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ABSTRACT

Recent observations of Type Ia supernovae (SNe Ia) have shown diversified properties of the explo-

sion strength, light curves and chemical composition. To investigate possible origins of such diversities
in SNe Ia, we have presented multi-dimensional hydrodynamical study of explosions and associated

nucleosynthesis in the near Chandrasekhar mass carbon-oxygen (CO) white dwarfs (WDs) for a wide

range of parameters (Leung and Nomoto 2018 ApJ). In the present paper, we extend our wide pa-

rameter survey of models to the explosions of sub-Chandrasekhar mass CO WDs. We take the double
detonation model for the explosion mechanism. The model parameters of the survey include the

metallicity of Z = 0− 5 Z⊙, the CO WD mass of M = 0.90− 1.20 M⊙, and the He envelope mass of

MHe = 0.05− 0.20 M⊙. We also study how the initial He detonation configuration, such as spherical,

bubble, and ring shapes, triggers the C detonation. For these parameters, we derive the minimum He

envelope mass necessary to trigger the C detonation. We then examine how the explosion dynamics
and associated nucleosynthesis depend on these parameters, and compare our results with the previous

representative models. We compare our nucleosynthesis yields with the unusual abundance patterns of

Fe-peak elements and isotopes observed in SNe Ia 2011fe, 2012cg and 2014J, as well as SN Ia remnant

3C 397 to provide constraints on their progenitors and environments. We provide the nucleosynthesis
yields table of the sub-Chandrasekhar mass explosions, to discuss their roles in the galactic chemical

evolution and archaeology.

Keywords: (stars:) supernovae: general – hydrodynamics – nuclear reactions, nucleosynthesis, abun-

dances

1. INTRODUCTION

Type Ia supernovae (SNe Ia) are known to have al-

most homogenized light curves and spectra, thus being

used as a standard candle for studying the cosmic ac-
celeration that led to the discovery of dark energy (e.g.,

Bergström & Goobar 2004; Branch & Wheeler 2017).

The basic properties of SNe Ia have been well-modeled

as the explosions of CO white dwarfs (WDs) which have

both near-Chandrasekhar mass and sub-Chandrasekhar
mass (e.g., Hillebrandt & Niemeyer 2000). However, it

is still controversial which mass (near-Chandrasekhar

vs. sub-Chandrasekhar) of the WD is the actual pro-

genitor. For the presupernova evolution in close bina-
ries, both the single degenerate (SD) scenario and the

double degenerate (DD) scenario have been discussed,

but the actual evolutionary path remains unclear (e.g.,

Nomoto et al. 1997; Maoz et al. 2011).

Further, recent observations have shown the diver-

sified properties of light curves and spectra of SNe

Ia including very peculiar ones (e.g., Li et al. 2001;
Taubenberger 2017; Jha 2017; Jiang et al. 2017). The

diversity can be characterized by a wide range of 56Ni

and also differences in the ejecta composition and abun-

dance. To understand this diversity, a wide range of

theoretical models become necessary in order to extract
the effects of each model parameter to explosion prop-

erties and nucleosynthesis yields.

To understand the origin of such diversities, we are

computing SNe Ia models for wide ranges of model and
environmental parameters. In Nomoto & Leung (2017);

Leung & Nomoto (2018) we have studied how the model

parameters, including the central density, metallicity,

initial flame structure, and C/O ratio affect the explo-

sion properties of near-Chandrasekhar mass WD mod-
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els. For example, we have demonstrated how some well-

observed SNe Ia and SNRs can be explained by tracing

the variation of isotopes in the yields with respect to the

change of model parameters.
In this paper, we present our parameter survey for

the sub-Chandrasekhar mass WD model. The sub-

Chandrasekhar mass explosions could occur in both SD

and DD scenarios as follows.

1.1. Sub-Chandrasekhar Mass Models in the Single
Degenerate Scenario

In the SD scenario, C+OWDs accrete matter from the

non-degenerate companion stars, which include slightly

evolved main-sequence stars, red-giant stars, He-main-

sequence stars, evolved He stars. As a result of H-
burning in the H-rich accreted material or a direct ac-

cretion of He, the mass of a He layer increases above

the C+O core, leading to eventual He ignition (e.g.,

Nomoto & Leung 2017, 2018).
If the accretion rate of He, ṀHe, is higher than

∼ 10−8M⊙ yr−1, He burning shell burning makes weak

flashes which recur many times to increase the WD

mass toward the Chandrasekhar mass (e.g., Nomoto

1982a; Woosley & Kasen 2011). For lower rates of
10−10M⊙ yr−1 . ṀHe . 10−8M⊙ yr−1, the compres-

sional heating rate is lower and thus the temperature

of the He layer is lower, which causes a delay in the

He ignition until the mass of He layer becomes large
enough and the density at the bottom of He layer high

enough for He burning to grow into detonation. It

eventually leads to double detonation (Nomoto 1982b;

Woosley et al. 1986). The double detonation model

has been widely studied in 1D and multi-D simula-
tions for various model parameters (e.g., Livne 1990;

Livne & Glasner 1990, 1991; Livne & Arnett 1995;

Arnett 1996; Fink et al. 2007, 2010; Sim et al. 2012;

Moore et al. 2013; Moll & Woosley 2013; Shen et al.
2018; Polin et al. 2019).

The important property of the sub-Chandrasekhar

mass progenitors in SD scenario is that the mass of the

He layer exceeds ∼ 0.05M⊙ to induce a He detonation

(e.g., Nomoto 1982b; Woosley et al. 1986). This is in
contrast to the sub-Chandrasekhar mass models in the

DD scenario as discussed below.

1.2. Sub-Chandrasekhar Mass Models in the Double

Degenerate Scenario

In the DD scenario, the detonation near the surface
of the primary WD can be triggered during the vio-

lent merging of two WDs for suitable binary parame-

ters (e.g., Rasio & Shapiro 1995; Segretain et al. 1997;

Guerrero et al. 2004; Yoon et al. 2007; Fryer et al. 2010;

Dan et al. 2011; Raskin et al. 2012, 2014; Moll et al.

2014; Sato et al. 2015). However, if there exists no He,

the occurrence of the surface C detonation may still de-

pend on the numerical resolution (e.g., Sato et al. 2015;
Pakmor 2017). Then Pakmor et al. (2013); Dan et al.

(2015) presented a He ignited double detonation model

where the He detonation near the surface is triggered

because a certain mass of He rich envelope is assumed

to exist on both WDs. In contrast to the double det-
onation in the SD scenario, the He-ignited detonation

could be triggered for a smaller mass He-rich envelope

because of shock compression.

In the above DD model, the collision point can reach
a sufficiently high temperature for triggering a He det-

onation. The He detonation can produce a shock wave

which propagates through the He envelope and into the

CO core. The shock-heating in the C-rich matter can

induce a central or off-center C detonation. The WD
is then disrupted by the C detonation. This model may

produce the diversity of the different brightness, depend-

ing on the masses of the CO core and the He envelope

(e.g., Arnett 1996; Sim et al. 2010; Woosley & Kasen
2011; Pakmor et al. 2013; Shen et al. 2018; Polin et al.

2019).

1.3. Motivation

In Leung & Nomoto (2017); Nomoto & Leung (2017)

we have studied how the model parameters, including

the central density, metallicity, initial flame structure

and C/O mass fraction ratio, affect the chemical yield
of SN Ia evolved from a near-Chandrasekhar mass WD.

By tracing the variations of isotopes with respect to the

change of model parameters, we have demonstrated how

some well-observed SNe Ia can be explained by the near-

Chandrasekhar mass model.
However, the occurrence rate of SNe Ia evolved from

sub-Chandrasekhar WD is suggested to be higher than

the near Chandrasekhar mass WD in population syn-

thesis (See, e.g., Yungelson 2005; Maoz et al. 2014). It
becomes necessary to ask whether the double detona-

tion model can explain SNe Ia similarly to the Chan-

drasekhar mass model, or can even replace the Chan-

drasekhar mass model in certain parameter space.

Furthermore, through multi-dimensional hydrody-
namics simulations, one can draw constraints on how

to trigger the C detonation by the He detonation in

the aspherical configuration systematically. This will

set constraints on the criteria in triggering the C det-
onation through the aspherical He detonation with or

without geometrical convergence.

To investigate possible origins of large diversities of

SNe Ia, we perform two-dimensional hydrodynamical
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studies of explosions and associated nucleosynthesis in

the sub-Chandrasekhar mass CO WDs for wide ranges

of parameters. All simulations use the code based on

the two-dimensional hydrodynamics code developed for
the explosion phase of supernovae (Leung et al. 2015a).

This work is a continuation of our previous work

in Leung & Nomoto (2017); Nomoto & Leung (2017),

where we have studied the dependence on model pa-

rameters of SNe Ia using the Chandrasekhar mass mod-
els (Leung et al. 2015b; Nomoto & Leung 2017, 2018;

Leung & Nomoto 2018). In Leung & Nomoto (2018) we

covered the density, metallicity, flame structure and det-

onation criteria. We have also shown that some of the
chemical abundances features observed in recently ob-

served SNe Ia can be reproduced by our models.

In the present paper, we want to extend our under-

standing to the sub-Chandrasekhar mass models for

even a wider parameter region. We intend not only to
explain the observed diversities of SNe Ia but also to

provide the predictions of nucleosynthesis properties for

coming observations (e.g., Timmes et al. 2019).

In Section 2 we summarize the numerical methods
used in this work and the input physics specific to model

the sub-Chandrasekhar mass model. In Section 3 we

describe our two-dimensional simulations to study the

exploding WDs starting from the He detonation at the

envelope. In Section 5 we describe the benchmark model
which is regarded as the representation of a typical

sub-Chandrasekhar mass model. In Section 6 we de-

scribe nucleosynthesis yields and their dependence on

the model parameters, including the WD mass, He en-
velope mass and initial He detonation pattern. We also

present our cross-comparison with the classical double

detonation model with spherical symmetry, and its pos-

sible impacts on galactic chemical evolution. In the Ap-

pendix we provide further numerical details and tests we
have done for this work. We also discuss the implica-

tions of our models, including a comparison from models

in the literature.

2. METHODS

2.1. Input Physics

Here we briefly review the structure of our hydrody-

namics code and then we describe the change done to
describe the He detonation and the onset of C deflagra-

tion or C detonation. We use the same two-dimensional

hydrodynamics code as reported in Leung et al. (2015a)

for our simulations. The code solves the Euler equations
in cylindrical coordinates where the spatial discretiza-

tion is done by the fifth-order weighted essentially non-

oscillatory (WENO) scheme and the time-discretization

is done by the five-step third-order non-strong-stability

preserving Runge-Kutta scheme. We use the helmholtz

subroutine (Timmes & Arnett 1999; Timmes & Swesty

1999) as the matter equation of state (EOS). This EOS

includes the arbitrarily relativistic and degenerate elec-
tron gas, ions as a classical ideal gas, Planckian photon

gas and electron-positron annihilation pairs. In the hy-

drodynamics section, we describe the chemical compo-

sition by a 7-isotope network, which includes 4He, 12C,
16O, 20Ne, 24Mg, 28Si and 56Ni.
The one-equation model (Niemeyer et al. 1995) is used

to model the velocity fluctuations in the sub-grid scale

due to turbulence. To describe the geometry of the two

detonation fronts, we use the individual level-set func-
tions (Osher & Sethian 1988) as used in Reinecke et al.

(1999). The geometry of the fronts are constructed by

locating zero-value points in the level-set function, and

then the fractional volume in each mesh being burnt

by flame or detonation is extracted. The energy from
nuclear burning is injected instantaneously to Eulerian

grids which have an increase in the area (volume) frac-

tions α in the 2- (3-) dimensional models enclosed by

the contours and their boundaries. To prevent double-
counting the energy released by burnt matter, α is set to

be a monotonic increasing throughout the simulations.

In each step, the code calculates the area fraction based

on how the zero-contour intersects with the grid mesh.

A fraction of α∗ is obtained where α = 1 for a completely
burnt cell and 0 for pure fuel. The value of α∗ is com-

pared with that in the previous step αold and the larger

one is taken, i.e. α = max(α∗, αold). For He detonation,

we assume the detonation is in form of Chapman-Jouget
detonation, where the detonation propagates in sound

speed given by
√

γ2(∂p/∂ρ)s, where γ2 is the adiabatic

index, p and ρ are the pressure and density. For CO det-

onation, we used the same prescription as Sharpe (1999)

by the numerical speed of pathological detonation.
All simulations are done by a resolution size of 4002 us-

ing the cylindrical coordinate. We choose reflecting and

outgoing boundaries for the inner and outer boundaries

for both r and z axis. The resolution is fixed at either
15 or 23 km. The lower one is for higher mass white

dwarf (mass > 1M⊙) while the higher one is for lower

mass white dwarfs. The grid size is chosen such that the

simulation box is about 2 - 3 times of the initial WD

radius. We do that because we want most exothermic
reactions, which rely on the level-set method, can finish

before the star reaches the outer boundary of the simu-

lation box. We follow Roepke & Hillebrandt (2005) by

implementing the moving-boundary technique so that,
when the stellar outer radius reaches the simulation box

boundary, the grid expands with a similar speed so that

most matter can be contained in the simulation box. In
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our calculation, we choose the averaged radial velocity

of the low density matter (defined by 1 - 10 times of

the atmospheric density) to be the expansion velocity.

Following with the expansion, we also adjust the atmo-
sphere density such that the total mass of matter in the

”atmosphere” (also the minimum density allowed in the

simulation) remains ∼ 10−4 of the star. We model only

one quadrant of the WD by the use of reflecting bound-

ary.
In our computation, it takes typically 2 - 3 days for a

hydrodynamics simulation for a quadrant from the onset

of He-detonation until homologous expansion develops

by a single CPU run. The assumed symmetry allows
only two He-detonation bubbles to be ignited simulta-

neously. A more general detonation form as a single He-

detonation bubble requires hydrodynamics simulations

of a hemisphere. The computational time can be length-

ened by a factor of∼ 4 times with also a factor of 2 larger
in memory. Thus only a small number of models are

computed. In Appendix B we present some exploratory

models using the relaxed symmetry and compare with

our ”quadrant” models. We also check the dependence
of the general detonation model on the chosen resolution

and report in Appendix C.

2.2. Nuclear Reaction Scheme

For the nuclear reactions of He-rich matter, the re-

gion swept by the level-set contour is regarded as burn-

ing from 4He to 56Ni. For CO-rich matter, similar
to previous works (Leung & Nomoto 2018), we use the

three-step burning scheme so as to include more flexi-

ble nuclear reactions, especially when there are contri-

butions from shock wave collisions. In this work, we
assume this process is instantaneous regardless of the

local density. We follow the use of burning timescale

as an approximation to burning where density is low

(i.e. ρ < 5 × 107 g cm−3). That includes the nuclear

quasi-statistical equilibrium (NQSE) timescale and the
NSE timescale, given by, respectively (see Calder et al.

(2007); Townsley et al. (2007)),

τNQSE = exp(182/Tf,9 − 46.1) s, (1)

τNSE = exp(196/Tf,9 − 41.6) s, (2)

where Tf,9 = Tf/10
9 K is the final temperature of the

ash. For a timestep shorter than these two timescales,

we assume that a fraction of matter given by linear in-

terpolation with τ is burnt. For a timestep longer than

those, complete conversion of fuel to ash is assumed.
Similar treatment is done for He detonation. We de-

scribe more details in Appendix A.

To determine whether a detonation wave can start, we

follow the scheme in Fink et al. (2007). For an Eulerian

grid of CO matter, when the temperature exceeds the

threshold temperature as a function of density (see Ta-

ble 1 and 2 in Fink et al. (2007)), a bubble or ring of

hot ashes (i.e., NSE matter from CO and 56Ni from He)
is put artificially around that grid of 1.5 times the grid

size. In practice, we set the level-set scalar field S in the

way that S(r, z) = −
√

(r − r0)2 + (z − z0)2 + 1.5∆x.

Here r0 and z0 are the center coordinates of the bubble

and ∆x is the resolution size. However, when multiple
detonation seeds are triggered, those within 10 ∆x from

existing ones are discarded. At a density between 2×107

and 109 g cm−3, detonation propagates in the form of

pathological detonation, where behind shock front mat-
ter with a speed below the frozen sound speed appears

(Sharpe 1999). The propagation velocity is obtained by

solving the detonation structure explicitly. To prevent

double-counting in the burnt material due to numerical

diffusion, once a grid reached NSE, it is forbidden to
carry out 16O and 24Mg burning in the second burning

step. In the NSE state, the final composition is changed

by solving iteratively by requiring that the change in

the internal energy equals to the change in the binding
energy up to the required precision. Matter in the NSE

state is also allowed to carry out electron capture with a

rate obtained by interpolating the pre-computed rate ta-

ble using the prescription described in Seitenzahl et al.

(2010).
To apply NSE calculation in the modeling, after each

hydrodynamics step, we obtain a current density ρ, cur-

rent electron fraction Ye,i, trial temperature Ti, specific

internal energy density ǫi and the nuclear binding en-
ergy per mass qi. We look for the electron capture rate

Ẏe and its corresponding neutrino energy loss rate per

mass q̇ν . To obtain the thermodynamics state in NSE,

we solve the implicit equation

ǫi − qi = ǫf (ρ, Tf , Xf )− qf (ρ, Tf ) +

(mn −mp −me)NAc
2Ẏe(ρ, Ti, Ye,i) + q̇ν(ρ, Ti, Ye,i).(3)

Here, ǫf (ρ, Tf , Xf ) and qf (ρ, Tf ) are those for the final

state. (mn−mp−me)NAc
2 is the energy loss due to mass

difference between neutron and electron-proton pair per
mass. The above equation is solved by implicitly finding

the Tf and its corresponding qf such that the energy is

balanced. The approximation Ẏe(ρ, Ti, Ye,i) is true when

the electron capture rate is much slower than dynamical

timescale, which is true for SN Ia.

3. INITIAL MODELS

In this section we first describe the arrays of mod-

els we have performed for the SNe Ia using the sub-

Chandrasekhar mass WD. Then we describe the explo-

sion thermodynamics for each class of explosion.
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In Tables 1 and 2 we tabulate the models studied for

the double detonation model. The initial WD consists of

a CO core and a He envelope. We regard the total WD

mass M , the He envelope mass MHe, the initial metal-
licity Z, and the position of the He detonation seeds

as input parameters. The initial WD is assumed to be

isothermal at a temperature of 108 K 1. For Z = 0.02,

we choose 49% 12C and 49% 16O and 2% 22Ne in mass

fractions, and for smaller Z, the mass fraction of 22Ne
is smaller and C and O have larger mass fractions in

equal. For the He envelope, pure 4He is assumed. No-

tice that the prescription of 22Ne is not necessary the

only element that represents metallicity. For example,
in Shen et al. (2018), the 22Ne mass fraction X(22Ne)

scales as Z = 1.1X(22Ne). A more precise matching

between the abundances from the stellar evolutionary

models and the hydrodynamics simulations will require

a more detailed isotope network.
It is shown that the actual C/O ratio can be sensitive

to M and Z (Umeda et al. 1999). We remark that a

direct extension for different C/O ratio is not straight-

forward since it requires first a quantitative study on
how C-detonation is triggered as a function of density

with a given composition.

To start the He detonation, we place a spherical det-

onation seed along the rotation symmetry axis. Due to

resolution limit, the initial detonation seed is 1.5 times
of the grid size in radius, i.e. 22 km. The position of the

seed is regarded as an input parameter of the model,

which ranges from 30 km to 300 km. The detonation

seed consists of hot ashes of 56Ni.
We notice that starting the explosion near the bound-

ary may not be ideal in the two-dimensional models due

to the possibility of enhancing nuclear burning along the

symmetry boundary. But for our case, the detonation

propagates much faster than typical fluid velocity. The
hydrodynamical instabilities, especially Rayleigh-Taylor

instability, do not have adequate time to grow before the

fuel is swept by the detonation wave. So the boundary

effect is less significant compared to the turbulent de-
flagration scenario. To construct the initial model, we

choose models with a total mass M = 0.9 - 1.2 M⊙ and

MHe = 0.05 - 0.35 M⊙.

3.1. Model Names

1 In general the WD can be away from isothermal profile due

to the hydrostatic burning and convection. The exact profile de-

pends on the competition between the compressional heating due

to mass accretion and radiative cooling. In view of uncertain-

ties during accretion, we neglect this factor and prepare identical

initial models.

First we describe how these models are named and

how they are chosen. Each model is named by their

parameters, including M , MHe, Z, and the initial po-

sition of the detonation bubble (sphere). For example,
Model 105-050-2-50 stands for a WD with M = 1.05

M⊙, MHe = 0.05M⊙, Z = 0.02 and the initial He det-

onation triggered at 50 km above the core-envelope in-

terface.

The endings ”-S50” and ”-B50” stand for different ini-
tial He detonations. The term ”S50” stands for a spher-

ical detonation triggered at 50 km above the He/CO

interface and ”B50” stands for a belt (ring) around the

”equator” of the WD. ”R50” stands for a bubble trig-
gered at 50 km above the He/CO interface. For ”2R50”

or ”3R50” we put two or three ”bubbles” (a combina-

tion of torus and bubble) in the He-envelope. Note that

with the rotation and reflection symmetry, a bubble in

the two-dimensional plane can be a ”ring” if the bubble
is away from the rotation-axis, in its three-dimensional

projection. The distance 50 km is chosen such that the

surface of the initial bubble is slightly separated by at

least one grid from the interface. We find that this sep-
aration is necessary to avoid overlapping the initial He-

detonation bubble with the CO-rich matter.

In Groups A - M in Table 1, the following effects are

studied:

(1) Initial mass M : Groups A, B, C and M study the
effects of progenitor mass on nucleosynthesis. For initial

detonation with higher symmetry (”-S50” and ”-B50”

series), a lower He envelope mass 0.05 M⊙ is used while

for that with lower symmetry, the He envelope mass is
fixed at MHe = 0.10 or 0.15 M⊙. Metallicity is fixed at

the solar metallicity. The progenitor varies from 0.9 to

1.2 M⊙.

(2) He envelope massMHe: In Groups D, E, F and G the

effects of He envelope mass MHe. Each group includes
models of the same mass from 0.9 - 1.2 M⊙ in a 0.1

M⊙ interval, but with a different MHe from 0.05 to 0.2

M⊙. In all models, solar metallicity is assumed. We

remark that different MHe masses are used for different
initial detonation geometries. It is because for a He

detonation with a lower symmetry, the effects of shock

convergence by geometry is smaller. To make sure the

second detonation can be triggered for comparison, a

higher MHe are studied.
(3) Metallicity Z: In Groups H, I and J we study the

effects of metallicity to the explosive nucleosynthesis.

Each group consists of models of the same M , MHe and

detonation configuration. Models vary by their metal-
licity from 0 to 5 Z⊙. We choose this large metallic-

ity because in Leung & Nomoto (2018) we have already

shown that such high metallicity model can be a clue to
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Table 1. The model parameters and the global properties of the energetics and nucleosynthesis of the SNe Ia Model performed
in this article. Enuc and Etot are the energy released by nuclear reaction and the total energy, in units of 1050 erg. M , MHe and
MNi are the masses of the initial WD model, initial He envelope and the final synthesized 56Ni in units of M⊙. R, Rseed and Rdet

are the radii of the initial WD model, the distance of the initial detonation seed from the He/CO interface and the radius where
the second detonation is started, in unit of km. tdet is the time when the second detonation is triggered. ρc and ρdet are the
initial central density and the density at which the second detonation is triggered, in units of 107 g cm−3. The category ”Type”
classifies the final results into five types. ”N” stands for no second detonation induced. ”Y” stands for the second detonation
which starts at location closer to the z-axis (the rotation symmetry axis). ”X” stands for the second detonation which starts
at a location closer to the r-axis (the symmetry plane axis). ”D” stands for the second detonation which starts at somewhere
between ”Y” and ”X” and ”S” stands for the central detonation.

Group Model ρc MHe Rseed M R Efin Enuc tdet ρdet Rdet MNi Type

A 090-050-2-B50 1.67 0.05 50 0.90 7160 3.82 5.08 2.71 1.00 4170 < 10−2 ”Y”

A 095-050-2-B50 2.26 0.05 50 0.95 6710 4.70 6.17 2.29 1.00 3860 0.11 ”Y”

A 100-050-2-B50 3.21 0.05 50 1.00 6180 7.62 9.34 1.74 1.07 2870 0.31 ”Y”

A 110-050-2-B50 6.17 0.05 50 1.10 4930 10.8 13.1 1.18 1.24 3770 0.68 ”Y”

B 090-050-2-S50 1.67 0.05 50 0.90 7160 3.53 4.68 1.35 6.53 20 0.02 ”S”

B 095-050-2-S50 2.26 0.05 50 0.90 6710 7.28 8.56 1.18 6.15 40 0.45 ”S”

B 100-050-2-S50 3.21 0.05 50 1.00 6180 8.70 10.2 0.98 6.03 70 0.60 ”S”

B 110-050-2-S50 6.71 0.05 50 1.10 4930 11.7 13.8 0.83 11.7 40 0.82 ”S”

C 090-100-2-50 1.67 0.10 50 0.90 7160 -0.50 0.77 nil nil nil < 10−2 ”N”

C 095-100-2-50 2.26 0.10 50 0.90 6710 -0.43 0.94 nil nil nil < 10−2 ”N”

C 100-100-2-50 3.21 0.10 50 1.00 6180 -0.36 1.38 nil nil nil < 10−2 ”N”

C 110-100-2-50 6.71 0.10 50 1.10 4930 11.1 13.0 0.94 1.04 3430 0.62 ”X”

D 090-100-2-50 1.67 0.100 50 0.90 7160 -0.50 0.77 nil nil nil < 10−2 ”N”

D 090-150-2-50 1.67 0.150 50 0.90 7160 5.65 7.04 2.35 1.51 2100 0.14 ”Y”

D 090-200-2-50 1.67 0.200 50 0.90 7160 7.92 9.02 1.21 1.03 3940 0.28 ”X”

D 090-300-2-50 1.67 0.300 50 0.90 7160 11.6 12.9 0.83 1.00 3370 0.54 ”D”

E 100-050-2-50 3.21 0.050 50 1.00 6180 -1.45 0.27 nil nil nil < 10−2 ”N”

E 100-075-2-50 3.21 0.075 50 1.00 6180 -1.08 0.63 nil nil nil < 10−2 ”N”

E 100-100-2-50 3.21 0.100 50 1.00 6180 -0.36 1.39 nil nil nil < 10−2 ”N”

E 100-150-2-50 3.21 0.150 50 1.00 6180 8.64 10.3 0.99 1.06 3370 0.47 ”X”

E 100-200-2-50 3.21 0.200 50 1.00 6180 15.0 13.3 0.75 1.00 3360 0.61 ”D”

F 110-050-2-50 6.17 0.050 50 1.10 4930 -1.89 0.39 nil nil nil 1.1 × 10−2 ”N”

F 110-075-2-50 6.17 0.075 50 1.10 4930 9.88 12.1 1.11 1.04 3560 0.56 ”X”

F 110-100-2-50 6.17 0.100 50 1.10 4930 11.1 13.0 0.94 1.04 3430 0.62 ”X”

F 110-125-2-50 6.17 0.125 50 1.10 4930 14.4 14.9 0.69 1.10 3270 0.78 ”X”

F 110-150-2-50 6.17 0.150 50 1.10 4930 14.8 15.4 0.45 1.03 3190 0.69 ”D”

F 110-200-2-50 6.17 0.200 50 1.10 4930 15.7 17.9 0.32 1.09 3000 0.79 ”D”

G 120-050-2-50 14.8 0.050 50 1.20 4250 14.4 17.5 0.90 1.10 3010 0.83 ”X”

G 120-100-2-50 14.8 0.100 50 1.20 4250 16.7 19.8 0.39 1.00 2790 0.92 ”D”

G 120-150-2-50 14.8 0.200 50 1.20 4250 18.9 22.1 0.26 1.56 2570 0.96 ”D”

G 120-200-2-50 14.8 0.150 50 1.20 4250 20.2 23.2 0.27 1.61 2440 1.00 ”D”

H 090-150-0-50 1.67 0.150 50 0.90 7160 5.68 6.95 2.35 1.63 2080 0.15 ”Y”

H 090-150-2-50 1.67 0.150 50 0.90 7160 5.77 7.04 2.35 1.51 2100 0.14 ”Y”

H 090-150-6-50 1.67 0.150 50 0.90 7160 5.79 7.06 2.35 1.47 2100 0.14 ”Y”

H 090-150-10-50 1.67 0.150 50 0.90 7160 5.80 7.07 2.35 1.73 2080 0.12 ”Y”

I 110-100-0-50 6.17 0.050 50 1.10 4930 11.3 13.8 0.94 1.02 3430 0.67 ”X”

I 110-100-2-50 6.17 0.100 50 1.10 4930 11.1 13.0 0.94 1.04 3430 0.62 ”X”

I 110-100-6-50 6.17 0.050 50 1.10 4930 11.2 13.4 0.93 1.01 3410 0.51 ”X”

I 110-100-10-50 6.17 0.050 50 1.10 4930 11.8 13.9 0.93 1.01 3410 0.52 ”X”
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Table 2. (cont′d) The initial models and their parameters.

