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On the Practical Consequences of Misfit in Mokken Scaling 

Abstract: Mokken scale analysis is a popular method to evaluate the psychometric quality of 

clinical and personality questionnaires and their individual items. Although many empirical 

papers report on the extent to which sets of items form Mokken scales, there is less attention 

for the effect of violations of commonly used rules of thumb. In this study we investigated the 

practical consequences of retaining or removing items with psychometric properties that do 

not comply with these rules-of-thumb. Using simulated data, we concluded that items with 

low scalability had some influence on the reliability of test scores, person ordering and 

selection, and criterion-related validity estimates. Removing the misfitting items from the 

scale had, in general, a small effect on the outcomes. Although important outcome variables 

were fairly robust against scale violations in some conditions, we conclude that researchers 

should not rely exclusively on algorithms allowing automatic selection of items. In particular, 

content validity must be taken into account in order to build sensible psychometric 

instruments. 

Keywords: Mokken scale analysis, scale analysis, item response theory, test 

construction, content validity. 
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On the Practical Consequences of Misfit in Mokken Scaling 

Item response theory (IRT) models are used to evaluate and construct tests and 

questionnaires, such as, for example, clinical- and personality scales (e.g., Thomas, 2011). A 

popular IRT approach is Mokken scale analysis (MSA; e.g., Mokken, 1971; Sijtsma & 

Molenaar, 2002). MSA has been applied in various fields where multi-item scales are used to 

assess the standing of subjects on a particular characteristic or the latent trait of interest. In 

recent years, the popularity of MSA has increased. A simple search on Google scholar with 

the keywords “Mokken Scale Analysis AND scalability” from 2000 through 2019 yielded 

about 1200 results, including a large set of empirical studies. These studies were conducted in 

various domains, such as in personality (e.g., Watson, Deary, & Austin, 2007), clinical 

psychology and health (e.g., Emons, Sijtsma, & Pedersen, 2012), education (e.g., Wind, 

2016), and in human resources and marketing (e.g., De Vries, Michielsen, & Van Heck, 

2003). Both the useful psychometric properties of MSA and the availability of easy-to-use 

software (e.g., the R ‘mokken’ package; van der Ark, 2012) explain the popularity of MSA.  

As we discuss below, within the framework of Mokken scale analysis, there are several 

procedures that can be used to evaluate the quality of an existing scale or set of items that may 

form a scale. In practice, however, a set of items may not comply strictly with the 

assumptions of a Mokken scale and a researcher is then faced with a difficult decision: 

Include or exclude the offending items (Molenaar, 1997)? The answer to this question is not 

straightforward. On the one hand, the exclusion of items must be carefully considered because 

it may compromise construct validity (see the Standards for Educational and Psychological 

Testing, 2014, for a discussion of the types of validity evidence). On the other hand, it is not 

well known to what extent the retention of items that violate the premises of a Mokken scale 

affect important quality criteria. 
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The present study is aimed at investigating the effects of retaining or removing items 

that violate common premises in MSA, on several important outcome variables. Our paper 

therefore offers novel insights over scale construction for practitioners applying MSA, going 

over and beyond what MSA typically offers. This study is organized as follows. First, we 

provide some background on Mokken scale analysis. Second, we present the results of a 

simulation study in which we investigated the effect of model violations on several important 

outcome variables. Finally, in the discussion section we provide an evaluative and integrated 

overview of the findings and we discuss main conclusions and limitations.  

Mokken Scale Analysis 

For analyzing test and questionnaire data, MSA provides much more analytical tools 

than classical test theory (CTT; Lord & Novick, 1968), while avoiding the statistical 

complexities of parametric IRT models. One of the most important MSA models is the 

monotone homogeneity model (MHM). The MHM is based on three assumptions: (a) 

Unidimensionality: All items predominantly measure a single common latent trait, denoted θ; 

(b) Monotonicity: The relationship between θ and the probability of scoring in a certain 

response category or higher is monotonically nondecreasing, and (c) Local independence: An 

individual’s response to an item is not influenced by his/her responses to other items in the 

same scale. Assumptions (a) through (c) allow the stochastic ordering of persons on the latent 

trait continuum by means of the sum score, when scales consist of dichotomous items (e.g., 

Sijtsma & Molenaar, 2002, p. 22). For a discussion on how this property applies to 

polytomous items, see Hemker, Sijtsma, Molenaar, & Junker (1997) and van der Ark (2005). 

