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Research in agriculture is critical to developing techniques to meet the world’s 

demand for food, fuel, fiber, and feed. Optimization of crop production per unit of land 

requires scientists across disciplines to collaborate and investigate new areas of science 

and tools for data collection. The use of robotics has been adopted in several industries to 

supplement labor, and accurately perform repetitious tasks. However, the use of 

autonomous robots in commercial agricultural production is still limited. The Flex-Ro 

(Flexible structured Robotic platform) was developed for use in large area fields as a 

multipurpose tool to perform monotonous agricultural tasks. 

This work presents the design and implementation of the control system for the 

Flex-Ro machine. The machine control architecture was developed for safe operation with 

redundant emergency stops and checks. Operators use the remote-control device to 

maneuver the machine in uncontrolled environments. Autonomous field coverage was 

developed using global positioning system (GPS) guidance. The guidance system tracked 

within 4 cm of the guidance line 95% of the time at a travel speed of 4 kph. Waypoint 

guidance was implemented and demonstrated such that Flex-Ro could be programmed to 

follow complex paths and curves. 



 

 
High-throughput plant phenotyping is a continuously developing and evolving field 

of plant science. The methods used to collect phenotyping data include drones, satellites, 

manual measurement, and ground rovers. A suite of phenotyping sensors was installed onto 

the Flex-Ro to cover large field areas. The system was verified in soybean research plots 

at the University of Nebraska-Lincoln (UNL) Spidercam phenotyping facility.  Positive 

correlations between the Spidercam and Flex-Ro phenotyping data were established. The 

Flex-Ro was able to statistically distinguish between soybean variety emergence and 

maturity differences.  The late season phenotyping data showed statistical differences 

between the fully irrigated versus deficit plots. Basic economic calculations estimated the 

cost to operate the Flex-Ro machine for field phenotyping use at approximately $5.50/ha.  
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1 
Chapter 1   Introduction 

The agricultural industry supports the world’s needs for food, feed, fiber and fuel. Global 

economic and population growths are projected to increase by over 40 percent by 2050 

(Bruinsma, 2009; USDA, 2019). This translates to a corresponding increase in global 

agricultural production by 70 percent. There are two ways to increase crop production, 

more yield per area or expansion of farmable land (Bruinsma, 2009). During this period 

of growth, the planted acres within the United States is projected to remain steady 

(USDA, 2019). Plateaued commodity prices with increasing input costs are driving thin 

margins, and limited land requires increased productivity per area. As a result, continuous 

research on optimization of resources is paramount to the success of modern farming 

operations.  

1.1  Research in Agriculture 

Agricultural research supports the development of efficient crop production systems. 

Research institutions receive grants to support work investigating cause and effect 

relationships across all aspects of the agriculture industry. The findings are presented to 

the public via extension outreach of the universities, allowing the producers to implement 

discoveries. 

Farmers must balance costs to benefits to maximize production while maintaining 

profitable operation. Costs incurred during the growing season include tillage, nutrient 

application, seed, pesticides, herbicides, irrigation, and harvesting operations. Each one 
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of these items affects the output or yield of the crop. Research is conducted across all 

aspects of the farming operation, which seeks to draw correlations between variable 

inputs to outputs. Scientists from many disciplines find applicable research questions in 

the agricultural industry. An abridged list includes soil scientists, agronomists, 

economists, engineers, entomologists, geneticists, plant breeders, statisticians, traders, 

financial analysts and computer scientists. Each of these stakeholders hold a position 

within the agricultural value ecosystem and can benefit from effective research. 

There are two desired outcomes for a successful research program related to agricultural 

production. First is increased yield (revenue) and the second is reduced inputs (cost). 

Management practices must balance revenue with costs to remain profitable. For 

example, excessive nutrient application would increase crop output; however, the 

increased costs may not be recouped with proportional yield gain (Cassman, 1999). There 

are non-financial implications to farming management practices also. Environmental 

concerns from chemical misuse is one example. Successful agricultural research ideally 

benefits all stakeholders of the agricultural value chain. One particularly important subset 

of agricultural research is the development of desirable plant characteristics. 

1.1.1  Plant Breeding 

Plant breeding is the method of developing crops to achieve desirable characteristics 

(Atefi, 2019). The current rate of increased plant productivity must continue to rise to 

meet the demands of the world (Araus and Cairns, 2014). Plant breeding targets 

increasing yield and key traits for harvestability and marketability (Fehr, 1991). For 
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example, a corn plant should have a high yield with strong stalks, deep roots and disease 

resistance. Plants resistant to insects and disease require fewer pesticides and plant traits 

for drought tolerance are desirable in many locations. 

Plant breeding success relies on both qualitative and quantitative data. Traditionally, the 

breeders developed plants by visually selecting the best from each generation (Fehr, 

1991). This process would be repeated several times until the desired output was 

achieved. New methods in genetics provide ways to accelerate breeding progress, and 

better target desired traits (Fahlgren et al., 2015; Fehr, 1991). 

Accelerating the progress of plant genetic development is critical to meeting the world 

demand for increased production of food, feed, fiber, and fuel. Even with the science of 

molecular breeding, rapid characterization of a plant’s physical response given its 

genotype to an environment is still limited (Atefi, 2019). Objective quantification and 

qualification of phenotypic data is crucial to developing plants with the most desirable 

traits (Fahlgren et al., 2015).  

1.1.2  Phenotyping 

Phenotyping is the characterization of a plant’s physical and performance related traits 

(Dhondt et al., 2013). Plant breeders collect this data for genotypes in specific 

environments. Leaf area index, leaf number, canopy temperature, water content, 

vegetative indices, canopy coverage, and stem diameter are examples of physical traits 

measured or calculated. The environments may be controlled, uncontrolled or measured 

(Dhondt et al., 2013). 
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Plants respond uniquely to different environmental conditions (Atefi, 2019). Plant 

breeders and production farmers can leverage early prediction of crop output. Plant 

breeders use early season phenotype data to draw preliminary conclusions on a genotype 

to begin developing the next generation (White et al., 2012). Yield relationships to early 

season phenotyping data can be statistically established. With this method, farmers 

marketing crop futures contracts would have a better estimate of yields and total 

production.  

Development of reliable correlations of a plant phenotype to environmental conditions 

and genotypes requires extensive datasets. Long term studies are often conducted in 

semi-controlled research fields or controlled greenhouses with installed phenotyping 

systems (Foix et al., 2015). Destructive methods of measuring plant characteristics have 

previously been used, but limit the temporal data collection (Furbank and Tester, 2011). 

Large sample sizes are needed to achieve representative growth curves of a genotype.  

Non-destructive phenotyping uses sensors and imaging techniques to directly measure or 

capture data which can be used to calculate plant characteristics. These sensors can be 

mounted to devices for high-throughput data collection. Advancements in computational 

processing capacity have enabled rapid phenotyping of large populations. Current high-

throughput techniques maintain high correlation to ground truth measurements (Bai et al., 

2016).  

Incoporating high throughput phenotyping into the plant breeding cycle will facilitate the 

increase in crop productivity needed to match global demands (Furbank and Tester, 

2011). Phenotyping research is being developed on resolutions from plant to field level. 
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Each scale has benefit to plant breeders and crop consultants who make management 

decsisons based on the current state of the crop. Shakoor et al., (2017) illustrated the plant 

breeding cycle and scales Figure 1.1. 

 

Figure 1.1: Phenotyping and crop-breeding cycle. Scale and resolution of 
developed phenotyping platforms (Source: Shakoor et al., 2017). 
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1.2  Use of Technology in Agriculture 

Technology has been continuously incorporated into agriculture to improve the 

production system. Mechanization from horse to tractor revolutionized the farming 

industry. Machine features became more complex as technology continued to develop, 

and operating stations were increasingly designed for ergonomics and comfort. Electronic 

incorporation into agricultural machinery began with the release of a planting population 

monitor by DICKEY-john (Stone et al., 2008). Serial communication was first used to 

simplify connections to implements. Progress towards standardizing communication on a 

machine controller area network (CAN) bus began in the 1980’s (Stone et al., 2008). A 

standardized high-level CAN protocol (message format) allowed for the continued 

development of agricultural technologies and paved the way for brand agnostic devices. 

1.2.1  The Rise of CAN bus 

CAN bus technology for off-highway machinery led to the development of complex 

machinery systems. Multiple electronic control units (ECUs) were used to control the 

subsystems of machine. Electronic displays and switches in the cab required 

communication with the ECUs. The Society of Automotive Engineers (SAE) and 

American Society of Agricultural Engineers (ASAE) jointly developed SAE J1939 as a 

response to the need to standardize communication protocol on off-highway machinery 

(Marx, 2015). J1939 defined this high-level message structure (application layer) for 

communication on the two wire twisted pair CAN bus (physical layer). Control, interface, 

and diagnostic messages were defined within the standard’s application layer. Processor 
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advancement preceded development of the virtual terminal (VT) which integrated 

machine and implement controls onto a user interface display (Stone et al., 2008). As 

global position system (GPS) accuracy continued to improve, the use of the VT expanded 

to include automatic steering applications (Buick, 2006).  

1.2.2  Navigation Systems 

GPS technology became prevalent on agricultural machinery first with the 

implementation of precision mapping, and later automatic steering control. The turn of 

the century led to rapid advances in GPS hardware development and accuracy 

(O’Connor, 1997). Research by O’Connor (1997) and Bell (1999) developed steering 

control systems based on GPS location. As time progressed, GPS hardware became more 

accessible and overall decreased cost of systems led to a shortened return on investment 

time (Buick, 2006). Automatic guidance improved field coverage efficiency by reducing 

overlap. Modern navigation systems have repeated accuracy of +/- 2.5 cm by using real-

time-kinematic (RTK) corrections for the GPS signal (Baillie et al., 2018).  

The development of automatic navigation control systems led to the delivery of other 

related operations. Automatic swath guidance has been extended to provide headland turn 

coverage (Baillie et al., 2018). Total machine automation controls the tractor and 

implement through the turn, disengaging and restarting the operation on the next swath. 

Machine cooperation (e.g. leader and follower) technologies have been developed as a 

progression of automatic navigation (Thomasson et al., 2018). The current state-of-the-art 

technologies are operator assisted automation, or level 3 (out of 5) automation as defined 
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by Case IH (CNH Industrial America LLC, Burr Ridge, IL). The operator must remain in 

the cab ready to resume control in case of unexpected events or encounters (Case IH, 

2018). Future development towards full autonomy will need to include advanced path 

planning and obstacle detection and avoidance (Baillie et al., 2018; Bell, 1999). 

1.3  Robotics in Agriculture  

The use of robotics in agriculture, while still commercially limited, is seeing rapid 

development (McAllister et al., 2019). Robots are designed to relieve operators of long 

working days and reduce overall manual labor (Werner, 2016). The use of robotics in 

precision agriculture increases management resolution by working unattended for long 

hours. Further, a smaller size compared to traditional machinery reduces soil compaction 

(Godoy et al., 2012). 

Agricultural robots have been developed in several configurations. The use of battery 

power is common for smaller scale platforms (Bak and Jakobsen, 2004; Bangert et al., 

2015; Griepentrog et al., 2012; Slaughter et al., 2008). However, sole electric power has 

runtime limitations due to the required time to charge (Werner, 2016). Internal 

combustion robotic platforms have also been developed for agricultural use (Godoy et al., 

2012; Werner, 2016). Petroleum powered robots have the advantage of long run times 

paired with short refueling periods. However, a combustion engine requires increased 

maintenance compared to an electric drivetrain. In either case, digital systems must be 

able to control all aspects of the vehicle. 
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1.3.1  Agricultural Robotic Control Systems 

The development of autonomous agricultural robots includes research on control system 

methodologies. Robotic control systems are developed similar to subsystems 

implemented on machinery (Troyer, 2017). Autonomous operation consists of four main 

stages. A machine must start with route planning. This may be present as algorithms on 

the machine or be pre-defined and uploaded. Coverage strategies are optimized for 

maximum field efficiency (J. Jin and L. Tang, 2010). The route is then augmented with 

environment data during operation, most commonly to avoid obstacles. After the current 

route is accepted, the trajectory and speed of the machine is determined. Finally, local 

feedback control manages the actuators of the robot to the desired operating state (Paden 

et al., 2016). 

Robotic steering controllers are designed from a kinematic or dynamic model of the 

machine. Kinematic models, while less computationally expensive, are limited to slower 

speed operation (Bell, 1999). Advanced dynamic control methodologies can improve 

performance on machines which encounter a lot of variability (Uzunsoy, 2018). Different 

implements, payloads, and operating speeds contribute to steering controller performance 

(Lakkad, 2004). Simulations are used to verify controller functionality and test different 

scenarios without the need for the physical machine (Lakkad, 2004; Tu, 2013). The 

control system must compensate for variations in terrain to track the navigation line 

(Cariou et al., 2009).  
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Robots operating in uncontrolled environments may encounter obstacles at any time. 

Obstacle detecting sensors are installed in order to reduce the likelihood of collisions. 

(Emmi et al., 2014). Several methods of obstacle detection have been researched and 

evaluated. Methods include LiDAR’s (Biber et al., n.d.) infrared (IR) sensor (Pitla et al., 

2010a) and lasers (Oftadeh et al., 2013). Accurate detection and classification of 

obstacles within the field environment will be important for large scale deployment.  

Robotics in production agriculture are likely to manifest as several small robots operating 

in cooperation (Emmi et al., 2014; McAllister et al., 2019; Pitla et al., 2010b). Modular 

robots would be added depending on the need of the operation (Emmi et al., 2014). 

Swarm control architecture depends on the task. Equal distribution of work is well suited 

to seeding type applications, and leader-follower architecture is more suited to harvest 

operations (Pitla et al., 2010b). 

Substantial amounts of data must be transferred between the subsystems of the robot and 

between the units in the swarm. CAN bus communication provides a method for handling 

messages within the on machine network (Baek et al., 2008). Communication between 

robots within the field will facilitate job coordination (Pitla et al., 2010b). Robust 

network systems and relaying information to the master controller will allow the robots to 

be adaptable wide variety of applications.  

1.3.2  Ag. Robotic Applications 

There are many applications in agriculture which are well suited to robotics. The first 

adaptation will replace labor intensive repetitive tasks (Emmi et al., 2014). Robots 



11 
currently developed are low power and designed for non-ground engaging activities. 

These include targeted mechanical weeding (Åstrand and Baerveldt, 2002), precision 

spraying (Bangert et al., 2015), and crop scouting (Bangert et al., 2015; Shafiekhani et 

al., 2017) 

Slaughter (2008) authored a state-of-the-art review of robotic weeding technologies. 