Group Model ρc MHe Rseed M R Efin Enuc tdet ρdet Rdet MNi Type

J 105-125-0-50 4.33 0.125 50 1.05 5300 9.85 12.2 0.96 1.06 3580 0.56 ”X”

J 105-125-2-50 4.33 0.125 50 1.05 5300 10.3 15.2 0.94 1.04 3560 0.57 ”X”

J 105-125-6-50 4.33 0.125 50 1.05 5300 10.3 12.4 0.96 1.03 3560 0.50 ”X”

J 105-125-10-50 4.33 0.125 50 1.05 5300 10.0 11.9 0.96 1.04 3560 0.43 ”X”

K 110-100-2-50 6.17 0.100 50 1.10 4930 11.1 13.0 0.94 1.04 3430 0.62 ”X”

K 110-100-2-100 6.17 0.100 100 1.10 4930 11.1 13.1 0.93 1.04 3430 0.62 ”X”

K 110-100-2-150 6.17 0.100 150 1.10 4930 11.8 13.6 0.93 1.06 3410 0.65 ”X”

L 105-050-2-S50 4.33 0.050 50 1.05 5300 12.9 14.7 0.94 1.73 40 0.50 ”S”

L 105-050-2-50 4.33 0.050 50 1.05 5300 -1.73 0.31 nil nil nil 8.6× 10−3 ”N”

L 105-050-2-2R50 4.33 0.050 50 1.05 5300 9.61 11.6 1.48 4.63 3090 0.48 ”Y”

L 105-050-2-3R50 4.33 0.050 50 1.05 5300 -1.67 0.33 nil nil nil 9.86 × 10−2 ”N”

M 090-150-2-50 1.67 0.150 50 0.90 7160 5.65 7.04 2.35 1.51 2100 0.14 ”Y”

M 095-150-2-50 2.23 0.150 50 0.95 6710 8.64 10.1 1.33 1.00 4000 0.32 ”X”

M 100-150-2-50 3.21 0.150 50 1.00 6180 8.64 10.3 0.99 1.06 3370 0.47 ”X”

M 105-150-2-50 4.33 0.150 50 1.05 5300 13.6 14.7 0.73 1.04 3360 0.71 ”X”

M 110-150-2-50 6.17 0.150 50 1.10 4930 14.8 15.4 0.45 1.03 3190 0.69 ”D”

M 115-150-2-50 9.19 0.150 50 1.15 4550 16.5 17.7 0.33 1.09 2910 0.86 ”D”

M 120-150-2-50 14.8 0.150 50 1.20 4250 18.9 22.1 0.26 1.56 2570 0.96 ”D”
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explain the observe SN remnants. For Groups H and I

we pick these models because they are the benchmark

models of our sub-Chandrasekhar mass SN Ia models.

(4) Initial detonation geometry: In Groups K and L we
study the effects of initial He detonation geometry. All

models have the same M , MHe and at the solar metal-

licity. Group K consists of models with the detonation

seed at different positions. Group L consists of models

with different detonation geometry. It spans from dif-
ferent number of detonation ”bubbles” to those with a

higher symmetry, such as spherical detonation.

4. DETONATION TRIGGER

In the last column we classify the trigger mechanisms

into four types. In all simulation groups (from Group

C to M except Group L), all He detonations are started
by placing an detonation spot at the radius 50 km along

the rotation-axis. This mimics a single hot spot that

induces thermonuclear runaway in the form of a bubble.

In general, the detonation propagates along the He enve-
lope without penetrating into the CO core. Depending

on MHe and the interface density, different detonation

types are observed.

4.0.1. Type ”N”

Type ”N” (no detonation) stands for no second det-

onation occurring. Type ”N” can be found in models

with a thin He envelope, the shock wave sent by the He

detonation is not strong enough to compress the matter

at both the center and the surface of the CO core. The
CO core has a temperature always below the threshold

temperature.

4.0.2. Type ”D”

Type ”D” (diagonal) stands for that the detonation
first appears along elsewhere other than the symmetry

axis. Type ”D” occurs for models with high progenitor

masses. In these cases, the typical density of interface

can be as high as ∼ 107 g cm−3.
In Figure 1 we plot the temperature and explosion ge-

ometry for the Model 110-150-2-50 (D). When the deto-

nation reaches the interface, the temperature of the CO

matter can easily reach the critical temperature to start

the CO detonation.
The temperature can reach 3×109 K where the shock

penetrates. Notice that even the temperature in other

detonated part can reach ∼ 2× 109 K. The propagation

is along the iso-density contour, where there is almost no
heating in the radial direction. This makes no heating

in the CO material. Therefore, while the He detona-

tion is still burning the matter in envelope, the second

detonation is already triggered.

4.0.3. Type ”X”

Types ”Y” and ”X” stand for the detonation which

is first started along the rotation axis (in x-y plane the
y-axis) and symmetry axis (in x-y plane the x-axis).

Type ”X” occurs when Type ”D” cannot be started.

This applies to models with lowerM . Notice that in our

simulations, a quarter of the star is simulated. When the

detonation propagates, its burning rate increases due
to the ring-shape structure, which has a local volume

proportional to r. When the detonation approaches the

symmetry-axis, the high velocity flow creates a strong

compression of the remaining fuel. By symmetry, part
of the fuel is compressed towards the core. This heats

up the near-interface material and provides the required

temperature for the first spot.

Figure 2 shows a typical ”X”-type detonation for

Model 110-100-2-50 (X). The second detonation is trig-
gered at the r-axis, where the detonation wave com-

presses materials. The temperature due to the compres-

sion at the r-axis can be higher than the temperature rise

in other regions due to detonation heating. As an ex-
ample, the actual temperature can reach 3× 109 K near

the r-axis compared to other region which is ∼ 2 × 109

K. We remark that this shock heating is not related to

the geometric convergence. Here, the detonation waves

approach the symmetry boundary, i.e. two laminar det-
onation waves approaching each other (the collision site

along the equator is locally flat).

4.0.4. Type ”Y”

In Figure 3 we demonstrate the ”Y”-Type detonation

by using Model 110-050-2-B50 (Y) as an example. Type
”Y” occurs when both Type ”X” and Type ”D” can-

not be triggered beforehand. After the He shell is fully

burnt, the first converging shock is not strong enough

to detonate CO matter near interface. Instead, the mild

shock continues to travel along the density-contour in
the envelope. The flow creates another converging shock

when the shock front returns to the rotation axis, which

again creates the first hot spot for the C detonation.

4.0.5. Type ”S”

Type ”S” can be found in models with detonation

seeds which have spherical symmetry, while the He enve-
lope is not massive enough to ignite the near-interface C.

The converging shock creates the hot spot at the center,

where the geometric enhancement is the strongest.

In Figure 4 we plot Model 110-050-2-S50 (S). In con-
trast to the other 3 cases, the spherical detonation allows

the envelope to be burnt much faster. In the plot, the

He shell has expanded and cools down mostly, leaving

almost a mild trace in the temperature distribution. On



9

the contrary, the center, where the C detonation starts,

can reach as high as 6× 109 K, sufficiently high for the

burnt matter to reach NSE.

4.1. Thermodynamics

In Figure 5 we plot the maximum temperature against

time for the four models presented. The letters in the

figure correspond to the threshold temperature where
the C detonation is triggered. The temperature needed

to trigger the C detonation is the global maximum tem-

perature in the simulations for Type ”S”, ”X”, ”Y” det-

onations but not for Type ”D” detonation. The global
maximum temperature reaches its peak during the trig-

ger of second detonation for Types ”S”, ”X” and ”Y”.

No such peak is observed for Type ”D” detonation. Fur-

thermore for Type ”S” detonation, the maximum tem-

perature when the C-detonation is triggered is the high-
est temperature reached in the simulation. This means

that for a non-spherical trigger, even the hot ash can be

higher than the threshold temperature, unless certain

shock convergence occurs, the CO matter near interface
can remain a temperature below the critical tempera-

ture.

Another feature is that in most cases, when the C det-

onation approaches the center, nuclear burning, despite

at its low density, can be enhanced when the convergence
effect is strong. This effect is robust under different res-

olution, and is even stronger when a finer resolution is

used. It is because the shock strength can increase in the

way ∼ 1/r for a cylindrical detonation and ∼ 1/r2 for
a spherical. Locally, the density growth in the core will

be higher for a finer resolution run, which allows more

rapid reactions. However, globally the energy produc-

tion will not diverge because the finer the resolution is,

the smaller contribution such temperature peak gives.
On the other hand, by using different geometry (e.g.

Cartesian Coordinate) or higher dimensions (i.e. three-

dimensional model), the level of shock convergence will

be changed because it depends on how the geometry de-
scribes the structure with a high symmetry such as a

ring or a sphere.

The peak temperature, albeit contributing to an ex-

tremely small amount of mass (∼ 10−8−11M⊙), can

reach above 1010 K. One feature in ”Y”-Type detonation
does not appear in other types of detonation, namely

the multi-peaks prior to detonation. This reflects the

shock interaction from multiple detonations. For exam-

ple, they correspond to the first collision of He detona-
tions, the arrival of the reflected shock on the r-axis and

the z-axis respectively.

This shows that the exact peak temperature can vary

a lot depending on the geometric convergence. But how

the convergence of shock and its subsequent divergence

in temperature take place are related to the spatial res-

olution. In Appendix D we preform a numerical study

to see how the spatial resolution affects the thermody-
namics properties in local and global properties in some

of the explosion models.

Below, we discuss the hydrodynamics behaviour of

these models.

4.1.1. Effects of He Envelope Mass

In Groups D, E, F and M we cover the effects of MHe

for different progenitor masses from 0.9 - 1.2 M⊙. Some

common trends can be seen in these series. At low MHe,

no second detonation can be triggered. By increasing
MHe, the second detonation can be triggered by ”Y”-

Type, ”X”-Type and then ”D”-Type in ascending MHe.

The created 56Ni increases with MHe. The explosion en-

ergy follows the same trend. Due to the change of det-

onation channel, the detonation trigger time becomes
earlier for a higher MHe. We remark that ”S”-Type

is independent from other three detonation types be-

cause it requires always a spherical He-detonation in-

dependent of MHe. Models with a high MHe favours
the ”D”-Type detonation. For M > 1.0 M⊙, transition

from ”X”-Type to ”D”-Type detonation occurs when

MHe > 0.1−0.15M⊙. ForM 6 1.0M⊙, transition from

”Y”-Type to ”X”-Type and then ”D’-Type takes place

for the transition MHe at 0.15 and 0.2 M⊙ respectively.
The criticalMHe where no second detonation takes place

depends on M , which decreases when M increases, and

the detonation geometry. He-detonation with rotation

or spherical geometry can trigger the second detonation
with MHe as low as 0.05 M⊙. For other types of He-

detonation, the minimum value of MHe is ∼ 0.15M⊙ for

M = 0.9 − 1.0 M⊙, 0.1 M⊙ for M = 1.1 M⊙ and 0.05

M⊙ for M = 1.2 M⊙.

4.1.2. Effects of Metallicity

In Groups H, I and J we cover the effects of Z for

three different models. The latter two are the bench-

mark models decided by its MNi at solar metallicity.

We can see that metallicity has a very mild influence on
the explosion energy and final energy. The detonation

position, its channel and its trigger time are insensitive

to Z. The major difference can be seen from the the
56Ni mass, which drops when Z increases.

4.1.3. Effects of detonation pattern

In Groupd K and L we explore the effects of the deto-

nation pattern, determined by its initial He detonation

spot and its geometry. Again, all models share the same

M , MHe and Z. The initial He detonation spot has
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Figure 1. The flame and detonation geometry and the tem-
perature for Model 110-200-2-R50 (D). The detonation is
captured at -0.34, 0.03, 0.15 and 0.40 s from the detonation
transition.
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Figure 2. Similar to Figure 1, but for Model 110-100-2-R50
(Type ”X”). The detonation is captured at -0.82, 0.15 and
0.40 s from the detonation transition.
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Figure 3. Similar to Figure 2, but for Model 110-050-2-B50
(Y). The detonation is captured at -0.98, 0.05 and 0.22 s
from the detonation transition.
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Figure 4. Similar to Figure 2, but for Model 110-050-2-S50
(S). The detonation is captured at -0.72, 0.08 and 0.32 s from
the detonation transition.
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Figure 5. Maximum temperature in the simulations against
time for Models 110-150-2-50 (D), 110-100-2-50 (X), 110-100-
2-2R50 (Y)and 110-050-2-S50 (S) respectively. The arrows
stand for the time where DDT is triggered for each model.

almost no impact on the explosion energetics and explo-
sion properties. The Ni-production is also insensitive to

the change of detonation position. On the other hand,

the choices of detonation geometry is very influencing

to the explosion properties. Some models (Models 105-

050-2-50 (N) and 105-050-2-3R50 (N)) cannot trigger C
detonation spontaneously while some (Models 105-050-

2-S50 (S) and 105-050-2-2R50 (Y)) can. This reflects

that the symmetry of the initial shock and how the det-

onation waves collide with each other determine the final
fate of the WD. The resultantMNi can vary from∼ 10−2

M⊙ in a failed detonation to ∼ 0.5 M⊙ in a successful

detonation. We note that Models 105-050-2-3R50 (N)

and Model 105-050-2-2R50 (Y) behave differently. To

show that the result is robust in our study, in Appendix
E we do a resolution study to demonstrate how the trig-

ger of C-detonation depends on the spatial resolution.

4.1.4. Effects of Initial Mass

In Group J we explore the effects of M on the explo-

sion energetics. Compared to the near-Chandrasekhar

mass WD studied in Leung & Nomoto (2018), the mass

range for sub-Chandrasekhar mass is much wider (from
0.9 to 1.2 M⊙). We do not explore mass below 0.9

M⊙ since the central density of these models is below

107 g cm−3, where the incomplete burning dominates.

We also do not extend the upper bound to 1.3 M⊙

since it is unclear, if there is nuclear runaway, whether
the explosion is carried out as deflagration or detona-

tion (Nomoto et al. 1976; Nomoto 1982b; Nomoto et al.

1984). We can see that when M increases, some effects

are similar as increasing MHe. The explosion energy in-
creases. Also, the explosion time becomes earlier with

its position being closer to the core. The detonation

channel also changes from Type ”Y” to Type ”X” and

then Type ”D”.

5. BENCHMARK MODELS

In this section, we study in details some models which

behave most similar to a standard Type Ia supernova,

determined by their 56Ni production, which should be

∼ 0.6 M⊙ as observed in the majority of normal SNe
Ia. Since there is a degeneracy in the models to produce

this feature, we pick the one with the lowest amount of

MHe. We selected Models 110-100-2-50 (X), 100-050-

2-S50 (S) and 110-050-2-B50 (Y). All of them have a

healthy explosion of 56Ni mass ∼ 0.6 M⊙.
In contrast, for sub-Chandrasekhar mass WD, we do

not impose the constraints of Mn and Ni as what we

have done in Leung & Nomoto (2018) because all mod-

els we built always underproduce Mn and Ni. Cho-
sen by the 56Ni production, there exists a degeneracy

of models which satisfy this constraint. As a result,

from each detonation trigger, we choose one model with

MNi = 0.6 M⊙. They include Models 110-100-2-50 (X),

105-050-2-B50 (Y) and 100-050-2-S50 (S). No model
with Type ”D” produces an explosion with M(56Ni)

∼ 0.6M⊙.

5.1. Energy Evolution

In Figure 6 we plot the time evolution of the total

energy, kinetic energy, internal energy and gravitational
energy for the benchmark models. Here we give an anal-

ysis on the energy evolution of only Model 110-100-2-50

(X). The other two benchmark models have similar evo-

lution as this one, except at different detonation triggers
and different He detonation convergence effects.

Before 0.9 s, there is only He detonation. The en-

ergy release ∼ 1×1050 erg is insufficient to unbound the

star due to the small amount of He and its low density.

There is almost no change in the gravitational energy
and kinetic energy. Almost all the energy change is re-

flected in the change of internal energy, showing that the

He detonation does not influence the global dynamics.

From 0.9 to 1.6 s C detonation takes place. The total
energy sharply increases by 1051 erg at ∼ 1.3 s, showing

that the C detonation is rapidly turning the CO fuel into

ash. At the same time, the internal energy, gravitational

energy and kinetic energy increase. The C detonation

is strong enough to heat up the WD, and causes the
subsequent expansion. Beyond 1.6 s, the total energy

remains a constant, signifying the end of both He and C

detonations. Simultaneously, the internal energy drops

while internal energy and gravitational energy increase
and reach their equilibrium values at ∼ 2 s. This corre-

sponds to the phase that the thermalized ash is quickly

expanding to accelerate the matter outwards until ho-

mologous expansion is developed.
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Figure 6. The total energy, kinetic energy, internal energy
and gravitational energy against time for the Models 110-
100-2-50 (X) (top panel), 110-050-2-B50 (Y) (middle panel)
and 100-050-2-S50 (S) (bottom panel).

5.2. Luminosity evolution

In Figure 7 we plot the luminosity of the three bench-

mark models 110-100-2-50 (X), 110-050-2-B50 (Y), 100-
050-2-S50 (S) in the top, middle and bottom panels re-

spectively. First, we analyze the evolution of Model 110-

100-2-50 (X).

Before 0.9 s, the total luminosity and the He detona-
tion overlap with each other. This means most energy
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Figure 7. The total luminosity, C detonation luminosity, He
detonation luminosity and NSE burning luminosity against
time for Models 110-100-2-50 (X) (top panel), 110-050-2-B50
(Y) (middle panel) and 100-050-2-S50 (S) (bottom panel).

is produced directly from detonation where NQSE and

NSE do not actively contribute to the energy evolution.
There is a peak at 0.9 s, which is the moment where the

He detonation reaches the symmetry axis. The compres-

sion causes a sudden jump in the density and temper-

ature, which allows He burning to proceed much more
efficiently. After that the He detonation ceases as there

is not any pure He left but only partially burnt He in
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the ash. At t = 0.9 s, the C burning takes place to

the major nuclear reactions. But there is no advanced

burning, showing that the detonation is still incinerat-

ing material in the low density region. At t = 1.5 s, the
advanced burning exceeds the C detonation to become

the major energy production channel. This shows that

the detonation has finally reaches the center, which is

dense and hot enough to carry out silicon burning up to

NSE. Around 1.5 s, the C detonation begins to cease.
Also, beyond 1.6 s, all matter becomes too cold or of

too low density for further exothermic nuclear reactions

to occur.

Model 110-050-2-B50 (Y) has a similar evolution to
Model 110-100-2-50 (X) but has the ”Y”-Type detona-

tion. The shape of the energy production rates are sim-

ilar but with two major differences. However the delay

between the C-detonation and NSE luminosity rise is

shorter than the Type-”X” detonation model. This fea-
ture is similar to the ”S”-Type detonation (See below),

despite its off center ignition. One reason is that during

the geometric convergence, not only it heats up the CO-

rich matter below the interface, but also generating a
strong inward flow, which helps to guide the detonation

reaching high density region. Such channeling is weaker

in the ”X”-Type model due to the absence of geometric

convergence.

Model 110-050-2-S50 (S) is the ”S”-Type detonation.
It has a different structure from the other two by the

absence of He-burning peak at the onset of second det-

onation and the similarity between the total luminos-

ity and that by the NSE burning. Due to the detona-
tion symmetry, there is no geometric convergence for

the He-detonation. The He-detonation creates an in-

ward moving shock while propagating outwards to burn

the remaining He. Hence no luminosity peak during the

transition is observed. Then, after the C-detonation is
triggered, the total energy release, NSE burning and C-

burning closely follow each other. It is because the det-

onation starts from the center. The higher density com-

pared to the envelope allows the burning reaching NSE
much shorter than dynamical timescale. This feature is

not observed in Type ”X”- or ”Y”-Type detonation. At

1.3 s the energy production by C-burning drops rapidly,

showing that the detonation wave has finished sweeping

all C-fuel in the star. Accompanying with the expansion
of the star, the recombination of 4He into 56Ni becomes

the only energy production, which also ceases at 1.5 s.

5.3. Chemical abundance

We use the tracer particle scheme to reconstruct the

detailed nucleosynthesis. The massless tracers are ad-

vected by the fluid motion, but have no effect on the
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Figure 8. [Xi/
56Fe] after all short-lived isotopes have de-

cayed for Models 110-100-2-50 (X) (top panel) and 110-
050-2-B50 (Y) (middle panel) and 100-050-2-S50 (S) (bot-
tom panel). [Xi/

56Fe] is defined as log
10
(Xi/X(56Fe)) −

log10(Xi/X(56Fe))⊙. The upper and lower horizontal lines
stand for two times and half of the solar value.

fluid. They record the local density and temperature ac-
cordingly. Here we examine the typical chemical abun-

dances of the three benchmark models presented in pre-

vious parts.



15

In Figure 8 we plot the final chemical abundance of the

three benchmark models mentioned above. [Xi/
56Fe] is

defined as log10(Xi/X(56Fe))− log10(Xi/X(56Fe))⊙.

For Model 110-100-2-50 (X), the intermediate mass
elements (IMEs)up to 40Ca are underproduced. Start-

ing from Ti, the production becomes similar to the solar

abundance, where some of which are even overproduced,

including 48Ti, 51V and 52Cr. They are from 3 to 6 times

higher than the observed solar values. Most Fe and Ni
isotopes are very close to the solar values. Isotopes be-

yond Ni are underproduced. The pattern for Ni where
60Ni and 62Ni are more abundant can be observed. Also,

as expected, 55Mn, which comes mostly from the low
electron fraction matter, is underproduced. In order to

produce Mn, two channels are possible. First, Mn can

be directly formed from NSE when the electron fraction

of the matter is Ye = 0.45. Second, it is formed during

alpha-chain burning of 52Fe, where 52Fe(α, p)55Co. The
55Co will later decay by 55Co(e−, νe)

55Fe(e−, νe)
55Mn.

The formation of 55Co is favourable at Ye = 0.49. For

pure C+O matter, the Ye = 0.5, therefore directly NSE

burning without electron capture or alpha-chain burn-
ing cannot form seeds of 55Mn, which is the case of sub-

Chandrasekhar mass model.

For Model 110-050-2-B50 (Y), the nucleosynthesis

pattern is very similar to the previous model. There

are minor variations such as the much lower 50V, and
no trace of 54Cr. This is because there is no shock con-

vergence by the C detonation in the core due to the

propagation direction. The effects of hot spot become

less significant in this benchmark model.
For Model 100-050-2-S50 (S), the nucleosynthesis pat-

tern is very different from the previous two models. Due

to the imposed He detonation symmetry, much lower

amount of He envelope mass is needed to trigger the

C detonation. As a result, the resultant chemical pat-
tern, related to He burning, is highly suppressed. A

major drop of the abundances in 47−48Ti, 51V, and 52Cr

becomes solar or even sub-solar. Other abundances,

which are basically the C detonation products, remain
the same as the two other models.

5.4. Ejecta Composition

In Figures 9 we plot the velocity distribution of some
representative isotopes for the benchmark Models 110-

100-2-50 (X), 110-050-2-B50 (Y) and 100-050-2-S50 (S)

in the left, middle and right panels respectively. We

extract the chemical abundances and velocities of the
tracer particles.

In Model 110-100-2-50 (X), this benchmark model

possesses both the typical sub-Chandrasekhar mass SN

Ia ejecta profile with asymmetric effects. Here, we re-
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Figure 9. The mass fraction against velocity of the fi-
nal abundance before the decay of short-live isotopes for
the benchmark models 110-100-2-50 (X) (upper panel), 105-
100-2-B50 (Y) (middle panel) and 100-050-2-S50 (S) (lower
panel).

fer to e.g. Shigeyama et al. (1992) for a typical sub-

Chandrasekhar mass SN Ia. For the typical one, we can

see in the core, up to 10000 km s−1, the ejecta is made
of mainly 56−58Ni. Beyond that, IMEs, including 28Si,
32S, 36Ar and 40Ca become more abundant. However,

in this model 56Ni remains the most abundant almost

throughout the star within v < 13000 km s−1. Traces
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of 12C and 16O can be found when v > 12000 km s−1.

They correspond to the products from the incomplete C

burning. These features are common to all three bench-

mark models presented here.
In Model 110-100-2-50 (X) and 110-050-2-B50 (Y), we

can see a mild rise of 52Fe near the surface. Also, 54Fe

remains to maintain a few percent mass fraction even

to the outermost ejecta. They come from He burning,

especially when there is shock convergence or detonation
wave collision. The further compressional heating with

this hydrodynamical origin can enhance the formation

of these isotopes. On the other hand, we see a clear cut

of 54Fe inside the outermost ejecta of Model 100-050-2-
S50 and 52Fe has a clear falling trend when v > 13000

km s−1.

Major differences appear in the innermost part of the

ejecta because of the C detonation convergence. As

discussed in previous sections, the further C detona-
tion induced geometric convergence can create hot spot

which allows the matter to be heated up to a tempera-

ture above it can normally reach through simple deto-

nation. In that sense, this allows a small part of matter
to undergo complete burning and even electron capture.

This property can be found in Model 110-100-2-50 (X).

We can see that at the innermost part of the ejecta,

neutron-rich isotope including 54Fe and 56Fe are pro-

duced. Some 55Co can be even produced. Notice that
these features are usually found in the Chandrasekhar

mass model (See e.g. Nomoto (1984); Iwamoto et al.

(1999) for the detailed ejecta profile of some classical

models). This demonstrates that the asphericity of the
He detonation and hence the C detonation can be re-

flected by the low-velocity ejecta.

5.5. Thermodynamics

In Figure 10 we plot the ρmax against Tmax for the

benchmark model obtained from the tracer particles.

The sampling is done by grouping the tracer particles

into bins according to their ρmax, which is defined by
their individual thermodynamics history. Then the av-

erage, upper and lower limits of Tmax in each density bin

is taken. Tmax is also the maximum value in the thermo-

dynamics history. In most cases, the particle achieves

its ρmax and Tmax is at the same time, when the deto-
nation wave swept across the particle. However, in the

case where multiple detonation shocks appear, the two

moments can be non-simultaneous. Notice that the ini-

tial central density of this model is ∼ 6 × 107 g cm−3.
Due to the shock wave compression, which is further en-

hanced by the geometric convergence as well as shock

wave collision, the matter can reach a maximum density

as high as 3× 108 g cm−3. Together with the rise of the

density, the temperature can rise as high as 7 × 109 K.

Certain particles which are directly under shock inter-

action, can reach a maximum density 5 × 108 g cm−3

with a maximum temperature of 9 × 109 K. This can
compared with Figure 12 in Leung & Nomoto (2018).

In that figure, the tracer particles show a uniform ρmax

against Tmax for the particles inside deflagration zones

and a spread of Tmax in the detonation zone. Our model

here shows a similar behaviour for the detonation, ex-
cept that the effects are more pronounced because of the

inward motion during the shock propagation.

At last in Figure 11 we plot also the final Ye of the

tracer particles against Tmax. We can see three groups
of particles. The first group is the particle from the

He envelope. It has a uniform final Ye = 0.5 which

has a density from 106−8 g cm−3. This shows that the

He envelope has in general low density where electron

capture processes are inefficient. The second group is
the 106 − 5 × 108 g cm−3. This corresponds to the

tracer particles experiencing single pass of detonation

wave. The final Ye shows a mildly decreasing function

as ρmax, which suggests that electron capture becomes
important at near 108 g cm−3. The third group of parti-

cles are those with Ye from 0.47 - 0.495 with a ρmax from

5 − 10 × 108 g cm−3. This corresponds to tracer par-

ticles which are excited by shock compression. There

are much fewer particles of this types since it occurs
to the particles very close to the symmetry boundary

or lying inside the collision site of C detonation shock.

Again, this figure can be compared with Figure 12 in

Leung & Nomoto (2018). In that figure, the distribution
of particles is more uniform and there exists a one-one

correspondence for a given ρmax to final Ye. In this work,

this correspondence is broken down because of the He

envelope. Also, the pronounced shock interactions pro-

vide a wider diversity to the thermodynamics history in
the tracer particles.

6. NUCLEOSYNTHESIS

To calibrate the nucleosynthesis yield, we use the post-

process scheme as described in Travaglio et al. (2004);

Seitenzahl et al. (2010). In the hydrodynamics simula-

tions we place massless particles which record the ther-

modynamics history of the local density and tempera-
ture of the Eulerian grid. The density and temperature

evolution, together with the initial chemical composition

depending on its initial position, are sent to the nuclear

reaction network to calculate the chemical abundance of
the corresponding model. Similar to previous works, we

use the nuclear reaction network as developed in Timmes

(1999). It includes a network of 495 isotopes ranging

from 1H to 91Tc. The nuclear reaction rates are up-
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Figure 11. Same as Figure 10 but for the final Ye against
ρmax for the benchmark model 110-100-2-50 (X) obtained
from the tracer particle thermodynamics histories.

dated by the values provided in Rauscher & Thielemann

(2000). We include the electron screening by Kitamura

(2000) and Benvenuto et al. (2015). The formula aims
for strong electron screening, and it reduces to the weak

electron screening given in Abe (1959). We include the

corresponding free energy for the calculation of NSE

as described in Seitenzahl et al. (2010). The chemi-

cal potential assumes classical ideal gas form, which is
suitable for the density (∼ 109 g cm−3) and temper-

ature (109 K) used here. We have also updated elec-

tron capture rate table by including the rate table from

Nabi & Klapdor-Kleingrothaus (1999, 2004). We use
this rate table when there is no rate given in the origi-

nal version of the nuclear reaction network, although we

remark that the electron capture and its related weak in-

teraction processes are of less importance due to the typ-

ically lower density than the near-Chandrasekhar mass

explosion model.

