibialRP11-798G7.8
brainAnCinCortexLRRC37A4P
10 tissuesRP11-259G18.2

4 tissuesLRRC37A2

thyroidRP11-669E14.6
thyroidRP11-798G7.5

adrenalGlandDND1P1

xformedlymphocytesKANSL1

vaginaRP11-259G18.2
brainHippocampusKANSL1-AS1

colonSigmoidMAPT

thyroidRP11-798G7.5

brainFrontCortexDND1P1

brainCerebellumSPPL2C

brainHypothalamusLRRC37A4P

4 tissuesRP11-707O23.5

adrenalGlandPLEKHM1

4 tissuesCRHR1-IT1

4 tissuesRP11-259G18.2

adiposeSubcutCRHR1

adiposeSubcutRP11-259G18.3

3 tissuesCRHR1-IT1

brainCaudateARHGAP27

2 tissuesRP11-259G18.1

arteryCoronaryLRRC37A

arteryTibialRP11-669E14.6

thyroidMAPT

brainCortexRP11-259G18.1
skinExposedRP11-798G7.5
brainCortexRP11-259G18.1

xformedlymphocytesNSFP1

xformedlymphocytesLRRC37A2

2 tissuesRP11-259G18.3

brainCerebellumAC091132.1

arteryAortaRP11-259G18.1

colonSigmoidMAPT

esophagusMuscularRP11-669E14.6

esophagusMucosaCTB-39G8.3

4 tissuesDND1P1

2 tissuesRPS26P8

brainCerebellumRP11-798G7.8

adiposeSubcutCRHR1

adiposeSubcutRP11-259G18.3

3 tissuesCRHR1-IT1

brainCaudateRP11-707O23.5
spleenRP11-259G18.3

2 tissuesKANSL1-AS1

brainCerebellumRP11-259G18.1

6 tissuesDND1P1

brainNucAccumbensCRHR1-IT1

3 tissuesRP11-259G18.2

4 tissuesLRRC37A2

esophagusMucosaAC091132.1

skinNotExposedRP11-259G18.1
esophagusMuscularRP11-669E14.6

esophagusMucosaCTB-39G8.3

2 tissuesDND1P1

adrenalGlandPLEKHM1

brainNucAccumbensARHGAP27

brainCerebellumAC091132.1

brainCerebellumCRHR1-IT1

adiposeVisceralRP11-707O23.5
adiposeVisceralRP11-259G18.3

heartAtrialAppendKANSL1-AS1

colonSigmoidLRRC37A

thyroidCRHR1-IT1

4 tissuesLRRC37A4P

heartLeftVentriclLRRC37A2

adiposeVisceralRP11-707O23.5
adiposeVisceralRP11-259G18.3

colonSigmoidLRRC37A

smallIntestineCRHR1-IT1

6 tissuesLRRC37A4P

2 tissuesLRRC37A2

adiposeVisceralRP11-707O23.5
adiposeVisceralRP11-259G18.3

colonSigmoidLRRC37A

thyroidCRHR1-IT1
4 tissuesLRRC37A4P

heartLeftVentriclLRRC37A2

12 tissuesRP11-707O23.5

13 tissuesRP11-259G18.3

9 tissuesKANSL1-AS1

esophagusMuscularLRRC37A
12 tissuesDND1P1

skinExposedRPS26P8

spleenCRHR1-IT1

5 tissuesLRRC37A4P

thyroidFAM215B

4 tissuesLRRC37A2

14 tissuesRP11-259G18.2

brainCaudateDND1P1

breastMamTissueRPS26P8

brainCerebellumCRHR1-IT1

smallIntestineLRRC37A2

brainNucAccumbensARHGAP27

brainCerebellumAC091132.1

brainNucAccumbensARHGAP27

brainCerebellumAC091132.1

3 tissuesRP11-707O23.5

8 tissuesRP11-259G18.3

3 tissuesKANSL1-AS1

2 tissuesLRRC37A

6 tissuesDND1P1

4 tissuesCRHR1-IT1

2 tissuesLRRC37A4P

4 tissuesLRRC37A2

12 tissuesRP11-259G18.2

skinNotExposedARL17B

5 tissuesCRHR1-IT1

xformedlymphocytesRP11-259G18.2

arteryTibialRPS26P8

brainCerebelHemiFMNL1

skinNotExposedRP11-259G18.1

skinNotExposedRP11-798G7.5

brainCaudateDND1P1

xformedlymphocytesKANSL1

5 tissuesCRHR1-IT1

xformedlymphocytesRP11-259G18.2

5 tissuesCRHR1-IT1

xformedlymphocytesRP11-259G18.2

esophagusMucosaAC091132.1

esophagusJunctionARL17B

skinExposedRP11-669E14.6

2 tissuesRP11-798G7.5

esophagusJunctionDND1P1
testisRPS26P8

lungFAM215B

brainCerebellumMAPT-AS1

testisRP11-293E1.1

brainCerebelHemiPLEKHM1

brainCerebellumFMNL1

brainAnCinCortexCRHR1-IT1

brainAnCinCortexLRRC37A2

esophagusMucosaAC091132.1

esophagusJunctionARL17B

skinExposedRP11-669E14.6

2 tissuesRP11-798G7.5

esophagusJunctionDND1P1

testisRPS26P8
lungFAM215B

brainCerebellumMAPT-AS1

testisRP11-293E1.1

brainCerebelHemiPLEKHM1

brainCerebellumFMNL1

brainAnCinCortexCRHR1-IT1
brainAnCinCortexLRRC37A2

5 tissuesCRHR1-IT1

colonSigmoidLRRC37A2
3 tissuesRP11-259G18.2
5 tissuesCRHR1-IT1
colonSigmoidLRRC37A2
3 tissuesRP11-259G18.2

4 tissuesCRHR1-IT1
2 tissuesLRRC37A2

2 tissuesRP11-259G18.2

3 tissuesCRHR1-IT1
2 tissuesLRRC37A2
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Figure 5.11. A common non-reference SVA that is in LD with the rs62053943 PD risk 
variant and commonly inherited with the risk allele lies within the promoter of 
LRRC37A (a PD associated gene)A) The rs62053943 locus, red highlight illustrates the 
region of the non-reference TE SVA (SVA_umary_SVA_704). The non-reference TE SVA 
overlaps the promoter of LRRC37A a PD associated gene. Histone marks and geneHancer 
infer possible functional consequence of the insertions. B) GTEX generated figure 
showing that the adjacent gene LRRC37 is highly expressed in brain (Cerebellar 
hemisphere and Cerebellum) and testis. C) GTEX generated figure showing that the 
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adjacent gene LRRC37 is highly expressed in brain (Cerebellar hemisphere and 
Cerebellum) and pituitary. 

Finally, using the non-reference TE and SNP genotypes we ran an association 

analysis to identify if any of the non-reference TE were associated with PD risk with 

genome-wide significance. From this pilot study we did not detect any variant to reach 

genome-wide significance (Figure 5.9) (p > 5 x 10-8 ). But this was expected given the 

number of individuals included.  As a control the beta coefficient values for the top PD 

risk SNPs were plotted from the most recent meta-analysis against the beta coefficient 

values of this present study, which positively correlated with our values (p=8.05E-04) 

(Figure 5.10). This highlights that in order to be able to fully establish the role of non-

reference TE in PD the GWA should be repeated with a much larger dataset. Further we 

have shown that multiple non-reference TE are in LD with known PD risk loci, but our 

study did not have enough power to identify if any variant was significantly associated 

with risk of PD. To identify if the tagged TE variants are the true risk signal at these 

associated regions conditional and joint association analysis is needed, which requires 

significant association signals for testing.  Therefore, not only is it imperative to increase 

sample size to discover new risk loci but it is also essential for further understanding 

whether the tagged TEs could be strong candidate causal variants for future follow-up 

study at these known loci. 

  While this present study marks the first characterization of non-reference TE in 

PD to date, there are a number of limitations to this analysis. The most significant being 

that we have not currently validated any of the variants of interest at the bench. It will 

be crucial to systematically validate the non-reference TE genotypes that have been 
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called by MELT, to be able to take any variant-specific conclusion from this analysis. 

