
 

 

 University of Groningen

Programming effects of an early-life diet containing large phospholipid-coated lipid globules
are transient under continuous exposure to a high-fat diet
Ronda, Onne A H O; van de Heijning, Bert J M; de Bruin, Alain; Jurdzinski, Angelika; Kuipers,
Folkert; Verkade, Henkjan J
Published in:
British Journal of Nutrition

DOI:
10.1017/S0007114519002083

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Final author's version (accepted by publisher, after peer review)

Publication date:
2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Ronda, O. A. H. O., van de Heijning, B. J. M., de Bruin, A., Jurdzinski, A., Kuipers, F., & Verkade, H. J.
(2019). Programming effects of an early-life diet containing large phospholipid-coated lipid globules are
transient under continuous exposure to a high-fat diet. British Journal of Nutrition, 122(12), 1321-1328.
https://doi.org/10.1017/S0007114519002083

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 26-12-2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Groningen

https://core.ac.uk/display/286185929?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1017/S0007114519002083
https://www.rug.nl/research/portal/en/publications/programming-effects-of-an-earlylife-diet-containing-large-phospholipidcoated-lipid-globules-are-transient-under-continuous-exposure-to-a-highfat-diet(f788777b-e2bf-4687-bd01-1f062498926c).html
https://doi.org/10.1017/S0007114519002083


 Accepted manuscript 

   1 

Programming effects of an early-life diet containing large phospholipid-coated 

lipid globules are transient under continuous exposure to a high-fat diet 

 

Onne A.H.O. Ronda
1
, Bert J. M. van de Heijning

2
, Alain de Bruin

1,3
, Angelika Jurdzinski

1
, Folkert 

Kuipers
1,4

, Henkjan J. Verkade
1
 

 

Affiliations: Departments of 
1
Pediatrics and 

4
Laboratory Medicine, University of Groningen, 

University Medical Center Groningen, Groningen, The Netherlands. 
2
Danone Nutricia Research, 

Utrecht, The Netherlands. 
3
Dutch Molecular Pathology Center, Faculty of Veterinary Medicine, 

Utrecht University, Utrecht, The Netherlands 

 

Address correspondence to: Henkjan J. Verkade, Laboratory of Pediatrics CA84, PO Box 30001, 

Hanzeplein 1, 9713GZ Groningen, The Netherlands; e-mail: h.j.verkade@umcg.nl, tel.: +31-50-

3614147. 

 

Short title: Long-term effects of early life diet 

 

Abbreviations: IMF: infant milk formula, eIMF: experimental IMF, cIMF: control IMF, PN: 

postnatal, HFD: high fat diet, GTT/ITT/PTT: Glucose/ Insulin/ Pyruvate Tolerance Test, MUFA: 

monounsaturated fatty acid, PUFA: polyunsaturated fatty acid, CM: chylomicrons 

 

Keywords: metabolic programming, infant nutrition, dietary lipids, lipid structure, milkfat globule 

membrane, obesity prevention, animal model 

 

 

 

 

 

This peer-reviewed article has been accepted for publication but not yet copyedited or typeset, and 

so may be subject to change during the production process. The article is considered published and 

may be cited using its DOI 

10.1017/S0007114519002083 

 

The British Journal of Nutrition is published by Cambridge University Press on behalf of The Nutrition Society 

 

D
ow

nloaded from
 https://w

w
w

.cam
bridge.org/core . U

niversity of G
roningen , on 27 Aug 2019 at 07:02:10 , subject to the Cam

bridge Core term
s of use, available at https://w

w
w

.cam
bridge.org/core/term

s . https://doi.org/10.1017/S0007114519002083

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0007114519002083


 Accepted manuscript 

   2 

 

Abstract 

Breastfeeding is associated with a lower risk of developing obesity during childhood and adulthood 

compared to feeding infant milk formula (IMF). Previous studies have shown that an experimental 

IMF (eIMF; comprising Nuturis®), programmed mouse pups for a lower body weight and fat mass 

gain in adulthood when challenged with a high-fat diet (HFD), compared to a control IMF (cIMF). 