6.1. Dependence on WD Mass

6.1.1. One-Bubble Configuration

In Figure 12 we plot [Xi/
56Fe] for the isotopes from

Models 105-100-2-50 (X), 110-100-2-50 (X), 115-100-2-

50 (D) and 120-100-2-50 (D). The isotopes are obtained

from the nucleosynthesis by the post-processing as de-
scribed above, but after all short-live isotopes decayed.

In practice after the nucleosythesis yield is computed

by post-processing, we allow further radioactive decays

by computing the network while suppressing thermonu-

clear reactions. We fixed the period to be 106 years.
The period is chosen to be long enough to allow certain

long lived isotopes, such as 59Ni, to completely decay

to compute the asymptotic chemical yield. But we also

note that there are still some isotopes with even longer
half-lives, such as 27Al and 60Fe.

These models in this figure have the same configura-

tions by setting the same MHe, initial He detonation

pattern and metallicity. As a result, the mass of the CO

fuel increases when the total mass increases. By increas-
ing the mass, there is a systematic decrease in [Xi/

56Fe].

This is because when the mass increases, the produced
56Ni increases as shown in Table 1. The final 56Fe yield

thus increases. For IME, there is a drop from Mg to
Ca by a factor of ∼ O(1). Similar effects are observed

in Fe-peak isotopes. This shows that when the mass

increases, the extra ash contributes to the production

of 56Fe. Therefore, the qualitative features of the mass

fraction remain.
Nevertheless, even for the massive progenitor like

Model 115-100-2-50 (D), the over-production of 48Ti

cannot be resolved as they are mostly produced in the

He envelope. Some of the isotopes, such as 51V, 52Cr
and 70Zn, become comparable to the solar abundance

when M = 1.15 M⊙. However, compared to the Chan-

drasekhar mass SN Ia, none of the isotopes shows a dras-

tic boost when M increases. This can be compared to

the Chandrasekhar mass WD scenario, by increasing the
mass from 1.30 to 1.37 M⊙, some of the isotopes, such

as 54Cr and 60Fe, can be drastically enhanced. One rea-

son is that the density related to the sub-Chandrasekhar

mass model is low that the electron capture does not
play an important role in most parts of the star. The

major changes come from the increment of 56Ni, which

systematically lowers all mass fractions of all isotopes.

6.1.2. One-Ring Configuration

In Figure 13 we plot similar to Figure 12 but for

Models 090-050-2-B50 (Y), 095-050-2-B50 (Y), 100-050-

2-B50 (Y) and 110-050-2-B50 (Y)respectively. These
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Figure 12. [Xi/
56Fe] for Models 105-100-2-50 (X) (M = 1.05 M⊙) and 115-100-2-50 (D) (M = 1.15 M⊙) in the left panel

and Models 110-100-2-50 (X) (M = 1.10 M⊙) and 120-100-2-50 (D) (M = 1.20 M⊙) in the right panel. All models assume
MHe = 0.1 M⊙, Z = 0.02 and a bubble-shape initial He-detonation at 50 km above the CO-envelope interface.
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Figure 13. [Xi/
56Fe] fractions for Models 090-050-2-B50 (Y) (M = 0.90 M⊙) and 100-050-2-B50 (Y) (M = 1.00 M⊙) in the

left panel and Models 095-050-2-B50 (Y) (M = 0.95 M⊙) and 110-050-2-B50 (Y) (M = 1.10 M⊙) in the right panel. All models
assume MHe = 0.05 M⊙, Z = 0.02 and a belt-shape initial He-detonation at 50 km above the CO-envelope interface.

models correspond to the series of models of the same
MHe but at different masses, each with the same initial

He detonation by a He ring. Due to the detonation sym-

metry which may trigger the second detonation with a

lower He mass, the effects of the He incomplete burn-

ing products, such as Ti, V and Cr become better fit
to the solar abundance. The qualitative trends for an

increasing mass can be observed.

At lower mass, the lower production of 56Ni causes a

strong overproduction of elements like Si, S. Ti and V
are overproduced but this feature is suppressed at Model

090-050-2-B50 (Y). As mass increases, the relative pro-

ductions of IMEs drop. This includes Si, S, Ar and Ca.

Relative productions of Ti, V and Cr also decrease when

the mass increases, but they remain saturated around
the solar values. Fe and Ni are overall insensitive to the

mass change.

6.1.3. Spherical Configuration

In Figure 14 we plot similar to Figure 12 but for Mod-

els 090-050-2-S50 (S), 095-050-2-S50 (S), 100-050-2-S50

(S) and 110-050-2-S50 (S) respectively, using the spher-

ical He detonation as the initial trigger. Again, the
higher He detonation symmetry allows triggering the

second detonation at a lower He envelope. The over-

production of intermediate α-chain burning production

is less severe for the models with a normal amount of
56Ni (∼ 0.6 M⊙). Due to the spherical symmetry, the
second detonation all starts at the core for all models,

so that the variations of elements become more regular.

The IMEs Si, S, Ar and Ca show a flat distribution and

decrease with an increasing mass. The over-productions
of 50Ti, 51V and 52Cr as the major products in He deto-

nation before reaching 56Ni, are largely suppressed once

the mass reaches above 0.95 M⊙. The isotopes of Fe

remain non-sensitive to the variation of mass except for
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Figure 14. [Xi/
56Fe] for Models 090-050-2-S50 (S) (M = 0.90 M⊙) and 100-050-2-S50 (S) (M = 1.00 M⊙) in the left panel

and Models 095-050-2-S50 (S) (M = 0.95 M⊙) and 110-050-2-S50 (S) (M = 1.10 M⊙) in the right panel. All models assume
MHe = 0.05 M⊙, Z = 0.02 and a spherical initial He-detonation at 50 km above the CO-envelope interface.

54Fe. A systematic drop of 55Mn can also be seen, show-
ing that the amount of 55Mn is not increased signifi-

cantly when the mass increases.

6.2. Dependence on He Envelope Mass

6.2.1. One-Bubble Configuration

In Figure 15 we plot similar to Figure 12 but for Mod-

els 110-075-2-50 (X), 110-100-2-50 (X), 110-125-2-50 (X)

and 110-150-2-50 (D). This series of model have also the

same configurations except for the He envelope mass.
Notice that among these models, Model 110-150-2-50

(D) has a different detonation mechanism as it has ”D”-

Type detonation instead ”X”-Type detonation. By in-

creasing MHe, the mass fractions of IMEs reduce. How-

ever, by comparing Models 110-125-2-50 (X)and 110-
150-2-50 (D), the IME mass fractions increase. This is

because the ”Y”-Type detonation allows an earlier deto-

nation, which ensures that the low density matter is well

detonated before it expands and the density becomes too
low for nuclear reaction. For Fe-peak elements, clear

trends can be seen in elements like Ti, Cr and V. Again

a decreasing trend is observed when MHe increases but

there is not much difference in Fe and Ni.

6.2.2. One-Ring Configuration

In Figure 16 we plot similar to Figure 15 but for Mod-

els 100-050-2-B50 (Y), 100-100-2-B50 (Y), 110-050-2-

B50 (Y) and 110-100-2-B50 (Y), where all models share
the same initial masses M = 1.00 and 1.10 M⊙ and He

detonation configuration. Different He envelope masses

are used. We remind that Model 110-050-2-B50 (Y) is

the benchmark model and we choose a progenitor mass
for comparison to extract the effects of MHe at different

mass.

For M = 1.10 M⊙, the chemical abundances do not

change strongly with MHe. It is because the overall pro-

duction is dominated by 56Ni. A small suppression of
IMEs for 28Si, 32S and 36Ar can be observed. Almost

no change can be found for Fe-peak elements from Ti

to Ni. On the other hand for M = 1.00 M⊙, the chem-

ical abundances scale strongly with MHe. Besides the

more obvious drop in the IMEs, there is a huge jump
in 48Ti. 51V and 52Cr when MHe increases. Again, Fe-

peak elements like Fe, Mn and Ni are less changed by

MHe.

6.2.3. Spherical Configuration

In Figure 17 we plot similar to Figure 15 but for the

Models 090-050-2-S50 (S), 090-100-2-S50 (S), 100-050-

2-S50 (S) and 100-100-2-S50 (S). The models consist of
initial masses of 1.00 and 1.10 M⊙. All models assume

a spherical He detonation as the initial trigger. Again

we remind that Model 100-050-2-S50 is the benchmark

model of this work.
For the spherical model, due to its stronger explosion,

a lower mass model is used for the benchmark model.

So compared to the one-ring structure, the effects of He

envelope are larger. Besides a more prominent decrease

in IMEs, the α-chain products including 48Ti, 52Cr and
51V are vastly increased for a more massive He envelope.

No significant change is observed for Fe, Mn and Ni.

The effects are more significant for the lower mass cases

due to a smaller 56Ni mass. A flat distribution in 28Si,
32S, 36Ar, 40Ca, 42Ca, 44Ti and 48Cr can be seen. The
55Mn is even over-produced because of the suppressed
56Ni and hence 56Fe. A higher MHe results in a global

suppression of this relative production rate.

6.3. Dependence on Metallicity

6.3.1. One-Bubble Configuration

In Figure 18 we plot [Xi/
56Fe] of stable isotopes af-

ter all short-lived radioactive isotopes have decayed for
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Figure 15. [Xi/
56Fe] for models comparing the effects of He envelope mass including Models 110-075-2-50 (X) (MHe =

0.075 M⊙), and 110-125-2-50 (X) (MHe = 0.125 M⊙) in the left panel and Models 110-100-2-50 (X) (MHe = 0.100 M⊙) and
110-150-2-50 (D) (MHe = 0.150 M⊙) in the right panel. All models assume M = 1.10 M⊙, Z = 0.02 and a bubble-shape initial
He-detonation at 50 km above the CO-envelope interface.
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Figure 16. Similar to Fig. 15, but for Models 100-050-2-B50 (Y) (M = 1.00 M⊙) and 110-050-2-B50 (Y) (M = 1.10 M⊙) in
the left panel and Models 100-100-2-B50 (Y) (M = 1.00 M⊙) and 110-100-2-B50 (Y) (M = 1.10 M⊙) in the right panel. All
models assume MHe = 0.05 (0.10) M⊙ in the left (right) panel, Z = 0.02 and a belt-shape initial He-detonation at 50 km above
the CO-envelope interface.

Models 110-100-0-50 (X), 110-100-2-50 (X), 110-100-6-

50 (X) and 110-100-10-50 (X). Similar to Chandrasekhar
mass SNe Ia (Leung & Nomoto 2018), metallicity is im-

portant to the production of isotopes with a neutron-

proton ratio close to the unity. Also, the presence of
22Ne slightly lowers the energy release of C detonation.

We can observe a boost of IMEs including 30Si, 34S,
38Ar, 42Ca. The boost factors can be as large as beyond

two orders of magnitude when the metallicity increases

from 0 to 5 Z⊙. For Fe-peak elements, we also observe

a boost in the production 46Ti, 50Cr 54Fe, 55Mn, 58Ni.
The boost can range from ten to hundred when con-

trasting the Models 110-100-0-50 (X) and 110-100-10-

50 (X). In Tables 7, 8, 10, 11, 13 and 14 we tabulate

the masses of the stable isotopes in different metallicity

for the benchmark models based on Models 110-100-2-

50 (X), 100-050-2-B50 (Y) and 110-050-2-S50 (S). By

comparing models with the same configuration but dif-
ferent metallicity, it can be seen that when metallicity

increases, IMEs with a high neutron ratio are boosted

sharply. For example, we observe a clear increasing

trend for 29−30Si, 34,36S, 37Cl, 38Ar and 40K and so on.

The jump can be as high as four orders of magnitude
from zero metallicity to 5 Z⊙. For Fe-peak elements,

we have 46Ti, 50V, 50Cr, 54Fe and 58Ni to be the repre-

sentative isotopes. The results here are very similar to

those in Chandrasekhar mass WD.

6.3.2. One-Ring Configuration

In Figure 19 we plot similar to Figure 18 but for the

Models 110-050-0-B50 (Y), 110-050-2-B50 (Y), 110-050-

6-B50 (Y) and 110-050-10-B50 (Y). This series of models

focus on the effects of metallicity for the same progenitor
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Figure 17. Similar to Fig. 15, but for Models 100-050-2-S50 (S) (M = 1.00 M⊙) and 110-050-2-S50 (S) (M = 1.10 M⊙) in
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models assume MHe = 0.05 (0.10) M⊙ in the left (right) panel, Z = 0.02 and a spherical initial He-detonation at 50 km above
the CO-envelope interface.
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Figure 18. Similar to Fig. 12, but for Models 110-100-0-50 (X) (Z = 0) and 110-100-6-50 (X) (Z = 0.06) in the left panel and
Models 110-100-2-50 (X) (Z = 0.02) and 110-100-10-50 (X) (Z = 0.10) in the right panel. All models assume M = 1.10 M⊙,
MHe = 0.10 M⊙, and a bubble shape initial He-detonation at 50 km above the CO-envelope interface.
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Figure 19. Similar to Fig. 18, but for Models 110-050-0-B50 (Y) (Z = 0) and 110-050-6-B50 (Y) (Z = 0.06) in the left
panel and Models 110-050-2-B50 (Y) (Z = 0.02) and 110-050-10-B50 (Y) (Z = 0.10) in the right panel. All models assume
M = 1.10 M⊙, MHe = 0.05 M⊙, and a belt shape initial He-detonation at 50 km above the CO-envelope interface.
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mass M = 1.1 M⊙, He mass at 0.05 M⊙ and with the

same He detonation trigger.

The general trends of isotopes on metallicity are simi-

lar to the one-bubble case. There is no significant change
for the α-chain isotopes such as 28Si, 32S, 36Ar and 44Ca.

But the slightly low-Ye isotopes, such as 30Si and 34S, are

strongly enhanced at high metallicity. There are smaller

changes for the Fe-peak elements except for 52Cr, 54Fe,
55Mn and 58Ni. Minor increases can be observed for
isotopes like 48Ti and 51V.

6.3.3. Spherical Configuration

In Figure 20 we plot similar to Figure 18 but for

Models 110-050-0-S50 (S), 110-050-2-S50 (S), 110-050-

6-S50 (S) and 110-050-10-S50 (S). Again, the models

here share the same initial progenitor mass at 1.10 M⊙,
He mass at 0.05 M⊙ and an initial spherical He detona-

tion. The overall pattern remains compatible with the

single one-bubble case.

The metallicity plays an important role to the slightly

low-Ye isotopes (defined by the neutron number N com-
parable but not larger than atomic number Z) including
30Si, 34S, 38S, 42Ca for the IMEs, and 51V, 52Cr, 55Mn,
54Fe and 58Ni for Fe-peak isotopes. The variations of

isotopes against metallicity are similar to the previous
two cases. This shows that the metallicity dependence

is not sensitive to the explosion energetics.

6.4. Dependence on He Detonation Pattern

Here, we analyze the final chemical abundance for

different types of detonations. In Figure 21 we plot

[Xi/
56Fe] for Models 110-100-2-50 (X) and 110-100-2-

B50 (Y), 110-100-2-2R50 (D) and 110-100-2-S50 (S).

They represent the typical detonation of Type ”D”, ”X”,

”Y” and ”S” respectively. All of the four models have
56Ni closest to 0.6 M⊙ among all models we have. We

observe that in general ”S”-Type is the strongest that it
has more isotopes with abundances closer to solar val-

ues. ”X”- and ”Y”-Type are the intermediate ones and

”D”-Type is the weakest among the four models. The

difference for IME can be as large as a factor of ∼ O(1).
For Fe-peak elements, differences can be found to Ti to

Cr. The ”Y”-Type model tends to produce less 47−50Ti,
50−51V, and 64−70Zn. The major difference between

”Y”-Type and other detonation types is that there is

no shock-convergence induced heating along the r-axis.
This shows that 48Ti is a sensitive indicator on how the

He detonation propagates along the surface of the WD.

Similar to previous cases, Fe and Ni are less sensitive

to the detonation mechanism owing to the difference in
production site.

6.5. Differences from spherical detonation

One theoretical uncertainty in the He detonation is

that it is unclear whether the pre-explosion fluid motion

is strong enough to alter the first detonation site. In the

case with a strong fluid motion background, heat gener-
ated can be distributed by the eddy motion or be further

enhanced by the local turbulent motion. This breaks the

initial symmetry and creates some detonation bubbles.

On the other hand, in the quiescent star, the whole He

layer can simultaneously burn and reach the explosive
temperature together. Thus, the initial detonation can

preserve the symmetry. To derive constraints on the

initial detonation profile, we examine the scaled mass

fraction again in Figure 22 for both spherical and as-
pherical detonation model. Both models produce a very

similar distribution for Fe and Ni since they are chosen

to produce ∼ 0.6 M⊙. For lighter Fe-peak elements, dif-

ferences appear. The aspherical model produces more

Ti, V and Cr than the spherical one for at least one or-
der of magnitude. In particular, the 48Ti, 50−51V and
52Cr are ∼ 2 - 5 times higher than solar values. This

suggests that observations of non-aspherical detonation

model can be characterized by the excess of these light
Fe-peak elements.

In Figure 23 we plot the ρmax against Tmax for the

tracer particles of the two models. It can be seen that

even for the same 4He mass and total mass, the spherical

model, whose evolution contains no oblique shock and
the detonation wave propagates radially outward only,

provides a uniform element distribution. This can be

contrasted with the aspherical model, where the scat-

tering in density and temperature is much pronounced.

6.6. Constraints on progenitor model

The double detonation model is one of the well ac-
cepted physical models due to the robustness of ini-

tiating the detonation and its variability in produc-

ing the dispersion in the observed SNe Ia brightness.

However, one major concern, in contrast to the near-
Chandrasekhar mass white dwarf, is that the detonation

nature can produce a considerable amount of 56Ni if the

detonation is triggered too early, which produces over-

luminous SNe Ia. This is incompatible to the majority

of SNe Ia, where ∼ 0.5 - 0.7 M⊙ of 56Ni is observed
as induced by their light curves. In view of that it be-

comes important to understand, at which condition we

could obtain realizations which can resemble with the

typical SNe. This may provide constraints on the pro-
genitor model, including the typical mass, the He enve-

lope mass, and the initial detonation seed. In particular

the position of the initial detonation seed is not yet well

constrained.
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Figure 20. Similar to Fig. 18, but for Models 110-050-0-S50 (S) (Z = 0) and 110-050-6-S50 (S) (Z = 0.06) in the left panel and
Models 110-050-2-S50 (S) (Z = 0.02) and 110-050-10-S50 (S) (Z = 0.10) in the right panel. All models assume M = 1.10 M⊙,
MHe = 0.05 M⊙, and a spherical initial He-detonation at 50 km above the CO-envelope interface.
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Figure 21. [Xi/
56Fe] for the series of models studying the effects of initial He detonation structure. Similar to Fig. 12, but for

Models 110-100-2-50 (X) (bubble shape) and 110-100-2-B50 (Y) (belt shape) in the left panel and Models 110-100-2-2R50 (D)
(bubble+belt shapes) and 110-100-2-S50 (S) (spherical) in the right panel. All models assume M = 1.10 M⊙, MHe = 0.10 M⊙,
and Z = 0.02.
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To do so, we plot the 56Ni mass against progenitorWD

mass for different progenitor masses and different explo-
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sion mechanisms. In Figure 24 we plot that for the dou-

ble detonation models for both the spherical detonation

and the aspherical one, which we choose the one bubble

pattern along the z-axis. For the near-Chandrasekhar
mass WD, we use the standard DDT model with turbu-

lent deflagration as reported in Leung & Nomoto (2017).

The sub-Chandrasekhar mass WD model corresponds

to both single and double degenerate scenarios. We

remind that for the violent merger model, due to the
compactness of CO core, the secondary WD is disinte-

grated when the He detonation starts. Thus effectively

it has a structure similar to the double detonation model

in the single degenerate scenario. The Chandrasekhar
mass model corresponds to the near-Chandrasekhar

mass models presented in Leung & Nomoto (2017);

Nomoto & Leung (2017). In particular, we choose the

configuration identical to the benchmark model but for

different central density from 5× 108 to 5× 109 g cm−3.
In the sub-Chandrasekhar mass models (0.9 – 1.2

M⊙), MNi increases with M for both spherical (Model

100-050-2-S50) and aspherical (Model 110-050-2-B50)

models. This is because in principle the whole star is
burnt. How complete the nuclear burning depends only

on the density. For a lower mass WD, there is less matter

with sufficient density to reach complete burning (typ-

ically 5 × 107 g cm−3). Therefore, the 56Ni scales al-

most linearly with M . On the other hand, in the Chan-
drasekhar mass branch, MNi decreases with M . This

is related to the more efficient electron capture in the

matter burnt by deflagration, which lowers the matter

electron fraction. As 56Ni is produced in NSE while 56Ni
has an electron fraction 0.5, any electron capture in the

matter will only suppress the production of 56Ni.

We note that we compute both Chandrasekhar and

sub-Chandrasekhar mass models from both scenarios for

a mass 1.2 – 1.3M⊙. This is because in this intermediate
regime, it is unclear whether the thermonuclear runaway

occurs in the form of deflagration or detonation, be-

cause the pressure jump becomes close to the initial pres-

sure (Nomoto et al. 1976; Nomoto 1982b; Nomoto et al.
1984). Therefore, both scenarios cannot be ruled out.

By examining the overlapping mass range for all three

curves, it can be seen that the sub-Chandrasekhar mass

branch has a MNi lower than the Chandrasekhar mass

branch. Future statistics of observed SNe Ia for this pair
of quantities will resolve the uncertainty here.

At last we explain the difference of M56Ni between the

spherical and aspherical models. The spherical model in

general produces more 56Ni than the aspherical model
for the same M . This is because the C-detonation starts

in the center for the spherical model and off-center for

the aspherical one. However, most the 56Ni is produced
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Figure 24. The synthesized 56Ni mass at the end of the sim-
ulations against the initial WD mass. Both Chandrasekhar
and sub-Chandrasekhar mass models are included. For
sub-Chandrasekhar mass models, we use Models C-050-2-
50 for aspherical model and Models C-050-2-B50 for spher-
ical model, where C is the initial mass shown in the fig-
ure. The results for sub-Chandrasekhar mass and Chan-
drasekhar mass WD are selected from this work and in
Leung & Nomoto (2017).

near the center, where the density is the highest. This

means, for aspherical detonation to produce 56Ni, it
needs to overcome the density gradient and the outward

motion of the white dwarf during expansion. This re-

quires more time for the detonation to reach the center

to burn the matter for synthesizing 56Ni, while the white
dwarf has started its expansion. As a result, the mat-

ter density burnt by aspherical detonation in general is

lower, which suppresses the production of 56Ni. Future

observations of SN Ia mass and 56Ni mass can provide

further constraints on this degeneracy, and hence the
asphericity of the initial He-detonation.

6.7. Contribution to Galactic Chemical Evolution

The single-degenerate (Chandrasekhar mass model)

versus double degenerate (sub-Chandrassekhar mass

model) scenario has been a long lasting theoretical ten-
sion remaining unsolved. The Chandrasekhar mass

model has been favored because of its correspondence

to an invariant model which can explain the similarity

among observed SNe Ia. However, the shock-companion

star interaction is shown to provide strong X-ray sig-
nal before the bolometric maximum of the light curves

(Kasen 2010). The absence or non-discovery of such

feature leads to the consideration of using the sub-

Chandrasekhar mass model as an alternative to explain
the origin of SNe Ia.

To compare how the sub-Chandrasekhar mass model

influences the metal enrichment process we first compare

the chemical yield directly. In Figure 25 we compare
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Figure 25. [Xi/
56Fe] for the benchmark Model 110-100-2-

50 (X) (upper panel) and 100-050-2-S50 (S) (lower panel).

the chemical yield between the benchmark Models of

this work, namely Model 110-100-2-50 (upper panel) and

Model 100-050-2-S50 (lower panel) with the benchmark

Chandrasekhar mass model. We can see that the Chan-
drasekhar mass model has its IME more closer to the

solar value. The Ti and V productions are suppressed

compared to the sub-Chandrasekhar mass model. The

Fe and Ni patterns are similar for the two classes of
model, except the 54Fe and 58Ni are more enhanced

in the Chandrasekhar mass model. As remarked, the

amount of Mn in the sub-Chandrasekhar mass model

is very small to explain the solar value owing to the

differences in electron capture rates. In Model 100-050-
2-S50, a similar difference can be observed, except that

the over-productions in Ti, V and Cr become regulated

due to its less massive He envelope.

In Figure 26 we plot the evolution ofX(55Mn)/X(56Fe),
scaled with the solar value, as a function of metallicity Z.

To contrast with the results of the sub-Chandrasekhar

mass model, we also include the benchmark Chan-

drasekhar mass model from Leung & Nomoto (2017);

Nomoto & Leung (2017). The stellar abundance from
galactic disk F and G dwarfs (Reddy et al. 2003), cluster
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Figure 26. The [55Mn/X(56Fe)] against [Fe/H] for the
benchmark model 110-100-2-50 (X) and the typical Chan-
darsekhar mass SNe Ia (Leung & Nomoto 2018).

and field stars (Sobeck et al. 2006) and stars from thin

discs (Feltzing et al. 2007). are included. As expected,
at Z < −1 both models do not alter the results since the

time-delay of SNe Ia mutes the contribution of SNe Ia.

After that, the two models deviate. The Chandrasekhar

mass model, which shows a healthy electron capture,

provides sufficient 55Mn to raise the ratio close to the
solar value. On the other hand, the sub-Chandrasekhar

mass model, which produces only 30 % of the solar ra-

tio. The prolonged underproduction of 55Mn makes the

ratio even decreases in [Fe/H]= −0.2 − 0 to ≈ 30% of
the solar value.

This suggests that even when sub-Chandrasekhar

model can provide a variety of model, with ranges of
56Ni to match observational results of different peak

luminosity and with ranges of progenitor mass for dif-
ferent light curve widths. The Chandrasekhar mass

model contribution to the stellar evolution remains im-

portant. The nucleosynthesis suggests that 55Mn can

be partially produced owing to the strong compression
heating of the matter inside the star. The related mass

is far from enough to explain the grow of 55Mn especially

from log10 Z = −0.2− 0.

For further application of our sub-Chandrasekhar SNe

Ia yield in the context of GCE, we also present in Ta-
bles 16, 17 and 18, Tables 19, 20 and 21, and Tables

22, 23 and 24, the mass abundance of our representative

SNe Ia models with the minimum MHe necessary for

triggering the second detonation based on the Models
110-100-2-50 (X), 110-050-2-50 (Y) and 100-050-2-S50

(S) respectively. Metallicity is obviously an important

factor which contributes to 56Ni production and also the

production of high neutron-ratio isotopes. MHe deter-

mines the minimum mass above which the C detonation
can be triggered in our aspherical detonation models.
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MNi is the primary indicator of the explosion strength

as derived from the light curves.

It can be seen that, from the observational point of

view, the sub-Chandrasekhar mass SNe Ia produce ra-
dioactive isotopes qualitatively different from the con-

ventional Chandrasekhar mass SNe Ia. Due to the

He envelope burning, α-chain elements are more pro-

nounced. Among that, 44Ti is produced, which has a

half life of ≈ 60 years by electron capture to form 44Sc.
A typical amount of ∼ 10−3M⊙ is found. Their abun-

dance decreases when the 56Ni production increases.

The detection of the decay of 44Ti as a long term energy

of SNe Ia remnant may give very stringent constraints
on the progenitor type of SNe Ia.

7. COMPARISONS WITH OBSERVED

SUPERNOVAE AND SUPERNOVA REMNANTS

We have shown in Leung & Nomoto (2017); Nomoto & Leung

(2017); Leung & Nomoto (2018) that the Chandrasekhar
mass turbulent deflagration model with delayed deto-

nation transition can be constrained through the obser-

vational data including the late-time light curves and

the spectra. The late-time light curves can give indi-

cations to the amount of minor isotopes which has a
longer lifetime compared to 56Ni with a half life 7.8

days. They include for example 56Co and 57Co, which

have a decay lifetimes of 77.2 and 272 days respectively.

The energy deposition during the decay supports the
light curve being observed. Another way to study SN

chemical abundance is by the spectra of SN remnant.

Through a comparison of the X-ray line strengths of

the radioactive elements, such as Cr, Mn, Fe and Ni,

one can obtain the ratio among these elements and thus
cast constraints on the explosion mechanism (See. e.g.

Yamaguchi et al. (2014)).