However, foreseeing this issue, steps were taken in the initial study design to ensure that 

we obtained robust and high confidence calls. First, we chose to use MELT for non-

reference TE detection, which is the gold-standard TE detection tool217.  MELT has been 

used by others to explore the role of non-reference TE in disease and was found to have 

high sensitivity and specificity 224. It was developed to call non-reference TE in the 1000 

genome project and provides a list of insertions that had been found and validated in 

this initiative. Therefore, because we only focused on these “prior” variants in our initial 

study it gives confidence that there are corresponding insertions at those defined sites.  

In addition, we also filtered for common variants (MAF < 0.01). Due to the nature of 

current non-reference TE detection tools and the samples size used, (similar to SNP 

calling) calling rare non-reference TE insertions is less reliable.  Therefore, we hope that 

taking these outlined steps has improved the reliability of the non-reference TE calls.  

As mentioned above in order to obtain high confidence calls, we focused solely 

on common and prior detected non-reference TEs. Although this increased the reliability 

of the calls it does seriously limit the detection power. Therefore, our current analysis is 

potentially a huge underrepresentation of the contribution of non-reference TE to PD 

risk.  Two main factors contribute to this underrepresentation 1) only calling non-

reference TE that are called in the 1000 genome project means we have ignored at least 

ten times the number of non-reference TE variants and 2) focusing on common variants 

means that we cannot capture the contribution of rare non-reference TEs to PD. In 

relation to the later, rare coding SNP variation has already been shown to contribute to 

https://paperpile.com/c/vqnRbp/qHw1X
https://paperpile.com/c/vqnRbp/1iKEY
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PD risk in existing exome studies 225.  Concerning TE variation, although there isn’t the 

power to address this yet in PD, a recent study addressed the role of rare variation in 

severe developmental disorders (DD). Using WES from nearly ten thousand DD 

individuals Gardner et al identified 4 de novo TEs which were likely causative of the 

patient’s symptoms226. While assessing the role of de novo TEs in sporadic PD is currently 

beyond the scope of our analysis,  (as our data does not contain a large number of trios), 

the DD study does highlight that in the future assessing the genetic burden of rare non-

reference TEs would be possible and could be  informative in  PD datasets.  

 

Overall, we report that non-reference TE are a common yet ignored form of 

genetic variation that are enriched at PD loci and could be contributing to disease risk. 

Non-reference TEs are not currently catalogued at these loci, in fact these common 

variants are routinely removed from most genetic analysis as the first step of filtering. In 

recent years the technology has been developed to confidently call TEs genome-wide. 

Therefore, it is evident that as we enter the era of WGS and long-read sequencing, to aid 

in fine-mapping of existing risk loci and the discovery of novel hits, it will be imperative 

to incorporate non-reference TE detection as part of the standard NGS pipelines.  

 

 

 

 

 

https://paperpile.com/c/vqnRbp/X7XM8
https://paperpile.com/c/vqnRbp/qKx6Z
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 Analysis of repetitive element expression in 

the blood and skin of patients with Parkinson’s disease 

identifies differential expression of satellite elements  
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6.1 Introduction 

Despite huge successes for the field identifying genetic mutations and risk factors 

associated with PD, to date there has been little success in developing definitive 

diagnostic and prognostic biomarkers for the disease. The only definitive diagnosis for 

PD is performed post-mortem. As onset of the molecular and cellular neuropathology 

seen in PD likely initiates decades before the manifestation of the motor symptoms, the 

need for developing a diagnostic marker in readily available tissue is urgent, not only for 

early intervention but also to monitor progression of therapeutic treatments 227. Recent 

efforts have focused on identifying biomarkers of PD in peripheral tissues, with studies 

identifying molecular alterations in the blood and skin of PD patients. Notably the 

transcriptional profile from the blood and skin of PD patients demonstrated 

dysregulation of genes known to be associated with PD 228–230.  

Repetitive element (RE) sequence constitutes the majority of the human genome. 

Recently the field have seen the development of more sophisticated bioinformatic 

methods, that can now accurately analyse RE expression and this has led to the role of 

RE in disease aetiology becoming increasingly apparent. Although we have given a 

detailed description of TEs in Chapter 1, RE’s include all repetitive elements including 

TEs, in brief; RE can be broadly split into five categories each of which, have very distinct 

functions. The first four minor categories account for ~10% of the genome, and include; 

simple sequence repeats, segmental duplications, tandem repeats and satellite DNA 

sequences, and processed pseudogenes. The fifth and most major and abundant group 

of RE are transposable elements (TE)s231.  

https://paperpile.com/c/vqnRbp/QD6u6
https://paperpile.com/c/vqnRbp/Pk33N+RbVJt+KbGSd
https://paperpile.com/c/vqnRbp/XXMRB
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Differential expression of  TEs has been associated with several neurological 

disorders and increased expression is linked with toxicity and genomic instability 232–235. 

In response to this, cells have developed various epigenetic mechanisms to ensure TEs 

are tightly suppressed. However it would appear this mechanism goes awry in 

pathological state, with increased RTE expression being reported in conditions such as 

schizophrenia, Rett syndrome, Creutzfeldt-Jakob disease (CJD), ataxia telangiectasia and 

many cancers 236–238. Specifically, accumulation of RTE transcripts has been described in 

several neurodegenerative diseases such as Alzheimer's disease (AD) and Amyotrophic 

lateral sclerosis(ALS)232–234,239.  A more relevant example of the potential toxicity of RTEs 

has been highlighted in a recent PD related study, which focussed on assessing the role 

of LINE1 (a non-LTR, LINE RTE element) in mesencephalic dopaminergic neurons. In an 

Engrailed-1 heterozygote model Blaudin de The show that LINE1 RNA upregulation 

correlates with increased DNA damage and cell death induced by oxidative stress. 

Subsequently reduction of LINE1 protects against oxidative stress in vitro and in vivo240. 

Despite the growing body of evidence that shows that RE expression is associated with 

many diseases, genome-wide expression of these elements is yet to be characterized in 

PD. In this chapter, we utilized existing RNA-Seq data from the skin229 and blood of the 

same individuals and characterized RE expression in both PD patients and healthy 

controls. To gain novel insight into the expression of all classes of RE, unlike other 

methods that focus only on TE, we utilized the well-established RepEnrich pipeline that 

quantifies all known RE class sequences and report the first characterization of RE 

expression in PD to date. 

https://paperpile.com/c/vqnRbp/xe9qk+iDDjS+7PgPG+M66EH
https://paperpile.com/c/vqnRbp/MAxyg+G19CS+KBdHo
https://paperpile.com/c/vqnRbp/iDDjS+t94zD+xe9qk+7PgPG
https://paperpile.com/c/vqnRbp/zimrK
https://paperpile.com/c/vqnRbp/RbVJt
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6.2 Aims 

● Characterize the expression of repetitive elements in the blood and skin  

● Identify if repetitive elements are differentially expressed in the blood or skin of 

patients with Parkinson disease 
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6.3 Methods 

6.3.1. Study participants and ethics 

Blood samples were collected from 12 patients with PD (6 men and 6 women, aged 

72.2±9.9 years, mean ±SD), and 12 healthy control subjects (blood; 6 men and 6 women, 

aged 68.9±6.9 years, skin). All patients fulfilled the Queen Square Brain Bank Criteria for 

idiopathic PD241,242. The mean onset age and duration of disease at sample collection 

were 65.5±8.6 and 7.3±6.3 years, respectively (Table 6.1).   

 

Table 6.1. Characteristics of the PD patients: =Hoehn and Yahr stage; SE-ADL, Schwab 
and England Activities of Daily Living Scale; MMSE, Mini Mental State Examination. * 1-
tremor-dominant; 2-akinetic-rigid; 3-postural instability and gait disorder. 