Nuturis has a lipid composition and structure more similar to breastmilk. Here, the long-term effects 

were tested of a similar eIMF, but with an adapted lipid composition, and a cIMF, on body weight, 

glucose homeostasis, liver and adipose tissue. Nutrient composition was similar for the eIMF and 

cIMF; the lipid fractions comprised ~50% milkfat. C57BL/6JOlaHsd mice were fed cIMF or eIMF 

from postnatal (PN) day 16-42 followed by a HFD until PN168. Feeding eIMF versus cIMF in early 

life resulted in a lower body weight (-9%) and body fat deposition (-14%) in adulthood (PN105). 

The effect appeared transient, as from PN126 onward, after 12 weeks HFD, eIMF-fed mice caught 

up on controls and body and fat weights became comparable between groups. Glucose and energy 

metabolism were similar between groups. At dissection (PN168), eIMF-fed mice showed larger 

(+27%) epididymal fat depots and a lower (-26%) liver weight without clear morphological 

aberrations. Our data suggest the size and coating but not the lipid composition of IMF fat globules 

underlies the programming effect observed. Prolonged exposure to a HFD challenge partly 

overrules the programming effect of early diet. 

 

Introduction 

Breastfeeding is epidemiologically associated with a lower incidence in childhood and adulthood 

obesity, compared to infant milk formula (IMF)-feeding (1). Breastfeeding is also associated with 

lower blood pressure and lower plasma cholesterol levels in adulthood (2, 3). The nutritional 

composition of human milk (HM) is mimicked in IMF. However, mimicking fat emulsification is 

not yet possible. Fat in HM is dispersed in particles (5 µm diameter) enveloped by a trilayered milk 

fat globule membrane, composed mainly of phospholipids and cholesterol (4). In contrast, standard 

IMF fat globules are much smaller (0.1 µm diameter) and coated with surface-adhering proteins (4, 

5). Most likely the physicochemical structure (size and coating) of lipid globules in HM serves a 

biological purpose (4-8). An experimental IMF (eIMF; Nuturis®) was developed comprising large 

(mode diameter 3-5 µm) phospholipid-coated lipid globules similar in size to those in HM (4, 6). 

Feeding mice an eIMF-based diet in early life, compared to standard control IMF (cIMF), resulted 

in a lower body weight and lower fat mass accumulation when fed a high-fat diet (HFD) challenge 

diet into adulthood (6, 9, 10). The underlying mechanism of this effect on fat deposition of eIMF 

exposure has not yet been elucidated, but is hypothesized to relate to fat globule size and structure. 
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To confirm and extend previous observations on eIMF programming effects in mouse pups, we 

used a similar paradigm, and determined the possible long-term effects of early-life eIMF exposure 

on body weight accrual, glucose homeostasis, and liver and adipose tissue attributes. We tested the 

hypothesis that the size and coating of lipid globules, and not the composition, underlies the initial 

programming effect observed. We therefore compared the cIMF and the eIMF with similar lipid 

compositions. 

 

Materials and methods 

Animals and Study design Experimental procedures were approved by an external independent 

animal experiment committee (Central Animal Experiments Committee, The Netherlands), and 

complied with the principles of good laboratory animal care following the EU-directive for the 

protection of animals used for scientific purposes. This study was conducted in accordance with 

institutional guidelines for the care and use of laboratory animals established by the Ethics 

Committee for Animal Experimentation of the University of Groningen (NVWA 10500) in full 

compliance to the European Directive 2010/63/EU for the use of animals for scientific purposes. All 

animals were kept in the same temperature-controlled room (21±1°C, 55±10% humidity, lights on 

8AM-8PM) in type 1L (360 cm²) polysulfone cages bearing stainless-steel wire covers (UNO BV, 

the Netherlands), with wood shaving bedding, Enviro-dri® (TecniLab, The Netherlands) and 

cardboard rolls. All mice were handled by the same researcher. Virgin C57BL/6JOlaHsd breeders 

(11M, 22F) 12 weeks of age, Envigo, The Netherlands) were mated (6) in 2F+1M couples. Males 

were removed from couples after 2 d. Pregnancy was confirmed by a >2 g increase in body weight 

after 1 week, and occurred at ~66% efficiency. Delivery day was recorded as postnatal day (PN) 0. 

