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Abstract 

We report a novel T-XRD and Rietveld-refinement investigation of pyrolytic-graphite 

samples with high degree of graphene-layer-orientation and misfit-rotational-angle of 

~ 0.8o in the T-range from 12 K to 298 K. An anomalous variation of the graphitic c-

axis which involves firstly negative-thermal-expansion (from 12 K to ~50 K), a 

saturation-effect (from 50 K to ~160 K) and then a positive expansion (from ~180 K to 

298 K) is evidenced. The reported trend is significantly different with respect to that 

expected by considering the standard-thermal-expansion -parameter where no 

saturation-effect is present. SQUID-magnetometry revealed further presence of 

superconducting-like hysteresis which resemble those observed by Scheike et al. 
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1 Introduction 

The recent discoveries of superconductivity in pure highly oriented pyrolytic graphite 

(HOPG) materials [1-10], water doped graphite [3] and twisted bilayer graphene [11] 

have attracted a significant attention in the fields of condensed matter physics and 

materials science. Formation of such granular superconductive features has been 

attributed to the existence of rotational misfits between the graphene layers in Bernal 

graphite systems and to possible formation of rhombohedral phases in interfacial 

contact with the hexagonal one. Superconductive phenomena in HOPG systems have 

been ascribed to formation of a network of line defects with flat bands (described by 

the Burgers–Bragg–Read–Shockley dislocation model [6]), which appears at the 

interfaces between slightly twisted graphite structures when the twist angle is small 

enough (for bilayer graphene, the defects emerge when θtwist ~ 1° [6]). Recently, 

existence of Mott insulation in twisted bilayer graphene has been further proposed [11]. 

However, the possible existence of second order antiferromagnetic transition and its 

relation with the critical superconductive temperature remains still not well understood. 

Interestingly, anomalous high temperature c-axis shifts (i.e. much different than those 

expected considering the standard thermal expansion parameter of graphite [16]) have 

been also reported in HOPG samples characterized by misfit between the graphene 

layers in the order of ~ 0.8o, 0.5o and 1.5o by using high-T X-ray diffraction (XRD) and 

Rietveld refinement methods [15]. However, no low-temperature investigations of 

these types of samples have been yet reported. Interestingly, presence of a transition in 

the thermal expansion dynamics of the c-axis in the graphitic unit-cell of multiwalled 
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carbon nanotubes was demonstrated in an early report from 300 K to 12 K [14]. It is 

therefore important to investigate further these systems at low temperature and 

understand the possible presence of structural transitions which may imply unexpected 

changes of magnetic ordering.  

In this work we report a novel T-XRD investigation of the c-axis shifts in HOPG 

samples with rotational misfit in proximity of the first magic angle in the temperature 

range from 12 K to 298K. We focus our attention on samples with characteristic average 

misfit angle of approximately 0.8o (see ref. [15] for high resolution transmission 

electron microscopy, HRTEM analyses) which were identified by preliminary XRD 

with HOPG c-axis parallel to the substrate. The Rietveld refinement method was used 

to extract the variation of the c-axis with the temperature. Interestingly, the 002 

diffraction peak shows a negative expansion effect at low temperature followed by an 

anomalous saturation like effect and then by a positive expansion. The observed 

structural transitions can not be explained on the basis of the standard thermal 

expansion parameter of graphite [16] and clearly evidence the presence of unexpected 

low-temperature characteristics in the thermal expansion properties of HOPG. As 

extracted by Rietveld refinements, the c-axis shift from 12 K to 298 K results in the 

value of 0.001365 nm which is much smaller than that of 0.005154 nm expected 

considering the tabulated thermal expansion parameter of graphite in 1/K (26.7*10-6 

1/K). In addition, SQUID magnetometry measurements revealed presence of 

superconducting like hysteresis which resemble those observed by Scheike et al.[2,3].  
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2 Experimental 

HOPG samples with dimensions of 5 x 5 x 1 mm, with mosaic angle values of 0.8°, ± 

0.2° (sample 1 and 2) and 1.5°, ± 0.2° (sample 3) were purchased from XFNANO, INC 

China. Another HOPG sample (sample 4) was purchased from CFC CARBON with 

dimensions 3.5 x 3.5 x 1 mm and mosaic angle 0.8°, ± 0.2°. Note that the given values 

of mosaic angles are not an indicator of the rotational misfit in the graphene layers.  

Preliminary XRD measurements were performed at room temperature by employing a 

PANalytical Empyrean powder X-ray diffractometer (Cu K-) with c-axis parallel 

to the substrate on all the 4 HOPG samples, to identify the variation in the intensity of 

002/100 reflections. T-XRD measurements were then performed on HOPG with 

I002/I100 ratio of ~ 0.4, with c-axis orientation perpendicular to the substrate on 

another PANalytical Empyrean powder X-ray diffractometer (Cu K-  =0.15406 

nm), equipped with a primary Johansson monochromator, an Oxford Cryosystems 

PheniX cryostat operating under vacuum below 10-2 Pa, and a X’celerator linear 

detector, from 12 K to 298 K (12 K, 20 K, 30 K, 40 K, 50 K, 60 K, 70 K, 80 K , 90 K, 

100 K, 120 K, 140 K, 160 K, 180 K, 200 K, 220 K, 240 K, 260 K, 280 K and 298 K). 

SQUID measurements were performed at room temperature on the pristine as 

purchased samples with a Quantum Design system.  
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3 Results and Discussion 

The structural characteristics of samples 1-4 were firstly investigated by means of XRD 

measurements performed with HOPG c-axis parallel to the substrate, as shown in Fig.1. 