In MSA, Loevinger’s H coefficient (or the scalability coefficient; Mokken, 1971, p. 

148-153; Sijtsma & Molenaar, 2002, chap. 4) is a popular measure to evaluate the quality of 

each item i and of sets of items, in relation to the test score distribution. The H coefficient can 
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be obtained for pairs of items (Hij), for individual items (Hi), and for the entire scale (H). The 

Hi is defined as following for dichotomous items (Sijtsma & Molenaar, 2002, pp. 55-58): 

𝐻𝑖 =
𝐶𝑜𝑣(𝑋𝑖, 𝑅−𝑖)

𝐶𝑜𝑣𝑚𝑎𝑥(𝑋𝑖, 𝑅−𝑖)
= 1 −

∑ (𝑃𝑖 − 𝑃𝑖𝑗)𝑗≠𝑖

∑ 𝑃𝑖 × (1 − 𝑃𝑗) + ∑ 𝑃𝑗 × (1 − 𝑃𝑖)𝑗<𝑖𝑗>𝑖

 

In this formula, Xi denotes individuals’ responses to item i. Pi and Pj denote the 

probability of a correct response to - or endorsing - items i and j, Pij denotes the probability of 

correct response to- or endorsing both items i and j, and R-i denotes the vector of restscores 

(that is, the individuals’ sum scores excluding item i). The item-pair and scale coefficients can 

be easily derived from Hi, by removing the summation symbols (for Hij) or adding an 

additional one (for H) from/to all the terms in the equation above. For polytomous items, the 

scalability coefficients are based on the same principles as for dichotomous items, but their 

formulas are more complex, as probabilities are defined at the levels of item steps (Molenaar, 

1991; Sijtsma & Molenaar, 2002, p. 123; see also Crisan, van de Pol, & van der Ark, 2016 for 

a comprehensive explanation of how these can be obtained). 

Loevinger’s H coefficient reflects the accuracy of ordering persons on the θ scale 

using the sum score as a proxy. If the MHM holds, then the population H values for all item 

pairs, items, and the entire scale are between 0 and 1 (Sijtsma & Molenaar, 2002, Theorem 

4.3). Larger H coefficients are indicative of better quality of the scale (“stronger scales”), 

whereas values closer to 0 are associated with “weaker scales”. A so-called Mokken scale is a 

unidimensional scale comprised of a set of items with ‘large-enough’ scalability coefficients, 

which indicate that the scale is useful for discriminating persons using the sum scores as 

proxies for their latent θ values. There are some often-used rules of thumb that provide the 

basis for MSA (Mokken, 1971, p. 185). A Mokken scale is considered a weak scale when .3 ≤ 

H < .4, a medium scale when .4 ≤ H < .5, and a strong scale when H ≥ .5 (Mokken, 1971; 

Sijtsma & Molenaar, 2002). A set of items for which H < .3 is considered unscalable. Using .3 

as a lower bound value for Hi and H is the default option in various software packages, 
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including the R ‘mokken’ package (van der Ark, 2012) and MSP5 (Molenaar & Sijtsma, 

2000). 

A popular feature of MSA is its item selection tool, known as the automated item 

selection procedure, AISP (Sijtsma & Molenaar, 2002, chaps. 4 and 5). The AISP assigns 

items into one or more Mokken (sub-)scales according to some well-defined criteria (see e.g., 

Meijer, Sijtsma, & Smid, 1990), and identifies items that cannot be assigned to any of the 

selected Mokken scales (i.e., unscalable items). The unscalable items may not discriminate 

well between persons and, depending on the researcher’s choice, may be removed from the 

final scale.  

Both the AISP selection tool and the item quality check tool are based on the 

scalability coefficients. However, it is important to note that a suitable lower bound for the 

scalability coefficients should ultimately be determined by the user (Mokken, 1971), taking 

the specific characteristics of the data and the context into account. Although several authors 

emphasized the importance of not blindly using the rules of thumb (e.g., Rosnow and 

Rosenthal, 1989, p. 1277, for a general discussion outside Mokken scale analysis), many 

researchers use the default lower bound offered by existing software when evaluating or 

constructing scales.  

How is Mokken Scale Analysis Used in Practice? 

