
Open Research Online
The Open University’s repository of research publications
and other research outputs

Chemically tailored new sorbents for use into the 21st

century.
Thesis
How to cite:

Bambrough, Claire Michelle (1998). Chemically tailored new sorbents for use into the 21st century. PhD
thesis. The Open University.

For guidance on citations see FAQs.

c© 1998 Claire Michelle Bambrough

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html


Ch em ic a lly  Tailo red  N ew  So rbents fo r  Use  into

THE 21®̂  Century

Submitted by 

Claire Michelle Bambrough BSc(Hons)

as a thesis for the degree of 

Doctor of Philosophy

in the Faculty of Science

October 1998



ProQuest Number: 27696816

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te  manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 27696816

Published by ProQuest LLO (2019). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLO.

ProQuest LLO.
789 East Eisenhower Parkway 

P.Q. Box 1346 
Ann Arbor, Ml 48106- 1346



Dedicated to Roy Mitchell, 

and to the memory of Grace Mitchell,

Bob and Phyllis Bambrough, my grandparents.

. '  - ■ , f  i



The surface was invented by the devil.99

- Wolfgang Pauli



A bstract

A series of chemically-tailored mesoporous materials has been synthesized via a 

liquid-crystal templating mechanism and characterized using a variety of techniques. 

Materials include a series of MCM-41-type solids (including aluminosilicates, purely 

siliceous, and iron-containing materials) and a series of organically-modified 

mesoporous silicas (including phenyl-, vinyl-, aminopropyl- and mercaptopropyl- 

functionalized samples). ,

Two different synthesis compositions and three different sets of reaction 

conditions were tested for the synthesis of MCM-41. Characterization by XRD and 

sorption demonstrated that synthesis under pressure at 100 *C yielded materials with a 

uniform pore structure and narrow pore size distribution. Samples with pore widths in 

the mesoporous range and specific surface areas of between 500 - 950 m  ̂ g'  ̂ were 

produced. The synthesis composition that used aluminium sulphate as the aluminium 

source was shown, by ^^Al MAS-NMR, to give a product, following calcination, 

containing tetrahedrally co-ordinated aluminium (necessary for acid catalysis).

N2 adsorption on the organically-modified, samples, demonstrated that the 

incorporation of organic functions reduced the pore diameter and yielded microporous 

materials. The use of auxiliary organics as pore-swelling agents was investigated and 

mesitylene was proved to be successful in the formation of a mesoporous phenyl- 

modified material.

The adsorption isotherms of water, benzene, n-butanol and f-butanol were 

measured for the phenyl-modified materials. N2, benzene and r-butanol sorption on the 

unswollen sample yielded Type I isotherms, confirming the sample’s microporosity.



Type IV isotherms were given by these adsorptives on the mesitylene-swollen sample, 

demonstrating the presence of mesopores.

/i-butanol adsorption occurred via polar interactions with the surface hydroxyl 

groups of both samples and was sterically-hindered in the microporous sample. Water 

sorption (performed on the unswollen sample. only) gave a Type V isotherm 

demonstrating the sample’s hydrophobicity.

UNS studies of the phenyl-modified silica containing adsorbed benzene, detected 

the presence of the adsorbed species and differentiated between structural phenyls and 

adsorbed benzene.
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Chapter  1 

Introduction

1.1 General

While the title of this research is extremely broad, it is primarily concerned with 

mesoporous molecular sieves, species which can discriminate between molecules solely 

on the basis of size by virtue of a pore system of molecular dimensions. Specifically, it 

considers the synthesis and characterization of novel, mesoporous, silica-based materials 

which may be classified as belonging to the M41S group of materials^'^ (see Section

1.2). This chapter aims to give a general introduction to porous materials with special 

attention being given to M41S-type solids. It discusses the original synthesis of the 

M41S materials and it will consider some alternative synthetic routes to these and to 

other porous solids. The use of porous solids as shape-selective catalysts will also be 

considered.

A valuable technique for determining the pore structure and surface area of such 

solids is gas adsorption and this technique, which plays a major part in this research, is 

discussed at length in Chapter 4. Introductions to general characterization techniques 

used in this research are given in Chapter 2 and a general introduction to Inelastic 

Neutron Scattering is given in Chapter 6.
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1.2 Classification of Porous Solids

Porous inorganic solids, such as the zeolites, are used extensively in catalysis 

and as sorption media because of their large surface area and uniform pore structure.^’’̂  ̂

lUPAC classify of porous solids according to their pore width and this classification 

system^^ is presented in Table 1.1, below.

Table 1.1 The lUPAC Classification of Porous Solids^^

Fore Width / A Classification

<20 microporous

20-500 mesoporous

>500 macroporous

The classical aluminosilicate zeolites are examples of microporous solids 

(having pore diameter, d < 20 Â). Recent research in this field has concentrated on the 

synthesis of solids with pore structures in the mesoporous range; these include pillared 

layered solids and a family of mesoporous aluminosilicates designated M41S. A large 

amount of interest has recently been focused on this latter group of materials, which 

were discovered by the Mobil Research and Development Corporation in 1992.̂ *̂

These materials combine the well-defined pore structure of the zeolites with the 

desirability of average pore diameters in the mesoporous range. It is possible to control 

precisely the pore diameter in these solids, thereby providing a potential route to the 

formation of highly shape-selective catalysts.
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1.3 M41S Materials

The recent discovery of the mesoporous aluminosilicates designated M41S (by 

workers at Mobil) attracted a great deal of interest, and their potential as catalysts for the 

reactions of large organic molecules has guaranteed a continuous stream of papers 

investigating the rational synthesis of mesoporous solids, their characterization and their 

applications.

The M41S materials are formed via a reaction which involves the use of 

aggregated organic surfactant molecules as templates or “structure-directing agents”.

Zeolites are formed by the crystallization of silicate around a single molecule. In 

the case of M41S synthesis, micelles of cationic alkyltrimethylammonium surfactants 

serve as the template. The ability to control the template by increasing the carbon chain 

length of the surfactant provides a relatively simple method of tailoring the pore size 

and shape of the inorganic product. Characterization of these products has proved the 

existence of a lamellar, a cubic and a hexagonal M41S phase, the most well documented 

being the hexagonal phase MCM-41̂ ’*'̂  ̂ and the cubic phase MCM-48.^®

The factor that governs which of these phases is formed is the surfactant / silica 

molar ratio:

surfactant / silica < 1 gives MCM-41 

surfactant / silica = 1 to 1.5 gives MCM-48 

This research is concerned with materials having the MCM-41 structure.
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1.3,1 MCM-41

MCM-41 has a hexagonal array of unidimensional pores that can be tailored 

with pore-diameters between 15 - 100 Â. It has been used as a model mesoporous solid 

in the field of adsorption, surface area and porosity measurements, and typical surface 

areas in excess of 650 m  ̂g'̂  have been reported.

Speculation on the mechanistic pathway leading to the formation of MCM-41 

initially resulted in two proposed routes. Beck et af" suggested that the surfactant 

molecules aggregate into micellar rods which in turn form a hexagonal array which acts 

as the template for the inorganic süica (Figure 1.1).

540 “C

Surfactant
Micelle Micellar Rod Hexagonal Array SurfactanTMicelle M CM ^T

Surrounded by Silicate

Figure 1.1 The Liquid-Crystal Templating Mechanism Suggested by Beek et al.

The second mechanism, suggested by Vartuli,^ notes that spontaneous 

aggregation of the surfactant molecules into the liquid crystal hexagonal array is 

unlikely at the working concentration and that it is the addition of the silicate anions, by 

virtue of their charge balance with the cationic surfactants, that causes micelle 

formation. This more likely mechanistic pathway is shown in Figure 1.2 below.
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Surfactant
Molecules

Silica

Silica Forces 
Aggregation

Surfactant Micelle
Surrounded by Silica 

Figure 1.2 The Structure-Directing Mechanism Suggested by Vartuli et al

It has recently been shown^ that by progressively increasing the surfactant : 

silica ratio, each of the three M41S phases (lamellar, cubic and hexagonal) can be 

formed. This agrees with the second proposed mechanism in which the silicate anions 

trigger the liquid crystal state by serving as counter ions to the surfactants.

2.3.2 Alternative Synthetic Routes to MCM~41-Type Materials

(i) A Neutral Templatins Route

An alternative to the synthetic route discussed above is the formation of 

mesoporous solids via a neutral templating route.^^ This method relies on hydrogen 

bonding interactions between neutral primary amine micelles and neutral inorganic 

precursors such as tetraethylorthosilicate (TEOS). The template may then be removed 

by neutral solvent extraction. These materials are reported to have thicker silica walls 

and improved textural mesoporosity.
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(ii) Preforming the Liquid Crystal Mesoohase

In the case of the original MCM-41 synthesis, the experimental concentration of 

the surfactant molecules is below that at which the liquid crystal mesophase will 

spontaneously form. An alternative synthetic procedure, first carried out by Attard et 

involves preforming the liquid crystal mesophase before addition of the silica 

source. The pore structure of the final product is therefore accurately determined at the 

outset.

(iii) Surfactant Intercalation ofKanemite

As well as the synthetic route described above, attempts have been made to 

produce mesoporous materials by hydrothermal treatment of the layered silicate 

kanemite in the presence of alkyltrimethylammonium cations."* This route did produce a 

mesoporous silicate via surfactant intercalation of the kanemite layers and not via the 

micellar/silicate route observed in the M41S system. The properties of the kanemite- 

derived materials are different from those of the M41S group in that they have lower 

pore volumes, are more highly condensed and have thicker silica walls.

(iv) Gemini and Dual Alkyl Chain Surfactant Templating

Gemini surfactants contain two quaternary ammonium head groups separated by 

a variable length methylene chain. They have been used as templates for the synthesis of 

a mesoporous silicate designated SBA-2 that has hexagonal symmetry, regular 

supercages and a large inner surface area.^ By altering the length of the inter-connecting 

methylene chain and surfactant tail it was possible to produce other phases including the 

cubic phase MCM-48. Dual chain dialkyldimethylammonium surfactants have also been
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used successfully in the formation of M41S materials.^’ For the odd carbon numbers 

(n = 1, 3, 5, 7 ) MCM-41 was formed, while the even carbon numbers ( /i = 2, 4, 6, 8 ) 

and n > 9 surfactant produced a lamellar phase. The authors suggested that at n > 7 the 

surfactant behaves as a two-tailed molecule that favours the formation of a bilayer but 

were unable to explain the results obtained when n < 7.

1.3,3 The Use o f AuxUiary~Organics as Pore-Swelling Agents

The pore size of M41S materials is easily tailored by altering the carbon chain 

length of the surfactant template. In one of the original Mobil papers, however. Beck et 

aj} document the use of mesitylene as a pore-swelling agent to form even larger 

mesoporous solids. A recent paper by Ulagappan and Rao^ investigates the use of 

straight chain alkanes as pore-swelling agents. The following schematic diagram (Figure

1.3) shows a micelle of surfactant molecules in (a) the absence and (b) the presence of a 

normal alkane. X-Ray diffraction patterns of mesoporous silica formed with a cationic 

surfactant in the presence of normal alkanes of increasing carbon chain lengths showed 

an increase in the observed dioo values that corresponded to the lengths of the alkane 

chain and surfactant tail being approximately additive in forming the micelle template.

In this study we document the use of mesitylene and tetradecane as pore- 

swelling agents in the synthesis of organically modified MCM-41 materials.
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(a) (b)

Figure 1,3 Diagram showing (a) a liquid crystal micelle and (b) the use of straight chain 
alkanes as auxiliary organics.

L3.4 Organically Modified MCM-41

As one of the major potential applications of MCM-41 is its use as a catalyst, it 

is desirable to incorporate catalytically active metals or organometallics into the MCM- 

41 framework. Early attempts to incorporate guest species in the channels of the 

mesoporous aluminosilicate MCM-41 resulted in low guest loadings, probably due to 

the absence of specific interactions between host and guest. The use of organically 

fiinctionalized mesoporous materials may alleviate this problem and the synthesis of 

hybrid inorganic-organic mesoporous silicas have recently been reported:^^ A phenyl- 

modified MCM-41 type material was synthesised at room temperature by the hydrolysis 

and co-condensation of siloxane and organosiloxane in the presence of a surfactant. In 

this report, the analysis of this phenyl-modified MCM-41 by adsorption of benzene and 

water vapour is reported. Preliminary nitrogen sorption and powder XRD data suggested 

that the sample was microporous and for this reason the synthesis of a mesoporous
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phenyl-modified MCM-41 has been performed and is reported here. The synthesis of 

several other organically-modified mesoporous silicas has also recently been 

reported"*̂ ""*̂  and, in this study, the synthesis and characterization of mesoporous silicas 

containing vinyl, aminopropyl and mercaptopropyl functions is also described.

1.3.5 Metal-containing MCM-41

The large surface area and tailorable pore structure of MCM-41 makes it a 

suitable support for catalytically-active metals. A large number of transition-metal 

substituted, hexagonal, mesoporous silicas have been prepared"*̂ '̂  ̂ including Ti-, V-, 

Cr-, Mo- and Mn-substituted materials.* '̂^* The catalytic activity of these materials has 

been studied and some examples are given in Section 1.5.2, below.

In addition to these well-known catalytically-active metals, more unusual 

materials have been synthesized, such as an MCM-41 encapsulating a ruthenium 

porphyrin'’̂  (for alkene oxidation) and organolanthanide-containing MCM-41.^

In this study, the synthesis and partial characterization of an iron-containing 

MCM-41 is reported.

1,4 M41S-Tvpe Materials in Context

In order to appreciate the relevance of M4IS-type solids in the field of sorption 

^ d  catalysis, it is useful to first consider some commonly used porous solids. The 

position of M4IS-type materials, relative to various other types of porous solid in the 

lUPAC classification system, is given in Figure 1.3, below. As shown in the diagram,
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M41S-type solids have pore diameters which fall in the range of 20 - 100 Â but most 

commonly, pore diameters of approximately 40 Â are observed.

Microporous Mesoporous

M41S

Pillared Layered Solids

1
Zeolites
“I-----------1--------------------------r-----------r -
5 10 50 100

Pore Diameter / A

As

Figure 13 Fore-Size Classification of Various Types of Porous Solid

previously mentioned, zeolites are microporous, while pillared layered solids 

may display microporous and/or mesoporous characteristics. Basic descriptions of 

zeolites and commonly encountered pillared layered solids are given below.

1.4.1 ZeoUtes^^'̂

Zeolites are model microporous solids. The primary building blocks of all 

zeolites are SiOd and AIO4 tetrahedra linked together by sharing comer oxygens to form 

ring systems. Four tetrahedra linked together form, a so-called 4-ring, six tetrahedra form 

a 6-ring gfc (Figure 1.4).

. ,0
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o

Â.
o

o

S i \  AI- 
O

Si/
\

(a) (b)

Figure 1.4 (a) A Zeolite 6-ring and (b) The short-hand depiction of a 6-ring

A secondary building unit commonly observed in this family of materials is the 

sodalite unit which is a truncated octahedron composed of linked 4- and 6-rings. It is the 

packing of these sodalite units which yields large cavities in many zeolite structures in 

which sorption, diffusion and catalysis may take place.

7.4.2 Pillared Layered Solids

Pillared layered solids, which may contain micropores, mesopores or a mixture 

of both, are commonly used as catalysts and adsorbents. This section will briefly 

consider the three main types of layered solid used for pillaring.^ These are smectite 

clays, layered double hydroxides (LDH), and phosphates and phosphonates of 

tetravalent metals.

11
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(i) Smectite Clays

Smectite clays are naturally occurring three-layer sheet silicates containing two 

layers of tetrahedrally co-ordinated atoms surrounding a layer with octahedrally co­

ordinated atoms. The net negative charge attributable to substitutions in either the 

tetrahedral or octahedral layer is compensated by interlayer cations. In naturally 

occurring smectite clays these cations are the alkali and alkaline earth metals. These 

clays swell easily in water and, after swelling, the interlayer cations may be exchanged 

for larger oligomeric cations such as the Keggin ion [Ali304(0H)24(H20)i2] '̂^. 

Calcination of the exchanged product dehydrates the pillars and forms stable links 

between the layers resulting in a porous solid. Mesoporosity is achieved due to the clays 

delaminating on swelling and ion exchange to form small packages or single layers. 

When the clay is dried these packages are roughly arranged creating mesopores between 

them. The major disadvantage of this procedure, however, is that it is not controlled and 

the pore dimensions can, therefore, not be tailored.

(ii) Layered Double Hydroxides

Another important class of layered solids are the layered double hydroxides 

(LDHs). These structures are based on that of Mg(0H)2, brucite in which magnesium 

ions occupy the octahedral sites between each second layer of a close-packing of 

hydroxide ions. By substituting the divalent Mĝ "̂  by trivalent ions such as Al̂ "̂ , 

positively charged layers are formed. The interlayer gaps are filled by charge 

compensating anions and thus providing a means of pillaring these solids.

12
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(Hi) Phosphates and Phosphonates of Tetravalent Metals

Another type of pillared solid is based on the expansion of the interlayer space of 

phosphates by tetravalent metals such as Ti, Zr and Sn. The phosphate oxygens are co­

ordinated to the metal atom and the phosphate proton projects into the interlayer region. 

Substances typically used for the intercalation of the acidic interlayer region are organic 

amines.

Pillared layered zirconium phosphonates similar to the metal phosphate, but with 

R groups protruding into the interlayer region keeping the layers apart, can also be 

prepared. By partially replacing the organic residue with a smaller R group, R', a porous 

solid should result. It is then the length of the organic residue, R, that controls the height 

of the pores and the ratio of R : R' that controls the pore width.

1.4.3 MCM-41 in Context

The major difference between MCM-41 and the materials discussed above is the 

degree of control which may be exerted over the formation of the pore systems. In the 

case of the pillared layered solids, the pore system that is produced often contains pores 

in the micro- and mesoporous range and these solids therefore have a large pore-size 

distribution. This is obviously a disadvantage when designing a shape-selective catalyst 

(see next section).

While the zeolites obviously have the advantage of being crystalline and of 

having a well-defined, narrow pore-size distribution, these materials are microporous 

and are therefore of limited use in the catalysis of the reactions of large organic 

molecules.

13
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MCM-41 and related materials combine the advantage of having an easily- 

tailored, well-defined pore structure with pore-diameters in the mesoporous range. The 

major disadvantage of these materials is the fact that the pore walls are amorphous.

1.5 Porous Solids as Catalysts

1.5.1 Shape-selective Catalysis in Zeolites

Zeolites are the crystalline analogues of the amorphous silica-aluminas that have 

long been used as acid catalysts. As previously mentioned, the primary building block of 

all zeolites are Si04 and AIO4 tetrahedra. These are linked at every comer oxygen to 

yield a three dimensional framework containing regular channels and cavities. It is this 

very fine pore stmcture that is responsible for the zeolites ability to select molecules of a 

certain size to penetrate into, or escape from, the interior of the crystal.

It is acid sites arising from the AIO4' tetrahedra in the structure that are 

responsible for the catalytic activity of the zeolites. These sites are located both within 

the pore structure and on the. outside surface. Surface areas of zeolites fall typically 

between 200 to 800 ni  ̂g 'l

Shape-selective catalysis may be divided into three categories, namely reactant 

selectivity, product selectivity and restricted-transition-state selectivity. These three 

categories are discussed separately below.

14
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(i) Reactant Selectivity

Reactant selectivity arises when one or more reactant species is denied access to 

the zeolite's active sites as a result of its molecular sieving properties. An example of 

this is the dehydration of a mixture of «-butanol and fro-butanol to form an alkene over 

two different zeolites.®  ̂ Faujasite NaX (window size « 8.5 Â), resulted in similar 

conversion rates for both «-butanol and wo-butanol whereas another zeolite, CaA, 

(window size ~ 4.5 Â) resulted in negligible dehydration of the bulky zjo-butanol.

(ii) Product Selectivity

Product selectivity arises when only those species with the appropriate 

dimensions can diffuse out of the zeolitic cavity and appear as observed products. This 

is exemplified by the alkylation of toluene with methanol over the zeolite ZSM-5.*^ The 

product contains the ortho-, meta- and para-isomers of xylene with the latter in excess. 

The disproportionately high percentage of para-xylene in the product mixture may be 

explained by the "stream-line" structure of the para-isomer, which fits easily within the 

channels of ZSM-5; in contrast, the movement of the ortho- and meto-isomers within 

the zeolite channels is restricted by their bulky structure.

(iii) Restricted-transition-state Selectivity

A third type of shape-selective catalysis is based on the fact that reaction of the 

organic species takes place inside the zeolite cavity. It follows, therefore that, if the 

cavity dimensions are restrictive to the fondation of a certain bulky transition state, 

further constraints are made on the reaction pathway. This restricted-transition-state 

selectivity is demonstrated by a study of the relative rates of disproportionation and

15
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isomérisation of o-xylene over a variety of zeoiites.^^ The results show that the rate of 

disproportionation relative to isomérisation falls considerably as the cavity size is 

reduced. This can be explained by considering the nature of the two reactions. 

Disproportionation is a bimolecular process requiring the formation of a bulky transition 

state, while isomérisation is unimolecular involving intra-molecular methyl shifts and 

transition states with dimensions similar to those of the product.

1.5.2 M41S Materials as Shape-selective Catalysts

The large pore size of M41S type materials relative to zeolites has led to a great 

deal of interest in the possible use of these materials as catalysts and catalyst 

supports.^^’̂  ̂ The use of mesoporous solids as acid catalysts is permitted by the 

incorporation of aluminium, as substitution of silicon with aluminium yields Bronsted 

and Lewis acid sites. Catalytically-active metals have also been incorporated into the 

inorganic framework. Recently, attention has been focused on the acid catalysis of larger 

organic molecules. An example of this is the study made of the alkylation of the bulky 

2,4-di-f-butyl phenol with cinamyl alcohol using aluminosilicate MCM-41 as the 

catalyst.^^ It was shown that the primary alkylation product 6,8-di-f-2phenyl-2,3- 

dihydro[4H]benzopyran was formed with MCM-41, while the restricted environment of 

the zeolite HY did not permit alkylation to occur.

As mentioned in Section 1.3.5, various catalytically active metals such as 

vanadium^^ and titanium^^ have been incorporated into M41S type materials and the 

selective oxidation of large organic molecules investigated. Corma €t have produced 

a titanium silicate isomorphous to MCM-41 that has an average pore diameter of 20 Â 

and a surface area of 936 m  ̂g'*. They have shown that this titanium silicate catalyses
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the epoxidation of hex-l-ene by H2O2, and the epoxidation of norbomene with 

terbutylhydroperoxide (THP). The latter reaction is of interest as the bulky nature of the 

oxidant prevented the zeolite TS-1 from being used as a catalyst. Corma et a f^  have also 

developed a NiMo-MCM-41 which may be used as a catalyst in the hydrocracking of 

vacuum gasoil. It was found to be more effective at desulfurization and denitrogenation 

than zeolite analogues with the same metal loading. The authors attributed this to be due 

to a combination of large surface area, uniform pore size distribution and reduced 

diffusion problems, combined with the required mild acidity due to the presence of 

aluminium centres.

17



C.M:Bambrough 1. Introduction

1.6 Objectives

The main aims of this study were the synthesis and characterization of novel, 

chemically tailored MCM-41 type sorbents via a liquid-crystal templating method. The 

application of different synthesis protocols to yield ordered mesoporous materials was 

under investigation.

The synthesis of a series of materials containing functions which could 

potentially be used for catalysis purposes was also an objective.

Gas adsorption studies of this class of materials can yield important information 

concerning pore structure and surface characteristics. The measurement of the 

adsorption isotherms of various adsorptives on these materials (using both automated 

volumetric and manual gravimetric techniques) was therefore an objective.
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Chapter  2 

E xperim ental

This chapter is divided into two parts. Part I details the synthesis of materials 

while Part II considers the characterization techniques employed in this study.

P art  I - Syntheses

Part I of this chapter is divided into two sections. The first concerns the synthesis 

of M41S materials containing no organic functions, while the second section discusses the 

synthesis of organically-functionalized mesoporous silicas.

2.1 M41S Materials 

Materials

The flow diagram shown as Figure 2.1 describes the general synthesis of M41S

solids. The base catalyst used in the synthesis was either tétraméthylammonium hydroxide

(TMAOH, Aldrich) or sodium hydroxide (Hopkin and Williams, AnalaR), and the silica

source was either (a) tetraethylorthosilicate (TEOS, Aldrich) or (b) tétraméthylammonium

silicate (TMAS, see synthesis in Section 2.1.1) and precipitated silica (BDH). The

template used in each case was an aqueous solution of cetyltrimethylammonium chloride

(CTMACl, Aldrich). Sodium aluminate (Riedel-de Haën), or aluminium sulphate (Hopkin

and Williams, AnalaR) were used as the aluminium source. Table 2.1, given at the end of
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this section, summarizes the reaction conditions for each batch. The aluminosilicate 

materials were prepared using two methods devised by Schmidt et al with the aim to 

produce a material containing aluminium in a tetrahedral environment (required for acid 

catalysis). The preparation of a range of materials is now described.

Ci6H33(CH3)3NCl +

H2O + BASE

silica source + 
aluminium source

WHITE SUSPENSION

heat in sealed teflon 
bottle at iOO °C

or heat in microwave oven 
or stir at room temperature

WHITE NGN-POROUS SOLID

calcine at 540 °C 
in air for 6h.

WHITE MESOPOROUS SOLID

Figure 2.1 Flow diagram describing the general synthesis of M41S materials.

The microwave oven used in the following syntheses was a standard Hotpoint 850 W 

domestic microwave oven.

25



C.M.Bambrough 2. Experimental

2.1.1 MCM-41 Preparation 1

(Preparation According to Schmidt^)

The synthesis of this MCM-41 sample differs from those of the other M41S 

materials described below in that it uses a tétraméthylammonium silicate (TMAS) solution 

as a silica source. The preparation of this solution is now described: 30.48 g of 25% by 

mass aqueous tétraméthylammonium hydroxide (0.084 mol, Aldrich) was combined with 

16.82 g of 30% by mass aqueous colloidal silica (0.084 mol, Ludox, Du Pont) and 13 g 

(0.72 mol) of deionized water. Thus a 1:1 solution of TMAOH and SiO: (containing 10% 

Si02 by mass) was produced, which was then aged at room temperature for 96 h.

