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Formation of arterial plaque and stenosis is one of the main cardiovascular disease risk 

factors. Stenting is a popular approach to increase the inner diameter of the artery and 

provide an acceptable lumen gain. This is achieved by applying internal pressure to the 

arterial wall. Despite the desirable outcomes of this procedure, there are complexities and 

challenges that are being discussed among scholars in this area. Restenosis is one of these 

complications, in which smooth muscles cell start proliferation and remodeling in response 

of induced mechanical stresses. Another important issue is the placement of the stent and 

possible migration due to the continuous deformation and special contact state between 

tissue and stent struts. Finally, the mechanical properties of the stent and application of 

novel materials in order to improve its performance are the critical topics that also have 

been elaborated in the current research work. First of all, we developed a multi-scale model 

which is able to calculate load distribution in RVE scale and can be useful to assess the 

mechanical stresses experienced by smooth muscle cells. Moreover, stent migration has 

been simulated by using finite element modeling, and the effect of stent structure on this 

complication has been explained. Finally, the application of novel nano composite 

materials in stent design has been discussed. Developing 3D printed steel-PLLA and Mg-

PLLA particle composites and the effect of added phases in micromechanical properties of 

composites has been evaluated.  
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1 Chapter 1: Introduction 

 

1.1. Introduction 

Cardiovascular disease (CVD) is defined as an inclusive term for several linked 

pathologies, commonly defined as coronary heart disease (CHD), cerebrovascular disease, 

peripheral arterial disease, rheumatic and congenital heart diseases and venous 

thromboembolism. Globally CVD accounts for 31% of mortality, the majority of this in 

the form of CHD and cerebrovascular accident [1].  

According to the World Health Organization (WHO), over 75% of CVD is preventable 

(when they are at initial stages), however, aging effect, which is a well-known risk factor, 

causes an inevitable development of CVD [1].  

Formation of arterial plaque and stenosis is one of the main CVD risk factors. It has 

been reported that severe stenosis is observable among large percentage of aging 

population particularly elderly people with diabetes, hyperlipidemia, aortoiliac occlusive 

disease, coronary artery disease, or hypertension. [2]. Stenosis is a progressive disease that 

may happen alone or in combination with other diseases such as hypertension and ischemic 

kidney disease [3]. Two common strategies to treat the patients with severe stenosis are 

aggressive medical therapy and using medical tools such as angioplasty and stenting 

methods [4]. The later one focuses on increasing the inner diameter of artery to provide an 
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acceptable lumen gain. The is achieved by applying internal pressure to the arterial wall by 

using inflating balloon or expanding stent.  

Another complication with stenosis treatment procedure is the occurrence of restenosis. 

It has been reported that for coronary angioplasty the rate of restenosis is 30 to 60 percent, 

which can be categorized by two parts. The first part, recoil and remodeling of interior wall 

of the treated artery. The second part is called intimal hyperplasia, which is the proliferative 

response to injury and consists of smooth muscle cells and matrix formation [5]. It is 

reported that stents provide a luminal scaffolding that decrease recoiling which can reduce 

the risk of restenosis. However, placement of stent cannot prevent the proliferative 

behavior of restenosis components.  

Restenosis is a vascular repair mechanism as a response to vascular injury caused by 

expansion of angioplasty balloon or stent. The process is governed by cells proliferation, 

migration, remodeling, and extracellular matrix secretion [6]. The term of arterial 

remodeling used to know as any variations in arterial wall structure. In normal arteries, 

remodeling is a homeostatic response to alteration in the blood flow and circumferential 

stretch to restore normal shear stress and wall tension. There are many studies on the effect 

of flow shear stress on remodeling, however, the effect of stretch and arterial expansion on 

remodeling in not very well understood [7]. It has been reported that endothelial disruption, 

fracture of internal elastic lamina, and dissection of the media might cause the initiation of 

restenosis. Formation of thrombus is the first step of restenosis in which Vascular Smooth 

Muscle Cells migrate, synthesis matrix and collagen, and promoting neointimal formation. 

The mechanism of this phenomenon is not clear yet. Mechanical response of VSMC, 

endothelial denudation, release of mitogens and cytokines from platelets are among the 
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suggested mechanisms for VSMCs migration and proliferation [8]. Mechanical load is an 

important modulator of VSMC morphology and function in many tissues, especially 

cardiovascular system. It is reported that VSMC hypertrophy and proliferation is related 

with high mechanical loads. However, in order to identify the contribution of arterial 

expansion of VSMC mechanical load, researchers must relate the stretch of tissue and 

deformation in micro scale [9]. Due to the difficulties with experimental methods, 

computational modeling can be used to study the effect of arterial expansion of VSMC 

loading. In the current research a micro-structure model of media layer is developed which 

can help the scientists to determine mechanical response of VSMC under arterial 

expansion. The model can be coupled with a macro scale model of artery and treatments 

such as angioplasty and stenting can be performed.  

Another important point about stenting is the placement and stent migration. The 

movement of stent after placement can cause many problems. This late complication 

happens for esophageal and biliary duct stenting (0-40 %). In most cases, the stent 

dislocates naturally because of contraction and relaxation of tissue wall [10]. An example 

of this complication is esophagus stenting. Palliative treatment of malignant tumor or 

obstruction of the esophagus has been observed among aging population. Using self-

expandable metal stents have been suggested to keep the tract open. However, the risk of 

migration due to the peristalsis movement of tract wall was high. Therefore, a new design 

with larger proximal ends was suggested to provide an anchoring effect. The design 

focused on the inducing sufficient radial force. On the other side, high mechanical stresses 

can cause restenosis and tissue injury. Therefore, a study is needed to correlate the stent 
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design and induced reaction forces in tract wall, which will be helpful for designers and 

clinicians to come up with optimum stent structures [11].  

The last but not the least topic that will be covered in this research work is the novel 

material application for stent design. By introduction of composite materials, at least two 

different materials could combine and make a novel material which benefits from the 

characteristics of each constituent. A composite material basically consists of a matrix and 

a filler phase which can come with different shapes such as long fibers, short mat, and 

particles [12]. Depends to the size of filler the resulted composite can be classified as a 

nanocomposite. In this work the application of nanocomposite as a suggested material for 

stents is discussed. 
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2  Chapter 2: Migration resistance force of Esophageal Stents: the role 

of stent design 

2.1. Introduction 

Esophageal cancer (EC) is the sixth most common cancer and rarely curable with high 

morbidity and mortality all over the world [13]. Mostly, the patients suffering from EC are 

diagnosed at later or advanced stage, which are unfavorable for surgical resection. The 

survival rate of patients accepting surgical resection is poor with a 5-year survival of 15–

34% [14]. Moreover, palliative care of serious illness like malignant stricture is to relieve 

the symptoms but unable to inhibit the tumor cells, which is the prime concern in curing 

EC [15]. Stent, a mesh structure serving as a scaffold to open the palliate esophageal 

stricture and relieve dysphagia, is becoming a common EC treatment option for improving 

the quality of life of patients[16]. Various self-expanding metal stents have been developed 

for this purpose. Major complications include stent migration, tumor ingrowth, and tissue 

perforation [17, 18]. Homann et al. [19] investigated 164 self-expanding stents implanted 

in malignant strictures of the esophagus or the esophagogastric junction, and observed 

more stent migration and fewer food impactions in patients implanted with covered stents 

than with uncovered ones. Most existing efforts focus on the covered materials [20] and 

their anchoring technique [21]. For example, the endoscopic clip at the upper flare of the 

covered esophageal stent was considered as one promising means to reduce stent migration 

[21].   

The stent shape was also considered as an important factor influencing stent migration. 

The most common implementation in the design of esophageal stents was the relatively 
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wider proximal and distal ends, which were used to increase the radial force and reduce the 

risk of stent migration [22]. Sharma et al. [23] have conducted a critical review of the 

efficacy of esophageal stents and implied that the underlying mechanism of stent migration 

and tumor in-growth could be clarified quantitatively. Kajzar et al. [24] illustrated the 

mechanics of the a stent-esophagus system with focus on the crimping and expansion of 

esophageal stent. Even though Park et al. [17] classified four levels of stent migration in 

patients with malignant esophageal stricture, the underlying mechanisms of stent migration 

away from the esophageal stricture, especially the initiation process, remained unclear. 

Moreover, the quantitative study of stent-esophagus interaction for evaluating stent 

migration was lacking [25], nonetheless computational modeling of stents has been 

extensively used for design and analysis [26-29]. Specifically, layered esophageal wall 

were modeled to illustrate the mechanics of the gastroesophageal junction [30] and the 

interface mechanics between the muscle layer and the mucosa–submucosa layer [31]. 

The goal of this work is to characterize the interactions between the stent and 

esophagus, to shed light on the mechanism of stent migration as well as to design better 

esophageal stents. We utilized the finite element approach to depict and compare the 

mechanics of the esophagus with a malignant stricture, after implantation of self-expanding 

nitinol stents, with and without flared ends. After stent deployment in the esophagus, the 

lumen gain, strut malapposition, Von Mises stress distributions on the wall of the 

esophagus, and radial contact force between the stent and esophagus were evaluated for 

both stents. Moreover, both stents were pulled longitudinally at one end to mimic the worst-

case scenario for stent migration. The dynamic sliding forces versus the stent displacement 
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were monitored. The obtained results might lead to better design of the next-generation 

esophageal stents with reduced migration rates.  

 

2.2. Materials and Methods 

A three-dimensional geometry of the WallFlex stent (Boston Scientific, Massachusetts, 

USA) with and without flared ends was constructed as shown in Figure 2-1. For the stent 

without flared ends, the total length was 100 mm and the outer diameter was 18.22 mm. 

For the flared stent, the middle section had the same diameter as the straight stent with a 

length of 64 mm, while the flared ends had a diameter of 24.22 mm with a length of 9 mm 

at each end. Both esophageal stents were braided using 28-strand of wires with the diameter 

of 0.4 mm and pitch angle of 45º [23].  

 

Figure 2-1 (a) Configurations of the flared stent and straight one; (b) Tumor restricted Esophagus. 

The esophagus was assumed to be a uniform cylinder with a length of 150 mm, an inner 

diameter of 16 mm, and a wall thickness of 3 mm [25]. The simplified esophagus tube has 

been used for understanding the food transport [32], and stent-esophagus system [24]. The 

eccentric-shaped tumor with a maximum thickness ratio of 2:1 spanned across the 60 mm 

 

 

a 

 

 

b 
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of esophagus and resulted in a minimum lumen diameter of 6 mm, i.e., a diametrical 

stenosis ratio of 62.5 % (Figure 2-1b). The tumor length was shorter than the middle section 

of the flared stent, and this warranted the same stent-tumor interactions for both stent 

deployments. After preliminary simulations, we constructed half of the model by applying 

symmetry boundary conditions along the z plane (Uz=URx=URy=0) in order to reduce the 

computational time.   

The stent was made of nitinol which underwent phase transformation between austenite 

and martensite during one loading cycle [33]. The superelastic behavior of shape memory 

alloys can be simply understood as the phase transformation of austenite and martensite 

under stress. Based on free energy function and dissipation potential, the model is assumed 

that there is a relationship between the martensitic constant M and the austenite constant

A : 

1=+ AM   (1) 

The elastic modulus of Nitinol can be represented as a linear function of martensite 

volume fraction 

AMMMf EEE )1(  −+=  (2) 

where fE , ME and AE are the elastic modulus of alloy, martensite and austenite, 

respectively.  

The stress-strain relation is given according to the generalized Hooke's law as follows: 

))(( 0 trff TTC  −−−=                                       (3) 
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where  is the total strain the SMA, T0 is the reference temperature, 
tr is the phase 

transformation strain,  is the thermal coefficient, f and fC are the stress and elastic 

tensor, respectively. Therefore, an incremental constitutive law can be expressed as: 

))()(( MMMff TC  −−=  (4) 

The main parameters of the constitutive model of nitinol alloy under isothermal 

conditions were listed in Table 2-1 [34]. The constitutive model was implemented through 

a built-in ABAQUS user material subroutine (UMAT) [35].  

Table 2-1 Material constants of Nitinol 

Property Value Definition 

AE  50 GPa Austenite elasticity 

ME  37 GPa Martensite elasticity 

s

M  
400 MPa Starting transformation stress of loading 

f

M  
650 MPa End transformation stress of loading 

s

A  
350 MPa Starting transformation stress of unloading 

 f

A  80 MPa End transformation stress of unloading 

L  0.055 Maximum residual strain 

 

The hyperelastic behaviors of the tissue, including both esophagus and tumor, were 

adopted from the published experimental datasets [34, 36], which were fitted using the 

reduced polynomial constitutive equation below:   

𝑈 = ∑ 𝐶𝑖𝑗(𝐼1 − 3)𝑖(𝐼2 − 3)𝑗

3

𝑖,𝑗=1

 

(5) 

where, I1 and I2 are the first and second invariants of the Cauchy-Green tensor and  

http://www.so.com/link?url=http://www.doc88.com/p-9486967264258.html&q=Incremental+constitutive+law&ts=1492850022&t=faf913f9812160f7a53ad676963fd98&src=haosou
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𝐼1 = 𝜆1
2 + 𝜆2

2 + 𝜆3
2 (6) 

𝐼2 = 1/𝜆1
2 + 1/𝜆2

2 + 1/𝜆3
2 (7) 

The obtained material coefficients Cij are listed in Table 2-2.  

Table 2-2 Material coefficients of both esophagus and tumor (units:MPa) [35] 

Esophagus 

(Based on the axil testing of mucosa) 

C10 = -0.0268 

C01 = 0.0479 

C20 = 0.81218 

C11 = -1.7233 

C02 = 0.98173 

Tumor 

C10 = 0.039 

C20 = 0.0031 

C30 = 0.02976 

 

The stent crimping process was simulated by applying radial inward displacement on 

the outer surface of the stent. The self-expanding process was captured by removing the 

displacement constrains. No relative movement between braided wires was allowed to 

mimic the role of the cover on the stent. The residual stresses of the esophagus tissue under 

physiological loading conditions were not considered for this comparative study [37]. The 

friction coefficient of 0.1 was adopted for the contact between the stent wires and tissues 

[38]. The mesh convergence study was conducted, and the esophagus and tumor were 
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meshed with 125,000 and 21,456 elements (C3D8R), respectively. The stent was 

constructed by 11,200 B31 elements which are two-node elements with one integration 

point in the middle and have been used for modeling of stents [39, 40]. 

Following the stent deployment in the esophagus, a longitudinal displacement of 60 

mm was prescribed on the left end of the stent till it slid through the esophagus. The 

required sliding force during the sliding process was monitored.  

 Results 

2.3.1 Interactions among stent, tumor and esophagus 

Stent lumen enlargement and stress distribution are shown in Figure 2-2. The minimal 

lumen diameter increased from 6 mm to 17.15 mm and 16.91 mm for the flared stent and 

straight one, respectively. The stent ends resulted in an increased lumen diameter from 16 

mm to 24.09 mm and 18.06 mm for the flared stent and straight one, respectively. The 

incomplete stent strut apposition, also referred to as malapposition, was characterized by 

the area of the non-contact region between the stent and tissue. The malapposition area was 

532.80 mm2 and 171.04 mm2 for the flared stent and the straight one, respectively. The 

corresponding maximum gap between the stent and the tissue was 2.29 mm and 0.746 mm 

for the flared and straight stents, respectively. It is clear that the flared stent induced more 

malapposition compared to the straight one.  
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Figure 2-2  Stress distribution on the esophageal wall induced by flared stent or (top) or straight one 

(bottom). 

The critical point based on Von Mises stress in the esophagus was located in the middle 

of the tissue, specifically at the narrowest lumen region, regardless of stent designs. The 

peak stress on the esophageal wall was approximately 520 kPa induced by the straight stent 

and 530 kPa by the flared stent. The stress distributions on the middle region of the stented 

esophagus were similar for both stents. However, the Von Mises stress at the flared-end 

region was up to 410 kPa, which was much higher than that induced by the straight stent. 

The peak stress of esophagus were within the reported ultimate tensile strength of muscle 

layer, i.e., 425-530 kPa [41].  

 

2.3.2 Migration dynamics  

  The dynamics of stent migration were studied by pulling both expanded stents out of 

the esophagus as illustrated in Figure 2-3. The anchoring effect of the flared end and 
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straight one is demonstrated using snapshots. As the right end of the stent was about to 

pass the narrowest tumor location, the maximum pulling force, also referred to as the 

migration resistance force, occurred for both stents. Afterward, a decline in the magnitude 

of force was observable when the stent was leaving the tumor region.  

 
 

Figure 2-3 Snapshots of pulling both (a) flared stent and (b) straight stent, representing the initial 

configuration (A and A*) and peak resistance force (B and B*) 

During the pulling, the contact forces at the stent-tissue interface were monitored as 

shown in Figure 2-4. The contact force here excluded the middle section of both stents with 

a length of 64 mm due to the minimal variations between stents. Clearly, the flared ends 

induced a higher contact force than the straight one. Before the stent migration initiated at 

0.04 s, the contact forces were 31.5 N for the flared stent and 6.6 N for the straight one. 

The pulling motion dramatically increased the corresponding contact force up to 741 N and 

273 N, respectively. Considering the flared end was only half the length of the straight one, 

the flared end design boosted the contact even more. The higher contact force implied a 

larger migration resistance potential.  
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Figure 2-4 Contact force time history for both flared and straight stents. 

Figure 2-5 depicts the migration resistance force during the pulling process. The flared 

stent exhibited a sharp increase in the migration resistance force. After reaching the peak 

magnitude, i.e., overcoming the tumor edges (Figure 2-3), an abrupt decline in resistance 

force was observed. The uniformity of the straight stent resulted in the gradual change in 

the migration resistance force. In addition, the peak migration resistance force for the flared 

and straight stents were 535 N and 310 N, respectively. This indicated that the required 

axial load to move the flared stent through the esophagus is 72.5 % higher than that for the 

straight stent. In addition, the anchoring effect could be calculated as the elastic strain 

energy, which was 9 J and 4.8 J for the flared and straight stents, respectively. 
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Figure 2-5 The migration resistance force in relation to the migration distance of stents. 

The role of the nitinol wire diameter and the friction coefficient between stent wires 

and tissue on the migration resistance force were depicted to facilitate a better design of 

the stents (Figure 2-6). The wire diameter impacted the migration force dramatically. 

Specifically, the migration resistance force of the stent with a wire diameter of 0.6 mm was 

834 N which is 56.5 % and 164 % greater than that for the stents with wire diameters of 

0.4 mm and 0.3 mm, respectively. Moreover, the peak migration force was delayed with a 

thinner wire. This could be explained by the rigidity of the stent, which was reduced with 

a thinner wire.  
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Figure 2-6 The migration resistance force of the flared stent in response to the wire diameter (Top) and 

the friction coefficient between stent wires and tissue (bottom) 

The friction coefficient between the wires and tissue also influenced the migration risk 

of the stents. The migration resistance responses demonstrated the same trend.  The 

maximum migration resistance forces for the friction coefficients of 0.1, 0.2 and 0.3 were 

535 N, 639.42 N and 741.91 N, respectively. A larger friction coefficient of 0.3 caused 

38.67 % enhancement of the migration resistance force, compared to the coefficient of 0.1.  
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 Discussion  

Esophageal stent insertion provides a substantial advantage in the management of 

dysphagia in patients with malignant esophageal obstruction. However, stenting 

complications compromise the quality of the patient’s life. Stent migration is one of the 

major complications associated with esophageal stent implantations [42-44]. Figure 2-7 

illustrates that the esophageal covered stent migrated downward 1 cm after 20 days of 

placement for treating the gastroesophageal anastomotic fistula of a 65-year old male 

patient. The informed consent was obtained from the patient to showing the image, which 

was achieved from digital subtraction angiography (DSA) during stenting procedure. 

Despite the extensive clinical observations regarding esophageal stent complications, there 

are limited studies on the mechanistic understanding of stent migration.  

 

Figure 2-7 Digital subtraction angiography of the esophageal stent placement (a) and migration down 

1cm after 20 days (b). 

This motivated us to test the role of flared ends, braided wire diameter, and the friction 

coefficient between wires and tissue on stent migration. We utilized the finite element 

  

(a) (b) 
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method, which has the advantage of replicating the physical problems with low-cost 

complex geometry, compared to both experimental tests and analytical methods. 

Experimental tests are usually expensive to conduct and difficult to isolate specific 

parameters. Analytical methods are limited to idealized geometries and boundary 

conditions. In this work, we have constructed finite element models to simulate the 

deployment of stents in the esophagus and then applied axial loading to characterize the 

migration risk of the stents.  

Our modeling framework was validated against the published experimental data of a 

braided self-expandable Wallstent (Boston Scientific, Natick, MA) by Jedwab and Clerc 

[45]. The aforementioned modeling techniques were used to construct a braided Wallstent 

with a nominal length of 87.5 mm, braiding strand number of 24, braiding angle of 30.85o, 

strand diameter of 0.22 mm, and outer diameter of 17.15 mm. The stent was made of 

Cobalt-Chromium-Nickel (Co-Cr-Ni) alloy with a Young’s modulus of 206 GPa, shear 

modulus of 81.5 GPa, and yield strength of 2.5 GPa. Our simulation of the axial tension of 

the stent agreed very well with the experimental and theoretical data. Following the 

validation, our models could be used to delineate the interaction between the stents and 

tissue and to predict the tendency of stent migration. 

