
Kent Academic Repository
Full text document (pdf)

Copyright & reuse
Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all
content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions 
for further reuse of content should be sought from the publisher, author or other copyright holder. 

Versions of research
The version in the Kent Academic Repository may differ from the final published version. 
Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the 
published version of record.

Enquiries
For any further enquiries regarding the licence status of this document, please contact: 
researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down 
information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Reed, Hannah Caroline Wendy  (2019) Biochemical and Biophysical Characterisation of Transcription
Regulators Associated with Myosin VI.   Master of Science by Research (MScRes) thesis, University
of Kent,.

DOI

Link to record in KAR

https://kar.kent.ac.uk/79544/

Document Version

UNSPECIFIED



Hannah Reed 1 

 

 

University of Kent 
MSc by Research Thesis 

 

Biochemical and Biophysical Characterisation of 
Transcription Regulators Associated with Myosin VI 

 

Author – Hannah Caroline Wendy Reed 

Degree – MSc-R Biochemistry 

Word Count (Excluding References) – 23,501 

Thesis Advisor – Dr Christopher Toseland 

 

2019 



Hannah Reed 2 

1 Declaration 

No part of this thesis has been submitted in support of an application for any degree 

or qualification of the University of Kent or any other University or institute of 

learning.  

Hannah Reed  

 

August 2019 



Hannah Reed 3 

2 Acknowledgements  

I would like to take this opportunity to thank my MSc by Research supervisor – Dr 

Christopher Toseland – for his academic support and patience. I am particularly 

grateful for opportunities to attend conferences, present posters and be involved 

with both national and international collaboration work. I believe these experiences 

have been instrumental in helping me to secure a PhD position and in developing my 

confidence both in and outside the laboratory. I would also like to thank you for your 

encouragement to continue my education onto PhD level and for all of your help with 

applications and references.  

My sincerest gratitude also extends to members of the Toseland laboratory, namely 

Ália dos Santos, Alexander Cook, Yukti Hari-Gupta, Natalia Fili and Rosemarie Gough, 

who have made me feel extremely welcome and have provided endless academic 

and practical advice. I am proud to call you all good friends and am very grateful for 

your support. I would like to thank Ália dos Santos in particular for her guidance and 

support whilst working with nuclear dot protein 52 (NDP52). Again, I would also like 

to thank her for her personal encouragement, support during PhD applications and 

for being a good friend.  

I would also like to thank members of the Moreno-Herrero laboratory at the Spanish 

National Centre for Biotechnology for making us feel welcome during our visit to 

Madrid and teaching us specialist techniques, namely magnetic tweezers. I would 

especially like to thank Carolina Carrasco and Clara Aicart-Ramos. I learnt a lot during 

my time here and am extremely grateful for the opportunity.  

I would also like to express my thanks to Lin Wang at the Research Complex at 

Harwell for his patience with my Health and Safety inductions, being extremely 

friendly, chasing up our requests and helping us to resolve technical difficulties with 

stochastic optical reconstruction microscopy (STORM). I would also like to thank 

Laura Zanetti Domingues and Benji Bateman for their practical advice and Michael 

Hirsch for his data analysis.  



Hannah Reed 4 

3 Contents  

1 Declaration .................................................................................. 2 

2 Acknowledgements ..................................................................... 3 

3 Contents ...................................................................................... 4 

4 List of Figures ............................................................................... 7 

5 List of Tables .............................................................................. 10 

6 List of Abbreviations .................................................................. 11 

7 Abstract ..................................................................................... 15 

8 Introduction ............................................................................... 16 

8.1 Myosins are actin-based molecular motors .............................................. 16 

8.2 Myosin VI demonstrates unique directionality and a plethora of biological 

functions ............................................................................................................... 18 

8.3 Overview of transcriptional regulation ..................................................... 21 

8.4 Myosin VI transcriptional regulation extends beyond androgen receptors

 23 

8.5 Myosin VI and NDP52 – a putative transcription co-activator .................. 26 

8.6 Project aims .............................................................................................. 35 

9 Materials and Methods .............................................................. 37 

9.1 Materials and reagents ............................................................................. 37 

9.2 Standard expression protocol for recombinant proteins .......................... 38 

9.2.1 Transformation of recombinant DNA .............................................................. 38 

9.2.2 Overnight/starter culture ................................................................................ 39 

9.2.3 Expression and resuspension .......................................................................... 39 

9.3 Immobilised metal-ion affinity chromatography and size-exclusion 

chromatography ................................................................................................... 40 



Hannah Reed 5 

9.4 Denaturing SDS-PAGE ............................................................................... 41 

9.5 Beer-Lambert law ...................................................................................... 42 

9.6 DNA-binding assays ................................................................................... 42 

9.6.1 Sample preparation ......................................................................................... 42 

9.6.2 Data fitting ...................................................................................................... 43 

9.7 Circular dichroism ..................................................................................... 44 

9.7.1 Sample preparation ......................................................................................... 44 

9.7.2 Analysis ........................................................................................................... 45 

9.8 Size-exclusion chromatography-multi-angle light scattering .................... 46 

9.9 Total internal reflection fluorescence microscopy ................................... 49 

9.9.1 Etch-cleaning of coverslips .............................................................................. 49 

9.9.2 Sample preparation ......................................................................................... 49 

9.9.3 Imaging ............................................................................................................ 50 

9.9.4 Photobleaching analysis .................................................................................. 50 

9.10 Cryogenic stochastic optical reconstruction microscopy .......................... 51 

9.10.1 Sample preparation .................................................................................... 51 

9.10.2 Analysis ....................................................................................................... 52 

9.11 SEC-SAXS ................................................................................................... 53 

9.11.1 Sample preparation .................................................................................... 53 

9.11.2 Analysis ....................................................................................................... 54 

10 Results .................................................................................... 55 

10.1 Optimising the purification of oestrogen receptor a ................................ 55 

10.1.1 Standard expression protocol ..................................................................... 55 

10.1.2 Modified expression protocols ................................................................... 56 

10.1.3 Incubation of cell lysate with estradiol ....................................................... 58 

10.1.4 Culturing in the presence of estradiol ........................................................ 61 

10.1.5 Regular additions of estradiol to the culture medium ................................ 65 

10.2 Biochemical and biophysical characterisation of nuclear dot protein 52 . 67 

10.2.1 Expression and purification of NDP52 structural domains ......................... 67 

10.2.2 Secondary structure content of NDP52 1-190 and 120-end ....................... 71 



Hannah Reed 6 

10.2.3 NDP52 structural domain DNA-binding affinities ....................................... 72 

10.2.4 Investigating NDP52 oligomeric states using SEC-MALS ............................. 74 

10.2.5 eGFP-labelled NDP52 expression and purification ..................................... 76 

10.2.6 TIRF microscopy .......................................................................................... 82 

10.2.7 Preliminary results for a novel GFP-based reporter assay using cryogenic 

super-resolution microscopy ....................................................................................... 85 

10.2.8 SAXS analysis on NDP52 .............................................................................. 89 

11 Discussion ............................................................................... 94 

11.1 Culturing in the presence of estradiol significantly improves purification 

results for ERα ....................................................................................................... 94 

11.2 Full-length ERα purification: limitations and future direction .................. 96 

11.3 Residues 120-end of NDP52 likely confer binding to dsDNA in vivo ......... 99 

11.4 NDP52 likely functions as a homodimer in vivo ...................................... 101 

11.5 NDP52 is largely linear with an N-terminal globular domain .................. 103 

11.6 The coiled-coil domain of NDP52 likely confers dimerisation and provides 

stability ............................................................................................................... 103 

11.7 The presence of dsDNA likely promotes the formation of higher 

oligomeric states of NDP52 ................................................................................ 104 

11.8 GFP-NDP52-GFP and GFP-NDP52 show the same clustering behaviour . 104 

11.9 SAXS suggests NDP52 adopts a parallel homodimeric state in vitro ....... 107 

12 Conclusions .......................................................................... 112 

13 References ............................................................................ 113 

14 Supplementary Data ............................................................. 121 

 

 



Hannah Reed 7 

4 List of Figures  

Figure 1: Myosin superfamily structure .................................................................... 17 

Figure 2: Myosin VI structure .................................................................................... 18 

Figure 3: Myosin VI has a range of biological functions thanks to multiple binding 

partners .................................................................................................................... 20 

Figure 4: Oestrogen receptor mechanisms of signalling and structure .................... 25 

Figure 5: NDP52 structure ........................................................................................ 28 

Figure 6: NDP52 is well-characterised in macro-autophagy ..................................... 31 

Figure 7: NDP52 activates myosin VI to enhance RNAPII-mediated transcription ... 35 

Figure 8: Principle of Ni Sepharose® purification ..................................................... 41 

Figure 9: PageRuler™ Plus Pre-Stained Protein Ladder molecular weight markers . 42 

Figure 10: A typical circular dichroism reference spectrum for protein secondary 

structure ................................................................................................................... 44 

Figure 11: Setup and analysis using SEC-MALS ......................................................... 48 

Figure 12: Oxygen scavenger system used in TIRF buffer ......................................... 49 

Figure 13: Setup of superSIL microscope .................................................................. 51 

Figure 14: Standard expression of ERα ..................................................................... 55 

Figure 15: Modified expression conditions for ERα .................................................. 58 

Figure 16: Expression and purification results when incubating cell lysate with 

estradiol .................................................................................................................... 61 

Figure 17: Expression results when culturing in the presence of estradiol .............. 62 

Figure 18: Affinity chromatography and gel filtration results following purging of the 

ÄKTATM pump ............................................................................................................ 64 



Hannah Reed 8 

Figure 19: Expression and affinity chromatography results following regular additions 

of 500nM estradiol to the culture medium .............................................................. 66 

Figure 20: Schematic of NDP52 domains – NDP52 1-190 (A) and NDP52 120-end (B) 

– not drawn to scale ................................................................................................. 67 

Figure 21: Expression of NDP52 120-end and 1-190 following the standard expression 

protocol modified to culture at 27°C overnight ........................................................ 68 

Figure 22: Modified expression protocol results for NDP52 120-end ...................... 70 

Figure 23: Circular dichroism analysis for NDP52 1-190 ........................................... 71 

Figure 24: Circular dichroism analysis for NDP52 120-end ....................................... 72 

Figure 25: Binding assay results for NDP52 1-190 and 120-end ............................... 73 

Figure 26: SEC-MALS elution profiles for NDP52 1-190 and 120-end ....................... 75 

Figure 27: Expression and affinity chromatography results for GFP-NDP52 and GFP-

NDP52-GFP culturing at 27°C post-induction ........................................................... 78 

Figure 28: Affinity chromatography and gel filtration results for GFP-NDP52 and GFP-

NDP52-GFP following the standard expression protocol ......................................... 80 

Figure 29: Affinity chromatography (gradient elution) and gel filtration (0.2mL/min 

flowrate) purification results for GFP-NDP52 and GFP-NDP52-GFP ......................... 81 

Figure 30: TIRF microscopy analysis used to assess oligomeric state of NDP52 ....... 83 

Figure 31: Results of photobleaching analysis with TIRF microscopy ....................... 85 

Figure 32: Schematic of N-terminally eGFP-tagged NDP52 in parallel and anti-parallel 

dimeric states ........................................................................................................... 86 

Figure 33: Raw cryo-STORM data for GFP-NDP52 (test sample) .............................. 88 

Figure 34: Kinhom(H’) plot for cryogenic super-resolution microscopy conditions . 89 



Hannah Reed 9 

Figure 35: Gel filtration of full-length NDP52, expressing following the standard 

expression protocol .................................................................................................. 90 

Figure 36: Guinier fitting for full-length NDP52 used to estimate I(0) and Rg values 91 

Figure 37: Intensity plots for peak 1 and 2 of NDP52 sample ................................... 92 

Figure 38: SAXS envelope for full-length NDP52 ...................................................... 93 

Figure 39: Summary of optimal expression and purification conditions used for ERα

 .................................................................................................................................. 95 

Figure 40: Interpretation of SAXS data ................................................................... 111 

Figure 41: Positive and negative controls for ds40 NDP52 binding assays ............. 122 

Figure 42: Positive and negative controls for ds15 NDP52 binding assays ............. 123 

Figure 43: Analysis of SEC-MALS protein samples at different angles .................... 124 

 



Hannah Reed 10 

5 List of Tables  

Table 1: Source list for materials and reagents ........................................................ 37 

Table 2: List of expression vectors ............................................................................ 39 

Table 3: List of oligonucleotide sequences employed for DNA-binding assays ........ 43 

Table 4: List of oligonucleotide sequences employed for TIRF analysis ................... 50 

Table 5: Problems encountered during the optimisation of full-length ERα in BL21 

E.coli .......................................................................................................................... 97 

Table 6: Experimental issues with cryogenic super-resolution microscopy ........... 106 

Table 7: Extinction coefficients and molecular weights of recombinant proteins .. 121 

 

 



Hannah Reed 11 

6 List of Abbreviations  

ADU Analogue-to-digital-units 

AMPA a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid  

AF Activation function 

AIB1 Amplified in breast cancer 1 

Amp Ampicillin 

APS Ammonium persulfate  

AP-1 Activator protein 1 

AR Androgen receptor 

Atg8 Autophagy-related protein 8 

BSA Bovine serum albumin 

CBD Cargo-binding domain 

CD Circular dichroism  

cDNA Complementary DNA 

ChIP Chromatin immunoprecipitation 

CHO Chinese hamster ovary 

CLIR Noncanonical LC3-interacting region  

COPD Chronic obstructive pulmonary disease 

CSR Complete spatial randomness 

CTD C-terminal domain 

DBD DNA-binding domain 

DLS Dynamic light scattering 

dsDNA Double-stranded DNA 

DTT Dithiothreitol  

E1 Estrone 

E2 Estradiol 

E3 Estriol 

EGF Epidermal growth factor 

eGFP Enhanced GFP 

EM Electron microscopy 



Hannah Reed 12 

EMCCD Electron-multiplying charge-coupled device 

ERE Oestrogen response element 

ERα Oestrogen receptor α 

ERβ Oestrogen receptor β 

FERM 4.1, ezrin, radixin and moesin 

FF Fast flow 

FRET Förster resonance energy transfer 

FT Fourier transform 

GFP Green fluorescent protein 

GPCR G-protein-coupled receptor  

GTF General transcription factor  

H12 Helix 12 

hnRNPU Heterogeneous nuclear ribonucleoprotein U  

HPLC High performance liquid chromatography 

IDT Integrated DNA Technologies 

IPTG Isopropyl β-D-1-thiogalactopyranoside  

IQ Isoleucine-glutamate 

KA Equilibrium association constant 

KD Equilibrium dissociation constant 

LB  Luria Bertani  

LBD Ligand-binding domain 

LC3 Microtubule-associated protein light chain 3 

LI Large insert 

LIM Lin-1, isl-1 and mec-3 

LIM-L LIM-like  

LIR LC3-interacting region 

LZ Leucine zipper 

mAb Monoclonal antibody 

MISS Membrane-initiated steroid signalling 

MVI Myosin VI 

MW Molecular weight 



Hannah Reed 13 

NA Numerical aperture 

ND Nuclear dot 

ND10 Nuclear domain 10  

NDP52 Nuclear dot protein 52 

NF-κβ Nuclear factor-κβ 

NI Non-insert 

NLS Nuclear localisation signal 

NMR Nuclear magnetic resonance 

NM1 Nuclear myosin 1 

OPTN Optineurin  

OD Optical density 

PAGE Polyacrylamide gel electrophoresis 

PDB Protein data bank 

Pi Inorganic phosphate 

PIPP Proline-rich inositol-polyphosphate 5-phosphatase 

PML Promyelocytic leukaemia  

PMSF Phenylmethylsulfonyl fluoride  

RBP RNA-binding protein 

Rf Relative mobility 

RFP Red fluorescent protein 

Rg Radius of gyration 

RNAi RNA interference 

RNAP RNA polymerase 

RT Room temperature 

SAP97 Synapse-associated protein 97 

SAXS Small-angle X-ray scattering 

sCMOs Scientific complementary metal-oxide semiconductor 

SDS Sodium dodecyl sulphate  

SEC-MALS Size-exclusion chromatography-multi-angle light scattering 

SFDA Single fluorophore detection algorithm 

SH3 Src homology domain 3  



Hannah Reed 14 

SI Small insert 

SIL Solid immersion lens 

SKICH SKIP carboxyl homology  

SKIP Skeletal muscle and kidney enriched inositol phosphatase  

SM Second messenger 

SMRT Silencing mediator for retinoid and thyroid hormone receptor 

SNARE Soluble N-ethylmaleimide sensitive factor attachment protein 

SP-1 Stimulating protein 1 

ssDNA Single-stranded DNA 

STORM Stochastic optical reconstruction microscopy  

TCI Tokyo Chemical Industry  

TEMED Tetramethylethylenediamine  

TF  Transcription factor 

TIRF Total internal reflection fluorescence 

Tm Midpoint temperature 

TRAF6 Tumour necrosis factor receptor-associated factor 6 

TSS Transcription start site  

T6BP TRAF6-binding protein  

ZF Zinc finger 

 



Hannah Reed 15 

7 Abstract 

Myosin VI (MVI) is implicated in many biological processes including, cell migration, 

endocytosis and transcription. MVI achieves its plethora of cellular functions owing 

to its association with multiple binding partners. Here, two proteins associated with 

MVI – nuclear dot protein 52 (NDP52), a putative transcription regulator, and the 

established transcription factor, oestrogen receptor (ERα) – are biochemically and 

biophysically characterised to further elucidate the role of this motor protein in 

transcription. Optimisation of expression and purification conditions has enabled the 

successful purification of full-length ERα using BL21 E.coli. According to current 

literature, this is the first time this has been reported. This will set the foundation for 

future purification optimisation required for binding assays between MVI and ERα. 

NDP52 has only recently been characterised as a putative transcription co-activator, 

where it was shown to promote RNA polymerase II (RNAPII) transcription by relieving 

the auto-inhibition of MVI. Here, novel insights into the biochemical and biophysical 

properties of NDP52 are presented, including DNA-binding characteristics of 

different structural domains using fluorescence-based binding assays. Expectedly, C-

terminal DNA-binding motifs likely confer binding to double-stranded DNA (dsDNA) 

in vivo. Small-angle X-ray scattering (SAXS) data for full-length NDP52 is also 

presented, providing important structural information, given that no full-length 

crystal structure for NDP52 is currently available. Methods such as total internal 

reflection fluorescence (TIRF) microscopy, size-exclusion chromatography-multi-

angle light scattering (SEC-MALS) and cryogenic super-resolution microscopy have 

also provided an understanding of the oligomeric state of NDP52 and its tertiary 

structure. Together, this evidence suggests that NDP52 functions as a parallel 

homodimer in vivo, which provides important structure-function insights into 

NDP52’s role in transcriptional regulation. For instance, the parallel arrangement of 

the NDP52 dimer may facilitate tight binding to dsDNA, where each monomer binds 

either side of DNA, effectively clamping it. 
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8 Introduction  

8.1 Myosins are actin-based molecular motors 

Kinesin, dynein and myosin constitute the 3 classes of cytoskeletal molecular motors, 

converting chemical energy from the hydrolysis of ATP into mechanical energy.1 The 

myosin superfamily is diverse and categorised into 35 distinct subclasses2, including 

conventional and non-conventional myosins. Together, these perform a variety of 

functions such as muscle contraction3, cell division4 and endocytosis5 to name but a 

few.  

