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TPSDicyc: Improved Deformation Invariant
Cross-domain Medical Image Synthesis
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Abstract. Cycle-consistent generative adversarial network (CycleGAN)
has been widely used for cross-domain medical image systhesis tasks par-
ticularly due to its ability to deal with unpaired data. However, most
CycleGAN-based synthesis methods can not achieve good alignment be-
tween the synthesized images and data from the source domain, even with
additional image alignment losses. This is because the CycleGAN genera-
tor network can encode the relative deformations and noises associated to
different domains. This can be detrimental for the downstream applica-
tions that rely on the synthesized images, such as generating pseudo-CT
for PET-MR attenuation correction. In this paper, we present a deforma-
tion invariant model based on the deformation-invariant CycleGAN (Di-
cycleGAN) architecture and the spatial transformation network (STN)
using thin-plate-spline (TPS). The proposed method can be trained with
unpaired and unaligned data, and generate synthesised images aligned
with the source data. Robustness to the presence of relative deforma-
tions between data from the source and target domain has been evalu-
ated through experiments on multi-sequence brain MR data and multi-
modality abdominal CT and MR data. Experiment results demonstrated
that our method can achieve better alignment between the source and
target data while maintaining superior image quality of signal compared
to several state-of-the-art CycleGAN-based methods.

1 Introduction

Cross-domain image synthesis is gaining popularity in a wide range of clinical
applications to enable multi-modality synthesis without acquiring data from mul-
tiple modalities. However, the vast majority of cross-modality synthesis methods
are solely evaluated on brain image data due to the low geometric variance. Oth-
erwise, performance of the synthesis methods often rely on a registration-based
preprocessing step. Previous studies have shown that CycleGAN [1] achieves
high synthesis quality on unpaired data, but it has also been observed that Cy-
cleGAN may reproduce the “domain-specific deformations” of the data [2] [3].
A common strategy to address this issue is to leverage image similarity metrics
in the CycleGAN loss function [4] [5], but this introduces the trade-off between
good quality of signal and good data alignment. The deformation-invariant Cy-
cleGAN (DicycleGAN) model [3] has been proposed recently achieved state-of-
the-art synthesis performances with better alignment of data. This method uses
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Fig. 1. Architecture of TPSDicyc:

two sets of parameters to encode translatable appearance features and relative
spatial deformations between the training images using the deformable convo-
lution (DC) operation [6]. However, DicycleGAN models a relatively consistent
local deformation between the source and target data. This limits the general-
izability of the model on multiple scanners, and requires the subjects in similar
poses when being imaged. Otherwise the learning process can be unstable and
slow to converge as shown in our experiments.

In this paper, we present an alternative framework of DicycleGAN based on
thin-plate-spline (TPS) named as TPSDicyc. Compared to DicycleGAN, which
models combines the ”deformation“ and “image translation” parameters into one
network, TPSDicyc uses a separated spatial transformation network (STN) to
learn the relative deformation between the source and target data. Fig. 1 presents
the TPSDicyc framework and its subnetworks. Fig. 2 displays the architecture
of TPSDicyc generator network. We evaluated the proposed method using both
publicly available multi-sequence brain MR data and multi-modality abdominal
data. Compared to the selected state-of-the-art baseline methods, TPSDicyc
displayed better ability to handle disparate imaging domains and to generate
synthesized images aligned with the source data.

2 Previous works

CycleGAN was first applied to cross-domain medical image synthesis in [7] for
co-synthesis of CT and MR brain data. Alignment between the synthesised data
and the source data can be improved by regularizing the problem through multi-
task training, for example, using segmentation masks [2], and by co-registration
[7]. However, these models have an extra cost of manual annotations for segmen-
tation or registration ground truths. A currently popular strategy is to integrate
image similarity measures into the CycleGAN loss so that the geometric corre-
spondences between data from different domains can be improved. For example,
[5] introduces a structure-consistency loss based on the modality independent
neighborhood descriptor (MIND) [8]. It has been shown that this structure-
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(a) DicycleGAN generator

(b) TPSDicyc generator

Fig. 2. Structures and parameters of generators in DicycleGAN and our TPSDicyc:
DicycleGAN uses deformable convolutional layers to model the relative deformation
between the source and target data; in TPSDicyc the deformation is learned by a
separated Thin-plate-spline based spatial transformation network.

constrained CycleGAN can be trained with unregistered multi-modal MR and
CT brain data. A similar gradient-consistency loss, based on the normalised
gradient cross correlation (GCC), is introduced in [4]. This method has been
evaluated using unpaired but pre-registered, multi-modal MR and CT hip im-
ages. However, as discussed in [3], there is a conflict between the image similarity
based losses and the CycleGAN discriminative loss. Because the synthesized data
in which the “domain-specific doformations” are reproduced will lead to a lower
adversarial loss (of the discriminator in GANs) but higher alignment loss. As a
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result, the synthesized data can not be well aligned to the source data and show
a good quality of signal at the same time. DicycleGAN [3] uses DC parameters
to decouple the translatable appearance features and the relative deformation
between the source and target data, thus introduces a possible solution of the
conflicts in the CycleGAN losses. However, DC layers can only learn relative
consistent and local deformations.