SEX AGE 
(YR) 

DISEASE 
ONSET 

AGE (YR) 

DISEASE 
DURATIO

N (YR) 

DISEASE 
SUBTYPE * 

HY SE-
ADL 

MMS
E 

M 85 67 18 3 4 40 27 

M 76 75 1 1 2.5 90 30 

M 73 65 9 2 3 80 30 

M 67 50 17 2 4 70 28 
M 69 68 2 3 3 80 30 

M 73 72 1 1 1 95 29 

F 82 74 9 3 4 60 26 

F 68 65 4 1 1.5 100 30 

F 71 66 6 2 3 70 24 
F 48 47 2 2 1.5 90 30 

F 69 67 3 1 2.5 80 29 

F 85 70 15 1 2.5 60 23 

 

 

 

 

https://paperpile.com/c/vqnRbp/jdAiM+jdX0x
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A detailed description of individuals enrolled on the skin study please refer to 

Planken et al 229. In brief,  the median total score of the Movement Disorder Society 

sponsored revision of the Unified Parkinson Disease Rating Scale (MDS-UPDRS)243was 65 

(ranging from 22 to 159). The median disease severity assessed by the Hoehn and Yahr  

scale244 was 2.75 (ranging from 1 to 4). The median disability score assessed by the 

Schwab and England Activities of Daily Living Scale (SE-ADL) was 80 % (ranging from 40% 

to 100%). None of the PD patients were current smokers and two had a history of 

smoking in the past. 

`The study was approved by the Research Ethics Committee of the University of 

Tartu. Volunteer PD patients and healthy controls were recruited from the Department 

of Neurology and Neurosurgery at the University Hospital of Tartu. A signed informed 

consent was acquired from all subjects participating in this study. 

6.3.2. Library preparation  

The venous blood of all study subjects was collected into Tempus Blood RNA 

Tubes (Thermo Fisher Scientific Inc, CA, USA). The RNA was extracted applying Tempus 

Spin RNA Isolation Kit (Thermo Fisher Scientific Inc, CA, USA) combined with DNase 

treatment (RNase-Free DNase Set, Qiagen, Hilde, Germany), according to the 

manufacturer's’ protocols. The globin mRNA was removed from the extracted total RNA 

using GLOBIN clear Kit for human (Thermo Fisher Scientific Inc, CA, USA). For the skin, 

one 4 mm punch-biopsy specimen was taken from non- sun-exposed skin of each subject 

from both study groups. All biopsy specimens were instantly frozen in liquid nitrogen and 

https://paperpile.com/c/vqnRbp/RbVJt
https://paperpile.com/c/vqnRbp/QyaL1
https://paperpile.com/c/vqnRbp/9mA8Y
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stored at -80C° until RNA extraction. Biopsies were homogenized with Precellys 24 

homogenizer with the Cryolys system (Bertin Technologies). RNeasy Fibrous Tissue Mini 

Kit (Qiagen, Hilde, Germany) was used for total RNA extraction, according to the 

manufacturer’s protocol. During the purification on-column DNase I treatment was 

performed (Qiagen Hilde, Germany). The RNA quality was assessed using Agilent 2100 

Bioanalyzer, with the RNA 6000 Nano kit (Agilent Technologies) and the quantity was 

evaluated with Qubit fluorometer and Qubit RNA HS Assay kit (Life Technologies). The 

study samples RIN ranged from 6.7- 9.5 in the blood and skin samples.  

6.3.3.RNA sequencing 

50 ng of each RNA sample was amplified with Ovation RNA-Seq System V2 Kit 

(NuGen Technologies Inc, CA, USA) and the output double stranded DNA was used to 

prepare SOLiD 5500 W System DNA fragment libraries according to manufacturer's 

protocols (Thermo Fisher Scientific Inc, CA, USA). For library preparation, the barcoding 

adapters were used, and 12 libraries were pooled prior to sequencing. For sequencing 

skin samples, the SOLiD 5500 W XL with paired-end chemistry (75 bp in forward and 35 

bp in reverse direction) in 6-lane mode was applied. In the case of blood samples SOLiD 

5500 W XL platform with fragment sequencing chemistry (75 bp in forward directions) in 

3-lane mode was used. In both cases approximately 40 million mappable reads were 

expected per one sample, which is enough for successful whole transcriptome 

expression pattern analysis. 
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6.3.4. Read alignment and quantification 

Raw colour-space reads were filtered for rRNA, active tRNA, and SOLiD adaptor 

sequences. The remaining reads were aligned as single end reads to the GRCh37/hg19 

reference genome, while allowing multi-mapping to detect reads aligning to possible 

repeat sequences. To ensure secondary alignments were reported in the BAM files no 

mapping quality cut-off was set. LifeScope software (LifeTechnologies) with 

recommended settings designed for colour-space read alignment and analysis was used 

for both mapping steps.  

  The number of reads aligning to known exonic gene sequences were counted and 

visualized by plotting the first two principal components in order to exclude the 

possibility of bias in the RNA-seq datasets. The base Stats package in R was used to 

conduct the principle component analysis (PCA)245. Prior to PCA, the read counts were 

normalized as z-scored counts per million mapped reads (CPM) values, where the 

standard deviation and mean were calculated separately for each gene.  

  To connect colour-space mapping with the RepEnrich pipeline 

https://github.com/nskvir/RepEnrich231, the GRCh37/hg19 mapped BAM files were 

parsed using samtools and in-house perl scripts to separate unique and non-unique 

mapped reads. For uniquely mapped reads, only alignments with MAPQ ≥ 10 (in Phred 

scale) were retained, on average ~77% of all reads mapped to the reference genome. For 

multi-mapping reads, the base-space sequence was inferred from the longest alignment 

and these reads were converted to FASTQ format. This enabled us to convert the colour-

space data into suitable format for downstream analysis. Next, RepEnrich with default 

https://paperpile.com/c/vqnRbp/6qIbQ
https://github.com/nskvir/RepEnrich
https://paperpile.com/c/vqnRbp/XXMRB
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parameters was applied to obtain read counts of REs. RepEnrich aligns multi-mapping 

reads separately to a pseudogenome containing the RE loci lifted from the RepeatMasker 

GRch37/hg19 Library in order to more accurately infer read counts which estimate the 

abundance of expressed RE. The RepEnrich pipeline applies different quantification 

strategies to uniquely and multi-mapping reads in order to more accurately infer read 

counts, which accurately estimates the abundance of expressed repetitive elements. The 

alignments were quantified at repeat class, family and subfamily level. Repeat 

subfamilies are a collection of highly similar sequences representing all known instances 

of a given repetitive element copies in the hg19 genome build annotated in the 

RepeatMasker Library.” 

6.3.5. Analysis of differentially expressed repetitive elements  

The R package edgeR (Robinson et al. 2010) was used to identify differentially expressed 

REs at sub-family, family and class level between the case and control in the blood and 

skin. The EdgeR package uses a negative binomial model to infer the significance of 

differential read counts. The RE overall library sizes were used for normalization of read 

counts for each sample. Prior to differential expression testing, the edgeR normalized RE 

pseudocounts were visualized by plotting the first two principal components in order to 

check for potential bias in the RE counts data. The generalized linear model approach of 

EdgeR was then applied to compare PD to control. The workflow used for the RepEnrich 

analysis is outlined in (Figure 6.2). 
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Figure 6.1. RepEnrich Workflow. RNA-Sequencing data was obtained from blood and 
skin of 12 PD patients and 12 healthy controls. A RE pseudogenome assembly was 
constructed by concatenating the genomic sequence for the 1117 RE elements from the 
ReRCh37/hg19 Library. Reads were mapped using the RepEnrich pipeline and differential 
RE expression was identified following EdgeR analysis. 
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6.4 Results 

6.4.1 Repetitive elements are widely expressed in the blood and skin 

Analysis of RNA-Seq data from 12 PD patients and 12 controls (with an average of 24 

(blood) or 31 (skin) million reads per individual) identified that 20.3% (blood) and 23.8% 

(skin) of reads mapping to the reference genome GRCh37/hg19 aligned to the RE 

annotated in the RepeatMasker GRch37/hg19 Library (Figure 6.3). 
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Figure 6.2. Mapped repetitive element expression in the blood and skin. Analysis of 
RNA-Seq data from the blood of 12 PD patients and 12 controls (with an average of 24 
(blood) or 31 (skin) million reads per individual) identified 20 % of reads mapping to the 
reference genome GRCh37/hg19, aligned to the custom built RE psuedogenome 
assembly used in RepEnrich. Of the reads that mapped to the RE pseudogenome 
assembly, in the blood on average 37.10% originated from LINE elements, 31.22% from 
SINE, 13.93% from LTR, 10.41% from rRNA, 6.90% from DNA and 0.44% other (satellite, 
snRNA, tRNA,RNA,RC,scRNA). In the skin on average 35.71% originated from LINE 
elements, 26.47% from SINE, 14.70% from LTR, 13.14% from rRNA, 9.41% from DNA and 
0.57% other (satellite snRNA, tRNA,RNA,RC,scRNA). 