Structurally, myosins are classified according to their C-terminal tail domain, which, 

unlike the N-terminal motor domain, is highly divergent (Figure 1) and permits 

different biological functions by binding to different cargo6 and associated regulatory 

proteins7. The N-terminal ATPase domain of myosin heavy chains, also known as the 

‘motor domain’ or ‘head’, is highly conserved in evolution owing to its ability to bind 

both actin and ATP (Figure 1A).8 Myosin heavy chains are also characterised by a neck 

region (also known as the ‘lever arm’), which consists of varying numbers of 

isoleucine-glutamate (IQ) motifs (from 1-6) depending on the class (Figure 1A).6 IQ 

motifs conventionally facilitate binding to calmodulin/myosin light chains.6,9 Myosin 

VI (MVI) has 2 calmodulin binding sites – an IQ motif and insert-2.10  

The lever arm of myosins is so called since it is believed to transduce force and 

movement from the N-terminal head, during the ATPase cycle, to the C-terminal tail; 

hence, acting as a lever or converter.11 Binding of calmodulin to IQ motifs in the lever 

arm provides rigidity and structural support to this otherwise long and flexible 

protein domain, which enables walking along actin filaments.12 Many myosins 

conform to the lever arm hypothesis, which predicts that myosin step size is directly 

proportional to the length of the lever arm.11 Although, some challenge it. For 

instance, experiments using optical tweezers have demonstrated that MVI takes a 

larger step size (on average between 30-36nm) than expected, considering its 

relatively short lever arm with only 2 IQ motifs.13
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Figure 1: Myosin superfamily structure 

(A) Schematic of myosin structural domains. All myosins have 3 key structural elements: a N-terminal motor domain, a neck region and a C-terminal tail 

domain. Depending on the myosin class, there will be varying numbers of IQ motifs in the neck region.6 (B) Comparison of a conventional and unconventional 

myosin structure. Myosin II is well-characterised in muscle contraction, where it provides the power to facilitate the sliding filament mode of muscle 

contraction.14,15 Myosin II is the only conventional class, while all other myosins are termed ‘non-conventional’.6 Coiled-coil motifs in the tails of some myosin 

classes are believed to facilitate dimerisation.6 Myosin VI, for example, can exist in both a monomeric or dimeric form, which is mediated by binding 

partners16,17, whilst myosin II is only ever monomeric6. Myosins can contain other structural domains, such as 4.1, ezrin, radixin and moesin (FERM) domains, 

which enable binding to transmembrane proteins and are found in myosins such as myosin VIIa and X.6 Myosin VI has unique amino acid sequences, labelled 

insert-1 and -2, which are discussed in text. Other myosin classes are not shown. Figure re-drawn from Krendel & Mooseker, 2005. 

A
Conserved Motor/Head Domain Neck Region Divergent Tail Domain

B
Conventional Myosin - Myosin II

Unconventional Myosin - Myosin VI

IQ Motif

Coiled Coil Region

Insert-1 Insert-2
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8.2 Myosin VI demonstrates unique directionality and a plethora of 

biological functions  

Actin filaments are orientated so that their barbed (positive) end points towards the 

plasma membrane, while the pointed (minus) end faces away from the plasma 

membrane towards the nucleus.18 MVI, unlike other myosins, displays unique 

directionality, walking towards the minus end of actin filaments.19,20 

Repositioning/reversal of the lever arm by 120° is achieved in MVI by a unique 53-

amino acid insert (insert-2) between the motor domain and IQ motif in the neck of 

the protein (Figure 2A).21 It is this repositioning of the lever arm which is responsible 

for the unique directionality of MVI.21 

 

Figure 2: Myosin VI structure 

(A) Schematic of myosin VI structural domains. Key structural domains of myosin VI include: 
the N-terminal motor domain, insert-2 (discussed in text) which can bind Ca2+-calmodulin21, 
another calmodulin-binding IQ motif and the tail domain. The tail domain can be split into 
the proximal tail/lever arm extension, medial tail, distal tail and C-terminal cargo-binding 
domain.16 The lever arm extension contains a 3-helix bundle thought to help facilitate the 
large step-size of myosin VI dimers upon unfolding (although remains a topic of 
controversy)22, while the medial tail contains a short coiled-coil and then single α-helix16. 
Figure largely inspired by Phichith et al, 2009. (B) Crystal structure (ribbon diagram) of 
nucleotide-free myosin VI. The N-terminal motor domain of myosin VI comprises the N-
terminal, U50, L50 and converter domains.21 The Src homology domain 3 (SH3) of myosin VI 
is also shown in black. Figure taken directly from Ménétrey et al, 2005. 

A

B

Insert-2
Ca2+-CaM

IQ Motif 
Apo-CaM

Insert-1

N-terminal
U50

L50
SH3

Converter Domain
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The unique directionality of MVI suggests that it may have important biological 

functions, which has been the driving force behind research in the Toseland 

laboratory, as well as many others. This is in fact true, as MVI is implicated in 

transcription (along with nuclear myosin I and myosin Vb).23 The range of functions 

of MVI is commonly attributed to its splice isoforms and range of binding partners, 

which will be discussed below. To give an overview of the range of biological 

processes MVI is implicated in, MVI has functional roles in both clathrin-coated and 

non-clathrin coated vesicle endocytosis, hearing through maintenance of stereocilia, 

autophagy, cell migration, cytokinesis, synaptic transmission, maintenance of Golgi 

morphology and the secretory pathway (Figure 3).24 

MVI is alternatively spliced resulting in the so-called ‘large insert’ (LI) and ‘small 

insert’ (SI) isoforms, where there are 31-residue and 8-residue insertions before and 

in the cargo-binding domain (CBD) respectively.7,25 In combination, these inserts 

result in the SI+LI isoform. These isoforms have distinct distributions, where the non-

insert (NI) isoform can enter the nucleus whilst the LI isoform cannot.7 MVI isoforms 

are also believed to be selective for different binding partners, where NDP52 has 

been shown to bind and regulate the backfolding of the NI isoform7 (Figure 7A), 

whilst the LI isoform can only bind partners at the WWY motif (excludes NDP52)25. 

Hence, splice isoforms of MVI contribute to its range of biological functions.  
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Figure 3: Myosin VI has a range of biological functions thanks to multiple binding partners 

Myosin VI has many biological functions owing to its range of binding partners, as shown, 
including maintaining stereocilia morphology and autophagy (discussed in text). Myosin VI 
also functions in synaptic transmission, such as glutamergic transmission26, through its 
interaction with a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)–type 
glutamate receptors via synapse-associated protein 97 (SAP97)27. Figure taken directly from 
Tumbarello et al, 2013. 

As discussed, MVI, along with nuclear myosin I (NM1) and myosin Vb, is implicated 

in transcription.23 Using chromatin immunoprecipitation (ChIP), MVI has been shown 

to be recruited to the promoters of actively transcribed genes.28 MVI has also been 

shown to complex with RNA polymerase (RNAP) II upon transcription activation 

through immunoprecipitation assays and immunofluorescence.28 Expression levels 

of MVI also correlate with RNAPII-mediated transcription.28 Recently, MVI has been 

further characterised in transcription, where it was shown to co-localise with 

transcriptionally active regions upon PC12 cell stimulation.29 Many MVI binding 

partners are also thought to be implicated in processes associated with gene 
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expression, such as heterogeneous nuclear ribonucleoprotein U (hnRNPU) 

implicated in pre-mRNA metabolism and transport29, as well as nuclear dot protein 

52 (NDP52) and oestrogen receptor α (ERα) – which are transcriptional regulators7.  

ERα has only recently been characterised as a MVI binding partner7 but has long been 

recognised as a nuclear receptor transcription factor30. NDP52, however, has only 

recently been characterised as a putative transcription factor7 but is well-

characterised as a MVI binding partner31. These MVI binding partners are of great 

interest with regard to MVI’s role in transcriptional regulation, which will be 

discussed in the following chapters.    

8.3 Overview of transcriptional regulation 

There are 3 RNA polymerases (RNAPs) in eukaryotes, where RNAPI, II and II transcribe 

class I, II and III genes respectively. RNAPII is also responsible for the transcription of 

mRNA, in addition to class II genes, and hence is a key regulator of eukaryotic gene 

expression. RNAPII is a formed of 12 distinct subunits, where RNA-binding protein 

(RBP) 5, 6, 8, 10 and 12 are common to the 3 classes of eukaryotic RNA 

polymerases.32 These 12 subunits must come together in a coordinated fashion to 

enable transcription of class II genes.33 General transcription factors (GTFs) that 

mediate this assembly are TFIID, TFIIB, TFIIF, TFIIE and TFIIH, which assemble in this 

order.33 GTFs have roles in promoter recognition, RNAPII recruitment and 

transcription start site (TSS) recognition, where TFIIH specifically has helicase and 

kinase roles.33 

Transcription is divided into 3 stages: initiation, elongation and termination. The C-

terminal domain (CTD) of RBP1 (largest subunit of RNAPII) acts as a binding scaffold 

for nuclear factors, regulated by phosphorylation events at Ser2 and 5.33 

Phosphorylation of Ser2 and 5, of the tandemly repeated heptad sequence 

(YSPTSPS), is particularly important during the transition between initiation and 

elongation, as well as during transcription termination.33 This CTD is therefore an 

important regulatory domain in RNAPII. 
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The term ‘transcription factor’ refers to any protein that can bind DNA in a sequence-

specific manner and regulate transcription.34 The diversity of transcription factors is 

vast, which is expected considering that they account for approximately 8% of all 

human genes.34 Transcription factors achieve transcriptional regulation through 

chromatin remodelling, via histone acetylation/deacetylation, interactions with co-

factors and directly by recruiting RNAPII to the promoters of target genes.34  

Transcription factors and transcription factor binding proteins are implicated in many 

human diseases, including cancer and asthma. For instance, pro-inflammatory gene 

expression, regulated by transcription co-activators such as nuclear factor-κβ (NF-κβ) 

and activator protein-1 (AP-1), is enhanced in chronic inflammation.35 Actions of 

these transcription co-activators results in the acetylation of core histones, hence 

promoting transcription of pro-inflammatory genes.35 Corticosteroids are an anti-

inflammatory therapy used to effectively treat asthma but are relatively ineffective 

for chronic obstructive pulmonary disease (COPD), where they act by reversing this 

histone acetylation.35 Similarly, mutations in transcription factors are often 

implicated in cancer, such as those in N-MYC36 and ERα30.   

Transcription factors are usually divided into 2 classes – co-activators and repressors 

– which respectively promote or repress transcription. Transcription factors are 

usually modular in structure, containing a DNA-binding domain, as well as either an 

activator or repressor domain connected by a flexible linker.37 These domains are 

believed to act independently of each other, as demonstrated initially with GAL4.38 

Repressor domains usually have high proportions of hydrophobic amino acid 

residues, while activator domains exhibit large structural diversity.37  

Well-characterised DNA binding motifs in transcription factors include zinc fingers 

(ZFs) and basic leucine zippers (LZs).37 Zinc fingers, as the name suggests, coordinate 

1 or more Zn2+ ions via cysteine and histidine residues, where the structure formed 

enables insertion into the major groove of DNA.37 There are different classes of ZFs, 

including the C2H2, C4 and C6 classes, where the C2H2 class is one of the most common 

found in eukaryotic transcription factors.37 Leucine zippers, however, are 

characterised by leucine at every 7th position; since most transcription factors with 
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these domains are dimeric, this motif forms a zipper-like structure.37 Other DNA-

binding motifs include homeodomains and helix-loop-helix motifs.37 

8.4 Myosin VI transcriptional regulation extends beyond androgen 

receptors  

ERα and ERβ both belong to the class of steroid hormone nuclear receptor 

transcription factors, along with androgen receptors (ARs), where signalling between 

ERα and ERβ is said to be in balance30,39. Transcription factors within this class 

translocate to the nucleus, where they bind directly to hormone response elements 

in the promoters of target genes.30 ERα is no exception to this, where, in the classical 

signalling pathway, ERα homodimers bind directly to oestrogen response elements 

(ERE) in the promoters of target genes.30 ERα homodimer binding is believed to be 

facilitated by the palindromic nature of EREs, which have the consensus sequence 

GGTCAnnnTGACC40,41 (‘nnn’ denotes a 3-nucleotide spacer); although, non-

consensus EREs are still highly responsive to oestrogen41. Circulating oestrogens 

include estrone (E1), estradiol (E2) and estriol (E3), where E2 is the primary 

circulating oestrogen.30 ERα acts as a RNAPII-mediated transcription co-activator as 

it modifies chromatin through recruitment of co-regulatory proteins, stabilises the 

pre-initiation complex and promotes the recruitment of RNAPII.30  

Structurally, ER classes have conserved DNA-binding and ligand-binding domains 

(LBDs) but divergent N-terminal domains (Figure 4B).30 The N-terminal domain and 

the LBD, which are known as activation function(AF)-1 and -2 respectively (Figure 

4B), recruit co-regulatory proteins to DNA-bound ER to promote transcription.30  

ER signalling is implicated in growth, migration, differentiation and apoptosis of cells, 

as well as angiogenesis, and is hence often implicated in cancer, such as that of breast 

tissue.30 In addition to the classical pathway, ER signalling can also occur through 3 

distinct pathways, which are classified as being either genomic or non-genomic, as 

well as either ligand-dependent or ligand-independent.30 Although, the classical 

signalling pathway (genomic and ligand-dependent) remains the best 

characterised.30  



Hannah Reed 24 

The first of these pathways is termed the ‘cross-talk’ pathway (genomic and ligand-

dependent). In the absence of EREs, ER homodimers can cross-talk with other 

transcription factors such as Fos/Jun42 or stimulating protein-1 (SP-1)43. In the 

genomic but ligand-independent pathway, growth factor signalling is believed to 

activate kinases which in turn phosphorylate and activate the ER instead of 

oestrogens, which would ordinarily bind and activate ERs in the classical signalling 

pathway.44 This ligand-independent mechanism is believed to be implicated in 

hormone-independent growth of some cancers.30  Finally, in the non-genomic but 

ligand-dependent pathway, which is considered the least understood30, G-protein-

coupled receptors (GPCRs), like GPCR-3045, are activated through oestrogen-bound 

ERs. This results in a signalling cascade via secondary messengers (SMs) and a rapid 

physiological response in the cell.30 It is this response, such as an increased 

intracellular NO concentration, that is thought to enable non-genomic transcriptional 

regulation.30 This is also called the membrane-initiated steroid signalling (MISS) 

pathway and is believed to account for the rapid action of oestrogens observed in 

some cell types.46 A summary of these signalling mechanisms is shown in Figure 4A.  

In the classical pathway, ligand binding induces a conformational change in ERs which 

enables translocation to the nucleus. This conformational change occurs in the AF-2 

domain of ERs, specifically helix 12 (H12).30 ER ligands can either be agonistic or 

antagonistic, depending on what conformational change is brought about in H12.30 

For instance, binding of agonistic ligands causes H12 to adopt an open conformation 

with a shallow hydrophobic binding site for the leucine-rich LxxLL motif of co-

activators.30 Whereas, when antagonists bind, some believe H12 mimics the LxxLL 

motif, hence blocking the co-activator docking site.30 Others believe binding of co-

repressors, such as silencing mediator for retinoid and thyroid hormone receptor 

(SMRT), is prevented by an extended co-repressor box.30 The recruitment of co-

regulatory proteins to AF-2 is important for correct ER signalling. For instance, over-

expression of ‘amplified in breast cancer 1’ (AIB1) – an ER transcriptional co-activator 

– is observed in breast cancer.30  
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Figure 4: Oestrogen receptor mechanisms of signalling and structure 

(A) Oestrogen receptor (ER) signalling is classified into ligand-dependent and independent 
pathways. In the classical pathway, ligands bind to the ER causing homodimerisation and 
subsequent translocation to the nucleus, where ERs bind to oestrogen response elements in 
the promoters of target genes.30 ERs can also signal through ‘cross-talk’ with other 
transcription factors such as Fos/Jun.30 In the non-genomic pathway, either a classical ER, an 
ER isoform or a distinct receptor is activated upon ligand binding causing a rapid physiological 
response via second messengers inside the cell, such as increased NO levels or an influx of 
ions.30 In the ligand-independent pathway, signalling is achieved through growth factor 
signalling, which in turn activates kinases which phosphorylate/activate ERs.44 (B) Schematic 
of the structural organisation of human (h) ERa and ERb, where the structure of ERa has 
been sub-divided into domains A to F. ERa and ERb have a highly conserved DNA-binding 
domain (DBD), with 2 ZFs, a less-well conserved ligand-binding binding domain or LBD (also 
known as activation function (AF-2) and a highly divergent N-terminal AF-1 domain.30 The 
percentage sequence homology between the receptors is shown. Figures taken from 
Heldring et al, 2007. 
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Fili et al (2017) demonstrated, through pull-down assays, that ERα binds MVI at the 

nuclear receptor LxxLL binding motif in the CBD, where site-directed mutagenesis of 

this motif prevents binding.7 MVI was shown to have a functional role in the 

regulation of ERα-driven transcription, since knockdown of the motor protein 

reduced expression of ERα target genes – PS-2 and GREB-1 – by 85% and 40% 

respectively.7 Using a luciferase reporter assay, Fili et al (2017) also demonstrated 

that MVI has the potential to regulate expression from ERE promoters, supporting a 

role for MVI in ER-driven gene expression.7  

Nuclear MVI has been shown previously to have a functional role in androgen-

dependent gene expression, where MVI and ARs have been shown to bind through 

co-immunoprecipitation assays in LNCaP cells; MVI is also thought to recruit ARs to 

the promoters of target genes.47 Therefore, the finding that MVI also binds to ERα 

demonstrates a functional role for MVI, in relation to steroid hormone nuclear 

receptor transcription factors, beyond just ARs.7 This is particularly significant given 

the over-expression of MVI in prostate, breast48 and ovarian49 cancer, where 

signalling through hormone receptors is implicated in driving cancer progression.   

8.5 Myosin VI and NDP52 – a putative transcription co-activator  

The name NDP52 comes from initial immunohistochemical studies that showed dot-

like nuclear staining and co-localisation with nuclear domain 10 (ND10) proteins, 

such as promyelocytic leukaemia (PML) and Sp100.50 The term ‘52’ comes from a 

molecular weight (MW) of 52kDa (446 amino acids), which was predicted through 

isolation and sequencing of cDNA.50 NDP52, along with tumour necrosis factor 

receptor-associated factor 6 (TRAF6)-binding protein (T6BP), also known as TAX1BP1, 

were identified as binding partners of MVI using two-hybrid screens in yeast and 

Chinese hamster ovary (CHO) cells, as well as co-immunoprecipitation assays.31 Site-

directed mutagenesis revealed that both NDP52 and T6BP bind to MVI at the RRL 

motif in the C-terminal CBD, where the ZF motifs of both NDP52 and T6BP are 

required for binding.31  
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Initial Kyte and Doolittle51 plots predicted a central hydrophilic region of 

approximately 200 amino acids in NDP52, between amino acids 134-350, with high 

probability of forming an α-helical coiled-coil (supported by the absence of 

prolines).50 Within the coiled coil, between amino acids 324-345, a LZ is predicted.50 

NDP52 is also predicted to have small clusters of hydrophobic amino acids at the N- 

and C-termini, with high probability of forming β-sheets and -turns.50 This is 

consistent with the presence of a skeletal muscle and kidney enriched inositol 

phosphatase (SKIP) carboxyl homology (SKICH) domain and a lin-1, isl-1 and mec-3 

(LIM)-like (LIM-L) domain at the N- and C-termini respectively (Figure 5A).50 NDP52 

is hence predicted to have globular structures at its ends (Figure 5B).50  

Other proteins, such as CALCOCO1 (or CoCoA), SKIP, and T6BP, are also characterised 

by a SKICH domain52, where NDP52 and T6BP are both autophagy receptors53. This 

128-amino acid domain is responsible for translocation of SKIP from the endoplasmic 

reticulum to sub-membranous actin at plasma membrane ruffles upon epidermal 

growth factor (EGF) stimulation (in COS7 cells).54 The same phenomenon is observed 

for proline-rich inositol-polyphosphate 5-phosphatase (PIPP)54 but unexpectedly was 

not observed with T6BP and NDP52 upon EGF stimualtion31. Although, RNAi-

mediated knockdown of both T6BP and NDP52 shows that these proteins are 

required for actin filament organisation because there is reduced membrane ruffling 

at the leading edge and an increase in stable actin stress fibres.31 The SKICH domain 

of NDP52 is hence believed to facilitate plasma membrane localisation.31  

Aforementioned, NDP52 is also characterised by the presence of a C-terminal LIM-L 

domain, as well as a SKICH domain. The LIM domain is a unique double-ZF motif, with 

the consensus sequence C-X2-C-X16-23 -H/C-X2-C/H-X2-C-X2-C-X15-30-C-X1-3-C/H/D 

responsible for coordinating 2 zinc (Zn2+) ions.55 The C-terminus of NDP52 

demonstrates high sequence homology with the consensus sequence of a LIM 

domain, sharing 6 cysteine residues.50 Hence, NDP52 has a C-terminal double-ZF 

motif. LIM domains have been characterised in kinases, adaptors and importantly, 

with regard to NDP52, transcription factors.55  
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Despite the structural information presented above, there are currently no 

crystallography structures available for full-length NDP52. However, the structure of 

the NDP52 ubiquitin-binding ZF has been determined by nuclear magnetic resonance 

(NMR; PDB entry – 2MXP) and the SKICH domain of NDP52 similarly determined by 

X-ray crystallography (PDB entry – 3VVV). These structures have been incorporated 

into the schematic shown in Figure 5. 

