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This chapter is devoted to a general introduction to solar energy, to the 

photophysics of solar energy relevant semiconductors, and the motivation for the 

project. Since this thesis deals with different semiconductors using a few different 

techniques for investigations in different chapters; to enhance the readability of the 

text and to avoid overly long introductory texts in every chapter, a general (non-

exhaustive) overview of the materials and important methods that will be covered 

in later parts of this thesis is provided. Finally, a short section is dedicated to the 

outline of the later chapters. 
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1.1 Introduction 

In more ways than one, the sun is central to our existence. It is the primary source 

of the heat and light necessary for life: it is responsible for the so-called “Goldilocks 

Zone” our planet occupies in the solar system; it also powers photosynthesis 

enabling plants (and other living organisms) to create chemical energy and oxygen 

from elemental nutrients, natural pigments, and carbon dioxide. All ingredients 

which were created in the immediate aftermath of the big bang. Not to mention the 

role it plays in the earth’s orbit – which has as consequence many physical 

phenomena in our planet. Unlike most other sources of energy, solar energy is 

abundant, sustainable and relatively well distributed around the earth – attributes 

which make it extremely desirable as one (of ideally, many) sources of energy to be 

exploited to further our advancement as a species.  

Global demand for energy (and in particular, electricity) is on the increase. This is 

due to several factors: the first is that the global population has continued to rise 

steadily. The second is that the pace of industrial and technological advancement 

has concurrently grown leading to an increase in wealth which has, in turn, changed 

our lifestyles from basic survival needs (food, hygiene) to more technologically 

advanced ones (transportation, communication, electronic devices, data handling 

and storage, etc.). There have of course been continuous advances in energy 

efficiency, generation, transmission, and use, but they simply have not kept pace 

with the increase in demand. Today, the bulk of our energy consumption (over 90% 

at the end of 2017, see Figure 1.1) is supplied by burning fossil fuels like petroleum, 

gas, and coal which are non-renewable sources of energy. Our continued reliance 

on fossil fuels has several drawbacks – chief of which are the finiteness of their 

availability and the damage/pollution they cause to the environment during 

exploration and combustion. 

Over the past two decades, the global community has identified matters relating to 

energy (production, accessibility, and efficiency) as being important aspects towards 

achieving inclusive and sustainable development as well as to the continued 

habitability of our planet. One question that is continuously being debated is: “How 

do we continue to meet global targets for inclusive and sustainable development without causing 

major, irreversible damage to the planet for future generations?”. This extremely important 

question is reflected in several recent initiatives such as the United Nations’ 

sustainable development goals[1] (SDGs) and the Paris climate accords[2] to allay the 

effects of climate change. One major agreement is to limit the average global 
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temperature increase to 2 ºC by sharply reducing global CO2 emissions. To achieve 

this, part of the focus has been on adding renewable and sustainable energy sources 

to meet our current and future needs. From all indications[3], there is still clearly 

much work to be done in this regard. 

Revisiting the issue of electricity demand, production and use; it is worth 

mentioning two important developments that have been strong drivers of demand 

for non-industrial purposes. The former is the electrification of energy use, and the 

latter, is the development and proliferation of electronic devices, most especially 

those utilising semiconductor and/or photonic technologies. 

 

This increase in demand, viewed together with the scarcity of resources (fossil fuels 

are non-renewable) and the severe environment impact their exploration and 

Figure 1.1: (a & b) Global energy consumption and the share of renewables in electricity generation for 

2017; (c) our demand for energy has grown over the past decade; (d) although renewable sources are now 

being added to the generation sources, there is still more work to be done in this regard. (Source: Global 

Energy Statistical Yearbook[3]) 
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combustion cause are a compelling justification for why scientists and engineers 

have been strongly motivated to research and develop alternative energy sources. 

Solar technologies are one of several renewable energy technologies to garner 

attention as a sustainable, well-distributed and environmentally friendly means to 

meet current (and future) electricity demands.  

1.2 Solar Cells 

A solar cell (or photovoltaic cell) is a device that creates electrical power upon 

absorption of light; i.e. it converts energy in the form of light to electricity via the 

photovoltaic effect. Solar cells are made from Semiconductors such as Silicon, 

Cadmium Telluride etc. The market for solar cells has traditionally been dominated 

by silicon solar cells[4]. This is due to several reasons such as its’ abundant 

occurrence, and the decades long head start that it has had in the photovoltaics field. 

However, since the early 90s, several new material systems have emerged, whose 

rapid progression now challenge the dominance of silicon as the premier 

photovoltaic (PV) material – examples of these emerging materials (and their 

technologies which are termed “3rd Generation”) and their progress relative to 

silicon as solar cells in the past decade are illustrated in Figure 1.2 below.  