Several different methods were described as ways autonomous rovers managed weeds. 

Since then commercialized technologies have been developed. EcoRobtix (ecoRobotix 

ltd, Yverdon-les-Bains, Switzerland) Naïo Technologies (naïo Technologies Escalquens, 

France) and FarmWise (FarmWise Labs, Inc. San Francisco, CA) are all examples of 

autonomous weeding prototypes which appear available in the commercial sector.  

Crop scouting traditionally is completed by a trained agronomist. The agronomist must 

balance productivity with resolution of field coverage. Agronomists data supplements 

producers in decision making about crop inputs and applications. Plant phenotyping uses 

scouting data to draw correlations to a genotype given the measured or controlled 

environment. 

1.3.3  Ag Robotic Phenotyping 

Phenotypic data collection is laborious. Several concepts and prototypes have been 

developed and implemented to facilitate high-throughput phenotyping. Phenotyping 

platforms vary in scale and resolution as seen previously in Figure 1.1. Data captured 

from unmanned aerial vehicles and satellites is used to measure broad areas on plot and 
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field level resolution. Ground vehicles and devices collect higher resolution data, from 

plot to individual plant (Shakoor et al., 2017). 

High throughput ground based phenotyping platforms were first developed on manual 

push carts. White and Conley (2013) and Bai et al. (2016) instrumented carts to measure 

plot level phenotypic traits. The use of carts enabled multiple sensor mounting 

configurations and cover more area as a result. A stop-measure-go technique was used for 

plot coverage and is well suited to manual operation of the cart (Bai et al., 2016). Strong 

correlations were established to ground truth measurements to prove the viability of the 

cart phenotyping system. 

The development of phenotyping carts enabled faster coverage compared to handheld 

devices and a higher resolution than UAVs. However, pushing the cart and manually 

triggering data collection required a full-time technician. Several self-propelled 

phenotyping devices have been developed. Andrade-Sanchez et al., (2014) developed a 

manually driven high clearance phenotyping platform. The machine was easily adaptable 

to a variety of sensors and was not limited by payload capacity. Shafiekhani et al. (2017) 

developed Vinobot which was a smaller scale autonomous platform to collect phenotypic 

data on research plots. Bangert et al. (2015) implemented a phenotyping application onto 

the BoniRob autonomous robot. 

Space in the phenotyping field exists for a high-resolution, high-throughput platform for 

high-acreage applications. Suites of sensors have been proven to show correlations to 

ground truth phenotyping measurements. Manual and self-propelled platforms are tied to 
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operators which inherently limit coverage and productivity. A truly autonomous platform 

would collect or stream data over large coverage areas and allow researchers and crop 

consultants to make informed decisions. 

1.4  Conclusions 

Considerable progress has been made on robotic systems for use in agriculture. 

Researchers have developed robotic control systems and many applications, specifically 

in the plant phenotyping community. However, there is a lack of synthesized machines 

which are field ready, especially for large acreage applications. Researches will be able to 

use this high coverage data to facilitate new science on the productivity of commercial 

agriculture.  

1.5  Thesis Objectives 

The aim of this thesis is to continue the development of the Flex-Ro platform developed 

by Werner (2016). A field capable research platform for phenotyping is proposed as the 

first use case for the Flex-Ro platform. Five objectives have been outlined as follows: 

1. Develop and verify a redundant safety stop system to stop potential unintended 

machine motion. 

2. Autonomously navigate between 30in crop rows and complete headland turns 

resulting in supervised autonomous field coverage. 

3. Follow a preset waypoint path to facilitate go-to-start and return-to-home 

applications.  
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4. Implement obstacle detection to react to small sized objects during field 

operation. 

5. Compare phenotyping data collected with the Flex-Ro PhenoBar to the ground 

truth data collected using the UNL Spidercam facility. 

1.5.1  Thesis Hypothesis 

1. The Flex-Ro phenotyping data collected will directly correlate with the 

measurements taken by the Spidercam phenotyping utility. 

2. The Flex-Ro phenotyping data will reveal with statistical significance the 

difference between two treatments within the research field.  
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Chapter 2   Flex-Ro Control System Development and 

Implementation 

2.1  Introduction 

The Flex-Ro machine was designed for large area field operations. The design of a 

control system for a machine depends on the environment in which it must operate. 

Constraints are established based on the parameters of the task. Agricultural fields are 

semi-controlled environments with limited access. Knowledge about the field before 

operation could include information related to boundaries, crop-row placement, and 

internal obstacles or hazards. Traditionally, machine operators react to unforeseen 

circumstances such as obstacles and adverse field conditions. Robotic machines must be 

able to programmatically manage unexpected circumstances while finishing the task 

assigned.  

Coverage of a row crop field requires three basic operations. The machine must first be 

positioned at the starting swath. Then the robot needs to navigate between the swath 

rows, without damaging the crop. The headland area is either made up of crop rows 

perpendicular to the swath or open space and the robot must use this headland space to 

continue into the next swath. This process is repeated until the field has been completely 

traversed. Finally, the robot must continue to a staging area where it can be picked up. 

Objectives for the Flex-Ro control system were extracted from the requirements for basic 

field coverage. This also includes reaction to obstacles during field operation. Obstacles 
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in scope include pedestrian sized objects, but not holes and washouts. The Flex-Ro 

platform must also facilitate manual operation. Teleoperation via remote control was 

required for maneuvering the machine to its storage location, loading of the machine onto 

a trailer, and initializing the machine coverage at the field. 

2.1.1  Chapter Objectives 

1. Develop and verify a redundant safety stop system to stop potential unintended 

machine motion. 

2. Autonomously navigate between 30 in. crop rows and complete headland turns 

resulting in supervised autonomous field coverage. 

3. Follow preset waypoint path to facilitate go-to-start and return-to-home 

applications.  

4. Implement obstacle detection to react to pedestrian sized objects during field 

operation. 

2.2  Materials and Methods 

2.2.1  Control System Hardware 

Several different components make up the Flex-Ro control system. The four main 

machine subsystems were the engine, hydrostatic drive, steering, and human machine 

interface. Digital electronic controls were required for the machine to be operated 

programmatically. The electronic control units (ECUs) were linked via controller area 

network CAN bus. Each of the subsystem controllers required compatibility with the 
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CAN communication. The two operation modes, manual and automatic, published 

commands via the machine CAN bus to the subsystems. 

Machine control requires processing an input signal, performing calculations and logic 

operations, and outputting a control signal. Typical inputs to a controller can be analog 

voltage, digital signals, or communication protocol (digital waveforms interpreted as 

bits). Controller outputs are typically voltages or currents to drive electric actuators or 

relays. Outputs may also send digital messages which can be received by other 

controllers. Selection of a controller for an application requires knowledge of the system, 

and what the required inputs and outputs (I/O) will be. One controller may not be able to 

process the required number of I/O channels for a machine. Further, even if the I/O 

channels were available, significant processing power would be required which may 

introduce lag and processing error and result in unexpected machine behavior. In this 

case, several controllers which can communicate together form a distributed control 

network.  

Eight controllers were used on the Flex-Ro distributed control network. The electronic 

control units or ECUs were manufactured by Danfoss (Danfoss Power Solutions, Ames 

IA). The Danfoss controllers were selected for available pin configurations as well as 

their ability to communicate using the CAN bus on the Flex-Ro machine. There are two 

models of ECUs, three MC024-110s (24 pin) and five MC012-110s (12 pin). These 

Danfoss controllers are programmed using PLUS+1 GUIDE software. The graphical 

programming method is intuitive and robust programs can be created quickly without 

needing extensive knowledge in embedded controls.  



18 
Remote operation was developed using a Danfoss DP600TM display, a Danfoss JS1000 

joystick, and Magnetek WIC-2402 Wireless CAN Bridge. These components were 

mounted in an enclosure with a strap which held the device for comfortable operation 

(Figure 2.1).  

 

The laptop used a universal serial bus (USB) to CAN bridge for reading and writing 

messages on Flex-Ro’s CAN bus. The FlexRoRun application programmed using 

MATLAB app designer, was developed to facilitate high level navigation control. The 

CAN bridge used was a Kvaser Memorator Pro x2 HS (Kvaser AB, Mölndal, Sweden). A 

Vector CANcase XL Log (Vector North America Inc. Novi Michigan) was also used 

during testing.  

Figure 2.1: Remote control box developed for teleoperation of the Flex-Ro platform. 
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Shown in Table 2.1 is the list of primary components which were implemented as part of 

the control system for the Flex-Ro machine. 

Table 2.1: List of control system hardware used on the Flex-Ro machine. 

Model Manufacturer Purpose 

MC024-110 Danfoss Electronic control unit (24 pin) 

MC012-110 Danfoss Electronic control unit (12 pin) 

WIC-2402 Magnetek Wireless radio CAN bridge 

Victor SPX Vex Robotics Steering motor controller 

JS1000 Danfoss Joystick for machine maneuvering 

DP600TM Danfoss Display for remote operation 

Memorator Pro 2xHS v2 Kvaser USB to CAN bridge 

AG-372 Trimble GPS receiver 

O3M151 ifm 3D Smart Sensor, obstacle detector 

O3M950 ifm IR illumination unit 

 
2.2.2  CAN Bus J1939 Distributed Control Network 

A distributed control network has many advantages. The controllers within the system 

split the processing of inputs and outputs for each subsystem. A controller of the system, 

usually with direct operator inputs, sends out machine control messages. For example, the 

operator commands the machine to slow down and steer to the right using a joystick. The 

hydrostatic drive controller will receive the message to slow down and adjust the 

hydraulic fluid flow. Simultaneously, the steering controllers received the message to 
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turn right and actuate the wheel angle to the desired operating position. Another benefit 

of the distributed control network is the ability to add or remove nodes without affecting 

the rest of the system. The nodes of the Flex-Ro bus can be seen in Figure 2.2. 

A CAN bus network connects compatible ECU’s with a twisted pair of wires (Bell, 

2002).  These wires are used to send data bits across the bus. This data is received by 

other controllers and processed as commands or machine data. One standard high-level 

protocol for the formatting of these bits is SAE standard J1939 (Bell, 2002; Marx, 2015). 

The standard specifies how these data bytes are grouped and sent, called messages. Each 

message contains identifier bytes and a data payload. The identifier provides information 

to the ECUs on where the message came from and what it contains. The other ECUs on 

the bus can choose to process the message if programmed to receive it or ignore it.  

Figure 2.2: CAN node layout on the Flex-Ro platform. Dashed wire shows connection via 
J1939 CAN bus. 
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The J1939 standardized communication provides a means to easily record machine data 

(Marx, 2015; Rohrer, 2017). Many devices have been developed to enable receiving and 

publishing messages on the CAN bus. A USB to CAN bus bridge allows the computer to 

send and receive messages in real time. There are many software applications for CAN 

logging and real-time decoding (Rohrer, 2017). However, programmatically sending 

CAN messages using a laptop in response to inputs is more limited. MATLAB, 

LabVIEW, and Visual Studio are a few examples. MATLAB was chosen to design a 

graphical user interface (GUI) given its ability to utilize existing hardware and the 

accessibility to useful toolboxes. The MATLAB developed Vehicle Network Toolbox is 

a suite of functions for sending and receiving messages on the CAN bus. The user can 

reference a database which MATLAB uses to automatically decode and encode message 

data.  Further, the MATLAB app can be deployed to an executable file so others could 

install the program and run the Flex-Ro machine. 

The messages created for the Flex-Ro platform used J1939 standard and proprietary 

formats. The source addresses selected for each ECU corresponded to global source 

addresses defined in the standard. Data to be transmitted used existing SLOT (scaling, 

limit, offset and transfer) definitions when applicable. Each of the messages were sent as 

broadcast without specific destination addresses. Priority was assigned based on urgency 

of the message. For example, the e-stop message received the highest priority to ensure 

the quickest response time to emergency. 
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2.2.3  Human Machine Interface 

2.2.3.1  Remote Control Operation 

A machine remote-control interface is necessary for basic operation. Navigating from a 

storage location to field or loading onto trailer requires safe and reliable human control. 

Indoor automatic guidance for a field machine is impractical due to unpredictable 

building enviroments and loss of GPS signal for location information. The Flex-Ro 

wireless remote control must be able to drive the machine, monitor operating variables, 

change system parameters, and perform an alignment of the steered wheels. The remote 

uses a display and joystick for intuitive ergonomic control. The right hand is dedicated to 

controlling the machine travel and steering via the joystick. The left hand is free to adjust 

parameters on the screen including the brake release, speed range, steering mode, and 

most importantly the e-stop.  

The remote application was programmed using Danfoss PLUS+1 GUIDE software. The 

main screen of the remote-control interface includes information and controls for normal 

operation. This main display is shown in Figure 2.3.  
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The numbered softkeys were mapped to controls for engine run and start, cruise 

activation, e-stop, speed range, steer mode, brake release, and menu access. The machine 

is programmed to stop when an obstacle is encountered. The operator can override the 

obstacle detection by pushing and holding the ‘OK’ button. Obstacle detection resumes 

once the button is released. Engine rotations per minute (rpm) and cruise set speed are 

adjusted using the arrow key pairs. The current softkey assignment is displayed on the 

screen as an icon. This includes changing controls, for example, brake release or apply 

which depends on the current machine state. There are graphics for the current speed 

range and steering mode. Values displayed on the main screen include remote and 

machine battery voltage, coolant and engine oil temperatures, cruise set speed, and GPS 

indicated vehicle speed. 

Figure 2.3: Main operating screen of the Flex-Ro remote. Danfoss DP600TM 
display. 
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The second page is the steering calibrate page which is shown in Figure 2.4 (Right). 

Optical quadrature encoders provide feedback for the steered wheels. The position of the 

wheel must be calibrated as the encoder only provides a relative pulse count. The count is 

zeroed at the wheel center position during calibration. The gearing of the steering motor 

and resolution of the encoder translates to +/- 42,186 counts to +/- 90-degree steering 

angles. Current absolute wheel position is saved at 2 Hz to non-volatile memory in case 

the machine is shut-off while the wheels are not at 0 degrees.  The steering calibrate page 

includes controls for activating steering calibrate mode, changing which wheel to 

calibrate, and saving new center position. The graphics display which wheel is currently 

being calibrated. Outside of calibration mode graphically shows the current feedback 

angle of each wheel. Finally, included on the steering calibration screen is the same e-

stop softkey in case of unintended steering or machine motion. 

