
A DISTRIBUTED RULE-BASED EXPERT
SYSTEM FOR LARGE EVENT STREAM
PROCESSING

by

YI CHEN

A thesis submitted to
The University of Birmingham
for the degree of
DOCTOR OF PHILOSOPHY

School of Computer Science
College of Engineering and Physical Sciences
The University of Birmingham
January 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Birmingham Research Archive, E-theses Repository

https://core.ac.uk/display/286186959?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third
parties. The intellectual property rights of the author or third parties in respect
of this work are as defined by The Copyright Designs and Patents Act 1988 or
as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission
of the copyright holder.

Abstract

Rule-based expert systems (RBSs) provide an efficient solution to many problems that

involve event stream processing. With today’s needs to process larger streams, many

approaches have been proposed to distribute the rule engines behind RBSs. However,

there are some issues which limit the potential of distributed RBSs in the current big data

era, such as the load imbalance due to their distribution methods, and low parallelism

originated from the continuous operator model.

To address these issues, we propose a new architecture for distributing rule engines.

This architecture adopts the dynamic job assignment and the micro-batching strategies,

which have recently arisen in the big data community, to remove the load imbalance and

increase parallelism of distributed rule engines. An automated transformation framework

based on Model-driven Architecture (MDA) is presented, which can be used to transform

the current rule engines to work on the proposed architecture. This work is validated by a

2-step verification.

In addition, we propose a generic benchmark for evaluating the performance of dis-

tributed rule engines. The performance of the proposed architecture is discussed and

directions for future research are suggested.

The contribution of this study can be viewed from two different angles: for the rule-

based system community, this thesis documents an improvement to the rule engines by

fully adopting big data technologies; for the big data community, it is an early proposal to

process large event streams using a well crafted rule-based system. Our results show the

proposed approach can benefit both research communities.

ACKNOWLEDGEMENTS

I would like to thank my supervisors Prof. Peter Tiňo and Dr. Behzad Bordbar for their

support and constructive suggestions during my PhD research. Financial support from the

School of Computer Science in the form of a faculty scholarship is deeply appreciated.

Special thanks to Mr. Keith Harrison from HP Labs, for his help in the early stage of

my research.

I’d like to thank my friends and colleagues in the School of Computer Science, Uni-

versity of Birmingham, for their support during these years.

Finally, I wish to express my love to my family for the support and encouragement.

CONTENTS

1 Introduction 1

1.1 Rule-based Event Stream Processing . 3

1.2 Statement of the Research Problem . 4

1.3 Contribution of the Thesis . 6

1.4 Publications . 7

1.5 Structure of the Thesis . 7

2 Background and Related Work 9

2.1 Rule-based Systems . 9

2.1.1 Components of Rule-based Systems 10

2.1.2 Rules and Events . 12

2.1.3 Forward and Backward Chaining 16

2.1.4 The RETE Algorithm . 19

2.1.5 Construction of RETE Networks 20

2.1.6 Optimisation of RETE Networks 26

2.2 An Overview of the Drools Business Rules Management System 27

2.3 Distributing Rule-based Systems . 29

2.4 Event Stream Processing . 31

2.4.1 An Overview of the Apache Spark Streaming Framework 34

2.5 Petri Nets . 35

2.6 Model Driven Development (MDD) . 38

2.6.1 SiTra: The Simple Transformer Library 40

2.7 Chapter Summary . 41

3 Distributed Event Processing with Rule-based Systems 42

3.1 An Overview of the DRESS Architecture 42

3.1.1 Micro-batching . 44

3.1.2 Dynamic Job Assignment . 46

3.1.3 DRESS Worker Cluster (DCluster) 47

3.2 DRESS Applications . 48

3.3 DRESS Networks . 49

3.3.1 Root DCluster . 52

3.3.2 Alpha DCluster (1-input DCluster) 53

3.3.3 Beta DCluster (2-input DCluster) 55

3.3.4 Terminal DCluster . 56

3.4 Chapter Summary . 58

4 Automated Transformation from RETE to DRESS 59

4.1 MDA-based Transformation for RETE Networks 59

4.2 Meta-model for RETE Networks . 60

4.3 Meta-model for DRESS Networks . 62

4.4 Transformation Rules . 63

4.4.1 Rule 1: Transforming Root Nodes 63

4.4.2 Rule 2: Transforming Alpha Nodes 64

4.4.3 Rule 3: Transforming Beta Nodes 66

4.4.4 Rule 4: Transforming Terminal Nodes 67

4.5 Transforming RETE to DRESS with SiTra 67

4.6 Chapter Summary . 69

5 Verification of Distributed Rule Engines 70

5.1 Formalising DRESS Networks . 70

5.1.1 Alpha DCluster . 70

5.1.2 Beta DCluster . 71

5.2 Orderless Equivalence Between RETE and DRESS 73

5.2.1 Converting RETE Networks to Petri Nets 74

5.2.2 State of RETE Networks . 76

5.2.3 Reachability Graph for RETE Networks 77

5.2.4 Reachability Analysis for RETE Networks 78

5.2.5 Reachability of DRESS Networks 80

5.3 The Preservation of Ordering in DRESS Networks 83

5.4 Chapter Summary . 86

6 Benchmarking Distributed Rule Engines 87

6.1 An Example of A DRESS Application 87

6.2 SONA: A Benchmark for Rule Engines 90

6.3 Evaluating DRESS with SONA . 92

6.3.1 Experiment Setup . 92

6.3.2 The Performance of DRESS . 96

6.4 Chapter Summary . 102

7 Conclusion and Future Work 103

7.1 Summary of the Thesis . 103

7.2 Future Work . 104

A SiTra Rules For Transforming RETE Networks to DRESS Networks 106

A.1 Complete Transformation Rules . 106

A.2 The Transformer . 108

B Spark Code For SONA Benchmark 109

B.1 Configuration (g = 3,a = 2,b = 1) . 109

List of References 112

LIST OF FIGURES

2.1 Structure of A Rule Based System . 10

2.3 Forward Chaining Strategy . 18

2.4 Backward Chaining Strategy . 19

2.5 Pattern Matching Process of Rule Engines 20

2.6 Example of A RETE Network . 22

2.7 RETE - Root Node . 22

2.8 RETE - Alpha Network . 23

2.9 RETE - Beta Network . 25

2.10 Node Sharing Optimisation for RETE Networks 27

2.11 Static Job Assignment for Rule Engines 30

2.13 Firing of Transitions in Petri Nets . 37

2.14 Example of Reachability Graph . 38

2.15 Outline of Model Transformation in MDD 39

2.16 Model Transformation Example . 41

3.1 Tech Stack of DRESS . 43

3.2 DRESS Architecture . 44

3.3 Micro-batching in DRESS . 45

3.4 Dynamic Job Assignment for RETE Networks 46

3.5 Correspondences between DRESS and RETE Networks 49

3.6 Layers of DRESS Networks . 50

3.7 Example of RETE and DRESS Networks Compiled from the Same Rule . 51

3.8 DRESS - Root DCluster . 53

3.9 DRESS - Alpha DCluster . 54

3.10 DRESS - Beta DCluster . 55

4.1 Automated Transformation from RETE to DRESS 60

4.2 The RETE Network Meta-model . 61

4.3 Abstract Syntax of RETE Networks . 62

4.4 The DRESS Network Meta-model . 62

4.6 Transformation Rule - Root Nodes . 64

4.7 Transformation Rule - Alpha Nodes . 65

4.8 Transformation Rule - Beta Nodes . 66

5.5 State Transition of RETE Networks . 76

5.6 Simulation of Reachability Graphs . 78

6.1 RETE and DRESS Networks for the Banking Benchmark 89

6.2 RETE and DRESS Networks for the SONA Benchmark 95

6.3 Performance Comparison of DRESS and Drools 97

6.4 Performance of DRESS on clusters of different sizes 99

6.5 Response Time of DRESS on clusters of different sizes 100

LISTINGS

2.1 Interfaces of SiTra . 40

2.2 Transformation Rule of SiTra . 41

3.1 Unified Event Format . 52

4.1 SiTra Rule: RootNode to RootDCluster 68

CHAPTER 1

INTRODUCTION

Rule-based systems (RBSs) have been studied comprehensively since the 1980s in the

realms of expert systems. They have been used widely in diverse domains such as elec-

tronic, communication and enterprise systems [16, 23, 79]. The main goal of rule-based

systems is the separation of business logics from system implementations, which enables

domain experts to construct and maintain software systems without the knowledge of

programming [34, 56]. In addition, with computer scientists concentrating on building

efficient rule engines, these rule-based systems can achieve reasonably high performance.

A typical application of rule-based systems is event stream processing (ESP) [67, 5,

61, 49, 27, 74]. ESP targets the construction of event-driven information systems, with

the aim to extract meaningful patterns from processing event streams. Within the context

of rule-based systems, event patterns are defined by domain experts as rules. These rules

are executed by the rule engine against streams of events. Once desired event patterns

are found, the engine triggers actions according to the rules. Rule-based ESP has found

success in many fields such as healthcare, government and other organisations.

The research by Forgy [31] shows that rule engines spend as much as 90 percent of

their time performing pattern matching. Over the past few decades, many pattern match-

ing techniques have been developed, such as the RETE algorithm [29] and the TREAT

algorithm [59]. These algorithms compile the rules into a network data structure, which

consists of several computing nodes representing partial conditions of the rules, in order

1

to speed up the matching process. The research on rule engines has contributed to differ-

ent research areas, such as Complex Event Processing, Active Database, and Data Stream

Management Systems.

Nowadays, with the development of the Internet of Things (IoT) and the popularity

of smart devices, more and more events are generated by a vast variety of sources. The

dramatic increase of the volume of event streams brings a big challenge in term of perfor-

mance to current rule-based systems that are usually built with a centralised architecture.

As a result, these systems are inadequate to process larger numbers of rules and bigger

data sets we are facing today.

Distribution can improve the performance of rule-based systems. Over the past few

years, many approaches for distributing rule engines have been proposed [61, 66, 72,

91, 92]. However, there are some issues in these approaches which limit the potential

performance improvement brought by distribution. Among these issues are the workload

imbalance and low parallelism due to the way that event streams are processed. More

specifically, in these approaches the workload of each computing node in the network

is distributed to a statically assigned cluster, in which the events are processed one at

a time. Indeed, this way of processing can bring some speed-ups. However, it ignores

the inherent workload imbalance among the nodes on the network level. Furthermore,

the parallelisation effort is heavily penalised as a result of the one-at-a-time processing

model. To address these issues, this thesis proposes a new architecture called DRESS for

rule-based systems using techniques from the big data community.

The novelty of this study lies in the construction of the new architecture for process-

ing large event streams. First, although numerous attempts have been made to distribute

and parallelise RBSs, the effort usually came from within the RBSs community where

a shortage of the expertise for massive data processing can be found. As a result, cur-

rent distributed RBSs in the market are usually compromised with the aforementioned

issues. We argue that we should recognise decoupling as a fundamental value of com-

puter science and, instead of attempting to build their own parallelisation methods, the

2

RBSs community should embrace the finer big data technologies. Based on this argu-

ment, the proposed architecture is built on top of the Spark Streaming framework and

adopts some of the advanced parallelisation strategies from the big data community.

Second, despite the adoption of RBSs in event stream processing, RBSs were not

designed to process streams. For example, early rule engines usually require the data

to be loaded before it is processed. Later development in the research on RBSs, such

as the implementation of the RETE and Treat algorithms and their distributed variants,

made it possible to process streams with RBSs. However, these algorithms process one

event at a time, which is an inherent limit from their design and a big drawback to their

performance. This study stands on a stream processing perspective: it does not consider

ESP as an application of RBSs instead it views ESP as the main target problem and RBS

as a tool to solve this problem. By doing so, we were allowed to remove the inherent limit

of RBSs by introducing micro-batching into the proposed architecture. This dramatically

improves the performance of RBSs and enables RBSs to process large event streams we

are facing today.

1.1 Rule-based Event Stream Processing

Rule-based systems provide a solution for capturing, representing, storing, reasoning

about, and applying human knowledge. They automate the process of building expert sys-

tems for different areas where job excellence requires consistent reasoning and practical

experience [40]. Although artificial intelligence (AI) researchers have developed alterna-

tive ways to capture and manipulate knowledge (for example, machine learning models),

RBSs have two distinguishable characteristics. First, knowledge is well defined which al-

lows human experts to refine existing knowledge and add new knowledge. Second, RBSs

are able to explain their reasoning, making their logic transparent.

The advantages of RBSs can be summarised as follows:

• Separation of business logic from the processing: with rule-based systems, the

3

business logic is stored in the rule base and separated from the processing. This

rule base provides a single source of truth (SSOT) for the business logic, enabling

different expert systems to be constructed using the same rule engine.

• Speed and scalability: many algorithms such as RETE [31], Treat [59] and Leaps

[7] provide efficient execution of rules. In addition, with optimisations such as node

sharing and parallel rule execution, rule-based systems are fast.

• Declarative rule representation: the rules are usually written in declarative lan-

guages which allows the users to tell the system "what to do" instead of "how to

do". More specifically, a rule can be written in the form <IF condition is satisfied

THEN what to do>. The determination of the satisfaction of the condition is carried

out by the rule engine and, as a result, the users of RBSs only need to specify the

action part (what to do) of the rule.

• Transparent reasoning: rule-based systems are able to explain their reasoning and

justify their conclusions.

Event stream processing (ESP) targets the tasks of processing event streams with the

aim of identifying meaningful patterns within those streams. This concept fits well with

rule-based systems. More specifically, human experts can define their desired patterns in

a set of rules. Then, these rules are compiled into a network of computing nodes, and the

rule engine identifies event patterns by executing the network.

1.2 Statement of the Research Problem

Many approaches have been proposed to improve the performance of rule-based systems

[6, 92, 63, 66, 73]. Most of them focus on the parallelisation and distribution of the RETE

algorithm, which is the fundamental algorithm behind many rule engines.

For example, the authors of [6, 92] proposed two approaches based on a similar

message-passing model in order to distribute the nodes of the RETE networks. In their

4

approaches, every node of the RETE network is distributed to a cluster of nodes which

share the workload of that particular node, with the aim of parallelising the computa-

tion. In order to maintain a global state across the clusters these approaches come with a

centralised memory, or some kind of synchronisation mechanisms, such as Flux [68].

In [62], the authors proposed a parallel version of RETE based on a method called

vector-based matching that can work on GPUs. This approach maintains the global state

in the main memory of the GPU and does not support multiple GPUs, which penalises

its scalability. Although some improvements have been made in [63], this work does not

fit well with event stream processing due to the fact it requires to load the data into the

memories of GPUs before processing.

[66] presents an architecture based on WS-Coordination [14], which allows the in-

tegration of multiple rule engines into a single system. This architecture requires the

decomposition of the rules and its performance heavily relies on how the rules are divided

into sub-rules.

The problems of current techniques for distributing RBSs can be characterised as

follows:

1. Static job assignment: they focus on distributing rule engines at the node level,

while ignores the fact that the workloads among the nodes on the network level

might be unbalanced.

2. Centralised memory model: in order to maintain the global state, they adopt a cen-

tralised memory model, which introduces an overhead for transferring data across

the clusters.

3. Low parallelism: they process one event at a time which penalises the parallelisa-

tion effort.

4. Constant rebalancing: the workloads across the network tend to change over time,

which introduces an extra cost for rebalancing the network.

5

5. Lack of fault tolerance: they neglect the importance of the ability to recover from

system failures.

The present thesis addresses the above issue in an investigation of the characteristics of

distributed rule based systems and through the proposal of an approach to the distribution

of a rule engine.

1.3 Contribution of the Thesis

The main contributions of this thesis can be summarised as follows:

• A distributed rule-based architecture for processing large event streams based on:

1. a dynamic job assignment model to improve load balance,

2. the micro-batching technique to increase parallelisation, and,

3. a decentralised memory model.

• Formalisation of RETE-based rule engines.

• A 2-step verification approach to prove the correctness of transformations for RETE-

based systems, which consists of:

1. the orderless equivalence between two RETE-based systems, and

2. the order preservation in distributed RETE-based systems.

• An automated transformation from the current RETE-based systems to the proposed

model (DRESS), based on MDA.

• A generic benchmark for evaluating the performance of distributed rule engines.

• A case study of large event stream processing with DRESS.

6

1.4 Publications

During the course of the PhD research, some aspects of the work presented in this thesis

have been published as research papers. This thesis provides detailed information for the

work presented in the following publications:

[19] Chen, Y. and Bordbar, B. (2016) “Dress: A rule engine on spark for event stream

processing.” In Proceedings of the 3rd IEEE/ACM International Conference on Big

Data Computing, Applications and Technologies. ACM. pp. 46–51

[20] Chen, Y. and Tino, P. (2018) "Formalisation and verification of distributed rule-

based expert systems". Paper submitted to journal Expert Systems with Applica-

tions.

Chapter 4 of this thesis uses the idea presented in the following work that the author

has participated in:

[10] Bowles, J., Alwanain, M., Bordbar, B. and Chen, Y. (2014) “Matching and merging

scenarios automatically with alloy.” In International Conference on Model-Driven

Engineering and Software Development. Springer. pp. 100–116

1.5 Structure of the Thesis

This thesis is structured as seven chapters including this introduction (Chapter 1).

Chapter 2 begins with a background of some of the concepts related to rule-based

systems. For example, the rules, events and components of rule-based systems. This is

followed by an formalisation of the RETE algorithm. Then, this chapter reviews current

approaches for distributed rule-based event stream processing. The review discusses a

number of different methods to distribute the rule engines, as well as their benefits and

challenges. The objective of this background is to identify the aspects of current ap-

proaches that can be improved.

7

Chapter 3 presents the proposed model for rule-based large event stream processing.

It describes the architecture and each component of the model and introduces the strate-

gies used for load-balancing and parallelisation, especially micro-batching and dynamic

job assignment. This leads to an distributed version of the RETE algorithm which we call

it DRESS.

In Chapter 4 , an automated transformation from the current RETE based models to

the DRESS model is illustrated. This is based on the Model Driven Architecture (MDA)

which involves meta-modelling and a set of transformation rules that map the source

RETE network to the target DRESS network. This automated transformation is instanti-

ated with the help of the SiTra framework.

In Chapter 5, the transformation from RETE to DRESS is verified. The verification

consists of two parts. The first part verifies that the DRESS model transformed from a

RETE model generates the same set of outputs, if both models are given the same input.

And the second part verifies that the DRESS model preserves the order of the outputs of

the original RETE model.

Chapter 6 presents a generic and highly configurable benchmark for evaluating dis-

tributed rule engines. The main advantage of the proposed benchmark is that it focuses

on streaming applications of the engines and it can simulate different real world applica-

tions with its configurability. Experiments of DRESS with different configurations of the

benchmark were conducted, and the results are discussed.

Chapter 7 concludes this thesis and explores directions for future research.

8

CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, we introduce the background of rule-based systems. It begins with a for-

malisation of the RETE algorithm from an event stream processing perspective. Then,

current approaches to both distributed rule-based systems and event stream processing

systems are investigated with the aim of identifying their advantages and disadvantages.

This is followed by an introduction to the methods that are used in the verification chapter

(5) and model transformation chapter (4), such as Petri Nets and Model Driven Develop-

ment.

2.1 Rule-based Systems

In the literature, the terms expert systems, rule-based (expert) systems, knowledge-based

(expert) systems, production systems and intelligent systems are used synonymously [43],

although some of them, such as knowledge-based systems and intelligent systems, may

not be ‘rule-based’. To avoid confusion, in this thesis we use the term rule-based (expert)

system as it provides the most precise meaning to the describe our work.

A rule-based system (RBS) emulates the decision making ability of human experts

using rules written in IF-THEN statements. It works as an observer over the event streams

and, when a pre-defined event pattern is observed, it triggers actions according to the

rules. Rule-based systems have three major advantages: 1) they are highly accessible

9

that they fill the gap between the end users and computer technicians by enabling the

users to express their desired patterns using rules written in Domain Specific Languages

(DSLs), and, 2) they can compile a large number of rules into a graph or network and

use optimisation algorithms based on structural similarities to reduce the workload, and,

3) they store partially matched patterns in their working memories to reduce unnecessary

computations for future execution cycles.

In the remainder of this section, we discuss the architecture of rule-based systems and

formalise the RETE algorithm.

2.1.1 Components of Rule-based Systems

A typical rule-based system consists of three major components:

• Rule Base which contains a set of rules designed by human experts.

• Inference Engine which infers new facts based on the rules and the existing facts.

• Working Memory (also called Fact Base) which stores all facts of the system.

In addition to the above components, a user interface, which is not a part of the reasoning

process, is also essential to applications of rule-based systems. It provides the users with

utilities to design and manage the system. Figure 2.1 shows the structure of a typical

rule-based system.

Rules

Rule

Base

Facts

Working

Memory
New Facts

Inference

Engine

Input

Output

Figure 2.1: Structure of A Rule Based System

10

Rule Base

The rule base provides a single source of truth (SSOT) for storing the business logic,

such that different expert systems can be built by manipulating the rules without altering

the implementation of the rule engine. It contains a collection of rules often written in a

Domain Specific Language (DSL) and an algorithm is used to process these rules into an

intermediate format that the Inference Engine can work with. The RETE algorithm [31]

is the de facto algorithm to process such rules. A data structure called the RETE network

is generated from the rules, which will be elaborated upon in Sections 2.1.4 and 2.1.5.