7.1. Supernova Remnant 3C 397

The first example we study is the SN remnant 3C

397 (Yamaguchi et al. 2015). This SN remnant has a
remarkable X-ray spectrum in terms of its rich neutron-

ized material compared to other SN remnants such as

Tycho and Kepler. This remnant is also shown that the

Chandrasekhar mass model is one of the feasible real-

izations of SN Ia explosions constrained by direct ob-
servational data. In the measurement, this remnant is

found to have 0.027±+0.007
−0.006M⊙ Cr, 0.025±+0.008

−0.007M⊙ Mn

and 0.17±+0.07
−0.05 Ni. This corresponds to the Mn/Fe and

Ni/Fe ratios being 0.018 - 0.033 and 0.11 - 0.24 respec-
tively. In Yamaguchi et al. (2015) it is shown that by us-

ing one-dimensional models, Chandrasekhar mass model

(M ≈ 1.37 M⊙) with a metallicity five times to the so-

lar metallicity is shown to produce the closet abundance
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Figure 27. The mass ratio Mn/Fe against Ni/Fe for the
sub-Chandrasekhar mass models from M = 0.9, 1.0, 1.1 and
1.2 M⊙. The He envelope is fixed to be 0.1 (solid line) and
0.2 (dashed line) M⊙. The metallicity ranges from 0, 1, 3
and 5 Z⊙ for models on the same line from the left to right.
The observational data point of the SN remnant 3C 397 is
included. The typical mass and metallicity dependences of
the models are shown by the arrows.

ratio. In Nomoto & Leung (2017); Leung & Nomoto

(2018) we reported similar discovery based on a series of

two-dimensional models of turbulent deflagration model

with delayed detonation transition. Here we shall ex-
amine our models to see in the sub-Chandrasekhar mass

domain what kind of model is needed to explain this SN

remnant.

In Figure 27 we plot Mn/Fe against Ni/Fe for our

sub-Chandrasekhar mass models with the observational
data from the SN remnant. The SN Ia models of

M = 0.9 - 1.2 M⊙ are included with a He envelope

of MHe = 0.1− 0.2 M⊙. We pick Z = 0 to 5 Z⊙ as done

in Leung & Nomoto (2018). It can be seen that in gen-
eral when metallicity increases, Mn/Fe increases with

Ni/Fe. However, when the total mass M increases, the

whole shifted downward, showing that the Mn/Fe ratio

drops but no significant change in Ni/Fe observed. This

is because when the mass increases, the central density
of the initial model increases, therefore, the C detona-

tion becomes more energetic which can unbind the star

more quickly. As a result, more 56Ni is produced which

suppresses the ratio.
The model with a more massive He envelope has a

lower [Mn/Fe] in general because of the higher 56Ni as

part of it can be produced in the envelope. This rela-

tion is uniform for almost all models except for Z = 5

Z⊙ at M = 1.2 M⊙. The two models show a rapid
jump in the [Mn/Fe] ratio. This is because at high den-

sity, electron density becomes important. The C deto-

nation, which can release adequate energy to burn the
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core matter into NSE, is followed by electron capture

before the matter cooling down by adiabatic expansion.

Certainly, the typical electron capture rate in the sub-

Chandrasekhar mass model is considerably lower than
those in typical Chandrasekhar mass models. The low-

ered electron fraction in the core matter, when in NSE,

will be more favourable to produce 55Mn, which has a

proton ratio of 0.454. The data point of 3C 397 is in-

cluded. It can be seen that the data point lies very far
from the other lines. This is consistent with the conclu-

sion in Yamaguchi et al. (2015) that the single degener-

ate Chandrasekhar mass SN Ia channel is more likely to

explain this peculiar SN Ia.
Our models show that the 55Mn production is in gen-

eral too low that even with a rather small 56Ni produc-

tion at the end of simulation, the resultant [Mn/Fe] ratio

remains insufficient to explain. The closest model is the

M = 0.9 M⊙ at Z = 5 Z⊙. Our result is comparable
with theirs.

One may note that this object has raised interest in

the literature owing to its predicted high metallicity and

different proposals are raised in order to recover the high
[Mn/Fe] ratio without invoking the high metallicity. For

example, in Shen et al. (2018) the sub-Chandrasekhar

mass SNe Ia in the spherical approximation is revisited.

The high [Mn/Fe] is shown to be viable if one consider a

subset of ejecta, namely by taking the effects of reverse
shock heating into account. Another attempt is done in

Dave et al. (2017). The gravitational confined detona-

tion model is explored with extension to pure turbulent

deflagration with or without delayed detonation tran-
sition for the Chandrasekhar mass model. It is shown

that a combination of high central density, low [C/O]

ratio and a high offset of initial deflagration can pro-

vide an alternative to this observation. These trends

are consistent with our previous finding as reported in
Leung & Nomoto (2018).

7.2. SN 2012cg

The next application is on SN 2012cg. This SN ex-

ploded at 2012 May 17 (UT) in the nearby spiral galaxy

NGC 4424, which is measured in the Lick Observa-

tory Supernova Search Kandrashoff et al. (2012). The

SN Ia nature is revealed in the spectral study found
in Cenko et al. (2012); Marion et al. (2012). This SN

Ia is close enough that the late-time light curve after

∼ 1000 days can still be measured. The low-density

ejecta becomes transparent to most γ-ray so that the
γ-ray emitted during decay can escape freely from the

ejecta without significant heating. On the other hand,

the emitted e− is completely absorbed by the surround-

ing matter. This means that one can trace its amount
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Figure 28. 57Ni against 56Ni for our sub-Chandrasekhar
mass models from M = 0.9, 1.0, 1.1 and 1.2 M⊙. The He
envelope is fixed to be 0.1 (solid line) and 0.2 (dashed line)
M⊙. The metallicity ranges from 0, 1, 3 and 5 Z⊙ for model
from bottom to top. The observational data point of the SN
2011fe, SN 2012cg and SN 2014J are included. The typical
mass and metallicity dependences of the models are shown
by the arrows.

through its decay as a heat source in the light curve.

In particular, the channels 56Co →56Ni (half life ≈ 113

days) and 57Ni →57 Co (half life ≈ 272 days) can be

readily measured. In Graur et al. (2016), the B-band
light curve of SN 2012cg is revisited at 900 days after

the B-band maximum. It is shown that this SN Ia has a

high 57Ni/56Ni ratio at 0.043±+0.012
−0.011, which is twice to

the corresponding solar ratio.

In Figure 28 we plot similar to Figure 27 but for 57Ni
against 56Ni for the same series of models and with this

SN Ia. For models with an increasing metallcity, 57Ni

production increases while 56Ni mildly decreases. This

is because the initial electron fraction, as metallicity in-
creases, deviates from the value 0.5, which most favours

the production of 56Ni in NSE. On the other hand, the

lowered electron fraction enhances production of 57Ni.

Models with a thicker He envelope has higher 56Ni and
57Ni compared to models with the same mass but lower
MHe. Similarly, for models with an increasing M , the
56Ni and 57Ni productions are enhanced as a result of

higher central density, which allow more matter to be

burnt until NSE for producing Fe-peak elements.
Then, we compare our results with this SN Ia. The

data point of SN 2012cg is included. It can be seen that

this SN has a rather high 56−57Ni as a healthy explosion.

In our models, the high mass models M = 1.2 M⊙ with

high metallicity from 3−5 Z⊙ are more likely to explain
this data point. This is consistent with our previous

work (Leung & Nomoto 2017; Nomoto & Leung 2017;

Leung & Nomoto 2018) that a high metallcity model
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Figure 29. 55Ni/57Co against 57Ni/56Co for our sub-
Chandrasekhar mass models from M = 0.9, 1.0, 1.1 and
1.2 M⊙. The He envelope is fixed to be 0.1 (solid line) or 0.2
(dashed line) M⊙. The metallicity includes 0, 1, 3 and 5 Z⊙.
The observational data point of the SN 2011fe is included.
The typical mass and metallicity dependences of the models
are shown by the arrows.

from 1 − 5 Z⊙ with a central density from 5 × 108

- 1 × 109 g cm−3 may fit this observational data the

best. However, compared to our Chandrasekhar mass
model, the sub-Chandrasekhar mass models can fit the

upper range of this data point by models with M =

1.2 M⊙,MHe = 0.1M⊙ and fit the lower range of that

by models with M = 1.1 M⊙,MHe = 0.2M⊙). The
trend derived here agress with the estimation from the

analytic formula as done in Graur et al. (2016) that the

Chandrasekhar mass model is more preferred for this

high 57Ni abundance. However, we also emphasized that

the sub-Chandrasekhar mass model is not excluded by
this SN Ia as a physical picture. To further clarify its

origin, future spectral study in the remnant, similar to

the SNR 3C 397 will be necessary.

7.3. SN 2011fe

The third example comes from the well observed SN

2011fe. This recent SN exploded at 2011 August 24 in a
rather proximate Pinwheel galaxy (Nugent et al. 2011),

which situated at 6.4 Mpc away (Shappee & Stanek

2011). The close distance of this SN Ia has at-

tracted intensive study in different bandwidths (See

Shappee et al. (2017) for the references therein) and
spectral studies. This also allows detection of light

curves beyond ∼ 1000 days. This provides more abun-

dance constraints compared to the previous SN 2012cg.

This SN Ia is first probed with the decay of 55Fe (55Fe
→55Mn with a half life of 999.67 days) directly. Through

taking ratios with other decaying channels, they ob-

serve log10(
57Co/56Co) = −1.62±+0.08

−0.09. In their best fit

model they also showed log10(
55Fe/57Co) = −1.0±+0.3

−0.5.

In Figure 29 we plot similar to Figure 28 but for

the ratio 55Fe/57Co against 57Co/56Ni for our sub-

Chandrasekhar mass models and the observational data

SN 2011fe. Our models show a less uniform variation
with increasing metallicity in the sub-Chandrasekhar

mass range. The variation is non-uniform at low metal-

licity (0 - 1 Z). On the other hand, 55Fe/57Co increases

with metallicity, showing that the abundance of 55Fe is

more sensitive to metallicity. This is expected, as shown
in Figure 27 that the metallicity still plays an important

role in the formation of stable Mn, which comes from

the decay of 55Fe. The models tend to have a lower ra-

tio when the He envelope becomes thicker. Also, when
the total mass increases, the ratio is also suppressed.

This is because the growth of 57Ni, which is very sensi-

tive to the size of zone being burnt into NSE, is faster

than 55Fe. The much faster growth of 55Fe/57Co for the

model M = 1.2 M⊙ and Z = 5 Z⊙ is again related to
the enhancement of electron capture in the NSE region.

The observational data point fits our model much bet-

ter than the previous two models. It can be seen that

a wide range of parameters can be used to explain this
SN Ia. SN Ia models from M = 1.0− 1.2 M⊙ and a low

metallicity Z = 0−1 Z⊙ are adequate to fit in this obser-

vational data. This is also consistent with our previous

work (Leung & Nomoto 2017; Nomoto & Leung 2017;

Leung & Nomoto 2018) that a low central density from
5×108−7.5×108 g cm−3 with a metallicity 0−1 Z⊙ can

explain this data point using the turbulent deflagration

model with DDT.

Recent late time study of the light curve in the optical
band has also revealed the 57Ni/56Ni ratio of this SN Ia.

By measuring the shift of late time light curve after most
56Ni has decayed, the decay of 57Ni →57Co can be an-

other important radioactive source. In Dimitriadis et al.

(2017), the pseudo-bolometric light curve is produced by
combining data of the optical and near-IR bandwidth in

the literature from 200 to 1600 days after explosion. It

is shown that this supernova, albeit with significant sys-

tematic uncertainties, 57Co/56Co = 0.031± 0.011.
In Figure 28 we also plot this data point with our

model sequences. The prediction of WD progenitor us-

ing the explosion product has been discussed for SN

2012cg in the previous section. Here we further apply

this technique for SN 2011fe. The WD sequence with a
mass ≈ 1.0 M⊙ with a He envelope ≈ 0.1 M⊙ can ex-

plain the observed 57Ni/56Ni ratio. The data point can

be the best explained by the model with ∼ Z⊙.

We remark that, from the first sight the SN 2011fe
is very well explained by the sub-Chandrasekhar

mass model, in fact, in Leung & Nomoto (2017);

Nomoto & Leung (2017) we demonstrate that this SN
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Ia can also be explained by the Chandrasekhar mass

model in the high central density (high mass) limit with

a metallicity close to Z⊙ in the centrally ignited model.

This suggests that to further constrain the progeni-
tor, future follow-up observations will be essential to

measure the abundances of other isotopes or elements,

similar to the analysis done for the SNR 3C 397.

7.4. SN 2014J

The fourth application of our models to the SN Ia

observation is the candidate SN 2014J. This is an

extremely well observed SN Ia owing to its vicinity.
This SN Ia is observed from very early time since

its rising light curve (Goobar et al. 2014). The multi-

frequency light curve and spectra are observed ranging

from the infrared spectra (Telesco et al. 2015), opti-

cal photometry and spectrography (Ashall et al. 2014),
ultraviolet (Foley et al. 2014; Brown et al. 2015), to

gamma-ray light curve and spectra (Diehl et al. 2015a;

Churazov et al. 2015; Diehl et al. 2015b; Isern et al.

2016). This supernova is interesting for its peculiar
gamma ray signals. It has an early gamma ray signal

coming from the decay of 56Ni at about 20 days af-

ter explosion, which is 10 days in advance of typical

SNe Ia (Diehl et al. 2015a). The follow-up observa-

tion in its time-domain variations shows that it has
a non-monotonic variation in the 56Co-decay gamma

ray line. The Doppler shift analysis further shows the

highly fluctuating Co-decay line frequency (Diehl et al.

2015b). Such features are argued to be originated from
the He detonation and asymmetry in the detonation.

The current work on the asymmetry double detonation

model appears to well match with this SN.

Here we try to constrain its progenitor from some of

its observable by its 57Ni/56Ni mass fraction ratio. This
ratio has been applied to other SNe Ia including the pre-

vious SN 2011fe and SN 2012cg. The late time flattening

of the late curve in the optical band is analysed, from

277 days to 1181 days after explosion. From the analysis
of the late time light curve (Yang et al. 2018), the mass

ratio of 57Co/56Co = 0.066 ±0.009
0.008 . The ratio is even

higher than SN 2012cg. By using the 56Ni derived from

gamma ray (Isern et al. 2016), where 56Ni = 0.49±0.09,

we plot in Figure 28 the data point of SN 2014J.
From the figure we observe that the sub-Chandrasekhar

mass model is capable of reaching the high Ni-isotope

ratio at the high metallicity end. Two of the model se-

quences can approach this observed data point, namely
when M = 1.1 M⊙ with MHe = 0.10 M⊙ and M = 1.0

M⊙ with MHe = 0.20 M⊙. Both sequences require

Z ≈ 5 Z⊙ to reach the high mass fraction ratio. Again,

the more massive He envelope is capable of producing

the required 56Ni, however such early surface 56Ni can

be very different from that produced through standard

Chandrasekhar mass WD. In the latter case, the 56Ni

is mostly produced by C detonation after deflagration-
detonation transition. But it is always covered by an-

other layer of IME when the detonation reaches the

surface. As a result, the 56Ni-decay is not directly visi-

ble, but can be seen as a heat source in the light curve.

On the other hand, with the He envelope, there is al-
most no shielding for the synthesized 56Ni, therefore it

is expected that the early gamma-ray signal can be very

different. We also note that such a massive He envelope

with decaying 56Ni should show rather strong He lines.
We also compare the 57Ni/56Ni ratio of SN 2014J

with the Chnadrasekhar mass models in Figure 20 of

Leung & Nomoto (2018). We note that the Chan-

drasekhar mass models with Z ≈ 3 − 5 Z⊙ produces

the observed high 57Ni/56Ni ratio.

8. SUMMARY

In this paper, we study the hydrodynamics and associ-
ated nucleosynthesis of sub-Chandrasekhar mass models

for SNe Ia, where the C detonation is triggered by the

surface He detonation of a symmetric or an asymmet-

ric structure. Such a double detonation can in both the

single degenerate and the double degenerate scenarios.
Our findings are summarized as follows.

(1) We find that whether C detonation triggered is

strongly sensitive to the He detonation pattern. We

consider four possible structures: namely, one-bubble,
one-ring, bubble-and-ring, and spherical, in view of the

unresolved, inner fluid motion of the He shell before nu-

clear runaway. The He detonation with higher symme-

try (one-ring and spherical structures) can result in geo-

metric convergence, which can very robustly heat up the
C fuel to the ignition temperature for the subsequent

temperature. He detonation with lower symmetry (one-

bubble) requires a more massive He envelope (> 0.1M⊙)

to trigger the second explosions. The case with multi-
bubbles depends on how the shock wave propagates in-

side the WD.

(2) We carry out a parameter survey on the nucle-

osynthesis for the sub-Chandrasekhar mass WD mod-

els with different model parameters. We perform two-
dimensional hydrodynamical simulations using our own

supernova simulation code from the onset of the He det-

onation until all detonations quench by the expansion.

The following parameters are studied: the metallicity,
He envelope mass, total mass, the initial He detona-

tion, and the initial C/O mass fraction ratio. We pay

attention to some representative elements, including in-

termediate mass elements (e.g. Si, S, Ar and Ca), light



30

iron-peak elements (Ti, V and Cr) and other iron-peak

elements (Mn, Fe, Co, Ni). These elements are strongly

sensitive to the total mass, metallicity and He-envelope

mass, but less sensitive to the initial He detonation and
C/O mass fraction ratio. Metallicity affects mostly on

the low-Ye isotopes e.g., 55Mn and 58Ni. He envelope

mass affects light iron-peak elements, especially 48Ti,
50,51V and 52Cr. Total mass affects 56Ni and hence the

mass fraction [Xi/
56Fe] with respect to the Sun.

(3) We also compare our two-dimensional models with

the classical spherical double detonation model and

show that the chemical signature due to asphericity is

very significant. The aspherical detonation can create
hot spots which produce distinctive abundance pattern

in intermediate mass elements and light iron-peak ele-

ments (Ti, V and Cr). Explosion of progenitor with a

mass ∼ 1.1− 1.2 M⊙ may help distinguish in the future

the degeneracy of single and double degenerate scenario.
However, an exact matching with the observed 56Ni dis-

tribution will also require the stellar initial mass func-

tion. We further show that the sub-Chandrasekhar mass

WD models cannot substitute the Chandrasekhar mass
one because of the persistent insufficiencies of Mn pro-

duction. The final [Mn/Fe] can be 0.4 dex lower than

the model using Chandrasekhar mass WD model. We

provide corresponding yield tables for the applications

to the galactic chemical evolution.
(4) We apply our models to provide constraints on

some well-observed SNe Ia, including SN 2012cg, SN

2011fe, SN 2014J, and SN Ia remnant 3C 397. The

probable progenitor configurations are implied based on
the derived chemical abundance of some Fe-peak iso-

topes. We used the late time light curve to indicate the
57Ni/56Ni ratio. We find that SN 2014J can resemble

with the sub-Chandrasekhar mass model at 1.0−1.1M⊙

with metallicity Z = 3 − 5 Z⊙. (Note that the Chan-

drasekhar mass models also resemble to SN 2014J if

Z = 3 − 5 Z⊙.) SN 2011fe can be explained by mod-
els with M ∼ 1.0M⊙ with near Zodot. SN 2012cg can

be approached by models with M = 1.1 − 1.2M⊙ at

Z = 1 − 3 Z⊙. For supernova remnant 3C 397, the

high Mn/Ni ratio cannot be resembled with any of our

current sub-Chandrasekhar mass models. The Mn/Fe
ratios in our models are much lower than the observed

value. Only models at the lower mass end (0.9M⊙) with

Z = 5Z⊙ can approach the observe data point.

(5) The hydrodynamical structures and nucleosynthe-
sis profiles provide useful predictions for future observa-

tions of elemental abundances and line γ-rays.
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APPENDIX

A. DETERMINATION OF THE HE DETONATION TIMESCALE

In Section 2 we mentioned that simplified schemes for C and He detonation are used. In this section, we describe

in more details how they are implemented. Unlike C detonation, He detonation in the sub-Chandrasekhar mass WD
scenario, occurs at a much lower density (∼ 104 − 107 g cm−3 in the He envelope). The low density, as well as the

non-degenerate property of the electron gas, lead to a lower final temperature, after all He is burnt. As a result, it

becomes important to estimate more precisely how much He is burnt in the reaction zone and in the post-reaction

zone. In particular, we are interested to know how He is burnt as a function of time, which is used to calibrate the

amount of energy released by the detonation.
We calculate the detonation structure following the numerical scheme described in Sharpe (1999). Here we give a

brief summary about this method. In general, detonation consists of three sections, the pre-shock region, the reaction

zone and the post-reaction region. We assume at every point inside the detonation wave, thermodynamics equilibrium

is maintained, such that the specific internal energy ǫ, pressure p are related by the thermodynamics input including
the density ρ, temperature T and the number fraction of each isotope Yi (i = 1, N) in a network with N isotopes.

Therefore,

∆ǫ =
∂ǫ

∂ρ
|T,Xi

+
∂ǫ

∂T
|ρ,Yi

+
∑

i

∂ǫ

∂Yi

|ρ,T . (A1)
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The steady state Euler equation can be written as

dρ

dx
= −

ρa2f
v

σ ·R

ι
, (A2)

dT

dx
=

(

∂p

∂T

)−1

ρ,X

{

[

u2 −

(

∂p

∂ρ

)

T,X

]

dρ

dx
−

N
∑

i=1

(

∂p

∂Xi

)

ρ,T,Xj 6=i

dXi

dx
}, (A3)

dXi

dx
=

Ri

Aiv
, (A4)

where

η = a2f − v2 (A5)

is the sonic parameter, Ai is the atomic mass for the i-th isotope,

a2f =

(

∂p

∂ρ

)

T,X

+

[

p

ρ2
−

(

∂ǫ

∂ρ

)

T,X

]

(

∂p

∂T

)

ρ,T

(

∂ǫ

∂T

)−1

ρ,X

(A6)

is the sound speed of constant composition (also known as frozen sound speed in the literature of detonation),

σi =
1

ρa2f
{

(

∂p

∂Xi

)

ρ,T,Xj 6=i

−

(

∂p

∂T

)

ρ,X

(

∂ǫ

∂T

)−1

ρ,X
[

(

∂ǫ

∂Xi

)

ρ,T,Xj 6=,i

−

(

∂q

∂Xi

)

Xj 6=i

]

} (A7)

is the thermicity constant, such that σ ·R is the thermicity. In integrating this set of differential equations, we use the

boundary conditions at x = 0, ρ = ρi, T = Ti; at x → ∞, ρ = ρf , T = Tf and X = Xf with thermicity = 0. Notice

that ρi, Ti and Yi are the quantities after shock. They are related to the pre-shock quantities (ρ0, T0, X0) by

ρ0D = ρics, (A8)

ρ0D
2 = ρic

2
s, (A9)

ρ0D
2 + ρ0ǫ0 + P0 = ρic

2
s + ρiǫi + Pi. (A10)

D, cs and P0 are the pre-shock matter density, speed of sound and pressure of the pre-shock matter.
In Figure 30, we plot the density, temperature and chemical isotope profiles for a detonation wave at a density 106

g cm−3. To trigger the first incineration, the matter is assumed to be shock heated to a temperature ∼ 2 × 109 K.

Before 10−4 s. the temperature does not rise considerately. Also, there is only very subtle drop in the density. There

is also a slow change in the chemical composition from 4He to 12C. At ∼ 10−4 s, the temperature rises drastically
from 2 × 109 K to 3 × 109 K. The density also drops by ∼ 30 %. We can see a isotopes from 12C, 40Ca, 48Ti and
52Fe burst out one by one around 10−4 s. This means that even at low temperature, the α-chain reaction can proceed

efficiently, once the triple α reactions have provided the first fuel for the subsequent reactions. Beyond 4× 10−4 s, the

productions of other isotopes are suppressed again, except 56Ni. At that time, 4He is stably burnt into 56Ni, causing

the temperature (density) to grow (drop) to its equilibrium value. At ∼ 1 s, the temperature and density reaches its
equilibrium at 3.6× 109 K and 4.6× 106 g cm−3.

In Figure 31, we plot the temperature, density and isotope abundance profiles for pure He fuel at an initial density

of 107 g cm−3. With a high density, nuclear reactions can take place spontaneously. In the first 10−4 s, temperature

increases quickly from 3× 109 K to 6× 109 K. while the density drops from 4× 107 g cm−3 to ∼ 2× 107 g cm−3. The
initial peaks for various isotopes except 56Ni can be found at the first 10−6 s, while the conversion of 4He to 56Ni can

be found at the first 10−4 s. After that, the temperature and density start to converge to their asymptotic values at

∼ 5.5× 109 K and 1.4× 107 g cm−3. At the same time, the temperature is sufficiently high that NSE emerges. 52Fe,
40Ca, 48Cr, 36Ar, 32S form one by one and reach their equilibrium value at ∼ 0.1 s.
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Figure 30. (left) The density evolution of He during detonation for pure He fuel at a density 106 g cm−3. The matter is
assumed to be shock-heated to above 2×109 K. (middle) The temperature evolution of the detonation wave at an initial density
106 g cm−3. (right) The isotope evolution of the detonation wave at an initial density 106 g cm−3

By comparing the two sets of results, we can see that in the density range related to the sub-Chandrasekhar mass

double detonation models, the time necessary for He to completely release its energy into the system increases by two

orders of magnitude when the density drops from 107 to 106 g cm−3. (In the simulations we find the typical time steps

has a size ∼ 10−4 − 10−3 s, depending on the global velocity distribution). Therefore, especially for the He near the
surface, once they are burnt they expand drastically, making their local density much lower than those underneath.

As a result, their energy release process is incomplete. To mimic this effect, we use a density dependent time scale

τHe(ρ) which is calibrated by the detonation waves as demonstrated above. The time scale corresponds to the time

when 90 % of energy is released with respect to its equilibrium value. To establish the relation τHe, we repeat the

above process for He-detonation wave at different initial densities. Then we collect the necessary time scale by the
above detonation. A simple power-law fitting provides us the formula:

τHe = 1.72× 10−6

(

ρ

108 g cm−3

)−2

s. (A11)

In the simulations, when the current time step ∆t > τHe, complete burning is assumed. Otherwise, only the fraction
of matter ∆t/τHe is assumed to release its energy. We have only considered the effect of density because the reaction

rate is very sensitive to the input temperature. Below the ignition temperature (∼ 109 K), the reactions are so slow

that the burning time scale is much longer than the dynamical timescale, which means no detonation can be formed.

On the other hand, above the ignition temperature, the fuel burns instantaneously. Also the energy generated by the
nuclear reaction is much larger than the different choices of input temperature. Thus, the product of the detonation

wave is less insensitive to the input temperature compared to the density.

Certainly a self consistent way, which is to calculate the network directly, can provide us the most accurate results

regarding to the process of partial burning. However, such inclusion is beyond the current capability of our computing

resource. Furthermore, in the hydrodynamics, acoustic waves are found everywhere inside the star. These waves
cause fluctuations in the local temperature. These fluctuations increase the computation time significantly when a

complete network is used, since the nuclear composition always adjusts itself to the local temperature, where at high

temperature the typical time step is small.

B. EFFECTS OF SYMMETRY BOUNDARY

In this work we have carried out simulations of sub-Chandrasekhar SNe Ia in a quadrant of sphere. This uses a

reflective boundary along the symmetry plane z = 0. As a result, the initial He detonation configuration, namely a

one-bubble structure, corresponds to two synchronous ignitions of He detonation, one at the ”north”-pole and one at
the ”south”-pole. It is unclear, prior to the runaway of He, how the velocity field, especially the turbulent velocity

motion, may perturb the initial ignition of He. Certainly it is more likely for two He detonation bubbles to have

asynchronous ignition time, or even there is only one ignition before C detonation is triggered. Therefore, it is unclear

whether the C detonation can still be robustly triggered when there is a time-lapse between the two He detonation
bubbles.

To do the comparison, we develop a temporary extension of our hydrodynamics code to model the hemisphere of

the WD by relaxing the reflection symmetry. We place one He bubble at the ”north”-pole, while another one at the

”south”-pole with some time delay. In Table 3 we tabulate the configuration and initial detonation properties of our
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Figure 31. (left) The density evolution of He during detonation for pure He fuel at a density 107 g cm−3. The matter is
assumed to be shock-heated to above 2×109 K. (middle) The temperature evolution of the detonation wave at an initial density
107 g cm−3. (right) The isotope evolution of the detonation wave at an initial density 107 g cm−3

Table 3. The models for the study of reflection symmetry effects in the sub-Chandrasekhar SNe Ia. Delay time is the difference
between the two He detonation bubble in the unit of s. ”C-det?” corresponds to whether C detonation can be triggered or not.
If yes, ρC−det and TC−det are the density and temperature of the triggered grid in units of 107 g cm−3 and 109 K respectively.
tC−det is the ignition time in units of s. Position is the coordinate in units of km.

Model Delay time C-det? Position tC−det ρC−det TC−det

Test-QS 0 Yes (3420,0) 0.94 1.04 2.55

Test-HS-0 0 Yes (3380,0) 0.94 1.06 2.84

Test-HS-1 0.2 Yes (3290,-720) 1.03 1.09 2.83

Test-HS-2 0.4 Yes (3120,-1400) 1.15 1.04 2.89

Test-HS-3 1.0 Yes (1330,-2910) 1.43 1.00 2.00

test models. It can be seen that the all the cases give a positive response to the He detonation, regardless of being

one or two He bubbles and their delay time. This suggests that as long as the He envelope has exceeded the marginal

thickness then the shock compression, either by shock-shock collision or by shock-wall collision can create similar
heating to the surface matter of the CO core.