AVERAGE NUMBER 

OF READS
REPETITIVE ELEMENTS MAPPED

SINE 31%

LINE 37%

LTR 14%

rRNA 10%

DNA 7%
RE 20%

RE 24%
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rRNA 13%

DNA 9%
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No significant bias was detected in the RNA-Seq datasets by visualizing the read counts 

for expressed genes as principal component analysis (PCA) plots. REs were widely 

expressed, on average of the 1117 REs queried, 1086 were detected in the blood 

(RPKM≥1) (97%) and 1099 in the skin. Based on RepeatMasker annotations RepEnrich 

output is quantified into three categories 1) expression of every RE that has a known 

consensus sequence in RepeatMasker, which is named as ‘subfamily’ classification (n= 

1117) 2) grouping all of the REs by ‘family’ (n=48) and 3) further sub grouping of the 

families by ‘class’ (n= 13). An explanation of the grouping of the RepEnrich output for 

expression levels is given below (Table 6.2). 
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Table 6.2. Explanation of RepEnrich output for expression levels. Based on 
RepeatMasker data the output is quantified in three categories 1) expression of every RE 
that has a known consensus sequence in RepeatMasker (subfamily) (n= 1117) 2) 
grouping all of the RE by family (n=48) and 3) grouping the families further into classes 
(n= 13).  

RE Subdfamily 
(n=1117) 

 
RE family (n=48) 

 
RE class (n=13) 

Every known RE 
consensus 

sequence in 
RepeatMasker 

satellite,centr,acro,telo Satellite 

RNA RNA 

Helitron RC 

scRNA scRNA 

rRNA rRNA 

tRNA tRNA 

srpRNA srpRNA 

ERVL,ERVL-MaLR,ERV1,Gypsy,LTR,ERVK,ERV1?,Deu,Gypsy?,ERVL? LTR 

Other Other 

Dong-R4,L1,CR1,RTE-BovB,L2,L1?,RTE-X LINE 

Alu,MIR SINE 

TcMar-Mariner,TcMar?,hAT-Tip100,DNA,hAT-Charlie,hAT-Tip100?,hAT-
Blackjack,PiggyBac?,hAT?,TcMar-Tc2,TcMar-Pogo,TcMar,PiggyBac,TcMar-

Tigger,hAT,Merlin,MULE-MuDR 

DNA 

snRNA snRNA 

 

No significant difference for relative abundance of reads originating from each of the 

different RE classes was observed between PD and control in the blood or in the skin.  Of 

the reads that mapped to the RE pseudogenome assembly, in the blood on average 

37.10% originated from LINE elements, 31.22% from SINE, 13.93% from LTR, 10.41% 

from rRNA, 6.90% from DNA and 0.44% other (satellite, snRNA, tRNA, RNA, RC ,scRNA).In 

the skin on average 35.71% originated from LINE elements, 26.47% from SINE, 14.70% 
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from LTR, 13.14% from rRNA, 9.41% from DNA and 0.57% other (satellite, snRNA, tRNA, 

RNA, RC, scRNA) (Figure 6.3). 

However when the abundance of individual members of each class were 

compared between the two tissues analysed, there were significant differences in 

relative abundance of RE between blood and skin for the majority of the classes, 

highlighting previously reported tissue-specific nature of RE expression246. 

6.4.2. Satellite elements are significantly upregulated in the blood of PD patients 

EdgeR analysis was applied to compare RE expression between PD patients and 

healthy control subjects in both the blood and skin. The edgeR -normalized 

pseudocounts of REs were visualized on PCA plots and no possible biases affecting the 

analysis were observed (Supplementary Figure 3-6).. No significant differences in RE 

expression were observed comparing PD patients and healthy controls in the skin (FDR 

≤0.01). However, upregulation of satellite REs at the class level with a log2FC increase of 

1.93 (FDR = 7.7E-06) was identified in the blood from PD patients compared to the blood 

from healthy control subjects. 

At the family level, 3 RE families were significantly differentially expressed at FDR 

≤ 0.01; satellite, centr and acro (FDR = 7.88E-06, 7.88E-06, 6.39E-04 respectively), which 

were upregulated with a logFC increase of 2.05 for satellite, 1.84 for centr and 1.30 for 

acro in the blood from the PD patients). 

 

https://paperpile.com/c/vqnRbp/3bO98
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At the subfamily level four specific satellite class REs were significantly 

differentially expressed at FDR ≤ 0.01, two simple satellite IIIs (repName= CATTC_n and 

_GAATG_n) a high-copy satellite II (repName= HSATII) and a centromeric satellite 

(repName= ALR_Alpha) all of which were upregulated in the blood of PD patients (Table 

6.3).   

 

Table 6.3. Differentially expressed repetitive elements identified in blood from PD 
patients. Showing characteristics of each differentially expressed element, log FC, log 
CPM, p-value and FDR (≤0.01 cut off). 

Class Family RE Description 
Log 

FC 

Log 

CPM 

P-

value 
FDR 

Satellite Satellite _CATTC_n Simple satellite III 4.4 7.74 
2.27E-

12 

1.56E-

09 

Satellite - HSATII High-copy satellite II 4.12 5.69 
2.79E-

12 

1.56E-

09 

Satellite Satellite 
_GAATG_

n 
Simple satellite III 4.23 7.32 

1.68E-

11 

6.25E-

09 

Satellite 
Centromeri

c 

ALR_Alph

a 

171bp satellite 

associate with 

human centromeres 

2.02 8.69 
5.20E-

08 

1.45E-

05 
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Moreover, the expression levels of these specific satellite elements displayed little inter-

variability in the PD patient group when compared to healthy controls (Figure 6.3). 

 

 

Figure 6.3. Upregulation of Satellite elements in the blood of PD patients. At the 
subfamily level four satellite class repetitive elements were significantly differentially 
expressed at FDR ≤ 0.01, two simple satellite III (repName= CATTC_n and _GAATG_n) a 
high-copy satellite II (repName= HSATII) and a centromeric satellite (repName= 
ALR_Alpha) all of which were upregulated in the blood of PD patients. Simple satellite III 
repeat (CATTC)n RNAs were the most significantly upregulated in the blood of PD 
patients (p-value= 2.27E-12) with a logFC increase of 4.40. Pericentromeric human 
satellite II (HSATII) repeat derived RNAs were significantly upregulated (p-value=2.79E-
12) with a logFC increase of 4.12. Simple satellite III (GAATG)n derived RNAs were 
upregulated in PD (p-value=1.68E-11) with a logFC increase of 4.23. Finally, human alpha 
centromeric satellite (ALR_Alpha) derived RNAs were also upregulated in PD (p-
value=5.20E-08) with a 2.02 logFC increase. 
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Simple satellite III repeat (CATTC)n RNAs were the most significantly upregulated in PD 

blood (p-value= 2.27E-12) with a logFC increase of 4.40. Pericentromeric human satellite 

II (HSATII) repeat derived RNAs were also significantly upregulated (p-value=2.79E-12) 

with a logFC increase of 4.12. HSATII derived RNA should be undetectable in normal 

tissue and dysregulation of these elements has shown to induce genomic instability 247. 

Simple satellite III (GAATG)n derived RNAs were also upregulated in the blood of PD 

patients compared to the blood of healthy control subjects(p-value=1.68E-11) with a 

logFC increase of 4.23. Finally, human alpha centromeric satellite (ALR_Alpha) derived 

RNAs were also upregulated in the blood of PD patients compared to the blood of healthy 

control patients (p-value=5.20E-08) with a 2.02 logFC increase (Figure. 6.3). 

 

 

 

 

 

 

 

 

 

https://paperpile.com/c/vqnRbp/uz5P9
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6.5 Discussion 

This analysis included a detailed characterization of the expression of REs in the 

blood and skin. It and also presents the first genome-wide analysis of RE expression in 

PD and highlights the previously reported tissue-specific nature of RE expression 246,248. 

