University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln

Biological Systems Engineering--Dissertations,

Theses, and Student Research Biological Systems Engineering

12-2019

Flex-Ro: A Robotic High Throughput Field Phenotyping System

Joshua N. Murman
University of Nebraska-Lincoln, josh.murman@huskers.unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/biosysengdiss

b Part of the Bioresource and Agricultural Engineering Commons

Murman, Joshua N., "Flex-Ro: A Robotic High Throughput Field Phenotyping System" (2019). Biological
Systems Engineering—-Dissertations, Theses, and Student Research. 99.
https://digitalcommons.unl.edu/biosysengdiss/99

This Article is brought to you for free and open access by the Biological Systems Engineering at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Biological Systems
Engineering-Dissertations, Theses, and Student Research by an authorized administrator of
DigitalCommons@University of Nebraska - Lincoln.


https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/biosysengdiss
https://digitalcommons.unl.edu/biosysengdiss
https://digitalcommons.unl.edu/agbiosyseng
https://digitalcommons.unl.edu/biosysengdiss?utm_source=digitalcommons.unl.edu%2Fbiosysengdiss%2F99&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1056?utm_source=digitalcommons.unl.edu%2Fbiosysengdiss%2F99&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/biosysengdiss/99?utm_source=digitalcommons.unl.edu%2Fbiosysengdiss%2F99&utm_medium=PDF&utm_campaign=PDFCoverPages

FLEX-RO: A ROBOTIC HIGH THROUGHPUT FIELD PHENOTYPING SYSTEM

by

Joshua Nathanael Murman

A THESIS

Presented to the Faculty of

The Graduate College at the University of Nebraska-Lincoln

In Partial Fulfillment of Requirements

For the Degree of Master of Science

Major: Agricultural and Biological Systems Engineering

Under of the Supervision of Professor Santosh K. Pitla

Lincoln, Nebraska

December 2019
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Advisor: Santosh K. Pitla

Research in agriculture is critical to developing techniques to meet the world’s
demand for food, fuel, fiber, and feed. Optimization of crop production per unit of land
requires scientists across disciplines to collaborate and investigate new areas of science
and tools for data collection. The use of robotics has been adopted in several industries to
supplement labor, and accurately perform repetitious tasks. However, the use of
autonomous robots in commercial agricultural production is still limited. The Flex-Ro
(Flexible structured Robotic platform) was developed for use in large area fields as a

multipurpose tool to perform monotonous agricultural tasks.

This work presents the design and implementation of the control system for the
Flex-Ro machine. The machine control architecture was developed for safe operation with
redundant emergency stops and checks. Operators use the remote-control device to
maneuver the machine in uncontrolled environments. Autonomous field coverage was
developed using global positioning system (GPS) guidance. The guidance system tracked
within 4 cm of the guidance line 95% of the time at a travel speed of 4 kph. Waypoint
guidance was implemented and demonstrated such that Flex-Ro could be programmed to

follow complex paths and curves.



High-throughput plant phenotyping is a continuously developing and evolving field
of plant science. The methods used to collect phenotyping data include drones, satellites,
manual measurement, and ground rovers. A suite of phenotyping sensors was installed onto
the Flex-Ro to cover large field areas. The system was verified in soybean research plots
at the University of Nebraska-Lincoln (UNL) Spidercam phenotyping facility. Positive
correlations between the Spidercam and Flex-Ro phenotyping data were established. The
Flex-Ro was able to statistically distinguish between soybean variety emergence and
maturity differences. The late season phenotyping data showed statistical differences
between the fully irrigated versus deficit plots. Basic economic calculations estimated the

cost to operate the Flex-Ro machine for field phenotyping use at approximately $5.50/ha.
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Chapter 1 Introduction

The agricultural industry supports the world’s needs for food, feed, fiber and fuel. Global
economic and population growths are projected to increase by over 40 percent by 2050
(Bruinsma, 2009; USDA, 2019). This translates to a corresponding increase in global
agricultural production by 70 percent. There are two ways to increase crop production,
more yield per area or expansion of farmable land (Bruinsma, 2009). During this period
of growth, the planted acres within the United States is projected to remain steady
(USDA, 2019). Plateaued commodity prices with increasing input costs are driving thin
margins, and limited land requires increased productivity per area. As a result, continuous
research on optimization of resources is paramount to the success of modern farming

operations.
1.1 Research in Agriculture

Agricultural research supports the development of efficient crop production systems.
Research institutions receive grants to support work investigating cause and effect
relationships across all aspects of the agriculture industry. The findings are presented to
the public via extension outreach of the universities, allowing the producers to implement

discoveries.

Farmers must balance costs to benefits to maximize production while maintaining
profitable operation. Costs incurred during the growing season include tillage, nutrient

application, seed, pesticides, herbicides, irrigation, and harvesting operations. Each one



of these items affects the output or yield of the crop. Research is conducted across all
aspects of the farming operation, which seeks to draw correlations between variable
inputs to outputs. Scientists from many disciplines find applicable research questions in
the agricultural industry. An abridged list includes soil scientists, agronomists,
economists, engineers, entomologists, geneticists, plant breeders, statisticians, traders,
financial analysts and computer scientists. Each of these stakeholders hold a position

within the agricultural value ecosystem and can benefit from effective research.

There are two desired outcomes for a successful research program related to agricultural
production. First is increased yield (revenue) and the second is reduced inputs (cost).
Management practices must balance revenue with costs to remain profitable. For
example, excessive nutrient application would increase crop output; however, the
increased costs may not be recouped with proportional yield gain (Cassman, 1999). There
are non-financial implications to farming management practices also. Environmental
concerns from chemical misuse is one example. Successful agricultural research ideally
benefits all stakeholders of the agricultural value chain. One particularly important subset

of agricultural research is the development of desirable plant characteristics.

1.1.1 Plant Breeding

Plant breeding is the method of developing crops to achieve desirable characteristics
(Atefi, 2019). The current rate of increased plant productivity must continue to rise to
meet the demands of the world (Araus and Cairns, 2014). Plant breeding targets

increasing yield and key traits for harvestability and marketability (Fehr, 1991). For
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example, a corn plant should have a high yield with strong stalks, deep roots and disease

resistance. Plants resistant to insects and disease require fewer pesticides and plant traits

for drought tolerance are desirable in many locations.

Plant breeding success relies on both qualitative and quantitative data. Traditionally, the
breeders developed plants by visually selecting the best from each generation (Fehr,
1991). This process would be repeated several times until the desired output was
achieved. New methods in genetics provide ways to accelerate breeding progress, and

better target desired traits (Fahlgren et al., 2015; Fehr, 1991).

Accelerating the progress of plant genetic development is critical to meeting the world
demand for increased production of food, feed, fiber, and fuel. Even with the science of
molecular breeding, rapid characterization of a plant’s physical response given its
genotype to an environment is still limited (Atefi, 2019). Objective quantification and
qualification of phenotypic data is crucial to developing plants with the most desirable

traits (Fahlgren et al., 2015).

1.1.2 Phenotyping

Phenotyping is the characterization of a plant’s physical and performance related traits
(Dhondt et al., 2013). Plant breeders collect this data for genotypes in specific
environments. Leaf area index, leaf number, canopy temperature, water content,
vegetative indices, canopy coverage, and stem diameter are examples of physical traits
measured or calculated. The environments may be controlled, uncontrolled or measured

(Dhondt et al., 2013).



Plants respond uniquely to different environmental conditions (Atefi, 2019). Plant
breeders and production farmers can leverage early prediction of crop output. Plant
breeders use early season phenotype data to draw preliminary conclusions on a genotype
to begin developing the next generation (White et al., 2012). Yield relationships to early
season phenotyping data can be statistically established. With this method, farmers
marketing crop futures contracts would have a better estimate of yields and total

production.

Development of reliable correlations of a plant phenotype to environmental conditions
and genotypes requires extensive datasets. Long term studies are often conducted in
semi-controlled research fields or controlled greenhouses with installed phenotyping
systems (Foix et al., 2015). Destructive methods of measuring plant characteristics have
previously been used, but limit the temporal data collection (Furbank and Tester, 2011).
Large sample sizes are needed to achieve representative growth curves of a genotype.
Non-destructive phenotyping uses sensors and imaging techniques to directly measure or
capture data which can be used to calculate plant characteristics. These sensors can be
mounted to devices for high-throughput data collection. Advancements in computational
processing capacity have enabled rapid phenotyping of large populations. Current high-
throughput techniques maintain high correlation to ground truth measurements (Bai et al.,

2016).

Incoporating high throughput phenotyping into the plant breeding cycle will facilitate the
increase in crop productivity needed to match global demands (Furbank and Tester,

2011). Phenotyping research is being developed on resolutions from plant to field level.
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Each scale has benefit to plant breeders and crop consultants who make management

decsisons based on the current state of the crop. Shakoor et al., (2017) illustrated the plant
breeding cycle and scales Figure 1.1.

High Throughput Phenotyping

Accelerating Crop Breeding and Monitoring Diseases In The Field

r 1

) =[M]= mp

L 11

i
Phenotyping

—  » Computation

Screen for: -
Architectural Traits Computer Vision / Machine Learning
Physiological Traits G
Disease / Pathogens

System (GIS)

. g

Breeding Selection «————— Analysis

Select for: Analysis For:
Architectural Traits Big Data Management Strategies
Phy: ical Traits Training Machine Learning / Algorithms

Disease / Pathogens Building Breeding Platforms

Phenotyping Platforms

Various phenotyping platforms, each with their own advantages, use a range of sensors including:
RGB /3D Scanning / Multispectral / Thermal Infrared / Near Infrared / Hyperspectral / Fluorescence

Plot Level

Phenotyping Scale

Figure 1.1: Phenotyping and crop-breeding cycle. Scale and resolution of
developed phenotyping platforms (Source: Shakoor et al., 2017).



1.2 Use of Technology in Agriculture

Technology has been continuously incorporated into agriculture to improve the
production system. Mechanization from horse to tractor revolutionized the farming
industry. Machine features became more complex as technology continued to develop,
and operating stations were increasingly designed for ergonomics and comfort. Electronic
incorporation into agricultural machinery began with the release of a planting population
monitor by DICKEY-john (Stone et al., 2008). Serial communication was first used to
simplify connections to implements. Progress towards standardizing communication on a
machine controller area network (CAN) bus began in the 1980’s (Stone et al., 2008). A
standardized high-level CAN protocol (message format) allowed for the continued

development of agricultural technologies and paved the way for brand agnostic devices.

1.2.1 The Rise of CAN bus

CAN bus technology for off-highway machinery led to the development of complex
machinery systems. Multiple electronic control units (ECUs) were used to control the
subsystems of machine. Electronic displays and switches in the cab required
communication with the ECUs. The Society of Automotive Engineers (SAE) and
American Society of Agricultural Engineers (ASAE) jointly developed SAE J1939 as a
response to the need to standardize communication protocol on off-highway machinery
(Marx, 2015). J1939 defined this high-level message structure (application layer) for
communication on the two wire twisted pair CAN bus (physical layer). Control, interface,

and diagnostic messages were defined within the standard’s application layer. Processor



advancement preceded development of the virtual terminal (VT) which integrated
machine and implement controls onto a user interface display (Stone et al., 2008). As
global position system (GPS) accuracy continued to improve, the use of the VT expanded

to include automatic steering applications (Buick, 2006).

1.2.2 Navigation Systems

GPS technology became prevalent on agricultural machinery first with the
implementation of precision mapping, and later automatic steering control. The turn of
the century led to rapid advances in GPS hardware development and accuracy
(O’Connor, 1997). Research by O’Connor (1997) and Bell (1999) developed steering
control systems based on GPS location. As time progressed, GPS hardware became more
accessible and overall decreased cost of systems led to a shortened return on investment
time (Buick, 2006). Automatic guidance improved field coverage efficiency by reducing
overlap. Modern navigation systems have repeated accuracy of +/- 2.5 cm by using real-

time-kinematic (RTK) corrections for the GPS signal (Baillie et al., 2018).

The development of automatic navigation control systems led to the delivery of other
related operations. Automatic swath guidance has been extended to provide headland turn
coverage (Baillie et al., 2018). Total machine automation controls the tractor and
implement through the turn, disengaging and restarting the operation on the next swath.
Machine cooperation (e.g. leader and follower) technologies have been developed as a
progression of automatic navigation (Thomasson et al., 2018). The current state-of-the-art

technologies are operator assisted automation, or level 3 (out of 5) automation as defined
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by Case IH (CNH Industrial America LLC, Burr Ridge, IL). The operator must remain in

the cab ready to resume control in case of unexpected events or encounters (Case TH,
2018). Future development towards full autonomy will need to include advanced path

planning and obstacle detection and avoidance (Baillie et al., 2018; Bell, 1999).

1.3 Robotics in Agriculture

The use of robotics in agriculture, while still commercially limited, is seeing rapid
development (McAllister et al., 2019). Robots are designed to relieve operators of long
working days and reduce overall manual labor (Werner, 2016). The use of robotics in
precision agriculture increases management resolution by working unattended for long
hours. Further, a smaller size compared to traditional machinery reduces soil compaction

(Godoy et al., 2012).

Agricultural robots have been developed in several configurations. The use of battery
power is common for smaller scale platforms (Bak and Jakobsen, 2004; Bangert et al.,
2015; Griepentrog et al., 2012; Slaughter et al., 2008). However, sole electric power has
runtime limitations due to the required time to charge (Werner, 2016). Internal
combustion robotic platforms have also been developed for agricultural use (Godoy et al.,
2012; Werner, 2016). Petroleum powered robots have the advantage of long run times
paired with short refueling periods. However, a combustion engine requires increased
maintenance compared to an electric drivetrain. In either case, digital systems must be

able to control all aspects of the vehicle.



1.3.1 Agricultural Robotic Control Systems

The development of autonomous agricultural robots includes research on control system
methodologies. Robotic control systems are developed similar to subsystems
implemented on machinery (Troyer, 2017). Autonomous operation consists of four main
stages. A machine must start with route planning. This may be present as algorithms on
the machine or be pre-defined and uploaded. Coverage strategies are optimized for
maximum field efficiency (J. Jin and L. Tang, 2010). The route is then augmented with
environment data during operation, most commonly to avoid obstacles. After the current
route is accepted, the trajectory and speed of the machine is determined. Finally, local
feedback control manages the actuators of the robot to the desired operating state (Paden

et al., 2016).

Robotic steering controllers are designed from a kinematic or dynamic model of the
machine. Kinematic models, while less computationally expensive, are limited to slower
speed operation (Bell, 1999). Advanced dynamic control methodologies can improve
performance on machines which encounter a lot of variability (Uzunsoy, 2018). Different
implements, payloads, and operating speeds contribute to steering controller performance
(Lakkad, 2004). Simulations are used to verify controller functionality and test different
scenarios without the need for the physical machine (Lakkad, 2004; Tu, 2013). The
control system must compensate for variations in terrain to track the navigation line

(Cariou et al., 2009).
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Robots operating in uncontrolled environments may encounter obstacles at any time.

Obstacle detecting sensors are installed in order to reduce the likelihood of collisions.
(Emmi et al., 2014). Several methods of obstacle detection have been researched and
evaluated. Methods include LiDAR’s (Biber et al., n.d.) infrared (IR) sensor (Pitla et al.,
2010a) and lasers (Oftadeh et al., 2013). Accurate detection and classification of

obstacles within the field environment will be important for large scale deployment.