Inference Engine

In early work, the rules of rule-based systems were intertwined within custom-crafted

software. There was an important development in the late 1970’s and the early 1980’s

that several frameworks, such as EMYCIN [77], were constructed to aid in designing

new rule-based systems. One of the key ideas behind these frameworks was to separate

rules as much as possible from the procedures that manipulate them. As a result of the

separation, the design of new systems only focuses on the rules, without considering too

much about the coding or performance of the systems [13]. An Inference Engine then

applies the rules against the working memory and obtains new knowledge.

According to Friedman [41], a typical inference engine consists of a pattern matcher,

a conflict solver and an execution engine. In a processing cycle, the pattern matcher firstly

applies the rules to the working memory and finds those rules whose conditions are sat-

isfied by the existing facts. Those rules along with the facts that satisfy their conditions

are added into a so-called conflict set. Then, since in most systems only one rule may be

activated at a time, a conflict solver is used to decide the order that the rules are activated.

This process is called conflict resolution [22], in which there are many rule ordering strate-

gies [57]; for example linear scanning or ordering according to some preferences. Finally,

the execution engine performs the actions of the activated rules which may interact with

other parts of the system or result in changes to the working memory. The output of a

11

rule-based system in one execution cycle, which is called the agenda, can be seen as an

ordered version of the conflict set.

Working Memory (Fact Base)

The working memory stores all knowledge (facts) learned by the system. At the very

beginning, the working memory is initialised based on the facts observed from the nature

of the system. For example, consider that we have a rule "IF hAi THEN hBi". This rule

itself can be viewed as knowledge because it tells the system that B relies on A. Logically,

this knowledge is equivalent to the fact ¬A_B. Therefore, these facts observed from the

rules are added into the working memory. In each of the future execution cycles, new

facts from the input, as well as the facts derived from the existing facts and the rules, are

inserted into the working memory.

The working memory also support the deletion of facts. When a fact is deleted, the

working memory needs to ensure that any other facts that are derived from it are also

deleted. As this research targets the large scale pattern matching for RBSs, the deletion

of facts are not considered.

2.1.2 Rules and Events

A rule-based system is a program that uses rules to reach conclusions based on facts

[40, 12]. During its execution, new facts arrive at the system as events. An event is a

collection of data describing what have happened. For example, in a banking system,

when a customer deposits a cheque, an event could be generated by the system, which

contains the value of the cheque, the account number and date etc.

Definition 2.1. An event e = (ı,K,V, f) is a tuple, where ı is the index of the event, K is

the set of variables carried by e, V is the universal set of all possible values in the system,

and f is the value assignment function f : K! V.

Recently with the development of Internet of Things (IoT) and other technologies

12

such as self-driving cars, more and more events are generated by a vast variety of sensors

and devices. All these events can be captured and put into the input stream of the system.

Through time each event is assigned a unique and incremental index by the system - ei

denotes the event with index i. To avoid confusion, we now formally define the term

stream that is used throughout the thesis.

Definition 2.2. Unless otherwise specified, a stream S : N! X of a variable x is an

injective function where X is the universal set of all possible values of x and N is the set

of natural numbers. A sub-stream S�A : A! X of a stream S is a restriction of S to A

where A is a subset of N. The image of the stream function S is denoted as img(S).

For example, a stream S : N! E of events indicates that E is the set of events and

S maps each natural number to an event. The input of a rule-based system is a stream

Sin : N! E defined by Sin(i) = ei 2 E, where E is the set of all events of the system.

To check a particular feature of an event, one can write a propositional statement over

the event; for example, ‘This is a deposit event’ and ‘The value of the cheque is £100’.

The following notation can be used to assign a propositional statement to a symbol p:

p(e)
de f
= ‘This(e) is a deposit event’. (2.1)

In a rule-based system, a propositional statement over an event e = (ı,K,V, f) is in

the following form:

f (k)> v, where k 2K,> 2./,v 2 V,

where ./ is the set of comparison operators used in rule based systems:

./= {<,>,,�,=, 6=}.

For example, the propositional statement (2.1) can be expressed as:

p(e)
de f
= f (type) = deposit,

13

which means "the variable type 2 K of the event e has the value deposit". We can now

formally define a proposition.

Definition 2.3. Given a stream of events represented by function S : N!E, a proposition

p : img(S)! {true, false} is a function that maps an event e 2 img(S) to either true or

false, where img(S) is the image of the function S.

To reach a conclusion, the rule engine needs to find events (facts) that match some

patterns defined by the conditions of rules.

Definition 2.4. A pattern P (also called a conditional element) consists of zero or more

propositions over an event. An event e is said to match a pattern if all propositions of the

pattern hold for that event, i.e. 8pi 2 P : pi(e).

It is worth noting that there are cases in which a propositional statement involves

more than one event; for example, one such statement can be "the variable x of the event

ei = (ıi,Ki,Vi, fi) equals the variable y of the event e j = (ı j,K j,V j, f j)". In such a case,

one pattern for each of the two events are created, along with other propositions for these

two events. Then a variable binding is used to connect the patterns created for ei and e j.

The following is a fraction of a rule with a variable binding written in the DRL format

(see Section 2.2):

$ei : Pattern(hpropositions for pattern eii) and

$e j : Pattern(hpropositions for pattern e ji) and

$variable_binding : h fi(x) == f j(y)i

The processing of the variable binding will need to ensure that the variable y is bound to

the same value of variable x, which is from another event.

Rules

In rule-based systems, the design of rules (sometimes called production rules) focuses on

the representation of knowledge in order to express propositional and first order logic in

14

a concise and declarative manner. These rules are usually written as IF-THEN statements

in the following format:

rule: IF hconditioni THEN hactioni.

Remark. A rule can also be expressed by its condition on the left-hand-side (LHS)

and its action on the right-hand-side (RHS):

LHS(rule) = condition RHS(rule) = action.

A rule is said to be activatable (or fireable) if its condition is fulfilled. The condition

of a rule is a logical compound built up of one or more patterns. The most basic form of

a condition is a conjunctive clause of patterns as follows [55]:

P1^P2^ · · ·^Pn, (2.2)

where the patterns must be matched simultaneously in order to fire the rule.

Let h be the action of a rule, we can rewrite the rule as follows:

rule : P1^P2^ · · ·^Pn! h. (2.3)

Definition 2.5. An atomic condition c = P1^P2^ · · ·^Pn is a logical expression that con-

tains n patterns Pi,1 i n, and these patterns are connected only by conjunctions(^).

An atomic rule is a rule whose condition is atomic.

A more complex condition F can be an arbitrarily formula of propositional logic (with

both ^ and _ connectives). In such a case, this complex condition can be transformed

to its Disjunctive Normal Form (DNF)(2.4) using logical equivalence laws, such as the

double negative elimination, De Morgan’s laws, and the distributive law [25],

f1_f2_ · · ·_fn! h, (2.4)

15

where each fi is an atomic condition (conjunctive clause of patterns) as in (2.2). Con-

sequently, a rule rule : F! h with a complex condition can be replaced with n atomic

rules:

rule1 : f1! h,

rule2 : f2! h,

...

rulen : fn! h.

Each atomic rule will be compiled into a RETE network, as explained in the following

sections.

Facts

If we consider! as the equivalent of) (implication), the rule in (2.3) is logically equiv-

alent to:

¬(P1^P2^ · · ·^Pn)_h. (2.5)

The above is the format of facts in the fact base. The fact base is the memory which

stores all knowledge a RETE-based system has gathered. At the beginning, the rule base

is initialised with facts in above format for all rules in the rule base. The arrival of an

event may change a pattern Pi from unmatched to matched. As a result, Pi is added to

the fact base as a fact. Some intermediate facts may also be observed from existing facts.

For example, if in the fact base we have P1 and ¬(P1 ^P2 ^P3)_ h, since P1 is already

matched, an intermediate fact ¬(P2^P3)_h may also be added into the fact base.

2.1.3 Forward and Backward Chaining

For an inference engine, there are two common strategies for deriving new facts from

the rules and the existing facts: forward chaining and backward chaining [3, 69, 71].

16

Forward chaining is like a breadth-first search algorithm. It begins from the existing facts

and derives new facts according to the rules. Backward chaining, on the other hand, is

like a depth-first search algorithm. It begins with a desired goal and goes backward to see

if the existing facts support the goal. In this section, we illustrate the processes of both

strategies in an pattern matching example with three rules and three initial facts, as shown

in Figure 2.2.

Initial Facts : A B D

Rule 1 : A!C

Rule 2 : B^C! E

Rule 3 : D^E! F

Figure 2.2: Example Problem for Chaining Strategies

Forward Chaining

Forward chaining is also known as a data-driven inference technique. It examines the set

of rules and infers new facts based on these rules. In each execution cycle, the engine

applies the rules to the working memory until a conclusion is reached or no other rules

can be applied. If a conclusion is reached, new facts are added to the working memory

according to the RHS of the activated rule.

Consider the example in Figure 2.2. In the first cycle, the engine applies rule 1 to

the working memory and derives C as a result of the conclusion of the rule. Hence, C is

added into the working memory. Then, in the next cycles, E from the conclusion of rule

2 and F from the conclusion of rule 3 are also added to the working memory. Figure 2.3

illustrates the process.

17

Figure 2.3: Forward Chaining Strategy

Forward chaining is a popular implementation strategy for rule-based expert sys-

tems. For instance, the RETE algorithm implements forward chaining by storing partially

matched patterns as facts. Consider the rule B^C! E of the above example. RETE

analyses this rule and known facts (A, B and D) and a partially matched pattern C! E

is stored in its working memory because B is a known fact. It is important to note that

each instance (event) of B will contribute to an instance of the partially matched pattern

C! E. As the number of rules and the size of dataset grow, the working memory store a

significant number of items. Hence, this strategy can be seen as a space–time trade-off.

In distributed rule-based systems, the working memory can be implemented either as

a centralised memory, or as a distributed memory or database. The centralised memory

model, as adopted by [92], is highly maintainable but at a cost of data transfer latency.

On the other hand, [91] adopts the distributed memory model, which has to implement a

complex mechanism to guarantee state consistency.

Backward Chaining

Backward chaining is known as a goal-driven inference technique. It starts from a pos-

sible goal (conclusion) and examines the working memory for facts that can satisfy the

conditions of that goal.

Consider the rule D^E! F of the example in Figure 2.2, in which F is the goal. The

engine examines the working memory for the facts to satisfy the conditions (D and E).

Since E is not in the working memory, the engine creates an antecedent goal, based on

rule 2, to find E. Next, since rule 2 needs C, another antecedent goal is created to find C.

18

Finally, from rule 1, C can be derived. The engine then goes backward to process the list

of goals until F is found. This process is shown in Figure 2.4.

Figure 2.4: Backward Chaining Strategy

Backward chaining is useful if there is a need to query the working memory during

the execution of the system, i.e. to add new rules to system during its execution. Many

of the current rule engines, such as Drools[67] and JESS[41], support both forward and

backward chaining.

2.1.4 The RETE Algorithm

The RETE (Latin for net) Algorithm is a forward chaining pattern matching algorithm

designed by Dr Charles L. Forgy in the late 1970’s [29], and it is commonly used in

implementing rule-based systems such as Drools [67] and JESS [41]. Furthermore, it

is behind many rule-based programming languages such as CLIPS [34] and OPS5 [30].

One of the most important jobs for rule engines is pattern matching, during which the

rule engine examines each rule and searches the fact base to determine whether the rule’s

conditions have been satisfied. If the conditions of a rule are satisfied by existing facts,

it is added into the conflict set. Then, a conflict solver is used to decide the order of

activating the rules in the conflict set. Afterwards, the activated rules are added into the

agenda. Figure 2.5 shows this process.

The major disadvantage of having the rule engine check each rule to direct the search

for facts in the whole fact base, as explained by Giarratano [34], is that it can be very

19

slow. Typically, in each execution cycle only a few facts are changed, which makes up

only a small fraction of the fact base. As a result, having the rule engine to check the

entire fact base for each rule requires a lot of unnecessary computation, as most of the

rules will likely find the same facts as they did in previous cycles.

The RETE algorithm removes this disadvantage by saving partially matched patterns

from cycle to cycle into a data structure called the RETE network. This is a tree-like

structure where each branch represents a rule, and each node in the network represents a

computing unit that checks a partial condition of the rule. In a cycle, the RETE algorithm

only recomputes facts that have changed.

Rule 1

Rule 2

Rule 3

Rule n

Fact 1

Fact 2

Fact 3

Fact n

Rule

Engine

Agenda

Figure 2.5: Pattern Matching Process of Rule Engines

2.1.5 Construction of RETE Networks

The RETE algorithm has been commonly used in implementing rule based systems [38,

48, 6]. A data structure called the RETE network is generated by the algorithm from a set

of rules. Typically, this network consists of four types of nodes:

• Root Node: the single node where new facts (events) enter the network.

• Alpha Node: the nodes responsible for selecting events based on simple conditional

20

tests.

• Beta Node: the nodes responsible for joining two nodes.

• Terminal Node: the special beta nodes representing activations of rules.

Regardless of implementation methods, RETE networks have the following proper-

ties:

• A RETE network is a directed acyclic graph that represents higher-level rules.

• The input of the RETE network is a stream of events. These events carry some data

and are ordered by some kind of indices.

• Alpha nodes are usually on the top of RETE networks. They accept either the input

stream of the system or the output of another alpha node. An alpha node works as

a filter such that its output stream consists of all events from its input stream that

satisfy its corresponding proposition.

• Each beta node aggregates the output streams of two nodes to create a new stream

containing tuples of items from both streams that satisfy the condition associated

with that beta node.

• The output streams of beta nodes at the bottom of the network are not processed

further. These beta nodes are called terminal nodes and their output streams form

the output of the RETE network.

Figure 2.6 shows an example of a RETE network.

21

Output

Root

Figure 2.6: Example of A RETE Network

Root Node

New facts (events) enter a RETE network at its root node. The output of the root node is

a stream of events and it is broadcast to alpha nodes. Visually, a root node is represented

by a hexagon, as shown in Figure 2.7.

Root

Figure 2.7: RETE - Root Node

The output of the root node can be seen as a stream of events represented by function

Sin : N! E.

Alpha Node

Consider a pattern P. The propositions pi in P test different attributes of a given event.

The RETE algorithm creates an alpha node api for each proposition pi and connects the

created alpha nodes into an alpha chain. Upon the arrival of an event, the first alpha node

22

in the alpha chain is activated to test for the presence of a particular attribute of the event,

as defined by its corresponding proposition. If the test succeeds, the event is sent out to

the next alpha node in the chain for testing other attributes. If the test fails, the event is

simply dropped by the node.

Consequently, an atomic rule r = P1 ^P2 ^ · · ·^Pn ! h will result in a set of alpha

chains. The output of the root node is broadcast to the first node of each alpha chain.

Moreover, each alpha chain terminates at a working memory wa called the alpha memory,

which stores the output of the last node of the chain. All alpha nodes and alpha memories

form an alpha network, as shown in Figure 2.8

Root

Figure 2.8: RETE - Alpha Network

Mathematically, an alpha node api corresponding to proposition pi could be seen as

a restriction to the function representing the input stream of api . Given an index subset

A✓ N, corresponding to the input stream S�A : A! E of an alpha node api , api restricts

the domain A to Api , which is the set of indices j from A such that pi(e j) is true. In other

words, j 2 Api () pi(e j)^ (e j = S�A(j)). Consequently, the output of api can be seen

as the function:

S�Api
: Api ! E,where Api ✓ A.

The function S|Api
is called the alpha function, corresponding to the alpha node api .

23

The output of an alpha node can be consumed by other alpha nodes in the same alpha

chain. Hence, for each alpha chain, a series of alpha functions is created:

(S�A)�Ap1
: Ap1 ! E,where Ap1 ✓ A

((S�A)�Ap1
)�Ap2

: Ap2 ! E,where Ap2 ✓ Ap1

. . .

((((S�A)�Ap1
)�Ap2

) . . .)�Apn : Apn ! E,where Apn ✓ Apn�1

To ease mathematical notation we will denote (((S�A)�Ap1
)�Ap2

) . . .)�Apn by S�Ap1,p2,...,pn .

By combining all functions of an alpha chain ap1,p2,...,pn , we have the domain Ap1,p2,...,pn

of the output function of the last node apn , satisfying j 2 Ap1,p2,...,pn ()
Vn

i=1 pi(e j)^

(e j = S|A(j)), where S|A is the stream function representing the input of the first node

in the chain. Then, the alpha chain ap1,p2,...,pn can be seen as the representation of the

pattern (a logical conjunction of propositions) over the same event:

S�Ap1,p2,...,pn : Ap1,p2,...,pn ! E.

Finally, the output of the above function is stored at the alpha memory of the alpha

chain.

Beta Node

Beta nodes perform joins between beta memories and alpha memories. A beta node is

also called a 2-input node, which has a left and a right input. Consider a set Wa =

{wa
1 ,wa

2 , . . . ,wa
m} of alpha memories. The first alpha memory wa

1 2 Wa is directly

adapted to a beta memory wb
0 without processing. For any other alpha memory wa

i , a

beta node bi�1 is created such that its left input is the beta memory wb
i�2, and its right

input is the alpha memory wa
i . The beta node then joins the two working memories and

creates a stream of tuples of elements from the memories. This stream is stored at a beta

memory wb
i . All beta nodes and beta memories form the beta network, as shown in Figure

2.9.

24

Figure 2.9: RETE - Beta Network

A beta memory can be represented by a stream S : N! T, where T is the set of all

possible tuples of events. As mentioned above, the first alpha memory wa
1 of an alpha

network is adapted to a beta memory wb
0 without processing. Given the alpha function

S�Ap1
: Ap1 ! E corresponding to wa

1 , the first beta memory wb
0 is represented by the

function Sb0 : N! T. The image of the function Sb0 is a set of 1-tuples:

Sb0(N) = {(ei) | ei = S�Ap1
(i)}

Mathematically, a beta node is a function that maps two working memories to a beta

memory. Consider a beta node bi+1. Given its left input - a beta memory wb
i repre-

sented by function Sbi : N! T, and its right input - an alpha memory wa
j represented by

S�Ap j
: Ap j ! E, the beta node bi+1 joins the memories and produces a stream of tuples

of working memory elements (WMEs):

Sbi+1 : N! img(Sbi)⇥ img(S�Ap j
).

The stream is then stored at a beta memory wb
i+1. Beta nodes that can be presented by

the above function are called join nodes.

Consider a rule with one or more variable bindings (refer to Section 2.1.2, page 14).

25

Each variable binding works as an additional condition for a tuple to be inserted into a

beta memory. Let on be the operator to test the variable binding of two WMEs, the output

stream of the beta node with a variable binding can be represented by:

Sb : N! {(x,y) | x 2 img(Sbi)^ y 2 img(S �Ap j
)^ x on y}.

The beta nodes that can be presented by above function are called variable binding

nodes.

2.1.6 Optimisation of RETE Networks

The RETE algorithm allows an important optimisation technique called node sharing,

which takes the advantage of the structural similarities of the RETE networks. Node

sharing is based on the fact that many rules may share a same part of propositions. As a

result, some of the nodes among the networks will do exactly the same job. In order to

reduce the workload, these nodes can be shared by different rules.

For example, consider two atomic rules r1 : P1^P2^P3! h1 and r2 : P1^P2^P4! h2,

where each pattern Pi has one and only one proposition pi. We can create two RETE

networks for the rules as shown in part I and II of Figure 2.10. Because the first two

patterns P1 and P2 are shared by both rules r1 and r2, there are duplicated alpha nodes for

propositions p1 and p2, and duplicated beta nodes for the partial condition p1^ p2. With

node sharing optimisation, duplicated nodes are shared among the network. Hence, these

two RETE network are merged into one network, as shown in part III of Figure 2.10.

26

Part I Part II Part III

Figure 2.10: Node Sharing Optimisation for RETE Networks

2.2 An Overview of the Drools Business Rules Manage-
ment System

Drools [67] is one of the most popular Business Rule Management Systems (BRMSs), al-

lowing fast and reliable evaluation of business rules and complex event processing. Drools

consists of five components:

• Drools Guvnor: a business rules manager providing a single source of truth (SSOT).

• Drools Expert: a rule engine which implements and extends the RETE/RETE-OO

algorithm.

• Drools Flow: provides workflow or business process capabilities to Drools.

• Drools Fusion: provides event stream processing capabilities to Drools.

• Drools Planner: provides a constraint solver to many optimisation problems.

With Drools, the business logic of the systems is declared as a set of rules, written in

the Drools Rule Language (DRL).

A rule written in DRL has four parts:

• name: which defines the logical name for this rule.

27

• attributes: which provides a declarative way to influence the behaviour of the rule.

For example, the value of the attribute salience decides the order of execution when

multiple rules are activable, which is used in the conflict resolution process.

• conditions: which defines the conditions of the rule.

• actions: which defines what actions will be taken when the rule is activated.