Using a stringent FDR cut-off of 0.01 we found that there was no differential expression 

of REs in the skin when PD patients and healthy controls were compared. However in the 

blood we identified that satellite elements are upregulated in PD patients and a group of 

satellite elements, (repName= CATTC_n, HSATII, ALR_Alpha) which are a group of 

elements that have been collectively associated with genome instability 247,249, are 

significantly differentially expressed. 

Characterization of RNA-Seq data in the 24 subjects studied identified that REs 

were widely expressed and constituted 20% of all expressed transcripts in the blood and 

24 % of all expressed transcripts in the skin. We report no significant difference in relative 

abundance of global RE expression between patients versus controls for either tissue. 

Our data is in agreement with that reported by Faulkner et al who performed a 

comprehensive RE analysis using cap analysis gene expression (CAGE) sequencing data 

and determined that in human tissue, on average around 20% of all CAGE tags detected 

were mapped to REs and overall RE expression varied significantly between tissue246. Our 

data is also supported by a recent study from our group that analysed  skin RNA-Seq data 

from 12 individuals with psoriasis and 12 healthy controls with the same RepEnrich 

pipeline and found that on average 27.5% of reads aligned to REs248. 

  

https://paperpile.com/c/vqnRbp/3bO98+sk6W7
https://paperpile.com/c/vqnRbp/uz5P9+EhgIb
https://paperpile.com/c/vqnRbp/3bO98
https://paperpile.com/c/vqnRbp/sk6W7
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In light of the recent associations between TE dysregulation and neurodegenerative 

disease, more specifically the identification of LINE1 overexpression inducing death of 

mesencephalic dopaminergic neurons, we set out to identify if these elements were 

differentially expressed in the peripheral tissues of PD patients. Our analysis used a 

method that not only determined differential expression of the different classes of TEs 

but all class of RE. Although we did not observe differentially expressed TEs in the skin 

or blood of PD patients, we did identify upregulation of satellite elements in the blood 

of PD patients (Figure 6.3). 

  Overall aberrant overexpression of satellite repeats has been associated with 

genomic instability 250,251. Collectively three of the upregulated satellite elements 

identified in this study (repName= CATTC_n and _HSATII and ALR_Alpha) have been 

named as a group of REs involved in genomic instability and considered to be 

transcriptionally silent in the genome247. Although the simple satellite III RE 

(repName=_GAATG_n) was also significantly upregulated, like many of the REs, there is 

a paucity of information available for the function of this RE in the literature. 

Interestingly, in addition to increased expression levels, a considerably small degree of 

variability was observed in the PD patients compared to the healthy control subjects. 

This could hint at a yet undetermined regulatory process that can be associated with PD 

pathophysiology. 

Literature have shown that inducing dysregulation of genes known to silence 

satellite elements can promote genomic instability, which consequently can result in; 

growth arrest, impaired homologous recombination and spontaneous DNA breaks 

https://paperpile.com/c/vqnRbp/rtSFa+waX54
https://paperpile.com/c/vqnRbp/uz5P9
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through this pathway. An example of this is apparent with the gene SIRT1 (Silent 

information regulator-1) which is a known repressor of repetitive DNA. It has been shown 

in mouse ES cells that when SIRT1 is inhibited one of the major consequences is 

activation of major satellite repeats and thus an increase in expressed satellite 

transcripts is observed252. This process has been associated with mitochondrial 

dysfunction and oxidative stress, which are common pathways that are affected during 

ageing and that have been implicated in PD 253. However, it is unknown if the observed 

upregulation of satellite elements is a mechanistically important factor in the aetiology 

of PD or if it is simply an indicator of pathophysiological state; thus, it will of interest in 

the future whether such pathways and genes are modulated in the CNS or in immune 

cells in PD. As shown in Figure 6.3 there is a striking loss of variability in the expression 

of the group of satellite elements upregulated in PD, which is pattern that is not observed 

in other RE elements (Figure 6.4).  It is also important to mention here that there is a 

possibility that the white cell count of the blood used in this present study may be 

contributing to the observed differences of satellites element expression in the blood of 

individuals with PD. The precise function of the immune system in PD aetiology is 

currently a controversial topic of debate. Despite this it has been repeatedly shown than 

white blood cells are dysregulated in PD270.  Of interest, it has been recently shown that 

HSATII RNA is also highly expressed in human cells infects with two herpes viruses. 

Further this study suggests that HSATII RNA synthesis post infection has important 

functional consequences for viral replication271. Therefore, this could suggest that 

https://paperpile.com/c/vqnRbp/ov4rW
https://paperpile.com/c/vqnRbp/UTzXr
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HSATII dysregulation is not a disease-specific observation but an indicator or cell-stress 

following disease or infection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4 Following the lack of observed variability in the upregulated satellite 
elements in PD individuals, four non-significantly expressed , randomly selected REs 
were plotted. This included 3 other non-significant REs (Repname =L1HS, SVA_F, 
MER11B) and another satellite element (Repname = HSAT5). We did not observe this 
lack of variability in PD individuals in the non-significant individuals, further 
strengthening the point that this is a disease-specific signature only observed with this 
particular set of upregulated elements. 
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Therefore our data indicates that overexpression of the specific satellite 

elements is a potential disease-specific signature in the blood for PD and highlights the 

need for further characterization of our model in a larger, better clinically defined, data 

set to also address if there is possible association with progression of the disease. The 

PPMI cohort has blood RNA-Seq available and therefore TE dysregulation will be further 

addressed in this cohort during my post-doc position.    

  Overall in this chapter we set out to characterise RE expression with previously 

published PD RNA-Seq data in response to recent studies that have associated TE 

expression with neurodegenerative disease. This type of analysis has not been explored 

previously, mainly due to the lack of technology to do so.  Using a tool that not only 

quantifies TE expression but all class of REs we report that a group of satellite elements 

are differentially expressed and appear to have a PD specific expression signature in the 

blood. Although we report the first genome-wide analysis of RE expression in PD to date, 

this analysis does have a number of limitations. First, we acknowledge that the cohort 

size (n=24) is particularly small. After demonstrating that there are significant disease-

specific signatures of RE expression, I will now be addressing this in a larger PD 

expression dataset during my post-doctoral position at NIH.  Another limitation is that 

we show through of our analysis (of the blood and skin of the same individuals) that RE 

expression occurs in a tissue specific manner. Thus, we cannot make any presumptions 

that this reflects what could be happening in the brain. Although a very interesting 

concept, addressing RE expression in the brains of PD individuals is particularly 

problematic as the areas of interest will have occurred a lot of cell-death at time of post-
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mortem. Despite the literature suggesting a possible role of RTE in the brain and 

neurodegeneration in particular, the purpose of our present study was to look for 

possible differences in RE expression in readily available tissue (such as blood and skin) 

as a potential biomarker. 

In summary, the field is still far from establishing the molecular mechanisms 

underpinning PD and much progress is needed to develop an objective biomarker for the 

disease. In this chapter we utilized previously existing RNA-Seq data and characterized 

RE expression in the blood and skin of PD patients, our rationale being, 1) recent studies 

have shown that disease pathology can be detected in the peripheral tissue 2) more 

sophisticated bioinformatic methods have provided a growing body of evidence that RTE 

dysregulation is associated with neurodegenerative diseases such as AD,ALS and 

PD232,233,239,240. We identified firstly, overall tissue-specific differences in RE expression 

as supported by the literature and secondly that a specific group of satellite elements, 

that have been strongly associated with epigenetic instability, displayed altered 

expression in the blood of patients with PD. Further characterization is required to 

determine the consequence of upregulation of satellite elements in PD, however our 

data supplies a potential novel non-invasive biomarker of the disease and its progression.  