Robotics in production agriculture are likely to manifest as several small robots operating
in cooperation (Emmi et al., 2014; McAllister et al., 2019; Pitla et al., 2010b). Modular
robots would be added depending on the need of the operation (Emmi et al., 2014).
Swarm control architecture depends on the task. Equal distribution of work is well suited
to seeding type applications, and leader-follower architecture is more suited to harvest

operations (Pitla et al., 2010b).

Substantial amounts of data must be transferred between the subsystems of the robot and
between the units in the swarm. CAN bus communication provides a method for handling
messages within the on machine network (Baek et al., 2008). Communication between
robots within the field will facilitate job coordination (Pitla et al., 2010b). Robust
network systems and relaying information to the master controller will allow the robots to

be adaptable wide variety of applications.

1.3.2 Ag. Robotic Applications

There are many applications in agriculture which are well suited to robotics. The first

adaptation will replace labor intensive repetitive tasks (Emmi et al., 2014). Robots
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currently developed are low power and designed for non-ground engaging activities.

These include targeted mechanical weeding (Astrand and Baerveldt, 2002), precision
spraying (Bangert et al., 2015), and crop scouting (Bangert et al., 2015; Shafiekhani et

al., 2017)

Slaughter (2008) authored a state-of-the-art review of robotic weeding technologies.
Several different methods were described as ways autonomous rovers managed weeds.
Since then commercialized technologies have been developed. EcoRobtix (ecoRobotix
Itd, Yverdon-les-Bains, Switzerland) Naio Technologies (naio Technologies Escalquens,
France) and FarmWise (FarmWise Labs, Inc. San Francisco, CA) are all examples of

autonomous weeding prototypes which appear available in the commercial sector.

Crop scouting traditionally is completed by a trained agronomist. The agronomist must
balance productivity with resolution of field coverage. Agronomists data supplements
producers in decision making about crop inputs and applications. Plant phenotyping uses
scouting data to draw correlations to a genotype given the measured or controlled

environment.

1.3.3 Ag Robotic Phenotyping

Phenotypic data collection is laborious. Several concepts and prototypes have been
developed and implemented to facilitate high-throughput phenotyping. Phenotyping
platforms vary in scale and resolution as seen previously in Figure 1.1. Data captured

from unmanned aerial vehicles and satellites is used to measure broad areas on plot and
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field level resolution. Ground vehicles and devices collect higher resolution data, from

plot to individual plant (Shakoor et al., 2017).

High throughput ground based phenotyping platforms were first developed on manual
push carts. White and Conley (2013) and Bai et al. (2016) instrumented carts to measure
plot level phenotypic traits. The use of carts enabled multiple sensor mounting
configurations and cover more area as a result. A stop-measure-go technique was used for
plot coverage and is well suited to manual operation of the cart (Bai et al., 2016). Strong
correlations were established to ground truth measurements to prove the viability of the

cart phenotyping system.

The development of phenotyping carts enabled faster coverage compared to handheld
devices and a higher resolution than UAVs. However, pushing the cart and manually
triggering data collection required a full-time technician. Several self-propelled
phenotyping devices have been developed. Andrade-Sanchez et al., (2014) developed a
manually driven high clearance phenotyping platform. The machine was easily adaptable
to a variety of sensors and was not limited by payload capacity. Shafiekhani et al. (2017)
developed Vinobot which was a smaller scale autonomous platform to collect phenotypic
data on research plots. Bangert et al. (2015) implemented a phenotyping application onto

the BoniRob autonomous robot.

Space in the phenotyping field exists for a high-resolution, high-throughput platform for
high-acreage applications. Suites of sensors have been proven to show correlations to

ground truth phenotyping measurements. Manual and self-propelled platforms are tied to
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operators which inherently limit coverage and productivity. A truly autonomous platform

would collect or stream data over large coverage areas and allow researchers and crop

consultants to make informed decisions.

1.4 Conclusions

Considerable progress has been made on robotic systems for use in agriculture.
Researchers have developed robotic control systems and many applications, specifically
in the plant phenotyping community. However, there is a lack of synthesized machines
which are field ready, especially for large acreage applications. Researches will be able to
use this high coverage data to facilitate new science on the productivity of commercial

agriculture.

1.5 Thesis Objectives

The aim of this thesis is to continue the development of the Flex-Ro platform developed
by Werner (2016). A field capable research platform for phenotyping is proposed as the

first use case for the Flex-Ro platform. Five objectives have been outlined as follows:

1. Develop and verify a redundant safety stop system to stop potential unintended
machine motion.

2. Autonomously navigate between 30in crop rows and complete headland turns
resulting in supervised autonomous field coverage.

3. Follow a preset waypoint path to facilitate go-to-start and return-to-home

applications.
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4. Implement obstacle detection to react to small sized objects during field

operation.
5. Compare phenotyping data collected with the Flex-Ro PhenoBar to the ground

truth data collected using the UNL Spidercam facility.

1.5.1 Thesis Hypothesis

1. The Flex-Ro phenotyping data collected will directly correlate with the
measurements taken by the Spidercam phenotyping utility.
2. The Flex-Ro phenotyping data will reveal with statistical significance the

difference between two treatments within the research field.
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Chapter 2 Flex-Ro Control System Development and

Implementation

2.1 Introduction

The Flex-Ro machine was designed for large area field operations. The design of a
control system for a machine depends on the environment in which it must operate.
Constraints are established based on the parameters of the task. Agricultural fields are
semi-controlled environments with limited access. Knowledge about the field before
operation could include information related to boundaries, crop-row placement, and
internal obstacles or hazards. Traditionally, machine operators react to unforeseen
circumstances such as obstacles and adverse field conditions. Robotic machines must be
able to programmatically manage unexpected circumstances while finishing the task

assigned.

Coverage of a row crop field requires three basic operations. The machine must first be
positioned at the starting swath. Then the robot needs to navigate between the swath
rows, without damaging the crop. The headland area is either made up of crop rows
perpendicular to the swath or open space and the robot must use this headland space to
continue into the next swath. This process is repeated until the field has been completely

traversed. Finally, the robot must continue to a staging area where it can be picked up.

Objectives for the Flex-Ro control system were extracted from the requirements for basic

field coverage. This also includes reaction to obstacles during field operation. Obstacles
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in scope include pedestrian sized objects, but not holes and washouts. The Flex-Ro

platform must also facilitate manual operation. Teleoperation via remote control was
required for maneuvering the machine to its storage location, loading of the machine onto

a trailer, and initializing the machine coverage at the field.

2.1.1 Chapter Objectives

1. Develop and verify a redundant safety stop system to stop potential unintended
machine motion.

2. Autonomously navigate between 30 in. crop rows and complete headland turns
resulting in supervised autonomous field coverage.

3. Follow preset waypoint path to facilitate go-to-start and return-to-home
applications.

4. Implement obstacle detection to react to pedestrian sized objects during field

operation.

2.2 Materials and Methods

2.2.1 Control System Hardware

Several different components make up the Flex-Ro control system. The four main
machine subsystems were the engine, hydrostatic drive, steering, and human machine
interface. Digital electronic controls were required for the machine to be operated
programmatically. The electronic control units (ECUs) were linked via controller area

network CAN bus. Each of the subsystem controllers required compatibility with the
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CAN communication. The two operation modes, manual and automatic, published

commands via the machine CAN bus to the subsystems.

Machine control requires processing an input signal, performing calculations and logic
operations, and outputting a control signal. Typical inputs to a controller can be analog
voltage, digital signals, or communication protocol (digital waveforms interpreted as
bits). Controller outputs are typically voltages or currents to drive electric actuators or
relays. Outputs may also send digital messages which can be received by other
controllers. Selection of a controller for an application requires knowledge of the system,
and what the required inputs and outputs (I/O) will be. One controller may not be able to
process the required number of I/O channels for a machine. Further, even if the I/O
channels were available, significant processing power would be required which may
introduce lag and processing error and result in unexpected machine behavior. In this
case, several controllers which can communicate together form a distributed control

network.

Eight controllers were used on the Flex-Ro distributed control network. The electronic
control units or ECUs were manufactured by Danfoss (Danfoss Power Solutions, Ames
IA). The Danfoss controllers were selected for available pin configurations as well as
their ability to communicate using the CAN bus on the Flex-Ro machine. There are two
models of ECUs, three MC024-110s (24 pin) and five MC012-110s (12 pin). These
Danfoss controllers are programmed using PLUS+1 GUIDE software. The graphical
programming method is intuitive and robust programs can be created quickly without

needing extensive knowledge in embedded controls.
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Remote operation was developed using a Danfoss DP600TM display, a Danfoss JS1000

joystick, and Magnetek WIC-2402 Wireless CAN Bridge. These components were
mounted in an enclosure with a strap which held the device for comfortable operation

(Figure 2.1).

Figure 2.1: Remote control box developed for teleoperation of the Flex-Ro platform.

The laptop used a universal serial bus (USB) to CAN bridge for reading and writing
messages on Flex-Ro’s CAN bus. The FlexRoRun application programmed using
MATLAB app designer, was developed to facilitate high level navigation control. The
CAN bridge used was a Kvaser Memorator Pro x2 HS (Kvaser AB, Mdélndal, Sweden). A
Vector CANcase XL Log (Vector North America Inc. Novi Michigan) was also used

during testing.
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Shown in Table 2.1 is the list of primary components which were implemented as part of

the control system for the Flex-Ro machine.

Table 2.1: List of control system hardware used on the Flex-Ro machine.

Model Manufacturer Purpose

MC024-110 Danfoss Electronic control unit (24 pin)
MCO012-110 Danfoss Electronic control unit (12 pin)
WIC-2402 Magnetek Wireless radio CAN bridge
Victor SPX Vex Robotics Steering motor controller

JS1000 Danfoss Joystick for machine maneuvering
DP600TM Danfoss Display for remote operation
Memorator Pro 2xHS v2  Kvaser USB to CAN bridge

AG-372 Trimble GPS receiver

O3M151 ifm 3D Smart Sensor, obstacle detector
0O3M950 ifm IR illumination unit

2.2.2 CAN Bus J1939 Distributed Control Network

A distributed control network has many advantages. The controllers within the system

split the processing of inputs and outputs for each subsystem. A controller of the system,

usually with direct operator inputs, sends out machine control messages. For example, the

operator commands the machine to slow down and steer to the right using a joystick. The

hydrostatic drive controller will receive the message to slow down and adjust the

hydraulic fluid flow. Simultaneously, the steering controllers received the message to
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turn right and actuate the wheel angle to the desired operating position. Another benefit

of the distributed control network is the ability to add or remove nodes without affecting

the rest of the system. The nodes of the Flex-Ro bus can be seen in Figure 2.2.

Hydro .,Estop . . = _I

Control Control
Kubota

1 'ECU

GPS Engine

=Control' = 7

Figure 2.2: CAN node layout on the Flex-Ro platform. Dashed wire shows connection via
J1939 CAN bus.

A CAN bus network connects compatible ECU’s with a twisted pair of wires (Bell,
2002). These wires are used to send data bits across the bus. This data is received by
other controllers and processed as commands or machine data. One standard high-level
protocol for the formatting of these bits is SAE standard J1939 (Bell, 2002; Marx, 2015).
The standard specifies how these data bytes are grouped and sent, called messages. Each
message contains identifier bytes and a data payload. The identifier provides information
to the ECUs on where the message came from and what it contains. The other ECUs on

the bus can choose to process the message if programmed to receive it or ignore it.
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The J1939 standardized communication provides a means to easily record machine data

(Marx, 2015; Rohrer, 2017). Many devices have been developed to enable receiving and
publishing messages on the CAN bus. A USB to CAN bus bridge allows the computer to
send and receive messages in real time. There are many software applications for CAN
logging and real-time decoding (Rohrer, 2017). However, programmatically sending
CAN messages using a laptop in response to inputs is more limited. MATLAB,
LabVIEW, and Visual Studio are a few examples. MATLAB was chosen to design a
graphical user interface (GUI) given its ability to utilize existing hardware and the
accessibility to useful toolboxes. The MATLAB developed Vehicle Network Toolbox is
a suite of functions for sending and receiving messages on the CAN bus. The user can
reference a database which MATLAB uses to automatically decode and encode message
data. Further, the MATLAB app can be deployed to an executable file so others could

install the program and run the Flex-Ro machine.

The messages created for the Flex-Ro platform used J1939 standard and proprietary
formats. The source addresses selected for each ECU corresponded to global source
addresses defined in the standard. Data to be transmitted used existing SLOT (scaling,
limit, offset and transfer) definitions when applicable. Each of the messages were sent as
broadcast without specific destination addresses. Priority was assigned based on urgency
of the message. For example, the e-stop message received the highest priority to ensure

the quickest response time to emergency.
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2.2.3 Human Machine Interface

2.2.3.1 Remote Control Operation

A machine remote-control interface is necessary for basic operation. Navigating from a
storage location to field or loading onto trailer requires safe and reliable human control.
Indoor automatic guidance for a field machine is impractical due to unpredictable
building enviroments and loss of GPS signal for location information. The Flex-Ro
wireless remote control must be able to drive the machine, monitor operating variables,
change system parameters, and perform an alignment of the steered wheels. The remote
uses a display and joystick for intuitive ergonomic control. The right hand is dedicated to
controlling the machine travel and steering via the joystick. The left hand is free to adjust
parameters on the screen including the brake release, speed range, steering mode, and

most importantly the e-stop.

The remote application was programmed using Danfoss PLUS+1 GUIDE software. The
main screen of the remote-control interface includes information and controls for normal

operation. This main display is shown in Figure 2.3.
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Figure 2.3: Main operating screen of the Flex-Ro remote. Danfoss DP600TM
display.

The numbered softkeys were mapped to controls for engine run and start, cruise
activation, e-stop, speed range, steer mode, brake release, and menu access. The machine
is programmed to stop when an obstacle is encountered. The operator can override the
obstacle detection by pushing and holding the ‘OK’ button. Obstacle detection resumes
once the button is released. Engine rotations per minute (rpm) and cruise set speed are
adjusted using the arrow key pairs. The current softkey assignment is displayed on the
screen as an icon. This includes changing controls, for example, brake release or apply
which depends on the current machine state. There are graphics for the current speed
range and steering mode. Values displayed on the main screen include remote and
machine battery voltage, coolant and engine oil temperatures, cruise set speed, and GPS

indicated vehicle speed.
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Figure 2.4: Left - Remote diagnostics screen. Right - Remote steering calibrate screen.

The second page is the steering calibrate page which is shown in Figure 2.4 (Right).
Optical quadrature encoders provide feedback for the steered wheels. The position of the
wheel must be calibrated as the encoder only provides a relative pulse count. The count is
zeroed at the wheel center position during calibration. The gearing of the steering motor
and resolution of the encoder translates to +/- 42,186 counts to +/- 90-degree steering
angles. Current absolute wheel position is saved at 2 Hz to non-volatile memory in case
the machine is shut-off while the wheels are not at 0 degrees. The steering calibrate page
includes controls for activating steering calibrate mode, changing which wheel to
calibrate, and saving new center position. The graphics display which wheel is currently
being calibrated. Outside of calibration mode graphically shows the current feedback
angle of each wheel. Finally, included on the steering calibration screen is the same e-

stop softkey in case of unintended steering or machine motion.

The last screen currently implemented is a diagnostic display, Figure 2.4 (Left). The e-
stop button remains and is assigned to the same softkey. The diagnostics screen shows
which ECU triggered an active e-stop. The user can then quickly diagnose the root cause

of the e-stop flag. Also shown are engine hours, fuel rate, engine oil pressure, compass
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bearing, and estimated fuel level. Two of the softkeys are for resetting the fuel level to

either a full or half tank. More modules could be easily added to the diagnostic screen

depending on the need of the operator.