Pups were randomized between dams, and litters were culled to 4M+2F on PN2, weaned at PN21, 

and diets provided as freshly prepared dough balls (40% water) from PN16 to PN42 (6, 9). 

Randomization was not performed as the programming diets were visually distinct. Breeders and 

female offspring were terminated (CO2) at weaning, in compliance with the AVMA Guidelines for 

the Euthanasia of Animals. From PN42 onward, male offspring was pair-housed with siblings and 

fed a high-fat diet (HFD, 45%en fat, D12451 Research Diets Inc. USA) and tap water ad libitum 

until dissection on PN168. Females were not used, as they are protected against HFD-induced 

metabolic changes (11). Glucose tolerance and calorimetry was assessed at PN133 and PN154, 

respectively (Fig 1). Programming diets Two IMF powders (Nutricia Cuijk B.V., Cuijk, the 

Netherlands) were tested. The IMF powders had a similar macro- and micronutrient content (Table 

1); both lipid moieties comprised about 50% vegetable oil and 50% milkfat (Table 1) and had a 

similar fatty acid profile (Table 2). cIMF comprised fat globules with a volume mean diameter 

(D[4,3]) of 0.8 µm, whereas eIMF comprised phospholipid-coated lipid globules with a D[4,3] of 7 
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µm, explained in more detail elsewhere (4). IMF powders (283 g/kg feed) were supplemented with 

protein and carbohydrate (Ssniff Spezialdiäten GmbH, Soest, Germany) to obtain AIN-93G-

compliant
 
diets, with a fat moiety derived entirely from IMF (12). 

Body composition Lean and fat mass was quantified by time-domain nuclear magnetic resonance 

(LF90II, Bruker Optics, Billerica, MA), not requiring fasting or anesthesia. Glucose, insulin and 

pyruvate tolerance tests Mice were fasted 6, 6 and 4 hours for the glucose, pyruvate and insulin 

tolerance test (GTT, PTT, ITT), respectively. GTT (i.p. 13.9 µmol glucose/g BW), ITT (i.p. 0.5 mU 

insulin/g BW) and PTT (i.p. 28.4 µmol pyruvate/g BW) were performed as previously described 

(13). Calorimetry Mice were single-housed in a Comprehensive Laboratory Animal Monitoring 

System (Phenomaster, TSE systems GmbH, Bad Homburg, Germany) at PN154 for 4 days as 

previously described (14). Termination Mice were anaesthetized (isoflurane/O2) after a 4-h fasting 

period (during light phase) and sacrificed by heart puncture; a terminal blood sample was drawn. 

Liver, epididymal, inguinal, perirenal and interscapular fat was obtained and weighed. Assays 

Plasma was analyzed using the V-PLEX Proinflammatory Panel 1 (mouse) kit (K15048D), Mouse 

Adiponectin Kit (K152BXC), Mouse Leptin Kit (K152BYC), Mouse MCP-1 Ultra-Sensitive Kit 

(K152AYC), Mouse/Rat Total Active GLP-1, Insulin, Glucagon Kit (K15171C) and the Mouse/Rat 

Resistin Kit (K152FNC). Analyses were performed according to the manufacturer’s instructions. 

Kits were purchased from MSD (Meso Scale Diagnostics LLC, USA). Blood glucose was measured 

using a OneTouch Select Plus (Lifescan Inc., USA). 

Liver fatty acyl chain profiling Cryogenically crushed liver was homogenized in Potter-Elvehjem 

tubes. Lipids were trans-methylated, extracted and analyzed by gas chromatography as previously 

described (15). 