3 Method

Assuming that we have nA images xA ∈ XA from domain XA, and nB images
xB ∈ XB from domain XB , synthesis is performed to generate images of domain
XB using images from XA. To this end, we train a generator (which consists of an
encoder FA→B , a decoder GA→B and a STN TA→B) and a discriminator DB in
the min-max game of the GAN loss LGAN

(
FA→B , TA→B , GA→B , DB ,XA,XB

)
.

We let LA→B
GAN denote this GAN loss for short and simple representation. Ac-

cordingly, GB→A, FB→A, TB→A, DA, and the GAN loss LB→A
GAN are defined.

A CycleGAN-based framework consists of two symmetric sets of generators act
as mapping functions applied to a source domain, and two discriminators DB

and DA to distinguish real and synthesized data for a target domain. The cycle
consistency loss LA,Bcyc , is used to keep the cycle-consistency between the two
sets of networks. This gives CycleGAN the ability to deal with unpaired data.
Then the loss of the whole CycleGAN framework LCycleGAN is LCycleGAN =
LA→B
GAN + LB→A

GAN + λcycLA,Bcyc . Presently proposed CycleGAN-based methods add

an image alignment term LA,Balign to LCycleGAN which becomes LCycleGAN,align =

LCycleGAN + λalignLA,Balign = LA→B
GAN + LB→A

GAN + λcycLA,Bcyc + λalignLA,Balign, where

λalign is the weight used to balance LA,Balign and LCycleGAN .

3.1 Architecture of Generator

As shown in Fig. 2, the generator network consists of an encoder, an decoder
and a STN. The encoder maps the input data into a latent feature space,
and the decoder generates the synthesized image based on the latent features.
The relative deformation between the source and target domains are learned
by a subset of parameters θT which are only used in the training process. In
[3], θT is the trainable parameters in the DC layers. In this work, we intro-
duced a new spatial transformation sub-network T for this purpose. As shown
in Fig. 2, the transformation sub-network take latent features extracted from
the source and target data, and produces a displacement field of a keypoint
grid. This displacement between keypoints are then applied to the source la-
tent features using thin-plate-spline (TPS) interpolation. In this case, θT rep-
resents the parameters in this spatial transformation subnet, and θ the rest
parameters in G. To generate synthesised images for domain XB , each input
image xA generates two output images through two separated forward passes:
deformed output image x̂BT = GA→B

(
TA→B

(
FA→B

(
xA
)))

and undeformed
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image x̂B = GA→B
(
FA→B

(
xA
))

. x̂BT generated by passing the latent feature
F (x) through T (shown by the red arrows in Fig. 2) is expected to be identical
to xB . x̂B is expected to be aligned with xA.

3.2 Loss and Training

Similar to DicycleGAN, TPSDicyc loss functions include the traditional GAN
loss, the cycle-consistency loss used in the original CycleGAN, an image align-
ment loss and an additional deformation invariant cycle consistency loss.

For the GAN loss LA→B
GAN , FA→B , GA→B and TA→B are trained to minimize(

DB
(
x̂BT
)
− 1
)2

and DB is trained to minimize
(
DB(xB)− 1

)2
+ DB

(
x̂BT
)2

.
The same formulation is used to calculate LB→A

GAN defined on the ”B → A“
networks. Note that the GAN loss is calculated based on the deformed outputs.
As the undeformed outputs of generators are expected to be aligned with the
input images, an image alignment loss based on normalized mutual information
(NMI) is defined as:

LA,Balign = 2−NMI
(
xA, x̂B

)
−NMI

(
xB , x̂A

)
. (1)

Essentially this image alignment loss can be adopted with any similarity measure
suitable for image registration, such as normalized mutual information (NMI)
[9], normalised GCC used in [4], or MIND in [5] and [8].