50 g of the above precursor solution was added to an aged solution containing

2.1 g (4.33 mmol) of sodium aluminate, 31 g (0.024 mol) of 25 % by mass aqueous 

cetyltrimethyl ammonium chloride (CTMACl) and 13 g (0.72 mol) of deionized water. To 

this white precipitate was added 12.5 g (0.2 mol) of precipitated silica and, after stirring, 

10 g (0.105 mol) of 25% by mass tétraméthylammonium hydroxide solution. The resulting 

gel was divided into two portions and treated as follows:

i) Sealed Teflon Bottle Synthesis - MCM-41(a)

One portion of the reaction mixture was loaded into a teflon bottle which was 

stoppered and heated in an oven at 100 °C for 23 h, The white solid was recovered by 

filtration, washed with copious deionized water and dried over CaCl2. A portion of the 

product was calcined in air at 540 °C for 6 h.
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ii) Microwave Synthesis - MCM-41(b)

The second portion of the reaction mixture was loaded into a conical flask, covered 

with a petri dish and heated in a 850 W domestic microwave at 10% power for 20 

minutes, stirring the mixture every 2 minutes. The product was again recovered by 

filtration, washed with deionized water and was dried over CaClz. A portion was calcined 

at 540 ®C in air for 6 h.

2.1.2 MCM-41 Preparation 2.

(Preparation According to Schmidt^)

21.3 g (0.102 mol) TEOS was added to a solution containing 2.48 g (0.062 mol) 

NaOH, 13.2 g (0.042 mol) of 25% by mass CTMACl and 180 g (10 mol) of deionized 

water. The solution was maintained at approximately 30 °C and stirred for 5 minutes to 

produce a white suspension (molar ratio ca. 100 H2O : 1 TEOS : 0.4 CTMACl; 

surfactant/silica < 1, as required for MCM-41 formation, see chapter 1). 1.1 g (1.74 mmol) 

of aluminium sulphate was then added and the solution stirred at 30 °C for 1 h. Again the 

reaction mixture was divided into two portions and treated as follows:

i) Sealed Teflon Bottle Synthesis - MCM-41(c)

The first portion of reaction mixture was loaded into a teflon bottle which was 

stoppered and heated in an oven for 72 h at 100 °C. The solid was filtered, washed with 

deionized water and dried. A portion was calcined at 540 °C in air for 6 h.

27



C.M.Bambrough 2. Experimental

ii) Microwave Synthesis - MCM-41(d)

The procedure used in the microwave synthesis of sample MCM-41(b) (section 

2.1.1) was applied to the second portion of the reaction mixture.

2.1.3 Iron-containing MCM-41^

10.65 g (0.05 mol) of TEOS was added to a solution containing 1.3 g (0.03mol) of 

NaOH, 6.58 g (0.021 mol) of 25% by mass aqueous CTMACl and 90 g (5 mol) of 

deionized water (molar ratio ca. 100 H2O : 1 TEOS : 0.4 CTMACl; surfactant/silica < 1, 

as required for MCM-41 formation). The resulting white suspension was stirred at room 

temperature for 5 min before the addition, with stirring, of 0.5 g (1.2 mmol) of 

Fe(NO3)3.9H20 (BDH). A pale brown suspension was produced which was stirred at room 

temperature for 1 h before being loaded into a teflon bottle, which was sealed and heated 

in a conventional oven at 100 °C for 5 days. A slightly discoloured homogeneous product 

was recovered by filtration, washed with deionized water and dried at room temperature. 

The product was calcined in air at 540 °C for 6 h.

2.1.4 Purely siliceous MCM-41

To 56 g (3.1 mol) of H2O was added 4.6 g (3.62 mmol) of 25% by mass CTMACl 

and 16 g of NaOH(aq) (1 mol dm*̂ ). To this was added 6.5 g (32 mmol) TEOS, and the 

resulting white suspension was stirred for 48 h at room temperature to produce sample 

SiMCM-41(a) (molar ratio ca. 100 H2O : 1 TEOS : 0.1 CTMACl; surfactant/silica < 1, as 

required for MCM-41 formation). Half of the mixture was then loaded into a teflon bottle 

which was sealed and heated in an oven at 100 °C for 24 h. The white solid, sample
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SiMCM-41(b), was recovered by filtration, washed with deionized water and dried under 

vacuum at 50°C. A portion was calcined in air at 540 °C for 6 h.

Table 2.1 Summary of the reaction conditions for M41S syntheses.

Sample Template Base Silica
Source

Metal
Source

Heating
Method

MCM-41
(a)

CTMACl TMAOH
TMAS

precipitated
silica

sodium
aluminate

Sealed vessel 
(100 °C)

MCM-41
(b)

CTMACl TMAOH
. TMAS 

precipitated 
silica

sodium
aluminate

Microwave
Oven

MCM-41
(c)

CTMACl NaOH TEOS aluminium
sulphate

Sealed vessel 
(100°C)

MCM-41
(d)

CTMACl NaOH TEOS aluminium
sulphate

Microwave
Oven

FeMCM-41 CTMACl NaOH TEOS Iron nitrate Sealed vessel 
(100 "C)

SiMCM-41
(a)

CTMACl NaOH TEOS -
Stirred at 
ambient 

temperature

SiMCM-41
(b)

CTMACl NaOH TEOS -
As SiMCM- 

41(a) + sealed 
vessel (100 °C)

CTMACl - Cetyltrimethylammonium chloride 

TMAOH - Tétraméthylammonium hydroxide 

TMAS - Tetramethylammoniumsilicate 

TEOS - Tetraethylorthosilicate
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2.2 Organically-functionalized Mesoporous Silica

This section considers the synthesis of mesoporous silicas containing organic 

functional groups and the use of auxiliary organics as pore-swelling agents. A phenyl- 

modified sample, which was synthesized at the University of Bath by Burkett et a f  and 

analyzed, at Exeter, by the author, is also described. Figure 2.2 describes the general 

synthesis of an organically modified mesoporous silica. In each case the amount of 

organosiloxane provided no more than 20 mol % of the total silicon. Again, 

cetyltrimethylammonium chloride (CTMACl) was used as the template in a solution of 

concentration less than that of the liquid crystal mesophase. Either tetradecane (C14H30) 

or mesitylene (1,3,5-trimethyl benzene) were used the as pore-swelling agent. A 

summary of synthesis conditions for each experiment is given in Table 2.2 at the end of 

this section.

TEOS + 
organosiloxane

addition of pore- 
swelling agent

Stir at room temperature 
for 48h - 168 h

HCl in EtOH (1 mol dm' )

WHITE SUSPENSION

WHITE NGN-POROUS SOLID

WHITE MESOPOROUS SOLID

C ,6H 33(C H 3)3N C 1 +

H2O + NaOH

Figure 2.2 Flow diagram describing the synthesis of organically-functionalized 
mesoporous silicas.
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It should be noted that the pore-swelling agent must be added after the silica 

source. Addition of the auxiliary organic before the silica source results in the formation 

of a non-porous solid. This could possibly be caused by the organic moiety preventing 

formation of the liquid crystal micelle.

(a) Analysis of PhMCM-41 Synthesized at the University of Bath

2,2.1 Characterization ofPHMCM~41 (synthesized by Burkett et a f)

The characterization of a phenyl-modified mesoporous silica, synthesized by 

Burkett et a t  at the University of Bath, was carried out at Exeter. This involved X-ray 

powder diffraction, N2 sorption at 77 K, water sorption at 303 K and benzene sorption at 

293 K. Results of these studies are given in Sections 3.6 and Sections 5.4, 5.6 and 5.7 

respectively. The synthesis of the material was carried out (at Bath) as follows:

The synthesis of a phenyl modified MCM-41 was realized by the hydrolysis and 

co-condensation of a siloxane and organosiloxane in the presence of a surfactant (molar 

composition = 0.12 CTMABr : 0.5 NaOH : 1.0 total siloxane : 130 H2O). The 

organosiloxane used in the synthesis of PhMCM-41 was phenyltriethoxysilane (PTES) 

and this accounted for 20 mol % of the total siloxane used in the initial synthesis mixture. 

As calcination would result in the destruction of the organic function, the template 

molecules were removed using an acid extraction technique (stirred in HCl in EtOH (1 

. mol dm*̂ ) at 70°C for 24 h) to yield an ordered porous solid. A control sample containing 

no phenyl groups was synthesized using 100% TEOS as the silica source.
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(b) Synthesis of Organically-Modified Mesoporous Silicas

The following syntheses were carried out by the author at the University of

Exeter.

2.2.2 Phenyl-modified mesoporous silicas using auxiliary organics as pore

swelling agents.

Mesoporous phenyl-modified silicas, containing 20 mol % PTES in the original 

synthesis composition, were prepared at ambient temperature at Exeter. An unmodified, 

(purely siliceous) sample (SiMCM-41 (a)), prepared in the same conditions, was also 

synthesized and is described in section 2.1.4. The preparation of mesitylene-swollen, 

tetradecane-swollen and an unswollen phenyl-modified material is now reported.

Materials

Silica sources were letraethoxysilane (TEOS, Aldrich) and phenyltriethoxysilane 

(PTES, Lancaster). The quaternary ammonium surfactant used as the templating agent 

was 25% by mass aqueous cetyltrimethylammonium chloride, Ci6H33(CH3)3NCl 

(CTMACl, Aldrich). The auxiliary organics used as pore swelling agents^’® were 

mesitylene (MES, Lancaster) and tetradecane (TET, Aldrich). All chemicals were used 

as received. '

(i) Unswollen phenyl-modified silica.

This sample uses the same preparative method as that used by Burkett et a t  and 

was prepared as a control sample. 2.4 cm  ̂(1.8 mmol) of 25 % by mass CTMACl was 

added to a solution of 8 g of NaOH(aq) (1.0 mol dm'^) in 28 g of H2O. 2.8 cm^ (12.6
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mmol) of TEOS and 0.8 cm  ̂(3.3 mmol) of PTES were then added and the solution was 

then stirred at room temperature for 48 h. The white solid product was recovered by 

filtration, washed with deionized water and dried in an oven at 100 °C. Surfactant 

extraction was performed by stirring a suspension of the as-synthesized product in HCl 

in EtOH (1.0 mol dm'^) at 70 °C for 24 ĥ . The extracted material was recovered by 

filtration, washed with ethanol and dried in vacuo (dynamic) at 100 °C.

(ii) Mesitylene-swollen phenyl-modified silica.

Procedure 2.2.2(i) was repeated, but with addition of 1.3 g (10.8 mmol) MES^ to 

the reaction mixture following addition of the siloxane.

(iii) Tetradecane-swollen ohenvl-modified silica.

Procedure 2.2.2(i) was repeated, but with addition of 0.36 g (L81 mmol) TET to 

the reaction mixture following addition of the siloxane (TET / CTMACl molar 

ratio =1)^.

2.2.3 Mesitylene-swollen vinyl-functionalized mesoporous silica.

2.8cm^ (12.6 mmol) of TEOS and 0.64 cm  ̂ (1.52 mmol) of vinyltriethoxysilane 

(VTES* Lancaster) were added to a solution of 2.4 cm  ̂ (1.8 mmol) of 25% by mass 

CTMACl and 8 g of 1 mol dm'^ NaOH(aq) solution in 28 g of H2O. A white precipitate 

was produced to which was added 1.5 cm  ̂(10.8 mmol) of MES. The suspension was 

stirred at room temperature for 36 h, filtered, washed with deionized water and dried in 

a vacuum oven at 50 °C overnight. The acid extraction technique described in 2.2.2(i) 

was employed to remove the template.
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2.2.4 Mesitylene-swollen aminopropyl-functionalized mesoporous silica.

2.8cm^ (12.6 mmol) of TEOS and 0.36 cm  ̂ (1.52 mmol) of 3-aminopropyl-

triethoxysilane (APTES, Lancaster) were added to a solution of 2.4 cm^ (1.8 mmol) 

25% by mass CTMACl and 8 g of NaOH(aq) solution (1 mol dm" )̂ in 28 g (1.56 mol) 

of deionized H]0. A white precipitate was produced to which was added 1.5 cm^ (10.8 

mmol) of MES. The suspension was stirred at room temperature for 7 days, filtered, 

washed with deionized water and dried in air at room temperature. The acid extraction 

technique described in 2.2.2(i) was employed to remove the template.

2.2.5 Mesitylene-swollen mercaptopropyl-functionalized mesoporous silica.

5.4 cm  ̂(25.0 mmol) of TEOS and 3.0 cm  ̂(21.6 mmol) of MES were added to a

solution of 5.0 cm^ (3.6 mmol) 25% by mass CTMACl and 16 g of 1 mol dm*̂  

NaOH(aq) in 56 g (3.1 mol) deionized H2O. A white precipitate was produced to which 

was added 1.25 cm  ̂ (6.6 mmol) of 3-mercaptopropyltrimethoxysilane (MPTMS, 

Lancaster) (carried out in a fume hood). In this case the organosiloxane was added at the 

end of the reaction due to the noxious nature of MPTMS. The suspension was stirred at 

room temperature for 7 days, filtered, washed with deionized water and dried in air at 

room temperature. The acid extraction technique described in 2.2.2(i) was employed to 

remove the template.
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Table 2.2 Summary of the reaction conditions of each organically-modified synthesis.

Sample Template Organo­
siloxane*

Reaction Time

PhMCM-41
(Burkett)

CTMABr PTES 
(20 mol %)

24 h

Unswollen
Ph-modified

CTMACl PTES 
(20 mol %)

48 h

MES-swbUen
Ph-modified

CTMACl PTES 
(20 mol %)

48 h

TET-swoUen
Ph-modified

CTMACl PTES
(20mol%)

48 h

MES-swoUen
V-modified

CTMACl VTES 
(10 mol %)

36 h

MES-swoUen
AP-modified

CTMACl APTES
(10mol%)

1 week^

Mes-swoUen
MP-modified

CTMACl MPTMS 
(20 mol %)

1 week^

* Figures in brackets, are mole percentages of total siloxane.
PTES - phenyltriethoxysilane; VTES - vinyltriethoxysilane;
APTES - aminotriethoxysioxlane; MPTMS - mercaptotrimethoxysilane.

 ̂A longer reaction time was employed in these cases in an attempt to improve the degree 
of siloxane condensation.

In each case:

Stirred at ambient temperature.

Silica source - TEOS; Base - NaOH; Surfactant extraction method -1 mol dm' 

HClÆtOH, 70 °C, 24 h.
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P a r t  n - C h a r a c te r iz a t io n  T e ch n iq u es

Characterization of the synthesized materials was achieved via X-ray powder 

diffraction, infra-red spectroscopy, thermogravimetry, transmission electron microscopy 

and magic-angle-spinning nuclear magnetic resonance (MAS-NMR) spectroscopy. These 

techniques are now described below. Table 2.3, given at the end of this section, details 

which characterization techniques were used for each sample. The background to gas 

adsorption and inelastic neutron scattering studies, which were also used to characterize 

these materials, are dealt with in detail in Chapters 4 and 6 respectively.

23  X-Ray Powder Diffraction (XRD)

2.3.1 Miller Indices^^

When detennining the structure of a solid-state material it is useful to be able to 

define the planes within a crystal structure and this is generally done by using Miller 

Indices. Close-packed structures such as ionic materials may, in certain orientations, be 

regarded as consisting of layers or planes of atoms in a three-dimensional arrangement. 

These lattice planes provide a reference structure to which the atoms in a crystal structure 

may be referred.

In amorphous, porous materials such as M4IS type solids, lattice planes are still 

relevant when considering the periodicity of the pore system. The relationship between 

lattice planes and MCM-41 is discussed in the following section (2.3.2).

,
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Lattice planes are identified by assigning three labels known as the Miller Indices: 

hkl. The values of these indices are calculated by considering the positions at which the 

planes intersect the axes of à unit cell. This is demonstrated in Figure 2.3.

Figure 13  Two planes in a unit cell

If the axes are assumed to range from 0 to 1, the dark grey plane shown in Figure

2.3 intersects the x-axis at Vi, the y-axis at X and the z-axis at 1. The fractional 

intersections are therefore, Vi, X, 1. By taking the reciprocals of these fractions, the 

Miller Indices of the plane are obtained; in this case 2 ii.  The Miller Indices of the light 

grey plane are similarly calculated and found to be 100.

The interplanar spacing (or perpendicular distance) between adjacent parallel 

planes is termed the 6f/,t/-spacing. This term is related to the Bragg angle 0 by Bragg’s 

law as described in Section 2.3.2 and dhki can therefore be determined by X-ray 

diffraction.
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23.2 X-Ray Powder Diffmction Theory

X-ray Powder diffraction (XRD) is a useful tool in the characterization of 

inorganic solids and X-rays were first used as a means of structure determination by W.H. 

and W.L. Bragg in 1913. X-ray diffraction is based on the principle of a crystallite acting 

as a diffraction grating and, for X-ray diffraction to take place, the wavelength of the 

incident radiation must be roughly of the same order of magnitude as the spacings in the 

diffraction grating crystal.

In order that X-ray “reflections” are observed, it is necessary that constructive 

interference occurs. This means that for reflected X-rays to emerge as a single beam of 

reasonable intensity, they must be in phase with one another. From this “Bragg condition” 

it is possible to derive equation 2.1 known as the Bragg law:

X = 2dhiusmQ 2.1

d is the spacing between the crystal planes, or in this case the solid’s pores (see below) and 

X is the wavelength of the emerging X-rays (the path difference of the emerging X-rays ' 

must be an integral number, n, of wavelengths). This is known as the Bragg equation and 

it is used to relate the Bragg angle, 9, to the (/-spacing.

The pore walls of the materials under consideration here are amorphous, and so 

any diffraction that takes place will not be due to a regular crystal structure but will rather 

be due to the periodicity of the pore system. Thus the repeat distance, a, of the hexagonal 

MCM-41 structure represents the sample’s pore diameter plus the thickness of the pore 

wall. This is shown schematically in Figure 2.4. The repeat distance, a, of MCM-41 is 

related to the (/-spacing of the first XRD reflection (dyoo) via equation 2.2:

a = 2dioo / ̂ 3 2.2
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Thus, we have a means of roughly estimating the pore diameter of MCM-41. If the 

actual pore diameter has been calculated from gas adsorption (see section 4.2.2) it is also 

possible to determine the sample’s pore wall thickness by subtracting the pore diameter 

from a (determined from XRD).

silica wall

Figure 2.4 Schematic diagram (not to scale) showing relationship of dioo to pore structure 
of MCM-41. (The repeat distance, a, represented by the double headed arrows, represents 
the pore diameter plus the thickness of the pore wall and is related to the (//oo-spacing via 
equation 2.4).

2,3,3 Experimental Details

Practical problems arise when analyzing materials with pore diameters in the 

mesoporous range. A (/yw-spacing of 40 Â observed using CuKa radiation (X= 1.54 Â ) 

will occur at 20 = 2.2° and may therefore be lost in the X-ray “through beam”. For this 

reason it may be necessary to use a longer wavelength radiation. In this study CrKa (K = 

2.29 Â) radiation was used in addition to CuKot.

Powder XRD data of all samples, excluding the MCM-41 samples (a)-(d), were 

obtained on a computer-driven step-scanning diffractometer with a Philips PW 1050/25 

goniometer and using CrKa radiation (k = 2.29 Â). Data were collected at every 0.1° of 26 

(dwell time = 4s) and diffraction profiles were transferred to a personal computer for
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further analysis. Analysis of the MCM-41 samples (a)-(d) were carried out, by the Earth 

Resources Centre at the University of Exeter, using a Philips step-scanning diffractometer 

with a Philips PW 1840 goniometer and using CuKa (K = 1,54 Â) radiation; data were 

collected for 2 seconds at every 0.01° of 20. Diffraction profUes were produced following 

data transfer to a personal computer.

2.4 Infra-red Spectroscopy 

2,4.1. General Background

Infra-red (IR) spectroscopy is a useful tool in the characterization of sohds, 

especially those containing organic functions. When a functional group absorbs IR 

radiation, transitions between rotational and vibrational energy levels of the ground 

electronic energy state are observed. The theory of IR spectroscopy is based on the change 

in a dipole moment that arises from these “vibrations”. Several classes of vibrational 

modes have been identified and may be classified as “stretching” or “deformation” 

vibrations. An IR spectrum records the position of these vibrational bands (quoted in units 

of wavenumber, cm'^) and allows identification of functional groups contained in the 

sample. A wide range of texts are available on the theory and utility of vibrational 

spectroscopy and the reader is directed to references 9-11.
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2.4,2 Experimental Details

IR spectra were obtained using a Nicolet Magna FTIR 550 Spectrometer. Samples 

were dispersed in KBr discs and spectra were collected over a range of 4000-400 cm '\ In 

this study, IR spectroscopy is used to identify the incorporation of organic functions into 

MCM-41 and also to monitor template removal by loss of associated absorption bands 

from the spectra.

2.5 MAS-NMR Spectroscopy

2.5.1 General Considerations

NMR spectroscopy has been, for many years, a particularly useful tool in the 

determination of molecular structure. Problems arise, however, when applying this 

technique to materials in the solid-state. While NMR spectra obtained from liquid samples 

display sharp peaks of reasonable intensity, conventional NMR techniques performed on 

solid-state materials yield broad, featureless peaks fmm which little structural information 

can be obtained. This line-broadening is due to the close proximity of neighbouring atoms 

in the solid-state which results in dipolar and quadmpolar interactions and chemical shift 

anisotropy (CSA). Spinning a powder sample about an axis at an angle B to the applied 

magnetic field multiplies these interactions by (3 cos  ̂P -1). When cos p = (1/3)*^ (i.e. P 

= 54° 44’) this term becomes zero. Spinning the sample at an an^e of 54° 44’ to the 

direction of the magnetic field can therefore eliminate the sources of the line broadening 

and improve the resolution of the spectra. This technique is known as magic-angle-
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spinning (MAS) NMR spectroscopy. The reader is directed to a number of excellent texts 

on this subject (references 12 -14).

MAS-NMR

has a natural abundance of 4.7 % and a nuclear spin of I = Vi (thus no 

quadmpolar broadening will occur). Broadening due to CSA and dipolar couphng is still 

observed, however, which may be reduced by magic-angle-spinning.

The characterization of zeolites using ^̂ Si MAS-NMR was first carried out in the 

1970’s by Lippmaa et al. He discovered that the chemical shifts observed in a ^̂ Si MAS- 

NMR spectrum identified the nature of the SiO# tetrahedra in a silicate lattice i.e. it is 

possible to distinguish between isolated Si04 tetrahedra and S104 tetrahedra joined 

through comer oxygen atoms, to either one, two, three or four other tetrahedra. This is also 

relevant to the characterization of M41S aluminosilicates. Each silicon atom (or Si04 

tetrahedron) is usually assigned a ‘Q value’, ranging from zero to four, which represents 

the number of adjacent tetrahedra to which it is directly bonded. For each Q value, a 

characteristic range of chemical shifts is observed in the spectmm allowing the 

identification of the silicon environments present in the sample. Increased polymerisation 

results in a high field shift. The relative positions of these chemical shifts as a function of 

Q are shown in Figure 2.5 below.
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O 
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Figure 2.5 chemical shifts as a function of Q

Silicon atoms in aluminosilicates such as zeolites are always in a environment

i.e. they are always surrounded by four other tetrahedral units. Chemical shifts, however, 

are influenced by the number of aluminium atoms attached to a given silicon unit. This is 

also observed in the M41S aluminosihcates. With increasing numbers of attached 

aluminium atoms, low field shifts are observed. The positions of these shifts and the 

nomenclature used to describe the silicon atoms are shown in Figure 2.6, below..

In the case of organically-modified silicas, such as those under investigation here, 

chemical shifts are also influenced by the organic ftinction attached to the silicon atom. In
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this case the silicons, attached to the organic function R, are described by ‘T-values” 

where T" = RSi(OSi)nOH3-n (n = 1-3). These T values also have a range of chemical 

shifts by which they can be recognized in a ^̂ Si spectrum, thus providing a means of 

determining fiinctional-group incorporation.

Q'(4A1) . Q\3A1) Q'(2AI) Q"(1A1) Q"(0A1)

Al Al Al Al Si
0 0 0 0 O

Al O Si 0  Al . Al 0  Si 0  Si Si 0  Si 0  Si Si 0  Si 0  Si Si O Si O Si
0 0 0 0 0
Al Al Al Si Si

(4 Al) 

Q " ( 3  A I)

Q" (2 A!) 

Q ' d  Al)

Q (0 Al)

80 -85 -90 -95 ■100

5
■105 -110  -115 -120

Figure 2.6 ^̂ Si chemical shifts with aluminium incorporation 

MAS-NMR

■̂ Al has 100 % natural abundance (resulting in high NMR sensitivity) and a 

nuclear spin of I = 5/2 (resulting in broadening caused by quadmpolar interactions). When 

considering aluminosilicates, Loewenstein’s mlê '* forbids the presence of Al-O-Al
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linkages and so every tetrahedral aluminium environment will be Al(0Si)4. ^^Al MAS- 

NMR is useful, however, when determining the co-ordination state of aluminium. 

Octahedrally co-ordinated aluminium, for example [Al(H20)g]̂ '̂ , gives a peak at S « 0, 

while tetrahedrally co-ordinated aluminium, such as that present in an aluminosilicate 

framework, gives a peak in the range 5 = 50-65.

MAS-NMR

has a low natural abundance (1.108 %) and a nuclear spin quantum number I = 

Vi. MAS-NMR has been used in these studies to investigate the incorporation of 

organic functions into mesoporous silica, and also to identify template molecules.

2.5.2 Experimental Details 

.. MAS-NMR spectra were recorded at the EPSRC solid state NMR service at the 

University of Durham and the EPSRC NMR of Sorbents and Catalysts Facility at UMIST. 

The spectra were produced using a Varian UNITY 300 spectrometer fitted with a Doty 

MAS probe (Durham) or a Bruker MSL 400 instrument (UMIST).

^̂ Si MAS-NMR spectra were recorded, at Durham, at 59.58 MHz for sample 

MCM-41 (a) before and after calcination using TMS as the external standard. An 

investigation was also carried out into the structural effects of water sorption by analyzing 

sample MCM-41(c) before and after exposure to water vapour. The organically-modified 

mesoporous silicas were analyzed at UMIST at 79.49 MHz before and after template 

removal, in order to determine the extent of functional group incorporation.
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spectra were recorded at Durham at a frequency of 78.16 MHz using 

AlCl3(aq) (1 mol dm'^) as the external standard. Samples MCM-41 (a) and MCM-41(c) 

were analyzed before and after calcination to investigate the effect of template removal on 

the symmetries of aluminium sites.

*̂ C MAS-NMR spectra were recorded for the as-synthesized aluminosilicate 

samples MCM-41 (a) and MCM-41(b) (to confirm the presence of the template) and for 

the phenyl-modified mesoporous silica, at Durham at a frequency of 75.43 MHz. ^̂ C 

MAS-NMR studies were carried out at UMIST at a frequency of 1(X).61 MHz, on the 

aminopropyl- and mercaptopropyl-modified samples to investigate functional-group 

incorporation.