Analysis of gene expression Gene expression was analyzed by quantitative real-time PCR as 

previously described (16). Cyclophilin and 36b4 were used as housekeeping genes for hepatic and 

adipose tissue gene expression respectively. Primer and TaqMan probe sequences are given in 

Suppl Table 1. 

Histological analysis A liver lobe and the left epididymal fat pad were formalin-fixed and paraffin-

embedded, sectioned, H&E stained. Liver slices were scored blindly for steatosis, NAS (17), 

ballooning (18) and findings were reviewed by a certified veterinary pathologist (AdB). Liver 

sections were stained for the proliferation marker Ki-67 as previously described (19). Histological 

scoring of Ki-67 was performed in 5 separate x40 fields by a single assessor. Binucleation and 

karyomegaly was assessed as described (20). Adipose tissue sections were quantified using 

Adiposoft (21). Adipose tissue was assessed for the presence of inflammatory foci (‘crown-like 

structures’) as described (22).  
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Statistical analysis Statistics were performed using GraphPad Prism 5 (GraphPad Software, USA) 

and SPSS 23 (SPSS Inc., USA). Data are plotted as Tukey box-and-whisker plots unless stated 

otherwise. Group sizes were calculated (23) using a relevant and most varied value, previously 

obtained (plasma IL-6) (6); expected difference 12 ng/L, spread 10 ng/L, alpha 0.05, beta 0.80. 

Analyses were carried out on all individuals whenever material was available and no outliers were 

excluded. 

 

Results 

eIMF transiently lowers body weight gain on HFD 

An initially comparable rapid weight gain (PN42-56) preceded a period (PN63-119) of lower 

weight gain in eIMF compared to cIMF (-9% on average, p<0.05). From PN126 onwards, weights 

between groups were no longer significantly different (Fig. 2A). Fat and lean mass were similar at 

PN42. At PN72, 105 and 126, fat mass was substantially lower in eIMF compared to cIMF (-10%, -

14%, -7%; p<0.01), and lean mass was slightly lower (-4%, -8%, -6%; p<0.01; Fig 2B) 

respectively. Fat percentage and lean percentage were similar at PN42. The average fat percentage 

(PN42-126) was not-significantly lower in eIMF (-5%; p=0.07), whereas lean percentage was not-

significantly higher in eIMF (+3%; p=0.08; Fig. 2C). To assess whether later-life effects were due 

to differences in growth in early life, we measured body weight from weaning, which was similar 

between groups, and body composition at PN28 and 35; which was similar. At PN147-154, daily 

food intake was on average 14% lower in eIMF (p=0.08, Fig. 2F), correlating with the calculated 

slope of prior weight gain (PN42-PN147, Spearman’s rank-order, rs = 0.6, p<0.01). Energy 

expenditure (Fig. 2G), and locomotor activity (Fig. 2H) were similar. At PN133 the ipGTT time 

course (Fig 2I) and AUC (2.1±0.6 versus 1.9±0.4 M·min) was similar between groups. The ipITT 

(PN140) and ipPTT (PN147) AUCs (1.4±0.3 versus 1.2±0.2 and 1.6±0.5 versus 1.4±0.4 M·min, 

respectively) were similar. 

 

eIMF-programmed mice have a lower liver weight independent of body weight 

Upon dissection at PN168, we noted that eIMF-fed mice had lower liver weights (Fig 3A; -25%; 

p<0.05) and a lower liver-to-body weight ratio (Fig 3B; -23%; p<0.01). The lower liver weight was 

not related to triglyceride (TG) levels, which showed moderate variability (Fig 3C). Liver protein 

(mg/g liver) was higher in the eIMF group (+9%; p<0.05), whereas total liver protein was lower in 

eIMF (mg/liver; -20%; p<0.05, Fig 3D). Gene expression markers for hepatic de novo lipogenesis 

(Fasn, Scd1, Acaca, Pparg) and fatty-acid oxidation (Pparα, Pgc1α, Cpt1) (Fig 3E) were similar. 