 

Figure 5: NDP52 structure 

(A) Schematic of NDP52 structure. NDP52 is characterised by the presence of a skeletal 
muscle and kidney enriched inositol phosphatase (SKIP) carboxyl homology (SKICH) domain, 
a central coiled-coil region containing a leucine zipper (LZ) at the C-terminal and a double 
zinc finger (ZF) lin1, isl-1 and mec-3 (LIM)-like (LIM-L) domain.50 Not drawn to scale. Figure 
adapted from Korioth et al, 1995. (B) Cartoon representation of expected secondary 
structure content of NDP52.  SKICH domain – PDB entry 3VVV; ZFs – PDB entry 2MXP.  

LIM domains are believed to facilitate protein-protein interactions, such as those 

observed between paxillin and binding partners including α- and γ-tubulin.55 When 

NDP52 was initially shown to co-localise with ND10 proteins, the identification of a 

LIM-L domain (between amino acids 395-446) supported the conclusion that NDP52 

could mediate interactions between ND10 proteins such as Sp100 and PML.50 

Subsequently, however, it was found that this observed co-localisation, through use 

of mAb C8A2 to stain for NDP52,  was an artefact of C8A2 cross-reacting with Sp100 

and NDP52 does not associate with nuclear dots (NDs).56 NDP52 instead exhibits 

mainly cytoplasmic and diffuse nuclear staining, suggesting that NDP52 can be 

localised to the nucleus but not to NDs, despite its original name.56 Two-hybrid assays 

also demonstrated that NDP52 forms a homodimer; NDP52 is hence likely to exist as 

a non-ND-associated dimeric or multimeric protein.56 
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NDP52 interestingly has no nuclear localisation signal (NLS)50, depsite being 

characterised as a putative transcription factor7. Nuclear localisation can therefore 

be explained by unregulated diffusion through nuclear pores or binding to a 

cytoplasmic protein targeted to the nucleus.50 Interestingly, green fluorescent 

protein (GFP)-tagged NDP52 has not been observed entering the nucleus31, 

suggesting that GFP may impair nuclear import of NDP52. 

NDP52 is well-characterised in biological processes including cell adhesion31 and 

macro-autophagy57. For instance, RNAi-mediated knockdown of NDP52 reduces 

focal adhesion formation.31 For the remainder of this section, the focus will be 

NDP52’s role in autophagy.  

Autophagy, or the self-degradative process in cells, is responsible for clearing cells of 

aggregated proteins, damaged organelles and intracellular pathogens.58 The 3 

distinct types of autophagy – macro-, micro- and chaperone-mediated autophagy – 

all converge at the lysosome, where proteolysis takes place by lysosomal proteases 

such as cathepsins.58 Macro-autophagy contrasts micro-autophagy, where 

cytoplasmic components are endocytosed directly by the lysosome.58 Macro-

autophagy is instead characterised by the formation of the autolysosome by the 

fusion of the double-membraned autophagosome with the lysosome (Figure 6A).58 

By-products of degradation, including amino acids, are recycled during autophagy 

where they are exported back into the cytoplasm by the action of lysosomal 

permeases and transporters, where they can be used for metabolism and protein 

synthesis.58 

NDP52 is a well-characterised autophagic receptor.59,60 NDP52 binds to ubiquitinated 

cargoes, such as pathogens or mitochondria, through its double-ZF motif (LIM-L 

domain) and selectively recruits them to microtubule-associated protein light chain 

3 (LC3)-positive autophagosomal membranes.59 The way that NDP52 achieves this is 

through binding to autophagy-related protein 8 (Atg8) or LC3 family proteins, such 

as LC3C, though its noncanonical LC3-interacting region (CLIR).60 NDP52 is, therefore, 

along with optineurin (OPTN) and T6BP, a cargo-specific autophagy receptor.60 

Interestingly, OPTN, NDP52 and T6BP are all binding partners of MVI.31,60
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Figure 6A
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Figure 6: NDP52 is well-characterised in macro-autophagy 

(A) Schematic of macro-autophagy. 1) The phagophore (also known as the isolation 

membrane) expands (2) to engulf its target, such as damaged mitochondria, ubiquitinated 

bacteria or protein aggregates. The subsequent autophagosome (3) fuses with the lysosome 

(4) resulting in an autolysosome (5), which promotes cargo degradation via lysosomal 

enzymes (6).58 LC3 is a characteristic marker of autophagosome membranes.60 (B) NDP52 

promotes autophagosome maturation in macro-autophagy. NDP52, a well-characterised 

autophagy receptor, binds to ubiquitinated cargoes, such as intracellular pathogens during 

xenophagy, as well as LC3 family proteins on autophagosomal membranes, hence targeting 

specific cargoes for autophagy.60 NDP52, bound to LC3-positive autophagosomal 

membranes, also binds myosin VI, linked to endosomal membranes via Tom-157,61, to 

promote autophagosome maturation. (C) NDP52 binds different LC3 family members via 

different domains. NDP52 has a noncanonical LC3-ineracting region (CLIR), which binds LC3C, 

as well as a LIR-like domain that binds LC3A, LC3B and or GABARAPL2 to promote 

autophagosome maturation.57 (A) and (B) made with BioRender; (C) taken directly from 

Verlhac et al, 2015. 

In xenophagy (autophagic removal of pathogens), NDP52 has been shown to be 

important for the maturation of bacteria-containing autophagosomes.57 NDP52 

promotes autophagosome maturation by linking MVI, which is bound to endosomal 

membranes via Tom-1, with Atg8 orthologs such as LC3A, LC3B and/or GABARAPL2, 

which are characteristic of autophagosomal membranes (Figure 6B).57,61 Hence, 

NDP52, along with other MVI binding partners, such as OPTN and T6BP, are linkers 

that promote fusion of the endosome and autophagosome.57,61  

NDP52 selectively binds LC3C via its CLIR and displays only weak or no affinity for 

other LC3 family proteins at this region; however, NDP52 binds LC3A, LC3B and/or 

GABARAPL2 (but not LC3C) through a LIR-like motif that lacks hydrophobic residues 

of the conventional LIR motif.57 It was shown that this LIR-like motif is required for 

autophagosome maturation, along with MVI binding, while the CLIR motif is required 

to selectively bind substrates (Figure 6C).57 It is hypothesised that binding to LC3C 

uncovers the LIR-like motif, which is otherwise masked by the coiled-coil domain, 

hence enabling autophagosome maturation through interactions with LC3A, LC3B 

and/or GABARAPL2.57  

Tom-1 binds MVI at the WWF motif53, via a conserved MVI-binding site62, while 

OPTN, NDP52 and T6BP bind MVI at the RRL motif in the CBD53,62. In the case of 
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NDP52, binding to MVI is achieved through the double-ZF (LIM-L) motif62. Alone, 

Tom-1 cannot associate with autophagy receptors (OPTN, NDP52 and T6BP) but can 

in the presence of MVI.62 MVI therefore brings its 2 cargo-binding domains, RRL and 

WWF, in close proximity to enable soluble N-ethylmaleimide sensitive factor 

attachment protein (SNARE)-mediated fusion of the endosomal membrane with the 

autophagosomal membrane, as discussed.24 Interestingly, MVI does not dimerise 

upon binding to Tom-1 which supports an anchoring/tethering role (functioning as a 

non-processive motor) during autophagosome maturation.62 This contributes to the 

growing body of evidence that monomer to dimer transition, regulated by binding 

partners of MVI, is important for the range of functions of this motor protein.62 

Interestingly, NDP52 (CALCOCO2) shares 70% sequence homology with a known 

transcription co-activator – CoCoA (CALCOCO1) – hence suggesting NDP52 may have 

functional roles in transcription.7 This has recently been shown to be the case, where 

NDP52 has been identified as a putative transcription co-activator demonstrating 

roles beyond autophagy and cell adhesion.7 MVI has been shown to exist in an auto-

inhibited conformation, where there is backfolding between the CBD and tail 

domain.7 This was demonstrated in vitro using Förster resonance energy transfer 

(FRET)-based assays, as well as in vivo using fluorescence lifetime imaging.7 In this 

auto-inhibited state, the DNA-binding sites are occluded.7 However, upon unfolding, 

MVI is capable of binding DNA.7 Calcium, actin and ATP are not responsible for this 

unfolding event, and instead unfolding is attributed to the MVI binding partner – 

NDP52.7 

It is suggested that there are 2 NDP52-dependent routes for MVI dimerisation.7 In 

one pathway, NDP52 unfolds MVI first before recruiting a second MVI monomer (I; 

Figure 7A), whereas in the other pathway, 2 MVI monomers are unfolded before 

dimerisation (II; Figure 7A).7 MVI dimerisation involves either a single NDP52 dimer 

(stoichiometry of 2:2) or 2 NDP52 dimers (stoichiometry of 2:4).7 These routes are 

dependent on the concentration of NDP52, which implies that different pathways 

may be employed for different functions and at different times.7  
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Binding of MVI to RNAPII is dependent on DNA binding; hence, through unfolding 

MVI, which promotes DNA binding, NDP52 enhances RNAPII-mediated transcription 

and can be described as a transcription co-activator.7 The functional role of NDP52 

in transcription is further supported by:  

o co-immunoprecipitation of RNAPII with full-length NDP52 from HeLa extracts;  

o partial co-localisation of RNAPII and NDP52, shown by immunofluorescence 

(Figure 7B);  

o strong binding affinity of full-length NDP52 for double-stranded DNA or 

dsDNA (Figure 7C);  

o and the observation that transcription decreases by ~50% in vitro upon 

depletion (sequestering) of NDP52, using HeLaScribe extracts (Figure 7D).7  

Similar to NDP52, depletion of MVI reduced transcription by ~75% (Figure 7D), 

supporting a functional role for MVI in transcription.7  

MVI is believed to bind RNAPII through both its CBD and motor domain; it is believed 

these domains bind DNA and/or binding partners, as well as nuclear actin, 

respectively (Figure 7E).7 Therefore, MVI is thought to form a bipartite association 

with RNAPII, where the unfolded state of MVI could enable the motor to act 

processively during transcription or form a molecular anchor.7 For instance, it is 

hypothesised that nuclear MVI may have functional roles in anchoring RNAPII in so-

called ‘transcription factories’, where it is thought RNAPII is localised in discrete foci 

to enhance transcription rates.63 
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Figure 7: NDP52 activates myosin VI to enhance RNAPII-mediated transcription 

(A) Proposed mechanism of NDP52-facilitated dimerisation of myosin VI. Myosin VI could 

first dimerise before the second myosin VI is unfolded by NDP52. Alternatively, respective 

myosin VI monomers could unfold before NDP52-facilitated dimerisation. (B) NDP52 (green) 

partially co-localises with RNAPII (magenta) in punctate structures. DNA shown in cyan; scale 

bar of 10μm for whole images and 1μm for inserts. (C) NDP52 binds double-stranded DNA 

(dsDNA) with high affinity. NDP52 was titrated against 50nM ds40. Data fitted as described 

in Fili et al, 2017 (average of 3 independent experiments). (D) Depletion of NDP52 and 

myosin VI reduces transcription in HeLaScribe transcription assays. Antibodies against 

myosin VI and NDP52 were used to sequester the proteins respectively. Depletion of myosin 

VI reduces transcription to 25%, while depletion of NDP52 reduces transcription to 50%. 

Error bars represent the standard error of the mean, where ** denotes a p-value of <0.001 

by a 2-tailed t-test from 5 independent experiments. (E) Myosin VI forms a bipartite 

association with RNAPII. Myosin VI is believed to bind a binding partner and/or DNA at its C-

terminal cargo-binding domain, while the N-terminal motor domain is believed to bind 

nuclear actin. Figures taken from Fili et al, 2017.  

8.6 Project aims 

As discussed, NDP52 and ERα are binding partners of MVI, binding at the RRL and 

LxxLL motifs in the CBD respectively, hence supporting a role for MVI in 

transcription.7 The main aim of this work is to take a multi-disciplinary approach to 

biochemically and biophysically characterise these transcription regulators 

associated with MVI, in the hope that this will elucidate further the role of MVI in 

transcription and ultimately cancer.  

As part of this work, purification methods of ERα need to be optimised to achieve a 

reproducible, high-yield, reliable and relatively inexpensive method. Previous 

attempts at purifying full-length hERα have proven difficult in a range of expression 

systems, including bacteria64,65, yeast66 and baculovirus65 cell lines. One of the main 

aims of this project is hence to successfully optimise the purification of full-length 

ERα using the BL21 Escherichia coli (E.coli) strain as the expression vector, owing to 

its short generation times and relative low cost. This will enable further binding 

assays  and other biochemical analysis to better understand the interaction between 

ERα and MVI, particularly in relation to transcriptional regulation.  
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NDP52 is well-characterised in cell adhesion31 and autophagy57 but little is known 

about its role in transcription, where it has only recently been identified as a putative 

transcription co-activator.7 Fili et al (2017) demonstrated that full-length NDP52 can 

bind dsDNA with high affinity (Figure 7C).7 Hence, this work aims to employ 

biochemical methods to characterise the DNA-binding characteristics of different 

structural domains.  

NDP52 is also believed to function as a homodimer in vivo56. This project, therefore, 

aims to use size-exclusion chromatography-multi-angle light scattering (SEC-MALS), 

as well as photobleaching analysis using total internal reflection fluorescence (TIRF) 

microscopy, to probe the structure and oligomeric state of NDP52. This project also 

aims to develop and trial a novel GFP-based assay, with cryogenic super-resolution 

microscopy, to investigate whether NDP52 homodimers adopt a parallel or anti-

parallel state, as well as successfully use small-angle X-ray scattering (SAXS) to gain 

structural insights into full-length NDP52. This is particularly important to help 

elucidate NDP52’s role as a regulator of transcription. For instance, a parallel 

conformation may suggest NDP52 can bind tightly to DNA, potentially clamping down 

on it, whereas an anti-parallel configuration may suggest that NDP52 acts as a linker.  
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9 Materials and Methods  

9.1 Materials and reagents  

Table 1: Source list for materials and reagents 

Material Source Composition 

A0106 

Integrated DNA 

Technologies (IDT) 
100μM 

A0107 

A0108 

A0110 

Acrylamide 37.5:1, 30% 

solution 
Alfa Aesar Chemicals - 

Amicon Ultra centrifugal 

filter 
Merck-Millipore  

Ammonium persulfate (APS) Fisher Scientific™ UK 10%w/v stock 

Ampicillin (Amp) Melford Laboratories Ltd 100mg/mL stock 

Bovine serum albumin (BSA) 
Sigma-Aldrich UK 

- 

Catalase 17mg/mL stock 

Coomassie Brilliant Blue G-

250 
BIO-RAD 

0.1%w/v Coomassie 

stain, 40%v/v 

methanol, 10%v/v 

acetic acid  

Dithiothreitol (DTT) Melford Laboratories Ltd 1M stock  

Glucose Fisher Scientific™ UK - 

Glucose oxidase Sigma-Aldrich UK - 

HiLoad™ 16/600 Superdex™ 

200 
GE Healthcare 

- 

HisTrap™ Fast Flow (FF) 

column 
- 

Imidazole Acros Organics™ - 

Isopropyl β-D-1-

thiogalactopyranoside (IPTG) 
Melford Laboratories Ltd 1M stock  

Luria Bertani (LB) broth 

Thermo Fisher Scientific 

25g diluted in 1L 

Milli-Q™ H2O 

MgCl2 - 

NaCl - 
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Material Source Composition 

Nu-PAGE Novex® - 

Phenylmethylsulfonyl 

fluoride (PMSF) 
Melford Laboratories Ltd 100mM stock 

Sodium dodecyl sulphate 

(SDS) 
Thermo Fisher Scientific 10%w/v stock 

Spin-X centrifuge tube filter Costar® - 

Sucrose Thermo Fisher Scientific - 

Superdex™ 200 Increase 

10/300 GL column 
GE healthcare 

- 

Superose™ 6 Increase 

3.2/300 column 
- 

Tetramethylethylenediamine 

(TEMED) 
Thermo Fisher Scientific - 

TetraSpeck™ beads 
Invitrogen – Thermo 

Fisher Scientific 
 

Tris (hyrdoxymethyl 

methylamine) 
Thermo Fisher Scientific - 

Vivaspin® 20mL 10K device Sartorius - 

 

9.2 Standard expression protocol for recombinant proteins 

9.2.1 Transformation of recombinant DNA  

Using a 1:25 dilution of DNA vector to competent BL21 DE3 (Invitrogen™) E.coli cells, 

recombinant DNA was transformed using heat shock at 42°C for 45s. Both before and 

after heat shock, cells were incubated on ice for 30min and 2min respectively. Post-

heat shock and recovery on ice, cells were incubated for 1hr at 37°C in LB broth (1:5 

dilution) and plated aseptically onto LB agar before overnight incubation (37°C). 

Table 2 lists all expression vectors employed.  
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Table 2: List of expression vectors 

Expression Vector (Residue Numbers) Affinity Tag Antibiotic Resistance 

Human pET151 His-tag ERα (1-end)  

N-terminal 6 

histidine 

residues (His-

tag) 

AmpR 

Human pET151 His-tag NDP52 (1-190) 

Human pET151 His-tag NDP52 (120-end) 

Human pET151 GFP-NDP52 (1-end) 

Human pET151 GFP-NDP52-GFP (1-end) 

Residue numbers are shown in brackets. pET151 refers to the T7 expression system in E.coli.  

9.2.2 Overnight/starter culture 

Transformed single colonies were cultured overnight at 37°C in LB broth 

supplemented with 100μg/mL Amp (Table 2). 

9.2.3 Expression and resuspension 

Starter culture was added (1:100 dilution) to LB broth and incubated at 37°C, on 

rotation at 150rpm, until an OD600 of between 0.5 and 0.7AU was reached. Expression 

was induced upon the addition of 1mM IPTG – a molecular mimic of allolactose – 

which displaces the repressor from the T7 promoter. Following induction, the 

temperature was reduced to 18°C and cells incubated overnight.  

Cells were harvested by centrifugation at 4,000rpm for 20min at 4°C and 

resuspended in resuspension buffer (50mM Tris-HCl pH 7.5, 40mM imidazole, 

200mM NaCl, 1mM DTT, 20% w/v sucrose, 100µM PMSF). Cell pellets were defrosted 

and lysed on ice by sonication at 30s intervals (at 14 Amplitude Microns) for a total 

of 5min 30s (5 repeats), where thawing aids lysis. The supernatant (soluble cell 

lysate) from subsequent centrifugation (18,000rpm for 30min at 4°C) was used for 

purification.  
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9.3 Immobilised metal-ion affinity chromatography and size-exclusion 

chromatography 

The supernatant was purified using a 5mL HisTrap™ FF column (Table 1), which was 

pre-packed with pre-charged Ni Sepharose® hence enabling rapid purification of His-

tagged recombinant proteins. The Ni2+ ions (on Ni Sepharose®) coordinate histidine 

residues, which are out-competed upon increasing concentrations of imidazole 

(Figure 8). The HisTrap™ column was equilibrated in Buffer A (50mM Tris-HCl pH 7.5, 

40mM imidazole, 500mM NaCl, 1mM DTT) before stepwise increases (20, 40, 75 and 

100%) in Buffer B (50mM Tris-HCl pH 7.5, 400mM imidazole, 500mM NaCl, 1mM DTT) 

hence generating an elution profile. A gradient elution was also employed, where 

stated. Although, stepwise elution should be assumed as the default method. Protein 

elution was monitored on the ÄKTATM chromatography system by measuring the 

intrinsic fluorescence of tryptophan residues at 280nm, where imidazole also 

absorbs at 280nm. The purity of fractions yielding a large UV peak were assessed by 

SDS-PAGE and purified further by gel filtration/size-exclusion chromatography if 

necessary. This protocol was modified, where stated, by equilibrating the column in 

Buffer A without any imidazole.  