2.6 Thermogravimetrv

Thermogravimetry (TG) is a technique which measures the change of mass of a 

sample with change in temperature. An associated technique is differential temperature 

analysis (DTA) which measures the difference in temperature AT between the sample and 

a reference material (in this case calcined a-alumina) as a function of temperature. DTA 

thus determines whether a specific mass loss is due to an exothermic or endothermie 

process.

TG and DTA experiments were carried out simultaneously in flowing air using the 

Stanton and Rcdcroft STA-781 apparatus. The purely siliceous sample (SiMCM-41) and 

all of the organically-functionalized materials were analyzed following template removal. 

The “as-synthesized” SiMCM-41 sample was also analyzed.

46



C.M.Bambrough 2. Experimental

2.7 Transmission Electron Microscopy

Transmission electron microscopy (TEM) was carried out on the aluminosilicate 

sample MCM-41 (a) at the Open University, Walton Hall. A JEOL 2000fx microscope 

(accelerating voltage, V = 2(X)kV) was used. The samples were dispersed on carbon film 

on a 3 mm, 200 mesh copper grid. Micrographs were taken using a standard, cut film 

TEM camera with no modifications.
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Table 2.3 The characterization techniques used for each sample.

XRD IR ”Si MAS 
NMR

^AlMAS
NMR

"CMAS
NMR

T.E.M T.G.

MCM-41 (a) y y y y y y

MCM-41 (b) y y y

MCM-41 (c) y y y

MCM-41 (d) y y

FeMCM-41 y y

SiMCM-41 (a) y y y

SiMCM-41 (b) y y

PhMCM-41
(Burkett)

y

Unswollen Ph- 
modified

y y

MES-swollen
Ph-modified

y y y - y y

TET-swollen
Ph-modified

y y

MES swollen 
V-modified

y y y

MES-swollen
AP-modified

y y y y y

MES-swollen
MP-modified

y y y y y

Ph -  phenyl, V -  vinyl, AP = aminopropyl, MP -  mercaptopropyl.

48



C.M.Bambrough 2. Experimental

References

1. Schmidt, R.; Akporiaye, D, Stocker, M.; Ellestad, O.H; J. Chem. Soc., Chem. 

Commun., 1994, 1493.

2. Schmidt, R. J. Chem. Sac., Chem. Commun., 1996, 875.

3. Zhong, Y.Y.; Shu, Q.L.; Tie, H.C.; Jing, Z.W.; He, X.L., J. Chem. Soc., Chem. 

Commun., 1995,973.

4. Burkett, S.L.; Sims, S.D.; Mann, S., J. Chem. Soc., Chem. Commun., 1996, 1367.

5. Beck, J.S.; Vartuli, J.C.; Roth, W.J.; Leonowicz, M.E.; Kresge, C.T.; Schmitt K.D.; 

Chu, C.T-W.; Olson, D.H.; Sheppard, E.W.; McCuUen, S.B.; Higgens, J.B.; 

Schlenker, J.L. J. Amer. Chem. Soc. 1992,114, 1083-1043.

6. N. Ulagappan and C.N.R. Rao, J. Chem. Soc., Chem. Commun., 1996, 2759.

7. Smart, L.; Moore, E., ''Solid State Chemistry, An Introduction”, Chapman and Hall, 

London, 1995,24-25.

8. West, A.R., "Basic Solid State Chemistry”, John Wiley and Sons, Chichester, 1984, 

9-12.

9. Nakamoto, K., "Infra-Red and Raman Spectra of Inorganic and Co-ordination 

Compounds”, Fourth Edition, John Wiley and Sons, New York, 1986.

10. Cross, A.D., "Introducton to Practical Infrared Spectroscopy”, Butterworths, i960.

11. Banwell, C.N., "Fundamentals of Molecular Spectroscopy”, McGraw-Hill, 

Maidenhead, 1972.

12. Hore, P.J., "Nuclear Magnetic Resonance,” Oxford University Press, Oxford, 1995.

13. Kemp, W, "NMR in Chemistry, A Multinuclear Introduction,” Macmillan Education 

Ltd., London, 1984.

49



C.M.Bambrough 2. Experimental

14. Englehardt, G.; Michel, D., "High-Resolution Solid-State NMR of Silicates and 

Zeolites”, J. Wiley and Sons, London, 1987.

50



Ch a p t e r s

Characterization

Definitive characterization of M41S-type materials is problematic due to their 

anibrphous nature (lack of long range crystal structure). It is therefore very difficult to 

assign a chemical formula to these samples. As the most interesting feature of these 

materials is their uniform pore structure, gas adsorption studies yield the most 

interesting information. This characterization technique has therefore played a major 

part in this work and is considered, separately, in Chapter 5.

This chapter, which is divided into two parts, considers the basic 

characterization (by XRD, IR, TG, NMR and TEM) both of the M41S materials and of 

the organically-modified mesoporous silicas. The results of the vibrational analysis of 

these materials by inelastic neutron scattering are presented in Chapter 6.

P a r t  I - M41S M a te r ia ls

3.1 X-ray Powder Diffraction

Results from powder XRD studies of the M41S samples, are given in Table 3.1 

overleaf. As mentioned in Chapter 2, powder XRD profiles of amorphous M41S solids 

detect the periodicity of the pore structure and, if the peaks are indexed to a hexagonal 

structure, it is possible to determine a value of the lattice parameter, a (a = Idioo / V3), 

representing the pore diameter plus the thickness of the pore wall. The values of a 

obtained for these materials (Table 3.1) fall in the range of 37 - 45 Â, typical of MCM-41
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materials. It is evident from Table 3.1 that samples produced under pressure (in a sealed 

teflon bottle at 1(X) °C) have larger a values than those prepared in a microwave oven or at 

room temperature and pressure. The positions of the three peaks observed for samples 

MCM-41 (a), FeMCM^l (Figure 3.1, below) and SiMCM-41 (Figure 3.2, below) confirm 

that the samples have a hexagonal structure. XRD investigation of FeMCM-41 at 20 <

50 °, detected no crystalline iron oxide in the sample.

Table 3.1 Powder XRD results for calcined M41S samples

Sample K a radiation ^ dioo
I k

duo
I k

d200
I k

a
I k

MCM-41(a) i Cu(1.54Â) 33.94 - - 39

MCM-41(b) ii Cu * - - -

MCM-41(c) i Cu 39.05 22.92 19.62 45

MCM-41(d) ii Cr(2.29Â) 34.53 - 40

FeMCM-41 i Cr 37.49 21.52 18.50 43

SiMCM-41(a) m Cr 31.62 - - 37

SiMCM-41(b) i Cr 37.50 21.17 18.36 43

(i) prepared in sealed vessel in conventional oven, (ii) prepared in microwave oven,
(iii) stirred at room temperature in an open vessel, a - unit cell dimension (a = 2dioo / V3).
 ̂Figures in brackets are wavelengths of Ka radiation. * Peak too broad to assign a djoo 

value.

In many publications concerning MCM-41 materials only one diffraction peak, 

representing the dioo reflection, can be observed, and this is the case for samples MCM- 

41 (a), (b) and (d) (see Appendix A1). In the case of sample MCM-41(b) the diffraction 

peak obtained was so broad that it was not possible to obtain a value for the (//w-spacing.
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It is evident that a more ordered material is produced if the sample is heated under 

pressure i.e. in a sealed vessel in an oven.

When a powder XRD analysis is performed on an M41S material before the 

template is removed, a profile very similar to that of the calcined material is obtained 

(see Figure 3.1). Often the intensity of the peaks is diminished (due to a reduction in the 

contrast between the pore and the pore-walls), and in every case the position of the 

peaks is shifted to lower 20 i.e. larger d-spacings are observed in uncalcined materials. 

The decrease in J-spacing observed upon calcination is due to the pore contracting after 

template removal e.g. for FeMCM-41 a contraction of ca. 5 Â is observed.

20000
10018000  -   calcined

 as-synthesized16000  -

14000  -

12000 -

cs
Ô

10000  -

8000  -

6000  -

4000 no 2002000 -

8 102 4 6

20 / degrees

Figure 3.1 Powder XRD profile of as-synthesized and calcined FeMCM-41.
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 stirred at ambient temperature
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Figure 3.2 Powder XRD profile of calcined SiMCM-41. 

All other XRD profiles are given in Appendix Al.

3.2 Infra-red Spectroscopy

Infi^-red spectroscopy was performed on all the MCM-4Î samples following 

template removal, and on the as-synthesized SiMCM-41(b) sample. The band assignments 

are given in Tables 3.2 - 3.3, and the spectra are presented in Figures 3.3 - 3.7.
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Table 3.2 The Principle IR Band Assignments for the Calcined

Band Position / cm^

MCM-
41(a)

MCM-
41(b)

MCM-
41(c)

MCM-
41(d) Assignment

461 466 476 471 Si-O-Sidef
797 802 802 807 T - O - T s n

1082 1072 1102 1098 Si-O-Sij/r

1642 1637 1642, 1662 1653, 1665 O-H-O /̂e/

3446 3445 3450 3445 0-Hjfr
T - tetrahedrally co-ordinated ion. def- deformation, str - stretch

Table 3.3 The Principle IR Band Assignments for the Siliceous and Iron-

Band Position / cm^

SiMCM- 
41(a) S.E.

SiMCM- 
41(b) AS.

SiMCM- 
41(b) S.E.

FeMCM-41
S.E. Assignment

471 451 466 471 Si-O-Sidef

- - - 660 (weak) Si-O-Fe

807 802 797 812 T-0-T,rr
970 970 970 970 (weak) Si-O-T

1087 1072 1098 1087 Si-O-Sw

1250 1240 1245 - Si-0-C,rr
- 1474 - C-Hdef

1647 1642 1652 1657 O-H-Odef

- 2859,2930 - - C-Hjfr
3475 3424 3465 3465 0-Hjfr

T - tetrahedrally co-ordinated atom, def- deformation, str - stretch 
A.S. - As-synthesized, S.E. - After template removal.

55



C.M.Bambrough 3. Characterization

I
i

 MCM-41 (a)
—  — MCM-41 (b)

4000 3600 3200 2800 2400 2000 1600 1200 800 400

wavenumber / cm'^

Figure 3.3 IR spectra of calcined MCM-41 (a) and MCM-41(b).

I
C
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  MCM-41 (c)
—  — MCM-41 (d)

4000 3600 3200 2800 2400 2000 1600 1200 800 400

wavenumber / cm'

Figure 3,4 IR spectra of calcined MCM-41(c) and MCM-41(d).
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/
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 Calcined SiMCM-41 (a)
 Calcined SiMCM-41 (b)

4000 3600 3200 2800 2400 2000 1600 1200 800 400

wavenumber/ cm**

Figure 3.5 IR spectra of calcined SiMCM-41 (a) 2uid SiMCM-41(b).

80 -I
Ic
g

70 -

65 -

4000 3600 3200 2800 2400 2000 1600 1200 800

wavenumber/ cm* *
400

Figure 3.6 IR spectrum of as-synthesized SiMCM-41(b)
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Figure 3.7 IR spectrum of calcined FeMCM-41

As can be seen from Tables 3.2 and 3.3 and from Figures 3.3 - 3.7, the main 

feature of the IR spectra of these materials is a large absorption band at ca. 1100 cm '\ 

which is due to. Si-O-Si asymmetric stretching vibrations. A peak is also visible in each 

spectrum at approximately 470 cm'  ̂ due to Si-O-Si deformations. The small peak at 

approximately 800 cm'  ̂was assigned by Lazarev^ and by Flanigen et a f  as representing 

T-O-T symmetrical stretching, where T is a tetrahedral unit of either Si or Al.

In the case of the purely siliceous materials, an additional band is visible at ca. 

1250 cm'*. This is a very weak absorption in the case of the calcined materials, but is 

quite strong in the spectrum of the as-synthesized material. It is likely that this peak 

represents a Si-O-C stretching vibration and is due to the template (suggesting that 

residual template is present in the calcined material). Bands at 2859 cm'*, 2930 cm * (C-
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Hjfr) and 1474 cm * also present in the spectrum of the as-synthesized material,

confirm the presence of the template molecules.

A broad absorption band in the O-Hj r̂ region of the spectra (ca. 3400 cm'*) 

identifies surface hydroxyl groups, while a series of bands in the region of 1400 - 1650 

cm'* represent the scissoring deformations of water.

An additional strong band is observed in the purely siliceous material at 970 

cm'*. This absorption, which was assigned by Zhong et as a framework Si-O-T 

vibration, is weak for Fe-MCM-41 and is absent from the aluminosilicate spectra. 

Zhong et al^ and Szostak and Thomas^ identified an absorption due to Si-O-Fe linkages 

at ca. 660 cm'*, and this is observed as a small peak in the FeMCM-41 spectrum.

3.3 Thermogravimetrv

Thermogravimetry (TO) was carried out on sample SiMCM-41(b), both before and 

after calcination. The results are presented in Figure 3.8 and 3.9 below. Due to the absence 

of ^̂ Si NMR data, TO analysis could not be related directly to a chemical formula in this 

case.

The as-synthesized product (Figure 3.8) undergoes three separate mass losses, 

corresponding to an overall mass loss of ca. 50 %. The first loss occurs up to 

approximately 200 °C, and corresponds to an 8 % loss which may be attributed to 

physisorbed surface water. The second mass loss is the exothermic and occurs over the 

temperature range of 220 - 360 ®C. This corresponds to a mass loss of ca. 37 % and may
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be attributed to loss of the organic template. Surface dehydroxylation is then observed as 

a gradual loss over the range 360 -1200 °C; this corresponds to a mass loss of ca. 6%.

TG analysis of the calcined sample (Figure 3.9) indicated two major mass losses 

between 30 - 1200 ®C (due to the minimal mass loss of this material, the DTA is not 

shown).The first, endothermie, loss corresponds to 8% of the sample mass and occurred 

over the range 30 - 150 °C; this likely to represent loss of surface water. The second mass 

loss is very gradual and occurs over the range of 150 - 1200 ®C. This represents a further 

3% mass loss, and can probably be attributed to surface dehydroxylation and structural 

collapse.

100

90

DTG80

70
DTA% mass

60

% mass50

40

exo

200 400 600 800
furnace temperature / °C

1000 1200

Figure 3.8 TG of as-synthesized SiMCM-41
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Figure 3.9 TG of calcined SiMCM-41

3.4 Transmission Electron Microscopy (T.E.M)

The T.E.M. micrograph of sample MCM-41 (a), presented in Figure 3.10, shows 

large régions of disorder, in agreement with the X-ray powder diffraction pattern of this 

sample which displays only a small broad peak. Regions of order are apparent, however, 

and these are highlighted in Figure 3.11.
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50 nm

Figure 3*10 Transmission Electron Micrograph of sample MCM-41(a)
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% :. '

(i) (ii)

50 nm

(iii)

Figure 3.11 Expansions of th<̂  T.E.M micrograph of sample MCM-41 (a)

Figure 3.11 (i) shows the pore-channels “end-on”, and hexagonal symmetry is 

evident. Figures 3.11 (ii) and (iii) show a series of pore channels over 50 nm in length, 

again suggesting a degree of ordering.

3.5 MAS-NMR

^^Si, ^^Al and MAS-NMR spectroscopy was carried out on the

aluminosilicate MCM-41 samples at the EPSRC solid-state NMR service at the 

University of Durham. The spectra obtained are given in Appendix A3.

63



C.M.Bambrough 3. Characterization

3.5.1^’̂Si MAS-NMR 

(i)MCM-41(a)

MAS-NMR allows identification of the immediate environment of the 

silicon atoms. Spectra were taken of MCM-41 (a) before and after calcination. Three 

resonances, Q ,̂ and (where Q" = ^(0Si)n(0H)4.n), were detected by 

decomposition. The data are given in Table 3.4, below and the spectra, showing the 

decomposition, are presented in Figures 3.12 and 3.13, overleaf.

Table 3.4 ^̂ Si MAS-NMR features after data reduction for MCM-41 (a).

Ô*

Sample Q ' Q ' Q '

MCM-41 (a) A.S. -89.9
(7.4%)

-97.6 
(35.1 %)

-105.4 
(57.5 %)

S.E. -91.6 
(8.7 %)

-99.3 
(28.2 %)

-107.1 
(63.1 %)

*TMS as external reference.
A.S. - as-synthesized, S.E. - after template removal.
Figures in brackets are percentage contributions of each peak after decomposition.
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Figure 3.12 Decomposition of ^^Si MAS-NMR spectrum of as-synthesized 
MCM-41(a).

Observed

Calculated
Components

Difference

Figure 3.13 Decomposition of “̂ Si MAS-NMR spectrum of calcined MCM-41(a).
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{ii) MCM-41(c) Before and After Water Sorption

Water sorption on sample MCM-41 (c) yielded a Type V isotherm displaying 

low pressure hysteresis (see Section 5.3). The reason for this low pressure hysteresis and 

non-closure of the hysteresis loop is thought to be rehydroxylation of the silica surface '̂^ 

as shown in Figure 3.14.

OH OH
\  I r

Figure 3.14 Rehydroxylation of a silica surface

If this is indeed the case, an increase in the number of surface hydroxyls should 

be evident in the sample following water sorption.

^̂ Si MAS-NMR was performed on the sample using a long relaxation delay (300 

s) both before and after water sorption. Results of the decomposition are given in Table

3.5 and presented in Figures 3.15 and 3.16.
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Table 3.5 Decomposition of ^̂ Si MAS-NMR spectra of MCM-41(c) 
before and after water sorption.

% Contribution

-92
MCM-41(c),

calcined 25.6-100

72.6-108

5.3-93
MCM-41(c), 

H2O adsorbed 32.1-102

62.6-110

As shown in Table 3.5, the percentage of total silicon atoms in 

[^(OSi)2(OH)2] and [^ (0 Si)30H] environments is greater following water sorption. 

Concurrently, the percentage of silicon atoms [Si(0Si)4] has diminished. This 

confirms that surface rehydroxylation occurs during water sorption.
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t - m t - i'm
•711

■n-’'
•L(0

'-T'
•uo•60 •100 •uo •130

Observed

Calculated
Components
Difference

Figure 3.15 Decomposition of ^^Si MAS-NMR spectrum of sample MCM-41(c) 
following calcination.
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Figure 3.16 Decomposition of ^^Si MAS-NMR spectrum of sample MCM-41(c) 
following water sorption.
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3.5.2 '̂'A l MAS-NMR 

Al MAS-NMR was used to compare the site symmetry for aluminium in 

samples MCM-41 (a) and MCM-41(c), before and after calcination (this is of interest 

when the sample is to be used as an acid catalyst, as tetrahedrally co-ordinated 

aluminium is then required*’̂ ). The spectra are given in Appendix A3 and the extracted 

data are given in Table 3.6, below.

Table 3.6 ^^Al MAS-NMR results for aluminosilicate MCM-41 samples

Ô*

Sample Tetrahedral Al Octahedral Al

MCM-41(a) A.S. 50.7 -

S.E. 52.6 (weak) -1.1

MCM-41(c) A.S. 51.1 -

S.E. 47.7 shoulder

* A1(H20)6 (aq) (1 mol dm' ) as external standard. 
A.S.-as-synthesized, S.E.-after template removal.

As-synthesized MCM-41 (a) gave a single peak at 6 « 52 corresponding to 

tetrahedrally co-ordinated Al, but after calcination only a very weak signal was 

observed, suggesting that relatively few tetrahedral aluminium ions were present after 

calcination. Also, regular octahedrally co-ordinated aluminium, normally identified by a 

peak at Ô « 0, was hot observed in significant amounts. In contrast, MCM-41(c) gave a 

strong signal at 6 = 52 both before and after calcination, indicating that tetrahedrally co­

ordinated aluminium was present in both cases. This result suggests that for catalytic 

purposes in which catalytically active metals are required in the walls, MCM-41 (c)-type
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materials (synthesized using aluminium sulphate) could be of greater interest than 

MCM-41 (a) type solids (synthesized using sodium aluminate).

3.5.3 m .S-N M R

13.C MAS-NMR results for the as-synthesized MCM-41 (a) and MCM-41(b) 

samples are given in Table 3.7 below.

Table 3.7 ^̂ C MAS-NMR results for as-synthesized MCM-41 (a) and MCM-41(b)

6*

Sample C l C2 C3-15 C16 C17

MCM-41(a) 14.14 23.22 30.61 66.88 53.92 & 56.98

MCM-41(b) 14.30 23.26 30.65 67.07 54.05 & 56.58

R
Cl C3

“ 1 ^CI7H3
1

y \  C16— N— C17H] 

^ ^ C 1 5  CI7H3

* TMS as external standard

As can be seen from Table 3.7, ‘̂ C MAS-NMR studies of the as-synthesized 

MCM-41 (a) and MCM-41(b) samples confirm the presence of the intact 

cetyltrimethylammonium ion.
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3.6 Overview of M41S-Material Characterization

3.6.1 Aluminosilicate MCM-41

Four mesoporous, aluminosilicate MCM-41-type samples, synthesized using two 

reaction mixtures and two heating methods, have been characterized using XRD, IR, 

TEM and MAS-NMR techniques. XRD studies demonstrated that heating the reaction 

mixtures in a sealed teflon bottle yielded a material with a uniform hexagonally-ordered 

pore structure and narrow pore size distribution. Conversely, samples synthesized in a 

microwave oven gave poor XRD profiles as a consequence of having poorly-defined 

pore-structures. TEM performed on sample MCM-41 (a) showed large regions of 

disorder, in agreement with the XRD profile, but some hexagonal structure was 

observed.

^^Al MASrNMR, performed on sample MCM-41 (a) and MCM-41(b), revealed 

that Al was present in a tetrahedral environment in both samples before calcination, but 

was only present, in significant amounts, in sample MCM-41 (c) following calcination. 

As tetrahedral aluminium is required for acid catalysis purposes, this result suggests that 

samples of the MCM-41 (c)-type are of greater interest. ^^Si MAS-NMR performed on 

sample MCM-41(c) (before and after water sorption) confirmed that surface 

modification takes place upon contact with water vapour (see Chapter 5).

3.6.2 Purely Siliceous MCM-41

Two purely siliceous mesoporous MCM-41-type samples were characterized 

using XRD, IR and TG techniques. XRD studies demonstrated that the sample prepared 

at high temperature and pressure had the more well-defined pore structure.
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3.6.3 Iron-containing MCM-41

The iron-containing MCM-41 was characterized by XRD and IR spectroscopy. 

XRD studies demonstrated that the sample had a uniform pore-structure that could be 

indexed to a hexagonal lattice, and a peak in the IR spectrum (assigned to an Si-O-Fe 

vibration) confirmed that iron had been incorporated into the structure.

Further characterization {e.g. via Mossbauer spectroscopy studies) is required to 

determine how the iron is incorporated into the sample. X-ray powder diffraction studies 

at 20 ^ 40 ® have proved that crystalline iron oxide is not present.
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P a r t  I I

O r g a n ic a l l y -M o d if ie d  M eso po r o u s  S il ic a s

3.7 X-Ray Powder Diffraction

X-ray powder diffraction (XRD) results, obtained from profiles recorded using 

CrKa radiation (A, = 2.29 Â), are given in Table 3.8.

Table 3.8 Powder XRD results for organically-modified mesoporous silicas.

Sample dloo / Â (A.S.) dioo /  Â (S.E.)

PhMCM-41 (Burkett) 36.1 31.4

UnswoUen phenyl-modified 
mesoporous silica

37.5 36.0

MES-swollen phenyl-modified 
mesoporous silica

52.0 49.5

TET-swollen phenyl-modified 
mesoporous silica

37.5 32.0

Vinyl-modified mesoporous 
silica

40.2 39.8

Aminopropyl-modified 
mesoporous silica

48.6 *

Mercaptopropyl-modified 
mesoporous silica

IL u ---------------- " " = = = " =  1 nil ■ ' n . i i M i n . a e m

36.5 34.5

A.S. - as-synthesized, S.E. - after template removal.
* No peak was observed, consequent on loss of ordering upon template removal.
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Examples of typical XRD profiles are given in Figure 3:17 below (all other 

profiles can be found in Appendix Al).

18000

  Mes-swollen Ph-M.S. (S.E.)
 PhMCM-41 (Burkett) (S.E.)
  Mes-swollen Ph-M.S. (A.S.)

16000 -

14000 -

12000

10000 -

P  8000 -

6000 -

4000 -

2000 -

106 92 3 5 7 84

29 / degrees

Figure 3.17 Powder XRD profiles of MES-swollen and unswollen phenyl-modified 
mesoporous silica (Ph-M.S.) and of PhMCM-41. (A.S. - as-synthesized, S.E. - after 
template removal)

The XRD profiles indicate that a single phase is formed for both the swollen and 

unswollen organically-modified samples. Following template removal, structural order 

is maintained (except in the case of the aminopropyl sample) and a small degree of 

contraction is observed. Only one peak is observed for each material in contrast to the 

M41S materials, which gave three peaks. For this reason it is impossible to definitively 

index the XRD profile to a hexagonal lattice and confirm that the samples are MCM-41- 

type materials.

It is evident from the XRD data that the addition of mesitylene to the phenyl- 

modified material increases t/ioo, which is directly related to pore diameter. In contrast, 

the addition of tetradecane does not result in an increase in d\oo, indicating that
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tetradecane is not a suitable pore-swelling agent for the formation of phenyl-modified 

mesostructured silica.

3.8 Infra-red spectroscopy

FTIR spectra were collected for the organically-modified samples before and 

after template removal. The results obtained for each sample are now discussed in turn.

3.8,1 Phenyl-Modified Mesoporous Silica

The spectra obtained for the MES-swollen phenyl-modified silica are shown 

below (Figure 3.18). Due to the similarity of the samples, the spectra obtained for the 

TET-swollen and unswollen phenyl-modified samples are given in Appendix Al only, 

and are not discussed here.

after template removal 
as-synthesized

4000 3600 3200 2800 2400 2000 1600 1200 800 400

wavenumber / cm-I

Figure 3.18 Infra-red spectra of MES-swollen phenyl-modified mesoporous silica 
before and after template removal.
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Expansions of the as-synthesized spectrum are shown in Figures 3.19 and 3.20, below.

112  -

110 -

■2
p i 08 -

Out-of-Plane C-H104 -

'  102 -

100
600850 800 700 650750

wavenumber / cm

Figure 3.19 Expanded IR spectrum of MES-swollen phenyl-modified mesoporous 
silica: range 600 - 850 cm '\

114 -

112  -

'2  108 -

t/3

2 1 0 6  -

104 -

102 -

100
1700 13001800 140015001600

wavenumber / cm'^ .

Figure 3.20 Expanded IR spectrum of MES-swollen phenyl-modified mesoporous 
silica: range 1300 - 1800 cm '\
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The principal band assignments are given in Table 3.9, below. As the purely 

siliceous sample SiMCM-41 could be considered as a control sample, bands not 

observed in the SiMCM-41 spectra (see Table 3.3) are most likely due to the phenyl 

function and are shaded in Table 3.9.