The liver fatty acyl-chain profile (Fig 3G) was similar between groups (Fig 3G).  
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Histological analysis (Fig 3H, Table 3) showed that steatosis tended to be higher in cIMF (70 ± 17 

versus 57 ± 32 %, steatosis grade 2.5 ± 0.5 versus 2.1 ± 1.0), but this difference did not reach 

statistical significance. Microvesicular steatosis was more frequent than macrovesicular steatosis in 

both groups and typically showed a zonal distribution characterized by central microvesicular 

steatosis with mild to moderate mid-zonal (occasionally extending to portal) macrovesicular 

steatosis. Lobular inflammation and ballooning was similar between groups. NAFLD score, mostly 

influenced by steatosis, tended to be higher in cIMF but did not reach statistical significance. 

Varying degrees of biliary / oval cell hyperplasia were seen in almost all mice. The mitotic index 

(Ki-67) was similar between groups. Binuclear hepatocyte counts in the central and mid/portal 

region were similar between groups. Hepatic fatty acyl chain ratios representing lipid-related 

enzymatic activity (24, 25) were similar between groups.  

 

Body fat storage was shifted by eIMF programming without affecting adult adipokine levels 

At PN168 we analyzed adipose tissue and plasma adipokines (Fig 4). Epididymal fat mass was 

larger in eIMF (Fig 4A; +27%; p<0.01). Inguinal fat mass was similar. Interscapular brown fat mass 

tended to be smaller in eIMF (-10%; p=0.06). The median epididymal adipocyte diameter tended to 

be higher in eIMF (Fig 4B; +11%; p=0.08). The median perirenal and inguinal adipocyte diameter 

(Fig 4B) was comparable. Gene expression for Ppar-γ, Fas, Fabp4, Tnf-α and Cd68 was similar 

between groups (Fig 4C). The assessed adipokines (leptin, adiponectin, resistin, Mcp-1, Tnf-α and 

Il-6), glucostatic hormones (insulin and glucagon), and cytokines (Ifnγ, Cxcl-1, Il-1β, Il-2, Il-5 and 

Il-10) were similar (Fig 4D). Crown-like structures in adipose tissue were seen in all cIMF and in 

10/11 eIMF mice, but tended to occur more often in cIMF (Fig 4E; epididymal 8.0±8.8 versus 

5.0±6.9; perirenal 9±10 versus 10±19). This difference was not statistically significant.  

 

 Discussion 

In the present work, we studied the long-term effects of early life exposure (PN16-42) to 

eIMF versus cIMF on body weight and body compositional development into adulthood when 

animals were continuously challenged to a HFD, as well as its effects on liver and adipose tissues 

size and function (Fig 1). Previously, eIMF with a different lipid composition was found to program 

mice for a lower body fat accumulation when they were challenged with a HFD up to PN126 (6). In 

the current study, IMFs had a different lipid composition and HFD exposure was extended to 

PN168. Similar programming effects were seen up to PN126, whereafter differences in body weight 

and composition disappeared upon continued HFD exposure (Fig 2). Interestingly, food intake, 

despite high variability, tended to be lower at PN154 in eIMF-fed mice (Fig. 2), strongly correlating 

with the slope of prior weight gain. This suggests that the differences in body weight can, at least in 
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part, be attributed to differences in food intake. The effects observed being transient may indicate 

that the programming response, i.e., the initial lower fat accumulation in adipose stores, can be 

overruled by a strong and persistent dietary challenge. In addition, our study suggests these 

programming effects, due to early life eIMF exposure, occurred regardless of the lipid composition 

of the fat globules, and is rather caused by the physicochemical structure of the lipids, i.e., globule 

size and phospholipid coating (10). In humans and mammals, the amount of lipids in (mature) milk, 

despite highly variable diets, is remarkably stable (26, 27). The size of milk fat globules, as well as 

the milk TG content, seem to be tightly regulated and species-specific (28), and greatly impact the 

absorption kinetics of breast milk lipids (29, 30). Testing eIMF (large and phospholipid coated fat 