Broadly speaking, there are two types of MSA research approaches: In one approach, 

MSA is used to evaluate the item- and scale quality when constructing a questionnaire or test 

(e.g., Ettema, Dröes, De Lange, Mellenberg, & Ribbe., 2007; De Boer, Timmerman, Pijl, & 

Minnaert, 2012). In the other approach, MSA is used to evaluate an existing instrument (e.g., 

Bech, Carrozzino, Austin, Møller, & Vassend, 2016; Bielderman et al., 2013; Bouman et al., 

2011). Not surprisingly, researchers using MSA in the construction phase tend to remove 

items more often based on low scalability coefficients and/or the AISP results (e.g., Brenner 



MISFIT IN MOKKEN SCALING  6 

 

et al., 2007; De Boer et al., 2012; De Vries et al., 2003) than researchers who evaluate 

existing instruments. However, researchers seldom use sound theoretical, content, or other 

psychometric arguments to remove items from a scale.  

Researchers evaluating existing scales often simply report that items have low 

coefficients, but they are typically not in a position to remove items (e.g., Bech et al., 2016; 

Bielderman et al., 2013; Bouman et al., 2011; Cacciola, Alterman, Habing, & McLellan, 

2011, p.12; Emons et al., 2012, p. 349; Ettema et al., 2007). Thus, practical constraints often 

predetermine researchers’ actions, but it is unclear to what extent other variables, such as 

predictive or criterion validity (Standards for Educational and Psychological Testing, 2014), 

are affected by the inclusion of items with low scalability. What is, for example, the effect on 

the predictive validity of the sum scores obtained from a more homogenous scale as compared 

to a scale that includes lower scalability items? For some general remarks about the relation 

between homogeneity and predictive validity, and about one of the drawbacks of relying on 

the H coefficient, see the online supplementary materials. 

Practical Significance 

In this study, we extend the existing literature on the practical use of MSA (see 

Sijtsma & van der Ark, 2017 and Wind, 2017, for excellent tutorials for practitioners in the 

fields of psychology and education) by systematically investigating how practical outcomes, 

such as scale reliability and person rank ordering were affected by scores obtained from scales 

containing items with low scalability coefficients. This study also extends previous literature 

on the practical significance (Sinharay & Haberman, 2014) of the misfit of IRT models (e.g., 

Crișan, Tendeiro, & Meijer, 2017) by focusing on nonparametric IRT models.  

In the remaining of this paper we describe the methodology we used to answer our 

research questions, we present the findings of our study, and we follow up with some insights 

for practitioners and researchers regarding scale construction and/or revision. 
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Method 

We conducted a simulation study using the following independent and dependent variables.  

Independent Variables 

We manipulated the following four factors: 

 Scale length. We simulated scales consisting of I = 10 and 20 items. These numbers 

of items are representative for scales often found in practice (e.g., Rupp, 2013, pp. 22-24). 

 Proportion of items with low Hi values. In the existing literature using simulation 

studies, the number of misfitting items can vary between 8% and 75% or even 100% (see 

Rupp, 2013, for a discussion). In the present study, three levels for the proportion of items 

with Hi < .30 were considered: ILowH =.10, .25, and .50. These levels of ILowH operationalized 

varying proportions of misfitting items in the scale, which we label here as ‘small’, ‘medium’, 

and ‘large’ proportions, respectively. 

 Number of response categories. We simulated responses to both dichotomously and 

polytomously scored items with the number of categories equal to C = 2, 3, and 5. Each data 

set in a condition was based on one C value only. 

 Range of Hi values. For the ILowH items, two ranges of item scalability coefficients Hi 

were considered: RH  = [.1, .2) and [.2, .3). Hemker, Sijtsma, and Molenaar (1995) and Sijtsma 

and van der Ark (2017) suggested using multiple lower bounds for the H coefficients within 

the same analysis. They suggested using 12 different lower bounds, ranging from .05 through 

.55 in steps of .05. However, in order to facilitate the interpretation and to avoid a very large 

design, we chose the two ranges of item scalability coefficients mentioned above. For all 

fitting items we set .3 ≤ Hi ≤ .7. We set the upper bound to .7 instead of 1 because few 

operational scales have Hi values larger than .7.  
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Design 

The simulation was based on a fully crossed design consisting of 2(I) × 3(ILowH) × 3(C) 

× 2(RH) = 36 conditions, with 100 replications per condition. 