The remote-control interface was developed such that individuals with no experience
could operate the machine with minimal instruction. Components and information
displayed on the screen can be easily changed, added, or deleted depending on the
application installed on the machine. The remote is not, however, intended to become a
high-level controller. An operator cannot drive to the field and select a navigation path
using solely the remote at the time of publishing. Remote operating instructions are

included in Appendix B.1.

2.2.3.2 Laptop and MATLAB Control Interface

Autonomous operation of the machine requires processing beyond the capability of a
typical microcontroller. The high-level machine controller processes the current machine
pose and position and calculates a steering angle. A high-level controller programmed
using MATLAB App Designer was developed for Flex-Ro. While not proposed as a
long-term solution for machine control, the use of the laptop provided many benefits
including the ability to quickly develop and debug programs and implement a graphical
user interface. The MATLAB Vehicle Network Toolbox provided the framework needed
to communicate with the machine’s J1939 CAN bus controllers. The MATLAB app,
called FlexRoRun, was deployed as an executable application. Other users could then

install the program without a MATLAB license.
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Operation of the program begins with the initialization of the USB to CAN bridge.

Currently, the tool supports a Vector CANcase XL Log and Kvaser Memorator Pro 2xHS
v2. A CAN message database file was created which contained both J1939 standard and
custom Flex-Ro messages. Use of the database streamlines the decoding and encoding
process of message transmission. The main program execution loop is time triggered at
S5Hz. This rate was chosen to match the incoming signal from the GPS and was sufficient

for the dynamics of the machine.

There are several parts to the FlexRoRun main run page as shown in Figure 2.5. Each of
the main control systems were divided into modules. Essential engine, hydrostatic drive,
steering, and e-stop controls are accessed on the main run page. Keyboard shortcuts were
mapped to buttons and sliders, which reduced error prone mouse clicking. The
NebrasTrack (Flex-Ro’s automatic navigation system) controls are also located on the
main run page. The module includes a map of the current track and machine’s location,
tracking activation, and steering control output for debugging. Lateral shift buttons

provide fine and coarse adjustment of tracking location relative to the defined path.
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Figure 2.5: Main application tab for the FlexRoRun application. Developed using MATLAB App
Designer.

The Navigation Manager page (Figure 2.6) contains track creation controls. There are
several ways to import a navigation track. Recording an AB line requires either manual
entry of the latitude and longitude coordinates or driving to the A and B points. The user
can then generate a field coverage map, assuming a rectangular field. Parameters include
track width, and number of swaths. Points are populated based on the recorded AB
points, and a simple constant radius headland turn is calculated. The other tracking modes
can also be activated on this page. Modes include waypoint following, AB Parallel

passes, and AB Traverse headland turns.
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Figure 2.6: Navigation tab within the FlexRoRun application. Developed using the MATLAB

App Designer.

The navigation tab includes controls for importing and saving a prerecorded path. Saving

a track saves the point array and track metadata, such as track-width, navigation type, and

track name. The current track is saved during application shutdown. When the

application is relaunched the last used settings and track are loaded. Basic FlexRoRun

operating instructions are included in Appendix B.1.

2.2.4 Low Level Machine Control

2.2.4.1 Engine Control

The engine control ECU receives start and stop commands via a CAN message from the

main machine controller (either remote control or FlexRoRun). Those signals are
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processed into digital outputs of the run and start pins of the Kubota engine ECU. The

engine control ECU translates requested engine rpm into a TSC1 J1939 standard

message. The engine control CAN message contents are defined in Table 2.2.

Table 2.2: Engine control message. Start and Length shown as Byte.bit

Message Description: Engine control data from main machine controller.

ID: 0x10FF4427

Start: Length: Description:

0.0 02 Engine run enumeration
02 02 Engine start enumeration
1.0 2.0 Engine RPM request

2.2.4.2 Hydrostatic Drive Control

The hydrostatic drive (hydro) control ECU processes drive command messages into
pump control signals. The pump controls machine speed by varying the swash plate angle
of the tandem piston pump. Each pump supplies two drive wheels so the swash plate
commands must be the same. These commands are either received via remote joystick or
from the high-level controller. Before the machine can be moved, a brake release signal
must be received. Once the command is processed, the control-cut-off valve is activated
which supplies pressure to the wheel brakes. The brakes are in normally ON position
with spring pressure. Direction and magnitude commands are included in the hydro
control CAN message described in Table 2.3. Ramp up and down parameters are

programmed into the controller for smooth acceleration and to avoid damage to the
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pump. The deceleration was tuned so the machine slows rapidly and without tire skid. A

cruise control function is also supported which controls the swash plate angle using a

closed loop between requested and actual machine speed.

The hydro-controller also processes the machine’s response to detected obstacles. The
hydro controller manages vehicle speeds, so if an obstacle is detected, the controller can
react quickly. The function of the obstacle detection algorithm is covered more in depth

in Section 2.2.8.

Table 2.3: Hydrostatic drive pump control message. Start and Length shown as Byte.bit

Message Description: Hydro. control data from main machine controller.

ID: 0x4FF4127

Start: Length: Description:

0.0 0.2 Direction enumeration

0.2 0.2 Brake release enumeration

0.4 0.2 Cruise control enumeration
0.6 0.3 Obstacle override enumeration
1.0 2.0 Drive magnitude

3.0 1.0 Cruise speed request
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2.2.4.3 Steering Control

There is a steering control ECU located at each wheel. A CAN message sends a
commanded center steering angle as well as the current steering mode enumeration. Each
ECU processes this message using a PLUS+1 GUIDE Ackermann steering block
(Appendix D.2). This block calculates the wheel angle based on the mode and centerline
command. There are four programmed steering modes; front, rear, coordinated, and crab.
The centerline commanded angle and steering mode are included in one of the steering

messages described in

Table 2.4. A closed loop PI controller commands a motor driver via PWM (pulse width
modulation) signal to turn the wheel. Digital encoder pulses are counted to determine the
wheel’s current angle. There are +/- 42,186 pulses to turn +/- 90°. Direction of turn is
determined by the sign of the phase offset between A and B encoder channels. The

controller periodically saves the absolute wheel position in case of machine power down.
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Table 2.4: Steering control messages. Start and Length shown as Byte.bit

Message Description: Steering command information.

ID: 0x8FF4327

Start: Length: Description:
0.0 2.0 Centerline commanded steer angle
2.0 0.2 Steer mode enumeration

Message Description: Steering calibration commands.

ID: 0x1CFF4527

Start: Length: Description:

0.0 0.2 Calibration mode enable

0.2 0.2 Active calibration wheel

04 02 Save wheel calibration enumeration

Each of the four wheels steers independently of the others. Ackermann’s steering angles
require the inner and outer wheels to steer to different angles based on a centerline
commanded angle. In this system, the wheels may arrive at their individual commanded
angle at separate times. This is especially apparent at very sharp steering angles when the
inner wheel angle turns to 90-degrees and the corresponding outer wheel angle is near 60-
degrees. Synchronization was implemented to slow the speed of the wheel that has a
smaller delta to the next commanded steer angle. Tuning adjusted the proportion gain on

the delta until the wheels arrived at extreme steering angles simultaneously.
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Each steering ECU also monitors a physical e-stop switch. When the switch continuity is

broken, an e-stop flag is immediately sent across the CAN bus with the highest priority.
The flag remains until the e-stop switch is reset, and control is resumed when the user

resets the machine with the remote or FlexRoRun software.

2.2.4.4 Emergency Stop Network. Start and Length shown as Byte.bit

Each of the controllers sends a status message at 10 Hz. The main machine controller
(remote control or FlexRoRun) processes the status messages from all the machine
controllers to check for e-stop flags. If the main controller does not receive a message
from an ECU after 2 seconds, an emergency flag is set. After a flag is set, all controllers
must send a reset signal to ensure the machine is ready to return to service. A heartbeat
signal within each message ensures that the controller is properly functioning and is on
the bus each time a new message is sent. The contents of the status CAN message are

outlined in Table 2.5.

Table 2.5: Example status message. Start and Length shown as Byte.bit

Message Description: Status message from hydrostatic drive controller.

ID: 0xOFF572E

Start: Length: Description:

0.0 1.0 Heartbeat (0 — 255)

1.0 0.2 Emergency stop enumeration
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2.2.5 Navigation Error Calculation

The implementation of a straight-line tracking algorithm is the first step for automatic
navigation. The operating environment for the Flex-Ro machine is row crop fields.
Successful navigation down the rows without crop damage is of highest importance for
the machine. There has been a significant amount of research in the implementation of
various controller algorithms for automatic steering (Bell, 1999; Boyali et al., 2018;
Godoy et al., 2012; O’Connor, 1997; Troyer, 2017). Kinetic based control while simple
and effective, lacks robustness during higher speeds. Dynamic control algorithms require
more development time, as well as a higher number of sensor inputs and computational

power. The navigation controller for Flex-Ro was first developed using a kinetic model.

The first step in determining an output steering angle was calculating the lateral
(perpendicular) error from the desired tracking line. This desired tracking line was
defined by two points (A and B) recorded in latitude and longitude coordinates.
Conversion from latitude and longitude degrees to Universal Transverse Mercator (UTM)
coordinates in meters enables a direct calculation of lateral error. Conventionally, the
easting direction is along the UTM x axis while the northing direction is along the UTM

y axis. The calculation of the lateral error uses three points, A, B and current position, C.

The cross product by the vector BA, and the vector BC, gives the area of the
parallelogram (shaded in Figure 2.7) formed by the two vectors. A parallelogram must

have the same area as a rectangle (orthogonal sides) with the same perpendicular distance

between parallel lines. Thus, the area divided by length from B to A ( ||E4) || ) results in
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the perpendicular distance L from the line BA to point C. This calculation is valid at any

point along the line BA (navigation line).

Figure 2.7: Lateral error (perpendicular distance) at point C from line defined by points A and B.

The sign of the lateral error has not been applied at this point. The sign convention is to
remain the same regardless of machine orientation. The navigation control system will
manage the controller response based on if the machine is traveling in forward or reverse.
The calculation of the sign depends on the difference in slopes between the navigation
line machine’s current point. The convention was developed based on point A shown in
Figure 2.7. It should be noted that the UTM coordinates will always be positive values,
alleviating potential complications. Only the sign of the slope difference is applied to the
lateral error. The MATLAB script for calculating lateral error is attached in Appendix

D.1 for reference.
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Equation 2.1: Perpendicular offset from navigation line calculated from three points, where A and
B define the navigation line

laterror = M
|B4]|

Equation 2.2: Applying the sign of lateral error based on the line (AB) and current points.

C,— A

laterror = laterror * sign (#) _ (By — AY>
Cx - Ax Bx - Ax

2.2.5.1 Heading Error Calculation

It is important to know the current machine heading for navigation control. The Trimble
Ag-372 GPS publishes heading information along with the GPS indicated speed and
location on the CAN bus. The compass heading convention defines North to be 0° with
positive clockwise rotation (i.e. driving straight east is a 90° heading). A limitation of the
GPS unit was that the heading couldn’t accurately be determined until the machine was in
motion. However, this would only be a factor for a very short period as the vehicle
initialized motion. More accurate methods of determining heading, including the use of

two GPS units, will be considered for future development.

The Flex-Ro machine was to navigate down a path in either direction. The heading error
was defined as the current machine heading minus the track heading. The track heading
was defined as the angle from due north clockwise to the line formed by A and B. Also,
the A and B points can be swapped with no effect. In other words, if the machine heading
is 180° off the track heading, there should be no heading error. The result of such

processing can be viewed in Figure 2.8. Note that the track angle assumed to be
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following is 0° (straight north) and 20° clockwise from north as examples.

i Heading Error as a Function of Machine Heading

50
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Figure 2.8: Heading error as a function of machine heading. Discontinuities at vertical lines.

The track heading was calculated using the ‘legs” MATLAB mapping toolbox function.
The two navigation points in latitude and longitude are aruguments and provide an output
in degrees in the standard compass coordinate system, directly comparable to the GPS

heading output.
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2.2.6 Waypoint Navigation

Waypoint navigation is defined as following a path which is defined by a matrix of
points. The machine navigates from point to point in the sequence defined by the path
matrix. The path can be any shape, but in its most basic form a straight line is drawn
between points. The curvature of the path can be calculated by using the next three points
ahead. Waypoint following is used for navigation of paths other than straight A and B

point parallel tracking.

MATLAB provides a kinematic based function for calculating a steering angle based on
pose, heading error, and velocity. This equation is based on research completed at
Stanford University, by Hoffmann et. al (2007) and Paden et. al (2016). The control
equation was originally used on a car named Stanley which competed in the DARPA
Grand Challenge 2005. The base function uses a pure pursuit type strategy without

accounting for curvature of the path.

Flex-Ro uses the factors of the Stanley Lateral Controller slightly different than it was
designed. Arguments into the equation are reference pose and current pose. This method
reflects the pure pursuit nature of the controller. Flex-Ro required a stable line following
algorithm with GPS coordinates. As the lateral and heading errors were already
calculated, the current pose (machine origin) was set to zero. As a result, the distance to
point in the x direction (longitudinal) became a tunable factor, and the y distance (lateral)
was set to be the lateral error as shown in Figure 2.9. The heading error was set as the

reference heading.
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Figure 2.9: Vehicle coordinate system convention with respect to geographical north.

The other tunable factor was the position gain. The position gain controlled how
aggressively the machine responded to lateral error. Increasing the gain would result in a
system with a quicker response and less steady state error, but also caused instability as

speed increased.

Waypoint navigation included more than the straight AB lines mentioned above. First, it
was desired that the machine could start a path at any point and traverse in either
direction. The cycle time also had to be fast enough for smooth navigation without lag.
The machine position and heading would then have to determine what points in the path
would be used for navigation. A navigation path selection algorithm selected the next

three points that were in front of the machine, and within a maximum lateral error.

The waypoint paths were stored in a matrix of UTM x and y coordinate locations. When
navigating, during each program cycle, the matrix of points is transformed into the

machine coordinate system using the current heading of the machine. (The transformed
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points are indexed to their original UTM coordinates to retain accuracy due to error in the

heading data.) Then the points can be sorted and filtered. The negative x points (behind
the machine) are eliminated. Then programmatically, the points in front of the machine
are checked to ensure they are within the current swath. The first two points (in UTM
coordinates) are then used for the lateral and heading error calculation. The first three

points (in machine coordinates) are used to calculate the curvature of the upcoming path.

The curvature is used as an added factor to the pure pursuit type algorithm. The current
path curvature is calculated by using a custom MATLAB function (Mjaavatten, 2018).
The curvature of the upcoming path is used to bias the steering angle based on the
geometry of the machine. This function outputs the vector which points to the center of
the circle defined by the three points. The sign of the y coordinate tells whether the path

is curving left or right, and the direction of the required steering angle as a result.

The bias of the steering angle helps correct for upcoming curvature in the path but does
not provide information on whether the machine is inside or outside the curve. Short
linear segments are used to calculate the lateral and heading error information. The
steering angle from the Stanley controller is then added to the steer bias and then sent via

centerline commanded angle message to the steering ECUs.

