Kent Academic Repository

Full text document (pdf)

Citation for published version

Shao, Ding and Yan, Yong and Zhang, Wenbiao and Sun, Shijie and Sun, Caiying and Xu, Lijun (2019) Dynamic measurement of gas volume fraction in a CO2 pipeline through capacitive sensing and data driven modelling. International Journal of Greenhouse Gas Control, 94 . p. 102950. ISSN 1750-5836.

DOI

https://doi.org/10.1016/j.ijggc.2019.102950

Link to record in KAR

https://kar.kent.ac.uk/79507/

Document Version

Author's Accepted Manuscript

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version. Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact: **researchsupport@kent.ac.uk**

If you believe this document infringes copyright then please contact the KAR admin team with the take-down information provided at http://kar.kent.ac.uk/contact.html

1

through capacitive sensing and data driven modelling 2 3 4 Ding Shao¹, Yong Yan^{2*}, Wenbiao Zhang¹, Shijie Sun³, Caiying Sun¹, Lijun Xu³ 5 1 School of Control and Computer Engineering, North China Electric Power University, Beijing 6 102206, P.R. China 7 2 School of Engineering and Digital Arts, University of Kent, Canterbury, Kent CT2 7NT, U.K. 8 9 3 School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, 10 P.R. China. * Correspondent author: y.yan@kent.ac.uk 11 12 Abstract 13 Gas volume fraction (GVF) measurement of gas-liquid two-phase CO₂ flow is essential in the 14 15 deployment of carbon capture and storage (CCS) technology. This paper presents a new method to measure the GVF of two-phase CO₂ flow using a 12-electrode capacitive sensor. Three data driven 16 models, based on back-propagation neural network (BPNN), radial basis function neural network 17 (RBFNN) and least-squares support vector machine (LS-SVM), respectively, are established using the 18 19 capacitance data. In the data pre-processing stage, copula functions are applied to select feature variables and generate training datasets for the data driven models. Experiments were conducted on a 20 CO₂ gas-liquid two-phase flow rig under steady-state flow conditions with the mass flowrate of liquid 21 CO₂ ranging from 200 kg/h to 3100 kg/h and the GVF from 0% to 84%. Due to the flexible operations 22 23 of the power generation utility with CCS capabilities, dynamic experiments with rapid changes in the GVF were also carried out on the test rig to evaluate the real-time performance of the data driven models. 24 25 Measurement results under steady-state flow conditions demonstrate that the RBFNN yields relative errors within $\pm 7\%$ and outperforms the other two models. The results under dynamic flow conditions 26 27 illustrate that the RBFNN can follow the rapid changes in the GVF with an error within $\pm 16\%$. 28 Keywords: Carbon capture and storage; Gas volume fraction; Two-phase CO₂ flow; Data driven 29 models; Copula functions 30

Dynamic measurement of gas volume fraction in a CO₂ pipeline

31

32

Nomenclature

τ	Kendall's correlation coefficient	h_g	Specific enthalpy of gas CO ₂ before being mixed (kJ/kg)
μ	Spearman's correlation coefficient	h_l	Specific enthalpy of liquid CO ₂ before being mixed (kJ/kg)
r	Pearson's correlation coefficient	h_g	Specific enthalpy of gas CO ₂ in two-phase flow (kJ/kg)
α_0	Gas volume fraction without correction	h_l	Specific enthalpy of liquid CO ₂ in two-phase flow (kJ/kg)
χ	Gas mass fraction	$ ho_l$	Density of liquid CO ₂ (kg/m ³)
α	Reference gas volume fraction	$ ho_g$	Density of gas CO ₂ (kg/m ³)
q_{mg}	Mass flowrate of gas CO ₂ before being mixed (kg/h)	Cnorm	Normalized capacitance
q_{ml}	Mass flowrate of liquid CO ₂ before being mixed (kg/h)	C_l	Capacitance measured when the pipe is full of liquid CO_2 (fF)
q'_{mg}	Mass flowrate of gas CO ₂ in two-phase flow (kg/h)	C_g	Capacitance measured when the pipe is full of gas CO ₂ (fF)
$q^{'}_{ml}$	Mass flowrate of liquid CO ₂ in two-phase flow (kg/h)	C_i	Capacitance measured for two-phase CO ₂ (fF)

33

34 **1. Introduction**

Global warming and climate change due to greenhouse gas emissions impede the global economic 35 development. The excessive CO₂ emissions from fossil fuel fire power generation utilities is regarded 36 as the main cause of global warming. Recently, carbon capture and storage (CCS) technology has been 37 proposed and is being deployed as an effective approach to reduce the emissions of CO_2 from the power 38 generation (Leung et al., 2014; Kemper, 2015). Accurate measurement of CO₂ flow in pipelines is 39 crucial to economical and safe operations in the CCS process. However, accidental leakage from CO2 40 pipelines or small changes of the environmental temperature will lead to a significant change in the 41 42 phase of CO₂, resulting in gas-liquid two-phase CO₂ flow (Wen et al., 2019; Zhang et al., 2018). 43 Impurities produced using different capture methods may also lead to changes in phase properties of CO₂ flow (Nazeri et al., 2016; Proter et al., 2015). In addition, CCS facilities on fossil fuel fired power 44 plants need to be operated flexibly (Abdilahi et al., 2018, Zhang et al., 2018), such as frequent load 45 46 changes and rapid start-ups and shutdowns. Due to the complex characteristics of CO₂ flow, accurate 47 measurement of CO₂ fluid parameters is more challenging than other gas-liquid two-phase flows. As an important parameter in two-phase CO₂ flow, the gas volume fraction (GVF) is required to determine 48 the single phase mass flowrate and average density. Therefore, the GVF measurement is essential to 49

monitor and optimize the operation of the CCS system. However, few studies on the GVF measurement
of CO₂ flow have been reported to date.

