View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Caltech Authors - Main

NEEXP C MIP*

Anand Natarajan* John Wright!
California Institute of Technology Massachusetts Institute of Technology

September 4, 2019

Abstract

We study multiprover interactive proof systems. The power of classical multiprover inter-
active proof systems, in which the provers do not share entanglement, was characterized in
a famous work by Babai, Fortnow, and Lund (Computational Complexity 1991), whose main
result was the equality MIP = NEXP. The power of quantum multiprover interactive proof
systems, in which the provers are allowed to share entanglement, has proven to be much more
difficult to characterize. The best known lower-bound on MIP* is NEXP C MIP* due to Ito and
Vidick (FOCS 2012). As for upper bounds, MIP* could be as large as RE, the class of recursively
enumerable languages.

The main result of this work is the inclusion NEEXP = NTIME[22pOly<n)] C MIP*. This
is an exponential improvement over the prior lower bound and shows that proof systems with
entangled provers are at least exponentially more powerful than classical provers. In our protocol
the verifier delegates a classical, exponentially large MIP protocol for NEEXP to two entangled
provers: the provers obtain their exponentially large questions by measuring their shared state,
and use a classical PCP to certify the correctness of their exponentially-long answers. For the
soundness of our protocol, it is crucial that each player should not only sample its own question
correctly but also avoid performing measurements that would reveal the other player’s sampled
question. We ensure this by commanding the players to perform a complementary measurement,
relying on the Heisenberg uncertainty principle to prevent the forbidden measurements from
being performed.

arXiv:1904.05870v3 [quant-ph] 2 Sep 2019

*anandn@caltech.edu
tjswright@mit.edu

https://core.ac.uk/display/286143442?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1904.05870v3

Contents

I Introduction

1 Introduction

2 Overview of our proof
2.1 Basic quantum notation and qudits oL
2.2 Our starting point: a classical interactive proof for NEEXP

2.3 Restricting

the strategies: registers and compilers

2.4 Question reduction through introspection
2.5 Answer reduction through PCP composition
2.6 Organization

II Preliminaries

3 Classical preliminaries
3.1 Finite fields and polynomials L

3.2 Two-player

one-round games and MIPo oL

3.3 Low-degree code
3.4 A canonical low-degree encodingo Lo
3.5 Low-degree testing L
3.6 Simultaneous low-degree testing L L L
3.7 NEXP, NEEXP, and complete problems for them
3.8 The Tseitin transformation L

4 Quantum preliminaries
4.1 Quantum measurements e e e e e e
4.2 Nonlocal games and MIP*
4.3 Pauli matrices and the EPR state oo
4.4 State dependent distances Lo
4.5 Miscellaneous properties of the state-dependent distances
4.5.1 Simple state-dependent distance facts
4.5.2 Data processing L e
4.5.3 Triangle inequalities L
4.5.4 Close strategies have close game values
4.5.5 Generating new measurements e e
4.6 Commuting EPR strategieso
4.7 Quantum soundness of the classical low-degree test
4.8 Quantum soundness of the classical simultaneous low-degree test

4.9 Self-testing

IIT Implementing the registers

5 Register overview

5.1 Definitions

15

15
15
16
17
18
18
19
22
24

25
25
27
29
30
32
33
35
35
36
38
43
44
46
47

48

48

5.2 Results. s 50

5.3 Registers for uniform games L L 51
54 Organization L e 52
6 A self test for the Pauli basis 52
6.1 The quantum low-degree test 53
6.2 Proof of Theorem 6.2: the Pauli basistest 54
7 Compiling games with the Pauli basis test 56
8 The data hiding game 59
8.1 Some facts about the Pauli twirl 60
8.2 Hiding a single coordinate L 61
9 Compiling games with the data hiding test 64
10 Partial data hiding 65
IV NEEXP protocol 72
11 A review of a classical PCP theorem 73
11.1 Theinstance 0 e e e 73
11.2 Encoding assignments 73
11.3 Encoding the formula oo 74
11.4 Zero on subcube L 75
11.5 The PCP o e e 76
12 NEEXP preliminaries 77
12.1 Introspection games L e e e e e 7
12.2 Subroutines and superregisters o 79
13 The introspective low-degree test 80
13.1 Introspected partial data~hiding, 80
13.2 An introspective surface sampler L 83
13.3 The introspective cross-check o 85
13.4 The introspective low-degree test Lo oL 86
13.5 The introspective simultaneous low-degree test 88
14 The intersecting lines test 89
14.1 The intersecting lines test 90
14.2 The introspective intersecting lines test 90
15 The introspective NEEXP protocol 94
15.1 Computing the register parameters, 94
15.2 An introspective formula game oL L L L 95
15.3 The complete introspective protocol 98

V Answer reduction 103

16 Testing error-correcting codes 103
16.1 Testing the low-degree code L 104
16.2 Efficiently decodable codes. 107

17 Answer reduction 108
17.1 Oracularization e e 108
17.2 Probabilistically checkable proofs of proximity 109
17.3 Composing with an error-correcting code 110
17.4 The answer reduction protocol Lo 112

17.5 Applying the answer reduction protocol 118

Part 1
Introduction

1 Introduction

This paper is about the complexity class MIP* of multiprover interactive proof systems with entan-
gled quantum provers—the quantum version of the classical class MIP. Classically, the study of MIP
has had far-reaching implications in theoretical computer science. In complexity theory, the proof
by Babai, Fortnow, and Lund [BFLI1] that MIP = NEXP was the direct antecedent of the PCP the-
orem [ALM198, AS98]|, a seminal result which is the foundation of the modern theory of hardness of
approximation. In cryptography, the MIP model was introduced to allow for information-theoretic
zero-knowledge proofs [BOGKWS8S], and more recently MIP protocols have become essential build-
ing blocks in designing delegated computation schemes (see e.g. [KRR14]). These implications alone
would be a sufficient motivation for considering the quantum class MIP*, but remarkably, the study
of MIP* is also deeply related to long-standing questions in the foundations of quantum mechanics
regarding the nature of quantum entanglement. Indeed, the MIP* model itself was anticipated by
the nonlocal games or Bell tests introduced in the work of John Bell [Bel64], who was in turn
inspired by the thought experiment proposed by Einstein, Podolsky, and Rosen [EPR35]. These
nonlocal games have had applications to quantum cryptography [Eke91, MY98, Col06], delegated
quantum computation [RUV13], and more.

Even though the class MIP is now well-understood, it has proven difficult to determine the
computational power of MIP*. A priori, it is not even clear that MIP* contains MIP, since adding
entanglement could increase or decrease the power of the proof system. This is because the added
resource of entanglement can make it easier for dishonest provers to cheat the verifier. Indeed,
Cleve et al. [CHTWO04] showed that for proof systems based on so-called XOR games (where the
verifier’s decision can only depend on the XOR of the provers’ answer bits), the quantum class
®MIP* C EXP, whereas classically ®MIP = NEXP. In particular, this result implied that the
classical ®MIP protocol for NEXP of Hastad [Has97] could not be sound against entangled provers.
In spite of this, Ito and Vidick [IV12, Vid16] were able to show that NEXP C MIP*, by proving
that a different classical protocol is sound against entanglement. Note that the protocol of [Vid16]
is identical to a protocol shown to be unsound by Cleve et al., except in that it uses 3 provers
rather than 2 (the protocol is played by choosing a random subset of 2 provers from the 3). This
illustrates the subtleties of dealing with entangled provers.

With the lower bound NEXP C MIP* established, a natural follow-up question is whether MIP*
is strictly more powerful than MIP. Indeed, it was long known that some MIP* protocols possess a
uniquely quantum property called self-testing, which has no direct analog in the classical setting.
Roughly speaking, an MIP* protocol is a self-test for a particular entangled state |¢) if only provers
using states close to |¢)) can achieve close to optimal success in the protocol. In such a protocol,
observing that the provers succeed with nearly optimal probability certifies that they share a state
close to the target state |¢)). The germ of this idea came from the work of Bell [Bel64], who studied
the types of bipartite correlations that could be obtained from measuring an entangled state called
the EPR state, which had been introduced by Einstein, Podolsky, and Rosen [EPR35]. Bell gave a
protocol where provers using the EPR state could succeed with a greater probability than purely
classical provers, and subsequent works of Tsirelson [Tsi80], and Summers and Werner [SWS8S]
showed that (a variant of) Bell’s protocol certifies the EPR state in the sense of self-testing.

In order to prove stronger lower bonds on MIP*, the post-Ito-Vidick phase of MIP* research
aimed to use this self-testing property to design protocols for problems in Hamiltonian complexity,

the quantum analog of the theory of NP-completeness. In Hamiltonian complexity, the complexity
class QMA plays the role of NP; it is the set of problems for which there exists a quantum witness
state that can be efficiently checked by a polynomial-time quantum verifier. Problems in QMA
seemed like a natural match for the powers of MIP* as one could potentially construct a protocol
for QMA by designing a self-test for accepting witness states of some QMA-complete problem.
The connection between MIP* and QMA was also well motivated from the point of view of the
“quantum PCP” research program, which strives to find quantum analogues of the classical PCP
theorem. In the classical setting, the PCP theorem can be viewed as a scaled-down version of
MIP* = NEXP, showing that there exists an MIP* protocol for 3SAT (and thus for all of NP) with
O(log(n))-sized messages. Drawing inspiration from this, Fitzsimons and Vidick [F'V15] stated a
“quantum games PCP conjecture”: that there should exist an MIP* protocol with log(n)-sized
messages for the local Hamiltonian problem, and thus for the class QMA. This was proved by
Natarajan and Vidick [NV18a] in 2018 with a 7-prover protocol. Along the way to achieving this
goal, [NV18a] developed a highly efficient self-test for high-dimensional entangled states: their
“quantum low-degree test” is a self-test for n EPR pairs with only O(log(n)) communication.

Already, the result of [NV18a] is strong evidence that MIP* # MIP, since it is believed that
QMA £ NP. But, at the same time, several other works showed that even larger separations
were possible in the regime of subconstant soundness gaps. Here there are results in two settings.
For MIP* with a soundness gap scaling inverse-exponentially (i.e. 1/exp(n)) in the instance size,
Ji [Ji17] showed a protocol for NEEXP: nondeterministic doubly-exponential time, and a subsequent
work by Fitzsimons, Ji, Vidick, and Yuen [FJVY19] showed protocols for non-deterministic iterated
exponential time (e.g. NTIME(22")) with a correspondingly small soundness gap (e.g. 27¢2"). In
the “gapless” case, Slofstra [Slo16, Slo19] showed that given a description of an MIP* protocol,
determining whether there exists an entangled strategy that succeeds with probability exactly 1 is
undecidable by any Turing machine.