Our results have demonstrated that the flared ends induced a much larger radial contact 

force (Figure 2-4). Following stent deployment, the contact force of the flared ends was 

4.77 times more than that of the straight ones. The contact force of the flared ends per unit 

length was 9.54 times larger than that of the straight ones. This could be explained by the 

overstretch of the esophageal wall at the flared ends. This implied that the flared ends serve 

as anchors to maintain the deployment location and mitigate stent migration. However, 
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larger contact force led to higher stresses on the esophageal wall for both stents. This might 

cause the esophagus damage and failure. Stavropoulou et al. [46] studied the failure criteria 

for mucosa-submucosa and muscle layers of esophagus. The ultimate tensile strength of 

mucosa-submucosa and muscle layers were reported as 1149 kPa and 425-530 kPa, 

respectively. The stronger mucosa-submucosa layer was associated with its higher collagen 

content. The higher peak stress of esophagus induced by flared stent could lead to a higher 

probability of tissue failure.  

The esophageal contraction is usually preceded by a transient variation of pressure in 

radial and longitudinal directions. This may represent tongue or laryngeal movement or 

changes in respiration coincident with the initiation of the swallow [47]. Even though the 

peristaltic contraction was essential for bolus transport through esophagus tube [48, 49], it 

could be simplified as the axial pulling of the stent through the esophagus for the 

comparative study of the migration risk. 

During the pulling of the stents, much more work was required to initiate the sliding 

of the flared stent than the straight one (Figure 2-5). In addition, the straight stent sliding 

initiated gradually, and the flared stent exhibited a sharp resistance force with a larger 

magnitude. Again, this was due to the anchoring effect of the flared ends.  

Our results provided the quantitative datasets for better understanding the observations 

in both clinical trials and animal studies. Els et al. [44] examined 46 patients and found that 

flared stents mitigated stent migration. A rabbit study also demonstrated that a flared 

prostatic stent helped to reduce migration compared to its straight counterpart [50].  
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Various sizes of wires have been used to braid the stent. Our results have shown that 

a doubled wire diameter increased the migration resistance force by 1.64 times. This 

indicates that a thicker wire for the stent could be adopted for reduced probability of 

migration. This could be explained by increased stiffness of the stent as fabricated using 

thicker wires.  

We also tested how the friction coefficient between stent wires and tissue affects the 

migration resistance since this coefficient was rarely reported. Usually an assumed value 

was adopted [25]. It was found that the friction coefficient has a impact on the risk of stent 

migration. If we tripled the friction coefficients, the peak migration resistance force was 

38.67 % larger. This indicated that the surface treatment of the stent wires, or struts, for 

increasing the friction coefficient, could also prevent the risk of stent migration.   

In the present model, the relative movement of the braided wires was constrained to 

mimic the covering effect commonly used in commercial esophageal stents. The 

anatomical details of the esophagus including the stellate appearance of the inner 

esophageal layer [25] was simplified as an esophagus tube with a friction coefficient. A 

range of friction coefficients were used depending on relative movement between the stent 

and the esophageal wall [22]. A larger friction coefficient was commonly associated with 

the less migration risk. The feasibility of the model was validated in our previous work [51, 

52]. The esophagus was modeled as a one-layer tube [24, 53], although it is assumed as 

two layer [54, 55] or three layer wall [56] depending on the aim of the study. The detailed 

configurations of esophageal wall could alter our results in terms of magnitudes, but the 

comparative results between two stent designs was expected to be the same. The material 

properties of the esophagus and cancerous tissue were assumed to be homogeneous 
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isotropic materials, although they are anisotropic [57]. The perfect plasticity for cancerous 

tissue was assumed due to lack of experimental data. More realistic models considering 

patient-specific geometry and anisotropic three-layered esophageal wall properties would 

change the contact force and the migration resistance force. The existence of pre-stretch 

along axial and circumferential directions at physiological conditions [37] as well as the 

esophageal muscle contraction were not explicitly incorporated in our model, we speculate 

that the both pre-stretch and wall contraction were associated with the reduced friction 

between stent and esophagus, and thus a higher migration rate. Despite these 

simplifications, this work demonstrated the importance of the stent design on the risk of 

migration, which might have significant clinical implications. This work could be used to 

provide a fundamental understanding of the behavior and impact of stent design on the 

esophageal wall, provide guidance for optimizing stent shape and surface profiles, and 

illuminate the possibilities for exploiting their potential to prevent migration.   
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3 Chapter 3: Mechanical contribution of vascular smooth muscle cells 

in the tunica media of artery 

 Load bearing filaments in VSMC cytoskeleton  

The cytoskeletal of vascular smooth muscles encompasses filaments and organelles. 

The density and number of these components can vary with respect to different internal 

and external signals [58, 59]. The filaments inside cytoskeleton can be classified as actin 

stress fibers (SFs), microtubules (MTs), and intermediate filaments (IFs), as shown in 

Figure 3-1. 

 

Figure 3-1 Cytoskeleton structure of the cell and the load carrying fibers  

These filaments play a principal role in the mechanical properties of vascular smooth 

muscle cells including proliferation [60], differentiation [61, 62], cell migration [63], and 
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apoptosis [64, 65]. Therefore, mechanical properties of these fibers are critical for the 

deformation and stability of vascular smooth muscle cells.  

3.1.1 Stress fibers (SFs) 

It has been reported that stress fibers (SFs), which mainly aligned in major axis of the 

cell, are the principal contributor to contractile forces through actomyosin activation [66]. 

Deguchi et al. [67] performed tensile tests of SFs by isolating these fibers from cultured 

bovine VSMCs. Each SF is composed of a bundle of actin filaments (AFs). These bundles 

are held together by the actin-crosslinking protein α-actin. The elastic modulus of SFs was 

approximately 1.45 MPa which was three orders of magnitude lower than that of single AF 

(1.8-2.6 GPa) [68]. On the other hand, the breaking force of single AF was determined to 

be 600 pN, whereas the breaking force of a single SF is approximately 380 nN, i.e., 600 

times higher. In addition, the stress-strain relation was linear for the single AF, although 

SFs exhibited a highly non-linear strain-induced hardening behavior [69]. Cell contraction 

is based on two vital structures, SFs and focal adhesion sites. Rho GTPase promotes the 

formation of SFs and cell adhesion sites, resulted in higher contractility [70]. It is reported 

that the tension applied to focal adhesions increased from 10 nN to 100 nN upon 

contraction of the VSMCs [71]. Moreover, disruption of SFs during the tensile tests 

decreased the cell’s stiffness by 50 % [72].  

3.1.2 Microtubules (MTs) 

Microtubules (MTs) have a cylindrical shape with inner and outer diameters of 14 and 

25 nm [73]. MTs are rigid filaments with bending stiffness of 100 times higher than that of 

AFs and with elastic modulus of 1.2 GPa [74]. MTs have a remarkable contribution in 

stabilization of cells elongation through attaching to the cell membrane via certain capping 
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proteins [75]. The contribution of MTs on cell locomotion and migration by regulating of 

actin polymerization has been reported [76]. Kato et al. [77] showed that tracheal fusion 

cells form polarized microtubule bundles oriented towards the leading edge of migrating 

cells. The function of these microtubules is twofold: to concentrate E-cadherin to the newly 

contacted cell interface and to initiate the formation of new adherent’s junctions. 

Microtubule depolymerization enhances isometric contraction of vascular smooth muscle 

cell, which is not receptor dependent [78]. Besides the principal contribution of SFs in 

contractility and MTs in migration, MTs are acknowledged to indirectly affect the 

contractility of VSMCs. Specifically, MTs growth favors dissolution of focal adhesions, 

whereas disruption of MTs leads to enhanced cell contractility by formation of SFs and 

focal adhesions [79]. In addition, disruption of the MTs decreased the tensile stiffness of 

VSMCs by 30 % at large strain levels. Insignificant contribution of MTs was observed 

under small tensile strain which stem from wavy morphology of these fibers [72].  

3.1.3 Intermediate filaments (IFs) 

The intermediate filament (IF) network is one of three cytoskeletal systems. IFs are 

widely distributed from the plasma membrane to nucleus, providing mechanical and 

structural integrity for the cell [80]. In conjunction with associated proteins, IFs generate 

networks that serve to generate and support cell shapes. Spatial reorganization of IFs along 

with the development of SFs make VSMCs able to adjust their contraction/relaxation 

states. Moreover, the dynamic IFs play a crucial role in regulating various cellular functions 

including signal transduction; tension development; cell division and migration [81]. The 

IFs, with the diameter of approximate 10 nm, have been grouped into five types, or 

sequence homology classes (SHC), on the basis of amino-acid-sequence identity [82]. The 
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most prominent IFs in VSMC cytoskeleton is vimentin, which forms a dynamic network 

and varies during contraction [83]. The elastic modulus of IFs has been reported in the 

range of 300-900 MPa [84]. The contribution of IFs in tensile properties of SMCs is 

remained to be determined even though IFs play important roles in tensile properties of the 

cells during large deformation [85]. Green et al. [86] speculated that it is impossible to 

disrupt IFs themselves due to the interaction between IFs and AF structure.  

Although the characteristics of each filament in the VSMCs cytoskeleton has been 

studied separately, the intracellular force balance, contraction, and cell stiffness are 

strongly influenced by the interaction of cytoskeleton with extracellular matrix (ECM) and 

signaling pathways as described below. 

 Interaction of VSMCs within the extracellular matrix (ECM) 

Structural constituents of ECM, that regulate its passive mechanical behavior, are elastin 

fibers, collagens, and glycosaminoglycans (GAGs) [87]. Interaction of these structural 

constituents and VSMCs can trigger significant variations of stiffness of both ECM and 

VSMCs. The adhesive glycoproteins fibronectin and laminin form connections between 

ECM and VSMCs via specific integrin receptors. Fibronectin is a multifunctional adhesive 

protein present in the plasma and also synthesized by vascular cells [88]. VSMCs express 

both β-1 and β-3 integrins and [89] demonstrated greater functional significance in 

adhesive processes of β-3 integrin essential for SMC migration. On way to study the 

interaction between VSMC (and other cells in general) and ECM is to culture the cell on 

substrate and study the deformations under different circumstances [90]. Adhesion rate, 

spread area, cytoskeletal assembly, and focal adhesion signaling was evaluated by culturing 

VSMCs on substrates with different stiffness and coated with fibroactin- or laminin- [91]. 
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When VSMCs were cultured on fibroactin substrates with varied mechanical gradient, it 

was found out that cells preferentially migrate toward stiffer regions [92, 93]. On the other 

side, Hartman et al. [94] observed the migration of VSMCs toward the stiffer region of 

gradient substrate coated with fibroactin, whereas the migration on laminin-coated gradient 

substrate appeared to be random. This observation indicated that the deformation and 

migration of VSMCs are not only dependent on the stiffness of ECM but also the type of 

interacting proteins and the engaged integrins [91].  

The ECM stiffness can also affect the phenotype of VSMCs [95]. A stiffer ECM led to 

synthetic phenotype in the VSMC. Specifically, the VSMC decreases the number of 

cytoskeletal filaments and exhibits lower stiffness than that of contractile phenotype. 

Fibronectin drives cells away from the contractile phenotype in vitro, whereas laminin has 

been shown to conserve it [96]. Cell culture in 2D has been widely used to study the 

mechanotransduction of VSMCs due to ease of handling, maintenance, and application of 

mechanical loads [97-99]. However, culturing cells on a 2D substrate affects the cellular 

deformation, adhesion force and stiffness. To address this issue, engineering 3D gels [100] 

or scaffolds [101, 102] as the cell culture environment has been suggested. 

Artery and its cellular components are continuously exposed to hemodynamic stimuli 

including cyclic strain, flow shear stress, and blood pressure [103, 104]. These mechanical 

loadings correlated with VSMC behaviors, ECM remodeling, and vasoregulation [105]. 

Cyclic mechanical stimulation possesses dual effect on proliferation of VSMC [106], 

enhance the collagen production [107], and increases the capability of transformation from 

synthetic SMC phenotype into contractile phenotype [108]. A cyclic tensile strain of 5% 

reduced SMC proliferation [109]. Conflicting variation of VSMCs phenotype with respect 
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to the level of cyclic loading has been reported [110], whereas over-expression of 

contractile phenotype proteins has been observed [111-115]. Solan et al. [116] showed that 

cyclic strain had a direct impact on increasing collagen content and organization in ECMs. 

Bono et al. [117] studied the effects of cyclic strain (7%) on the VSMCs behavior which 

were cultured on 2D substrates and in 3D matrix composed of type I collagen. It was 

demonstrated that in the 3D culture environment there are more VSMCs aligned in the 

direction of strain (nearly 60 %). Additionally, the level of SM α-actin in VSMCs cultured 

in the 3D collagen matrix was higher than that cultured on the monolayer 2D substrate. 

This research indicated that in 3D culture environment and under cyclic loading the density 

of contractile proteins inside VSMC’s cytoskeleton increases remarkably. It is worth 

mentioning that in the cardiac cycle VSMCs are cyclically stretched by ~ 10 % with a 25-

50 % mean strain, and their mechanical properties should be evaluated over a large range 

of deformations [118].  

It was noted that the ECM mechanical properties including its heterogeneity are the key 

factors to impact the 3D VSMC contractility [119]. Novel hydrogels have been developed 

to resemble the composition of ECM and thus in vivo mechanical environment [120, 121]. 

Ding et al. [122] developed a biomimetic fibrous hydrogel with tunable structure and 

stiffness. The developed ECM array consisted of collagen I, III, IV, fibroactin, and laminin. 

The effect of ECM deposition and stiffening during vascular disease progression on 

VSMCs contraction/relaxation was investigated. Although, the developed hydrogel 

encompassed the composition of ECM components, the challenges lie in the control of the 

architecture and alignments of collagen fibers. It has been illustrated that fibers orientation 

affect their load sharing contribution to the media tunica [123]. Phillippi et al. [124] 
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reported that a remarkable variation of collagen fiber orientation distribution exists in the 

diseased aortic media. Considering the limitation in reproducing a complex in vivo ECM 

environment, the load sharing of VSMCs with respect to these structural components of 

ECM remained to be explored.  

 

 Arterial constituents  

The artery wall exhibits three major layers: Intima, media and adventitia. The intima 

layer is predominantly populated with endothelial cells (ECs), which synthesize proteins, 

such as collagen IV and laminin, to create basal lamina. Its main function is to transmit 

signals that control vascular tone. It has a minimal contribution to the artery’s mechanical 

properties. The adventitia mainly consists of fibroblast and a collagen-rich ECM. 

Adventitial fibroblasts respond to a variety of chemical and mechanical cues. For example, 

hypertensive environments result in increased fibroblast proliferation and collagens I and 

III synthesis. Adventitia bears over half of the load at abnormal pressure due to collagen’s 

role as structural reinforcement [125]. The media is the thickest layer, between the intima 

and adventitia layers. It serves as the primary load bearing components. The media are 

composed by multiple lamellar units (LU), which consists elastic lamellae encompassing 

smooth muscle cells (SMC), interposed with collagen fiber network, as shown in Figure 

3-1. 

The LU was comprised of approximately 29% elastin, 24% SMCs, and 47% collagen 

and ground substance [126]. The volume of a single medial SMC was 1630±640 μm3. The 

healthy aortic media SMC was in the shape of ellipse. The average length of minor and 

major axis is 3.1±0.8μm and 19.0 ±3.3μm, respectively. The average aspect ratio, i.e., 



29 

 

major/minor axis is 6.2±1.4. At the relaxed state, the elastic modulus of the rat aortic 

VSMC (same microstructure with human’s artery) in the major and minor direction is 14.8 

KPa and 2.8 KPa, respectively [127]. Upon contraction, the elastic modulus in major and 

minor direction is 88.1 KPa and 59 KPa, respectively. The average density of SMCs within 

the media is 3.7±0.6 ×105 cells/mm3 [126]. Between lamellae, the major axis of each 

nucleus aligned in the circumferential direction with a 19±3° radial tilt, resulting in 

cytoplasmic ends directed toward top and bottom of the lamellae. Collagen type I is the 

most abundant within blood vessels and had been proposed as the primary determinant of 

tensile properties [128]. Collagen was organized as bundles of fibers (numbering 24 ±15 

fibers per bundle), thinner bundles or individual fibers. Collagen fibers aligned 

preferentially circumferential in the media but showed random orientation in the adventitia. 

The LU thickness ranges 13-15 μm [123] with an elastic lamellar thickness of 1.0-2.2 μm. 

The number of LUs of the media layer is established during arterial development and is 

directly related to the tension in the wall. It was noted that the tension per lamellar unit is 

constant across mammalian species and throughout the arterial tree [129]. 

Elastic modulus of elastin and collagen fibers was reported as approximately 0.6 MPa 

and 1GPa, respectively [130]. Collagen fibers have a wavy nature and low contributions to 

mechanical behaviors at low pressure load. This is due to the waviness of collagen fibers 

[131], which was gradually straightened under pressure. Only 6-7% of collagen fibers are 

engaged at physiological pressure [126]. Microscopy studies on male adult rats revealed 

that collagen fibers aligned in the longitudinal-circumferential plane of the media layer of 

aorta. On the other hand, elastin fibers tended to align in the circumferential direction in 

SML, but often formed a longitudinally network structure in Els [126]. Collagen fibers 
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were observed more in ELs than in SMLs, and ELs comprise elastin and collagen fibers. 

Collagen fibers have a diameter of 3 μm and average segment length of 13-17 μm. The 

diameter of elastin fibers is measured around 0.1 μm which placed in ELs with an 

interconnecting, fenestrated network. 

 

 Arterial stiffness  

The stiffness of artery is directly related to the function of each component in the LU. 

Due to their higher elastic modulus, elastin and collagen fibers were classically considered 

as the main load bearing elements in LU. At physiological pressure, arterial stiffness was 

predominantly determined by elastin fibers, while wavy collagen fibers, without being 

straightened yet, did not bear much load. Then, the abnormally large mechanical load could 

straighten the collagen fibers, which were able to carry more load than elastin fibers. These 

sequential participation of elastin and collagen fibers in arterial stiffness led to non-linear 

stress-strain response of the arterial wall, while it was suggested that VSMCs have no 

contribution in the mechanical response of the artery [132], as illustrated in Figure 3-2.  
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Figure 3-2 Representative circumferential stress–stretch relationship for the mouse 
ascending aorta. 

Increased arterial stiffness is correlated with a larger collagen/elastin ratio in LU. Aging 

is associated with the defragmentation and discontinuity of elastin fibers. The damaged 

elastic fibers are generally not replaced, because elastin expression is turned off in adult 

species. This damage alone will weaken the artery. Then the arterial remodeling lead to 

more collagen fibers production, and usually increase the arterial stiffness [133, 134]. It 

has been reported that blood pressure and arterial stiffness are inversely related to 

elastin’s amount in the media layer [129, 135-138]. Many cardiovascular disease, 

specifically hypertension, are related to high stiffness of artery induced by elastin 

reduction and collagen fiber production [129]. Advanced glycation end-products (AGEs), 

which accumulate slowly with normal aging or in diabetes at a faster rate, has been 

considered as a major index factor for arterial wall stiffening [139, 140]. This was 

attributed to the increased protein–protein crosslinks on the collagen molecule [141, 142] 

and implied that collagen/elastin components alone are not the only inclusive parts to 
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determine the arterial stiffness in certain situations. Using hypertensive rat models, 

several groups observed minimal changes in collagen content of artery [143-146]. 

Instead, reduced collagen content were reported in some cases [147, 148]. Hu et al. [149] 

monitored over 8 weeks of ECM content in a coarctated mini-pig aorta. They observed 

that relative collagen content was increased at 2 weeks of hypertension, stayed at this 

high lever for 4 weeks, and then declined to the baseline level at 6 weeks. The relative 

elastin content decreased at 2 weeks and remained at a similar level thereafter.  The 

incongruous observations in the literature might be due to the variations in experimental 

protocols, including measurement methods of arterial collagen content, the hypertension 

degree, and the location of harvested artery [145].  

Apart from the variation of collagen/elastin fibers content and ECM in general, 

VSMCs might have a contribution to arterial wall stiffness. Sehgel et al. [150] suggested 

to look into the contribution of VSMC to arterial stiffness since variation in elastin 

density was not enough to induce a major change in aortic stiffness. Animal studies 

(spontaneously hypertensive monkeys [51, 151] and rats [152]) showed that VSMC in 

the aortic media layer is stiffer in the arteries with higher stiffness caused by hypertension 

or aging. These observations indicated that VSMC alone might contribute to arterial 

stiffness but has not been measured yet.  