In the simplest architecture, a solar cell consists of an active layer composed of a 

semiconductor, placed between two electrodes - one of which must be transparent 

Figure 1.2: Record research cell efficiencies for the materials studied in this thesis versus 

monocrystalline silicon compared between approximately 2010 to date. Source: NREL research cell 

efficiency chart[47]. 
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to allow light to pass through to be absorbed by the active layer. It is also common 

to have additional functional layers to improve the extraction of either electrons or 

holes (charge extraction layers), for improved electrical performance (electron or 

hole blocking layers/selective electrodes) or to improve light management (anti-

reflection coatings). A discussion of solar cell device characterisation and an 

illustration of the architecture of a typical solar cell is depicted in later in this chapter 

– in section 1.7.3. 

The Shockley-Queisser (SQ) limit, which sets the maximum efficiency of a single 

absorber layer with an ideal bandgap for a solar cell at approximately 33%[5]. This 

number is based on a detailed balance between loss of photons with energy below 

the bandgap, thermal losses induced by photons with energy above the bandgap, 

blackbody radiation, and radiative losses. Balancing the trade-off between the 

former two losses – an ideal bandgap of 1.3 eV is obtained under standard 

conditions. In Figure 1.2, the modest improvement of Silicon over the period 2010-

2018 is partially motivated by its indirect bandgap of 1.1 eV and practical limitations 

in devices such as cell resistance, interconnects etc. 

Initially, these emerging PV materials were considered to be direct challengers to 

the prominence of silicon; whose production is comparatively costly and energy 

intensive due to their desirable material properties. For instance, organic 

semiconductors, hybrid perovskites and colloidal quantum dots; which are 

characterised by direct band gaps, high absorption coefficients, large colour 

tuneability, solution processability etc. However, improvements in manufacturing 

techniques and the economics of (large) scale production has continuously driven 

down the levelised cost of silicon PV well below 1 USD per kilowatt hour ($/kWh) 

– a number considered to be the threshold for mass commercialisation and 

widespread adoption1. These emerging materials, despite meeting the promise of 

being cheaper to produce from a materials point-of-view still suffer from low 

efficiency (compared to silicon), stability (operational lifetime) and high associated 

costs (such as investments necessary for optimised mass production). They have 

therefore suffered limited commercial success beyond lab-scale devices.  

As research into workable solutions for the aforementioned challenges continues, 

there seems to be a gradual pivot towards leveraging the inherent advantages these 

emerging material systems have over silicon; namely, their extremely high 

 
1 This is likely due to a comparison with the levelised costs of other power generation 
sources. 
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absorption coefficients, their mechanical properties and ranges of bandgaps which 

enable them to be made into ultrathin conformal layers of various colours on 

different kinds of supports; which opens avenues for use in disposable and flexible 

electronics; and also in cases where aesthetics are important (architecture, art 

installations, etc.). An associated advantage of these materials is the high energy 

density (per Kilogram) possessed by these material systems which makes them ideal 

for cases where lightweight solutions are more important than cost (for instance, in 

satellites & space exploration). A final (possible) niche for these emerging material 

systems leverages their band gap tunability as either front- or rear-sub cells in 

tandem architectures together with silicon to hopefully move beyond the SQ limit. 

The materials reported in this thesis - namely (organic) semiconductors, hybrid 

perovskites and colloidal quantum dots fall into the solution-processable subclass 

of these emerging material systems. In the applications discussed, they are generally 

used in thin films (with thicknesses between ~150nm and 500nm). The section 

below gives a brief overview of each material class and their physical properties; 

these properties, as can be imagined, have important implications in how they are 

processed, characterised and utilised in devices. 

 

1.3 Solution Processable Semiconductors 

All the semiconductors studied in this thesis are solution-processable; meaning that 

in all characterisations and devices, the material is dissolved in a suitable solvent to 

make a solution (or ink). These solutions (or inks) can then be used to deposit thin 

films via a host of techniques such as spin-coating and blade-coating – these 

techniques are generally suitable for films of thicknesses from the nanometres to 

the micron range, respectively. Depending on the specific material, solution-

processability is either imparted during synthesis via side-chains in organic 

semiconductors, ligands in semiconducting quantum dots (QDs)or as a 

consequence of the solubility of precursors in the case of hybrid perovskites. 

Further details of the materials used in this thesis is provided in the following 

sections. 
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1.4 Polymers 

A polymer is a large molecule, which essentially consists of multiple repeating units 

of a smaller molecule, called a monomer, created by a process referred to 

(unsurprisingly) as polymerisation. Polymers are extremely ubiquitous in nature, 

ranging from naturally occurring macromolecules such as DNA, cellulose, and 

proteins to synthetic materials important for our everyday lives such as polyethylene 

terephthalate (PET), polyacrylates & polyesters used in water bottles, cosmetics and 

textiles. The generic term “plastic” is used to refer to polymeric materials and 

derivatives thereof – referring mostly to their mechanical properties.  