Gel filtration (size-exclusion chromatography) separates proteins according to 

molecular size (Stokes radius) and was employed to obtain a higher degree of purity 

compared with affinity chromatography alone. Affinity chromatography fractions 

were passed through a HiLoad™ 16/600 Superdex™ 200 (Table 1) column, 

equilibrated with gel filtration buffer (50mM Tris-HCl pH 7.5, 150mM NaCl, 1mM 

DTT). The Superdex™ column is a matrix of dextran and highly cross-linked agarose, 

where, depending on the interaction time with the matrix, proteins elute at different 

time points, with larger molecules eluting first from the column. As with affinity 

chromatography, protein elution was tracked measuring absorbance at 280nm.  
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Figure 8: Principle of Ni Sepharose® purification 

Nickel ions coordinate His-tagged proteins. Upon treatment with Buffer A (low imidazole), 

unwanted/non-specifically bound proteins are eluted, while the His-tagged protein remains 

bound to the column matrix. Upon treatment with Buffer B (high imidazole), imidazole out-

competes histidine for the nickel ion meaning that the protein of interest (His-tagged) is 

eluted.  

9.4 Denaturing SDS-PAGE  

SDS-PAGE gels were cast by hand, consisting always of a 4% stacking gel and either 

an 8 or 12% resolving component. Protein samples were denatured prior to loading 

by heating at 95°C for 10 minutes. Gels were ran in SDS-PAGE running buffer (25mM 

Tris, 1.4% w/v glycine, 1% SDS), stained with Coomassie Brilliant Blue solution (Table 

1) and imaged using Image LabTM software. PageRuler™ Plus Pre-Stained Protein 

Ladder (Table 1) was used throughout (Figure 9). MWs of unknown proteins were 

determined manually (where stated) using calibration curves, where the logMW (in 

kDa) of known protein standards was plotted against relative mobility (Rf). The 

intensity of colouration of SDS-PAGE bands was assessed by eye.  

Protein His

40mM Imidazole

400mM Imidazole

A

Protein
His

Non-specific proteins

Protein His
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Figure 9: PageRuler™ Plus Pre-Stained Protein Ladder molecular weight markers 

9.5 Beer-Lambert law  

Absorbance was measured at 280nm using the LVis Plate and the CLARIOstar® High 

Performance Monochromator Multimode Microplate Reader. Protein extinction 

coefficients (ε) in M-1cm-1 were determined using ProtParam (Supplementary Table 

7). The extinction coefficient, absorbance and pathlength (1cm) were used in the 

Beer-Lambert Law to determine protein concentration.  

9.6 DNA-binding assays  

9.6.1 Sample preparation 

Changes in fluorescence intensity were used to assess the affinity of protein-DNA 

interactions. Protein samples (at concentrations stated in text, always in excess of 

DNA) were serial diluted (1:2 dilution) against 100μL of 100nM DNA, either dsDNA or 

single-stranded DNA (ssDNA), where ssDNA acted as a negative control.  

dsDNA samples were annealed by mixing equimolar and equal volumes of 

complementary strands (Table 3), heating at 95°C for 2min and allowing to cool for 

2-3hrs at room temperature (RT), whereas ssDNA samples were not. 3’ fluorescein-

labelled DNA was employed for binding assays with non-fluorescent protein.   

Protein and DNA samples were diluted in binding assay buffer (50mM Tris-HCl pH 

7.5, 100mM NaCl, 3mM MgCl2) to achieve desired concentrations and experiments 
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were performed at RT. Fluorescence intensity readings were taken using the 

following experimental setup: excitation wavelength – 489nm, excitation bandwidth 

– 16nm, emission wavelength – 517-656nm and emission bandwidth – 10nm.  Data 

presented is at 517nm and an average of ≥3 independent experiments. Raw data was 

divided by the dilution factor and normalised before percentage change calculations. 

For all graphs, error bars are plotted as the standard error of the mean.  

Table 3: List of oligonucleotide sequences employed for DNA-binding assays 

Referred 
to in Text 

Description 
Trade 
Name  

Oligonucleotide Sequence 

ds40 Random dsDNA of 40bp 

A0107 
TTAGTTGTTCGTAGTGCTCGT

CTGGCTCTGGATTACCCGC* 

A0106 
GCGGGTAATCCAGAGCCAGA

CGAGCACTACGAACAACTAA 

ss40 Random ssDNA of 40bp A0107 
TTAGTTGTTCGTAGTGCTCGT

CTGGCTCTGGATTACCCGC* 

ds15 Random dsDNA of 15bp 
A0108 TTAGTTGTTCTCTGG* 

A0110 CCAGAGAACAACTAA 

ss15 Random ssDNA of 15bp A0108 TTAGTTGTTCTCTGG* 

Oligonucleotide sequences are written in the conventional 5’ to 3’ direction. 

9.6.2 Data fitting 

Average readings were fitted to the quadratic equation (assuming 1 binding site) 

using GraFit67, which accounts for all titration conditions:  

[". $%&]

= 	 ([$%&] + [",] + [-.]) −	1([$%&] + [",] + [-.])
2 − 4	([$%&] ×	[",])

2  

Where:  

[P.DNA] = protein-DNA complex 

concentration (M) 

[PT] = total protein concentration (M) 

[DNA] = concentration of DNA (M) 

KD = equilibrium dissociation constant 

(M) 
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9.7 Circular dichroism  

9.7.1 Sample preparation  

Circular dichroism (CD) is defined as the differential absorbance of left-handed and 

right-handed circularly polarised light, where the differential absorbance (ΔA) can be 

employed to deduce information about the secondary structure content of proteins 

and hence assess protein folding. A typical reference spectrum for CD is shown in 

Figure 10.  

 

Figure 10: A typical circular dichroism reference spectrum for protein secondary structure  

Taken directly from Greenfield, 2007.  

ΔA and ellipticity (θ) values, which are the conventional output for CD spectra, can 

be interconverted using the equation:  

Δ& = 7
32982 

Where:  

θ = ellipticity (mdeg) A = absorbance (AU) 
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Experiments were performed in the far-UV (190-250nm), which provides information 

relating to the peptide bond; whereas, near-UV (250-330nm) provides information 

relating to aromatic side chains. The following parameters were used for full 

spectrum measurements: temperature – 20°C, wavelength range – 190-270nm, data 

pitch – 1nm, scanning mode – continuous, scanning speed – 100nm/min, response – 

0.5sec, bandwidth – 20nm, 1mm pathlength quartz cuvette and an accumulation of 

4 (4 readings taken before being averaged). Whereas, for thermal stability assays, 

the same parameters were employed but in the range of 20-80°C, using a pitch of 

2°C. Melting curves were fitted using the Boltzmann Equation; for proteins 

containing largely α-helices, the equation was fitted at 222nm while for proteins 

containing largely β-sheet, data was fitted at 214-217nm. All measurements were 

performed using Jasco J715 software and data ≥600V was ignored (represents 

detector saturation). Protein concentrations used are stated in text and dilutions 

were achieved with gel filtration buffer unless otherwise stated. 

9.7.2 Analysis 

CD outputs or ellipticity values (θ, measured in mdeg) were converted to mean 

residue ellipticity ([θ], measured in deg.cm2.dm-1) using the equation below. This 

accounts for the number of amino acid residues and enables proteins of different 

MW to be compared: 

[7] = 	
; <=% − 1? 7
10AB  

Where:  

[θ] = mean residue ellipticity 

(deg.cm2.dm-1) 

θ = ellipticity (mdeg)  

MW = molecular weight (g/mol)  

N = number of amino acid residues  

c = concentration (g/L) 

l = pathlength (cm)  
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Protein secondary structure estimation was quantified using KD23. K2D2 (older 

version of K2D368) estimates protein secondary structure using a reference set of CD 

spectra from proteins with solved crystallography structures69. K2D3, however, 

employs a larger reference set of PDB entries for which the CD spectra have been 

predicted.68 For input into K2D3, θ values were converted into mean residue circular 

dichroism (ΔεMR) using the following equation. Again, ΔεMR allows CD spectra from 

proteins of different MW to be easily compared: 

∆D<E =	 ∆&AB% 

Where:  

ΔεMR = mean residue circular 

dichroism (M-1cm-1) 

A = absorbance (AU)  

c = concentration (M) 

l = pathlength (cm) 

N = number of amino acid residues  

9.8 Size-exclusion chromatography-multi-angle light scattering  

SEC-MALS couples SEC, which separates proteins according to their molecular size, 

with MALS (Figure 11A); hence, enabling accurate determination of MW and 

investigations into the oligomeric state of proteins. Photons from the incident beam 

are absorbed by the macromolecule and re-emitted in all directions (Figure 11B). 

Using the Rayleigh Equation (Figure 11C), which defines the relationship between 

light scattering and MW, the MW of the macromolecule can be determined by 

measuring the intensity of light scattering. The intensity of the scattered light is 

proportional to the MW of macromolecules, hence scattered light from a dimer is 

twice as intense as that from a monomer.  
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NDP52 protein samples were subjected to SEC-MALS, using a Superdex™ 200 

Increase 10/300 GL column (Table 1). All buffers were de-gassed before use and the 

column washed in Milli-Q™ H2O at 0.1mL/min overnight before use. The SEC column 

was then equilibrated in gel filtration buffer (50mM Tris-HCl pH 7.5, 150mM NaCl, 

1mM DTT) by running at 0.75mL/min for at least 2hrs, which protein samples were 

also diluted in. For each run, equipment was ‘autozeroed’ and protein samples were 

injected at a volume of at least 200µL. Once all runs were completed, the column 

was placed in water and then ethanol, running at 0.1mL/min overnight and 

0.3mL/min for 2-3hrs respectively. Importantly, all protein samples were filtered 

Spin-X centrifuge tube filters (Table 1) before use to prevent aggregates entering and 

blocking the column. Measurements and analysis were performed using OmniSecBio 

software, where calibration was achieved with bovine serum albumin (BSA) 

standards (1mg/mL, 2.5mg/mL and 5mg/mL).
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Figure 11: Setup and analysis using SEC-MALS 

(A) Setup of SEC-MALS equipment. Buffers are de-gassed before being pumped/loaded onto a SEC column where MALS detectors measure the intensity of 
scattered light at different directions. Analysis is then performed using OmniSecBio software. Figure generated in BioRender. (B) Macromolecules emit 
photons from the incident beam in different directions, referred to as light scattering. (C) The Rayleigh Equation defines the relationship between light 
scattering and molecular weight. 

!"
#$

= %
&' + 2*2+ %

,$

BA

C

C = sample concentration (M)

θ = measurement angle (◦)

Rθ = Rayleigh ratio (ratio of scattered light intensity vs. 

incident light intensity) at measurement angle, θ

MW = molecular weight (Da)

A2 = second virial coefficient

Pθ = defines angular dependence

K = constant dependent on sample, solvent and system
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9.9 Total internal reflection fluorescence microscopy 

9.9.1 Etch-cleaning of coverslips 

Glass coverslips were cleaned using stabilised Etch solution at 70°C, composed of a 

5:1:1 ratio of H2O:H2O2:NH4OH. Coverslips were incubated for 2-3hrs at 70°C and 

then washed thrice in Milli-Q™ H2O and once in absolute ethanol before being 

allowed to dry overnight. Before use, coverslips were placed under UV light for 10-

15 minutes.  

9.9.2 Sample preparation  

100µL of sample (at the concentration stated in text), diluted in TIRF microscopy 

buffer (25mM NaCl, 20mM imidazole pH 7.4, 20mM Tris-HCl. pH 7.5, 0.1mg/mL 

glucose oxidase, 0.02mg/mL catalase, 3mg/mL glucose), was placed onto the 

coverslip before covering with an opaque object for 5 minutes (as glucose oxidase is 

light-sensitive). The sample was then removed, and the coverslip completely covered 

with TIRF buffer for imaging.  

TIRF microscopy analysis makes use of photobleaching properties of fluorophores, 

hence the presence of an oxygen scavenger system (Figure 12) is important.  Glucose 

oxidase sequesters oxygen, preventing bleaching, while catalase promotes protein 

activity by preventing hydrogen peroxide (H2O2) accumulation (Figure 12).  

 

Figure 12: Oxygen scavenger system used in TIRF buffer 

dsDNA for TIRF microscopy (Table 4) was annealed in the same way as for DNA-

binding assays but was non-fluorescent as proteins were labelled with enhanced GFP 

(eGFP). Non-fluorescent dsDNA was used at 100nM (diluted in TIRF buffer) and 

incubated with protein samples for 10 minutes (in the dark) before being loaded onto 

coverslips for a further 5 minutes (15-minute total incubation time).  

Glucose + O2 Gluconic Acid + H2O2

H2O2 H2O + ½ O2

Glucose Oxidase

Catalase
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Table 4: List of oligonucleotide sequences employed for TIRF analysis 

Referred to in 
Text Description Trade Name  Oligonucleotide Sequence 

Non-
fluorescent 
ds40 

Random 
dsDNA of 
40bp 

A0106 GCGGGTAATCCAGAGCCAGACGA
GCACTACGAACAACTAA 

A0105 TTAGTTGTTCGTAGTGCTCGTCTGG
CTCTGGATTACCCGC 

9.9.3 Imaging  

Imaging was performed in TIRF buffer, in the presence of an oxygen scavenger (as 

described). Images were acquired using a ZEISS Elyra P1 system with a Plan 

Apochromat 100x 1.45 numerical aperture (NA) oil immersion lens. Samples were 

illuminated with a 488nm laser and images were acquired at 20hz with an electron-

multiplying charge-coupled device (EMCCD) camera (Andor).  A total of 1000 frames 

were recorded for each time series/cycle.   

9.9.4 Photobleaching analysis 

Individual GFP photobleaching events were tracked over the 1000-frame time series 

using a single-fluorophore detection algorithm (SFDA) and extracted using 

GMimPro70. A frame size of 5x5 and a 10-frame window were employed. The 

threshold for photobleaching events was set at 7 counts/pix based on the change in 

intensity between fluorescent and background states. This was calculated based on 

the number of spots detected within a record; for instance, to limit the number of 

false positives, while still enabling spot detection. Traces were assessed manually to 

identify likely (real) GFP molecules, considering GFP is expected to exist for ~5s in 

vitro. Fluorescence traces were classified as either a single or multiple 

photobleaching event, where a drop of intensity to 0 counts/pix was indicative of a 

discrete photobleaching event. The fluorescence lifetime was also measured 

manually by taking point-to-point measurements. A total of 10 (1000-frame) cycles 

were analysed for each condition. 
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9.10 Cryogenic stochastic optical reconstruction microscopy 

9.10.1 Sample preparation  

Under cryogenic (cryo-) conditions, the native ultrastructure of proteins is preserved 

and fluorophore properties change, namely increased brightness and fluorescence 

lifetime.71 Using a super-hemispherical solid immersion lens (superSIL), made of both 

cubic zirconia and platinum (Figure 13A), super-resolution of 12nm of can be 

achieved when plunge-freezing the lens together with the sample.71  

 

Figure 13: Setup of superSIL microscope 

(A) Side- and top-view of solid immersion lens. (B) Schematic of superSIL microscope. Figure 
taken directly from Wang et al, 2019. 

GFP-NDP52-GFP (positive control) and GFP-NDP52 (test condition) at 0.3mg/mL were 

diluted 1:150 in gel filtration buffer. GFP-LifeAct (negative control) at 0.085mg/mL 

was diluted 1:2 in gel filtration buffer and filtered by centrifugation at 4000g for 

10min (Eppendorf table-top centrifuge) using a 50kDa (cut-off) Amicon Ultra 

centrifugal filter (Table 1). Following this, GFP was diluted using a 1:150,000 dilution 

in gel filtration buffer to obtain single-particle labelling on the superSIL substrate 

(0.042mg/mL starting concentration).  

SuperSIL lenses were glow discharged for 120s at 40mA on a Quorum GlowCube 

machine. 2.5μl of the following was added in the order stated: sample, 100nm 

TetraSpeck™ fluorescent beads (Table 1; 1:100 dilution) and sample (again). Blotting 

was performed manually at every step using Vitrobot-compatible blotting paper. 

SuperSIL lenses were then plunge-frozen, together with the sample, into liquid 

BA
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ethane using a Vitrobot plunge-freezer (Field Electron and Ion (FEI), ThermoFisher 

Scientific) before loading onto a magnetic cassette. Cassettes were then secured to 

a translatable stage inside a Linkam CMS196M cryogenic module for imaging. The 

setup of the microscope is shown in Figure 13B. 

A 50x Mitutoyo objective, coupled to a custom microscope71, was focussed through 

the superSIL on to the sample plane. Samples were then illuminated with a 488nm 

continuous wavelength laser at an approximate power density of 1 kW/cm2 with an 

isotropic top-hat profile. The fluorescence signal was then collected by the same 

objective before being sent through an appropriate dichroic beam splitter. The signal 

was then projected onto a Photometrics Prime 95B scientific complementary metal-

oxide semiconductor (sCMOS) camera though a narrowband Semrock 525-25nm 

fluorescence filter. A time series of 10,000 frames was collected per sample using an 

exposure time of 50ms per frame. The datasets were then saved as TIFF stacks for 

data analysis. 

9.10.2 Analysis  

The single molecule localisation software – ThunderSTORM (an ImageJ plug-in) – was 

chosen to analyse the datasets. The effective pixel size was defined as 46.8nm and 

the sCMOS camera was calibrated to 0.98 photoelectrons per analogue-to-digital-

unit (ADU) count. The resultant single molecule localisations were then saved in a 

comma separated variable file for analysis.  

The Ripley’s K-function is referred to as the ‘gold standard’ for spatial point analysis, 

where the original K-function is given by the equation below72: 

!(#, %) = 1
) ∙ + 

Where:  

E = expectation (average) number of 

events within radius, r 

λ = intensity (density) of events  

N = total number of events within the 

study area  

r = radius  
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Cluster-analysis was performed on all frames using an inhomogeneous Ripley’s K-

function.73 The inhomogeneous K-function considers both stationary and non-

stationary points within a set area, to investigate the inhomogeneity of the 

distribution.73 K(r) is calculated by looking at the average number of neighbour points 

within a given threshold distance (r) of each other.74 Clustering is identified by 

comparing this value to that expected for a random distribution; with K(r)= πr2  for a 

homogeneous Poisson distribution and K(r)> πr2 for a clustered distribution.74 

The L- and H-functions are based on K(r), where the L-function is the K-function 

normalised by the circle area so that the expected value is r, i.e. linear74:  

,(#) = -(!(#)// 

Similarly, the H-function is the K-function normalised further using the equation 

below to get an approximate value of 0, independent of r, for complete spatial 

randomness (CSR). A positive value for H(r) is indicative of clustering while a negative 

H(r) is indicative of dispersion74: 

0(#) = ,(#) − # 

9.11 SEC-SAXS  

9.11.1 Sample preparation 

SEC-SAXS, which will henceforth be referred to as SAXS, employs X-ray scattering at 

small angles (typically 0.1-0.5°) to deduce structural information on the nanometre 

scale (in the range of 1-300nm). 5mg/mL NDP52 (diluted in gel filtration buffer) was 

sent to Diamond Light Source (UK) for SAXS, where high intensity X-rays from the 

synchrotron were employed. For high performance liquid chromatography (HPLC), 

coupled to SAXS, a Superose™ 6 Increase 3.2/300 column (Table 1), which resolves 

proteins in the range of 5kDa-5MDa, was employed using a 0.16mL/min flowrate. As 

proteins elute off this sizing column, they directly enter the SAXS beamline enabling 

analysis by X-ray scattering.   
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9.11.2 Analysis 

ScÅtter, developed by Robert Rambo at Diamond Light Source75, was employed for 

analysis of solution X-ray scattering data. SAXS scattering images were initially 

plotted as the intensity of scattering (normalised to the concentration of protein) 

against sample number (signal plot). A threshold was then set and subtracted from 

readings to account for the buffer blank using the ‘trace’ function. A Guinier fitting 

was then employed to assess the quality of the sample (discussed in Results).  