 VSMC 

Stiffness measurement of vascular smooth muscle cells are challenging due to its 

sensitivity to phenotypic switching in response of the environment. It has been reported 

that cultured VSMC on substrate might change their phenotype to synthetic [153]. VSMCs 

are aligned circumferentially in the media layer and undergo large deformations in 
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physiological conditions. When the artery enlarges due to the hemodynamic pressures, 

VSMCs stretch along their major axis. However, AFM technique is only able to measure 

the elastic properties of local regions of cells under small deformations and cannot not 

provide enough information associated with the tensile properties of whole VSMC in 

physiological strain range (median strain of 25-50 %). Due to the aforementioned reasons, 

it is vital to obtain tensile properties of the cells freshly isolated from the artery wall. In 

this regard, different methods for gripping the VSMC and performing tensile test have been 

suggested. Knotting [154], aspiration [155], adhesion on pipette [156], plate [157] and 

micropillar array substrate [71] are among the popular cell gripping methods for the tensile 

testing of VSMCs.  

 

 Mechanical contribution of arterial constituents 

3.6.1 Experimental studies 

There is a range of techniques to quantify the mechanical behaviors of cells, such as 

Atomic Force Microscopy (AFM) [145, 150-152]. The contraction response of VSMC can 

be measured directly by AFM tests, or in an indirect way by comparing the expression of 

primary SMC-specific contractile markers such as SM α-actin. It is well known that by 

phenotype changing of VSMCs to synthetic type, the number of stress fibers decreases, 

and the number of organelles increases which prepare the cell to proliferate and generate 

ECM proteins. These changes in the cytoskeleton decrease contractility and stiffness of 

VSMCs (by one-third or one-fourth).  Thus, the initiation of cell proliferation can be 

counted as an indicator of relaxed VSMCs. Hu et al. [149] reported that cell proliferation 

occurred at 2, 4, and 6 weeks, but not at 8 weeks of hypertension. The highest proliferation 
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rate was captured at 2 weeks of hypertension. Xu et al. [158] found that proliferation of 

medial VSMCs was induced rapidly within 3 days after acute coarctation of the rat aorta 

and continued for 2 weeks. In addition, In addition, fluctuations in VSMCs stiffness was 

detected over 8 weeks of high tension loading of rat aorta [159]. Tosun and McFetridge 

[160] used cardiac output to define frequency profile of cyclic stretch of human VSMCs 

which was against with the previous in vitro models which were stimulated with constant 

pulse frequencies. It was revealed that the phenotypic outcome may be more dependent on 

the variation in the stimuli, rather than specific amplitude of change. 

These studies indicate that VSMC’s stiffness could decrease sharply at the early stages 

of hypertension because of their dedifferentiation. However, it is reported that medial 

VSMCs expressing contractile proteins could also proliferate and actively synthesize ECM 

proteins [149]. On the other hand, the dedifferentiated cells express low levels of 

contractile markers and high levels of signaling molecules associated with cell growth, 

migration, fibrosis, and inflammation [161]. Matsumoto et al. [159] investigated the effects 

of hypertension on morphological, contractile and mechanical properties of rat aortic 

VSMCs. They found that the density of SFs and the stiffness of each SF may dependent on 

the intensity and duration of hypertension. The contraction and stiffness of VSMCs 

increased to its maximum at 8 weeks of hypertension and decreased thereafter. However, 

these observations were not correlated with the previous studies. The potential explanation 

could be the level of hypertension, measurement techniques, level of VSMCs tension and 

VSMCs alignment.  

The mechanical properties of elastin fiber network in the media layer were evaluated 

under uniaxial or biaxial tension [162-166]. Weisbecker et al. [167] compared the 
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mechanical behavior of elastase and collagenase treated media from human thoracic aorta 

to untreated control specimens. VSMCs were still visible after elastase treatment and it was 

noted that their passive response might slightly affect the anisotropy of the tissue. One 

limitation of this work was neglecting the dependency of the mechanical properties on age 

or on the location of the artery. Martinez and Han [168] showed that collagenase treatment 

(collagen content decreased by 15%) caused an enhancement in the axial deformation but 

not in the circumferential deformation. This was explained by the dominating 

circumferential alignment of collagen in the vessel wall. While collagenase treatment may 

equally break the collagen fibers aligned in both the axial and circumferential directions, 

the ratio of change in the circumferential direction would be much smaller due to the large 

amount of collagen at the baseline [168]. However, Dorbin et al. [169] observed a 

considerable reduction in the arterial wall stiffness in the circumferential direction of 

collagenase treated dog arteries. The difference might be associated with the type of 

species, the density of collagenase used, or the implemented testing conditions [170]. 

Moreover, compared to elastase treatment, collagenase treatment seemed had less effect 

on the physiological pressures as that collagen is not fully engaged in the bearing arterial 

wall stresses. Reportedly, a decrease VSMC content by 11± 7 % in porcine carotid arteries 

was associated with enlargement of arterial wall at pressures up to 120 mmHg and 

mechanical stiffening of the arterial wall at higher pressures [171]. Despite the valuable 

results, the conducted researches had limitations such as being performed under static 

loading conditions, and the collagen fibers or VSMCs were partially removed in the treated 

specimens.  
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Although there have been many experiments to quantify the contribution of medial 

fibrous matrix in mechanical properties of the artery, the load sharing capacity of VSMCs 

has been underestimated. Previous studies about determining the stiffness and contraction 

of VSMCs in hypertension provided valuable information but sometimes are inconsistent 

which makes it difficult to evaluate the mechanical contribution of VSMCs in 

normotension and hypertension arteries. In addition, the load sharing capacity of VSMCs 

in LU is still not clear. Heterogeneity of LU and different mechanical properties of each 

component are the problematic issues to determine the portion of load taken by each 

constituent when the artery is exposed to hemodynamic pressures.  

3.6.2 Computational methods 

Numerical simulations have been implemented for many years to study the mechanical 

behavior of arteries. In the previous developed models, the arterial wall has been modeled 

as a single layer [172], two or three layers [173, 174].  The applied constitutive relations to 

the arterial wall have been formulated by hyperelastic material with orthotropic, transverse 

isotropic, and isotropic behavior [175-179]. The main concern about these models was to 

predict the macroscopic mechanical properties of the artery and evaluate its deformation 

[180-183]. Considering the highly heterogeneous microstructure of the arterial layers has 

been challenging in these studies.  

Furthermore, micromechanical modeling approach has been employed to include 

clearly distinguishable constituents inherited different material properties. The goal was to 

predict the anisotropic response of the heterogeneous material on the basis of the 

geometries and properties of the individual constituents, a task known as homogenization 

[184]. Application of micromechanical modeling in arterial mechanics is vast. Capturing 
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the responses of hyperelastic tissues with multiple families of collagen fibers [185], 

elucidating the interaction between collagen and non-fibrillar matrix [186], strain 

hardening of collagen-I gel and realignment of the network [187] can be counted as the 

micromechanical modeling applications associated with the behavior of fiber matrix. 

Thunes et al. [123] developed a micromechanical model to detect the stress field of the 

fiber matrix after collagen recruitment. The VSMCs were simplified and replaced by a 

homogenous medium as the non-fibrous part.   

In order to study the VSMC contraction effects in the media tunica and stress 

distribution through the thickness of artery, Lukes and Rohan [188] proposed a 3D 

micromechanical model, which consisted of a hyperelastic matrix (ECM), an 

incompressible inclusion (VSMC), and contractile bars (SFs). The micro-scale model was 

then coupled with a 2D macro-scale model of the arterial wall consisted of two layers of 

tunica media and tunica adventitia. 

Nakamachi et al. [108] constructed a multi-scale FE model for stress and strain 

evaluation of VSMC of the human artery. Their micro-scale model was based on a 

Representative Volume Element (RVE) model and consisted of a VSMC embedded in a 

homogenous matrix, Figure 3-3. Despite of the novelty of the developed model, the 

simplified ECM structure and neglecting the distribution of collagen/elastin fibers could 

be influential on the obtained results. Moreover, there were lack of discussion about 

mechanical contribution of the constituents in the arterial wall. 
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Figure 3-3 macro scale model of the arterial wall with three layers (right); arterial VSMC and RVE 

model (left) 

It has been found that the microstructure of ECM can vary by some diseases. Collagen 

disposition and cross-link disruption has been observed in the arteries with Marfan 

syndrome [189]. Moreover, Marfan aortic samples are histologically characterized by the 

fragmentation of elastic laminae (almost 50 per cent lower [190-192]), which leads to the 

formation of aneurysms. Therefore, considering the heterogeneous structure of ECM will 

allow to detect the ongoing mechanisms behind the arterial disease which change the 

properties of ECM and VSMC state.  

 Summary 

This review summarized the mechanical contribution of VSMCs to the arterial stiffness 

with focus on the load sharing of collagen/elastin fibers and contracted/relaxed VSMCs in 

the media layer of artery. In view of VSMCs cytoskeleton, it was noted that stress fibers 

have the major contribution in VSMCs contraction, however, microtubules and 
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intermediate filaments can indirectly affect contractility of the cells. In addition, the 

cytoskeleton responses are strongly related to the interaction of integrin receptors and 

extracellular matrix.  

VSMCs alter their proliferation and contractility or change their phenotype with respect 

to the mechanical environment, such as 2D or 3D ECM, and level of cyclic strains. 

Specifically, the cultured VSMCs change their phenotype compared with in vivo 

conditions. The responses of VSMCs subjected to cyclic loading is dependent on the time 

period of the applied load.  

The mechanics of VSMCs could be better delineated using numerical simulation. The 

interaction between collagen and non-fibrillar matrix, alignment and recruitment of 

collagen fibers and induced stresses in VSMCs during extension have been elucidated.  

However, the load sharing capacity of VSMCs in Lamellar unit as well as the influence of 

phenotype changing on the VSMCs contribution in arterial stiffness remained to be 

determined.  
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4 Chapter 4: Multi-scale modeling of lamellar unit in tunica media of 

artery 

Introduction 

Cardiovascular disease accounts for 17.3 million deaths globally and one of every four 

deaths in the United States each year [193]. Hypertension and aging are both recognized to 

increase arterial stiffness which causes major common chronic diseases, such as heart 

failure, myocardial infarction, stroke, vascular dementia, and chronic kidney disease [194]. 

Vascular stiffening is considered  one of the pathophysiological mechanisms contributing 

to the development of hypertension [195].  

The stiffness of the arterial wall is strongly dependent on the structure and integrity of 

lamellar units (LU) (i.e., vascular smooth muscle cells [VSMCs] encompassed by elastic 

lamellae and interposed with a collagen fiber network) [125]. Collagen deposition and 

elastin breakdown in the extra cellular matrix (ECM) has been widely considered as the 

predominant mechanism of arterial stiffening [196]. However, it was also reported that 

these changes of the ECM were not consistently observed in hypertensive arteries [197]. 

In some cases, clinical hypertension measurements detected a reduction in vascular 

collagen content [148].  

Structural variations in the artery may be attributed to the VSMC [198], while 

controversy exists regarding the contribution of VSMCs [199]. Bank and Kaiser [200] 

claimed that VSMCs’ relaxation can potentially occur in concert with an increase, a 

decrease, or no change in vascular wall stiffness. It has been hypothesized that VSMCs’ 

relaxation decreases arterial stiffness by reducing tension generated by the VSMC itself. 
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However, VSMCs’ relaxation has been counted to increase the arterial stiffness by 

engaging stiff collagen fibers. Moreover, it was observed that the total arterial stiffness was 

directly related to the VSMC’s stiffness [201]. In contrast, it was demonstrated that 

adaptation of the hypertensive artery and thickening of the vascular wall were caused by 

changing the phenotype of VSMCs from contractile to synthetic and producing more 

collagen fibers. In the synthetic phenotype, the stiffness of VSMCs is lower than that for 

the contractile phenotype, while the total arterial stiffness is higher than for normal 

conditions [195]. This research reported an inverse relation of the VSMC’s stiffness and 

the arterial wall stiffness. Though, the arterial stiffening has been well documented in 

humans and animal models over a century, the contribution of the VSMC among the LU 

components in arterial stiffness has not been quantified yet.  

Due to the complexity of the LU micro-structure, nonlinear properties of the fibrous 

network, and interaction between the VSMC and ECM, the in vitro studies are unable to 

meticulously reassemble the vascular wall to detect the contribution of VSMCs in arterial 

stiffness. When cultured on a substrate, the cells change their phenotype from contractile 

to synthetic [153], and their cytoplasm contains few filament bundles but a large amount 

of organelles, and hardly contract in response to contractile agonists. Therefore, the 

captured responses based on 2D experiments can be different with the in vivo behavior of 

VSMCs embedded in the ECM. 

Several structurally motivated constitutive models for the arterial wall have been 

recently developed [202-206]. Nakamachi et al. created a multi-scale model in which the 

LU was modeled by a representative volume element (RVE) consisting of a VSMC 

embedded in a homogenous ECM [108].The developed model illustrated the stresses and 
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strains of the VSMC under tension; however, the heterogeneity of the fibrous part of the 

LU, the waviness of collagen fibers, and the constituent’s volume fractions, were 

neglected. 

In this work, a novel multi-scale model has been developed to characterize the load 

sharing capacity of the VSMC in the LU and the corresponding aortic wall deformation. 

An RVE model was constructed by considering the architecture of collagen fibers per their 

volume fraction and distribution, and the nonlinear response in tension. The obtained 

mechanical response of the RVE was imported to a macro-scale model of the aortic wall 

to capture its deformation subject to the physiological blood pressure. The developed 

model allowed us to incorporate the micro-structural variation of the LU induced by aging 

and the resulting changes in aortic mechanical behavior.  

 Materials and Methods 

4.1.1 Micro-mechanical modeling 

We constructed a 3D representative volume element (RVE) to simulate the 

biomechanical response of a single lamellar unit. An average lamella thickness of 1.5 µm 

and an interlamellar (IL) spacing of 10 µm were chosen [207]. We exploited the LU 

symmetry in the circumferential and radial directions and considered a VSMC embedded 

in the ECM. The volume fraction of elastin fibers within the lamella has been measured as 

85 % [208]. The orientation histogram revealed that planar dispersion of the elastin fibers 

in the longitudinal-circumferential plane is approximately uniform figure 4-1. 



43 

 

 

Figure 4-1 Distribution of collagen and elastin in LU; Angle of 0 means circumferential direction and 

90o is along the length of artery [208] 

 

 

Therefore, in our model, lamella was treated as a homogenous solid section attached to 

the interlamellar space (Figure 4-2). The volume fractions and dimensions are listed in 

table 4-1. 

Table 4-1 the volume fraction and geometry of RVE constituents 

Component Volume fraction (%) [201] Geometry (Units are in µm) 

VSMC 47 Major radius = 20 [207] 

Minor radius = 4.5  

Elastin 

laminate 

13 Thickness = 1.5 [123] 

Collagen fiber 12 Diameter = 3 [209] 

Length = 9  

Ground 

substance 

28 Length × Width × Height = 10 × 10 × 

40  
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Figure 4-2 the developed RVE model of lamellar unit (LU) 

 

For collagen fibers, a bilinear constitutive response was considered to capture the effect 

of the fiber waviness [128]: 

𝜎 = {
0                                               , 𝜆 < 𝜆𝐶𝑜𝑙𝑙𝑎𝑔𝑒𝑛

𝐸𝐶𝑜𝑙𝑙𝑎𝑔𝑒𝑛(𝜆 − 𝜆𝐶𝑜𝑙𝑙𝑎𝑔𝑒𝑛)    , 𝜆 ≥ 𝜆𝐶𝑜𝑙𝑙𝑎𝑔𝑒𝑛
                                                                                                  (1) 

where 𝜆 is the current stretch ratio of fibers, 𝜆𝐶𝑜𝑙𝑙𝑎𝑔𝑒𝑛 is the recruitment stretch criteria, 

and 𝐸𝐶𝑜𝑙𝑙𝑎𝑔𝑒𝑛 is the elastic modulus of the fiber. Collagen fibers with 𝜆 < 𝜆𝐶𝑜𝑙𝑙𝑎𝑔𝑒𝑛 do not 

sustain any loading. The bundle of collagen fibers had a diameter of 3 µm [209]. Table 4-2 

summarizes the mechanical properties used in the RVE model.  
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Table 4-2 Mechanical properties of RVE 

Role Parameter Fitted value 

VSMC 𝐸𝑉𝑆𝑀𝐶  0.0881 MPa (Contracted) [127] 

0.0148 MPa (Relaxed) [127] 

Elastin laminate 𝐸𝐸𝑙𝑎𝑠𝑡𝑖𝑛  0.6 MPa [210] 

𝜆𝐸𝑙𝑎𝑠𝑡𝑖𝑛 1  

Collagen fiber 𝐸𝐶𝑜𝑙𝑙𝑎𝑔𝑒𝑛 80 MPa [211] 

𝜆𝐶𝑜𝑙𝑙𝑎𝑔𝑒𝑛  1.4 [212] 

Ground substance 𝐸𝐺𝑆 0.0001 MPa 

 

The RVE was subjected to an applied stretch of 𝜆 = 1.5 in the circumferential direction. 

The stress-strain response of LU was imported into the model described below to predict 

the macro-mechanical behavior of the media layer of the aorta. 

4.1.2 Macro-mechanical modeling 

A 2D model of the aortic cross section was generated considering its three-layer 

structure (i.e., intima, media, and adventitia). Due to the axial symmetry of the aorta, only 

¼ of the cross section was modeled as shown in Figure 4-3.  
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Figure 4-3 Macro finite element model of the human blood vessel, dimensions (unit: mm) and loading 

condition. 

The inner diameter of the aorta was 25 mm with a total thickness of 1.5 mm. After mesh 

sensitivity analyses, the model was discretized with 1608 CPS4R elements.  The cyclic 

internal pressure profile was applied to mimic the physiological blood load.  

The aforementioned three-layer aorta model is an improved version from the two-layer 

model by Nakamachi et al. [108]. The accuracy of the calculated displacement, strain, and 

stress depends on the accuracy of the modelled layer-specific stress-free geometry, 

constitutive equations, and boundary condition.  

The hyperelastic behaviors of the intima and adventitia layers were extracted from the 

published experimental datasets [213], which were fitted using the reduced polynomial 

constitutive equation below:   
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𝑈 = ∑ 𝐶𝑖𝑗(𝐼1 − 3)𝑖(𝐼2 − 3)𝑗

3

𝑖,𝑗=1

 

(2) 

where, I1 and I2 are the first and second invariants of the Cauchy-Green tensor. The 

obtained material coefficients by using curve fitting are listed in Table 4-3.  

Table 4-3 Material coefficients of both adventitia and intima layers  

Layer Coefficient 

Adventitia 

C10 = -1.1373 

C01 = 1.206 

C20 = 6.5364 

C11 = -17.819 

C02 = 12.870 

Intima 

C10 = -0.7699 

C01 = 0.8235 

C20 = 2.623 

C11 = -7.5097 

C02 = 5.8136 

 

While for the media layer, we extracted the extension response of the RVE model and 

compared it with the uniaxial test data [45] of the media layer to verify the micro-

mechanical model and then to assign the obtained behavior to the aorta model. 
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Figure 4-4 reveals the comparison between the obtained results and the experimental 

data. It can be seen that the trend of variation was identical and could break in the soft 

portion associated with the physiological pressure level and the stiff portion in response to 

the higher blood pressure levels where collagen fibers engaged in load bearing.  

 

Figure 4-4 Stress-strain response of the media layer 

 

Alternatively, the difference between the finite element model and the experimental data 

can be addressed by various causes, such as conditions of the in vitro-treated specimen and 

the selected arterial segment. Moreover, the RVE model is an idealized representation of 

the LU structure of the media layer, although it has been reported that separating the media 

layer from adventitia/intima layers during in vitro tests has some complexities that might 

affect the obtained response [214].  

By implementing the multi-scale modeling, we could characterize the VSMC’s 

contribution in load sharing of the arterial wall in different stretch levels and various 

contraction states. Moreover, the effect of aging through deposition of collagen fibers and 

fragmentation of elastin fibers could be studied.  



49 

 

 

 Results and Discussion 

Our micro-scale model, as a representation of the lamellar unit of the human aortic 

media, directly included the structural features of the ECM. The developed model could 

recapitulate the circumferential constitutive response of the media layer successfully. The 

load shared by VSMCs was calculated by integration of all nodal forces along the loading 

direction. Figure 4-5 illustrates the load sharing contribution of the ECM and VSMC in the 

LU exposed uniaxial tension. The VSMCs at lower stretch levels had a higher contribution 

in load sharing. However, at larger stretch levels collagen fibers came into play and took 

more loads which muted the contribution of the VSMCs.  

  

Figure 4-5 the contribution of VSMC and ECM in load sharing in a healthy carotid aorta LU 

 

In the case of the contracted VSMCs, load sharing of 30 % was detected at normal 

tension levels, while this value decreased to 1.5 % in hypertensive conditions (tensile strain 
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40 % and higher). In contrast, the relaxed VSMCs did not play a significant role in LU 

stiffness and could not take more than 6 % of the tensile load. These values could be altered 

with respect to the LU micro-structure and the volume fraction of its constituents. It has 

been claimed that VSMCs’ static stiffness varies according to their position in the arterial 

tree. Based on the confocal images regarding the VSMC shape and actin stress-fiber 

orientation, VSMCs from arteries with fewer elastic fibers (femoral and renal) are 

considered to be stiffer compared with the thoracic aorta VSMCs [201].  