Table 3.9 Principal IR bands for MES-swollen phenyl-modified mesoporous silica.

Band Position / cm^ Assignment

491 Si-O-Sidef

802 S i-C H 3 ,rr

1072 Si-O-Sw
1143 S i-C ,rr

1433* C-Ud^

tM B W M B W
1662 O-H-Odef

2854, 2930*

3439 0 -Hjfr
Shaded cells show additional bands not observed for control SiMCM-4
* observed for “as-synthesized” product only, str - stretch, def- deformation.

As shown in Figure 3.18, a peak in the Si-O-Si region (1143 cm'^) is indicative of an Si- 

C bond,^® indicating the successful incorporation of organic functions. In addition, 

vibrations due to the phenyl group can be identified and these have been highlighted in 

the expanded spectra, presented as Figures 3.19 and 3.20. A comparison of the IR and 

inelastic neutron scattering spectra is made in Chapter 6.

IR spectroscopy is a useful tool in monitoring template removal in these 

materials, and in this case, C-Hj/r (2931 and 2854 cm'^) and C-Yi^ef (1433 cm ')
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absorptions due to the surfactant are observed in the as-synthesized sample, but are very 

weak in the spectrum following acid extraction of the template.

3.8.2 Vinyl- , Aminopropyl- and Mercaptopropyl-Modified Mesoporous Silica

Infra-red analysis of the remaining organically-modified materials yielded 

inconclusive results. The full spectra are given in Appendix A2. As can be seen from the 

expanded spectra presented here in Figures 3.21 - 3.23, there are many peaks which 

cannot be conclusively assigned. This may be due to inadequate background subtraction. 

The principal bands are assigned in Table 3.10, with the bands not observed in the 

SiMCM-41 control sample once again shaded in grey.

Table 3.10 Principal IR bands for MES-swollen organically-modified

Band Position / cm'^

V-M.S.

466

AP-M.S. MP-M.S. Assignment

461 466 Si-O-Sidef

w Ê m M M
797 802 802 Si-CHsjrr
975 949 955 Si-O-T

1082 1087 1072 Si-O-Sw
1214 (sh) 1260 1200(sh) Si-C,rr

- 1469, 1485 1460, 1500 C-Hdef

- 1650 1662 Q-H-Odef
2859,2930 2854,2930* 2930 C-Ustr

3455 3460 3439
V-, AP-, MP-M.S.: vinyl-, aminopropyl-, mercaptopropyl-modified 
mesoporous silica, str - stretch, def- deformation, (sh) - shoulder.
* observed for as-synthesized material only.
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(i) Vinyl-modified

C=C stretching vibrations from a vinyl function usually occur in the region 1610 

- 1690 cni'\ unfortunately this region is very noisy in the spectrum obtained for the 

vinyl-modified mesoporous sample. Likewise, C=Cdef vibrations usually occur at 

ca. 1400 cm'*, a region that may not be easily resolved for these spectra. An expanded 

spectrum of the surfactant-extracted material is presented in Figure 3.21 showing a peak 

at ca. 1625 cm'*. It is possible that the presence of this peak indicates that the vinyl 

function is present in this sample but, due to the large number of peaks in this area 

which can not easily be assigned, it cannot be taken as conclusive confirmation of this.

80 -

E

162574 -

1800 1400 13001700 1600 1500

wavenumber / cm'

Figure 3.21 Expanded IR Spectrum of Vinyl-Modified Mesoporous Silica
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(ii) Aminopropyl-modified

The N-H«r vibrations of a primary amine are normally located in the 3300 - 3500 

cm** region, and are therefore impossible to locate for this sample due to swamping by 

the broad OH absorption at 3460 cm'*. In contrast, N-Hrf /̂ vibrations^^ are usually 

located between 1550 - 1650 cm'*, and so an expanded spectrum of as-synthesized AP- 

M.S. is shown in Figure 3.22. Unfortunately, the spectrum is very noisy in this region, 

making band-assignment very difficult. The band at 1555 cm * has been tentatively 

assigned to the N-Hj*/ vibration but, due to the plethora of peaks in this region, this 

result cannot definitively confirm that the aminopropyl function is present.

78 -

76 -

I  74 -
ê
I
c  72 -s

70 -

68 - O-H-0dtf
N-H

66 - C-H

14001450150015501700 1650 1600

wavenumber / cm

Figure 3.22 Expanded IR spectrum of MES-swollen AP-modified mesoporous silica:
the range 1400 -1700 cm *.
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(iii) MercaptODropvl-modified

The presence of intact thiol groups should be indicated by an S-H absorption^^’̂  ̂

at ca. 2570 cm *. This is clearly not observed in this case which suggests that the thiol 

group has, in some way, been destroyed during the synthesis procedure (possibly via 

conversion to the sulphonic acid). The expanded spectrum presented in Figure 3.23, 

however, shows the presence of a broad absorption band at ca. 690 cm'*, which could be 

due to either or (from RSO3H) vibrations. Note that the sharp peak at

ca. 675 cm * is also present in the spectrum of the aminopropyl-fiinctipnalized material, 

which suggests that this is not due to any S-H or 3=0 vibrations.

Additional peaks due to the sulphonic acid, if present, should be observed in the 

region ca. 1200 cm * which, unfortunately, is swamped by the Si-O-Si absorption. The 

very large absorption in the 0-Hstr region (3455 cm'*) is observed, however, even 

following heating at 100 °C, which suggests that it could possibly be due to 0-Hjrr of the 

SO3H function.
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80 -

75 -i
§
i  70 -

i SiCH.'3str

65 -

60 -
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wavenumber / cm-1

Figure 3.23 Expanded IR spectrum of MES-swollen MP-modified mesoporous silica 
in the range 500 - 900 cm’̂

3.9 Thermogravimetrv

Thermogravimetry (TG) was carried out for each of the organically-modified 

materials (after surfactant extraction) over the range 30 - 1200 ®C. The results obtained 

for each sample are now discussed in turn.

3,9,1 Phenyl-modified Mesoporous Silica

The TG analysis of the surfactant-extracted, MES.%swollen, phenyl-modified 

Sample is presented in Figure 3.24 below.
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Figure 3.24 TG analysis of phenyl-modified mesoporous silica.

As is evident from Figure 3.24, TG analysis of the phenyl-modified sample 

results in a total mass loss of approximately 34 %. In the low temperature region a small 

mass loss, corresponding to ca. 3 %, is observed up to approximately 100 ®C. This is 

likely to correspond to loss of physisorbed surface water, as observed for the purely 

siliceous material. An exothermic event then occurs up to 650 ®C, which corresponds to 

approximately 28 % of the sample's total mass and represents loss (by oxidation) of the 

phenyl groups. Decomposition of the ^̂ Si MAS-NMR spectrum of this sample (see 

Section 3.10.1) yields an approximate molecular formula of 

(Si0 2 )o.4(SiOi.5 0 H)o.3(PhSiOi,5)o.2(PhSiO(OH))o.i (disregarding the small amount of 

and T* silicon atoms present) and calculation of the percentage mass of phenyl groups in 

the sample from this formula gives a value of 27.4 %, in reasonable agreement with the 

value obtained from the TG analysis. Calculation of the percentage mass of hydroxyls in 

the sample from the above formula yields a value of approximately 8 % which is not

83



C.M.Bambrough 3. Characterization

observed by TG. A slight mass loss of ca. 3 % is observed over the range 650 - 1200 °C, 

however, which could correspond to dehydroxylation; it is possible that the formula 

obtained from NMR is inaccurate due to errors involved in decoinposition.

The most likely “average” molecular formula for this material appears to be 

(Si02)o.54(SiOi.50H)o.i5(PhSiOi.5)o.3r0.15H20 which corresponds to a percentage mass 

of phenyl groups in the sample of 28.85 % and a percentage mass of hydroxyl groups in 

the sample of 2.99 %, in reasonable agreement with the TG results. This molecular 

formula is not entirely accurate, however, as it does not consider the relative amounts of 

Q ,̂ T̂  or T  ̂silicon atoms that are present.

3.9.2 VinyUmodified Mesoporous Silica

The TG analysis of the vinyl-modified material is presented in Figure 3.25.

This TG analysis reveals two major mass losses over the range 30 - 500 °C. The 

first, which occurs up to ca. 175 °C, is likely to be due to loss of physisorbed water. 

This corresponds to a mass loss of almost 20 %, much larger than that observed for the 

purely siliceous sample or the phenyl-modified sample. The IR spectrum of this material 

indicates that there is some template remaining in the sample following acid extraction, 

and this could contribute to some of the mass loss observed in this region.

The second mass loss is by an exothermic process and occurs over the range 180 

- 500 °C. It corresponds to approximately 6.25 % of the sample’s total mass and 

represents loss of the vinyl function by oxidation. Over the range 500 - 1200 °C a 

gradual mass loss of ca. 3.75 % is observed and this is likely to be due to surface 

dehydroxylation.
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As the origin of the 20 % mass loss in the initial portion of the TG is ambiguous, 

it was not possible to assign a molecular formula for this material.

105

100
DTG95

90
DTA

85
exo

80

75 % mass
70

65
200 400 600 800 1000

fiimace temperature / °C
1200

Figure 3.25 TG analysis for vinyl-modified mesoporous silica.

3,93 AminopropyUmodified Mesoporous Silica

The TG analysis of the aminopropyl-modified sample is illustrated in Figure 

3.26. The initial portion of the TG trace closely resembles that for the vinyl sample. A 

steep loss corresponding to almost 20 % of the total mass occurs up to ca. 175 °C, and 

this is likely to be due to loss of physisorbed surface water or trapped template 

molecules.

The second loss occurs, accompanied by an exotherm in DTA, over the range 

175 - 380 ®C, corresponding to a mass loss of approximately 10 % and representing loss 

of the aminopropyl groups. A third region of mass loss is very gradual and occurs 

between 400 - 1200 °C, corresponding to surface dehydroxylation.
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Again, due to the ambiguity of the initial portion of the TG analysis, a molecular 

formula could not be assigned for this material.

105

100 DTG

DTA
exo

80

70 mass

1000 12000 600 800200 400
furnace temperature / °C 

Figure 3.26 TG analysis of aminopropyl-modified silica

3.9,4 Mercaptopropyl-modified Mesoporous Silica

TG analysis of the mercaptopropyl-modified mesoporous silica is presented in 

Figure 3.27 showing two major mass losses over the range 30 - 1200 °C. The first, 

occurring from 30 - 125 ®C, corresponds to approximately 8 % of the sample’s total 

mass and could represent loss of physisorbed surface water. However, as the IR 

spectrum taken of this sample following template removal indicated the presence of 

residual template, it is possible that some of this mass loss corresponds to loss of 

template molecules.
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The second mass loss (an exotherm in DTA) corresponds to approximately 28 % 

of the sample’s total mass and occurs in two stages; the first stage occurs rapidly at ca. 

360 °C, while the second stage occurs slowly over the range 360 - 600 °C. These two 

stages correspond to loss of the incorporated organic function (either propanthiol or 

propansulphonic acid). Above 600 °C a gradual mass loss corresponding to 

approximately 3 % of the total mass was observed, again being attributable to sample 

dehydroxylation.

A molecular formula could not be assigned for this material, again, due to the 

initial mass loss which could not be assigned to a particular moiety.

E

110

DTG100

90 mass

exo80

70 DTA

60
0 200 400 600 800 1000 1200

furnace temperature / °C 

Figure 3.27 1G analysis of the mercaptopropyl-modified mesoporous silica.
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3.10 MAS-NMR

3.10.1 ^SiM AS-NM R

MAS-NMR spectroscopy was carried out on the MES-swoUen phenyl- 

modified sample by the EPSRC solid-state NMR service at the University of Durham. 

Analysis of the MES-swollen aminopropyl- and mercaptopropyl-modified samples was 

carried out at the EPSRC sorbents and catalysts NMR service at UMIST. In each case, 

spectra were taken of each sample before and after template removal. The spectra 

obtained for the phenyl-modified sample are given in Figure 3.28, (below). Other 

spectra are given in Appendix A3.

I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  ■ I

0 -2D ^  -fD -80 -100 -120 -140 -160

6

Figure 3.28 ^̂ Si MAS NMR spectra of MES-swollen phenyl-modified mesoporous 
silica: (a) as-synthesized, (b) after template removal.

In each of the samples after template removal, distinct resonances can be 

observed due to the siloxane [Q" = ^ ( 0 Si)n(0 H)4.n, n = 2-4] and due to the
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organosiloxane [T'" = R ^ (0 Si)m(0 H)3.m, m = 1-3] groupŝ ®. The chemical shifts of 

these resonances are given in Table 3.11.

Table 3.11 ^̂ Si MAS-NMR results for MES-swollen organically-modified mesoporous 
silicas.

8*

Sample T2 T3 Q ' Q ' Q '

Phenyl- A.S. - -70.6
(6.0%)

-79.7
(26.5%)

- -98.8
(45.2%)

-108.9
(22.3%)

M.S.
S.E. -61.6

(2.1%)
-69.8

(8.1%)
-78.2

(19.4%)
-92.0

(3.2%)
-100.3

(26.7%)
-109.0

(40.4%)

Aminopropyl- A.S. . - - - - -100.3 -109.0

M.S. S.E. -55.0 -67.0 - -92.0 -101.3 -110.4

Mercaptopropyl- A.S. - -66.52 - - -100.1 -108.8

M.S. S.E. - -67.17 - - -101.3 -109.1

*TMS as external reference, M.S. - mesoporous silica.
A.S. - as-synthesized, S.E. - after template removal.
Figures in brackets are peak ratios following decomposition.

In the case of the phenyl-modified material, after template removal, six distinct 

peaks were observed following spectral decomposition, indicating the presence of 

Ph^(SiO)(OH)2, Ph^(SiO)2(OH) and Ph^(SiO)3 moieties as well as the unmodified 

siloxanes. Four resonances were observed for the as-synthesized material. The 

decompositions are presented in Figures 3.29 and 3.30, and the peak ratios are given in 

brackets in Table 3.11.
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Figure 3.29 Decomposition of ^^Si MAS-NMR spectrum of as-synthesized MES- 
swollen phenyl-modified mesoporous silica.

Observed

Calculated
Components
Difference

•tio •Its■1» -1070 «0

Figure 3.30 Decomposition of ^̂ Si MAS-NMR spectrum of MES-swollen phenyl- 
modified mesoporous silica following template removal.
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Five peaks were detected for the extracted aminopropyl material, indicating that 

the aminopropyl function was incorporated in only two environments i.e. 

H3N(CH2)3̂ (SiO)(OH)2 and H3N(CH2)3MSiO)2(OH).

Only three peaks were detected for the extracted mercaptopropyl material, 

suggesting that the mercaptopropyl function was present as HS(CH2)3̂ (SiO)2(OH) 

only.

3.10.2‘^C MAS-NMR

MAS-NMR spectroscopy was carried out on the phenyl-modified 

mesoporous silica at the EPSRC solid-state NMR service at Durham. The aminopropyl- 

and mercaptopropyl-modified materials were analyzed at the EPSRC sorbents and 

catalysts NMR service at UMIST. NMR results are given in Tables 3.12 - 3.14 overleaf. 

The environments for carbon atoms identified from the spectra are shown in the 

respective ions / molecules presented in Figure 3.31. Spectra are given in Appendix A3.
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CI7H3

Cetyltrimethylammonium (CTMA) ion

c = A c . ' “‘
C4:

Phenyi function

^ C 2 ^ S i

H3N—C3 Cl HS—C3 Cl

Aminopropyl function Mercaptopropyl function

Figure 3.31 Diagram showing the relative positions of the carbon atoms in the ions / 
groups under investigation.
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Table 3.12 MAS NMR results for the phenyl-modified material

6* (CTMA) 5* (Phenyl)

Sample C l C2 C3-15 C16 C17 C2 C3 C4

A.S. 14.50 23.41 30.72 66.00 53.81 134.89 127.48 shoulder

S.E. - - - - - 134.09 127.05 shoulder

*TMS as external reference. A.S. - as-synthesized, S.E. - after template removal.

Table 3.13 MAS NMR results for the aminopropyl-modified material

Ô* (CTMA) 6* (Aminopropyl)

Sample C l C2 C3-15 C16 C17 C l C2 C3

S.E. - - - - - 9.53 21.16 42.83

*TMS as external reference. S.E. - after template removal.

Table 3.14 MAS NMR results for the mercaptopropyl-modified material

5* (CTMA) Ô* (Mercaptopropyl)

Sample Cl C2 C3-15 C16 C17 C2 C3 C4

A.S. 14.50 23.36 30.59 67.31 53.98 - 27.41

S.E. - , 23.19^ - - 53.87^ 11.47 27.54

*TMS as external reference. A.S. - as-synthesized, S.E. - after template removal. 
 ̂See explanation in (iii), below.
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(i) Phenyl-modified Mesoporous Silica

Phenyl function

In the case of the phenyl-modified sample, peaks for each of the template carbon 

atoms are observed for the as-synthesized sample, but are absent following template 

removal. In each case, two resolved peaks are observed corresponding to the C2 and C3 

phenyl atoms. The C4 atom is observed as a shoulder only, while the Cl atom (attached 

directly to Si) cannot be observed.

(ii) Aminopropyl-modified

H,N—C3 Cl

Aminopropyl function

*̂ C MAS-NMR was performed on this material only following template 

removal. Three peaks were observed, corresponding to the Cl, C2 and C3 atoms of the 

aminopropyl function.
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(iii) Mercaptopropyl-modified

C l Si
.  / \ /  H S -C 3  Cl

Mercaptopropyl function

The as-synthesized MP-modified sample displayed peaks assigned to the 

template molecule, as well as a peak at 6 = 27.41 assigned to the C2 and C3 atoms of 

the mercaptopropyl function., The extracted material also displayed a peak at Ô « 27 and 

an additional peak at S = 11.47, assigned to the Cl atom of the mercaptopropyl function. 

In addition, resonances were observed at 6 = 23.19 and Ô = 53.87. It is possible that 

these peaks are due to C-atoms of residual template molecules, but it is also possible 

that these resonances could signify the presence of other sulphur-containing functions. 

If, as was suggested earlier (Section 3.8.2), the thiol has been oxidised to a sulphonic 

acid, peaks would be expected at 6 = 54 (observed), 18 and ll(observed)^^. Also, the 

presence of a propandisulphide function (the disulphide RS-SR, where R = CH2CH2CH3 

in this case, is easily produced by oxidation of the thiol) would be identified by a peak at 

Ô = 23̂  ̂ (observed). It is therefore possible that either, or both of these functions are 

present in this material.
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3.11 Overview of the Characterization of the Organically-

Modified Materials

3.11.1 Phenyl-modified Mesoporous Silica

X-ray powder diffraction studies of the phenyl-modified samples indicated that a 

single phase was formed and that structural order was maintained following template 

removal. Mesitylene was proved to be a successful pore-swelling agent by increasing the 

dioo-sipacing of the final product. In contrast, the use of tetradecane as a pore-swelling 

agent was unsuccessful as an increase in dioo was not observed.

IR studies of the phenyl-modified materials showed a peak at 1143 cm'^ 

corresponding to an Si-C stretching vibration. Peaks due to phenyl C-H deformations 

and C=C stretching vibrations were also observed confirming the presence of phenyl 

groups in the sample.

TG analysis of the MES-swollen phenyi-modified sample (following surfactant 

extraction) yielded the molecular formula (Si02)o.54(SiO i.50H)o.i5(PhSiOi .5)0.310.15H2O 

as a very approximate formula for this material.

^^Si and ^̂ C MAS-NMR of the MES-swollen sample confirmed the presence of 

phenyl groups.

3.11.2 Vinyl-modified Mesoporous Silica

XRD studies of the vinyl-modified material showed that a single phase was 

formed and structural order was maintained following template removal. The obtained 

cf/oo-spacing suggested that a mesoporous material had been produced.

96



C.M.Bambrough 3. Characterization

IR and TG studies were inconclusive and could not prove definitively that the 

vinyl function had been successfully incorporated into the material. A peak observed in 

the IR spectrum at 1625 cm '\ however, probably corresponds to a vinyl C=C stretching 

vibration.

3.11.3 Aminopropyl-modified Silica

The XRD profile taken of the aminopropyl-modified material before template 

removal gave a single, broad peak corresponding to a (f/oj-spacing of 46.8 Â. Following 

template removal no XRD peaks were observed, suggesting that structural ordering had 

been lost. This loss of ordering could be due to incomplete condensation of the 

siloxanes during synthesis. As the reaction time for this synthesis was 1 week, however, 

(compared to 48 h for the phenyl-modified sample) this seems unlikely ̂ d  it is possible 

that the reaction time was, in fact, too long in this case. A poster recently presented at 

the “Firet International Conference on Inorganic Materials” in Versailles,^"* 

demonstrated that MCM-41 materials synthesized with reaction times greater than eight 

days were non-pofous following template removal.

Again IR studies proved to be inconclusive due to a large number of unassigned 

peaks in the region of interest in the IR spectrum. Results obtained from TG analysis 

were also inconclusive as the possible presence of surfactant molecules prevented the 

calculation of a molecular formula from the TG data.

^^Si MAS-NMR demonstrated the presence of an organosilicon moiety, and *̂ C 

MAS-NMR confirmed that a propyl function was present.
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3.11.4 Mercaptopropyl-modified Silica

XRD studies of the mercaptopropyl-modified sample demonstrated that 

structural order was maintained following template removal.

The S-H vibration was not detected in the IR spectra of this material. Bands that 

could be assigned to a sulphonic acid function were, however, observed. TG analysis 

did not permit the assigment of a molecular formula, however, due to residual surfactant 

molecules contributing to the sample’s mass.

^^Si MAS-NMR confirmed the presence of an organosilicon moiety and 

MAS-NMR suggested the presence of more than one sulphur-containing function. A 

peak was observed which could correspond to the mercaptopropyl function (Ô = 27), 

while peaks at Ô « 54 and 5 « 23 could be due to the sulphonic acid or disulphide 

respectively.
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A ddendum

3.12 Mesoporous Silica Spheres

When synthesizing batches of purely siliceous and aminopropyl-modified 

material using a particular magnetic stirrer, the product spontaneously formed into 

spheres of 5-10 mm in diameter (Figure 3.32). This was shown to be a function of the 

stirring rate (rather than the vessel) with only a “high” rate setting resulting in 

production of the spheres.

10 mm

Figure 3.32 Photograph of spheres of purely siliceous mesoporous silica.

XRD patterns consistent with a mesoporous structure were obtained. The 

spheres were very fragile and disintegrated when a scanning electron microscopy study 

was undertaken. Time did not permit further examination of these materials.
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C h a p t e r  4 

G as A d so r p t io n  Stu d ies

This chapter is divided into two parts. Part I considers the theoretical 

background to gas adsorption studies while Part II describes the experimental techniques 

employed.

P a r t  I  - T h e o r e t ic a l  B a c k g r o u n d

4.1 General^

It was first observed over 200 years ago that finely powdered solids have the 

ability to take up relatively large volumes of condensable gas. In 1881 Kayser^ used the 

term adsorption to describe this condensation process. The term adsorption is now 

internationally employed to describe the enrichment of one or more components on a 

surface, while the term desorption describes the depletion of these components from the 

surface.

Adsorption is classified as being either physical (physisorption) or chemical 

(chemisorption). The former involves weak forces, such as van der Waals and hydrogen 

bonding, and occurs in most gas-solid systems. Physisorption can be multilayer and in 

some ways resembles condensation of a gas. Chemisorption (involving chemical bond 

formation) in contrast, only occurs in certain systems and is confined to a monolayer.

When a porous solid is exposed to a gas at a certain pressure in a closed space, 

the solid will adsorb the gas with a corresponding decrease in the pressure of the gas and
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increase in the mass of the-solid. The amount of gas (the adsorptive) taken up by a solid 

{the adsorbent) is dependent on the temperature of the experiment and the pressure of 

the gas, as well as on the nature of the solid and gas. Upon adsorption the adsorptive is 

termed the adsorbate.

For a specific solid and gas at a fixed temperature the general Equation 4.1 

applies:

II P ) T, gas,solid (4 .1 )

where n is the amount of gas adsorbed, normally expressed in moles per gram of 

adsorbent, and p is the adsorptive equilibrium pressure. This equation is an expression 

of the adsorption isotherm, which is the relationship at constant temperature between the 

amount of gas adsorbed by the solid and the pressure or relative pressure (p/p°) of the 

adsorbate (p° is the saturation vapour pressure of the adsorptive at the experimental 

temperature). Most isotherms can be classed as belonging to one of the five common 

groups of isotherms as classified by Brunauer, Demming, Demming and Teller 

(BDDT)^ and sometimes referred to as the Brunauer, Emmett and Teller (BET) 

classification."* Each of the five “ideal” types of isotherm and the very rare, stepped, 

sixth isotherm are characteristic of a certain type of solid and the six isotherms are 

shown in Figure 4 .1 .*  As well as these six types of isotherm there are certain isotherms . 

which may display characteristics of more than one type of “ideal” isotherm, and can 

therefore be described as borderline cases. There are also, of course, a number of 

isotherms which cannot easily be assigned to any class.

Samples may be classified according to the width of their pores (see Section

1.2). Table 4.1, given overleaf, describes the main pore characteristics of solids which 

give rise to isotherms of Types I to VI.

102



C.M.Bambrough 4. G as Adsorption Studies

I
I

I

f
VI /

Relative Pressure, p/p"

Figure 4.1® The five BDDT isotherm types (I - V) along with the rare, stepped isotherm 
(Type VI).

Table 4.1 The characteristics described by the BDDT isotherm classification.®

Isotherm
Type

I

Main Pore Characteristics

microporbus or non-porous chemisorbed monolayer

n mainly non-porous or macroporous, but could still have some micropores

. m non-porous, weak adsorbent-adsorbate interactions

IV mesoporous

V shows porosity, but characteristic of weak adsorbent-adsorbate
interactions

VI very rare - shows stepwise multilayer adsorption on uniform surface
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An adsorption isotherm can yield valuable information about the pore structure 

and specific surface area of a solid, of particular interest in the study of M4IS-type 

materials. As these solids are mesoporous, one would expect gas adsorption to yield a 

Type rv  isotherm. This isotherm is therefore of most interest here, and is discussed in 

greater detail in Section 4.2. However, as this study will also investigate solids with 

pores in the microporous range, the Type I isotherm is also relevant and its 

characteristics, along with those of the Type V isotherm, are also discussed in Sections 

4.3 and 4.4 respectively.