Due to their ubiquity, classification of polymers varies depending on scale, physical 

basis as well as functionality[6]. Therefore, different kinds of polymers can be 

discussed depending on their structure and electronic properties.  

1.4.1 Semiconducting Polymers 

(Semi)conducting polymers became popular in the 1980’s after the discovery of 

conductive polyacetylene by Shirakawa, Heeger and MacDiarmid[7] – which 

eventually led to their being awarded the Nobel Prize in Chemistry in 2000[8]; 

although there had been an earlier report on the redox properties of other types of 

polymers[9] . The former sparked off decades of research and collaboration between 

fields of chemistry and physics. During this time, many concepts from 

semiconductor physics were used to understand the properties of this new class of 

semiconductors (also called organic semiconductors), which later developed into a 

distinct language for describing the properties of these materials.  

Polymers are considered to be organic materials; the term “organic” is used in the 

sense that they are composed almost entirely of carbon (C) and hydrogen (H) atoms. 

Although in some common semiconducting polymers, other atoms such as oxygen 

(O), nitrogen (N) sulphur (S), silicon (Si) etc. occasionally feature and are referred 

to as heteroatoms. In order to discuss the properties of polymers relevant to this 

thesis, it is necessary to first address the molecular origins of the optical and 

electronic properties of semiconducting polymers. 

Carbon, belongs to group 4 of the periodic table – meaning that it contains 4 outer 

electrons and usually forms covalent bonds with other atoms to form molecules. 

When Carbon atoms form bonds, orbital hybridisation occurs; which is a process 

whereby atomic orbitals in atoms undergoing bonding mix to form hybrid 
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molecular orbitals (MOs) with distinct characteristics from their parent atomic 

orbitals to enable bonding occur. In particular, Carbon can form sp, sp2 or sp3 hybrid 

orbitals from one s-orbital and one, two or three p-orbitals respectively. Organic 

semiconductors usually consist of alternating single and double bonds, forming a 

pi-conjugated system with a planar backbone formed from sp2-hybridised Carbon 

atoms (called sigma bonds) and partially occupied pz-orbitals perpendicular to the 

sigma bonds, called pi-bonds. Electrons in pi-orbitals (“pi electrons”) in pi-

conjugated systems are responsible for many of their optical and electronic 

properties owing to their delocalised nature [10]. 

In semiconductor physics, a very important concept is the bandgap, which 

represents the difference (in energy) between the (top of the) valence- and (bottom 

of the) conduction- bands of a semiconductor. (Frontier) MO theory[11,12] allows us 

translate this concept  into the language of organic materials via the idea of “frontier 

orbitals” – which are the highest occupied molecular orbital (termed HOMO) and 

the lowest unoccupied molecular orbital (LUMO) of a molecule; which are 

analogous in certain sense, considering the discrete nature of them, respectively to 

the valence and conduction levels. We can take this further, by using the HOMO-

LUMO gap as an ideological analogue to a bandgap in organic materials. When an 

electron in a MO is suitably excited, by for example, absorption of a photon – it can 

move up to an unoccupied MO at higher energy; the lowest possible such transition 

therefore is from the HOMO to the LUMO. Although organic semiconductors can 

be referred to as either n- or p- type, an important distinction from inorganic 

semiconductors where this designation have to do with doping is that in the former 

case, it means that they are either electron-transporting materials or hole 

transporting materials, respectively.  

  

Figure 1.3: Chemical structure of the two (main) fullerene derivatives that feature in this thesis: PCBM 

and PTEG. 
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A different but related class of organic semiconductors are organic molecules 

(which are sometimes called “small molecules”); these molecules are often either 

unpolymerized or oligomerized, i.e., they contain only a few repeating units of a 

monomer. Small molecules generally also contain sp2-hybridised Carbon atoms 

which give them similar optical and electronic properties to polymers. In this thesis, 

the main small molecules that features are the fullerene derivatives: phenyl-C61-

butyric methyl acid ester (PCBM) and 2’-[4’’-((((2-ethoxy)-2-ethoxy)-2-ethoxy)-2-

ethoxy)phenyl]-fulleropyrrolidine (PTEG-1); which are both n-type organic 

semiconductors used as electron acceptors in organic and hybrid solar cells (shown 

in Figure 1.3). Among the several properties of organic semiconductors, those most 

relevant to this thesis are related to their interaction with light (absorption and 

emission) and the properties that derive from their excited state dynamics[13].  