 

 

 

 

 

https://paperpile.com/c/vqnRbp/iDDjS+t94zD+zimrK+xe9qk
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7.1. Conclusions: 

The ultimate goal of the research presented in this thesis was to characterize the 

role of TEs in PD and present the first genome-wide analysis of TE expression and 

variation in PD to date. Previous to this, due to lack of technology to do so, TEs have not 

been included in any PD genetic or expression analyses and so are a completely 

overlooked source of genetic variation in the genome. In fact, TE’s are routinely removed 

from WGS as an initial filtering step in analyses. Repetitive elements are largely 

completely “masked” in the genome, in fact for genome-wide analyses that generate 

“whole genome” datasets this data is routinely limited to a concentrated analysis of ~20-

50% of the human genome corresponding to the non-repetitive portion defined by 

RepeatMasker232. This is because the majority of genetic data has been generated with 

illumina short-read sequencing, which has limited read length (50-300bp). Therefore, 

there is a fundamental superior performance for single-copy genic regions compared to 

repetitive DNA and due to this ambiguity of mapping the latter they are routinely 

removed in QC. Within recent years genome-enabled technologies have rapidly 

advanced which now allow for accurate and scalable TE detection.  Following this 

development, not only is it evident that TEs are associated with many eQTLs and disease 

risk variants, but specific TE variants are now identified as being causative of disease 

(such as the XDP causing SVA at TAF1). In support of this, taken together the data from 

this thesis suggests that TE variation could be involved in PD aetiology. Further the data 

we present suggests that not only could integrating TE variants be a valuable and critical 

step forward for furthering our understanding of existing risk loci, but it could also be 
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important for establishing new risk hits. At present, only one third of the heritable 

component of PD can be explained by the known risk variants, therefore incorporating 

TE variant detection into routine genetic analysis to address the “missing heritability” of 

this complex genetic disease is beneficial.  

  

7.1.1. Reference SVA variation is an imputable and common source of uncaptured 

genetic variation in the genome 

Expanding on the previous characterization of a reference SVA upstream of the 

PARK7 gene by Savage et al, the initial aim of the research presented in this thesis was 

to address whether the reference SVA was an eQTL or associated with risk of PD. At the 

time of the original PARK7 SVA analysis only five genes had been associated with PD. 

These five genes were “PD associated genes” as they harboured mutations that were 

causative of Mendelian forms of the disease126. Since then, following extensive GWAS 

and meta-analysis initiatives, ninety risk loci have been identified and through this it is 

now clear that the PARK7 locus is not pleiotropic, i.e. not associated with risk of sporadic 

PD. Therefore, it is not surprising that we found no significant association between the 

PARK7 SVA genotype and risk of PD in our present analysis (Chapter 2.). In addition, 

reference SVAs have been shown to direct gene expression in an allele-like manner 5, so 

we extensively addressed whether the SVA was acting as an eQTL for the PARK7 

transcripts (RefSeq and a longer, brain-specific transcript (that originated from another 

transcriptional start site adjacent to the PARK7 SVA)) in the normal brain. We did not 

https://paperpile.com/c/vqnRbp/tRSye
https://paperpile.com/c/vqnRbp/brrR6
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find a significant association between PARK7 expression and SVA genotype, but our 

analysis is currently incomplete as we were unable to test for allele 4. Now that WGS is 

available it could be possible to generate proxy SNPs for the rarer allele and reanalyse 

whether the SVA is an eQTL at this locus.  At present pursuing the PARK7 locus to further 

investigate sporadic PD would not be appropriate given that it is not an identified risk 

region. However, PARK7 has also been associated with cancer, specifically tumour 

development and progression in non-small cell lung carcinoma254,255and breast cancer. 

Therefore, further work to generate proxy SNPs for all of the PARK7 alleles would be 

beneficial to allow for bioinformatic analysis in other disease GWAS and expression 

datasets.  

  Most significantly through the work demonstrated in (Chapter 2) we have shown 

for the first time that common reference SVA variation can be imputed. Although we 

could not test allele 4 of the SVA using the present proxy SNPs, if WGS data was used 

rather than the original HAPMAP GWAS data, then the rarer allele will most likely be 

imputable. This is substantial as it is evident from (Chapter 3) that because of their genic 

nature, PD risk loci contain many reference SVAs. As SVAs are known to modulate gene 

expression, lie within potentially functional domains at PD loci and are variable in 

primary sequence, this is another layer of genetic variation that is currently unknown at 

these regions but could be disease related. 

  An example that highlights the potential advantage and importance of imputing 

TE variation and integrating this with SNP data is shown by a recent study from Payer et 

al. This study focused on Alu variants around GWAS loci and PCR genotyped over one 

https://paperpile.com/c/vqnRbp/9eGJ+DsRI
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hundred Alu insertions at these regions. After further bioinformatic analysis it was 

identified that several Alus were in LD with GWAS risk variants, many of which were in 

LD with well-established cancer associations.  Using individual-level cancer GWAS 

datasets and the associated Alus proxy SNP’s, Payer et al imputed the Alu variants and 

validated that Alu variants were on the risk haplotypes and associated with disease. This 

suggested that the associated Alu elements were good causal variant candidates and 

therefore they were nominated as good candidates for future functional follow-up 

studies at these loci160. This is an example of how integrating TE analysis can be shed 

light on possible causal variants at a risk locus.  The majority of complex genetic diseases 

that are polygenic in nature have multiple risk loci spread across the genome. A major 

challenge to GWAS is understanding how these signals contribute to disease. In most 

cases GWAS signals still do not 1) identify the causal variant or 2) successfully nominate 

the target gene within these loci that are involved in disease mechanism. Hence, 

integrating TE genotypes with SNP datasets is not only beneficial for the study of the 

genetic contribution to PD but potentially for all complex genetic diseases.  

7.1.2. Non-reference transposable elements are potentially important variants at 

PD risk loci  

Moving beyond simple enrichment analysis we leveraged new TE detection tools 

(MELT) and individual level PD GWAS datasets (PPMI WGS) and performed the first 

characterization of non-reference TE in PD to date. It is only possible to detect 

presence/absence of TEs with the current TE detection tools. However, there is also 

https://paperpile.com/c/vqnRbp/P6Qmz
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variation within the “present” TE between individuals, but this cannot be addressed with 

the current technology.  In addition, as highlighted in the previous section it would be 

extremely beneficial to address the variation within reference TEs, but the current 

technology does not exist to genotype reference TE variation on a genome-wide scale 

using short-read sequencing data (as reference TE’s are very repetitive and hence map 

to multiple regions of the genome). 

  

The aim of our MELT pilot study was to identify whether running TE detection on 

this scale (~1000 genome) was feasible and informative for the study of PD. We 

hypothesized that TE variation could represent new risk loci and also explain existing PD 

risk variants. Although we did not have the power to discover new hits in our initial MELT 

association analysis, we could explore whether the TE variants were in LD with the known 

PD risk variants. The analysis was designed to pursue variants that were being called with 

high confidence in MELT so that detailed PCR analysis was not necessary to validate 

general conclusions from the initial pilot-data that would support future analysis.  Like 

most SV detection tools MELT TE detection is more accurate if regions of interest are 

pre-defined.  Therefore, variants were filtered that were common (MAF > 0.01) and that 

had been detected previously in the 1000 genome project (priors).  Despite the fact that 

filtering  for high confidence calls caused a significant decrease in the number of TEs that 

were included in the analysis, we report that even when only 2657 non-reference TE 

variants were analysed, remarkably we identified that two were in linkage with known 

PD risk variants and 165 mapped to known PD risk loci.  Alu, LINE-1 and SVA insertions 
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can all impact on gene expression networks through many different mechanisms such as 

alternative splicing and exonisation. Thus, TE’s are another layer of genetic variation that 

could be modulating regulatory networks at PD loci that are not currently catalogued at 

these regions despite potentially being involved in disease aetiology. 

  

Most significantly we identified that a non-reference SVA was in moderate 

linkage with a known PD risk variant and is commonly inherited with the risk haplotype 

at the MAPT locus. A non-reference TEs SVA is present upstream of CRH1, which the 

nearest gene to the rs62053943 PD risk variant (p=3.58E-68, β=-0.27). This locus contains 

genes that have already been extensively studied in neurodegenerative disease such as 

MAPT (which encodes for tau that is the predominant component of neurofibrillary 

tangles that are neuropathological hallmarks of AD) and KANSL122,197,223.  Despite that 

fact that this locus has already been heavily studied there is still little known about how 

it contributes to risk of PD. 94Here we report that a common ~2/3kb non-reference SVA 

insertion (MAF = 0.19) is most commonly inherited with the risk haplotype (T). Therefore, 

this is suggestive that the SVA insertion is a strong causal variant candidate which should 

be validated with follow-up functional studies.  