The most important part of the rules is the conditions. Each pattern of an atomic

rule r = {P1,P2, . . . ,Pn,h} defined in Section 2.1.2 can be represented by a conditional

element in DRL. A conditional element contains the type and zero or more propositions

(constraints) of the events. For example, the rule r can be written in DRL as follows:

rule "r"

when
$P1 : EventType(p1, p2, ..., pn)

$P2 : EventType(<propositions for P2>)

...

and $Pn : EventType(<propositions for Pn>)

then
<action h>

end

Note that the logical conjunction (and) can be implicit (it is omitted for P2 and explic-

itly expressed for Pn).

The application of Drools consists of two parts. The first part is called Authoring, in

which a set of DRL rules are created and compiled into an enhanced RETE network. The

second part is the Runtime, in which the rule engine creates the working memory, loads

the data and executes the RETE network. If the rule engine finds rules whose conditions

are satisfied during the execution, it triggers actions corresponding to those rules.

The performance of Drools is compared to our model in the experiments presented in

Chapter 6.

28

2.3 Distributing Rule-based Systems

One of the major efforts that has been made to improve the performance of RETE-based

rule engines is the parallelisation of the computing nodes of the network [63].

Zhou et al. proposed a rule engine system called RUNES II [92], based on a message

passing model. In their work, the RETE network is divided into subnets. These subnets,

which communicate with each other through a messaging system, are distributed to a

cluster. The performance of this system relies on the decomposition of the RETE network

and the overhead of communication across the subnets.

Zhu et al. proposed a MapReduce-based architecture for distributing the RETE net-

works [93]. In this architecture, the RETE network is decomposed into subnets such that

each subnet has at most one beta node. The partially matched condition is then added

into the system as an event. This introduces unnecessary computation and penalises the

pattern matching performance of the RETE algorithm.

Stephen et al. proposed a distributed rule evaluation and event management system

called DRES [72]. DRES distributes instances of its RETE-based rule engine across a

cluster of computing nodes. All of these nodes are capable of executing filter operations,

which means the workload of the alpha network is evenly distributed. However, only

a set of statically assigned nodes act as the beta nodes which execute join operations.

As a result, for the applications that require heavy join computation, the performance

improvement is limited.

In summary, the current approaches adopts the static job assignment strategy to or-

ganise the computing resources. Static job assignment refers to the distribution method

in which the workload of the original computing node is statically assigned to a set of

computing resources. It brings two major benefits - speed: the workload of the original

node is shared by a cluster of nodes; and, scaling: the system is scalable, due to the fact

that more computing resources can be added.

These approaches transform each node of the network to a cluster of nodes and dis-

tribute the workload of that node to the created cluster. Consider the RETE network in

29

Figure 2.11. The alpha nodes and the beta nodes are transformed to the alpha clusters and

the beta clusters, respectively. Moreover, all nodes within a cluster share the workload

of the original node, which speeds up the processing as a result of the node-to-cluster

distribution.

transform

Figure 2.11: Static Job Assignment for Rule Engines

Nevertheless, despite the speed-up brought by the distribution at the node level, there

is a major issue which limits the potential of the performance improvement: in the original

RETE network, the workloads across the nodes may be unbalanced, which means some

nodes may have significantly more work to do than others, while some nodes may be idle

for most of the execution time. With the static job assignment strategy, this imbalance

is brought to the distributed network. Therefore, if the clusters are created in a fixed or

equal size during the distribution, the clusters which have higher workload may become

extremely slow. Moreover, because the computation on each node in the RETE networks

usually relies on the results of other nodes, these slow clusters will become bottlenecks of

the entire system.

Although live reconfiguration of the number of nodes for each cluster can solve afore-

mentioned issue, it comes with a cost. More specifically, the workloads across the network

tend to change over time which may result in constant reconfigurations and rebalancing.

As the network grows larger, the cost of constant reconfigurations becomes unacceptable.

30

2.4 Event Stream Processing

Event stream processing (ESP) has been a well studied topic in the field of information

systems. Various techniques have been developed regarding ESP, for example, Complex

Event Processing (CEP), Data Management Systems (DBMSs), Active Databases, and

Rule-based Systems (RBSs). With the increase of data volume over the last decade, ESP

has been moving from these approaches to a more generic approach as a big data technol-

ogy [33]. In the big data community, numerous types of systems have been developed for

data processing, and these can be categorised into two groups: batch and stream process-

ing.

The main focus of the batch processing approach is the processing of a large volume

of data at once. As a result, this technique requires the data to be accessible before it is

processed. One of the keystones in the research regarding batch processing is the release

of Google’s MapReduce paper [26]. The key idea behind MapReduce is the split-apply-

combine strategy [86]. In particular, the map step of MapReduce corresponds to split

and apply, in which the data set is divided into batches and processed in a highly par-

allel environment. Furthermore, the reduce step corresponds to combine, in which the

intermediate results obtained from processing the batches are combined. MapReduce has

inspired the development of Apache Hadoop [70], which later became one of the most

popular big data technologies. Batch processing is an extremely efficient way to process

a large amount of data that is collected over a period of time, as it can usually be done

simultaneously.

Stream processing approaches, on the other hand, focus on the ability to instanta-

neously process data streams. In addition, there is no limitation to how long the system

will operate. Stream processing is extremely beneficial if there is a need for the events to

be processed in real-time and reacted to quickly. One representative of stream processing

systems is Apache Storm [75]. Storm is a distributed general-purpose real-time compu-

tation system for processing unbounded streams of data. In order to achieve the lowest

latency possible, each event in Storm is sent out for processing when it arrives.

31

Most of the current stream processing approaches [44, 4, 75, 21] adopt the continuous

operator model, which requires continuous computation as data flows through the system.

The continuous operator model refers to a way of processing events in which the com-

puting nodes receive one event, update their local state and forward the results to other

nodes. This model is subject to the high cost of maintaining a global state for stateful

computations, as the processing of an event may rely on the processing of another event.

In addition to speed, fault-tolerance is another important property for both batch and

stream processing systems. There are three widely used strategies for recovering from

failures:

• Active replication [36]: the same event is processing on multiple replications of a

computing node. When a failure occurs at a node, the system simply switches to a

replication of it. This strategy provides a fast way to recover from failures at a cost

of at least twice more computing resources.

• Passive replication [52]: snapshots (sometimes called checkpoints) for each com-

puting node are stored at one or more backup nodes. When a failure occurs, the

system reconstructs the computing node from these stored snapshots. Different

techniques can be used to implement the backup nodes, such as a distributed stor-

age or transactional memories.

• Upstream backup [44]: each (upstream) computing node buffers its results until an

acknowledgement is received from the downstream nodes. When there is a failure

in a particular node, the system reconstructs that node and makes the upstream

nodes to resend their buffered results.

None of these strategies look promising in larger clusters. First, the replication strate-

gies (active and passive) require at least double the computing resources. Beyond that,

even if the additional resources are affordable, they may still not work when the repli-

cated nodes fail at the same time. Secondly, upstream backup takes a long time to recover

32

a particular node and the rest of the system has to wait for the recovery to be completed.

The benefits and drawbacks of batch and stream processing can be summarised as

follows:

• Batch processing is suitable for applications where having up-to-date data is not

important as it processes data with a delay. The advantage of batch processing

methods is that they have higher throughput and are more robust than stream pro-

cessing methods that feature a one-at-a-time strategy.

• Stream processing provides the lowest possible latency as events are processed as

soon as they arrive. However, it is difficult to efficiently maintain the processing

state and guarantee the high-level fault-tolerance.

ESP applications, in general, have similar requirements to the stream processing model.

For example, the system should be able to process data on the fly, and the response time of

the system should be fast enough so that the events are reacted to in a timely manner. As

a result of these similarities, many distributed ESP systems have been built with a stream

processing model.

In order to have the advantages of both batch and stream processing methods, the con-

cept of micro-batching has recently arisen as a hybrid approach to data stream processing

[15, 89, 90]. Micro-batching can be seen as a stream processing method but instead of

processing one event at a time, it processes small batches of events that are created at

regular time intervals (usually in sub-seconds). Micro-batching benefits from the advan-

tages of batching processing (e.g. higher throughput and fault-tolerance) while at the

same time keeping the latency as minimal as possible. Apache Spark Streaming is an

example of systems based on this micro-batching paradigm. Spark Streaming introduced

two abstractions on the data it processes: Resilient Distributed Datasets (RDDs) [88] and

Discretised Streams (DStreams) [89]. An RDD is an immutable distributed collection of

data (batch) and a DStream can be seen as a stream of RDDs. Spark’s unified execution

engine for both batch and streaming brings some unique benefits over traditional stream

33

processing systems. In particular, two major benefits are 1) fast recovery from failures

and stragglers, and, 2) better load balancing and resource usage.

To build a rule engine as an event stream processing application, several factors need

to be considered. First, the rule engine has to be fast, i.e. it reacts to events in a timely

manner. Second, it needs to be able to recover from system failures quickly. Evidently,

batch processing methods are not suitable for implementing rule engines, as they pro-

cess data with a delay. In addition, the stream processing model, which is the dominant

paradigm used in many distributed rule engines, has some issues too. For example, its

one-at-a-time model results in lower throughput and difficulties to recover from failures.

These issues make the micro-batching paradigm a good choice to implement rule en-

gines. Indeed, micro-batching provides high-level fault-tolerance, high throughput and

better resource utilisation, which, as a whole, are not provided by either batch or stream

processing methods.

2.4.1 An Overview of the Apache Spark Streaming Framework

MapReduce has been highly successful in implementing data sensitive applications. Most

of these applications are built around an acyclic data flow model in which the data flows

along the system unidirectionally without being reused. On the contrary, Apache Spark

[90] focuses on the applications where the data will be reused across multiple parallel op-

erations. It comes with a data abstraction called the resilient distributed datasets (RDDs).

An RDD is a read-only collection of data partitioned across a cluster. Therefore, the pro-

cessing of RDDs can be seen as multiple parallel transformations from these RDDs to

other. Spark maintains the lineage, which is the history of the transformations, of each

RDD. Hence, as long as the original data is in reliable storage, RDDs can always be re-

constructed by using its lineage. In addition, as RDDs are partitioned across the cluster,

this reconstruction is also done in parallel. This mechanism provides Spark fault tolerance

without replication.

Spark Streaming is an extension to Spark. It is a general purpose streaming system

34

providing near real-time processing of data streams. With Spark Streaming, complex

algorithms can be created with high-level parallel operations such as map, reduce, join

and window. Data streams can be ingested from many sources, such as Kafka, Flume and

ZeroMQ, and pushed out to filesystems, databases, and live dashboards. It supports fault

tolerance with the assurance that any specific event is processed exactly once, even with

a node failure [89].

Unlike the traditional continuous operator model, where the computation is statically

allocated to a node, Spark Streaming discretises the streaming data into micro batches (as

RDDs) that can be processed by any node of the cluster. The streams of RDDs, known as

the Discretised Streams (DStreams), structures computations as a set of short, stateless,

deterministic tasks. These tasks are execute by Spark’s batch processing engine, which

provides high-level fault tolerance and high throughput.

In addition, as it is backed by a batch processing engine, Spark Streaming can work

with resource management systems such as Apache Hadoop YARN [78] and Mesos [42].

These systems enable Spark to reduce the overhead of transferring data by enforcing data

locality [39].

2.5 Petri Nets

Petri nets are a graphical and mathematical tool specialised for analysing information

processing systems that are characterised as being concurrent, asynchronous, distributed,

parallel, nondeterministic, and/or stochastic [60]. Generally, a system can be modelled

by a Petri net with three finite sets of elements: places, transitions and arcs [64]. Spaces

represent properties of the system and a transition represents an action within the system

that may trigger changes of the properties. Visually, spaces and transition are represented

by circles and bars respectively. These places and transitions are connected by directed

arcs.

Figure 2.12 illustrates an example of Petri net describing a system used in a diagnosis

35

room at a hospital.

Patient Arrives

Patient

Waiting

Enter Doctor's Office

Diagnosis
Doctor

Available

Finish Diagnosis

Patient

Makes

Payment

Patient Leaves

Figure 2.12: Petri Net For A Diagnosis Room System At A Hospital

Definition 2.6. A Petri net (PN), as adapted from [65], is a tuple

PN = (P,T,Pre,Post),

where P is a set of places; T is a set of transitions; Pre : P⇥T ! N is the pre-condition

function and Post : T ⇥P! N is the post-condition function.

Pre(pi, t j) = 0 indicates there is no arc from place pi to transition t j, and any positive

values of Pre(pi, t j) indicates the weight of the arc from pi to t j. Analogically, Post(t j, pi)

indicates the weight of the arc from transition t j to place pi.

The dynamic behaviours of systems are modelled by positioning and moving of tokens

in Petri nets. Tokens (denoted by •) reside in places and can be moved around the net by

firing transitions. A marking M : P! N is a function that assigns a non-negative number

of tokens to each place of the net. A transition t is enabled (or fireable) if for all places

36

p 2 P, M(p) � Pre(p, t). The firing of a transition t removes n = Pre(p, t) tokens from

places p 2 P and adds n0 = Post(t, p0) tokens to places p0 2 P.

Figure 2.13 illustrates a transition firing in Petri nets. On the static view, we have

Pre(p1, t1) = 2, Pre(p2, t1) = 1 defining weights of the arcs from places p1 and p2 to

transition t1. Moreover, the arc defined by Post(t1, p3) = 3 has a weight of 3. On the

dynamic view, we have a marking M such that M(p1) = 3, M(p2) = 2 and M(p3) = 0.

Transition t1 is enabled since M(p1) � Pre(p1, t1) and M(p2) � Pre(p2t1). By firing t1,

corresponding tokens will be removed from p1 and p2, and tokens will be added to p3,

yielding a new marking M0 as described by the right side of the arrow.

2

1

3
Firing

2

1

2

1

3

2

1

Figure 2.13: Firing of Transitions in Petri Nets

A marking M0 is reachable from a marking M on a Petri net if, after firing a sequence

of transitions, the Petri net starts from marking M and ends up at marking M0. Given an

initial marking M0 for a Petri net PN, we can draw a graph of all reachable markings from

M0 connected by arcs representing transitions. This graph is called the reachability graph

for RN.

A reachability graph is a directed graph. The nodes of a reachability graph correspond

to markings reachable from the initial marking, one node per marking. The arcs are

one-step transitions from one marking to another. Figure 2.14 shows an example of a

reachability graph.

37

Figure 2.14: Example of Reachability Graph

2.6 Model Driven Development (MDD)

The application of modelling in software development has a long history and has become

popular since the development of the Unified Modelling Language (UML) [76]. The

modelling in a common model-based development, however, is merely intentional be-

cause after all the implementation relies on the programmer’s interpretation of the models

and realisation of the ideas into code. This is problematic because software systems are

liable to changes and those changes can only result in complex model-adapting tasks or

inconsistency between models and implementations.

Model-Driven Development (MDD) [80] takes a different approach: it emphasises

the analysis of systems and the design of models in software development, and consid-

ers models as an equivalent to the code. The implementation is then automated by code

generation techniques [85, 17]. Hence, MDD reduces the development life cycles. An-

other advantage brought by MDD is that different platform-specific implementations can

be generated from the same set of models, because the design of models is separated from

the implementation.

It is generally agreed that meta-modelling is an essential foundation of MDD [35,

32]. A meta-model describes the minimum set of elements required in order to model

a system, and the concrete system model is an instance of the meta-model. In MDD,

a model transformation can be defined as mapping the meta-elements: all elements and

38

the interactions between elements are mapped from the source meta-model to the target

meta-model. This can be achieved by a model transformation framework with a set of

transformation rules. Subsequently, models derived from the source meta-model can be

transformed automatically to an instance of the target meta-model.

Figure 2.15 illustrates the outline of model transformations in MDD. The model trans-

formation framework takes the source and target meta-models, as well as the transforma-

tion rules as inputs. For any instances of the source meta-model, the framework creates a

target model according to the meta-models and the rules describing how elements of the

meta-models are mapped.

Input

Meta-Model

(Source)

Input

Meta-Model

(Target)

 derived from

Input

Instance-Model

(Source)

 derived from

Instance-Model

(Target)

Output

Model Transformtion

Describes

Input

Transformation

Rules

Figure 2.15: Outline of Model Transformation in MDD

Model-driven architecture (MDA) [58] is a set of guidelines for structuring software

specifications in MDD. It can be seen as a subset of MDD based on the OMG group’s

standards.

In the software industry, many model transformation frameworks have been devel-

oped, such as Epsilon [50], VIATRA [8] and ATL [47]. These frameworks usually come

with a rich set of tool-kits and support a wide range of functionalities. On the contrary,

frameworks like Simple Transformer (SiTra) [2] provide lightweight solutions to model

transformations. Despite the simplicity, SiTra provides everything needed for the work

39

described in this thesis. The use of SiTra in our work will be elaborated in Chapter 4.

2.6.1 SiTra: The Simple Transformer Library

Simple Transformer (SiTra) [2] is a minimal Java-based model transformation framework

which consists of two interfaces, as shown in listing 2.1, and an implementation of a

transformation algorithm. Usually in order to solve a transformation problem, multiple

rules are needed. The implementation of the check method of a rule should return a value

of true if the rule is applicable to the source object. The build method should construct a

target object that the source object is mapped to. The setProperties method is called after

the execution of the build method, which allows recursive calling of rules.

interface Rule<S,T> {

boolean check(S source);

T build(S source, Transformer t);

void setProperties(T target, S source, Transformer t);

}

interface Transformer {

Object transform(Object source);

List<Object> transformAll(List<Object> sourceObjects);

<S,T> T transform(Class<Rule<S,T>> ruleType, S source);

<S,T> List<T> transformAll(Class<Rule<S,T>> ruleType,

}

Listing 2.1: Interfaces of SiTra

An example of model transformation using SiTra is the Book and Paper to Publication

Transformation, as shown in Figure 2.16. In this example, Books and Papers are mapped

to Publications. The sum of numPages (number of pages) of all Chapters in a book is

mapped to the attribute numPages in a Publication. The implementation of the Book to

Publication rule could be written as in listing 2.2. All implemented rules are then added

into the transformer and a target Publication model can be generated automatically.

40

Book

+ title: String

Chapter

+ title: String

+ author: String

+ numPages: Integer

Paper

+ paper_type: String

+ numPages: Integer

+ author: String

Publication

+ title: String

+ numPages: Integer

+ author: String

Figure 2.16: Model Transformation Example

class Book2Publication implements Rule<Book,Publication> {

...

public Publication build(Book book, Transformer t) {

Publication publ = new Publication(book.getTitle());

return publ;

}

public void setProperties(Publication publ,Book book,Transformer t){

for(Chapter chapter: book.getChapters()){

publ.numPages = publ.numPages + chapter.numPages;

}

}

}

Listing 2.2: Transformation Rule of SiTra

2.7 Chapter Summary

This chapter provides preliminary background for rule-based systems and formalises the

RETE algorithm which is the fundamental algorithm behind many rule engines. It also

provides an overview of the current rule-based event stream processing approaches, as

well as their advantages and disadvantages.

In subsequent chapters, this thesis presents a technique to distribute the RETE algo-

rithm in order to process larger event streams with rule-based systems .

41

CHAPTER 3

DISTRIBUTED EVENT PROCESSING WITH
RULE-BASED SYSTEMS

In this chapter, we present a scalable and highly parallelised rule engine known as DRESS

(Distributed Rule Engine on Spark Streaming). DRESS is built on top of the Apache

Spark Streaming framework with an enhanced RETE algorithm for the processing of

event streams. The main goal of DRESS is to improve the load-balancing and parallelism

of RETE-based rule engines.

Section 3.1 describes the architecture of DRESS and introduces the techniques used

in order to achieve better load-balancing and parallelism, such as micro-batching and

dynamic job assignment.

In Section 3.2, we discuss the components of the DRESS applications and their inter-

actions.

Section 3.3 elaborates on the construction of the DRESS networks and discusses the

different types of DClusters that form an DRESS network.

This chapter is summarised in Section 3.4.

3.1 An Overview of the DRESS Architecture

In this section we discuss the architecture of DRESS. DRESS is built on top of the Apache

Spark Streaming framework for the processing of event streams and uses the Apache

42

Kafka Framework [53] as the messaging system. Events are generated from multiple

sources and inserted into the Kafka message queue. Thereafter, with the help of Spark

Streaming, Kafka produces a stream of event batches. These batches are processed by the

DRESS engine.

The computations of the batches are dynamically distributed to a cluster of executors

managed by YARN. For failure recovery, the batches are check-pointed in memory or in

the Hadoop Filesystem. Figure 3.1 shows the frameworks used by DRESS.

Hadoop YARN

Spark Core

Spark Streaming

DRESS

Kafka

Figure 3.1: Tech Stack of DRESS

The architecture of DRESS is represented in Figure 3.2. A cluster of DRESS worker

nodes consisting of one or more executors is managed by the YARN framework. A

DRESS network (similar to a RETE network) is compiled from a set of rules at the client

before it is submitted to the YARN Resource Manager (RM). Then, a DRESS application

is created by the RM and assigned to a worker node which works as the DRESS master

node. The DRESS master node consists of the DRESS application and the YARN Driver

which manages the computing resources that are available for processing the batches. The

DRESS application contains the DRESS network and a job scheduler which, through the

YARN driver, distributes the jobs generated from the execution of the DRESS network to

the executors. Finally, the outputs of the jobs are gathered by the DRESS master and are

sent back to the client.