The last screen currently implemented is a diagnostic display, Figure 2.4 (Left). The e-

stop button remains and is assigned to the same softkey. The diagnostics screen shows 

which ECU triggered an active e-stop. The user can then quickly diagnose the root cause 

of the e-stop flag. Also shown are engine hours, fuel rate, engine oil pressure, compass 

Figure 2.4: Left - Remote diagnostics screen. Right - Remote steering calibrate screen. 
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bearing, and estimated fuel level. Two of the softkeys are for resetting the fuel level to 

either a full or half tank. More modules could be easily added to the diagnostic screen 

depending on the need of the operator. 

The remote-control interface was developed such that individuals with no experience 

could operate the machine with minimal instruction. Components and information 

displayed on the screen can be easily changed, added, or deleted depending on the 

application installed on the machine. The remote is not, however, intended to become a 

high-level controller. An operator cannot drive to the field and select a navigation path 

using solely the remote at the time of publishing. Remote operating instructions are 

included in Appendix B.1. 

2.2.3.2  Laptop and MATLAB Control Interface 

Autonomous operation of the machine requires processing beyond the capability of a 

typical microcontroller. The high-level machine controller processes the current machine 

pose and position and calculates a steering angle. A high-level controller programmed 

using MATLAB App Designer was developed for Flex-Ro. While not proposed as a 

long-term solution for machine control, the use of the laptop provided many benefits 

including the ability to quickly develop and debug programs and implement a graphical 

user interface. The MATLAB Vehicle Network Toolbox provided the framework needed 

to communicate with the machine’s J1939 CAN bus controllers. The MATLAB app, 

called FlexRoRun, was deployed as an executable application. Other users could then 

install the program without a MATLAB license. 
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Operation of the program begins with the initialization of the USB to CAN bridge. 

Currently, the tool supports a Vector CANcase XL Log and Kvaser Memorator Pro 2xHS 

v2. A CAN message database file was created which contained both J1939 standard and 

custom Flex-Ro messages. Use of the database streamlines the decoding and encoding 

process of message transmission. The main program execution loop is time triggered at 

5Hz. This rate was chosen to match the incoming signal from the GPS and was sufficient 

for the dynamics of the machine. 

There are several parts to the FlexRoRun main run page as shown in Figure 2.5. Each of 

the main control systems were divided into modules. Essential engine, hydrostatic drive, 

steering, and e-stop controls are accessed on the main run page. Keyboard shortcuts were 

mapped to buttons and sliders, which reduced error prone mouse clicking. The 

NebrasTrack (Flex-Ro’s automatic navigation system) controls are also located on the 

main run page. The module includes a map of the current track and machine’s location, 

tracking activation, and steering control output for debugging. Lateral shift buttons 

provide fine and coarse adjustment of tracking location relative to the defined path.  
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The Navigation Manager page (Figure 2.6) contains track creation controls. There are 

several ways to import a navigation track. Recording an AB line requires either manual 

entry of the latitude and longitude coordinates or driving to the A and B points. The user 

can then generate a field coverage map, assuming a rectangular field. Parameters include 

track width, and number of swaths. Points are populated based on the recorded AB 

points, and a simple constant radius headland turn is calculated. The other tracking modes 

can also be activated on this page. Modes include waypoint following, AB Parallel 

passes, and AB Traverse headland turns. 

Figure 2.5: Main application tab for the FlexRoRun application. Developed using MATLAB App 
Designer. 

 
Nav Path Manager 
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The navigation tab includes controls for importing and saving a prerecorded path. Saving 

a track saves the point array and track metadata, such as track-width, navigation type, and 

track name. The current track is saved during application shutdown.  When the 

application is relaunched the last used settings and track are loaded. Basic FlexRoRun 

operating instructions are included in Appendix B.1. 

2.2.4  Low Level Machine Control 

2.2.4.1  Engine Control 

The engine control ECU receives start and stop commands via a CAN message from the 

main machine controller (either remote control or FlexRoRun). Those signals are 

Figure 2.6: Navigation tab within the FlexRoRun application. Developed using the MATLAB 
App Designer. 
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processed into digital outputs of the run and start pins of the Kubota engine ECU. The 

engine control ECU translates requested engine rpm into a TSC1 J1939 standard 

message. The engine control CAN message contents are defined in Table 2.2. 

Table 2.2: Engine control message. Start and Length shown as Byte.bit 

 

2.2.4.2  Hydrostatic Drive Control 

The hydrostatic drive (hydro) control ECU processes drive command messages into 

pump control signals. The pump controls machine speed by varying the swash plate angle 

of the tandem piston pump. Each pump supplies two drive wheels so the swash plate 

commands must be the same. These commands are either received via remote joystick or 

from the high-level controller. Before the machine can be moved, a brake release signal 

must be received. Once the command is processed, the control-cut-off valve is activated 

which supplies pressure to the wheel brakes. The brakes are in normally ON position 

with spring pressure. Direction and magnitude commands are included in the hydro 

control CAN message described in Table 2.3. Ramp up and down parameters are 

programmed into the controller for smooth acceleration and to avoid damage to the 

Message Description: Engine control data from main machine controller. 

ID: 0x10FF4427 

Start: Length:  Description:        

0.0 0.2  Engine run enumeration 

0.2 0.2  Engine start enumeration 

1.0 2.0  Engine RPM request 
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pump. The deceleration was tuned so the machine slows rapidly and without tire skid. A 

cruise control function is also supported which controls the swash plate angle using a 

closed loop between requested and actual machine speed.  

The hydro-controller also processes the machine’s response to detected obstacles. The 

hydro controller manages vehicle speeds, so if an obstacle is detected, the controller can 

react quickly. The function of the obstacle detection algorithm is covered more in depth 

in Section 2.2.8. 

Table 2.3: Hydrostatic drive pump control message. Start and Length shown as Byte.bit 

 

 

Message Description: Hydro. control data from main machine controller. 

ID: 0x4FF4127 

Start: Length:  Description:        

0.0 0.2  Direction enumeration 

0.2 0.2  Brake release enumeration 

0.4 0.2  Cruise control enumeration 

0.6 0.3  Obstacle override enumeration 

1.0 2.0  Drive magnitude 

3.0 1.0  Cruise speed request 
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2.2.4.3  Steering Control 

There is a steering control ECU located at each wheel. A CAN message sends a 

commanded center steering angle as well as the current steering mode enumeration. Each 

ECU processes this message using a PLUS+1 GUIDE Ackermann steering block 

(Appendix D.2). This block calculates the wheel angle based on the mode and centerline 

command. There are four programmed steering modes; front, rear, coordinated, and crab. 

The centerline commanded angle and steering mode are included in one of the steering 

messages described in   

Table 2.4. A closed loop PI controller commands a motor driver via PWM (pulse width 

modulation) signal to turn the wheel. Digital encoder pulses are counted to determine the 

wheel’s current angle. There are +/- 42,186 pulses to turn +/- 90°. Direction of turn is 

determined by the sign of the phase offset between A and B encoder channels. The 

controller periodically saves the absolute wheel position in case of machine power down.  
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Table 2.4: Steering control messages. Start and Length shown as Byte.bit 

 

Each of the four wheels steers independently of the others. Ackermann’s steering angles 

require the inner and outer wheels to steer to different angles based on a centerline 

commanded angle. In this system, the wheels may arrive at their individual commanded 

angle at separate times. This is especially apparent at very sharp steering angles when the 

inner wheel angle turns to 90-degrees and the corresponding outer wheel angle is near 60-

degrees. Synchronization was implemented to slow the speed of the wheel that has a 

smaller delta to the next commanded steer angle. Tuning adjusted the proportion gain on 

the delta until the wheels arrived at extreme steering angles simultaneously. 

Message Description: Steering command information. 

ID: 0x8FF4327 

Start: Length:  Description:        

0.0 2.0  Centerline commanded steer angle 

2.0 0.2  Steer mode enumeration 

 

Message Description: Steering calibration commands. 

ID: 0x1CFF4527 

Start: Length:  Description:        

0.0 0.2  Calibration mode enable 

0.2 0.2  Active calibration wheel 

0.4 0.2  Save wheel calibration enumeration 
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Each steering ECU also monitors a physical e-stop switch. When the switch continuity is 

broken, an e-stop flag is immediately sent across the CAN bus with the highest priority. 

The flag remains until the e-stop switch is reset, and control is resumed when the user 

resets the machine with the remote or FlexRoRun software.  

2.2.4.4  Emergency Stop Network. Start and Length shown as Byte.bit 

Each of the controllers sends a status message at 10 Hz. The main machine controller 

(remote control or FlexRoRun) processes the status messages from all the machine 

controllers to check for e-stop flags. If the main controller does not receive a message 

from an ECU after 2 seconds, an emergency flag is set. After a flag is set, all controllers 

must send a reset signal to ensure the machine is ready to return to service. A heartbeat 

signal within each message ensures that the controller is properly functioning and is on 

the bus each time a new message is sent. The contents of the status CAN message are 

outlined in Table 2.5. 

Table 2.5: Example status message. Start and Length shown as Byte.bit 

 

Message Description: Status message from hydrostatic drive controller. 

ID: 0x0FF572E 

Start: Length:  Description:        

0.0 1.0  Heartbeat (0 – 255) 

1.0 0.2  Emergency stop enumeration 
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2.2.5  Navigation Error Calculation 

The implementation of a straight-line tracking algorithm is the first step for automatic 

navigation. The operating environment for the Flex-Ro machine is row crop fields. 

Successful navigation down the rows without crop damage is of highest importance for 

the machine. There has been a significant amount of research in the implementation of 

various controller algorithms for automatic steering (Bell, 1999; Boyali et al., 2018; 

Godoy et al., 2012; O’Connor, 1997; Troyer, 2017). Kinetic based control while simple 

and effective, lacks robustness during higher speeds. Dynamic control algorithms require 

more development time, as well as a higher number of sensor inputs and computational 

power. The navigation controller for Flex-Ro was first developed using a kinetic model. 

The first step in determining an output steering angle was calculating the lateral 

(perpendicular) error from the desired tracking line. This desired tracking line was 

defined by two points (A and B) recorded in latitude and longitude coordinates. 

Conversion from latitude and longitude degrees to Universal Transverse Mercator (UTM) 

coordinates in meters enables a direct calculation of lateral error. Conventionally, the 

easting direction is along the UTM x axis while the northing direction is along the UTM 

y axis. The calculation of the lateral error uses three points, A, B and current position, C. 

The cross product by the vector 𝐵𝐵𝐵𝐵�����⃗ , and the vector 𝐵𝐵𝐵𝐵�����⃗ , gives the area of the 

parallelogram (shaded in Figure 2.7)  formed by the two vectors. A parallelogram must 

have the same area as a rectangle (orthogonal sides) with the same perpendicular distance 

between parallel lines. Thus, the area divided by length from B to A ( �𝐵𝐵𝐵𝐵�����⃗  � ) results in 
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the perpendicular distance L from the line 𝐵𝐵𝐵𝐵 to point C. This calculation is valid at any 

point along the line 𝐵𝐵𝐵𝐵  (navigation line). 

 

The sign of the lateral error has not been applied at this point. The sign convention is to 

remain the same regardless of machine orientation. The navigation control system will 

manage the controller response based on if the machine is traveling in forward or reverse. 

The calculation of the sign depends on the difference in slopes between the navigation 

line machine’s current point. The convention was developed based on point A shown in 

Figure 2.7. It should be noted that the UTM coordinates will always be positive values, 

alleviating potential complications. Only the sign of the slope difference is applied to the 

lateral error. The MATLAB script for calculating lateral error is attached in Appendix 

D.1 for reference. 

Figure 2.7: Lateral error (perpendicular distance) at point C from line defined by points A and B. 
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Equation 2.1: Perpendicular offset from navigation line calculated from three points, where A and 
B define the navigation line 

 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =  �𝐵𝐵𝐵𝐵
�����⃗  × 𝐵𝐵𝐵𝐵�����⃗ �
�𝐵𝐵𝐵𝐵�����⃗ �

 

Equation 2.2: Applying the sign of lateral error based on the line (AB) and current points. 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∗  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ��
𝐵𝐵𝑦𝑦 −  𝐵𝐵𝑦𝑦
𝐵𝐵𝑥𝑥 −  𝐵𝐵𝑥𝑥

� − �
𝐵𝐵𝑦𝑦 −  𝐵𝐵𝑦𝑦
𝐵𝐵𝑥𝑥 −  𝐵𝐵𝑥𝑥

�� 

2.2.5.1  Heading Error Calculation 

It is important to know the current machine heading for navigation control. The Trimble 

Ag-372 GPS publishes heading information along with the GPS indicated speed and 

location on the CAN bus. The compass heading convention defines North to be 0° with 

positive clockwise rotation (i.e. driving straight east is a 90° heading).  A limitation of the 

GPS unit was that the heading couldn’t accurately be determined until the machine was in 

motion. However, this would only be a factor for a very short period as the vehicle 

initialized motion. More accurate methods of determining heading, including the use of 

two GPS units, will be considered for future development.  

The Flex-Ro machine was to navigate down a path in either direction. The heading error 

was defined as the current machine heading minus the track heading. The track heading 

was defined as the angle from due north clockwise to the line formed by A and B. Also, 

the A and B points can be swapped with no effect. In other words, if the machine heading 

is 180° off the track heading, there should be no heading error. The result of such 

processing can be viewed in Figure 2.8. Note that the track angle assumed to be 
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following is 0° (straight north) and 20° clockwise from north as examples. 

The track heading was calculated using the ‘legs’ MATLAB mapping toolbox function. 

The two navigation points in latitude and longitude are aruguments and provide an output 

in degrees in the standard compass coordinate system, directly comparable to the GPS 

heading output. 

  

Figure 2.8: Heading error as a function of machine heading. Discontinuities at vertical lines. 
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2.2.6  Waypoint Navigation 

Waypoint navigation is defined as following a path which is defined by a matrix of 

points. The machine navigates from point to point in the sequence defined by the path 

matrix. The path can be any shape, but in its most basic form a straight line is drawn 

between points. The curvature of the path can be calculated by using the next three points 

ahead. Waypoint following is used for navigation of paths other than straight A and B 

point parallel tracking. 

MATLAB provides a kinematic based function for calculating a steering angle based on 

pose, heading error, and velocity. This equation is based on research completed at 

Stanford University, by Hoffmann et. al (2007) and Paden et. al (2016). The control 

equation was originally used on a car named Stanley which competed in the DARPA 

Grand Challenge 2005. The base function uses a pure pursuit type strategy without 

accounting for curvature of the path.  