We carry out 5 hydrodynamics simulations to extract the effects of reflection symmetry. Test-QS corresponds to the

model with reflection symmetry, where we choose the same configuration as the Benchmark Model 110-100-2-50. This

means the Model Test-QS is exactly the benchmark model. Models Test-HS-0 - Test-HS-3 do not assume reflection

symmetry and has a He ignition delay time from 0 - 1 s. Model Test-HS-0 acts as a control test to see if the hemisphere
extension is consistent with a quadrant sphere modeling; while in Model Test-HS-3 we delay the second ignition so

long such that the C detonation is triggered. From Table 3, when the delay time becomes larger, the position of the C

detonation moves away from the ”equator”, since the upper He bubble has more time to propagate before the shock

collision. However, no significant change in the trigger density and temperature is observed, showing that the trigger
of C detonation does not depend strongly on the minor details of the He detonation.

In Figure 32 we plot the temperature colour plots with the He and C detonation structure at 0.5 s, at the trigger of C

detonation and 0.2 s after the trigger of C detonation respectively for the Model Test-HS0. The detonation structure

of both He and C demonstrates a high degree of symmetry throughout the simulation. The detonation occurs at

equator around the surface of CO core. The reflected shock leads to a clear distinction between the pre-heated region
and post-heated region. From Table 3, it can be seen that when the two He detonations are placed explicitly, the C

detonation is triggered along the ”equator” of the WD at the same time as Model Test-QS. However, slight differences

in density and temperature appear between the grid positions in the quadrant of sphere and hemisphere. They are

different that in the Test-QS no grid is placed on the reflection plane while explicit grid is put on the reflection place
in the Model Test-HS-0. As a result, it allows an explicit compression of matter on the equator when the two shocks

merge.

In Figure 33 we plot similar to Figure 32 but for Model Test-HS-1. Due to the delayed He detonation, the area

swept by the upper He detonation wave has a larger volume than the lower one. As a result, the collision point is
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Figure 32. (Figures removed for reducing the pdf file size, see published version for full figures.) The He and C detonation
structure and the temperature colour plot of Model Test-HS-0 at 0.5 s, at the trigger of C detonation and at 0.2 s after the C
detonation trigger.

Figure 33. (Figures removed for reducing the pdf file size, see published version for full figures.) Similar to Figure 32, but for
Model Test-HS1 at 0.5 s, at the trigger of C detonation and at 0.2 s after the C detonation trigger.

Figure 34. (Figures removed for reducing the pdf file size, see published version for full figures.) Similar to Figure 32, but for
Model Test-HS2 at 0.5 s, at the trigger of C detonation and at 0.1 s after the C detonation trigger.

Figure 35. (Figures removed for reducing the pdf file size, see published version for full figures.) Similar to Figure 32, but for
Model Test-HS3 at 0.5 s, at the trigger of C detonation and at 0.075 s after the C detonation trigger.

lower. Despite that, the collision point remains to be the hottest point which can trigger C detonation. Due to the
assymetric expansion of the star, the detonation in the CO core has more features compared to the previous case.

In Figure 34 we plot similar to Figure 32 but for Model Test-HS-2. The further delayed second He detonation bubble

allows the collision to occur at an even lower position. The newly formed C detonation can propagate as in previous

cases. The shock reflection in the He envelope can be clearly seen.

In Figure 35 we plot similar to Figure 32 but for Model Test-HS-3. We delayed putting in the second detonation so
long that the C detonation has been triggered beforehand. In this case, it is identical to the one-bubble scenario where

the shock convergence at the ”south”-pole of the He envelope creates the desired shock compression and penetration

into the CO core, which heats up sufficiently the fuel for spontaneous runaway. The geometrical convergence around

the ”south”-pole allows the shock to be strengthened with an increasing post-shock temperature when it approaches
the rotation-axis. The temperature is already adequately high to trigger the C detonation before the He shock collides

with the axis. The triggered C detonation can then propagate inside the CO core.

From all these four cases it suffices to demonstrate that the C detonation can be ignited by He detonation, the

reflection symmetry of the z = 0 plane can provide the necessary shock collision for shock compressing the fuel in

order to raise its temperature for spontaneous nuclear runaway. Even without the symmetry plane, we demonstrated
that the collision of He detonation, regardless of their ignition time, will provide also the necessary shock heating

on the CO core surface. We also presented that in the one-bubble limit, i.e. the delay time much greater than the

C detonation time, the geometric convergence in the models can also provide the required shock compression. This

suggests that as long as the He envelope mass is large enough for triggering C detonation naturally, the configuration
of He detonation plays a less important role for the detonation structure. Since in these tests we only aim at showing

the robustness of triggering the C detonation with or without reflection symmetry, the complete nucleosynthesis and

the effects of shock collision on the nuclear burning will be left as future work. However, it remains unclear whether

the WD can be represented comprehensively by a sphere in hydrostatic equilibrium prior to its runaway. The effects

of a non-static atmosphere, as a result of He burning before its runaway, will be an interesting future work to further
test the robustness of the C detonation mechanism by bubbles.



35

0 0.1 0.2 0.3 0.4
time (s)

5

6

7

ce
n
tr

al
 t

em
p
er

at
u
re

 (
1
0

9
 K

)
dx = 7.5 km
dx = 15 km
dx = 30 km

0 0.1 0.2 0.3 0.4
time (s)

0

5

10

15

e
n
e
rg

y
 (

1
0

5
0
 e

rg
)

dx = 7.5 km
dx = 15 km
dx = 30 km

0 0.1 0.2 0.3 0.4
time (s)

0

0.5

1

M
b
u
rn

 (
so

la
r 

m
a
ss

)

dx = 7.5 km
dx = 15 km
dx = 30 km

Figure 36. (left panel) The time evolution of the central temperature for the Models Test1-fine (∆x = 7.5 km), Test1 (∆x = 15
km) and Test1-coarse (∆x = 7.5 km). (middle panel) Similar to the left panel, but for the total energy. (right panel) Similar to
the left panel, but for the total burnt mass.

Table 4. The model parameters for the one-dimensional resolution study. M , MHe are in unit of M⊙. ∆x is grid size in unit of
km. tburn is the time needed for the C-detonation wave to burn everything in unit of s. Efin is the final asymptotic energy given
by the simulation, in unit of 1050 erg. Tmax is the maximum central temperature experienced in the simulations. The numbers
in the brackets stand for the percentage difference between that model with the higher resolution model.

Model ∆x M MHe tburn Efin Tmax

Test1-fine 7.5 1.1 0.1 0.31 15.9 7.0

Test1 15.0 1.1 0.1 0.34 (9.6) 15.8 (0.63) 6.6 (5.7)

Test1-coarse 30.0 1.1 0.1 0.38 (11.8) 15.3 (3.2) 6.2 (6.1)

C. TEST 1: RESOLUTION STUDY IN THE PROPAGATION OF DETONATION

In the main text we have studied extensively how each of the model parameter contributes to the diversity of

chemical composition. However, besides the chemical composition which should be compatible with solar composition,

the simulation results should be convergent with respect to different resolution. Here we examine in more details how
our models depend on the choice of resolution.

The first test is done to a static CO core with He envelope as in our benchmark model. We choose the configuration

the same as Model 110-100-2-50 except for the initial He-detonation. We put a spherical C-detonation with a radius

100 km at the beginning and allow it to propagate. The spherical detonation will preserve mostly its symmetry and

propagate. Thus, it is literally a one-dimensional problem. But we remark that it is still a two-dimensional problem
because in cylindrical coordinate the spherical structure is broken down to r− and z− component along the constant

radius contour.

We put the model parameters and the explosion energetics including thermodynamics information in Table 4. We

choose the standard resolution at 15 km, which is the same as in the main text. A coarser model with a resolution of
30 km and a finer model with that of 7.5 km are prepared in a similar manner. We can see that when the resolution

increases, the global quantities including the explosion energy and burning time converge, though it does not follow

the exact scaling used in the spatial discretization scheme. The local quantity, i.e. the global maximum temperature,

shows a much slower convergence rate. Despite that, the three models show a decreasing relative change, showing that

the results are on the convergence side.
In Figure 36 we plot the time evolution of the central temperature, total energy and total burnt mass for the three

test models. All three models show an initial peak at t = 0.1 s because of the shock imposed by the initial detonation.

The peak temperature increases when resolution decreases. A typical change of 5 % increases is observed when ∆x

drops by half. After that, the star gradually expands and the star cools down. The models with a lower resolution
has a lower peak temperature. Our code shows linear convergence in the temperature. It is because the smaller the

grid size it has, the closer to the 1/r divergence when the shock converges. The cooling rate of the central grid also

depends on the resolution. The model with a smaller resolution cools faster and the change of temperature shows a

linear dependence. A 5 % difference can be seen at the central at t = 0.4 when resolution reduces by half.
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Figure 37. (left panel) The time evolution of the central temperature for the Models Test2-fine (∆x = 7.5 km), Test2 (∆x = 15
km) and Test2-coarse (∆x = 30 km). (middle panel) Similar to the left panel, but for the central density. (right panel) Similar
to the left panel, but for the total burnt mass.

Table 5. The model parameters for the one-dimensional resolution study. M , MHe are in unit of M⊙. ∆x is grid size in unit
of km. tburn is the time needed for the C-detonation wave to burn 1 M⊙ in unit of s. ρmax is the maximum central density in
the simulation, in unit of 108 g cm−3. Tmax is the maximum central temperature experienced in the simulations in units of 109

K. The numbers in the brackets stand for the percentage difference between that model with the higher resolution model.

Model ∆x M MHe tburn ρmax Tmax

Test2-fine 7.5 1.1 0.05 1.13 11.1 9.0

Test2 15.0 1.1 0.05 1.16 (2.6) 8.0 (2.8) 8.0 (11.1)

Test2-coarse 30.0 1.1 0.05 1.19 (2.6) 3.8 (5.2) 7.5 (6.3)

The total energy and its energy generation are also dependent on the spatial resolution. The total energy includes

the kinetic, internal and gravitational energy. The energy growth and its final energy are also weakly dependent on
the spatial resolution. Models with a higher resolution has a faster energy growth and higher final energy. The relative

difference is ∼ 1 % when resolution reduces by half. This suggests that when ∆x decreases, the level set can capture the

front surface with more details, which increases its surface area. As a result, the detonation can effectively propagate

faster, and release more energy while the star has less time to expand before it is swept by the detonation wave.
The total burnt mass shows how much mass is swept up by the detonation wave. It has a similar trend as the

total energy but the result is independent of the energy production algorithm. The models shows a larger and weaker

scaling relation for different ∆x. A smaller ∆x gives a lower time for the detonation wave to complete burning the

whole star. A difference of ∼ 10% is observed.

D. TEST 2: RESOLUTION STUDY OF SHOCK CONVERGENCE

In this test we study how the choice of spatial resolution affects the convergence of detonation shock. Geometric

convergence exists in both C- and He-detonation in different manners. For C-detonation, we have showed that ”X”-
Type detonation (such as Model 110-100-2-50 (X)) can result in the first C-detonation along the symmetry axis.

This detonation later propagates to the center. But in the three-dimensional projection, it corresponds to a C-

detonation ring shrinking into a point. Similarly, the ”S”-Type detonation (such as Model 100-050-2-S50 (S)) can

result in a spherical shock propagating towards center. For He-detonation, similar phenomenon occurs in the ”Y”-Type

detonation such as Model 110-050-2-B50 (Y). The geometric convergence occurs when the He-detonation propagate
from the convergence. However, the discontinuity is described numerically in the discretized manner by the Eulerian

meshes. As a result, the local thermodynamics behaviour at the point of convergence can depend strongly on the

spatial resolution.

To study how the geometric convergence of shock depends on the simulation, we repeat the simulations for Model
110-050-2-S50 (S) at a spatial resolution ∆x of 7.5, 15 and 30 km. We remind ∆x = 15 km is the default resolution.

We set up a WD with a M = 1.1 M⊙ and MHe = 0.05 M⊙ at Z = Z⊙. The initial He-detonation is spherical

at 30 km away from the CO-core. We use the spherical He-detonation near the CO-core interface. Then we allow

the He-detonation to propagate and trigger the inward propagating shock. The shock converges at the stellar core
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Figure 38. (left panel) The time evolution of the central temperature for the Models Test3-fine (∆x = 7.5 km), Test3 (∆x = 15
km) and Test3-coarse (∆x = 30 km). (middle panel) Similar to the left panel, but for the total energy. (right panel) Similar to
the left panel, but for the total burnt mass.

Table 6. The model parameters for the one-dimensional resolution study. M , MHe are in unit of M⊙. ∆x is grid size in unit
of km. tburn is the time needed for the C-detonation wave to burn everything in unit of s. Efin is the final asymptotic energy
given by the simulation, in unit of 1050 erg. Tmax is the maximum central temperature experienced in the simulations in units
of 109 K. 2nd detonation means if the carbon detonation is triggered throughout the simulation. The numbers in the brackets
stand for the percentage difference between that model with the higher resolution model.

Model ∆x M MHe tburn Tmax Efin 2nd detonation

Test3-fine 7.5 1.1 0.05 0.49 4.3 ∼-1.63 No

Test3 15.0 1.1 0.05 0.58 (18.4) 4.8 (11.6) -1.64 (0.6) No

Test3-coarse 30.0 1.1 0.05 0.75 (29.3) 5.3 (10.4) -1.66 (1.2) No

and triggers the C-detonation, which propagates outwards. In Table 5 we tabulate the parameters necessary for this
resolution study.

In the left panel of Figure 37 we plot the evolution of central density for the three tests. The density is an important

quantity not only because it is the essential part in the Euler equation, but also the energy production frequently

refers density as the input parameter. In the figure, the central density has its peak at t ∼ 0.8 s. This corresponds to

the moment when the spherical shock arrives at the center of the star. The peak value can increase from 4 × 108 up
to 109 g cm−3 when resolution increases. Again, this suggests that the code obtain a weakly converging result when

describing the local properties in the center.

In the middle panel of Figure 37 we plot similar to the left panel but for the central temperature. The central

temperature can be important especially when it is related to the burnt matter because it controls the NSE process
and the electron capture process. The central temperature can increase from 7× 109 to 9× 109 K for the three models

here. Again, smaller ∆x allows a faster drop in the central temperature. The sequence does not show a convergent

trend. Despite that we remind that the smaller the resolution we have, the smaller contribution the divergent result

to the whole system is.

In the right panel of Figure 37 we plot the burnt mass against time. There is no significant burning at the beginning
since only He is burnt. After t = 0.9 s, the detonation wave begins to sweep across the fuel efficiently. Again, it shows

a weakly converging sequence that a smaller ∆x allows faster burning of material. A reduction by 5 % by mass of the

whole star to be completely burnt is observed, when resolution drops by half. This shows that, even the local quantities

can rely on ∆x, the finer ∆x is, the smaller contribution for an individual cell to the global system, especially the
center cell gives. As a result, the resolution-dependent feature is averaged out in general.

E. TEST 3: RESOLUTION STUDY OF C-DETONATION TRIGGER

In this test we study how the choice of spatial resolution affects the convergence of shock in the trigger of second

(C-) detonation. In the simulation, similar to the previous test, the geometric convergence plays an important role

for creating the necessary hot spot, if the initial He-detonation possesses certain symmetry in space. For example,

We choose to study Model 110-100-2-3R50 (N). It is because, by comparing Models 110-100-2-50 (X), 110-100-2-2R50
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(Y) and 110-100-2-3R50 (N), they do not show a regular trend in the detonation pattern. Also, given the fact that

Model 110-100-2-50 (X) can trigger the second detonation, with more initial He being burnt at the beginning, Model

110-100-2-3R50 should be more probable to be ignited. Therefore, it becomes interesting to question if the choice of

resolution plays a role.
To test the validity of our result, we also perform convergence study for the Model 110-100-2-3R50 (N) at three

resolutions of 7.5, 15 and 30 km. Again, 15 km is the default simulation size used in our calculation. We set up the

same initial model with a total mass of 1.1 M⊙ and He mass of 0.1 M⊙ at solar metallity. The initial detonation is

a three-bubble structure located along the rotation axis, symmetry axis and diagonal line. Due to the much longer

computational time for the high resolution one, it is only computed until the reflected shock reaches the axis of rotation
symmetry (i.e. z-axis).

In the left panel of Figure 38 we plot the global maximum temperature against time for the three models. Due to

the multiple dimensional effects in this test, the time where the system reaches its maximum temperature and the

exact value are not monotonic. However, it shows a clear sign that the difference between the two models decreases
when ∆x drops. The peak temperature varies from 4 × 109 to 5 × 109 K. The relative change drop from ∼ 20% to

∼ 5% between the two sets of models. However, we notice that the hot spot is inside the He-envelope. So even it

exceeds the maximum threshold temperature 3× 109 K, suitable for matter at density below 107 g cm−3, it does not

trigger any C-detonation.

In the middle panel of Figure 38 we plot the total energy against time. This also tests the convergence of energy
production rate in the He-envelope due to the absence of second detonation. The maximum energy is limited to

E = −1.6× 1050 erg. It can be seen that the He-detonation has a stronger effect on the energy production rate. We

observe a difference in the ∼ 1% of final energy by reducing half of grid size but a difference of ∼ 10 % time for the

model to reach the same energy.
In the right panel of Figure 38 we plot the total burnt mass against time. The maximum burnt mass is limited to

MHe = 0.05M⊙. The He-detonation has larger but weakly converging differences in its propagation against different

resolution. This conforms with the energy production rate in the middle panel. They all show to burn the same

amount of matter, but the amount of time differs by 20% and is weakly converging.

The above test demonstrates that the trigger of C-detonation by shock convergence is in general robust at the current
resolution. However, the necessary ∆x to determine the C-detonation trigger can be different, which depends on the

the chemical composition and also the numerical algorithm such as how nuclear reaction scheme is implemented. For

further discussion in how resolution affects the discrimination of C-detonation trigger, we refer interested readers to

some recent resolution studies for the colliding WD scenario in e.g. Katz & Zingale (2019); Kushnir & Katz (2019)
and for the near-Chandrasekhar mass deflagration-detonation transition scenario in e.g. Fisher et al. (2019).

F. COMPARISON OF MODELS IN THE LITERATURE

We have studied the two-dimensional SNe Ia model using the sub-Chandrasekhar mass WD with the C detonation

induced by surface He detonation. In this work, we compared effects of different detonation structure. Here, we

consider the realizability of the detonation structure and compare with previous works in the literature.

F.1. Shigeyama et al. (1992)

The spherical detonation is the same as the classical DD Model (Shigeyama et al. 1992). The model is adopted for

SN1990N, which contains clear Si and Ca signatures with high velocities. The Model 105-050-2-S50 is comparable

with their Model CDT5 but with two qualitative differences. The two models share a similar CO core mass with

the same metallicity at Z⊙. Furthermore, the spherical He-detonation setting in Model 105-050-2-S50 ensures the

evolution is spherical, which is compatible to their one-dimensional simulation with spherical symmetry. In their work,
the detonation is triggered by hand, assuming the He detonation on the surface has finished and sent an inward-going

shock wave. Thus, there is no direct He burning considered. Second, that model assumes a direct CO detonation

at the center, which comes from the assumed symmetry in the detonation wave. In our model, the He detonation is

the ”X”-Type detonation. They find a yield of 0.56 M⊙ and 1.3× 1051 erg for the 56Ni production and total energy.
Our model has a stronger detonation that we find 0.60 M⊙ and 1.07× 1051 erg respectively. The spherical detonation

model is one of the higher viable shapes of detonation when the convection in the He layer is weak. In that case, the

layer closest to the CO boundary has always the highest and uniform temperature. The whole layer will be the first

site to trigger explosive He burning.
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F.2. Fink et al. (2007)

We compare our one-bubble model with the models in Fink et al. (2007) in the detonation structure. They consider

an isothermal WD model of total mass 0.9−1.0 M⊙. They also explored different detonation pattern, including spher-

ical, one-, two-, and five-bubble detonation structure. Their model z4.24A 2dq 256 has a similar model configuration

as our Model 105-050-2-2R50.
They observe the second detonation starts at 1.08 s after the He detonation. Our model shows a very close results

of 1.07 s. However, they find a yield of 0.01 M⊙ unburned fuel, 0.40 M⊙
56Ni and 0.51 M⊙

28Si. Our model shows

more 56Ni production of mass 0.49 M⊙ but a lower IME at 0.18 M⊙. There is more 16O fuel of mass 0.11 M⊙. The

differences between the two models come from the burning scheme. An instantaneous input of energy is provided in the

model of detonation wave, while our scheme applies the three-step burning scheme. The burning of 16O is suppressed
when the ash temperature is not sufficiently high, especially around 107 g cm−3, so that the estimated NQSE and

NSE timescales become very long for all the burning to take place. For WD models where convection and turbulence

are important, the fluid motion always disturbs the heat-generating He layer. As a result, local hot spot is possible to

form. When temperature is close to the explosive burning of 4He, the formation of a hot spot is likely to be the first
location of He detonation.

F.3. Shen et al. (2018)

In Shen et al. (2018) the sub-Chandrasekhar mass WD detonation model is also modeled in the framework of
dynamically driven double degenerate double detonation (DDDDDD) model. In this framework, when the two WDs

pass by each other, the tidal force of the secondary WD triggers the C detonation of the primary WD, while the

secondary WD later leaves the system without disrupting itself. The major difference of this physical picture from the

other one is that the companion WD remains intact after the SN Ia, unlike the standard white dwarf violent merger.
This provides a smaller total mass in the system, where the ejecta may explode more easily with a higher velocity. In

that work, SN Ia model with a mass range of 0.8 - 1.1 M⊙ with a metallicity from 0 - 2 Z⊙ and C/O mass fraction

ratio from 0.3 - 1 are computed in the one-dimensional limit. Here we compare one of the most similar models, the

Model 100-005-1-S50, with their 1 M⊙, solar metallicity, C + O = 1 Model. We choose this model because the initial

detonation and the C detonation are spherically symmetric, also the final 56Ni mass is similar. We have 0.6 M⊙ while
their model has 0.53 M⊙.

In Figure 39 we plot the scaled mass fraction of the stable isotopes of the two models. We can see that in general

the two models agree well qualitatively. Both models share the similar relative mass fractions of the same elements.

Some minor elements, including P, Cl, Na and Sc are surprisingly close to each other, despite their relatively small
amounts (subject to larger systematic uncertainty) and the very different treatments in the explosion scenario, initial

configuration, explosion treatment, and in particular, the hydrodynamics. Major elements, Si, S, Ar, Ca, Fe, Ni and

Zn, are still close to each other. However, their model shows a systematic higher mass fraction for the high-Ye end

isotopes (i.e. close to 0.5), e.g. 28Si, 32S, 36Ar, 40Ca, 52Cr and 54Fe. This shows that they have more incomplete

burning such that more IMEs and light Fe-peak elements are formed. However, there are also some differences in Ti
and Fe. Their model obtains a higher abundance ratios of 49Ti and 50,52,53Cr than our model, but a lower ratio of
46−48Ti. We note that this feature is prominent in asymmetric detonation but not in symmetric detonation. Also,

their 55Mn production is a few times higher, despite the low density matter in the star. A more detailed study of how

He detonation and C detonation are affected by the numerical treatment will be an interesting future work.

F.4. Polin et al. (2019)

In Polin et al. (2019) the one-dimensional sub-Chandrasekhar mass models are also calculated for a wide range of

WD masses from 0.6 to 1.2 M⊙ and He envelope masses from 0.01 to 0.08 M⊙ using the CASTRO code. Their work
studies the observational influences from the He envelope mass. It is found that two subclasses of light curves emerge.

For a lighter He envelope, the light curve resembles with some features in SNe Ia, including the correlation between

mass, brightness and velocity in the spectra. For a more massive He envelope, the light curve contains early UV flux

and appears to be red due to iron-peak elements on the surface and later it turns blue.
Their methodology and initial models are different from ours. In their work, the nuclear reaction is directly solved by

introducing the 13-isotope network containing 4He, 12C, 16O, 20Ne, 24Mg, 28Si, 32S, 36Ar, 40Ca, 44Ti, 48Cr, 52Fe and
56Fe. The nuclear reaction zone is specifically refined using the AMR option in CASTRO. A mixed transition between

the CO-core and He-envelope is introduced. Also, at the beginning a width of ∼ 1 km spherical He-detonation is put
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in by hand. On the other hand, we use a simplified 7-isotope network patched with the three-step burning scheme.

The nuclear reaction is not directly resolved but relied on the level-set, which assumes the front of the most rapid
reaction is directly represented by lines, where slower nuclear reactions take place assuming a given timescale. No

mixing between CO-core and He-envelope core is introduced in our initial model. Also, due to the two-dimensional

nature, our models include initial He-detonations from spherical to different aspherical structure, but the typical size

is larger (∼ 30 km).

Since their work does not aim for nucleosynthesis, here we only compare with their global chemical yields, in
particular their models with 0.05 M⊙ He in the envelope. Their models show a different growth rate in the MNi as a

function of M . They obtain a 56Ni mass from ∼ 0.2, to 0.5 and then 0.8 M⊙
56Ni in the 0.9, 1.0 and 1.1 M⊙. On

the other hand, we have 0.02, 0.6 and 0.8 M⊙
56Ni respectively from our Models 090-050-2-S50 (S), 100-050-2-S50 (S)

and 110-050-2-S50 (S). Large differences appear at low mass models. One major reason could be the nuclear reaction
at the low density for the CO-detonation. In our model, we have used a three-step nuclear burning reaction, with

the timescale dependent on the local density. On the other hand, they solve the nuclear reaction directly using the

13-isotope network in the hydrodynamics. And they also use the adaptive mesh refinement for resolving the nuclear

burning at small scales. Both procedures can capture in greater details how the low-density matter achieves complete

burning, which may enhance the IMEs and 56Ni production. On the other hand, for a more massive WD model, our
results agree with theirs well.

F.5. Jacobs et al. (2016)

An extension of the comparison includes the pre-supernova models evolved from multi-D hydrodynamics model.

However, the exact site of nuclear runaway in our work is an model parameter. In fact, the detailed position and

its runaway time can be modeled by following the exact hydrodynamics evolution over a few of convective turnover

timescale. For example, in Jacobs et al. (2016) the three-dimensional sub-Chandrasekhar mass WDs of masses from
0.85 to 1.23 M⊙ are studied using the low-Mach number code MAESTRO. The evolution path prior to its nuclear

runaway is studied.

Three nuclear runaway types are observed: localized runaway, quasi-equilibrium and convective runaway. Localized

runaway corresponds to the runaway taking place by a unique hot spot. This occurs when the convection fails to

transport heat away generated from the nuclear reaction near the interface efficiently. Quasi-equilibrium stands for
the opposite of the localized runaway. The convection can remove the heat efficiently so that no particular hot spot

can grow. However, it is unclear finally the runaway is localized or collective. Convective runaway means the collective

runaway in the form of helium nova.

In their study, there is not a clear trend in how they observed that localized runaway takes place in models with
a mass 0.8, 1.1 and 1.2 M⊙. Models with a mass of 1.0 M⊙ tends to have quasi-equilibrium. Convective runaway

takes place in the low mass model with a low MHe. From this it shows that for massive star model the single spot

runaway, e.g. 120-050-2-50 (X) is a more realistic model than collective runaway. Models with a mass M = 1.1 M⊙

tend to occur in a single spot runaway, and hence benchmark model including 110-100-2-50 (X) is the most likely
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initial configuration. There is no clear conclusion for our benchmark models due to the quasi-equilibrium outcome for

M = 1.0 M⊙. There is no models of mass 0.9 M⊙ presented in their work to compare with ours.
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1133
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Table 7. The nucleosynthesis yields for the stable isotopes of the benchmark model at different metallicity. The model at solar
metallicity is Model 110-100-2-50. Masses are in units of solar mass.