An example of a common non-reference TE that is associated with disease and 

affects the function of the gene that it inserted into is the non-reference SVA-E insertion 

in the CASP8 gene.  The SVA-E  insertion within intron 8 of the CASP8 gene is associated 

with transcript abnormalities and an increased risk of breast cancer but a decreased risk 

of prostate cancer256.  As mentioned above we have identified that a non-reference 

https://paperpile.com/c/vqnRbp/XpXsZ+YKFhg+zeJ6b
https://paperpile.com/c/vqnRbp/7hIOa
https://paperpile.com/c/vqnRbp/rJYu
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common SVA is in moderate LD with the PD risk variant at the MAPT locus, which is also 

a locus associated with AD.  As with PD, the role of the MAPT locus in influencing AD risk 

is still largely unknown. A recent study that explored the overlap between AD and PD at 

this locus found and replicated association of both AD and PD with the A allele of 

rs393152 within the extended MAPT region on chromosome 17 (meta-analysis p-value 

across 5 independent AD cohorts = 1.65 × 10−7). To the note, the rs393152 variant is in 

LD with the rs62053943 PD risk variant (CEU population D’ = 1 R2=0.80257). Given the 

pleiotropy at this locus, and in light of the CASP8 example, it is a feasible that the non-

reference SVA we have detected could be involved in both diseases, which requires 

further follow-up study.  

The genetic analysis presented in this thesis began with the overall aspiration of 

exploring TE as common genetic risk factors that could identify new PD hits or further 

explain existing risk loci. However, using this common genetic risk data, we were not able 

to address other key questions regarding how TE could be contributing to PD aetiology, 

such as whether somatic TE insertions or rare TE are associated with disease.  The later 

could be addressed in future studies with burden analyses to identify if rare TE are 

collectively contributing to PD risk. However, addressing somatic TE insertion in PD is a 

much more difficult question.  

  Non-LTR TE can affect cellular function through insertions in the germline (as 

described throughout this thesis) but also via their transposition in adult tissues, or 

mosaic during development, which includes neuronal cells.  The evidence for the later in 

neuronal cells has come from a combination of studies using cell lines, animal models 

https://paperpile.com/c/vqnRbp/SynL
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and human tissue. By applying engineered LINE-1 transposition reporter elements in cell 

culture assays, it was identified that rat neuronal progenitor cells, human fetal brain 

neuronal progenitor cells, neuronal progenitor cells derived from human embryonic 

stem cells and mature non-dividing neurons can support human LINE-1 transposition in 

vitro 258–260. In addition, it has also been shown that an enhanced green fluorescent 

protein marked human LINE-1 transposition reporter transgene in mice led to somatic 

mosaicism in the brain260. Another study by Coufal et al used a quantitative multiplexed 

PCR assay to determine the endogenous LINE-1 copy number in a given genome. From 

this they identified  that there is an increase in LINE-1 copies in several brain regions 

compared with the heart and liver from the same human individual, with the highest 

number found in the hippocampus259,260. In support of this, using a technique termed 

retrotransposon capture sequencing (RC-Seq), endogenous somatic transposition events 

have been identified in the human brain166,261. RC-Seq was used to generate libraries of 

TE insertions in genomic DNA from the hippocampus and caudate nucleus of three 

donors of advanced age (average 92 years old). Subsequent next-generation sequencing 

identified 7743 LINE-1, 13 692 Alu and 1350 SVA putative somatic de novo insertions in 

total in the three individuals which were present in one brain region but absent in the 

other and not previously identified as a germline variant166. Thirty-three of these 

potential de novo insertions were chosen for validation by genotyping PCR and capillary 

sequencing of the resulting PCR products, successfully validating twenty eight of them as 

somatic de novo insertions that were absent from the second brain region166. The 

number of neurons affected by an individual somatic de novo TE insertion would be 

https://paperpile.com/c/vqnRbp/mIdJ+R9hW+L0Xd
https://paperpile.com/c/vqnRbp/L0Xd
https://paperpile.com/c/vqnRbp/L0Xd+R9hW
https://paperpile.com/c/vqnRbp/hBUjR+aPS3
https://paperpile.com/c/vqnRbp/hBUjR
https://paperpile.com/c/vqnRbp/hBUjR
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dependent on the point in time of the transposition event, i.e. whether it occurred in a 

single mature post mitotic neuron, during neurogenesis or early in embryonic 

development affecting neuronal lineages. Therefore, characterizing the extent of 

neuronal mosaicism is challenging262. Further to identify how TE contribute to neuronal 

mosaicism in PD specifically, would be even more problematic. This is because it is not 

currently informative, from a disease perspective, to work with brain tissues of patients 

who died from neurodegenerative diseases such as PD. For neurodegenerative disease 

there is considerable cell loss in the brain, so assaying in these disease tissues is not 

informative for understanding the disease process. 

  Despite the challenges, techniques have been developed to more easily detect 

somatic mosaicism and CNV. The evidence for mosaicism in healthy and diseased brain 

is increasing rapidly, with somatic copy number gains of APP reported in the brain of 

individuals with AD. For PD specifically, Proukakis et al originally hypothesized that 

somatic SNCA CNV could lead to mosaicism in the brain and this could have a role in 

synucleinopathies263. Further the group recently reported evidence of somatic SNCA 

gains in brain, which was more commonly observed in nigral dopaminergic neurons of 

sporadic PD than controls and negatively correlated with AAO. They suggest from this 

data that somatic SNCA gains may be a risk factor for sporadic synucleinopathies, such 

as PD263,264. To note, when the SNCA CNV is inherited it causes autosomal dominant 

forms of PD and in these cases an enrichment of TE has been reported at the CNV 

breakpoints264,265. It has been demonstrated that TE enrichment encourages DNA 

damage which can cause CNV events. Specifically, Alu/Alu-mediated rearrangement 

https://paperpile.com/c/vqnRbp/P0V7
https://paperpile.com/c/vqnRbp/2tYF
https://paperpile.com/c/vqnRbp/2tYF+diGD
https://paperpile.com/c/vqnRbp/diGD+aNiL
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(AAMRs) is a mechanism that has been shown to be causative of CNV in the genome. A 

recent study by Song et al developed a tool (AluAluCNVpredictor)for predicting hot spots 

for CNV events based on Alu positions in the genome. From this analysis Song et al noted 

that the younger Alu elements were more likely to cause CNV. In light of this it is feasible 

to imagine a scenario whereby an individual could inherit an enrichment of non-

reference “new” Alu, which in response to a stressor could give rise to the observed 

somatic SNV, which could contribute to PD risk. Unfortunately, WGS is not available for 

the individuals included in the PD somatic CNV study described above. But further WGS 

and MELT locus-specific analysis would be an exciting future study to further explore the 

possibility somatic CNV in the brain can be caused by TE enrichment at CNV breakpoints. 

7.1.3 Future work  

TE detection is now possible in a scalable and affordable manner, yet there are 

still many hurdles to overcome to be able to comprehensively assess the role of TE, not 

only in PD but all complex genetic diseases. Many of the limitations of the work described 

throughout this thesis exist because current genomic tools are still not adapted for the 

analysis of repetitive sequences such as TEs. One example is that annotation packages 

such as ANNOVA run annotation based on a single bp rather than the region spanning 

the TE. In addition, TE detection tools are very computer intensive to run, especially 

when genome-wide discovery is run with no pre-defined regions, which makes running 

on cloud-based system at scale problematic. Consequently, there is still room for 

improvement in many areas of TE bioinformatic analysis. 
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  Another point to note that could halt the progression of TE detection in the 

human genome is lack of a unified TE online repository which contains detailed variant 

information, such as primary sequence and allele frequencies.  For example, SNP 

variation can easily be compared between populations and disease states due to 

resources such as dbgap.  At present dbRip is an online repository which includes 

instances of any active TE organized by genomic loci, is not maintained and contains 

detailed information for around 4.5k non-reference TE variants from 28 different 

populations266. It is important that TE discovery and characterization is compiled in 

dedicated online public repositories. Despite the fact that dbRip and others are available, 

there is a lack of unified TE repositories that have a long-term sustainability plan. The 

need for this is especially important for TE-associated human variants and mutations, 

particularly in the context of the millions of genomes currently being sequenced. Further, 

as TE detection tools are more accurate when regions of known TE insertion are 

predefined this also highlights the need for a unified resource so that more detailed 

“priors” files are available for subsequent studies.  