These results hint at the full power of MIP* but are not conclusive, as it is not unusual for
quantum complexity classes to increase significantly in power when a numerical precision parameter
is allowed to shrink. For instance, QIP (quantum interactive proofs with a single prover) with an
exponentially small gap is equal to EXP [IKW12], while QIP with a polynomial gap is equal to
IP = PSPACE. Likewise, QMA with exponentially small gap (known as PreciseQMA) is known to be
equal to PSPACE [FL18], while QMA is contained PP, and QMA(k) (QMA with multiple unentangled
Merlins) with exponentially small gap is equal to NEXP [Per12], whereas in the constant-gap regime
the best known lower bound is that QMA(k) O QMA. Moreover, even the QMA lower bound for
I\/IIPf‘Og obtained by [NV18b] holds for 7 provers only; with 2 provers, the best known lower bound for
MIPf‘Og is NP = MIPyo, [NV18a]. Could it be that 2-prover MIP* is equal to MIP, with entanglement
providing no advantage at all?

This paper conclusively answers this question in the negative. Our main result (Theorem 1.1)
is to show that MIP* contains NEEXP, with only two provers and with a constant completeness-
soundness gap. This is establishes the first known unconditional separation between MIP* and MIP
in the constant-gap regime: previously, such a separation was known only assuming QMA # NP,
and only in the scaled-down setting of logarithmic-sized messages.

Theorem 1.1 (Theorem 17.12 in the body). There is a two-prover, one-round MIP* protocol for the
NEEXP-complete problem Succinct-Succinct-3Sat with completeness 1, soundness 1/2, and question
and answer length poly(n).

As a corollary of Theorem 1.1, we obtain a lower bound on the hardness of approximation for
the entangled value w* of a nonlocal game.

Corollary 1.2. There exists a constant ¢ < 1 such that given a two-prover nonlocal game & of size
N, the problem of deciding whether w*(¥4) =1 or w*(¥) < 1/2, promised one of the two holds, is

NTIME(2Y'™ ™) _hard.
For two-player games, the best prior lower bound was NP [NV18b]. The lower bound achieved

in Corollary 1.2 is stronger as for any ¢ < 1, the function 2V e TN g superpolynomial.

Techniques. Our construction, inspired by [Jil7] and [FJVY19], involves “compression”: we
show how to take an MIP protocol for NEEXP with exponentially-long questions and answers (the
“big” protocol), and simulate it by an MIP* protocol with polynomial-sized messages (the “small”
protocol). However, the techniques we use to achieve our compression are quite different. We
eschew the Hamiltonian-complexity ideas that were used in previous works, and in particular the
use of history states. In our protocol, honest provers need only share a quantum resource state of
(exponentially many) EPR pairs, together with a classical assignment to the NEEXP instance being
tested. The use of history states was the main barrier preventing previous works from applying to
the case of two provers.

We divide compression into two steps: question compression and answer compression. We
achieve question compression by a technique which we call introspection, in which we command
the provers to perform measurements on their shared EPR pairs whose outcomes are pairs of
questions from the “big” protocol. To force the provers to sample their questions honestly, we
use a variant of the quantum low-degree test from [NV18a], which certifies Pauli measurements
on exponentially many EPR pairs using messages of only polynomial size. A crucial challenge
is to prevent each prover from learning the other prover’s sampled question, since this would
destroy the soundness of the “big” protocol. To achieve this, we use the “data-hiding” properties of
quantum measurements in incompatible bases: if a set of qubits is measured in the Pauli X-basis,
this “erases” all information about Z-basis measurements. This means that if Alice samples her
question by measuring her half of a block of EPR pairs in the Z-basis, then her question can be
hidden from Bob by forcing him (via self-testing) to measure his half of the EPR pairs in the
X-basis. Interestingly, our data-hiding scheme does not operate in a black-box way on the “big”
protocol, but rather makes essential use of its structure. In particular, we start with a “big” protocol
based on a scaled-up version of a PCP construction using the low-degree test, where the question
distribution consists of pairs of random points in a vector space and affine subspaces containing
them. The linear structure of the vector space is essential for our data-hiding procedure to work.

Our approach to answer compression is more standard, essentially using composition with a
classical PCP of proximity. Here, the verifier asks the provers to compute a PCP proof that
their “big” answers satisfy the success conditions of the protocol, and verifies this PCP proof by
reading an exponentially smaller number of bits. Care is needed to deal with entanglement between
the provers. The first, fundamental challenge we face is that the success condition of the “big”
protocol is a function of both provers’ answers. Thus, to compute a PCP proof that the condition is
satisfied, one of the provers must have access to both provers’ answers. Classically, this is achieved
using the technique of oracularization, in which one prover receives both provers’ questions and
is checked for consistency against the other prover, which only receives a single question. In the
entangled setting, this oracularization procedure is sound, but not necessarily complete. This is
because oracularization requires that each prover, if given the other prover’s question, could predict
its answer with certainty, even though this answer is obtained from a nondeterministic quantum
measurement. In our protocol, we are able to use oracularization because honest provers always
use a maximally entangled state, which they measure with projective measurements that pairwise
commute for every pair of questions asked in the game. While this commutation requirement is

restrictive, it still permits non-trivial quantum behavior; indeed, the linear system games used by
Slofstra [Slo19] involve similar commutation conditions.

The second challenge is to ensure that the PCP of proximity we use for composition is itself
sound against entanglement. We achieve this by performing a further step of composition: we ask
the provers to encode their PCP proof in the low-degree code and verify it with the low-degree test,
which is known to be sound even against entangled provers [NV18b]. This technique was introduced
in the QMA protocol of [NV18a] in order to perform energy measurements on the provers’ state.

Implications and future work We believe that our work opens up several exciting directions
for further progress. For the complexity theorist, the most obvious future direction is to obtain
even stronger lower bounds on MIP* by iterating our protocol, as in [FJVY19]. At the most
basic level, we could imagine taking our MIP* protocol for NEEXP and performing a further layer
of question compression and answer compression on it, thus obtaining an MIP* protocol with
logarithmic message size for NEEXP, or, scaling up, an MIP* protocol with polynomial message size

oly(n)
for NTIME(22*""
could obtain potentially obtain lower bounds of NTIME(2") on MIP* while retaining a constant

). By further iterating question reduction and answer reduction k times, we

completeness-soundness gap. The main obstacle to achigving such results is that the question
compression procedure developed in this paper is tailored to a special distribution of questions
(that of the MIP¢y, protocol for NEEXP), whereas our answer compression procedure produces
protocols whose question distribution is not of this form.

Assuming that this obstacle can be surmounted, we could aspire to a more ambitious goal:
a general “gap-preserving compression procedure” for some subclass of MIP* protocols, which we
may label “compressible” protocols. Such a procedure would consist of a Turing machine that takes
as input any compressible MIP* protocol ¢, and generates a new compressible protocol ¥’ with
exponentially smaller message size, but approximately the same entangled value. It was shown
by [FJVY19] that the existence of such a compression procedure for the set of all MIP* protocols
would imply that MIP* contains the set of all computable languages, and moreover that there exists
an undecidable language in MIP*. These consequences would continue to hold as long as the set
of compressible protocols contains a family of protocols solving problems in NTIME(f(n)), where
f(n) is a growing function of n.

Showing that MIP* contains undecidable languages would be significant not just for complexity
theory but also for the foundations of quantum mechanics, as it would resolve a long-standing open
problem known as Tsirelson’s problem. Tsirelson’s problem asks whether two notions of quantum
nonlocality are equivalent: the tensor-product model, in which two parties Alice and Bob each act
on their respective factor of a tensor-product Hilbert space Hajice ® Hpob, and the commuting-
operator model, in which both parties act on a common Hilbert space H, but the algebra of Alice’s
measurement operators must commute with Bob’s, and vice versa. It was shown by Slofstra [Slo16]
that in the “zero-error” setting, these two models differ: there are quantum correlations which
can be ezxactly achieved in the commuting-operator model but not in the tensor product model.
Surprisingly, showing that MIP* contains undecidable languages would imply that the two models
are separated even in the bounded-error setting: it would imply that there exist correlations that can
be achieved in the commuting-operator model that cannot even be approximated (up to constant
precision) in the tensor-product model. The reason for this implication is that if the two models
are indistinguishable up to bounded error, then there exists a Turing machine that can decide any
language in MIP* and is guaranteed to halt. This observation, which is folklore in the community,
follows from the completeness of the non-commutative sum of squares hierarchy for the commuting-

operator model, as documented in [FJVY19]. Showing a separation between the two models would
have significant mathematical consequences as well, as it would yield a negative answer to the
long-standing Connes’ embedding problem.

In addition to these connections to complexity and mathematical physics, we hope that our
results will have applications in other areas such as to delegated computation or quantum cryptog-
raphy. In particular, our use of introspection is reminiscent of ideas used in quantum randomness
expansion, where randomness generated by measuring EPR pairs is used to generate questions
for a nonlocal game. Could our results improve on the infinite randomness expansion protocol of
Coudron and Yuen [CY14]?

Acknowledgements We thank Henry Yuen for many useful conversations about the idea of
“introspecting” interactive proof protocols, which inspired us to start this project. AN is also
grateful to the Simons Institute for the hospitable environment of the Summer Cluster on Challenges
in Quantum Computation during which these conversations where held. We thank Thomas Vidick
for his guidance and advice. We thank Ryan O’Donnell and Ryan Williams for a succinct review
of the literature on the complexity of succinct (succinct) 3Sat and NE(E)XP. We are also grateful
to Zhengfeng Ji for several useful discussions, especially regarding the consequences of recursively
composing our protocol with itself.

AN was partially supported by NSF grant CCF-1452616. JW was partially supported by ARO
contract W911NF-17-1-0433. Both authors acknowledge funding provided by the Institute for
Quantum Information and Matter, an NSF Physics Frontiers Center (NSF Grant PHY-1733907).

2 Overview of our proof

In this section we give a more detailed overview of the technical parts of the paper.

2.1 Basic quantum notation and qudits

While the main body of the paper contains a more complete set of quantum preliminaries in Section 4,
for the purposes of this introduction we define some basic notation, aimed at the reader who is
familiar with the standard quantum computing formalism over qubits but is less familiar with qu-
dits: quantum systems of dimension not equal to 2. In this paper, we make extensive use of such
qudits: in particular, for a finite field Fg, we will consider qudits of dimension (), with a basis state
i) for every element i € Fg. Under tensor product, we obtain a basis for the space of M qudits of
dimension @) where each basis state |z) corresponds to a vector x € Iﬁ‘g .

