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A REMARK ON SETS WITH FEW DISTANCES IN R
FEDOR PETROV AND COSMIN POHOATA

ABSTRACT. A celebrated theorem due to Bannai-Bannai-Stanton says that
if A is a set of points in R?, which determines s distinct distances, then

4] < <d+s).
s

In this note, we give a new simple proof of this result by combining Sylvester’s
Law of Inertia for quadratic forms with the proof of the so-called Croot-
Lev-Pach Lemma from additive combinatorics.

1. INTRODUCTION

Given a positive integer s, a finite subset A in a metric space M is called
an s-distance set in M if there are s positive real numbers dy, ..., d, such that
all the pairwise distances determined by the points in M are among these
numbers, and each d; is realized. Upper bounding the size of such sets is a
famous problem in combinatorial geometry, with a lot of activity around the
various possible variants. See for instance [5] and the references therein. When
M is R?, with the usual Euclidean distance, the classical result in the area is
the following result due to Bannai, Bannai and Stanton [I] from 1983.

Theorem 1.1. If A is an s-distance subset in R, then
d
Al < ( H).
S

The proof of Theorem 1 from [I] builds upon the linear independence ar-
gument introduced for this problem by Larman, Rogers and Seidel in [3]. In
[3], the authors proved that when s = 2, the inequality |A| < (d+1)(d +4)/2
follows from the fact that to each a point in A one can associate a polynomial
fa € Rlzy, ..., x4 such that {f,,a € A} is a set of linearly independent poly-
nomials over the reals, which also happens to lie in a subspace of Rz, ..., z4]
of dimension (d + 1)(d +4)/2. This argument was later amplified by Blokhuis
[2] who showed that one can further add a list of d + 1 other polynomials to
{fs: a € A} and get an even larger list of linearly independent polynomials
that lie in the same vector space of dimension (d + 1)(d + 4)/2. This led to
|Al < (d+1)(d+4)/2 — (d+ 1) = (*?), which established the important
first case s = 2 of Theorem [Tl This story was successfully generalized by
Bannai-Bannai-Stanton in [I], but for larger s the argument to show that one
can add a new list of (higher degree) polynomials to the old list and still get
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a set of linearly independent elements in the same vector space is significantly
more technical.

In this paper, we give a new simple proof of Theorem [[1] via a slightly
improved version of the so-called Croot-Lev-Pach Lemma [4, Lemma 1] over
the reals, which may be of independent interest. We state this in a general
form, which captures the original version of the Croot-Lev-Pach Lemma as
well.

Theorem 1.2. Let V' be a finite-dimensional vector space over a field F and
A C V be a finite set. Let s be a nonnegative integer and let p(?,?) be a
2 - dimV -variate polynomial wih coefficients in F and of degree at most 2s + 1.
Consider the matriz M, o with rows and columns indexed by A and entries
p(,+). It corresponds to a (not necessary symmetric) bilinear form on F4 by
a formula

o,(f,9) = S p(@, B)f(a)g(b), forf.g: A —F,

a,beA

which in turn defines a quadratic form @,(f, f). Denote by rank(p, A) the
rank of matriz M, 4; if F = R denote also by ro(p),r_(p) the inertia indices of
the quadratic form ®,(f, f). Finally, denote by dimg(A) the dimension of the
space of polynomials of degree at most s considered as functions on A. Then:
1) rank(p, A) < 2dim,(A).
2)if F =R, then max{ry(p, A),r_(p, A)} < dim4(A).

In the next section, we will first prove Theorem [[.2] and then we will use it
to deduce Theorem [Tl We will need only part 2) of the Lemma above, since
part 1) is more or less the original Croot-Lev-Pach lemma in disguise (which
doesn’t help directly), but we will include nonetheeless a quick new proof of
part 1) as well since it motivated part 2).

2. PROOF OF THEOREM

Proof. Endow the space F* with a natural inner product (f, g) = >4 f(a)g(a).

Consider the space Q0 C F4 of functions f on A satisfying (f, ¢) = 0 for all
polynomials ¢ of degree at most s. It is easy to see that the dimension of €2
as a vector space over F is at least |A| — dimg(A).

The key observation is that ®,(f, g) = 0 whenever f, g € €. Indeed, for any
monomial z%y” in the polynomial p( ? 7 (here «, 8 are multi-indices with
sum of degrees at most 2s + 1) we have

> a"t’ f(a) (Zaaf )-(Zb%(b)>=
a,beA acA beB

since either av or § have degree at most s and f, g are choosing from 2.
We will now prove both claims of Theorem by using dimension argu-
ments.
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Indeed, the bilinear form ®,[-,-] on F4 takes zero values on Q x ©, thus all
non-zero entries of its matrix in appropriate basis (which includes the basis of
2 and any other |A| —dim €2 basis vectors) may be covered by |A| —dim 2 rows
and |A| —dim 2 columns. This implies that every minor of M, 4 of dimension
at least 2(|A| — dim Q) + 1 must vanish. Therefore,

rank(p, A) < 2(|A| — dim Q) < 2dimg(A).

This proves the first claim of Theorem [[L2

If F = R, by Sylvester’s Law of Inertia, we may choose a subspace Y C F4
of dimension 74 (p, A) such that the quadratic form @,(f, f) restricted to Y is
positive definite. If f € Y N Q and f # 0, we have 0 = ®,(f, f) > 0, which is
impossible. Therefore, Y N2 = {0} and dimY + dim Q < |A|, which yields
that ro(p, A) = dimY < |A| — dim 2 < dimg(A). Analogously, we also have
that r_(p, A) < dimg(A). This completes the proof of Theorem [[L2 O

We now deduce Theorem [I.T] from Theorem

If Ais an s-distance subset in R? and S is the set of distinct distances it
determines, consider the 2d-variate polynomial p with real coefficients defined

by
p(@.7) = [T =~ ol).
des
The matrix M, 4 from Theorem is then a positive scalar matrix for this
polynomial; therefore, r(p, A) = |A|, and so part 2) of Theorem implies
that

1A] = . (p, A) < dim,(A) < dim,(RY) = (S ; d).

This completes the proof of Theorem [Tl
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