Flex-Ro uses the factors of the Stanley Lateral Controller slightly different than it was 

designed. Arguments into the equation are reference pose and current pose. This method 

reflects the pure pursuit nature of the controller. Flex-Ro required a stable line following 

algorithm with GPS coordinates. As the lateral and heading errors were already 

calculated, the current pose (machine origin) was set to zero. As a result, the distance to 

point in the x direction (longitudinal) became a tunable factor, and the y distance (lateral) 

was set to be the lateral error as shown in Figure 2.9. The heading error was set as the 

reference heading.  
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The other tunable factor was the position gain. The position gain controlled how 

aggressively the machine responded to lateral error. Increasing the gain would result in a 

system with a quicker response and less steady state error, but also caused instability as 

speed increased.  

Waypoint navigation included more than the straight AB lines mentioned above. First, it 

was desired that the machine could start a path at any point and traverse in either 

direction. The cycle time also had to be fast enough for smooth navigation without lag.  

The machine position and heading would then have to determine what points in the path 

would be used for navigation. A navigation path selection algorithm selected the next 

three points that were in front of the machine, and within a maximum lateral error.  

The waypoint paths were stored in a matrix of UTM x and y coordinate locations. When 

navigating, during each program cycle, the matrix of points is transformed into the 

machine coordinate system using the current heading of the machine. (The transformed 

Figure 2.9: Vehicle coordinate system convention with respect to geographical north. 
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points are indexed to their original UTM coordinates to retain accuracy due to error in the 

heading data.) Then the points can be sorted and filtered. The negative x points (behind 

the machine) are eliminated. Then programmatically, the points in front of the machine 

are checked to ensure they are within the current swath. The first two points (in UTM 

coordinates) are then used for the lateral and heading error calculation. The first three 

points (in machine coordinates) are used to calculate the curvature of the upcoming path.  

The curvature is used as an added factor to the pure pursuit type algorithm. The current 

path curvature is calculated by using a custom MATLAB function (Mjaavatten, 2018). 

The curvature of the upcoming path is used to bias the steering angle based on the 

geometry of the machine. This function outputs the vector which points to the center of 

the circle defined by the three points. The sign of the y coordinate tells whether the path 

is curving left or right, and the direction of the required steering angle as a result. 

The bias of the steering angle helps correct for upcoming curvature in the path but does 

not provide information on whether the machine is inside or outside the curve. Short 

linear segments are used to calculate the lateral and heading error information. The 

steering angle from the Stanley controller is then added to the steer bias and then sent via 

centerline commanded angle message to the steering ECUs.  

2.2.6.1  Field Path Generation 

The basic operating environments for the Flex-Ro machine are research plots with 

straight rows. There are open headlands with plenty of clearance for turning at the end of 

the rows. A basic tool for generating these types of field paths was developed for quick 



41 
processing once the machine was on-site. One advantage would be to navigate fields 

without access to as planted navigation data. The A and B points were set by positioning 

the machine in a set of rows at each end of the field. Parameters such as the track width, 

fill direction, and number of swaths were entered and then a path is calculated. If the as 

planted navigation track data was available, the latitude and longitude coordinates of the 

A and B points could be entered directly to calculate the field coverage swaths. 

2.2.6.2  Recorded Path Import 

Paths which are driven in semi-controlled environments are well suited for autonomous 

navigation using the Flex-Ro’s waypoint navigation. The FlexRoRun application 

processes data which contains navigation performance and machine position information. 

A record button on the FlexRoRun main page toggles the saving of this data to a log file 

accessible by the program. If the user wants to record a path, a log is taken while the user 

manually drives the machine down a path. Then, within the NavManager tab, this log is 

loaded and processed into a waypoint path. The path can then be followed as recorded 

(following the same direction) or in either direction. Lateral offsets can also be added to 

compensate for multiple swaths of the same recorded path.  

2.2.7  Headland Turn Strategies 

A headland turn is the maneuvering a machine from one working pass to the next. There 

are multiple ways to complete a headland turn. The independent four-wheel steer 

capability of the Flex-Ro enables four different steering strategies. Changing the 

instantaneous center of rotation (ICR) is possible to maximize turn efficiency. Crab 
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steering allows for sideways travel. Thus, a headland ‘turn’ can be completed without 

changing machine direction. There are advantages and disadvantages to both types of 

turn strategies. The scope of this thesis was to compare the traditional front wheel 

steering method with the traverse type (Figure 2.10). 

 

2.2.7.1  Conventional Radius Turn 

The conventional method of steering consists of a fixed rear axle and Ackermann’s 

angles for the front wheels. The turn begins once the vehicle has fully entered the 

headland. There are multiple paths the machine can follow when completing a front 

wheel turn. The simplest is a semicircle tangent to the crop swath passes or U turn. This 

path can be easily generated using the AB points of the path, and the desired track width. 

The density of points on the arc directly affects the accuracy of the machine path 

following using the Flex-Ro waypoint algorithm.  

Figure 2.10: Left: Conventional front wheel steer headland turn. Right: Traverse headland 
navigation method. 
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2.2.7.2  Headland Traverse 

The headland traverse turn is activated once the machine fully enters the headland. This 

area is currently defined as the zone outside the crop rows and perpendicular to 

navigation segment AB. The machine stops and waits until the wheels turn to 90°. The 

machine then slowly travels until the lateral error to the next swath is less than 10 cm. 

The machine then stops, waits until the wheels have returned to their normal orientation, 

and proceeds down the next path.  

2.2.8  Obstacle Detection 

Traditional machinery operators function as obstacle detectors. Autonomous operation 

requires either a completely controlled area of operation (no possibility of obstacles) or 

sensors which can warn of upcoming collisions. The motivation for installing the obstacle 

detection system is primarily for operator and bystander safety. Damage to the machine 

and its operating environment were also concerns which could be mitigated with the 

implementation of an obstacle detector. The objectives for the obstacle detection system 

are as follows: 

1. Implement an obstacle detection sensor into the CAN based vehicle control 

architecture of Flex-Ro. 

2. Stop Flex-Ro automatically within 1-2m of a pedestrian sized object at typical 

field operating speeds. 
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It was important to implement obstacle detector solutions for Flex-Ro which would 

utilize the existing J1939 CAN bus network. The O3M 151 3D Smart Sensor produced 

by ifm (ifm efector, inc. Malvern, PA) used J1939 messages to transmit processed object 

information and is seen in Figure 2.11. 

 

This sensor uses an IR (infrared) pixel array to calculate the time of flight and resulting 

distance to object. The pixel matrix consists of 64 (horizontal) x 16 (vertical) IR dots, 

over an aperture size of 70° (horizontal) x 23° (vertical). The range is advertised to be 35 

meters. However, at that distance, one IR pixel covers 77 x 91 cm. As a result, the object 

would have to be very large (e.g. dump truck) for reliable detection. The relatively slow 

Figure 2.11: ifm O3M 151 3D Smart Sensor installed on the front of the Flex-Ro 
platform. 
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operating speeds of the Flex-Ro platform require only a short detection range. Three 

update rates are programmable, 25, 33, and 50 Hz. Flex-Ro used an update rate of 25 Hz. 

One of the main benefits of the O3M151 sensor is the direct interface with the J1939 

CAN bus network. Ifm provides three firmware packages for the sensor; obstacle 

detection, distance measurement, and windrow navigation. Vision Assistant, ifm’s 

custom application programing interface (API), makes configuring the sensor simple. The 

program shows real time data and constants such as orientation, and sensitivity can be 

adjusted. 

The obstacle detection firmware was uploaded for the application on the Flex-Ro 

machine. The sensor can track and report up to 20 objects over the CAN bus, however, 

the Flex-Ro was programmed to track 3 to limit busload. A large amount of data is 

available for each object over two CAN messages. A decoded CAN trace for one object 

is given in Figure 2.12.  
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The Flex-Ro machine used this obstacle data to prevent forward collisions. The object 

location and speed combined with the machine speed, can be used to predict how far the 

machine will stop from the object. This information commands the machine to either 

continue, slow to stop, or brake to stop. The “slow to stop” mode commands the swash 

plate of the hydraulic pump to ramp down to zero, smoothly bringing the machine to a 

halt. The brake to stop uses the wheel spring brakes. Using these brakes abruptly stops 

the vehicle and is potentially damaging to the machine. The use of the brakes is a last 

resort safety trigger for objects less than 50 cm from the front of the machine.  

The equations of motion are used to calculate the stopping distance between the object 

and machine at the current state. A distance of two meters was set as the desired stopping 

distance from the front of the machine to an obstacle. The first calculation is to predict 

Figure 2.12: CAN message output from one object detected by ifm O3M 151 3D Smart 
Detector. Viewed and decoded on Vector CANalyzer software. 
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the object’s location based on its CAN message data. The time used in the calculation is 

the loop period of the controller.  

Equation 2.3: Predicting the object’s position with respect to the machine’s x coordinate. 

 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  𝑥𝑥0,𝑜𝑜 + 𝑣𝑣𝑥𝑥,𝑜𝑜𝑙𝑙 + 𝑙𝑙𝑥𝑥,𝑜𝑜𝑙𝑙2 

Equation 2.4: Predicting the object’s position with respect to the machine’s y coordinate. 

𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  𝑦𝑦0,𝑜𝑜 + 𝑣𝑣𝑦𝑦,𝑜𝑜𝑙𝑙 + 𝑙𝑙𝑦𝑦,𝑜𝑜𝑙𝑙2 

Variables x and y are distances relative to the machine’s coordinate system and are sent 

by the obstacle detector. The variable 𝑥𝑥0,𝑜𝑜 is the initial position of the object, 𝑣𝑣𝑥𝑥,𝑜𝑜 and 

𝑙𝑙𝑥𝑥𝑜𝑜 are the object’s velocity and acceleration in the x direction. The y coordinate of the 

object is used to determine if it will be in front of the machine. The stopping distance of 

the machine can be predicted with the equation using deceleration and current velocity.  

Equation 2.5: Calculating the machine stopping distance given the current velocity. 

𝑥𝑥𝑠𝑠𝑠𝑠𝑜𝑜𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑖𝑖𝑖𝑖𝑝𝑝 =  
𝑣𝑣𝑥𝑥,𝑚𝑚

2

2𝑙𝑙𝑥𝑥,𝑚𝑚
 

Variables 𝑣𝑣𝑥𝑥,𝑚𝑚 and 𝑙𝑙𝑥𝑥,𝑚𝑚  are the velocity and acceleration (or deceleration) in the x 

direction of the machine. If the object is calculated to be within the 2-meter safe stop 

distance in front of the machine, the ramp to neutral mode is activated. Normal operation 

is resumed once the object is out of range.  

The obstacle reaction was evaluated using a static 40 cm x 100 cm board. The Flex-Ro 

machine approached at different speeds within the field operation range. These speeds 



48 
were 2, 4, 6, 8, and 10 kph. Then the stopping distance from the front of the machine to 

the obstacle was measured and recorded for three repetitions.  

2.3  Results and Discussion 

2.3.1  Safe Stop System 

A fail-safe emergency stop system is essential to all moving machinery. The primary 

hazard for machine operation and testing of new algorithms is loss of control and 

unpredicted motion. Redundant safety features were incorporated to mitigate this hazard. 

Four e-stop switches were positioned around Flex-Ro for quick access. An example of 

one can be seen in Figure 2.13. A dedicated softkey serves as the e-stop on the remote 

interface. Each e-stop was verified to work and trigger a machine shutdown in less than 

two seconds.  
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The use of an untethered remote control introduced potential connectivity issues. Quickly 

stopping in the event of connection failure was critical to safe machine operation. 

Redundant checks ensured the machine would trigger a shut-down in the same way 

pressing the e-stop button would. The remote continuously monitored the bus for the 

presence of all required ECUs. The author verified e-stop operation by intentionally 

unplugging ECUs during remote operation. The wireless CAN-bridge (Model: WIC-

2402, Magnetek, Menomonee Fall WI) included a high-side driver which switched off 

when connection was lost. This would trigger an e-stop flag on the Flex-Ro power ECU 

and result in a machine shut-down. Remote connectivity was assessed for both out of 

range (connection dropped) and remote power off events. The machine stopped safely 

Figure 2.13: One of four red e-Stop buttons located on 
exterior of machine for quick and safe access. 
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within two seconds of the fault occurring for both tests. The tested line of sight range of 

the remote was near 300 m.  

Tethered laptop operation required similar e-stop failsafe requirements. An e-stop must 

be triggered when the laptop becomes disconnected.  Other e-stop events include the 

laptop freezing or malfunctioning, an operator pressing a button or key, and an on-

machine e-stop switch activation. Each of these e-stop modes were verified. Laptop e-

stop response times matched that of the remote-controlled systems, and repeatedly shut-

down the machine within two seconds.  

Both remote and tethered operation e-stop systems were designed to be redundant and 

trigger in common failure modes. These redundancies were tested and verified and 

provided a basis for developing more advanced controls. Researchers were confident if a 

failure or undesired motion occurred when testing control algorithms, the machine could 

safely be stopped.  

2.3.2  Navigation 

The scope of the navigation control system for this thesis was to navigate a field of 30-

inch (76cm) crop rows with open (no crop) headlands. Successful navigation would be 

proven simply by inspecting for crop damage and maintaining a 95% lateral error of less 

than 10cm. John Deere (Deere and Co. Moline, IL) uses a 95% lateral error in advertising 

literature of their AutoTrac system. (“Accuracy equation explains how AutoTracTM 

accuracy is derived,” 2013) The 95% error is calculated by sorting the absolute value 

lateral errors from smallest to largest. The value at the 95% index of the total length of 
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array was recorded. As a result, 95% of the lateral error values were smaller than the 

reported value. The threshold of 10 cm was chosen as a round number nearing the limit 

which would cause crop damage. Successful headland turns were defined as the machine 

re-entering the next swath without crop damage. Two methods of headland turns were to 

be compared for performance and efficiency. Waypoint navigation would be quantified 

using the 50 cm 95% lateral error. The machine would need to be able to track down a 

narrow farm road during these operations, allowing wider margin of error compared to 

crop rows. Navigation tracking parameters were tested in normal field conditions.  

2.3.2.1  AB Line Navigation  

The primary purpose of the AB line navigation was to drive down existing crop rows. 

The first application for the Flex-Ro machine was phenotyping, which required a slow 

travel speed, less than 5 kph. Thus, the initial navigation controller algorithm was tested 

at these speed ranges. AB line passes were conducted in several locations, however, corn 

stubble (Figure 2.14) proved to be beneficial for visually verifying successful navigation. 