The basic resource state used in our protocols will be the EPR state over 2M qudits of dimension
Q. The qudits are split into two registers of M qudits each, held by the two provers Alice and Bob,

respectively.
1

[EPR¢Y) = W Z |2) Alice ® |Z) Bop -

M
xEFQ

This state is a maximally entangled state between Alice and Bob.

Acting on this state, we will ask the provers to perform measurements from a special class
called Pauli basis measurements. To define these over a general field Fg requires the introduction
of some finite field technology, in particular the finite field trace function. For simplicity, in this
overview we will imagine that () is prime, allowing the addition in Fg to be identified with the
additive group Zg, and simplifying the definition of the Paulis; in the main body of the paper, we

will work with @ a power of 2. For a single qudit of dimension @, the Pauli X and Z bases are the
sets {|7'{f(>}uelFQ and {|TuZ>}u€]FQ of vectors

|T;f<>=% S W),) =,

z€elfg

where w = exp(27i/Q) is the @Q-th root of unity. We denote the projectors onto these basis states
by 7'5(and TUZ , respectively. For a system of M qudits, the Pauli X and Z observables are a set of
generalized observables indexed by elements of Fg : a generalized observable is a Hermitian matrix
with eigenvalues that are Q-th roots of unity. They are given by

Z(v) = Z Wte1s

UM

X(v) = Z WU ®. .. e TE

UMY
M M
uEFQ uEFQ

where uq, ..., ups are the components of the vector u, and «-v is the dot product Zf\il u; - v;. Mea-
suring a generalized observable means performing a projective measurement onto the eigenvectors
of the observable, with the outcome a corresponding to the eigenvector with eigenvalue w®.

2.2 Our starting point: a classical interactive proof for NEEXP

We start with a classical multiprover interactive proof protocol for NEEXP. The equality MIP =
NEXP was originally shown by Babai, Fortnow, and Lund [BFL91] using a protocol based on the
multilinearity test: the idea is that an exponentially-long witness for a problem in NEXP is encoded
in the truth-table of a multivariate polynomial function over a finite field, which is linear in each
of the variables individually. The verifier is able to verify the witness by evaluating the multilinear
polynomial over appropriately chosen points and subspaces. To scale up to NEEXP, we use a much
more efficient version of the same idea, replacing the multilinearity test with the low-degree test,
which works with multivariate polynomials of low total degree. This more efficient construction
comes from the PCP literature. We give a relatively self-contained presentation of the protocol
in Section 11. For the purposes of this overview, it is sufficient to know the following: any problem
in NEEXP can be reduced to satisfiability for a doubly exponentially long 3Sat formula, succinctly
encoded by a polynomial-sized circuit. (We refer to this problem as Succinct-Succinct-3Sat). Given
a 3Sat formula v, we would like the provers to prove to us that they have a satisfying assignment «
to this formula. Instead of reading the assignment directly, we will ask the provers to encode their
assignment as a multivariate polynomial g, : Fgf — Fg, where the number of variables M and the
finite field size) are appropriately chosen parameters, and return evaluations of this polynomial.
To check that a satisfies ¢, the verifier first uses a technique called arithmetization to convert the
formula 1 into a multivariate polynomial gy, : IF‘%M ey Fg. The polynomial gy is chosen such
that the assignment a satisfies ¢ if and only if the expression

satwﬂ(x, bvw) = gw(ﬂ?, b7w) : (ga(xl) - bl)(ga(x2) - b2)(ga(x3) - b3)

is equal to 0 at every point in a particular subset H C F%M *k_ Our classical protocol for NEEXP
checks this condition:

Informal Theorem 2.1 (Section 11 in the body). There exists a protocol % for Succinct-Succinct-
3Sat (and hence NEEXP), where the verifier’s questions to the provers are constant-dimension
subspaces of FM | and the provers’ responses are evaluations of degree-D M -variate polynomials on
these subspaces. The parameters M,Q, D are all chosen to be exp(n), and hence the question and
answer lengths as well as the runtime of the verifier in this protocol are exp(n).

10

The distribution over subspaces sent to the provers in ¥ is relatively simple, and in fact is in-
dependent of the instance of Succinct-Succinct-3Sat being tested. For the purposes of this overview,
the reader can take the distribution over pairs of questions to be the plane-point distribution D. A
pair (s,u) ~ D consists of a uniformly random affine plane s C Fgf , which is sent to Alice, and a
uniformly random point u € s which is sent to Bob. The full distribution over questions in ¥ is
more complicated than this but the essential ideas of our protocol will be illustrated by restricting
to this case.

2.3 Restricting the strategies: registers and compilers

One of the main challenges in working with entangled provers is showing soundness against general
entangled strategies. An important technique in this area is to force the provers to use a particular
state and class of measurements by playing a type of game known as a self-test.

Informal Definition 2.2. A game % is a self-test for a state 1)) and measurements M?* if any
strategy that succeeds in %est with probability 1 — e must use a state [¢)') and measurements (M')*
that are d(e)-close, in the appropriate metric, to |¢)) and M?.

Some of the earliest self-tests include the famous CHSH game, which self-tests the Pauli X
and Z operators on a single EPR pair (of qubits). Self-testing technology has greatly advanced

over the years, and in this paper we design a highly efficient self-test based on the low-degree test
of [NV18a).

Informal Theorem 2.3 (Theorem 6.2 in the body). The Pauli basis test Pauli(n,q) is a self-test
for the state |EPRy) and the Pauli X and Z basis measurements. This test sends the players
questions of length O(log(n)) and receives answers of length O(poly(n)).

The Pauli X and Z measurements are “complete” measurements, and as a consequence, there
is no nontrivial measurement on a set n qudits that can be measured jointly with both the Pauli X
and Z measurements on those qudits. Using this property, we design a game called the data-hiding
game, which certifies that a prover’s measurements act trivially on a specified set of qudits.

Informal Theorem 2.4 (Theorem 8.3 in the body). The data-hiding game %iqe is a self test for
states [1p) = [EPRy) ® |aux) and measurements M® of the form M* = I1® (M')3,,. It has questions
of length O(log(n)) and answers of length O(poly(n)).

Together, the Pauli basis test and the data-hiding game allow us to restrict our analysis of our
protocols to a class of strategies we call register strategies: strategies for which the shared state is
a collection of £ registers, each in an EPR state, together with some auxiliary register:

[v) = [EPR;!) ® ... ® [EPRyY) ® |aux),

and where the provers can be commanded to perform either (1) Pauli basis measurements on
specified subsets of the registers, or (2) measurements that do not act on specified subset of the
EPR registers (but act on the auxiliary register or the remaining EPR registers). We formalize
this by designing a compiler, which takes in a protocol ¢ that is complete and sound for register
strategies, and produces a new protocol ¢’ which is complete and sound over all strategies.

Informal Theorem 2.5 (Theorem 7.2 and Theorem 9.2 in the body). Suppose & is a protocol
for a computation problem for which completeness and soundness hold for register strategies, with
O(1) many registers of size n. (That is, for YES instances of the problem, there exists a register

11

strategy achieving value 1, and for NO instances, no register strateqy achieves value greater than
1/2). Let the questions in &G be of length @ and the answers be of length A. Then there exists a
protocol 4" which is complete and sound for general strategies, and for which the question length is
Q +log(n) and the answer length is A + poly(n).

The compiled protocol ¢’ either runs the original protocol ¢, or, with some probability, runs
the Pauli basis test, the data-hiding game, or a consistency test.

2.4 Question reduction through introspection

With our compiler in place, we have now given the verifier the power to command the provers to
perform Pauli basis measurements on a set of EPR pairs. We would like to use this to reduce the
question size of the classical protocol 4 for NEEXP described above from exp(n) to poly(n). We
will do so by forcing the provers, rather than the verifier, to sample the protocol’s exp(n)-length
questions, a technique we call “introspection”. That is, we would like to force the provers to sample
pairs (s, u) from the plane-vs-point distribution D, where s is a uniformly random affine plane in
FM and w a uniformly random point on s.

To design a scheme to sample from this distribution, let us first fix a representation of affine
planes. We will represent an affine plane by an intercept u € Fgf and two slopes vi,vq € Fgl . The
plane given by w, vy, vg is the set s, = {u + A\jv1 + Aava : A1, A2 € Fg}. As a first attempt, we may
try the following scheme:

1. Alice and Bob share three registers, each of which contains an EPR state, so their shared

state is
o) = [EPRY) . ® [EPRY), ® [EPRY), .

2. Alice first measures her half of registers Ry and Ry in the Pauli Z-basis, to obtain uniformly
random outcomes v, vs. The shared state is now

1) = |EPR22/[>RO ® (|v1>A|ice ® |v1>Bob)Rl ® (|v2>A|ice ® |v2>Bob)R2‘

3. Now, Alice and Bob both measure register Ry in the Pauli Z-basis, both obtaining the same
outcome u. The shared state is now

[1h2) = (|U) pjice @ [gon) Ro ® (1V1) ptice @ [V1)gob) B1 @ ([V2) Ajice © [V2)gob) Re-
Alice sets her plane s to be s}, and Bob sets his point to be w.

Indeed, the pair (s,u) generated by this procedure is distributed according to D. However, there
is a problem: through her measurement, Alice obtains additional side information, specifically the
value of Bob’s point u. Can we command Alice to erase the side information? In fact, we can,
using the Heisenberg uncertainty principle: if two observables anticommute, then measuring one
completely destroys information about the other. Using this idea, we modify our protocol as follows:

1. As above.

2. As above. At this point, applying the definition of]EPRQQ/[), we can write the shared state as

W}l> x Z (‘U>A|ice ® ‘U>Bob)R0 ® (’vl>A|ice ® ’vl>Bob)R1 ® ("02>A|ice ® "U2>Bob)R2‘

M
uEFQ

12

3. New: Intuitively, we would like Alice to be prevented from measuring the component of the
intercept along the directions vy, vo. This information would be obtained by measuring the
observables' Z(v1), Z(v3). To destroy it, we will ask Alice to measure the complementary
Pauli observables X (v1), X (v2) on register Ry, obtaining outcomes oy, s € Fg. The shared
state is now

) oc D Y [WM U4 doy +) ey | ([01) alice @ [01)0b) 1
N ——

uoAm u Alice Ro

® (’02>A|ice ® ’02>Bob)R2'

where, as above, w = exp(27i/Q) is a Q-th root of unity. Alice and Bob’s state on Ry is
now a uniform superposition over pairs u,u’ of points lying on the same affine subspace with
slopes v1, vs.

4. Alice and Bob both measure register Ry in the Z basis, obtaining outcomes u and u’, respec-
tively. The shared state is now

[¥5) = (|4 atice @ [4)gob) Ro @ ([91) Alice @ [V1)Bob) R @ ([92) Ajice @ [V2) Bob) Rz
Alice sets her plane to be s, and Bob sets his point to be u'.