Several methods based on capacitance probes (Ji et al., 2014;), wire-mesh sensors (Olerni et al., 2013; 52 Bowden et al., 2017), radiation attenuation (Nazemi et al., 2016), optical fiber sensing (Ursenbacher et 53 54 al., 2004) and ultrasonic sensing (Chakraborty et al., 2009) have been proposed for the direct measurement of the GVF of gas-liquid two-phase flow. In comparison with other measurement 55 instruments, the capacitive sensors have the advantages of low cost, fast response and non-invasiveness 56 (Sun et al., 2017; Sun et al., 2018). Multi-electrode capacitive sensors are often utilized in process 57 tomography to achieve flow pattern recognition and visual monitoring (Xie et al., 2006; Jiang et al., 58 2009). However, unlike the flow pattern recognition or phase distribution reconstruction of two-phase 59 flow, reconstructed images are usually not required for GVF measurement. Moreover, due to the 60 complex characteristics of gas-liquid two-phase flow, it is difficult to develop a general method that is 61 62 suitable for all flow patterns.

In recent years, some flow instruments incorporating data driven models, such as artificial neural 63 networks (ANNs) and support vector machine (SVM), have been utilized to achieve GVF measurement 64 65 under two-phase flow conditions (Figueiredo et al., 2016; Wang et al., 2017; Peyvandi and Rad, 2017; Wang et al., 2018). Data driven models are widely used to represent the hidden relationships in large, 66 complex and multivariate datasets using statistical learning techniques. Wang et al. (2017) proposed 67 68 several data driven models based on ANNs, SVM and genetic programming to measure both the GVF and liquid mass flowrate of an air-water two-phase flow using Coriolis mass flowmeters (CMFs). 69 Although the mass flow measurement errors are mostly within $\pm 1\%$, the maximum error of the GVF is 70 71 still larger than 10%. Peyvandi and Rad (2017) developed an approach by combining gamma ray 72 attenuation with ANNs to measure the GVF of an air-oil-water three-phase flow. Figueiredo et al. (2016) 73 analyzed acoustic attenuation data from an air-oil-water three-phase flow and developed ANNs and 74 least squares support vector machine (LS-SVM) for the GVF measurement and flow pattern recognition. For two-phase CO₂ flow, Wang et al. (2018) combined LS-SVM models and CMFs to measure the GVF 75 in horizontal and vertical pipelines. The relative errors of GVFs both in horizontal and vertical pipelines 76 77 are within $\pm 10\%$ when the GVFs are larger than 5%. Previous studies have demonstrated that data 78 driven models, especially ANNs and LS-SVM, combined with conventional sensors perform well in 79 the GVF measurement of gas-liquid two-phase flow.

Variable selection is a necessary pre-processing step in the development of data driven models in order 80 81 to obtain acceptable measurement accuracy. Properties of datasets, including correlation and 82 monotonicity, should be taken into account during data pre-processing. The Pearson's correlation coefficient, which is commonly used to determine statistical dependence, only describes linear 83 dependence (Mu et al., 2018). Recently, copula functions have been used to measure the non-linear 84 dependence and tendency correlation between variables (Han et al., 2019; Karra and Mili, 2019). A 85 series of copula functions, including normal copula, t-copula and Clayton copula, are common choices 86 87 in the fields of economics, astronomy and meteorology (Mensi et al., 2016; Navarro, 2018; Kim et al., 2019). In comparison to other linear correlation analysis, copula functions can describe both linear and 88 non-linear correlations. For the measurement of gas-liquid two-phase flow, correlations between the 89 sensor signals and two-phase flow parameters are usually non-linear and non-monotonic. Copula 90 91 functions are capable of providing a comprehensive description of such correlations.

92 This paper presents a method for the GVF measurement of gas-liquid two-phase CO₂ flow by combining a 12-electrode capacitive sensor and data driven models. Signals from the capacitive sensor are used to 93 develop the measurement models without going through a time-consuming image reconstruction 94 95 process. During the data pre-processing stage, copula functions are used to establish the non-linear 96 relationships and tendency correlations between the measured capacitance data and the GVF. Three data driven models, including back-propagation neural network (BPNN), radial basis function neural 97 98 network (RBFNN) and LS-SVM, are established to measure the GVF. Experiments under steady-state 99 flow conditions were conducted on a horizontal pipeline on a CO₂ two-phase flow rig. The performance of the proposed measurement models in this study is evaluated in terms of relative errors. In 100 101 consideration of the flexible operations of a power generation utility with CCS capability, dynamic experiments with rapid changes in flow conditions were also conducted to assess the real-time 102 103 performance of the data driven models for GVF measurement.

104 **2. Methodology**

105 *2.1. Measurement strategy*

The measurement strategy adopted in this study is illustrated in Fig. 1. A high-pressure capacitive sensor is designed and constructed, which consists of 12 identical rectangular electrodes with a length of 40 mm and a width of 7 mm. The electrodes are symmetrically mounted on the exterior of a polytef pipe section with an inner diameter of 25 mm and an outer diameter of 31 mm. More details of the capacitive sensor are available in Sun et al. (2018). A data acquisition system is developed to measure the capacitances between each pair of electrodes in the sensing head, resulting in a total of 66 (C_{12}^2) independent capacitances. Data driven models, including BPNN, RBFNN and LS-SVM, accept variables from the data acquisition system to infer the GVF of gas-liquid two-phase CO₂ flow.