This process allowed to identify the samples with higher level of graphene layer 

alignment. Significant differences in the structural characteristics of the HOPG 

structure of the 4 samples were found. As shown in Fig.1A-B, the first two types 

(samples 1 and 2) of HOPG revealed a very intense 100 reflection, which could be 

ascribed to the presence of a significant alignment between the graphite layers. Presence 

of weak 002, 101 and 004 reflections could be also detected. Differently, a systematic 

decrease in the relative intensity of the 100 reflection and an increase in that of the 002 

were found in sample 3 and 4; such a structural variation was further evidenced by the 

002/100 intensity ratios: ~ 0.4 for samples 1 and 2, 0.77 for sample 3 and 2.63 for 

sample 4. T-XRD measurements were then performed on the HOPG with 002/100 

intensity ratio ~ 0.4 from 12 K to 298 K, as shown in the plots of Figs2-3. An unusual 

change in the c-axis values was found with the increase of the temperature. As 

evidenced in Fig.2, the position of the 002 diffraction peak was found to shift towards 

larger values of 2 degrees in the T-range from 12 K to ~50 K. An anomalous saturation 

like effect was then observed from 50 K to ~ 160 K. Furthermore, expansion was found 

from ~180K to 298K with a shift of the 002 diffraction peak towards lower values of 

2 degrees. These structural transitions can not be explained on the basis of the standard 

thermal expansion parameter of graphite [16,17] where no saturation effect is present. 

As evidenced by Rietveld refinement analyses, see ESI Fig.Supp.1-39 and tables 1 and 
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2, the shifts in the position of the 002 reflection can be understood in terms of 1) a c-

axis contraction from 12K to ~50K (negative thermal expansion [17]), 2) an anomalous 

saturation effect in the T-range from ~50 K to 160K, and 3) an expansion of the c-axis 

of HOPG in the T-range from ~180K to 298K, as shown in the plot of Fig.4A, which 

imply existence of a low temperature structural transition at approximately 160K (see 

table 1 in ESI). The extracted thermal expansion -factor values can be found in Fig.4B.  

The investigation of the magnetic properties by SQUID measurements revealed a 

substantial difference between samples 1,2 and sample 3-4, as evidenced in Fig.5 (see 

also ESI Fig. Supp. 42-44 for additional magnetization data), A superconducting-like 

hysteresis (which resembles that reported by Scheike et al. [1-3]) could be detected in 

samples 1-3 (Fig.5A,B,D). Instead only diamagnetic signal could be detected in sample 

4 (Fig.5C). Note that in this latter case, measurements were performed by changing the 

maximum field values from 300 Oe (Fig.5C) to 10000 Oe (ESI), without significant 

differences in the outcoming signal.  

4 Conclusion 

In conclusion, in this work we have reported a novel low T-XRD and Rietveld 

refinement investigation of the c-axis shifts in HOPG at the magic angle from 12 K to 

298K. The c-axis parameter was found to contract from 12 K to ~50 K, anomalously 

saturate from 50 K to ~160K and expand from ~180K to 298K. SQUID magnetometry 

was also employed at room temperature and revealed presence of superconducting like 

hystereses in samples with 002/100 (intensity) ratios of ~ 0.4 and 0.77. Only 

diamagnetism was instead detected in samples with 002/100 I-ratio of ~ 2.63.  
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Figure 1: Room temperature XRD diffractograms measured with HOPG c-axis parallel to the substrate 

for sample 1(A), sample 2(B), sample 3(C) and sample 4(D). See supplementary materials for rocking 

curve analyses revealing presence of dislocations in samples 1-3 (ESI Fig.Supp.45-47). 

 

 

Figure 2: T-XRD diffractograms of HOPG sample 2 (~ 0.8 o  misfit misfit-angle, see ref.15 for HRTEM 

and Moiré pattern analyses of this type of sample) measured with c-axis perpendicular to the substrate, 

showing the structural shifts of the 002 reflection as a function of the temperature from 12 K to 298 K. 
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Figure 3: XRD diffractograms (c-axis perpendicular to substrate) showing with a higher detail the 

structural shifts of the 002 (A) and 004 (B) reflections of HOPG (~ 0.8 o  misfit average misfit-angle) as 

a function of the temperature from 12 K to 298 K. Note that the possible variation in the relative intensity 

of the measured 004 reflection in comparison to the high temperature XRD data reported in ref [15] 

(performed with Rigaku Smart-lab powder X-ray diffractometer) can be ascribed to differences in sample 

preparation. In ref [15] the outer surface lamellae of the HOPG sample were removed by using scotch 

tape methods (in order to remove surface misoriented layers), while in the study reported here no removal 

of surface layers was performed. 
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Figure 4: Plots showing in A the variation of the unit cell c-axis with temperature from 12K to 298K for  

HOPG samples with misfit-angle  misfit of ~ 0.8 o (as extracted from the Rietveld refinement analyses 

shown in ESI) and in B the calculated thermal expansion parameter as a function of the temperature. 

The thermal expansion parameter was obtained by applying the obtained c-axis values into the equation 

1/L*(L/ T). 
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Figure 5: SQUID magnetometry measurements revealing significantly different magnetic signals in 

samples 1-4. A superconductive-like hysteresis which resembles that reported by Scheike et al. [2,3] was 

found in samples 1,2 and 3 (with weaker intensity). Instead only diamagnetic features could be detected 

in sample 4 as shown in Fig.5C and in ESI. The signals obtained after diamagnetic subtraction are shown 

in Fig.5D and in ESI Fig. Supp. 42-44 (for samples 3 and 4). Note that SQUID measurements were 

performed with field perpendicular to HOPG layers. In D a linear diamagnetic background was 

subtracted based on the method used in ref. [1-3]. The linear diamagnetic backgrounds from A were 

subtracted in D using = - 1.15209*10-7emu/Oe at 300K and = - 1.111209*10-7emu/Oe at 350 K. 
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