One of these properties is their excitonic nature – because organic semiconductors 

have an intrinsically low dielectric constant (typically between 2 ~ 4) as a 

consequence of being composed of species bound by relatively weak van der Waals 

forces when in thin film or crystals. When they are excited they form strongly 

bound, correlated electron-hole pairs (Frenkel excitons) which require (additional) 

energy of the order of 0.3 – 0.5 eV to be split into free charges[14]. This (binding) 

energy is generally much larger than the available thermal energy (given by kBT at 

room temperature ≈ 25.6 meV) and thus necessitates the use of a so-called type-II 

heterojunction (bulk-heterojunction) to facilitate charge separation for example in a 

solar cell[15–17].  

Figure 1.4: Schematic representation of the types of polymers featured in this thesis and corresponding 

chemical structures and acronyms of examples of each type. Full names are in the respective chapters. 
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A bulk-heterojunction is a blend of two semiconductors (a donor and acceptor, or 

p- and n- type molecules) which are assembled into an interpenetrating network with 

domains on the order of 10s of nanometres. Upon photoexcitation, the donor 

forms excitons which then diffuse until they encounter an interface with an 

acceptor; whose large electron affinity provides the driving force for exciton 

dissociation, enabling the formation of free charges - eventually to be collected by 

the electrodes. The formation of free charges is generally preceded by the formation 

of a charge transfer (CT) state[18,19] wherein the exciton (a CT exciton) is delocalised 

between adjacent the donor and acceptor molecules. Bulk heterojunctions have a 

much higher D-A interfacial area compared to  simple D-A bilayers which make 

them more efficient compared to bilayer-based devices. Worth noting also is that 

while many organic semiconductors can (and often do) possess some nanoscale or 

even supramolecular order when in solid state (depending on several factors). 

A result of being solution processable is inevitably that structural imperfections in 

nanoscale order (defects) and impurities are commonplace; these in turn affect the 

transport properties and lead to a distribution of localized electronic states in these 

kinds of semiconductors. This phenomenon results in organics being disordered 

semiconductors; and transport through them treated as discrete hops between localized 

transport sites[20].  

Broadly speaking, most research into polymer optoelectronics utilise either homo-

polymers or alternating donor-acceptor (D-A) type copolymers. The former are 

composed of a single type of monomer; and the latter are composed of more than 

one monomer. D-A copolymers are the result of research into developing polymers 

with narrow-bandgaps (compared to most homo-polymers) – which as a 

consequence are able to absorb more of the solar irradiance spectrum; and therefore 

to yield higher power conversion efficiency in organic photovoltaics (OPVs). Figure 

1.4 shows the polymers that feature in this thesis. 

 

1.4.2 Ferroelectric Polymers 

Next to semiconducting polymers, another interesting and technologically relevant 

sub-class of polymers are ferroelectric polymers. Ferroelectricity is closely linked to 

other properties such as piezoelectricity and pyroelectricity[21]. That is, the genesis 

of ferroelectricity is linked to having a polar crystal class which, being non-

centrosymmetric, leads to polarization that can be oriented by means of external 
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effects such as mechanical stress (for piezoelectric materials) or temperature (for 

pyroelectric materials). Therefore, a characteristic ferroelectric polarization 

hysteresis loop can be obtained by plotting the polarization versus the applied 

electric field. Initially, the main ferroelectric materials were (inorganic) ceramics 

such as lead zirconate titanate (PZT), barium titanate and quartz – which while 

seemingly have higher piezo- and pyro- electric coefficients still yield comparable 

electromechanical coupling strengths to ferroelectric polymers due to their relatively 

lower dielectric constants and excellent mechanical properties[22]. 

The workhorse for the study of such polymers over the past few decades has been 

Polyvinylidene difluoride (commonly called PVDF) and more recently, several 

related copolymers such as poly(vinylidene difluoride trifluoroethylene), or P(VDF-

TrFE). These polymers contain polar Carbon-Fluorine bonds in their constituent 

monomers; and crystallize in a manner which enables the dipoles to remain aligned; 

therefore, maintaining a polarization. While this is a generally accepted explanation 

for their physical properties the details of their operation in several kinds of devices 

are still under debate[23–25]. Other than their main use in electromechanical 

transducers, they have successfully been utilised in other applications such as gate 

electrodes in FETs, components of polymer blends for resistive memories, batteries 

and also in organic solar cells[26–28]. 

1.5 Semiconducting Nanocrystals, Or Quantum Dots 

A quantum dot (QD) is a fragment of a semiconductor containing hundreds to 

thousands of atoms with the bulk bonding geometry and surface states eliminated 

by enclosure in either a larger bandgap material or with molecular ligands[29]. 

Quantum dots exhibit both electronic and optical properties that are strongly size 

dependent – a consequence their dimensions being less than the exciton Bohr radius 

of the excitons in the bulk material: a situation commonly called the quantum 

confinement effect, as charge carriers in the QD are quantum confined[30]. 