Fig. 1 Overall strategy for the GVF measurement of gas-liquid two-phase CO₂ flow

116 *2.2 Copula function*

Selecting an appropriate set of inputs to the data-driven model is a critical step in the GVF measurement. 117 118 The relationship between the input variables and outputs of the data driven model is usually inferred through statistical analysis. However, the most widely used correlation coefficient in statistics can only 119 analyze and measure the linear relationship between variables. In recent years, copula functions are 120 proposed to describe the dependence of random variables more comprehensively (Han et al., 2019; 121 Karra and Mili, 2019). The copula functions are powerful tools for modeling the non-linear correlation 122 among multiple variables due to their ability of relating the marginal distribution function of each 123 variable to their multivariate joint distributions functions. The distribution functions, including marginal 124 distribution and joint distribution, describe completely the statistical regularity of random variables 125 126 (Sun et al., 2019). Sklar theory states that a joint distribution can be divided into multiple marginal distributions and a copula function (Sklar, 1959), namely, 127

$$H(x_1, x_2, \dots, x_n) = C\{F_1(x_1), F_2(x_2), \dots, F_n(x_n), \theta\}$$
(1)

where H(x) is the joint distribution function of variables, F(x) is the marginal distribution, θ is the correlation degree parameter which can be determined by using the non-parametric kernel density estimation method (Wang et al., 2014), and $C(\cdot)$ is the copula function.

132 Two families of copula functions, *Ellipse-copula* family and *Archimedean-copula* family, have been

applied to describe the relationship between variables. The *Ellipse-copula* family includes normal copula, t-copula and logit copula. Gumbel-copula, Clayton-copula and Frank-copula belong to the *Archimedean-copula* family. The forms of these copula functions can be found in Nelsen (2006). In this paper, a two-dimensional normal copula function is employed to take into account the correlation between each capacitance value and the GVF due to its low computational complexity. For a twodimensional normal copula function, it can be described as follows:

139
$$C(u,v) = \frac{1}{2\pi\sqrt{1-r^2}} \int_{-\infty}^{\Phi^{-1}(u)} \int_{-\infty}^{\Phi^{-1}(v)} \exp\left[\frac{-\left(s^2 - 2rst + t^2\right)}{2\left(1-r^2\right)}\right] dsdt$$
(2)

140 where u and v are two random variables, Φ^{-1} denotes the inverse function of a standard normal 141 distribution function and r denotes the Pearson's correlation coefficient between u and v.

Unlike traditional linear correlation analysis, copula functions can describe both the linear and nonlinear
correlations between variables. The most widely used scale-invariant measures of association are the
Kendall's and Spearman's rank correlation coefficients (Fredricks and Nelsen, 2007), both of which
can be calculated from copula functions:

146
$$\tau = 4 \int_0^1 \int_0^1 C(u, v) dC(u, v) - 1$$
(3)

147
$$\mu = 12 \int_0^1 \int_0^1 C(u, v) duv - 3$$

148 where τ and μ are the Kendall's and Spearman's correlation coefficients, respectively. The Kendall's 149 and Spearman's coefficients are independent of the marginal distribution of random variables. They 150 determine the degree of consistency and remain unchanged after a strict monotonic transformation, 151 which illustrates that these coefficients have wider applicability than linear correlation coefficients.

(4)

152 2.3 Data driven models

In recent years, data driven modeling techniques were proposed for the GVF and flowrate measurement of gas-liquid two-phase flow (Wang et al., 2019; Peyvandi and Rad, 2017). Among these data driven models, the BPNN, RBFNN and LS-SVM have been widely used as alternatives to physical-based and conceptual models. The structure of each data driven model based on BPNN, RBFNN and LS-SVM is explained in detail in this section.

158 2.3.1 BPNN

As one of the most common neural networks, BPNNs have been applied to achieve the measurement of gas-liquid two-phase flow due to their strong nonlinear mapping capability, good adaptability and fault tolerance (Azizi et al., 2015). The BPNN is a multilayer neural network consisting of an input
layer, an output layer and a hidden layer, as shown in Fig. 2. The output of the BPNN is calculated from:

163
$$y_{BP}(t) = \sum_{j=1}^{L} \omega_j H_j(t) + b$$
(5)

where ω_j and *b* are the connection weight and bias between the *j*th hidden neuron and the output layer, respectively. *H_j* is the output of the *j*th hidden neurons and is determined from:

166
$$H_{j}(t) = f\left(\sum_{i=1}^{n} \omega_{ij} x_{i}(t) + a_{j}\right)$$
(6)

where ω_{ij} is the connection weight between the *i*th input neuron and the *j*th hidden neuron. x_i is the *i*th input variable and a_j is the bias of *j*th hidden neuron. f(x) is the activation function of hidden neurons. In this paper, the hyperbolic tangent sigmoid function is used as an activation function of hidden neurons (Figueiredo et al., 2016) and presented by

171
$$f(x) = \frac{2}{1 + e^{-2x}} - 1$$
(7)

Although BPNNs have been widely applied in practice, however, a successful BPNN model depends
significantly on the user-dependent parameters such as an appropriate model structure and training
initialization.