Now, from the calculation performed above, it’s clear that Bob’s point u’ is uncorrelated with Alice’s
intercept u, apart from lying in the plane s7,, and hence there is no further information about Bob’s
point that Alice can learn by measuring her portion of the final state |¢5). But Alice still obtains
some additional information from her measurements along the way, in particular the outcomes
a1, as of the X measurements. And moreover, how can we certify that the X measurements were
performed correctly, since they are not Pauli basis measurements as given to us by the compiler? To
answer these questions, we define a new game called the partial data-hiding game (Theorem 10.4),
which certifies that Alice and Bob perform the steps described above and that no extra information
is leaked. Building on this game, we can now design a protocol for NEEXP with small question size:

Informal Theorem 2.6 (Theorem 15.8 in the body). There is an MIP* protocol 4, for NEEXP
with questions of length poly(n), and answers of length exp(n). The verifier can generate the
questions in poly(n) time but needs exp(n) time to verify the answers.

2.5 Answer reduction through PCP composition

We have succeeded in obtaining a game with short questions, but the answers are now exponentially
long. In the last step, we will use composition with a classical probabilistically checkable proof
(PCP) to delegate verification of the answers to the provers.

Schematically, the protocol 4 consists of the following steps:

1. The verifier sends Alice a question « and Bob a question y.
2. Alice returns an (exponentially-long) answer A and Bob an exponetially-long answer B.

3. The verifier computes a verification predicate V(x,y, A, B) in exponential time.

1Strictly speaking, this is only true when v - v1 # 0 and vs - v2 # 0. A more rigorous treatment of this is given
in Section 10.

13

We would like to delegate the last step to the provers by asking them to compute a PCP proof
that V(x,y, A, B) = 1, which the verifier can check by communicating only polynomially many
bits with the provers. However, we face an obstacle: Alice cannot know y and B, and neither can
Bob know « and A, and distributed PCPs (where neither party knows the entire assignment) are
known to be impossible [ARW17]. To proceed, we will first have to modify 4 by oracularizing it:

1. The verifier sends Alice the questions x, y, and Bob either x or y, chosen uniformly at random.
2. Alice returns exponentially-long answers A, B, and Bob returns an answer C.

3. The verifier computes a verification predicate V (z,y, A, B) on Alice’s questions and answers,
and further checks that A = C, if Bob received x, or that B = C, if Bob received y.

The idea is that the new Alice simulates both Alice and Bob from the original protocol, and the
new Bob certifies that the new Alice does not take advantage of her access to both questions to
cheat. It is well-known that oracularization does not harm the soundness of interactive protocols,
be they classical or quantum. However, in the quantum world, it is not necessarily the case that
the oracularized protocol retains completeness. This is because Alice and Bob may have been asked
to perform non-compatible measurements in the original protocol, rendering it impossible for the
new Alice to simulate both the original Alice and Bob. Fortunately for us, the honest strategy for
protocol ¥4 is such that completeness under oracularization.

Now that a single prover is in possession of all inputs to the verification predicate V', we can
implement our idea of using a PCP proof. Classically, this idea is known as PCP composition,
and is extensively used in the PCP literature. In the quantum case, the requirement to maintain
soundness against entanglement makes composition technically difficult, and we defer the details
to Part V of the paper. Once the composition is performed, we reach our main result.

Informal Theorem 2.7 (Theorem 17.12 in the body). There is an MIP* protocol %» for Succinct-
Succinct-3Sat (and hence for NEEXP) with question size, answer, and verifier runtime poly(n).

2.6 Organization

The paper is organized into five parts. The first part is the introduction and this overview. The
remaining parts are organized as follows.

e Part II contains two sections of preliminaries, one containing the classical background and
another the quantum background.

e Part III contains the register compiler, i.e. the proof of Informal Theorem 2.5. This involves
designing the Pauli basis test (Section 6) and the data hiding test (Section 8). Section 5
serves as an introduction to this part and contains more details on the organization.

e Part IV contains the “introspection” question reduction step, i.e. the proof of Informal Theorem 2.6.

To begin, we sketch the classical MIP protocol for Succinct-3Sat in Section 11. Then we give
the introspected, i.e. “big”, low-degree test in Section 13, and finish by giving the entire small-
question NEEXP protocol in Section 15. Section 14 contains a test necessary for the protocol
called the “intersecting lines test”. It allows us carry over the results of the low-degree test
from one register to another.

e Part V contains the answer reduction, i.e. the proof of Informal Theorem 2.7. The construc-
tion involves composing PCP protocols with error-correcting codes, and so Section 16 surveys
the properties we need of an error-correcting code. Finally, Section 17 contains the actual
proof of the answer reduction step.

14

Part II
Preliminaries

3 Classical preliminaries

3.1 Finite fields and polynomials

In this section we review some basic facts about finite fields and polynomials over them. These
facts can be found in a standard reference such as [MBG'13]. Let p be a prime and ¢ = p’ be a
prime power. We denote by IF,, and F, the finite fields with p and ¢ elements, respectively. The
field F,, is called the base field or prime subfield of F,. The larger field IF, can be viewed as a
t-dimensional vector space IF‘;’; over the smaller field. We define the trace tr : F, —), by

t—1
trfa] = Z .
=0

The trace is a linear map under linear combinations with coefficients drawn from F,,.
A basis for F, over F, consists of k elements {ay,...,ax}, such that any element v € F, can be
written as a linear combination
k
u = Z C; (g,
i=1

where the coefficients ¢; € F),. Two bases {a;} and {3;} are dual bases if tr[a; ;] = J;j, where 0;;
is the Kronecker delta function.

Fields of characteristic 2 : When p = 2 (i.e. ¢ is even), several useful properties hold. Most
importantly for us, the field F, has a self-dual basis: that is, there exists a basis {c;} such that
trla;aj] = 6;; [MBGT13, Theorem 1.9]. This means that given a field element u = Y, ¢;c;, we can
recover the coefficient ¢; by the expression ¢; = tr{ua;].

Fourier identities Below, we give two useful identities for simplifying Fourier sums over finite
fields. We set w = e2™/P to be a p-th root of unity.

Fact 3.1. Eyer, w9 =0 if a is nonzero.

Proof. If a # 0, then there must exist some nonzero y € Fy such that tr[ay] # 0. Let the value of
the expectation we want to compute be denoted by o. Then we have

c= E wtr[a'u,]
u€cl,

B otrlaty)]
ucl,

:wtr[ay] E wtr[au]
uclFy
_ trlaul

and thus ¢ = 0. O

Fact 3.2. Let V' be a subspace of Fy. Then Eq.v witlwal — 0 if g ¢Vt

15

Proof. The idea is the same as the proof of the previous fact. Suppose a ¢ V+. Then there exists
some nonzero y € Fy such that tr[(a,y)] # 0. Letting the value of the expectation we wish to
compute be denoted o, we have

c= E wtr[(u,a)}

and hence o must vanish. O

3.2 Two-player one-round games and MIP

A two-prover nonlocal game is an interaction between a verifier and two noncommunicating provers,
in which the verifier samples a pair of random questions and sends them to the provers, receives
a pair of answers, and decides whether to accept or reject based on the questions and answers. In
the literature, a game is usually taken to be described by the verifier’s distribution over question
pairs, together with a table describing the verifier’s behavior for all possible choices of questions and
answers. For our purposes, it will be more convenient to work with uniformly generated families
of games, which are specified by Turing machines that sample the questions and decide whether to
accept or reject given the questions and answers.

Definition 3.3 (Two-player one-round uniform game family). A two-prover one-round game uni-
form game family 4 is an interaction between a verifier and two provers, Alice and Bob. The
verifier V' = (Algq, Alga) consists of a “question” randomized Turing machine Algg and an “an-
swer” deterministic Turing machine Alga. Given an input string input, the verifier samples two
questions (g, z1) ~ Algq(input) and distributes xy to Alice and @; to Bob. They reply with
answers ag and ai, respectively, and the verifier accepts if Alga (input, g, x1,a9,a1) = 1. A strat-
egy for Alice and Bob is said to be classical if they are allowed shared randomness but no shared
quantum resources. The value of Alice and Bob’s strategy is simply the probability that the verifier
accepts, and the classical value of the game is the maximum value of any classical strategy. We
write Q-length(¥¢) for the maximum bit length of the questions as a function of the input input,
and similarly A-length(¥¢) for the maximum bit length of the answers, Q-time(¥) for the maximum
running time of Algq, and A-time(¥) for the maximum running time of Alg,. Often we will not
explicitly write the dependence of these quantities on input.

Definition 3.4 (Multiprover interactive proofs). A 2-player 1-round multiprover interactive proof
protocol is a uniform game family ¢ as in Definition 3.3. For parameters 0 < s < ¢ < 1, we say
that the protocol ¥ decides the language L with completeness ¢ and soundness s if the following
three conditions are true.

o (Completeness) Suppose input € L. Then there is a classical strategy for 4 with value at
least c.

o (Soundness) Suppose input ¢ L. Then every classical strategy for ¢4 has value at most s.

o All of Q-length(¥), A-length(¥4), Q-time(¥), and A-time(¥) are poly(n) where n is the bit
length of input.

The class MIP., is the set of all languages that can be decided by multiprover interactive proof
protocols with the parameters ¢, s.

16

If ¢ — s is a constant, then we will suppress the dependence on them when writing MIP and
just say that L € MIP. Here, “c” is referred to as the completeness and “s” is referred to as the
soundness. We will typically deal with the case when ¢ =1 and s = 1 — ¢, where € > 0 is a small
constant.

In this definition of MIP, the parameters Q-length(¥), A-length(¥), Q-time(¥), A-time(¥) are
required to be polynomial in the input length n. However, in this paper, several of the intermediate
results we achieve are protocols where these parameters scale superpolynomially (indeed, even
exponentially or worse) in n. In these cases, we will explicitly indicate the dependence of these
parameters on n.

3.3 Low-degree code

Let ¢ be a prime power and h < g be an integer. Let H be a subset of F, of size h. For n > 0, let
x € H". The indicator function of x over H™ is the polynomial with inputs y € F;" defined as

indH (y) . HZil HbEH,byﬁxi (yz - b)
’ [L2 [oerpra, (i — b)

There are two properties of this polynomial that we will need:

(i) that it is low-degree, i.e. a degree-m(h — 1) polynomial,
(ii) that for any z,y € H™, indy (y) = 1 if and only if = y, and otherwise indy ,(y) = 0.

Using this, we can define the low-degree code.