Data Generation 

We generated population item response functions according to two parametric item 

response theory models: The 2-parameter logistic model (2PLM; e.g., Embretson & Reise, 

2000) in the case of dichotomous items, and the graded response model (GRM; Samejima, 

1969), in the case of polytomous items. The 2PLM is defined as follows: 

P(Xi=1|θ)=
eαi(θ-βi

)

1+eαi(θ-βi
)

, 

where Xi denotes the response to item i (coded 0 and 1), ai denotes the discrimination of item 

i, βi denotes the difficulty of item i, and θ denotes the person’s level on the latent 

characteristic (or trait) continuum. Thus, the 2PLM defines the conditional probability of 

scoring a 1 (typically representing the ‘correct’ answer) on item 𝑖 as a function of item and 

person characteristics. The GRM is a generalization of the 2PLM in case of polytomous 

items, and is defined as follows: 

Pix
* =

eαi(θ-βix)

1+eαi(θ-βix)
, 

where 𝑃𝑖𝑥
∗  = P(Xi ≥ x | θ), x = 1, …, C, denotes the probability of endorsing at least category x 

on item i, and βix denotes the category threshold parameters. By definition, the probability of 

endorsing the lowest category (x = 0) or higher is 1 and the probability of endorsing category 

C + 1 or higher is 0. Thus, the GRM defines the probability of scoring at response category 𝑥 

or higher on item 𝑖 as a function of item and person characteristics. The probability of 

endorsing response option x is computed as P(Xi = x | θ) = 𝑃𝑖𝑥
∗  - 𝑃𝑖(𝑥+1)

∗ .  
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The 2PLM or the GRM was used to generate item scores, using discrimination 

parameters1 that were constrained to optimize the chances of generating items with Hi in the 

suitable ranges as required by 𝑅𝐻; see Table 1 for the values used for the true discrimination 

parameters during the data generation. These values were found after preliminary trial-and-

error calibration analyses. 

[Insert Table 1 about here] 

In Table 1, the column labeled “Misfitting items” denotes the (100 × ILowH)% of items with 

scalability coefficients within the ranges RH = [.2, .3) and [.1, .2). The column labeled “Fitting 

items” concerned the remaining items with scalability coefficients in the range [.3, .7]. In all 

cases, the difficulty/threshold parameters were randomly drawn from the uniform distribution, 

ensuring that consecutive threshold parameters differed by at least 0.3 units on the latent scale 

(the GRM requires that the threshold parameters are ordered) and that the items were 

randomly centered around 0 (thus allowing to generate ‘easy’ and ‘difficult’ items equally 

likely). This procedure resulted in threshold parameters ranging between approximately -3 

and 3. The true θs were randomly drawn from the standard normal distribution. The item 

parameters together with the 𝜃 values defined the item response functions according to the 

2PLM/GRM, which represent probabilities of responding in a particular response category. 

These probabilities were then used to compute the scalability coefficients Hij, Hi, and H 

(Molenaar, 1991, 1997; see also Crisan et al., 2016). The procedure was repeated for each 

replication within each simulation condition, until a set of items with (100 × ILowH)% of items 

having scalability coefficients within the range given by RH was generated. 

 Finally, for these generated items, item scores for N = 2,0002 simulees were drawn 

from multinomial distributions with probabilities given by the 2PLM or the GRM. The 

                                                           
1 They reflect the strength of the relationship between items and θ, and are in general positively related to Hi. 
2 For part of the design, we ran the simulation with N = 100,000 and we found that this did not affect the results. 

Hence, N = 2,000 is sufficiently large to yield stable results. The code is available at https://osf.io/vs6f9/. 

https://osf.io/vs6f9/
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resulting datasets constituted the Misfitting datasets. Subsequently, from each misfitting 

dataset, we removed the (100 × ILowH)% of items with Hi < .3, resulting in the Reduced 

datasets. We then computed our dependent variables (listed below) on both the Misfitting and 

the Reduced datasets, and we investigated the effect of DataSet = “Misfitting”, “Reduced” on 

each outcome. 