These size-dependent properties of QDs can further be understood in terms of the 

particle-in-a-box formalism in quantum mechanics, where a particle in a confined 

potential (box) has only certain allowed energy levels, E (or Eigenvalues), indexed by 

integers n, which can be obtained by solving the Schrödinger equation[31]. This implies 

that the energy level spacing, ΔE, increases when the size of the QD decreases. In 

more concrete terms, the bandgap, Eg, of a QD with radius r, can be written in 
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terms of the bandgap of the bulk semiconductor E0 and a “confinement energy”; 

as a first approximation it is given by the phenomenological equation: 

𝐸𝑔 ≈ 𝐸0 +  
ℏ2𝜋2(𝑚𝑒 + 𝑚ℎ)

2𝑟2𝑚𝑒𝑚ℎ

          (1.1) 

Where me and mh are the effective masses of electrons and holes in the QD 

respectively. This allows a range of colours from the ultraviolet (UV) to the (near) 

infrared (NIR) spectral regions to be obtained from the same material by simply 

changing the size of the QD, famously seen in CdSe QDs. Furthermore, many QDs 

have excellent absorption coefficients and tunable carrier mobilities – making them 

strong candidates for thin film electronics. 

In recent years, colloidal QDs (CQDs) obtained by wet-chemical methods have 

progressed to the point where knowledge of synthetic techniques yields excellent 

scale and size-selectivity for many important types of QDs for optoelectronic 

applications such as lead- and cadmium- chalcogenides, as well as indium- and 

gallium-based QDs. The main power of CQDs after their size-dependent properties 

lies in the possibility of obtaining large amounts from earth abundant materials (at 

relatively low cost); which can then be assembled into arrays or assemblies, referred 

to as QD solids, using already well-known techniques for mass production of thin 

films such as blade-coating. As-synthesized CQDs are often capped with long 

aliphatic ligands (such as oleic acid) which provide colloidal stability but also form 

an insulating barrier which prevents charge transport between adjacent QDs; this is 

why QD solids for device applications are assembled with shorter ligands which 

allow charge transport by tunnelling between individual QDs in an array. Until a 

few years ago, the rise of CQDs in photovoltaics has generally been led by lead 

sulphide (PbS)-based QDs[32]. This can be attributed to its’ large exciton Bohr radius 

(enabling the synthesis of larger QDs without losing confinement) and relatively 

narrow bandgap (~ 0.4 eV in the bulk) which enable absorption up to the infrared 

coupled with advances in our understanding of its’ fundamental properties, 

synthetic methodologies, surface passivation, and device engineering[33]. 

Once QDs are brought into close proximity, charge transport becomes possible due 

to overlap of the electronic wavefunctions on adjacent QDs. Thus, a binding 

energy, β, can be used to approximate the coupling between QDs which is directly 

proportional to the probability that electrons can tunnel from one QD to another[34] 
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𝛽 = ℎ𝛤 ∝ 𝑒𝑥𝑝 (−2∆𝑥√
2𝑚∗

ℏ2
𝛥𝐸)              (1.2) 

Where (ℏ)h, m∗, ∆x, and ∆E respectively represent the (reduced) Planck constant, the 

carrier effective mass, and the width and height of the energy barrier between 

adjacent QDs. This necessarily implies that the degree of coupling between QDs in 

an array is influenced by the ligands with which they are capped as well as the nature 

of their environment (i.e. the matrix around them). Other important practical 

considerations to make regarding PbS QDs are (i) surface stoichiometry, adsorbates 

and capping ligands can cause a shift in their Fermi energy (EF) leading to a more 

pronounced n- or p- type behaviour[35]; and (ii) the incidence of crystal defects either 

during synthesis or subsequent to ligand exchange can enable the formation of sub 

bandgap states which can act as traps for charge carriers or recombination 

centres[36], which are undesirable. Figure 1.5 shows a schematic representation of 

isolated and coupled QDs and a cartoon depicting the effect of proximity on 

transport through mini bands[37] which are formed when QDs are brought into 

proximity with each other.  

As mentioned earlier, as-synthesized CQDs are often capped with long aliphatic 

ligands for colloidal stability, and in order to facilitate transport in QD solids these 

ligands are exchanged with shorter ligands containing groups with high affinity for 

Figure 1.5: Schematic representation of PbS CQDs with either (a) oleic acid ligands or (b) shorter 

ligand which enables transport in the ‘mini bands’ formed. Figures on the right are a representation of 

energy levels between adjacent dots in both cases. 
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the QD surface. The most common ligands used with PbS QDs include thiol 

compounds and amines such as 1,2-ethanedithiol (EDT), benzenethiol (BT) and 

benzenedithiols (BDTs), ethylenediamine (EDA) as well as 3-mercaptopropionic 

acid (MPA). Most recently, atomic passivation using halide ions from organo-halide 

salts such as tetrabutylammonium chloride, - iodide and -bromide have also been 

reported[38].  