Tuning continued until performance met the desired requirements. The Tracking 

Performance Calculator (TPCalc) app programmed using MATLAB app designer 

completed post processing and calculation of tracking parameters. The TPCalc interface 

(screenshot in Appendix D.3) quickly processed recorded tracking data. Outputs were 

95% lateral and heading errors, as well as average speed. Plots included the path in 

relative UTM coordinates and lateral and heading errors over time. This tool provided 

rapid feedback while making tuning changes. 
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A 100 m stretch of level field ground was used for the straight AB line verification test 

runs. The recorded 95% error at an average speed of 3.7 kph was 3.23 cm. This was well 

within the acceptable bounds required for navigation within the 76 cm crop rows. A plot 

of recorded lateral error in AB line tracking data can be found in Figure 2.15.  

Figure 2.14: Testing AB line navigation in corn stubble.  
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AB line navigation was also tested in the reverse (front boom) direction. The recorded 

95% lateral error in reverse was 3.9 cm at an average speed of 3.9 kph which met the 

automatic navigation objective.  

Variation in tracking performance can be attributed to the precision of the GPS. The 

Flex-Ro machine used a Trimble Ag-372 without correction service. Further, it was 

noticed that during recording, some GPS points were missing. This indicated that the 

position wasn’t always updated during each program loop. This often-caused spikes in 

the lateral error on the following loop when the position was updated.  

2.3.2.2  Waypoint Navigation 

Testing of the waypoint navigation began with recording a path to follow. The GPS 

points were recorded at 5 Hz. The data recorded was thinned so the remaining points 

Figure 2.15: Lateral error over time, automatically tracking on level field ground at 3.7 kph. 
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were one meter apart. This density of points provided smooth navigation around complex 

curves. A simple path cleaning script was developed in MATLAB to perform this 

procedure. This script can be found in Appendix D.4.  

A remotely driven path was recorded using the Flex-RoRun interface. Then this path was 

cleaned and set as the current navigation track. The path was to be followed at 3 kph and 

consisted of curved and straight sections. These were features which could be present in a 

return-to-home track. Machine tracking performance would be evaluted in comparison to 

this recorded path. The machine navigated the path at a 19.2 cm 95% error. This met the 

desired requirement to track within 50 cm 95% error when following a prerecorded path. 

The path coordinates and lateral error while tracking is plotted in Figure 2.16. 
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Figure 2.16: Automatic waypoint path following and lateral error over time. 
Coordinates translated to where data recording was initialized. 
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2.3.2.3  Headland Turn 

Results of the headland turn controller development compares the performance between a 

‘U’-type front wheel steer and traverse (crab) method. There are advantages and 

disadvantages to both methods, depending on the application. The phenotyping 

application developed for Flex-Ro was sensitive to changing light conditions. A traverse 

turn kept the sensing boom facing the same direction to reduce shadow variation during 

field passes. Alternatively, a spraying application may require the boom to remain at the 

rear of the machine.  

Headland turn time directly correlates to field efficiency which means the less time spent 

turning the more efficient the operation. Turning methods were compared at the same set 

speed, 3 kph. While driving the machine faster through the headland would result in a 

higher efficiency, tests showed decreased accuracy when entering the next swath   

resulting in a longer period to reacquire the AB track. The swath width was set to 4.572 

m (15 ft. or 6-30 in. rows). The front-wheel only headland turn (Figure 2.17, left) was 

completed in 17.8 seconds. The traverse turn in the right frame of  Figure 2.17 took 16.6 

seconds. The traverse method, while traveling less physical distance, must stop and wait 

until the wheels turn to 90 degrees before traversing to the next pass. Both turn methods 

resulted in a fast reacquisition of the crop AB line at the slow vehicle speed.  
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Certain fields also have restricted headland areas. An advantage to traverse turning is the 

significantly reduced amount of distance needed when compared to the front-wheel-steer 

method. Even with the tight turning radius of Flex-Ro, the front-wheel steer method 

required 4.5 m of headland to navigate back into the crop rows. Comparatively, the 

traverse method required headland width equal to the length of the machine wheelbase,  2 

m.  

2.3.3  Obstacle Reaction 

The implemented obstacle detection system was evaluated as a proof of concept and not a 

comprehensive obstacle prevention system. This system was installed to aid the operator 

in the event of unforeseen obstacles, only in the forward direction. Initial tests were 

conducted to verify the detectors ability to repeatedly identify obstacles at a set x and y 

coordinates. The sensor was mounted to a small stationary platform for evaluation for 

Figure 2.17: Recorded GPS data for front wheel headland turn (left) and four-wheel crab 
headland traverse (right). Coordinates translated to where data recording was initialized. 
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detecting an obstacle with a height and width of 100 cm and 40 cm, respectively. The 

results of this stationary test can be visualized in Figure 2.18. The x mean absolute error 

was 24 cm and the y mean absolute error was 14 cm.  

 

Figure 2.18: Mean error magnitude at obstacle set position recorded by ifm 
O3M 151 3D Smart Sensor. 
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The dynamic response of the obstacle detector and machine stopping was verified by 

approaching an obstacle at a set speed in automatic mode and measuring the resting 

distance of the machine to the obstacle (Figure 2.19).  

  

The size of the obstacle was 40 cm wide by 100 cm tall. The results of the dynamic 

obstacle approach test can be seen in Figure 2.20. 

Figure 2.19: Dynamic obstacle approach test. Stopping distance was measured from detector on 
front to board. 
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Figure 2.20: Measured distance from obstacle after machine automatically stops due to detected 
potential collision. 

The constant deceleration points are the machine’s response assuming initial conditions 

do not affect stopping distance. It was found, as swash plate commands and the engine 

RPM changed the machine deceleration factor varied. The distance stopped from the 

obstacle became uncomfortably close at higher approach speeds when using a constant 

deceleration factor. A deceleration rate which compensated for initial conditions resulted 

in a more consistent ability to stop at the desired distance away from the object. The 

implementation of the variable deceleration factor can be found in Appendix D.9. The 

improved stopping distances after implementing variable deceleration factors are shown 

in Figure 2.20. 
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2.4  Conclusions 

The control system developed for the Flex-Ro machine met the defined objectives. Safety 

systems were designed and verified to ensure fail-safe operation, whether using the 

remote or autonomous control. Four e-stops around the machine and each control 

interface allows the user to manually stop any undesirable operation. Further, ECU 

intercommunication ensures all required controllers are on-line. Loss of communication 

with either the remote or one of the ECUs triggered an e-stop event. The six e-stop 

methods were tested with 100% success. 

The MATLAB developed Flex-Ro Run application provided a means to 

programmatically control the machine. Successful navigation controlled the machine to 

track between 74.6 cm (30 in) crop rows. Further, waypoint navigation was implemented 

so the machine could complete fields autonomously. Field coverage was tested and 

verified in university research plots. The machine was programmed to follow pre-defined 

paths, enabling special operations such as driving the machine to a staging area once the 

field coverage was complete. Straight line and waypoint paths were navigated with 95% 

errors of 3.23 cm and 19.2 cm respectively while traveling at 4 kph. 

Collision detection and reaction was implemented and evaluated in automatic mode in the 

primary direction of travel. An ifm O3M 151 3D Smart Sensor was installed on the front 

of the machine. The obstacle detector was added as a node on the existing machine J1939 

CAN bus. The hydrostatic drive control ECU received the obstacle messages and 

controlled the machine speed accordingly. The system repeatedly identified and stopped 
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for pedestrian sized objects in a variety of environments, while approaching at normal 

field operating speeds.  
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Chapter 3   Flex Ro Phenotyping Application Evaluation 

3.1  Introduction 

Flex-Ro was developed to be a multi-purpose platform with many field applications. The 

first application to be implemented on the machine was for high-throughput plant 

phenotyping. Plant phenotyping is well established at the plot level (square meters), but 

high-resolution coverage at the field level (hectares) remains limited. A manual push-cart 

phenotyping sensor system was developed by researchers at the University of Nebraska-

Lincoln (Bai et al., 2016). Significant labor requirements and a stop-measure-go data 

collection technique limited the productivity of the device. Migration of the sensor suite 

onto the Flex-Ro machine would capitalize on the machine’s autonomous capability to 

cover large areas while unattended. 

The University of Nebraska-Lincoln is uniquely positioned in advanced field 

phenotyping with the recent installation of the Spidercam phenotyping system (Bai et al., 

2019). This system is a tested and calibrated suite of sensors which can be positioned 

anywhere over the designated one-acre plot. The sensing height ranges from 0 to 10 

meters. A subsection of the one-acre plot coverage area was designated for use by the 

Flex-Ro machine. Researchers selected soybeans as it would enable Flex-Ro to operate 

through the growing season without clearance issues. At the end of the season, statistical 

comparisons between the Spidercam and Flex-Ro phenotyping data were to be 

completed. This data would validate that the phenotyping system installed on Flex-Ro 

would be suitable for large field use.  
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3.1.1  Chapter Objectives 

Before the Flex-Ro is operated in large fields, it will be important to determine the 

validity of the data collection system.  

1. Implement phenotyping sensor package on the Flex-Ro machine. 

2. Compare phenotyping data collected with the Flex-Ro PhenoBar to the data 

collected using the UNL Spidercam. 

3.1.2  Chapter Hypotheses 

Hypotheses were formulated to statistically compare the Flex-Ro and Spidercam 

phenotyping systems.  

1. The Flex-Ro phenotyping data collected will directly correlate with the 

measurements taken by the UNL Spidercam. 

2. The Flex-Ro phenotyping data will show a statistically significant difference 

between genotypes and or treatments within the soybean field.  

3.2  Materials and Methods 

3.2.1  PhenoBar 

There are three main components which make up the PhenoBar system. The sensor units, 

the toolbar which holds the sensor units, and the height adjustment mechanism of the 

toolbar. The toolbar and adjustment mechanism were designed to accommodate a variety 

of applications beyond phenotyping. The toolbar itself is constructed of t-slot extruded 

aluminum. The four-bar adjustment mechanism keeps the sensor units parallel to the 
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ground and enables a wide range of height settings. The PhenoBar is shown mounted to 

the Flex-Ro in Figure 3.1. 

 

The suite of sensors installed onto the Flex-Ro machine were selected from those used by 

Bai et. al. (2016). Three sensor units were downward facing to record data from a crop 

row. Each of these units included a passive fiber optic, a red green blue (RGB) camera, 

an ultrasonic distance sensor and an infrared radiometer. Also installed was a global 

Figure 3.1: PhenoBar mounted to the Flex-Ro machine. Three sensor units cover a 4.5m swath. 
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positioning system (GPS) for georeferencing data points. The sensors and related 

specifications are listed in Table 3.1. 

Table 3.1: List of sensors installed in each unit on the Flex-Ro PhenoBar. 

Sensor Model and Manufacturer Output Phenotype Measured 

Ultrasonic 
ToughSonic30, Senix 
Corporation, Hinesburg, 
Vermont 

Analog 
Voltage Height 

Spectrometer CCS175, Thorlabs Inc, 
Newton, New Jersey 

Digital 
USB Reflectance Spectra 

RGB Camera C270, Logitech, Newark, 
California USB RGB Images 

Infrared 
Radiometer 

SI-131 Apogee 
Instruments, Logan Utah Analog Canopy Temperature 

 

3.2.2  PhenoBox 

The PhenoBox houses the data acquisition hardware for the Flex-Ro phenotyping system. 

The box distributed power to the required components; the LabJack U6, Startech 10-Port 

USB Hub, Thorlabs Spectrometers, power inverter and laptop. Connectors and 

passthroughs facilitate connection to the three crop sensor units and GPS. The machine 

CAN bus was also routed to the PhenoBox to connect with the laptop. This would allow 

future development of a CAN bus phenotype sensor network or other CAN enabled 

applications. The PhenoBox (Figure 3.2) was designed to be modular to allow for 

additional and or different sensors. The pinout of the PhenoBox connectors is given in 

Appendix C.3. 
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3.2.3  Data Processing Methods 

3.2.3.1  LabVIEW 

A LabVIEW Virtual Instrument (VI) was developed as an extension of the work 

completed by Bai et al. (2016). The collection method used by Bai et al. (2016) was a 

stop-measure-go method, in which the manual pushcart was moved, and a new data point 

was captured. This process was labor intensive and would not capitalize on the benefits 

of an autonomous machine for high throughput phenotyping. Automatic cyclic data 

collection would be better suited for the Flex-Ro. The machine was to travel slowly, and 

data points would be periodically recorded. Primary concerns of recording while in 

Figure 3.2: PhenoBox installed with laptop tray which contains data acquisition 
hardware for the Flex-Ro phenotyping system. 
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motion were to eliminate blur in the pictures and ensure that the geotagged data points 

were synchronized.  

Three main subsections of data collection were implemented in the LabVIEW VI. These 

included image capture, spectrometer data recording, and logging geotagged analog 

sensor data. The data was processed and displayed on the VI’s front panel. A button on 

the front panel enabled writing of the data to file. Each data point was assigned an ID, 

such that images, spectra, and analog sensor data could be merged during post 

processing. The recording rate was limited by the image capture time. The basic snapshot 

NI-IMAQ sub-VI was used sequentially for each camera.  

The spectral reflectance data was saved as a text file, with each column relating to a 

specific wavelength. The spectrometer has a range of 500-1100 nm with a step size of 

0.16 nm.  The wavelength data array is saved for each spectrometer during sensor 

initialization. Although each of the spectrometers capture the same range of reflectance, 

the specific recorded wavelength values vary slightly. This data is combined for viewing 

on the VI front panel and used during post processing.  

The analog sensors included on the PhenoBar include the ultrasonic height sensors and 

infrared radiometers used for measuring the canopy temperature. This data was split up 

and assigned an ID and position on the boom. The GPS coordinates were transformed to 

each sensor unit based on the current heading of the machine and its position on the 

toolbar. The GPS points were georeferenced to the image and spectral data during post 

processing.  
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The LabVIEW front panel, as shown in Figure 3.3, was designed to facilitate data 

monitoring and recording. A file directory is specified upon program initialization, and 

all files generated are saved within that directory. 

 

3.2.3.2  MATLAB Post Processing Tool 

The three data files associated with a phenotyping data collection event need to be 

combined. A program developed using MATLAB App Designer processes and 

synchronizes the data. The PhenoCalc app’s Field Summary tab is shown in Figure 3.4 

and Plot Summary Tab is shown in Figure 3.5.  