Hereby, we studied the effect of fiber fragmentation due to aging effects. Therefore, a 

range of fiber loss from 10 % to 50 % was considered and the equivalent stiffness of the 

LU was computed for each case. Figure 4-6 depicts the loss of stiffness versus the 

fragmentation of elastin or collagen fibers.  

  

Figure 4-6 the influence of Collagen disruption and elastin fragmentation on the LU stiffness 

 

It is clear that at low pressure levels (tensile strain is less than 40 %) the elastin loss 

decreased the stiffness considerably. In more detail, 50 % fragmentation of the elastin layer 

caused 75 % loss of stiffness. However, collagen fiber loss showed its dominant influence 

in high pressure levels (tensile strain is more than 40 %) where collagen fibers were 
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straightened. By comparing these curves, the contribution of fibers in total stiffness of the 

LU can be distinguished. Moreover, it has been reported that during the process of arterial 

aging, and after the loss of the fibrous part of the LU, VSMCs produce more collagen fibers 

as a remedy to the lack of elastin fibers. By considering the waviness of these fibers and 

our obtained results, it can be concluded that even deposition of collagen fibers cannot 

contribute to arterial stiffness at normal tension conditions. Therefore, the paradigm of age-

related arterial stiffness has recently shifted from elastin/collagen content to cell-ECM 

interactions and VSMC tone as the principal determinants of arterial wall stiffness [215]. 

On the other side, it has been claimed that the environmental changes caused by aging 

derive a switch from a contractile phenotype to a synthetic phenotype of VSMCs. The latter 

phenotype is characterized by reduced expression of contractile proteins meaning lower 

stiffness. Therefore, in this condition, the lack of arterial stiffness is addressed by the 

thickening of the arterial wall and geometric remodeling.  

Differentiated phenotypes (contractile) of VSMCs can be evaluated by morphology 

studies from which VSMCs are spindle shaped. In this study, we derived the variation of 

the VSMCs’ section-area for different levels of tension, Figure 4-7.   
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Figure 4-7 the calculated area of VSMC with respect to the stretch level 

Dinardo et al. [201] measured the major axis/minor axis ratio of VSMCs located in 

different arterial beds. This parameter was counted as an indicator of the cell elongation 

and then interpreted as the contraction level of VSMCs. They observed that VSMCs from 

femoral and coronary arteries were more elongated than that of other vessels and concluded 

that the VSMCs from former arteries have higher contraction (static rigidity). On the other 

hand, they observed that femoral and coronary arteries have the lowest content of elastin 

and ECM/VSMC ratio. According to our results, the higher volume fraction of VSMC 

means it had a larger contribution in load sharing and more elongation. These physical 

variations occurred even if the contractility of VSMCs remained at a fixed value. As we 

observed, the ratio of the major axis/minor axis and therefore the VSMCs’ area was directly 

related to the tensile strain caused by hemodynamic loads. Moreover, it has been observed 

that the contraction of 2D cultured VSMCs and the ratio of the major axis/minor axis is 

inversely related. Therefore, the elongation of VSMCs cannot be an appropriate parameter 
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to detect the contraction level. However, comparing this parameter can provide useful 

information about the phenotype of the cell and the load sharing of VSMCs.  

At the next step, we modeled aging effects on the aortic expansion in different tension 

levels. Figure 4-8 shows the recorded expansion of the aorta for various collagen/elastin 

ratios and each VSMC’s status. For higher values of the collagen/elastin ratio the expansion 

of the aorta decreased drastically. This variation happens by collagen deposition caused by 

aging. The largest decrease in aortic expansion for high tension levels was 20 %, while in 

normal tension levels the relation of collagen deposition and arterial expansion was 

insignificant. Hereby, we did not change the volume fraction of elastin. As a result, at a 

normal tension level the expansion fluctuation is minimal. 

  

Figure 4-8 arterial expansion with respect to the different VSMC status and collagen/elastin ratios; 

Normal tension (right), hypertension (left). 

 

Moreover, at a normal tension level the expansion of the aorta was distinguishable for 

each VSMC status. However, for high pressure levels, the response of contracted and 

relaxed VSMCs converged. This result showed that in hypertension and where collagen 

deposition occurs, variation of VSMCs’ stiffness cannot change the aortic stiffness and 

expansion. On the other hand, it could be seen that if material remodeling happens, but the 
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aorta still works under a normal pressure level, VSMCs’ contraction/relaxation can 

considerably affect the arterial dilation. It has been reported that the mechanical phenotype 

correlates with the composition of ECM and can be modulated by the stretching imposed 

on VSMCs by blood flow circumferential stress [201]. In this study, we saw when aging 

occurred and more collagen fibers were produced in the ECM, then the mechanical 

variation of VSMCs could be meaningful only in a normal tension level.  

 Conclusion 

In this paper, we have developed an RVE model based on the lamellar unit of the media 

layer in the aortic wall. The developed model helped us to distinguish the load sharing 

capacity of fibrous and non-fibrous parts of the LU. In addition, micro-structural variation 

of the LU was analyzed, and the corresponding macro-structural behavior was studied 

through multi-scale modeling of the aortic wall. Our results showed that the VSMC can 

take up to 30 % of the applied load when contracted. It is known that the relaxed VSMC is 

around 10 times softer than the contracted one, which affects its contribution in load 

sharing of the LU. On the other side, the contribution of collagen fibers at low stretch levels 

was negligible but became predominant when straightened in high stretches. The obtained 

uniaxial response of the LU was validated against the previous experimental data. The 

macro-scale model of the aorta allowed us to evaluate the arterial expansion with respect 

to the micro-structural variation of the lamellar unit. Finally, aging effects by collagen 

deposition was modeled and aortic dilation was estimated. It was revealed that stiffening 

of the VSMC when the aorta is exposed to high pressure does not affect the aortic stiffness 

but is mainly controlled by collagen fibers. Our findings can shed some light about the 

contribution of VSMCs in arterial stiffness which has been under debate in recent years.  
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5 Chapter 5: Characterization of mechanical properties of 3D-printed 

PLLA/Steel particle composite 

 Introduction: 

The 3D printing is gaining increased attention by fabricating, usually layer by layer, 

complex structures with the minimal waste of raw materials. The printed pure polymer 

products are limited by its lower strength and functionality, and then the polymer 

composites reinforced by fibers and particles have been considered [216]. For example, 

metallic particles as the reinforcement of 3D printed polymer composites were investigated 

in terms of their mechanical, thermal, and electric properties. Nikzad et al. [217] developed 

Iron/ABS and Copper/ABS 3D printed particle composites to achieve higher stiffness. 

Boparai et al. [218] examined systematically tribological characteristics of a composite 

material with Al and Al2O3 particles embedded in Nylon6 matrix. As a result, higher wear 

resistance, thermal stability, and stiffness was attained. Impact resistance and tensile 

strength as well as electromagnetic characterization of a 3D Printable Tungsten–

Polycarbonate polymer matrix composite for space-based applications has been studied 

experimentally[219]. However, the nanoscale mechanical characterization of 3D printed 

particle composites was lacking.  

Existing researches focused on the effect of particle size [220], distribution [221], and 

shape [222] on the mechanical properties of composites without considering the 

contribution of interphase layer. Nonetheless, the interphase properties and interface 

strength play an important role in the mechanical properties provided by the particle 

composites [223]. A well-designed interphase can significantly enhance the strength and 

toughness of particle composites. Therefore, characterization of interphase mechanical 
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properties, which varies with respect to the distance from the particles, should be studied 

meticulously. The problems in finding an accurate description of interphase properties are 

mainly due to the inhomogeneity of the material, i.e. the high stiffness ratio between 

particles and matrix [224]. Analytical models were developed to encompass the influence 

of interphase layer. The earliest models [225] assumed that the two components are both 

homogeneous, and are perfectly bonded across a sharp and distinct interface. Hashin and 

Rosen [226] developed a model for particle composites in which a thin layer existed outside 

of each particle. The elastic moduli were uniform within this layer, but different from those 

in the matrix or particles. Afterwards, others have attempted to account for smooth 

variation of the moduli with radius.  Lutz and Zimmerman [227] modeled the moduli 

outside of the inclusion with a constant term plus a power-law term, thereby allowing a 

smooth transition between the interphase layer and the matrix. Despite the capability of 

analytical models to calculate bulk properties of composites, determining the local 

microstructure parameters such as the effective interphase thickness and fluctuations of 

elastic modulus is not feasible by this approach.  Hereby, quasi-static nano-indentation has 

become the standard technique used for nano-mechanical characterization of materials. 

Nano-indentation measurement has broad application across the physical sciences 

[228], and there are several researches on the implementation of this method for property 

extraction. In [229] nano-indentation tests were employed in order to investigate the 

material properties of the interphase region in phenolic/glass and polyester/glass systems. 

Moreover, local mechanical property variation in the interphase of E-glass fibre reinforced 

epoxy resin and E-glass fibre reinforced modified polypropylene (PPm) matrix composites 

was conducted by using this method [230]. Urena et al. [231] measured the mechanical 
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properties of the generated interphase by reaction between aluminum matrix and SiO2 

coating. Hardness and Young modulus of the interphase between matrix and reinforcement 

of Al 2014 matrix composites reinforced with (Ni3Al)p was determined by Torralba et al. 

[232]. However, the studies on polylactide (PLLA) and especially particle reinforced 

PLLA composites are scarce [233]. Moreover, there is no research associated with nano-

mechanical characterization and property extraction of PLLA polymer composite 

reinforced with steel particles.  

The objective of this study was to characterize the mechanical properties of 3D printed 

PLLA /Steel particle composites by using nano-indentation tests. And to accurately extract 

the interphase properties, and finally extract the bulk mechanical properties of PLLA /steel 

composite through a homogenization analysis. Homogenization analysis is a method for 

obtaining mechanical properties at the macro-scale from the obtained responses of nano- 

or micro-scale structures. Nano or micro-scale stress and strain distribution for each 

component material in composite materials can be visualized by localization analysis 

[234]. At the first step, fused filament fabrication (FFF) were employed to manufacture 

PLLA /Steel composites. Moreover, nano-indentation tests were performed to determine 

the Young’s modulus of the matrix and particles and variation of Young’s modulus at the 

interphase layer. Secondly, a micro-scale finite element model was developed by using a 

generated subroutine code to encompass the mechanical properties of interphase layer and 

then homogenization analysis was performed to obtain the bulk mechanical properties of 

PLLA /steel composite.  
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 Experimental procedure 

5.2.1 3D printing method 

Fused filament fabrication (FFF), also known as fused deposition modeling (FDM), is 

one of the most commonly used additive manufacturing (AM) technologies. A continuous 

filament of amorphous thermoplastic material is extruded through a heated nozzle and 

deposited in a single track. Typically, a raster pattern is used to form a single layer by 

moving the printing head (nozzle) horizontally (X-Y). Deposited material promptly 

solidifies and adheres with adjacent tracks of material to form the required geometry. The 

process is repeated as the platform moves vertically (Z) to enable deposition of another 

layer. Commonly used materials for FFF include acrylonitrile butadiene styrene (ABS) and 

polylactic acid (PLLA). One of the main advantages of AM compared to other traditional 

manufacturing process is access to each layer for modifying material properties. 

PLLA 420SS composite samples were printed by fused filament fabrication (FFF) on a 

Hyrel Hydra 645 (Figure 5-1a). A schematic of FFF indicating interlayer particle 

deposition is shown in Figure 5-1b. Physical and mechanical properties of the PLLA and 

420SS are provided in Table 5-1. The PLLA filament from 3D4MAKERS (Netherlands) 

had a natural color and a diameter of 1.75 mm. Micro-melt 420LC stainless steel powder 

from Carpenter Powder Products (USA) had a diameter between 45 µm and 105 µm. The 

420SS powder was randomly deposited between printed layers using two layer deposition 

frequencies: every fifth (L5) and every eighth layer (L8)., A total of 25 layers were printed 

for each sample at a layer thickness of 0.2 mm, 90% infill density, and a rectilinear infill 

pattern with a 45º infill angle. The L5 and L8 samples had powder deposited on five layers 
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and three layers, respectively. The amount of powder deposited on each layer was 

approximately 0.5 g (low concentration) or 1.0 g (high concentration). At 220 ºC, the 

nozzle temperature was above the glass transition temperature of PLLA and allowed for 

smooth material flow for deposition. The build plate was heated to 55 ºC to promote 

adhesion with the part. The travel speed of the nozzle was 50 mm/s. The dimensions of 

each sample were 50 mm by 12.7 mm by 5 mm (Figure 5-2). A brim of 4 mm was also 

printed to help secure the edges of the part to prevent warping and improve layer adhesion 

to the build platform. The produced ample is depicted in Figure 5-3. 

 

Figure 5-1 Equipment and schematic of 3D printing PLLA Steel composite, (a) FFF Hyrel Hydra 645 

3D printer, (b) FFF process schematic 

 

 

Table 5-1 Physical and Mechanical Properties of PLLA and 420 Stainless Steel 

 Density Tensile Strength Flexural Modulus 

 (g /cm3) (MPa) (GPa) 

PLLA 1.26 71 3.31 

420 Stainless Steel 7.72 1793 199.95 
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Figure 5-2 Sample geometry of fused filament fabricated PLLA-SS420 composites 

 

Figure 5-3 the 3D printed ample with 3 % of particle volume fraction 

5.2.2 Nano-indentation tests 

5.2.3 Sample preparation 

Using Buehler ISOMet 1000 Precision Saw, the sample is cut along the cross-section. 

By using Keyence laser scanning microscope VK-X200K, the SS420 particle is the bright 

part and PLLA matrix is the dark part in Figure 5-4. In order to study the effect of surface 

roughness another sets of samples were polished by Buehler MiniMet 1000 Grinder-

polisher.  
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Figure 5-4 PLLA-SS420 composite under 20X microscope lens: before polish (left) & after polish 

(right) 

5.2.4 Nano Indentation Probe 

The Hysitron TI 950 TriboIndenter is used to test the interphase mechanical property. 

The experiment setup is shown in Figure 5-5. 

 

Figure 5-5 Hysitron TI 950 Triboindenter 

In the experiment, cube corner probe is used. The geometric parameters of probe are 

listed in Table 5-2 Probe’s Parameters. The surface morphology of probes indentation is 

shown in Figure 5-6. 

  

Figure 5-6 Nano Indentation schematic (left), Three-side pyramidal probe schematic (right) 
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Table 5-2 Probe’s Parameters 

Probe Cube Corner 

Included angle 90° 

Half angle 35.26° 

Radius of Curvature ~40-100 nm 

Material Diamond 

 

In the following indentation test, 200 nm displacement control is used to test local 

mechanical property. And the distance between testing point is set to be 1 µm, make sure 

the current testing area don’t overlap with the previous indentation. Thus, the resolution of 

the interphase thickness is 1 µm. 

 Finite element modeling 

A micromechanical representative volume element (RVE) model was created by suing 

Digimat/FE package and then imported to ABAQUS. The steel particles were randomly 

distributed in the PLLA polymer matrix with the same volume fraction of experimental 

samples. Steel particle size and RVE size is depicted in Figure 5-7. Perfect bonding was 

considered for the interface of particles and interphases by using tie constraint. Moreover, 

to study the effect of bonding strength, imperfect bonding was considered by introducing 

contact constraint between interphase and matrix.  
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Figure 5-7 the generated RVE model and loading scenarios  

The volume fraction of particles was set to 3 %, 5% and 10% to evaluate the load sharing 

effect of steel particles inside the PLLA polymeric matrix. The number of elements varies 

approximately from 89000 to 251000 depending on the volume fraction of particles. Mesh 

sensitivity analysis suggests that the meshes are fine enough to produce accurate results 

compared to a mesh with twice as many elements, with a difference within 0.2% in terms 

of stress level. Periodic boundary condition, which developed by a user-specified Python 

script, was enforced in all directions to extend the RVE periodically, i.e., considering the 

interaction between the RVE with its mirrored images. The periodic boundary condition 

was expressed in terms of the displacement vector u, which related the displacements 

between the opposite edges according to 
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𝑢(𝑥, 𝑦, 0) − 𝑢𝑧 = 𝑢(𝑥, 𝑦, 𝐿) 

𝑢(𝑥, 0, 𝑧) − 𝑢𝑦 = 𝑢(𝑥, 𝐿, 𝑧) 

𝑢(0, 𝑦, 𝑧) − 𝑢𝑥 = 𝑢(𝐿, 𝑦, 𝑧) 

 

where 𝐿 was the length of the RVE; x, y, and z stood for the coordinate axes of the three 

edges of the RVE; and𝑢𝑥, 𝑢𝑦, and 𝑢𝑧 depended on the particular loading applied to the 

RVE. Three loading scenarios are considered in this study which are shown in Figure 5-7.  

 Results and discussion 

5.4.1 Experimental results 

Nano indentation test has been used to extract elastic modulus, hardness, and yield 

stress from indentation force-depth curve. Most of the previous studies on nano 

indentation have been concentrated on materials with a smooth surface [235, 236]. Our 

observations of the surface of samples showed that cutting process has created 

roughness and it has been reported that the characteristic size of roughness may have a 

significant influence on the test [237]. Therefore, it is crucial to investigate the effects 

of surface roughness on Nano indentation. Based on our measurements the height of 

defects was in rage of 300-500 nm which is decreased to 60-100 nm after polishing. We 

conducted nano indentations starting adjacent the edge of particle toward the center of 

particle. For each type we obtained load-displacement responses of 6 different particles.  
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It is worthy to mention that the variation of elastic modulus for unpolished sample 

was sporadic for all studied particles. It can be seen the captured values or unpolished 

sample has a significant fluctuation which is against our understanding of interphase 

mechanical properties. On the other hand, the magnitude of elastic modulus is gradually 

increasing from the edge of the particle to the center. Therefore, the polished samples 

were used for further studies.  

5.4.2 Converge study of Indent Depth 

 After the surface is polished, the roughness is less than 100 nm. However, it is still 

necessary to study the convergence of measured mechanical property (Reduced 

Modulus, Hardness, etc.). The modulus of sample is generated by curve fitting during 

unloading. The roughness on the surface could influence the Nano indentation load-

displacement curve. After the indentation depth is larger than the surface roughness, the 

roughness on the surface couldn’t influence the unloading curve, the modulus should be 

consistent. And the consistent modulus is considered to be the modulus of test material. 

Therefore, it is meaningful to study the modulus convergence as indent depth increases. 

By using displacement control, Reduced Modulus is chosen to study the convergence 

as the indent depth increases. Cube Corner probe is used, and 6 different indent depths 

are chosen, 30 nm, 60 nm, 100 nm, 150 nm, 200 nm, and 250 nm. Then indents are 

performed at the exact same location, from lower depth to higher depth. The result is 

shown in Figure 5-8.  
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Figure 5-8 Converge study of indent depth 

After indentation test, the surface morphology is shown in Figure 5-9. The total scan 

area is 10µm×10µm and the dimension of indentation area is around 1 µm, as marked 

in Figure 5-9. It is important to make sure that next indent point is not in the current 

indentation area. Because the current indentation area has plastic deformation. If next 

indent point is in this zone, the modulus measured will be affected. Therefore, the 

distance between indentation points in this study is 1 µm. 

 

Figure 5-9 Surface scanned after convergence study 
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Based on the result shown in Figure 5-8, the reduced modulus converges after the 

indent depth reaches 150 nm. In the following indentation test, 200 nm displacement 

control is used to test local mechanical property. And the distance between testing point 

is set to be 1 µm, make sure the current testing area don’t overlap with the previous 

indentation. Thus, the resolution of the interphase thickness is 1 µm. 

 

5.4.3 Mechanical characterization of phases 

At the next step, the elastic modulus for each phase was extracted by performing 

multi point nano indentation on each phase. Therefore, 9 point on the surface of a 

particle was considered and the average value of elastic modulus was attained. In a same 

way, but with 5 points of indentation, elastic modulus of PLLA was extracted. Figure 

5-10 illustrated the track of indentation for each phase.  

  

Figure 5-10 Indentation pattern on steel particle (left) and PLLA matrix (right) 

Depending on the strain rate, elastic modulus measured by nano indentation can match 

those measured by tensile or compressive tests or dynamic mechanical analysis (DMA). 

However, it has been reported that for particle composites the obtained values by the 

mentioned methods might be different. Cifuentes et al. [238] compared the mechanical 
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characterization of PLLA/Mg particle composites by compression tests and nano 

indentation analysis. The former one provided almost identical elastic modulus for the 

composite but not sensitive to the different volume fractions. On the other hand, the 

predicted values by nano indentation was directly related to the number of particles in the 

matrix which was in accordance with composite definition. 

Indentation and compression testing diverges in terms of testing geometry and the 

principle of measurement [239]. The load direction in nano indentation radially evolves 

from the first contact point, but for compression testing is unidirectional. In indentation 

testing a combination of compressive, tensile and shear forces are exerted on the material 

but in compression testing mainly compression stresses are applied [240]. Moreover, high 

resolution indentation allows to track the variation of elastic modulus for interphase layer.  