Raw SAXS data was then plotted as an intensity plot (intensity vs. scattering vector, 

q) before plotting the average and median of these results (to enable easy 

identification of outliers in the sample). Intensity plots are plotted in reciprocal 

space, where q is measured in Å-1. Hence, small values of q correspond to large 

distance vectors and hence provide information relating to overall size and shape of 

the protein. However, larger values of q provide information at the atomic level.  

Using an indirect Fourier transform (FT), a P(r) model was generated from the 

intensity plot. The P(r) model was refined by varying values of Dmax (maximum 

particle dimension), where a smooth curved was achieved that approaches the x-axis 

gradually. Values for the radius of gyration (Rg), determined by the Guinier fitting and 

the P(r) function, were compared to determine if the P(r) model is well-fitted  

(compare Rg in real and reciprocal space). The intensity plot was also truncated to 

remove noise at higher q (Å-1) values to improve the P(r) model.  

Once the P(r) model was refined, 23 bead models were generated and then 

averaged. A FT was employed to back-transform onto the original intensity plot, 

hence improving the fit (χ2 values used to assess fitting). From this (improved fit), 

another 23 bead models were generated and averaged to create the final SAXS 

envelope.  
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10 Results 

10.1 Optimising the purification of oestrogen receptor a 

10.1.1 Standard expression protocol  

Following the standard expression protocol (Materials and Methods), ERα was 

successfully expressed without degradation, where expression bands are observed 

(Figure 14A) consistent with the expected MW of ERα at ~67kDa (Supplementary 

Table 7). Although, Figure 14B shows that there is considerable localisation to the 

pellet, which prevented purification by affinity chromatography. ERα, however, was 

shown to be soluble through localisation to the supernatant, as shown by the 

presence of a band in line with the 70kDa marker (Figure 14B). Notably, a ~35kDa 

band was observed to increase in band intensity during expression and was also 

present in both the pellet and supernatant (Figure 14), suggesting potential non-

specific over-expression or degradation/cleavage. 

 

Figure 14: Standard expression of ERα 

(A) Expression results. Lane headings denote timings before and after induction with IPTG. 
Arrows mark positions of proteins of interest and relevant molecular weight markers are 
labelled (as with all subsequent SDS-PAGE gels). (B) Results of affinity chromatography. The 
pellet and supernatant following cell lysis are shown, as well as elution fractions (numbered) 
from affinity chromatography.  
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10.1.2 Modified expression protocols  

In an attempt to reduce localisation to the pellet, the standard expression protocol 

was modified so that: 1) induction was achieved with only 0.5mM IPTG and 2) 

culturing post-induction was only performed for 3hrs at 37°C. Other than these two 

distinct modifications, the standard expression protocol remained the same. These 

modifications will henceforth be referred to as modified protocol 1 and 2. The 

hypothesis was that these modifications would decrease the rate of protein 

synthesis. Hence, decreasing folding intermediates prone to aggregation and 

preventing localisation to the pellet.  

To ensure that ERα was not eluting in 40mM imidazole buffer (Buffer A), imidazole 

was removed from the affinity chromatography equilibration buffer (Materials and 

Methods). Accordingly, cell resuspensions were achieved in 0M imidazole 

resuspension buffer (Materials and Methods). This method was employed for all ERα 

purifications discussed subsequent in this report.   

Both modified protocols resulted in successful expression of ERα (Figure 15A and B). 

However, there was still a large degree of localisation to the pellet, most notably in 

line with both the 70 and 35kDa markers (Figure 15C and D). This was unexpected 

since the modifications were hypothesised to reduce localisation to the insoluble 

fraction (discussed above). Accordingly, ERα was not purified using modified protocol 

1, as shown by the absence of bands in affinity chromatography elution fractions 

(Figure 15C).  

For modified protocol 2, a faint band (red arrow) at the expected MW (~70kDa; 

Supplementary Table 7) is seen in Figure 15D, suggesting successful purification of 

ERα. This was unexpected considering the degree of localisation to the pellet (Figure 

15D) and the results for modified protocol 1. However, this re-iterates that ERα can 

be solubilised and suggests shorter culturing times may be preferential. Interestingly, 

a band at ~35kDa (blue arrow; Figure 15D) is observed, following affinity 

chromatography, at higher intensity compared to the purified ERα band (red arrow; 

Figure 15D), suggesting degradation/cleavage of ERα. 
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Figure 15: Modified expression conditions for ERα 

Expression (A) and affinity chromatography (B) results for ERα following modified protocol 1 
(discussed in text). (C) and (D), as for (A) and (B), except following modified protocol 2. 
Timings relative to induction are given and affinity chromatography elution fractions are 
labelled. ‘Pellet’ and ‘supernatant’ refer to insoluble and soluble fractions following cell lysis.  

10.1.3 Incubation of cell lysate with estradiol  

To further optimise the expression and purification protocol, and ultimately increase 

purification yields, 10µM E2 was incubated with the cell lysate (following sonication) 

for 20 minutes prior to centrifugation and affinity chromatography. Incubation of E2 

with the lysate was hypothesised to stabilise ERα, hence preventing localisation to 

the pellet due to degradation, something which was observed previously for both 

expression rounds (Section 10.1.1 and 10.1.2). Modifications to the standard 

expression protocol, outlined in Section 10.1.2, otherwise remained the same.  

With the additional incubation of E2 with the lysate, protein bands were observed in 

line with the 70kDa marker (expected for ERα; Supplementary Table 7) following 

affinity chromatography. This was true for both modified expression protocols 

(Figure 16A and B). Although, there is again considerable localisation to the insoluble 

cell fraction, in line with the 70 and 35kDa markers (Figure 16A and B). This was 

unexpected since incubation of E2 with the lysate was hypothesised to stabilise ERα 

to prevent localisation to the pellet. However, solubility of ERα was confirmed, for 

both modified expression protocols, by the presence of 70kDa bands in the 

supernatant (Figure 16A, B and C), suggesting E2 promotes solubilisation of ERα.  

Following modified protocol 1, a faint protein band (red box; Figure 16A) is observed. 

However, due to the intensity of the band, protein concentration was not 

determined as it was apparent that further optimisation of the expression protocol 

was required. This was expected considering the degree of localisation to the pellet 

(Figure 16A), although incubation with E2 was hypothesised to decrease this.  

Comparatively, when following modified protocol 2, protein bands are observed in 

line with both the 70 and 35kDa markers following affinity chromatography (Figure 

16B).  
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Gel leakage for Figure 16B was questionable; hence, relevant pooled affinity 

chromatography fractions were re-analysed by SDS-PAGE (Figure 16C). However, 

potential gel leakage was again observed (Figure 16C), especially in line with the 70 

and 35kDa markers. Upon measuring absorbance, an Abs280 corresponding to 

0.6mg/mL was recorded, hence confirming the presence of protein in pooled affinity 

chromatography fractions. Interestingly, when re-examining the concentration of 

purified ERα (Materials and Methods), approximately a week following purification, 

a negative Abs280 was recorded indicative of precipitation. This was unsurprising 

considering consistent localisation of ERα to the insoluble cell fraction. 

Due to likely precipitation (discussed above), modified protocol 2 was repeated. 

However, degradation was observed from 2hrs post-induction (Figure 16D) during 

the expression, which was not observed previously (Figure 15C). Accordingly, the 

soluble fraction (supernatant; Figure 16E) is largely devoid of ERα. In an attempt to 

mitigate degradation, the protocol was repeated but the post-induction culturing 

time was reduced to 2hrs (again, the lysate was incubated with E2). Expectedly, there 

was no degradation during expression (data not shown). However, following affinity 

chromatography, ERα was seen localised to the pellet (Figure 16F) consistent with 

previous purifications (Figure 16B). Unexpectedly, affinity chromatography failed to 

yield purified protein (Figure 16F). This was despite the same expression conditions 

(Figure 16B and C), except reducing the post-induction culturing time to mitigate 

degradation during expression, yielding purified protein.
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Figure 16: Expression and purification results when incubating cell lysate with estradiol 

(A) Affinity chromatography results following modified expression protocol 1 (and incubating 
the cell lysate with 10µM estradiol for 20 minutes, as discussed in text). The elution fraction 
-  A2 - in addition to the supernatant and pellet, are shown. (B) Affinity chromatography 
results for modified expression protocol 2 (again, cell lysate incubated with estradiol). 
Elution fractions are numbered. (C), as for (B), except pooled elution fractions are shown. 
(D) Re-expression of ERα, following modified protocol 2. (E) Corresponding pellet and 
supernatant following centrifugation. (F) Affinity chromatography results upon reducing the 
post-induction culturing time of modified protocol 2 to 2hrs.   

10.1.4 Culturing in the presence of estradiol  

Since a reproducible purification method had not been achieved, 500nM E2 was 

added to the culture medium (LB broth; Materials and Methods) during the 

expression of ERα. This was in addition to incubating the lysate with 10µM E2 (20 

minutes) after sonication. It was hypothesised, like with incubation of the lysate, that 

the presence of E2 during culturing would stabilise the ERα hence preventing 

degradation and improving purification results. The sonication time was also 

increased to a total time of 15 minutes and 30s, employing 30s intervals with 1-

minute breaks, to encourage DNA and membrane fragmentation with the hypothesis 

that this would also improve purification yields. All other parameters, including 

resuspension and column equilibration, in buffer without any imidazole, were kept 

the same.  

For both modified expression protocols (Section 10.1.2), culturing in the presence of 

E2, degradation was observed from 2hrs post-induction (Figure 17A and B). On the 

SDS-PAGE gels, this was observed as a band intensity decrease despite the same 

loading volumes (Figure 17A and B). This was unexpected for modified protocol 1, 

since during the equivalent expression, without E2 in the culture medium, 

degradation was not observed (Figure 15A). However, degradation from 2hrs post-

induction during modified protocol 2 had previously been observed, in the absence 

of E2 (Figure 16D), and this result was therefore unsurprising.   
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Figure 17: Expression results when culturing in the presence of estradiol  

(A) Expression results when following modified protocol 1, culturing in the presence of 
500nM E2 (discussed in text). (B), as for (A), except following modified protocol 2.  

Both modified expression protocols were hence refined to prevent degradation 

during expression. Cells were only cultured for: 1) 2hrs at 18°C post-induction, 

inducing with 0.5mM IPTG and 2) 2hrs at 37°C post-induction, inducing with 1mM 

IPTG. Increased sonication time and incubating the cell lysate with 10µM E2 

remained the same. These protocols will be referred to modified protocol 3 and 4 

respectively. Expression following these protocols expectedly prevented degradation 

during culturing (data not shown).  

Nickel-ion affinity chromatography was performed on the supernatant from both 

modified protocol 4 and 3, in this order. However, affinity chromatography did not 

yield purified protein due to an air block in ÄKTATM Pure chromatography system, 

which meant no high (400mM) imidazole buffer was being injected into the 

chromatography system (data not shown). After purging, this issue was resolved, and 

the resulting elution profile/chromatogram is shown in Figure 18C. The peaks and 

troughs of the chromatogram have been aligned with the SDS-PAGE gel (Figure 18A 

and B) through the use of coloured boxes (Figure 18). 
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Figure 18: Affinity chromatography and gel filtration results following purging of the 
ÄKTATM pump 

Affinity chromatography results for the purification of ERα after purging pump B, 
corresponding to modified expression protocols 4 (A) and 3 (B), as discussed in text. (C) 
Chromatogram corresponding to affinity chromatography, showing the elution profile for 
purification. Corresponding regions of the chromatogram and SDS-PAGE analysis are shown 
using colour-coordinated boxes. (D) Gel filtration results corresponding to pooled affinity 
chromatography fractions A1-12.  

When monitoring the Abs280 using the ÄKTATM Pure chromatography system, 

absorbance values were high in fractions A1-2 before decreasing in fractions A3-5 

(Figure 18C). Similarly, in fractions A6-7, absorbance values are high before a gradual 

decline in Abs280 in elution fractions A8-12 (Figure 18C). This was supported by SDS-

PAGE band intensities following the same pattern (Figure 18A and B).  

In the SDS-PAGE gel, the positions of protein bands in line with the 70kDa marker (as 

well as the 35kDa marker) have been marked by arrows (Figure 18A and B). Protein 

bands in line with the 70kDa marker likely correspond to ERα at ~67kDa 

(Supplementary Table 7). Elution fractions A1-2 likely correspond to elution of ERα 

from the first affinity chromatography run (corresponding to modified protocol 4), as 

shown in Figure 18A. Elution fractions A3-5, however, likely correspond to 

degradation between affinity chromatography runs as there is a decrease in Abs280 

(Figure 18C) and band intensity (Figure 18A). Elution fractions A6-12 likely represent 

elution of ERα from modified protocol 3, where the highest protein concentration is 

in fractions A6-7, supported by both SDS-PAGE band intensities (Figure 18A and B) 

and Abs280 readings (Figure 18C). 

Gel filtration (Materials and Methods) on pooled affinity fractions A1-12 

demonstrates that purified ERα elutes in gel filtration fraction C9 (red arrow; Figure 

18D), where the corresponding protein band is  estimated at ~87kDa using the SDS-

PAGE calibration curve. Following concentration of appropriate gel filtration 

fractions, a final protein concentration was achieved of 15.8mg/mL. However, 

precipitation was observed in vitro, and, despite centrifugation, large variability in 

absorbance values was observed hence questioning the reliability of the protein 

concentration estimate. Expectedly, when measuring the protein concentration 



Hannah Reed 65 

approximately a week after purification (after centrifugation), a negative absorbance 

was recorded, demonstrating precipitation. This was despite a clear band on the SDS-

PAGE gel (Figure 18D). This was unsurprising since degradation had previously been 

observed following successful purification (Section 1.1.1). 

Successful purification of ERα, when culturing in the presence of 500nM E2 (Figure 

18D), supported the hypothesis that E2 stabilises native ERα during folding. 

Although, there is still localisation to the pellet in line with the 70 and 35kDa markers 

(Figure 18A) suggesting a degree of degradation and/or precipitation even with E2 

present. Both successful expressions (modified protocols 3 and 4) involved culturing 

for 2hrs post-induction, re-iterating that shorter culturing times are likely to be 

preferential (Figure 15D), as well as the presence of E2 in the culture medium. 

However, differences in temperature do not appear to significantly influence 

purification results (Figure 18A and B).  

10.1.5 Regular additions of estradiol to the culture medium  

During modified protocol 1 (culturing at 18°C overnight post-induction and inducing 

with 0.5mM IPTG) with E2 present in the culture medium, there is degradation of 

ERα 2hrs after induction (Figure 17A) – something that is not observed with E2 

absent from the culture medium (Figure 15A). This is surprising since E2 is 

hypothesised to stabilise native ERα during folding and hence it is unexpected to see 

that the presence of E2 in the culture medium promotes degradation. However, it 

can be hypothesised that this result is due to the degradation of E2 itself during 

overnight culturing. To investigate this, 500nM E2 was added continually to the 

culture medium during expression (modified protocol 1). E2 was added at the 

following time points: 0hr, 3hr, 3hr post-induction and 4.5hr post-induction. 

Figure 19A demonstrates that regular additions of E2 prevents degradation of ERα 

during culturing, as expected. Subsequently, there is purification of ERα by affinity 

chromatography, where the lysate was incubated with E2 prior to purification (as 

discussed in Section 10.1.4). This was observed on 2 distinct occasions, but protein 

concentrations are low demonstrated by weak band intensities (Figure 19B and C). 
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This re-iterates that the presence of E2 in the culture medium improves purification 

results and that shorter culturing times are preferential.  

 

Figure 19: Expression and affinity chromatography results following regular additions of 
500nM estradiol to the culture medium  

(A) Expression results following modified protocol 1, where the cell lysate was incubated 
with 10µM E2 and 500nM E2 added to the culture medium at 0hr, 3hr, 3hr post-induction 
and 4.5hr post-induction. (B) and (C). Affinity chromatography results, from 2 distinct 
expressions, following this protocol. Purified ERα is marked with a red arrow.  

Despite the range of expression and purification conditions trialled, it was not 

possible to gain a high yield of stable purified protein for biochemical and biophysical 

characterisation. Efforts were therefore turned to another transcription regulator 

associated with MVI – NDP52 – which will be discussed in the following sections. 
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10.2 Biochemical and biophysical characterisation of nuclear dot 

protein 52 

10.2.1 Expression and purification of NDP52 structural domains  

To biochemically and biophysically characterise structural domains of NDP52, 

residues 1-190 and 120-end were expressed. These domains largely represent the N-

terminal SKICH domain (1-190) and the remainder of the protein (120-end), with 

overlap (Figure 20). These protein domains will be referred to as NDP52 1-190 and 

120-end throughout the remainder of the document.  

 

Figure 20: Schematic of NDP52 domains – NDP52 1-190 (A) and NDP52 120-end (B) – not 
drawn to scale 

10.2.1.1 Modified standard expression protocol  

NDP52 1-190 and NDP52 120-end were expressed following the standard expression 

protocol (Materials and Methods), modified so that cells were incubated at 27°C 

overnight. This decision was based on previous NDP52 expressions performed in the 

Toseland laboratory. Expression was successful in both cases, where protein bands 

are observed between the 35 and 55kDa markers (blue arrow; Figure 21A) and in line 

with the 25kDa marker (red arrow; Figure 21B), consistent with the predicted MWs 

of NDP52 120-end and 1-190 at ~40kDa and ~23kDa respectively (Supplementary 
Table 7). Degradation was observed for both NDP52 120-end and 1-190 (Figure 21A 

and B) as a decrease in band intensity from 3hrs post-induction, which was more 

apparent for NDP52 120-end (Figure 21A), expectedly considering its length. 

A

SKICH Coiled-Coil ZF2ZF1
1 128 345

NDP52 1-190

395134 446

B

SKICH Coiled-Coil ZF2ZF1
1 128 345

NDP52 120-End

395134 446
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Correspondingly, no protein was obtained by affinity chromatography for NDP52 

120-end, which was confirmed by SDS-PAGE analysis and negative Abs280 readings 

(data not shown). 

However, following affinity chromatography and gel filtration (Figure 21C and D), a 

high protein concentration was obtained for NDP52 1-190 suggesting degradation 

during expression was insignificant. On repeat purifications, similar results to Figure 

21C and D were observed (data not shown). Notably, gel filtration did not result in 

completely pure fractions for NDP52 1-190 due to the presence of protein bands 

other than those in line with the 25kDa marker, such as a ~70kDa band marked with 

a green arrow (Figure 21D). This may suggest a potential protein complex or 

oligomerisation.  

 

Figure 21: Expression of NDP52 120-end and 1-190 following the standard expression 
protocol modified to culture at 27°C overnight  

Expression results for NDP52 120-end (A) and NDP52 1-190 (B), where a representative 
expression SDS-PAGE gel for NDP52 1-190 is shown. Affinity chromatography (C) and gel 
filtration (D) results for NDP52 1-190. Elution fractions are numbered.  
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10.2.1.2 Modified expression protocol for NDP52 120-end  

In an attempt to mitigate degradation, in order to purify NDP52 120-end, the 

standard expression protocol, as described in Materials and Methods, was modified 

so cells were only cultured for 3hrs post-induction at both 18°C and 37°C. NDP52 120-

end was expectedly successfully expressed with both modified protocols (Figure 22A 

and E). Following cell lysis, NDP52 120-end localises to both the soluble and insoluble 

cell fractions (for both modified protocols) demonstrating solubilisation of NDP52 

120-end and some potential degradation (Figure 22B and F). Again, for both modified 

protocols, affinity chromatography (Figure 22B, C and F) and gel filtration (Figure 22D 

and G), yielded purified NDP52 120-end. Although, complete purification was not 

obtained for neither expression protocol (Figure 22D and G) as multiple protein 

bands are present on SDS-PAGE gels, much like NDP52 1-190, such as those in line 

with the 130 and 100kDa markers (again marked with green arrows). Again, 

potentially reflecting oligomerisation or binding partners of NDP52 120-end.  