175

176

Fig. 2 Structure of a typical BPNN

177 *2.3.2 RBFNN*

178 RBFNN is a feedforward neural network consisting of three layers, as illustrated in Fig. 3, and uses a 179 type of radial basis function (RBF) as activation to the hidden nodes. The output of the network is a 180 linear combination of RBFs of the inputs and neuron parameters. The RBF measures the distance 181 between the input vectors and the weight vectors and is typically taken to be the Gaussian function. The 182 output of a RBFNN is calculated from:

$$y_{RBF}(t) = \sum_{j=1}^{N} \omega_j(t) \varphi_j(x(t))$$
(8)

184 where ω_i is the connection weight between the *j*th hidden neurons and the output layer, x(t) is the input

variables vector, and N is the number of hidden neurons. φ_i is the *j*th nonlinear mapping between the

input neurons and the *j*th hidden neuron, respectively, namely,

187
$$\varphi_j(x(t)) = \exp\left(-\left(\left\|x(t) - C_j\right\|^2 / 2\sigma_j^2\right)\right)$$
(9)

188 where C_j and σ_j^2 is the center vector and the variance for the *j*th hidden neuron, respectively, and C_j is

determined by the K-means clustering method (Liao, 2010).

190 191

183

Fig. 3 Structure of RBFNN

192 2.3.3 LS-SVM

The SVM algorithm maps linear inseparable data to a new space, in which these data become linearly separable. The SVMs have been applied to achieve the phase fraction prediction and flow regime identification due to the good generalization and the suitability for small sample training (Wang et al., 2009; Zhang et al., 2011). In order to achieve faster convergence, Suykens (2002) proposed an LS-SVM model to solve the nonlinear regression problem by mapping the data into a high-dimensional feature space and then developing a linear regression model in this space. Given training samples x and the desired output y, the LS-SVM model is defined as

200

$$\min_{\omega,b,e} \frac{1}{2} \omega^{T} \omega + \frac{1}{2} \gamma \sum_{k=1}^{n} e$$

$$s.t.$$

$$y = \omega^{T} \varphi(x) + b + e$$
(10)

201 where ω^T and b are the transposed vector and bias, respectively. $\varphi(x)$ is a nonlinear mapping function.

- 202 γ refers to penalty parameter. e_k is slack variables. x_k and y_k are the kth input and output elements,
- 203 respectively.
- In order to achieve the optimization solution of Eq. 10, Lagrange function is adopted, i.e.

205
$$L(\omega, b, e, a) = \frac{1}{2}\omega^{T}\omega + \frac{1}{2}\gamma \sum_{k=1}^{n} e_{k}^{2} - \sum_{k=1}^{n} a_{k} \left(\omega^{T}\varphi(x_{k}) + b - e_{k} - y_{k}\right)$$
(11)

206 where a_k is the Lagrange multiplier.

207 Furthermore, the partial derivative of Lagrange function is given by:

$$\begin{cases} \frac{\partial L}{\partial \omega} = 0 \rightarrow \omega = \sum_{k=1}^{n} a_{k} \varphi(x_{k}) \\ \frac{\partial L}{\partial b} = 0 \rightarrow \sum_{k=1}^{n} a_{k} = 0 \\ \frac{\partial L}{\partial e_{k}} = 0 \rightarrow a_{k} = \gamma e_{k} \\ \frac{\partial L}{\partial a_{k}} = 0 \rightarrow y_{k} = \omega^{T} \varphi(x_{k}) + b + e_{k} \end{cases}$$
(12)

208

209 The estimation of the LS-SVM model is obtained by solving the following equation,

210
$$y_k = \sum_{k=1}^{n} a_k K(x, x_k) + b$$
(13)

211 where $K(x, x_k)$ is a kernel function.

Samples from the original space are mapped into a higher-dimensional space by the kernel functions, such as linear, polynomial, RBF, and sigmoid function. In this study, an RBF kernel function is chosen due to the strong nonlinear mapping abilities. Thus, the output of the LS-SVM model is finally represented as:

216
$$y_{SVM}(t) = \sum_{k=1}^{n} a_k \exp\left(-\frac{1}{2\sigma^2} \|x(t) - x_i\|^2\right) + b$$
(14)

217 **3.** Experimental conditions

218 *3.1 Test rig*

Experiments were conducted on a 1-in bore gas-liquid two-phase CO_2 flow rig as depicted in Fig. 4. The capacitive sensor, as shown in Fig. 5, is installed in the horizontal test section. A stainless steel pipe is wrapped outside the polytef pipe to withstand the high pressure. For experiments under steady-state flow conditions, the mass flowrate of liquid CO_2 is set from 200 kg/h to 3100 kg/h, resulting in the reference GVF from 0% to 84%. Experiments under dynamic conditions were also conducted to investigate the real-time performance of the established data driven models. The gas phase CO_2 was increased from 120 kg/h to 400 kg/h and then decreased from 400 kg/h to 120 kg/h when the liquid phase CO_2 was fixed at 1500 kg/h. Meanwhile, the liquid phase CO_2 was increased from 350 kg/h to 750 kg/h and then decreased from 750 kg/h to 350 kg/h when the gas phase CO_2 was fixed at 70 kg/h. These dynamic flow conditions result in variations in GVF. The material properties and operation conditions of the CO_2 flow test rig are summarized in Table 1.

