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Abstract. Physiological datasets such as Electroencephalography (EEG) data of-

fer an insight into some of the less well understood aspects of human physiology. 

This paper investigates simple methods to develop models of high level behavior 

from low level electrode readings. These methods include using neuron activity 

based pruning and large time slices of the data. Both approaches lead to solutions 

whose performance and transparency are superior to existing methods  

Keywords: Deep Learning, Physiological data, CAPing. 

1 Introduction 

1.1 Physiological data 

With the rise in popularity of smart devices such as smart watches, fitness trackers and 

EEG monitoring devices, high quality, high frequency physiological data is easier than 

ever to collect. With the promise of improving health, fitness and/or sleep this trend 

shows no sign of abating. They capture large amounts of high frequency data that 

largely goes unused. With the rise of availability of all forms of personal healthcare 

related data comes the requirement to do something with it. The desired output includes 

an understanding of the current and future state of the individual recording the data. 

This physiological data can come in the form of static values such as weight, height, 

gender and data that has more short term time dependence such as temperature, sweat 

levels and respiratory rate. There are also a range of measurements that vary rapidly in 

short time frames, these include electrical activity in the brain or heart. 

The EEG signal is a voltage that can be measured on the surface of the head, this 

signal is related to coordinated neural activity. This is particularly powerful when 

groups of neurons fire at the same time. Neural activity varies depending on the pa-

tient’s mental state and the EEG signal can detect such variation with a degree of noise. 

 

1.2 Machine Learning 

Machine learning takes many forms and means different things to different people. For 

the purposes of this research we will deem it any process where we use computational 

algorithms to learn relationships between causal data and resulting effects. By model-

ling these cause-effect relationships we can make predictions about labels associated 
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with a range of causal data. This is also deemed ‘supervised learning’ as we supervise 

the training of a model until we can no longer improve its accuracy. This trained model 

is then evaluated on data that was not used to train it, giving us an idea on how well the 

model generalized. Many machine learning techniques exist, this research uses some 

well-known methods such as Gradient Boosting and Deep Learning.  

 

1.3 Deep Learning 

Deep learning is an extension of classic single hidden layer neural networks. One form 

of deep learning is based on a multi-layer feedforward artificial neural network that 

uses backpropagation for stochastic gradient descent training. The network can contain 

a large number of hidden layers consisting of neurons. Adaptive learning rates, rate 

annealing, momentum training and regularization enable high prediction accuracy in 

many complex prediction scenarios. This kind of feed-forward ANN model is the most 

common type of deep neural network and will be used in this research 

Within a practical problem-solving context using conventional machine learning 

techniques, researchers have discovered that although the existing models could per-

form well on synthetic or well-structured datasets, when working with raw natural data, 

like processing an image pixel-wise in a pattern recognition task, models often dont 

reach their optimality unless an extreme amount of effort is spent to convert the raw 

data into a suitable form of internal representation for the network to process [14]. Be-

sides this, the challenges brought by natural datasets also include the curse of dimen-

sionality, examples of physiological or medical datasets which contain large amount of 

attributes [15]. When the number of attributes of a dataset rises, the dimensions of data 

space also rise above conventional intuition and have unfamiliar properties. For net-

works which are built by human researchers this could be an extra barrier for under-

standing and analyzing the essence behind data [9] 

The deep learning methodology aims to solve these two problems by both providing 

a simpler way to convert high-dimensional, raw data into feature vectors or other inter-

nal representations that has lower data dimensions, and, under some conditions, boost-

ing the computational power of the model itself by allowing more computing units in 

the process. 

Deep learning models can be difficult to interpret, due to their non-linearity. It is 

important to make these models as simple as possible while still retaining performance 

so as to be more human readable, this is sometimes called Mimic Learning [5]. The 

basic premise is to first ensure you have the simplest version of your model and then 

convert the underpinning complex mathematical processes into more understandable 

forms [7,8] The approach here is based on a method used for single hidden layer neural 

networks [9] but modifications have been made to enact the process on a deep neural 

network 



 

3 

 

2 Experimental Design 

2.1 Dataset 

EEG data has been widely used in machine learning-based classification problems. This 

research uses a publically available dataset [4]. In this data 10 college students were 

asked to wear a wireless single channel ‘MindSet’ EEG device [10] that measured ac-

tivity over the frontal lobe. They were then asked to watch ten 2-minute long videos 

that ranged in complexity and then decide if they were confusing or not. This dataset 

contains 11 EEG based metrics: 