globules) versus cIMF (small, uncoated fat globules) in adult men resulted in a different 

postprandial response upon a single bolus intake: an earlier postprandial glucose and insulin time-

to-peak, an earlier non-esterified fatty acids (NEFA) time-to-nadir, and a later cholecystokinin time 

course (30). We hence speculate that fat globule size and phospholipid coating programs metabolic 

and tissue development induced by differential lipid uptake kinetics or post-absorptive lipid 

trafficking or tissue partitioning. Lipid uptake kinetics of eIMF, compared to cIMF, are likely to be 

more comparable to breastmilk. 

Early-life feeding with eIMF compared to cIMF lowered liver weight in later life 

independent of body weight (Fig 3). The difference was not explained by mitotic index, or the 

degree of polyploidization. Hepatic triglyceride content had moderate variability without clear 

correlation with other parameters. Possibly the early-life diet primed hepatic tissue for a different 

response to a HFD challenge, resulting in a differential tissue growth. It is also possible, however, 

that the transient difference in body weight (or adipose tissue development) triggers a difference in 

liver size. Previously, a non-significantly higher liver weight had been seen in cIMF compared to 

eIMF and to an unchallenged control group (9). Additionally, a higher liver weight was seen upon 

early-life feeding with an IMF containing small compared to large lipid globules and challenging 

with a HFD (10). We hypothesize that postnatal liver development was changed due to a difference 

in post-absorptive lipid handling and trafficking. As mentioned earlier, eIMF is more rapidly 

absorbed compared to cIMF in adult men (30). In addition, a gavage of breastmilk, compared to 

standard formula, leads to a more rapid chylomicron (CM) production and a more rapid absorption 

of palmitic, arachidonic and docosahexaenoic acid in adult rats (29). Rapid absorption of protein-

coated fat results in 3-fold larger CM diameter (31). However, we believe rapid lipid absorption 

only leads to larger CM when enteral phospholipid supply is limited, necessitating higher volume-

to-surface area ratios (32). In contrast, CM diameter is lowered by biliary phospholipids (32). It is 

possible that breastmilk, and likewise eIMF, is rapidly absorbed and produces smaller CM than 

cIMF due to the dietary phospholipids provided with breastmilk and eIMF. The observation that an 
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IMF with large globules but lacking phospholipids does not program mice for less fat accrual in 

later life (10), adds weight to this notion. CM size and number affect the plasma half-life, as smaller 

particles have a larger relative surface area available to enzymes (33, 34), and are more quickly 

removed from the plasma via liver sieving (35). CM produced upon eIMF or HM ingestion are 

expected to have a different fractional clearance rate than CM upon cIMF ingestion. It is tempting 

to speculate that a more rapid absorption plus utilization, opposed to storage, of breastmilk and 

eIMF derived lipids in early life programs metabolism and fat accumulation capacity towards an 

advantageous trait for later-life health. 

The effect on fat pad weights and adipocyte diameter was independent of body weight and 

composition (Fig 4). Previous studies showed that at PN98 the epididymal fat pad was smaller in 

eIMF-fed mice (9, 10), whereas this difference between test groups had disappeared at PN126 (6). 

We observed a higher epididymal fat mass in eIMF at PN168, indicating a differential fat 

distribution in eIMF vs. cIMF, as the perirenal and inguinal fat pad were similar in mass. 

Counterintuitively, the larger epididymal fat pads seen in eIMF did not result in lower levels of 

adiponectin and did result in higher levels of inflammatory markers (Tnf-α, Il-6), Mcp-1, or resistin 

(Fig 4) as typically seen with larger visceral adipose tissue (36). Interestingly, we found no effect on 

glucose metabolism and homeostasis (Fig 2I). Previously, eIMF-fed mice had lower plasma leptin, 

resistin, glucose and HOMA-IR at PN126 (6), likely related to the lower fat mass. A lower fat 

accrual rate, transiently seen in eIMF, is advantageous to metabolic health. However, given the 

observed minor effects on adipose tissue at PN168, we think it is unlikely that adipose tissue 

initiates the programming effect, and merely is a logical consequence and trait of the programmed 

phenotype.  