2.2.6.1 Field Path Generation

The basic operating environments for the Flex-Ro machine are research plots with
straight rows. There are open headlands with plenty of clearance for turning at the end of

the rows. A basic tool for generating these types of field paths was developed for quick
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processing once the machine was on-site. One advantage would be to navigate fields

without access to as planted navigation data. The A and B points were set by positioning
the machine in a set of rows at each end of the field. Parameters such as the track width,
fill direction, and number of swaths were entered and then a path is calculated. If the as

planted navigation track data was available, the latitude and longitude coordinates of the

A and B points could be entered directly to calculate the field coverage swaths.

2.2.6.2 Recorded Path Import

Paths which are driven in semi-controlled environments are well suited for autonomous
navigation using the Flex-Ro’s waypoint navigation. The FlexRoRun application
processes data which contains navigation performance and machine position information.
A record button on the FlexRoRun main page toggles the saving of this data to a log file
accessible by the program. If the user wants to record a path, a log is taken while the user
manually drives the machine down a path. Then, within the NavManager tab, this log is
loaded and processed into a waypoint path. The path can then be followed as recorded
(following the same direction) or in either direction. Lateral offsets can also be added to

compensate for multiple swaths of the same recorded path.

2.2.7 Headland Turn Strategies

A headland turn is the maneuvering a machine from one working pass to the next. There
are multiple ways to complete a headland turn. The independent four-wheel steer
capability of the Flex-Ro enables four different steering strategies. Changing the

instantaneous center of rotation (ICR) is possible to maximize turn efficiency. Crab
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steering allows for sideways travel. Thus, a headland ‘turn’ can be completed without

changing machine direction. There are advantages and disadvantages to both types of
turn strategies. The scope of this thesis was to compare the traditional front wheel

steering method with the traverse type (Figure 2.10).

Figure 2.10: Left: Conventional front wheel steer headland turn. Right: Traverse headland
navigation method.

2.2.7.1 Conventional Radius Turn

The conventional method of steering consists of a fixed rear axle and Ackermann’s
angles for the front wheels. The turn begins once the vehicle has fully entered the
headland. There are multiple paths the machine can follow when completing a front
wheel turn. The simplest is a semicircle tangent to the crop swath passes or U turn. This
path can be easily generated using the AB points of the path, and the desired track width.
The density of points on the arc directly affects the accuracy of the machine path

following using the Flex-Ro waypoint algorithm.
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2.2.7.2 Headland Traverse

The headland traverse turn is activated once the machine fully enters the headland. This
area is currently defined as the zone outside the crop rows and perpendicular to
navigation segment AB. The machine stops and waits until the wheels turn to 90°. The
machine then slowly travels until the lateral error to the next swath is less than 10 cm.
The machine then stops, waits until the wheels have returned to their normal orientation,

and proceeds down the next path.

2.2.8 Obstacle Detection

Traditional machinery operators function as obstacle detectors. Autonomous operation
requires either a completely controlled area of operation (no possibility of obstacles) or
sensors which can warn of upcoming collisions. The motivation for installing the obstacle
detection system is primarily for operator and bystander safety. Damage to the machine
and its operating environment were also concerns which could be mitigated with the
implementation of an obstacle detector. The objectives for the obstacle detection system

are as follows:

1. Implement an obstacle detection sensor into the CAN based vehicle control
architecture of Flex-Ro.
2. Stop Flex-Ro automatically within 1-2m of a pedestrian sized object at typical

field operating speeds.
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It was important to implement obstacle detector solutions for Flex-Ro which would

utilize the existing J1939 CAN bus network. The O3M 151 3D Smart Sensor produced

by ifm (ifm efector, inc. Malvern, PA) used J1939 messages to transmit processed object

information and is seen in Figure 2.11.

Figure 2.11: ifm O3M 151 3D Smart Sensor installed on the front of the Flex-Ro
platform.

This sensor uses an IR (infrared) pixel array to calculate the time of flight and resulting
distance to object. The pixel matrix consists of 64 (horizontal) x 16 (vertical) IR dots,
over an aperture size of 70° (horizontal) x 23° (vertical). The range is advertised to be 35
meters. However, at that distance, one IR pixel covers 77 x 91 cm. As a result, the object

would have to be very large (e.g. dump truck) for reliable detection. The relatively slow
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operating speeds of the Flex-Ro platform require only a short detection range. Three

update rates are programmable, 25, 33, and 50 Hz. Flex-Ro used an update rate of 25 Hz.

One of the main benefits of the O3M151 sensor is the direct interface with the J1939
CAN bus network. Ifm provides three firmware packages for the sensor; obstacle
detection, distance measurement, and windrow navigation. Vision Assistant, ifm’s
custom application programing interface (API), makes configuring the sensor simple. The
program shows real time data and constants such as orientation, and sensitivity can be

adjusted.

The obstacle detection firmware was uploaded for the application on the Flex-Ro
machine. The sensor can track and report up to 20 objects over the CAN bus, however,
the Flex-Ro was programmed to track 3 to limit busload. A large amount of data is
available for each object over two CAN messages. A decoded CAN trace for one object

is given in Figure 2.12.
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== 18.824774 CAN 2 4FF10EFx MoCa_Obj_0_A CAM Frame Rx 3 3 : 1 D3
Obj_0_wx 0.0000 mys 3C relative velodity of object, x direction
0Obj_0_Type 0 nfa 0 Type identifier of the object...
Obj_0_vy 0.0000 mjfs 3C relative velocity of object, y direction
0Obj_0_Measured 1 nfa 1 Flag indicating that this object has been measured in actual frame
Obj_0_ay 0 mfs~2 A relative acceleration of object, y direction
Obj_0_ep & enum 6 existence probability, provided as an enum ...
Obj_0_ax 0 mfs~2 A relative acceleration of object, x direction
Obi_0_gvx & enum & quality of vx signal provided as an enum ...
Obj_0_az 0 mfs~2 5 relative acceleration of object, z direction
0Obj_0_TrackAge 3 enum 3 Age of track, provided as an enum. ..
Obj_0_Id 685 nfa 41 id of object
Obj_0_zMin 0.8000 m 21C minimum z coordinate of object
Obj_0_vz 0.0000 mfz C relative velocdty of object, z direction
Obj_0_A_cnt 3 3 Obj 0 part A message counter
== 18.825914 CAN 2 4FF11EFx MoCa_Obj_0_B CAM Frame Rx 3 3 20 EDE C FE 8 D9
Obj_0_dz 0.6400 m 20 maximum z coordinate of object (zMax = zMin +dz, dz = zMax - zMin)
Obj_0_dy 0.5300 m 7ED delta value of y coordinate of object’s second point (v2 = y1 +dy, dy = y2-y1)
Obj_0_dx 40,1000 m 7CB delta value of x coordinate of object's second point (x2 = x1 +dx, dx = x2 - x1)
Obj_0_x1 1.8800 m FFE x coordinate of object's first paint
Obj_0_y1 0.5600 m FBC vy coordinate of object's first paint
Obj_0_gvy & enum & quality of vy signal, provided as an enum
Obj_0_History 0 nfa 0 Flag indicating that this object has been seen on bus
Obj_0_B_cnt 3 3 Obj 0 part B message counter

Figure 2.12: CAN message output from one object detected by ifm O3M 151 3D Smart
Detector. Viewed and decoded on Vector CANalyzer software.

The Flex-Ro machine used this obstacle data to prevent forward collisions. The object
location and speed combined with the machine speed, can be used to predict how far the
machine will stop from the object. This information commands the machine to either
continue, slow to stop, or brake to stop. The “slow to stop” mode commands the swash
plate of the hydraulic pump to ramp down to zero, smoothly bringing the machine to a
halt. The brake to stop uses the wheel spring brakes. Using these brakes abruptly stops
the vehicle and is potentially damaging to the machine. The use of the brakes is a last

resort safety trigger for objects less than 50 cm from the front of the machine.

The equations of motion are used to calculate the stopping distance between the object
and machine at the current state. A distance of two meters was set as the desired stopping

distance from the front of the machine to an obstacle. The first calculation is to predict
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the object’s location based on its CAN message data. The time used in the calculation is

the loop period of the controller.

Equation 2.3: Predicting the object’s position with respect to the machine’s x coordinate.

— 2
xobj,pred - xO,o + vx,ot + ax,ot

Equation 2.4: Predicting the object’s position with respect to the machine’s y coordinate.

— 2
yobj,pred = Yo, + vy,ot + ay,ot

Variables x and y are distances relative to the machine’s coordinate system and are sent
by the obstacle detector. The variable x, , is the initial position of the object, v, , and
a,, are the object’s velocity and acceleration in the x direction. The y coordinate of the
object is used to determine if it will be in front of the machine. The stopping distance of

the machine can be predicted with the equation using deceleration and current velocity.

Equation 2.5: Calculating the machine stopping distance given the current velocity.

2
Ux,m

205 m

xstop,machine -

Variables v, ,, and a,, ,, are the velocity and acceleration (or deceleration) in the x
direction of the machine. If the object is calculated to be within the 2-meter safe stop
distance in front of the machine, the ramp to neutral mode is activated. Normal operation

is resumed once the object is out of range.

The obstacle reaction was evaluated using a static 40 cm x 100 cm board. The Flex-Ro

machine approached at different speeds within the field operation range. These speeds
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were 2, 4, 6, 8, and 10 kph. Then the stopping distance from the front of the machine to

the obstacle was measured and recorded for three repetitions.

2.3 Results and Discussion

2.3.1 Safe Stop System

A fail-safe emergency stop system is essential to all moving machinery. The primary
hazard for machine operation and testing of new algorithms is loss of control and
unpredicted motion. Redundant safety features were incorporated to mitigate this hazard.
Four e-stop switches were positioned around Flex-Ro for quick access. An example of
one can be seen in Figure 2.13. A dedicated softkey serves as the e-stop on the remote
interface. Each e-stop was verified to work and trigger a machine shutdown in less than

two seconds.
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Vo

Figure 2.13: One of four red e-Stop buttons located on
exterior of machine for quick and safe access.

The use of an untethered remote control introduced potential connectivity issues. Quickly
stopping in the event of connection failure was critical to safe machine operation.
Redundant checks ensured the machine would trigger a shut-down in the same way
pressing the e-stop button would. The remote continuously monitored the bus for the
presence of all required ECUs. The author verified e-stop operation by intentionally
unplugging ECUs during remote operation. The wireless CAN-bridge (Model: WIC-
2402, Magnetek, Menomonee Fall WI) included a high-side driver which switched off
when connection was lost. This would trigger an e-stop flag on the Flex-Ro power ECU
and result in a machine shut-down. Remote connectivity was assessed for both out of

range (connection dropped) and remote power off events. The machine stopped safely
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within two seconds of the fault occurring for both tests. The tested line of sight range of

the remote was near 300 m.

Tethered laptop operation required similar e-stop failsafe requirements. An e-stop must
be triggered when the laptop becomes disconnected. Other e-stop events include the
laptop freezing or malfunctioning, an operator pressing a button or key, and an on-
machine e-stop switch activation. Each of these e-stop modes were verified. Laptop e-
stop response times matched that of the remote-controlled systems, and repeatedly shut-

down the machine within two seconds.

Both remote and tethered operation e-stop systems were designed to be redundant and
trigger in common failure modes. These redundancies were tested and verified and
provided a basis for developing more advanced controls. Researchers were confident if a
failure or undesired motion occurred when testing control algorithms, the machine could

safely be stopped.

2.3.2 Navigation

The scope of the navigation control system for this thesis was to navigate a field of 30-
inch (76cm) crop rows with open (no crop) headlands. Successful navigation would be
proven simply by inspecting for crop damage and maintaining a 95% lateral error of less
than 10cm. John Deere (Deere and Co. Moline, IL) uses a 95% lateral error in advertising
literature of their AutoTrac system. (“Accuracy equation explains how AutoTrac™
accuracy is derived,” 2013) The 95% error is calculated by sorting the absolute value

lateral errors from smallest to largest. The value at the 95% index of the total length of
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array was recorded. As a result, 95% of the lateral error values were smaller than the

reported value. The threshold of 10 cm was chosen as a round number nearing the limit
which would cause crop damage. Successful headland turns were defined as the machine
re-entering the next swath without crop damage. Two methods of headland turns were to
be compared for performance and efficiency. Waypoint navigation would be quantified
using the 50 cm 95% lateral error. The machine would need to be able to track down a
narrow farm road during these operations, allowing wider margin of error compared to

crop rows. Navigation tracking parameters were tested in normal field conditions.

2.3.2.1 AB Line Navigation

The primary purpose of the AB line navigation was to drive down existing crop rows.
The first application for the Flex-Ro machine was phenotyping, which required a slow
travel speed, less than 5 kph. Thus, the initial navigation controller algorithm was tested
at these speed ranges. AB line passes were conducted in several locations, however, corn
stubble (Figure 2.14) proved to be beneficial for visually verifying successful navigation.
Tuning continued until performance met the desired requirements. The Tracking
Performance Calculator (TPCalc) app programmed using MATLAB app designer
completed post processing and calculation of tracking parameters. The TPCalc interface
(screenshot in Appendix D.3) quickly processed recorded tracking data. Outputs were
95% lateral and heading errors, as well as average speed. Plots included the path in
relative UTM coordinates and lateral and heading errors over time. This tool provided

rapid feedback while making tuning changes.
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Figure 2.14: Testing AB line navigation in corn stubble.

A 100 m stretch of level field ground was used for the straight AB line verification test
runs. The recorded 95% error at an average speed of 3.7 kph was 3.23 cm. This was well
within the acceptable bounds required for navigation within the 76 cm crop rows. A plot

of recorded lateral error in AB line tracking data can be found in Figure 2.15.
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Figure 2.15: Lateral error over time, automatically tracking on level field ground at 3.7 kph.

AB line navigation was also tested in the reverse (front boom) direction. The recorded
95% lateral error in reverse was 3.9 cm at an average speed of 3.9 kph which met the

automatic navigation objective.

Variation in tracking performance can be attributed to the precision of the GPS. The
Flex-Ro machine used a Trimble Ag-372 without correction service. Further, it was
noticed that during recording, some GPS points were missing. This indicated that the
position wasn’t always updated during each program loop. This often-caused spikes in

the lateral error on the following loop when the position was updated.

2.3.2.2 Waypoint Navigation

Testing of the waypoint navigation began with recording a path to follow. The GPS

points were recorded at 5 Hz. The data recorded was thinned so the remaining points
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were one meter apart. This density of points provided smooth navigation around complex

curves. A simple path cleaning script was developed in MATLAB to perform this

procedure. This script can be found in Appendix D.4.

A remotely driven path was recorded using the Flex-RoRun interface. Then this path was
cleaned and set as the current navigation track. The path was to be followed at 3 kph and
consisted of curved and straight sections. These were features which could be present in a
return-to-home track. Machine tracking performance would be evaluted in comparison to
this recorded path. The machine navigated the path at a 19.2 cm 95% error. This met the
desired requirement to track within 50 cm 95% error when following a prerecorded path.

The path coordinates and lateral error while tracking is plotted in Figure 2.16.
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Figure 2.16: Automatic waypoint path following and lateral error over time.
Coordinates translated to where data recording was initialized.
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2.3.2.3 Headland Turn

Results of the headland turn controller development compares the performance between a
‘U’-type front wheel steer and traverse (crab) method. There are advantages and
disadvantages to both methods, depending on the application. The phenotyping
application developed for Flex-Ro was sensitive to changing light conditions. A traverse
turn kept the sensing boom facing the same direction to reduce shadow variation during
field passes. Alternatively, a spraying application may require the boom to remain at the

rear of the machine.