Microscopic interphases can dramatically alter the macroscopic constitutive response of 

particle reinforced composites and strongly related to the manufacturing process. 

According to our knowledge, there is no research about determination of interphase 

thickness of 3D printed metallic particle composite. In the assumption, the interphase is 

defined as the transition zone between particle and matrix. Therefore, the mechanical 

properties (Young’s Modulus, Hardness, etc.) of the interphase zone should be lower than 

particle and higher than the matrix. Because of the aforementioned reason, Young’s 

Modulus is used to find the interphase zone. The Young’s Modulus of interphase should 

converge to Young’s modulus of the particle, as testing point approaches to the particle. 

By using Hysitron TI 950 Triboindenter, we can see the sample through an optical 

microscope and find the edge, as shown in Figure 5-11. After doing Nano indentation on 
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the edge point, we measure more points’ Modulus towards particle center, as shown by the 

grey arrow in Figure 5-11.  

  

Figure 5-11 SS420 particle under an optical microscope (left); Surface scanned after Nano indent by 

15µm× 15µm (right) 

The performance of composites is significantly influenced by interactions between the 

filler particles and the matrix. The interaction term includes bonding strength between the 

particles and the matrix and also the characteristics of interphase layer. Through our 

microscopic observations, we did not find any debonding at the interface of particles. 

However, it is reported that in other manufacturing processes in which the particles are 

heated, there will be a large deterioration of polymer adjacent to the particles [241]. 

Therefore, increasing volume fraction of particles, which is supposed to enhance the 

mechanical response of polymer, accumulate the imperfect bonding and decrease the 

stiffness of composites.  
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Figure 5-12 Nano indentation response at a region close to the particle’s edge 

5.4.4 Homogenization of the PLLA /steel composite 

The mechanical properties of PLLA/Steel composite can be achieved by 

homogenization of the RVE model. After examining the elastic modulus of the composite 

phases, the obtained values were imported into the finite element model, and numerical 

simulations were conducted.  

The role of particles in strengthening of PLLA matrix can be demonstrated by 

comparing the load sharing of the composites. The load shared by each phase was 

calculated by integration of all nodal forces along the loading direction, Figure 5-13. 

Results showed that the load shared by the steel particle increased by 21 % when volume 

fraction varied from 3 % to 10 %. The contribution of interphase was insignificant which 

mainly because of the low thickness of this layer. 
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Figure 5-13 Load sharing capacity of the PLLA/steel composites 

Degradation of the matrix after a while can cause deterioration of the interphase layer 

and then debonding of the particles [242]. Existence of the interfacial debonding can lower 

the strength of the composites and initiate progressive internal damage [243]. Although, 

we did not observe any debonding of particles for the 3D printed composites, due to the 

degradability of PLLA polymer over time, we studied the effect of interfacial defects on 

the performance of 3D printed PLLA/steel composite. In many of the previous studies 

about debonding and the mechanical properties of composites only one specific loading 

circumstance has been considered [243-247]. However, this defect might affect differently 

with respect to the applied loading conditions. In this section the authors have studied the 

contribution of particle bonding strength in different loading scenarios.  

In Figure 5-14, it can be seen that as the particle volume fraction increased to 10 %, the 

effective elastic modulus of the composite increased by 31 %. Moreover, it can be seen 

that under this loading condition, debonding of the particles tremendously reduce the 
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elastic modulus and loading capacity. It is depicted that the obtained values for imperfect 

bonded particles for all the specimens are lower than that for pure PLLA polymer. This can 

reveal the importance of manufacturing process of the metallic particle composites and the 

strength of particle attachments can determine the strength of produced composites. A 

comparison of the composite with 10 % of particles shows that bonding defects can reduce 

its elastic modulus by 70 %, while this difference for PLLA/steel with 5 % and 3 % of 

particles is 29 %, and 17 %, respectively. This proves when degradation of PLLA occurs 

those composites with higher initial elastic modulus will be the weakest ones which can be 

accounted as a limitation for embedding higher volume fraction of particles [242].  

 

Figure 5-14 the effective elastic modulus of composite under tensile loading 

The obtained values of Elastic modulus under uniaxial compressive load is depicted in 

Figure 5-15. As it is expected, imperfect bonding condition plays a minimal role in variation 

of elastic modulus. Comaretively, all the PLLA/steel composites have higher elastic 

modulus than pure PLLA. The largest reduction of elastic modulus can be seen for 

PLLA/steel with 10 % of particles which is 7.2 %. This results show when the 3D printed 
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particle composite exposed to the compressive loads, even when PLLA polymer 

degradation occures, the sustainability of the structure is not affected largely.  

 

Figure 5-15 the effective elastic modulus of composite under compressive loading 

Figure 5-16 shows the Elastic modulus for the PLLA/steel composites under shear 

loading. The stiffness degradation is also demonstrated which is directly related to the 

number of particles in PLLA matrix. It can be seen that PLLA/steel with 10 % of particle 

fraction increased the shear modulus of PLLA polymer up to 26%. In addition, in the worst 

case, debonding of particles could decrease the shear modulus down to 36 %.  
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Figure 5-16 the effective elastic modulus of composite under shear loading 

In order to have a sharper understanding of the contribution of bonding strength of 

particles faced different loading conditions, we plotted the stress distribution for the 

PLLA/steel composite with volume fraction of 3 %, Figure 5-17. It can be seen that when 

the specimen is exposed tensile load, the induced stresses on sides of the particles dropped 

considerably and as a result the structure’s stiffness decreased and could not withstand the 

imposed load. On the other hand, in the midst of compression the contact between particles 

and matrix transmit the applied load throughout the specimen, although there is a small 

drop of stress values on top and bottom of the particles due to the debonding. Finally, for 

the shear deformation, detachment of particles at the angle of 45 and 275 with respect to X 

axis is observable.  
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Figure 5-17 Stress distribution of PLLA/steel composite with volume fraction of  3% under different 

loading scenarios (imperfect bonding) 

 

 Conclusion 

In this paper we manufactured a 3D printed PLLA/steel particle composite by using 

fused filament fabrication method. At the next step, nano-indentation tests were 

conducted in order to characterize the mechanical properties of the composite. At the last 

step, a RVE model was generated to determine the elastic modulus of the composite. The 

following conclusions can be extracted: 

• The elastic modulus of 3D printed composite with 10 % of particles was 31 % 

higher than that for the pure PLLA polymer.  

• Perfect bonding of particles was observed for almost all of the samples which 

stem from the 3D printing method.  

• The measured thickness of interphase was considerably lower than the diameter 

of particles, and a sharp variation of the elastic modulus was observed around 

the particle’s edge. 
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• The sharing load of particles in the composite with 10 % of particles is 

approximately 60 %, whereas this value for the composites with less than 10 % 

of particles is lower than 50 %.  

• Degradation of interphase can reduce the elastic modulus of the composite by 

70 % and 7% under tensile and compressive loads, respectively.  

• Shear modulus of the composite with 10 % of particles decreases by 36 % when 

debonding occurs. In this case the shear modulus of the composites is lower than 

that for the pure PLLA polymer. 
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6 Chapter 6: Micromechanical Analysis of Bioresorbable PLLA/Mg 

composites coated with MgO: effects of particle weight fraction, 

particle/matrix interface bonding strength and interphase 

 

 Introduction 

Bioresorbable polymers, such as poly-L-lactic acid (PLLA), has been extensively used 

in biomedical applications because of its resorption. Specifically the PLLA are attracting 

increased attention for vascular stent [1]. The first-generation bioresorbable coronary stent 

was released by Abbott vascular in 2016. However, the disadvantages of these polymers 

are the inferior mechanical performance, compared to conventional stents made of stainless 

steel or other metallic materials.  Relatively low stiffness of the PLLA stent resulted in a 

bulky strut profile, which might affect the occurrence of complications following stenting 

[2]. Kastrati et al. showed that the stent with a thinner strut was associated with a significant 

reduction in angiographic and clinical restenosis after coronary artery stenting [3].  

The particle reinforced composites offer the potential to overcome the low stiffness of 

bioresorbable polymers [4]. Misra et al. developed a poly-L-caprolactone (PCL) stent 

reinforced with graphene nanoparticles [2].  It was reported that the presence of 4 wt% 

graphene nano plates enhanced the Young’s modulus of the PCL polymer by 53 %. Jang 

et al. fabricated the PLGA composite reinforced by magnesium hydroxide particles 

Mg(OH)2 with various shapes [5]. It was found that Mg(OH)2 fiber provided much more 

mechanical strength due to the large aspect ratio and surface area, which would enhance 

the molecular interactions and chemical reactivity. Osman et al. also showed that particles 
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with large aspect ratio could boost the mechanical properties [6]. On the other hand, 

bioresorbable reinforcements with a larger surface area to volume ratio would promote the 

degradation rate and cause detrimental effects on the mechanical properties of composite 

[7].  

 The PLLA polymer reinforced by Mg particles have drawn attentions due to desirable 

mechanical enhancement [8]. However, the PLLA/Mg composites with 10 % of weight 

fraction exhibited a lower stiffness than the pure PLLA after 28 days of placement, due to 

the faster degradation of Mg particles than the pure PLLA [9]. When the Mg was used as 

reinforcement, its fast degradation rate was generally inhibited by various surface 

modification methods [10], such as the deposition of a coating by microarc oxidation 

treatment [11], polycaprolactone coating [12], calcium phosphate (CaP) [13], [14].  A 

systematic study on the role of Mg, especially its coating was needed for designing a 

desirable biodegradable PLLA/Mg stent.  

In this work, we combine the computational the Mori-Tanaka approach [15] with the 

local characterization of the finite element method [16] to quantify the micromechanical 

behavior of the PLLA/Mg composites. A 3D representative volume element (RVE) 

containing randomly distributed Mg particles was developed to estimate the local and 

global response of PLLA/Mg composites. The influences of particle weight fraction, 

imperfect bonding between particle and polymer matrix, and MgO coating will be 

examined in terms of effective Young’s modulus and yield strength of the composites as 

well as the local mechanics.  
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 Material and Methods 

Micromechanical analysis can provide researchers with a range of information on the 

local and global properties of composite materials [17]. In FEA of randomly reinforced 

composites, generating homogenous and isotropic RVEs is the main factor in estimating 

the behavior of models accurately [18, 19]. Hereby, the configuration of the PLLA/Mg 

composite was represented by a three-dimensional RVE with a length of 123 µm each side, 

as shown in Figure 1. The Mg particles were randomly distributed within the PLLA 

polymer matrix. The spherical shape of Mg particles with a radius of 12.3 µm were adopted 

from the published measurements using a Malvern 2000 laser-scattering particle size 

analyzer [7]. The Young’s modulus of the Mg particle was 44 GPa and Poisson’s ratio was 

0.35 [20].  The MgO coating between Mg particles and PLLA matrix had the Young’s 

modulus of 330 GPa and a Poisson’s ratio of 0.37[21]. The relative coating thickness, i.e., 

coating thickness vs. Mg radius, were varied from 0.2 to 0.5 in an increment of 0.1. The 

PLLA polymer had a Young’s modulus of 2.26 GPa and a Poisson’s ratio of 0.3 [22]. A 

range of weight fraction from 1% to 15 % was considered to evaluate the load sharing 

capacity of Mg reinforcements.  

The model was meshed with quadratic tetrahedral elements and the element size of 2 

µm were chosen. Uniaxial compression in Y-direction was applied by a displacement of 

10 µm. A Periodic boundary condition was adopted [23]. Perfect bonding was considered 

at the interface between the Mg and the MgO. The imperfect bonding was assumed with a 

tangential sliding with the friction coefficient of 0.2 in other cases.   
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Figure 6-1 Three-dimensional representative volume element at different weight fractions of Mg 

particles.   

 

 Results 

6.3.1 Model validation 

The effective Young’s modulus of the PLLA/Mg composite obtained from our RVE 

models was compared against the results from the published indentation testing results [9] 

as well as the analytical solution from the Mori-Tanaka approach [15]. 

 The principle of the Mori-Tanaka approach is that the average strain in the particles 

of a two-phase material could be estimated by the solution for a single particle embedded 

in an infinite medium subjected to a remote uniform stain within the matrix [24]. The 
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effective Young’s modulus (Ee) for a composite reinforced by spherical particles was 

calculated as the following: 

𝐸𝑒 =
9𝐾𝑐𝐺̃𝑐

3𝐾𝑐 + 𝐺̃𝑐

 (1) 

𝐾𝑐 = 𝐾𝑚 +
𝑉𝑝𝐾𝑚(𝐾𝑝 − 𝐾𝑚)

𝐾𝑚 + 𝛽2(1 − 𝑉𝑝)(𝐾𝑝 − 𝐾𝑚)
 (2) 

𝐺̃𝑐 = 𝐺̃𝑚 +
𝑉𝑝𝐺̃𝑚(𝐺̃𝑝 − 𝐺̃𝑚)

𝐺̃𝑚 + 𝛽1(1 − 𝑉𝑝)(𝐺̃𝑝 − 𝐺̃𝑚)
 (3) 

𝛽1 =
2(4−5𝜈𝑚)

15(1−𝜈𝑚)
 , 𝛽2 = 3 − 5𝛽1                                                                               (4)    

where 𝐾̃ and  𝐺̃ denote the bulk modulus and shear modulus. The subscripts “m” and 

“p” stand for the matrix and particles, respectively. Also,  𝑉𝑝 is the volume fraction of 

particle, i.e., the weight fraction multiplied by the ratio of the matrix to particle density. 𝜈 

is the Poisson’s ratio.  

Figure 6-2 depicts the comparison among our RVE models, published experiments, 

and the analytical solution from the Mori-Tanaka approach. It is clear that our model 

predictions are congruous with the experimental data as well as the analytical derivations. 

The maximum variation among three different approaches was less than 9 %, which 

occurred at the Mg weight fraction of 15%. Moreover, as the Mg weight fraction increased 

from 1% to 15%, the effective Young’s modulus of the composites increased by 28.9 %.  
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Figure 6-2 Comparison of the effective Young’s modulus (Ee) obtained from the representative volume 

element model, experimental data, and the analytical derivations from the Mori-Tanaka approach.  

6.3.2 Effect of bonding condition at the PLLA/Mg interface 

   During the fabrication process of PLLA/Mg composites, There existed thermal 

degradation and hydrolysis of PLLA [9] and potential deterioration of bonding strength 

between PLLA and Mg.  Two bonding conditions at the PLLA/Mg interface were then 

considered. One was with the perfect bonding, and the other allowed tangential sliding with 

a friction coefficient of 0.2, hereby referred to as the imperfect bonding.  

The effective Young’s modulus and yield strength were obtained as shown in Figure 

6-3. A profound enhancement of effective Young’s modulus was observed for PLLA/Mg 

with the perfect bonding. However, the imperfect bonding between Mg particles and PLLA 

matrix resulted in a diminished modulus. Specifically, the effective Young’s modulus of 

the composite with 15 wt% of Mg, compared with the one with 1 wt% of Mg, increased 

approximately 28.9 % and 15.24 % for the perfect and imperfect bonding conditions, 

respectively. Moreover, the imperfect bonding reduced caused 2.7 % decrease in the yield 

strength of the composites as the wt% of Mg increased from 1% to 15%. On the contrary, 
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the perfect bonding condition enhanced the composite’s yield strength. The 15 wt% of Mg 

could strengthen the yield strength of the composites by 9.5 %. 

 

(a) 

 

(b) 

Figure 6-3 The effect of bonding intensity on (a) Effective Young’s modulus; (b) and yield strength of PLLA/Mg 

composites. 

The observed responses of the composite for different bonding conditions was 

further illustrated by contour plots of von Mises stress at the PLLA/Mg interface (Figure 

6-4). A continuous stress distribution from the matrix to the inclusion was observed for the 

perfect bonding condition. The peak of the stress was 0.112 GPa, located at the center of 
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the particle. Much smaller stresses were observed in the Mg particle for the imperfect 

bonding, especially at the edge of the particle.   The peak von Mises stress at the center of 

the particle was 0.083 GPa, which is 35 % less than that for perfect bonding. Moreover, 

debonding was clearly visualized at the interface between the Mg particle and the PLLA 

matrix. This led to the abrupt changes of von Mises stress at the interface. At the same 

time, the peak von Mises stress in the matrix was 0.055 GPa, compared to the 0.050 GPa 

for the perfect bonding case. This indicate that the PLLA matrix undertook more loads.  

 

Figure 6-4 Contour plots of Mises stresses (GPa) of PLLA/Mg with Mg (wt. 1%) for perfect and 

imperfect bonding conditions 
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The role of bonding strength on the load-sharing capacity of the PLLA matrix and 

Mg particles was illustrated in Figure 6-5. The load shared by each phase was calculated 

by the integration of all nodal forces along the loading direction (Y-axis). Results 

demonstrated that the load shared by the Mg particles increased 52 %, when Mg weight 

fraction varied from 1 to 15 wt% with the perfect bonding condition. The matrix undertook 

almost the entire loading at 1 wt% of Mg. However, for the imperfect bonding condition, 

the loading sharing capacity of the Mg particles was less efficient, and the matrix have to 

undertake more load. Specifically, the load shared by the 15 wt% of Mg was 61 % 

considering the perfect bonding, while it decreased to 47.5 % for the imperfect bonding 

condition.  

  

Figure 6-5 Effect of bonding strength on the load-sharing capacity of the PLLA/Mg composites, left) 

Perfect bonding; right) Imperfect bonding 

6.3.3 Effect of MgO interphase 

The MgO interphase is a region of finite size between PLLA matrix and Mg particles, 

and it has a different property than two main phases [20].  It was responsible for transferring 
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load from matrix to particle inclusions. The effect of MgO interphase on the effective 

Young’s modulus of the composite was evaluated for different relative thickness (0.2, 0.3, 

0.4, 0.5), as shown in Figure 6-6. The perfect bonding condition at all interfaces was 

considered. It was clear that the MgO interphase layer significantly boosted the stiffness of 

the composites. For the 15 wt% of Mg, the effective Young’s modulus of the PLLA/Mg-

MgO (0.5) was 5.38 GPa, which is 65.6 % larger than that without interphase, and 138% 

larger than that of pure PLLA polymer. The MgO interphase had a much larger influence 

on the composite with a higher weight fraction of Mg.  

The yield strength of the composite was also enhanced with the consideration of MgO 

interphase (Figure 6-7).  For the 15 wt% of Mg, the yield strength of PLLA/Mg-MgO (0.5) 

is 139 MPa and approximately 139 % higher than that without considering the interphase. 

Compared to the pure PLLA polymer, the MgO interphase could boost the yield strength 

of the composite up to 170 %.  

 

Figure 6-6 the influence of MgO coating layer on effective Young’s modulus of the composites with 

different Mg weight fractions. 

1

2

3

4

5

6

0 1 5 10 15

E
e 
(G

P
a)

Mg (wt.%)

PLLA
PLLA/Mg
PLLA/Mg-MgO(0.2)
PLLA/Mg-MgO(0.3)
PLLA/Mg-MgO(0.4)
PLLA/Mg-MgO(0.5)



87 

 

 

Figure 6-7 the influence of MgO coating layer on the yield strength of the composites with different Mg 

weight fractions. 

 Discussions 

In this work, the effect of Mg particle reinforcement on the PLLA polymer was studied 

through micromechanical modeling. It was well known that particle reinforced composites 

exhibit relatively isotropic properties compared to short fiber or whisker reinforced 

composites. The properties of these composites can be tailored by adjusting fabrication 

techniques with various parameters such as reinforcement particle properties, size, 

distribution, weight or volume fraction, and/or matrix properties [25]. Cifuentes et al. [26] 

fabricated a variety of PLLA/Mg composites and characterized that particle strengthening 

effect decreased with a larger weight fraction of Mg particles. It was speculated that during 

the fabrication process of the composites, Mg particles promote certain degree of thermal 

degradation of PLLA molecules, which counterbalance with the strengthening effect of 

particle weight fraction. For the PLLA/Mg composites with less than 5 wt% of Mg, the 

particle strengthening effect exceeded the thermal degradation effect, which strengthen the 

composites. However, for the PLLA/Mg composites with more than 5 wt% of Mg, the 

thermal degradation effect surpasses the particle strengthening effect, and thus a decrease 

40

90

140

190

0 1 5 10 15

Y
ie

ld
 s

tr
en

g
th

 (
M

P
a)

Mg (wt.%)

PLLA/Mg

PLLA/Mg-MgO(0.5)

PLLA



88 

 

in the effective modulus of the PLLA/Mg composite. It is necessary to regulate the thermal 

degradation of Mg particles during the fabrication process. The recent work from the same 

group [9] addressed the deterioration effect of Mg particles based on the temperature 

dependency of each phase and demonstrated an improved stiffness for the PLLA/Mg 

composites with more than 5 wt% of Mg.  

In this study,  our computational models were developed based on the published 

experimental evidence [9]. We have considered two level of bonding strength between Mg 

particles and PLLA. The weak bonding mimicked the thermal deterioration effect during 

fabrication process. Our results have shown that the compressive yield strength and 

effective Young’s modulus of the composites with imperfect bonding decreased around 

12.4 % and 16 %, respectively, compared with the perfect bonding conditions.  Moreover, 

the imperfect bonding decreases the level of variation of effective Young’s modulus with 

respect to the weight fraction of particles. This agree with the work by Hua et al. [23], 

which stated that a perfect bonding assumption could lead to an overestimation of the 

effective Young’s modulus of composites.  