Isotope Z = 0 Z = 0.1 Z⊙ Z = 0.5 Z⊙ Z = Z⊙ Z = 2 Z⊙ Z = 3 Z⊙ Z = 5 Z⊙

12C 3.39× 10−3 3.38 × 10−3 3.38× 10−3 3.35 × 10−3 3.29× 10−3 2.62 × 10−3 2.20 × 10−3

13C 3.33× 10−10 1.22 × 10−10 3.41× 10−10 1.25 × 10−9 4.59× 10−9 2.9× 10−8 1.20 × 10−8

14N 1.16× 10−8 4.53 × 10−9 1.37× 10−8 3.80 × 10−8 9.63× 10−8 6.40 × 10−7 9.43 × 10−8

15N 2.44× 10−6 3.97 × 10−8 3.2× 10−9 1.8× 10−9 4.42× 10−10 1.86 × 10−9 6.88× 10−10

16O 1.14× 10−1 1.14 × 10−1 1.16× 10−1 1.17 × 10−1 1.19× 10−1 1.12 × 10−1 1.4× 10−1

17O 1.86× 10−10 5.92 × 10−10 5.31× 10−9 2.8× 10−8 6.32× 10−8 1.44 × 10−7 5.44 × 10−8

18O 7.64× 10−12 2.4× 10−11 1.37× 10−10 3.4 × 10−10 4.87× 10−10 2.67 × 10−9 1.5× 10−9

19F 3.67× 10−10 5.26 × 10−11 1.78× 10−11 3.28 × 10−11 1.5× 10−10 3.31 × 10−10 3.46× 10−10

20Ne 3.98× 10−3 3.96 × 10−3 4.4× 10−3 4.0× 10−3 3.86× 10−3 3.42 × 10−3 3.16 × 10−3

21Ne 1.16× 10−8 1.5× 10−8 6.10× 10−8 2.17 × 10−7 7.58× 10−7 2.20 × 10−6 3.85 × 10−6

22Ne 1.16× 10−8 9.45 × 10−6 4.72× 10−5 9.45 × 10−5 1.89× 10−4 1.82 × 10−4 3.1× 10−4

23Na 7.18× 10−6 7.71 × 10−6 1.1× 10−5 1.47 × 10−5 2.46× 10−5 4.4× 10−5 6.5× 10−5

24Mg 1.70× 10−2 1.60 × 10−2 1.11× 10−2 8.26 × 10−3 5.46× 10−3 3.77 × 10−3 2.66 × 10−3

25Mg 2.15× 10−7 3.49 × 10−6 1.53× 10−5 3.89 × 10−5 9.28× 10−5 1.50 × 10−4 2.61 × 10−4

26Mg 2.36× 10−6 7.52 × 10−6 2.80× 10−5 5.60 × 10−5 1.27× 10−4 2.47 × 10−4 5.85 × 10−4

26Al 2.86× 10−29 2.86 × 10−29 2.86× 10−29 2.86 × 10−29 2.86× 10−29 2.86 × 10−29 1.0× 10−10

27Al 7.37× 10−5 2.6× 10−4 5.27× 10−4 6.50 × 10−4 6.97× 10−4 6.39 × 10−4 6.56 × 10−4

28Si 1.17× 10−1 1.22 × 10−1 1.36× 10−1 1.35 × 10−1 1.32× 10−1 1.30 × 10−1 1.4× 10−1

29Si 6.15× 10−5 3.20 × 10−4 5.66× 10−4 8.76 × 10−4 1.57× 10−3 2.13 × 10−3 3.64 × 10−3

30Si 3.81× 10−5 6.74 × 10−5 7.2× 10−4 1.62 × 10−3 3.62× 10−3 5.59 × 10−3 1.10 × 10−2

31P 9.57× 10−5 5.89 × 10−5 2.33× 10−4 3.97 × 10−4 6.62× 10−4 8.36 × 10−4 1.8× 10−3

32S 5.40× 10−2 5.28 × 10−2 6.14× 10−2 6.8× 10−2 5.69× 10−2 5.33 × 10−2 3.91 × 10−2

33S 5.1× 10−5 1.32 × 10−4 2.73× 10−4 3.72 × 10−4 4.95× 10−4 5.45 × 10−4 5.41 × 10−4

34S 6.96× 10−6 1.26 × 10−4 1.19× 10−3 2.62 × 10−3 5.68× 10−3 8.65 × 10−3 1.22 × 10−2

36S 1.19× 10−9 2.76 × 10−9 3.86× 10−8 1.77 × 10−7 1.53× 10−6 4.80 × 10−6 1.51 × 10−5

35Cl 1.2× 10−5 2.17 × 10−5 8.55× 10−5 1.51 × 10−4 2.41× 10−4 2.45 × 10−4 1.90 × 10−4

37Cl 5.1× 10−6 1.10 × 10−5 2.39× 10−5 3.26 × 10−5 4.31× 10−5 4.65 × 10−5 4.30 × 10−5

36Ar 1.8× 10−2 9.79 × 10−3 1.4× 10−2 9.73 × 10−3 8.24× 10−3 7.39 × 10−3 5.25 × 10−3

38Ar 2.93× 10−6 6.44 × 10−5 6.1× 10−4 1.32 × 10−3 2.76× 10−3 3.98 × 10−3 4.53 × 10−3

40Ar 2.32× 10−10 2.41 × 10−10 8.66× 10−10 3.35 × 10−9 3.53× 10−8 1.14 × 10−7 2.94 × 10−7

39K 9.47× 10−6 2.30 × 10−5 7.10× 10−5 1.7× 10−4 1.45× 10−4 1.49 × 10−4 1.5× 10−4

40K 4.96× 10−8 5.13 × 10−8 8.32× 10−8 1.23 × 10−7 2.25× 10−7 2.24 × 10−7 1.15 × 10−7

41K 2.12× 10−6 3.87 × 10−6 6.60× 10−6 8.47 × 10−6 9.95× 10−6 9.58 × 10−6 7.29 × 10−6

40Ca 1.11× 10−2 9.73 × 10−3 9.38× 10−3 8.49 × 10−3 7.14× 10−3 6.79 × 10−3 5.45 × 10−3

42Ca 2.55× 10−6 4.15 × 10−6 2.13× 10−5 4.53 × 10−5 8.90× 10−5 1.17 × 10−4 1.12 × 10−4

43Ca 1.29× 10−5 1.30 × 10−5 1.32× 10−5 1.30 × 10−5 1.31× 10−5 1.30 × 10−5 1.20 × 10−5

44Ca 5.52× 10−4 5.49 × 10−4 5.15× 10−4 5.14 × 10−4 5.13× 10−4 5.13 × 10−4 4.74 × 10−4

46Ca 6.40× 10−12 6.41 × 10−12 2.80× 10−11 1.78 × 10−10 9.73× 10−10 7.95 × 10−9 2.18 × 10−9

48Ca 1.93× 10−15 1.93 × 10−15 1.53× 10−14 9.31 × 10−12 7.31× 10−14 1.36 × 10−10 2.20× 10−12

45Sc 1.54× 10−6 1.61 × 10−6 1.60× 10−6 1.67 × 10−6 1.72× 10−6 1.61 × 10−6 1.45 × 10−6

46Ti 8.89× 10−6 9.57 × 10−6 1.96× 10−5 2.94 × 10−5 4.46× 10−5 5.13 × 10−5 4.25 × 10−5

47Ti 8.26× 10−5 8.28 × 10−5 8.57× 10−5 8.61 × 10−5 8.63× 10−5 7.71 × 10−5 7.21 × 10−5

48Ti 5.10× 10−3 5.7× 10−3 4.89× 10−3 4.87 × 10−3 4.85× 10−3 4.27 × 10−3 4.54 × 10−3

49Ti 5.11× 10−5 5.50 × 10−5 5.11× 10−5 5.24 × 10−5 5.30× 10−5 4.97 × 10−5 5.37 × 10−5

50Ti 2.74× 10−9 2.74 × 10−9 8.21× 10−9 1.22 × 10−5 1.8× 10−8 5.2× 10−7 9.39 × 10−9

50V 4.91× 10−7 4.91 × 10−7 8.36× 10−7 8.42 × 10−7 8.43× 10−7 1.73 × 10−6 2.43 × 10−7

51V 6.10× 10−4 6.12 × 10−4 5.77× 10−4 5.89 × 10−4 5.93× 10−4 5.62 × 10−4 5.70 × 10−4
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Table 8. cont′d of Table 7.

Isotope Z = 0 Z = 0.1 Z = 0.5 Z = 1 Z = 2 Z = 3 Z = 5
50Cr 1.0× 10−4 1.7× 10−4 1.50× 10−4 2.18 × 10−4 3.50× 10−4 4.46 × 10−4 5.18 × 10−4

52Cr 1.78× 10−2 1.76 × 10−2 1.59× 10−2 1.60 × 10−2 1.56× 10−2 1.57 × 10−2 1.73 × 10−2

53Cr 4.25× 10−4 4.74 × 10−4 4.39× 10−4 4.87 × 10−4 5.20× 10−4 5.96 × 10−4 7.64 × 10−4

54Cr 8.73× 10−6 8.73 × 10−6 1.28× 10−5 1.37 × 10−4 1.30× 10−5 1.72 × 10−5 6.57 × 10−6

55Mn 1.79× 10−3 1.95 × 10−3 1.89× 10−3 2.28 × 10−3 2.60× 10−3 3.85 × 10−3 7.26 × 10−3

54Fe 8.76× 10−4 1.36 × 10−3 3.59× 10−3 7.80 × 10−3 1.23× 10−2 1.94 × 10−2 3.96 × 10−2

56Fe 6.73× 10−1 6.69 × 10−1 6.34× 10−1 6.10 × 10−1 5.83× 10−1 5.57 × 10−1 5.15 × 10−1

57Fe 1.51× 10−2 1.60 × 10−2 1.83× 10−2 2.12 × 10−2 2.52× 10−2 2.84 × 10−2 3.30 × 10−2

58Fe 6.90× 10−6 6.90 × 10−6 9.56× 10−6 4.39 × 10−4 9.61× 10−6 1.12 × 10−5 3.94 × 10−6

60Fe 1.6× 10−13 1.1× 10−13 5.65× 10−13 1.34 × 10−9 5.63× 10−13 4.99 × 10−10 1.88× 10−14

59Co 2.25× 10−4 2.87 × 10−4 5.38× 10−4 7.19 × 10−4 7.79× 10−4 7.42 × 10−4 6.80 × 10−4

58Ni 4.35× 10−3 5.59 × 10−3 1.56× 10−2 3.26 × 10−2 5.80× 10−2 8.56 × 10−2 1.40 × 10−1

60Ni 1.0× 10−2 1.2× 10−2 9.8× 10−3 8.28 × 10−3 6.37× 10−3 5.34 × 10−3 3.57 × 10−3

61Ni 5.14× 10−4 5.26 × 10−4 5.85× 10−4 5.99 × 10−4 5.98× 10−4 5.47 × 10−4 4.63 × 10−4

62Ni 4.81× 10−4 6.51 × 10−4 1.33× 10−3 2.20 × 10−3 2.92× 10−3 3.30 × 10−3 3.63 × 10−3

64Ni 1.43× 10−9 1.44 × 10−9 3.64× 10−9 6.96 × 10−7 3.55× 10−9 4.69 × 10−8 3.77× 10−10

63Cu 5.19× 10−6 6.28 × 10−6 4.98× 10−6 5.59 × 10−6 6.16× 10−6 6.44 × 10−6 7.66 × 10−6

65Cu 1.73× 10−5 1.74 × 10−5 1.73× 10−5 1.76 × 10−5 1.74× 10−5 1.62 × 10−5 1.39 × 10−5

64Zn 2.13× 10−4 1.88 × 10−4 1.20× 10−4 1.16 × 10−4 1.12× 10−4 1.0× 10−4 8.22 × 10−5

66Zn 3.87× 10−5 4.6× 10−5 4.33× 10−5 5.2× 10−5 5.65× 10−5 5.75 × 10−5 6.31 × 10−5

67Zn 4.83× 10−6 4.83 × 10−6 4.18× 10−6 4.36 × 10−6 4.20× 10−6 3.70 × 10−6 3.97 × 10−6

68Zn 6.64× 10−6 6.37 × 10−6 7.52× 10−6 7.56 × 10−6 7.51× 10−6 6.36 × 10−6 4.42 × 10−6

70Zn 1.99× 10−16 2.38 × 10−16 2.40× 10−15 1.10 × 10−13 1.16× 10−15 6.22 × 10−12 4.92× 10−17

Table 9. Similar to Table 7 but for the radioactive isotopes of the benchmark model. Masses are in units of solar mass.

Z (Zodot) Z = 0 Z = 0.1 Z = 0.5 Z = 1 Z = 2 Z = 3 Z = 5
22Na 7.32 × 10−9 6.59 × 10−9 1.12 × 10−8 1.25× 10−8 1.1× 10−8 7.67 × 10−9 5.26× 10−9

26Al 1.91 × 10−6 4.30 × 10−6 7.4× 10−6 6.98× 10−6 4.45 × 10−6 2.40 × 10−6 1.15× 10−6

39Ar 5.90 × 10−9 6.5× 10−9 1.28 × 10−8 1.99× 10−8 5.54 × 10−8 1.5× 10−7 1.1× 10−7

40K 4.99 × 10−8 5.16 × 10−8 8.37 × 10−8 1.23× 10−7 2.26 × 10−7 2.25 × 10−7 1.15× 10−7

41Ca 2.4× 10−6 3.63 × 10−6 6.65 × 10−6 8.49× 10−6 9.99 × 10−6 9.51 × 10−6 7.23× 10−6

44Ti 5.52 × 10−4 5.50 × 10−4 5.15 × 10−4 5.14× 10−4 5.12 × 10−4 5.15 × 10−4 4.72× 10−4

48V 2.93 × 10−6 2.94 × 10−6 3.22 × 10−6 3.26× 10−6 3.30 × 10−6 2.81 × 10−6 2.9× 10−6

49V 3.86 × 10−6 3.86 × 10−6 5.9× 10−6 5.19× 10−6 5.40 × 10−6 5.30 × 10−6 3.44× 10−6

53Mn 8.39 × 10−5 8.40 × 10−5 9.34 × 10−5 1.6× 10−4 1.35 × 10−4 1.84 × 10−4 2.16× 10−4

60Fe 1.58 × 10−12 1.58× 10−12 8.29 × 10−12 2.1× 10−8 8.29× 10−12 7.23 × 10−9 2.64 × 10−13

56Co 1.14 × 10−4 1.15 × 10−4 8.58 × 10−5 8.95× 10−5 9.2× 10−5 8.92 × 10−5 1.51× 10−4

57Co 8.77 × 10−5 8.79 × 10−5 8.84 × 10−5 1.47× 10−4 1.3× 10−4 9.99 × 10−5 1.7× 10−4

60Co 1.21 × 10−8 1.21 × 10−8 3.6× 10−8 8.90× 10−8 3.6× 10−8 4.63 × 10−7 3.44× 10−9

56Ni 6.73 × 10−1 6.69 × 10−1 6.33 × 10−1 6.8× 10−1 5.82 × 10−1 5.55 × 10−1 5.13× 10−1

57Ni 1.50 × 10−2 1.59 × 10−2 1.82 × 10−2 2.10× 10−2 2.51 × 10−2 2.83 × 10−2 3.29× 10−2

59Ni 4.11 × 10−5 4.11 × 10−5 4.9× 10−5 7.33× 10−5 4.65 × 10−5 4.82 × 10−5 8.84× 10−5

63Ni 4.74 × 10−10 4.75× 10−10 1.55 × 10−9 9.31× 10−8 1.54 × 10−9 9.77 × 10−8 1.11 × 10−10
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Table 10. The nucleosynthesis yields for the stable isotopes of the benchmark model with a spherical He detonation as a trigger
based on Model 110-050-2-B50 at solar metallicity. Masses are in units of solar mass.

Z (Z⊙) 0 0.1 0.5 1 2 3 5
12C 4.10× 10−3 4.9 × 10−3 4.5× 10−3 4.2 × 10−3 3.95× 10−3 3.89 × 10−3 3.77× 10−3

13C 3.66 × 10−10 2.36× 10−10 2.13× 10−9 8.97 × 10−9 5.42× 10−8 8.85 × 10−8 2.8× 10−7

14N 1.24× 10−8 8.32 × 10−9 3.57× 10−8 1.17 × 10−7 5.17× 10−7 8.47 × 10−7 1.95× 10−6

15N 1.94× 10−6 4.25 × 10−8 3.71× 10−9 1.38 × 10−9 1.49× 10−9 2.65 × 10−9 8.42× 10−9

16O 9.80× 10−2 9.93 × 10−2 1.1× 10−1 1.2 × 10−1 1.4× 10−1 1.4 × 10−1 1.2× 10−1

17O 2.98 × 10−10 1.50 × 10−9 1.52× 10−8 4.32 × 10−8 8.5× 10−8 1.6 × 10−7 1.52× 10−7

18O 1.13 × 10−11 4.34× 10−11 1.94 × 10−10 5.10 × 10−10 1.96× 10−9 4.5 × 10−9 1.31× 10−8

19F 3.96 × 10−10 6.70× 10−11 2.65 × 10−11 6.80 × 10−11 2.17 × 10−10 3.97 × 10−10 8.63× 10−10

20Ne 4.90× 10−3 4.87 × 10−3 4.80× 10−3 4.72 × 10−3 4.53× 10−3 4.34 × 10−3 4.3× 10−3

21Ne 1.39× 10−8 1.62 × 10−8 1.13× 10−7 4.33 × 10−7 1.49× 10−6 3.5 × 10−6 8.24× 10−6

22Ne 1.43× 10−8 9.46 × 10−6 4.72× 10−5 9.46 × 10−5 1.92× 10−4 2.97 × 10−4 5.24× 10−4

23Na 9.57× 10−6 1.2 × 10−5 1.38× 10−5 2.10 × 10−5 3.61× 10−5 5.49 × 10−5 1.9× 10−4

24Mg 1.66× 10−2 1.55 × 10−2 1.14× 10−2 8.62 × 10−3 5.74× 10−3 4.33 × 10−3 3.8× 10−3

25Mg 2.89× 10−7 3.66 × 10−6 1.94× 10−5 4.99 × 10−5 1.18× 10−4 1.88 × 10−4 3.64× 10−4

26Mg 3.16× 10−6 9.62 × 10−6 3.71× 10−5 7.47 × 10−5 1.61× 10−4 2.94 × 10−4 8.17× 10−4

26Al 2.86 × 10−29 2.86× 10−29 2.86 × 10−29 2.86 × 10−29 2.86 × 10−29 3.61 × 10−28 4.8× 10−28

27Al 8.57× 10−5 2.30 × 10−4 5.81× 10−4 7.17 × 10−4 7.70× 10−4 7.78 × 10−4 8.34× 10−4

28Si 1.5× 10−1 1.10 × 10−1 1.11× 10−1 1.10 × 10−1 1.8× 10−1 1.6 × 10−1 1.0× 10−1

29Si 5.9× 10−5 2.26 × 10−4 4.78× 10−4 8.24 × 10−4 1.61× 10−3 2.46 × 10−3 4.53× 10−3

30Si 3.23× 10−5 7.15 × 10−5 6.93× 10−4 1.58 × 10−3 3.44× 10−3 5.58 × 10−3 1.9× 10−2

31P 8.39× 10−5 5.42 × 10−5 2.6× 10−4 3.54 × 10−4 5.97× 10−4 8.3 × 10−4 1.11× 10−3

32S 5.10× 10−2 4.92 × 10−2 4.96× 10−2 4.90 × 10−2 4.56× 10−2 4.16 × 10−2 3.41× 10−2

33S 4.7× 10−5 1.6 × 10−4 2.24× 10−4 3.8 × 10−4 4.10× 10−4 4.67 × 10−4 4.98× 10−4

34S 3.93× 10−6 1.4 × 10−4 8.85× 10−4 1.97 × 10−3 4.35× 10−3 6.78 × 10−3 1.9× 10−2

36S 2.78 × 10−11 1.31 × 10−9 3.34× 10−8 1.82 × 10−7 1.73× 10−6 6.42 × 10−6 2.23× 10−5

35Cl 7.90× 10−6 1.78 × 10−5 7.8× 10−5 1.30 × 10−4 2.12× 10−4 2.35 × 10−4 1.91× 10−4

37Cl 3.6× 10−6 8.88 × 10−6 1.73× 10−5 2.37 × 10−5 3.21× 10−5 3.67 × 10−5 3.95× 10−5

36Ar 1.2× 10−2 8.94 × 10−3 8.21× 10−3 7.52 × 10−3 6.22× 10−3 5.18 × 10−3 3.69× 10−3

38Ar 1.6× 10−6 6.0 × 10−5 4.77× 10−4 1.4 × 10−3 2.19× 10−3 3.21 × 10−3 4.63× 10−3

40Ar 4.66 × 10−12 1.12× 10−11 3.25 × 10−10 3.4 × 10−9 3.91× 10−8 1.46 × 10−7 4.31× 10−7

39K 7.10× 10−6 2.5 × 10−5 5.70× 10−5 8.52 × 10−5 1.15× 10−4 1.21 × 10−4 1.3× 10−4

40K 5.89 × 10−10 1.90 × 10−9 1.41× 10−8 5.41 × 10−8 1.58× 10−7 1.83 × 10−7 9.4× 10−8

41K 1.20× 10−6 2.76 × 10−6 4.41× 10−6 5.66 × 10−6 6.76× 10−6 6.64 × 10−6 5.36× 10−6

40Ca 1.6× 10−2 8.91 × 10−3 7.69× 10−3 6.87 × 10−3 5.71× 10−3 4.96 × 10−3 3.97× 10−3

42Ca 2.10× 10−6 3.60 × 10−6 1.63× 10−5 3.39 × 10−5 6.60× 10−5 8.89 × 10−5 1.5× 10−4

43Ca 1.36× 10−5 1.37 × 10−5 1.39× 10−5 1.39 × 10−5 1.38× 10−5 1.38 × 10−5 1.39× 10−5

44Ca 6.2× 10−4 6.1 × 10−4 6.0× 10−4 5.99 × 10−4 6.0× 10−4 5.97 × 10−4 5.97× 10−4

46Ca 1.84 × 10−16 4.41× 10−15 2.86 × 10−12 6.92 × 10−11 9.5× 10−10 2.14 × 10−9 2.49× 10−9

48Ca 4.80 × 10−23 3.60× 10−21 5.54 × 10−18 5.8× 10−16 6.53 × 10−14 5.43 × 10−13 3.19× 10−12

45Sc 6.14× 10−7 6.72 × 10−7 7.34× 10−7 7.81 × 10−7 8.9× 10−7 7.97 × 10−7 7.65× 10−7

46Ti 9.74× 10−7 1.64 × 10−6 7.69× 10−6 1.53 × 10−5 2.72× 10−5 3.35 × 10−5 3.33× 10−5

47Ti 6.53× 10−5 6.54 × 10−5 6.57× 10−5 6.58 × 10−5 6.61× 10−5 6.64 × 10−5 6.67× 10−5

48Ti 2.68× 10−3 2.65 × 10−3 2.63× 10−3 2.61 × 10−3 2.59× 10−3 2.59 × 10−3 2.58× 10−3

49Ti 2.38× 10−5 2.64 × 10−5 2.76× 10−5 2.83 × 10−5 2.87× 10−5 2.93 × 10−5 3.3× 10−5

50Ti 1.3× 10−13 2.70× 10−13 9.62 × 10−11 7.12 × 10−10 1.93× 10−9 2.48 × 10−9 6.33× 10−9

50V 4.85 × 10−10 4.94× 10−10 1.39× 10−9 3.86 × 10−9 6.34× 10−9 1.9 × 10−8 3.20× 10−8

51V 2.67× 10−4 2.69 × 10−4 2.76× 10−4 2.81 × 10−4 2.86× 10−4 2.95 × 10−4 3.12× 10−4
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Table 11. cont′d of Table 10.

Z (Z⊙) 0 0.1 0.5 1 2 3 5
50Cr 1.69× 10−5 2.32 × 10−5 5.98× 10−5 1.9 × 10−4 2.10× 10−4 2.80 × 10−4 3.48× 10−4

52Cr 3.34× 10−3 3.19 × 10−3 2.95× 10−3 2.80 × 10−3 2.73× 10−3 2.93 × 10−3 3.83× 10−3

53Cr 7.22× 10−5 1.6 × 10−4 1.34× 10−4 1.56 × 10−4 2.3× 10−4 2.78 × 10−4 4.48× 10−4

54Cr 2.68× 10−8 2.70 × 10−8 3.58× 10−8 6.70 × 10−8 2.54× 10−7 7.23 × 10−7 2.23× 10−6

55Mn 3.56× 10−4 4.89 × 10−4 7.29× 10−4 9.15 × 10−4 1.39× 10−3 2.41 × 10−3 6.72× 10−3

54Fe 1.97× 10−4 6.46 × 10−4 2.70× 10−3 5.20 × 10−3 9.87× 10−3 1.49 × 10−2 3.68× 10−2

56Fe 7.25× 10−1 7.21 × 10−1 7.4× 10−1 6.84 × 10−1 6.45× 10−1 6.8 × 10−1 5.32× 10−1

57Fe 1.16× 10−2 1.26 × 10−2 1.57× 10−2 1.90 × 10−2 2.41× 10−2 2.77 × 10−2 3.12× 10−2

58Fe 3.70× 10−8 3.72 × 10−8 3.99× 10−8 4.83 × 10−8 8.49× 10−8 1.46 × 10−7 2.97× 10−7

60Fe 1.45 × 10−19 1.52× 10−19 4.18 × 10−19 1.11 × 10−18 2.0× 10−18 1.94 × 10−18 1.24× 10−17

59Co 6.73× 10−5 1.25 × 10−4 4.59× 10−4 6.17 × 10−4 7.33× 10−4 6.72 × 10−4 4.46× 10−4

58Ni 9.17× 10−4 1.82 × 10−3 1.41× 10−2 3.6 × 10−2 6.46× 10−2 9.80 × 10−2 1.51× 10−1

60Ni 8.66× 10−3 8.96 × 10−3 7.64× 10−3 6.41 × 10−3 4.44× 10−3 2.89 × 10−3 1.22× 10−3

61Ni 1.90× 10−4 2.5 × 10−4 2.32× 10−4 2.48 × 10−4 2.37× 10−4 1.98 × 10−4 1.22× 10−4

62Ni 1.7× 10−4 2.96 × 10−4 1.7× 10−3 1.83 × 10−3 2.70× 10−3 2.83 × 10−3 2.20× 10−3

64Ni 7.90 × 10−13 9.44× 10−13 9.52 × 10−13 8.3× 10−13 7.94 × 10−13 8.17 × 10−13 8.46× 10−13

63Cu 1.90× 10−6 3.14 × 10−6 1.85× 10−6 2.24 × 10−6 2.89× 10−6 3.20 × 10−6 3.9× 10−6

65Cu 3.34× 10−6 3.42 × 10−6 3.47× 10−6 3.49 × 10−6 3.35× 10−6 3.22 × 10−6 2.89× 10−6

64Zn 1.30× 10−4 8.61 × 10−5 1.68× 10−5 1.30 × 10−5 9.70× 10−6 7.81 × 10−6 6.14× 10−6

66Zn 7.96× 10−6 9.62 × 10−6 1.58× 10−5 2.15 × 10−5 2.67× 10−5 2.71 × 10−5 2.33× 10−5

67Zn 1.21× 10−6 1.20 × 10−6 1.20× 10−6 1.21 × 10−6 1.21× 10−6 1.24 × 10−6 1.24× 10−6

68Zn 8.43× 10−7 5.39 × 10−7 4.9× 10−7 4.7 × 10−7 4.7× 10−7 4.17 × 10−7 4.22× 10−7

70Zn 5.14 × 10−17 5.52× 10−17 4.40 × 10−15 5.22 × 10−17 5.14 × 10−17 5.7× 10−17 5.6× 10−17

Table 12. The nucleosynthesis yields for radioactive isotopes of the benchmark models. Masses are in units of solar mass.

Z (Z⊙) 0 0.1 0.5 1 2 3 5
22Na 9.63× 10−9 8.92 × 10−9 1.40× 10−8 1.56 × 10−8 1.24× 10−8 9.89 × 10−9 7.6× 10−9

26Al 2.54× 10−6 5.47 × 10−6 8.71× 10−6 8.12 × 10−6 5.7× 10−6 3.16 × 10−6 1.44× 10−6

39Ar 9.85 × 10−12 1.14× 10−10 1.75× 10−9 8.69 × 10−9 4.57× 10−8 9.15 × 10−8 1.3× 10−7

40K 5.92 × 10−10 1.91 × 10−9 1.42× 10−8 5.44 × 10−8 1.59× 10−7 1.84 × 10−7 9.9× 10−8

41Ca 1.5× 10−6 2.59 × 10−6 4.44× 10−6 5.71 × 10−6 6.75× 10−6 6.65 × 10−6 5.31× 10−6

44Ti 6.3× 10−4 6.1 × 10−4 6.0× 10−4 5.99 × 10−4 5.97× 10−4 5.97 × 10−4 5.95× 10−4

48V 1.11× 10−6 1.12 × 10−6 1.13× 10−6 1.15 × 10−6 1.19× 10−6 1.21 × 10−6 1.20× 10−6

49V 8.16× 10−8 8.42 × 10−8 1.21× 10−7 1.85 × 10−7 3.38× 10−7 5.81 × 10−7 1.12× 10−6

53Mn 2.72× 10−6 2.84 × 10−6 5.18× 10−6 1.15 × 10−5 4.51× 10−5 9.98 × 10−5 1.83× 10−4

60Fe 2.14 × 10−18 2.26× 10−18 5.98 × 10−18 1.62 × 10−17 3.0× 10−17 2.78 × 10−17 1.78× 10−16

56Co 1.56× 10−5 1.59 × 10−5 1.67× 10−5 1.79 × 10−5 2.4× 10−5 2.57 × 10−5 5.77× 10−5

57Co 5.43× 10−6 5.56 × 10−6 6.93× 10−6 9.87 × 10−6 2.4× 10−5 3.2 × 10−5 4.37× 10−5

60Co 5.85 × 10−13 5.93× 10−13 6.10 × 10−13 6.59 × 10−13 1.7× 10−12 2.25 × 10−12 8.29× 10−12

56Ni 7.25× 10−1 7.21 × 10−1 7.4× 10−1 6.84 × 10−1 6.45× 10−1 6.6 × 10−1 5.29× 10−1

57Ni 1.16× 10−2 1.26 × 10−2 1.57× 10−2 1.90 × 10−2 2.41× 10−2 2.76 × 10−2 3.11× 10−2

59Ni 3.31× 10−6 3.36 × 10−6 3.80× 10−6 4.77 × 10−6 8.56× 10−6 1.96 × 10−5 6.77× 10−5

63Ni 2.55 × 10−14 5.3× 10−14 2.88 × 10−14 2.62 × 10−14 2.95 × 10−14 4.33 × 10−14 1.26× 10−13
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Table 13. The nucleosynthesis yields for the stable isotopes of the benchmark model with a spherical He detonation as a trigger
based on Model 100-050-2-S50 at solar metallicity. Masses are in units of solar mass.