Definition 3.5 (Low-degree encoding). Let |[S| < A™, and let 7 : S — H™ be an injection. Then
the low-degree encoding (sometimes also called the Reed-Muller encoding) of a string a € IF‘qS is the
polynomial g, : Fy" — F, defined as

ga(x) = Z a; - indg ;) ().
€S
By the properties of the indicator function above, (i) g, is a degree-m(h — 1) polynomial, and
(i) ga(m(?)) = a; for all ¢ € S. We will typically, though not always, take S = [n]. Given an
error-correcting code, there are two key properties we care about: the rate and the distance. The
rate of the low-degree code is n/q"™. As for the distance, we can estimate it with the following
lemma.

Lemma 3.6 (Schwartz-Zippel lemma [Sch80, Zip79]). Let f,g be two unequal m-variate degree-d
polynomials over Fy. Then

Pr [f(x) = g(x)] < d/q.

m
mNIFq

As a result, the low-degree encoding has relative distance m(h — 1)/q. In a typical application,
we would like a code with large rate and distance. To achieve this, we will often use the following
“rule of thumb” setting of parameters:

log(n)

m)) q = polylog(n). (1)

h = ©(log(n)), m =0 (

This gives a code with rate 1/poly(n) and distance o(1). The polynomials involved are degree
d = ©(log(n)?/loglog(n)).

17

3.4 A canonical low-degree encoding

The low-degree encoding affords us some flexibility when choosing the parameters and the injection;
however, for our application we will have to choose these with care, because each of our uses of the
low-degree code requires that the injection 7 be efficiently computable. In this section, we give a
simple, canonical choice for the subset H and the injection 7 so that this is true.

Definition 3.7. We say that n, h = 2%, ¢ = 2?2, and m are admissible parameters if t; < to and
h™ > n.

The following definition gives the canonical encoding.

Definition 3.8 (Canonical low-degree encoding). Let n, h = 2% ¢ = 22, and m be admissible
parameters. Set £ = t1 - m. The canonical low-degree code is defined as follows.

(i) Let eq,..., e, be a self-dual basis for F, over Fy. Then we set H to be the subset
H:=H 4, ={b1-e1+---+0by ey |br,...,b, €Fa}.
As desired, |H| = h.

(ii) Let o := oy, 4, : {0,1}"* — Hy, 4, be the bijection o(b1,...,by) =b1-e1+ -+ by, - €. From
this, we can construct a bijection oy, 4, : {0,1}* — H™ by setting

O'g’tl’t2(b1, e ,bz) = (O’(bl,. .. 7bt1)70(bt1+17 e ,bgt),. .. ,O'(bg_t1+1,. .. ,bg)).

(i) Given an index i € [n], write biny(i) for its ¢-digit binary encoding. Then we define the
injection 7 := mpy, 4, : [n] = H™ as w(i) = 044, 1, (bing(i)).

The following proposition gives the time complexity of the canonical low-degree encoding.

Proposition 3.9. The bijection oy, 1, and the injection m := gy, 4, are both computable in time
m - polylog(q). As a result, given a string a € Fy and a point x € F", the value gq(x) takes time
poly(n,m,q) to compute.

3.5 Low-degree testing

Definition 3.10 (Surface-versus-point test). The surface-versus-point low-degree test with parame-
ters m, d, q (a prime power), and k, denoted Ysyrtace(m, d, ¢, k), is defined as follows. Let vy, ..., v
be k uniformly random vectors in Fy’, and let s be a uniformly random affine subspace parallel to
span{vy,...,vi} (that is, s is the set {w + M\vy + -+ + Agvg : A1,..., Ay € Fy} for a uniformly
random w), and let w be a uniformly random point on s. Given these, the test is performed as
follows.

o The vectors vq,...,v; and the surface s are given to Alice, who responds with a degree-d
polynomial f : s — [F,.

o The point u is given to Bob, who responds with a number b € F,,.

Alice and Bob pass the test if f(u) = b.

18

Remark 3.11. Let us remark briefly on the encodings used in this test. A surface s with directions
v1,...,0 is encoded by the string (u,wi,...,wg) € Fékﬂ)n. Here, u is the lexicographically
minimum point in s, and wq, . .., w; are the rows of the matrix produced by taking the matrix with
rOwWS v1, ...,V and transforming it to reduced row echelon form. We note that given vy,...,v; and
a point u € s, this encoding can be produced in time poly(n, k,log(q)).

A function f : s — Fy is a degree-d polynomial on s if there exists a degree-d k-variate polynomial
e F’; — F, such that f'(Ar,...,\g) = f(u+ wi +- -+ Agwg). When s is already known, we can
encode f by specifying f’, which involves writing out its d[k] := (dzk) coefficients in some arbitrary
but fixed order.

We note that this definition of the surface-versus-point test differs slightly from the standard
definition of the surface-versus-point test in two respects. First, we do not require that the vectors

v1,...,V; be linearly independent or even nonzero, which implies that there is a
1 k—1 k
q q q q
chance that s is less than k-dimensional. Second, we send the vectors wq,...,vr to Alice in

addition to the description of the surface s. It is not hard to see that these two modifications do
not asymptotically harm the soundness guarantee obtained for the standard plane-versus-point test
shown by Raz and Safra [RS97], which we restate here.

Theorem 3.12 ([RS97]). There exist absolute constants c,d > 0 such that the following holds.
Suppose Alice and Bob pass Ysurtace(m, d, q,2) with probability at least p. Then there exists a
degree-d polynomial g : F* — Fy such that

Pr [g(u) = b] > u— ¢ m(d/q)""

(s,u)

Explicit values for ¢, ¢ have been derived by Moshkovitz and Raz [MRO08], albeit for the weaker
guarantee that g be a degree-md polynomial, which is still sufficient for most applications.

Communication cost. We can compute the communication cost of this test as follows.

o Question length: We encode a plane in F§* with a string (u,v1,v9) € Fgm. This requires
3mlog(q) bits to communicate.

o Answer length: A degree-d bivariate polynomial on F, can be described with (d;rz) <
(d 4 1)? coefficients in F,. These require (d + 1)?log(q) bits to communicate.

Recalling Equation (1), a typical setting of parameters gives questions of length ©(log(n)), and
answers of length O (log(n)*/loglog(n)).

3.6 Simultaneous low-degree testing

Definition 3.13 (Simultaneous surface-versus-point test). The simultaneous surface-versus-point
low-degree test with parameters m, d, q (a prime power), k, and ¢, denoted E?Séurfaco(m,d, q,k),
is defined as follows. A draw (s,u) is sampled as in %surface(m, d, q, k). Given this, the test is

performed as follows.

o The surface s is given to Alice, who responds with ¢ degree-d polynomials f,..., f,: s = F,.

19

o The point u is given to Bob, who responds with £ numbers by, ..., b, € F,,.
Alice and Bob pass the test if f,(u) =b1,..., f,(u) = by.

Classically, the k = 2 case of this test can be reduced to a slight generalization of Theorem 3.12
using a simple and standard union-bound argument. Quantumly, however, a corresponding entanglement-
sound analogue of this generalization is not known to hold. Instead, we use a slightly more involved
reduction in which the ¢ outputs of Alice and Bob are “combined” to create a strategy for the
“standard” plane-versus-point test. (This technique is standard and was also used in the proof of
Lemma 4.6 in [NV18a] for the case £ = 2.) In this section, we will introduce the notation needed for
this reduction and carry out the proof of the classical soundness of the simultaneous low-degree test
as a warm-up for our proof of quantum soundness later. We begin by showing how to combine /¢
functions by introducing ¢ “indexing” variables.

Notation 3.14. Let g1,...,9, : s = F; be functions, where s is a subset of Fi*. Then we define
the new function combiney(z,y) : Fé ® s — F, as follows:

combiney (x,y) = 21 - g1(y) + -+ + 0 ge(y).
We will typically apply this with s = Fj" or s a dimension-k subspace of Fy".

If the g;’s are degree-d polynomials on Fg", this produces a degree-(d + 1) polynomial on Fg*m.
First, we show that given a surface-versus-point query from this (¢ + m)-dimensional space, we can
produce a surface-versus-point query from the m-dimensional space.

Proposition 3.15. Given a subset s C Fg*m, let sproj = {y | (z,y) € Ff; ®F}.

o If s is a dimension-k subspace of Ff;+m, then sproj is a dimension-k’ subspace of Fy', for
K <k.

/ : ; ; m i
Define 8" ~, sproj to be a uniformly random dimension-k subspace of Fy' containing spro;-

o If s and (x,y) are distributed as Dsurace({ +m,q, k), then s’ ~ Sproj and y are distributed as
-@Surface (ma q, k) .

Proof. The first bullet follows because if {(x1,v1),..., (T, yr)} is a set of k linearly independent
vectors which span s, then {yi,...,yx} is a set of k vectors which span Sgpan, though they may no
longer be linearly independent. The second bullet follows by symmetry. O

Next, we show that answers to the queries on the m-dimensional space can be used to produce
answers to the queries on the (¢ + m)-dimensional space.

Proposition 3.16. Let s be a dimension-k subspace of Ff;er, and let s’ C Fy' be a subspace which
contains sproj. Then F2®s’ is a subspace, and it contains s. In particular, if f1,..., f¢ are degree-d
functions on s', then combiney is a degree-(d + 1) function on Fg ® s, and it can be restricted to a
degree-(d + 1) function on s.

Proof. Consider a point (z,y) € s. Then y € spro5 € §', and so (z,y) € Fé ® s. The statement
about combine follows immediately. O

Finally, we need a technical result: that nonlinear low-degree polynomials rarely become linear
after restricting variables.

20

Definition 3.17. Let n > 0. A function f : Ffﬁ" — [y is exactly linear in x if it can be written as

flzyy) =21 fi(y) + -+ 20 fu(y).

(We do not allow constant terms.) Note that when n = 0, such a function can be written as
c1 -1+ -+ ¢ - xp, where each ¢; € Fy, in which case we simply call it “exactly linear”. Given
a function f(z,y) and a string y € F}", we will also write f|, for the function defined as f,(x) =

f(z,y).

Proposition 3.18. Suppose f(x,y) : Fé”” — Fy is a degree-d polynomial which is not exactly
linear in x. Then the probability that f|, is exactly linear, over a uniformly random y ~ Fy', is at
most d/q.

Proof. Because f is not exactly linear in z, it contains some non-linear z-monomial 2’ = :E’f e xz‘f
which i1+ - -+iy is either zero or at least two. Thus, f can be written as f(z,y) = z*-g;(y)+ f'(z, y),
where g;(y) is degree-d and f’ contains no z' terms. For f|, to be exactly linear, this term must
vanish, which means g;(y) = 0. But by Schwartz-Zippel (Lemma 3.6), this happens with probability
at most d/q. O

in

We are now ready to prove soundness of the simultaneous low-degree test in the k = 2 case.