When repeating NDP52 120-end expressions, cells were cultured for 3hrs at 18°C 

post-induction. Correspondingly, all NDP52 120-end results presented from this 

point onwards refer to these expression conditions. This decision was based on the 

observation that higher protein concentrations were obtained at this temperature, 

suggesting it is optimal. 
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Figure 22: Modified expression protocol results for NDP52 120-end 

Expression (A), affinity chromatography (B and C) and gel filtration (D) results corresponding to the expression protocol where cells were cultured for 3hrs at 
18°C post-induction but otherwise following the standard expression protocol. Representative expression (E), affinity chromatography (F) and gel filtration 
(G) results when culturing cells at 3hrs at 37°C post-induction. Elution fractions are numbered, and expression gel headings correlate to timings relative to 
induction. 
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10.2.2 Secondary structure content of NDP52 1-190 and 120-end  

CD was performed on NDP52 1-190 and 120-end to assess protein folding after 

purification, to determine if further characterisation was possible. NDP52 1-190 

(0.1mg/mL diluted in 50mM Tris-HCl pH 7.5, 50mM NaCl) was shown to be 0.7% α-

helical and 44% β-strand by analysis with K2D368 (Figure 23B). These estimates are 

consistent with the expected secondary structure of the SKICH domain (Figure 23A), 

suggesting purified NDP52 1-190 is suitable for biochemical and biophysical analysis 

(folded correctly).  

Fitting the Boltzmann Equation at 215nm (Materials and Methods), gave a midpoint 

temperature (Tm) of 57±0.2°C (Figure 23D). This is clear on Figure 23C, where there 

is an obvious shift in thermal stability between 50 and 60°C. The midpoint 

temperature is the temperature where 50% of protein molecules are said to be in an 

unfolded state. This demonstrates that NDP52 1-190 is stable at RT, which 

fluorescence-based binding assays are performed at.  

 

Figure 23: Circular dichroism analysis for NDP52 1-190  

(A) Cartoon schematic of secondary structure content of full-length NDP52, with residues 1-
190 shown in a red box (not drawn to scale). (B) Full spectrum measurements for 0.1mg/mL 
NDP52 1-190 (diluted in 50mM Tris-HCl pH 7.5, 50mM NaCl) at 20°C. (C) Circular dichroism 
spectra for 1mg/mL NPD52 1-190 (in gel filtration buffer) at varying temperatures (20-80°C) 
used to determine the melting temperature by fitting to the Boltzmann Equation (D).  

B

C D

A

SKICH Coiled-Coil ZF2ZF1
1 128 345 395134 446
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NDP52 120-end (0.1mg/mL diluted in 50mM Tris-HCl pH 7.5, 50mM NaCl), however, 

was shown to be 61% α-helical and 4% β-strand according to K2D368 (Figure 24B). 

Again, this is consistent with the expected secondary structure content of NDP52 

120-end, where the coiled-coil region is α-helical, whilst the ZFs contribute anti-

parallel β-sheet (Figure 24A). The Boltzmann Equation was fitted at 222nm giving a 

Tm of 50±0.2°C (Figure 24C and D). Again, this demonstrates NDP52 120-end is folded 

correctly and stable enough for further characterisation.  

 

Figure 24: Circular dichroism analysis for NDP52 120-end  

(A) Red box highlighting predicted secondary structure content of NDP52 120-end (not 
drawn to scale). 0.1mg/mL NDP52 120-end (diluted in 50mM Tris-HCl pH 7.5, 50mM NaCl) 
was subjected to circular dichroism analysis at 20°C (B). 1mg/mL NDP52 120-end, diluted in 
gel filtration buffer, was also subjected to circular dichroism analysis in the range of 20-80°C 
(C). (D) The Boltzmann Equation was fitted to circular dichroism data at 222nm to estimate 
the melting temperature for NDP52 120-end.  

10.2.3 NDP52 structural domain DNA-binding affinities  

Having successfully purified both NDP52 1-190 and 120-end, fluorescence intensity 

binding assays, as described in the Materials and Methods, were employed to 

investigate binding affinities for different structural domains of NDP52. Previous 

work in the Toseland laboratory has shown that full-length NDP52 binds dsDNA with 

B
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SKICH Coiled-Coil ZF2ZF1
1 128 345 395134 446



Hannah Reed 73 

high affinity but, here, efforts were made to further refine DNA-binding 

characteristics of the protein domains. Binding curves for positive and negative 

controls are shown in Supplementary Figure 41 and Figure 42.  

Figure 25A and B show that NDP52 1-190 and 120-end bind to ds40 with high affinity, 

where both have a dissociation constant (KD) of <100nM when fitted to the quadratic 

equation. KD estimates in this order of magnitude are expected given NDP52’s role in 

transcriptional regulation, where tight binding to DNA would be expected. Like with 

ds40, NDP52 120-end binds to ds15 with high affinity with a KD of 1.1±0.3µM (Figure 

25D). Although GraFit estimates the KD for 1-190 binding to be 188±157nM, the error 

in the prediction is large owing to poor fitting of the binding curve meaning that an 

accurate KD cannot be determined (Figure 25C).  

 

Figure 25: Binding assay results for NDP52 1-190 and 120-end  

5µM NDP52 1-190 (A) and NDP52 120-end (B) were titrated against 100nM fluorescein-
labelled ds40. 10µM NDP52 1-190 (C) and NDP52 120-end (D) were titrated against 100nM 
fluorescein-labelled ds15. Data presented is an average of at least 3 separate experiments. 
Dissociation constant (KD) estimates are shown.  

A B

KD < 100nM

KD 188±157nM
KD 1.1±0.3µM

C

KD < 100nM

NDP52 1-190 NDP52 120-End

ds40

ds15

D
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10.2.4 Investigating NDP52 oligomeric states using SEC-MALS  

To investigate oligomerisation of NDP52 and make predictions about its tertiary 

structure, SEC-MALS was performed on NDP52 1-190 and 120-end domains. Figure 

26A and B respectively show the SEC-MALS elution profiles for NDP52 1-190 and 

NDP52 120-end at 1, 2.5 and 5mg/mL. For both NDP52 1-190 and 120-end, the 

average MW of peak 2 was taken at 2.5mg/mL and 5mg/mL, whereas the average 

MW for peak 1 was taken using all protein concentrations. Anisotropic readings were 

excluded from the data analysis (Supplementary Figure 43).  

For NDP52 1-190, peak 1 has an average MW of 19kDa, while peak 2 an average MW 

of 42kDa (Figure 26A). Therefore, peak 2 for NDP52 1-190 is approximately double 

that of peak 1. Similarly, for NDP52 120-end, peak 1 has an average MW of 33kDa 

whereas peak 2 has an average MW of 74kDa (Figure 26B); again, peak 2 has 

approximately double the MW of peak 1. Notably, peak 2 for NDP52 120-end does 

not follow a characteristic bell-shape curve, with a shoulder marked by a grey box in 

Figure 26B. This shoulder is at the limit of the resolution of the column, suggesting 

aggregation. This shoulder was hence excluded from calculations determining the 

MW of peak 2.  
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Figure 26: SEC-MALS elution profiles for NDP52 1-190 and 120-end  

(A) Elution profile for NDP52 1-190 at 1, 2.5 and 5mg/mL coloured blue, red and black 
respectively. (B) Same for (A) except for NDP52 120-end.  The shoulder of peak 2 for NDP52 
120-end is marked by a grey box. Peak limits used for analysis are defined in magenta for 
peak 1 and cyan for peak 2. 
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10.2.5 eGFP-labelled NDP52 expression and purification  

10.2.5.1 Modified standard expression protocol 

Results from SEC-MALS elucidated that NDP52 is likely dimeric in vitro (see 

Discussion). Efforts were therefore made to further investigate the arrangement of 

the NDP52 dimer, namely whether it adopts a parallel or anti-parallel form, to further 

elucidate the role of the protein in transcriptional regulation. For instance, as an anti-

parallel dimer, NDP52 may act as a linker between DNA and another protein. 

Whereas a parallel conformation may confer tight binding to DNA.  

For these investigations, a novel GFP-based reporter assay was developed, using 

cryogenic super-resolution microscopy. The concept behind this design was that 

distances between GFP fluorophores could be directly measured. Both N-terminally 

eGFP-tagged NDP52 (GFP-NDP52; Supplementary Table 7) and doubly-tagged NDP52 

(GFP-NDP52-GFP; Supplementary Table 7) were therefore required to act as the test 

sample and positive control respectively (see Section 10.2.7). GFP-NDP52 was also 

required for TIRF microscopy to support investigations into the oligomeric state of 

NDP52.  

eGFP-tagged variants of NDP52 were expressed in E.coli following the standard 

expression protocol, modified so cells were cultured at 27°C post-induction, like 

initial expression conditions for NDP52 1-190 and 120-end. Affinity chromatography 

was performed using stepwise increases of imidazole (Materials and Methods). The 

affinity chromatography column was equilibrated in Buffer A, without any imidazole, 

to avoid eGFP-tagged NDP52 variants eluting in low imidazole concentrations (as 

observed for ERα previously). This decision was taken in the interest of time for 

collaboration work. All purifications for eGFP-tagged NDP52 variants, presented from 

here onwards, therefore employ 0M imidazole Buffer A and 0M imidazole 

resuspension buffer (Materials and Methods).  
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GFP-NDP52 was successfully expressed (Figure 27A) and localised to the supernatant 

(Figure 27B), demonstrating solubility. Bands consistent with the expected MW of 

GFP-NDP52 at ~80kDa (Supplementary Table 7) are marked with arrows (Figure 27A 

and B). Expectedly, GFP-NDP52 was purified by affinity chromatography (Figure 27C). 

However, the presence of multiple protein bands at lower MW suggests degradation 

(Figure 27C). GFP-NDP52 was, therefore, expectedly lost during gel filtration (gel not 

shown) likely due to degradation.  

The successful expression of GFP-NDP52-GFP (~100kDa; Supplementary Table 7), 

however, is questioned by the absence of a clear expression band around the 100kDa 

marker (Figure 27D). However, following affinity chromatography, protein bands 

consistent with the expected MW (red arrow; Figure 27E) are observed in both the 

pellet and supernatant (demonstrating solubility), as well as in elution fractions, 

hence confirming successful expression. However, band intensities (Figure 27E) for 

affinity chromatography elution fractions were weak and accordingly, upon 

determining protein concentration, negative Abs280 readings were recorded. 



Hannah Reed 78 

 

Figure 27: Expression and affinity chromatography results for GFP-NDP52 and GFP-NDP52-GFP culturing at 27°C post-induction 

Expression of GFP-NDP52 (A) following a modified version of the standard expression protocol (culturing at 27°C post-induction) and analysis of the 

supernatant and pellet (B) following cell lysis. (C) Affinity chromatography results for GFP-NDP52, namely equilibrating the Ni Sepharose® column with 0M 

imidazole Buffer A and using stepwise elutions to elute protein fractions. Expression (D) and affinity chromatography results (E) for GFP-NDP52-GFP using the 

same conditions as for GFP-NDP52. The expected position of the GFP-NDP52-GFP expression band is marked by an arrow (D).  
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10.2.5.2 Standard expression protocol 

In an attempt to improve purification yields for both GFP-NDP52 and GFP-NDP52-

GFP, the post-induction culturing temperature was reduced from 27°C to 18°C 

(standard expression protocol; Materials and Methods). The hypothesis being this 

would slow expression rate and hence improve purification results. Both GFP-NDP52 

and GFP-NDP52-GFP were expectedly successfully expressed following this 

expression protocol (data not shown) and purified by affinity chromatography (using 

0M imidazole equilibration buffer). Although, unexpectedly, the degree of 

purification by affinity chromatography (Figure 28A and C) was less compared to 

culturing at 27°C post-induction observed previously (Figure 27C and E). 

GFP-NDP52 and GFP-NDP52-GFP were then subjected to gel filtration, and unlike 

culturing at 27°C post-induction, yielded purified protein (Figure 28B and D). Notably, 

a higher degree of purification was observed for GFP-NDP52-GFP (elution fraction 

C5; Figure 28D) compared to GFP-NDP52 (elution fraction C2; Figure 28B). Again, 

complete purification was not observed for GFP-NDP52 nor GFP-NDP52-GFP (Figure 

28B and D). 
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Figure 28: Affinity chromatography and gel filtration results for GFP-NDP52 and GFP-NDP52-GFP following the standard expression protocol  

Affinity chromatography and gel filtration results for GFP-NDP52 (A and B) and GFP-NDP52-GFP (C and D) respectively.  
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10.2.5.3 Gradient elution affinity chromatography 

To achieve greater resolution and yield pure fractions (not achieved prior), affinity 

chromatography was performed using a gradient elution (from 0-100% Buffer B) 

compared to stepwise elutions used previously (Materials and Methods). Similarly, 

gel filtration was performed at a lower flowrate of 0.2mL/min compared with 

1mL/min used previously. The protocol for expressions, culturing at 18°C post-

induction (standard expression protocol), as well as equilibrating the affinity 

chromatography column in 0M imidazole Buffer A, remained the same. Obtaining 

pure fractions was important for further characterisation using cryogenic super-

resolution microscopy and TIRF. Results are shown in Figure 29. 

 

Figure 29: Affinity chromatography (gradient elution) and gel filtration (0.2mL/min 
flowrate) purification results for GFP-NDP52 and GFP-NDP52-GFP  

Affinity chromatography and gel filtration results for GFP-NDP52 (A and B) and GFP-NDP52-

GFP (C and D) respectively. Elution fractions C3 and C6, referred to in text, are marked with 

a red box. Other affinity chromatography and gel filtration elution fractions are labelled, as 

are molecular weight markers of interest.  
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Following the modified protocols for affinity chromatography and gel filtration, pure 

fractions C3 and C6 were obtained for GFP-NDP52 (Figure 29B) and GFP-NDP52-GFP 

(Figure 29D) respectively. This was expected since the modifications were designed 

to improve resolution of fractions. Unfortunately, due to the low protein 

concentration, accurate secondary structure content predictions from CD analysis 

could not be made for GFP-NDP52 nor GFP-NDP52-GFP.   

10.2.6 TIRF microscopy  

To further investigate if NDP52 forms a dimer in vitro, 5nM GFP-NDP52 was used for 

TIRF microscopy (Materials and Methods). Figure 30A shows an even distribution of 

GFP-NDP52 at 5nM. Photobleaching events were monitored using photobleaching 

analysis described in Materials and Method. It is hypothesised that a single 

photobleaching event likely represents a monomeric GFP-NDP52 (Figure 30B), while 

double photobleaching events likely represent dimeric NDP52 (Figure 30C). Example 

single and multiple photobleaching events are shown (Figure 30D and E). 
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Figure 30: TIRF microscopy analysis used to assess oligomeric state of NDP52 

(A) 5nM GFP-NDP52 plated onto Etch-cleaned coverslips and imaged using a TIRF microscope. Yellow arrows highlight positions of single GFP-NDP52 
molecules. Schematic of GFP-NDP52 in monomeric (B) and dimeric (C) form on the coverslip. Results from photobleaching analysis showing representative 
single (D) and double photobleaching events (E). Arrows approximately denote where end-to-end time measurements were taken, as well as the drop in 
intensity. Blue circles represent fluorescent GFP-NDP52 monomers, while white circles represent photobleaching. (D) and (E) inspired by Cabukusta et al, 
2016.76  
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Figure 31A shows that upon incubation with 100nM DNA (non-fluorescent ds40; 

Table 4) more single photobleaching events are observed, with the total number of 

fluorescent events (both single and double photobleaching events) more than 

doubling from 104 to 211 events. However, the percentage of dimers does not 

change considerably both in the presence and absence of DNA at 1% and 0.5% 

respectively, where only 1 dimer was observed in both datasets (Figure 31A). Figure 

31B also demonstrates that both in the presence and absence of DNA, there is a right 

(positive) skew, showing that more GFP-NDP52 molecules exhibit a short lifetime. 

However, in the presence of DNA, the number of GFP-NDP52 molecules exhibiting a 

longer lifetime increases (Figure 31B). In percentages, this equates to 3% of single 

photobleaching events with a lifetime >5s (expected for GFP) in the absence of DNA 

but 7% in the presence of DNA (more than double). There is also an increase in the 

mean lifetime of fluorescent events (single photobleaching events) from 1.4±0.1s to 

2±0.2s in the presence of DNA (error denotes the standard error of the mean). The 

mode lifetime also increases from 0.7s to 1s, as does the maximum lifetime from 6s 

to 20s. 
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Figure 31: Results of photobleaching analysis with TIRF microscopy  

(A) Bar chart showing how the total count of single and double photobleaching events 
(corresponding to GFP-NDP52 monomers and dimers) changes in the presence and absence 
of DNA (100nM non-fluorescent ds40). (B) Bar chart showing the fluorescence lifetime of 
single photobleaching events, again in the presence and absence of DNA.   

10.2.7 Preliminary results for a novel GFP-based reporter assay using cryogenic 

super-resolution microscopy  
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resolution) was employed. This technique will be referred to as cryogenic stochastic 

optical reconstruction microscopy (cryo-STORM), which makes use of photoblinking 

properties of fluorophores. It was hypothesised that in the parallel conformation, the 

distance between eGFP tags would be approximately 5nm, while in the anti-parallel 

conformation approximately 30-40nm (Figure 32). Therefore, clusters a distance of 

~40nm apart would be expected for anti-parallel GFP-NDP52 homodimers. These 

estimates were based on previous studies with dynamic light scattering (DLS) in the 

Toseland laboratory. To investigate if NDP52 forms a parallel or anti-parallel dimer in 

vitro, pure gel filtration fractions (Section 10.2.5.3) were used for GFP-NDP52 and 

GFP-NDP52-GFP.  

 

Figure 32: Schematic of N-terminally eGFP-tagged NDP52 in parallel and anti-parallel 

dimeric states 

3 datasets were obtained for GFP-NDP52-GFP (positive control) and GFP-LifeAct 

(negative control), while only 1 dataset was obtained for GFP-NDP52 (test data). 

Importantly, this is preliminary work hence why few datasets were obtained. Figure 

33 shows raw data for cryo-STORM corresponding to GFP-NDP52 (test sample).  
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Figure 33: Raw cryo-STORM data for GFP-NDP52 (test sample)  

(A) Raw cryo-STORM data for GFP-NDP52, taken at 1, 500 and 1000 frames. The first pane 
shows the full dynamic range while the second pane shows the bottom 10% of the dynamic 
range. (B) A maximum intensity projection of 1000 frames of cryo-STORM data showing the 
full dynamic range of the dataset with the TetraSpeck™ fiducial. The red inset extracted in 
(C) has been re-scaled to show the bottom 10% of the dynamic range, showing NDP52 single 
molecules. The valid single molecule detections from ThunderSTORM are overlaid in red on 
extracted inset (D). (E) Enlargement of (D), where single GFP-NDP52 molecules are circled in 
yellow, multiple (clusters) of GFP-NDP52 circled in white and TetraSpeck™ beads highlighted 
with cyan arrows.  

Figure 33E shows that there is a mixed population of single GFP-NDP52 molecules 

and GFP-NDP52 clusters. However, under non-cryogenic conditions, at the same 

concentration, only single GFP-NDP52 molecules are observed (Figure 30A) 

suggesting that GFP-NDP52 aggregates under cryogenic conditions. GFP-tagged 

NDP52 molecules are also currently in 3D orientation, where immobilisation 

uniformly to the surface would improve distance measurements (Discussion). 

Nevertheless, some conclusions can be made regarding similarities in clustering 

behaviour. Figure 34 shows a Kinhom(H’) plot comparing the H(r) values (Materials 

and Methods) for different conditions tested. The black curve (pos_ctrl-neg_ctrl; 

Figure 34) shows that there is a difference in clustering behaviour comparing GFP-

NDP52-GFP (positive control) and GFP alone (negative control). The blue curve 

(test_cond-neg_ctrl; Figure 34) also shows that there is a difference in clustering 

behaviour comparing GFP-NDP52 (test condition) and GFP-LifeAct (negative control). 