Secondly, the cycle-consistency loss plays a critical role for the outstanding
performance of CycleGAN. In this work, both the undeformed and deformed
version of synthesized data should be cycle-consistent to encode optimal repre-
sentations. This results in two cycle-consistency losses. The undeformed cycle
consistency loss is defined as:

LA,Bcyc = ‖GB→A
(
FB→A

(
x̂B
))
− xA‖1 + ‖GA→B

(
FA→B

(
x̂A
))
− xB‖1, (2)

and the deformation-invariant cycle consistency loss is:

LA,Bdicyc =‖GB→A
(
TB→A

(
FB→A

(
x̂B
)))
− xA‖1

+ ‖GA→B
(
TA→B

(
FA→B

(
x̂A
)))
− xB‖1.

(3)

The complete TPSDicyc loss is then defined as:

LTPSDicyc = LA→B
GAN + LB→A

GAN + λalignLA,Balign + λcycLA,Bcyc + λdicycLA,Bdicyc. (4)

In this work, we set λcyc = λdicyc = 10 and λalign = 0.9. The models were trained
with Adam optimizer [10] with a fixed learning rate of 0.0002 for the first 100
epochs, followed by 100 epochs with linearly decreasing learning rate. Here we
apply a simple early stop strategy: in the first 100 epochs, when LTPSDicyc stops
decreasing for 10 epochs, the training will move to the learning rate decaying
stage; similarly, this tolerance is set to 20 epochs in the second 100 epochs.
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4 Experiments

IXI dataset: The Information eXtraction from Images (IXI) dataset1 provides
co-registered multi-sequence MR images collected from multiple sites. We used
66 pairs of proton density (PD-) and T2-weighted volumes for T2→PD synthesis
experiment, each volume has 116 to 130 slices. We use 38 pairs for training and
28 pairs for evaluation of synthesis results. Our image generators take 2D axial-
plane slices of the volumes as inputs. All volumes were resampled to a resolution
of 1.8× 1.8× 1.8mm3/voxel, then cropped to a size of 128× 128 pixels. All the
images are bias field corrected and normalized with their mean and standard
deviation. We applied a simulated deformation to all T2-weighted images. Syn-
thesis experiments were then performed between the undeformed PD-weighted
data and the deformed T2-weighted data. When using deformed T2-weighted
images, the ground truths of synthesized PD-weighted data were generated by
applying the same nonlinear deformation to the source PD-weighted images.
Private abdominal data We used a dataset containing 40 multi-modality
abdominal T2*-weighted and CT images collected from 20 patients with ab-
dominal aortic aneurysm (AAA). All images are resampled to a resolution of
1.56× 1.56× 5mm3/voxel, and the axial-plane slices trimmed to 192× 192 pix-
els. Because of the “domain-specific deformations”, registration based ground
truths as in the IXI dataset are not available. However, because several organs,
such as aorta and spine, are relatively rigid compared to other surrounding soft
tissues such as lower gastrointestinal tract organs, these objects can be affinely
registered for evaluation of synthesis. For each volume in the MA3RS dataset,
the anatomy of the aorta were manually segmented for each volume (as described
in [11]). The multi-modality data acquired from the same patient were affinely
registered so that the segmented aorta in both data are well aligned. The manual
registration and segmentation were performed by 4 clinical researchers. Signal
of the synthesized images were evaluated within the segmentation of aorta.

4.1 Evaluation Metrics

To be consistent with the baseline methods, we use three metrics to evaluate
performance on cross-domain image synthesis: mean squared error (MSE), peak
signal-to-noise ratio (PSNR) and structural similarity index (SSIM) as typically
used by other CycleGAN based methods. Given a volume xA and a target vol-

ume xB , the MSE is computed as: 1
N

∑N
1

(
xB − x̂B

)2
, where N is number of

voxels in the volume. PSNR is calculated as: 10 log10
max2

B

MSE . SSIM is computed

as: (2µAµB+c1)(2δAB+c2)
(µ2

A+µ2
B+c1)(δ2A+δ+B2+c2)

, where µ and δ2 are mean and variance of a volume,

and δAB is the covariance between xA and xB . c1 and c2 are two variables to
stabilize the division with weak denominator [12]. Larger PSNR and SSIM, or
smaller MSE, indicate a better performance of a synthesis algorithm. To test the
statistical significance of results, we perform paired t-test between the TPSDicyc

1 http://brain-development.org/ixi-dataset/
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Fig. 3. Visualized PD→T2 synthesis results of the IXI dataset: an arbitrary deforma-
tion was applied to the T2 weighted images.

and the DicycleGAN baseline. Differences between performances are considered
to be statistically significant when the p−value is less than 0.05.