 

Concluding remark 

The present study shows that feeding a postnatal diet containing large phospholipid-coated 

lipid globules has transient effects on body fat accrual during prolonged exposure to HFD. These 

effects are limited in strength and robustness and can be overruled by (too) strong environmental 

features, such as continued high-fat diet feeding. Our findings indicate the robustness and the limits 

of early-life programming due to eIMF exposure in the employed mouse model. The observed 

programming effects are hypothesized to be due to a difference in fat absorption, and/or post-

absorptive handling and trafficking in the body. 
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Table 1. Nutrient composition of the programming diets (PN16-42) and the high fat diet (PN42-168). *: all in g/kg 

  Control IMF Experimental IMF HFD 

Carbohydrate *  609 618 396 

Mono/di-saccharides 225 235 172.8 

 Glucose  3.7 3.4 - 

 Lactose 134 144 - 

 Sucrose 85 85 172.8 

 Other sugars 2.6 2.4 - 

Polysaccharides *  380 380 172.8 

 Maltodextrin 101 101 100 
 Corn starch 280 280 72.8 

 Other 0.84 0.68 - 

Fiber *  49.0 48.2 50 

 Cellulose 32.0 32.0 50 

 Fructo-oligosaccharides 1.7 1.4 - 

 Galacto-oligosaccharides 15.3 14.3 - 

Lipids *  77.2 70.6 203 

 Vegetable fat 37.5 32.9 25 

 Milkfat 38.6 36.7 - 

 Other animal fat 1.1 0.98 - 

 Lard - - 177.5 

 Phospholipids 0.084 1.1 - 
 Cholesterol 0.12 0.12 0.20 

Protein *  199 198 200 

 Whey 17.6 16.5 - 

 Casein 181 181 200 

Particle size D[4,3] (µm) 0.81 ± 0.2 6.8 ± 0.2 - 

 D[3,2] (µm) 0.43 ± 0.004 0.86 ± 0.1 - 

 Surface area (m2/g) 15 ± 0.2 7.7 ± 1.0 - 
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Table 2. Fatty acid composition of the programming diets (PN16-42). *: all in FA weight% 

  Control IMF Experimental IMF 

Saturated*  44 42 

 14:0 8.9 7.1 

 16:0 26 25 

 18:0 7.8 8.9 

 20:0 0.28 0.32 

 22:0 0.27 0.39 

 24:0 0.17 0.26 

 26:0 0.032 0.039 

Mono unsaturated*  36 39 
 16:1ω7 1.2 1.1 

 18:1ω7 1.9 1.9 

 18:1ω9 33 35 

 20:1ω9 0.38 0.42 

 22:1ω9 0.080 0.13 

 24:1ω9 0.053 0.074 

Polyunsaturated*  20 19 

 ω-3 species 3.4 3.4 

 18:3ω3 2.8 2.8 

 20:5ω3 0.12 0.12 

 22:6ω3 0.38 0.38 

 22:5ω3 0.090 0.099 

 ω-6 species 16 16 
 18:2ω6 16 15 

 18:3ω6 0.050 trace 

 20:4ω6 0.44 0.43 

 20:3ω6 0.091 0.12 

 20:2ω6 0.046 trace 

  ω-6 /  ω-3 ratio 4.8 4.7 

 20:3ω9 0.38 0.42 

 

Table 3. Hepatic histological scoring and fatty-acid ratios of mice programmed with cIMF (n=12) or eIMF (n=11) and 

subsequently challenged to a HFD.  Values represent means ± SD. 