Theorem 3.19. There exists absolute constants c,c’ > 0 such that the following holds. Suppose Al-
ice and Bob pass %Szurface(m, d, q,2) with probability at least . Then there exist degree-d polynomials
g1, -, 90 By — Fy such that

Pr [g1(u) = bi,. .., go(w) = b = u—c- (m+ 0)(d/q)°".

(s,u)
Proof. Let ¢, > 0 be as in Theorem 3.12. We pick the constants in this theorem, say ¢, ¢’ so that
p—c(m+0((d+1)/q)" —2(d+1)/q>pn—é (m+0)(d/g).

Note that this means that the theorem is trivial when 2(d+1)/q > p—c-(m+£)((d+1)/q)°. As
such, we will assume below that

2(d+1)/g < p—c-(m+0)((d+1)/q)". (2)

Suppose Alice and Bob pass %Seurface(m, d,q,2) with probability at least y. We will use them
to simulate two provers, “Combined Alice” and “Combined Bob”, who pass the single-function

low-degree test Ysurtace (¢ + m,d + 1, q,2) with probability at least p. They are specified as follows:

o Combined Alice: Given s C F§+m, draw s’ ~9 Sproj. Give it to Alice, who responds with
fi:--.,f¢: 8 = F, Output the function combine|s.

o Combined Bob: Given (x,y) € Fg*m, compute y € Fj*. Give it to Bob, who responds with
bi,...,b; € Fy. Return combiney(x) € F,.

By Proposition 3.15, s’ and y are distributed as the questions in %Sgurfaco(m,d,qﬂ). Using our
assumption on Alice and Bob, this means that f,(y) = b1, ..., f,(y) = by with probability at least
p. As aresult, (combineg|s)(x,y) = combiney(y) with probability at least p. By Proposition 3.16,
combiney|, is a degree-(d+ 1) function on s, and so it is a valid response to subspace queries. This
means Combined Alice and Bob pass %surtace (¢ + m,d + 1, ¢, 2) with probability at least p.

21

Thus, we can apply Theorem 3.12. It gives a degree-(d 4+ 1) function g : Ff;er — IFy such that

Eg[g(w,y) = combiney ()] > p—c- (L+m)- ((d+1)/q)°. (3)
We would like to show that g is exactly linear in x. Assume for the sake of contradiction that this
is not the case. Because b depends only on y (and Bob’s internal randomness), we can consider
varying these two variables independently of . By Proposition 3.18, the probability that g, is not
exactly linear is at least 1 — (d 4+ 1)/q. In this case, because combine,(x) is always exactly linear,
the probability that g|y(x) = combiney(x) is at most (d 4+ 1)/q by Schwartz-Zippel (Lemma 3.6).
As a result, the probability that g(x,y) = combinep(x) is at most (d + 1)/q + (d + 1)/q, which
contradicts Equations (2) and (3). Thus, we may conclude that g is exactly linear in x.
This implies that we can write g(z,y) = >, «; - gi(y), where each g; is a degree-d polynomial.
Now, for any fixed b and y, if it is not the case that g1(y) = by, ..., g¢(y) = by, then the probability
that g(x,y) = combine,(x) over a random x is at most 1/q by Schwartz-Zippel since both are

exactly linear functions. Thus, if 1 is the probability that ¢1(y) = by, ..., ge(y) = by, then
the probability that g(x,y) = combiney(x) is at most n + (1 —n)/q < n+ 1/q. Combined with
Equation (3), this implies the theorem. O

3.7 NEXP, NEEXP, and complete problems for them

Definition 3.20. The class NEEXP (respectively, NEEXP) is the class of all problems that can be
solved in exponential (respectively, doubly-exponential) time by a nondeterministic Turing machine.
Formally,

NEXP = | JNTIME(2""), NEEXP = | | NTIME(22").
ceN ceN

A standard way of generating NEXP-complete problems is by considering “succinct” versions
of NP-complete problems, in which an exponential-sized input is encoded by a polynomial-sized
circuit. The canonical complete problem is a succinct version of 3Sat, but there is considerable
freedom in choosing the succinct encoding used. We choose the following encoding.

Definition 3.21. Succinct-3Sat is the following problem.

o Input: a circuit C with 3n + 3 input bits and size poly(n). It encodes the 3-Sat instance ¢
with variable set @, for u € {0,1}" which includes the constraint (25t V 252 v 2%) whenever

C(u1, uz,ug, by, bg,b3) = 1.
(Here, z} refers to the literal z; and z¥ refers to the negated literal ;.)

o Output: accept if 1¢ is satisfiable and reject otherwise.

A proof that Succinct-3Sat is NEXP complete can be found in [Pap94, Chapter 20|, albeit with
a different encoding. Below, we show this implies NEXP-completeness for our encoding as well.

Proposition 3.22. Succinct-3Sat is NEXP-complete.

Proof. Papadimitriou [Pap94] considers circuits Cp,p which encode 3Sat formulas ¢ with n variables
and m clauses as follows: Cpap, takes as input a string (b, u, k), where b, k € {0, 1}? are interpreted
as integers in {0,1,2,3} and u € {0,1}1°8(™) is interpreted either as a vertex 1 < u < n or a clause
I1<u<m. Ifl <u<nand0 <k <2, then on input (0, u, k), Cpap outputs the index of the clause

22

where T, appears for the k-th time, and on input (1, u, k), it outputs the index of the clause where
x,, appears for the k-th time. (In addition, if 1 <« < m and 0 < k < 3, then on input (2,u, k),
Cpap outputs the k-th literal of the u-th clause in ¢. We state this for completeness, though we will
not need it for the proof.) Such a 3Sat formula 1) has 2n literals, each occurring 3 times, and so
m = 2n. By [Pap94, Chapter 20], this succinct encoding of 3Sat is NEEXP-complete. Using this,
we can generate an instance of the Succinct-3Sat problem C such that ¢¢ = ¢ as follows: given
input (uy,u2,us, by, bs,bs), we simply evaluate Cpyp on (b;, u;, k), for each 1 <i <3 and 0 <k <2,
and output 1 if there is any clause containing all three literals. O

The complete problem for NEEXP is, appropriately enough, a succinct version of Succinct-3Sat.
To define it precisely, it helps to fix a notion of a Boolean circuit. Following Section 4.3 of [Pap94],
we consider Boolean circuits in which each gate can be one of six types: input, true, false, A, V, or
—. These gates have 0, 0, 0, 2, 2, or 1 inputs, respectively. A succinct representation of a circuit
C; is a circuit Cy that, given an index 4, outputs the type of gate i as well as the indices j1, jo of its
inputs (one or both of these indices may be the null index @ depending on the type of the gate 7).

Definition 3.23. Succinct-Succinct-3Sat is the following problem.
o Input: a circuit C with size poly(n), which is a succinct representation of a circuit C’, which
is itself an instance of Succinct-3Sat with instance size N = 2po(n),
22poly(n)

o Output: accept if ¥or (the 3Sat formula on 2V =
C') is satisfiable and reject otherwise.

variables generated by the circuit

Fact 3.24. Let M be a deterministic Turing machine which takes two inputs x1,x2. Then for any
input x1 of size ny and for any size parameter no and time T > ny + ns, there exists a circuit
Cm,1a, of size N = O(T?) which, on an input xo of size ny, computes M run for T steps on the
input pair x1,xs. Moreover, there ewists a Turing machine M’ that given x1, no, and an index
i€ {1,...,N} in binary, outputs in polynomial time the type of the ith gate of Cpra, and the
indices ji1,j% of the inputs to this gate.

Proof. The construction in the proof of Theorem 8.1 of [Pap94] yields a circuit of the desired size.
This circuit consists of O(T?) copies of a constant-sized circuit Cj; that depends only on M. O

Theorem 3.25 (Cook-Levin). Let L be a language in NTIME(T'(n)). Then the following properties
hold:

1. For every string x of length n, there exists a 3Sat formula ®, on n' = poly(T(n)) variables
Z1y ...y 2nt, Such that x € L iff ®, is satisfiable.

2. There exists a Turing machine R that given an input x of length n, three indices uq,uo,ug €
{1,...,n'} in binary, and three bits by,b2,bs € {0,1}, runs in polylog(n') = poly log(T'(n))

time and outputs 1 iff the clause (251,282,253 is included in ®,.

Proof. We follow the proof of Theorem 8.2 of [Pap94] to obtain the 3Sat instance ®,. O
Theorem 3.26. Succinct-Succinct-3Sat is complete for NEEXP under polynomial time mapping
reductions. That is, for any language L in NEEXP, there exists a Turing machine R which takes as

input a string x € {0,1}", and in time poly(n) outputs an instance C, of Succinct-Succinct-3Sat,
such that C, is satisfiable iff x € L.

23

Proof. Suppose we start with a language L € NEEXP. This means there is a nondeterministic
Turing machine M which decides L in time Ty = 92" By Theorem 3.25, there exists a Turing
machine R; which runs in time 77 = polylog(7p) = 20("°) guch that given input z and clause
indices ¢ = (uq,us,us, by, ba,bs), represented as a binary string of length |i| = log(poly(Tp)) =
10g(2o(2nc)) = O(2™), runs in time polynomial in ¢ and outputs 1 iff the corresponding clause
exists in a 3Sat formula ®, such that x € L iff ®, is satisfiable.

Now, if we apply Fact 3.24 to Ry, with = playing the role of the first input 1 and ¢ the role of
the second input, we obtain that for every z there exists a circuit Cg, 1, of size O(T} 12) = 20(n%)
which takes as input a tuple of indices i, and runs Ry for time 7} on this time to output whether
clause 7 is present in the formula ®,. Moreover, there exists a Turing machine Rs that, given z,
the size parameter |i| = O(2"), represented in binary as a string of O(n¢) bits, and an index j,
represented as a string of O(n®) bits, outputs the jth gate of Cr, 1, » in time 75 = poly(n). Note
that Ry is a Turing machine which takes in input of size poly(n) and runs in time poly(n).

We are now almost where we need to be. In the final step, we once again apply Fact 3.24 to
Ro, obtaining a third Turing machine R3 that takes as input x and the size parameters, and an
index k, and generates the kth gate of the circuit Cr, 1, . corresponding to running Ry for 75 steps.
Finally, by fixing the dependence of the size parameters on the size of x, and iterating through all
possible values of the index parameter, we obtain a Turing machine R} that takes as input x and
runs in time poly(n), and outputs the complete description of a Succinct-Succinct-3Sat instance C,
with the desired properties. O

3.8 The Tseitin transformation

In this section, we introduce the Tseitin transformation, which is a simple method of converting a
Boolean circuit into a Boolean formula.