1.6 Hybrid Perovskites 

Perovskites (named after Russian mineralogist Lev Perovski) are a class of materials 

that adopt the ABX3 crystal structure of calcium titanate (see Figure 1.6); consisting 

of two cations of different sizes (A & B) and an anion (X). Structurally speaking, in 

the ideal cubic case – the B cation has six-fold coordination with the anion, X, 

forming a [BX6] octahedron[39]. In the extended crystal, the voids between these 

octahedra are filled with the A cations. In addition, when there is a large disparity 

between the sizes of the A & B ions, it can lead to buckling of the crystal and the 

formation of lower symmetry analogues (such as layered perovskites). The size 

requirement for stability is quantified by the Goldschimdt tolerance factor[40], 𝛼, which 

is expressed in terms of the ionic radius, r, of A, B and X as:  

𝛼 =  
𝑟𝐴 + 𝑟𝑋

√2(𝑟𝐵 + 𝑟𝑋)
               (1.3) 

In the ideal cubic case, 𝛼 falls between 0.9 and 1, but in many cases, when the A 

cation is small; orthorhombic and rhombohedral variants are formed, this usually 

occurs for 0.75 < 𝛼 < 0.9. For applications in optoelectronics, early reports[41] on 

perovskites focussed on variants where the A cation was a small organic molecule 

(methyl-ammonium, MA) – hence the term “hybrid”. Since that initial report, 

hybrid perovskites have grown unprecedentedly popular in the photovoltaic 

community with new applications still being reported almost weekly2, an advantage 

they possess due being easy to synthesize[42], tolerant to defects[43,44], and to decades 

of research into other photovoltaic technologies. 

A somewhat newer development are all-inorganic counterparts to hybrid 

perovskites featuring A cations such as caesium, rubidium and strontium – some of 

which have been demonstrated to be more thermally stable and to enable further 

engineering of the bandgap[45,46]. All these facts, coupled with advances in material 

 
2 The Web of Science™  citation index is an excellent way to check this assertion. 



Introduction 

 

15 
 

quality and device engineering have resulted in perovskites and perovskite-based 

materials holding a few certified record efficiencies in the emerging photovoltaic 

material category of the NREL efficiency chart[47].Figure 1.6 below shows the 

perovskite crystal structure. 

 

1.7 Methods 

A few different experimental techniques have been applied to the materials studied 

in this thesis to understand various aspects of their optical and electronic properties 

and feature in almost every chapter. The section below gives a brief overview of 

such techniques and lays out examples of how measurements can be interpreted. A 

useful starting point for this is a discussion of concepts and methods related to 

elementary photophysical processes; and how these processes can be utilised to 

understand the properties of materials presented in this thesis. 

When a semiconductor (or molecule) is in its’ ground state S0, it can interact with 

light, different phenomena can occur depending on the photon energy. One such 

phenomenon is that the energy of the photon is absorbed, resulting in a transition 

to an excited state  S1. This process can involve electronic and/or vibrational energy 

levels; in the former case – it is almost instantaneous due to the fact that electronic 

motions occur on much faster time scale than nuclear motions. For changes in 

vibrational levels during the electronic transition, the requirement is that the initial 

and final configuration of the molecule and its’ surroundings (i.e. nuclear positions 

and momenta) be simultaneously compatible with each other - a rule formally called 

the Franck-Condon principle[48,49]. Within the higher vibrational levels of an excited 

state (say S1) vibrational relaxation (called internal conversion) allows the molecule to 

“dump” the excess energy to its’ surroundings non-radiatively, bringing it to the 

Figure 1.6: 𝐴𝐵𝑋3 perovskite structure showing inorganic octahedra and the methyl ammonium cation 

contained within the voids. Figure adapted from Eames et al[62] 
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lowest level of S1. Once there, it can either undergo further internal conversion by 

coupling to another vibrational level of the lower ground state, S0; or it can emit a 

photon (= fluoresce) and return to the ground state of S0. A practical consequence 

of this is that provided that the system is excited above its’ band gap, (most) 

fluorescence will be preferentially obtained from the lowest level of S1; this is 

sometimes called the Kasha-Vavilov rule[50,51]. This radiative process enables us to 

perform photoluminescence spectroscopy to probe the excited states of emissive 

materials.  

These concepts are nicely visualised in a simplified version of a Jablonksi 

diagram[52,53] shown in Figure 1.7. For clarity, transitions involving triplet energy 

levels have been omitted and only the vibrational levels of S0, S1 and S2 are depicted. 