230

231

Fig. 4 Schematic of the gas-liquid two-phase CO₂ flow rig

Table 1 Material properties and operation conditions of the CO₂ flow test rig

Parameter	Value	Parameter	Value		
Pressure (bar)	57 - 72	Liquid density (kg/m ³)	740 - 800		
Temperature (°C)	20 - 30	Gas specific enthalpy (kJ/kg)	403.26 - 437.74		
Gas mass flowrate (kg/h)	15 - 400	Liquid specific enthalpy (kJ/kg)	253.25 -262.93		
Liquid mass flowrate (kg/h)	70 - 3100	Gas permittivity	1.0		
Gas density (kg/m ³)	190 -210	Liquid permittivity	1.6		

237

236

238 *3.2 Calculation of reference GVF*

Two CMFs are installed on the liquid phase and gas phase sections, respectively, to provide the mass flowrate and density of single-phase CO₂ flow. The measurement uncertainty of gas phase CO₂ flow is 0.35% while that of liquid phase CO₂ flow is 0.16%. Temperature and pressure transducers are installed at the entrance and exit of the mixer, respectively, to provide temperature and pressure information of single-phase and two-phase CO₂ flows. When the gas and liquid CO₂ are mixed without considering the phase transition between the two, the GVF (α_0) of two-phase CO₂ flow is calculated from,

245
$$\alpha_0 = \frac{q_{mg}\rho_l}{q_{ml}\rho_g + q_{mg}\rho_l}$$
(15)

where q_{mg} and ρ_g are the mass flowrate and density of gas phase CO₂, respectively. q_{ml} and ρ_l are the mass flowrate and density of liquid phase CO₂, respectively. These parameters are all obtained from the reference CMFs.

However, phase transition may occur due to the changes in temperature and pressure at the mixer. TheGVF should be corrected by the first law of thermodynamics of an open system as follows:

251
$$q_{mg}h_{g} + q_{ml}h_{l} = q_{mg}h_{g} + q_{ml}h_{l}$$

$$q_{mg} + q_{ml} = q_{mg} + q_{ml}$$
(16)

where h_g and h_l are the specific enthalpy values of pure gas and liquid CO₂ before being mixed, respectively. h_g' and h_l' are the specific enthalpy values of gas and liquid CO₂ in two-phase flow, respectively. q'_{mg} and q'_{ml} are the mass flowrate of gas and liquid CO₂ in two-phase flow, respectively. Specific enthalpy is a thermodynamic quantity equivalent to internal energy of a system plus the product of its pressure and volume. Temperatures and pressures at the entrance and exit of the mixer are used to determine the specific enthalpy of CO₂. The gas mass fraction (χ) and the reference GVF (α) are calculated as follows,

259
$$\chi = \frac{\left(h_{l} - h_{l}^{'}\right) - \frac{q_{ml}}{q_{ml} + q_{mg}}\left(h_{l} - h_{g}\right)}{h_{g}^{'} - h_{l}^{'}}$$
(17)

260
$$\alpha = \frac{\chi \rho_l}{(1-\chi)\rho_s}$$
(18)

261 4. Results and Discussion

262 *4.1 Correlation analysis by copula functions*

263 Firstly, the measured capacitances are normalized as follows,

264
$$C_{norm} = \frac{C_i - C_l}{C_g - C_l}$$
(19)

where C_i is the capacitance measured under two-phase CO₂ flow conditions. C_i and C_g are the capacitances which are measured during calibration when the pipeline is full of liquid phase CO₂ and gas phase CO₂, respectively.

Secondly, marginal probability density distributions for the capacitances of each pair of electrodes are estimated using the non-parametric kernel density estimation method. Joint distributions between the measured capacitances and GVFs are established by using normal copula functions and the semiparametric pseudo-maximum-likelihood method. Finally, the Kendall's and Spearman's rank correlation coefficients between the capacitance values and the GVFs are calculated from Eq. 3 and Eq. 4.

Tables 2 and 3 summarize the Kendall's and Spearman's correlation coefficients calculated from copula functions. The closer these coefficients get to 1 (or -1), the stronger the positive (or negative) correlation is. The top 20% variables with the strongest correlation are selected and their distributions are depicted in Fig. 6.

279	(a)	(b)
280	Fig. 6 Distributions of electrode pairs selected by	y different coefficients. (a) Kendall's coefficient (b)

Spearman's coefficient.

From Fig. 6 (a), electrodes selected by Kendall's coefficient are mainly distributed in the top and bottom of the horizontal pipeline. The sensing area of these electrodes covers the entire interior of the pipe which is good to obtain sufficient information about the flow. However, the sensing segments of the electrode pairs selected by Spearman's coefficients are located at the edge of the pipeline as shown in Fig. 6 (b). To obtain complete assessment for input variables, capacitances selected by both Kendall's and Spearman's coefficients are used to develop data driven models. The performances of these models are evaluated and compared in terms of relative errors.

289

281

Table 2 Kendall's coefficients between the GVFs and capacitances

Number of electrodes	2	3	4	5	6	7	8	9	10	11	12
1	0.32	0.78	0.92	0.92	0.92	0.92	0.93	0.94	0.85	0.38	0.7
2		0.63	0.76	0.77	0.76	0.77	0.78	0.89	0.75	0.58	0.34
3			0.55	0.57	0.58	0.59	0.6	0.61	0.66	0.83	0.82
4				0.87	0.85	0.31	0.27	0.18	0.56	0.88	0.91
5					0.82	0.79	0.68	0.31	0.55	0.87	0.9
6						0.73	0.8	0.35	0.54	0.86	0.89
7							0.81	0.37	0.53	0.86	0.89
8								0.4	0.52	0.86	0.89
9									0.49	0.86	0.89
10										0.67	0.78
11											0.23