43

Worker ClusterMaster

DRESS Application

YARN

Resource

Manager

Client

DRESS Master

Output

Stream

YARN Driver

Job Scheduler

DRESS Worker

YARN Container

Executor

DRESS Network
Kafka

Message Queue

Input Stream

DRESS Network

DRESS Worker

YARN Container

Executor

Figure 3.2: DRESS Architecture

3.1.1 Micro-batching

In contrast to the continuous operator model adopted by current rule engines, the comput-

ing nodes of a DRESS application process micro batches of data. Micro batching is the

procedure which divides the incoming stream of events into groups of small batches. It

has the benefits of batch processing (e.g. high throughput and high-level fault-tolerance)

while, at the same time, keeping the latency of processing each event minimal. As shown

in Figure 3.3, the incoming event stream is converted into a stream of small batches of

events, and these batches are passed to and processed by the DRESS engine, which gen-

erates an output stream of batches.

In DRESS, the micro batches are created based on time intervals instead of size, in

order to achieve a consistent minimal latency. More specifically, events received within

a time interval (usually in milliseconds) are put into a batch. This time interval is con-

figurable, which means by lowering its value we can ensure that any event does not have

to wait too long before it is passed to the engine for processing. In the extreme cases,

in which the time interval is set to zero, DRESS will behave like a continuous operator

44

model.

Incoming

Event

Stream

Event 1 Event 2 Event 3 Event 4 Event 5

Event 1 Event 2 Event 3 Event 4 Event 5

Micro batch 1 Micro batch 2

Stream

of

Batches

Micro-batching

DRESS

Engine

Output

Stream

Figure 3.3: Micro-batching in DRESS

With Spark Streaming, these micro batches are represented by Resilient Distributed

Datasets (RDDs). RDDs are immutable distributed collections of data. Due to its im-

mutable nature, the processing of an RDD can be seen as the transformation from a source

RDD to a target RDD. In Spark, RDDs are processed and stored across the worker clus-

ter. As a result, the processing of an RDD may require an executor to copy the RDD

from another executor, where it is stored, unless the RDD is in its local memory. This

introduces an overhead of transferring data. However, this overhead can be minimised by

dynamic job assignment with the optimisation of data locality, which is elaborated in the

next section(s).

The streams of RDDs are represented by Discretised Streams (DStreams), which are

maintained by the DRESS master. A DStream does not have the data of its RDDs. In-

stead, it holds their meta-information, including the sizes, locations, processing states and

appointed executors. Once an RDD enters a DStream, the DRESS master creates a job

and assigns it to an executor. Upon the completion of each job, the meta-information of

the resulting RDD is sent back to the DRESS master.

45

3.1.2 Dynamic Job Assignment

Current approaches are based on the static job assignment model, in which the workload

of a computing unit (such as an alpha node or a beta node) in the RETE networks is dis-

tributed to a static set of executors (workers). On the contrary, DRESS adopts a different

dynamic job assignment paradigm [84, 18]. In DRESS, executors are no longer statically

associated with any nodes of the RETE network. Instead, the executors are capable of

completing all types of jobs originated from the RDDs (batches) of the DStreams. Fur-

thermore, the job scheduler dynamically assigns the jobs to the executors according to

their availabilities and workloads.

Figure 3.4 illustrates the dynamic job assignment process in DRESS. The structure of

the DRESS network is maintained by the DRESS master. When an RDD arrives at any

DStream of the DRESS network, the job scheduler creates a job to process it and assigns

this job to available executors.

DRESS Network

DRESS Master

Worker Node 1 Worker Node 2 Worker Node 3

DRESS

Network

Root DStream

Alpha

DStream

Alpha

DStream

Alpha

DStream

Beta

DStream

Beta

DStream

Batch 1

Batch 2

A Job for 2 Batches

Job Scheduler

Output

Batch

Figure 3.4: Dynamic Job Assignment for RETE Networks

The main advantage of the dynamic job assignment technique is that the workload

is almost evenly spread out across the worker cluster, which removes the bottlenecks

brought by a static job assignment strategy. However, this technique also comes with

the overhead of transferring data to the executors. Especially, with the micro-batching

model, this overhead becomes significant. DRESS minimises this overhead by enforcing

46

data locality.

Data locality refers to the concept of moving computation to the nodes where the data

resides instead of moving data to computation. It is a strategy to increase the overall

throughput and minimises the network congestion of distributed systems [39, 45, 46]. In

DRESS, an executor is always preferred by the job scheduler to process the RDDs it has

in its local memory. During the job scheduling process, it is likely that the executor which

holds the RDD is occupied by other tasks. DRESS allows the job scheduler to wait a

period of time to decide whether data locality can be achieved. If the executor becomes

available while waiting, the RDD is scheduled to be processed on the executor. Otherwise,

the RDD is transferred to another executor for processing.

The data locality of DRESS is realised with the help of YARN. The maximum time

that the job scheduler can wait for enforcing data locality can be adjusted by different

YARN configurations.

3.1.3 DRESS Worker Cluster (DCluster)

A DRESS executor cluster (DCluster) is the minimal computing unit of a DRESS appli-

cation. It consists of a set of dynamically assigned executors from the Spark cluster, and

the number of executors is adjusted according to the workload. A DCluster is responsible

for completing a certain type of jobs that originated from one or more input DStreams.

In Spark, the executors are generic to all types of jobs. As a result, an executor can be a

part of more than one DCluster at the same time. The output of a DCluster is a DStream,

which maintains the meta-information of RDDs containing the results of the jobs.

In Spark, the DClusters are created by defining a transformation from one or more

(input) DStreams to another (output). More specifically, this transformation contains an

operator that maps the RDDs of the input DStreams to RDDs of the output DStream. For

DClusters with one input DStream, this can be done by the available operators provided

by Spark, such as map, filter and window. For other DClusters, a customised operator

needs to be defined. Consequently, the transformation can be seen as a function with two

47

parameters: the operator and a set of input DStreams.

During the execution of the DRESS network, the job scheduler creates jobs for the

RDDs, which are received by DStreams, and assigns these jobs to available executors of

the DCluster. A job consists of one or more RDDs from the input DStreams (one RDD

for each DStream) and a procedure to process them. The executor processes these RDDs

and produces an output RDD, which is stored in its local memory. Then, a notification

with the location of the output RDD of the completed job is sent to the DRESS master.

Finally, the meta-information of the output RDD is put into the output DStream of the

DCluster and this output RDD will be used to create jobs for other DClusters.

3.2 DRESS Applications

A DRESS application is an instance of a rule-based expert system. As previously estab-

lished, an expert system has three components - the rule base, the inference engine and

the working memory. The rule base of a DRESS application can be constructed with cur-

rent techniques such as declarative Domain Specific Languages (DSLs) or databases. The

inference engine is an implementation of a DRESS network running on the Spark Stream-

ing Framework. Moreover, the working memory is represented by RDDs and DStreams

that are distributed across the cluster.

A DRESS application manages a DRESS network and a job scheduler. The DRESS

network is a data structure of DStreams and DClusters that transform one DStream to

another. When an RDD is inserted into a DStream in the network, the job scheduler

makes arrangements for it to be processed remotely on an available executor. Then, the

executor produces an output RDD and updates its meta-information to another DStream

of the DRESS network.

48

3.3 DRESS Networks

DRESS can be seen as an enhanced RETE algorithm. As previously established, a DRESS

application contains a DRESS network which is compiled from a set of rules. Typically,

it consists of 4 types of DClusters:

• Root DCluster: the DCluster whose executors transform RDDs from the Kafka

message queue to RDDs consisting of events in the unified format. The resulting

RDDs are put into the root DStream.

• Alpha DCluster: the DClusters responsible for selecting events from an RDD

based on simple conditional tests.

• Beta DCluster: the DClusters responsible for joining two DStreams and creating

variable bindings among the events from the DStreams.

• Terminal DCluster: the special beta DClusters representing activations and per-

forming actions of the rules.

Figure 3.5 shows the correspondences between the DRESS network and the RETE

network. Each type of DClusters in the DRESS network corresponds to a type of nodes

in the RETE network. Moreover, as DRESS adopts a micro-batching strategy to increase

parallelism, the input and output of a DCluster are micro-batches (RDDs). The processing

of these RDDs is distributed to available executors.

System RETE DRESS
Model RETE Network DRESS Network

Nodes

Name Input Output Location of
Processing

Name Input Output Location of
Processing

Root
Node

Event Event On the
node

Root
DCluster

RDD/
event

RDD/
event

On available
executor

Alpha
Node

Event Event On the
node

Alpha
DCluster

RDD/
event

RDD/
event

On available
executor

Beta
Node

Tuple Tuple On the
node

Beta
DCluster

RDD/
tuple

RDD/
tuple

On available
executor

Terminal
Node

Tuple Tuple On the
node

Terminal
DCluster

RDD/
tuple

RDD/
tuple

On available
executor

Figure 3.5: Correspondences between DRESS and RETE Networks

49

The DRESS network consists of 4 layers as shown in Figure 3.6. The first layer is the

Kafka message queue which manages the input data from multiple sources. The second

layer is the root DStream consisting of RDDs of events in a unified format. The third layer

consists of alpha DStreams whose RDDs contain events that match or partially match a

pattern. Finally, the last layer consists of beta DStreams whose RDDs represent logical

compounds of patterns.

DRESS Network

Kafka Queue

Root DStream

Alpha DStream

Beta DStream

Root DCluster

Alpha DCluster

Beta DCluster

Actions

Figure 3.6: Layers of DRESS Networks

Figure 3.7 shows an example of a RETE network and a DRESS network compiled

from the same rule with three patterns.

The following sections elaborate on the construction of the DRESS network from the

rules and present each type of these DClusters.

50

R
o

o
t

R
E

T
E

 N
e

tw
o

rk

R
o

o
t

N
o

d
e

In
p
u
t

S
tr

e
a

m

A
lp

h
a

N
o

d
e

W
o

rk
in

g

M
e

m
o

ry

B
e

ta

N
o

d
e

D
S

tr
e

a
m

D
C

lu
s
te

r

D
R

E
S

S
 N

e
tw

o
rk

In
p
u
t

S
tr

e
a

m

(K
a

fk
a

)

R
o

o
t

D
C

lu
s
te

r

R
o

o
t

D
S

tr
e

a
m

A
lp

h
a

D
C

lu
s
te

r

A
lp

h
a

D
C

lu
s
te

r

A
lp

h
a

D
C

lu
s
te

r

A
lp

h
a

D
S

tr
e

a
m

A
lp

h
a

D
S

tr
e

a
m

A
lp

h
a

D
S

tr
e

a
m

B
e

ta

D
C

lu
s
te

r

B
e

ta

D
S

tr
e

a
m

B
e

ta

D
C

lu
s
te

r

B
e

ta

D
S

tr
e

a
m

D
S

ta
te

D
S

ta
te

D
S

ta
te

D
S

ta
te

D
S

ta
te

Fi
gu

re
3.

7:
Ex

am
pl

e
of

R
ET

E
an

d
D

R
ES

S
N

et
w

or
ks

C
om

pi
le

d
fr

om
th

e
Sa

m
e

R
ul

e

51

3.3.1 Root DCluster

Since the events from the Kafka message queue can be generated from multiple sources,

their formats may be different. DRESS creates format adapters to convert them into a

unified format. This unified format is a JSON-like dictionary which contains type, index

and other data related fields of the events, as shown in listing 3.1.

{

"type":"event_type",

"index":Integer,

"data_field_1":"value_1",

"data_field_2":"value_2",

...

}

Listing 3.1: Unified Event Format

The root DCluster works as the entry point of a DRESS network. As previously

established, a DCluster can be seen as a transformation from one or more input DStreams

to an output DStream. The root DCluster transforms the event stream from the Kafka

message queue to its output DStream, known as the root DStream. More specifically,

the root DCluster applies the format adapter to each RDDs of the input DStream, and

therefore the root DStream consists of batches of events in the unified format.

As shown in Figure 3.8, when an RDD is produced by the Kafka message queue,

Kafka notifies the DRESS master. The DRESS master creates a job consisting of the

format adapter and the RDD. Afterwards, the job is assigned to an executor appointed

by the job scheduler. Then, the executor converts the events of different formats in that

RDD to the unified format. Finally, the executor produces an output RDD whose meta-

information is inserted into the root DStream.

52

 Root DCluster

RDD (formatted events)

Executor

RDD (unformatted events)

Executor

Assign

DRESS Master

Job Scheduler

notify Message Queue

(Kafka)

Root DStream

Adapter Adapter

Figure 3.8: DRESS - Root DCluster

3.3.2 Alpha DCluster (1-input DCluster)

The alpha DClusters of the DRESS network correspond to the alpha nodes of the RETE

network. They are responsible for testing conditional attributes of the events. An alpha

DCluster is also called a 1-input DCluster as it generates an alpha DStream from process-

ing RDDs of a single input DStream. Furthermore, the input of the alpha DClusters can

either be the root DStream or an alpha DStream.

Consider a pattern P whose propositions pi test different attributes of a given event.

DRESS creates an alpha DCluster (as well as its output alpha DStream) for each propo-

sition pi and connects the created alpha DClusters into an alpha chain. Upon the arrival

of an RDD at the root DStream, an executor of the first alpha DCluster in the chain is

activated to select events from the RDD satisfying the corresponding proposition. These

events are inserted into the output RDD, which is sent to the next alpha DCluster for the

test of another attribute. Each alpha chain created from a pattern P terminates at a DState,

which is the accumulation of RDDs from the alpha DStream of the last alpha DCluster.

Individually, the implementation of an alpha DCluster is similar to the implementation

of the root DCluster (Figure 3.8), except that they have different input DStreams and the

53

executors are responsible for different types of jobs.

Alpha

DCluster

Executor

Input DStream (root or alpha)

RDD

(1)

RDD

(2)

RDD

(3)

RDD

(4)

RDD

(5)

Alpha DStream

RDD

(1)

RDD

(2)
 Processed RDDs

assign
Job

Scheduler

notify

filter operator

(proposition)

Executor

filter operator

(proposition)

Figure 3.9: DRESS - Alpha DCluster

Consequently, an atomic rule r = P1 ^P2 ^ · · ·^Pn ! h will result in a set of alpha

chains. Each of them can be seen as a sequence of transformations from the root DStream

to the alpha DStream whose RDDs consist of events matching a pattern.

To transform the DStreams, the DRESS master creates jobs using the filter operator

provided by Spark, as shown in Figure 3.9. The filter operator creates one job for each

RDD of the input DStream and the job is completed by an available executor of the alpha

DCluster. Each job consists of the corresponding proposition of the alpha DCluster and

an input RDD. The procedure to complete the job is shown in Algorithm 1.

Algorithm 1 Execute alpha jobs
1: function ALPHA_EXECUTOR(rdd, proposition)
2: out put emptyRDD
3: for each element in rdd do
4: if proposition(element) then
5: append element to out put
6: end if
7: end for
8: return out put
9: end function

54

3.3.3 Beta DCluster (2-input DCluster)

 Beta DCluster

Executor

(1)

Executor

(2)

assign

DRESS Master

Job Scheduler

beta jobs

Alpha

DStream

accumulate

notify

Beta

DStream

Alpha

DState

Beta

DState

accumulate

Beta

DStream

Figure 3.10: DRESS - Beta DCluster

The beta DClusters (also called 2-input DClusters) of the DRESS network correspond

to the beta nodes of the RETE networks. A beta DCluster has a left input and a right

input, where the left is a beta DStream and the right is an alpha DStream. As DStreams

are stateless (i.e. they only keep RDDs that are not processed by the system), both input

DStreams are accumulated to corresponding DStates, which contain all the RDDs they

have received, as shown in Figure 3.10.

A customised operator join is defined by the DRESS master for job creation. When

an RDD arrives at one of the two input DStreams of a beta DCluster, the DRESS master

is notified. This RDD is paired with every RDD in the DState corresponding to the other

input DStream. Then, the operator creates one job for each of these RDD pairs.

A beta job consists of two input RDDs (one from each input DStream) and the set

of variable bindings in the system, as shown in Figure 3.11. Similar to the output of

the beta nodes in RETE networks, the RDDs of the beta DStreams contain tuples of

events matching a compound of patterns, while the RDDs of the alpha DStreams contain

events matching a single pattern. Consider an atomic rule r = P1^1 P2^2 · · ·^n�1 Pn! h.

Each logical conjunction ^i joins the beta DStream containing RDDs of tuples of events

55

matching the compound P1 ^1 · · ·^i�1 Pi, and the alpha DStream containing RDDs of

events matching the pattern Pi+1.

DRESS

Network

DRESS Master
Root DStream

Alpha

DStream

Alpha

DStream

Alpha

DStream

Beta

DStream

Beta

DStream

Job Scheduler

DRESS

Network

Beta Job

Batch 1 Batch 2

Worker

Node

Worker

Node

Worker

Node

Worker

Node

Figure 3.11: Beta Job in DRESS

Let rdd1 be the batch of event tuples matching the compound P1^1 · · ·^i�1 Pi and rdd2

be the batch of events matching Pi+1. If there is a variable binding vb that binds a variable

in the pattern Pi+1 to a variable in a pattern Pj,1 j i�1, then the variable binding vb

is applied to tuples of elements in rdd1 and rdd2. The procedure to complete a beta job is

shown in algorithm 2.

The beta DClusters with variable bindings are called variable binding DClusters,

while other beta DClusters are called join DClusters.

3.3.4 Terminal DCluster

The terminal DClusters are a special type of beta DClusters whose output DStreams are

not processed further. They correspond to the terminal nodes of the RETE networks which

represent the activation of rules and perform the actions.

For an atomic rule r = P1 ^1 P2 ^2 · · ·^n�1 Pn ! h, one beta DCluster is created for

each logical conjunction ^i, joining the compound P1 ^1 · · ·^i�1 Pi to the pattern Pi+1.

The beta DCluster created for the last conjunction ^n�1 is called the terminal DCluster of

56

Algorithm 2 Execute beta jobs
1: function BETA_EXECUTOR(rdd1,rdd2,variable_bindings)
2: out put emptyRDD
3: for each x in rdd1 do
4: for each y in rdd2 do
5: for each vb in variable_bindings do
6: pattern1 le f t(vb) . first pattern in the variable binding statement
7: pattern2 right(vb) . second pattern in the variable binding
8: if x matches pattern1 then
9: if y matches pattern2 then

10: if vb(x,y) then
11: t tuple(x,y)
12: append t to out put
13: end if
14: end if
15: end if
16: end for
17: end for
18: end for
19: return out put
20: end function

the rule r.

An RDD of the output DStream of a terminal DCluster consists of tuples of events

matching the conditions of the rule r. Hence, the action h needs to be performed for every

tuple in the RDD. A job is created by the DRESS master for each arrival of an RDD to the

output DStream of the terminal DClusters. The procedure to complete the job is shown in

algorithm 3.

Algorithm 3 Perform actions
1: function TERMINAL_EXECUTOR(rdd,h)
2: for each element in rdd do
3: h(element) . perform the action h for the tuples
4: end for
5: end function

57

3.4 Chapter Summary

This chapter presents the proposed rule-based system DRESS for large event stream pro-

cessing. It begins with the architecture of DRESS and strategies to improve the perfor-

mance of a rule engine, namely dynamic job assignment and micro-batching. It also

presents the the DCluster which is the minimal computing unit of a DRESS network.

This is followed by the introduction to DRESS applications and their executions over the

DRESS architecture. Then, this chapter elaborates the algorithm to construct DRESS

networks from the rules.

Event stream processing with DRESS can be summarised as following steps:

1. A set of rules is designed by human experts. The rules are converted to atomic rules

using logical equivalence laws. Each atomic rule has several variable bindings and

patterns connected by logical conjunctions. An atomic rule is compiled to a DRESS

network.

2. Each pattern of an atomic rule is compiled to an alpha chain of alpha DClusters,

each of which tests one attribute of a given event. An alpha chain selects events that

match its corresponding pattern.

3. The beta DClusters join the events matching different patterns and implement vari-

able bindings.

4. Terminal DClusters are special beta DClusters, whose output is not processed fur-

ther. Instead, Terminal DClusters represent the activations of rules and perform

actions.

58

CHAPTER 4

AUTOMATED TRANSFORMATION FROM
RETE TO DRESS

The transformation from RETE to DRESS networks is time-consuming and prone to hu-

man error. Therefore, this work utilises an MDA based approach to automate this trans-

formation with the help of the SiTra framework.

Section 4.1 introduces the MDA technique. In section 4.2 and 4.3, the meta models

for RETE and DRESS networks are presented. The transformation rules, which map the

elements of the RETE network into their corresponding elements in the DRESS network,

are described in section 4.4.

The SiTra implementation of the transformer is illustrated in section 4.5.