Figure 3.3: LabVIEW front panel used as the phenotyping data acquisition system for the Flex-Ro. 
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Figure 3.4: Custom PhenoCalc application Field Summary tab to process raw Flex-Ro captured 
data. 
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The spectral data is used for calculating vegetation indices. Previously studied indices 

include NDVI (Normalized Difference Vegetation Index), NDRE (Normalized 

Difference Red Edge Index), PRI (Photochemical Reflectance Index), and SIF (Solar 

Induced Fluorescence) (Bai et al., 2019). The indices are a ratio based on the magnitude 

of spectral reflectance at different wavelengths. NDVI was used for the initial tests of the 

Flex-Ro phenotyping system and could be compared directly to the Spidercam. The 

MATLAB program calculates the NDVI using the following equation. 

 

Figure 3.5: Custom PhenoCalc application Plot Summary tab used to parse per plot data from 
large matrix. 
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Equation 3.1: Calculating the NDVI using the magnitude of reflectance at 705 and 750 nm. 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  
𝜌𝜌750 −  𝜌𝜌705
𝜌𝜌750 + 𝜌𝜌705

 

Variables 𝜌𝜌750 & 𝜌𝜌705 are the magnitudes of reflectance at wavelengths of 750nm and 

705nm respectively. 

The RGB images are used to estimate canopy coverage by calculating the green pixel 

fraction (GPF). A segmentation algorithm calculates the GPF based on the method 

presented by Bai et al., (2016). The image is converted to the L*a*b color space, then 

Otsu’s method is used to threshold the image using the ‘a’ channel. The pixels remaining 

after thresholding divided by the total number of pixels results in the GPF.  

The calculated NDVI and GPF are combined with the analog data points and GPS 

coordinates to form a master list. This master list can be used to calculate averages and 

generate an interpolated color map for the field of the different traits. The portion of the 

Spidercam field used for this research contained 30 plots, with 5 genotypes and 2 

different treatments. The data recorded by the Flex-Ro platform was parsed for individual 

plot analysis. This was completed using the master list of data, and plot polygons 

generated from field recorded GPS points. MATLAB provides a function (inpolygon) 

which selects only points contained within a polygon. After parsing, the points in each 

plot were averaged and saved to file for further comparison. These plot averages could be 

directly compared to the Spidercam generated data.  
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3.2.4  Field Data Collection Strategy 

As mentioned, to achieve maximum throughput using the Flex-Ro platform, continuous 

data was collected. Due to the small size of the research plots and long sample times, a 

speed of 1 kph was used. The three sensor units were positioned directly over a row, each 

60 inches apart as shown in Figure 3.6. The plot was covered in two swaths, offset by one 

row to achieve high resolution total plot coverage. This ensured a sensor unit would pass 

over each row, and a representative average was recorded. In contrast, the Spidercam 

takes just one data point over the entire plot.  

 

The spectrometers, which rely on the intensity of reflected light, are sensitive to changing 

conditions. While shadows can’t be eliminated using this system, methods can be used to 

Figure 3.6: The Flex-Ro collecting data 67 days after planting (DAP). Each of the sensor units 
are positioned directly over a row. 
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reduce error. The Flex-Ro machine recorded phenotyping data with the boom always on 

the South side (the research plot rows ran north and south). The angle of the sun’s rays 

through the growing season reduced the amount of shadows present. Further, the data 

collected had the same steady state condition and could be compared directly.  

3.3  Results and Discussion 

The Flex-Ro collected field phenotyping data seven times during 2019 growing season. 

The research objective was to validate the Flex-Ro phenotyping system by comparing it 

to the developed and tested Spidercam (SPC) phenotyping system. Thirty soybean plots 

over 0.21 acres were selected for the study. Within these thirty plots, there were five 

genotypes and two irrigation treatments. The five soybean varieties represented a range 

of maturities.  The two irrigation treatments were full and deficit. 

The Spidercam phenotyping system was previously tested and verified with ground truth 

measurements (Bai et al., 2019). The Flex-Ro data resulted in plot average canopy height, 

canopy coverage, and NDVI. The canopy temperature sensors on the Flex-Ro were found 

to be out of calibration and were not used for comparison.  

3.3.1.1  Crop Height 

Canopy height measurements over time show crop growth curves. The Flex-Ro PhenoBar 

used an ultrasonic sensor positioned directly over the crop row to measure crop height. 

The height of the crop was calculated by subtracting the sensor value from the measured 

distance to bare ground.  
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The Spidercam calculated plot height using a LiDAR sensor. First, the distance to the soil 

was measured at the start of the growing season. During the growing season, the 10th 

percentile distance within the plot as measured by the LiDAR was recorded. Subtracting 

these measurements resulted in the average canopy height (Bai et al., 2019). The 

correlation between plot height averages between the Flex-Ro and Spidercam 

phenotyping systems can be seen in Figure 3.7.  

  

The ultrasonic sensor is highly susceptible to variations in canopy density. This explains 

the offset in correlation to the Spidercam measured height. While this difference is 

present, the slope of the correlation is near one at 0.8523 (R2 = 0.829), indicating that 

both systems are measuring corresponding changes of height over time. Height 

measurement accuracy was reduced as the crop neared maturity and began to defoliate.  

Figure 3.7: Correlation between Flex-Ro and Spidercam measured crop plot average height.  
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Ground truth plot height data was recorded four times throughout the growing season 

using a yardstick. Four measurements were taken in each plot and averaged. Figure 3.8 

shows the comparison between the Spidercam LiDAR, ground truth (GND), and Flex-Ro 

ultrasonic height measurements. The data presented is the crop plot averages separated by 

irrigation treatments. The Spidercam data (SPC) tends to over-estimate height compared 

to the ground truth while the Flex-Ro measurement is near the same range until 

divergence around 67 days after planting (DAP).

 

Figure 3.9 shows the temporal canopy height measurements by the Flex-Ro between 

genotypes. Only the replications in the full irrigation treatment zones are plotted. 

Figure 3.8: Temporal comparison of crop plot height averages per treatment with different 
measurement techniques. 
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3.3.1.2  NDVI 

The Flex-Ro and Spidercam both used spectrometers connected to a downward pointing 

fiber-optic cable to measure reflectance. The spectrometer measures the spectral 

reflectance across a range of wavelengths (500 – 1100 nm). The PhenoCalc post 

processing tool used the recorded wavelength and corresponding reflectance to calculate 

the NDVI. The wavelengths used to calculate the Flex-Ro and Spidercam NDVI were 

750nm and 705nm. The Spidercam used the same wavelengths for the NDVI calculation.  

Plot averages of NDVI values were compared and correlated (Figure 3.10). The linear fit 

resulted in a slope of 0.7472 and R2 value of 0.7814. 

Figure 3.9: Average plot height over time per genotype with full irrigation treatment as recorded 
by the Flex-Ro platform. 
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One reason for error between the two systems is the proximity of the fiber optic cable end 

to the plant. The Flex-Ro positions the sensor ~1m directly above the row. The sensor is 

designed to capture data for just that one row. As a result, the reflectance data is more 

influenced from the crop itself and less from the surrounding soil. Comparatively, the 

Spidercam is positioned 5m above the plot, and is designed to capture the whole plot in 

one data point. Thus, especially during the early season, a significant amount of soil will 

be within the reflectance measurement, and the intensity from the crop will be less. 

Removing the early season (32 and 46 DAP) NDVI data and recalculating the linear 

relationship resulted in a slope of 0.9036 and R2 value of 0.8347. This new linear fit 

indicated the SPC and Flex-Ro systems recorded very similar NDVI measurements after 

the crop canopy was more established. 

Figure 3.10: Correlation between Flex-Ro and Spidercam measured NDVI and linear correlation. 
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The Flex-Ro may be more capable of detecting early season phenotypic differences with 

the proximity of the sensor bar. However, care must be taken to ensure the sensor unit is 

directly over the row, or the reflectance intensity could vary significantly. The NDVI 

could also be used to identify growth trends between genotypes and treatments. This data 

could show early season vigor or response to drought. The NDVI of the two treatments 

are plotted over time as recorded by the Flex-Ro and Spidercam phenotyping systems 

(Figure 3.11).  

 

Figure 3.12 shows the comparison between fully irrigated genotypes over time as 

recorded by Flex-Ro. The dip in NDVI at 67 DAP was likely in response to changing the 

height of the Flex-Ro PhenoBar. The height was changed to maintain a consistent toolbar 

Figure 3.11: Temporal comparison of NDVI split into the two field treatments comparing 
phenotyping systems. 
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distance over the crop through the growing season. This would result in less intense 

reflectance and corresponding NDVI. Lighting conditions may have also been a factor.  

 

3.3.1.3  Canopy Coverage 

The Flex-Ro and Spidercam differed in the calculation of crop canopy coverage. The 

Flex-Ro used an RGB camera and processed the images to determine the green pixel 

fraction (GPF). The number of green pixels divided by the total number of pixels in the 

image resulted in an approximation of the percentage of plant in the image. The image 

segmentation worked well in the early season, when there was minimal shading within 

the canopy and a clear contrast between foliage and soil. However, as the season 

Figure 3.12: NDVI (750-705 nm) as calculated from Flex-Ro data per genotype with full 
irrigation treatment. 
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progressed, the segmentation algorithm had difficulty distinguishing between shaded area 

within the plant and soil. Two examples of segmentation are shown in Figure 3.13.   

 

The distance of the camera above the crop also affected the calculated canopy coverage. 

The data set taken at 67 days after planting (DAP) had a higher boom height than the data 

set taken on 60 DAP. Raising the boom widens the view frame, and in this case, the 

camera was able to capture more soil. This resulted in a similar calculated canopy 

coverage, when the Spidercam showed a linear progression. 

Figure 3.13: Examples showing result of image segmentation to calculate GPF. Segmented 'non-
green' pixels shown in orange for clarity. 
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The Spidercam calculated the crop coverage using a multi-spectral camera. An NDVI 

image was created using the NIR and red images. As a result, the soil could be easily 

segmented. This resulted in accurate segmentation, as the multispectral images covered 

most of the plot.  

Otsu’s segmentation method had significantly reduced performance for near full canopy 

when compared to corresponding Spidercam canopy coverage data. The fit between the 

Spidercam and Flex-Ro had as slope of 0.5862 with an R2 value of 0.643 (Figure 3.14).  

 

Figure 3.15 shows the temporal comparison between the canopy coverage from the Flex-

Ro and Spidercam phenotyping systems. Plot averages are separated into the different 

Figure 3.14: Correlation between Flex-Ro and Spidercam calculated crop canopy coverage.  
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irrigation treatments. Erroneous points due to segmentation difficulty can clearly be seen 

at 60 and 104 days after planting.  

 

Figure 3.16 compares the canopy coverage of the different genotypes with full irrigation 

treatment. Data during the early season can be correlated to emergence characteristics. As 

the plots neared full canopy (after 60 DAP) the segmentation algorithm resulted in 

erroneous data.  

Figure 3.15: Temporal comparison of canopy coverages split into field treatments comparing 
phenotyping systems. 
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3.3.2  Identification of Treatments and Genotypes using Flex-Ro 

The field experiment utilized a randomized complete block design. The two treatments 

within the soybean plots were full and deficit irrigation. The five genotypes had six 

repetitions which were split into the two irrigation treatments. The start of 2019 was 

abnormally wet, receiving consistent rainfall well into July.  

Analysis of variance (ANOVA) is used to test for the existence of differences between 

treatments. An ANOVA table was calculated for the Flex-Ro and Spidercam data 

recorded at each of the dates. The ANOVA table was set-up to indicate whether the 

phenotype data indicated a statistical difference between the genotypes or irrigation 

Figure 3.16: Canopy coverage calculated from Flex-Ro data over time per genotype with full 
irrigation treatment. 
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treatments. If a difference was detected within the genotypes, a pairwise comparison was 

completed to show which genotypes were statistically different. Only the early and late 

season measurements indicated differences between either genotypes or treatments. Table 

3.2 shows the results of the ANOVA tests and significant differences measured. (DAP 

measurements without significance are not shown) 

 

 

DAP  
Groupings  Genotype Treatment Genotype Treatment Genotype Treatment

Flex-Ro * - * *** - **
Statistic Difference E < B A < E L < F L < F

Spidercam - - - - - -
Statistic Difference

Flex-Ro * - * * ** *
Statistic Difference E < B A < D,E L < F A < D,E L < F

Spidercam - - ** ** *** *
Statistic Difference A < D,E L < F A < D,E & C < E L < F

Flex-Ro *** - - - - **
Statistic Difference E < B L < F

Spidercam - - - - ** *
Statistic Difference A < D,E & C < E L < F
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Table 3.2: Results of testing for statistical difference in recorded phenotyping data means of the 
SPC and Flex-Ro phenotyping systems.  

Significance Level: * 0.05, ** 0.01, *** 0.001 
If significance was detected the difference is listed between genotypes or treatments. 
Only the periods with statistically significant differences are shown. The test of 
interaction between treatments and genotypes showed no statistical significance. 

Genotype Maturity Emergence
A' 2.6 7 L Deficit
B' 2.7 6 F Full
C" 2.9 1
D' 3.3 8
E" 3.6 2

Irrigation Treatment

Table 3.3: Genotypes and irrigation treatments. ' - soy seed 
brand 1, " - soy seed brand 2. 
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Table 3.3 lists the genotypes and growth characteristics as provided in brand literature. 

The Flex-Ro Phenotyping system was able to statistically decipher different emergence 

characteristics in the early season. Maturity differences became apparent at the end of the 

season and were statistically identified using both the Flex-Ro and Spidercam. Genotypes 

with a higher maturity number keep their leaves longer and was verified with the 

ANOVA tests, the variation in maturity can be seen in Figure 3.17. The irrigation 

treatment differences were also statistically identified towards the end of the growing 

season by the Flex-Ro and Spidercam. 

 

3.3.2.1  Yield Correlation 

The final plot yields adjusted to 13% standard moisture were tabulated and correlated to 

the phenotypic measurements recorded throughout the growing season. Data for both 

Flex-Ro and Spidercam were compared. Each of the 30 plots phenotyping data averages 

Figure 3.17: Flex-Ro in the Spidercam research field collecting data at 117 DAP. Differences in 
maturity can clearly be seen between plots. 
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were separately correlated to its yield. The results and statistical significance are shown 

in Table 3.4. A visual representation of canopy coverage and its correlation to yield over 

time is given in Figure 3.18. 

 

Figure 3.18: Correlation coefficient of plot canopy coverage to yield over time of the Flex-Ro and 
Spidercam. 
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Table 3.4: Correlations between recorded data and final plot yield with significance level.  
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The Flex-Ro shows high correlation for all measurements during the early season (27 

DAP) which may indicate that early season vigor is strongly correlated to yield (Figure 

3.19). The Flex-Ro canopy coverage (during the early season when the segmentation 

worked well) correlated especially strongly with final yield. The Spidercam data at 27 

DAP was not available.  