4.2 The Type IV Isotherm

The Type IV isotherm initially displays a region of steep adsorption at low 

relative pressures, which then plateaus and often produces a sharp ‘knee’ (which 

represents monolayer coverage of the surface). A second steep region of the isotherm is 

then observed and is often accompanied by hysteresis. This region represents capillary 

condensation and is characteristic of mesoporous solids. Hysteresis is a result of the 

formation, upon adsorption, of a meniscus from which desorption will only occur at 

relative pressures below those at which it formed; in each hysteresis loop the amount 

adsorbed on the adsorption branch at a particular relative pressure is always less than 

the adsorbed amount on the desorption branch at the same relative pressure. An 

interesting feature of nitrogen isotherms determined for M41S-type materials at 77 K is 

the absence of hysteresis.^ The reason for this is not completely understood, but it is 

thought to be due to the relative pressure value at which capillary condensation occurs 

(p/p° = 0.4) in these materials. This value of p/p° represents a region of instability in the
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nitrogen meniscus and if M41S-type materials of different pore sizes were to be 

analyzed, or the temperature of the isotherm were altered, hysteresis would be observed.

The characteristic shape of the Type IV isotherm is therefore representative of 

the change between mono- and multilayer adsorption. The sharp ‘knee’ present in the 

Type rv  isotherm (also present in the Type II isotherm) allows us to calculate the 

specific surface area, Ssp (m  ̂ g'^), of the solid as described below in Section 4.2.1. It 

should be noted however that the presence of micropores in the solid may affect Ssp 

calculation as, in this case, the knee may be representative of micropore filling (see 

Section 4.3).

4.2. i  Determination o f Specific Surface Area

A useful value that can be determined from gas adsorption studies is the specific 

surface area, Ssp of a solid. In studies where this is required, nitrogen is the adsorptive of 

choice for reasons discussed in Section 4.5. Tlie Ssp (m  ̂ g'-), of a solid may be 

calculated from equation 4.2:

Ssp — Um L am (4.2)

where nm is the monolayer capacity, L is the Avogadro number and am is the area 

occupied by an adsorbate molecule (usually nitrogen) in the completed monolayer.

In order to determine the specific surface area of a solid by gas adsorption it is 

therefore necessary to measure the monolayer capacity of the solid. The monolayer 

capacity, Um (mol g ' \  is defined as the amount of gas that can be accommodated by a 

single molecular layer on the surface of 1 g of solid. There are two methods available 

for the calculation of Um: the Point B method^ and the BET model*. These methods and 

their applicability are discussed in the following Sections.
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Calculation of am may be achieved by considering the density of the bulk liquid. 

This method, originally proposed by Emmett and Brunauer,^ assumes that the molecules 

are arranged in the same manner when adsorbed on the surface as they would be if 

placed on a plane surface within the bulk liquid (i.e. in a close-packing arrangement). 

This leads to equation (4.3):

a „ = / ( M / p L ) ^  (4.3)

where/is a packing factor (equal to 1.091 for 12 nearest neighbours in the bulk liquid 

and six on the.plane surface)^, M is the niolar mass and p is the density of the adsorptive 

at the experimental temperature.

(The am values of the adsorptives used in this study are given in Table 4.2 in Part II of 

this chapter.)

i) The Point B Method of Surface Area Analysis

The sharp knee that is characteristic of Type II and Type IV isotherms was 

termed “Point B” by Brunauer and Emmett^ and represents monolayer coverage of the 

surface (see Figure 4.2). It is therefore simply a matter of reading off the adsorbed 

amount from the y-axis (at the point at which the isotherm becomes linear after the 

knee) to obtain a value for the monolayer capacity of the solid. However, if the Point B 

region is somewhat ill-defined (i.e. the isotherm displays a rounded knee) the ease with 

which the monolayer capacity can be determined is diminished. In fact, in most cases 

the BET model* (see next Section) is a more accurate method of Um determination, since 

it is effectively a mathematical method of determining Point B.
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Figure 4.2 A nitrogen isotherm isotherm of MCM-41 showing the position of the 
‘Point B’.

ii) BET Analysis^

The equation most commonly used to describe multilayer physical adsorption is 

the BET equation, formulated from the Langmuir equation^ (see Section 4.3) by 

Brunauer, Emmett and Teller.® The BET equation, was derived kinetically for a state of 

dynamic equilibrium, where the rate at which molecules condense from the gas phase 

onto the surface is equal to the rate at which molecules evaporate from the occupied 

sites. The equation is shown below in its linear form:

p/p" 1 c - 1  p+ ^ (4.4)
n( l -p /p")  n„c n„c p“

n is the amount adsorbed at equilibrium pressure p, p° is the saturation vapour pressure 

at the experimental temperature, Um is the monolayer capacity and c is the BET 

parameter, which is related to the net heat of adsorption, (qi = heat of adsorption in first 

layer, qt = heat of adsorption in subsequent layers), as shown in equation 4.5.

107



C.M.Bambrough 4. Gas Adsorption Studies

c = (4.5)

In this model, plotting :— ^ a g a i n s t  - 4  will give a straight line with a s l o p e -
n ( l - p / p  ) P RrnC

4
and an intercept ----- , thus permitting the calculation of the monolayer capacity

and providing a means for calculating the specific surface area.f 1 1n = --------------------
 ̂ slope + intercept ̂

Ssp of the solid. There are many limitations associated with applying the BET equation 

to calculating Ssp and these are discussed below.

The BET constant, c, gives a quantitative measure of the interaction between the 

surface and the adsorbed molecules in the monolayer, relative to those between the 

mono- and subsequent layers. In general, a value for c which lies between 50 and 250 

will give a precise surface area value. Smaller coiistants are accompanied by a rounded 

‘knee’ in the isotherm (and a correspondingly ill-defined Point B) and are due to 

insufficient differences in the adsorption strengths between the mono- and subsequent 

layers. Larger values for c may indicate the presence of micropores.

Limitations of the BET Model

While a BET model gives reasonable agreement in the low pressure region to 

Type n  and Type IV isotherms (i.e. those isotherms with a sharp ‘knee’), there are 

certain limitations of the BET model, namely one assumes that:

1) the surface is homogeneous, i.e. all adsorption sites are energetically 

identical

2) there are no lateral interactions between adsorbed particles

3) an infinite number of physically adsorbed layers can be formed
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4) in all but the first layer, adsorption resembles the liquefaction of a gas.

The system being studied would not be expected to adhere to the above criteria. 

For example, a homogeneous surface is unlikely, and surface heterogeneity is the norm.

It is also impossible to assume that lateral interactions between adsorbed molecules are 

negligible, especially when approaching layer completion. In addition, it is questionable 

how far all layers after the first should be treated as identical. Despite these 

assumptions, however, a BET model gives reasonable agreement in the range 0.05 < 

p/p° < 0.35 and is a good working model for Type II and Type IV isotherms in that 

range. It should be noted that, even in the most favourable cases, an uncertainty in the 

calculation of specific surface area of > 10 % is not unusual, and this may be attributed 

to the nature of the BET model and the assumptions it imposes.

4.2,2 Determination o f Pore Width and Pore Volume

i) Pore Width

Type rv  isotherms are characteristic of mesoporous solids and are usually easily 

recognised by their hysteresis loops. Although the exact shape of the hysteresis may 

vary with each sample, it is always the case that at any given relative pressure the 

amount adsorbed is greater in the desorption branch than in the adsorption branch (see 

Section 4.2). Zsigmondy^® put forward a capillary condensation model to explain this. 

Thomson^^ (later Lord Kelvin) had stated (on thermodynamic grounds) that it is possible 

for a vapour to condense to a liquid in the pores of a solid even if the relative pressure is 

p/p° < 1. This is because the equilibrium vapour pressure, p®, above a concave meniscus 

must be less than the saturation vapour pressure, p° at the same temperature. 

Zsigmondy's model assumed that along the initial part of the isotherm adsorption occurs 

only as a thin layer on the walls of the pore until, at the inception of the hysteresis loop,
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capillary condensation occurs. With increasing pressures, condensation continues until 

even the widest pores are completely filled with condensate. It was assumed that the 

pores were cylindrical and (|), the angle of contact, was zero (cos(|) =1),  thus giving a 

hemispherical meniscus. The mean radius of curvature of the meniscus is then equal to 

the radius of the pore minus the thickness of the adsorbed monolayer on the walls. The 

“Kelvin equation” is given below:

ln -^  = - ^ ^ c o s 0  (4.6)

where p/p® is the relative pressure of the vapour in equilibrium with a meniscus of 

radius of curvature rm at temperature T(K). y  is the surface tension of the liquid 

adsorptive, Vl is the molar volume of the adsorbate in liquid form and R is the gas 

constant.

It is therefore possible, by applying the Kelvin equation at the inception of the 

hysteresis loop, to calculate the minimum pore radius in which capillary condensation 

can occur. The usual pore diameter range between which capillary condensation occurs 

is 10 - 250 Â, and this is therefore the range over which the Kelvin equation may be 

applied.

As previously mentioned, the radius of curvature of the meniscus, rm, is equal to 

the radius of the pore minus the thickness of the adsorbed film, t. The pore radius, r, is 

therefore obtained via equation (4.7):

r = rm + t (4.7)

where t (A) is calculated from equation (4.8):

t = ( n / nm ) CTt (4.8)

Here, n is the amount adsorbed at relative pressure p/p®, Um is the monolayer capacity 

and (Tt is the thickness of each layer.
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ii) Pore Volume

The final plateau of the Type IV isotherm represents complete filling of all the 

pores with liquid adsorbate. It is therefore possible, by using the liquid density, to 

calculate the amount of liquid adsorbed onto the surface. The total pore volume (or 

Gurvitsch volume^^) can then be calculated fi-om equation (4.9);

Total Pore Volume, Vp = npM/p (4.9)

where Up is the limiting adsorption value obtained from the plateau region of the 

isotherm, M is the molar mass of the adsorbate and p is the density of the liquid 

adsorbate. This volume should be the same for all adsorptives on a particular solid; this 

“Gurvitsch rule” is generally valid to within a few percent for those systems giving rise 

to a Type IV isotherm, but its accuracy is limited by the ease with which the plateau can 

be determined.

4.3 The Type I Isotherm

If a sample is microporous, the narrowness of the pores may cause enhanced 

adsorption as the potential fields from neighbouring walls interact to cause a distortion 

of the isotherm at low relative pressures, This, in the simplest case, will give rise to a 

Type I isotherm which displays a steep region at low relative pressures followed by a 

plateau at a limiting value. According to “classical” interpretation® this limit exists 

because pores are so narrow that they cannot accommodate more than a single 

molecular layer on their walls. This classical view assumes that the Type I isotherm 

conforms to the Langmuir equation® given below (equation 4.10).
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n Bp
nm 1 + Bp

where

(4.10)

B = (4.11)
ZmV,

ai is the condensation coefficient (i.e. the fraction of incident molecules which actually 

adsorb), Zm is the number of adsorption sites per trnit area» Vi is the freqjjençy of 

oscillation of the molecule in a directioa^ormal-to the surface^ qi is the isosteric heat of

adsorption and k is a constant given by the kinetic theory o f gases.
0.5L ''

(MRT)'

In practice. B is a constant which cannot be resolved experimentally via equation 4.11. 

However, if equation 4.10 is rewritten substituting relative pressure, p/p°, for pressure, 

p, it then becomes:

where c is the BET constant. When written in its linear form (equation 4.13), it becomes

clear that a plot of ^ against p/p° will yield a straight line with a slope of l/nm- 
n

£^P_ = J _ _ + £ ^ P _  (4.13)
n cn„ n̂

It is therefore possible to calculate a value for the monolayer capacity, nm, of the solid 

from a Type I isotherm and thus a value for the specific surface area, Ssp (see Section

4.2). In fact, if the plateau of the Type I isotherm is horizontal, when employing the 

classical interpretation, the monolayer capacity may be taken as identical to the total 

uptake. Us, at saturation pressure.
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A number of arguments^^’̂"* suggest that this classical interpretation is 

inapplicable however, not least that surface areas calculated from Type I isotherms are 

often improbably higĥ "*. Another fact which suggests that the limiting plateau of a Type 

I isotherm does not correspond to the monolayer capacity is that the Gurvitsch volume 

rule (see Section 4.2.2) is often obeyed for a variety of adsorbates by systems yielding 

this type of isotherm. This conformity to the Gurvitsch rule suggests that the 

adsorbate is condensed in the pores in a form which has a density close to that of the 

liquid adsorptive. For this to occur, the pores must have a width in excess of two 

molecular diameters since the size and shape of different adsorbate molecules would 

influence the packing within the pore structure. In order for the adsorbate to simulate the 

bulk liquid, a pore width of several molecular diameters would therefore be required. 

Considering these arguments, it seems more likely that the uptake, Uj, at saturation is 

more likely to correspond to the pore volume of the adsorbent. This led Pierce, Wiley 

and Smith^^ and, independently, Dubinin^* to postulate that the mechanism of 

adsorption in micropiorous solids is a pore filling process similar to capillary 

condensation, rather than a layer-by-layer build up of adsorbate on the pore walls. The 

Type I isotherm plateau therefore represents total pore filling and can be used to 

determine the micropore volume of the adsorbent if the isotherm has a sharp knee and a 

horizontal plateau. However, when determining the microporosity of a sample it is 

important to note that microporosity is often accompanied by a large external surface 

and / or mesopores, and care must therefore be taken when assigning a value to the 

micropore volume. More definitive methods of determining microporosity include 

preadsorption techniques,^^ f-plotŝ ® and % - plots^\
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4.4 The Type V Isotherm

The Type V isotherm is representative of weak adsorbate-adsorbent interactions 

and is often observed in water sorption on hydrophobic surfaces.^^ It is characterized, by 

a region of low uptake at low relative pressures followed by a period of condensation 

accompanied by hysteresis. Water adsorbs preferentially on the silanol (SiOH) groups 

of a silica (rather than forming a uniform surface), and clustering of water molecules 

one on top of the other then follows, producing the upward sweep of the isotherm. The 

Point B, if observed, does not therefore correspond to the monolayer capacity of the 

solid, but refers to the density of the surface silanol groups. For this reason it is not 

possible to use water sorption by M41S materials to determine surface areas, but it can 

be a useful tool in monitoring other surface characteristics.
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P a r t  n  - E x p e r im e n ta l  T e c h n iq u e s

4.5 The Adsorptives

Two methods of gas adsorption were used in these studies; automated 

volumetric adsorption and manual gravimetric adsorption. The adsorptives used in each 

technique are shown in Table 4.2, along with the experimental temperatures and the 

molecular areas, am, of the adsorptives.

Table 4.2 Adsorptives, their molecular areas and the adsorption temperatures 
used in each technique.

Adsorptive Technique Temperature / K Molecular A rea\
am/

N2
Volumetric

77 16.2

O2 77 14.1

H2O 303 10.5

C6H6
Gravimetric

293 30.7*

ra-BuOH 303 32.1

r-BuOH 303 33.1

Molecular areas calculated from equation 4.3.
* While this value of amCCeHe) = 30.7 Â was obtained using equation 4.3, the McClellan 
and Hamsberger “recommended” value of amCCgHg) = 43 A was used in Ssp calculations 
(see Section 5.7.1).

115



C.M.Bambrough 4. Gas Adsorption Studies

The sorption of organic and polar solvents can yield important information on 

the surface characteristics of a sample, but when determining the surface area, Ssp, 

nitrogen is the adsorptive of choice for the following reasons:

1) it is inert (will not chemisorb)

2) it has no dipole moment

3) the small N] molecules (assumed to be spherical) can easily penetrate most 

pores and are not sterically hindered

4) its saturation vapour pressure (1 atm) at the working temperature (77 K) is 

large enough to be measured accurately

5) it is easily and cheaply available

For these reasons, N2 is the sorptive favoured for specific surface area 

determination, and all of the samples studied here were analyzed using nitrogen 

sorption.

The value quoted in Table 4.2 for the molecular area of benzene is obtained 

using equation 4.3. Problems arise, however, when assigning a molecular area for 

benzene^^, as this will differ greatly depending on whether the molecule is lying flat on 

the surface or is oriented perpendicular to it. Isirikyan and Kiselev^ estimate am(flat) = 

40 and am(upright) = 25 A ,̂ as appropriate molecular areas for benzene. In a review 

by McClellan and Hamsberger, the recommended value of am(C6H6) is given as 43 ±

3 A ,̂ based on am(N2) = 16.2 A  ̂and as a result of examining benzene sorption on eleven 

adsorbents. In this study the McClellan and Hamsberger value (i.e. 43 ± 3  A^) is 

employed when determining specific surface areas from benzene sorption.

The am values quoted for «-BuOH and f-BuOH, calculated from equation 4.3, do 

not accurately reflect true molecular areas as these molecules are obviously not 

spherical; More accurate values may be calculated from isotherms of these species using
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the specific surface area of the sorbent derived from nitrogen sorption. This is discussed 

further in Chapter 5 for benzene as well as for the alcohols.

4.6 Volumetric Adsorption

The sorption of nitrogen and oxygen at 77 K was performed on the fully automated 

and computer-controlled Micromeritics Gemini 2375 Surface Area and Porosimetry 

Analyzer. A two-stage rotary vacuum pump was connected to the apparatus and used to 

evacuate the system prior to adsorption and during desorption. The Gemini apparatus 

consists of identical balance and sample tubes, immersed in a dewar vessel of liquid 

nitrogen and exposed to identical experimental conditions. A flowing gas technique 

delivers the adsorptive to both tubes simultaneously. This duplicate operation means that 

any changes in the gas balance are due to adsorbanee by the sample. The rate at which the 

adsorptive is supplied is determined by the rate at which the sample adsorbs. Results are 

displayed as an adsorption isotherm, and a BET multipoint surface area calculation is 

automatically performed. Typically, sample masses as low as 0.1 g can be successfully 

analyzed.

Before isotherm measurement commenced, the samples were outgassed for several 

hours to remove physisorbed vapours. The Micromeritics Flowprep 060 outgasser, in 

which the samples are heated under a flow of nitrogen without the use of a vacuum pump, 

was employed for this. All aluminosilicate and purely siliceous samples were outgassed at 

150°C, while all organically functionalized materials were outgassed at 100°C (to prevent 

removal of the organic groups).
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4.7 Gravimetric Adsorption

The gravimetric balance used for the sorption of vapours at 303 K and 293 K, 

was of the conventional McBain-Bakr^^ type, and was designed and built in-house by 

Branton.^^ The system, shown in Figure 4.2, was constructed from Pyrex tubing and 

vacuum-seated Pyrex stopcocks. The adsorption of organic solvents necessitated the use 

of Apiezon T as the stopcock lubricant. The balance mechanism consisted of two helical 

quartz springs (connected in series in order, to increase the sensitivity) suspended from a 

hook and the sample, housed in a silica bucket, was suspended from the springs via a 

series of silica rods. One of these rods, the marker rod, contained two blue glass 

reference markers.

Pirani and 
Penning . 
Gauges

Pressure Transducer

McLeod
Gauge \  Helical 

Quartz 
/S p rings

Maxker Rod

O
Adsorptive
ReservoirCold Trap

Q-—Sample in 
Bucket

Oil Difrusion 
Pump

Silicone Oil Manometer
O

Thermostatted BoxRotary Pump

Figure 4.2 The Gravimetric Adsorption Balance
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A rack-and-pinion-type microscope was focused on the tip of one of these blue 

markers to measure spring extension. The pumping apparatus consisted of a water- 

cooled oil diffusion pump and a two-stage rotary pump. Pirani and Penning gauges and 

a McLeod gauge attached to the line measured vacuum pressures of < 1  x 10"̂  Pa. The 

sorptive pressures were measured using a silicone oil manometer and a pressure 

transducer.

The adsorptive was contained in a reservoir and its vapour pressure controlled by 

the water temperature in a surrounding dewar vessel. The whole vacuum line was then 

housed in a thermostatted box, the temperature of which was maintained at 303 K by 

two thermistor-controlled carbon filament bulbs and an air-circulating fan. For 

experiments carried out at 293 K, water from a thermostatted tank was circulated 

through a dewar vessel surrounding the sample. The springs were maintained at 303 K 

to maintain their calibration.

4J,1 Spring Calibration

The gravimetric line was calibrated under vacuum at 303 K by suspending a silica 

bucket containing glass beads of known mass from the springs. As the mass was increased 

the extension of the spring was measured by means of the rack and pinion type 

microscope, fitted with a screw micrometer eyepiece focused on the tip of one of the blue 

glass reference markers. By plotting spring extension against mass, the spring response 

was shown to be linear and reversible; a sensitivity of 32.68 microscope units g'* was 

determined.
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4.7.2 Degassing ofUquid Adsorptives

The adsorptives (AnalaR grade) were distilled prior to loading in the reservoir 

soaked on a plug of glass wool (to prevent the glass reservoir from cracking upon liquid 

expansion). In order to remove dissolved gases, the adsorptives were exposed to three 

“freeze-pump-thaw” cycles. This process involved freezing the adsorptive by 

surrounding the reservoir with a dewar vessel containing liquid nitrogen. The adsorptive 

was then exposed to the pump and, when a stable vacuum of < 1 x 10’̂  Pa was achieved, 

the tap was closed and the dewar vessel was removed to allow the adsorptive to return to 

room temperature. The procedure was then repeated.

4.7.3 Adsorbent Outgassing Procedure

Prior to adsorption it was necessary to remove any physisorbed vapour from the 

surface of the solid; this procedure is termed outgassing. The sample was heated in a 

cube furnace under vacuum to a constant pressure. Pressures of < 1 x 10'  ̂ Pa were 

usually achieved. Typical outgassing times for M41S materials were 4-5 hours. It was 

important that the temperature chosen for this procedure did not cause any modification 

of the sample. Purely siliceous and aluminosilicate materials were outgassed at 150 °C, 

while organically-modified samples were outgassed at 100 °C to prevent the removal of 

incorporated organic functions.

4.7.4 Isotherm Measurement

Table 4.2 (above) shows, the temperatures at which adsorption was carried out 

for each adsorptive. In each case, the thermostatted box was maintained at 303 K. 

Benzene sorption was carried out at 293 K due to the exceptionally high saturation 

vapour pressure (too high to read on the silicone oil manometer) of this solvent at
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303 K. Also this made comparison with literature benzene isotherms, similarly carried 

out at 293 K, possible. To facilitate sorption at 293 K, water from a thermostatted tank 

was circulated through a dewar vessel surrounding the sample. The vapour pressure of 

the adsorptive was controlled by regulating the water temperature in a dewar vessel 

surrounding the reservoir.

Before adsorption commenced, the position of the blue reference marker, 

measured using the rack and pinion microscope was noted. Following degassing of the 

adsorbent and the adsorptive the line was evacuated to a pressure of <1 x 10'  ̂Pa. With 

tap 1 closed (Figure 4.2), tap 2 was opened and the vapour pressure of the adsorptive 

measured on the pressure transducer and silicone oil manometer. Tap 1 was then opened 

to expose the adsorbent to the vapour. Pressure readings and the position of the marker 

rod were noted at regular time intervals (10-15 min) until the system reached 

equilibrium; this was defined as the point at which no further decrease in pressure and 

I1Û further spring extension were observed. Typically, equilibrium was reached in 0.5 - 

3 h. Desorption points were obtained by exposing the sample to a reduced vapour 

pressure, obtained by opening the line to the pump.

Calculation of the amount adsorbed, n / mol, was achieved using equation 4.14:

n = 0/AM (4.14)

where Ô is the spring extension, A is the sensitivity of the spring (32.68 mic. units g'*) 

and M is the molar mass of the adsorptive.

Isotherms are presented as plots of relative pressure, p/p°, against amount 

adsorbed (mol g'*). The p° value for water was taken from the CRC Handbook of 

Chemistry and Physics^*, and p° values of all other adsorptives were measured using the 

pressure transducer and silicone oil manometer at the respective experimental 

temperatures. These are given in Table 4.3 below.
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Table 4.3 The saturation vapour pressures of adsorptives at the experimental 
temperatures

Adsorptive -H2O CôHfi n-BuOH f-BuOH

Temperature / K 303 293 , 303 303

Sat. Vapour 
Pressure, / kPa

4.24 10.21 1.68 7,73 -
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Ch a p t e r s  

G as Adsorption  Results

The following chapter is divided into two parts. Part I considers the gas 

adsorption analysis of M41S-type materials, while Part II considers gas adsorption on 

organically-functionalized mesoporous silica. The BET plots used in the calculation of 

Ssp are given in Appendix A4.

P a r t  I - M41S S o le d s

5.1 Nitrogen Sorption

Nitrogen adsorption was carried out on all of the calcined samples using the 

Gemini apparatus. Sorption data are given in Table 5.1. (BET plots used in the 

calculation of S$p are given in Appendix A4).

The isotherms, presented at the end of this section, were mostly Type IV  ̂ as 

expected, indicating mesoporosity. It is evident from Figures 5.1-5.7 that samples 

produced under pressure (i.e. in a sealed container) yield isotherms with a more well- 

defined capillary condensation step than those samples produced in open vessels. This 

suggests that the samples produced under pressure have a narrower pore size 

distribution (i.e. a more uniform pore structure) than those produced at atmospheric 

pressure.
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Table 5.1 N2 sorption data for M41S samples

Sample
BET 

surface area,
Ssp/m^ g'^

Gurvitsch 
pore volume, 
Vp/cm^g^

Average 
pore diameter*

i k

MCM-41(a) i 729 0.57 31.7 (0.38)

MCM-41(b) ii 737 0.32 -

MCM-41(c) i 794 0.59 31.2 (0.37)

MCM-41(d) ii - " ~ -511 0.26 24.3 (0.25)

FeMCM-41 i 833 0.44 26.6 (0.29)

SiMCM-41(a) iii 936 0.45 24.0 (0.24)

SiMCM-41(b) 828 0.56 26.3 (0.29)

(i) prepared in sealed vessel in conventional oven, (ii) prepared in microwave oven, 
(iii) stirred at room temperature in an open vessel.
* Figures in brackets are the p/p^ values at which the Kelvin equation was applied.

As mentioned in Chapter 4, a distinctive feature of M41S-type solids is the 

absence of hysteresis in the Type IV isotherms i.e. the isotherms are reversible.^ The 

reason for this absence of hysteresis in M41S solids is not well understood, but it is 

thought to be due to the position of the capillary condensation step (p/p** « 0.4). Under 

the reaction conditions it seems that this is the lowest p/p** at which nitrogen can 

undergo the classical form of capillary condensation. This value of . p/p** represents a 

region of instability in the nitrogen meniscus and if M41S materials of different pore 

sizes were to be analyzed, or the temperature of the isotherms altered, hysteresis would 

be observed.
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The BET analysis was carried out on each isotherm in the range 0.04 > p/p** > 

0.31 (as pre-set by the Gemini apparatus). Specific surface areas of between 

approximately 500 and 1000 m  ̂g * were obtained, typical of MCM-41-type materials. 