4.1 MDA-based Transformation for RETE Networks

In MDA, a meta-model can be understood as an abstraction of a class of models. It

describes the types of model elements and their interactions. For example, the root node

of the RETE network meta-model in Figure 4.2 interacts with the alpha node, while the

alpha node interacts with the root node, the alpha node itself and the alpha memory.

Models conforming to the meta-model are concrete instances of the meta-model. For

instance, all RETE networks presented in this thesis are concrete instances of the RETE

network meta-model.

59

Given the meta-models of the source and the target models, and a set of transformation

rules 1 that map the model elements and their interactions from the source meta-model

to the target meta-model, the transformation can be automated. Figure 4.1 shows the

transformation process to the DRESS networks from their RETE counterparts generated

by Drools. The RETE and DRESS networks conform to their corresponding meta-models

respectively. A model transformer directs the transformation of a given concrete RETE

network to the target DRESS network, according to the mapping on the meta-model level.

Drools

Rete

Network

Rete

MetaModel

DRESS

MetaMode

Transformation

Rules

<<instance of>>

DRESS

Network

<<instance of>>

Transformation

Construct

DRESS

Construct
Input

Streams

Output Output

MDA

Model

Transformer

(SiTra)

Figure 4.1: Automated Transformation from RETE to DRESS

4.2 Meta-model for RETE Networks

The meta-model for RETE networks is presented in Figure 4.2. A RootNode inter-

acts with zero or more AlphaNodes. An AlphaNode usually interacts with one
1In this thesis, the word ‘rule’ is used in the different contexts of rule-based systems and model transfor-

mations. As they have different meanings, we use the phrase ‘transformation rule’ when there is a chance
of confusion.

60

RootNode and one AlphaMemory, reflecting the scenario where the root node broad-

casts events streams to the alpha nodes and the alpha nodes pass their results to alpha

memories. It is, however, possible for an AlphaNode to have no interaction with

RootNodes and AlphaMemories. This is due to the fact that a chain of alpha nodes

can be created for checking different attributes of the same event and the alpha nodes in

the middle of the chain may interact with other alpha nodes only (see section 2.1.5, page

22).

RootNode AlphaNode

1

BetaNode

WorkingMemory

AlphaMemory

BetaMemoryTerminalNode

0..1 *

0..1*

1 0..1

1

*

1*
Extends

0..1

Figure 4.2: The RETE Network Meta-model

A WorkingMemory is an abstract class, which is further extended by an AlphaMemory

and a BetaMemory. A BetaNode accepts an AlphaMemory and a BetaMemory as

input, and forwards its results to a BetaMemory.

A TerminalNode is a specialised BetaNode whose results are not stored in a

BetaMemory and are sent to the output stream of the system.

An instance of the RETE network meta-model represents a concrete RETE network.

The abstract syntax of the RETE network in Figure 3.7 (page 51) can be captured as an in-

stance (figure 4.3) of the meta-model. This abstract syntax shows that the RootNode in-

teracts with three AlphaNodes, and the AlphaNodes a1, a2 and a3 send their results

to AlphaMemories wa
0 , wa

1 and wa
2 respectively. Moreover, each of the BetaNodes

b1 and b2 accepts one AlphaMemory and one BetaMemory as input, and generates

one BetaMemory.

61

root: Root Node

 + proposition

: Alpha Node

 + proposition

: Alpha Node

 + proposition

: Alpha Node

: Alpha Memory

output

: Beta Memory

transform

: Alpha Memory

: Alpha Memory

: Beta Node

output output

left_input

right_input

: Beta Memory

output

: Beta Node

right_input

left_input

: Beta Memory

output

Figure 4.3: Abstract Syntax of RETE Networks

4.3 Meta-model for DRESS Networks

RootDCluster

0..1

*

RootDStream

AlphaDCluster

BetaDCluster

TerminalDCluster

AlphaDStream

BetaDStream

DStream

DCluster
Extends

Extends

1 1

1 1

0..1 1

0..1

+input

+input

+output

+output

AlphaDState
accumulate

1

0..1

BetaDState
accumulate

0..1

1

right_input1

*

*
left_input

Figure 4.4: The DRESS Network Meta-model

Figure 4.4 shows the meta-model for the DRESS networks. A DCluster is an ab-

stract class, which is specialised into a RootDCluster, an AlphaDCluster and a

BetaDCluster. Moreover, a DStream is also an abstract class which is specialised

into a RootDStream, an AlphaDStream and a BetaDStream. DClusters of each

type send the outputs to their corresponding DStreams. An AlphaDCluster accepts

either a RootDStream or an AlphaDStream as its input and a BetaDCluster has

62

a BetaDStream as its left input, and an AlphaDStream as its right input. Finally,

a TerminalDCluster is a specialised BetaDCluster which represents the activa-

tions of rules of the DRESS network.

4.4 Transformation Rules

This section describes the model transformation process, whereby any RETE networks

conforming to the RETE network meta-model in Figure 4.2 are transformed into DRESS

networks. This requires a set of four transformation rules mapping the elements of the

RETE networks into DRESS networks. Figure 4.5 presents an overview of the correspon-

dence between the elements in RETE and DRESS networks.

Root

Node

Alpha

Node

Working

Memory

Beta

Node

RETE Network

Elements

DRESS Network

Elements

DStream

DCluster

DState

Figure 4.5: Correspondence between RETE and DRESS Networks

4.4.1 Rule 1: Transforming Root Nodes

The transformation maps a RootNode of the RETE meta-model into a RootDCluster

and a RootDStream in the DRESS meta-model, as shown in Figure 4.6. The RootDCluster

of the DRESS network at the model level consists of Spark executors that are responsible

for converting the events from the kafkaStream into a unified format. The map func-

63

tion creates jobs for the batches of events and assigns the adapter function to an avail-

able Spark executors. The output of formatted batches are passed to the rootDStream,

as shown in the target Spark code.

Meta-model Level

 Meta-model Level

Model Level

Model Level

Target Spark Code

rootDStream = kafkaStream.map(adapter)

Figure 4.6: Transformation Rule - Root Nodes

4.4.2 Rule 2: Transforming Alpha Nodes

The transformation rule for alpha nodes in this approach involves the transformations

of the input and the output of the alpha nodes, as well as the alpha nodes themselves.

In DRESS networks, an AlphaDCluster has precisely one input DStream and one

output AlphaDStream. Note that the input of an AlphaDCluster can be either

the RootDStream or an AlphaDStream generated by another AlphaDCluster, as

shown in Figure 4.7. If an AlphaDCluster is originated (transformed) from an alpha

node, which is the last node of an alpha chain, in the RETE network, the AlphaDStream

generated by the AlphaDCluster is accumulated into an AlphaDState.

64

Meta-model Level

 Meta-model Level

Model Level

Model Level

Target Spark Code

alphaDStream_alphaNodeName = inputDStream.filter(propositionName)
alphaDState_alphaNodeName = alphaDStream_alphaNodeName
 .updateStateByKey(updateStateFunc)

Figure 4.7: Transformation Rule - Alpha Nodes

Remark. In Spark, a DStream can be accumulated into a DState using the updateState-

ByKey method. This method requires an function describing how new updates to previous

states are processed.

The input and the output of an alpha node are mapped to the input and output DStream

of the AlphaDCluster. The alpha node itself is mapped to an AlphaDCluster

consists of a filter operator. The proposition corresponding to the alpha node is used to

create the filter operator, as shown in the target Spark code section of Figure 4.7. For

example, the alpha nodes of the RETE network in figure 3.7 will be transformed into the

following Spark code:

alphaDStream_a1 = rootDStream.filter(proposition_a1)
alphaDStream_a2 = rootDStream.filter(proposition_a2)
alphaDStream_a3 = rootDStream.filter(proposition_a3)

alphaDState_a1 = alphaDStream_a1.updateStateByKey(updateStateFunc)

alphaDState_a2 = alphaDStream_a2.updateStateByKey(updateStateFunc)

alphaDState_a3 = alphaDStream_a3.updateStateByKey(updateStateFunc)

65

4.4.3 Rule 3: Transforming Beta Nodes

The transformation for beta nodes involves two types of model elements - the beta mem-

ories and the beta nodes. The input alpha memories and beta memories are transformed

into AlphaDStates and BetaDStates respectively. In addition, the beta nodes are

transformed into BetaDClusters. Moreover, the output beta memory of a beta node

is transformed into a BetaDStream, which is then accumulated into a BetaDState.

As shown in Figure 4.8, a BetaDCluster is created to aggregate two BetaDStates.

This is reflected in the target spark code section of the figure, where the leftInputDState

is joined with the rightInputDState. A join function joinFunc is created to direct

the aggregation of the two inputs.

Meta-model Level

 Meta-model Level

Model Level

Model Level

Target Spark Code

betaDStream_betaNodeName = leftInputDStream
 .transformWith(joinFunc, rightInputDStream)
betaDState_betaNodeName = betaDStream_betaNodeName
 .updateStateByKey(updateStateFunc)

Figure 4.8: Transformation Rule - Beta Nodes

66

4.4.4 Rule 4: Transforming Terminal Nodes

TerminalDClusters are a special type of BetaDClusters. Therefore, they are

transformed using Rule 3. As previously established, each BetaDCluster has an out-

put DStream. RDDs in the output DStream of the TerminalDClusters consists

of tuples that satisfy the conditions and represents the activation of a rule. With Spark

Streaming, this activation is done by applying the action function h on every tuple in

these RDDS.

An example of the target spark code in which the output of the TerminalDCluster

is simply printed out is shown as follows:

def action1(rdd):

rdd.foreach(print)

betaDStream_terminal1.foreachRDD(action1)

In this example, the function action1 is applied to every RDD (batch) in the BetaDStream.

And the function action1 prints out the content of every record in the batch. In real life

scenarios, this action function is taken from the RETE network which is compiled from

the rules. Moreover, this function can perform different types of actions, e.g. inserting

new facts (events) to the system, or passing the records to other systems for future use.

4.5 Transforming RETE to DRESS with SiTra

As previously established, the transformation rules map each element of the RETE meta-

model to an element of the DRESS meta-model. The automation of the transformation

can be made by implementing these rules in SiTra and using its transformer. This section

elaborates the implementation of the SiTra rule that transforms the root node of RETE

networks to root DClusters of DRESS network. The complete SiTra rules can be found

in appendix A.

67

Root Node to RootDCluster

The RootNode of a RETE network is transformed into a RootDCluster with its

output RootDStream in the target DRESS network. This can be achieved by imple-

menting a SiTra rule in which the build method creates the target RootDCluster and

RootDStream, as shown in listing 4.1. The relation between the created RootDCluster

and RootDStream is also defined in this SiTra rule by adding the RootDStream to

the RootDCluster’s children list.

public class RuleRootNode implements Rule<RootNode, RootDCluster>{

...

public RootDCluster build(RootNode source, Transformer t) {

RootDCluster rootDCluster = new RootDCluster("root");

DStream dStream_root = new DStream("root");

rootDCluster.addChild(dStream_root);

return rootDCluster;

}

public void setProperties(RootDCluster target, RootNode source, ...) {

for(Object node: t.transformAll(source.getChildren())){

AlphaDCluster alphaDCluster = (AlphaDCluster) node;

DStream rootDStream = target.getChildren().get(0);

rootDStream.addChild(alphaDCluster);

}

}

}

Listing 4.1: SiTra Rule: RootNode to RootDCluster

According to the RETE meta-model, a RootNode interacts with zero or more AlphaNodes.

This interaction is transformed in the setProperties function after the transformation of the

RootNode is finished. Given the source RootNode and the target RootDCluster,

the transformer recursively transforms the AlphaNodeswhich interact with the RootNode.

Then the interactions between these AlphaNodes and the RootNode are transformed

into the interactions between the AlphaDClusters and the output DStream of the

RootDCluster.

68

4.6 Chapter Summary

This chapter introduces an automated transformation from current RETE based models

to DRESS models. This transformation is based on MDA and meta-modelling. In sec-

tion 4.2 and section 4.3, the meta-models for RETE and DRESS networks are presented.

Section 4.4 describes the transformation rules that map each element of the RETE meta-

model to an element of the DRESS meta-model.

Section 4.5 obtains the target DRESS networks by applying the transformation rules

to RETE networks with the SiTra library.

69

CHAPTER 5

VERIFICATION OF DISTRIBUTED RULE
ENGINES

As an attempt to distribute a RETE-based system, the implementation of DRESS needs to

ensure that, given the same input, it outputs exactly the same stream as the original RETE

system. This chapter describes the method that can be used to verify the correctness of

DRESS.

The verification method has two parts. First, in section 5.2, we verify the correctness

of DRESS without considering the order of the output. Second, in section 5.3, we verify

the preservation of the output order in the proposed model DRESS.

5.1 Formalising DRESS Networks

Both the original RETE system described in Forgy’s paper [31] and DRESS are special

cases of the general RETE-based Systems described in section 2.1. In this section, we

formalise DRESS networks.

5.1.1 Alpha DCluster

In DRESS, each proposition pi of a pattern P is represented by an alpha DCluster Ca
pi
=

{a1
pi
, . . . ,an

pi
} of executors, where n is the cluster size. Mathematically, an executor a j

pi

corresponding to the proposition pi receives a sub-stream of the input stream S �A: A! E

70

of the alpha DCluster Ca
pi

, producing an alpha stream S �A j
p1

.

An executor of the alpha DCluster works in the same way as a RETE alpha node. All

executors in the same alpha DCluster are assigned to the same proposition pi. Consider

an n-partition {X 01, . . . ,X
0
n} of the the domain of S|A. The output of the alpha DCluster Ca

pi

corresponding to proposition pi can be seen as a set of alpha functions:

Ca
pi
=

8
>>>>><

>>>>>:

S|A1
pi

: A1
pi
! E,where A1

pi
✓ X 01^8e 2 img(S|A1

pi
) : pi(e)

. . .

S|An
pi

: An
pi
! E,where An

pi
✓ X 0n^8e 2 img(S|An

pi
) : pi(e)

9
>>>>>=

>>>>>;

The pattern P is represented by an alpha chain of alpha DClusters. Every RDD of the

root DStream Sin : N! E flows through the chain and is processed by one executor of

each alpha DCluster. Hence, given an n-partition {X1, . . . ,Xn} of N, the output of an alpha

chain corresponding to pattern P can be modelled by the following set of alpha functions:

Ca
P =

8
>>>>>>><

>>>>>>>:

S|A1
P

: A1
P! E,where A1

P ✓ X1^8e 2 img(S|A1
P
) :

^

pi2P
pi(e)

. . .

S|An
P

: An
P! E,where An

P ✓ Xn^8e 2 img(S|An
P
) :

^

pi2P
pi(e)

9
>>>>>>>=

>>>>>>>;

The output of an alpha chain is accumulated to a DState. Let]a be the operator that

accumulates the output of alpha DClusters. The above set of alpha functions is aggregated

into a single alpha function]a(Ca
P) = S|AP

: AP ! E satisfying: AP =
Sn

j=1 A j
P, and

S|AP
(k) = ek () 9S|A j

P
2Ca

P : S|A j
P
(k) = ek.

5.1.2 Beta DCluster

In DRESS, a beta DCluster joins a beta DStream and an alpha DStream. Consider the

scenarios in which an RDD arrives at the left input (beta DStream) of a beta DCluster.

71

Each executor in the beta DCluster receives a sub-stream of the input beta DStream, and

receives the accumulation (DState) of the input alpha DStream, as indicated in Figure

5.1. Similarly, in the scenarios where an RDD arrives at the right input (alpha DStream)

of the beta DCluster, the executor receives a sub-stream of the input alpha DStream, and

receives the accumulation of the input beta DStream.

Beta DCluster

RDDs

DStream

Executor

join operator

Executor

join operator

accumulation of RDDs

DState

Figure 5.1: Distributed Beta DCluster

A beta DCluster Cb
i = (b 1

i , . . . ,b n
i) consists of n executors corresponding to the beta

node bi of the original RETE network. Then, the output of a beta DCluster Cb
i can be

modelled by a set of beta functions Sbi
j : N! T mapping an index to a tuple.

Given a beta DCluster Cb
i�1 and an alpha DCluster Ca

i+1, each executor in the beta

DCluster Cb
i joins the output of a function Sbi�1

j in Cb
i�1 and the output of]a(Ca

i+1),

yielding

Cb
i =

8
>>>>><

>>>>>:

Sbi
1 : N! img(Sbi�1

1)⇥ img(]a(Ca
i+1))

. . .

Sbi
n : N! img(Sbi�1

n)⇥ img(]a(Ca
i+1))

9
>>>>>=

>>>>>;

Let]b be the operator that accumulates the output of beta DClusters and s(t) be the

largest index among all events of a tuple t. The above set of beta functions is aggregated

72

into a single beta function]b (Cb
i) = Sbi : N! T satisfying:

tx = Sbi(x) () 9 j9Sbi
k 2Cb

i : tx = Sbi
k (j), and, (5.1)

(tx = Sbi(x))^ (ty = Sbi(y))^ (x < y) () s(tx)< s(ty). (5.2)

5.2 Orderless Equivalence Between RETE and DRESS

For certain applications of rule-based systems, the order of output is not required. For

example, in a hospital system which produces a daily list of patients who have visited the

hospital, the ordering of the patient list is not required because after all what we want is a

list of names.

In this section, we verify the correctness of the transformation from RETE to DRESS

without considering the order of their output. More specifically, we verify that, given the

same input, DRESS generates the same set of rule activations as RETE, even though the

activations themselves may not come in the same order. We call this orderless equiva-

lence.

Definition 5.1. Given two RETE-based systems R and R0, as well as their output streams

represented by functions S : N! T and S0 : N! T respectively. We say that the output

streams of R and R0 are orderlessly equivalent if, by inputting the same stream Sin to

the systems, we have img(S) = img(S0), where img(S) and img(S0) are the images of the

corresponding functions.

Figure 5.2 shows an example of a RETE network and a distributed version of it. Each

node of the RETE network is distributed to a cluster of nodes. Moreover, each arc con-

necting node i to node j is represented by several arcs connecting the nodes in cluster i to

some nodes cluster j. For example, the alpha node a1 in the RETE network is distributed

to cluster Ca
1 and the beta node b1 is distributed to cluster Cb

1 .

As both alpha and beta nodes of the RETE-based systems can be modelled by stream

functions, the output of a RETE network is a single function S while the output of a

73

distribution

RETE Network Distributed RETE Network

Figure 5.2: Example of A Distributed RETE Network

distributed RETE network consists of multiple functions S0j,1 j n, where n is the size

of the terminal cluster. Consequently, the orderless equivalence between the RETE and

the distributed RETE networks becomes the equivalence between the image of function

S and the union of images of functions S0j. In other words, if a tuple t of events reaches a

terminal node bi in a RETE network (thus becomes an element of img(S)), the same tuple

t is expected to reach one node of the cluster Cb
i in DRESS corresponding to bi (thus

becomes an element of img(S0j)).

Reachability Analysis is a technique widely used in verifying the states of Petri Nets

[60, 83, 9]. It can be used to prove the orderless equivalence of two RETE-based systems,

as RETE networks are structurally similar and can be easily converted to Petri nets. In

the following of this section, we define the reachability of the RETE networks and show

how the verification of orderless equivalence of RETE-based systems is carried out using

reachability analysis.

5.2.1 Converting RETE Networks to Petri Nets

Recall the construction method of RETE networks. The RETE algorithm compiles each

atomic rule r into a triangle shaped network, as shown in Figure 5.3.

The method that converts a RETE network to a Petri net is straightforward:

• For each pair of arcs connecting to a beta node bi from the nodes j and k, create a

74

...

...

Figure 5.3: A Triangle Shaped RETE Network

transition then replace the arcs with one arc from j to the transition, one arc from k

to the transition and another arc from the transition to bi.

• All created arcs have weight 1.

• Replace all alpha and beta nodes with places.

The Petri net converted from the RETE network of Figure 5.3 is shown in figure 5.4.

We can now apply reachability analysis techniques for Petri nets on RETE Networks.

...

...

Figure 5.4: RETE Network Represented by Petri Net

75

5.2.2 State of RETE Networks

A state of the RETE network describes how data items are kept across the nodes. A token

(denoted by •) is used to indicate an item that reaches and is stored at a certain node.

One state can transit to another if it is possible. For example, in state 1 of Figure 5.5,

the condition of beta node b1 is satisfied (both of its left and right input nodes have valid

tokens). Thus a transition to state 2 is possible where tokens of a1,a2 are removed and a

token is added to b1.

state 1 state 2 state 3

Figure 5.5: State Transition of RETE Networks

A state can be represented by a marking. A marking M = (Ia1 , . . . , Ian , Ib1 , . . . , Ibm) is

a set of integers indicating the numbers of tokens at each node of a RETE network with n

alpha nodes and m beta nodes. Specifically, Iai is the number of tokens in alpha node ai

while Ib j is the number of tokens in beta node b j.

For example, the states of Figure 5.5 can be represented by the marking schema M =

(Ia1 , Ia2 , Ia3 , Ib1 , Ib2), where states 1,2 and 3 are represented by M1 = (1,1,1,0,0),M2 =

(0,0,1,1,0) and M3 = (0,0,0,0,1) respectively. In the remaining of this section, we use

the term marking and the term state interchangeably.