Fast degradation rate of magnesium particles is a serious concern for composites with 

more than 10 wt% of Mg. To overcome this drawback, several surface modification 

techniques, including the  chemical deposition and microarc oxidation techniques, have 

been introduced to control the degradation rate of Mg [27]. The long-term in vitro 

degradation behavior of the composites was further examined through the immersion in 

SBF solution for different time periods. It is well known that the overall corrosion reaction 

of magnesium in aqueous solution at its corrosion potential is directly related to the 

released hydrogen gas, caused by chemical reactions. Figure 6-8 shows the cumulative 
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hydrogen gas evolution diagrams for uncoated, MgO-coated and Si/MgO-coated 

microcomposites.  

 

Figure 6-8 Hydrogen evolution during immersion of uncoated, MgO-coated and Si/MgO-coated in SBF 

solution for duration of 168 h [28]. 

The coating layers exhibited its efficiency to decrease the hydrogen evolution 

significantly and thus the degradation rate of Mg particles. Zamani et al. studied 

biodegradable Mg microcomposite coated with MgO in terms of corrosion rate, surface 

characterization, and biocompatibility [28].  

The documented data on the MgO coating focused on the quantification of its role on 

regulating the degradation and corrosion of Mg, our results on the load sharing effect of 

MgO coating provided new insights on the mechanical properties of PLLA/Mg composite.  

Due to its rigidity, it was observed that adding MgO coating with a relative thickness of 

0.5 could increase the effective Young’s modulus of the composite with 15 wt% of Mg 

particles by 138 %. In addition, the yield strength of PLLA/Mg-MgO with 15 wt% of Mg 

particles and a relative thickness of 0.5 is 139 % and 170 % higher than that of PLLA/Mg 

and neat PLLA, respectively.  
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 Conclusions 

The micromechanical analysis of PLLA/Mg composite were performed to quantify 

the effects of particle weight fraction, particle/matrix interface bonding strength, and MgO 

interphase on the mechanical properties of the biodegradable composite. The model was 

validated by the published indentation tests [9] as well as the analytical solution [15]. The 

computational results towards the optimal design of PLLA/Mg composites were 

summarized as:  

• Imperfect bonding of Mg particles could drastically weaken the mechanical 

properties of PLLA/Mg composite. The yield strength was reduced by 12 %. This 

indicated the importance of the fabrication process.  

• The MgO coating or interphase layer between PLLA and Mg was intent to 

mitigate the degradation rate of Mg particles. In addition, it also enhanced the 

effective Young’s modulus and yield strength of the composites by 65.6 %, and 

139 %, respectively.  

• The PLLA polymer reinforced with coated Mg particles can benefit from 138 % 

and 170 % enhancement of its effective Young’s modulus and yield strength, 

respectively.  
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7 Conclusion and future work 

 

Formation of arterial plaque and stenosis is one of the main cardiovascular disease risk 

factors. Stenting is a popular approach to increase the inner diameter of artery and provide 

an acceptable lumen gain. This is achieved by applying internal pressure to the arterial 

wall. Despite the desirable outcomes of this procedure there are complexities and 

challenges that are being discussed among scholars in this area. Occurring restenosis is one 

of the complications in which smooth muscles cell start proliferation and remodeling in 

response of induced mechanical stresses. Another important point of view is the placement 

of stent and possible migration due to the continuous deformation and special contact 

situation between tissue and stent struts. Finally, the mechanical properties of stent and 

application of novel material in order to excel its performance are the critical topics that 

also have been elaborated in the current research work through different chapters. In the 

present work, the relative movement of the braided wires was constrained to mimic the 

covering effect commonly used in commercial esophageal stents. The anatomical details 

of the esophagus including the stellate appearance of the inner esophageal layer was 

simplified as an esophagus tube with a friction coefficient. A range of friction coefficients 

were used depending on relative movement between the stent and the esophageal wall. A 

larger friction coefficient was commonly associated with the less migration risk. The 

feasibility of the model was validated in our previous work. The esophagus was modeled 

as a one-layer tube, although it is assumed as two layer or three-layer wall depending on 

the aim of the study. The detailed configurations of esophageal wall could alter our results 

in terms of magnitudes, but the comparative results between two stent designs was 
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expected to be the same. The material properties of the esophagus and cancerous tissue 

were assumed to be homogeneous isotropic materials, although they are anisotropic. The 

perfect plasticity for cancerous tissue was assumed due to lack of experimental data. More 

realistic models considering patient-specific geometry and anisotropic three-layered 

esophageal wall properties would change the contact force and the migration resistance 

force. The existence of pre-stretch along axial and circumferential directions at 

physiological conditions as well as the esophageal muscle contraction were not explicitly 

incorporated in our model, we speculate that the both pre-stretch and wall contraction were 

associated with the reduced friction between stent and esophagus, and thus a higher 

migration rate. Despite these simplifications, this work demonstrated the importance of the 

stent design on the risk of migration, which might have significant clinical implications. 

This work could be used to provide a fundamental understanding of the behavior and 

impact of stent design on the esophageal wall, provide guidance for optimizing stent shape 

and surface profiles, and illuminate the possibilities for exploiting their potential to prevent 

migration.   

Another complication about stenting is restenosis which can be related to the 

mechanical response of VSMC. In view of VSMCs cytoskeleton, it was noted that stress 

fibers have the major contribution in VSMCs contraction, however, microtubules and 

intermediate filaments can indirectly affect contractility of the cells. In addition, the 

cytoskeleton responses are strongly related to the interaction of integrin receptors and 

extracellular matrix. VSMCs alter their proliferation and contractility or change their 

phenotype with respect to the mechanical environment, such as 2D or 3D ECM, and level 

of cyclic strains. Specifically, the cultured VSMCs change their phenotype compared with 
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in vivo conditions. The responses of VSMCs subjected to cyclic loading is dependent on 

the time period of the applied load. The mechanics of VSMCs could be better delineated 

using numerical simulation. The interaction between collagen and non-fibrillar matrix, 

alignment and recruitment of collagen fibers and induced stresses in VSMCs during 

extension have been elucidated.  However, the load sharing capacity of VSMCs in Lamellar 

unit as well as the influence of phenotype changing on the VSMCs contribution in arterial 

stiffness remained to be determined. The focus of this review work was on the tunica media 

as this layer is the thickest one and has the greatest contribution on the arterial stiffness. 

However, the contribution of tunica adventitia and intima, which are placed on the outer 

and inner sides of the tunica media, should not be neglected. Adventitia is the strong outer 

coverage which composed of connective tissue as well as collagen and elastin fibers. These 

fibers prevent the arterial wall from overexpansion. The most abundant cell type in 

adventitia is the fibroblast, which synthesize the extracellular matrix and collagen fibers. 

The stiffness of fibroblast cell has been measured between 1-27 kPa. This range is 

comparable with VSMCs in relaxed state; however, the number of fibroblasts is much 

smaller than VSMCs in arterial wall (due to the large thickness of tunica media) which 

decreases their contribution in the total arterial stiffness. One the other side, intima is 

composed of an elastic membrane lining and endothelium (an exceedingly thin single sheet 

of endothelial cells). The mechanical contribution of endothelium is not significant 

(stiffness between 1-2 kPa), however, endothelial cell signaling plays an important role in 

contraction and relaxation of VSMCs and arterial stiffness. 

Moreover, we have developed an RVE model based on the lamellar unit of the media 

layer in the aortic wall. The developed model helped us to distinguish the load sharing 
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capacity of fibrous and non-fibrous parts of the LU. In addition, micro-structural variation 

of the LU was analyzed, and the corresponding macro-structural behavior was studied 

through multi-scale modeling of the aortic wall. Our results showed that the VSMC can 

take up to 30 % of the applied load when contracted. It is known that the relaxed VSMC is 

around 10 times softer than the contracted one, which affects its contribution in load 

sharing of the LU. On the other side, the contribution of collagen fibers at low stretch levels 

was negligible but became predominant when straightened in high stretches. The obtained 

uniaxial response of the LU was validated against the previous experimental data. The 

macro-scale model of the aorta allowed us to evaluate the arterial expansion with respect 

to the micro-structural variation of the lamellar unit. Finally, aging effects by collagen 

deposition was modeled and aortic dilation was estimated. It was revealed that stiffening 

of the VSMC when the aorta is exposed to high pressure does not affect the aortic stiffness 

but is mainly controlled by collagen fibers. Our findings can shed some light about the 

contribution of VSMCs in arterial stiffness which has been under debate in recent years. 

In addition, we manufactured a 3D printed PLLA/steel particle composite by using 

fused filament fabrication method. At the next step, nano-indentation tests were conducted 

in order to characterize the mechanical properties of the composite. At the last step, a RVE 

model was generated to determine the elastic modulus of the composite. The elastic 

modulus of 3D printed composite with 10 % of particles was 31 % higher than that for the 

pure PLLA polymer. Also, Perfect bonding of particles was observed for almost all of the 

samples which stem from the 3D printing method. The measured thickness of interphase 

was considerably lower than the diameter of particles, and a sharp variation of the elastic 

modulus was observed around the particle’s edge. The sharing load of particles in the 
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composite with 10 % of particles is approximately 60 %, whereas this value for the 

composites with less than 10 % of particles is lower than 50 %. Degradation of interphase 

can reduce the elastic modulus of the composite by 70 % and 7% under tensile and 

compressive loads, respectively. Shear modulus of the composite with 10 % of particles 

decreases by 36 % when debonding occurs. In this case the shear modulus of the 

composites is lower than that for the pure PLLA polymer. 

The micromechanical analysis of PLLA/Mg composite were performed to quantify the 

effects of particle weight fraction, particle/matrix interface bonding strength, and MgO 

interphase on the mechanical properties of the biodegradable composite. The model was 

validated by the published indentation tests as well as the analytical solution. Imperfect 

bonding of Mg particles could drastically weaken the mechanical properties of PLLA/Mg 

composite. The yield strength was reduced by 12 %. This indicated the importance of the 

fabrication process. The MgO coating or interphase layer between PLLA and Mg was 

intent to mitigate the degradation rate of Mg particles. In addition, it also enhanced the 

effective Young’s modulus and yield strength of the composites by 65.6 %, and 139 %, 

respectively. The PLLA polymer reinforced with coated Mg particles can benefit from 138 

% and 170 % enhancement of its effective Young’s modulus and yield strength, 

respectively. 

 

  



96 

 

References 

1. Stewart, J., G. Manmathan, and P. Wilkinson, Primary prevention of cardiovascular 
disease: A review of contemporary guidance and literature. JRSM cardiovascular disease, 
2017. 6: p. 2048004016687211-2048004016687211. 

2. Thoenes, M., et al., Patient screening for early detection of aortic stenosis (AS)-review of 
current practice and future perspectives. Journal of thoracic disease, 2018. 10(9): p. 5584-
5594. 

3. Balk, E., et al., Effectiveness of Management Strategies for Renal Artery Stenosis: A 
Systematic ReviewComparative Effectiveness of Management Strategies for Renal Artery 
Stenosis. Annals of Internal Medicine, 2006. 145(12): p. 901-912. 

4. Chimowitz, M.I., et al., Stenting versus Aggressive Medical Therapy for Intracranial 
Arterial Stenosis. New England Journal of Medicine, 2011. 365(11): p. 993-1003. 

5. Kuntz, R.E., et al., Novel approach to the analysis of restenosis after the use of three new 
coronary devices. Journal of the American College of Cardiology, 1992. 19(7): p. 1493-
1499. 

6. Azevedo, L.C.P., et al., Oxidative stress as a signaling mechanism of the vascular response 
to injury: The redox hypothesis of restenosis. Cardiovascular Research, 2000. 47(3): p. 436-
445. 

7. Ward Michael, R., et al., Arterial Remodeling. Circulation, 2000. 102(10): p. 1186-1191. 
8. Bennett, M.R. and M. O'Sullivan, Mechanisms of angioplasty and stent restenosis: 

implications for design of rational therapy. Pharmacology & Therapeutics, 2001. 91(2): p. 
149-166. 

9. Li, C. and Q. Xu, Mechanical stress-initiated signal transductions in vascular smooth 
muscle cells. Cellular Signalling, 2000. 12(7): p. 435-445. 

10. Diller, R., et al., Stent migration necessitating surgical intervention. Surgical Endoscopy 
And Other Interventional Techniques, 2003. 17(11): p. 1803-1807. 

11. Shim, C.S., et al., Fixation of a Modified Covered Esophageal Stent: Its Clinical Usefulness 
for Preventing Stent Migration. Endoscopy, 2001. 33(10): p. 843-848. 

12. Mai, Y.-W. and Z.-Z. Yu, Polymer nanocomposites. 2006: Woodhead publishing. 
13. Shaikh, M., et al., Engineering stent based delivery system for esophageal cancer using 

docetaxel. Molecular pharmaceutics, 2015. 12(7): p. 2305-2317. 
14. Sjoquist, K.M., et al., Survival after neoadjuvant chemotherapy or chemoradiotherapy for 

resectable oesophageal carcinoma: an updated meta-analysis. The lancet oncology, 2011. 
12(7): p. 681-692. 

15. Jin, Z., et al., A PTX/nitinol stent combination with temperature-responsive phase-change 
1-hexadecanol for magnetocaloric drug delivery: Magnetocaloric drug release and 
esophagus tissue penetration. Biomaterials, 2018. 153: p. 49-58. 

16. Lazaraki, G., I. Pilpilidis, and P. Katsinelos, Polyflex stents for malignant esophageal 
strictures: An overview. Annals of Gastroenterology, 2010. 23(1): p. 17-23. 

17. Park, J.-H., et al., Migration of retrievable expandable metallic stents inserted for 
malignant esophageal strictures: incidence, management, and prognostic factors in 332 
patients. American Journal of Roentgenology, 2015. 204(5): p. 1109-1114. 

18. Hindy, P., et al., A Comprehensive Review of Esophageal Stents. Gastroenterology & 
Hepatology, 2012. 8(8): p. 526-534. 



97 

 

19. Homann, N., et al., Delayed Complications after Placement of Self-Expanding Stents in 
Malignant Esophageal Obstruction: Treatment Strategies and Survival Rate. Digestive 
Diseases and Sciences, 2008. 53(2): p. 334-340. 

20. Wu, W.C., et al., Silicone-covered self-expanding metallic stents for the palliation of 
malignant esophageal obstruction and esophagorespiratory fistulas: Experience in 32 
patients and a review of the literature. Gastrointestinal Endoscopy. 40(1): p. 22-33. 

21. Vanbiervliet, G., et al., The role of clips in preventing migration of fully covered metallic 
esophageal stents: a pilot comparative study. Surgical Endoscopy, 2012. 26(1): p. 53-59. 

22. Franco, K.L. and J.B. Putnam, Advanced therapy in thoracic surgery. 2nd ed. 2005, 
Hamilton: B.C. Decker Inc. xiii, 548 p. 

23. Sharma, P. and R. Kozarek, Role of esophageal stents in benign and malignant diseases. 
The American journal of gastroenterology, 2010. 105(2): p. 258. 

24. Kajzer, W., M. Kaczmarek, and J. Marciniak, Biomechanical analysis of stent–oesophagus 
system. Journal of Materials Processing Technology, 2005. 162-163: p. 196-202. 

25. Peirlinck, M., et al., An in silico biomechanical analysis of the stent–esophagus interaction. 
Biomechanics and Modeling in Mechanobiology, 2018. 17(1): p. 111-131. 

26. Zhao, S., X. Liu, and L. Gu, The Impact of Wire Stent Fabrication Technique on the 
Performance of Stent Placement. Journal of Medical Devices-Transactions of the Asme, 
2012. 6(1). 

27. García, A., E. Peña, and M.A. Martínez, Influence of geometrical parameters on radial force 
during self-expanding stent deployment. Application for a variable radial stiffness stent. 
Journal of the Mechanical Behavior of Biomedical Materials, 2012. 10(Supplement C): p. 
166-175. 

28. De Beule, M., et al., Realistic finite element-based stent design: The impact of balloon 
folding. Journal of Biomechanics, 2008. 41(2): p. 383-389. 

29. Lally, C., F. Dolan, and P.J. Prendergast, Cardiovascular stent design and vessel stresses: a 
finite element analysis. Journal of Biomechanics, 2005. 38(8): p. 1574-1581. 

30. Yassi, R., et al., Modeling of the Mechanical Function of the Human Gastroesophageal 
Junction Using an Anatomically-Realistic Three-Dimensional Model. Journal of 
biomechanics, 2009. 42(11): p. 1604-1609. 

31. Liao, D., et al., Two-layered quasi-3D finite element model of the oesophagus. Medical 
Engineering and Physics, 2004. 26(7): p. 535-543. 

32. Yang, W., et al., Finite element simulation of food transport through the esophageal body. 
World Journal of Gastroenterology: WJG, 2007. 13(9): p. 1352. 

33. Zhao, S., L. Gu, and S.R. Froemming, Performance of Self-Expanding Nitinol Stent in a 
Curved Artery: Impact of Stent Length and Deployment Orientation. Journal of 
Biomechanical Engineering, 2012. 134(7): p. 071007-071007-6. 

34. Zhao, S., L. Gu, and S.R. Froemming, Finite Element Analysis of the Implantation of a Self-
Expanding Stent: Impact of Lesion Calcification. Journal of Medical Devices, 2012. 6(2): p. 
021001-021001-6. 

35. Rebelo, N., N. Walker, and H. Foadian. Simulation of implantable nitinol stents. in Abaqus 
user’s conference. 2001. 

36. Natali, A.N., E.L. Carniel, and H. Gregersen, Biomechanical behaviour of oesophageal 
tissues: Material and structural configuration, experimental data and constitutive 
analysis. Medical Engineering & Physics, 2009. 31(9): p. 1056-1062. 

37. Lu, X. and H. Gregersen, Regional distribution of axial strain and circumferential residual 
strain in the layered rabbit oesophagus. Journal of Biomechanics, 2001. 34(2): p. 225-233. 



98 

 

38. Lin, C.X., et al., Friction behavior between endoscopy and esophageal internal surface. 
Wear, 2017. 376-377: p. 272-280. 

39. Tan, L., et al., A method for investigating the mechanical properties of intracoronary stents 
using finite element numerical simulation. International Journal of Cardiology, 2001. 
78(1): p. 51-67. 

40. Zhao, S., X. Liu, and L. Gu, The Impact of Wire Stent Fabrication Technique on the 
Performance of Stent Placement. Journal of Medical Devices, 2012. 6(1): p. 011007-
011007-4. 

41. Van der Heiden, K., et al., The effects of stenting on shear stress: relevance to endothelial 
injury and repair. Cardiovascular Research, 2013. 99(2): p. 269-275. 

42. Saranovic, D., et al., Fluoroscopically guided insertion of self‐expandable metal 
esophageal stents for palliative treatment of patients with malignant stenosis of 
esophagus and cardia: comparison of uncovered and covered stent types. Diseases of the 
Esophagus, 2005. 18(4): p. 230-238. 

43. Song, H.-Y., et al., Covered, expandable esophageal metallic stent tubes: experiences in 
119 patients. Radiology, 1994. 193(3): p. 689-696. 

44. Verschuur, E.M., et al., A new esophageal stent design (Niti-S stent) for the prevention of 
migration: a prospective study in 42 patients. Gastrointestinal endoscopy, 2006. 63(1): p. 
134-140. 

45. R., J.M. and C.C. O., A study of the geometrical and mechanical properties of a self‐
expanding metallic stent—theory and experiment. Journal of Applied Biomaterials, 1993. 
4(1): p. 77-85. 

46. Stavropoulou, E.A., Y.F. Dafalias, and D.P. Sokolis, Biomechanical behavior and histological 
organization of the three-layered passive esophagus as a function of topography. 
Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in 
Medicine, 2012. 226(6): p. 477-490. 

47. Mughal, M.M., M. Marples, and J. Bancewicz, Scintigraphic assessment of oesophageal 
motility: what does it show and how reliable is it? Gut, 1986. 27(8): p. 946-953. 

48. Kou, W., et al., A fully resolved active musculo-mechanical model for esophageal 
transport. Journal of computational physics, 2015. 298: p. 446-465. 

49. Kou, W., et al., Simulation studies of circular muscle contraction, longitudinal muscle 
shortening, and their coordination in esophageal transport. American Journal of 
Physiology - Gastrointestinal and Liver Physiology, 2015. 309(4): p. G238-G247. 

50. Liu, J., et al., A novel biodegradable esophageal stent: results from mechanical and animal 
experiments. American Journal of Translational Research, 2016. 8(2): p. 1108-1114. 

51. Qiu, H., et al., Vascular Smooth Muscle Cell Stiffness as a Mechanism for Increased Aortic 
Stiffness with Aging. Circulation research, 2010. 107(5): p. 615-619. 

52. Zhao, S., L. Gu, and S.R. Froemming, Experimental investigation of the stent–artery 
interaction. Journal of Medical Engineering & Technology, 2013. 37(7): p. 463-469. 