Z (Z⊙) 0 0.1 0.5 1 2 3 5
12C 1.18× 10−3 1.17 × 10−3 1.16× 10−3 1.15 × 10−3 1.13× 10−3 1.13 × 10−3 1.11× 10−3

13C 1.4× 10−10 8.4× 10−11 8.87 × 10−10 3.2 × 10−9 1.21× 10−8 3.70 × 10−8 1.9× 10−7

14N 3.94× 10−9 1.76 × 10−9 9.2× 10−9 1.81 × 10−8 7.5× 10−8 2.52 × 10−7 6.87× 10−7

15N 1.0× 10−6 4.93 × 10−9 5.68 × 10−10 2.13 × 10−10 3.20 × 10−10 1.42 × 10−9 5.54× 10−9

16O 5.90× 10−2 6.34 × 10−2 6.55× 10−2 6.64 × 10−2 6.68× 10−2 6.64 × 10−2 6.48× 10−2

17O 9.61 × 10−11 2.70× 10−10 4.18× 10−9 1.8 × 10−8 2.3× 10−8 2.43 × 10−8 2.52× 10−8

18O 3.29 × 10−12 8.33× 10−12 6.40 × 10−11 9.43 × 10−11 4.35 × 10−10 2.21 × 10−9 8.97× 10−9

19F 5.92 × 10−11 7.31× 10−12 7.99 × 10−12 2.39 × 10−11 7.87 × 10−11 1.70 × 10−10 2.95× 10−10

20Ne 1.30× 10−3 1.27 × 10−3 1.21× 10−3 1.15 × 10−3 1.8× 10−3 1.4 × 10−3 9.83× 10−4

21Ne 2.97× 10−9 5.41 × 10−9 5.8× 10−8 1.57 × 10−7 5.91× 10−7 1.56 × 10−6 4.5× 10−6

22Ne 5.70× 10−9 3.38 × 10−9 5.77× 10−9 9.25 × 10−9 6.35× 10−7 6.45 × 10−6 4.12× 10−5

23Na 3.59× 10−6 3.86 × 10−6 5.77× 10−6 8.39 × 10−6 1.58× 10−5 2.80 × 10−5 5.31× 10−5

24Mg 3.69× 10−3 3.10 × 10−3 1.84× 10−3 1.28 × 10−3 8.70× 10−4 7.14 × 10−4 6.29× 10−4

25Mg 1.9× 10−7 8.53 × 10−7 6.20× 10−6 1.45 × 10−5 3.43× 10−5 5.87 × 10−5 1.11× 10−4

26Mg 1.26× 10−6 3.45 × 10−6 1.35× 10−5 2.89 × 10−5 6.82× 10−5 1.13 × 10−4 2.74× 10−4

26Al 2.60 × 10−29 2.60× 10−29 2.60 × 10−29 2.60 × 10−29 2.60 × 10−29 2.60 × 10−29 3.57× 10−11

27Al 2.45× 10−5 4.76 × 10−5 9.84× 10−5 1.14 × 10−4 1.23× 10−4 1.33 × 10−4 1.72× 10−4

28Si 1.14× 10−1 1.18 × 10−1 1.22× 10−1 1.25 × 10−1 1.26× 10−1 1.26 × 10−1 1.22× 10−1

29Si 2.22× 10−5 9.34 × 10−5 1.71× 10−4 2.67 × 10−4 4.74× 10−4 7.4 × 10−4 1.24× 10−3

30Si 1.66× 10−5 2.23 × 10−5 1.69× 10−4 3.79 × 10−4 9.29× 10−4 1.73 × 10−3 4.50× 10−3

31P 4.4× 10−5 2.88 × 10−5 9.33× 10−5 1.53 × 10−4 2.64× 10−4 3.74 × 10−4 5.61× 10−4

32S 7.11× 10−2 6.89 × 10−2 6.81× 10−2 6.56 × 10−2 5.89× 10−2 5.28 × 10−2 4.28× 10−2

33S 1.64× 10−5 7.31 × 10−5 1.39× 10−4 1.89 × 10−4 2.65× 10−4 3.19 × 10−4 3.71× 10−4

34S 4.3× 10−6 1.15 × 10−4 8.82× 10−4 1.91 × 10−3 4.13× 10−3 6.58 × 10−3 1.14× 10−2

36S 4.11 × 10−12 5.80× 10−10 9.34× 10−9 6.35 × 10−8 6.23× 10−7 1.81 × 10−6 4.76× 10−6

35Cl 8.25× 10−6 1.80 × 10−5 6.35× 10−5 1.4 × 10−4 1.57× 10−4 1.75 × 10−4 1.59× 10−4

37Cl 2.23× 10−6 9.59 × 10−6 1.85× 10−5 2.51 × 10−5 3.32× 10−5 3.58 × 10−5 3.39× 10−5

36Ar 1.55× 10−2 1.41 × 10−2 1.28× 10−2 1.15 × 10−2 9.49× 10−3 8.2 × 10−3 6.1× 10−3

38Ar 6.21× 10−7 8.62 × 10−5 6.28× 10−4 1.34 × 10−3 2.70× 10−3 3.87 × 10−3 5.30× 10−3

40Ar 7.66 × 10−14 4.26× 10−12 1.64 × 10−10 1.71 × 10−9 1.62× 10−8 4.42 × 10−8 1.14× 10−7

39K 5.8× 10−6 2.17 × 10−5 6.27× 10−5 9.25 × 10−5 1.22× 10−4 1.24 × 10−4 1.2× 10−4

40K 4.81 × 10−11 1.58 × 10−9 1.21× 10−8 3.84 × 10−8 8.59× 10−8 9.1 × 10−8 5.60× 10−8

41K 7.4× 10−7 2.71 × 10−6 4.54× 10−6 5.64 × 10−6 6.64× 10−6 6.37 × 10−6 4.80× 10−6

40Ca 1.61× 10−2 1.40 × 10−2 1.19× 10−2 1.4 × 10−2 8.49× 10−3 7.33 × 10−3 5.81× 10−3

42Ca 3.55× 10−7 2.58 × 10−6 1.97× 10−5 4.24 × 10−5 7.93× 10−5 1.1 × 10−4 1.10× 10−4

43Ca 1.31× 10−5 1.36 × 10−5 1.39× 10−5 1.38 × 10−5 1.36× 10−5 1.36 × 10−5 1.37× 10−5

44Ca 2.78× 10−4 2.76 × 10−4 2.65× 10−4 2.63 × 10−4 2.61× 10−4 2.60 × 10−4 2.59× 10−4

46Ca 3.99 × 10−20 8.14× 10−16 1.79 × 10−12 4.90 × 10−11 5.11 × 10−10 1.13 × 10−9 1.43× 10−9

48Ca 2.1× 10−25 1.61× 10−22 9.58 × 10−18 9.28 × 10−16 6.1× 10−14 3.6× 10−13 1.10× 10−12

45Sc 2.8× 10−7 2.72 × 10−7 3.35× 10−7 3.77 × 10−7 4.21× 10−7 4.18 × 10−7 3.91× 10−7

46Ti 8.53× 10−7 1.70 × 10−6 9.45× 10−6 1.85 × 10−5 3.9× 10−5 3.61 × 10−5 3.42× 10−5

47Ti 2.13× 10−5 2.18 × 10−5 2.24× 10−5 2.27 × 10−5 2.31× 10−5 2.33 × 10−5 2.35× 10−5

48Ti 8.12× 10−4 7.82 × 10−4 7.37× 10−4 7.8 × 10−4 6.76× 10−4 6.58 × 10−4 6.33× 10−4

49Ti 4.75× 10−6 1.2 × 10−5 1.30× 10−5 1.47 × 10−5 1.56× 10−5 1.66 × 10−5 1.77× 10−5

50Ti 5.52 × 10−16 1.58× 10−13 5.96 × 10−11 6.7× 10−10 2.35× 10−9 3.70 × 10−9 1.7× 10−8

50V 1.8× 10−11 2.22× 10−11 8.63 × 10−10 3.68 × 10−9 8.7× 10−9 1.46 × 10−8 4.14× 10−8

51V 5.15× 10−5 5.47 × 10−5 6.79× 10−5 7.62 × 10−5 8.55× 10−5 9.87 × 10−5 1.21× 10−4
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Table 14. cont′d of Table 13.

Z (Z⊙) 0 0.1 0.5 1 2 3 5
50Cr 5.56× 10−6 1.34 × 10−5 6.64× 10−5 1.41 × 10−4 3.5× 10−4 4.30 × 10−4 5.91× 10−4

52Cr 4.11× 10−3 3.86 × 10−3 3.30× 10−3 2.94 × 10−3 2.65× 10−3 2.77 × 10−3 3.68× 10−3

53Cr 4.72× 10−5 1.21 × 10−4 1.78× 10−4 2.14 × 10−4 2.77× 10−4 3.74 × 10−4 5.67× 10−4

54Cr 9.21 × 10−10 1.18 × 10−9 1.14× 10−8 4.40 × 10−8 2.43× 10−7 8.6 × 10−7 2.68× 10−6

55Mn 3.9× 10−4 5.59 × 10−4 1.3× 10−3 1.32 × 10−3 1.87× 10−3 3.6 × 10−3 6.30× 10−3

54Fe 1.10× 10−4 8.14 × 10−4 4.37× 10−3 8.69 × 10−3 1.66× 10−2 2.48 × 10−2 4.79× 10−2

56Fe 6.43× 10−1 6.38 × 10−1 6.20× 10−1 6.0 × 10−1 5.65× 10−1 5.32 × 10−1 4.67× 10−1

57Fe 9.74× 10−3 1.6 × 10−2 1.32× 10−2 1.60 × 10−2 2.2× 10−2 2.32 × 10−2 2.62× 10−2

58Fe 1.70× 10−9 1.86 × 10−9 5.14× 10−9 1.36 × 10−8 5.25× 10−8 1.23 × 10−7 3.1× 10−7

60Fe 1.39 × 10−23 1.81× 10−21 7.0× 10−19 3.4× 10−18 4.58 × 10−18 2.90 × 10−18 1.5× 10−17

59Co 6.56× 10−5 9.1 × 10−5 4.9× 10−4 5.27 × 10−4 6.33× 10−4 6.12 × 10−4 5.29× 10−4

58Ni 9.62× 10−4 1.18 × 10−3 1.11× 10−2 2.50 × 10−2 5.35× 10−2 8.7 × 10−2 1.27× 10−1

60Ni 7.71× 10−3 8.14 × 10−3 7.14× 10−3 6.13 × 10−3 4.50× 10−3 3.27 × 10−3 1.81× 10−3

61Ni 2.18× 10−4 2.33 × 10−4 2.62× 10−4 2.78 × 10−4 2.79× 10−4 2.61 × 10−4 2.11× 10−4

62Ni 8.49× 10−5 2.15 × 10−4 9.81× 10−4 1.72 × 10−3 2.72× 10−3 3.17 × 10−3 3.24× 10−3

64Ni 4.14 × 10−14 3.79× 10−14 4.71 × 10−14 4.59 × 10−14 1.80 × 10−11 5.11 × 10−14 7.60× 10−14

63Cu 1.72× 10−6 3.69 × 10−6 2.13× 10−6 2.50 × 10−6 3.23× 10−6 3.76 × 10−6 4.34× 10−6

65Cu 7.54× 10−6 7.68 × 10−6 7.54× 10−6 7.61 × 10−6 7.60× 10−6 7.55 × 10−6 7.25× 10−6

64Zn 1.44× 10−4 1.31 × 10−4 3.10× 10−5 2.70 × 10−5 2.38× 10−5 2.20 × 10−5 2.0× 10−5

66Zn 8.34× 10−6 1.1 × 10−5 1.70× 10−5 2.41 × 10−5 3.35× 10−5 3.76 × 10−5 3.80× 10−5

67Zn 3.40× 10−7 3.33 × 10−7 3.34× 10−7 3.41 × 10−7 3.53× 10−7 3.62 × 10−7 3.71× 10−7

68Zn 1.4× 10−6 6.8 × 10−7 3.75× 10−7 3.71 × 10−7 3.71× 10−7 3.72 × 10−7 3.87× 10−7

70Zn 1.62 × 10−18 1.48× 10−18 1.99 × 10−18 1.97 × 10−18 1.12 × 10−16 1.64 × 10−18 1.62× 10−18

Table 15. Similar to 13 but for the radioactive isotopes. Masses are in units of solar mass.

Z (Z⊙) 0 0.1 0.5 1 2 3 5
22Na 2.93× 10−9 3.22 × 10−9 4.6× 10−9 3.74 × 10−9 2.87× 10−9 2.42 × 10−9 2.0× 10−9

26Al 8.57× 10−7 1.74 × 10−6 2.12× 10−6 1.70 × 10−6 1.4× 10−6 7.15 × 10−7 4.1× 10−7

39Ar 4.11 × 10−13 1.11× 10−10 1.66× 10−9 7.27 × 10−9 3.3× 10−8 5.13 × 10−8 5.39× 10−8

40K 4.83 × 10−11 1.59 × 10−9 1.22× 10−8 3.86 × 10−8 8.64× 10−8 9.6 × 10−8 5.63× 10−8

41Ca 6.17× 10−7 2.38 × 10−6 4.36× 10−6 5.66 × 10−6 6.62× 10−6 6.34 × 10−6 4.76× 10−6

44Ti 2.70× 10−4 2.68 × 10−4 2.66× 10−4 2.64 × 10−4 2.62× 10−4 2.61 × 10−4 2.59× 10−4

48V 1.45× 10−7 1.47 × 10−7 1.70× 10−7 1.96 × 10−7 2.34× 10−7 2.49 × 10−7 2.36× 10−7

49V 8.72× 10−9 1.18 × 10−8 6.3× 10−8 1.54 × 10−7 3.54× 10−7 6.54 × 10−7 1.31× 10−6

53Mn 3.8× 10−7 4.27 × 10−7 2.73× 10−6 9.5 × 10−6 4.91× 10−5 1.22 × 10−4 2.50× 10−4

60Fe 2.23 × 10−22 2.90× 10−20 1.14 × 10−17 4.59 × 10−17 6.65 × 10−17 4.22 × 10−17 1.48× 10−16

56Co 5.62× 10−6 5.89 × 10−6 7.25× 10−6 8.93 × 10−6 1.21× 10−5 1.85 × 10−5 4.20× 10−5

57Co 1.10× 10−6 1.23 × 10−6 2.61× 10−6 5.62 × 10−6 1.86× 10−5 3.17 × 10−5 5.16× 10−5

60Co 2.31 × 10−15 7.99× 10−15 6.58 × 10−14 1.17 × 10−13 5.39 × 10−13 1.67 × 10−12 7.29× 10−12

56Ni 6.42× 10−1 6.38 × 10−1 6.20× 10−1 6.0 × 10−1 5.64× 10−1 5.31 × 10−1 4.64× 10−1

57Ni 9.74× 10−3 1.6 × 10−2 1.32× 10−2 1.60 × 10−2 2.2× 10−2 2.31 × 10−2 2.62× 10−2

59Ni 1.59× 10−6 1.61 × 10−6 2.5× 10−6 2.89 × 10−6 6.89× 10−6 1.61 × 10−5 4.48× 10−5

63Ni 5.94 × 10−16 9.34× 10−16 3.30 × 10−15 2.12 × 10−15 4.10 × 10−13 1.92 × 10−14 9.76× 10−14
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Table 16. The nucleosynthesis yields for stable isotopes from the models using one He detonation bubble as the initial
configuration. The minimum He envelope mass is used for each choice of progenitor mass. All models are of solar metallicity
and masses are in units of solar mass.

M 0.90 0.95 1.00 1.05 1.10 1.15 1.20

MHe 0.15 0.15 0.10 0.10 0.10 0.10 0.05
12C 1.78× 10−2 7.5× 10−3 8.85 × 10−3 1.26 × 10−2 3.35 × 10−3 1.6× 10−4 2.10 × 10−3

13C 6.99× 10−8 2.73 × 10−9 3.87 × 10−9 1.84 × 10−8 1.25 × 10−9 4.83 × 10−11 5.8× 10−10

14N 1.50× 10−6 7.88 × 10−8 9.0× 10−8 4.92 × 10−7 3.80 × 10−8 8.42 × 10−10 1.41 × 10−8

15N 8.65× 10−9 1.83 × 10−9 2.69 × 10−9 3.45 × 10−9 1.8× 10−9 1.13 × 10−10 7.37× 10−10

16O 2.63× 10−1 2.19 × 10−1 2.35 × 10−1 1.85 × 10−1 1.17 × 10−1 5.23 × 10−2 6.54 × 10−2

17O 3.23× 10−7 4.35 × 10−8 4.80 × 10−8 1.68 × 10−7 2.8× 10−8 2.95 × 10−10 7.14 × 10−9

18O 4.35× 10−9 5.86 × 10−10 6.10× 10−10 1.89 × 10−9 3.4× 10−10 6.56 × 10−12 1.29× 10−10

19F 4.10× 10−10 6.42 × 10−11 8.49× 10−11 1.79 × 10−10 3.28× 10−11 1.94 × 10−12 1.80× 10−11

20Ne 2.65× 10−2 8.46 × 10−3 1.4× 10−2 9.19 × 10−3 4.0× 10−3 6.90 × 10−4 2.91 × 10−3

21Ne 2.48× 10−6 4.54 × 10−7 5.79 × 10−7 1.3× 10−6 2.17 × 10−7 2.1× 10−8 1.32 × 10−7

22Ne 3.40× 10−4 2.0× 10−4 2.42 × 10−4 3.53 × 10−4 9.45 × 10−5 2.66 × 10−9 5.62 × 10−5

23Na 1.18× 10−4 3.13 × 10−5 4.7× 10−5 4.36 × 10−5 1.47 × 10−5 2.20 × 10−6 1.8× 10−5

24Mg 3.7× 10−2 2.15 × 10−2 2.38 × 10−2 1.62 × 10−2 8.26 × 10−3 3.32 × 10−3 4.97 × 10−3

25Mg 2.63× 10−4 7.96 × 10−5 1.2× 10−4 1.1× 10−4 3.89 × 10−5 7.71 × 10−6 2.51 × 10−5

26Mg 3.97× 10−4 1.20 × 10−4 1.47 × 10−4 1.59 × 10−4 5.60 × 10−5 9.35 × 10−6 3.69 × 10−5

26Al 7.61× 10−9 2.47 × 10−29 3.75× 10−28 2.73 × 10−29 2.86× 10−29 2.99 × 10−29 4.48× 10−28

27Al 2.67× 10−3 1.68 × 10−3 1.95 × 10−3 1.30 × 10−3 6.50 × 10−4 2.53 × 10−4 3.93 × 10−4

28Si 1.90× 10−1 1.43 × 10−1 1.53 × 10−1 1.27 × 10−1 1.35 × 10−1 9.51 × 10−2 9.20 × 10−2

29Si 2.83× 10−3 1.87 × 10−3 2.9× 10−3 1.61 × 10−3 8.76 × 10−4 3.44 × 10−4 5.18 × 10−4

30Si 4.62× 10−3 4.1× 10−3 4.36 × 10−3 3.0× 10−3 1.62 × 10−3 6.99 × 10−4 9.30 × 10−4

31P 9.82× 10−4 7.65 × 10−4 8.70 × 10−4 6.18 × 10−4 3.97 × 10−4 1.78 × 10−4 2.23 × 10−4

32S 7.66× 10−2 5.15 × 10−2 5.63 × 10−2 4.93 × 10−2 6.8× 10−2 4.57 × 10−2 4.25 × 10−2

33S 7.26× 10−4 6.22 × 10−4 6.84 × 10−4 5.4× 10−4 3.72 × 10−4 1.82 × 10−4 2.15 × 10−4

34S 3.49× 10−3 3.43 × 10−3 3.42 × 10−3 3.7× 10−3 2.62 × 10−3 1.34 × 10−3 1.43 × 10−3

36S 5.53× 10−7 4.52 × 10−7 5.1× 10−7 3.46 × 10−7 1.77 × 10−7 6.99 × 10−8 1.5× 10−7

35Cl 3.69× 10−4 1.64 × 10−4 1.92 × 10−4 1.42 × 10−4 1.51 × 10−4 7.4× 10−5 8.76 × 10−5

37Cl 4.17× 10−5 2.85 × 10−5 3.16 × 10−5 2.41 × 10−5 3.26 × 10−5 1.95 × 10−5 1.98 × 10−5

36Ar 1.7× 10−2 6.82 × 10−3 7.39 × 10−3 7.10 × 10−3 9.73 × 10−3 7.81 × 10−3 6.95 × 10−3

38Ar 1.70× 10−3 1.6× 10−3 1.13 × 10−3 9.58 × 10−4 1.32 × 10−3 7.79 × 10−4 7.89 × 10−4

40Ar 9.42× 10−9 6.9× 10−9 7.36 × 10−9 4.63 × 10−9 3.35 × 10−9 1.3× 10−9 1.60 × 10−9

39K 1.46× 10−4 8.23 × 10−5 9.61 × 10−5 6.56 × 10−5 1.7× 10−4 7.4× 10−5 6.75 × 10−5

40K 1.72× 10−7 6.69 × 10−8 9.10 × 10−8 5.43 × 10−8 1.23 × 10−7 2.30 × 10−8 2.92 × 10−8

41K 1.0× 10−5 6.10 × 10−6 6.97 × 10−6 5.23 × 10−6 8.47 × 10−6 5.44 × 10−6 5.4× 10−6

40Ca 9.56× 10−3 6.91 × 10−3 7.39 × 10−3 6.71 × 10−3 8.49 × 10−3 7.38 × 10−3 6.36 × 10−3

42Ca 5.98× 10−5 3.53 × 10−5 3.97 × 10−5 3.7× 10−5 4.53 × 10−5 2.70 × 10−5 2.76 × 10−5

43Ca 2.32× 10−5 2.29 × 10−5 2.66 × 10−5 1.55 × 10−5 1.30 × 10−5 1.18 × 10−5 1.22 × 10−5

44Ca 1.0× 10−3 1.4× 10−3 1.15 × 10−3 6.58 × 10−4 5.14 × 10−4 3.69 × 10−4 5.11 × 10−4

46Ca 1.75× 10−10 1.59 × 10−10 1.75× 10−10 1.15 × 10−10 1.78× 10−10 2.52 × 10−11 3.70× 10−11

48Ca 1.46× 10−15 7.77 × 10−16 9.33× 10−16 5.85 × 10−16 9.31× 10−12 1.11 × 10−16 2.31× 10−16

45Sc 1.57× 10−6 1.33 × 10−6 1.45 × 10−6 1.2× 10−6 1.67 × 10−6 1.59 × 10−6 5.84 × 10−7

46Ti 3.44× 10−5 1.68 × 10−5 1.95 × 10−5 1.62 × 10−5 2.94 × 10−5 1.87 × 10−5 1.43 × 10−5

47Ti 1.71× 10−4 1.77 × 10−4 1.79 × 10−4 1.19 × 10−4 8.61 × 10−5 5.44 × 10−5 7.61 × 10−5

48Ti 9.25× 10−3 9.96 × 10−3 8.99 × 10−3 7.46 × 10−3 4.87 × 10−3 5.11 × 10−3 3.34 × 10−3

49Ti 6.71× 10−5 6.60 × 10−5 6.67 × 10−5 5.42 × 10−5 5.24 × 10−5 6.48 × 10−5 2.46 × 10−5

50Ti 1.16× 10−9 1.53 × 10−9 1.55 × 10−9 1.46 × 10−9 1.22 × 10−5 4.28 × 10−10 4.71× 10−10

50V 6.12× 10−9 7.11 × 10−9 6.77 × 10−9 6.7× 10−9 8.42 × 10−7 1.62 × 10−8 2.39 × 10−9

51V 1.5× 10−3 1.1× 10−3 9.89 × 10−4 7.96 × 10−4 5.89 × 10−4 3.84 × 10−4 3.74 × 10−4
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Table 17. cont′d of Table 16.

M 0.90 0.95 1.00 1.05 1.10 1.15 1.20

MHe 0.15 0.15 0.10 0.10 0.10 0.10 0.05
50Cr 2.8× 10−4 1.29× 10−4 1.35 × 10−4 1.25× 10−4 2.18 × 10−4 1.83× 10−4 1.20 × 10−4

52Cr 1.36 × 10−2 1.74× 10−2 1.6× 10−2 1.67× 10−2 1.60 × 10−2 1.24× 10−2 8.18 × 10−3

53Cr 4.36 × 10−4 3.84× 10−4 3.40 × 10−4 3.76× 10−4 4.87 × 10−4 4.52× 10−4 2.42 × 10−4

54Cr 5.24 × 10−8 9.91× 10−8 4.6× 10−8 2.79× 10−8 1.37 × 10−4 5.88× 10−7 3.12 × 10−8

55Mn 1.96 × 10−3 1.78× 10−3 1.59 × 10−3 2.11× 10−3 2.28 × 10−3 2.16× 10−3 2.85 × 10−3

54Fe 6.59 × 10−3 4.18× 10−3 4.55 × 10−3 4.65× 10−3 7.80 × 10−3 6.52× 10−3 1.17 × 10−2

56Fe 1.39 × 10−1 3.17× 10−1 3.52 × 10−1 4.93× 10−1 6.10 × 10−1 7.97× 10−1 8.26 × 10−1

57Fe 6.32 × 10−3 1.11× 10−2 1.13 × 10−2 1.64× 10−2 2.12 × 10−2 2.65× 10−2 2.72 × 10−2

58Fe 1.71 × 10−8 6.75× 10−8 1.9× 10−8 7.29× 10−9 4.39 × 10−4 5.86× 10−7 9.43 × 10−9

60Fe 1.45× 10−18 9.5× 10−19 6.46× 10−19 4.59 × 10−19 1.34 × 10−9 2.17 × 10−17 3.13 × 10−19

59Co 2.47 × 10−4 3.44× 10−4 3.94 × 10−4 5.34× 10−4 7.19 × 10−4 8.1× 10−4 6.90 × 10−4

58Ni 5.8× 10−3 1.27× 10−2 1.49 × 10−2 2.21× 10−2 3.26 × 10−2 3.87× 10−2 5.43 × 10−2

60Ni 3.63 × 10−3 6.2× 10−3 5.57 × 10−3 8.12× 10−3 8.28 × 10−3 9.20× 10−3 6.92 × 10−3

61Ni 4.35 × 10−4 4.71× 10−4 3.71 × 10−4 6.39× 10−4 5.99 × 10−4 5.77× 10−4 4.46 × 10−4

62Ni 6.55 × 10−4 1.46× 10−3 1.42 × 10−3 2.6× 10−3 2.20 × 10−3 2.40× 10−3 1.96 × 10−3

64Ni 9.49× 10−11 2.80 × 10−12 4.49× 10−11 1.50 × 10−12 6.96 × 10−7 1.22 × 10−10 3.1× 10−11

63Cu 7.58 × 10−6 6.93× 10−6 6.10 × 10−6 6.60× 10−6 5.59 × 10−6 3.84× 10−6 3.75 × 10−6

65Cu 2.21 × 10−5 2.6× 10−5 1.68 × 10−5 2.59× 10−5 1.76 × 10−5 1.27× 10−5 1.39 × 10−5

64Zn 1.6× 10−4 1.3× 10−4 7.2× 10−5 1.46× 10−4 1.16 × 10−4 8.74× 10−5 7.18 × 10−5

66Zn 4.63 × 10−5 6.76× 10−5 5.21 × 10−5 7.15× 10−5 5.2× 10−5 4.32× 10−5 4.23 × 10−5

67Zn 7.95 × 10−6 7.76× 10−6 6.11 × 10−6 6.29× 10−6 4.36 × 10−6 2.63× 10−6 3.7 × 10−6

68Zn 4.15 × 10−6 4.56× 10−6 3.34 × 10−6 1.5× 10−5 7.56 × 10−6 3.93× 10−6 3.27 × 10−6

70Zn 4.40× 10−15 6.16 × 10−17 3.36× 10−11 5.53 × 10−17 1.10× 10−13 2.26 × 10−14 2.28 × 10−16
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Table 18. Similar to Table 16 but for the radioactive isotopes of the selected models after explosion. Masses are in units of
solar mass.