However, interestingly, when comparing GFP-NDP52 (test condition) to GFP-NDP52-

GFP (positive control), the H’(r) value is approximately zero (test_cond-pos_ctrl; red 

curve; Figure 34), suggesting that GFP-NDP52 and GFP-NDP52-GFP cluster in the 

same way.
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Figure 34: Kinhom(H’) plot for cryogenic super-resolution microscopy conditions  

Positive, negative and test conditions are discussed in text. Conditions being compared are 
shown in the figure legend. Data analysis and graph by Michael Hirsch. 

10.2.8 SAXS analysis on NDP52 

Currently, there are no X-ray crystallography structures for full-length NDP52. 

Therefore, SAXS was employed for structural investigations. Although, super-

resolution microscopy was initially employed to investigate the dimeric 

conformation of NDP52, experimental and data analysis limitations (Discussion), 

meant that SAXS served as a good alternative to also probe the dimeric orientation 

of NDP52.  

Full-length NDP52 was successfully expressed following the standard expression 

protocol and purified using nickel-ion affinity chromatography and gel filtration 

(Materials and Methods), as shown in Figure 35. Elution fractions C3-C12 were 

pooled and concentrated to a final concentration of 5mg/mL for SAXS.  
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Figure 35: Gel filtration of full-length NDP52, expressing following the standard expression 

protocol 

Figure 36 shows the signal plot overlay with Rg estimates from the Guinier equation 

for peak 1 and 2 of full-length NDP52 SAXS data. Using the Guinier equation, values 

for Rg and intensity at 0° scattering angle (I(0)) can be directly estimated (from SAXS 

images above the buffer blank threshold). This can provide information relating to 

the quality of the sample (Materials and Methods). Rg ‘describes the mass distribution 

of a macromolecule around its centre of gravity’75 and can provide important 

information relating to the shape of the macromolecule. From the Guinier fitting, a 

straight line for Rg (for the sample peak) is indicative of a homogeneous sample and 

hence enables assessment of the quality of the data to be made.  

Figure 36B shows that, for peak 1, the Rg values are extremely varied, suggesting 

aggregation and heterogeneity. However, for peak 2, the Rg values are largely 

constant enabling fitting of a straight line (red dashed line; Figure 36C), suggesting 

homogeneity of the sample.  
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Figure 36: Guinier fitting for full-length NDP52 used to estimate I(0) and Rg values 

(A) SEC-SAXS signal plot for full-length NDP52 (orange) overlay with Rg estimates from 
Guinier fitting (blue). In the signal plot, each point represents the integrated area of the 
ration of the sample SAXS curve to the estimated background. (B) and (C) represent zoomed-
in versions of plot (A) for peak 1 and 2, where limits are defined as shown in (A). The red 
dashed line in (C) shows an approximate fit for Rg values.  

Figure 37 shows the intensity plots for peak 1 and 2 corresponding to raw and 

averaged SAXS data. Noticeably, for peak 1, both curves are noisier, especially at 

higher q (scattering vector, measured in Å-1) values, compared to peak 2. This would 

be expected for a less homogenous sample, consistent with the Guinier fitting.  
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Figure 37: Intensity plots for peak 1 and 2 of NDP52 sample  

(A) Raw SAXS data from the signal plot (peak 1), accounted for buffer, plotted in reciprocal 
space as intensity values vs. q (scattering vector). (B) Intensity plot of averaged SAX frames 
for peak 1. Averaged (black) and median (cyan) buffer frames are subtracted from the 
averaged sample frames. (C) and (D), as for (A) and (B), but for peak 2.  

Figure 38 shows the intensity plot (Figure 38B) and P(r) function (Figure 38C) used to 

generate a SAXS envelope for NDP52 (Figure 38D). The intensity plot, as described in 

Materials and Methods, is plotted in reciprocal space (Å-1) and is hence converted to 

real space (Å) by means of an indirect FT to create a P(r) model. The shape of the P(r) 

model is indicative of the shape of the protein; for instance, a bell-shaped curve is 

indicative of a globular structure. The shape of the P(r) model for full-length NDP52 

reveals an elongated structure (Figure 38C), which is supported by the SAXS 

envelope, where full-length NDP52 is seen to adopt an asymmetric linear/elongated 

shape (Figure 38D). This is expected considering SEC-MALS data (Figure 26). From 

SAXS, NDP52 is also predicted to have an end-to-end length of 50nm (Figure 38D), 

consistent with expectation from previous DLS experiments with NDP52, where the 

expected end-to-end length is ~40nm. 
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Figure 38: SAXS envelope for full-length NDP52  

(A) Intensity plot of averaged SAX frames for peak 2 (as for Figure 37D). (B) Truncated intensity plot for P(r) function analysis. Fitting is shown by the red 
line. (C) Refined P(r) function corresponding to (B) and resultant SAXS envelope averaged from bead models (D). The SAXS envelope is shown in different 
orientations.  
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11 Discussion  

11.1 Culturing in the presence of estradiol significantly improves 

purification results for ERα 

Many proteins of interest are present in low abundance in vivo, insufficient for 

biochemical studies, hence prompting many researchers to turn to recombinant 

methods and expression in a foreign host.77 This is particularly true for mammalian 

cells, where it is well-characterised that steroid hormones are expressed at low levels 

(although over-expression can occur in cancer).64 E.coli as an expression system has 

long been employed for such work as it demonstrates many advantages such as short 

generation times, efficient nutrient conversion and vast practical and theoretical 

knowledge regarding the organism’s biochemistry, genetics and physiology.77  

In this study, E.coli was employed for expression of recombinant hERα for reasons 

outlined above. Previously, the expression and purification of the LBD of ERα has 

been optimised in E.coli BL21 DE3 cells using a pET expression vector78, as well as in 

E.coli TOPP-3 cells77. Similarly, full-length ERα has been purified from E.coli strains 

AR58 and AR6864, as well as yeast66 (Saccharomyces cerevisiae), as a ubiquitin-fused 

protein. While Eiler et al (2001)78 employ the same expression system as that used in 

this study (E.coli BL21 DE3 cells), only the LBD is purified; similarly, when full-length 

ERα is purified, it is so only as a ubiquitin-fusion protein. Here, however, for the first 

time in the literature, full-length ERα (without ubiquitin-fusion) is purified using the 

E.coli BL21 strain. 

Different expression and purification conditions were trialled to optimise the 

purification yield for ERα. A summary of these steps is shown in Figure 39. Culturing 

in the presence of 500nM E2 and increased sonication time markedly increased 

purification results compared to other methods, including incubating the lysate with 

10µM E2 prior to sonication (only) as seen in Figure 16. This was true culturing both 

at 37°C and 18°C for 2hrs post-induction (Figure 18). This result is consistent with 

other studies that have demonstrated the presence of this ligand during culturing 

(both at 500nM and 10µM) improves purification results.77,78 It is believed that E2 
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increases the stability of native ERα during folding77,78, which, in addition to increased 

solubility facilitated by longer sonication times, improves the purification result. For 

instance, by increasing the stability of native ERα, there is a reduced population of 

partially denatured or unfolded ERα prone to aggregation.77  

 

 

Figure 39: Summary of optimal expression and purification conditions used for ERα  

Optimal conditions used are shaded in grey. Figure inspired by Eiler et al, 2001.  

Interestingly, degradation of ERα is observed in the presence of E2 in the culture 

medium (Figure 17A) but not in its absence (Figure 15A) when following modified 

protocol 1 (culturing at 18°C overnight post-induction and inducing with 0.5mM 

IPTG). It was hypothesised that this was due to the degradation of E2 itself during 

culturing. Results presented in this study show that regular additions of E2 during 

culturing prevents such degradation of ERα (Figure 19), supporting the hypothesis 

that E2 is important for stabilising ERα during folding. However, ERα degrades both 

in the presence (Figure 17B) and absence (Figure 16D) of E2 in the culture medium 

when following modified protocol 2 (culturing at 37°C for 3hrs post-induction and 

inducing with 1mM IPTG). Presumably, this is because the expression time is too 
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short for degradation of E2 during culturing and there must be other contributing 

factors towards the degradation of ERα. It is hypothesised, therefore, that even in 

the presence of E2 during culturing, ERα is highly unstable and/or may be being 

degraded due to partial folding (due to the expression of a human gene in a bacterial 

expression system). This is strengthened by the observation that even when culturing 

in the presence of E2, there is consistently localisation to the insoluble cell fraction 

(Figure 18). Other factors that likely contribute towards difficult purification of full-

length ERα are discussed in the following section.  

11.2 Full-length ERα purification: limitations and future direction  

Insolubility, aggregation, instability and degradation were major problems faced 

during optimisation and prevented further work on full-length ERα due to time. 

Examples of these problems are given in Table 5, as well as potential resolutions 

which should be strongly considered for future optimisations. Although, the optimal 

methodology presented (Figure 39) provides a strong foundation for further work. In 

the future, upon the obtainment of higher purification yields, the affinity of the 

interaction between MVI and ERα should be investigated using fluorescence-based 

binding assays, to build upon initial results presented by Fili et al (2017).7 A better 

understanding of this interaction is particularly important if it is to be exploited in 

cancer therapeutics in the future, where MVI is over-expressed in breast and ovarian 

cancers and activation of ER target genes is associated with increased tumorigenic 

potential.7  
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Table 5: Problems encountered during the optimisation of full-length ERα in BL21 E.coli 

Problem Example(s) Resolution 

Degradation/Instability 

Low protein concentrations are achieved even when 

culturing in the presence of E2 (Figure 19), which is 

hypothesised to stabilise ERα 

Presence of E2 in lysis and purification buffers, in 

addition to culture medium, which has been previously 

shown to promote the production of soluble ERα-

LBD78 
ERα is shown to degrade during expression both in 

the absence (Figure 16D) and presence of E2 (Figure 
17B) 

Band at ~35kDa observed on all expression and 

affinity chromatography gels, sometimes more 

intense than the 70kDa band for ERα (e.g. Figure 
15D). The 35kDa band may represent non-specific 

over-expression or degradation/cleavage of ERα, 

where degradation is more likely since the 35kDa 

band (half of 70kDa expected for ERα) likely 

represents a monomer of the ERα homodimer.  

Addition of protease inhibitors before, during and 

after sonication, which has previously been shown to 

be optimal for the purification of ERα-LBD77  

Shorter culturing times post-induction have been 

shown to be optimal (Figure 15 and Figure 18) 

Aggregation 

Use of 2% ethanol, in addition to E2 during culturing, 

where E2 is believed to reduce protein aggregation by 

reducing hydrophobic interactions77  

On 2 distinct occasions, ERα was shown to precipitate 

(by measuring negative Abs280 values) following 

purification 



Hannah Reed 98 

Problem Example(s) Resolution 

Aggregation 

E.coli cannot perform post-translational 

modifications, potentially making ERα prone to 

aggregation due to incorrect or partial folding 

Purify in insect or mammalian cell lines to ensure that 

necessary post-translational modifications are 

performed 

Insolubility 

Solubility of ERα has been demonstrated by 

localisation to the supernatant but the majority of the 

ERα population consistently localises to the insoluble 

fraction 

Use of 2% ethanol, in addition to E2 during culturing, 

where ethanol is believed to acts as a solubilising 

agent for E277   

Use of detergents such as Sarkosyl or Triton X 

Increased sonication times have been shown to 

promote purification (Figure 18) and reduce 

localisation to the insoluble fraction (Figure 18A vs. 

Figure 15D) 

Ubiquitin-fusion to improve solubilisation, where full-

length ubiquitin-fused ERα has been successfully 

purified using E.coli64 and yeast66. Ubiquitin fusion is 

believed to improve the solubilisation of fused 

proteins due to its hydrophilic outer surface.64 

Longer sonication times/harsher sonication 

Inaccessibility of His-tag 

ERα is expressed well and can be solubilised (Figure 
18A), suggesting that the N-terminal His-tag is 

inaccessible hence limiting the purification of ERα  

Trial different affinity tag to reduce steric hinderance 

which potentially limits binding to the affinity 

chromatography column  

Expression with no affinity tag and purification using a 

Heparin column65 or estradiol-Sepharose® column66 
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11.3 Residues 120-end of NDP52 likely confer binding to dsDNA in vivo 

Previously, full-length NDP52 has been shown to bind to dsDNA (ds40) with high 

affinity (KD < 100nM) in the Toseland laboratory.7 A strong binding interaction has a 

small equilibrium dissociation constant (KD) and a large association constant (KA). In 

this study, the DNA-binding characteristics of structural domains of NDP52 were 

investigated – namely, NDP52 1-190 and NDP52 120-end. NDP52 1-190 largely 

represented the SKICH domain, while NDP52 120-end largely represented the coiled-

coil domain, inclusive of a LZ and double-ZF motif.  

NDP52 1-190 and NDP52 120-end are both shown to bind ds40 with high affinity, 

with KD estimates <100nM (Figure 25A and B). Estimates cannot be made with 

greater precision since the DNA (ligand) concentration was 100nM. Notably, 

however, data points for NDP52 120-end lie closer to the binding curve, suggesting 

there is tighter binding achieved in this structural domain compared to NDP52 1-190. 

For NDP52 1-190, there is a poor fit to the binding curve (Figure 25A) hence it is likely 

that the binding observed in vitro is an artefact of electrostatic interactions that 

would usually facilitate lipid-binding by the SKICH domain54 and binding to dsDNA is 

non-specific. Therefore, it is highly likely that residues 120-end confer binding to 

dsDNA in vivo, which is expected due to the presence of the well-characterised DNA-

binding motifs – LZs and ZFs.  

For ds15, a similar observation is made, where NDP52 1-190 and 120-end bind DNA 

tightly with KD estimates in the nano and micro molar range. Considering KD 

estimates, NDP52 1-190 binds ds15 tighter compared with NDP52 120-end. 

However, like with ds40, the poor fit (Figure 25C) for NDP52 1-190 likely contributes 

to inaccurate KD estimation (large error in the estimation). Figure 25C shows that full-

saturation is not reached for NDP52 1-190 (but could not be fitted due to limitations 

with GraFit software) as a plateau is not observed. Although, this is again likely to be 

an artefact of electrostatic interactions which facilitate lipid-binding in vivo. Similarly, 

for NDP52 120-end, a plateau is not achieved (KD 1.1±0.3µM). The datapoints for 

NDP52 120-end (Figure 25D) lie close to the binding curve and the error for the KD 

estimate is significantly lower compared to NDP52 1-190, demonstrating that this 
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interaction is likely specific (unlike NDP52 1-190). This re-iterates that NDP52 120-

end is likely to confer DNA-binding in vivo.  

For both NDP52 1-190 and 120-end, tighter binding is observed with ds40 compared 

to ds15 (Figure 25) suggesting NDP52 preferentially binds longer oligonucleotide 

sequences. This agrees with the numerous C-terminal DNA-binding domains of 

NDP52, where ds15 may not be able to facilitate all DNA-binding interactions hence 

resulting in lower binding affinities. The binding observed with NDP52 1-190, for both 

ds40 and ds15, is unlikely to be an artefact of NDP52 not being folded correctly. This 

is since NDP52 1-190 was purified multiple times and was predicted to have the same 

secondary structure content by CD analysis (data not shown) and displayed the same 

DNA-binding characteristics in vitro regardless of the purification round.   

All results were compared to positive and negative controls, where NDP52 1-190 and 

120-end were shown not to bind to ss40 (Supplementary Figure 41A and B) and ss15 

(Supplementary Figure 42A and B) in vitro. Positive controls were chosen to be 

NDP52 295-end and ZF1 based on previous work conducted in the Toseland 

laboratory that demonstrated these constructs bind dsDNA reproducibly with high 

affinity. In this study, both 295-end and ZF1 were shown to bind ds40 

(Supplementary Figure 41C and D) and ds15 (Figure 42C and D), confirming DNA was 

annealed correctly. However, it was observed that the binding curves did not plateau 

and saturation was not reached for neither ds40 (Supplementary Figure 41C and D) 

nor ds15 (Figure 42C and D), where fitting and KD estimates are again limited by 

GraFit software.  

Unlike NDP52 295-end (Supplementary Figure 41C and Figure 42C), binding curves 

did saturate for NDP52 120-end (Figure 25). Both constructs encompass the LZ 

domain, as well as the double-ZF motif at the C-terminus; however, NDP52 120-end 

has an additional 175 residues of the coiled-coil domain compared to NDP52 1-190. 

This suggests that the additional residues in NDP52 120-end provide stability and 

favour DNA binding.  
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In the future, DNA-binding affinities of structural domains of NDP52 should be 

evaluated in the presence of MVI, as well as the lipid-binding affinity of the SKICH 

domain in vitro to help further elucidate if NDP52 1-190 binding to dsDNA is an 

artefact of electrostatic interactions. Similarly, binding assays with NDP52 and MVI 

should form the basis of future work given the identification of NDP52 as a putative 

transcription co-activator and MVI over-expression in some cancers.7 Having now 

refined the DNA-binding characteristics of NDP52 structural domains, mutagenesis 

to residues in DNA-binding motifs in NDP52 120-end, should also be assessed using 

binding assays to map key residues important for DNA-binding and hence NDP52 

function as a transcription co-activator. Going forward, it will also be important to 

elucidate the genes that NDP52 transcriptionally regulates with MVI, particularly in 

relation to cancer.  

11.4 NDP52 likely functions as a homodimer in vivo  

The SEC-MALS profile for NDP52 1-190 (Figure 26A) shows that these residues exhibit 

concentration-dependent oligomerisation, where the average MW of peak 2 is 2.2 

times greater than the average MW of peak 1 at 2.5mg/mL and 5mg/mL suggesting 

that a dimer forms at these concentrations. Peak 1 therefore likely represents the 

monomeric state of NDP52 1-190, while peak 2 likely represents the dimeric state 

(Figure 26A). Similarly, NDP52 120-end exhibits concentration-dependent 

oligomerisation, where again peak 2 is 2.2 times greater than the average MW of 

peak 1 (Figure 26B) showing that a dimer forms at 2.5mg/mL and 5mg/mL. This 

supports that NDP52 functions as a homodimer in vivo.50  

SEC-MALS is a method for accurate MW predictions, however, for both NDP52 1-190 

and 120-end the MW estimates show a degree of error compared to the expected 

MWs. For instance, NDP52 1-190 is predicted to be ~23kDa (Supplementary  Table 

7) while SEC-MALS predicts the monomeric state to be 19kDa (Section 10.2.4), 

meaning there is a ~4kDa difference. Similarly, for NDP52 120-end, SEC-MALS 

predicts a MW of 33kDa (Section 10.2.4) for the monomer, while NDP52 120-end is 

expected to be ~39kDa (Supplementary Table 7), meaning there is a difference of 
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~6kDa. Errors with BSA calibration are likely to account for these differences, where 

BSA was not predicted at the correct MW of 66,700Da.  

SDS-PAGE analysis (data not shown) confirmed that these issues with BSA calibration 

were not due to degradation of BSA. Instead, reducing the flowrate of buffer to 

0.5mL/min compared to 0.75mL/min improved BSA calibrations by improving the 

resolution. Unfortunately, SEC-MALS was not repeated due to time limitations and 

low protein concentrations obtained, meaning that all 1mg/mL, 2.5mg/mL and 

5mg/mL concentrations could not be achieved. When repeating SEC-MALS in the 

future, a reduced flowrate should be employed to improve BSA calibrations and a 

Superose™ 6 increase 3.2/300 column, which has a 5kDa-5MDa range, should be 

used to improve the resolution between SEC-MALS peaks. For instance, currently the 

shoulder of the dimer peak (peak 2) for NDP52 120-end is observed at the limit of 

the column volume (Figure 26B).  

Dimerisation of NDP52, as shown by SEC-MALS (Figure 26), is further supported by 

photobleaching analysis with TIRF microscopy, where likely dimeric (double) 

photobleaching events are observed. The observation of dimers at this low 

concentration (5nM) supports the hypothesis that NDP52 is dimeric in vivo.50 

Although, as discussed in Section 10.2.6, dimers only account for 1% (at most) of the 

observed GFP-NDP52 population. Unfortunately, higher concentrations of GFP-

NDP52 could not be employed for TIRF microscopy due to over-crowding of the 

coverslip slide. In the future, immobilisation of GFP-NDP52 onto coverslips may 

improve the percentage of dimers observed at low concentrations.  