Dependent Variables 

We used the following outcome variables: 

1. Scale reliability. Scale reliability was determined as the ratio of true scale score 

variance to observed scale score variance: rXX=
σTrue

2

σObserved
2 . The observed scale scores were the 

sum scores across all items, for the entire sample. The true scale scores were computed as the 

sum of the expected item scores: 

True scale score= ∑ ∑ k×P(Xi=k|θ)
C-1

k=0

.
I

i=1

 

2. Rank ordering. We computed Spearman rank correlations between the true and the 

observed scale scores. The goal was to investigate the differences in the rank ordering of 

simulees across the simulated conditions. Spearman rank correlations were always computed 

on the entire sample of simulees. 

3. The Jaccard Index. We used the Jaccard index (Jaccard, 1912) to compare subsamples 

of top selected simulees, according to their ordering based on either true scores or observed 

scores. We focused on subsamples of the highest scoring simulees to mimic decisions based 

on real selection contexts (e.g., for a job, educational program, or clinical treatment). Four 

selection ratios were considered: SR = 1.0, .80, .50, and .30, thus ranging from high through 

low selection ratios. The Jaccard index is a measure of overlap between two sets, and is 

defined as follows: 
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𝐽(𝐴, 𝐵) =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
 

The index ranges from 0% (no top selected simulees in common) through 100% (perfect 

congruence). For each data set we therefore computed four values of the Jaccard index, one 

for each selection ratio. 

4. Bias in criterion-related validity estimates. For each dataset, four criterion variables 

were randomly generated such that they correlated with the true θs at predefined levels (r = 

.15, .25, .35, and .45; e.g., Dalal & Carter, 2015). The bias in criterion-related validity for 

each criterion variable was computed as follows: 

bias =  r(observed scale score, criterion) - r(true scale score, criterion). 

The method was applied to the entire sample (SR = 1.0) as well as to the top selected simulees 

(SR = .80, .50, and .30). The goal was to assess the effect of low scalability items on the 

criterion validity, both for the entire sample and in the subsamples of the top selected 

candidates. Zero bias indicated that observed scores are as valid as true scores, whereas 

positive/negative bias indicated that observed scores overpredict/underpredict later outcome 

variables (in terms of predictive validity, for example). 

Implementation 

We implemented the simulation in R (R Development Core Team, 2019).  All code is freely 

available at the Open Science Framework (https://osf.io/vs6f9/) 

Results 

To investigate the effects of the manipulated variables on the outcomes, we fitted 

mixed-effects analysis of variance (ANOVA) models to the data, with DataSet as a within-

subjects factor and the remaining variables as between-subjects factors. In order to ease the 

interpretation of the results, we plotted most results and we used measures of effect size (η2 

and Cohen’s d) to determine the strength and practical importance of the effects. Test 

statistics and their associated p-values were not reported in this paper for two reasons. First, 

https://osf.io/vs6f9/
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the focus of this study is not on statistical significance of misfit. Second, due to the very large 

sample sizes, even small size effects can be statistically significant, which is of little interest. 

Additionally, we did not report or interpret negligible effects in terms of effect size for 

parsimony (i.e., η2 < .01; Cohen, 1992). 

Scale Reliability and Rank Ordering 

 

For score reliability, we obtained an average of 0.87 (SD = 0.07). 95% of the estimates 

of reliability were distributed between 0.71 and 0.96. The ANOVA model with all main 

effects and two-way interactions explained 91% of the variation in reliability scores. Variation 

was partly explained by the two-way interactions between ILowH × DataSet (η2 = .02), and I × 

ILowH (η2 = .02), and largely explained by the main effects of I (η2 = .36), ILowH (η2 = .26), C (η2 

= .11), and DataSet (η2 = .10). As such, score reliability decreased as ILowH increased, and this 

effect was stronger for shorter scales of I = 10. Removing the misfitting items from the scale 

led to an increase in score reliability, and this difference in reliability between the data sets 

increased slightly with ILowH (see Figure 1 for an illustration of these effects). 

[Insert Figure 1 About Here] 

Elaborating on the effects of ILowH and of removing the misfitting items on score reliability, 

we found the following: Averaged over I and C, score reliability decreased with .10 (from .91 

to .81) in the DataSet = “Misfitting” as ILowH increased from 10% to 50%; Removing the 

misfitting items improved reliability with .02 for ILowH = 10%, .04 for ILowH = 25%, and .06 for 

ILowH = 50%. For these differences we obtained Cohen’s d values of 1.70, 1.73, and 1.78 (for 

ILowH =10%, 25%, and 50% respectively). 