Average pore diameters of between 24 and 32 Â (obtained by applying the Kelvin 

equation^) confirmed that the samples were indeed mesoporous. The Kelvin equation 

could not be applied to the isotherm obtained for sample MCM-41(b) as it did not show 

a well-defined capillary condensation step.

Gurvitsch pore volumes^, Vp, were calculated from each isotherm. It can be 

noted from Table 5.1 that the pore volumes of samples prepared in a sealed vessel in a 

conventional oven are greater than those obtained for samples prepared in an open 

vessel. These results indicate that, in order to produce M4IS-type materials with 

characteristics desirable for selective catalysis (e.g. uniform pore structure, high surface 

area, large pore volume) synthesis under pressure is the method of choice.
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Figure 5.1 Nitrogen sorption at 77 K on calcined MCM-41(a).
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5.1.1 Calculation o f Pore WaU Thickness

It is possible to calculate the average pore wall thickness of a sample by 

subtracting the average pore diameter, obtained from the N2 isotherm, from the unit cell 

dimension, a, obtained from XRD data. The results obtained for these samples are 

tabulated below (Table 5.2).

Table 5.2 Average pore wall thickness of M41S-type solids

Sample Reaction Time & 
Temperature

Average Pore 
Diameter /  Â

Unit cell, 
a l  k

Average Wall 
Thickness /  k

MCM-41(a) 100 °C, 23 h 31.7 39 7.3

MCM-41(b) micro., 20 min - - -

MCM-41(c) 100 °C, 72 h 31.2 45 13.8

MCM-41(d) micro., 20 min 24.3 40 15.7

FeMCM-41 100 °C, 120 h 26.6 43 16.4

SiMCM-41(a) ambient 
temperature, 1 h

24.0 . 37 13.0

SiMCM-41(b) 100 °C, 24 h 26.3 43 16.7

Table 5.2 highlights that samples synthesized via the hydrolysis and 

condensation of TEOS have thicker walls than those produced using TMAS and 

precipitated silica as the silica source. Also, the samples prepared at high temperature 

and under pressure have thicker walls than the sample prepared at room temperature and 

pressure.
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5.2 Oxygen Sorption

Oxygen sorption was carried out at 77 K on sample SiMCM-41(b) (Figure 5.8).
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Figure 5.8 Oxygen sorption at 77 K on calcined SiMCM-41(b)
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The nitrogen sorption isotherm, carried out on the same sample at 77 K is shown 

for comparison purposes in Figure 5.9. Both isotherms are Type IV confirming that the 

sample is mesoporous. The major difference between the two isotherms that can be 

observed is the presence of a hysteresis loop in the oxygen isotherm. This is absent in 

the nitrogen isotherm as would be expected for an MCM-41-type material. This 

confirms that the absence of hysteresis in the nitrogen isotherm is a characteristic of the 

adsorbate rather than the adsorbent (see Section 5.1).

The pore volume, Vp, and BET specific surface area, Ssp, calculated from each 

isotherm, are compared in Table 5.3, below.

Table 5.3 Sorption data for O2 and N2 sorption on SiMCM-41(b).

O2 Sorption Ni Sorption

Vp/cm^ g'^ 0.56 * 0.56

Ssp/m^g'^ 737 828

* Calculated using p(02) = 1.184 g cm-3

As shown in Table 5.3, the pore volumes calculated from each isotherm are 

identical (Vp = 0.56 cm  ̂ g'*j showing good agreement with the Gurvitsch rule. This 

proves that nitrogen and oxygen are adsorbed in a similar manner in this material. The 

specific surface areas obtained are slightly different, but this difference may be 

attributed to the assumptions made when applying a BET calculation (see Section 4.2.1). 

The BET plot used in the calculation of Ssp is given in Appendix A4.
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5.3 Water sorption

Water sorption on calcined MCM-41(c) was studied using the gravimetric 

apparatus. A Type V isotherm was produced (Figure 5.10), indicating mesoporosity 

with weak adsorbate-adsorbent interactions. This is characteristic of a hydrophobic 

surface and suggests that there are few surface hydroxyl groups present. The initial low 

affinity of this sample for water vapour is highlighted by the long plateau at the start of 

the isotherm. Condensation occurs normally, however, around p/p° = 0.6. An interesting 

feature of this isotherm is that the desorption branch of the hysteresis loop does not 

close. This suggests rehydroxylation of the surface. Indeed, after heating under vacuum 

at 150°C for 4 h, water still remained on the surface and the isotherm could not be 

reproduced (condensation occurred upon readsorption). This is in contrast to the work 

carried out by Branton^ on MCM-41 that showed the water isotherm to be reversible in 

the pre-hysteresis region thus suggesting that chemisorption did not occur.
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Figure 5.10 Water sorption at 303 K on calcined MCM-41(c).

This difference may be attributed to the differences in sample preparation. The 

Branton sainples were prepared at high temperature in a static autoclave^, while sample 

MCM-41(c) was prepared in a sealed teflon bottle at 100 °C in a conventional oven. It is 

possible that, in sample MCM-41(c), complete condensation of aU of the siloxane 

groups has not occured producing a sample less stable than one prepared in an 

autoclave. The dehydroxylation of a silica surface is shown diagramatically in Figure 

5.11. Chuang and Macief suggest that when two adjacent silanol groups condense at 

temperatures greater than 500 °C a strained 4-member Si-0 ring is formed. This is 

highly reactive and therefore can easily undergo rehydroxylation when exposed to water 

vapour. If sample MCM-41(c) did not undergo complete siloxane condensation, then it 

is more likely that there will be adjacent SiOH and SiOEt groups present which, in turn, 

will make the sample more likely to undergo mliydroxylation upon water sorption.
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X K

Figure 5.11 Diagram showing the formation of a strained 4-membered Si-0 ring upon 
the dehydroxylation of a silica surface.

If rehydroxylation of a silica surface is the cause of low pressure hysteresis, an 

increase in the number of surface hydroxyl groups should be observed. Sample MCM- 

41(c) was therefore studied using ^^Si MAS-NMR both before and after water sorption. 

The results, given in Section 3.5.1, confirmed that rehydroxylation of the sample did 

occur upon water sorption at 303 K.
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P a r t I I  ■ O r g a n ic a l l y -F u n c t io n a l iz e d  

M e so po r q u s  S il ic a

The following Table (5.4) summarises the gas adsorption studies carried out on 

the orgamcally-functionalized mesoporous silicas.

Table 5.4 The adsorptives used on each sample

1 . N2 H2 0 C A n-BuOH t-BuOH

Sample (77 K) (303 K) (293 K) (303 K) (303 K)

Phenyl
(Burkett) y

.

y y y

Phenyl
(Unswollen) y

Phenyl
(Mesitylene) y y y y

Phenyl
(Tetradecane) V

Vinyl y

Amino-
prQpyl

Mercapto-
propyl

y

The sorption of each adsorptive is now discussed in turn.
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5.4 Nitrogen Sorption

Nitrogen sorption data yield the values given in Table 5.5. The results obtained 

for each sample are discussed separately below.

Table 5.5 Nitrogen sorption data for organically-functionalized mesoporous silica

Sample Isotherm
Type

BET
Surface
Area,

SsD /

Langmuir 
Surface 
Area, 

Sl / hi  ̂g^

Gurvitsch 
Pore 

Volume, 
Vo /cm^ g'^

Phenyl (Burkett) I 882 1258 0.45

Phenyl (UnswoUen) I 990 1424 0.50

Phenyl (Mesitylene) IV 942 - 0.67

Phenyl (Tetradecane) I 760 1138 0.42

1 Vinyl I& IV 1339 - 0.76

Aminopropyl I 299 415 0.15

Mercaptopropyl I 522 761 0.27

Langmuir surface area calculations were performed for each sample that gave an 

isotherm displaying Type I characteristics. In each case, a relatively high surface area 

was obtained. For comparison purposes, the BET specific surface areas have been used
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in this study and any reference to the specific surface area of a sample is referring to the 

value calculated using the BET model, unless otherwise stated.

5.4.1 PhenyUModified Samples

(i) PhMCM-41 (Burkett Sample)

Nitrogen sorption studies on the Burkett (unswollen)* material yielded an 

isotherm displaying mainly Type I characteristics confirming its microporosity (Figure

5.12). The pores are almost completely filled at a relative pressure p/p° « 0.2.
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Figure 5.12 Nitrogen sorption at 77 K on PhMCM-41

As mentioned in Chapter 4 (Section 4.3), a number of arguments suggest that it 

is inappropriate to apply the Brunauer-Emmett-Teller (BET) equation to Type I 

isotherms as the “knee” observed is thought to represent pore filling rather than
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monolayer coverage. However, if a BET calculation is performed on this isotherm over 

the range p/p° = 0.04 - 0.31, a surface area of 882 m  ̂g ‘ is obtained, consistent with 

other large pore unmodified M41S-type solids. If we assume that the plateau of the 

isotherm represents complete pore filling, the isotherm yields a Gurvitsch pore volume, 

Vp = 0.45 cm  ̂ g '\  If the sample is assumed to have 20 Â diameter cylindrical pores 

(from preliminary nitrogen sorption and XRD data) and the specific surface area of 882 

m  ̂g‘* corresponds to the internal surface area of the pores, then a theoretical total pore 

volume of 0.44 cm^ g‘* is obtained, in good agreement with the experimental value. 

This confirms that the plateau of the isotherm does indeed correspond to complete 

filling of the pores. The fact that a reasonable BET surface area is obtained from the 

lower region of the isotherm may possibly be explained by the fact that the isotherm 

shape does not exactly mirror that of a Type I isotherm. The initial uptake at low relative 

pressures is not as steep as would be expected in a classical Type I case. Also, following 

the “knee” at p/p” « 0.2, the isotherm is not completely flat as would be expected if this 

represented total pore filling; it continues to slope gently upwards until saturation 

pressure. The reason for this deviation may be that the sample contains pores at the limit 

of the microporous range (i.e. pore diameter « 20 Â).

(ii) Phenvl-Modifiad Mesoporous Silicas

Unswollen Phenvl-Modified Silica

The unswollen phenyl-modified mesoporous silica yields an isotherm (Fig.

5.13), displaying Type I characteristics, very similar to that given by the Burkett 

unswollen sample and a BET specific surface area Ssp = 990 m  ̂g'* and a Gurvitsch pore 

volume,
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Vp = 0.50 cm  ̂g ^ These values, particularly Vp, are very similar to those obtained for 

the Burkett sample {cf. 882 m  ̂ g‘‘ and 0.45 cm  ̂ g'*) which is not surprising as the 

preparation methods of these two materials were identical. (This sample was prepared 

merely as a control sample for the synthesis of other mesoporous organically-modified 

samples).
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Figure 5.13 Nitrogen sorption at 77 K on unswollen phenyl-modified silica..

Mesitvlene-Swollen Phenvl-Modified Silica

The Type IV isotherm (Figure 5.14) given by the mesitylene-swollen phenyl- 

modified sample displays a small degree of hysteresis and indicates that the sample is 

mesoporous. A BET specific surface, Ssp = 942 m" g*̂  is consistent with M41S-type 

materials and the Gurvitsch pore volume, Vp = 0.67 cin  ̂g’* is larger than that obtained
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for the unswollen material (0.50 cm  ̂ g'^). This demonstrates that mesitylene is an 

effective pore-swelling agent in the synthesis of these materials.
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Figure 5.14 Nitrogen sorption at 77 K on MES-swollen phenyl-modified mesoporous 
silica.

Tetradecane-Swollen Phenvl-Modified Silica

The tetradecane-swollen phenyl-modified sample yields an isotherm similar to 

that obtained for the unswollcn material, exhibiting Type I characteristics but displaying 

a small amount of hysteresis (Figure 5.15). This again indicates that the sample is 

microporous. The BET surface area, Ssp = 760 m" g** is consistent with M41S-type 

materials and the Gurvitsch pore volume, Vp = 0.42 cm^ g'  ̂ is similar to that of the 

unswollen material.
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Figure 5.15 Nitrogen sorption at 77 K on TET-swoilen phenyl-modified silica.

O adsorption 
•  desorption

The Type I isotherm and lower Gurvitsch pore volume for the tetradecane- 

swollen material suggest that this alkane is not a suitable pore swelling agent for the 

synthesis of these materials. This could possibly be due to the fact that the tetradecane 

molecules overlap with the CTMACl molecules when the template is formed. It may be 

that the scenario shown in Figure 1.3, whereby n-alkane molecules position themselves 

at the end of the surfactant carbon chains,^ cannot be supported when using an alkane 

molecule as large as tetradecane.
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5.4.2 Vinyl-Modified Mesoporous Silica

Nitrogen sorption on MES-swollen vinyl-modified mesoporous silica yields an 

isotherm which, upon initial examination, exhibits both Type I and Type IV 

characteristics (Figure 5.16).
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Figure 5.16 Nitrogen sorption at 77 K on MES-swollen vinyl-modified mesoporous 
silica

After an initial period of large uptake at low relative pressures, the isotherm 

slopes gently before reaching a plateau at p/p® « 0.6. A very large BET surface area 

(which suggests that the isotherm is more likely to be a Type I) and Gurvitsch pore 

volume (Ssp = 1339 m  ̂g '\  Vp = 0.76 cm  ̂g'^) are obtained, consistent with M41S-type 

materials. The shape of the isotherm and the high S$p indicates that the sample contains 

a large volume of micropores; either the mesitylene did not successfully increase the 

pore diameter in this case or the vinyl function is arranged in such a manner as to reduce 

the pore diameter.
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5.4.3 AminopropyUModified Mesoporous Silica

A Type I isotherm (Figure 5.17) is given by nitrogen sorption on the 

aminopropyl-modified mesoporous silica.

_ 4 4
't»o 
1
3  34

«0
m  » o % (# o » c i* o * c # o # o » o «

a 6  
■§2 4!

1 4
O adsorption 
#  desorption

relative pressure, p/p

Figure 5.17 Nitrogen sorption at 77 K on aminopropyl-modified mesoporous silica.

The isotherm plateaus at a very low relative pressure (p/p » 0.1) and the total 

uptake is relatively low for an M41S-type material (4.23mmol g'^). The shape of the 

isotherm (e.g. the very steep initial portion) suggests that the total uptake at saturation 

pressure is likely to represent total pore filling. This translates to a Gurvitsch pore 

volume, Vp = 0.15 cm^ g '\  considerably lower than typical M41S-associated pore 

volumes. If, for reason of comparison, the BET equation is applied to this material, a 

specific surface area, Ssp = 299 m  ̂g*' is obtained. This value is, again, considerably 

lower than those commonly obtained for M41S-type materials and supports the XRD 

result which indicated that the sample’s pores collapsed following template removal.
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5.4.4 Mercaptopropyl-Modifled Mesoporous Silica

The mercaptopropyl-modified sample also yields an isotherm (Figure 5.18) upon 

nitrogen sorption that resembles Type I. In this case, the isotherm plateaus at a higher 

relative pressure (p/p® « 0.3) and a higher total uptake (7.79 cm  ̂ g'^) than the 

aminopropyl-modified sample. However, the BET surface area and Gurvitsch pore 

volume (Ssp = 522 m  ̂ g '\  Vp = 0.27 cm  ̂ g'^) are still considerably less than those 

normally observed for M41S-type materials, again suggesting that the mesitylene was 

ineffective or that the organic function restricts access to the pores.
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Figure 5.18 Nitrogen sorption at 77 K on mercaptopropyl-modified mesoporous silica.
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5.5 Sorption of Water. Benzene and Butanol

The sorption (using the gravimetric apparatus) of water vapour, benzene, n- 

butanol and r-butanol was carried out on the Burkett PhMCM-41 sample (from Bath)* 

and the MES-swollen phenyl-modified mesoporous silica (Ph-M.S.). A summary of 

results is.given in Table 5.6, below. Nitrogen sorption data are included for comparison 

purposes.
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Table 5.6 Summary of water, benzene and butanol sorption data.

PhMCM-41
(Burkett)*

MES-swollen 
Ph M S.

Hm / mmol g'̂ 1.32 -

H2 0 Ssp/m^g*^ 83 -

Vp/cm^g-' 0.33 -

am/Â^ ac/A^ 10.5 110 -

Hm / mmol g'̂ 3.00 (4.7) ^ 4.06
C6H6 Ssp / m̂  g'^ 750 ±50 (1217) 1050 ± 50

Vp / cm  ̂g'̂ 0.31 0.76

am/Â^ ac/A^ 43 ±3 49 (31) 43 ±3 39

Dm / mmol g^ 0.55 1.98
it-BuOH Ssp/m^g'^ 103 461

Vp/cm'g-' 0.23 0.62

am/A^ ac/A^ 31 284 31 79

Hm / mmol g'̂ 2.12 (3.70)^ 2.47
f-BuOH Ssp/m^g*^ 644 (742) 497

Vp / cm  ̂g^ 0.33 0.61

am/A^ SLcf 33 45 (39) 33 63

Dm / mmol g'̂ 9.04 9.66

N2 Ssp/m^ 882 942

Vp/cm^g' 0.45 0.67

am/A ' 16.2 16.2
* Figures in brackets are calculated using the Langmuir equation.
 ̂ These values are calculated from Type I isotherms and are therefore more 

likely to be the micropore volume rather than the monolayer capacity.

am - molecular area of adsorbate used to calculate surface area; 3c - molecular 
area of adsorbate calculated from isotherm ^ d  am(N2) = 16.2 Â .̂
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5.6 Water Sorption on Sample PhMCM-41 (Burkett)

Water sorption yielded a Type V isotherm (Figure 5.19) which is indicative of 

weak adsorbate-adsorbent interactions.^
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Figure 5.19 Water sorption at 303 K on PhMCM-41

The low uptake of water in the low pressure section of the isotherm is indicative 

of the hydrophobicity of this material at low relative pressures and suggests that there 

are few surface hydroxyl groups present. A region of slight curvature is observed at 

relative pressures of less than 0.1 and, if this is assumed to represent the point at which 

each surface hydroxyl group is occupied by a single water molecule, it is possible to 

obtain a value for the number of hydroxyl groups present per miî  of Surface. If the 

amount of water adsorbed at this point is taken from the water isotherm, to be 1.32 

mmol g'̂  and the specific surface area of the sample is known, from N2 sorption, to be
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882m^ g'̂  then a value of 0.9 OH groups per nm  ̂ is obtained (using am(H20) = 10.5 

A^). This value is lower than that calculated from the water isotherm obtained by 

Llewellyn et on an unmodified MCM-41 (1.3 nm’̂ ), and can be attributed to the fact 

that phenyl groups occupy surface positions in this sample that would ordinarily be 

occupied by hydroxyl groups. The second region of the isotherm commences at p/p® » 

0.7 and represents condensation. At the top of this condensation step an uptake volume 

of 0.33 cm^ g'* is observed. This value is lower than that obtained from the nitrogen 

isotherm (0.45 cm  ̂ g'^), but is very close to that obtained from the benzene isotherm 

(0.31 cm^ g '\  see section 5.5). This may be a result of either water condensation 

occurring within the pores without complete pore filling or it may be due to the 

structure of the adsorbed water. Failure of water to obey the Gurvitsch rule is not 

uncommon, and Gregg and Sing suggest that adsorbed water may exist within pores in a 

form substantially less dense than ordinary water as a result of differences in hydrogen- 

bonding arrangements."

Hysteresis extending to the low pressure region was observed in the water 

isotherm. This is caused by rehydroxylation of the silica surface during the course of 

isotherm determination. Prolonged exposure to pressures of <1x10*  ̂Pa at experimental 

temperature did not result in loop closure. As mentioned in Section 5.2 this is probably 

due to incomplete condensation of siloxane groups during the short, room-temperature 

synthesis resulting in a sample prone to rehydroxylation upon contact with water 

vapour.
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5.7 Benzene Sorption

5.7.7 PhMCM-41 (Burkett Sample)

Benzene sorption on the Burkett sample yielded an isotherm displaying Type I 

characteristics (Figure 5.20) exhibiting a very small degree of hysteresis.
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Figure 5.20 Benzene sorption.at 293 K on PhMCM-41

A BET specific surface area Ssp = 750 m  ̂ g  ̂ ± 50 m" g * was obtained. 

Problems arise in the calculation of surface areas when using benzene (as described in 

Section 4.5) because of the difficulty involved in assigning an accurate value to the 

cross-sectional area, am, of the benzene molecule.^^ In this study, the McClellan and 

Hamsberger^* “recommended value” of auXCcHc) = 43 Â has been employed (this

* Uncertainty arises from the error margin of ± 3 assigned to the molecular area of benzene by 
McClellan and Hamsberger."
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average value was obtained by McClellan and Hamsberger following the examination of 

fifteen papers covering the adsorption of benzene on eleven adsorbents).

It is possible to calculate the cross-sectional area, am, of an adsorbate molecule 

by using the nitrogen specific surface area obtained for the sample and applying 

equation 4.2 (Ssp = nm L am). In this case, if the surface area is taken to be 882 m  ̂g'* 

(from N] sorption) and the monolayer capacity to be 2.8 mmol g'  ̂ (from the benzene 

isotherm), then an estimated benzene molecular area of 52 is obtained. This, is 

consistent with the benzene molecule lying flat on the surface of the solid.

Application of the Gurvitsch rule to the benzene isotherm gave a total pore 

volume, Vp = 0.31 cm  ̂g '\  less than the Vp = 0.45 cm  ̂g*̂  obtained from the nitrogen 

isotherm. The difference between the observed values of the total pore volume obtained 

from the nitrogen and benzene isotherms is thus not insignificant; this discrepancy may 

be due to the size difference of the two types of adsorbate molecule and the structure of 

the adsorbed layer. If the surface phenyl groups are assumed to be arranged 

perpendicular to the surface, then it is possible that the adsorption of the large benzene 

molecules could be sterically hindered. Also, because of the presence of 7C-electrons in 

the benzene molecule, induced interactions with polar surface hydroxyl groups may 

affect the structure of the benzene monolayer.
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5.7.2 Mesitylene-SwoUen PhenyUModified Mesoporous Silica 

Benzene sorption carried out on the mesitylene-swollen sample yielded a Type 

IV isotherm (Figure 5.21) exhibiting hysteresis, confirming the sample’s mesoporosity.
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Figure 5.21 Benzene sorption at 293 K on MES-swollen phenyl-modified silica.

A BET specific surface area of 1051 m  ̂g'̂  ± 50 m  ̂g'̂  was obtained using the 

“recommended” value of 43 for the cross-sectional area of benzene. If, as in Section 

(f), we use the nitrogen specific surface area to calculate the actual value of am(CgH6) we 

obtain a value of 38 which also suggests that the molecule is oriented flat on the 

surface.

Application of the Gurvitsch rule to the benzene isotherm gave a total pore 

volume of 0.76 cm  ̂g '\  significantly larger than that obtained from benzene sorption on 

the original (microporous) Burkett material (0.31 cm  ̂g ' \  reconfirming that MES is a 

suitable pore-swelling agent. The discrepancy in the values of the total pore volumes
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obtained from the nitrogen (Vp = 0.67 cm  ̂ g"‘) and benzene (Vp = 0.76 cm^ g'^) 

isotherms is, again, probably due to the structure of the adsorbed benzene.

If the Kelvin equation is applied to the benzene isotherm at the inception of 

hysteresis (p/p® = 0.2), a Kelvin pore diameter, 2rK, of 26 A is obtained. It should be 

noted that this is not a true pore diameter, d, as a value for the thickness of the adsorbed 

benzene monolayer, t, is not available [ d = 2(rK + t) ] (see Figure 5.22). In reality, the 

pore diameter of this material is likely to fall in the range of 30-40 A, well, within the 

mesoporous regime.

Condensed Adsorbed
Adsorbate Monolayer, t

Figure 5.22 Diagram showing the Kelvin pore diameter, 2 rK, and the adsorbed 
monolayer thickness, t, in a cylindrical pore.

5.8 Butanol Sorption

Sorption of «-butanol and r-butanol was carried out on the Burkett PhMCM-41 

sample (from Bath)* and the MES-swollen phenyl-modified mesoporous silica. The 

sorption runs were carried out using the gravimetric apparatus at 303 K. Sorption data 

are given in Table 5.4.
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5.8.1 PhMCM-41 (Burkett)

(i) n-Butanol

«-Butanol adsorption on the Burkett PhMCM-41 sample (from Bath) yielded an 

isotherm which appears, upon preliminary examination, to display Type IV 

characteristics (Figure 5.23). (The desorption run could not be completed due to 

problems with the apparatus.)

0.0 o
0.0 . 0.1 0.2 0.3 0.4

relative pressure, p/p"

0.8 0.9

Figure 5.23 «-BuOH Sorption at 303 K on PhMCM-41 (Burkett).

A sharp knee is evident at p/p® = 0.05 which corresponds to a BET monolayer 

capacity, nm = 0.55 mmol g '\  much lower than those given by any other adsorbate for 

this sample (see Table 5.4). Using this nm value, a specific surface area, Ssp = 103 m  ̂g*̂  

is obtained, again much lower than the specific surface areas obtained for this material 

using other adsorbates (Ssp(N2) = 882 m  ̂g'*). It is important to note in this instance that 

calculation of the specific surface area was performed using a value for the molecular
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area, am = 31 Â ,̂ obtained via equation 4.3 (am = 1.091 (M / p This equation

assumes spherical molecules and hexagonal-packing which is inaccurate in the case of 

«-butanol (a straight-chain alcohol). For this reason, it is the monolayer capacity which 

is of real interest here.

If it assumed that «-butanol adsorbs on the surface of this material via polar 

interactions with surface hydroxyls, and if it is also assumed that one «-butanol 

molecule will adsorb on one surface hydroxyl, then it is possible to calculate the number 

of surface hydroxyl groups per unit area. Using the monolayer capacity, nm = 0.55 

mmol g'̂  and the nitrogen specific surface area, Ssp(N2) = 882 m  ̂ g '\  a value of 0.38 

OH groups per nm^ is obtained. This is considerably lower than that calculated from the 

water isotherm (0.9 nm'^) which suggests that widespread localized bonding is occurring 

during «-butanol sorption (i.e. a monolayer is not being formed). If the sample is 

assumed (from water sorption) to have 0.9 OH groups per nm ,̂ then it appears that «- 

butanol is occupying just over a third of the available bonding sites. This could occur if 

adsorbed «-butanol molecules blocked the entrance to a pore channel or blocked access 

to adsorption sites by lying across them thus preventing further adsorption.

If the monolayer capacity and nitrogen specific surface area are used to calculate 

a value for the cross-sectional area of the «-butanol molecule, a highly unlikely value of 

ac = 284 is obtained. This is also evidence that a monolayer is not being formed 

during «-butanol sorption and suggests that polar interaction is the mechanism of 

adsorption in this case.