The evidence presented here, which supports a homodimeric conformation for 

NDP52, is particularly important in relation to MVI. For instance, NDP52 has been 

shown to unfold/relieve the auto-inhibited state of MVI with a stoichiometry of 

either 2:2 or 2:4.7 Therefore, NDP52 must be dimeric to unfold MVI, which is 

important for transcriptional regulation.7   
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11.5 NDP52 is largely linear with an N-terminal globular domain 

For SEC-MALS, the bed volume for the Superdex™ 200 Increase 10/300 GL column is 

24mL (according to manufacturer specifications), while the void volume is 8-9mL 

(approximately a third of the column volume). NDP52 1-190 elutes between ~12-

17mL (Figure 26A; within the range of the bed and void volumes), suggesting a 

globular state, consistent with the crystal structure for the SKICH domain (PDB entry 

– 3VVV).50 NDP52 120-end, however, elutes between ~9-12mL (Figure 26B) which is 

comparatively earlier compared to NDP52 1-190. This suggests that NDP52 120-end 

adopts a linear conformation, eluting earlier due to its Stokes radius. This observation 

is also consistent with the prediction of a α-helical coiled-coil domain between 

residues 134-350 of NDP52.50 These results from SEC-MALS are also concurrent with 

SAXS, where the both the P(r) function and SAXS envelope (Figure 38) suggest NDP52 

is elongated/linear.  

11.6 The coiled-coil domain of NDP52 likely confers dimerisation and 

provides stability 

Originally, the constructs for investigation were NDP52 1-120, 1-190 and 120-end. 

This design aimed to probe the SKICH domain in isolation (NDP52 1-120), where the 

SKICH domain is from residues 1-128, as well as the remainder of NDP52 (NDP52 120-

end). NDP52 1-190 was therefore designed to represent the overlap between the 2 

constructs. However, NDP52 1-120 could not be purified alone (work conducted by 

colleagues in the Toseland laboratory; data not shown) whereas 1-190 could. This 

suggests that the presence of the coiled-coil region between amino acids 134-190 

(where the entire coiled-coil is between 134-350) increases stability, hence enabling 

purification in E.coli. Similarly, NDP52 120-end contains part of the SKICH domain 

(residues 120-128) to aid protein folding.  

Figure 26 demonstrates that the dimerisation efficiency for NDP52 120-end is greater 

than that for NDP52 1-190, since peak 2 for NDP52 120-end has a greater refractive 

index compared to NDP52 1-190, especially at 1mg/mL. Although, NDP52 1-190 is 

also still shown to dimerise at 2.5mg/mL and 5mg/mL (Figure 26). Since NDP52 1-190 
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is characterised by the presence of the N-terminal of the coiled-coil domain (residues 

134-190) of NDP52, it is likely that the coiled-coil domain facilitates dimerisation, 

concurrent with present belief50. 

11.7 The presence of dsDNA likely promotes the formation of higher 

oligomeric states of NDP52  

Upon the addition of 100nM dsDNA (non-fluorescent ds40), the lifetimes of single 

photobleaching events for GFP-NDP52 markedly increase (Figure 31B). For instance, 

the percentage of events with a lifetime >5s more than doubles, the mean and mode 

lifetimes increase, and events are observed up to 20s in the presence of DNA. This 

suggests that the presence of 100nM non-fluorescent ds40 promotes higher 

oligomeric states of NDP52, although this is not observed as a percentage increase 

in the number of dimers, only as an increase in fluorescence lifetime. For instance, 

the longer lifetime suggests there may be more GFP-NDP52 molecules per spot when 

DNA is present, which is consistent with the presence of a dimer.  

Also, the observation of more monomeric photobleaching events (Figure 31A) in the 

presence of DNA suggests NDP52 is recruited to DNA, consistent with the function of 

NDP52 as a putative transcription co-activator.7 In the future, SEC-MALS elution 

profiles could be employed to investigate if there is a shift in oligomeric states of 

NDP52 in the presence of dsDNA, where you would expect a peak with a higher 

refractive index if more dimers were present. Similarly, in the future (as discussed) 

GFP-NDP52 should be immobilised on the glass surface, potentially through use of 

biotin-conjugated antibodies, to improve the number of fluorophores detected in the 

TIRF setup, which may show a percentage increase in the dimer population.    

11.8 GFP-NDP52-GFP and GFP-NDP52 show the same clustering 

behaviour  

As discussed, NDP52 has been shown to be dimeric through both TIRF and SEC-MALS 

analysis. A GFP-based reporter assay was hence developed to further investigate the 

dimeric state of NDP52, namely whether it adopts either a parallel or anti-parallel 
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state, which is important for structure-function insights into NDP52. For instance, an 

anti-parallel configuration may suggest a linker role for NDP52, with binding sides at 

different ends of the molecule, while a parallel configuration may suggest tight 

binding at one end. The hypothesis was to employ superSIL microscopy, which 

achieves 12nm precision, to measure distances between GFP fluorophores, where 

the use of cryogenic conditions would preserve the native structure of NDP52 and 

increase fluorescence lifetime and brightness of GFP.71  

If employing a FRET-based assay, there would be high FRET between the donor and 

acceptor pair if NDP52 were in a parallel conformation, while in the anti-parallel 

conformation, there would be no FRET as the distance between fluorophores would 

be too great. However, a lack of FRET signal may also imply that that there are no 

dimers and would be indistinguishable from anti-parallel NDP52 homodimers. Also, 

since NDP52 is known to dimerise in the nano molar range, from previous 

experiments in the Toseland laboratory using microscale thermophoresis (where the 

dimerisation KD is between 200-500nM), there would be a low concentration of 

mixed FRET populations. For instance, there would be a low concentration of dimers 

tagged with both GFP and red fluorescent protein (RFP), making FRET changes 

difficult to measure. Therefore, development of a novel GFP-based methodology, 

utilising cryogenic super-resolution microscopy (as discussed), was preferred over a 

FRET-based assay. This was despite the limitations discussed below, which are mainly 

due to recent development, and hence limited user knowledge, of the superSIL 

microscope.  

A key error, which was overlooked when developing the GFP-based methodology 

was the localisation error of the microscope. For this analysis, a localisation error of 

~10nm was achieved for GFP. However, the localisation error is still greater than the 

predicted distance between GFP fluorophores in the parallel conformation (~5nm). 

It was therefore hypothesised that if the distance between GFP fluorophores in the 

test condition (GFP-NDP52) was similar to the positive control (GFP-NDP52-GFP), this 

would infer an anti-parallel NDP52 homodimer. 
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Table 6 outlines further experimental issues relating to superSIL microscopy, as well 

as resolutions which have either been already employed or could be in the future.  

Table 6: Experimental issues with cryogenic super-resolution microscopy 

Issue  Resolution 

Drift of the stage Use of TetraSpeck™ beads (employed)  

Aggregation of GFP-LifeAct 
(negative control) 

Dilution and filtering by centrifugation 
(employed) 

3D orientation of NDP52 through 
blot/freezing process 

Use of surface chemistry, such as biotin-
conjugated antibodies 

Uncontrollable protein 
concentrations due to manual 
blotting 

No current resolution as the entire superSIL 
is plunge-frozen and no alternative plunge-
freezing protocol has been developed 

Aggregation of 5nM GFP-NDP52 
under cryogenic conditions, not 
apparent with TIRF microscopy 
(Figure 30A) 

No current resolution 

Another major issue was data analysis. Currently, cluster-analysis can be performed 

but direct distances between GFP fluorophores cannot be measured. Therefore, 

while you can make comparisons regarding the clustering behaviour, conclusions 

relating to the dimeric conformation of NDP52 cannot be drawn, especially 

considering the clustering behaviour of NDP52 appears to change under cryogenic 

conditions. Neither can conclusions be made about the clustering structure of 

samples. Nevertheless, results show that the clustering behaviour in the positive and 

test condition is the same. Since the positive control is tagged at both the N- and C-

termini with GFP, while the test condition is only tagged at the N-termini, from the 

clustering behaviour, it can be suggested that NDP52 adopts an anti-parallel dimeric 

state at 5nM. However, as discussed, currently only conclusions regarding the 

clustering behaviour can be made.  

There are also issues determining the statistical significance of the results. For 

instance, there is no confidence level associated with K(r) itself. Also, variance in the 

results cannot be estimated because the number of datasets is limited, where only 1 

dataset was acquired for the test condition due to time, meaning that an error 
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calculation would not be possible. To overcome this, the frame ranges could be 

broken down, but the data is time-dependent meaning this is not feasible.  

It is important to stress here that the data presented in this study is preliminary and 

clearly more work needs to be done to optimise this technique. Therefore, in the 

future, if this technique is to be employed to investigate the dimeric conformation of 

NDP52, the issues, discussed above, would need to be addressed. This is particularly 

important given that there are major limitations with alternative methods, such as 

FRET-based assays. However, this methodology does show promise and is something 

that should be continually developed going forward. Although, this is not to say that 

other methods, such as X-ray crystallography, should not also be pursued.  

11.9 SAXS suggests NDP52 adopts a parallel homodimeric state in vitro  

As discussed, cryogenic super-resolution microscopy was limited by providing only 

comparisons regarding the clustering behaviour of different GFP-tagged NDP52 

variants. Therefore, SAXS was employed to provide novel insights not only into the 

structure of full-length NDP52 (currently unavailable) but also the dimeric 

arrangement of NDP52 homodimers.  

SEC-MALS has shown previously that NDP52 is homodimeric in solution (Figure 26). 

Therefore, peak 2 of SAXS data (Figure 36A) likely represents the dimeric form of 

NDP52. However, peak 1 (Figure 36A) is at the limit of the SEC column (void volume) 

suggesting that this peak is aggregation of NDP52. This is supported by Guinier fitting, 

where, for peak 1, Rg values are very varied (Figure 36B) suggesting heterogeneity. 

However, Rg values for peak 2 are constant (Figure 36C) suggesting homogeneity and 

that sample preparation is of good quality (can be used for interpretation). Intensity 

plots further support that peak 1 likely corresponds to aggregates and peak 2 the 

NDP52 dimer. For instance, peak 1 is considerably nosier at larger values of q, 

compared to peak 2, where average (black) and median (cyan) values largely agree 

(Figure 37); again, suggesting that peak 2 is homogeneous.  

From the SAXS envelope, the structure of NDP52 is shown to be asymmetrical (Figure 

38D), suggesting that NDP52 likely adopts a parallel homodimeric conformation in 
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vitro (Figure 40C). For instance, if both N-terminal SKICH domains were aligned in the 

anti-parallel configuration, NDP52 would be symmetrical (Figure 40D). An end-to-

end orientation of the dimer (Figure 40E) is also dismissed since you would again 

expect to see symmetry. 

Interestingly, one end of NDP52 is shown to be curved (Figure 38D) but the other 

globular. It is likely that these correspond to the C-terminal double-ZF motif (or LIM-

L domain) and the N-terminal SKICH domain respectively (Figure 40A). This is since 

the SKICH domain is well-characterised as globular (PDB entry – 3VVV). The potential 

curvature of the ZF domain may confer tight binding to DNA, by ‘wrapping around’, 

to enable NDP52 function as a transcriptional regulator.  

SAXS was performed on 3 different gel filtration columns (Shodex KW405-4F, 

Superdex™ 200 increase 3.2/300 and Superose™ 6 increase 3.2/300). However, only 

results from the Superose™ 6 column are shown in this study. Data from the Shodex 

column showed higher heterogeneity of the sample (assessed by Rg values) and 

poorer resolution of peaks 1 and 2, compared to the Superose™ 6 column. Despite 

the lower quality of data from the Shodex column, the SAXS envelope generated 

using this data also (Figure 40B) supports a linear/elongated shape for NDP52. 

Although, one end of the structure (red box; Figure 40B) shows some variation, 

compared to the model generated using the Superose™ 6 column, suggesting that 

this could be another state of this domain (since SAXS envelopes are an average of 

multiple bead models) and hence inferring flexibility. This provides important 

functional insights. For instance, if this flexible region corresponds to the ZF-motif (as 

discussed), the flexibility may confer the ability of the curved structure to wrap 

around DNA and enable tight binding for NDP52’s role in transcription. Similarly, this 

flexibility may be important for NDP52-facilitated unfolding of myosin VI7, as well as 

autophagosome maturation where NDP52 binds both MVI and ubiquitinated targets 

via its tandem ZF motif59,61.  

Interestingly, the central domain of the SAXS envelope shows some globular 

arrangement (Figure 38D). This topology may arise from the LZ or the arrangement 

of the α-helices in the coiled-coil domain of NDP52. Again, this may provide 
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important structure-function insights into the action of NDP52 as a putative 

transcription regulator.7 For instance, this conformation may be essential for docking 

of other proteins or binding to DNA.  

Future work should therefore focus on obtaining higher resolution structures for full-

length NDP52 using techniques such as X-ray crystallography (previously tried but 

unsuccessful79) and NMR. Such efforts to improve our structural knowledge of NDP52 

are currently ongoing in the Toseland laboratory. For instance, cryo-electron 

microscopy (EM) data has been collected and is currently being analysed, which will 

provide a much higher resolution structure of NDP52 compared to SAXS. Higher 

resolution insights are important as SAXS envelopes only give an outline structure 

and are hence limited in the information they provide. For instance, SAXS envelopes 

provide no information regarding the secondary structure and require models, pre-

determined by alternative methods such as X-ray crystallography, to be fitted to 

them. It is therefore important that going forward current crystal and NMR 

structures (for the SKICH and ZF domains respectively) are fitted to the SAXS 

envelope to identify which end represents the N-terminus. However, it is 

acknowledged that it may be difficult to obtain full-length crystal structures for 

NDP52 (as previously observed79) due to the flexibility inferred by SAXS.  

The finding that NDP52 is likely a parallel homodimer is particularly important for 

structure-function observations in relation to transcriptional regulation. For 

instance, the parallel nature of NDP52 may suggest that NDP52 can achieve tighter 

binding with DNA, where NDP52 could clamp down on DNA from both sides. This also 

makes sense due to potential flexibility observed in the NDP52. Whereas, if an anti-

parallel dimeric conformation was inferred, this may suggest that NDP52 acts as a 

linker between DNA and another protein, since residues 120-end have been shown 

(in this study) to bind DNA with high affinity.  

The parallel configuration of NDP52 may also be of functional significance with 

regard to MVI unfolding7. For instance, MVI is a parallel homodimer, with motor 

domains orientated in the same direction to enable hand-over-hand walking along 

actin12. Therefore, the parallel arrangement of NDP52 presumably enables binding 
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to MVI to facilitate unfolding, dimerisation and subsequent binding to DNA for 

transcriptional regulation7.  

Notably, the results from cryogenic super-resolution microscopy (Section 11.8) and 

SAXS starkly contradict each other – one result suggests an anti-parallel arrangement 

while the other parallel. However, the results from SAXS are considered more 

trustworthy, given that superSIL microscopy is currently limited as direct 

measurements cannot yet be made between GFP fluorophores (meaning only 

statements regarding similarities or differences in clustering behaviour can be 

made). The anti-parallel arrangement, suggested by superSIL microscopy, is 

therefore likely to come from NDP52 aggregating under cryogenic conditions, which 

is likely to be an artefact of the sample preparation rather than a true reflection of 

NDP52 clustering since this behaviour is not observed under non-cryogenic 

conditions. 
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Figure 40: Interpretation of SAXS data  

(A) Cartoon representation of NDP52 overlaid onto the SAXS envelope (using the Superose™ 6 increase 3.2/300 column) by eye. (B) Resultant SAXS envelope 
using the Shodex KW405-4F column. Potential flexible domain marked with a red box. NDP52 schematically shown as a parallel (C), anti-parallel (D) or end-
to-end (E) dimer. The N-terminal SKICH domain of NDP52 is shown by a blue circle while the remainder of the structure is shown in stick format.  

50nm
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12 Conclusions 

For the first time, novel methodologies are reported for the purification of full-length 

ERα using the E.coli BL21 stain, where the presence of estradiol in the culture 

medium significantly improves purification results consistent with other studies77,78. 

Although, major problems were identified, including aggregation and degradation. 

However, this methodology provides a robust foundation for further optimisation of 

ERα purification, using the E.coli BL21 strain as an inexpensive and time-efficient 

expression system, required for further biochemical and biophysical characterisation 

of ERα focussing on its interaction with MVI.  

Biochemical assays have elucidated the DNA-binding characteristics of NDP52 

structural domains. These results importantly contribute to our understanding of 

NDP52 as a transcriptional co-activator, as the DNA-binding site has been mapped to 

the coiled-coil domain (inclusive of the LZ), together with the double-ZF motif. This 

domain is therefore likely to be crucial for NDP52’s function as a transcription co-

activator. In the future, mutagenesis of key residues within this structural domain 

can be investigated with regard to dsDNA binding.  

Evidence presented here also provides important insights not only into the tertiary 

structure of NDP52 but also the oligomeric state of the protein. For instance, NDP52 

has been shown to be largely linear in structure, with globular N-terminal domain, 

and to be a homodimer in vitro. For the first time, the conformation of this dimer 

was probed using a recently-developed super-resolution microscope and SAXS. 

Although superSIL requires much optimisation, particularly with regard to data 

analysis, this is a promising technique which could be used in the future to support 

findings from SAXS, which suggest that NDP52 functions as a parallel homodimer in 

vivo. This finding provides important structure-function insights into NDP52’s role in 

transcriptional regulation, where a parallel conformation may enable NDP52 to 

clamp down either side of DNA, enabling tight binding. Future work should be 

centralised on achieving higher resolution structures for full-length NDP52, through 

methods such as X-ray crystallography, cryo-EM and NMR.  
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14 Supplementary Data 

Table 7: Extinction coefficients and molecular weights of recombinant proteins 

Expression Vector 
(Residue Number) 

UniProt Entry 
Name 

UniProt 
Identifier 

Protein 
Name 

Molecular 
Weight (Da) 

Extinction Coefficient 
Assuming all Disulphide 
Bonds Present (M-1cm-1) 

Extinction Coefficient 
Assuming all Disulphide 
Bonds Absent (M-1cm-1) 

Human pET151 His-tag* 
ERα (1-end)  

ESR1_HUMAN P03372 ERα-His 67,039 62,520 61,770 

Human pET151 His-tag* 
NDP52 (1-190) 

CACO2_HUMAN Q13137 

NDP52 1-
190 

23,288 30,160 29,910 

Human pET151 His-tag* 
NDP52 (120-end) 

NDP52 
120-end 

38,931 13,575 12,950 

Human pET151 His-tag 
GFP-NDP52** (1-end) 

GFP-
NDP52 

79,945 65,625 64,750 

Human pET151 His-tag* 
GFP-NDP52-GFP (1-end) 

GFP-
NDP52-
GFP 

106,813 87,640 86,640 

Human pET151 His-tag* 
NDP52 

NDP52 53,076 43,610 42,860 

Extinction coefficient and molecular weight estimates taken from ProtParam using the first isoform listed for each entry on UniProt. 

* ‘His-tag’ refers to 6 N-terminal histidine residues  **GFP-tags linked to NDP52 via a 4-glycine linker 
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Figure 41: Positive and negative controls for ds40 NDP52 binding assays 

5μM NDP52 1-190 (A) and NDP52 120-end (B) were titrated against 100nM ss40 to act as 
negative controls. 8μM NDP52 295-end (C) and ZF1 (D) were also titrated against 100nM 
fluorescein-labelled ds40 to act as positive controls.   

KD 147±12nM

A B

ss40

KD < 100nM

ds40

C D
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Figure 42: Positive and negative controls for ds15 NDP52 binding assays  

10μM NDP52 1-190 (A) and NDP52 120-end (B) were titrated against 100nM ss15 to act as 
negative controls. 16μM NDP52 295-end (C) and ZF1 (D) were also titrated against 100nM 
fluorescein-labelled ds15 to act as positive controls.  

KD  0.99±0.35µM

A B

ss15

ds15

C D

KD < 100nM
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Figure 43: Analysis of SEC-MALS protein samples at different angles  

Analysis of NDP52 1-190 (A-C) and NDP52 120-end (D-F) at respective concentrations. Anisotropic results were excluded from data analysis.   
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