53. Zhao, J., et al., Biomechanical properties of esophagus during systemic treatment with 
epidermal growth factor in rats. Annals of biomedical engineering, 2003. 31(6): p. 700-
709. 

54. Fan, Y., H. Gregersen, and G.S. Kassab, A two-layered mechanical model of the rat 
esophagus. Experiment and theory. Biomedical engineering online, 2004. 3(1): p. 40. 

55. Yang, W., et al., Instability of the two-layered thick-walled esophageal model under the 
external pressure and circular outer boundary condition. Journal of biomechanics, 2007. 
40(3): p. 481-490. 



99 

 

56. Sokolis, D.P., Structurally-motivated characterization of the passive pseudo-elastic 
response of esophagus and its layers. Computers in Biology and Medicine, 2013. 43(9): p. 
1273-1285. 

57. Yang, W., et al., 3D Mechanical properties of the layered esophagus: experiment and 
constitutive model. Journal of biomechanical engineering, 2006. 128(6): p. 899-908. 

58. Tang, D.D. and B.D. Gerlach, The roles and regulation of the actin cytoskeleton, 
intermediate filaments and microtubules in smooth muscle cell migration. Respiratory 
Research, 2017. 18(1): p. 54. 

59. Huber, F., et al., Emergent complexity of the cytoskeleton: from single filaments to tissue. 
Advances in physics, 2013. 62(1): p. 1-112. 

60. Ingber, D.E., Fibronectin controls capillary endothelial cell growth by modulating cell 
shape. Proceedings of the National Academy of Sciences of the United States of America, 
1990. 87(9): p. 3579-3583. 

61. Collinsworth, A.M., et al., Apparent elastic modulus and hysteresis of skeletal muscle cells 
throughout differentiation. American Journal of Physiology-Cell Physiology, 2002. 283(4): 
p. C1219-C1227. 

62. Jacob, J.A., J.M.M. Salmani, and B. Chen, Magnetic nanoparticles: mechanistic studies on 
the cancer cell interaction. Nanotechnology Reviews, 2016. 5(5): p. 481-488. 

63. Pelling, A.E. and M.A. Horton, An historical perspective on cell mechanics. Pflügers Archiv 
- European Journal of Physiology, 2008. 456(1): p. 3-12. 

64. Chen, C.S., et al., Geometric Control of Cell Life and Death. Science, 1997. 276(5317): p. 
1425. 

65. Mohammad, F., et al., Targeted hyperthermia-induced cancer cell death by 
superparamagnetic iron oxide nanoparticles conjugated to luteinizing hormone-releasing 
hormone. Nanotechnology Reviews, 2014. 3(4): p. 389-400. 

66. Katoh, K., et al., Isolation and Contraction of the Stress Fiber. Molecular Biology of the 
Cell, 1998. 9(7): p. 1919-1938. 

67. Deguchi, S., T. Ohashi, and M. Sato, Tensile properties of single stress fibers isolated from 
cultured vascular smooth muscle cells. Journal of Biomechanics, 2006. 39(14): p. 2603-
2610. 

68. Liu, X. and G.H. Pollack, Mechanics of F-actin characterized with microfabricated 
cantilevers. Biophysical Journal, 2002. 83(5): p. 2705-2715. 

69. Tsuda, Y., et al., Torsional rigidity of single actin filaments and actin–actin bond breaking 
force under torsion measured directly by in vitro micromanipulation. Proceedings of the 
National Academy of Sciences of the United States of America, 1996. 93(23): p. 12937-
12942. 

70. Etienne-Manneville, S., Actin and Microtubules in Cell Motility: Which One is in Control? 
Traffic, 2004. 5(7): p. 470-477. 

71. Nagayama, K. and T. Matsumoto, Dynamic Change in Morphology and Traction Forces at 
Focal Adhesions in Cultured Vascular Smooth Muscle Cells During Contraction. Cellular and 
Molecular Bioengineering, 2011. 4(3): p. 348-357. 

72. Nagayama, K. and T. Matsumoto, Contribution of actin filaments and microtubules to 
quasi-in situ tensile properties and internal force balance of cultured smooth muscle cells 
on a substrate. American Journal of Physiology-Cell Physiology, 2008. 295(6): p. C1569-
C1578. 

73. Nogales, E., Structural Insights into Microtubule Function. Annual Review of Biochemistry, 
2000. 69(1): p. 277-302. 



100 

 

74. Gittes, F., et al., Flexural rigidity of microtubules and actin filaments measured from 
thermal fluctuations in shape. The Journal of Cell Biology, 1993. 120(4): p. 923. 

75. Reilein, A. and W.J. Nelson, APC is a component of an organizing template for cortical 
microtubule networks. Nature Cell Biology, 2005. 7(5): p. 463-473. 

76. Goldman, R.D., THE ROLE OF THREE CYTOPLASMIC FIBERS IN BHK-21 CELL MOTILITY : I. 
Microtubules and the Effects of Colchicine. The Journal of Cell Biology, 1971. 51(3): p. 752-
762. 

77. Kato, K., et al., Microtubule-dependent balanced cell contraction and luminal-matrix 
modification accelerate epithelial tube fusion. Nature Communications, 2016. 7: p. 11141. 

78. Zhang, D., et al., Influence of microtubules on vascular smooth muscle contraction. Journal 
of Muscle Research & Cell Motility, 2000. 21(3): p. 293-300. 

79. Liu, B.P., M. Chrzanowska-Wodnicka, and K. Burridge, Microtubule depolymerization 
induces stress fibers, focal adhesions, and DNA synthesis via the GTP-binding protein Rho. 
Cell adhesion and communication, 1998. 5(4): p. 249-255. 

80. Chang, L. and R.D. Goldman, Intermediate filaments mediate cytoskeletal crosstalk. 
Nature Reviews Molecular Cell Biology, 2004. 5: p. 601. 

81. Li, Q.-F., et al., Critical role of vimentin phosphorylation at Ser-56 by p21-activated kinase 
(PAK) in vimentin cytoskeleton signaling. The Journal of biological chemistry, 2006. 
281(45): p. 34716-34724. 

82. Fuchs, E. and K. Weber, Intermediate Filaments: Structure, Dynamics, Function and 
Disease. Annual Review of Biochemistry, 1994. 63(1): p. 345-382. 

83. Wede, O.K., et al., Mechanical function of intermediate filaments in arteries of different 
size examined using desmin deficient mice. The Journal of Physiology, 2002. 540(Pt 3): p. 
941-949. 

84. Guzmán, C., et al., Exploring the Mechanical Properties of Single Vimentin Intermediate 
Filaments by Atomic Force Microscopy. Journal of Molecular Biology, 2006. 360(3): p. 623-
630. 

85. Wang, N. and D. Stamenovic, Contribution of intermediate filaments to cell stiffness, 
stiffening, and growth. American Journal of Physiology-Cell Physiology, 2000. 279(1): p. 
C188-C194. 

86. Green, K.J., et al., The relationship between intermediate filaments and microfilaments 
before and during the formation of desmosomes and adherens-type junctions in mouse 
epidermal keratinocytes. The Journal of cell biology, 1987. 104(5): p. 1389-1402. 

87. Humphrey, J.D., E.R. Dufresne, and M.A. Schwartz, Mechanotransduction and 
extracellular matrix homeostasis. Nature reviews Molecular cell biology, 2014. 15(12): p. 
802. 

88. Raines, E.W., The extracellular matrix can regulate vascular cell migration, proliferation, 
and survival: relationships to vascular disease. International Journal of Experimental 
Pathology, 2000. 81(3): p. 173-182. 

89. Bendeck, M.P., et al., Smooth muscle cell matrix metalloproteinase production is 
stimulated via αvβ3 integrin. Arteriosclerosis, thrombosis, and vascular biology, 2000. 
20(6): p. 1467-1472. 

90. Hedin, U. and J. Thyberg, Plasma fibronectin promotes modulation of arterial smooth-
muscle cells from contractile to synthetic phenotype. Differentiation, 1987. 33(3): p. 239-
246. 

91. Sazonova, O.V., et al., Extracellular matrix presentation modulates vascular smooth 
muscle cell mechanotransduction. Matrix Biology, 2015. 41: p. 36-43. 



101 

 

92. Isenberg, B.C., et al., Vascular Smooth Muscle Cell Durotaxis Depends on Substrate 
Stiffness Gradient Strength. Biophysical Journal, 2009. 97(5): p. 1313-1322. 

93. Wong, J.Y., et al., Directed movement of vascular smooth muscle cells on gradient-
compliant hydrogels. Langmuir, 2003. 19(5): p. 1908-1913. 

94. Hartman, C.D., et al., Vascular smooth muscle cell durotaxis depends on extracellular 
matrix composition. Proceedings of the National Academy of Sciences, 2016. 113(40): p. 
11190. 

95. Timraz, S.B.H., et al., Stiffness of Extracellular Matrix Components Modulates the 
Phenotype of Human Smooth Muscle Cells in Vitro and Allows for the Control of Properties 
of Engineered Tissues. Procedia Engineering, 2015. 110: p. 29-36. 

96. Qin, H., et al., Effects of Extracellular Matrix on Phenotype Modulation and MAPK 
Transduction of Rat Aortic Smooth Muscle Cells in Vitro. Experimental and Molecular 
Pathology, 2000. 69(2): p. 79-90. 

97. Morrow, D., et al., Cyclic strain inhibits Notch receptor signaling in vascular smooth muscle 
cells in vitro. Circulation research, 2005. 96(5): p. 567-575. 

98. Ritchie, A.C., et al., Dependence of alignment direction on magnitude of strain in 
esophageal smooth muscle cells. Biotechnology and Bioengineering, 2008. 102(6): p. 
1703-1711. 

99. Lin, S., et al., Eigenstrain as a mechanical set-point of cells. Biomechanics and Modeling in 
Mechanobiology, 2018. 17(4): p. 951-959. 

100. Floren, M. and W. Tan, Three-dimensional, soft neotissue arrays as high throughput 
platforms for the interrogation of engineered tissue environments. Biomaterials, 2015. 59: 
p. 39-52. 

101. Svenja, H., et al., In vitro elastogenesis: instructing human vascular smooth muscle cells to 
generate an elastic fiber-containing extracellular matrix scaffold. Biomedical Materials, 
2015. 10(3): p. 034102. 

102. Katja, H., et al., Bioink properties before, during and after 3D bioprinting. Biofabrication, 
2016. 8(3): p. 032002. 

103. Chen, L.J., S.Y. Wei, and J.J. Chiu, Mechanical regulation of epigenetics in vascular biology 
and pathobiology. Journal of cellular and molecular medicine, 2013. 17(4): p. 437-448. 

104. Lin, S., et al., Fluid-Structure Interaction in Abdominal Aortic Aneurysm: Effect of Modeling 
Techniques. BioMed Research International, 2017. 2017: p. 10. 

105. Schad, J.F., et al., Cyclic strain upregulates VEGF and attenuates proliferation of vascular 
smooth muscle cells. Vascular Cell, 2011(1): p. 21%V 3. 

106. Birukov, K.G., et al., Stretch affects phenotype and proliferation of vascular smooth muscle 
cells. Molecular and Cellular Biochemistry, 1995. 144(2): p. 131-139. 

107. Leung, D.Y., S. Glagov, and M.B. Mathews, Cyclic stretching stimulates synthesis of matrix 
components by arterial smooth muscle cells in vitro. Science, 1976. 191(4226): p. 475. 

108. Nakamachi, E., et al., Multi-scale finite element analyses for stress and strain evaluations 
of braid fibril artificial blood vessel and smooth muscle cell. International Journal for 
Numerical Methods in Biomedical Engineering, 2014. 30(8): p. 796-813. 

109. Colombo, A., et al., Cyclic strain amplitude dictates the growth response of vascular 
smooth muscle cells in vitro: role in in-stent restenosis and inhibition with a sirolimus drug-
eluting stent. Biomechanics and Modeling in Mechanobiology, 2013. 12(4): p. 671-683. 

110. Reusch, P., et al., Mechanical strain increases smooth muscle and decreases nonmuscle 
myosin expression in rat vascular smooth muscle cells. Circulation research, 1996. 79(5): 
p. 1046-1053. 



102 

 

111. Qu, M.J., et al., Frequency-Dependent Phenotype Modulation of Vascular Smooth Muscle 
Cells under Cyclic Mechanical Strain. Journal of Vascular Research, 2007. 44(5): p. 345-
353. 

112. Sharifpoor, S., et al., Functional characterization of human coronary artery smooth muscle 
cells under cyclic mechanical strain in a degradable polyurethane scaffold. Biomaterials, 
2011. 32(21): p. 4816-4829. 

113. Sharifpoor, S., et al., A study of vascular smooth muscle cell function under cyclic 
mechanical loading in a polyurethane scaffold with optimized porosity. Acta Biomaterialia, 
2010. 6(11): p. 4218-4228. 

114. Stegemann, J.P. and R.M. Nerem, Phenotype Modulation in Vascular Tissue Engineering 
Using Biochemical and Mechanical Stimulation. Annals of Biomedical Engineering, 2003. 
31(4): p. 391-402. 

115. Tock, J., et al., Induction of SM-α-actin expression by mechanical strain in adult vascular 
smooth muscle cells is mediated through activation of JNK and p38 MAP kinase. 
Biochemical and Biophysical Research Communications, 2003. 301(4): p. 1116-1121. 

116. Solan, A., S.L.M. Dahl, and L.E. Niklason, Effects of Mechanical Stretch on Collagen and 
Cross-Linking in Engineered Blood Vessels. Cell Transplantation, 2009. 18(8): p. 915-921. 

117. Bono, N., et al., Unraveling the role of mechanical stimulation on smooth muscle cells: A 
comparative study between 2D and 3D models. Biotechnology and Bioengineering, 2016. 
113(10): p. 2254-2263. 

118. Matsumoto, T. and K. Nagayama, Tensile properties of vascular smooth muscle cells: 
Bridging vascular and cellular biomechanics. Journal of Biomechanics, 2012. 45(5): p. 745-
755. 

119. Lin, S., et al., Active stiffening of F-actin network dominated by structural transition of 
actin filaments into bundles. Composites Part B: Engineering, 2017. 116: p. 377-381. 

120. Barreto-Ortiz, S.F., et al., Fabrication of 3-dimensional multicellular microvascular 
structures. The FASEB Journal, 2015. 29(8): p. 3302-3314. 

121. Baker, B.M., et al., Cell-mediated fibre recruitment drives extracellular matrix 
mechanosensing in engineered fibrillar microenvironments. Nature materials, 2015. 
14(12): p. 1262. 

122. Ding, Y., et al., Biomimetic soft fibrous hydrogels for contractile and pharmacologically 
responsive smooth muscle. Acta Biomaterialia, 2018. 74: p. 121-130. 

123. Thunes, J.R., et al., A structural finite element model for lamellar unit of aortic media 
indicates heterogeneous stress field after collagen recruitment. Journal of Biomechanics, 
2016. 49(9): p. 1562-1569. 

124. Phillippi, J.A., et al., Mechanism of aortic medial matrix remodeling is distinct in patients 
with bicuspid aortic valve. The Journal of Thoracic and Cardiovascular Surgery, 2014. 
147(3): p. 1056-1064. 

125. Beenakker, J.-W.M., et al., Mechanical properties of the extracellular matrix of the aorta 
studied by enzymatic treatments. Biophysical journal, 2012. 102(8): p. 1731-1737. 

126. O’Connell, M.K., et al., The Three-Dimensional Micro- and Nanostructure of the Aortic 
Medial Lamellar Unit Measured Using 3D Confocal & Electron Microscopy Imaging. Matrix 
biology : journal of the International Society for Matrix Biology, 2008. 27(3): p. 171-181. 

127. Nagayama, K. and T. Matsumoto, Mechanical Anisotropy of Rat Aortic Smooth Muscle 
Cells Decreases with Their Contraction (Possible Effect of Actin Filament Orientation). 
JSME International Journal Series C Mechanical Systems, Machine Elements and 
Manufacturing, 2004. 47(4): p. 985-991. 



103 

 

128. Roeder, B.A., et al., Tensile Mechanical Properties of Three-Dimensional Type I Collagen 
Extracellular Matrices With Varied Microstructure. Journal of Biomechanical Engineering, 
2002. 124(2): p. 214-222. 

129. Wagenseil, J.E. and R.P. Mecham, Elastin in Large Artery Stiffness and Hypertension. 
Journal of Cardiovascular Translational Research, 2012. 5(3): p. 264-273. 

130. Sugita, S. and T. Matsumoto, Multiphoton microscopy observations of 3D elastin and 
collagen fiber microstructure changes during pressurization in aortic media. Biomechanics 
and Modeling in Mechanobiology, 2017. 16(3): p. 763-773. 

131. Lin, S. and L. Gu, Contribution of Fiber Undulation to Mechanics of Three-Dimensional 
Collagen-I Gel. Macromolecular Symposia, 2016. 365(1): p. 112-117. 

132. Carta, L., et al., Discrete contributions of elastic fiber components to arterial development 
and mechanical compliance. Arteriosclerosis, thrombosis, and vascular biology, 2009. 
29(12): p. 2083. 

133. Szabo, Z., et al., Aortic aneurysmal disease and cutis laxa caused by defects in the elastin 
gene. Journal of Medical Genetics, 2006. 43(3): p. 255-258. 

134. Zhao, S. and L. Gu, Implementation and Validation of Aortic Remodeling in Hypertensive 
Rats. Journal of Biomechanical Engineering, 2014. 136(9): p. 091007-091007-8. 

135. Faury, G., et al., Developmental adaptation of the mouse cardiovascular system to elastin 
haploinsufficiency. The Journal of clinical investigation, 2003. 112(9): p. 1419-1428. 

136. Hirano, E., et al., Functional rescue of elastin insufficiency in mice by the human elastin 
gene: implications for mouse models of human disease. Circulation research, 2007. 
101(5): p. 523-531. 

137. Wagenseil, J.E., et al., Elastin-insufficient mice show normal cardiovascular remodeling in 
2K1C hypertension despite higher baseline pressure and unique cardiovascular 
architecture. American Journal of Physiology-Heart and Circulatory Physiology, 2007. 
293(1): p. H574-H582. 

138. Wagenseil, J.E., et al., Effects of elastin haploinsufficiency on the mechanical behavior of 
mouse arteries. American Journal of Physiology-Heart and Circulatory Physiology, 2005. 
289(3): p. H1209-H1217. 

139. Aronson, D., Cross-linking of glycated collagen in the pathogenesis of arterial and 
myocardial stiffening of aging and diabetes. Journal of Hypertension, 2003. 21(1): p. 3-
12. 

140. Konova, E., et al., Age-related changes in the glycation of human aortic elastin. 
Experimental Gerontology, 2004. 39(2): p. 249-254. 

141. Lin, S., et al., Towards Tuning the Mechanical Properties of Three-Dimensional Collagen 
Scaffolds Using a Coupled Fiber-Matrix Model. Materials (Basel, Switzerland), 2015. 8(8): 
p. 5376-5384. 

142. Lin, S. and L. Gu, Influence of Crosslink Density and Stiffness on Mechanical Properties of 
Type I Collagen Gel. Materials (Basel, Switzerland), 2015. 8(2): p. 551-560. 

143. Bezie, Y., et al., Connection of smooth muscle cells to elastic lamellae in aorta of 
spontaneously hypertensive rats. Hypertension, 1998. 32(1): p. 166-169. 

144. Koffi, I., et al., Prevention of arterial structural alterations with verapamil and trandolapril 
and consequences for mechanical properties in spontaneously hypertensive rats. 
European journal of pharmacology, 1998. 361(1): p. 51-60. 

145. Sehgel, N.L., et al., Augmented vascular smooth muscle cell stiffness and adhesion when 
hypertension is superimposed on aging. Hypertension, 2015. 65(2): p. 370. 



104 

 

146. van Gorp, A.W., et al., In spontaneously hypertensive rats alterations in aortic wall 
properties precede development of hypertension. American Journal of Physiology-Heart 
and Circulatory Physiology, 2000. 278(4): p. H1241-H1247. 

147. Cox, R.H., Basis for the altered arterial wall mechanics in the spontaneously hypertensive 
rat. Hypertension, 1981. 3(4): p. 485-495. 

148. Mizutani, K., et al., Biomechanical properties and chemical composition of the aorta in 
genetic hypertensive rats. Journal of hypertension, 1999. 17(4): p. 481-487. 

149. Hu, J.-J., et al., Time Courses of Growth and Remodeling of Porcine Aortic Media During 
Hypertension: A Quantitative Immunohistochemical Examination. Journal of 
Histochemistry and Cytochemistry, 2008. 56(4): p. 359-370. 

150. Sehgel, N.L., S.F. Vatner, and G.A. Meininger, “Smooth Muscle Cell Stiffness Syndrome”—
Revisiting the Structural Basis of Arterial Stiffness. Frontiers in Physiology, 2015. 6(335). 

151. Sehgel, N.L., et al., Increased vascular smooth muscle cell stiffness: a novel mechanism for 
aortic stiffness in hypertension. American Journal of Physiology-Heart and Circulatory 
Physiology, 2013. 305(9): p. H1281-H1287. 