The total pore volume, Vp = 0.23 cm  ̂ g '\  calculated for this isotherm is also 

considerably lower than those given by other adsorbates for this material (see Table 5.6) 

in c lu d in g  /-b u tan o l (Vp(/-BuOH) = 0.33 cm  ̂ g'% see next section). This also  suggests
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that complete surface coverage has not occurred during «-butanol adsorption and also 

that steric effects have influenced the structure of the adsorbed layer.

(ii) t-Butanol

/-Butanol sorption at 303 K on the Burkett PhMCM-41 sample yielded an 

isotherm displaying mainly Type I characteristics (Figure 5.24).
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Figure 5.24 /-Butanol sorption at 303 K on PhMCM-41 (Burkett).

At low relative pressures there is a large uptake of adsorbate before the isotherm 

levels off at p/p® % 0.2. BET analysis yields a monolayer capacity of 2.12 mmol g '\  

considerably larger than that obtained by «-butanol sorption (n^ = 0.55 mmol g'*). 

Figure 5.25 highlights the differences between the two isotherms by presenting them on 

the same axes.
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Figure 5.25 A Comparison of n- and /-butanol adsorption at 303 K on PhMCM-41

The obtained nm value gives a specific surface area, Ssp = 664 m  ̂ g‘‘ which is 

slightly lower than would be expected for this material (Ssp (N2) = 882 m  ̂g^). As the 

isotherm resembles a Type I, Langmuir analysis was also performed and this yielded a 

monolayer layer capacity of 3.70 mmol g '\  corresponding to a specific surface area, Ssp 

= 742 m  ̂g'̂  very similar to that given by benzene sorption (750 m  ̂g'^). Values of the 

cross-sectional area, ac = 45 (obtained using the BET monolayer capacity and the N2 

Specific surface area) and ac = 38 (calculated using the Langmuir Um value) are 

considerably lower than that obtained for «-BuOH on this material (ac = 284 A )̂ 

suggesting that localized adsorption is not occurring in this case.

As mentioned in Section 4.3, there is some uncertainty when interpreting Type I 

isotherms as to whether the “knee” represents the monolayer capacity or the pore 

volume. The value obtained for the total pore volume (taken from the plateau of this
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isotherm), Vp = 0.33 cm  ̂g '\  is identical to that given by the water isotherm and very 

similar to that given by the benzene isotherm (0.31 cm  ̂g*̂ ). It is, however, considerably 

larger than that obtained from «-butanol sorption (0.23 cm  ̂ g'^) which suggests that t- 

butanol (spherical) actually packs more efficiently than «-butanol (linear) in the pore 

channels. The fact that Vp(N2) = 0.45 cm  ̂ g '\  suggests that /-butanol is somehow 

packed in a less-dense state than its liquid form. This may be due to localized bonding 

on surface hydroxyls (although the bulky nature of /-butanol may preclude polar 

interactions between the alcohol function and surface hydroxyls) but is more likely to be 

due to steric hindrance of some kind. Low pressure hysteresis is observed in the 

desorption branch of the isotherm which does suggest that some degree of 

rehydroxylation is occurring.

Further comparison with benzene sorption on this sample yields striking results 

if the two isotherms are plotted on the same axis as shown in Figure 5.26, below.
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Figure 5.26 /-BuOH sorption at 303 K and benzene sorption at 293 K on PhMCM-41.
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The fact that these two isotherms may be completely superimposed suggests that 

the mechanism of /-BuOH sorption is similar to that observed in benzene sorption. This 

indicates that the sorption mechanism of /-BuOH on this material is more influenced by 

organic interactions with the surface phenyl groups than by polar interaction with 

surface hydroxyls. (It should be noted, however that a small amount of rehydroxylation 

is indicated by the low pressure hysteresis.)

The preclusion of hydrogen-bonding in /-BuOH sorption is supported by the 

difference in the boiling points of «-BuOH (b.p. = 118 ®C) and /-BuOH (b.p. = 83 ®C). 

The lower boiling point of /-BuOH indicates that there is less hydrogen-bonding 

occurring than in «-BuOH.

Further evidence that H-bonding to surface hydroxyls is not the sorption 

mechanism in this case is highlighted when a value for the number of surface hydroxyls 

(1.45 nm'^) is calculated from the monolayer capacity. This is much greater than that 

obtained from either the «-BuOH isotherm (0.38 nm'^) or the water isotherm (0.9 nm*̂ ). 

If the value calculated from the water isotherm is taken to be the most accurate (due to 

the small, unhindered dimensions of the water molecules) it becomes evident that the /- 

BuOH molecules are not undergoing localized adsorption.
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5,8,2 MES“Swollen PhenyUModified Mesoporous Silica

(i) n-Butanol

/i-Butanol sorption at 303 K on the MES-swollen phenyl-modified mesoporous 

silica yielded a Type IV isotherm exhibiting a large degree of hysteresis (Figure 5.27).
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Figure 5.27 w-Butanol sorption at 303 K on MES-swollen phenyl-modified mesoporous 
silica

As in the water isotherm, low pressure hysteresis is evident, again suggesting a 

degree of chemisorption (surface rehydroxylation, see Section 5.2). Following 

application of the BET equation, a specific surface area, Ssp = 461 m  ̂ g^ (nm = 1.98 

mmol g'^) was obtained. This is lower than would be expected for this type of sample 

(Ssp(N2) = 942 m  ̂ g'*) which indicates that localized adsorption (due to polar 

interactions between the alcohol and the surface hydroxyls) may have occurred. 

However, as mentioned in Section 5.7.1, the value of am = 31 used to calculate Ssp is 

not entirely accurate due to the assumptions made in equation 4.3. This is therefore a
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source of uncertainty in the calculation of Ssp and for this reason, the monolayer capacity 

is of greater interest.

Calculation of the cross-sectional area, â , from the monolayer capacity and N? 

specific surface area yields ac = 79 Â ,̂ which is larger than expected and again indicates 

localized adsorption. This value is considerably lower than that calculated for «-BuOH 

on the microporous PhMCM-41 (ac = 284 Â )̂ however, which suggests that m-BuOH 

sorption is less localized or, as is more likely, less sterically hindered in the mesoporous 

MES-swollen sample.

A Gurvitsch pore volume, Vp = 0.62 cm  ̂ g*̂, was obtained, very similar to that 

observed for the nitrogen isotherm (0.67 cm  ̂g'^) suggesting that «-butanol sorption was 

not sterically hindered in this larger pore MES-swollen sample.

Calculation of the number of surface hydroxyls present from this isotherm (nm =

1.98 mmol g'^) yields a value of 1.26 nm*^

(ii) t-butanol

The sorption of f-butanol on the MES-swollen sample also yielded a Type IV 

isotherm (Figure 5.28); hysteresis was not observed in this case. A monolayer capacity 

nm = 2.47 mmol g'̂  and a BET surface area, Ssp = 497 m  ̂ g*̂  were calculated. These 

values are lower than would be expected for this material suggesting that localized 

adsorption has occurred. A calculated value of ac = 63 was obtained for the cross- 

sectional area of the r-BuOH molecule.
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Figure 5.28 /-Butanol sorption at 303 K on MES-swollen phenyl-modified silica

It should be noted that this sorption run was performed on the same sample as 

the «-butanol sorption (following sample outgassing at 100 °C). It is possible that if 

chemisorption or rehydroxylation of the surface occurred during the first run (as 

indicated by the low pressure hysteresis) then the surface would be less reactive (i.e. 

have fewer four-membered Si-0 rings) during the second sorption run making 

chemisorption, and the resulting hysteresis, less likely in this case.

À Gurvitsch pore volume of 0.61 cm  ̂g‘* was observed, almost identical to that 

given by the «-butanol isotherm (Vp = 0.62 cm  ̂g ‘). This is highlighted by Figure 5.29 

which presents both adsorption isotherms on the same axis. The similarity of the two 

adsorption isotherms in shape and total amount adsorbed indicates that the large pores 

of this MES-swollen sample do not restrict adsorption of either of these alcohols.
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Figure 5.29 «-Butanol and /-butanol sorption at 303 K on MES-swollen Phenyl- 
modified silica.

Calculation of the number of surface hydroxyl groups present, from the /-BuOH 

isotherm, yields a value of 1.58 nm'^. This is greater than that calculated from the «- 

BuOH isotherm (1.26 nm'^), a fact which could be explained in the same maimer as the 

lack of a hysteresis loop, i.e. rehydroxylation of the surface during «-BuOH sorption has 

increased the number of surface hydroxyls. An alternative explanation is that the 

adsorption mechanism in this case is not via H-bonding with Si-OH groups, but is due 

to organic interactions with the surface phenyls as observed in the microporous Burkett 

sample.

A comparison between the benzene and /-BuOH isotherms given by this sample 

is presented below in Figure 5.30.
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Figure 5.30 A Comparison of benzene and /-butanol adsorption on MES-swollen 
Ph-M.S.

The similarity in thie shapes of these two isotherms also suggests that the 

sorption mechanism of /-BuOH is via organic rather than polar interactions.
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5.8.3 Comparison of «- and /-Butanol Sorption on PhMCM-41 and MES 

Swollen Phenyl-Modified Mesoporous Silica

A comparison of n- and /-butanol sorption on the two samples is presented in 

Table 5.7.

Table 5.7 Comparison of BuOH Sorption on a Microporous and Mesoporous Phenyl- 
Modified Silica

PhMCM-41 (Burkett) MES-Swollen Ph-M.S.

Isotherm Type IV IV

«-BuOH Hysteresis? - Yes
'

Urn / mmol g'̂ 0.55 1.98

Vp / cm  ̂g'̂ 0.23 0.62

Isotherm Type I IV

/-BuOH Hysteresis? Yes No

UmY mmol g^ .2.12(5.70) 2.47 .

Vp/cm^g*^ 0.33 0.61

(i) n-Butanol

The major differences in the results obtained for «-BuOH sorption on the two 

samples is given by the monolayer capacities and total pore volumes. Much lower 

v a lu es  are o b ta in ed  for the microporous m ateria l, as w o u ld  be  expected, indicating that 

«-BuOH sorption is hindered by the narrowness of the pores. The two isotherms are 

presented on the same axes, for comparison purposes, in Figure 5.31.
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Figure 5.31 «-BuOH sorption at 303 K on PhMCM-41 and MES-swollen Ph-M.S.

(ii) t~Butanol

In the case of /-BuOH sorption, the major difference observed between the two 

samples is the shape of the respective isotherms (see Figure 5.32). The microporous 

PhMCM-41 sample yields a Type I isotherm (which may be totally superimposed with 

the benzene isotherm of this sample) while the mesoporous MES-swollen Ph-M.S. gives 

a Type IV. Similar monolayer capacities (if the value obtained from the Type I isotherm 

is taken to be a monolayer capacity) are observed for each sample. This indicates that /- 

BuOH sorption is not hindered by the narrowness of the PhMCM-41 pore-channels. The 

difference in the observed total pore volumes is almost of the same order as that 

observed between the nitrogen total pore volumes calculated for these materials, again 

suggesting that /-BuOH is not sterically hindered in the microporous sample.
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Figure 5.32 /-BuOH sorption at 303 K on PhMCM-41 and MES-swollen Ph-M.S.

(iii) Conclusions

. In conclusion, it appears that «-BuOH sorption is more sterically-hindered than 

/-BuOH sorption. This is due to the difference in the shapes of the two molecules (see 

Figure 5.33). The “spherical” /-BuOH molecule is able to easily penetrate into the 

micropores of the Burkett PhMCM-41 sample without blocking the pore-entrance while 

the straight-chain «-BuOH molecule may block the pores upon adsorption.

In the case of /-BuOH sorption on the microporous Burkett sample, it appears 

that adsorption is via organic interactions with surface phenyls rather than hydrogen- 

bonding with surface hydroxyls. It is difficult to say whether this is the case with /- 

BuOH sorption on the MES-swollen sample as the isotherm is virtually identical to that 

given by «-BuOH. This could be due to the fact that, in the larger-pore material, the
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surface hydroxyl groups are more accessible to the sterically-crowded -OH groups of /- 

BuOH resulting in polar interactions.

(a) (b)

Figure 5.33 (a) «-Butanol, (b) /-Butanol
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C h a p t e r  6

I n c o h e r e n t  I n ela stic  N eu tr o n  S c a t t e r in g

This chapter is divided into two parts. Part I considers the elementary theory of 

incoherent inelastic neutron scattering and describes the experimental technique 

employed in this study. Part II presents the results obtained.

PARTI - T h e o r e t ic a l  and  E x pe r im e n t a l  C o n sid er a tio n s

6.1 General

Incoherent Inelastic Neutron Scattering (HNS) studies were carried out at the 

Rutherford Appleton Laboratories* ISIS spallation neutron source. TOSCA, the new 

spectrometer commissioned in 1998 to replace TFXA, was used in these studies.

Vibrational spectroscopy techniques such as infra-red (IR) and Raman 

spectroscopy are commonly used in the characterization of solid-state materials. 

Inelastic neutron scattering is a form of vibrational spectroscopy which employs 

neutrons rather than photons. Wavelengths of neutrons (K » 10*̂ ° m) are similar to 

interatomic distances, and can therefore be used to yield structural information.

The production of neutrons is costly and involves either shattering nuclei with a 

high energy proton beam (spallation - used at ISIS) or fission in a nuclear reactor (used 

at ILL, Grenoble). The advantages of neutron spectroscopy over conventional photon
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techniques must therefore outweigh the great expense of producing a neutron beam. The

major advantages afforded by employing neutrons are listed below:

1) The selection rules which govern IR (a vibration must cause an overall change in 

electrical dipole) and Raman (a vibration must cause a change in polarizability) 

spectroscopies do not apply to HNS. For this reason those peaks which are “lost” in 

spectra obtained using the two optical spectroscopies are observed in HNS spectra.

2) The absence of charge and the small absorption cross-sections for neutrons increase 

their penetrating power.^ This is also aided by the fact that the neutron mass (1.675 x 

10'̂  ̂kg) is much greater than that of an electron (9.109 x 10'̂  ̂kg).

3) Energy losses (relative to incident energy) on scattering are much greater than in 

photon techniques and are therefore easily detected.

4) The intensities of scattered neutrons are relevant and can yield valuable structural 

information.

5) The laigc incuhcrent eross-scutional uf *H (sec next Section) means tliat intensities 

due to vibrational modes involving are selectively enhanced.

6.2 Theoretical Considerations

Neutron scattering theory is an extensive field and, as only the basic theory 

required to understand the TOSCA experiment is considered here, readers requiring a 

more in-depth treatment are directed to references 3 and 4.

As mentioned in the previous section, DNS is used particularly to investigate 

vibrations of hydrogenous samples. TOSCA is a “time-of-flight” HNS spectrometer
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which is based on the same methodology as TFXA.^’*’̂  The quantities determined in a 

TOSCA experiment are the energy changes observed upon neutron scattering from the 

sample and the neutron intensities at those energies.

De Broglie’s equation (6.1) relates the velocity, v, of a neutron with mass, m, to 

its wavelength, X:

A = —  (6.1)
mv

where h is the Planck constant. The energy loss or gain upon scattering from the nucleus 

is usually expressed in terms of the angular frequency, (o\

i\(û=Vi m(vo^-vi^) (6.2)

where T|© is the energy transferred, co = 2tcv (where v is the oscillation frequency of 

neutron wave), T| = h/2n, m is the neutron mass and vq and vi are its initial and final

speed, (Vi = ly, | where Vi is the velocity).

As mentioned earlier, TOSCA is based on a time-of-flight technique, and this is 

made simple because a pulsed neutron source is employed at ISIS.

The various stages of the time-of-flight experiment are listed below:

1) Microsecond pulses of “white” neutron radiation are released from the source and 

arrive at the sample at different times.

2) Neutrons are elastically and/or inelastically scattered by the sample.

3) Pyrolytic graphite analyzers act as monochromators for the scattered neutrons 

directing only those of energy 3.0 < t| co / meV < 4.8 to the detectors.

4) Beryllium filters eliminate high order scattering (i.e. that which obeys Bragg’s law 

for n 1).
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5) Since the instrument geometry give flight times between the sample and the detector 

which are identical for each scattered neutron, energy changes observed upon 

scattering from the sample may be calculated by considering neutron arrival times at 

the detector.

Thus, TOSCA is a time-of-flight spectrometer in which monochromation occurs after 

scattering (a spectrometer configured in this way is known as an inverted geometry 

spectrometer).

The Scattering Cross-Section

Spectra are presented as plots of energy transfer against neutron intensity. The 

neutron intensity is a function of the scattering cross-section, a, of the nucleus (i.e; the 

amount of the incident beam scattered by the nucleus) and the solid-angle O into which 

the neutrons are scattered. (In a scattering experiment, a detector placed at an angle of 

29 to the incident beam measures the intensity of the scattered wave which passes 

through the solid angle O). The dependence of the cross-section, a, on the energy of the 

neutrons is represented by the double differential cross-section defined as the change in 

the scattering cross-section with respect to both O and the energy, E:

^  = ^<b^)S (e.® ) (6.3)

ko and ks are wave vectors of incident and scattered neutrons, (b^) is the mean square of 

the neutron scattering lengths and S(Q,tü) is the scattering law. This latter term is a 

property of the system in question. The double partial differential cross-section 

describes the probability per neutron that incident neutrons are scattered through an 

angle of 20 into a solid angle element 5Q with an energy in the range of E to (E+ôE).
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The intensities of the scattered neutrons are directly proportional to the mean 

square displacement of the atoms during a vibration, and inversely proportional to the 

magnitude of the scattering vector, Q (where Q = ko + ^ ). Q is large at high energy 

transfers and therefore intensities are small when high energy changes occur.

The scattering cross-sections of the nuclei in the sample under investigation are, 

therefore, of great importance. As mentioned in the previous section, has a 

particularly large incoherent scattering cross-section (79.7 bams; 1 bam = 10'̂ ® m )̂. 

This is many times greater than that observed for most other nuclei and isotopes, and 

therefore any incoherent neutron scattering observed for hydrogenous systems will be 

almost exclusively due to vibrations.

Coherent and Incoherent Scattering

The scattering of neutrons from a nucleus may be described as coherent (in 

phase with the incident wave) or incoherent. If a sample consists of one isotope having a 

nuclear spin 1 = 0, only coherent scattering is observed. However, when nuclei from 

several different elements or isotopes are present, or if the nuclei have non-zero spin, the 

scattering cross-section is given by the sum of the coherent and incoherent contributions 

(Equation 6.4). These incoherent contributions are termed “isotope incoherence” and 

“spin incoherence” respectively.

CT = (Jcoh 4" Ginc (6.4)

The incoherent scattering cross-section of hydrogen is over forty times greater 

than the coherent scattering cross-section as shown in Table 6.1, below.
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Table 6.1 Values of the Scattering Cross-Sections of Hydrogen

Scattering Cross-Section Contribution Value / barns (1 barn = 10’̂  m̂ )

Incoherent 79.8

Coherent 1.8

Total 81.6

As mentioned in the previous section, the scattering cross-section, a, is related to 

the scattering length, b. The coherent term in equation 6.4 is related to b via equation 

6.5:

acoh = 47c(b)^ (6.5)

while Ginc is related to b via equation 6.6:

Ota==4jt{<b'>-<b>^} (6.6)

The total cross-section, g, is therefore given by equation 6.7:

G = 47t(b^) (6.7)

6.3 Experimental Details

6.3.1 The Spectrometer

The HNS spectrometer, TOSCA, was commissioned in early 1998 to replace 

TFXA and installed on the N8 thermal beam line 12 m from the ISIS neutron source 

after a water moderator. It is an inverse geometry spectrometer with an energy range, 15

meV < E < 1000 meV.8
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The analÿzer/detector arrangement is similar to that used on the TFXA 

spectrometer. In TOSCA 10 modules are used instead of two (as in TFXA), resulting in 

a five-fold increase in sensitivity. Each detector module has a graphite monochromator, 

which selects neutrons of « 32 cm‘  ̂ (« 4 meV), a Be filter to suppress higher order 

reflections, and 16 ^He detector tubes. At the time of this study, eight detector modules 

were “on-line”.

6,3.2 Aims o f the TOSCA Experiments

As mentioned in Section 4.5, problems are encountered when calculating a 

specific surface area from a benzene isotherm due to the uncertainties; the problems 

include definition of the orientation of the benzene molecule on the surface of the 

sample.^ In the case of the MES-swollen phenyl-modified mesoporous silica, the 

benzene monolayer capacity and the nitrogen specific surface area suggest that the 

molecule is lying flat on the surface (ac(C6H6) = 38 Â‘). The aim of this INS study was, 

therefore, to investigate benzene sorbed on the surface of the mesoporous phenyl- 

modified silica in an attempt to determine more conclusively the orientation of the 

benzene molecule. The samples that were prepared for analysis on TOSCA are given in 

Table 6.2, below. Due to some severe problems with the newly commissioned 

apparatus, not all of these runs were completed and so the samples that were analyzed 

successfully are marked in Table 6.2.

As well as studying the structure of the adsorbed layer, the effect that the layer 

had on the surface phenyls was also investigated. This was carried out by analyzing a 

sample containing a monolayer of de-benzene. (Because the scattering cross-section of
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D is so much smaller than that of H, any results obtained would be dominated by modes 

involving the protons of the structural phenyl groups).

Table 6.2 Samples Prepared for Analysis on TOSCA

Sample Spectra Recorded?

Benzene y

Outgassed MES-swollen phenyl-modified silica (Ph-M.S.) y

Ph-M.S. + CôHô monolayer * y

Ph-M.S. saturated with benzene y

Ph-M.S. + CôDô monolayer y

Ph-M.S. saturated with CeDe X

Outgassed purely siliceous mesoporous silica X

* Due to problems with the apparatus, approximately X of this sample was in the 
neutron beam.

6.3.3 Sample Preparation

A large batch of MES-swollen phenyl-modified mesoporous silica w ^  produced 

for the TOSCA experiment by scale-up of synthesis 2.2.2(ii) (forty times the original 

quantities were used). The reaction mixture was stirred overnight at ambient 

temperature in a 2 dm  ̂conical flask with a teflon overhead stirrer. The reaction mixture 

was then heated in a 850 W domestic microwave oven for 90 min at 20 % power (teflon 

bottle synthesis was not attempted due to the large batch size). The white solid was 

filtered, washed with deionized water and dried at ambient temperature overnight. X-ray 

powder diffraction of the as-synthesized sample yielded a broad peak at 26 = 2.7°, 

corresponding to a d-spacing of 48.6 Â.
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Due to the large quantities of sample involved, acid extraction was performed in 

three stages at room temperature. The sample was divided into two portions and loaded

into two 1 dm^ round bottom flasks. 500 cm^ of HCl in ethanol (1 mol dm'^) were then 

added to each flask and the suspensions were stirred overnight at ambient temperature. 

This procedure was repeated twice, using fresh HCl/EtOH solution and stirring the 

suspensions for several hours in each case. Infra-red spectroscopy showed both batches 

to be free of template.

The Sample Environment

Pyrex Joint

Glass-Metal Joint

Aluminium 2 mm Thick 
Aluminium

5 mm (Internal 
Path Length)

Figure 6.1 Sample can tailored for use in TOSCA
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In order to analyze powder samples containing a known amount of adsorbed 

benzene, it was necessary to design and build sample cans that could be fitted to a 

vacuum line and having the dimensions and characteristics appropriate for use in 

TOSCA. A series of aluminium sample cans (aluminium is almost transparent to 

neutrons) similar to that shown in Figure 6.1, were built by the mechanical workshops at 

the University of Exeter. The cans were filled with the powder sample, which was then 

outgassed at 100 °C, under nitrogen, for several hours or overnight. The cans were 

attached to the gravimetric vacuum line (shown in Figure 4.2) via a Pyrex joint and 

evacuated to pressures of < 1 x 10'  ̂Pa.

Benzene and d^-Benzene Sorption

Benzene and dô-benzene sorption was achieved at 293 K by submerging the 

sample cans, attached to the vacuum-line, in a reservoir containing water at that 

temperature. The adsorptives were exposed to three “freeze-pump-thaw” cycles in order 

to remove dissolved gases.

When adsorbing a monolayer onto the sample, the adsorptive pressure was 

maintained at a value corresponding to the Point B observed in the benzene isotherm of 

this sample, p/p° = 0.5 (see Figure 5.19). The sample was exposed to the adsorptive for 

several hours to ensure that equilibrium had been reached. Following adsorption, the 

sample was frozen in liquid nitrogen and the glass tube connecting the can to the 

vacuum-line was sealed in situ. The sample was then allowed to return to room 

temperature and a hollow aluminium tube, having an M8 thread at one end, was 

attached to the can by fixing it into place over the glass-metal joint (Figure 6.2). This
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connecting tube was the means of attaching the can to the cryostat centre-stick for 

TOSCA via the M8 screw thread.

2 Screws

M8 Thread to 
Attach to TOSCA 
Sample Holder

Figure 6.2 Detail of TOSCA Sample Can Showing Connecting Rod

The saturated sample was prepared on site at RAL by exposing a prefilled 

sample can to an atmosphere saturated with benzene (in a previously evacuated 

desiccator). The glass tube was then sealed with a rubber bung and a connector tube 

attached, as described above.

The “blank” sample (i.e. outgassed phenyl-modified mesoporous silica) was 

loaded into a sample can which was evacuated on the gravimetric vacuum line and 

sealed as previously described.

Benzene was analyzed in the same type of sample can as the solid samples, 

sealed with a rubber bung and PTFE tape.
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Obtaining a Spectrum

Following attachment of the sample can to the TOSCA cryostat centre-stick via 

the connecting rod, a sheath of cadmium metal was wrapped around the can, leaving a 

window exposed on one side for the neutron beam. Cadmium has a very large neutron 

absorption cross-section and is therefore used to absorb “stray” neutrons.

The sample can on the centre-stick was lowered into the cryostat, which was 

evacuated and cooled with liquid helium to a temperature of approximately 10 K. Data 

were collected from 0 - 4000 cm '\ Typical data acquisition times were in the order of 

six hours.
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P a r t  I I  - T O SC A  R esu lts

As mentioned in Section 6.3.2, the aim of this experiment was to investigate the 

structure of benzene adsorbed on a phenyl-modified mesoporous silica. The effect that 

the adsorbed species had on the structural phenyls was also under investigation.

Due to the fact that TOSCA was newly commissioned when this study was 

undertaken, some problems were encountered with the sample housing and the detector 

modules (see below).

Each sample was analyzed in the range 0 - 4000 cm'^ and the entire spectrum of 

each sample, along with certain expanded regions, are given below. The principal band 

assignments are presented in Tables 6.3 and 6.4 and a discussion of the results is given, 

sample-by-sample, in Section 6.10.