Headland turn time directly correlates to field efficiency which means the less time spent
turning the more efficient the operation. Turning methods were compared at the same set
speed, 3 kph. While driving the machine faster through the headland would result in a
higher efficiency, tests showed decreased accuracy when entering the next swath
resulting in a longer period to reacquire the AB track. The swath width was set to 4.572
m (15 ft. or 6-30 in. rows). The front-wheel only headland turn (Figure 2.17, left) was
completed in 17.8 seconds. The traverse turn in the right frame of Figure 2.17 took 16.6
seconds. The traverse method, while traveling less physical distance, must stop and wait
until the wheels turn to 90 degrees before traversing to the next pass. Both turn methods

resulted in a fast reacquisition of the crop AB line at the slow vehicle speed.
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Figure 2.17: Recorded GPS data for front wheel headland turn (left) and four-wheel crab
headland traverse (right). Coordinates translated to where data recording was initialized.

Certain fields also have restricted headland areas. An advantage to traverse turning is the
significantly reduced amount of distance needed when compared to the front-wheel-steer
method. Even with the tight turning radius of Flex-Ro, the front-wheel steer method
required 4.5 m of headland to navigate back into the crop rows. Comparatively, the

traverse method required headland width equal to the length of the machine wheelbase, 2

m.
2.3.3 Obstacle Reaction

The implemented obstacle detection system was evaluated as a proof of concept and not a
comprehensive obstacle prevention system. This system was installed to aid the operator
in the event of unforeseen obstacles, only in the forward direction. Initial tests were
conducted to verify the detectors ability to repeatedly identify obstacles at a set x and y

coordinates. The sensor was mounted to a small stationary platform for evaluation for
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detecting an obstacle with a height and width of 100 cm and 40 cm, respectively. The

results of this stationary test can be visualized in Figure 2.18. The x mean absolute error

was 24 cm and the y mean absolute error was 14 cm.
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Figure 2.18: Mean error magnitude at obstacle set position recorded by ifm
O3M 151 3D Smart Sensor.
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The dynamic response of the obstacle detector and machine stopping was verified by

approaching an obstacle at a set speed in automatic mode and measuring the resting

distance of the machine to the obstacle (Figure 2.19).

Figure 2.19: Dynamic obstacle approach test. Stopping distance was measured from detector on
front to board.

The size of the obstacle was 40 cm wide by 100 cm tall. The results of the dynamic

obstacle approach test can be seen in Figure 2.20.
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Figure 2.20: Measured distance from obstacle after machine automatically stops due to detected
potential collision.

The constant deceleration points are the machine’s response assuming initial conditions
do not affect stopping distance. It was found, as swash plate commands and the engine
RPM changed the machine deceleration factor varied. The distance stopped from the
obstacle became uncomfortably close at higher approach speeds when using a constant
deceleration factor. A deceleration rate which compensated for initial conditions resulted
in a more consistent ability to stop at the desired distance away from the object. The
implementation of the variable deceleration factor can be found in Appendix D.9. The
improved stopping distances after implementing variable deceleration factors are shown

in Figure 2.20.
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2.4 Conclusions

The control system developed for the Flex-Ro machine met the defined objectives. Safety
systems were designed and verified to ensure fail-safe operation, whether using the
remote or autonomous control. Four e-stops around the machine and each control
interface allows the user to manually stop any undesirable operation. Further, ECU
intercommunication ensures all required controllers are on-line. Loss of communication
with either the remote or one of the ECUs triggered an e-stop event. The six e-stop

methods were tested with 100% success.

The MATLAB developed Flex-Ro Run application provided a means to
programmatically control the machine. Successful navigation controlled the machine to
track between 74.6 cm (30 in) crop rows. Further, waypoint navigation was implemented
so the machine could complete fields autonomously. Field coverage was tested and
verified in university research plots. The machine was programmed to follow pre-defined
paths, enabling special operations such as driving the machine to a staging area once the
field coverage was complete. Straight line and waypoint paths were navigated with 95%

errors of 3.23 cm and 19.2 cm respectively while traveling at 4 kph.

Collision detection and reaction was implemented and evaluated in automatic mode in the
primary direction of travel. An ifm O3M 151 3D Smart Sensor was installed on the front
of the machine. The obstacle detector was added as a node on the existing machine J1939
CAN bus. The hydrostatic drive control ECU received the obstacle messages and

controlled the machine speed accordingly. The system repeatedly identified and stopped
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for pedestrian sized objects in a variety of environments, while approaching at normal

field operating speeds.
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Chapter 3 Flex Ro Phenotyping Application Evaluation

3.1 Introduction

Flex-Ro was developed to be a multi-purpose platform with many field applications. The
first application to be implemented on the machine was for high-throughput plant
phenotyping. Plant phenotyping is well established at the plot level (square meters), but
high-resolution coverage at the field level (hectares) remains limited. A manual push-cart
phenotyping sensor system was developed by researchers at the University of Nebraska-
Lincoln (Bai et al., 2016). Significant labor requirements and a stop-measure-go data
collection technique limited the productivity of the device. Migration of the sensor suite
onto the Flex-Ro machine would capitalize on the machine’s autonomous capability to

cover large areas while unattended.

The University of Nebraska-Lincoln is uniquely positioned in advanced field
phenotyping with the recent installation of the Spidercam phenotyping system (Bai et al.,
2019). This system is a tested and calibrated suite of sensors which can be positioned
anywhere over the designated one-acre plot. The sensing height ranges from 0 to 10
meters. A subsection of the one-acre plot coverage area was designated for use by the
Flex-Ro machine. Researchers selected soybeans as it would enable Flex-Ro to operate
through the growing season without clearance issues. At the end of the season, statistical
comparisons between the Spidercam and Flex-Ro phenotyping data were to be
completed. This data would validate that the phenotyping system installed on Flex-Ro

would be suitable for large field use.
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3.1.1 Chapter Objectives

Before the Flex-Ro is operated in large fields, it will be important to determine the

validity of the data collection system.

1. Implement phenotyping sensor package on the Flex-Ro machine.
2. Compare phenotyping data collected with the Flex-Ro PhenoBar to the data

collected using the UNL Spidercam.

3.1.2 Chapter Hypotheses

Hypotheses were formulated to statistically compare the Flex-Ro and Spidercam

phenotyping systems.

1. The Flex-Ro phenotyping data collected will directly correlate with the
measurements taken by the UNL Spidercam.
2. The Flex-Ro phenotyping data will show a statistically significant difference

between genotypes and or treatments within the soybean field.

3.2 Materials and Methods

3.2.1 PhenoBar

There are three main components which make up the PhenoBar system. The sensor units,
the toolbar which holds the sensor units, and the height adjustment mechanism of the
toolbar. The toolbar and adjustment mechanism were designed to accommodate a variety
of applications beyond phenotyping. The toolbar itself is constructed of t-slot extruded

aluminum. The four-bar adjustment mechanism keeps the sensor units parallel to the
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ground and enables a wide range of height settings. The PhenoBar is shown mounted to

the Flex-Ro in Figure 3.1.

Figure 3.1: PhenoBar mounted to the Flex-Ro machine. Three sensor units cover a 4.5m swath.

The suite of sensors installed onto the Flex-Ro machine were selected from those used by
Bai et. al. (2016). Three sensor units were downward facing to record data from a crop
row. Each of these units included a passive fiber optic, a red green blue (RGB) camera,

an ultrasonic distance sensor and an infrared radiometer. Also installed was a global
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positioning system (GPS) for georeferencing data points. The sensors and related

specifications are listed in Table 3.1.

Table 3.1: List of sensors installed in each unit on the Flex-Ro PhenoBar.

Sensor Model and Manufacturer  Output Phenotype Measured
ToughSonic30, Senix Analo
Ultrasonic Corporation, Hinesburg, g Height
Voltage
Vermont
CCS175, Thorlabs Inc, Digital
Spectrometer Newton, New Jersey USB Reflectance Spectra
RGB Camera C27.0’ L9g1tech, Newark, USB RGB Images
California
Infrared SI-131 Apogee

Radiometer  Instruments, Logan Utah Analog Canopy Temperature

3.2.2 PhenoBox

The PhenoBox houses the data acquisition hardware for the Flex-Ro phenotyping system.
The box distributed power to the required components; the LabJack U6, Startech 10-Port
USB Hub, Thorlabs Spectrometers, power inverter and laptop. Connectors and
passthroughs facilitate connection to the three crop sensor units and GPS. The machine
CAN bus was also routed to the PhenoBox to connect with the laptop. This would allow
future development of a CAN bus phenotype sensor network or other CAN enabled
applications. The PhenoBox (Figure 3.2) was designed to be modular to allow for
additional and or different sensors. The pinout of the PhenoBox connectors is given in

Appendix C.3.
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S I

Figure 3.2: PhenoBox installed with laptop tray which contains data acquisition
hardware for the Flex-Ro phenotyping system.

3.2.3 Data Processing Methods

3.2.3.1 LabVIEW

A LabVIEW Virtual Instrument (VI) was developed as an extension of the work
completed by Bai et al. (2016). The collection method used by Bai et al. (2016) was a
stop-measure-go method, in which the manual pushcart was moved, and a new data point
was captured. This process was labor intensive and would not capitalize on the benefits
of an autonomous machine for high throughput phenotyping. Automatic cyclic data
collection would be better suited for the Flex-Ro. The machine was to travel slowly, and

data points would be periodically recorded. Primary concerns of recording while in
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motion were to eliminate blur in the pictures and ensure that the geotagged data points

were synchronized.

Three main subsections of data collection were implemented in the LabVIEW VI. These
included image capture, spectrometer data recording, and logging geotagged analog
sensor data. The data was processed and displayed on the VI’s front panel. A button on
the front panel enabled writing of the data to file. Each data point was assigned an ID,
such that images, spectra, and analog sensor data could be merged during post
processing. The recording rate was limited by the image capture time. The basic snapshot

NI-IMAQ sub-VI was used sequentially for each camera.

The spectral reflectance data was saved as a text file, with each column relating to a
specific wavelength. The spectrometer has a range of 500-1100 nm with a step size of
0.16 nm. The wavelength data array is saved for each spectrometer during sensor
initialization. Although each of the spectrometers capture the same range of reflectance,
the specific recorded wavelength values vary slightly. This data is combined for viewing

on the VI front panel and used during post processing.

The analog sensors included on the PhenoBar include the ultrasonic height sensors and
infrared radiometers used for measuring the canopy temperature. This data was split up
and assigned an ID and position on the boom. The GPS coordinates were transformed to
each sensor unit based on the current heading of the machine and its position on the
toolbar. The GPS points were georeferenced to the image and spectral data during post

processing.
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The LabVIEW front panel, as shown in Figure 3.3, was designed to facilitate data

monitoring and recording. A file directory is specified upon program initialization, and

all files generated are saved within that directory.
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Figure 3.3: LabVIEW front panel used as the phenotyping data acquisition system for the Flex-Ro.
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3.2.3.2 MATLAB Post Processing Tool

The three data files associated with a phenotyping data collection event need to be
combined. A program developed using MATLAB App Designer processes and
synchronizes the data. The PhenoCalc app’s Field Summary tab is shown in Figure 3.4

and Plot Summary Tab is shown in Figure 3.5.
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Figure 3.4: Custom PhenoCalc application Field Summary tab to process raw Flex-Ro captured
data.
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Figure 3.5: Custom PhenoCalc application Plot Summary tab used to parse per plot data from

large matrix.

The spectral data is used for calculating vegetation indices. Previously studied indices
include NDVI (Normalized Difference Vegetation Index), NDRE (Normalized

Difference Red Edge Index), PRI (Photochemical Reflectance Index), and SIF (Solar

Induced Fluorescence) (Bai et al., 2019). The indices are a ratio based on the magnitude

of spectral reflectance at different wavelengths. NDVI was used for the initial tests of the

Flex-Ro phenotyping system and could be compared directly to the Spidercam. The

MATLAB program calculates the NDVI using the following equation.
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Equation 3.1: Calculating the NDVI using the magnitude of reflectance at 705 and 750 nm.

P750 — P705
P750 + P705

NDVI =

Variables p;59 & p7o5 are the magnitudes of reflectance at wavelengths of 750nm and

705nm respectively.

The RGB images are used to estimate canopy coverage by calculating the green pixel
fraction (GPF). A segmentation algorithm calculates the GPF based on the method
presented by Bai et al., (2016). The image is converted to the L*a*b color space, then
Otsu’s method is used to threshold the image using the ‘a’ channel. The pixels remaining

after thresholding divided by the total number of pixels results in the GPF.

The calculated NDVI and GPF are combined with the analog data points and GPS
coordinates to form a master list. This master list can be used to calculate averages and
generate an interpolated color map for the field of the different traits. The portion of the
Spidercam field used for this research contained 30 plots, with 5 genotypes and 2
different treatments. The data recorded by the Flex-Ro platform was parsed for individual
plot analysis. This was completed using the master list of data, and plot polygons
generated from field recorded GPS points. MATLAB provides a function (inpolygon)
which selects only points contained within a polygon. After parsing, the points in each
plot were averaged and saved to file for further comparison. These plot averages could be

directly compared to the Spidercam generated data.
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3.2.4 Field Data Collection Strategy

As mentioned, to achieve maximum throughput using the Flex-Ro platform, continuous
data was collected. Due to the small size of the research plots and long sample times, a
speed of 1 kph was used. The three sensor units were positioned directly over a row, each
60 inches apart as shown in Figure 3.6. The plot was covered in two swaths, offset by one
row to achieve high resolution total plot coverage. This ensured a sensor unit would pass
over each row, and a representative average was recorded. In contrast, the Spidercam

takes just one data point over the entire plot.

TN—

b T % b p ~

Figure 3.6: The Flex-Ro collecting data 67 days after planting (DAP). Each of the sensor units
are positioned directly over a row.

The spectrometers, which rely on the intensity of reflected light, are sensitive to changing

conditions. While shadows can’t be eliminated using this system, methods can be used to



74
reduce error. The Flex-Ro machine recorded phenotyping data with the boom always on

the South side (the research plot rows ran north and south). The angle of the sun’s rays
through the growing season reduced the amount of shadows present. Further, the data

collected had the same steady state condition and could be compared directly.

3.3 Results and Discussion

The Flex-Ro collected field phenotyping data seven times during 2019 growing season.
The research objective was to validate the Flex-Ro phenotyping system by comparing it
to the developed and tested Spidercam (SPC) phenotyping system. Thirty soybean plots
over 0.21 acres were selected for the study. Within these thirty plots, there were five

genotypes and two irrigation treatments. The five soybean varieties represented a range

of maturities. The two irrigation treatments were full and deficit.

The Spidercam phenotyping system was previously tested and verified with ground truth
measurements (Bai et al., 2019). The Flex-Ro data resulted in plot average canopy height,
canopy coverage, and NDVI. The canopy temperature sensors on the Flex-Ro were found

to be out of calibration and were not used for comparison.

3.3.1.1 Crop Height

Canopy height measurements over time show crop growth curves. The Flex-Ro PhenoBar
used an ultrasonic sensor positioned directly over the crop row to measure crop height.
The height of the crop was calculated by subtracting the sensor value from the measured

distance to bare ground.
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The Spidercam calculated plot height using a LiDAR sensor. First, the distance to the soil

was measured at the start of the growing season. During the growing season, the 10
percentile distance within the plot as measured by the LiIDAR was recorded. Subtracting
these measurements resulted in the average canopy height (Bai et al., 2019). The
correlation between plot height averages between the Flex-Ro and Spidercam

phenotyping systems can be seen in Figure 3.7.
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Figure 3.7: Correlation between Flex-Ro and Spidercam measured crop plot average height.