 

a. The raw EEG measurement itself (Raw) 

b. 8 frequency based transformation (Delta, Theta, Alpha 1, Alpha 2, Beta 1, Beta 

2, Gamma 1, Gamma 2) 

c. 2 proprietary functions (Attention, Mediation) 

 

It also contains a label that is a subjectively assigned decision as to whether the video 

was confusing or not. This was largely ignored in this research. The data is collected 

for 2 minutes but only the middle minute is deemed usable. The data is binned at one 

sample every 0.5 seconds Even though the EEG is measured at a 512 Hz. (Table 1) 

Table 1. Features generated from EEG data. 

 
There are 8 attributes based on different power spectrums, 2 proprietary measure-

ments and a 2 Hz mean of the 512 Hz raw sample. Preprocessing this kind of data is 

always a key step in gaining an understanding of cause-effect relationships. This is 

usually carried out using statistical or time series approaches to smooth out unwarranted 

variation and noise. This step is hugely important as models need to be developed for 

underlying processes and not the overlaying noise. 

In addition to the transformations of the raw EEG data detailed in the previous par-

agraph, we log transformed some of the attributes based on their distribution.  
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2.2 Machine Learning Approaches 

The current ‘best’ performance of this dataset is yielded using 2 different types of Long 

Short Term Memory (LSTM) Recurrent Neural Networks [2, 16]. These approaches 

build on the back propagation algorithm that passes through layers, each layer summat-

ing to a transfer function. During the training process, error sent backward through the 

network can be amplified, which may lead to instability, oscillating weights, or vanish-

ing gradients. Exploding gradients can be mitigated via truncation with correct transfer 

functions. Vanishing gradients are addressed using the Long Short-Term Memory RNN 

(LSTM) approach, introducing memory units to RNNs. The memory units help stop the 

error signal vanishing so that it is large enough to be back. 

We compare the current leading methods discussed in the previous paragraph with 

2 more sets of approaches: Flat Time Segmentation and Batch Processing. The ‘Flat 

Time Segment’ approach takes raw 0.5 second time slices of data and uses them as time 

independent training data. This method has no knowledge of whether the 0.5 seconds 

of data is the first, second or last time segment. This removes possibly useful temporal 

information but makes the resulting models somewhat simpler to understand. 

The Batch processed approach takes a larger time segment and performs statistical 

analysis on the data producing static values such as mean, median and standard devia-

tion of the metric over a 1 minute time period. This is a simpler way of retaining 

memory than the LSTM approach 

The machine learning algorithms are all publically available approaches, largely 

used ‘out-of-the-box’ with little or no tuning. This means subsequent researchers should 

easily be able to reproduce our results. We use the H2o [6] and R [17] platforms. In 

H20 we use the Random Forest, Gradient Boosting, Naïve Bayes and Deep Learning 

algorithms and within R we use the e1071[18] package for SVM and the CARET [19] 

package for Classification Trees  

 

2.3 Correlated Activity Pruning 

There has been some success in optimizing deep and shallow neural networks using a 

pruning approach, whereby less useful links and nodes are removed. The most popular 

is the pruning method of Han et al. [11] which works by first training a network, setting 

all the weights to zero based on a fixed threshold, are then fine-tuning the remaining 

connections. An alternative method reduces values of trained weights by applying vec-

tor quantization techniques [12].  A distillation approach can be used to train a separate 

smaller network that imitates the original one [13]. Correlated activities can be used to 

condense networks [8, 9,10]. A ‘brain damage’ approach can be used that makes use of 

second-order information on the gradient of the cost function to remove connections 

[14]. Simpler approaches include using limited numerical precision [15] (eg. single bit 

per weight [16]) and lossy hash functions to force weight sharing [17]. 

