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A REMARK ON SETS WITH FEW DISTANCES IN R
d

FEDOR PETROV AND COSMIN POHOATA

Abstract. A celebrated theorem due to Bannai-Bannai-Stanton says that
if A is a set of points in R

d, which determines s distinct distances, then

|A| ≤

(

d+ s

s

)

.

In this note, we give a new simple proof of this result by combining Sylvester’s
Law of Inertia for quadratic forms with the proof of the so-called Croot-
Lev-Pach Lemma from additive combinatorics.

1. introduction

Given a positive integer s, a finite subset A in a metric space M is called
an s-distance set in M if there are s positive real numbers d1, . . . , ds such that
all the pairwise distances determined by the points in M are among these
numbers, and each di is realized. Upper bounding the size of such sets is a
famous problem in combinatorial geometry, with a lot of activity around the
various possible variants. See for instance [5] and the references therein. When
M is Rd, with the usual Euclidean distance, the classical result in the area is
the following result due to Bannai, Bannai and Stanton [1] from 1983.

Theorem 1.1. If A is an s-distance subset in R
d, then

|A| ≤

(

d+ s

s

)

.

The proof of Theorem 1 from [1] builds upon the linear independence ar-
gument introduced for this problem by Larman, Rogers and Seidel in [3]. In
[3], the authors proved that when s = 2, the inequality |A| ≤ (d+ 1)(d+ 4)/2
follows from the fact that to each a point in A one can associate a polynomial
fa ∈ R[x1, . . . , xd] such that {fa, a ∈ A} is a set of linearly independent poly-
nomials over the reals, which also happens to lie in a subspace of R[x1, . . . , xd]
of dimension (d+ 1)(d+ 4)/2. This argument was later amplified by Blokhuis
[2] who showed that one can further add a list of d + 1 other polynomials to
{fa : a ∈ A} and get an even larger list of linearly independent polynomials
that lie in the same vector space of dimension (d + 1)(d + 4)/2. This led to
|A| ≤ (d + 1)(d + 4)/2 − (d + 1) =

(

d+2

2

)

, which established the important
first case s = 2 of Theorem 1.1. This story was successfully generalized by
Bannai-Bannai-Stanton in [1], but for larger s the argument to show that one
can add a new list of (higher degree) polynomials to the old list and still get

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Caltech Authors - Main

https://core.ac.uk/display/286143468?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1912.08181v1


2 FEDOR PETROV AND COSMIN POHOATA

a set of linearly independent elements in the same vector space is significantly
more technical.

In this paper, we give a new simple proof of Theorem 1.1 via a slightly
improved version of the so-called Croot-Lev-Pach Lemma [4, Lemma 1] over
the reals, which may be of independent interest. We state this in a general
form, which captures the original version of the Croot-Lev-Pach Lemma as
well.

Theorem 1.2. Let V be a finite-dimensional vector space over a field F and
A ⊂ V be a finite set. Let s be a nonnegative integer and let p(−→x ,−→y ) be a
2 · dimV -variate polynomial wih coefficients in F and of degree at most 2s+1.
Consider the matrix Mp,A with rows and columns indexed by A and entries
p(·, ·). It corresponds to a (not necessary symmetric) bilinear form on F

A by
a formula

Φp(f, g) =
∑

a,b∈A

p(−→a ,
−→
b )f(a)g(b), for f, g : A → F,

which in turn defines a quadratic form Φp(f, f). Denote by rank(p, A) the
rank of matrix Mp,A; if F = R denote also by r+(p), r−(p) the inertia indices of
the quadratic form Φp(f, f). Finally, denote by dims(A) the dimension of the
space of polynomials of degree at most s considered as functions on A. Then:

1) rank(p, A) 6 2dims(A).

2) if F = R, then max {r+(p, A), r−(p, A)} 6 dims(A).

In the next section, we will first prove Theorem 1.2, and then we will use it
to deduce Theorem 1.1. We will need only part 2) of the Lemma above, since
part 1) is more or less the original Croot-Lev-Pach lemma in disguise (which
doesn’t help directly), but we will include nonetheeless a quick new proof of
part 1) as well since it motivated part 2).

2. Proof of Theorem 1.2

Proof. Endow the space FA with a natural inner product 〈f, g〉 =
∑

a∈A f(a)g(a).

Consider the space Ω ⊂ F
A of functions f on A satisfying 〈f, φ〉 = 0 for all

polynomials φ of degree at most s. It is easy to see that the dimension of Ω
as a vector space over F is at least |A| − dims(A).

The key observation is that Φp(f, g) = 0 whenever f, g ∈ Ω. Indeed, for any
monomial xαyβ in the polynomial p(−→x ,−→y ) (here α, β are multi-indices with
sum of degrees at most 2s+ 1) we have

∑

a,b∈A

aαbβf(a)g(b) =

(

∑

a∈A

aαf(a)

)

·

(

∑

b∈B

bβg(b)

)

= 0,

since either α or β have degree at most s and f, g are choosing from Ω.

We will now prove both claims of Theorem 1.2 by using dimension argu-
ments.
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Indeed, the bilinear form Φp[·, ·] on F
A takes zero values on Ω× Ω, thus all

non-zero entries of its matrix in appropriate basis (which includes the basis of
Ω and any other |A|−dim Ω basis vectors) may be covered by |A|−dimΩ rows
and |A| − dimΩ columns. This implies that every minor of Mp,A of dimension
at least 2(|A| − dimΩ) + 1 must vanish. Therefore,

rank(p, A) 6 2(|A| − dimΩ) 6 2dims(A).

This proves the first claim of Theorem 1.2.

If F = R, by Sylvester’s Law of Inertia, we may choose a subspace Y ⊂ F
A

of dimension r+(p, A) such that the quadratic form Φp(f, f) restricted to Y is
positive definite. If f ∈ Y ∩ Ω and f 6= 0, we have 0 = Φp(f, f) > 0, which is
impossible. Therefore, Y ∩ Ω = {0} and dimY + dimΩ 6 |A|, which yields
that r+(p, A) = dimY 6 |A| − dimΩ 6 dims(A). Analogously, we also have
that r−(p, A) 6 dims(A). This completes the proof of Theorem 1.2. �

We now deduce Theorem 1.1 from Theorem 1.2.

If A is an s-distance subset in R
d and S is the set of distinct distances it

determines, consider the 2d-variate polynomial p with real coefficients defined
by

p(−→x ,−→y ) =
∏

d∈S

(d2 − ‖x− y‖2).

The matrix Mp,A from Theorem 1.2 is then a positive scalar matrix for this
polynomial; therefore, r+(p, A) = |A|, and so part 2) of Theorem 1.2 implies
that

|A| = r+(p, A) 6 dims(A) 6 dims(R
d) =

(

s+ d

d

)

.

This completes the proof of Theorem 1.1.
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