M 0.90 0.95 1.00 1.05 1.10 1.15 1.20

MHe 0.15 0.15 0.10 0.10 0.10 0.10 0.05
22Na 8.72 × 10−8 2.71× 10−8 3.50 × 10−8 3.2× 10−8 1.25 × 10−8 2.0× 10−9 9.56 × 10−9

26Al 4.50 × 10−5 1.46× 10−5 1.72 × 10−5 1.49× 10−5 6.98 × 10−6 1.50 × 10−6 4.78 × 10−6

39Ar 2.90 × 10−8 1.20× 10−8 1.35 × 10−8 9.97× 10−9 1.99 × 10−8 2.96 × 10−9 4.99 × 10−9

40K 1.73 × 10−7 6.72× 10−8 9.15 × 10−8 5.46× 10−8 1.23 × 10−7 2.31 × 10−8 2.94 × 10−8

41Ca 9.96 × 10−6 6.19× 10−6 7.5 × 10−6 5.27× 10−6 8.49 × 10−6 5.46 × 10−6 5.8× 10−6

44Ti 1.0 × 10−3 1.4× 10−3 1.14 × 10−3 6.58× 10−4 5.14 × 10−4 3.69 × 10−4 5.11 × 10−4

48V 2.50 × 10−6 2.21× 10−6 2.59 × 10−6 1.16× 10−6 3.26 × 10−6 1.7× 10−6 7.73 × 10−7

49V 2.43 × 10−7 2.7× 10−7 2.6 × 10−7 1.58× 10−7 5.19 × 10−6 5.53 × 10−7 1.7× 10−7

53Mn 1.28 × 10−5 1.30× 10−5 9.54 × 10−6 5.48× 10−6 1.6× 10−4 3.34 × 10−5 7.11 × 10−6

60Fe 2.4× 10−17 1.32× 10−17 9.26 × 10−18 6.74× 10−18 2.1× 10−8 3.25 × 10−16 4.49× 10−18

56Co 1.10 × 10−5 1.4× 10−5 5.8 × 10−6 4.41× 10−6 8.95 × 10−5 9.86 × 10−5 1.45 × 10−5

57Co 8.35 × 10−6 1.4× 10−5 4.83 × 10−6 2.85× 10−6 1.47 × 10−4 4.7× 10−5 6.10 × 10−6

60Co 1.19 × 10−13 1.71× 10−12 9.14 × 10−14 8.67× 10−14 8.90 × 10−8 4.87 × 10−11 7.92× 10−14

56Ni 1.38 × 10−1 3.17× 10−1 3.52 × 10−1 4.93× 10−1 6.8× 10−1 7.96 × 10−1 8.26 × 10−1

57Ni 6.31 × 10−3 1.11× 10−2 1.13 × 10−2 1.64× 10−2 2.10 × 10−2 2.64 × 10−2 2.72 × 10−2

59Ni 6.5 × 10−6 3.50× 10−6 1.70 × 10−6 1.37× 10−6 7.33 × 10−5 1.88 × 10−5 1.21 × 10−5

63Ni 1.51 × 10−12 1.19× 10−13 1.29 × 10−13 4.23× 10−14 9.31 × 10−8 1.25 × 10−12 4.94× 10−13
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Table 19. The nucleosynthesis yields for stable isotopes from the selected models using a He detonation ring as the initial
configuration. based on the benchmark model 110-050-2-B50. MHe = 0.05 M⊙ for all models in this table. Masses are in units
of solar mass.

M(M⊙) 0.90 0.95 1.00 1.05 1.10 1.20
12C 6.40 × 10−2 6.0× 10−2 1.15 × 10−3 6.86 × 10−3 4.2× 10−3 7.84 × 10−6

13C 2.2× 10−8 1.60× 10−8 3.2× 10−9 7.8× 10−9 8.97 × 10−9 1.6× 10−11

14N 5.8× 10−7 4.40× 10−7 1.63 × 10−8 1.14 × 10−7 7.62 × 10−8 6.96× 10−12

15N 1.2× 10−8 1.14× 10−8 2.13 × 10−10 1.71 × 10−9 1.38 × 10−9 9.11× 10−12

16O 4.28 × 10−1 3.86× 10−1 6.64 × 10−2 1.35 × 10−1 1.2× 10−1 6.89 × 10−3

17O 2.96 × 10−7 2.56× 10−7 1.8× 10−8 6.97 × 10−8 4.32 × 10−8 1.23× 10−13

18O 3.82 × 10−9 3.52× 10−9 9.43 × 10−11 6.91× 10−10 5.10 × 10−10 4.95× 10−16

19F 3.79 × 10−10 3.64× 10−10 2.39 × 10−11 8.36× 10−11 6.80 × 10−11 5.48× 10−16

20Ne 3.77 × 10−2 2.98× 10−2 1.15 × 10−3 7.69 × 10−3 4.72 × 10−3 1.50 × 10−6

21Ne 2.36 × 10−6 2.15× 10−6 1.57 × 10−7 5.52 × 10−7 4.33 × 10−7 8.30× 10−11

22Ne 2.14 × 10−3 1.98× 10−3 8.99 × 10−9 1.88 × 10−4 9.46 × 10−5 6.27× 10−11

23Na 1.51 × 10−4 1.31× 10−4 8.39 × 10−6 2.97 × 10−5 2.10 × 10−5 8.5× 10−8

24Mg 5.56 × 10−2 4.28× 10−2 1.28 × 10−3 1.15 × 10−2 8.62 × 10−3 3.2× 10−5

25Mg 4.1× 10−4 3.13× 10−4 1.45 × 10−5 7.25 × 10−5 4.99 × 10−5 2.42 × 10−8

26Mg 4.88 × 10−4 4.22× 10−4 2.72 × 10−5 9.78 × 10−5 6.65 × 10−5 9.82 × 10−8

26Al 7.39 × 10−5 5.12× 10−5 1.70 × 10−6 1.29 × 10−5 8.12 × 10−6 4.23 × 10−9

27Al 5.4× 10−3 3.75× 10−3 1.14 × 10−4 9.34 × 10−4 7.17 × 10−4 2.68 × 10−6

28Si 1.47 × 10−1 1.70× 10−1 1.25 × 10−1 1.95 × 10−1 1.10 × 10−1 2.58 × 10−2

29Si 4.31 × 10−3 3.75× 10−3 2.67 × 10−4 1.11 × 10−3 8.24 × 10−4 1.33 × 10−5

30Si 7.86 × 10−3 6.77× 10−3 3.79 × 10−4 1.99 × 10−3 1.58 × 10−3 1.70 × 10−5

31P 1.65 × 10−3 1.36× 10−3 1.53 × 10−4 4.58 × 10−4 3.54 × 10−4 1.38 × 10−5

32S 4.27 × 10−2 5.68× 10−2 6.56 × 10−2 8.62 × 10−2 4.90 × 10−2 1.54 × 10−2

33S 9.91 × 10−4 9.46× 10−4 1.89 × 10−4 3.97 × 10−4 3.8× 10−4 2.10 × 10−5

34S 2.98 × 10−3 3.66× 10−3 1.91 × 10−3 2.73 × 10−3 1.97 × 10−3 1.83 × 10−4

36S 7.68 × 10−7 7.22× 10−7 5.59 × 10−8 1.97 × 10−7 1.63 × 10−7 1.24 × 10−9

35Cl 4.81 × 10−4 3.20× 10−4 1.4× 10−4 1.65 × 10−4 1.30 × 10−4 1.33 × 10−5

37Cl 2.54 × 10−5 3.13× 10−5 2.51 × 10−5 3.14 × 10−5 2.37 × 10−5 3.72 × 10−6

36Ar 4.1× 10−3 6.94× 10−3 1.15 × 10−2 1.32 × 10−2 7.52 × 10−3 3.19 × 10−3

38Ar 6.34 × 10−4 9.8× 10−4 1.34 × 10−3 1.39 × 10−3 1.4× 10−3 1.43 × 10−4

40Ar 1.51 × 10−8 1.21× 10−8 1.69 × 10−9 3.35 × 10−9 3.1× 10−9 6.50× 10−11

39K 6.37 × 10−5 6.25× 10−5 9.25 × 10−5 1.3× 10−4 8.52 × 10−5 1.65 × 10−5

40K 2.77 × 10−7 1.69× 10−7 3.86 × 10−8 5.74 × 10−8 5.44 × 10−8 3.13 × 10−9

41K 1.43 × 10−8 1.31× 10−8 3.14 × 10−9 5.6× 10−9 4.25 × 10−9 3.56× 10−10

40Ca 2.55 × 10−3 4.83× 10−3 1.4× 10−2 1.2× 10−2 6.87 × 10−3 4.7× 10−3

42Ca 1.78 × 10−5 2.49× 10−5 4.24 × 10−5 4.9× 10−5 3.39 × 10−5 6.97 × 10−6

43Ca 6.12 × 10−6 1.55× 10−6 1.38 × 10−5 3.98 × 10−6 1.39 × 10−5 1.22 × 10−5

44Ca 2.56 × 10−5 5.0× 10−6 2.89 × 10−5 1.13 × 10−5 6.55 × 10−5 6.17 × 10−5

46Ca 2.58 × 10−10 2.53× 10−10 4.90 × 10−11 7.11× 10−11 6.92 × 10−11 2.26× 10−12

48Ca 1.72 × 10−15 1.43× 10−15 9.28 × 10−16 5.10× 10−16 5.8 × 10−16 4.93× 10−18

45Sc 3.45 × 10−7 3.35× 10−7 3.77 × 10−7 3.70 × 10−7 7.81 × 10−7 5.19 × 10−7

46Ti 6.57 × 10−6 1.1× 10−5 1.85 × 10−5 1.91 × 10−5 1.53 × 10−5 5.39 × 10−6

47Ti 2.24 × 10−5 5.19× 10−6 2.27 × 10−5 7.83 × 10−6 6.58 × 10−5 6.59 × 10−5

48Ti 9.64 × 10−4 2.84× 10−4 7.8× 10−4 3.60 × 10−4 2.61 × 10−3 3.70 × 10−3

49Ti 8.56 × 10−6 8.99× 10−6 1.47 × 10−5 1.26 × 10−5 2.83 × 10−5 2.94 × 10−5

50Ti 1.8× 10−9 1.66× 10−9 6.7 × 10−10 7.99× 10−10 7.12 × 10−10 7.54× 10−11

50V 5.37 × 10−9 8.68× 10−9 3.68 × 10−9 4.9× 10−9 3.86 × 10−9 5.91× 10−10

51V 8.33 × 10−5 5.3× 10−5 7.62 × 10−5 5.93 × 10−5 2.81 × 10−4 3.20 × 10−4
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Table 20. cont′d of Table 19.

M(M⊙) 0.90 0.95 1.00 1.05 1.10 1.20
50Cr 4.32 × 10−5 8.96× 10−5 2.29 × 10−4 2.1× 10−4 1.9× 10−4 7.79 × 10−5

52Cr 1.27 × 10−3 1.72× 10−3 2.87 × 10−3 2.96 × 10−3 2.80 × 10−3 9.80 × 10−3

53Cr 4.95 × 10−5 1.28× 10−4 2.2× 10−4 2.1× 10−4 1.56 × 10−4 2.71 × 10−4

54Cr 1.79 × 10−8 8.10× 10−8 8.83 × 10−8 5.64 × 10−8 6.70 × 10−8 1.59 × 10−8

55Mn 3.18 × 10−4 7.12× 10−4 1.8× 10−3 1.16 × 10−3 9.15 × 10−4 1.99 × 10−3

54Fe 1.71 × 10−3 4.12× 10−3 1.11 × 10−2 1.7× 10−2 5.20 × 10−3 5.59 × 10−3

56Fe 3.58 × 10−2 1.7× 10−1 3.12 × 10−1 4.68 × 10−1 6.84 × 10−1 9.21 × 10−1

57Fe 1.5× 10−3 3.5× 10−3 8.17 × 10−3 1.24 × 10−2 1.90 × 10−2 2.71 × 10−2

58Fe 4.54 × 10−9 5.66× 10−8 2.43 × 10−8 1.56 × 10−8 4.83 × 10−8 4.68 × 10−9

60Fe 7.82 × 10−19 1.26× 10−18 2.67 × 10−18 9.49× 10−19 1.11 × 10−18 4.29× 10−19

59Co 3.75 × 10−5 9.83× 10−5 3.17 × 10−4 4.28 × 10−4 6.17 × 10−4 6.63 × 10−4

58Ni 1.17 × 10−3 3.62× 10−3 1.26 × 10−2 1.95 × 10−2 3.6× 10−2 4.53 × 10−2

60Ni 6.86 × 10−4 1.60× 10−3 3.87 × 10−3 5.7× 10−3 6.41 × 10−3 6.13 × 10−3

61Ni 6.4× 10−5 9.30× 10−5 1.55 × 10−4 1.97 × 10−4 2.48 × 10−4 3.21 × 10−4

62Ni 1.61 × 10−4 3.91× 10−4 1.8× 10−3 1.43 × 10−3 1.83 × 10−3 1.69 × 10−3

64Ni 3.0 × 10−14 7.77× 10−10 1.49 × 10−12 3.69× 10−13 8.3 × 10−13 1.13× 10−13

63Cu 4.77 × 10−7 5.25× 10−7 1.19 × 10−6 1.35 × 10−6 2.24 × 10−6 2.83 × 10−6

65Cu 3.10 × 10−6 1.82× 10−6 2.11 × 10−6 2.17 × 10−6 3.49 × 10−6 6.87 × 10−6

64Zn 1.16 × 10−5 1.19× 10−5 1.71 × 10−5 1.32 × 10−5 1.30 × 10−5 4.32 × 10−5

66Zn 7.85 × 10−6 9.57× 10−6 1.49 × 10−5 1.73 × 10−5 2.15 × 10−5 2.83 × 10−5

67Zn 3.36 × 10−7 3.35× 10−7 3.16 × 10−7 3.61 × 10−7 1.21 × 10−6 2.25 × 10−6

68Zn 4.42 × 10−7 4.83× 10−7 4.55 × 10−7 2.69 × 10−7 4.7× 10−7 2.25 × 10−6

70Zn 4.23 × 10−15 4.3× 10−14 1.96 × 10−17 1.29× 10−15 5.22 × 10−17 9.12× 10−19

Table 21. Similar to Table 19, but for the radioactive isotopes. Masses are in units of solar mass.

M(M⊙) 0.90 0.95 1.00 1.05 1.10 1.20
22Na 1.12 × 10−7 9.86× 10−8 3.74 × 10−9 2.49 × 10−8 1.56 × 10−8 4.95× 10−11

26Al 7.39 × 10−5 5.12× 10−5 1.70 × 10−6 1.29 × 10−5 8.12 × 10−6 4.10 × 10−9

39Ar 3.52 × 10−8 2.39× 10−8 7.27 × 10−9 9.79 × 10−9 8.69 × 10−9 5.15× 10−10

40K 2.77 × 10−7 1.69× 10−7 3.86 × 10−8 5.74 × 10−8 5.44 × 10−8 3.13 × 10−9

41Ca 2.77 × 10−6 4.13× 10−6 5.66 × 10−6 6.52 × 10−6 5.71 × 10−6 1.22 × 10−6

44Ti 2.33 × 10−4 4.37× 10−5 2.64 × 10−4 1.2× 10−4 5.99 × 10−4 5.65 × 10−4

48V 2.67 × 10−7 1.43× 10−7 1.96 × 10−7 1.59 × 10−7 1.15 × 10−6 6.95 × 10−7

49V 9.7× 10−8 1.73× 10−7 1.54 × 10−7 1.52 × 10−7 1.85 × 10−7 4.78 × 10−8

53Mn 3.45 × 10−6 9.83× 10−6 9.5× 10−6 1.40 × 10−5 1.15 × 10−5 1.85 × 10−6

60Fe 1.16 × 10−17 1.81× 10−17 4.59 × 10−17 1.36× 10−17 1.62 × 10−17 5.72× 10−18

56Co 9.18 × 10−7 1.37× 10−5 8.93 × 10−6 4.75 × 10−6 1.79 × 10−5 9.50 × 10−6

57Co 1.57 × 10−6 7.14× 10−6 5.62 × 10−6 7.38 × 10−6 9.87 × 10−6 1.41 × 10−6

60Co 3.98 × 10−14 1.83× 10−12 1.17 × 10−13 1.4× 10−13 6.59 × 10−13 3.60× 10−14

56Ni 3.58 × 10−2 1.7× 10−1 6.0× 10−1 4.68 × 10−1 6.84 × 10−1 9.95 × 10−1

57Ni 1.5× 10−3 3.4× 10−3 1.60 × 10−2 1.24 × 10−2 1.90 × 10−2 2.82 × 10−2

59Ni 3.98 × 10−7 2.88× 10−6 2.89 × 10−6 1.92 × 10−6 4.77 × 10−6 4.30 × 10−6

63Ni 5.77 × 10−16 7.35× 10−12 2.12 × 10−15 9.42× 10−15 2.62 × 10−14 2.97× 10−15
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Table 22. The nucleosynthesis yields for stable isotopes from the selected models using a spherical He detonation as the initial
configuration. based on the benchmark model 110-050-2-S50. MHe = 0.05 M⊙ for all models in this table. Masses are in units
of solar mass.

M(M⊙) 0.90 0.95 1.00 1.05 1.10 1.20
12C 5.27 × 10−3 4.1× 10−3 1.15 × 10−3 2.97× 10−4 7.65 × 10−4 7.84× 10−6

13C 1.15 × 10−7 3.32× 10−7 3.2× 10−9 4.6× 10−11 3.70× 10−10 1.6× 10−11

14N 4.51 × 10−7 4.93× 10−7 1.63 × 10−8 2.22 × 10−10 1.54 × 10−9 6.96 × 10−12

15N 3.24 × 10−9 2.61× 10−9 2.13× 10−10 6.54 × 10−11 1.27× 10−10 9.11 × 10−12

16O 2.67 × 10−1 1.14× 10−1 6.64 × 10−2 3.90× 10−2 2.30 × 10−2 6.89× 10−3

17O 1.88 × 10−7 1.62× 10−7 1.8× 10−8 8.12 × 10−11 8.10× 10−10 1.23 × 10−13

18O 3.51 × 10−9 3.29× 10−9 9.43× 10−11 1.99 × 10−12 1.46× 10−11 4.95 × 10−16

19F 2.71× 10−10 2.20 × 10−10 2.39× 10−11 9.14 × 10−13 6.1× 10−12 5.48 × 10−16

20Ne 6.53 × 10−3 1.46× 10−3 1.15 × 10−3 4.63× 10−4 7.54 × 10−4 1.50× 10−6

21Ne 1.62 × 10−6 1.34× 10−6 1.57 × 10−7 1.40× 10−8 5.1× 10−8 8.30 × 10−11

22Ne 7.66 × 10−5 8.61× 10−5 8.99 × 10−9 1.53× 10−9 3.64 × 10−9 6.27 × 10−11

23Na 4.32 × 10−5 2.30× 10−5 8.39 × 10−6 3.35× 10−6 4.66 × 10−6 8.5× 10−8

24Mg 2.29 × 10−2 2.53× 10−3 1.28 × 10−3 5.46× 10−4 4.43 × 10−4 3.2× 10−5

25Mg 1.0× 10−4 3.6× 10−5 1.45 × 10−5 3.84× 10−6 7.30 × 10−6 2.42× 10−8

26Mg 1.26 × 10−4 4.20× 10−5 2.72 × 10−5 7.3× 10−6 1.21 × 10−5 9.82× 10−8

26Al 1.39 × 10−5 2.16× 10−6 1.70 × 10−6 8.41× 10−7 1.3× 10−6 4.23× 10−9

27Al 1.98 × 10−3 2.16× 10−4 1.14 × 10−4 5.41× 10−5 4.32 × 10−5 2.68× 10−6

28Si 3.32 × 10−1 1.60× 10−1 1.25 × 10−1 1.3× 10−1 7.51 × 10−2 2.58× 10−2

29Si 2.3× 10−3 4.80× 10−4 2.67 × 10−4 1.31× 10−4 1.10 × 10−4 1.33× 10−5

30Si 4.47 × 10−3 8.4× 10−4 3.79 × 10−4 1.76× 10−4 1.13 × 10−4 1.70× 10−5

31P 9.78 × 10−4 2.75× 10−4 1.53 × 10−4 9.56× 10−5 5.26 × 10−5 1.38× 10−5

32S 1.41 × 10−1 8.0× 10−2 6.56 × 10−2 5.45× 10−2 4.7× 10−2 1.54× 10−2

33S 8.94 × 10−4 3.18× 10−4 1.89 × 10−4 1.27× 10−4 6.98 × 10−5 2.10× 10−5

34S 5.22 × 10−3 3.17× 10−3 1.91 × 10−3 1.12× 10−3 5.83 × 10−4 1.83× 10−4

36S 4.80 × 10−7 1.2× 10−7 5.59 × 10−8 2.86× 10−8 3.59 × 10−8 1.24× 10−9

35Cl 3.58 × 10−4 1.43× 10−4 1.4× 10−4 8.11× 10−5 4.65 × 10−5 1.33× 10−5

37Cl 7.9× 10−5 3.32× 10−5 2.51 × 10−5 2.1× 10−5 1.17 × 10−5 3.72× 10−6

36Ar 1.88 × 10−2 1.34× 10−2 1.15 × 10−2 9.40× 10−3 7.42 × 10−3 3.19× 10−3

38Ar 3.40 × 10−3 1.88× 10−3 1.34 × 10−3 9.84× 10−4 5.11 × 10−4 1.43× 10−4

40Ar 9.41 × 10−9 2.57× 10−9 1.69 × 10−9 1.25× 10−9 8.67× 10−10 6.50 × 10−11

39K 2.56 × 10−4 1.13× 10−4 9.25 × 10−5 7.56× 10−5 4.69 × 10−5 1.65× 10−5

40K 1.59 × 10−7 5.28× 10−8 3.86 × 10−8 3.31× 10−8 1.73 × 10−8 3.13× 10−9

41K 1.23 × 10−8 4.90× 10−9 3.14 × 10−9 2.38× 10−9 1.45 × 10−9 3.56 × 10−10

40Ca 1.17 × 10−2 1.12× 10−2 1.4× 10−2 7.54× 10−3 6.70 × 10−3 4.7× 10−3

42Ca 1.3× 10−4 5.63× 10−5 4.24 × 10−5 3.24× 10−5 1.85 × 10−5 6.97× 10−6

43Ca 1.22 × 10−6 4.26× 10−6 1.38 × 10−5 5.89× 10−6 7.6× 10−6 1.22× 10−5

44Ca 3.81 × 10−6 6.72× 10−6 2.89 × 10−5 6.32× 10−6 2.11 × 10−5 6.17× 10−5

46Ca 2.42× 10−10 7.92 × 10−11 4.90× 10−11 4.55 × 10−11 1.93× 10−11 2.26 × 10−12

48Ca 1.85× 10−15 9.88 × 10−16 9.28× 10−16 7.92 × 10−16 7.98× 10−16 4.93 × 10−18

45Sc 6.22 × 10−7 3.73× 10−7 3.77 × 10−7 2.18× 10−7 7.16 × 10−7 5.19× 10−7

46Ti 5.46 × 10−5 2.20× 10−5 1.85 × 10−5 1.50× 10−5 1.41 × 10−5 5.39× 10−6

47Ti 5.34 × 10−6 4.63× 10−6 2.27 × 10−5 8.32× 10−6 2.61 × 10−5 6.59× 10−5

48Ti 1.51 × 10−4 2.92× 10−4 7.8× 10−4 2.58× 10−4 9.96 × 10−4 3.70× 10−3

49Ti 8.47 × 10−6 1.58× 10−5 1.47 × 10−5 8.40× 10−6 1.33 × 10−5 2.94× 10−5

50Ti 2.16 × 10−9 1.42× 10−9 6.7× 10−10 4.45 × 10−10 1.13× 10−10 7.54 × 10−11

50V 9.96 × 10−9 7.6× 10−9 3.68 × 10−9 2.87× 10−9 1.23 × 10−9 5.91 × 10−10

51V 3.31 × 10−5 5.99× 10−5 7.62 × 10−5 3.46× 10−5 7.64 × 10−5 3.20× 10−4
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Table 23. cont′d of Table 22.

M(M⊙) 0.90 0.95 1.00 1.05 1.10 1.20
50Cr 3.1× 10−4 1.63× 10−4 1.41 × 10−4 1.22× 10−4 1.13 × 10−4 2.93× 10−5

52Cr 5.29 × 10−4 2.99× 10−3 2.94 × 10−3 1.73× 10−3 2.14 × 10−3 7.38× 10−3

53Cr 8.54 × 10−5 2.63× 10−4 2.14 × 10−4 1.38× 10−4 1.44 × 10−4 2.6× 10−4

54Cr 1.3× 10−7 5.22× 10−8 4.40 × 10−8 4.64× 10−8 3.17 × 10−8 1.45 × 10−10

55Mn 4.60 × 10−4 1.58× 10−3 1.32 × 10−3 7.88× 10−4 8.56 × 10−4 6.32× 10−4

54Fe 1.17 × 10−2 1.2× 10−2 8.69 × 10−3 7.1× 10−3 5.94 × 10−3 6.38× 10−4

56Fe 1.55 × 10−2 4.52× 10−1 6.0× 10−1 7.4× 10−1 8.17 × 10−1 10.48 × 10−1

57Fe 5.52 × 10−4 1.14× 10−2 1.60 × 10−2 1.91× 10−2 2.29 × 10−2 1.95× 10−2

58Fe 2.94 × 10−8 2.31× 10−8 1.36 × 10−8 1.30× 10−8 1.5× 10−8 7.23 × 10−11

60Fe 2.99× 10−18 4.95 × 10−18 3.4× 10−18 5.0× 10−18 1.5× 10−16 2.21 × 10−22

59Co 1.42 × 10−5 3.86× 10−4 5.27 × 10−4 6.13× 10−4 7.14 × 10−4 1.74× 10−4

58Ni 7.72 × 10−4 1.79× 10−2 2.50 × 10−2 3.5× 10−2 3.60 × 10−2 7.7× 10−3

60Ni 5.19 × 10−4 4.99× 10−3 6.13 × 10−3 6.87× 10−3 8.16 × 10−3 1.0× 10−2

61Ni 4.72 × 10−5 1.81× 10−4 2.78 × 10−4 2.77× 10−4 3.84 × 10−4 3.61× 10−4

62Ni 3.33 × 10−5 1.41× 10−3 1.72 × 10−3 1.88× 10−3 2.5× 10−3 2.97× 10−4

64Ni 8.46× 10−12 5.56 × 10−12 4.59× 10−14 4.90 × 10−13 1.25× 10−11 1.80 × 10−13

63Cu 4.69 × 10−7 1.21× 10−6 2.50 × 10−6 2.29× 10−6 2.49 × 10−6 5.65× 10−6

65Cu 1.89 × 10−6 1.76× 10−6 7.61 × 10−6 4.82× 10−6 9.8× 10−6 1.28× 10−5

64Zn 1.57 × 10−5 9.39× 10−6 2.70 × 10−5 2.48× 10−5 7.18 × 10−5 2.3× 10−4

66Zn 2.15 × 10−6 1.81× 10−5 2.41 × 10−5 2.33× 10−5 2.52 × 10−5 1.65× 10−5

67Zn 1.91 × 10−7 1.89× 10−7 3.41 × 10−7 2.13× 10−7 6.33 × 10−7 2.31× 10−6

68Zn 1.0× 10−6 2.82× 10−7 3.71 × 10−7 2.25× 10−7 2.9× 10−6 3.74× 10−6

70Zn 2.71× 10−15 1.77 × 10−16 1.97× 10−18 2.46 × 10−16 9.85× 10−15 4.73 × 10−18

Table 24. Similar to Table 22, but for the radioactive isotopes. Masses are in units of solar mass.

M(M⊙) 0.90 0.95 1.00 1.05 1.10 1.20
22Na 1.94 × 10−8 5.10× 10−9 3.74 × 10−9 1.31× 10−9 2.46 × 10−9 4.95 × 10−11

26Al 1.39 × 10−5 2.16× 10−6 1.70 × 10−6 8.41× 10−7 1.3× 10−6 4.10× 10−9

39Ar 2.33 × 10−8 1.1× 10−8 7.27 × 10−9 5.89× 10−9 3.48 × 10−9 5.15 × 10−10

40K 1.59 × 10−7 5.28× 10−8 3.86 × 10−8 3.31× 10−8 1.73 × 10−8 3.13× 10−9

41Ca 1.56 × 10−5 6.89× 10−6 5.66 × 10−6 4.75× 10−6 3.43 × 10−6 1.22× 10−6

44Ti 3.27 × 10−5 6.5× 10−5 2.64 × 10−4 5.75× 10−5 1.93 × 10−4 5.65× 10−4

48V 2.8× 10−7 1.81× 10−7 1.96 × 10−7 5.81× 10−8 3.20 × 10−7 6.95× 10−7

49V 2.76 × 10−7 2.21× 10−7 1.54 × 10−7 1.24× 10−7 1.72 × 10−7 4.78× 10−8

53Mn 2.76 × 10−5 1.14× 10−5 9.5× 10−6 9.36× 10−6 6.47 × 10−6 1.85× 10−6

60Fe 4.31× 10−17 7.35 × 10−17 4.59× 10−17 7.34 × 10−17 1.54× 10−15 5.72 × 10−18

56Co 3.65 × 10−6 2.15× 10−5 8.93 × 10−6 3.8× 10−6 3.80 × 10−6 9.50× 10−6

57Co 1.43 × 10−5 8.54× 10−6 5.62 × 10−6 4.83× 10−6 3.63 × 10−6 1.41× 10−6

60Co 6.7× 10−13 2.45 × 10−13 1.17× 10−13 1.43 × 10−13 2.6× 10−13 3.60 × 10−14

56Ni 1.51 × 10−2 4.52× 10−1 6.0× 10−1 7.4× 10−1 8.17 × 10−1 9.95× 10−1

57Ni 5.39 × 10−4 1.14× 10−2 1.60 × 10−2 1.91× 10−2 2.29 × 10−2 2.82× 10−2

59Ni 2.84 × 10−6 3.3× 10−6 2.89 × 10−6 1.46× 10−6 1.84 × 10−6 4.30× 10−6

63Ni 5.43× 10−13 3.93 × 10−13 2.12× 10−15 1.34 × 10−14 4.1× 10−13 2.97 × 10−15
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