The ultrasonic sensor is highly susceptible to variations in canopy density. This explains
the offset in correlation to the Spidercam measured height. While this difference is
present, the slope of the correlation is near one at 0.8523 (R?= 0.829), indicating that
both systems are measuring corresponding changes of height over time. Height

measurement accuracy was reduced as the crop neared maturity and began to defoliate.
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Ground truth plot height data was recorded four times throughout the growing season

using a yardstick. Four measurements were taken in each plot and averaged. Figure 3.8

shows the comparison between the Spidercam LiDAR, ground truth (GND), and Flex-Ro

ultrasonic height measurements. The data presented is the crop plot averages separated by

irrigation treatments. The Spidercam data (SPC) tends to over-estimate height compared

to the ground truth while the Flex-Ro measurement is near the same range until

divergence around 67 days after planting (DAP).
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Figure 3.8: Temporal comparison of crop plot height averages per treatment with different

measurement techniques.

Figure 3.9 shows the temporal canopy height measurements by the Flex-Ro between

genotypes. Only the replications in the full irrigation treatment zones are plotted.
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Figure 3.9: Average plot height over time per genotype with full irrigation treatment as recorded

by the Flex-Ro platform.

3.3.1.2 NDVI

The Flex-Ro and Spidercam both used spectrometers connected to a downward pointing

fiber-optic cable to measure reflectance. The spectrometer measures the spectral

reflectance across a range of wavelengths (500 — 1100 nm). The PhenoCalc post

processing tool used the recorded wavelength and corresponding reflectance to calculate

the NDVI. The wavelengths used to calculate the Flex-Ro and Spidercam NDVI were

750nm and 705nm. The Spidercam used the same wavelengths for the NDVI calculation.

Plot averages of NDVI values were compared and correlated (Figure 3.10). The linear fit

resulted in a slope of 0.7472 and R? value of 0.7814.
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Figure 3.10: Correlation between Flex-Ro and Spidercam measured NDVI and linear correlation.

One reason for error between the two systems is the proximity of the fiber optic cable end
to the plant. The Flex-Ro positions the sensor ~1m directly above the row. The sensor is
designed to capture data for just that one row. As a result, the reflectance data is more
influenced from the crop itself and less from the surrounding soil. Comparatively, the
Spidercam is positioned Sm above the plot, and is designed to capture the whole plot in
one data point. Thus, especially during the early season, a significant amount of soil will
be within the reflectance measurement, and the intensity from the crop will be less.
Removing the early season (32 and 46 DAP) NDVI data and recalculating the linear
relationship resulted in a slope of 0.9036 and R? value of 0.8347. This new linear fit
indicated the SPC and Flex-Ro systems recorded very similar NDVI measurements after

the crop canopy was more established.
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The Flex-Ro may be more capable of detecting early season phenotypic differences with

the proximity of the sensor bar. However, care must be taken to ensure the sensor unit is
directly over the row, or the reflectance intensity could vary significantly. The NDVI
could also be used to identify growth trends between genotypes and treatments. This data
could show early season vigor or response to drought. The NDVI of the two treatments
are plotted over time as recorded by the Flex-Ro and Spidercam phenotyping systems

(Figure 3.11).
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Figure 3.11: Temporal comparison of NDVI split into the two field treatments comparing
phenotyping systems.

Figure 3.12 shows the comparison between fully irrigated genotypes over time as
recorded by Flex-Ro. The dip in NDVI at 67 DAP was likely in response to changing the

height of the Flex-Ro PhenoBar. The height was changed to maintain a consistent toolbar



80
distance over the crop through the growing season. This would result in less intense

reflectance and corresponding NDVI. Lighting conditions may have also been a factor.
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Figure 3.12: NDVI (750-705 nm) as calculated from Flex-Ro data per genotype with full
irrigation treatment.

3.3.1.3 Canopy Coverage

The Flex-Ro and Spidercam differed in the calculation of crop canopy coverage. The
Flex-Ro used an RGB camera and processed the images to determine the green pixel
fraction (GPF). The number of green pixels divided by the total number of pixels in the
image resulted in an approximation of the percentage of plant in the image. The image
segmentation worked well in the early season, when there was minimal shading within

the canopy and a clear contrast between foliage and soil. However, as the season
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progressed, the segmentation algorithm had difficulty distinguishing between shaded area

within the plant and soil. Two examples of segmentation are shown in Figure 3.13.

Figure 3.13: Examples showing result of image segmentation to calculate GPF. Segmented 'non-
green' pixels shown in orange for clarity.

The distance of the camera above the crop also affected the calculated canopy coverage.
The data set taken at 67 days after planting (DAP) had a higher boom height than the data
set taken on 60 DAP. Raising the boom widens the view frame, and in this case, the
camera was able to capture more soil. This resulted in a similar calculated canopy

coverage, when the Spidercam showed a linear progression.
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The Spidercam calculated the crop coverage using a multi-spectral camera. An NDVI

image was created using the NIR and red images. As a result, the soil could be easily
segmented. This resulted in accurate segmentation, as the multispectral images covered

most of the plot.

Otsu’s segmentation method had significantly reduced performance for near full canopy
when compared to corresponding Spidercam canopy coverage data. The fit between the

Spidercam and Flex-Ro had as slope of 0.5862 with an R? value of 0.643 (Figure 3.14).
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Figure 3.14: Correlation between Flex-Ro and Spidercam calculated crop canopy coverage.

Figure 3.15 shows the temporal comparison between the canopy coverage from the Flex-

Ro and Spidercam phenotyping systems. Plot averages are separated into the different
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irrigation treatments. Erroneous points due to segmentation difficulty can clearly be seen

at 60 and 104 days after planting.
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Figure 3.15: Temporal comparison of canopy coverages split into field treatments comparing
phenotyping systems.

Figure 3.16 compares the canopy coverage of the different genotypes with full irrigation
treatment. Data during the early season can be correlated to emergence characteristics. As

the plots neared full canopy (after 60 DAP) the segmentation algorithm resulted in

erroneous data.
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Figure 3.16: Canopy coverage calculated from Flex-Ro data over time per genotype with full
irrigation treatment.

3.3.2 Identification of Treatments and Genotypes using Flex-Ro

The field experiment utilized a randomized complete block design. The two treatments
within the soybean plots were full and deficit irrigation. The five genotypes had six
repetitions which were split into the two irrigation treatments. The start of 2019 was

abnormally wet, receiving consistent rainfall well into July.

Analysis of variance (ANOVA) is used to test for the existence of differences between
treatments. An ANOVA table was calculated for the Flex-Ro and Spidercam data
recorded at each of the dates. The ANOVA table was set-up to indicate whether the

phenotype data indicated a statistical difference between the genotypes or irrigation
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treatments. If a difference was detected within the genotypes, a pairwise comparison was

completed to show which genotypes were statistically different. Only the early and late

season measurements indicated differences between either genotypes or treatments. Table

3.2 shows the results of the ANOVA tests and significant differences measured. (DAP

measurements without significance are not shown)

Table 3.2: Results of testing for statistical difference in recorded phenotyping data means of the
SPC and Flex-Ro phenotyping systems.

DAP 27 104 117
Groupings [Genotype Treatment|Genotype Treatment| Genotype Treatment
Flex-Ro * - * * %k % - * %k
E) Statistic Difference| E<B A<E L<F L<F
'% Spidercam - - - - - -
Statistic Difference
Flex-Ro * - * * * %k *
g Statistic Difference| E<B A<D,E L<F A<D,E L<F
z Spidercam - - * % * ¥ * %k % *
Statistic Difference A<D,E L<F A<DE&C<E L<F
é Flex-Ro * % % - - - - * %
> Statistic Difference| E<B L<F
e Spidercam - - - - % % *
S statistic Difference A<DE&C<E L<F

Significance Level: * 0.05, ** 0.01, *** 0.001

If significance was detected the difference is listed between genotypes or treatments.
Only the periods with statistically significant differences are shown. The test of
interaction between treatments and genotypes showed no statistical significance.

Table 3.3: Genotypes and irrigation treatments. ' - soy seed
brand 1, " - soy seed brand 2.

Genotype Maturity Emergence Irrigation Treatment
A' 2.6 7 L Deficit
B' 2.7 6 F Full
c" 2.9 1
D' 3.3 8
E" 3.6 2
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Table 3.3 lists the genotypes and growth characteristics as provided in brand literature.

The Flex-Ro Phenotyping system was able to statistically decipher different emergence
characteristics in the early season. Maturity differences became apparent at the end of the
season and were statistically identified using both the Flex-Ro and Spidercam. Genotypes
with a higher maturity number keep their leaves longer and was verified with the
ANOVA tests, the variation in maturity can be seen in Figure 3.17. The irrigation
treatment differences were also statistically identified towards the end of the growing

season by the Flex-Ro and Spidercam.

Figure 3.17: Flex-Ro in the Spidercam research field collecting data at 117 DAP. Differences in
maturity can clearly be seen between plots.

3.3.2.1 Yield Correlation

The final plot yields adjusted to 13% standard moisture were tabulated and correlated to
the phenotypic measurements recorded throughout the growing season. Data for both

Flex-Ro and Spidercam were compared. Each of the 30 plots phenotyping data averages
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were separately correlated to its yield. The results and statistical significance are shown

in Table 3.4. A visual representation of canopy coverage and its correlation to yield over

time is given in Figure 3.18.
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Figure 3.18: Correlation coefficient of plot canopy coverage to yield over time of the Flex-Ro and

Spidercam.

Table 3.4: Correlations between recorded data and final plot yield with significance level.

Canopy Coverage NDVI Height

Date DAP SPC Flex-Ro SPC Flex-Ro SPC Flex-Ro
28-Jun-19 27 0.878 ***= 0.517 ** 0.718 *=**=
17-Jul-19 46 0.648 *** (0.3p4 0.470 * -0.007 0.192 0.258
25-Jul-19 55 0.403 * -0.022 0.430 * 0.237 0.133 0.429 *
31-Jul-19 60 0.036 -0.151 0.285 0.018 0.132 0.418
7-Aug-19 67 |-0.118 -0.100 0.046 -0.074 0.201 0.235
13-5ep-19 104 |[-0.216 0.063 -0.572 *** 0433 * 0.012 -0.238
26-5ep-19 117 |[-0.537 ** 0466 ** |-0.637 *¥* 0,589 **¥|_(.268 -0.426 *
Significance Level: 0.001 ***  0.01 ** 0.05 *
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The Flex-Ro shows high correlation for all measurements during the early season (27

DAP) which may indicate that early season vigor is strongly correlated to yield (Figure
3.19). The Flex-Ro canopy coverage (during the early season when the segmentation
worked well) correlated especially strongly with final yield. The Spidercam data at 27

DAP was not available.
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Figure 3.19: Correlation coefficient of phenotype data measured by the Flex-Ro to plot yield.

At the end of the growing season, significant correlations are negative with respect to
yield. The plots with a shorter maturity (lower canopy coverage, and NDVI) had a higher
yield in this experiment. The Flex-Ro and Spidercam phenotyping systems both

significantly showed these correlations.
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3.4 Conclusions

The Flex-Ro phenotyping system was evaluated during the 2019 growing season in
soybean research plots. Phenotyping traits measured included NDVI, canopy coverage
and crop height. While correlations could be drawn between the Spidercam and Flex-Ro
data, a slope of one was not established. The error within the measurements resulted from
using different methods to extract the phenotyping data. For example, the crop canopy
coverage was calculated using RGB images from Flex-Ro and multi-spectral images
from the Spidercam. The other main operational difference is that the Flex-Ro
continuously moves during data collection in comparison to the Spidercam which covers

each plot in one image.

The Flex-Ro phenotyping system was able to statistically differentiate between five
genotypes and two treatments within the research field. The variation in emergence and
maturity of the soybean varieties correlated to the differences measured by the Flex-Ro
and Spidercam phenotyping systems. The final yield of each plot could be positively
correlated to phenotyping data at 27 DAP and negatively correlated at the end of the
growing season. The soybeans with the shorter maturity rating yielded better in this

experiment.

The Flex-Ro phenotyping system was developed to continuously record data over a large
area. This data was proven statistically significant, but not directly matched to the
Spidercam system. The Flex-Ro requires further agronomic experimentation to verify its

usefulness over large field areas.
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Chapter 4 Flex-Ro Operational Power Requirements and

Cost Estimation

4.1 Introduction

The economics of farming operations depends on several factors. Capital machinery costs
are driven by the size of the farming operation and the ability to meet critical operating
time windows. Determining the operating costs of machinery on a per area basis helps
inform purchasing decisions. Modern technologies are adopted if they are proven to add
value to an operation. The cost of the Flex-Ro machine for phenotyping or field scouting

will determine the value which must be extracted from the high-resolution data.

The popularization of CAN bus led to the development of a variety of methods to collect,
view, and store machine and agronomic data. Post processing of the CAN data leads to
insights in the machine operating parameters. Direct input costs, such as fuel use, can be
calculated, as well as other metrics, including field efficiency to determine machine
utilization. Real time CAN bus monitoring gives users the ability to track the machine

and its vitals, as well as monitor the current operation.

4.1.1 Chapter Objectives

1. Evaluate power required for low draft operations, such as phenotyping.

2. Determine an estimated cost of operation for the Flex-Ro platform.
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4.2 Materials and Methods

The CAN bus is the primary on-vehicle transmission pipeline of machine information.
Several tools have been developed to record this data, with varying degrees of
functionality. The levels of CAN loggers are as follows. The basic logger will process the
incoming data into raw hexadecimal format. The data is not human readable but can be
parsed out if a description of the CAN message contents is available. Another type of
CAN logger will process the raw CAN frames into engineering units, as specified by an
accompanying database file. This data is usually stored locally for further post
processing. Services exist to provide processed CAN data in real-time to operators and
managers. Machine signals are monitored via tablet or laptop and are also recorded for

report generation.

4.2.1 Machine Data Collection

4.2.1.1 Flex-Ro Run Data Collection

The FlexRoRun application described in Chapter 2 included a built-in data recording
method. The data included local navigation information (e.g. lateral error), as well as
machine information (e.g. engine speed). The recording rate was 5 Hz. The processed

data and timestamps were saved to a local file for analysis.

4.2.1.2 CAN Bus Data Collection

The Flex-Ro’s raw CAN bus data was collected with a Kvaser Memorator Pro 2xHS v2

device (Figure 4.1). The device connected directly to the machine’s J1939 standard
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diagnostics port. All CAN data transmitted was logged locally using a memory card.

Recording rates vary and are set by the user. Filters can also be implemented to restrict
the messages which are saved to the device. The data was post processed using a CAN

database file.

4.2.1.3 Farmobile Data

A Farmobile PUC (Passive Uplink Connection) (Farmobile, Leawood KS) (Figure 4.1)
displays and records CAN data processed into engineering units. The PUC connects
directly to the machine J1939 diagnostic port. Uploaded information can be viewed and
analyzed using the Farmobile DataEngine. The data is streamed to the Farmobile cloud
using included cellular network connectivity. The device also utilizes a GPS antenna for

data point georeferencing.



Figure 4.1: Left: Farmobile PUC data streaming device. Right: Kvaser Memorator Pro 2xHS v2
CAN logger.

4.2.2 Phenotyping Power Use

Phenotyping itself is a completely passive activity, meaning the only power required is
for running the electronics. The most significant power use, then, is the tractive effort to
move the machine through the field and the steady state parasitic losses. Activities with

elevated power requirements would be loading onto a trailer and higher travel speeds.