Definition 3.27 (Tseitin transformation). Let C be a Boolean circuit with n input variables
Z1,...,oy and s gates. Then the Tseitin transformation of C, denoted F := Tseitin(C), is the
Boolean formula defined as follows.

(i) Introduce new variables wy, ..., ws corresponding to the output wires of the gates in C. Then
the input variables to F consist of x1,...,x, along with wy, ..., ws.
(ii) Each gate in C operates on one or two variables in {z1,...,x,, w1,...,ws}. Write g;(z,w) for

the function computed by the i-th gate. Then F computes the intermediate expression
zi = (gi(z, w) ANw;i) V (g:(x, w) ANw;).
The final output of F is 21 A (22 A (- A z4)).

By construction, C(z) = 1 if and only if there exists a w such that F(z,w) = 1 (in particular, w
is taken to be the wire values of C on input z). In addition, F contains exactly 7s + (s — 1) gates,
meaning that it has size O(s).

Next, we show how to convert Boolean formulas into functions over F,,.

Definition 3.28 (Arithmetization). Let F be a Boolean formula of n variables and size s. The
arithmetization of F over Fy, denoted arith,(F), is the formula produced by the following two-step
process.

(i) Transform F by replacing all V gates with appropriate A and — gates.

24

(ii) Transform each Boolean gate into an F, gate as follows: Replace each A gate in F with a x
gate. Replace each — gate with a x —1 gate followed by a 41 gate (enacting the transformation
beF,—1—0b). Call the resulting formula arith,(F).

Set Faritn = arithy(F). On inputs x € {0,1}", Faitn(z) = F(x). On general inputs z € Fy,
Foarith (z) is computable in time poly(s, q).

The following proposition shows that small Boolean formulas have low-degree arithmetizations.

Proposition 3.29 (Low-degree arithmetization). Let F be a Boolean formula of n variables, size s,
and m gates. Then arithy(F) is a degree-s polynomial over .

Proof. By induction on the number of gates, the base case (m = 0) being trivial. For the induction
hypothesis, assume the proposition holds for Boolean formulas which have fewer than m gates.
Either the gate at the root of F is a — gate or an {V,A}-gate. In the former case, F = —F’
for some Boolean formula with m — 1 gates, and so arithy(F) = 1 — arithy(F’) by construction.
But these have the same degree, and so arith,(F) is degree s by the induction hypothesis. In the
latter case, assume without loss of generality that it is an A-gate. Then F = Fepp A Fright for two
formulas of size sief; + Sright = s and fewer than m gates. By the induction hypothesis, arithq(Fief;)
has degree-sje; and arithy(Fright) has degree-sight, and so arithy(F) = arithy(Fef) x arithg(Fright)
has degree s. O

The arithmetization procedure describe in Definition 3.28 can also be applied to general Boolean
circuits C, not just Boolean formulas. But Proposition 3.29 does not apply to general circuits; in
fact, the arithmetization of a Boolean circuit can have very high degree, even if that circuit is small.
This motivates using the Tseitin transformation: it allows us to convert a small circuit into a small
formula, which has a low-degree arithmetization.

4 Quantum preliminaries

4.1 Quantum measurements

The most general notion of a quantum measurement is a POVM measurement, which consists of
a set of Hermitian operators {M,}.ecs indexed by outcomes a from a set S. These satisfy the
conditions

Va, Mo =0, > M,=1I.

To refer to the measurement as a whole we will use the letter M, without the subscript indicating
the outcome. For a state |¢), the probability that the measurement M returns outcome a is

Prla] = (| Ma [¢)) .

A POVM is said to be projective if each element M, is an orthogonal projector, i.e. M2 =
M,. Note that this implies that M,M;, = 0 for any a # b, i.e. that the projectors are pairwise
orthogonal. Naimark’s theorem says that any POVM measurement can be simulated by a projective
measurement on an enlarged space.

Theorem 4.1 (Naimark). Suppose {M,} is a POVM acting on a Hilbert space H. Then there
exists a projective measurement {M.} acting on the space H @ Haux together with a state |aux)

25

such that for all states |1y € H and all outcomes a, the post-measurement state after applying M
and M’ is the same:

VMo [) (] VMo = trau (Mo ([9) (] © |aux) (aux]) My). (4)

As a consequence, M and N induce the same distribution over outcome probabilities:

(] Ma [¢) = (] @ (aux|)Na(|¢) @ |aux)).

Moreover, given any upper-bound n on the number of outcomes of My, there is a universal choice of
the state |aux) that works for all POVMs M, with at most n outcomes. The projective measurement
M/ and state |aux) together constitute a Naimark dilation of the POVM M,.

Theorem 4.2 (Partial Naimark). Suppose {Mg, 4, } is a POVM acting on a tensor product Hilbert
space H = H1 ® Ha of the form Mg, 4, = 1oy ® AGL, where the operators {11, }a, is a projective
measurement. Then there is a Naimark dilation Mc’lha2 and a state |aux) as above, with the property

that M} ., =1, ® AL for projectors Al acting on Hy @ Haux-

ai,a2

Proof. The condition that {Il,, } forms a projective measurement implies that for each ay, {Agl}
is a POVM. By Theorem 4.1, for each a; there exists a POVM Al dilating A3}, and all of these
POVMs act on the same universal auxiliary state |aux). Now, define M, . = Il,, ® Agl. For
every state [¢)), we have that

traUX(Mél,a2(|¢> <¢|)M¢;1,a2) = traUX(A:zagl (Ha1 V) (] Iy, ® laux) <aUX|)Ag121)
=V Aaz (g, [¥) (Y] gy) v/ A
=V Ma1,a2 ‘¢> <¢’ V Mahazv

where in going from the first to the second line we used Theorem 4.1.]

For the purposes of this paper, we will need to specialize the POVM notation introduced above in
several ways. First, we will often work with families of POVM measurements indexed by questions
in an interactive proof protocol. These will be denoted {M{}, where ¢ indexes the question and a
the outcome. (We note that the reverse convention “{Mg}”, which we will not use, is also common
in the literature.) In many cases, the outcomes will consist of tuples of elements, some of which
we may wish to discard. We use the convention that if an outcome element is not written, it is
understood to be summed over. Thus, if {M7,} is a family of POVMs, we would have

M= Mg, (5)
b

Notation 4.3. We will also often consider situations where some of the information in a mea-
surement outcome is discarded. In particular, given a POVM {M} whose outcomes are functions
f U — V over some domain U, and given a point x € U, we will denote by {Mf(x):y}yev the
measurement corresponding to applying M to obtain a function f, and returning the value of f at
z. Formally, the POVM elements of this measurement are given by

Mipy=a) = Y, M;.
F:f(z)=a

(We note that Equation (5) can be viewed as a special case in which the “discarding function” f
simply removes the second coordinate. For this case, it is simpler to use the convenient notation
in Equation (5) than the more cumbersome bracket notation given here.)

26

The following lemma contains a useful fact about marginalized projective measurements.

Lemma 4.4. Let M, be a projective measurement on a tensor product Hilbert space Hi @ Ha,
and suppose that for all a, M, = A, ® B, where A, is a rank-one matriz on H1. Then for all a,b,
Myy = Aq ® Cop with Cqyp projectors.

Proof. By the Schmidt decomposition, we can write M, ; as

Ma,b = Z W}a,b,j> <7/}a,b7j’
J

= Z O-.]k ’ua7b7j7k> <ua7b7j7k‘ ® ‘U[l,b,j,k> </UCL,b,‘]I€’ °
Jik

Write the rank-one matrix A, as an outer product |¢,) (¢,|. Then we have

S Moy =3 0k ltap i) (Wapinl @ [vapin) Capirl = Ya) (a] © Ba.
b 3.kb

Taking the partial trace on the B system, we have

1Y Map) =D 0jk tap k) (Uapjkl = [a) (tal -
b

J.k,b

Suppose we multiply on the left by (v| and on the right by |v), for |v) orthogonal to |1,). Then
the RHS is 0 while the LHS is a sum >, ; , ok (v[tap,jk) | of nonnegative terms. Hence, each of
these terms must be zero. Thus, the equation can only hold if all the vectors |uqp, j 1) are multiples
of [14). This implies that

Ma,b = |7;Z)a> <7;Z)a| & Ca,b

for some Cj, as desired. O

4.2 Nonlocal games and MIP*
Now, we augment Definitions 3.3 and 3.4 to allow for provers to share quantum resources.

Definition 4.5. Given a game ¥, a quantum strategy is one in which Alice and Bob are allowed
to share entanglement but not to communicate. We can model their behavior with the strategy

S = (p, A, B). Here,

o Write H 4 for Alice’s local Hilbert space and ‘Hp for Bob’s. Then p is a (possibly entangled)
state in L(Ha ® HB).

o The set A contains a matrix A? for each question x and answer a, with the guarantee that
for each question z, A” := {A?}, is a POVM. (Likewise for B.)

Alice and Bob perform their strategy as follows: given question x, Alice performs the POVM
{AZ}, and returns her measurement outcome to the verifier. Bob plays similarly. The value of
their strategy, denoted valy(S), is the probability that they pass the test, over the randomness in ¢
and in their measurement outcomes.

valg (S) = (mo,mll)ENAng a](igl [Alga (0, 1, a0,a1) = 1]
= E > tr(AZ0 @ AZ! - p),

(z0,21)~Algg ao.ar,

Algp (zo,21,00,01)=1

27

where in the first line, (ag,a;) is the distribution on answers given questions xg,x;. We write
val(¥¢) for the infimum of valy (S) over all strategies S. We define value analogously for interactive
proofs.

We say that L € MIP if there is an quantum interactive proof ¢ that decides it. This means
that the following three conditions are true.

o (Completeness) Suppose input € L. Then there is a quantum strategy for 4 with value at
least c.

o (Soundness) Suppose input ¢ L. Then every quantum strategy for ¢4 has value at most s.
o All of Q-length(¥4), A-length(¥¢), Q-time(¥), and A-time(¥) are poly(n).
If ¢ — s is a constant, then we will suppress the dependence on them and just say that L € MIP*,

Remark 4.6. A game ¥ is symmetric if its distribution on questions treats Alice and Bob sym-
metrically. In this case, we may assume without loss of generality that Alice and Bob’s strategies
are also symmetric, i.e. that A? = BY for all questions z and answers a. This allows us to repre-
sent their measurements by a single set of matrices M (for which M7 = AZ = BY). As a further
simplification, by applying Naimark’s dilation theorem to Alice and Bob’s strategy we can assume
that their shared state v is pure and their measurements are projectors.