   Control IMF Experimental IMF 

   mean SD mean SD 

Steatosis Steatosis grade  2.5 0.5 2.1 1.0 

 Steatosis % 70 17 57 32 

 Location steatosis  12/12 central  8/10 central;  
2/10 azonal 

 

 Hepatocytes with micro- vs.  

macrovesicular steatosis 

% 78 9 78 8 

 Ballooning   Few, 2/12  Few, 2/11  

 Lobular inflammation  1.0 0.5 1.1 0.6 

 NAFLD score  3.7 0.8 3.3 1.5 

 Biliary/oval cell hyperplasia  1.4 0.8 1.5 0.5 

Mitosis Mitotic index % 4.3 2.0 4.3 2.7 

 Binuclear cells per field n 4.5 2.1 4.7 3.3 

 Central binuclear cells n 4.7 3.5 4.1 3.6 

 Mid/portal binuclear cells n 4.4 1.7 5.2 3.7 

Fatty acyl  

chain ratios 
 ω-6 /  ω-3  6.3 0.6 6.2 0.72 

16:1ω7 / 16:0  0.13 0.021 0.12  0.037 

 18:1 / 18:0  8.5 2.6 7.9 2.6 

 18:1ω9 / 18:0  7.8 2.4 7.3 2.4 
 18:1 / 16:1  13 1.9 14 2.8 

 22:4ω6 / 18:2ω6  0.029 0.01 0.025 0.006 

 20:4ω6 / 20:3ω6  4.8 1.1 5.3 1.5 

 18:3ω6 / 18:2ω6  0.021 0.002 0.020 0.003 
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Fig 1. Study design from postnatal day (PN) 0 to 168 (n=12).  

 

Fig 2. Mice programmed with eIMF and challenged with a high-fat diet showed a transient lower body weight, 

lean mass and fat mass compared to animals programmed with cIMF . Body weight (A), fat & lean mass (C) are 

expressed in absolute weights. The percentage of fat & lean mass (C) are expressed as % of body weight. Early-life 

body weight (D) and fat & lean mass (E) are expressed in absolute weights.  Food intake (F), energy expenditure (G), 

and locomotor activity (H) was measured 3 times 24 h from PN154. Glucose tolerance at PN133 is shown as AUC (I). 

A-H: n=11-12; I: n=10-11; Mean±SD (A-E, I), Tukey boxplots and scatter plots (F-H); * p<0.05. 
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Fig 3. Mice programmed with eIMF compared to cIMF showed a lower liver weight with a concurrent higher 

protein content without a shift in fatty acyl chain profile. Dissection was performed at PN168. Liver weight (A) is 

expressed as wet weight. The liver to bodyweight ratio (B) is expressed as % of bodyweight. TG levels (C) are 

expressed per gram liver. Liver protein content (D) is expressed as mg per gram wet liver tissue. Hepatic mRNA levels 

(E) were normalized to cyclophilin. Fatty acyl chain profile is expressed as fold change compared to cIMF (G). Liver 

histology (H&E; F) showed a zonal distribution characterized by central microvesicular steatosis with mild to moderate 

mid-zonal macrovesicular steatosis. Bar: 250µm, inset bar: 100µm. n=11-12; Tukey boxplots and scatter plots; ** 

p<0.01; * p<0.05. 
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Fig 4. Mice programmed with eIMF compared to cIMF showed an higher visceral adipose tissue weight and 

adipocyte cell diameter. Epididymal (EPI) visceral, inguinal (ING) subcutaneous and interscapular (BAT) brown 

adipose tissue (A) are expressed as absolute weights. EPI, perirenal (PERI) and ING (B) adipocyte diameter was 

calculated (Adiposoft) and expressed as equivalent diameter. The epididymal fat gene expression (C) was normalized to 

36b4 and shown as fold change. Plasma adipokines, glucostatic hormones and cytokines are expressed as pg/ml (D). 

Adipose (epididymal depot) pathology (E) characterized by crown-like structures composed of macrophages and other 

mixed inflammatory cells with lipofuscin (*) surrounding a necrotic adipocyte, bar: 100 µm, inset bar: 50 µm. Tukey 

boxplots and scatter plots. n=10-12 ** p<0.01; * p<0.05; # p<0.10. 
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