The power used during a phenotyping operation was to be analyzed. This would be
compared to steady-state operation on level concrete to negate machine losses. The
Nebraska Tractor Test Laboratory (NTTL) test track was used for recording data. The

machine would be operated at 1500 rpm and swash plate magnitude of 2.5% both in the
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field and on the track. This resulted in a machine speed of approximately one kph, the

speed used while phenotyping the research plots. Data were automatically recorded using

the Farmobile PUC at 1 Hz.

4.2.3 Flex-Ro Cost of Operation Estimation

The Flex-Ro machine operating costs were estimated based on recorded data and
operating assumptions. The per area cost includes fuel and fixed capital recovery. The
labor cost was left out of this analysis as only a small amount of time would be needed
for delivery, set-up, and retrieval. The gasoline cost is set at $0.92/L ($3.50/gal). The
capital recovery assumes a $100,000 machine, with a 6-year life, covering 4,000 ha per
year. The user of the machine is proposed to be a corporate agronomy service. The
productivity estimate assumes a working swath width of 18.3 m. This width was selected
as a common swath for a variable rate applicator. The Flex-Ro has three sensor units
mounted on the PhenoBar. These sensor values were averaged into one data point for the
density calculation of this analysis. Further research must be completed to determine
what the optimum swath width and density of the Flex-Ro phenotyping application would

be.

4.3 Results and Discussions

The Farmobile PUC was installed on the Flex-Ro before the first field phenotyping
operation. Machine data were streamed and recorded throughout the season. The research
field was covered at 1 kph to maximize resolution for the small plots. There are two

factors which affect machine travel speed. First, the engine speed directly drives the
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hydraulic pumps and is variable from 1000 to 3400 rpm. The flow through the hydraulic

drive motors is regulated by the swash plate angle in the piston pump. Either of these

factors can be adjusted to change machine travel speed.

Fuel rate increased directly with engine speed. Thus, it was desirable to operate the
machine at the lowest possible engine rpm for maximum fuel economy. The lower limit
to the engine speed is determined by the pressure drop required to drive the wheel

motors.

4.3.1 Phenotyping Power Requirements

The power used during the field plot trials was determined from the Farmobile recorded
data. Researchers desired to compare the additional power losses in the field setting
compared to a level concrete track. The Farmobile 1 Hz data was processed so only the

steady state passes were considered while operating in the field and on the track.

The mean of engine percent load and percent torque were the same in the field and on the
concrete track. The mean percent engine torque for the field and concrete operation were
28.4% and 28.8%, respectively. The mean fuel rates were also statistically the same
between operations. The only way to distinguish between field and concrete operations
was the histogram of travel speed. The distributions of recorded data are shown in Figure

4.2.
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Figure 4.2: Recorded distribution of machine speed between Spidercam research field and
concrete track.

The mean travel speeds in the field and on the concrete track were 0.79 kph (0.49 mph)
and 0.92 kph (0.57 mph), respectively. A 16% slip percentage was calculated (Equation
4.1) for the infield operation. Wet soil conditions contributed to the excess slippage

shown by this study.

Equation 4.1: Calculation of the slip percentage as a ratio of velocity on concrete (v.) and soil

(vs).

slip % = (2—1)-100

N

4.3.2 Flex-Ro Cost of Operation Estimation

The economic analysis shown in Figure 4.3, (US Standard unit version in Appendix A.4)
was completed to provide approximate operating costs of the Flex-Ro machine in a
practical production setting. The reflectance sensors used in the Flex-Ro phenotyping

system are passive, meaning they rely on an external light source (the sun during outdoor
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activities). This may be a limitation for working hours during the growing season as the

machine could only operate during conditions with optimal daylight. An active
reflectance sensor would optimize the robot’s ability to operate autonomously, potentially

through the night improving the economic viability of this field scouting operation.
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Figure 4.3: Economics of Phenotyping operation using the Flex-Ro machine with a swath width
of 18.3 m and data collection cycle time of 8§ sec.
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4.4 Conclusions

Investigation of the power requirements of the Flex-Ro machine during phenotyping
revealed surprising results. No statistically significant differences were attributed to
operating in the field in comparison to a concrete track. Further research needs to be
completed to determine the power requirements at higher speeds that would be used in

production field settings.

Estimates of machine operating costs were calculated based on fixed parameters and
productivity assumptions. The approximate cost to operate the Flex-Ro as a phenotyping
field scout is $5.50/ha More research could be completed to quantify some of the
assumptions made in these calculations. Field efficiency is highly variable and is
dependent on field size and shape. This would be a factor to the end user in determining

the machine productivity and scheduling.
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Chapter 5 Conclusions and Future Work

Robotic applications in agriculture are currently under development, and it’s only a
matter of time until commercial autonomous solutions are widely available. The Flex-Ro
machine was developed as an autonomous field robot which accommodates a variety of
applications. The first application installed was for high-throughput field phenotyping or

scouting.

Phenotyping at some level has been in practice since people began selectively saving
seeds from the most productive plants for the next year’s planting. This science has
developed into an advanced field of crop breeding and genetics. Tools have been
developed to quantify the physical characteristics of plants using sensor-based data.
However, high-resolution field phenotyping solutions are still limited. The Flex-Ro
platform’s first application was to take an existing and proven suite of phenotyping

sensors and collect data while autonomously covering the field.

While the physical Flex-Ro machine was nearly complete, significant work remained on
the machine’s control system. A robust safety stop system needed implementation, as
well as high-level navigation controls. Further, the robot had no means to react to
obstacles. The safety system implemented allowed operators to stop the machine six
different ways and included automatic stops for loss of communication between

controllers.
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A navigation algorithm was implemented using a GPS and a MATLAB app which

communicated on the machine’s CAN bus. Field path maps are planned to include swath
coverage and headland turns. Waypoint navigation allowed for the Flex-Ro machine to
follow predefined paths for special applications. Teleoperation via remote control

provided a means for manual maneuvering.

An infrared time-of-flight sensor provided by ifm was implemented to detect obstacles in
the machine’s primary direction of travel. The sensor was installed as a proof of concept
to verify the machine would appropriately react to obstacles in a variety of field
environments. Field tests in automatic navigation mode verified that the sensor
successfully detected pedestrian sized objects and triggered the machine to stop at a safe

distance from the obstacle.

The Flex-Ro phenotyping suite of sensors was based off a push-cart system presented by
Bai et. al. (2016). Sensors were installed on the PhenoBar and data was recorded locally
using a LabVIEW program. The Flex-Ro phenotyping system was operated in the
Spidercam phenotyping system research field so data could be compared throughout the
growing season. Correlations were skewed due to the different data collection methods
and processing procedures between the Flex-Ro and Spidercam. The Flex-Ro
phenotyping system was able to statistically differentiate between soybean genotypes
with different emergence and maturity characteristics. The late season phenotyping data
showed statistical differences between the fully irrigated versus deficit plots. The
phenotyping data collected by the Flex-Ro indicated a strong correlation coefficient to

plot yield at the start of the growing season.
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Economics must be considered for the viable use of any technology. The operating cost

of the Flex-Ro machine was estimated at $5.50/ha based on power used during basic

operations and productivity assumptions.

5.1 Future Work

Several limitations remain with the Flex-Ro platform and application. The control system
requires further development for intuitive human interface. Methods for remote
monitoring and field path uploading have yet to be implemented. The use of a MATLAB
app for long-term field use is impractical and should be transferred to a microprocessor
designed for off-highway machinery. The GPS data should be augmented with an inertial

measurement unit (IMU) and dynamic machine model for high accuracy navigation.

The Flex-Ro machine can move in any direction. The obstacle detection package must be

able to monitor the machine’s intended direction of motion.

Additional sensors may need to be installed before unsupervised autonomy can be
achieved. Hydraulic pressure and temperature sensors as well as wheel speed sensors

would be needed to monitor the hydraulic condition and ensure the machine is not stuck.

Future developments of the Flex-Ro platform must remain mindful of the developing
standards pertaining to autonomous machines. Compliance with regulatory and safety

standards will remain crucial to the success of the platform.

The Flex-Ro phenotyping system requires development of the LabVIEW program to

ensure properly synchronized data points. Delay between recording of the GPS
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coordinates and sensor data introduces error, as the machine is continuously moving

while recording. Further, data collection currently requires a laptop with LabVIEW and
an operator to initiate the program and data recording. A completely autonomous
platform should be able to initiate recording and provide a means to monitor the
phenotyping data in real time. Advanced onboard processing and internet connectivity

would greatly enhance the usefulness of the machine.

The passive reflectance sensors limit the operating time of field scouting operations
during daylight hours. Installing active sensors would fully use the autonomous capability
of the machine. The Flex-Ro would be able to operate through the night with the use of

active reflectance sensors to greatly expand the field scouting capability.

Costs for the operation of the Flex-Ro could be further refined with the continued use of
the machine in large field settings. Practical limits for speed and data resolution could be
optimized to the desired application. For example, at what level does the number of

points per acre for phenotyping impact the value of the operation. Other applications for

the machine may also be developed and evaluated.

The field of agricultural robotics is continuously evolving. Academia and start-up
companies are developing promising prototypes, but practical commercial field
application remains limited. The transition to autonomy appears inevitable but has yet to
be economically proven. Diligent work must continue on the Flex-Ro to remain relevant

as an autonomous field robot.
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Appendix A Supplemental Information

Appendix A.1: 2019 Spidercam and Flex-Ro Phenotyping Data Master List:

https://unl.box.com/s/1xlzg59q8vtcrzdgl2xs4ngvimkb45qo

Appendix A.2: 2019 Flex-Ro Phenotyping Raw Phenotyping Data:

https://unl.box.com/s/derm00dx7pdpa4a3zhapbqijw90ik2wg3

Appendix A.3: Additional Media:

https://unl.box.com/s/iyjbtgk6kp8dqsk950hcgp66bu9cwSsd



https://unl.box.com/s/1xlzq59q8vtcrzdgl2xs4ngvjmkb45qo
https://unl.box.com/s/dcrm00dx7pdpa4a3zhapbqjw90jk2wg3
https://unl.box.com/s/iyjbtqk6kp8dqsk950hcgp66bu9cw5sd
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Appendix A.4: Economics of Phenotyping operation using the Flex-Ro machine. Swath width set
at 60 ft. Averages the three sensor units into one point for the points per acre calculation.

Assumes new data point collected every 8 seconds.
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Appendix B Flex-Ro Guides

The Flex-Ro Operating Guides are presented as an introduction and will not cover every

operating scenario.
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4 > .

FLEX-Ro Operator’s Guide: Remote Control
1. Turn on machine & remote power. 2. Press ‘ESC’ to reset E-Stop system.
otes Red LED on box will glow faintly. Notes: Screen icon will switch to ‘E-STOP’

- If not, check battery disconnect. - Ensure machine E-Stop buttons are reset!
- Green power switch on remote. - Rotary beacon will illuminate.
3. Start engine 3. Enable hydro
- ad | CPSVebichs Specd P DD..
Q3
L. Press Run’ soft-key. Box LEDs Illuminate. 1. Press ‘Release Brake' soft-key.
2. Wait a few seconds for fuel priming. 2. Use joystick Y-Axis.
3. Press &hold ‘Start’ soft-key until started. 3. Change speed range with ‘Range’ soft-key.
Recommended Operating Points Cruise
1. Engine RPM 1300 - 2600 RPM. Note. Cruise uses GPS based speed. Must be
2. Hydro in ‘MID’ range. outside and LED on GPS glowing green.
3. Remote battery minimum of 10.3 V. 1. Move machine in the desired direction of
travel.

. 2. Press and release ‘Activate Cruise’ soft-key.
Obstacle Override Tcon will change.
Note. Front obstacle detected will also stop 3. Release joystick to Neutral position. Move
the machine in reverse! straight left and right to steer.
1. Press and hold ‘OK’ soft-key and operate 4. Any forward or back joystick movement
remote until clear of obstacle. will deactivate cruise.
2. Releasing ‘OK’ will immediately reactivate Note: Start with cruise set-point within Skph
detection. of current machine speed.
3. It is the operator’s responsibility to prevent
collisions. Do NOT rely on obstacle detector.

Updated: 03 JULY 2019 | ]. Murman
\

Appendix B.1: Flex-Ro Remote Operation Guide page 1.
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[ FLEX-Ro Operator's Guide: Remote Control

E-STOP Won't Reset

- Machine power is turned on.
- Al ECU’s connected.

Remote Soft-Keys

Up Arrow - Increment engine speed
Down Arrow - Decrement engine speed
Right Arrow - Increment cruise set-point
Left Arrow - Decrement cruise set-point
OK - Hold for obstacle override

ESC - E-STOP Reset

1:8 - As described on screen

Power switch - Round green rocker on left

end panel.

CoclantTemp Engine Ol Temp [

o Mod
i &
el I 273¢c] O
Cruise Set Speed GPS Vehicle Speed O
E-STOP g .00
58, Bleas [o!

Battery disconnect location

- Use during extended storage periods or
during maintenance.

Shutdown Procedure

1. Return engine to idle for ~1min.

2. Press and release ‘Engine Stop’ soft-key.
3. Press and release ‘E-STOP” soft-key.

4. Turn off red machine power switch.

5. Turn off remote.

6. Switch battery disconnect if leaving for

longer period of time.

DRIVE
FORWARD
(+Y-Axis)

RIGHT
(+X-Axis)

Updated: 03 JULY 2019 | J. Murman

Appendix B.2: Flex-Ro Remote Operation Guide page 2.
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FLEX-Ro Operator’s Guide: FLEX-RO RUN

1. Turn on machine power. 2. Connect laptop to machine.
e
i \ | - g : —
Notes: Red LED on box will glow faintly. Notes: - Connect USB cable
- If not, check battery disconnect. - Connect laptop charge cord.
3. Launch FlexRoRun Application 4. Reset E-Stop System
Notes: Notes:
L. Click ‘START Default CAN Device’ 1. Click ‘Start Communication’
2. Ensure green ‘LED’ illuminates. - Loop time should begin changing.
2. Click ‘Reset’ in the EmStop Module.

5. Start Engine 6. Drive Machine
12 = ) (TEE__ =3 PO v v

o m_‘:gﬂ“"'; e : Hydra Control Module jebrasTrack o1 ||
4‘6‘;“3 b Curront Point n-mw : Z::.:; =

; Sh&r(:?;lh’n‘ ':Illlfe e o
. 1 230 75 500 825 750 815 1000 S oo A o J
Notes: Notes:
1. Click ‘Run’ 1. Click *Brake Release’ or ‘b’ on keyboard.
2. Wait a few seconds for fuel priming. 2. Select direction and Hydro Swash request
3. Click ‘Start’ - Or ‘d on keyboard, ‘Up'/‘Down’ arrows on
keyboard to change swash request.
Updated: 03 JULY 2019 | J. Murman
\_

Appendix B.3: Flex-Ro FlexRoRun Operation Guide page 1.
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" FLEX-Ro Operators Guide: FLEX-RO RUN )

\

7. Steer Machine

o -_ Hydro Control Module.

NebrasTrack o7 @ o )

Actieain NebrarTrack.

0sFs

Dracion

1258
1258

o=

Notes:

1. Click desired angle on Steer Knob
2. Use ‘Left’ / ‘Right’ arrow keys to step
steering angle.

Keyboard Shortcuts

Note: MUST CLICK ON BLANK SPACE OF
WINDOW BEFORE USING SHORTCUTS!