 

1.7.1 Absorbance Spectroscopy 

When a semiconductor interacts with light, it can be either reflected, absorbed, or 

transmitted. The former is related to the behaviour of light at the interface of two 

media and forms the basis of visual perception; whereas, the latter two are related 

quantities and can be intuitively understood as: if all the light shone on  a semiconductor 

Figure 1.7: A simplified Jablonksi diagram showing the possible photophysical processes that can occur 

in a semiconductor. 
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passes through it, then transmittance is 100% and absorbance is 0; if on the other hand none of 

the light passes through, then transmittance is 0% and absorbance is infinite. Where the 

transmittance is the fraction of radiant power that passes through a semiconductor. 

This is formally expressed through the Beer-Lambert-Bouguer law, which states that 

the absorbance, A (also called optical density), of a medium can be expressed in terms 

of not just its transmittance: T, relative to a reference: T0;   but also via more 

fundamental physical parameters related to the media such as an absorption 

coefficient and thickness [54].  

Aλ =  − log10

𝑇

  𝑇0

=  𝜀𝜆 ∙ 𝐶 ∙ 𝐿                (1.4) 

In a typical absorption measurement as depicted in Figure 1.8, light of several 

wavelengths is passed through the media which can be either a solution or thin film, 

and the fraction of light transmitted through it is determined per wavelength 

yielding a spectrum – usually plotted as absorbance (or absorption coefficient) 

versus wavelength (or energy). In most cases, we are interested in not only the 

absorption intensity, but also in the onset - which gives an indication of the bandgap 

of the medium, and to material-specific features which sometimes shed additional 

information on certain photophysical processes – examples of these are vibronic 

progressions in polymers, and excitonic absorption peaks in QDs. 
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Figure 1.8: Schematic of a dual-beam absorption spectrophotometer. 
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1.7.2 Photoluminescence Spectroscopy 

Photoluminescence (or fluorescence) is a particular case of light emission 

(luminescence) which occurs upon the absorption of a photon of energy by a 

semiconductor; which is said to be in the excited state[55]. When a photon is 

absorbed by a semiconductor, the excess energy can be dissipated either via 

vibrational modes (vibrational relaxation or internal conversion) and/or by the 

emission of a photon of lower energy (the Stokes shift being the difference between 

the peak absorption and emission energies[56]). A measure of the photoluminescence 

efficiency of a semiconductor is its’ photoluminescence quantum yield (PL-QY) 

which is defined as the ratio of photons emitted to photons absorbed. In many 

recent publications, the case has been made for the link between photovoltaic 

figures of merit (such as the open circuit voltage) and the luminescence efficiency 

of the absorber layer[57–59]. 

Figure 1.9: (a) the main parts of our “homemade” ultrafast PL spectroscopy setup – for clarity, mirrors 

and lenses have been omitted (b & c) typical steady-state and time resolved spectra, in this case, they 

show the PL emission and decay of a PbS QD ink. 
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In a typical PL spectroscopy experiment depicted in Figure 1.9, a sample is excited 

with light of higher energy than its’ bandgap (non-resonant excitation), with the use 

of suitable filters, the PL signal is passed through a dispersive element and recorded 

by a CCD camera. This can be carried out in an instrument called a fluorimeter or 

more sophisticated “homemade” setups. With the development of ultrafast laser 

sources, it has also become relatively straightforward to perform measurements of 

the PL lifetime (or time-resolved PL).  

Measuring the dynamics of PL can shed additional information on photophysical 

processes and aid in the selection and identification of suitable materials for 

optoelectronic applications. The measurements performed in this thesis were 

carried out with a homemade setup based on a pulsed Ti:Sapphire laser (pulse width 

~ 150 fs, repetition rate 76 MHz) with a spectrometer coupled to CCDs with or 

without a streak unit; in the former case, steady-state spectra are obtained and in 

the latter, a so-called streak-image is obtained. A streak image is a 3 dimensional 

map where light intensity is recorded for every wavelength and delay time. From 

these maps PL decay profiles or time-resolved PL spectra can be easily extracted. 

 

1.7.3 Solar Cell Current-Voltage Characteristics 

A solar cell in the dark is a diode, displaying an extremely low current in reverse bias 

and a small voltage drop across it under forward bias conditions. Conversely, under 

illumination, electrical power is produced by charges generated within the active 

layer which “shifts” the characteristic current versus voltage (I -V) curve from the 

1st (Cartesian) quadrant to the 4th, as shown in Figure 1.10.  

Within this quadrant, the current when there is no applied bias is called the short 

circuit current (denoted ISC); and the voltage across the solar cell when the current-

density through it is zero is called the open circuit voltage (denoted VOC); worth 

noting is that at these points there is no electrical power being produced by the solar 

cell.  
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During operation, the solar cell generally produces power somewhere in between 

these two points; with a maximum at a so-called maximum power point (MPP); 

where the product of the current and voltage is maximised. Next to the ISC and VOC 

another important metric is the fill factor (FF); which is the ratio of the power 

produced at the MPP to the total power possible for the solar cell to generate (given 

by the product of ISC and VOC). It is best thought of as a measure of how closely 

the solar cell approaches the behaviour of an ideal solar cell. In many cases, to 

enable comparison between different solar cells – current density, J (= I/A), i.e. 

current per unit area, A) is used instead of current.  