Similar conclusions can be drawn for the rank ordering of persons. The average rank 

correlation over all conditions was 0.93 (SD = 0.04). 95% of the estimated rank correlation 

coefficients ranged between 0.83 and 0.98. The ANOVA model with all main effects and two-

way interaction effects explained 89% of the variability in the Spearman rank correlation 
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values. The findings for person rank ordering were very similar to what we have found for 

scale reliability. In terms of the values of the Spearman correlation coefficient, as ILowH 

increased in the DataSet = “Misfitting” conditions from 10% to 50%, they decreased, on 

average, from .95 to .93 and .90 respectively, averaged over I and C. Removing the misfitting 

items lead to an improvement in the rank correlation of 0.02, on average. The rank ordering of 

individuals as determined by their true score was preserved by the observed score, even when 

25 – 50 percent of items in a scale had scalability coefficients below .3. Removing those items 

lead to a small increase in Spearman’s rank correlation. 

Regarding score reliability and person rank ordering, our findings show that scale 

length together with the proportion of MSA-violating items and number of response 

categories were the main factors affecting these outcomes: Score reliability and rank ordering 

were negatively affected by the proportion of items violating the Mokken scale quality 

criteria, especially when shorter scales were used. These outcomes were more robust against 

violations when longer scales were used. Removing the misfitting items improved scale 

reliability and person rank ordering to some extent. 

Person Classification 

 Because large rank correlations do not necessarily imply high agreement regarding 

sets of selected simulees (Bland & Altman, 1986), we also computed the Jaccard index across 

conditions. For SR = 1 the Jaccard index is always 1 (100% overlap), since all simulees in the 

sample are selected. Figure 2 shows the effect of the manipulated variables on the agreement 

between sets of selected simulees, for C = 2. The effects for the remaining values of C were 

similar and are therefore not shown here. 

[Insert Figure 2 About Here] 

 The degree of overlap between sets of selected simulees was 80.9% averaged over all 

conditions, with a standard deviation of 0.09. 95% of the values of the Jaccard index were 
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distributed between 0.61 (about 61% overlap) and 0.94 (about 94% overlap). The ANOVA 

model with all main effects and two-way interactions accounted for 92.7% of the variation in 

the Jaccard index. The variation was, to a large extent, accounted for by SR (η2 = .66), I (η2 = 

.10) and ILowH (η2 = .07), and to some extent by C (η2 = .04), DataSet (η2 = .02), and the 

interaction between I and SR (η2 = .01). All other effects were negligible (η2 < .01). As such, 

the overlap between sets of selected simulees increased as scale length and number of 

response options increased, it decreased as selection rate decreased, and it decreased as the 

proportion of items with Hi < 0.3 increased. Removing the misfitting items from the scale had 

a positive effect on the overlap between sets. 

Elaborating on the previous findings and focusing on the effects of selection ratio, 

scale length, proportion of items with Hi < 0.3, and removing the misfitting items, we 

conclude that the Jaccard index decreased from 0.91, on average, in the conditions with SR = 

.80, to 0.73 in the conditions with SR = .30 (Cohen’s d for this difference was 3.33). 

Moreover, the Jaccard index value increased from 0.78, on average, when I = 10 to 0.84 when 

I = 20 (Cohen’s d for this difference was 0.68). The Jaccard index decreased, on average, 

from 0.83 in the conditions where 10% of items had Hi < .3, to 0.76 in the conditions where 

50% of items had Hi < .3 (Cohen’s d = 0.78). Removing the misfitting items resulted in an 

increase of the Jaccard index to 0.85 (ILowH = 10%; Cohen’s d = 0.97) and 0.80 (ILowH = 50%; 

Cohen’s d = 1.13).Thus, we conclude that person selection is only marginally  affected by the 

proportion of unscalable items or the extent to which the scalability coefficients are deviating 

from the 0.3 threshold. 