290 291

Table 3 Spearman's coefficients between the GVFs and capacitances

Number of electrodes	2	3	4	5	6	7	8	9	10	11	12
1	0.3	0.69	0.86	0.75	0.75	0.76	0.78	0.79	0.82	0.22	0.77
2		0.49	0.72	0.72	0.72	0.73	0.74	0.75	0.78	0.46	0.19
3			0.27	0.31	0.33	0.35	0.37	0.38	0.47	0.79	0.78
4				0.63	0.6	0.56	0.52	0.42	0.31	0.78	0.72
5					0.88	0.87	0.84	0.56	0.29	0.77	0.7
6						0.88	0.87	0.6	0.27	0.76	0.69
7							0.86	0.64	0.25	0.76	0.68
8								0.67	0.22	0.76	0.68
9									0.17	0.76	0.69
10										0.52	0.68
11											0.15

- 293 *4.2 Performance of data driven models*
- 294 *4.2.1 Steady-State flow conditions*

A total of 197 sets of the capacitance data under steady-state flow conditions were acquired as sample data for training BPNN, RBFNN and LS-SVM, among which 158 sets (80% of the data) are adopted as training data. The remaining 39 sets (20% of the data) are used as testing data. The three data driven models are compared in terms of measurement accuracy.

Fig. 7 shows a comparison between the reference GVF and measured GVF from the data driven models using variables selected using the Kendall's coefficient. The relative errors from the BPNN and LS-SVM models are within $\pm 13\%$ and $\pm 12\%$, respectively, whilst the RBFNN model yields a relative error within $\pm 7\%$. The RBFNN is remarkably more accurate than BPNN and LS-SVM due probably to the fact that the K-means clustering of input variables during the training of the RBFNN model has similar effect on the flow pattern classification of two-phase CO₂ flow.

Fig. 7 Comparison between the measured GVF and reference GVF using variables selected via the 309 Kendall's coefficient. (a) BPNN. (b) RBFNN. (c) LS-SVM. 310

Fig. 8 depicts the comparison between the reference GVF and measured GVF using variables selected 311 via the Spearman's coefficient. The relative errors of the BPNN, RBFNN and LS-SVM models are 312 within $\pm 18\%$, $\pm 13.8\%$ and $\pm 17\%$, respectively. The mathematical formulations of Kendall's and 313 Spearman's coefficients are different, resulting in different selected variables and outputs of the data 314 driven models. However, according to Fig. 7 and Fig. 8, both coefficients are effective in selecting input 315 316 variables for the data driven models. It is because that both coefficients are developed to determine the degree of consistency, which means they are both effective in measuring the nonlinear correlation 317 between the measured capacitance data and GVF. However, the measurement area of electrode pairs 318 selected via Spearman's coefficient is mostly located at the edge of the pipeline, some information about 319 320 the fluid in the center of the pipeline may be lost, resulting in lower accuracy than that in Fig. 7 for all 321 three models.

324

(c)
Fig. 8 Comparison between the measured GVF and reference GVF using variables selected via the
Spearman's coefficient. (a) BPNN. (b) RBFNN. (c) LS-SVM.
Fig. 9 and Fig. 10 illustrate the relative error histograms from the data driven models using the two
different variable selection methods. It is clear that the error distributions of the BPNN and RBF models
are much wider and dispersive than those of RBFNN. By comparing the relative errors and error
distributions from data driven models, we can conclude that the measurement results from RBFNN

incorporating copula functions produce the lowest relative errors and the highest concentration of theerror distributions.

Kendall's coefficient. (a) BPNN. (b) RBFNN. (c) LS-SVM.

Fig. 10 Relative error histograms of BPNN, RBFNN and LS-SVM using variables selected by the
Spearman's coefficient. (a) BPNN. (b) RBFNN. (c) LS-SVM.

346 *4.2.2 Dynamic conditions*

The RBFNN, which outperforms the BPNN and LS-SVM under steady-state flow conditions, is applied 347 348 to achieve the GVF measurement under dynamic conditions. Fig. 11 shows the measurement 349 performance of the RBFNN during the dynamic operations in the horizontal test section. As shown in 350 Fig. 11 (a) and (b), the mass flowrate of gas phase was fixed at 70 kg/h while the mass flowrate of liquid phase experienced the step increase and decrease. In comparison with the reference GVF, the measured 351 GVF can follow the transient changes. Fig. 11 (c) and (d) show the transient behaviours with increasing 352 and decreasing gas phase CO₂ while the liquid phase was fixed at 1500 kg/h. The measurement results 353 can also follow the trend of reference GVF. However, as shown in Fig. 11 (d), the reduction in GVF is 354 gradual because the inertia of the compressor at a reduced frequency is larger than that at an increased 355

frequency, which prevents step reduction in the mass flowrate of gas phase CO_2 . Meanwhile, the buffer installed behind the compressor serves to keep the mass flowrate of gas CO_2 stable in the pipeline, which also prevents step change in the gas phase CO_2 under dynamic conditions. A comparison between the reference GVF and measured GVF during dynamic conditions is plotted in Fig. 12. It is clear that the relative errors are within $\pm 16\%$ in all four cases.

Fig. 11 Measuremnet performance of RBFNN under dynamic conditions. (a) Increasing liquid CO₂
with fixed gas CO₂. (b) Decreasing liquid CO₂ with fixed gas CO₂. (c) Increasing gas CO₂ with fixed
liquid CO₂. (d) Decreasing gas CO₂ with fixed liquid CO₂.