152. Zhu, Y., et al., Temporal analysis of vascular smooth muscle cell elasticity and adhesion 
reveals oscillation waveforms that differ with aging. Aging cell, 2012. 11(5): p. 741-750. 

153. Campbell, G.R. and J.H. Campbell, - Development of the Vessel Wall: Overview, in The 
Vascular Smooth Muscle Cell, S.M. Schwartz and R.P. Mecham, Editors. 1995, Academic 
Press: San Diego. p. 1-15. 

154. Warshaw, D.M., et al., Pharmacology and force development of single freshly isolated 
bovine carotid artery smooth muscle cells. Circ Res, 1986. 58(3): p. 399-406. 

155. Matsumoto, T., et al., Smooth muscle cells freshly isolated from rat thoracic aortas are 
much stiffer than cultured bovine cells: possible effect of phenotype. JSME International 
Journal Series C Mechanical Systems, Machine Elements and Manufacturing, 2000. 43(4): 
p. 867-874. 

156. Smith, P.G., et al., Selected contribution: mechanical strain increases force production and 
calcium sensitivity in cultured airway smooth muscle cells. Journal of applied physiology, 
2000. 89(5): p. 2092-2098. 

157. Thoumine, O. and A. Ott, Time scale dependent viscoelastic and contractile regimes in 
fibroblasts probed by microplate manipulation. Journal of cell science, 1997. 110(17): p. 
2109-2116. 

158. Xu, C., et al., Molecular mechanisms of aortic wall remodeling in response to hypertension. 
Journal of Vascular Surgery, 2001. 33(3): p. 570-578. 

159. Matsumoto, T., et al., Effects of hypertension on morphological, contractile and 
mechanical properties of rat aortic smooth muscle cells. Cellular and Molecular 
Bioengineering, 2011. 4(3): p. 340-347. 

160. Tosun, Z. and P.S. McFetridge, Variation in Cardiac Pulse Frequencies Modulates vSMC 
Phenotype Switching During Vascular Remodeling. Cardiovascular Engineering and 
Technology, 2015. 6(1): p. 59-70. 

161. Owens, G.K., M.S. Kumar, and B.R. Wamhoff, Molecular regulation of vascular smooth 
muscle cell differentiation in development and disease. Physiological reviews, 2004. 84(3): 
p. 767-801. 

162. Gundiah, N., M. B Ratcliffe, and L. A Pruitt, Determination of strain energy function for 
arterial elastin: Experiments using histology and mechanical tests. Journal of 
Biomechanics, 2007. 40(3): p. 586-594. 

163. Gundiah, N., M.B. Ratcliffe, and L.A. Pruitt, The biomechanics of arterial elastin. Journal 
of the Mechanical Behavior of Biomedical Materials, 2009. 2(3): p. 288-296. 



105 

 

164. Lillie, M.A., R.E. Shadwick, and J.M. Gosline, Mechanical anisotropy of inflated elastic 
tissue from the pig aorta. Journal of Biomechanics, 2010. 43(11): p. 2070-2078. 

165. Zou, Y. and Y. Zhang, An Experimental and Theoretical Study on the Anisotropy of Elastin 
Network. Annals of Biomedical Engineering, 2009. 37(8): p. 1572-1583. 

166. Zou, Y. and Y. Zhang, The orthotropic viscoelastic behavior of aortic elastin. Biomechanics 
and Modeling in Mechanobiology, 2011. 10(5): p. 613-625. 

167. Weisbecker, H., et al., The role of elastin and collagen in the softening behavior of the 
human thoracic aortic media. Journal of Biomechanics, 2013. 46(11): p. 1859-1865. 

168. Martinez, R. and H.-C. Han, THE EFFECT OF COLLAGENASE ON THE CRITICAL BUCKLING 
PRESSURE OF ARTERIES. Molecular & cellular biomechanics : MCB, 2012. 9(1): p. 55-75. 

169. Dobrin, P.B. and T.R. Canfield, Elastase, collagenase, and the biaxial elastic properties of 
dog carotid artery. American Journal of Physiology-Heart and Circulatory Physiology, 
1984. 247(1): p. H124-H131. 

170. Dobrin, P.B., T. Schwarcz, and W. Baker, Mechanisms of arterial and aneurysmal 
tortuosity. Surgery, 1988. 104(3): p. 568-571. 

171. Kochová, P., et al., The contribution of vascular smooth muscle, elastin and collagen on 
the passive mechanics of porcine carotid arteries. Physiological Measurement, 2012. 
33(8): p. 1335. 

172. Kiousis, D.E., et al., A Methodology to Analyze Changes in Lipid Core and Calcification Onto 
Fibrous Cap Vulnerability: The Human Atherosclerotic Carotid Bifurcation as an Illustratory 
Example. Journal of Biomechanical Engineering, 2009. 131(12): p. 121002-121002-9. 

173. Kock, S.A., et al., Mechanical stresses in carotid plaques using MRI-based fluid–structure 
interaction models. Journal of biomechanics, 2008. 41(8): p. 1651-1658. 

174. Holzapfel, G.A. and R.W. Ogden, Modelling the layer-specific three-dimensional residual 
stresses in arteries, with an application to the human aorta. Journal of The Royal Society 
Interface, 2009. 

175. Delfino, A., et al., Residual strain effects on the stress field in a thick wall finite element 
model of the human carotid bifurcation. Journal of Biomechanics, 1997. 30(8): p. 777-786. 

176. Holzapfel, G.A., T.C. Gasser, and R.W. Ogden, A new constitutive framework for arterial 
wall mechanics and a comparative study of material models. Journal of elasticity and the 
physical science of solids, 2000. 61(1-3): p. 1-48. 

177. Kural, M.H., et al., Planar biaxial characterization of diseased human coronary and carotid 
arteries for computational modeling. Journal of biomechanics, 2012. 45(5): p. 790-798. 

178. Taber, L.A. and J.D. Humphrey, Stress-modulated growth, residual stress, and vascular 
heterogeneity. Journal of biomechanical engineering, 2001. 123(6): p. 528-535. 

179. Yamada, H., et al., Age-related distensibility and histology of the ascending aorta in elderly 
patients with acute aortic dissection. Journal of biomechanics, 2015. 48(12): p. 3267-
3273. 

180. Masson, I., et al., Carotid artery mechanical properties and stresses quantified using in 
vivo data from normotensive and hypertensive humans. Biomechanics and modeling in 
mechanobiology, 2011. 10(6): p. 867-882. 

181. Peterson, S. and R. Okamoto, Effect of residual stress and heterogeneity on 
circumferential stress in the arterial wall. Journal of biomechanical engineering, 2000. 
122(4): p. 454-456. 

182. Sommer, G. and G.A. Holzapfel, 3D constitutive modeling of the biaxial mechanical 
response of intact and layer-dissected human carotid arteries. Journal of the mechanical 
behavior of biomedical materials, 2012. 5(1): p. 116-128. 



106 

 

183. Von Maltzahn, W.-W., D. Besdo, and W. Wiemer, Elastic properties of arteries: a nonlinear 
two-layer cylindrical model. Journal of Biomechanics, 1981. 14(6): p. 389-397. 

184. Hudson, J., Overall properties of heterogeneous material. Geophysical journal 
international, 1991. 107(3): p. 505-511. 

185. Oren, T., Analytical and numerical analyses of the micromechanics of soft fibrous 
connective tissues. Biomechanics and modeling in mechanobiology, 2013. 12(1): p. 151-
166. 

186. Lake, S.P., et al., Mechanics of a Fiber Network Within a Non-Fibrillar Matrix: Model and 
Comparison with Collagen-Agarose Co-gels. Annals of Biomedical Engineering, 2012. 
40(10): p. 2111-2121. 

187. Stein, A.M., et al., The micromechanics of three-dimensional collagen-I gels. Complexity, 
2010. 16(4): p. 22-28. 

188. Lukeš, V. and E. Rohan, Microstructure based two-scale modelling of soft tissues. 
Mathematics and Computers in Simulation, 2010. 80(6): p. 1289-1301. 

189. Lindeman, J.H.N., et al., Distinct defects in collagen microarchitecture underlie vessel-wall 
failure in advanced abdominal aneurysms and aneurysms in Marfan syndrome. 
Proceedings of the National Academy of Sciences of the United States of America, 2010. 
107(2): p. 862-865. 

190. López-Guimet, J., et al., High-Resolution Morphological Approach to Analyse Elastic 
Laminae Injuries of the Ascending Aorta in a Murine Model of Marfan Syndrome. Scientific 
Reports, 2017. 7(1): p. 1505. 

191. Abraham, P.A., et al., Marfan syndrome. Demonstration of abnormal elastin in aorta. The 
Journal of Clinical Investigation, 1982. 70(6): p. 1245-1252. 

192. Tsamis, A., J.T. Krawiec, and D.A. Vorp, Elastin and collagen fibre microstructure of the 
human aorta in ageing and disease: a review. Journal of The Royal Society Interface, 2013. 
10(83). 

193. Mozaffarian, D., et al., Heart disease and stroke statistics—2016 update: a report from 
the American Heart Association. Circulation, 2015: p. CIR. 0000000000000350. 

194. Touyz, R.M., et al., Vascular smooth muscle contraction in hypertension. Cardiovascular 
Research, 2018. 114(4): p. 529-539. 

195. Steucke, K.E., et al., Empirically Determined Vascular Smooth Muscle Cell Mechano-
Adaptation Law. Journal of Biomechanical Engineering, 2017. 139(7): p. 0710051-
0710059. 

196. Tsamis, A., J.T. Krawiec, and D.A. Vorp, Elastin and collagen fibre microstructure of the 
human aorta in ageing and disease: a review. Journal of the Royal Society Interface, 2013. 
10(83): p. 20121004. 

197. van Gorp, A.W., et al., In spontaneously hypertensive rats alterations in aortic wall 
properties precede development of hypertension. American Journal of Physiology-Heart 
and Circulatory Physiology, 2000. 278(4): p. H1241-H1247. 

198. Scott, D., et al., High pulsatility flow stimulates smooth muscle cell hypertrophy and 
contractile protein expression. American Journal of Physiology - Lung Cellular and 
Molecular Physiology, 2013. 304(1): p. L70-L81. 

199. Wagenseil, J.E. and R.P. Mecham, Vascular Extracellular Matrix and Arterial Mechanics. 
Physiological reviews, 2009. 89(3): p. 957-989. 

200. Bank, A.J. and D.R. Kaiser, Smooth muscle relaxation: effects on arterial compliance, 
distensibility, elastic modulus, and pulse wave velocity. Hypertension, 1998. 32(2): p. 356-
359. 



107 

 

201. Dinardo, C.L., et al., Variation of mechanical properties and quantitative proteomics of 
VSMC along the arterial tree. American Journal of Physiology-Heart and Circulatory 
Physiology, 2013. 306(4): p. H505-H516. 

202. Holzapfel, G.A., T.C. Gasser, and R.W. Ogden, Comparison of a Multi-Layer Structural 
Model for Arterial Walls With a Fung-Type Model, and Issues of Material Stability. Journal 
of Biomechanical Engineering, 2004. 126(2): p. 264-275. 

203. Wan, W., J.B. Dixon, and Rudolph L. Gleason, Constitutive Modeling of Mouse Carotid 
Arteries Using Experimentally Measured Microstructural Parameters. Biophysical Journal, 
2012. 102(12): p. 2916-2925. 

204. Weisbecker, H., M.J. Unterberger, and G.A. Holzapfel, Constitutive modelling of arteries 
considering fibre recruitment and three-dimensional fibre distribution. Journal of The 
Royal Society Interface, 2015. 12(105): p. 20150111. 

205. Gasser, T.C., R.W. Ogden, and G.A. Holzapfel, Hyperelastic modelling of arterial layers with 
distributed collagen fibre orientations. Journal of The Royal Society Interface, 2006. 3(6): 
p. 15. 

206. Ferruzzi, J., D.A. Vorp, and J.D. Humphrey, On constitutive descriptors of the biaxial 
mechanical behaviour of human abdominal aorta and aneurysms. Journal of The Royal 
Society Interface, 2011. 8(56): p. 435. 

207. O'Connell, M.K., et al., The three-dimensional micro- and nanostructure of the aortic 
medial lamellar unit measured using 3D confocal and electron microscopy imaging. Matrix 
Biology, 2008. 27(3): p. 171-181. 

208. Chow, M.-J., et al., Arterial Extracellular Matrix: A Mechanobiological Study of the 
Contributions and Interactions of Elastin and Collagen. Biophysical Journal, 2014. 106(12): 
p. 2684-2692. 

209. Koch, R.G., et al., A custom image-based analysis tool for quantifying elastin and collagen 
micro-architecture in the wall of the human aorta from multi-photon microscopy. Journal 
of Biomechanics, 2014. 47(5): p. 935-943. 

210. Fung, C., Biomechanics'. Mechanical Properties of Living Tissue. Springer: Berlin, 1981. 
211. Miyazaki, H. and K. Hayashi, Tensile Tests of Collagen Fibers Obtained from the Rabbit 

Patellar Tendon. Biomedical Microdevices, 1999. 2(2): p. 151-157. 
212. Zulliger, M.A. and N. Stergiopulos, Structural strain energy function applied to the ageing 

of the human aorta. Journal of Biomechanics, 2007. 40(14): p. 3061-3069. 
213. Pasta, S., et al., Difference in hemodynamic and wall stress of ascending thoracic aortic 

aneurysms with bicuspid and tricuspid aortic valve. Journal of Biomechanics, 2013. 46(10): 
p. 1729-1738. 

214. Esmaeili Monir, H., H. Yamada, and N. Sakata, Finite element modelling of the common 
carotid artery in the elderly with physiological intimal thickening using layer-specific 
stress-released geometries and nonlinear elastic properties. Computer Methods in 
Biomechanics and Biomedical Engineering, 2016. 19(12): p. 1286-1296. 

215. Lacolley, P., V. Regnault, and A.P. Avolio, Smooth muscle cell and arterial aging: basic and 
clinical aspects. Cardiovascular Research, 2018. 114(4): p. 513-528. 

216. Wang, X., et al., 3D printing of polymer matrix composites: A review and prospective. 
Composites Part B: Engineering, 2017. 110: p. 442-458. 

217. Nikzad, M., S.H. Masood, and I. Sbarski, Thermo-mechanical properties of a highly filled 
polymeric composites for Fused Deposition Modeling. Materials & Design, 2011. 32(6): p. 
3448-3456. 



108 

 

218. Boparai, K., R. Singh, and H. Singh, Comparison of tribological behaviour for Nylon6-Al-
Al2O3 and ABS parts fabricated by fused deposition modelling. Virtual and Physical 
Prototyping, 2015. 10(2): p. 59-66. 

219. Shemelya, C.M., et al., Mechanical, Electromagnetic, and X-ray Shielding Characterization 
of a 3D Printable Tungsten–Polycarbonate Polymer Matrix Composite for Space-Based 
Applications. Journal of Electronic Materials, 2015. 44(8): p. 2598-2607. 

220. Fu, S.-Y., et al., Effects of particle size, particle/matrix interface adhesion and particle 
loading on mechanical properties of particulate–polymer composites. Composites Part B: 
Engineering, 2008. 39(6): p. 933-961. 

221. Segurado, J. and J. Llorca, Computational micromechanics of composites: The effect of 
particle spatial distribution. Mechanics of Materials, 2006. 38(8): p. 873-883. 

222. Tekce, H.S., D. Kumlutas, and I.H. Tavman, Effect of Particle Shape on Thermal 
Conductivity of Copper Reinforced Polymer Composites. Journal of Reinforced Plastics and 
Composites, 2007. 26(1): p. 113-121. 

223. Zhang, W.X., L.X. Li, and T.J. Wang, Interphase effect on the strengthening behavior of 
particle-reinforced metal matrix composites. Computational Materials Science, 2007. 
41(2): p. 145-155. 

224. Reddy, A.C. Effect of CTE and Stiffness Mismatches on Interphase and Particle Fractures 
of Zirconium Carbide/AA5050 Alloy Particle-Reinforced Composites. in 3rd International 
Conference on Composite Materials and Characterization, Chennai, India. 2001. 

225. The determination of the elastic field of an ellipsoidal inclusion, and related problems. 
Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 
1957. 241(1226): p. 376-396. 

226. Hashin, Z. and B.W. Rosen, The Elastic Moduli of Fiber-Reinforced Materials. Journal of 
Applied Mechanics, 1964. 31(2): p. 223-232. 

227. Lutz, M.P. and R.W. Zimmerman, Effect of the Interphase Zone on the Bulk Modulus of a 
Particulate Composite. Journal of Applied Mechanics, 1996. 63(4): p. 855-861. 

228. Cheng, Y.-T. and C.-M. Cheng, Scaling, dimensional analysis, and indentation 
measurements. Materials Science and Engineering: R: Reports, 2004. 44(4): p. 91-149. 

229. Hodzic, A., Z.H. Stachurski, and J.K. Kim, Nano-indentation of polymer–glass interfaces 
Part I. Experimental and mechanical analysis. Polymer, 2000. 41(18): p. 6895-6905. 

230. Gao, S.-L. and E. Mäder, Characterisation of interphase nanoscale property variations in 
glass fibre reinforced polypropylene and epoxy resin composites. Composites Part A: 
Applied Science and Manufacturing, 2002. 33(4): p. 559-576. 

231. Ureña, A., et al., Oxidation treatments for SiC particles used as reinforcement in aluminium 
matrix composites. Composites Science and Technology, 2004. 64(12): p. 1843-1854. 

232. Torralba, J.M., et al., Mechanical behaviour of the interphase between matrix and 
reinforcement of Al 2014 matrix composites reinforced with (Ni3Al)p. Composites Part A: 
Applied Science and Manufacturing, 2002. 33(3): p. 427-434. 

233. P., M.A., O. Kristiina, and S. Mohini, Mechanical properties of biodegradable composites 
from poly lactic acid (PLA) and microcrystalline cellulose (MCC). Journal of Applied 
Polymer Science, 2005. 97(5): p. 2014-2025. 

234. Yamaguchi, S., et al., Multi-scale analysis of the effect of nano-filler particle diameter on 
the physical properties of CAD/CAM composite resin blocks. Computer Methods in 
Biomechanics and Biomedical Engineering, 2017. 20(7): p. 714-719. 

235. Shan, D., L. Yuan, and B. Guo, Multiscale simulation of surface step effects on 
nanoindentation. Materials Science and Engineering: A, 2005. 412(1): p. 264-270. 



109 

 

236. Klinger, L. and E. Rabkin, Theory of nanoindentation creep controlled by interfacial 
diffusion. Scripta Materialia, 2003. 48(10): p. 1475-1481. 

237. Jiang, W.-G., J.-J. Su, and X.-Q. Feng, Effect of surface roughness on nanoindentation test 
of thin films. Engineering Fracture Mechanics, 2008. 75(17): p. 4965-4972. 

238. Cifuentes, S.C., et al., Assessment of mechanical behavior of PLA composites reinforced 
with Mg micro-particles through depth-sensing indentations analysis. Journal of the 
Mechanical Behavior of Biomedical Materials, 2017. 65: p. 781-790. 

239. Díez-Pascual, A.M., et al., Nanoindentation in polymer nanocomposites. Progress in 
Materials Science, 2015. 67: p. 1-94. 

240. Monclus, M.A. and N.M. Jennett, In search of validated measurements of the properties 
of viscoelastic materials by indentation with sharp indenters. Philosophical Magazine, 
2011. 91(7-9): p. 1308-1328. 

241. Cifuentes, S.C., et al., Effect of Mg content on the thermal stability and mechanical 
behaviour of PLLA/Mg composites processed by hot extrusion. Materials Science and 
Engineering: C, 2017. 72: p. 18-25. 

242. Cifuentes, S.C., et al., Effect of Mg content on the thermal stability and mechanical 
behaviour of PLLA/Mg composites processed by hot extrusion. Materials Science and 
Engineering: C, 2017. 72: p. 18-25. 

243. Yang, L., et al., Micromechanical modelling and simulation of unidirectional fibre-
reinforced composite under shear loading. Journal of Reinforced Plastics and Composites, 
2014. 34(1): p. 72-83. 

244. Chen, J.-k., et al., Critical particle size for interfacial debonding in polymer/nanoparticle 
composites. Composites Science and Technology, 2010. 70(5): p. 861-872. 

245. Kushch, V.I., et al., Numerical simulation of progressive debonding in fiber reinforced 
composite under transverse loading. International Journal of Engineering Science, 2011. 
49(1): p. 17-29. 

246. Mori, T. and K. Tanaka, Average stress in matrix and average elastic energy of materials 
with misfitting inclusions. Acta Metallurgica, 1973. 21(5): p. 571-574. 

247. Tan, H., et al., The uniaxial tension of particulate composite materials with nonlinear 
interface debonding. International Journal of Solids and Structures, 2007. 44(6): p. 1809-
1822. 

 


	Bioresorbable Composite Stents for Enhanced Response of Vascular Smooth Muscle Cells
	tmp.1575478176.pdf.GsWdN