  Moving forward, I am incredibly lucky that the research described in this thesis 

will be expanded during my postdoctoral position at NIH. We have now shown that TE 

collectively are transcriptionally active, over-represented at PD risk loci and in moderate 

LD with known PD risk hits. But this is potentially a huge underestimation of the 

contribution of TE to PD. My future work will focus on two main lines of analysis 1) 

Understanding the role of reference TE variation in the genome, (such as the 

contribution of reference SVA variants) and 2) Understanding the role of non-reference 

https://paperpile.com/c/vqnRbp/BMn8
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TE variation (such as the contribution from the variants outlined in our pilot MELT 

analysis).   

  

7.1.3.1. Future studies including reference SVA variation: 

MELT which characterises presence/absence of non-reference TE variation, is 

possible to run because there is WGS and TE detection tools available. However as shown 

in Chapter 3 reference SVA at these loci could be contributing to disease risk at these 

regions but are completely uncatalogued in the genome and at present there is no 

technology available to detect this variation genome-wide. Therefore, to begin to 

address reference SVA variation (so that this information can be integrated into 

reference panels) target-sequencing for the ~2700 reference SVA in the genome would 

be necessary. We have identified that common variation within these elements is 

imputable (see Chapter 3) and in addition the NABEC resource has expression and WGS 

data available. Therefore, utilizing the NABEC cohort to deeply characterize reference 

SVAs and integrate this data into existing WGS would be incredibly informative on the 

contribution of SVA variation to disease and gene expression.  Although it should also be 

noted that gaining accurate information on the variation within reference SVA will be 

difficult, mainly due to the fact that SVA’s contain multiple repeat domains that are 

difficult to uniquely map with short reads. This problem could in part be elevated with 

the use of long-read sequencing. Software tools have been developed to characterize SV 

in long-read sequencing, such as SMRT-SV and SNIFFLES. Compared with short-read 
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tools, long-read methods are better adapted to return the full sequence of the TE 

insertions, which enables better functional downstream analysis and bioinformatic 

validation of the insertions. Although long-read technologies are improving rapidly, the 

broader application of long-read technologies is currently limited by a lower throughput, 

higher error rate and higher cost per base relative to short read sequencing.  

7.1.3.2. Future studies including non-reference TE variation 

Following our non-reference TE MELT pilot study, it is evident that non-reference TE 

variation is a source of genetic variation that could be involved in PD aetiology. Not only 

do many non-reference TE’s lie within PD risk regions but even from our initial analysis 

of ~2.6k variants, two variants are in moderate LD with known PD risk variants and 

therefore are good causal variant candidates for future follow-up study. We did not have 

the power to detect genome-wide significant hits in the pilot study, nor did we have the 

ability to assess non-reference TE that weren’t discovered in the 1000 genome project. 

In light of this, a very exciting extension of the current work will be expanding the MELT 

analysis into a large-scale analysis including more genomes and covering all detectable 

non-reference common TE variants.  

 In addition, the MELT pilot study was specifically designed to include the NABEC 

cohort as these individuals already have existing expression data available. The NABEC 

datasets include methylation, RNA-seq and alternative splicing data, which can now be 

correlated with the MELT TE variants, to identify TE QTLs in the brain. As TE insertions 

are known to cause alternative splicing and effect gene expression this will be a very 
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informative analysis.  To be able to utilize future large-scale transcriptomic and 

epigenetic datasets, we also included individuals from the PPMI cohort that are part of 

the FounDIn initiative in our MELT analysis:  

FOUNDIN-PD – Foundational Data Initiative for Parkinson 

Diseasehttps://www.foundinpd.org/wp/ 

FounDIn is a $6 million two year program funded by the Michael J.Fox Foundation that 

is focused on further understanding how known risk loci and causal factors are 

contributing to PD onset and progression. Around one hundred iPS cell lines from the 

PPMI will be cultured and differentiated into dopaminergic neurons. Further, advanced 

"omics" techniques will be used (e.g., genomics, proteomics, metabolomics) to map how 

various genetic changes lead to cellular and molecular changes associated with PD. 

Through this ATAC-sequencing, Hi-C and RNA PacBio seq will be available for a subset of 

the PPMI individuals that have been included in our MELT analysis. Hence, we will be 

able to utilize this data to further correlate the non-reference TE variants, so that we can 

infer functional consequence of these insertions in control and PD. Although this will give 

incredible insight into what could be the possible consequence of non-reference TE 

insertions, they could be causal variants, which will need extensive functional follow-up 

with such as CRISPR studies in iPSs. A detailed workflow of the future MELT TE analyses 

is shown in (Figure 7.1) 

  

  

 

https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=2ahUKEwib9tSr__nhAhWEqHEKHffiAwsQFjABegQIBhAB&url=https%3A%2F%2Fwww.foundinpd.org%2Fwp%2F&usg=AOvVaw1N4NIeW9kEOx662PTBmkqJ
https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=2ahUKEwib9tSr__nhAhWEqHEKHffiAwsQFjABegQIBhAB&url=https%3A%2F%2Fwww.foundinpd.org%2Fwp%2F&usg=AOvVaw1N4NIeW9kEOx662PTBmkqJ
https://www.foundinpd.org/wp/
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Figure 7.1.  General workflow of the next phase of the TE in PD analyses 

The main aim of our ongoing TE analysis is to aid in dissecting existing genetic risk 

and identifying new loci that could contribute to PD risk and progression. Therefore 

finally, it would be extremely informative to add datasets from non-European 
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populations in future studies. Our phasing of the TE insertions with surrounding SNPs to 

dissect haplotypes, currently focuses on common TE variants in the European 

population. Inclusion of more diverse human populations for variant discovery and 

targeted discoveries in patient populations will likely increase the number of candidate 

functional variants.  
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Abbreviations: 

AAO Age at onset 

AD Alzheimer Disease 

ALS Amyotrophic Lateral Sclerosis 

CAGE Cap analyses gene expression 

CDCV Common disease common variant 

CDRV Common disease rare variant 

CJD Creutzfeldt-Jakob disease 

CNV Copy number variants 

CPM Counts per million mapped 

DD Developmental disorders 

eQTL Expression quantitative trait loci 

FE Functional equivalence  

GCTA Genome-wide complex trait analysis 

GTEX Genotype-Tissue Expression 

GWAS Genome wide association studies 

IPDGC International Parkinson’s Disease; Genomic Consortium 

IPSC Induced pluripotent stem cell 

LD Linkage Disequilibrium 

LINE Long interspersed nuclear elements 

LOOMA Leave one out meta-analyse 

LTD Long terminal repeats 

LTR Long terminal repeats 

MAF Minor allele frequency  

MELT Mobile elements location tool 

MR Mendelian Randomisation  

MS Muscular Sclerosis 

NABEC North American Brain Expression Consortium 
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NGS Next generation sequencing  

Non-LTR Non-Long terminal repeats 

ORF Open Read Frame 

PC Principal components 

PCA Principle component analysis 

PD Parkinson’s Disease 

PPG Pseudogene-gene 

PPMI Parkinson’s Progression markers initiative 

PRS Polygenic risk scores 

QTL Quantitative trait loci  

RE Repetitive element 

RTE Retrotransposable elements 

SINE Short interspersed nuclear elements 

SNP Single nucleotide polymorphism 

SV Structural variants 

TE Transposable Elements 

TPM Transcript per million 

TPRT Target primed reverse transcription 

TSD Target site duplications 

UTR Untranslated region 

VCF Variant call format  

VNTR Variable number tandem repeat 

VQSR Variant Quality Score Recalibration 

WES Whole exome sequencing  

WGS Whole genome sequencing data 

XDP X-linked dystonia Parkinsonism 
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