Fig. 12 Comparison between the measured GVF and reference GVF under dynamic conditions. (a)
Increasing liquid CO₂ with fixed gas CO₂. (b) Decreasing liquid CO₂ with fixed gas CO₂. (c)
Increasing gas CO₂ with fixed liquid CO₂. (d) Decreasing gas CO₂ with fixed liquid CO₂.

375 **5.** Conclusions

368

369

370 371

In this paper analytical and experimental investigations have been carried out to achieve the GVF 376 377 measurement of gas-liquid two-phase CO₂ flow using a 12-electrode capacitive sensor and data driven models. The results have shown that the RBFNN model produces more accurate GVF measurement 378 379 than the BPNN and LS-SVM models. During the data pre-processing stage, copula functions and two rank correlation coefficients, i.e. Kendall's and Spearman's coefficients, have been used to select input 380 variables for the data driven models. Under steady-state flow conditions the RBFNN yields a relative 381 error within $\pm 7\%$ in the horizontal pipeline for the GVF ranging from 0% to 84%, whilst the BPNN and 382 LS-SVM models give relative errors within $\pm 13\%$ and $\pm 12\%$, respectively. The results under dynamic 383 flow conditions have verified the real-time performance of the RBFNN with a relative error within 384 $\pm 16\%$. It should be stressed that the GVF measurement of the two-phase CO₂ flow using the capacitance 385

19

signals and data driven models is achieved without the time-consuming image reconstruction algorithms.

387

388 Acknowledgements

- 389 The authors wish to acknowledge the National Natural Science Foundation of China (No.61973113)
- and the financial support of the UK CCS Research Centre (www.ukccsrc.ac.uk). The UK CCSRC is
- funded by the EPSRC as part of the RCUK Energy Programme.

392 **References**

- Abdilahi, A.M., Mustafa, M.W., Abujarad, S.Y., Mustapha, M., 2018. Harnessing flexibility potential
 of flexible carbon capture power plants for future low carbon power systems: Review. Renew. Sust.
 Energ. Rev. 81, 3101-3110.
- Azizi S., Awad M. M., Ahmadloo E., 2015. Prediction of water holdup in vertical and inclined oil-water
 two-phase flow using artificial neural network. Int. J. Multiph. Flow 80:181-187.
- Bowden, R.C., Lessard, étienne, Yang, S.K., 2017. Void fraction measurements of bubbly flow in a
 horizontal 90 degree bend using wire mesh sensors. Int. J. Multiph. Flow 99, 30-47.
- 400 Chakraborty, S., Keller, E., Talley, J., Srivastav, A., Ray, A., Kim, S., 2009. Void fraction measurement
- 401 in two-phase flow processes via symbolic dynamic filtering of ultrasonic signals. Meas. Sci.
 402 Technol. 20(2), 023001.
- 403 Figueiredo, M. M. F., Goncalves, J. L., Nakashima, A. M. V., Fileti, A. M. F., Carvalho, R. D. M., 2016.
- The use of an ultrasonic technique and neural networks for identification of the flow pattern and measurement of the gas volume fraction in multiphase flows. Exp. Therm. Fluid Sci. 70, 29-50.
- Fredricks, G. A., Nelsen, R. B., 2007. On the relationship between Spearman's rho and Kendall's tau
 for pairs of continuous random variables. J. Stat. Plan. Infer. 137(7), 2143-2150.
- Han, S., Qiao, Y., Yan, J., Liu, Y., Li, L., Wang, Z., 2019. Mid-to-long term wind and photovoltaic power
 generation prediction based on copula function and long short term memory network. Appl. Energy
 239, 181-191.
- Ji, H., Chang, Y., Huang, Z., Wang, B., Li, H., 2014. Voidage measurement of gas–liquid two-phase
 flow based on capacitively coupled contactless conductivity detection. Flow Meas. Instrum. 40,
 199-205.
- 414 Jiang, F., Liu, S., Liu, J., Wang, X., 2009. Measurement of Ice Movement in Water Using Electrical

- 415 Capacitance Tomography. J. Therm. Sci. 18(1), 8-12.
- Karra, K., Mili, L., 2019. Copula index for detecting dependence and monotonicity between stochastic
 signals. Inf. Sci. 485, 18-41.
- Kemper, J., 2015. Biomass and carbon dioxide capture and storage: A review. Int. J. of Greenh. Gas
 Control 40, 401-430.
- Kim, G., Silvapulle, M.J., Silvapulle, P., 2007. Comparison of semiparametric and parametric methods
 for estimating copulas. Comput. Stat. Data Anal. 51(6): 2836-2850.
- Kim, J.M.; Lee, N., Xiao, X.Y., 2019. Directional dependence between major cities in China based on
 copula regression on air pollution measurements. PLoS One 14(3), e0213148.
- Leung, D.Y.C., Caramanna, G., Maroto-Valer, M.M., 2014. An overview of current status of carbon
 dioxide capture and storage technologies. Renew. Sust. Energ. Rev. 39, 426–443.
- Liao, C., 2010. Genetic k-means algorithm based RBF network for photovoltaic MPP prediction.
 Energy 35(2), 529-536.
- Mensi, W., Hammoudeh, S., Shahzad, S.J.H., Shahbaz, M., 2016. Modelling systemic risk and
 dependence structure between oil and stock markets using a variational mode decomposition-based
 copula method. J. Bank Financ. 75, 258-279.
- Mu, Y., Liu, X., Wang, L., 2018. A Pearson's correlation coefficient based decision tree and its parallel
 implementation. Inf. Sci. 435, 40-58.
- Navarro, J., 2018. Distribution-free comparisons of residual lifetimes of coherent systems based on
 copula properties. Stat. Pap. 59(2), 781-800.
- Nazemi, E., Feghhi, S.A.H., Roshani, G.H., Peyvandi, R.G., Setayeshi, S., 2016. Precise void fraction
 measurement in two-phase flows independent of the flow regime using gamma-ray attenuation.
 Nucl. Eng. Technol. 48(1), 64-71.
- 438 Nazeri, M., Maroto-Valer, M.M., Jukes, E., 2016. Performance of coriolis flowmeters in CO₂ pipelines
- with pre-combustion, post-combustion and oxyfuel gas mixtures in carbon capture and storage. Int.
- 440 J. of Greenh. Gas Control 54, 297-308.
- 441 Nelsen, R.B., 2006. An introduction to Copulas, second ed. Springer Verlag, New York.
- 442 Olerni, C., Jia, J., Wang, M., 2013. Measurement of air distribution and void fraction of an upwards air-
- 443 water flow using electrical resistance tomography and a wire-mesh sensor. Meas. Sci. Technol.