Definition 5.2 (transition of marking). An one-step transition from a state M0 to a state

M00 inserting a token to node b 0 is denoted by M0
b 0

M00. A marking M00 is reachable

from marking M0 if there exists a transition sequence that transforms M0 to M00, and this

is denoted by M0 ⇤ M00.

76

Hence, in the example of Figure 5.5, we have M1 M2 M3, and M1 ⇤ M3

5.2.3 Reachability Graph for RETE Networks

A reachability graph is a directed graph which describes the state transitions of a system.

The nodes of a reachability graph correspond to the markings reachable from the initial

marking, one node per marking. The arcs are one-step transitions from one marking to

another. Figure 5.6 shows an example of two reachability graphs.

Definition 5.3. Given two reachability graphs G with n markings and G0 with m markings,

we say that G0 simulates G if and only if

• G0 has more markings than G, i.e. m > n and,

• there is one and only one way to divide the markings of G0 into n groups (g1, . . . ,gn)

and associate each of the groups with a unique marking in G, such that for any pair

of groups gi, g j associated with marking Mi and Mj in G respectively, Mi Mj ()

8M 2 gi9M0 2 g j,M M0.

For example, in Figure 5.6, the reachability graph G2 on the right hand side simulates

G1 on the left side, because G2 has more markings than G1 and the markings of G2 can be

divided into 5 groups: g1 = (M00), g2 = (M01), g3 = (M02,1,M
0
2,2), g4 = (M03,1,M

0
3,2,M

0
3,3),

g5 = (M04,1,M
0
4,2). Let gi be associated with Mi�1. We can see this is the only way to

satisfy the second condition of the reachability graph simulation.

Definition 5.4. The reachability graph of a RETE network, with respect to the initial

marking M0, is a graph of all reachable markings.

As the numbers of tokens in alpha nodes are unbounded, in the following diagram

the alpha part of the marking is omitted. Figure 5.7 shows the reachability graph for the

example in Figure 5.3.

A simplified reachability graph considers only zero or non-zero numbers of tokens, as

shown in Figure 5.8.

77

Figure 5.6: Simulation of Reachability Graphs

Figure 5.7: Reachability Graph for the RETE Network in Figure 5.3

5.2.4 Reachability Analysis for RETE Networks

Theorem 5.1. Consider a RETE network R and a distributed version of it R0. Assume

reachability graphs G and G0 represent the state transitions of R and R0 respectively.

The output streams of R and R0 are orderlessly equivalent if and only if the following

conditions hold:

1. G0 simulates G.

2. Assume R is in a state Mi in G and R0 is in a state M0i in G0, where the group

consisting M0i is associated with Mi. When the same event e arrives at both systems,

if Mi transits to Mj and M0i transits to M0j, then the group consisting M0j is associated

with Mj.

78

Figure 5.8: Simplified Reachability Graph

3. Consider marking Mi in G and M0i in G0, where the group containing M0i is asso-

ciated with Mi. Consider further a beta node b j in R which is distributed to the

cluster Cb
j in R0. If a one-step transition to Mi adds a token to b j , then a one-step

transition to M0i adds a token to a beta node in the cluster Cb
j .

Proof. P1: R and R0 both start with their initial markings M0 and M00 respectively. From

Definition 5.3, we know that the group containing M00 is associated with M0. Inductively,

from the second condition of Theorem 5.1, we know when R is in a state My, R0 is always

in a state M0y whose group is associated with My if both systems are given the same input

stream.

P2: Let M = (Ib1 , . . . , Ibn) be the marking schema of G, where Ibi is an integer indi-

cating the number of tokens at node bi in R. Let b j be a terminal node. Assume after

many transitions, G starts from the initial marking M0 = (. . . , Ib j = 0, . . .) and ends up at

marking Mk = (. . . , Ib j 6= 0, . . .), where the value of Ib j is incremented by 1. Then, we

have a sequence of one-step transitions x1 = (M0
bx1 My1

bx2 My2 ⇤ Mk).

From P1, we know, given the same input stream, R0 also has a sequence of one-

step transitions x2 = (M00
b 0x1 M0y1

b 0x2 M0y2
 ⇤ M0k). Moreover, the group containing

M0y is associated with My. From the third condition of Theorem 5.1, we know for any

transitions
bx in x1 resulting a token being added to the beta node bx in R, there is a

transition in x2 resulting a token being added to a beta node b 0x in R0. Also b 0x is in the

79

cluster corresponding to bx in R.

P3: As R is a RETE-based system, the conditions presented by all beta nodes along

the path from the root to b j must be satisfied in order to increment Ib j . Hence, there

is a sub-sequence x 01 = (
b1

,
b2

, . . . ,
b j
) of x1 which contains transitions leading to the

addition of a token to the terminal node b j. From P1 and P2, we know there is a sub-

sequence of x2 resulting a token being added to a beta node b 0j in R0, where b 0j is a node

in the cluster distributed from b j.

P4: From P1, P2 and P3, we know for any token that reaches a terminal node of R,

there is a same token that reaches a node in a terminal cluster of R0.

In the following section, we prove that the reachability graphs of the original RETE-

based system and DRESS satisfy the assumptions of Theorem 5.1. Hence, we prove that

the two systems are orderlessly equivalent.

5.2.5 Reachability of DRESS Networks

Lemma 5.1. Given a RETE network R and its DRESS representation D, the reachability

graphs GD of D and GR of R satisfy the conditions of Theorem 5.1.

Proof. Consider the minimum RETE network with 2 alpha nodes and 1 beta node, and its

representation in DRESS, as shown in Figure 5.9. Alpha nodes a1 and a2 in the RETE

network are distributed to alpha clusters Ca
1 and Ca

2 in DRESS respectively, and the beta

node b1 is distributed to the beta cluster Cb
1 .

Markings of the reachability graph for the minimum RETE network contain only one

integer indicating the number of tokens in b1. The initial marking is M0 = (0), which

transits to M1 = (1) if the condition of b1 is satisfied, as shown in the left side of Figure

5.10.

Condition 1: Markings of the reachability graph for the DRESS representation con-

tain n integers for node b1 (where n is the cluster size). The initial marking is Md
0 =

(0,0, . . .) and there are 2n�1 reachable markings because each integer can be either 0 or

80

1. Let g1 = (Md
0) and g2 = (Md

1,1,M
d
1,2,M

d
1,3) (all other reachable markings), and associate

g1, g2 with M0,M1 respectively. From definition 5.3 we know the DRESS reachability

graph simulates the RETE reachability graph for the minimum network.

Condition 2: Consider the transition from the initial marking M0 to M1 in the RETE

reachability graph in Figure 5.10. The transition describes the state change where a token

is inserted to the initially empty node b1 because its condition is satisfied. A one-step

transition from the initial marking Md
0 = (0,0, . . .) of DRESS can lead to markings Md

1,1 =

(1,0, . . .) and Md
1,2 =(0,1, . . .) where both belong to the group g2 which is associated with

marking M1. Similarly, for the transition from M1 to itself, we can see the condition 2 of

Theorem 5.1 is satisfied.

Condition 3: In Figure 5.9, when there are valid tokens in a1 and a2, the condition

of b1 is satisfied, which results in a transition from M0 to M1 in Figure 5.10 where a token

is added to b1. In DRESS, when there are valid tokens in one of the nodes of the alpha

cluster Ca
1 and one of the nodes in Ca

2 , the condition of one beta node in cluster Cb
1 is

satisfied hence a token is added to that beta node. This causes a transition from Md
0 to one

marking of the group g2. Similarly, for the transition from M1 to itself, the condition 3 of

Theorem 5.1 holds.

RETE DRESS

Figure 5.9: Minimum RETE Network and Its DRESS Representation

81

RETE DRESS

Figure 5.10: Reachability Graphs for Minimum RETE and DRESS Networks

...

...

Figure 5.11: RETE Network with i Beta Nodes

Consider a RETE network of i� 1 beta nodes as shown in Figure 5.11, and assume

the conditions of Theorem 5.1 are satisfied for its DRESS representation.

When a new beta node bi is added to the network, the marking schema Md of DRESS

expands to contain one additional set of integers Id
bi
= (Id

bi,1
, Id

bi,2
, Id

bi,3
), yielding

Md = (. . . , Id
bi�1

, Id
bi
, . . .).

Condition 1: The reachability graph of the RETE network with i� 1 beta node

has i� 1 markings. For each marking Mj = (Ib1 , . . . , Ibi�1) for the RETE reachabil-

ity graph, we create a group g j for its DRESS representation and assign all markings

Md
j = (. . . , Id

bi�1
, Id

bi
, . . .) to g j, if Md

j satisfies 8Ibi 2Mj,8x 2 Id
bi

: Ibi = 0 () x = 0.

The conditions for a transition inserting a token to beta node bi in the original RETE

82

network are: 1) there exists valid token(s) in node bi�1, and 2) there exists valid tokens in

ai+1.

According to our assumption, (Id
i�1) contains at least one non-zero value, and at least

one of the integers of Id
ai+1

is non-zero. As the alpha DState is an accumulation of the

output of the DCluster, we have a transition in the DRESS reachability graph. Hence,

from definition 5.3, the DRESS reachability graph simulates the RETE reachability graph.

Condition 2,3: Consider a transition from Mi = (. . . , Ibk�1 6= 0, Ibk = 0, . . .) to Mj =

(. . . , Ibk�1 6= 0, Ibk 6= 0, . . .) in the RETE reachability graph, where a token is inserted

to the beta node bk. This transition requires a valid token in the beta node bk�1 and a

valid token in the alpha node ak+1. Assume the DRESS reachability graph transits from

Md
i = (. . . , Id

bk�1
, Id

bk
, . . .) to Md

j = (. . . ,(Id
bk�1

)0,(Id
bk
)0, . . .). We know at least one integer

in each of Id
bk�1

and Id
ak+1

is non-zero. Hence a transition is made and one integer of Id
bk

will be incremented. Base on how the groups are created above, we know that if Md
i

is associated with Mi then Md
j is associated with Mj, because Ibk and Id

bk
are the only

number(s) that have been incremented.

Theorem 5.1 and Lemma 5.1 immediately lead to the following corollary.

Corollary 5.1. Consider a RETE based system R and its DRESS representation D receiv-

ing the same input. The output streams of D and R are orderlessly equivalent.

5.3 The Preservation of Ordering in DRESS Networks

In this section, we will verify that the transformation from a RETE network to a DRESS

network preserves the ordering of their output streams. In order to do so, we need to

define the ordering first.

Definition 5.5. Given an output stream of a RETE based system represented by function

S : N! T, we say a tuple ti = S(i) is placed in S before a tuple t j = S(j) if and only if

83

i < j.

ti
S
� t j denotes this order within the context of S.

In this section, we focus on the order preservation of RETE based system. Hence,

the definition of ordering equivalence needs to be general enough to cover the situations

where the output streams contain different set of elements.

Definition 5.6. Consider two RETE based systems R and Rd receiving the same input

stream, yielding the output streams SR : N! T and Sd : N! T, respectively. Let S be the

intersection of the images of SR and Sd. We say that Rd preserves the output order of R, if

8(t, t 0) 2 S⇥S : t
SR

� t 0 () t
Sd

� t 0.

Consider the function Sb0 : N! T presenting the output of the first beta memory wb
0

of a RETE network adapted from the first alpha memory wa
1 without further processing.

The image of Sb0 contains 1-tuples of all elements from the image of the function S�Api
:

Api ! E. Since Api is a subset of N and S�Api
is a stream function, meaning that the

events arrive at wa
1 in the order of ascending indices, event indices j 2 Api are mapped to

incrementing indices of the first beta memory wb
0 , as shown in Figure 5.12.

Figure 5.12: Indices of the first beta memory

Therefore, the order of tuples in wb
0 is defined by the indices of events they contain.

In other words, for a given pair of tuples ti = Sb0(i) = (ex) and t j = Sb0(j) = (ey), ti
Sb0
�

t j () i < j () x < y.

We now consider the order of output streams for other beta memories.

Lemma 5.2. Given a RETE network R and the output stream Sb : N! T of any beta

memory b in R. Consider a pair of tuples (ti, t j), where ti = Sb (i) and t j = Sb (j). Let

s(t) be the largest index among all events of the tuple t. Then, ti
Sb

� t j () s(ti)< s(t j).

84

Proof. Let Sin : N! E be the input stream to R and k 2 N be the largest index of events

that the system has received so far.

ti
Sb

� t j () i < j (definition 5.5) (5.3)

() ti arrives at one of the terminal nodes before t j (5.4)

() 9k : (8ex 2 ti,x k)^ (9ey 2 t j,y > k) (5.5)

() 9ey 2 t j : 8ex 2 ti,y > x (5.6)

() s(ti)< s(t j) (5.7)

Theorem 5.2. Consider a RETE network R and its DRESS representation D. If R and D

are both given the same input stream, then D preserves the output ordering of R.

Proof. In DRESS, x < y does not necessarily mean event ex arrives in the system before

event ey, thus the proof of the statement of lemma 5.2 for DRESS would be problematic.

However, the aggregation operators]a and]b (see section 5.1.2) ensure that tuples t

from the stream SD are output in an order according to s(t).

Let SR : N! T and SD : N! T be the output streams of R and D respectively. For

any given pair of tuples ti = SR(i) and t j = SR(j), if there is a pair of tuples tx = SD(x) and

ty = SD(y) such that ti = tx and t j = ty, without loss of generality assume tx
SD

� ty.

tx
SD

� ty () x < y (definition 5.5) (5.8)

() s(tx)< s(ty) (definition of]b) (5.9)

() s(ti)< s(t j) (ti = tx, t j = ty) (5.10)

() ti
SR

� t j (lemma 5.2) (5.11)

85

Equation (5.11) indicates the output stream of the DRESS representation of a RETE

network preserves the output order. In other words, for any given pair of tuples (t, t 0) 2

img(SR)⇥ img(SD), t
SR

� t 0 () t
SD

� t 0.

5.4 Chapter Summary

This chapter begins with a formalisation of the DRESS networks by using the same nota-

tions introduced in section 2.1. This is followed by a 2-step verification for the transfor-

mation from RETE networks to DRESS networks.

In section 5.2, we prove that the DRESS model transformed from a RETE model pro-

duces the same set of outputs as the RETE model, given the same input. This is achieved

by reachability analysis. In addition, in section 5.3, we investigate the preservation of

the output order in the DRESS model. This opens a possibility to further improve the

performance of certain applications of DRESS by removing some constraints related to

order preservation in the model, given the application does not concern the output order.

86

CHAPTER 6

BENCHMARKING DISTRIBUTED RULE
ENGINES

This chapter evaluates the proposed model (DRESS) and the automated transformation

by a benchmark. It starts with a case study of DRESS in Section 6.1. In Section 6.2,

we present a generic benchmark for rule-based event stream processing. Section 6.3 then

studies the performance and scalability of DRESS by using the benchmark.

6.1 An Example of A DRESS Application

This section describes an example of a DRESS application based on a simplified version

of the banking benchmark[1]. A banking system contains three major classes: CashFlow,

AccountingPeriod and Account. Each Account object contains the information of one

customer. The AccountingPeriod contains the starting and ending dates of each account-

ing period and the CashFlow contains the account, the amount and the type (DEBIT or

CREDIT) of a transaction.

This benchmark comes with a data generator and a set of rules that calculate each

customer’s balance at the end of each AccountingPeriod. The rules written in Drools’

format are listed below:

rule "1 - Credit Cashflow"

when

87

AccountingPeriod($start:start_date, $end:end_date)

$flow:Cashflow($account:account,

date<=$end && >=$start, $amount:amount,type==CREDIT)

then
$account.setBalance($account.getBalance()+$amount);

retract($cashflow);

end
rule "2 - Debit Cashflow"

when
AccountingPeriod($start:start_date, $end:end_date)

$flow:Cashflow($account:account,

date<=$end && >=$start, $amount:amount,type==DEBIT)

then
$account.setBalance($account.getBalance()-$amount);

retract($cashflow);

end

We can observe the propositions, the variable bindings, and the actions from the rules:

Propositions:

A: exists AccountingPeriod

B: exists CashFlow and its type is DEBIT

C: exists CashFlow and its type is CREDIT

Variable Bindings:

D: the date of B is between the starting and ending dates of A

E: the date of C is between the starting and ending dates of A

Actions:

F: update balance for corresponding AccountingPeriod

Each of the propositions is compiled into an alpha chain that terminates at an alpha

memory by the RETE algorithm as described in Chapter 2. In addition, each variable

binding is compiled into a beta node and a beta memory. The resulting RETE network for

the banking rules is showed in Figure 6.1.

The automated transformer described in Chapter 4 transforms the RETE network into

a DRESS network based on the transformation rules. The resulting DRESS network is

shown on the right hand side of Figure 6.1.

88

Root

Accounting
Period(AP)

CashFlow

CashFlow
(DEBIT)

CashFlow
(CREDIT)

DEBIT
CashFlow

(during AP)

CREDIT
CashFlow

(during AP)

Root
DCluster

Root
DStream

Alpha
DCluster

AP

Alpha
DStream

AP

Alpha
DCluster

CashFlow

Alpha
DCluster
DEBIT

Alpha
DCluster
CREDIT

Alpha
DStream
DEBIT

Alpha
DStream
CREDIT

DState
AP

DState
DEBIT

DState
CREDIT

Beta
DCluster
DEBIT

during AP

Beta
DCluster
CREDIT

during AP

DStream
Beta 1

DStream
Beta 2

DState
Beta 1

DState
Beta 2

RETE Network DRESS Network

Figure 6.1: RETE and DRESS Networks for the Banking Benchmark

The DRESS network is then executed by DRESS with the Spark Framework. Con-

sider that an input stream is sent to the system. DRESS assigns a set of executors from

the root DCluster to convert the format of the events from the input stream. Each of the

executors receives a micro batch of the input stream and produces a batch of events with

the unified format. All output batches from the root DCluster are aggregated into the root

DStream. Afterwards, alpha DClusters are appointed to process the batches from the root

DStream. For example, the Alpha DCluster (AccountingPeriod) produces a DStream con-

sisting of batches of AccountingPeriod events, and these batches are stored in the DState

(AP). Similarly, CashFlow events with type DEBIT and CREDIT are stored in the DState

(DEBIT) and the DState (CREDIT) respectively. Then, beta DClusters creates tuples

consisting of DEBIT and CREDIT CashFlow events with their corresponding Account-

ingPeriods. As both beta DClusters in this example are terminal DClusters, the actions of

the rules are performed for every tuple created by the beta DClusters.

89

This example shows the process of applying DRESS to event stream processing.

Firstly, a set of rules is created by domain experts. Then, these rules are compiled by

the RETE algorithm into a RETE network. Secondly, the automated transformer trans-

forms the RETE network into a DRESS network which is executed by DRESS with the

help of the Spark framework. The event stream is split into micro batches and processed

by the DRESS network. Finally, the actions of the rules are performed by the terminal

DClusters.

6.2 SONA: A Benchmark for Rule Engines

Many benchmarks [37, 54, 11] have been developed in both industry and academia to

evaluate the performance of rule engines. Miss Manners [11] is one of the most popular

benchmarks which can be used to compare the performances among different rule en-

gines. It is based on the problem of finding an acceptable seating arrangement for guests

at a dinner party. The requirement is that each guest is seated next to someone of the

opposite sex who shares at least one hobby. This benchmark is designed to stress the beta

nodes of a small and simple RETE network. This RETE network is compiled from a set

of eight rules based on a depth-first search solution to the problem. In addition, it is esti-

mated that with 128 guests, the rule engine will need to perform several hundred million

evaluations.

Although these benchmarks are useful to test certain characteristics of rule engines,

there are some issues:

• They usually have a very small number of rules.

• They focus on the worst-case scenarios, which are rarely encountered in real-world

applications.

• They ignore streaming applications of rule engines, i.e. they test the performance

of rule engines by inputting data into the system all at once.

90

This section presents the SONA benchmark for rule engines. SONA is a highly con-

figurable benchmark that focuses on the execution time of rule-based event stream pro-

cessing systems.

SONA is based on a planning problem. A company needs to plant flowers in a group

of gardens. Due to different soils in the gardens, each has a different set of requirements

for the flowers. Also, for the purpose of variety, there are some requirements on the types

of flowers to be planted among the gardens. For example, two gardens next to each other

should have flowers of different colours. The company wants to know their options and

examine an appropriate sequence of flower data.

This problem can be easily solved by a rule engine with a set of rules. More specifi-

cally, we can create a rule for each garden to select suitable types of flowers to be planted,

and these rules can be implemented as the alpha nodes of a RETE network. Then, for each

of the flower requirements among gardens, we create a rule to join the output streams of

two existing rules.

The SONA benchmark consists of a data generator and a configuration. The configu-

ration is a tuple (g,a,b,d,s), where

g is the number of the gardens, which decides the number of join (beta) nodes in the

network.

a is the number of the requirements each garden has for the flowers to be planted,

which decides the number of filter (alpha) nodes in each alpha chain.

b is the number of the flower requirements across gardens, which decides the number

of beta nodes with a variable binding.

d is the size of the data set, i.e. the number of flowers.

s is the amount of flower data generated per second.