Bias in Criterion-Related Validity Estimates 

 

Our results indicated that the bias in criterion validity estimates varied, on average, 

between -0.05 (SD = 0.03; true criterion validity of 0.45) and -0.02 (SD = 0.02; true validity 

of 0.15). The ANOVA model with all main effects and two-way interactions explained 
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between 12.1% and 57.1% of the variance in bias, as true criterion validity increased. Thus, 

all effects became stronger as true validity increased. The largest effects corresponded to SR 

(η2 between .04 and .20 across true validity scores), I (η2 between .03 and .15), ILowH (η2 

between .02 and .09), and C (η2 between .01 and .06). There was also an effect of DataSet (η2 

between .01 and .03). More specifically, the absolute bias in criterion-related validity 

estimates increased as SR and I decreased, as ILowH increased from 10% to 50%, and as C 

decreased. Removing the misfitting items from the scale lead to a very slight reduction in 

bias. Figure 3 depicts these effects, shown for a validity coefficient of 0.45 and scales 

consisting of dichotomous items. We further discuss the effects of SR, C, ILowH, and DataSet 

for the scale characteristics depicted in Figure 3. 

[Insert Figure 3 About Here] 

Bias in validity estimates was larger in the top 30% subsample (median of -0.09) 

compared to the full sample (median of -0.05). Cohen’s d for this difference was 1.5. In terms 

of the correlation between predictor and criterion, the absolute difference between the full 

sample and SR = .30 was 0.05, on average. In other words, in the full sample the average 

estimated validity coefficient was 0.41, while in the SR = .30 condition it was 0.36. For scales 

with 10 dichotomous items the average absolute bias in validity estimates was 0.07, and for 

scales with 20 items it was 0.04. 

Furthermore, the results showed that criterion-related validity was also affected by the 

proportion the misfitting items. For example, when we wanted to predict the scores on a 

criterion variable of the top 30% of the simulees using a short scale (top left panel of Figure 

3), the difference in bias between ILowH = 10% and ILowH = 50% was 0.03, with Cohen’s d = 

0.67. Thus, a short scale of 10 dichotomous items of which 5 items violated the MSA quality 

criteria yielded an average criterion validity coefficient of .34. Removing the 50% misfitting 

items from the scale yielded on average a criterion validity coefficient of .35.  
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Discussion 

In this study, we evaluated the effects of keeping or removing items that are often considered 

‘unscalable’ in many empirical MSA studies. Many empirical studies using Mokken scaling 

either remove items with Hi values smaller than .3 or try to explain why these items should be 

kept in the scale in spite of them violating this condition. By means of a simulation study, we 

systematically investigated whether scale reliability, person rank ordering, criterion-related 

validity estimates, and person classifications were affected by varying levels of incidence of 

misfitting items (in the MSA sense). Our main results showed that all the outcomes 

considered were affected, to varying degrees, by some of the manipulated factors (scale 

length, number of response categories, and proportion of items with low scalability). 

Removing the misfitting items from the scales had a positive effect on the outcome measures. 

 Scale score reliability, person rank ordering, and bias of criterion-related validity 

estimates were most affected by the proportion of items with low scalability. We found a 

decrease of about .10 in reliability and of about .05 in the Spearman correlation as the 

proportion of misfitting items increased from 10% to 50%. Removing the misfitting items 

from the scales led to a slight improvement in reliability and rank correlation (with .04 and 

.02, respectively). Furthermore, short scales with many misfitting items resulted in an 

underestimation of the true validity of .11, when predicting the scores on a criterion variable 

of the top 30% simulees. Removing the misfitting items reduced the bias by .01. Finally, the 

overlap between sets of selected simulees also decreased with .07, on average, as the 

proportion of misfitting items increased, and removing the misfitting items improved the 

overlap with .03. Interestingly, the effect of the range of item scalability coefficients had a 

negligible effect on the outcomes we studied. 

In line with previous findings, scale length, number of response categories, and 

selection rates also had an effect on the outcome variables (e.g., Crișan et al., 2017; Zijlmans, 
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Tijmstra, van der Ark, & Sijtsma, 2018). The item scalability coefficient is equivalent to a 

normed item-rest correlation, which, in turn, is used as an index of item-score reliability (e.g., 

Zijlmans et al., 2018). Therefore, it is not surprising that overall scale reliability decreased as 

the item scalability coefficients decreased. Moreover, it is well-known that there is a positive 

relationship between scale length and reliability. This also partly explains our findings 

regarding the exclusion of misfitting items: Removing the misfitting items from the scales 

resulted in shorter scales, which had a negative impact on reliability. 