4.2 Results and Discussion

IXI Dataset The quantitative results is shown in Table 1. Vanilla CycleGAN
trained on paired and registered images (without simulated deformation) a the-
oretical upper-bound performance with PSNR > 24.3, SSIM > 0.817 and MSE
≤ 0.036. Trained with unpaired data sufferring from simulated deformation, the
vanilla CycleGAN gave a lower-bound baseline of performances. With additive
image alignment losses, GCC-CycleGAN [4] and MIND-CycleGAN [5] methods
lead to tiny improvements in terms of PSNR. However, because these two models
are still affected by the simulated “domain-specific deformation”, their perfor-
mances were still comparable to vanilla CycleGAN. In contrast, the proposed
TPSDicyc model lead to results significantly closer to the upper-bound baseline.

Alignment between source and target data can be observed in the example
shown in Fig. 3. It can be seen that the vanilla CycleGAN model exactly repro-
duced the simulated deformation. The GCC-CycleGAN and MIND-CycleGAN,
although can reduce the misalignment effect, the synthesized and source data are
still not well aligned. Furthermore, the synthesis results generated by the three
CycleGAN-based models are blurry and showed visible artifacts. In contrast, our
TPSDicyc model achieved best data alignment.

Table 1. Synthesis results of IXI dataset using deformed T2 images.

Method MSE PSNR SSIM

Cycle[7] 0.055 (0.22) 20.80 (2.87) 0.708 (0.19)
T2 GCC-Cycle[4] 0.054 (0.22) 21.04 (3.83) 0.719 (0.19)
↓ MIND-Cycle[5] 0.054 (0.21) 20.82 (2.61) 0.703 (0.19)

PD DicycleGAN 0.045 (0.21) 22.52 (2.91) 0.790 (0.18)
TPSDicyc 0.044 (0.23) 22.72 (2.86) 0.796 (0.16)

Cycle (aligned) 0.037 (0.22) 24.77 (3.30) 0.856 (0.17)
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Fig. 4. Visualization of cross-modality synthesis results obtained with our MA3RS
dataset. A example data from both the CT and T2* domain are shown on the left.
A checkerboard view combing the source and synthesized data is shown on the right.
Alignment between the source and the synthesized data can then be assessed by looking
at the anatomy of aorta and spine, as well as the lower contour of the patient body.

Table 2. T2*→CT synthesis results using private dataset.

T2* → CT

Model MSE PSNR SSIM

Cycle[7] 0.009 (0.004) 20.57 (2.12) 0.675 (0.06)
GCC-Cycle[4] 0.012 (0.006) 20.25 (2.35) 0.602 (0.08)

MIND-Cycle[5] 0.010 (0.004) 21.21 (2.04) 0.660 (0.07)
DicycleGAN 0.008 (0.004) 22.01 (2.40) 0.694 (0.07)
TPSDicyc 0.008 (0.004) 22.29 (2.26) 0.706 (0.06)

Abdominal data: Table 2 shows the quantitative assessments of the four com-
pared models based on the same metrics used for the IXI data. The vanilla
CycleGAN had slightly better performances compared the GCC- and MIND-
CycleGAN models. Our method lead to over 20% performance gains in terms
of MSE and SSIM, and also achieved better performance compared to Dicycle-
GAN. Except for SSD, p-value of the paired t-test between DicycleGAN and
our method are less than 0.05. Figure 4 provides a checkerboard visualization
combining the source image and synthesized data generated by the DicycleGAN
and our TPSDicyc. Objects such as spine and aorta in the source and target
data can only be affinely registered independently. Both DicycleGAN and TPS-
Dicyc model produce synthesized images where these objects are simultaneously
aligned in the source and target data. DicycleGAN achieved better alignment of
the outer contour of image subject while TPSDicyc show better alignment for
spine and aorta.

5 Conclusion

In this paper, we propose the TPSDicyc model to address the issue of “domain-
specific deformation”. Different from the recently proposed DicycleGAN model,
we integrate a TPS-based spatial transformation sub-network in the CycleGAN
model and train the model with associated deformation-invariant cycle consis-
tency loss and NMI-based alignment loss function. Compared to the DC layers
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in DicycleGAN, this new architecture allows to model global deformations. Our
TPSDicyc method can achieve good alignment between the source and syn-
thesized data, and outperformed the DicycleGAN, as well as state-of-the-art
CycleGAN-based models in experiments performed on multi-sequence MR data
and multi-modality abdominal data.
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