SONA is generic and highly configurable, which means that, by adjusting the variables

of the configuration, it is able to stress some or all aspects of the rule engines. For RETE

91

based systems, the numbers of alpha nodes and beta nodes scale with the configuration

variables a and g, respectively. In addition, the data size scales with the variable d and

variable s controls the speed of the data generation.

6.3 Evaluating DRESS with SONA

In this section, we study the performance of DRESS by using the SONA benchmark.

In Section 6.3.1, we show how the RETE network from a SONA configuration is cre-

ated and transformed into a corresponding DRESS network. Section 6.3.2 discusses the

performance of DRESS.

6.3.1 Experiment Setup

The Rules

To illustrate the use of the SONA benchmark with DRESS, a minimal configuration (g =

3,a= 2,b= 1,d,s) can be employed. This configuration results in a problem consisting of

three gardens. Each garden has two requirements for the flowers and there is one addition

requirement on the types of flowers to be planted between two gardens.

Rules written in the Drools’ format can be created for this configuration. The variable

a = 2 controls the number of flower requirements each garden has. Hence, for each of

the three gardens, a rule with two propositions is created. For example, for garden g1, we

have:

rule "Select suitable flowers for garden g1"

when
$f : Flower(property1=requirement1, property2=requirement2)

then
Tuple t = new Tuple()

t.first = "g1"

t.second.put("g1", f)

insert(t)

end

92

This rule selects all flowers satisfying requirement1 and requirement2 of the

garden g1 and inserts a tuple to the system. The second element of this tuple is a map

from gardens to selected flowers (with current rules, it contains one garden), and the first

element is a symbol representing the list of gardens these flowers can be planted into.

To join the results for the two gardens g1 and g2 with a variable binding, we can create

a rule which selects two tuples satisfying the requirements of g1 and g2 and creates a

variable binding:

rule "Select suitable flowers for garden g1&g2 with a variable binding"

when
$t1 : Tuple(first="g1")

$t2 : Tuple(first="g2")

t1.second.get("g1").property1 == t2.second.get("g2").property2

then
Tuple t = new Tuple()

t.first = "g1&g2"

t.second.putall(t1.second)

t.second.putall(t2.second)

insert(t)

end

This rule requires the variable property1 of flowers in garden g1 to be equal to the

variable property2 of flowers in garden g2.

Then another rule can be created to join the flowers suitable for garden g3 and the

pairs of flowers suitable for g1 and g2.

rule "Select suitable flowers for garden g1&g2&g3"

when
$t1 : Tuple(first="g1&g2")

$t2 : Tuple(first="g3")

then
Tuple t = new Tuple()

t.first = "g1&g2&g3"

t.second.putall(t1.second)

t.second.putall(t2.second)

insert(t)

end

Finally, for every found solution to the problem, a rule is created to perform the action:

93

rule "Action for found flowers suitable for garden g1&g2&g3"

when
$t : Tuple(first="g1&g2&g3")

then
// action.

end

The RETE Network

Depending on different optimisation strategies, the above rules may be compiled into

several RETE networks, e.g. one RETE network for each rule. The terminal nodes of

these RETE networks add new facts, which are defined by the action part of the rules,

into the system. Adding new facts introduces extra time for transferring the data, which

distracts the effort to test the performance of the engine. In order to avoid this distraction,

we merge the rules into a single rule as follows:

rule "Select suitable flowers for garden g1&g2&g3"

when
$f1 : Flower(<g1: proposition 1>, <g1: proposition 2>)

$f2 : Flower(<g2: proposition 3>, <g2: proposition 4>)

$f3 : Flower(<g3: proposition 5>, <g3: proposition 6>)

<g1&g2: proposition 7>

then
// action.

end

The patterns f1, f2 and f3 are compiled into alpha chains by the RETE algorithm.

Each of the chains has two alpha nodes compiled from the corresponding propositions

of the patterns. Moreover, the variable binding (proposition 7) is represented by the beta

node b1, which selects elements that satisfy the variable binding from the alpha chains of

pattern f 1 and pattern f 2. Finally, the beta node b2 joins the outputs of b1 and the alpha

chain of f3. The resulting RETE network is shown in Figure 6.2.a.

Remark. The following can be observed from Figure 6.2.(a). Given a SONA configura-

tion (g,a,b,d,s), the generated RETE network contains g⇥ a alpha nodes, which form

g alpha chains. The number of beta nodes is g� 1. In addition, b of the beta nodes are

94

variable binding nodes and the rest are join nodes.

()

Root

(join)

(a) RETE Network

Root

DCluster

Root

DStream

DCluster

DCluster

DCluster

Alpha

DStream

Alpha

DStream

Alpha

DStream

DCluster

 ()

Beta

DStream

DCluster

 (join)

Beta

DStream

Beta

DState 1

Beta

DState 0

DCluster

DCluster

DCluster

Alpha

DState 1

Alpha

DState 2

Alpha

DStream

Alpha

DStream

Alpha

DStream

Beta

DState 2

(b) DRESS Network

Figure 6.2: RETE and DRESS Networks for the SONA Benchmark

The DRESS network

As previously established, the RETE network representing the rule can be automatically

transformed into a DRESS network. The root node, alpha nodes and beta nodes are

transformed into corresponding DClusters, each of which has an output DStream.

The alpha and beta memories are transformed into DStates. This transformation results

in a DRESS network, as shown in Figure 6.2.(b). The target Spark code can be found in

appendix B.

Afterwards, this DRESS network is executed on the Spark platform. In the following

95

section, we evaluate the performance of DRESS with different SONA configurations.

6.3.2 The Performance of DRESS

This section conducts three experiments to investigate DRESS in regards to the aspects of

capability, performance and scalability. The first two experiments set the variable d and s

of the SONA configurations to the same value, which means the data is inserted into the

system at once. The third experiment evaluates DRESS from the streaming point of view,

by adjusting the value of the variable s.

Experiment 1: Comparison of DRESS and Drools

The first experiment compares DRESS with Drools in order to evaluate the capability

of DRESS. Due to the limitations of Drools, this experiment was conducted on a single

machine with the following hardware specifications:

CPU 2.2GHz 6-core Intel Core i7
Memory 16 GB 2400MHz DDR4

Disk 256GB SSD
Java Version 1.8.0_60

JVM Java HotSpot(TM) 64-Bit Server
VM (build 25.60-b23, mixed mode)

As of version 6.2.0, the execution engine of Drools runs on a single thread. For fair

competition, the number of executors for DRESS is set to 1. In addition, the maximum

memory is set to 8GB for both systems.

96

0
20
40

60
80

100
120
140
160
180

10K 100K 1M 5M 10M

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Data Size (d=s)

Performance Comparison of DRESS and Drools

g=3,a=2,b=1 (Drools)

g=3,a=2,b=1 (DRESS)

g=a=b=100 (Drools)

g=a=b=100 (DRESS)

Figure 6.3: Performance Comparison of DRESS and Drools

Two SONA configurations are used in this experiment, including the one described in

section 6.3.1. For the other configuration, the values of the variables g, a and b are all

set to a hundred, which means the numbers of gardens, alpha chains, nodes in each alpha

chain and beta nodes are set to a hundred. Moreover, the variables d and s are set to an

equal value which scales up to 10 million. These two configurations and the five different

values (10K, 100K, 1M, 5M, 10M) of d and s make up ten tests for both systems. Each

test was performed a minimal 2 times and the average execution time was recorded. If

the difference between the test results exceeds 10%, further tests were performed until

confidence was reached.1 The results are shown in Figure 6.3.

As can be seen in the results, DRESS and Drools have a similar performance on a

single machine. More specifically, Drools is slightly faster with both configurations. A

possible reason for why Drools outperforms in this experiment is that DRESS has the

overhead of managing the cluster and scheduling jobs, even though there is only one node

in this cluster.

It is important to note that there is no result for Drools with configuration (g = a =

b = 100,d = s = 10M), while DRESS completed the test in around 166 seconds. This is

because Drools crashed due to a memory explosion. Although we can enable Drools to
1We define the confidence as the average of the absolute differences (in percentage) to the mean value

does not exceed 10%.

97

work on larger data sizes by installing more memory, it is clear that its memory model is

less flexible in terms of garbage collection, which makes it incapable of processing large

data sets.

This experiment shows that DRESS is capable of processing larger data sets than

Drools even on a single machine. It also shows that DRESS can provide a comparable

performance to Drools.

Experiment 2: Scalability of DRESS

This experiment evaluates the scalability of DRESS by running the SONA benchmark

on a fully distributed environment. The variables g, a and b are set to a hundred, and

the variables d and s are set to the same value, which scales up to 100 million. This

experiment was conducted on an Amazon Web Services (AWS) cluster with 12 nodes.

Each of these nodes has two vCPUs (cores) and 3.75 GB memory, which makes up a total

of 24 executors for Spark. These executors are running on 2.9 GHz Intel Xeon E5-2666

v3 CPUs and the software specifications remain the same as experiment 1. In addition,

two nodes of the same specifications were used for the Kafka message queue.

Five tests with different numbers (4,8,12,16,24) of available executors were performed

in order to evaluate how DRESS scales with more computing resources. The results are

shown in Figure 6.4.

98

0

200

400

600

800

1000

1200

1400

1600

1800

4 Executors 8 Executors 12 Executors 16 Executors 24 Executors

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Number of Executors

Performance of DRESS on cluster of different sizes

1M

10M

30M

50M

100M

Figure 6.4: Performance of DRESS on clusters of different sizes

As shown, the number of executors has a minimal impact on the execution times of

DRESS with smaller data sets (1M and 10M). Specially, for the 10M data set, 24 executors

took slightly more time to complete the test than 4 executors. This is due to the fact that

the overhead of managing 24 executors exceeded the time needed for the processing.

When the data size goes over 30M, the execution time declines with more executors.

For example, the employment of 24 executors halved the execution time that 4 executors

needed for the 100M data set. It can also be observed from the results that, for the 100M

data set, the execution time declines dramatically from 4 executors to 16. However, after

adding 8 more, 24 executors did not bring further noticeable improvement.

This experiment has drawn two major conclusions, one of which is that the perfor-

mance of DRESS with large data sets can be improved by adding more computing re-

sources (executors). This shows the scalability of DRESS for large event stream process-

ing.

The other conclusion is that there is a limit to such improvements, and when the limit

is reached, adding more executors will not reduce the execution time. This limit is a

result of several factors. First, stateful computation over the input streams cannot be fully

99

parallelised. More specifically, there are event sequences in which the processing of one

event relies on the processing of another. If the input stream as a whole is one such

sequence, the improvement brought by parallelisation will be minimal. Second, when

the time needed to process the data on a cluster gets close to the overhead of cluster

management and data transferring, adding more nodes will not contribute to the effort of

parallelisation.

Experiment 3: Performance of DRESS for Event Stream Processing

The third experiment evaluate the performance of DRESS specially for applications of

event stream processing. The same hardware environment of experiment 2 is used and the

SONA configuration is fixed to (g = a = b = 100,d = 100M,s = 1M). This experiment

focuses on the response time of DRESS when dealing with large data sets. The response

time refers to the time duration from the moment of receiving one event by the system to

the moment of outputting results corresponding to that event. The maximum and average

response times for this test are recorded, as shown in Figure 6.5.

0

10

20

30

40

50

60

70

4 Executors 8 Executors 12 Executors 16 Executors 24 Executors

Re
sp

on
se

 T
im

e
(s

ec
on

ds
)

Number of Executors

Response Time of DRESS on cluster of different sizes

max

avg

Figure 6.5: Response Time of DRESS on clusters of different sizes

As figure 6.5 shows, the maximum response time of 4 and 8 executors is above 60

100

seconds. It drops to 46 seconds with 12 executors, and drops further to 22 seconds with

16 and 24 executors. The maximum response time of the system usually happens as a

result of a task failure, e.g. an incoming event is corrupted during the network transfer.

The results indicate that, with fewer executors, the system takes longer to find available

executors in the case of a node failure, as other nodes are most likely occupied by other

tasks.

The average response time improves steadily from 30 seconds with 4 executors to 8

seconds with 16 executors. There is no further improvement from 16 to 24 executors.

This is due to the same limit reflected in the second conclusion of experiment 2.

Discussion

These experiments show the capability, performance and scalability of DRESS.

In experiment 1, DRESS was able to process larger data sets than Drools, as a benefit

of building the rule engine with a general purpose stream processing paradigm which

excels in memory management.

Experiment 2 and 3 demonstrated the scalability and performance of DRESS in the

processing of large data sets on distributed clusters of different sizes. The results show

that DRESS reduces both the execution and response time by adding more computing

resources. However, they also show that there is a ceiling of the improvement brought

by distribution. This is due to the stateful computation and the overhead of managing

the clusters, although the latter had a relatively smaller impact. More specifically, the

improvement relies heavily on the portion of data that requires stateful computation.

Some research has been conducted to parallelise stateful computations[28, 24, 87].

For example, [24] studied and introduced a set of state access patterns for managing

access to states in parallel computations over streams. The authors identified some cases

in which there are clearly defined and restricted state updates and parallelism can be

exploited because of the restrictions. However, these works are still in the early stages

and can only provide limited parallelism. Hence, high level parallelisation for stateful

101

computations remains an open research question.

6.4 Chapter Summary

This chapter evaluates the performance of the proposed approach (DRESS).

Section 6.2 presents SONA (a benchmark for rule based event stream processing) as

a scalable and configurable alternative to current evaluation frameworks for rule engines.

Section 6.3 begins with a minimal example, showing how SONA is used in evaluating

the performance of DRESS, as well as the automated transformation process. This is

followed by experiments with different configurations of SONA. The results are presented

and discussed in section 6.3.2.

102

CHAPTER 7

CONCLUSION AND FUTURE WORK

This chapter concludes the thesis by summarising the work presented in this thesis in

section 7.1. In addition, section 7.2 discusses some aspects of the proposed model, which

can be further improved, and points out the directions for future research.

7.1 Summary of the Thesis

The main contribution of this thesis is the presented rule-based architecture for large event

stream processing. This architecture aims at improving current rule-based methods by

removing inherent load imbalances from the rules and the event streams. This is achieved

by applying dynamic job assignment and micro-batching techniques to rule engines.

The presented architecture (DRESS) is built on top of the Spark Streaming framework

and YARN. Specifically, it avails the facilities provided by Spark Streaming for micro-

batching based event processing, i.e. DStream and RDD. Moreover, it uses YARN for its

ability to dynamically assign jobs based on data locality. The advantage of the presented

architecture is that the load imbalances introduced by the rules are removed, i.e. some

rules may be more ’popular’ than others thus they have more workloads. In addition,

this architecture also removes the imbalances inherited from the input streams, i.e. the

scenario in which the workload of a particular node changes over time.

In chapter 4, an automated transformation from current rule-based models to DRESS

103

is presented. This enables current RETE based rule engines to automatically transform to

the DRESS rule engine. It is worth to note that because the transformation is based on

MDA and meta-modelling, models that are not based on RETE can also be transformed

to DRESS, as long as a mapping between their meta-models and the DRESS meta-model

can be found.

Chapter 5 proves the correctness of the proposed architecture with the help of the

reachability analysis technique. It also investigates the preservation of the output order

in the DRESS architecture. The separation of the output ordering from the correctness

proof indicates that for some applications, the distributed model can be further improved

by loosing the constrictions that are related to order preservation.

Chapter 6 proposes a generic and configurable benchmark for distributed rule-based

event stream processing systems. This benchmark is used to evaluate the performance

of DRESS. By analysing the results of the evaluation, some advantages and weakness of

DRESS are revealed.

7.2 Future Work

Following the contributions made by this thesis, a number of directions may lead to further

improvement of rule-based event stream processing.

As this work focuses on improving the performance of current techniques, the RETE

model used in this research is a subset of the original RETE model. For example, it

does not support <NOT> nodes that are compiled from negated condition elements of

the rules. Moreover, the original RETE algorithm, as described by Forgy [31], allows

two kinds of changes to the working memory: adding an element (fact) and deleting an

element. However, the DRESS architecture does not support the removal of existing facts

from the network. These remain tasks for future work.

Another direction for future research would be the introduction of different optimisa-

tions to DRESS. For example, the PHREAK algorithm [67], which is an evolution of the

104

RETE algorithm, has made various improvements to the way the network of nodes is eval-

uated. These improvements, such as lazy rule evaluation may be brought into DRESS.

Other future work would involve the addition of temporal constraints to the proposed

model. Current rule engines keep all facts in their networks; for example, a RETE network

stores all received facts in its working memories and a DRESS network stores all facts in

its DStates. Over time, this requires a lot of resources and slows down the computation.

Some proposals [82, 81, 51] have been found in the literature which remove outdated facts

by adding temporal constraints to the rules.

Forward chaining is widely used in implementing rule engines because, traditionally,

the data sets are relatively small. Its main objective is to optimise the beta networks.

By storing all partially matched patterns in the memory, the processing time of the beta

networks is vastly reduced (i.e. time-space tradeoff). This is problematic with larger

data sets, as there are patterns that will probably never be fully matched and they will

nevertheless introduce unnecessary computations. Furthermore, as the data sets getting

bigger and bigger, the system may become vulnerable to memory explosion. On the other

hand, in the goal-driven backward chaining approach, the number of goals is manageable

and the most time-consuming work is to match the goals to the data sets. Since there is

no state involved, this matching can be highly parallelised. Therefore, backward chaining

rule engines built with big data technologies may be a future research topic.

105

APPENDIX A

SITRA RULES FOR TRANSFORMING RETE
NETWORKS TO DRESS NETWORKS

A.1 Complete Transformation Rules

RootNode to RootDCluster

package uk.ac.bham.dress;

import uk.ac.bham.dress.models.dress.*;

import uk.ac.bham.dress.models.rete.*;

import uk.ac.bham.sitra.*;

public class RuleRootNode implements Rule<RootNode, RootDCluster>{

public boolean check(RootNode source) {

return true;
}

public RootDCluster build(RootNode source, Transformer t) {

RootDCluster rootDCluster = new RootDCluster("root");

DStream dStream_root = new DStream("root");

rootDCluster.addChild(dStream_root);

return rootDCluster;

}

public void setProperties(RootDCluster target,

RootNode source, Transformer t) {

for(Object node: t.transformAll(source.getChildren())){

AlphaDCluster alphaDCluster = (AlphaDCluster) node;

target.getChildren().get(0).addChild(alphaDCluster);

}

}

}

106

AlphaNode to AlphaDCluster

public class RuleAlphaNode implements Rule<AlphaNode, AlphaDCluster>{

public boolean check(AlphaNode source) {

return true;
}

public AlphaDCluster build(AlphaNode source, Transformer t) {

AlphaDCluster alphaDCluster=new AlphaDCluster(source.getIdentity());

DStream dStream = new DStream(source.getIdentity());

alphaDCluster.addChild(dStream);

return alphaDCluster;

}

public void setProperties(AlphaDCluster target,

AlphaNode source, Transformer t) {

for(Object node: t.transformAll(source.getChildren())){

Node child = (Node) node;

target.getChildren().get(0).addChild(child);

}

}

}

BetaNode to BetaDCluster

public class RuleBetaNode implements Rule<BetaNode, BetaDCluster>{

public boolean check(BetaNode source) {

return true;
}

public BetaDCluster build(BetaNode source, Transformer t) {

BetaDCluster betaDCluster = new BetaDCluster(source.getIdentity());

DStream dStream = new DStream(source.getIdentity());

betaDCluster.addChild(dStream);

return betaDCluster;

}

public void setProperties(BetaDCluster target,

BetaNode source, Transformer t) {

for(Object node: t.transformAll(source.getChildren())){

Node child = (Node) node;

target.getChildren().get(0).addChild(child);

}

}

}

107

Working Memories to DState

public class RuleMemory implements Rule<Memory, DState>{

public boolean check(Memory source) {

return true;
}

public DState build(Memory source, Transformer t) {

DState dState = new DState(source.getIdentity());

return dState;

}

public void setProperties(DState target,

Memory source, Transformer t) {

for(Object node: t.transformAll(source.getChildren())){

Node child = (Node) node;

target.addChild(child);

}

}

}

A.2 The Transformer

public class Rete2DressTransformer {

public static RootDCluster transform(RootNode rete){

List<Class<? extends Rule<?, ?>>> rules = new ArrayList<>();

rules.add(RuleRootNode.class);
rules.add(RuleAlphaNode.class);
rules.add(RuleBetaNode.class);
rules.add(RuleAlphaMemory.class);
rules.add(RuleBetaMemory.class);

Transformer t = new SimpleTransformerImpl(rules);

RootDCluster rootDCluster = (RootDCluster) t.transform(rete);

return rootDCluster;

}

}

108

APPENDIX B

SPARK CODE FOR SONA BENCHMARK

B.1 Configuration (g = 3,a = 2,b = 1)

from pyspark import SparkContext

from pyspark.streaming import StreamingContext

from pyspark.streaming.kafka import KafkaUtils

sc = SparkContext(appName="dress")

sc.setLogLevel("ERROR")

ssc = StreamingContext(sc, 1)

ssc.checkpoint("hdfs://hdfs-server:3181/dress_checkpoint")

def updateStateFunc(newState, oldState):

if oldState is None:

oldState = {}

for state in newState:

oldState = state or oldState

return oldState

Kafka message queue
kafkaStream = KafkaUtils.createStream(ssc,\

’kafka-server:2181’, ’dress’, {’dress’:1})