The correlated activity approach has been applied to deep networks in a whole node 

merging manner [20, 21] but this approach fails to simplify for correlations in activity 

profiles for single connections between layers. For this work we applied a piecewise 

approach to the process. After the initial training and testing of the deep learning net-

work, connections between all the nodes in layer n-1 to layer n were examined and a 
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Pearson correlation coefficient taken, the connections with the highest correlation co-

efficient were merged, the network was retrained and as long as the resulting accuracy 

was not significantly affected this was repeated (Figure 1) 

 
Fig. 1. Schematic of Correlated Activity Pruning process 

3 Results 

The results presented here will show how well different groups of methods compare to 

the existing ‘leading’ approaches. Accuracy is a suitable measure here as there is a 

balanced target ratio. Qualitatively we have assessed how difficult the machine learning 

approach is to apply and subsequently understand, this makes up our ‘Complexity’ met-

ric. This is used for information only and it allows the reader an insight into our opinion 

on the difficulty (application and interpretation) each method brings. Figure 2 and Table 

2 shows the performance of different methods. It can be seen that the three groups of 

methods discussed previously group together into three clear groups. The flat time seg-

ment approaches has a range of lower complexity methods but accuracy is inferior to 

the published ‘best’. The memory enabled LSTM have relatively high complexity and 

better accuracy. The batch processed approach has the highest range of accuracy but 

also 5 methods that clearly outperform the LSTM approaches.  
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Fig. 2. Performance of the 3 different groups of approaches. 

 

Table 2. Qualitative and quantitative performance of models 

.  

Model Accuracy (%)

Complexity 

(model)

Complexity 

(process)

Complexity 

(Combined)

CF-Bi-LSTM (Ni et al 2017) 73.3 7 8 7.5

Bi-LSTM (Wang et al 2018) 75 8 9 8.5

SVM (LibSVM) 67.2 6 4 5

Gradient Boosting(H2o) 63.7 5 3 4

MLP (neuralnet 63.1 3 5 4

Naïve bayes )H2o) 58.7 5 1 3

SVM (e1071) 60 5 4 4.5

Random Forest(H2o) 63.8 4 5 4.5

Classification Tree (CARET) 63.1 2 3 2.5

Logistic Regression ( R ) 59.2 1 1 1

Deep Learning (H2o) 62.5 6 7 6.5

Gradient Boosting(H2o) 84.5 4 3 3.5

Naïve bayes (H2o) 66 4 1 2.5

Random Forest(H2o) 79 3 5 4

Deep Learning (H2o) 77.6 5 7 6

Classification Tree (CARET) 76 2 3 2.5

Gradient Boosting - Only Power 

Spectrum data 74.03 3 3 3

Naïve bayes (H2o)- Only Power 

Spectrum data 69 3 1 2

Random Forest(H2o) - Only 

Power Spectrum data 74.8 2 5 3.5

Deep Learning (H2o) - Only 

Power Spectrum data 78.2 4 7 5.5

CAPed Deep Learning (H2o) - 

Only Power Spectrum data 75 2 6 4

Classification Tree (CARET) - 

Only Power Spectrum data 73 1.5 2.5 2

LSTM approaches

Batch Processed

Flat Time Segmented
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Different deep learning methods exhibit a range of accuracies (Figure 3). We man-

ually prune the training attributes so that ‘No AMR’ means no Attention, Mediation or 

Raw values were used. ‘No Pre’ means that the preassigned confusion value was not 

used (unused in any of the previous models). It can be seen that deep learning perfor-

mance can vary between 56 to 81% depending on the attributes used, with our CAPed 

approach giving a reasonable 75% accuracy with a minimal architecture. 

 

 
Fig. 3. Accuracy of a range of Deep Learning approaches 

4 Conclusions 

Modelling physiological data is a growing and important area of data modelling. Within 

this area, brain behavior and function is still poorly understood. This research shows 

that an understanding of what is happening when we observe different media of differ-

ent complexity is more accurately model-able than previously thought. It appears that 

using publically available modelling tool we can achieve in excess of 80% accuracy in 

predicting if someone is ‘confused’ or not based on power spectrum values from a sin-

gle EEG reading. Using a complicated memory based approach to weight optimization 

appears to be unnecessary if the correct window size for data aggregation statistical 

transformations are chosen. Further to this, by taking a small reduction in accuracy we 

can produce a minimal solution using pruning and merging of links with correlated 

activity.  

This is the first publication to outline a correlated activity pruning approach based 

on link merging rather than whole node merging. This allows for more fine-tuned prun-

ing of a deep learnt network. Secondly, this paper demonstrates that while the LSTM 

approach offers a performance improvement over crude time-slice segmentation, cor-

rectly dimensioned time slicing can offer both a simpler and more accurate solution for 

modelling the temporal EEG data used in this paper.  
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