Up Arrow Increment hydro swash
Down Arrow | Decrement hydro swash
Right Arrow | Increment steer position
Left Arrow [ Decrement steer position
Space Neutral
Enter/Return | Activate NebraskTrack
Escape E-Stop Button
b Brake release toggle
C Activate cruise toggle
d Neutral > Fwd,

Fwd <-> Rev
o Obstacle override toggle
r Engine run toggle
S Engine start toggle
t NebrasTrack enable toggle
1 Low Idle (1000 rpm)
2 Mid Idle (1500 rpm)
3 Mid-High Idle (2300 rpm)

8. NebrasTrack

LNotes:

1. Click ‘Set A’ drive to next point.

2. Click ‘Set B’

3. Input desired track parameters and click
‘Calculate’ Save if desired.

Shutdown Procedure
. Return engine to idle for ~1min.
. Click ‘Run’

. Click ‘Stop Communication’

. Click ‘STOP CAN Communication’

1
2,
3
4, Navigate to ‘Can Device Setup’ tab
5
6. Close application.

7

. Shut of machine red power switch.

Recommended Operating Points

1. Engine RPM Mid idle (1500 rpm).
2. Use keyboard shortcuts for maneuvering.

Obstacle Override

Note. Front obstacle detected will also stop
the machine in reverse!

1. Toggle Override using button or keyboard
shorteut.

2. Operator must manually reactivate obsta-
cle detection!

3. It is the operator’s responsibility to prevent
collisions. Do NOT rely on obstacle detector.

Updated: 03 JULY 2019 | ]. Murman

Appendix B.4: Flex-Ro FlexRoRun Operation Guide page 2.



Appendix C Wiring Tables

Appendix C.1: Flex-Ro main box connector pinout table.

DTM SIZE PINS

DT PINS DTP DT PINS

DTP PINS

DT PINS DTP DT PINS

DTM SIZE PINS

Pin Outside Box
Number Description Inside Box (if different)
1 Brake Control Gnd Black
2 Rf Gnd Black
3 Lf Gnd Black
4 LrGnd Black
5 Rr Gnd Black
6 GPS CAN Low Green
7 GPS CAN High Yellow
8 GPS Power Red
9 GPS Ground Black
10 SteerBus Power Red
11 SteerBus Gnd Black
12
13 Hydro Brake Control Lt. Blue
14 Hydro Right Front - c2p9 Purple
15 Hydro Left Front - c2p 10 Orange
16
17
18 Hydro Left Rear - c2pl1l Brown
19 Hydro Right Rear - c2p12 Blue
20
21
22
23
24
25 Toolbar Box Ground Black
26 Toolbar Box Power Red
27
28
29 Steering Bus 12V + Red
30 Steering Bus Gnd Black
31
32 MagHex Gnd Black
33 MagHex 30A + Red
34 MagHex 2A + Red
35 Steering Contactor Gnd Black
36 Steering Contactor + Blue
37 Steer CAN Hi Yellow
38 Steer CAN Low Green
29 Toolbar Box CAN Hi Yellow
40 Toolbar Box CAN Low Green
41
42
43 Start Blue Red
44 Ignition Purple Brown
45 Charge Indicator Orange White
46 MIL White Blue
47 Engine CAN Hi Yellow
43 Engine CAN Low Green

DTM
DT
DTP

115

75A
13 A
25A



Appendix C.2: Flex-Ro fuse panel description table.
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Description Fuse Size (A) Fuse Number Description Fuse Size (A)
MagHex Large 30 1 2 External Bus {Steering ECUs) 15
MagHex Small 5 3 4 Toolbar Box 25

ECU 0x2E {Hydro) 10 5 6 Machine GPS 5

ECU 0xDO0 (Engine) 10 7 8 Open -

ECU Ox1E (Power) 10 2 10 CAN Bridge WIC 2402 15
Indicator Lights 7.5 11 2 J1939 Diag. Port 10




Appendix C.3: Flex-Ro PhenoBox pinouts table.

117

Port No.

Decription

UsSB HUB

O 0 N OU R WN R

=
o

Labjack Ue

GPS Serial

Left Spectrometer
Center Spectrometer
Right Spectrometer
Upward Spectrometer
Left Camera

Center Camer

Right Camera

Outside Box
Pin No. |Description Inside Box LabJack Port (if different)

1 ground-ultra sonic black

2 12V -ultra sonic red

3 voltage input - ultrasonic white 9

4 Differential High-IRT red o]

) Differential High-IRT black 1
g 6 SingleEnd - IRT green 2
5 7 analog ground 1-IRT clear GND
g 8 analog ground 2-IRT blue GND
8 g excitation 2.5V - Irt white 2.5V EXCIT
= 10
=} 11

12

13

14

15

16

1 ground-ultra sonic black

2 12V -ultra sonic red

3 voltage input - ultrasonic white 10

4 Differential High-IRT red 4
o 5 Differential High-IRT black 5
8 6 SingleEnd - IRT green 3
= 7 analog ground 1-IRT clear GND
% 8 analog ground 2-IRT blue GND
Z 9 excitation 2.5V - Irt white 2.5V EXCIT
i 10
& 11
= 12

13

14

15

16

1 ground-ultra sonic black

2 12V -ultra sonic red

3 voltage input - ultrasonic white 11

4 Differential High-IRT red 6

5 Differential High-IRT black 7
8 6 SingleEnd - IRT green 8
E 7 analog ground 1-IRT clear GND
% 8 analog ground 2-IRT blue GND
8 9 excitation 2.5V - Irt white 2.5V EXCIT
= 10
2 1

12

13

14

15

16

1 GPS Gnd Black

2 GPS Power Red
§ 3 |opscanHi Yellow
9 4 GPS CAN Low Green
= 5  |cs215 Power 12V Red
8 6 CS215 Signal Green FI07
% 7 £5215Gnd White

8 Cs215Gnd Black

9 5215 Gnd Clear
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| tables.

iona

Flex-Ro CAN database informat

Appendix C.4
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Appendix D Selected Code and Screen Captures

Appendix D.1: Lateral error calculation code block.
latout= laterror(app,trdata,xc,yc)
%Calculate lateral error from three points. A,B and current.
%Perpendicular offset from line.
%Extract track A and B points for current track.
vl = trdata.apt;

v2 = trdata.bpt;

pt = [xc,yc,0];

a=vl-v2;

b=pt-v2;

latout = norm(cross(a,b)) / norm(a);

sgn = sign((v2(1)-v1(1))*(pt(2)-v1(2))-(v2(2)-v1(2))*(pt(1)-v1(1)))

latout = latout™sgn;

isnan(latout)

latout = 0;
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Appendix D.4: Strip excess points function for converted recorded datapoints to waypoint matrix
code block.

function track = stripExcessPts (trackin)
% Strips excess points from recorded GPS logs for use as waypoint
% navigation.

3 University of Nebraska-Lincoln
% Josh Murman 2019

%% Inputs

% trackin = [easting,northing,0] matrix. Trailing zero is optional.

%% Outputs

% track = [easting,northing,0] matrix. Zero only included if included in
% input.

o)

% Initialize Variables

o0

h =1;
i=1
k = 2;

pt spacing = 1; %meters

%% Main
for i=1l:length (trackin)

%$Reset magnitude
mag = 0;

%$Start with first point, iterate through next points until distance is
$greater than the desired point spacing.
while mag < pt spacing

$Stop execution if at the end of the recorded matrix.
if k == length(trackin) || h == length(trackin)
break
end
%Calculate magnitude of distance between the two points.
mag = sqrt((trackin(k,1l)-trackin(h,1))"2 +
(trackin(k, 2)-trackin(h,2))"2);

k = k+1

end %$while loo

if k == length (trackin)
break

end

%$Assign track point, update counters.

track(j,:) = trackin(h,:);
j o= 3+1;

h = k;

k = 1+k;

end %for loop
end %$function



Appendix D.5: The script used for importing raw Flex-Ro collected phenotyping data.
% Button pushed function: OpenLogButton
OpenLogButtonPushed(app, event)
[app.basename, app.folder] = uigetfile('*.txt", 'Pick Log Text File');
app.FilePathEditField.Value = app.folder;
app.listing = dir(app.folder);
processedfname = [app.folder, 'processed.mat’'];
selection = 'Reprocess’;
isfile(processedfname)
f = app.PhenoCalcUIFigure;

message = sprintf('Found preprocessed data!');

selection =

123

uiconfirm(f,message, 'Success!',"Icon', "success"', 'Options',{ 'Continue’, 'Reproce

ss', '"NDVI'});

~strcmp(selection, 'Reprocess’)
load(processedfname, 'wd");
app.wd = wd;

~strcmp(selection, 'NDVI')

%Define file names

logfname = [app.folder, 'log.txt'];
specleftfname = [app.folder, 'Spec-Left.csv'];
specmidfname = [app.folder, 'Spec-Middle.csv'];
specrightfname = [app.folder, 'Spec-Right.csv'];
specupfname = [app.folder, 'Spec-UP.csv'];
waveleftfname = [app.folder, 'Wave-Left.csv'];
wavemidfname = [app.folder, 'Wave-Middle.csv'];
waverightfname = [app.folder, 'Wave-Right.csv'];
waveupfname = [app.folder, 'Wave-UP.csv'];

csvhames =

{specleftfname,specmidfname, specrightfname, specupfname,waveleftfname,wavemidfn

ame,waverightfname,waveupfname};
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rdnames =
{'specleft', 'specmid’, 'specright’, 'specup’, 'waveleft', 'wavemid', 'waveright','w
aveup'};

f = app.PhenoCalcUIFigure;

d = uiprogressdlg(f,'Title', 'Please
wait...', "Message', 'Importing your data...');

app.rd.log = csvread(logfname ,0,2);

imindex = unique(app.rd.log(:,1));
r = length(imindex);

i = 1:1ength(csvnames)
app.rd. (rdnames{i}) = csvread(csvnames{i});

d.Value = i/length(csvnames);

d.Message = 'Reading files...';
d.Value = 0;
d.Message = 'Calculating NDVI...';

specnhames
wavenames

{'specleft', 'specmid’, 'specright'};
{'waveleft', 'wavemid', 'waveright'};

i = 1:length(specnames)

app.rd.ndvi. (specnames{i})(j,1) =
calcNDVI(app.rd. (wavenames{i}),app.rd. (specnames{i})(j,:),app.rd.waveup,app.rd
-specup(J,:));

d.Value = i/length(specnames);

d.Value = 0;

d.Message 'Processing images...';

camnames = {'CamL-",'CamM-", " "CamR-"};
camsave = {'CamL','CamM',"'CamR"};
imtype = '.png’;



mkdir(app.folder, 'Processed Images')

i = 1:1ength(camnames)
j=1:r
imnum = imindex(3j);
currim = [camnames{i},num2str(imnum),imtype];
impath = [app.folder, currim];
I = imread(impath);
[gpf,BW] = GPFcalc(I);
saveim = [app.folder, 'Processed Images\',currim];
imwrite(BW,saveim);
clear I
app.rd.gpf.(camsave{i})(j,1) = gpf;
d.Value = ((i-1)*r+j)/(length(camnames)*r);
datanames = {'Left', 'Mid', 'Right'};
p=1;
i=1:r
k =1:3

app.rd.log(p,4:8);

app.rd.LJdata. (datanames{k}) (app.rd.log(p),:) =

p = p+l;

d.value = i/r;
d.Message = 'Organizing data...';

app.wd.headings = {'UTM Easing', 'UTM Northing', 'Thermistor

C','Target C', "Height', '"NDVI', 'GPF'};

i

1:3
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LJdata = app.rd.LJdata.(datanames{i})(j,:);
ndvi = app.rd.ndvi. (specnames{i})(j,1);
gpf = app.rd.gpf.(camsave{i})(j,1);

app.wd.master((i-1)*r+j,:) = [LJldata, ndvi, gpf];

d.Value = i/3;
d.Message = 'Structuring data...';

savefname = [app.folder, 'processed.mat'];

wd = app.wd;

save(savefname, 'wd")

close(d)

%End of

preprocessed if statment

strcmp(selection, 'NDVI')

%Define

logfname

file names
= [app.folder, 'log.txt'];

specleftfname = [app.folder, 'Spec-Left.csv'];
specmidfname = [app.folder, 'Spec-Middle.csv'];
specrightfname = [app.folder, 'Spec-Right.csv'];
specupfname = [app.folder, 'Spec-UP.csv'];
waveleftfname = [app.folder, 'Wave-Left.csv'];
wavemidfname = [app.folder, 'Wave-Middle.csv'];
waverightfname = [app.folder, 'Wave-Right.csv'];
waveupfname = [app.folder, 'Wave-UP.csv'];

csvnames
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{specleftfname, specmidfname, specrightfname, specupfname,waveleftfname,wavemidfn
ame,waverightfname,waveupfname};

app.rd.log = csvread(logfname ,0,2);

rdnames =
{'specleft', 'specmid’, 'specright’, 'specup’, 'waveleft', 'wavemid', 'waveright','w
aveup'};

f = app.PhenoCalcUIFigure;

d = uiprogressdlg(f, ' 'Title', 'Please
wait..."', 'Message', 'Importing your data...');
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imindex = unique(app.rd.log(:,1));
r = length(imindex);

i = 1:1ength(csvnames)
app.rd.(rdnames{i}) = csvread(csvnames{i});

d.Value = i/length(csvnames);
d.Message = 'Reading files...';

d.Value = 0;
d.Message = 'Calculating NDVI...';

specnames {'specleft', 'specmid’, "specright'};
wavenames = {'waveleft', 'wavemid', 'waveright'};

i = 1:1length(specnames)

app.rd.ndvi. (specnames{i})(j,1) =
calcNDVI(app.rd.(wavenames{i}),app.rd. (specnames{i})(j,:),app.rd.waveup,app.rd
.specup(J,:));

d.Value = i/length(specnames);

ndvi = app.rd.ndvi. (specnames{i})(j,1);

app.wd.master((i-1)*r+j,6) = ndvi;

d.Value = i/3;
d.Message = 'Structuring data...';
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savefname = [app.folder, 'processed.mat'];
wd = app.wd;
save(savefname, 'wd")

close(d)

savefname = [app.folder, 'processed.mat’'];

save(savefname, 'wd")
scatter(app.ScatterAxes,app.wd.master(:,1),app.wd.master(:,2))
assignin('base’, 'wd',app.wd);

app.CalculateStatistics.Enable = 'On’;

app.MapItButton.Enable = 'On’;
app.PlotData.Enable = 'On’;
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Appendix D.6: Script for calculating the green pixel fraction (GPF).

function [gpf,maskedRGB] = GPFcalc (rgbim)

% Calculate green pixel fraction using the L*a*b color model and
$thresholding using the ‘a’ channel.

$Convert RGB image to L*a*b
lab = rgb2lab (rgbim);
% %Pull out the 'a' channel
lab a = lab(:,:,2);
$Acquire histogram for thresholding
counts,~] = imhist(lab_a, 96);

o° M oo

o

$Apply the Otsu method of thresholding
= otsuthresh (counts) ;

=]

Imin = min(min (lab_a));
Imax = max (max(lab _a));

Irange = Imax-Imin;
T = Imint+Irange*T;

%% Calculate GPF from processed binary image.

[BW, maskedRGB] = greenMask (rgbim, Imin,T) ;
numPixels = numel (BW) ;
numGreen = sum(BW(:));

gpf = numGreen/numPixels;

end
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