RootDCluster
rootDStream = kafkaStream\

.map(lambda v: eval(v[1]))\

.map(lambda v: (str(v[’id’]), v))

Alpha DCluster
Patterns

109

f1
alphaDStream_f1_p1 = rootDStream\

.filter(lambda x: x[1][’p1’] == "true")

alphaDStream_f1_p2 = alphaDStream_f1_p1\

.filter(lambda x: x[1][’p2’] == "true")

alphaDState_f1 = alphaDStream_f1_p2\

.updateStateByKey(updateStateFunc)

f2

alphaDStream_f2_p3 = rootDStream\

.filter(lambda x: x[1][’p3’] == "true")

alphaDStream_f2_p4 = alphaDStream_f2_p3\

.filter(lambda x: x[1][’p4’] == "true")

alphaDState_f2 = alphaDStream_f2_p4\

.updateStateByKey(updateStateFunc)

f3

alphaDStream_f3_p5 = rootDStream\

.filter(lambda x: x[1][’p5’] == "true")

alphaDStream_f3_p6 = alphaDStream_f3_p5\

.filter(lambda x: x[1][’p6’] == "true")

alphaDState_f3 = alphaDStream_f3_p6\

.updateStateByKey(updateStateFunc)

Beta DCluster

f1,f2, variable bindings: p7

def variable_binding_f1_f2_p7(rdd1, rdd2):

pairs = rdd1.cartesian(rdd2)\

.filter(lambda v: v[1][0][’vb_1’] == v[1][1][’vb_1’])

return pairs

betaDStream_f1_f2_left = alphaDStream_f1_p2\

.transformWith(variable_binding_f1_f2_p7\

,alphaDState_f2)

betaDStream_f1_f2_right = alphaDStream_f2_p4\

.transformWith(variable_binding_f1_f2_p7\

,alphaDState_f1)

betaDStream_f1_f2 = betaDStream_f1_f2_left\

.union(betaDStream_f1_f2_right)

betaDState_f1_f2 = betaDStream_f1_f2\

.updateStateByKey(updateStateFunc)

f1,f2,f3, variable bindings: None
def join_f1_f2_f3(rdd1, rdd2):

pairs = rdd1.cartesian(rdd2)

110

return pairs

betaDStream_f1_f2_f3_left = betaDStream_f1_f2\

.transformWith(join_f1_f2_f3\

,alphaDState_f3)

betaDStream_f1_f2_f3_right = alphaDStream_f3_p6\

.transformWith(join_f1_f2_f3\

,betaDState_f1_f2)

betaDStream_f1_f2_f3 = betaDStream_f1_f2_f3_left\

.union(betaDStream_f1_f2_f3_right)

betaDState_f1_f2_f3 = betaDStream_f1_f2_f3\

.updateStateByKey(updateStateFunc)

actions
def action_h1(rdd):

rdd.pprint()

betaDStream_f1_f2_f3.foreachRDD(action_h1)

ssc.start()

ssc.awaitTermination()

111

APPENDIX

LIST OF REFERENCES

[1] (2009) A benchmark for rule engines based on a banking system. URL

https://github.com/codehaus/rulessandpit.

[2] Akehurst, D.H., Bordbar, B., Evans, M.J. et al. (2006) “Sitra: Simple transforma-

tions in java.” In International Conference on Model Driven Engineering Lan-

guages and Systems. Springer. pp. 351–364

[3] Akerkar, R. and Sajja, P. (2010) Knowledge-based systems. Jones & Bartlett Pub-

lishers.

[4] Akidau, T., Balikov, A., Bekiroğlu, K. et al. (2013) Millwheel: fault-tolerant stream

processing at internet scale. Proceedings of the VLDB Endowment, 6 (11): 1033–

1044

[5] Anicic, D., Fodor, P., Rudolph, S. et al. (2010) “A rule-based language for complex

event processing and reasoning.” In International Conference on Web Reasoning

and Rule Systems. Springer. pp. 42–57

[6] Aref, M.M. and Tayyib, M.A. (1998) Lana–match algorithm: a parallel version of

the rete–match algorithm. Parallel Computing, 24 (5-6): 763–775

[7] Batory, D. (1994) The LEAPS algorithms. Univ., Department of Computer Sci-

ences.

112

[8] Bergmann, G., Dávid, I., Hegedüs, Á. et al. (2015) “Viatra 3: a reactive model

transformation platform.” In International Conference on Theory and Practice of

Model Transformations. Springer. pp. 101–110

[9] Berthomieu, B. and Diaz, M. (1991) Modeling and verification of time dependent

systems using time petri nets. IEEE transactions on software engineering, 17 (3):

259–273

[10] Bowles, J., Alwanain, M., Bordbar, B. and Chen, Y. (2014) “Matching and merging

scenarios automatically with alloy.” In International Conference on Model-Driven

Engineering and Software Development. Springer. pp. 100–116

[11] Brant, D.A., Grose, T., Lofaso, B.J. and Miranker, D.P. (1991) “Effects of database

size on rule system performance: Five case studies.” In VLDB. vol. 91, pp. 287–296

[12] Buchanan, B. (1984) Rule based expert systems. The MYCIN Experiments of the

Stanford Heuristic Programming Project.

[13] Buchanan, B.G. and Duda, R.O. (1983) “Principles of rule-based expert systems.”

In Advances in computers. Elsevier. vol. 22, pp. 163–216

[14] Cabrera, F., Copeland, G., Freund, T. et al. (2002) Web services coordination (ws-

coordination). joint specification by BEA, IBM, and Microsoft.

[15] Carbone, P., Katsifodimos, A., Ewen, S. et al. (2015) Apache flink: Stream and batch

processing in a single engine. Bulletin of the IEEE Computer Society Technical

Committee on Data Engineering, 36 (4).

[16] CHANG, T.C. and Terwilliger Jr, J. (1987) A rule based system for printed wiring as-

sembly process planning. International Journal of Production Research, 25 (10):

1465–1482

113

[17] Chauvel, F. and Jézéquel, J.M. (2005) “Code generation from uml models with se-

mantic variation points.” In International Conference on Model Driven Engineer-

ing Languages and Systems. Springer. pp. 54–68

[18] Chen, J., Wang, D. and Zhao, W. (2013) A task scheduling algorithm for hadoop

platform. Journal of computers, 8 (4): 929–936

[19] Chen, Y. and Bordbar, B. (2016) “Dress: A rule engine on spark for event stream

processing.” In Proceedings of the 3rd IEEE/ACM International Conference on

Big Data Computing, Applications and Technologies. ACM. pp. 46–51

[20] Chen, Y. and Tino, P. (2018) Formalisation and verification of distributed rule-based

expert systems. Paper submitted to journal Expert Systems with Applications.

[21] Cherniack, M., Balakrishnan, H., Balazinska, M. et al. (2003) “Scalable distributed

stream processing.” In CIDR. vol. 3, pp. 257–268

[22] Chomicki, J., Lobo, J. and Naqvi, S. (2003) Conflict resolution using logic program-

ming. IEEE Transactions on Knowledge and Data Engineering, 15 (1): 244–249

[23] Cronk, R.N., Callahan, P.H. and Bernstein, L. (1988) Rule-based expert systems for

network management and operations: an introduction. IEEE Network, 2 (5): 7–21

[24] Danelutto, M., Kilpatrick, P., Mencagli, G. and Torquati, M. (2017) State access

patterns in stream parallel computations. The International Journal of High Per-

formance Computing Applications, p. 1094342017694134

[25] Davey, B.A. and Priestley, H.A. (2002) Introduction to lattices and order. Cam-

bridge university press.

[26] Dean, J. and Ghemawat, S. (2008) Mapreduce: simplified data processing on large

clusters. Communications of the ACM, 51 (1): 107–113

114

[27] Dunkel, J., Fernández, A., Ortiz, R. and Ossowski, S. (2011) Event-driven archi-

tecture for decision support in traffic management systems. Expert Systems with

Applications, 38 (6): 6530–6539

[28] Fernandez, R.C., Migliavacca, M., Kalyvianaki, E. and Pietzuch, P. (2014) “Mak-

ing state explicit for imperative big data processing.” In 2014 {USENIX} Annual

Technical Conference ({USENIX}{ATC} 14). pp. 49–60

[29] FORGY, C. (1979) On the efficient implementation of production systems. Ph. D.

Thesis, Carnegie-Mellon University.

[30] Forgy, C.L. (1981) Ops5 user’s manual. Tech. rep., CARNEGIE-MELLON UNIV

PITTSBURGH PA DEPT OF COMPUTER SCIENCE.

[31] Forgy, C.L. (1988) “Rete: A fast algorithm for the many pattern/many object pattern

match problem.” In Readings in Artificial Intelligence and Databases. Elsevier.

pp. 547–559

[32] France, R.B., Ghosh, S., Dinh-Trong, T. and Solberg, A. (2006) Model-driven de-

velopment using uml 2.0: promises and pitfalls. Computer, 39 (2): 59–66

[33] GC, P.S., Sun, C., Zhang, H. et al. (2015) “Why big data industrial systems need

rules and what we can do about it.” In Proceedings of the 2015 ACM SIGMOD

International Conference on Management of Data. ACM. pp. 265–276

[34] Giarratano, J.C. and Riley, G. (1989) Expert systems: principles and program-

ming. Brooks/Cole Publishing Co.

[35] Gonzalez-Perez, C. and Henderson-Sellers, B. (2008) Metamodelling for software

engineering. Wiley Publishing.

[36] Guerraoui, R. and Schiper, A. (1997) Software-based replication for fault tolerance.

Computer, 30 (4): 68–74

115

[37] Guo, Y., Pan, Z. and Heflin, J. (2005) Lubm: A benchmark for owl knowledge base

systems. Web Semantics: Science, Services and Agents on the World Wide Web,

3 (2-3): 158–182

[38] Gupta, A., Forgy, C. and Newell, A. (1989) High-speed implementations of rule-

based systems. ACM Transactions on Computer Systems (TOCS), 7 (2): 119–

146

[39] Hammoud, M. and Sakr, M.F. (2011) “Locality-aware reduce task scheduling for

mapreduce.” In Cloud Computing Technology and Science (CloudCom), 2011

IEEE Third International Conference on. IEEE. pp. 570–576

[40] Hayes-Roth, F. (1985) Rule-based systems. Communications of the ACM, 28 (9):

921–932

[41] Hill, E.F. (2003) Jess in action: Java rule-based systems. Manning Publications

Co.

[42] Hindman, B., Konwinski, A., Zaharia, M. et al. (2011) “Mesos: A platform for

fine-grained resource sharing in the data center.” In NSDI. vol. 11, pp. 22–22

[43] Hopgood, A.A. (2016) Intelligent systems for engineers and scientists. CRC

press.

[44] Hwang, J.H., Balazinska, M., Rasin, A. et al. (2005) “High-availability algorithms

for distributed stream processing.” In Data Engineering, 2005. ICDE 2005. Pro-

ceedings. 21st International Conference on. IEEE. pp. 779–790

[45] Ibrahim, S., Jin, H., Lu, L. et al. (2010) “Leen: Locality/fairness-aware key parti-

tioning for mapreduce in the cloud.” In Cloud Computing Technology and Science

(CloudCom), 2010 IEEE Second International Conference on. IEEE. pp. 17–24

[46] Jin, J., Luo, J., Song, A. et al. (2011) “Bar: An efficient data locality driven task

scheduling algorithm for cloud computing.” In Cluster, Cloud and Grid Comput-

116

ing (CCGrid), 2011 11th IEEE/ACM International Symposium on. IEEE. pp.

295–304

[47] Jouault, F., Allilaire, F., Bézivin, J. and Kurtev, I. (2008) Atl: A model transforma-

tion tool. Science of computer programming, 72 (1-2): 31–39

[48] Kawakami, T., Yoshihisa, T., Fujita, N. and Tsukamoto, M. (2013) “A rule-based

home energy management system using the rete algorithm.” In Consumer Elec-

tronics (GCCE), 2013 IEEE 2nd Global Conference on. IEEE. pp. 162–163

[49] Kiran, M.S., Rajalakshmi, P., Bharadwaj, K. and Acharyya, A. (2014) “Adaptive rule

engine based iot enabled remote health care data acquisition and smart transmission

system.” In Internet of Things (WF-IoT), 2014 IEEE World Forum on. IEEE.

pp. 253–258

[50] Kolovos, D.S., Paige, R.F. and Polack, F.A. (2008) “The epsilon transformation lan-

guage.” In International Conference on Theory and Practice of Model Transfor-

mations. Springer. pp. 46–60

[51] Komazec, S. and Cerri, D. (2011) Towards efficient schema-enhanced pattern match-

ing over rdf data streams. 10th ISWC. Springer, Bonn, Germany.

[52] Koo, R. and Toueg, S. (1987) Checkpointing and rollback-recovery for distributed

systems. IEEE Transactions on software Engineering, 13 (1): 23–31

[53] Kreps, J., Narkhede, N., Rao, J. et al. (2011) “Kafka: A distributed messaging sys-

tem for log processing.” In Proceedings of the NetDB. pp. 1–7

[54] Liang, S., Fodor, P., Wan, H. and Kifer, M. (2009) “Openrulebench: an analysis of

the performance of rule engines.” In Proceedings of the 18th international confer-

ence on World wide web. ACM. pp. 601–610

[55] Ligeza, A. (2006) Logical foundations for rule-based systems, vol. 11. Springer.

117

[56] Lucas, P. and Van Der Gaag, L. (1991) Principles of expert systems. Addison-

Wesley Wokingham.

[57] McDermott, J. and Forgy, C. (1978) “Production system conflict resolution strate-

gies.” In Pattern-directed inference systems. Elsevier. pp. 177–199

[58] Mellor, S.J., Scott, K., Uhl, A. and Weise, D. (2004) MDA distilled: principles of

model-driven architecture. Addison-Wesley Professional.

[59] Miranker, D.P. (2014) TREAT: A new and efficient match algorithm for AI pro-

duction system. Morgan Kaufmann.

[60] Murata, T. (1989) Petri nets: Properties, analysis and applications. Proceedings of

the IEEE, 77 (4): 541–580

[61] Nagl, C., Rosenberg, F. and Dustdar, S. (2006) “Vidre–a distributed service-oriented

business rule engine based on ruleml.” In Enterprise Distributed Object Comput-

ing Conference, 2006. EDOC’06. 10th IEEE International. IEEE. pp. 35–44

[62] Peters, M., Brink, C., Sachweh, S. and Zündorf, A. (2013) “Rule-based reasoning

on massively parallel hardware.” In SSWS@ ISWC. pp. 33–49

[63] Peters, M., Brink, C., Sachweh, S. and Zündorf, A. (2014) “Scaling parallel rule-

based reasoning.” In European Semantic Web Conference. Springer. pp. 270–285

[64] Peterson, J.L. (1977) Petri nets. ACM Computing Surveys (CSUR), 9 (3): 223–

252

[65] Reisig, W. (2012) Petri nets: an introduction, vol. 4. Springer Science & Business

Media.

[66] Rosenberg, F. and Dustdar, S. (2005) “Towards a distributed service-oriented busi-

ness rules system.” In Web Services, 2005. ECOWS 2005. Third IEEE European

Conference on. IEEE. pp. 11–pp

118

[67] Salatino, M., De Maio, M. and Aliverti, E. (2016) Mastering JBoss Drools 6. Packt

Publishing Ltd.

[68] Shah, M.A., Hellerstein, J.M. and Brewer, E. (2004) “Highly available, fault-

tolerant, parallel dataflows.” In Proceedings of the 2004 ACM SIGMOD inter-

national conference on Management of data. ACM. pp. 827–838

[69] Sharma, T., Tiwari, N. and Kelkar, D. (2012) Study of difference between forward

and backward reasoning. International Journal of Emerging Technology and

Advanced Engineering, 2 (10): 271–273

[70] Shvachko, K., Kuang, H., Radia, S. and Chansler, R. (2010) “The hadoop distributed

file system.” In Mass storage systems and technologies (MSST), 2010 IEEE 26th

symposium on. Ieee. pp. 1–10

[71] Sowa, J.F. et al. (2000) Knowledge representation: logical, philosophical, and

computational foundations, vol. 13. Brooks/Cole Pacific Grove, CA.

[72] Stephen, J.J., Gmach, D., Block, R. et al. (2015) “Distributed real-time event anal-

ysis.” In 2015 IEEE International Conference on Autonomic Computing. IEEE.

pp. 11–20

[73] Stolfo, S.J., Wolfson, O., Chan, P.K. et al. (1991) Parulel: Parallel rule processing

using meta-rules for redaction. Journal of Parallel and Distributed Computing,

13 (4): 366–382

[74] Teymourian, K. and Paschke, A. (2009) “Semantic rule-based complex event pro-

cessing.” In International Workshop on Rules and Rule Markup Languages for

the Semantic Web. Springer. pp. 82–92

[75] Toshniwal, A., Taneja, S., Shukla, A. et al. (2014) “Storm @ twitter.” In Proceed-

ings of the 2014 ACM SIGMOD international conference on Management of

data. ACM. pp. 147–156

119

[76] Uml, O. (2004) 2.0 superstructure specification. OMG, Needham.

[77] Van Melle, W. (1980) A domain-independent system that aids in constructing

knowledge-based consultation programs. Tech. rep., STANFORD UNIV CA DEPT

OF COMPUTER SCIENCE.

[78] Vavilapalli, V.K., Murthy, A.C., Douglas, C. et al. (2013) “Apache hadoop yarn:

Yet another resource negotiator.” In Proceedings of the 4th annual Symposium on

Cloud Computing. ACM. p. 5

[79] Vijayaraghavan, A. and Dornfeld, D. (2010) Automated energy monitoring of ma-

chine tools. CIRP annals, 59 (1): 21–24

[80] Völter, M., Stahl, T., Bettin, J. et al. (2013) Model-driven software development:

technology, engineering, management. John Wiley & Sons.

[81] Walzer, K., Groch, M. and Breddin, T. (2008) “Time to the rescue-supporting tempo-

ral reasoning in the rete algorithm for complex event processing.” In International

conference on Database and Expert Systems Applications. Springer. pp. 635–642

[82] Walzer, K., Schill, A. and Löser, A. (2007) “Temporal constraints for rule-based

event processing.” In Proceedings of the ACM first Ph. D. workshop in CIKM.

ACM. pp. 93–100

[83] Wang, J., Deng, Y. and Xu, G. (2000) Reachability analysis of real-time systems

using time petri nets. IEEE Transactions on Systems, Man, and Cybernetics,

Part B (Cybernetics), 30 (5): 725–736

[84] Warneke, D. and Kao, O. (2011) Exploiting dynamic resource allocation for effi-

cient parallel data processing in the cloud. IEEE transactions on parallel and

distributed systems, 22 (6): 985–997

[85] Wehrmeister, M.A., Freitas, E.P., Pereira, C.E. and Rammig, F. (2008) “Genertica:

A tool for code generation and aspects weaving.” In Object Oriented Real-Time

120

Distributed Computing (ISORC), 2008 11th IEEE International Symposium

on. IEEE. pp. 234–238

[86] Wickham, H. et al. (2011) The split-apply-combine strategy for data analysis. Jour-

nal of Statistical Software, 40 (1): 1–29

[87] Wu, S., Kumar, V., Wu, K.L. and Ooi, B.C. (2012) “Parallelizing stateful operators

in a distributed stream processing system: how, should you and how much?” In

Proceedings of the 6th ACM International Conference on Distributed Event-

Based Systems. ACM. pp. 278–289

[88] Zaharia, M., Chowdhury, M., Das, T. et al. (2012) “Resilient distributed datasets: A

fault-tolerant abstraction for in-memory cluster computing.” In Proceedings of the

9th USENIX conference on Networked Systems Design and Implementation.

USENIX Association. pp. 2–2

[89] Zaharia, M., Das, T., Li, H. et al. (2013) “Discretized streams: Fault-tolerant stream-

ing computation at scale.” In Proceedings of the Twenty-Fourth ACM Sympo-

sium on Operating Systems Principles. ACM. pp. 423–438

[90] Zaharia, M., Xin, R.S., Wendell, P. et al. (2016) Apache spark: a unified engine for

big data processing. Communications of the ACM, 59 (11): 56–65

[91] Zhang, J., Yang, J. and Li, J. (2017) “When rule engine meets big data: Design

and implementation of a distributed rule engine using spark.” In Big Data Comput-

ing Service and Applications (BigDataService), 2017 IEEE Third International

Conference on. IEEE. pp. 41–49

[92] Zhou, R., Wang, G., Wang, J. and Li, J. (2014) Runes ii: A distributed rule engine

based on rete network in cloud computing. International Journal of Grid and

Distributed Computing, 7 (6): 91–110

121

[93] Zhu, S., Huang, H. and Zhang, L. (2016) “A distributed architecture for rule en-

gine to deal with big data.” In 2016 18th International Conference on Advanced

Communication Technology (ICACT). IEEE. pp. 602–606

122