444 24(3), 035403.

- Peyvandi, R.G., Rad, S.Z.I., 2017. Application of artificial neural networks for the prediction of volume
 fraction using spectra of gamma rays backscattered by three-phase flows. Eur. Phys. J. Plus 132(12),
 511.
- Porter, R.T.J., Fairweather, M., Pourkashanian, M., Woolley, R.M., 2015. The range and level of
 impurities in CO₂ streams from different carbon capture sources. Int. J. of Greenh. Gas Control 36,
 161-174.
- Ren, C., An, N., Wang, J., Li, L., Hu, B., & Shang, D., 2014. Optimal parameters selection for BPNN
 based on particle swarm optimization: a case study of wind speed forecasting. Knowledge-Based
 Syst. 56, 226-239.
- 454 Schweizer, B., Sklar, A., 1983. Probabilistic metric spaces. New York, North-Holland.
- Sklar A., 1959. Fonctions de repartition à n dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris
 8, 229-231.
- Sun, B., Cao, Y., Feng, Q., Qian, C., Ren, Y., Yang, DZ., 2019. An Archimedean Copula Function-Based
 Prediction Method for High-Power White LED Considering Multi-Performance. IEEE Trans.
 Electron. Devices 66(8), 3405-3410.
- Sun, S., Cao, Z., Huang, A., Xu, L., Yang, W., 2017. A high-speed digital electrical capacitance
 tomography system combining digital recursive demodulation and parallel capacitance
 measurement. IEEE Sens. j. 17, 6690-6698.
- Sun, S.J., Zhang, W.B., Sun, J.T., Cao Z., Xu, L.J. Yan, Y., 2018. Real-time imaging and holdup
 measurement of carbon dioxide under CCS conditions using electrical capacitance tomography.
 IEEE Sens. J. 18, 7551-7559.
- Suykens, Johan A. K., 2002. Least squares support vector machines. Int. J. Circuit Theory Appl.
 27(6):605-615.
- Ursenbacher, T., Wojtan, L., Thome, J.R., 2004. Interfacial measurements in stratified types of flow.
 part I: new optical measurement technique and dry angle measurements. Int. J. Multiph. Flow 30(2),
 107-124.
- Wang, H. X., Zhang, L. F., 2009. Identification of two-phase flow regimes based on support vector
 machine and electrical capacitance tomography. Meas. Sci. Technol. 20(11), 114007.

- Wang, L., Liu, J., Yan, Y., Wang, X., Wang, T., 2017. Gas-liquid two-phase flow measurement using
 Coriolis flowmeters incorporating artificial neural network, support vector machine, and genetic
 programming algorithms. IEEE Trans. Instrum. Meas. 66(5), 852-868.
- 476 Wang, L., Yan, Y., Wang, X., Wang, T., Duan, Q., Zhang, W., 2018. Mass flow measurement of gas-
- 477 liquid two-phase CO₂ in CCS transportation pipelines using Coriolis flowmeters. Int. J. of Greenh.
- 478 Gas Control 68, 269-275.
- Wang, S., Wang, J., Chung, F. L., 2014. Kernel density estimation, kernel methods, and fast learning in
 large data sets. IEEE T. Cybern. 44(1), 1-20.
- 481 Wang, W., Sefiane, K., Duursma, G., Liang, X., Chen, Y., 2019. Void fraction measurement of gas-
- 482 liquid two-phase flow based on empirical mode decomposition and artificial neural networks. Heat
 483 Transf. Eng. 40(16), 1403-1416.
- Wen, C., Karvounis, N., Walther, J.H., Yan, Y.Y., Feng, Y.Q., Yang, Y., 2019. An efficient approach to
 separate CO₂ using supersonic flows for carbon capture and storage. Appl. Energ. 238, 311-319.
- Xie, D., Huang, Z., Ji, H., Li, H., 2006. An online flow pattern identification system for gas-oil twophase flow using electrical capacitance tomography. IEEE Trans. Instrum. Meas. 55(5): 18331838.
- Zhang, C., Zhang, T., Yuan, C., 2011. Oil holdup prediction of oil-water two phase flow using thermal
 method based on multiwavelet transform and least squares support vector machine. Expert Syst.
 Appl. 38(3), 1602-1610.
- Zhang, W.B., Shao, D., Yan, Y. Liu, S., Wang, T., 2018. Experimental investigations into the transient
 behaviours of CO₂ in a horizontal pipeline during flexible CCS operations. Int. J. of Greenh. Gas
 Control 79, 193-199.