A common architecture for solar-cells which feature in this thesis are p-i-n junction 

solar cells, which are similar to p-n junction solar cells but with an ‘intrinsic’ 

semiconducting layer flanked on both sides by p- and n- type layers which serve to 

create an internal electric field which depletes the intrinsic layer causing generated 

carriers to drift towards the  p- or n- layers. For this reason, the p- and n- layers are 

sometimes referred to as charge transport (hole-/electron-) layers.  

The power conversion efficiency (PCE) of a solar cell (see equation 1.5) is therefore 

defined in terms of these quantities under test conditions which require the 

temperature, light intensity (I) and the spectral distribution of light to be 

standardised to 25 ºC, 1 sun (=1000 W/m2), and AM1.5G (spectrum of sunlight 

after passing through an optical path 1.5 times the thickness of earth’s atmosphere). 

Figure 1.10: (a) a typical I-V curve for a solar cell measured under the dark and when illuminated 

showing the points of interest, and a pictoral representation of the fill factor (b) typical solar cell 

architecture discussed in this thesis. 
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𝑃𝐶𝐸 =
𝐹𝐹 ∙  𝐽𝑠𝑐 ∙ 𝑉𝑜𝑐

𝐼
               (1.5) 

Thus, in device optimisation, the goal is to either maximise the fill-factor, short-

circuit current or open-circuit voltage. In practice, because of the complex 

relationship between these 3 metrics, to maximise the efficiency, they must be 

simultaneously optimised. In device-centred studies, understanding the charge 

transport and possible loss mechanisms (trap-assisted or bimolecular 

recombination) in the active layer of solar cells made from disordered 

semiconductors is usually performed by light-intensity dependent measurements of 

the open circuit voltage and closed circuit current[60,61].  

 

1.8 Outline 

Chapter 2 deals with an approach of making a 3-component (ternary) blend of a 

polymer, fullerene derivative and PbS QDs in order to increase the dielectric 

constant of the blend. The dielectric constant of blends for organic solar cells is 

believed to be one of several limiting factors to achieving proper exciton 

dissociation and thus, improved efficiency. Although there have been several prior 

successful attempts at making ternary OPVs, the predominant goal has always been 

to improve coverage of the solar irradiance spectrum by incorporating materials 

with complementary absorption rather than aiming to use the third component as 

a means to increase the dielectric constant of the blends. In this chapter, we add 

small amounts of PbS QDs to a blend of a narrow bandgap copolymer and a 

fullerene derivative and use the photoluminescence of the interfacial charge transfer 

state as a measure of the local dielectric constant of the blend. 

In chapter 3, the concept of ferroelectric OPV (FE-OPV) is revisited with the aim 

of reconciling disparate views in the literature. Therein, a newly synthesized (and 

previously unreported) semiconducting-ferroelectric block copolymer is used a 

compatibilizer to overcome the severe phase segregation that often occurs when 

ferroelectric polymers are mixed with semiconducting ones. Using an optimized 

deposition recipe, we obtain smooth, pinhole-free ternary blends of semiconducting 

and ferroelectric components which we use for device fabrication, spectroscopic 

measurements and poling experiments. 
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In chapter 4, the microstructure and electron extraction layers of perovskite solar 

cells (PSCs) are studied; with particular emphasis on understanding how they affect 

light-soaking, and the eventual photovoltaic performance. The light soaking effect 

is a reversible increase in the performance of perovskite solar cells upon extended 

illumination, and represents an important barrier to proper functioning perovskite 

solar cells. In the first part, the deposition recipe of the perovskite is varied to obtain 

either compact or coarse morphologies for device characterization and 

spectroscopic measurements; going further, two fullerene derivatives with different 

dielectric constants are compared as electron transport layers. In both parts, 

spectroscopic measurements were combined with device characterization to 

understand the origin of the light soaking effect. 

Finally, chapter 5 reports a detailed photophysical characterization of two different 

bismuth-perovskite shelled PbS QDs obtained as an ink via a phase transfer ligand 

exchange process to replace the native oleic acid ligands. Electrical characterization 

on field effect transistors based on the Bi-perovskite shelled QD solids were 

performed to show the successful removal of the oleic acid ligands, with the 

fabricated transistors displaying electron mobilities comparable to reported values 

for epitaxial Pb-based shelled QDs. Afterward, the optical properties of the inks 

and solids were studied using a combination of absorption, temperature-, and 

power-dependent (PL) spectroscopies.  
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