 

At the end of the growing season, significant correlations are negative with respect to 

yield. The plots with a shorter maturity (lower canopy coverage, and NDVI) had a higher 

yield in this experiment. The Flex-Ro and Spidercam phenotyping systems both 

significantly showed these correlations.  
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Figure 3.19: Correlation coefficient of phenotype data measured by the Flex-Ro to plot yield. 
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3.4  Conclusions 

The Flex-Ro phenotyping system was evaluated during the 2019 growing season in 

soybean research plots. Phenotyping traits measured included NDVI, canopy coverage 

and crop height. While correlations could be drawn between the Spidercam and Flex-Ro 

data, a slope of one was not established. The error within the measurements resulted from 

using different methods to extract the phenotyping data. For example, the crop canopy 

coverage was calculated using RGB images from Flex-Ro and multi-spectral images 

from the Spidercam. The other main operational difference is that the Flex-Ro 

continuously moves during data collection in comparison to the Spidercam which covers 

each plot in one image. 

The Flex-Ro phenotyping system was able to statistically differentiate between five 

genotypes and two treatments within the research field. The variation in emergence and 

maturity of the soybean varieties correlated to the differences measured by the Flex-Ro 

and Spidercam phenotyping systems. The final yield of each plot could be positively 

correlated to phenotyping data at 27 DAP and negatively correlated at the end of the 

growing season. The soybeans with the shorter maturity rating yielded better in this 

experiment. 

The Flex-Ro phenotyping system was developed to continuously record data over a large 

area. This data was proven statistically significant, but not directly matched to the 

Spidercam system. The Flex-Ro requires further agronomic experimentation to verify its 

usefulness over large field areas.  
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Chapter 4   Flex-Ro Operational Power Requirements and 

Cost Estimation 

4.1  Introduction 

The economics of farming operations depends on several factors. Capital machinery costs 

are driven by the size of the farming operation and the ability to meet critical operating 

time windows. Determining the operating costs of machinery on a per area basis helps 

inform purchasing decisions. Modern technologies are adopted if they are proven to add 

value to an operation. The cost of the Flex-Ro machine for phenotyping or field scouting 

will determine the value which must be extracted from the high-resolution data.  

The popularization of CAN bus led to the development of a variety of methods to collect, 

view, and store machine and agronomic data. Post processing of the CAN data leads to 

insights in the machine operating parameters. Direct input costs, such as fuel use, can be 

calculated, as well as other metrics, including field efficiency to determine machine 

utilization. Real time CAN bus monitoring gives users the ability to track the machine 

and its vitals, as well as monitor the current operation.  

4.1.1  Chapter Objectives 

1. Evaluate power required for low draft operations, such as phenotyping. 

2. Determine an estimated cost of operation for the Flex-Ro platform.  
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4.2  Materials and Methods 

The CAN bus is the primary on-vehicle transmission pipeline of machine information. 

Several tools have been developed to record this data, with varying degrees of 

functionality. The levels of CAN loggers are as follows. The basic logger will process the 

incoming data into raw hexadecimal format. The data is not human readable but can be 

parsed out if a description of the CAN message contents is available. Another type of 

CAN logger will process the raw CAN frames into engineering units, as specified by an 

accompanying database file. This data is usually stored locally for further post 

processing. Services exist to provide processed CAN data in real-time to operators and 

managers. Machine signals are monitored via tablet or laptop and are also recorded for 

report generation. 

4.2.1  Machine Data Collection 

4.2.1.1  Flex-Ro Run Data Collection 

The FlexRoRun application described in Chapter 2 included a built-in data recording 

method. The data included local navigation information (e.g. lateral error), as well as 

machine information (e.g. engine speed). The recording rate was 5 Hz. The processed 

data and timestamps were saved to a local file for analysis.  

4.2.1.2  CAN Bus Data Collection 

The Flex-Ro’s raw CAN bus data was collected with a Kvaser Memorator Pro 2xHS v2 

device (Figure 4.1). The device connected directly to the machine’s J1939 standard 



92 
diagnostics port. All CAN data transmitted was logged locally using a memory card. 

Recording rates vary and are set by the user. Filters can also be implemented to restrict 

the messages which are saved to the device. The data was post processed using a CAN 

database file.  

4.2.1.3  Farmobile Data 

A Farmobile PUC (Passive Uplink Connection) (Farmobile, Leawood KS) (Figure 4.1) 

displays and records CAN data processed into engineering units. The PUC connects 

directly to the machine J1939 diagnostic port. Uploaded information can be viewed and 

analyzed using the Farmobile DataEngine. The data is streamed to the Farmobile cloud 

using included cellular network connectivity. The device also utilizes a GPS antenna for 

data point georeferencing. 
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4.2.2  Phenotyping Power Use 

Phenotyping itself is a completely passive activity, meaning the only power required is 

for running the electronics. The most significant power use, then, is the tractive effort to 

move the machine through the field and the steady state parasitic losses. Activities with 

elevated power requirements would be loading onto a trailer and higher travel speeds. 

The power used during a phenotyping operation was to be analyzed. This would be 

compared to steady-state operation on level concrete to negate machine losses. The 

Nebraska Tractor Test Laboratory (NTTL) test track was used for recording data. The 

machine would be operated at 1500 rpm and swash plate magnitude of 2.5% both in the 

Figure 4.1: Left: Farmobile PUC data streaming device. Right: Kvaser Memorator Pro 2xHS v2 
CAN logger. 
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field and on the track. This resulted in a machine speed of approximately one kph, the 

speed used while phenotyping the research plots. Data were automatically recorded using 

the Farmobile PUC at 1 Hz.  

4.2.3  Flex-Ro Cost of Operation Estimation 

The Flex-Ro machine operating costs were estimated based on recorded data and 

operating assumptions. The per area cost includes fuel and fixed capital recovery. The 

labor cost was left out of this analysis as only a small amount of time would be needed 

for delivery, set-up, and retrieval. The gasoline cost is set at $0.92/L ($3.50/gal). The 

capital recovery assumes a $100,000 machine, with a 6-year life, covering 4,000 ha per 

year. The user of the machine is proposed to be a corporate agronomy service. The 

productivity estimate assumes a working swath width of 18.3 m. This width was selected 

as a common swath for a variable rate applicator. The Flex-Ro has three sensor units 

mounted on the PhenoBar. These sensor values were averaged into one data point for the 

density calculation of this analysis. Further research must be completed to determine 

what the optimum swath width and density of the Flex-Ro phenotyping application would 

be. 

4.3  Results and Discussions 

The Farmobile PUC was installed on the Flex-Ro before the first field phenotyping 

operation. Machine data were streamed and recorded throughout the season. The research 

field was covered at 1 kph to maximize resolution for the small plots. There are two 

factors which affect machine travel speed. First, the engine speed directly drives the 
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hydraulic pumps and is variable from 1000 to 3400 rpm. The flow through the hydraulic 

drive motors is regulated by the swash plate angle in the piston pump. Either of these 

factors can be adjusted to change machine travel speed. 

Fuel rate increased directly with engine speed. Thus, it was desirable to operate the 

machine at the lowest possible engine rpm for maximum fuel economy. The lower limit 

to the engine speed is determined by the pressure drop required to drive the wheel 

motors.  

4.3.1  Phenotyping Power Requirements 

The power used during the field plot trials was determined from the Farmobile recorded 

data. Researchers desired to compare the additional power losses in the field setting 

compared to a level concrete track. The Farmobile 1 Hz data was processed so only the 

steady state passes were considered while operating in the field and on the track.  

The mean of engine percent load and percent torque were the same in the field and on the 

concrete track. The mean percent engine torque for the field and concrete operation were 

28.4% and 28.8%, respectively. The mean fuel rates were also statistically the same 

between operations. The only way to distinguish between field and concrete operations 

was the histogram of travel speed. The distributions of recorded data are shown in Figure 

4.2. 
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The mean travel speeds in the field and on the concrete track were 0.79 kph (0.49 mph) 

and 0.92 kph (0.57 mph), respectively. A 16% slip percentage was calculated (Equation 

4.1) for the infield operation. Wet soil conditions contributed to the excess slippage 

shown by this study.  

Equation 4.1: Calculation of the slip percentage as a ratio of velocity on concrete (vc) and soil 
(vs). 

 𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠 % =  �𝑣𝑣𝑐𝑐
𝑣𝑣𝑠𝑠
− 1� ∙ 100 

4.3.2  Flex-Ro Cost of Operation Estimation 

The economic analysis shown in Figure 4.3, (US Standard unit version in Appendix A.4) 

was completed to provide approximate operating costs of the Flex-Ro machine in a 

practical production setting. The reflectance sensors used in the Flex-Ro phenotyping 

system are passive, meaning they rely on an external light source (the sun during outdoor 

Figure 4.2: Recorded distribution of machine speed between Spidercam research field and 
concrete track. 
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activities). This may be a limitation for working hours during the growing season as the 

machine could only operate during conditions with optimal daylight. An active 

reflectance sensor would optimize the robot’s ability to operate autonomously, potentially 

through the night improving the economic viability of this field scouting operation. 
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4.4  Conclusions 

Investigation of the power requirements of the Flex-Ro machine during phenotyping 

revealed surprising results. No statistically significant differences were attributed to 

operating in the field in comparison to a concrete track. Further research needs to be 

completed to determine the power requirements at higher speeds that would be used in 

production field settings.  

Estimates of machine operating costs were calculated based on fixed parameters and 

productivity assumptions. The approximate cost to operate the Flex-Ro as a phenotyping 

field scout is $5.50/ha More research could be completed to quantify some of the 

assumptions made in these calculations. Field efficiency is highly variable and is 

dependent on field size and shape. This would be a factor to the end user in determining 

the machine productivity and scheduling.  
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Chapter 5   Conclusions and Future Work 

Robotic applications in agriculture are currently under development, and it’s only a 

matter of time until commercial autonomous solutions are widely available. The Flex-Ro 

machine was developed as an autonomous field robot which accommodates a variety of 

applications. The first application installed was for high-throughput field phenotyping or 

scouting.  

Phenotyping at some level has been in practice since people began selectively saving 

seeds from the most productive plants for the next year’s planting. This science has 

developed into an advanced field of crop breeding and genetics. Tools have been 

developed to quantify the physical characteristics of plants using sensor-based data. 

However, high-resolution field phenotyping solutions are still limited. The Flex-Ro 

platform’s first application was to take an existing and proven suite of phenotyping 

sensors and collect data while autonomously covering the field. 

While the physical Flex-Ro machine was nearly complete, significant work remained on 

the machine’s control system. A robust safety stop system needed implementation, as 

well as high-level navigation controls. Further, the robot had no means to react to 

obstacles. The safety system implemented allowed operators to stop the machine six 

different ways and included automatic stops for loss of communication between 

controllers. 
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A navigation algorithm was implemented using a GPS and a MATLAB app which 

communicated on the machine’s CAN bus. Field path maps are planned to include swath 

coverage and headland turns. Waypoint navigation allowed for the Flex-Ro machine to 

follow predefined paths for special applications. Teleoperation via remote control 

provided a means for manual maneuvering. 

An infrared time-of-flight sensor provided by ifm was implemented to detect obstacles in 

the machine’s primary direction of travel. The sensor was installed as a proof of concept 

to verify the machine would appropriately react to obstacles in a variety of field 

environments. Field tests in automatic navigation mode verified that the sensor 

successfully detected pedestrian sized objects and triggered the machine to stop at a safe 

distance from the obstacle.  

The Flex-Ro phenotyping suite of sensors was based off a push-cart system presented by 

Bai et. al. (2016). Sensors were installed on the PhenoBar and data was recorded locally 

using a LabVIEW program. The Flex-Ro phenotyping system was operated in the 

Spidercam phenotyping system research field so data could be compared throughout the 

growing season. Correlations were skewed due to the different data collection methods 

and processing procedures between the Flex-Ro and Spidercam. The Flex-Ro 

phenotyping system was able to statistically differentiate between soybean genotypes 

with different emergence and maturity characteristics. The late season phenotyping data 

showed statistical differences between the fully irrigated versus deficit plots. The 

phenotyping data collected by the Flex-Ro indicated a strong correlation coefficient to 

plot yield at the start of the growing season. 



101 
Economics must be considered for the viable use of any technology. The operating cost 

of the Flex-Ro machine was estimated at $5.50/ha based on power used during basic 

operations and productivity assumptions.  

5.1  Future Work 

Several limitations remain with the Flex-Ro platform and application. The control system 

requires further development for intuitive human interface. Methods for remote 

monitoring and field path uploading have yet to be implemented. The use of a MATLAB 

app for long-term field use is impractical and should be transferred to a microprocessor 

designed for off-highway machinery. The GPS data should be augmented with an inertial 

measurement unit (IMU) and dynamic machine model for high accuracy navigation. 

The Flex-Ro machine can move in any direction. The obstacle detection package must be 

able to monitor the machine’s intended direction of motion. 

Additional sensors may need to be installed before unsupervised autonomy can be 

achieved. Hydraulic pressure and temperature sensors as well as wheel speed sensors 

would be needed to monitor the hydraulic condition and ensure the machine is not stuck. 

Future developments of the Flex-Ro platform must remain mindful of the developing 

standards pertaining to autonomous machines. Compliance with regulatory and safety 

standards will remain crucial to the success of the platform.  

The Flex-Ro phenotyping system requires development of the LabVIEW program to 

ensure properly synchronized data points. Delay between recording of the GPS 
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coordinates and sensor data introduces error, as the machine is continuously moving 

while recording. Further, data collection currently requires a laptop with LabVIEW and 

an operator to initiate the program and data recording. A completely autonomous 

platform should be able to initiate recording and provide a means to monitor the 

phenotyping data in real time. Advanced onboard processing and internet connectivity 

would greatly enhance the usefulness of the machine. 

The passive reflectance sensors limit the operating time of field scouting operations 

during daylight hours. Installing active sensors would fully use the autonomous capability 

of the machine. The Flex-Ro would be able to operate through the night with the use of 

active reflectance sensors to greatly expand the field scouting capability. 

Costs for the operation of the Flex-Ro could be further refined with the continued use of 

the machine in large field settings. Practical limits for speed and data resolution could be 

optimized to the desired application. For example, at what level does the number of 

points per acre for phenotyping impact the value of the operation. Other applications for 

the machine may also be developed and evaluated. 