6.4 The Background Spectrum

A spectrum was taken of a blank aluminium sample can in order to provide a 

“background” spectrum upon which to base the analysis of the other spectra. This is 

shown in Figure 6.3, below.
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5 -

4 -
C3

X 5 3 -

c
wG
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Figure 6.3 TOSCA spectrum of empty sample can (used as background and 
subtracted from all following TOSCA spectra).

All of the following spectra have had this background spectrum subtracted from

them.

6.5 Outgassed MES-Swollen Phenyl-Modified Mesoporous Silica

A spectrum of the MES-swollen phenyl-modified sample was taken following 

sample outgassing at 100 °C. It is presented in the range 0 - 4000 cm'^ in Figure 6.4, 

below, in the range 0 - 2000 cm‘* in Figure 6.5 and in the range 2000 - 4000 cm'^ in 

Figure 6.6.
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c3

2
X)
3

^ 0.5 -  c(U

0 500 1000 1500
energy transfer / cm'

2000 2500 3000 3500 4000

Figure 6.4 Entire TOSCA spectrum of outgassed MES-swollen phenyl-modified 
mesoporous silica.

744 922 1066
467 694

855 11660.8

1655 1933m 0.6

2000
energy transfer / cm'

Figure 6.5 TOSCA spectrum of outgassed MES-swollen phenyl-modified
mesoporous silica in the range 0 - 2000 cm '\
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30502389 32670.7 - 3572
2028

2272
2205

0.3 -

0.2  -

400035003000
energy transfer / cm'

25002000

Figure 6.6 TOSCA spectrum of outgassed MES-swollen phenyl-modified 
mesoporous silica in the range 2000 - 4000 cm .

A discussion of the results is given in Section 6.10.

6.6 Benzene

A sample of benzene was analyzed using the same type of sample can as used m 

the analysis of the powder samples, A volume of 6 cm of benzene was therefore 

analyzed. The entire benzene spectrum is presented in Figure 6.7, the range 0 - 2000 

cm-' is presented in Figure 6.8 and the range 2000 - 4000 cm'' is presented in Figure

6.9.
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Figure 6.7 The entire TOSCA spectrum of Benzene.
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c3
1083689
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Figure 6.8 TOSCA spectrum of Benzene in the range 0 - 2000 cm '\ 

Discussion of the results is given below in Section 6.10.
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4000
energy transfer / cm 

Figure 6.9 TOSCA spectrum of Benzene in the range 2000 - 4000 cm .

6.7 Phenvl-Motiified Mesoporons Silica with AHsorhed Benzene Monolayer

Due to the fact that TOSCA had only recently been commissioned when this 

study was undertaken, problems with the sample housing resulted in only approximately 

one third of this sample lying directly in the neutron beam. This accounts for the low 

intensity observed in the spectrum presented in Figure 6.10 below.
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c
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■e

c
0.2  -

G 500 1000 1500 2000 2500
energy transfer / cm’

35003000 4000

Figure 6.10 TOSCA spectrum of MES-swollen phenyl-modified mesoporous 
silica containing a CôHô monolayer.
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Figure 6.11 TOSCA spectrum of MES-swollen phenyl-modified mesoporous
silica containing a CôHô monolayer in the range 0 - 2000 cm '\

1 9 0



C .M .B am brough 6 .Inelastic N eutron S ca tte ring

0.7 T

352831002556c3
3

C 0.2 -

c

40002000 35003000
energy transfer / cm’

2500

Figure 6.12 TOSCA spectrum of MES-swollen phenyl-modified mesoporous 
silica containing a CôHô monolayer in the range 2000 - 4000 cm’\

The very low intensities of these peaks suggests that they may not be “real” 

features.

6.8 Phenyl-modified Mesoporous Silica with Adsorbed Monolayer

An analysis was made of the phenyl-modified sample containing a 

monolayer. The entire spectrum is presented in Figure 6.13 and expanded spectra are 

presented in Figures 6.14 and 6.15 respectively.
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Figure 6.13 TOSCA spectrum of MES-swollen phenyl-modified mesoporous silica 
containing a CôDô monolayer.
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Figure 6.14 TOSCA spectrum of MES-swollen phenyl-modified mesoporous silica
containing a CôDô monolayer in the range 0 - 2000 cm '.
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Figure 6.15 TOSCA spectrum of MES-swollen phenyl-modified mesoporous silica 
containing a CôDô monolayer in the range 2000 - 4000 cm'L
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6.9 Benzene Saturated Phenyl-modified Mesoporous Silica

The entire spectrum given by the benzene saturated material is presented in 

Figure 6.16, below. Expanded spectra are given in Figures 6.17 and 6.18.

c3

2
I

1.5

1

0.5

0
0 500 1000 1500 2000 2500 3000 3500 4000

energy transfer / cm*

Figure 6.16 TOSCA spectrum of MES-swollen phenyl-modified mesoporous silica 
saturated with benzene.
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1333694266 1072855544 16720.5 -

622 1817■£ 0 . 4 -
19441583^  0 . 3 -

Er :

200015001000
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0 500

Figure 6.17 TOSCA spectrum, in the range 0 - 2000 cm'', of MES-swollen phenyl- 
modified mesoporous silica saturated with benzene.
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2000 - 4000 cm'\ of MES-swollen phenyl-
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6.10 Discussion of TOSCA Results

6,10.1 Vibrational Spectroscopy o f Benzene and PhenyUcontaining

Compounds

The benzene ring displays significant absorptions in five areas of a vibrational 

.spectrum:

1) ring substitution bands occur up to approximately 1000 cm'^

2) C-H deformation vibrations occur between 1000 - 1250 cm'V

3) C=C stretch vibrations are observed in the region of 1300 - 1665 cm'^

4) Overtones and combination bands are observed between 1665 - 2000 cm'^

5) C-H stretching vibrations are observed in the region of 3000 cm'*

A well-known notation for the classification of compounds containing 

monosubstituted-phenyl groups is the Whiffen Classification.^® This classification has 

been used in this study to assign the spectral bands given by the phenyl-modified silica. 

It is illustrated in Figure 6.19 below.

The fundamental modes of benzene were assigned by Jobic et in an DNS 

study of benzene and benzene adsorbed in Na-Y zeolite, carried out using the IN IB 

spectrometer at the 1.L.L in Grenoble. These band assignments for benzene are used in 

this study and are given in Table 6.3.

The principal band assignments of benzene and of the powder samples, in the 

range 0 - 2000 cm'*, are given in Table 6.3, below. A sample-by-sample discussion of 

the results is then given.
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Figure 6.19 The Whiffen Classification of Fundamental Modes of Monosubstituted
Phenyls10
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Table 6.3 TOSCA Principal Band Assignment for Benzene and Ph-M.S.

Energy Transfer / cm*̂

C5H, Ph-
M.S.

C(H6
Mono.

CeDe
Mono. Satd.

Assign­
ment

Whiffen
Notation

Benzene
Mode^^

266 266 266 266 Si-C rot.

389 389 389 389 Y-ring w

401 Y-ring V16
467 472 467 467 Y-ring y
544 544 544 544 split peak representing 

shifted V6?583 583 583 583

600 C-C str V6
628 628 628 622 6-ring s

689 694 shoulder 694 694 spht Y-ring V V i i

744* 744 split 744 744 Y-(C-H) f

856 855 855 850 844 split Y-(C-H) g V i o

922 922 927 Y-(C-H) i

977 972 966 972 . 972 Y-(C-H) h V12
1027 -6-(C-H) V 5

1083 1066 1066 1066 1072 6-(C-H) d V i 5

1161 1166 1161 1161 1166 6-(C-H) c V 9

1289 1294 6-(C-H) e

1344 1344 1350 1372 1333 6-(C-C) 0 V 3

1433* 1433 6-(C-C) n

1461 1478* 1489 1483 Ô-(C-C) m V i 9

1550 1533 1500 Ô-(C-C) 1 . Vg

1583 Ô-(C-C) k

1655 1666 1672

This region represents overtones 

and combination bands.

1711

1827 1822 1817

1933 1938 1944

* observed in IR; y - out-of-plane, Ô - in-plane; split - peak splitting observed.
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Table 6.4 Principal TOSCA Vibrations in the range 2000 - 4000 cm '\

Energy Transfer /  cm'^

Benzene Ph-M.S. ... C A
Monolayer

CgDg
Monolayer

CeHg
Saturated

2027 2028 - 2044 2050

....  2150

2205 2211

2283 2272 2289 2289

2400 2389 2405

2500 2445 2422

2556 2556 2550 2556

2700

2805

2944* 2944 (sh)

3038 3050 3100 3038 3072

3144

3216 3267 3227 3272

3600 3572 3572 3572 3572

* observed in :[R; sh - shoulder.

6,10,2 Benzene

When considering the TOSCA spectrum of benzene, the most well-defined 

region is in the range 300 - 1500 cm’*. This region represents in-plane and out-of-plane 

C-H deformation vibrations as well as C=C stretching vibrations. The spectrum 

obtained is very similar to that obtained for benzene by Jobic et al^^, and the principal 

band assignments, as classified in that work, arc given in Table 6.3. The positions of the
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principal C-H stretching vibrations are given in Table 6.4. For a description of the 

individual vibrational modes of benzene the reader is directed to references 10, 11 and 

12.

6.10.3 Phenyl-modified Mesoporous Silica

The principal band assignments for the phenyl-modified samples in the range 0 - 

2000 cm * are given in Table 6.3. The positions of vibrations observed in the region 

2000 - 4000 cm * are shown in Table 6.4 (these vibrations are unassigned and may be 

due to C-H stretching vibrations they could, however, represent combination bands and 

overtones). Due to problems with TOSCA’s sample-housing and the accompanying 

uncertainty as to how much of the sample was actually in the beam, the spectra have not 

been normalized for the mass of the sample.

The peak obtained for the outgassed phenyl-modified silica at 266 cm'* is 

attributable to the rotation of the phenyl group about its axis through the Si-C bond.® 

The main peak of interest here and in all of the powder samples, however, occurs at an 

energy transfer of 389 cm *. According to the Whiffen Classification,^® this is assigned 

to the benzene fundamental mode, w, which may be envisaged as a “butterfly mode’’ 

(Figure 6.19). This mode is usually observed for benzene at 401 cm * ® and it appears 

that this is shifted to a lower energy transfer when the phenyl group is attached directly 

to a silica surface.

Another interesting feature Of all the powder samples is the occurrence of peaks 

at 544 cm * and 583 cm * in each case, as a peak in this position does not occur in the 

Whiffen classification. It is possible that these peaks are actually a split peak and as the 

band assigned as Vô in the benzene spectrum (600 cm'*) is absent from all of the Ph-
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M.S. spectra, it is possible that the corresponding phenyl vibration is shifted to a lower 

energy transfer for a phenyl group attached directly to a silicon atom. If this vibration 

corresponds to a surface phenyl (as is suggested by its occurrence in the spectrum of the 

CôDô monolayer sample), the peak splitting suggests that the surface phenyls are 

oriented in two different positions.

The peak observed at 694 cm'  ̂ could be attributed to a Si-C symmetrical 

stretch,® but Jobic et however, attribute this peak to the phenyl internal mode Vn, 

denoted v in the Whiffen Classification (Figure 6.19). The peak at 744 cm * is due to the 

phenyl out-of-plane deformation, f, and is also observed in the IR spectrum (see Section 

3.7.1). Peaks were also observed in the IR spectrum in the region of 1450 cm * 

(corresponding to phenyl C=C stretching vibrations) and a peak, corresponding to 

vibration n can be identified in the TOSCA spectrum at 1443 cm *. The peak at 2944 

cm'*, corresponding to C-H stretching vibrations, is obsen^ed in the IR spectrum at 2930 

cm'*. The remaining identifiable peaks in the TOSCA spectrum at up to 1600 cm'* can 

be attributed to the internal modes of phenyl as illustrated in Figure 6.19 and presented 

in Table 6.3.

6.10.4 Phenyl-modified Mesoporous Silica Containing Adsorbed Benzene

Table 6.3 shows the band assignments of the phenyl-groups in the range 0 - 2000 

cm * for each sample analyzed and the positions of the C-H stretching vibrations are 

given in Table 6.4.

The “butterfly mode”, assigned w in the Whiffen classification, is observed at 

389 cm * for each of the samples containing adsorbed benzene. It is a sharp, intense peak 

in each case apart from in the spectrum given by the sample containing the benzene
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monolayer. The spectrum from the latter sample displays a broad, moderately intense 

peak at 389 cm *. It is difficult to derive significance from this however, due to the fact 

that only approximately one-third of this sample was directly in the neutron beam.

There is very little difference between the positions of the peaks in the benzene 

spectrum and in the outgassed Ph-M.S. spectrum. The similarity in the positions of the 

peaks in these two spectra make it impossible to determine which peaks are due to 

benzene and which are due to structural phenyl groups when considering the adsorbed 

samples. The high loading of phenyl groups means that the peaks observed in the 

spectra of the adsorbed samples are probably exclusively due to the phenyl groups rather 

than the adsorbed benzene (the peaks due to benzene are probably present but are 

overlayed by the peaks due to the phenyl groups). This is highlighted particularly well 

by comparing the sample containing the CeDe monolayer with the sample saturated with 

benzene. The peaks are in almost identical positions and as the “CeDe spectrum” is 

dominated by peaks due to the surface phenyls only (due to the small scattering cross- 

section of D compared to H) it is evident that most of the peaks in the “saturated” 

spectrum must also be due to surface phenyls.

There is a notable difference, however, in the presence of a splitting of 23 cm * 

of the peak at 694 cm’* for the benzene-saturated sample. This peak is assigned to the 

out-of-plane deformation vibration v in the Whiffen Classification. As the resolution of 

the spectrometer is 2 these peaks may be regarded as two separate entities. Jobic et 

aÛ'̂  identified this splitting in their investigation of benzene adsorbed on Na-Y zeolite. 

It has also been observed in IR studies^^ of the same system and has, been attributed to 

benzene occupying two different environments on the zeolite surface.
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It is possible that in this case the splitting is caused by benzene being oriented 

both parallel and perpendicular to the surface but, as the sainple is saturated with 

benzene, it is more likely that it corresponds to the different vibrations of structural 

phenyls and adsorbed benzene. A splitting is also observed, in the saturated sample, of 

the peak at 844 cm *. As that splitting is only 17 cm * in magnitude, it is at the limit of 

the spectrometer’s resolution and it is therefore difficult to resolve these peaks.

A definite splitting is observed in the spectrum given by the sample containing a 

monolayer of benzene. The peak at 744 cm * is split by a magnitude of 33 cm'*, well 

within the spectrometer’s resolution, and corresponds to the out-of-plane C-H 

deformation f, in the Whiffen Classification; the splitting is evidence that benzene is 

adsorbed on the surface. The large difference in the values of these two peaks may 

reflect the structural phenyl groups and adsorbed benzene being present in two different 

orientations. If the structural phenyls are assumed to be oriented perpendicular to the 

surface, then it seems that the adsorbed benzene is lying flat on the surface, as suggested 

by benzene sorption studies.

Further evidence that adsorbed benzene is present in both of the monolayer 

samples (CgHg and CgD )̂ is the presence of a peak at approximately 1290 cm' in each 

case. Peaks are also observed at 2150 cm * in the CgHg monolayer sample and at ca. 

2550 cm * in all of the adsorbed samples. As previously mentioned, vibrations in the 

CôDô monolayer spectrum are due exclusively to the structural phenyls and not the 

adsorbed benzene. The fact that peaks are observed for the CgDg monolayer sample and 

not for the outgassed “blank” sample, suggests that it is interaction between the 

structural phenyls and the adsorbed molecules that is permitting the resolution of these 

vibrations.
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6.10.4 Conclusions

Due to the large loading of phenyl groups in the sample under investigation, it 

was very difficult to differentiate between structural phenyl groups and adsorbed 

benzene. The DNS analysis of a purely siliceous control sample, which would have 

alleviated this problem, was not possible due to problems with the newly commissioned 

apparatus.

Peak-splitting in the sample containing a CeHe monolayer, and in the CgHg- 

saturated sample, identified the presence of adsorbed benzene and possibly indicated 

molecular orientation parallel to the surface. Vibrations at ca. 1290 cm * in the CgHg- 

and CôDô- monolayer-containing samples, and also at 2150 cm * and ca. 2550 cm'*, 

which are absent in the spectrum given by the outgassed sample, indicated interaction 

between the structural phenyl and adsorbed benzene. .
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C h a p t e r ?  

O v e r v ie w  and  C o n c lu sio n s

7.1 M41S Solids

A series of MCM-41-type samples (Ssp = 500 m  ̂ g'* - 950 m  ̂ g’*) has been 

synthesized via a liquid crystal templating mechanism. Nitrogen sorption was carried 

out at 77 K on each sample and gave Type IV isotherms in each case, indicating that the 

materials were mesoporous. The nitrogen isotherms and XRD studies demonstrated that 

heating the reaction mixture in a sealed teflon bottle yielded a material with a uniform
i

hexagonally-ordered pore structure and narrow pore size distribution. Conversely, 

samples synthesized in a microwave oven, or by stirring at ambient temperature and 

pressure, gave poor XRD profiles and ill-defined nitrogen-sorption isotherms.

Water sorption at 303 K on sample MCM-41(c) gave a Type V isotherm, 

indicating that the sample was hydrophobic. A large degree of hysteresis was observed, 

continuing to the low-pressure region, suggesting that rehydroxylation of the surface had 

occurred. This was confirmed by ^̂ Si MAS-NMR performed on the sample before and 

after water sorption. This result demonstrates that, although the sample is hydrophobic 

at low p/p® values, once it is exposed to a high vapour pressure of water it undergoes 

surface modification / chemisorption. This is in contrast to the MCM-41 samples 

analyzed by Branton et al  ̂ which were stable to water vapour. The difference may be 

due to the Branton samples being synthesized at high pressure and temperature, and
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therefore undergoing more complete condensation in synthesis than the samples 

described here.

^^Al MAS-NMR, performed on sample MCM-41 (a) and MCM-41(c), revealed 

that A1 was present in a tetrahedral environment in both samples before calcination but 

was only present, in significant amounts, in sample MCM-41(c) following calcination. 

As tetrahedral aluminium is required for acid catalysis purposes, this result suggests that 

samples of the MCM-41 (c)-type (synthesized using aluminium sulphate as the 

aluminium source) will be of greater interest.

7.2 Organically-modified Mesoporous Silica.

A range of organically-modified mesoporous silicas (Ssp « 300 m^g'*- 1350 

m  ̂g'*) has been synthesized. Nitrogen sorption isotherms, measured on these materials 

at 77 K, demonstrated that the incorporation of organic functions reduced the pore 

diameter and yielded microporous materials. The use of auxiliary organics as pore- 

swelling agents was investigated and mesitylene was proved to be successful in the 

formation of mesoporous phenyl-modified material. In contrast, tetradecane did not 

successfully swell the pores of a phenyl-modified sample and led to a microporous 

product.

^̂ Si MAS-NMR studies, carried out on the phenyl-, aminopropyl- and 

mercaptopropyl-modified materials confirmed the presence of organosilicon groups and 

*̂ C MAS-NMR studies confirmed the presence of the phenyl and aminopropyl function. 

The *̂ C MAS-NMR spectrum of the mercaptopropyl-modified material indicated the
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presence of more than one sulphur-containing function (possibly propanthiol and 

propansulphonic acid).

The adsorption isotherms of water, benzene, /%-butanol and f-butanol were 

measured for the phenyl-modified materials. N2, benzene and f-butanol sorption on the 

unswollen sample yielded Type I isotherms, confirming the sample’s microporosity. 

Type IV isotherms were given by these adsorptives on the mesitylene-swollen sample, 

demonstrating the presence of mesopores.

Comparison of /i-butanol and f-butanol sorption on the unswollen and MES- 

swollen phenyl-modified samples demonstrated differences in the sorption mechanism 

of these adsorbates on these solids. n-BuOH sorption was sterically hindered in the 

microporous sample and a large degree of localized adsorption was demonstrated from 

the calculated number of surface hydroxyl groups. f-BuOH sorption on the unswoUen 

sample gave an isotherm which could be completely superimposed on the benzene 

isotherm of tliis sample demonstrating that the mechanism of f-BuOH sorption is likely 

to involve organic interactions with the surface phenyls. Neither n- nor f-BuOH sorption 

was Sterically hindered on the MES-swollen sample. Virtually identical isotherms were 

obtained making it impossible to determine the mechanisms of adsorption.

Water sorption (performed on the unswollen sample only) gave a Type V 

isotherm demonstrating the sample’s hydrophobicity.

DNS studies of the phenyl-modified silica containing adsorbed benzene, detected 

the presence of the adsorbed species and differentiated between structural phenyls and 

adsorbed benzene.
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7.3 Suggestions for Future Work

Future investigations of this work could include:

1. Môssbauer studies of the iron-containing MCM-41, in order to determine how the 

iron is incorporated into the framework.

2. A study of the acid sites in the aluminosilicate materials, via IR studies of adsorbed 

probe molecules such as pyridine

3. Development of the organically-modified materials for use as catalysts

4. Catalytic testing of the materials

5. Characterization of the silica spheres (Section 3.12)
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A 1.2 Organically-Modified Mesoporous Silica
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Figure A.19 MAS-NMR Spectrum of As-Synthesized MCM-41(a)
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Figure A.20 "®Si MAS-NMR Spectrum of Calcined MCM-41(a)
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Figure A.21 MAS-NMR Spectrum of Calcined MCM-41(c).
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Figure A.22 "̂ Si MAS-NMR Spectrum of MCM-4I(c) Following Water Sorption
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Figure A.23 MAS-NMR Spectrum of As-Synthesized MCM-41(a).
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Figure A.24 MAS-NMR Spectrum of Calcined MCM-41(a).
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A.25 ^A1 MAS-NMR Spectrum of As-Synthesized MCM-41(c).
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A.26 "̂ Al MAS-NMR Spectrum of Calcined MCM-41(c),
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A.27 MAS-NMR Spectrum of As-Synthesized MCM-41(a).
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A.28 MAS-NMR Spectrum of As-Synthesized MCM-41(b).
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A3.2 Organically-Modified Mesoporous Silica
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A.29 MAS-NMR Spectrum of As-Synthesized Aminopropyl-Modified Silica.
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A.30 ^^Si MAS-NMR Spectrum of Aminopropyl-Modified Silica Following Template 
Removal.
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A ’̂Si MAS-NMR Spectrum of As-Synthesized Mercaptopropyi-Modified Silica.
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A.32 MAS-NMR Spectrum of Mercaptopropyi-Modified Silica Following 
Template Removal.
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A.34 MAS-NMR Spectrum of Phenyl-Modified Silica Following Template 
Removal.
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A.35 MAS-NMR Spectrum of As-Synthesized Mercaptopropyi-Modified Silica.
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A.36 MAS-NMR Spectrum of Mercaptopropyi-Modified Silica Following Template 
Removal.

229



/C.M.Bambrough Appendices

140 120 100 ao 6 0 40 40 - 6 0 - 6 0

5

A 37  MAS-NMR Spectrum of Aminopropyl-Modified Silica Following Template
Removal.
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Appendix A4 - Surface Area Studies

A 4.1 G r a v im e t r ic  Spr in g  Ca libr a tio n  C u r v e

18 -

16 -

14 -
n.

10 -

&0
o.

1.21.11.00.90.80.70.60.5
m ass /g

Figure A .38 Gravimetric Spring Calibration at 303 K.

Spring Sensitivity = 32.68 microscope units g-1
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A 4.2 Ni and O? BET Plots for M41S-Materials

•s- »
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Figure A.40 BET Plot of N2 sorption 
at77KonMCM-41(b).
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Figure A.41 BET Plot of N; sorption 
at77KonMCM-41(c).
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Figure A.42 BET Plot of N? sorption
at 77 K on MCM-41(”d).
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Figure A.43 BET Plot of N2 sorption 
at 77 K on SiMCM-41(a).
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Figure A.44 BET Plot of N2 sorption 
at 77 K on SiMCM-41(b).
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Figure A.45 BET Plot of N2 sorption 
at 77 K on FeMCM-41.
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Figure A.46 BET Plot of O2 sorption

at 77 K on SiMCM-41(b).
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A4.3 Organically-Modified M^oporous Silica 

A4.3.1 N2 BET and Langmuir Plots

Appendices

10 -

OjOO 0.10 0.15 O JO

Pfp"
Figure A.47 BET plot of N2 sorption on 
PhMCM-41 (Burkett), (nm = 9 mmol g*̂ ).
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P'P"
Figure A.49 BET plot of N2 sorption on 
unswollen Ph-M.S. (nm = 8.94 mmol g'^).
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Figure A.48 Langmuir plot of N2 sorption on 
PhMCM-41 (Burkett), (Um = 12.0 mmol g’*).
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Figure A.50 Langmuir plot of N2 sorption on 
unswollen Ph-M.S. (nm = 14.6 mmol g'^).
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0.10 0.1S 0.40

Figure A.51 BET plot of N2 sorption on 
MES-swollen Ph-M.S.(nm = 8.86 mmol g"‘).
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Figure A ^3 Langmuir Plot of N2 Sorption 
on TET-swollen Ph-M.S.
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Figure A.52 BET Plot of N2 sorption on 
TETrSwoUen Ph-M.S.
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Figure A^4 BET Plot of N2 Sorption 
on Vinyl-M.S.
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Figure A.SS BET Plot ofN; 
Sorption on AP-M.S.
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Figure A.56 Langmuir Plot of Ng 
Sorption on AP-M.S.

Figure A.57 BET Plot of N2 on MP-M.S.

0.05 0.10 0.15 0.20 0.30 0.40

Figure A.58 Langmuir Plot ofN? Sorption
on MP-M.S.
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A4.3.1 Benzene and Butanol BET and Langmuir Plots
Appendices
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Figure A.59 BET Plot of Benzene Sorption 
on MES-swollen Ph-M.S.
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Figure A.60 BET plot of Benzene 
Sorption on PhMCM-41 (Burkett).

Figure A.61 Langmuir plot of Benzene 
Sorption on PhMCM-41 (Burkett).

Figure A.62 BET Plot of /i-BuOH Soiption 
on PhMCM-41 (Burkett)
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140

120 •

Figure A.63 BET Plot of f-BuOH Sorption 
on PhMCM-41 (Burkett)
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Figure A.64 Langmuir Plot of r-BuOH 
Sorption on PhMCM-41 (Burkett)
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Figure A.65 BET Plot of n-BuOH Sorption on 
MES-swollen Ph-M.S.
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Figure A.66 BET Plot of f-BuOH Sorption on 
MES-swollen Ph-M.S.
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