Take home message 

The take-home message from this study is that, depending on the characteristics of a scale (in 

terms of length and number of response categories), on the specific use of the scale (e.g., to 

select a proportion of individuals from the total sample), and on the strength of the 

relationship between the scale scores and some criterion, the consequences of keeping items 

that violate the rules-of-thumb often used in MSA item selection can vary in their magnitude. 

We tentatively conclude the following: 

1. The number of items with Hi < .3 in a scale has a negative effect on scale reliability, 

person rank ordering and classification, and on predictive accuracy. The magnitude of this 

effect varies in terms of variance accounted for, depending on the characteristics and specific 

uses of the test/scale. In general, (relatively) long scales with several response categories are 

fairly robust against these violations, especially when they have modest criterion-related 

validity and they are used with selection ratios above .50. 

2. Removing misfitting items from the scale improves practical outcome measures, but 

the effect is moderate at best. Based on these and previous findings, we do not recommend 

removing the misfitting items from the scales when there are no other (content) arguments to 

do so. The relatively small gains in reliability, person selection results, and predictive validity 

might not outweigh the loss in construct coverage and criterion validity. 
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3. The distance between the H values of the violating items and the .3 threshold had a 

negligible effect on practical outcomes. So, our results indicate that researchers should not 

overinterpret Hi differences between .1 and .3  

 On the one hand these findings are reassuring because, as we discussed above, 

researchers are often not in a position to simply remove items from a scale (see also 

Molenaar, 1997). It also discharges the researcher from trying to find opportunistic arguments 

for keeping an item in the scale with, say, a relatively low H value. On the other hand, this is 

certainly not a plea for lazy test construction. Ideally, when conducting MSA either on 

existing operational measures or in the scale construction phase, the decision whether to keep 

or remove items from a scale should be based primarily on theoretical considerations and 

applied researchers should be careful not to use psychometric rules-of-thumb to blindly 

remove items. In particular, one should not feel obliged to strictly adhere to the discrete 

qualitative labels of H (“weak”, “medium”, and “strong” scale); paraphrasing Rosnow and 

Rosenthal (1989, p. 1277): “surely, God loves the .29 nearly as much as the .31”. In line with 

these observations, Sijtsma and van der Ark (2017) recommended that several MSAs should 

be ran on the data using varying lower bounds for the item scalability coefficients, and the 

final scale should be chosen such that it satisfies both psychometric and theoretical 

considerations. 

 On a more general note, one should keep in mind that items can exhibit other kinds of 

misfit apart from low scalability, such as violations of invariant item ordering or of local 

independence. Thus, adequate scalability does not mean that items are free from other 

potential model violations.  

Limitations and Future Research 

This study has the following limitations: (a) The data generation algorithm of the 

simulation study was based on a trial-and-error process to sample items with scalability 
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coefficients within the desired range. A more refined method to generate the data could have 

improved the efficiency of our algorithm; (b) In this study we only considered either 

dichotomous or polytomous items with a fixed number of response categories (i.e., either 3 or 

5) per replication. It is of interest to consider mixed-format test data in future studies; (c) The 

practical outcomes we considered here are by no means exhaustive or equally relevant in all 

situations. Depending on the type of data and the application purpose, other outcomes might 

also be relevant. Therefore, this type of research can be extended to other outcomes of 

interest. Moreover, other types of scalability (e.g., person scalability) could have important 

practical consequences. These aspects should be addressed in future research.  
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Figure 1. The distribution of reliability scores across the levels of I, C, and ILowH, over all 

levels of RH. 
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Figure 2. The distributions of the Jaccard index as a function of ILowH, DataSet, SR, and I, 

when C = 2. 
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Figure 3. Bias in criterion-related validity estimates across ILowH, DataSet, I, and SR, for 

scales with dichotomous items (C = 2) and true validity coefficient equal to .45 
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Table 1 

Ranges of Discrimination Parameters Used For Data Generation 

𝑅𝐻 𝛼𝑖 

 Fitting items Misfitting items 

. 10 ≤ 𝐻𝑖 < .20 U(2.30, 2.70) U(0.35, 0.75) 

. 20 ≤ 𝐻𝑖 < .30 U(2.30, 2.70) U(0.50, 0.90) 

Note: The discrimination parameters were randomly generated  

from a uniform distribution U bounded by the values in parentheses. 

 