The field of agricultural robotics is continuously evolving. Academia and start-up 

companies are developing promising prototypes, but practical commercial field 

application remains limited. The transition to autonomy appears inevitable but has yet to 

be economically proven. Diligent work must continue on the Flex-Ro to remain relevant 

as an autonomous field robot.  
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Appendix A Supplemental Information 

Appendix A.1: 2019 Spidercam and Flex-Ro Phenotyping Data Master List: 

https://unl.box.com/s/1xlzq59q8vtcrzdgl2xs4ngvjmkb45qo 

Appendix A.2: 2019 Flex-Ro Phenotyping Raw Phenotyping Data: 

 https://unl.box.com/s/dcrm00dx7pdpa4a3zhapbqjw90jk2wg3 

Appendix A.3: Additional Media: 

 https://unl.box.com/s/iyjbtqk6kp8dqsk950hcgp66bu9cw5sd 

https://unl.box.com/s/1xlzq59q8vtcrzdgl2xs4ngvjmkb45qo
https://unl.box.com/s/dcrm00dx7pdpa4a3zhapbqjw90jk2wg3
https://unl.box.com/s/iyjbtqk6kp8dqsk950hcgp66bu9cw5sd
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Appendix A.4: Economics of Phenotyping operation using the Flex-Ro machine. Swath width set 
at 60 ft. Averages the three sensor units into one point for the points per acre calculation. 
Assumes new data point collected every 8 seconds. 
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Appendix B Flex-Ro Guides 

The Flex-Ro Operating Guides are presented as an introduction and will not cover every 

operating scenario. 
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Appendix B.1: Flex-Ro Remote Operation Guide page 1. 
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Appendix B.2: Flex-Ro Remote Operation Guide page 2. 
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Appendix B.3: Flex-Ro FlexRoRun Operation Guide page 1. 
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Appendix B.4: Flex-Ro FlexRoRun Operation Guide page 2. 
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Appendix C Wiring Tables 

Appendix C.1: Flex-Ro main box connector pinout table. 
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Appendix C.2: Flex-Ro fuse panel description table. 
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Appendix C.3: Flex-Ro PhenoBox pinouts table. 
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Appendix C.4: Flex-Ro CAN database informational tables. 
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Appendix D Selected Code and Screen Captures 

Appendix D.1: Lateral error calculation code block. 

function latout= laterror(app,trdata,xc,yc) 

            %Calculate lateral error from three points. A,B and current. 

            %Perpendicular offset from line. 

            %Extract track A and B points for current track. 

            v1 = trdata.apt; 

            v2 = trdata.bpt; 

             

            pt = [xc,yc,0]; 

            a = v1 - v2; 

            b = pt - v2; 

            latout = norm(cross(a,b)) / norm(a); 

            sgn = sign((v2(1)-v1(1))*(pt(2)-v1(2))-(v2(2)-v1(2))*(pt(1)-v1(1))) 

            latout = latout*sgn; 

             

            if isnan(latout) 

                latout = 0; 

            end 
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Appendix D.2: PLUS+1 GUIDE page for the Flex-Ro steering ECUs. 
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Appendix D.3: Tracking performance calculator screen-capture. 
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Appendix D.4: Strip excess points function for converted recorded datapoints  to waypoint matrix 
code block. 

function track = stripExcessPts(trackin) 
% Strips excess points from recorded GPS logs for use as waypoint 
% navigation. 
  
% University of Nebraska-Lincoln 
% Josh Murman 2019 
  
%% Inputs 
% trackin = [easting,northing,0] matrix. Trailing zero is optional. 
  
%% Outputs 
% track = [easting,northing,0] matrix. Zero only included if included in 
% input. 
  
%% Initialize Variables 
  
h = 1; 
j = 1; 
k = 2; 
pt_spacing = 1; %meters 
  
%% Main 
for i=1:length(trackin) 
     
    %Reset magnitude 
    mag = 0; 
     
    %Start with first point, iterate through next points until distance is 
    %greater than the desired point spacing. 
    while mag < pt_spacing 
         
        %Stop execution if at the end of the recorded matrix. 
        if k == length(trackin) || h == length(trackin) 
            break 
        end  
        %Calculate magnitude of distance between the two points. 
        mag = sqrt((trackin(k,1)-trackin(h,1))^2 + ... 
            (trackin(k,2)-trackin(h,2))^2); 
         
        k = k+1 
    end %while loo 
    if k == length(trackin) 
        break 
    end 
     
    %Assign track point, update counters.  
    track(j,:) = trackin(h,:); 
    j = j+1; 
    h = k; 
    k = 1+k; 
     
end %for loop  
end %function 
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Appendix D.5: The script used for importing raw Flex-Ro collected phenotyping data. 

% Button pushed function: OpenLogButton 
        function OpenLogButtonPushed(app, event) 
 [app.basename, app.folder] = uigetfile('*.txt','Pick Log Text File'); 
             
            app.FilePathEditField.Value = app.folder; 
             
            app.listing = dir(app.folder); 
             
            processedfname = [app.folder,'processed.mat']; 
             
            selection = 'Reprocess'; 
             
            if isfile(processedfname) 
                 
                f = app.PhenoCalcUIFigure; 
                 
                message = sprintf('Found preprocessed data!'); 
                 
                selection = 
uiconfirm(f,message,'Success!','Icon','success','Options',{'Continue','Reproce
ss','NDVI'}); 
                 
            end 
             
            if ~strcmp(selection,'Reprocess') 
                 
                load(processedfname,'wd'); 
                 
                app.wd = wd; 
                 
            elseif ~strcmp(selection,'NDVI') 
                 
                 
                %Define file names 
                logfname = [app.folder,'log.txt']; 
                specleftfname = [app.folder,'Spec-Left.csv']; 
                specmidfname = [app.folder,'Spec-Middle.csv']; 
                specrightfname = [app.folder,'Spec-Right.csv']; 
                specupfname = [app.folder,'Spec-UP.csv']; 
                waveleftfname = [app.folder,'Wave-Left.csv']; 
                wavemidfname = [app.folder,'Wave-Middle.csv']; 
                waverightfname = [app.folder,'Wave-Right.csv']; 
                waveupfname = [app.folder,'Wave-UP.csv']; 
                 
                csvnames = 
{specleftfname,specmidfname,specrightfname,specupfname,waveleftfname,wavemidfn
ame,waverightfname,waveupfname}; 
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                rdnames = 
{'specleft','specmid','specright','specup','waveleft','wavemid','waveright','w
aveup'}; 
                 
                f = app.PhenoCalcUIFigure; 
                 
                d = uiprogressdlg(f,'Title','Please 
wait...','Message','Importing your data...'); 
                 
                app.rd.log = csvread(logfname ,0,2); 
                 
                imindex = unique(app.rd.log(:,1)); 
                r = length(imindex); 
                 
                for i = 1:length(csvnames) 
                     
                    app.rd.(rdnames{i}) = csvread(csvnames{i}); 
                     
                    d.Value = i/length(csvnames); 
                    d.Message = 'Reading files...'; 
                     
                end 
                 
                
                 
                d.Value = 0; 
                d.Message = 'Calculating NDVI...'; 
                 
                 
                specnames = {'specleft','specmid','specright'}; 
                wavenames = {'waveleft','wavemid','waveright'}; 
                 
                for i = 1:length(specnames) 
                     
                    for j = 1:r 
                         
                        app.rd.ndvi.(specnames{i})(j,1) = 
calcNDVI(app.rd.(wavenames{i}),app.rd.(specnames{i})(j,:),app.rd.waveup,app.rd
.specup(j,:)); 
                         
                    end 
                     
                    d.Value = i/length(specnames); 
                     
                end 
                 
                d.Value = 0; 
                d.Message = 'Processing images...'; 
                 
                 
                camnames = {'CamL-','CamM-','CamR-'}; 
                camsave = {'CamL','CamM','CamR'}; 
                imtype = '.png'; 
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                mkdir(app.folder,'Processed_Images') 
                 
                for i = 1:length(camnames) 
                     
                    for j = 1:r 
                         
                        imnum = imindex(j); 
                         
                        currim = [camnames{i},num2str(imnum),imtype]; 
                        impath = [app.folder, currim]; 
                         
                        I = imread(impath); 
                         
                        [gpf,BW] = GPFcalc(I); 
                         
                        saveim = [app.folder,'Processed_Images\',currim]; 
                         
                        imwrite(BW,saveim); 
                         
                        clear I 
                         
                        app.rd.gpf.(camsave{i})(j,1) = gpf; 
                         
                        d.Value = ((i-1)*r+j)/(length(camnames)*r); 
                    end 
                     
                end 
                 
                datanames = {'Left','Mid','Right'}; 
                 
                p = 1; 
                 
                for i = 1:r 
                     
                    for k = 1:3 
                         
                        app.rd.LJdata.(datanames{k})(app.rd.log(p),:) = 
app.rd.log(p,4:8); 
                         
                        p = p+1; 
                    end 
                     
                     
                    d.Value = i/r; 
                    d.Message = 'Organizing data...'; 
                     
                end 
                 
                app.wd.headings = {'UTM Easing','UTM Northing','Thermistor 
C','Target C','Height','NDVI','GPF'}; 
                 
                for i = 1:3 
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                    for j = 1:r 
                         
                        LJdata = app.rd.LJdata.(datanames{i})(j,:); 
                        ndvi = app.rd.ndvi.(specnames{i})(j,1); 
                        gpf = app.rd.gpf.(camsave{i})(j,1); 
                         
                        app.wd.master((i-1)*r+j,:) = [LJdata, ndvi, gpf]; 
                         
                    end 
                     
                    d.Value = i/3; 
                    d.Message = 'Structuring data...'; 
                     
                end 
                 
                 
                savefname = [app.folder,'processed.mat']; 
                 
                wd = app.wd; 
                 
                save(savefname,'wd') 
                 
                close(d) 
                 
            end %End of preprocessed if statment 
             
            if strcmp(selection,'NDVI') 
                 
                %Define file names 
                logfname = [app.folder,'log.txt']; 
                specleftfname = [app.folder,'Spec-Left.csv']; 
                specmidfname = [app.folder,'Spec-Middle.csv']; 
                specrightfname = [app.folder,'Spec-Right.csv']; 
                specupfname = [app.folder,'Spec-UP.csv']; 
                waveleftfname = [app.folder,'Wave-Left.csv']; 
                wavemidfname = [app.folder,'Wave-Middle.csv']; 
                waverightfname = [app.folder,'Wave-Right.csv']; 
                waveupfname = [app.folder,'Wave-UP.csv']; 
                 
                csvnames = 
{specleftfname,specmidfname,specrightfname,specupfname,waveleftfname,wavemidfn
ame,waverightfname,waveupfname}; 
                rdnames = 
{'specleft','specmid','specright','specup','waveleft','wavemid','waveright','w
aveup'}; 
                 
                f = app.PhenoCalcUIFigure; 
                 
                d = uiprogressdlg(f,'Title','Please 
wait...','Message','Importing your data...'); 
                 
                app.rd.log = csvread(logfname ,0,2); 
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                imindex = unique(app.rd.log(:,1)); 
                r = length(imindex); 
                 
                for i = 1:length(csvnames) 
                     
                    app.rd.(rdnames{i}) = csvread(csvnames{i}); 
                     
                    d.Value = i/length(csvnames); 
                    d.Message = 'Reading files...'; 
                     
                end 
                 
                 
                 
                 
                d.Value = 0; 
                d.Message = 'Calculating NDVI...'; 
                 
                 
                specnames = {'specleft','specmid','specright'}; 
                wavenames = {'waveleft','wavemid','waveright'}; 
                 
                for i = 1:length(specnames) 
                     
                    for j = 1:r 
                         
                        app.rd.ndvi.(specnames{i})(j,1) = 
calcNDVI(app.rd.(wavenames{i}),app.rd.(specnames{i})(j,:),app.rd.waveup,app.rd
.specup(j,:)); 
                         
                    end 
                     
                    d.Value = i/length(specnames); 
                     
                     
                end 
                 
                for i = 1:3 
                     
                    for j = 1:r 
                         
                         
                        ndvi = app.rd.ndvi.(specnames{i})(j,1); 
                         
                         
                        app.wd.master((i-1)*r+j,6) = ndvi; 
                         
                    end 
                     
                    d.Value = i/3; 
                    d.Message = 'Structuring data...'; 
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                end 
                 
                 
                savefname = [app.folder,'processed.mat']; 
                 
                wd = app.wd; 
                 
                save(savefname,'wd') 
                 
                close(d) 
                 
            end 
             
             
            savefname = [app.folder,'processed.mat']; 
             
            save(savefname,'wd') 
             
            scatter(app.ScatterAxes,app.wd.master(:,1),app.wd.master(:,2)) 
             
            assignin('base','wd',app.wd); 
             
            app.CalculateStatistics.Enable = 'On'; 
            app.MapItButton.Enable = 'On'; 
            app.PlotData.Enable = 'On'; 
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Appendix D.6: Script for calculating the green pixel fraction (GPF). 

function [gpf,maskedRGB] = GPFcalc(rgbim) 
%% Calculate green pixel fraction using the L*a*b color model and 
%thresholding using the ‘a’ channel. 
  
  
%Convert RGB image to L*a*b 
lab = rgb2lab(rgbim); 
%  
% %Pull out the 'a' channel 
lab_a = lab(:,:,2); 
%  
% %Acquire histogram for thresholding 
[counts,~] = imhist(lab_a,96); 
%  
% %Apply the Otsu method of thresholding 
T = otsuthresh(counts); 
 
Imin = min(min(lab_a)); 
Imax = max(max(lab_a)); 
  
Irange = Imax-Imin; 
  
T = Imin+Irange*T; 
  
%% Calculate GPF from processed binary image. 
  
[BW,maskedRGB] = greenMask(rgbim,Imin,T); 
  
numPixels = numel(BW); 
  
numGreen = sum(BW(:)); 
  
gpf = numGreen/numPixels; 
  
  
end 
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Appendix D.7: Flex-Ro Hydrostatic control main PLUS+1 page. 
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Appendix D.8: Flex-Ro PLUS+1 GUIDE Page Obstacle Reaction Algorithm 
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Appendix D.9: Flex-Ro PLUS+1 GUIDE Page implementing the variable deceleration factors. 
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Appendix D.10: Flex-Ro obstacle detection CAN-receive PLUS+1 page. 
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Appendix D.11: Flex-Ro obstacle detection CAN-decode PLUS+1 page. 
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Appendix D.12: Flex-Ro obstacle detection CAN message decode PLUS+1 page. 
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Appendix D.13: Flex-Ro obstacle detection CAN message decode  PLUS+1 page. 
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Appendix D.14: Flex-Ro obstacle detection CAN message decode PLUS+1 page. 

END OF DOCUMENT 
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