Occasionally, it will be useful to speak of the distribution over measurement outcomes induced
by a strategy independently of any particular game. For this, we introduce the notion of a bipartite
correlation

Definition 4.7. Given a strategy S = (p, A, B), the bipartite correlation produced by it is the
function P(a,b|r,y) = tr(AZ ® By - p).

If two strategies produce the same bipartite correlation, they have the same value for any game
they are used for. Naimark’s theorem (Theorem 4.1) implies for any strategy S, there exists a
strategy S’ using only projective measurements that produces the same correlation:

Corollary 4.8 (Naimark’s theorem for strategies). Suppose {M,} and {Ny} are two POVMs acting
on the A and B factors of a tensor Hilbert space Ha @ Hp, respectively. Then for any Naimark
dilation of {M,} given by projectors M), and an auziliary state |auxa) € Haux,, and any Naimark
dilation of {Ny} given by projectors N and an auziliary state |auxg) € Hauxp, it holds that for
any bipartite state |v) € Ha @ Hyp, the post-measurement state after applying M @ N to |¢) and
M’ @ N' to [¢) ® |auxa) @ |auxpg) is the same:

VM@V Ny [) (] vV Ma®@ /Ny = traux (Mo @ N ([9) (] @]awxa) {awxa|@lauxs) (awxp]) (M@ N)].

Moreover, such dilations exist by Theorem J.1. As a consequence, M, N and M', N’ induce the
same joint distribution over outcome probabilities:

(| My @ Ny |1h) = ((¢] @ Jauxa) @ lauxp)) M, @ Ny(|¢) @ |auxs) ® [auxp)).

Proof. The existence of such dilations follows immediately from Theorem 4.1. To deduce the equal-
ity of post-measurement states, we apply Equation (4) twice, and use the fact that the partial trace
composes, i.e. that traux|] = trawg [trauwx, []]-

trau (Mg, @ Np) (1) (1] ® [auxa) (auxa| @ [auxp) (auxp|) (M, @ Ny)]
= trauxy [V Ma @ I((I @ Np) [) [auxa) (auxal| (] (I @ Ny))y/ Mo @ T]
=/T® Ny/M, @ I [¢)) (| /M, @ I\/T® Ny O

28

4.3 Pauli matrices and the EPR state

Over a finite field F, with order ¢ = p' for prime p, the single-qudit Pauli matrices are a set of unitary
matrices acting on C%. Every Pauli matrix can be uniquely written as a product w® X (z)Z(z), where
w is the p-th root w = €2™/?, and X (z) and Z(z) are the matrices

X(@) =Y li+a)0l, Zk) =) "), (6)
Jj€EF, J€Fq

where the arguments x, z are in Fy, tr : F, — IF), is the finite field trace. The set of all Pauli matrices
form a group, known as the Pauli group or the Weyl-Heisenberg group. For the most part, in this
paper, it will suffice to consider only the group elements of the form w®X(z) (“X-type” Paulis)
and Z(z) (“Z-type” Paulis). Elements of the form w®X (x)Z(z) for x,z # 0 are sometimes called
“Y-type”.

The eigenvalues of X (z) and Z(z) for all z,z are powers of w, as can be seen from the facts
X(x)P = Z(2)P = I. Any unitary with this property is known as a (generalized) observable. Every
generalized observable U induces a projective measurement with p outcomes, corresponding to the
p possible eigenvalues of U. As a convenient shorthand, we will refer to performing this projective
measurement as “measuring U.” In the case of of the X and Z operators, the eigenvectors |7;X) and
|7Z) of X(1) and Z(1) are indexed by elements u of Fy, with eigenvalue tr[u]; thus, each eigenvalue
occurs with multiplicity ¢/p. Explicitly, they are given by

rﬁvzﬁgzyfﬂwwm 172y = |u). (7)
velR,

We denote the projectors onto these eigenvectors by 7;X and 77, respectively. These eigenvectors
are also the eigenvectors of the remaining X (x), Z(z) observables, as shown by the following fact.

Fact 4.9. For W € {X, Z}, the observables W (v) are related to the projectors 7.V by
W(v) = Zwtr[“'”]Ty (8)
7V = Bw "l (v). 9)

Proof. We start with Equation (8). For W = Z, the relation follows immediately from the defini-
tions. For W = X, by calculation we have:

1 /
wtr[u-x}T{LX i wtr[u-x}wtr[u(v—v)] oY (o
3 Ly)

u,v,

— Z Ewtr[u,-(m—l—v—v’)} "U/> <'U‘

=S lv+) (ol

= X(2),

where we have applied Fact 3.1 in passing from the second to the third line. Now we show
Equation (9):

—tr{u-v] _ —tr{u-v], trjv-al W __ trj(a—u)v] W _ W
Ew W(U)_E)Ea:w w Ta _%}Eazw Ta = Ty >

v

where we first applied Equation (8) in the first equality, and then used Fact 3.1 to perform the
expectation over v. O

29

The Pauli matrices obey the commutation relation
X(2)Z(z) = w " Z(2) X (). (10)

This follows directly from Equation (6). It follows from this that all of the Pauli matrices (including
the Y-type matrices) are generalized observables.
The maximally entangled state, or EPR state, over qudits of dimension ¢ is the state

1
EPR,) = = 3) &).

u€lFy

We will write [EPRy) for IEPR,)®". This state obeys the stabilizer relations

X(z) ® X(x) |[EPRy) = Z(2) ® Z(—z) |EPR,) = |EPR,) (11)

o @ I|EPRy) = I ® 7%, |[EPRy) (12)

7 @ I |EPR,) = [® 77 |EPR,) . (13)

Relations (12) and (13) imply that measuring X (x) on both halves of an EPR state will yield two

outcomes a, b satisfying a = —b, and measuring Z(z) on both halves will yield two outcomes a,b
that are equal.

In the important special case of finite fields with characteristic 2 (i.e. F, for even ¢), u = —u

for all u € Fy, and thus measuring any of the X and Z operators on both sides of the state will
always yield the same outcome.

4.4 State dependent distances

In this section, we introduce two state-dependent distances. To motivate them, we first define the
consistency game, perhaps the simplest nontrivial two-player game.

Definition 4.10. The consistency game with question x, denoted %eon(x) is defined as follows.
The question x is given to Alice and Bob, who respond with answers a and a’, respectively. The
verifier accepts if a = a’.

We will typically play the consistency game when @, rather than being a fixed question, is
drawn from some distribution. Our first state-dependent distance quantifies the players® success
probability in this case.

Definition 4.11. Let {A?} and {BX} be sets of matrices in £(#H 4) and L(H), respectively. Let D
be a distribution on questions = and [¢)) be a state in H4 ® Hp. Consider the game in which the
verifier selects & ~ D and then plays .on(x). We say that

A7 @ Igob ~5 Iplice @ By,

on state 1) and distribution D if Alice and Bob win with probability 1 — O(¢) using the measure-
ments A and B, respectively.

We will sometimes leave the state or distribution unspecified, as they are often clear from
context. This distance has a clear operational interpretation. Our second state-dependent distance,
defined next, is more analytic.

30

Definition 4.12. Let {Q*} and {RZ} be sets of matrices in L(H). Let D be a distribution on the
variables x and [¢)) be a state in H. Then we say that QF ~s R on state |3p) and distribution D if

B> QF - B) | = 00).

As above, we will sometimes leave the state or distribution unspecified when clear from context.
This is sometimes referred to as the state-dependence distance, whereas our first distance measure
is often referred to as the “consistency”. A typical setting of parameters is H = Ha ® Hp,
QY = AY ® Igoh, and RY := Ipjice ® BZ. In this case, we have the following relationship between
the two state-dependent distances.

Fact 4.13. Let {A%} and {BZ} be POVM measurements. The following two facts hold.
1. If AG @ Isob =5 Iniice ® By then A7 @ Igob =5 Ialice © By -

2. If AZ®Igob ~s Iniice®@BE and {AL} and {BX} are projective measurements, then AL ® Igon ~25
Tpjice @ By .

Proof. Suppose that AY ® Igoh s Ialice ® BY. This is equivalent to the statement
€T €T
>1-— .
EZ (V| A7 ® BY [¢) 21— 0(6) (14)
a

As a result, using the fact that A and B are POVMs,
EY [(AF @I -10B7) W) [P =EY (| (A5’ o1+ (B])® — 247 @ BY)[v)

<SEY (AT @1 +1® Bf — 247 @ BY)|¢) (15)

=2-2E) (| A7®BI[Y).
a
By Equation (14), this is O(d). As a result, A? ® Igop ~s Ialice ® BE. The reverse statement holds

when A and B are projective measurements because Equation (15) is an equality in this case. [

The following fact shows that we can derive a weaker converse in the case when only one of A
or B is projective.

Fact 4.14. Suppose {AX} and {BF} are two measurements such that AL ® Igop 5 Ipjice @ BE.
Suppose further that either A or B is a projective measurement (and the other is a POVM mea-
surement). Then AL ® Igop ~51/2 Ialice ® BE.

Proof. Our goal is to upper bound the expression

1-EY (AT @ B |Y). (16)

We begin by rewriting the number 1. Here we use the fact that because A is projective, (A%)? = A%,
and so Y, (A%)? = I. This gives us:

(16) =B (0| (43)* ® Igay [v) — E Y~ (| AT © BY)
=E) (U] (A7 @ Iob) (AT ® Ipob — Intice @ B) [1)

< E}Z AT @ Igob 1) || - [[(AT © Iob — Iatice ® BF) [¢) || (17)

31

Now we apply Cauchy-Schwarz and then Jensen’s inequality:

(17) < \/QZ |AZ @ Tgop [1) |12 - > [I(AZ @ Tgob — Iaiice ® B2) [¥) ||2

The first of these terms we bound by 1, and the second is O(d) by assumption. O

Remark 4.15. We note that the requirement in Fact 4.14 that one of the two measurements be
projective is necessary. Consider the measurements {A?} and {BZ?} with m separate outcomes a
in which A* = BY = I/m for all x and a. Then A? ® Igop =0 Ialice ® BE, but as m — oo,

1-E) (4| A7 ® BY[v) — 1.

Thus, when one of the measurements is projective, the “~s” distance is roughly equivalent to
the “~4” distance, up to a polynomial factor (which we can tolerate losing in our proofs). More
generally, however, the “~;” distance can be viewed as a weakening of the “~;” distance. In spite
of this, we will spend much of the paper dealing with the “~s” distance, as it is easier to manipulate
but still strong enough to reach our desired consequences. (See [Vid11, Section 2.3.1] for a further
defense of this distance.) We note that even when |¢)) is a bipartite state, the “~s” distance is
defined for matrices () and R which are not necessarily tensor products over the bipartition. Such
matrices will often be useful to pass through during intermediate steps of our proofs.

A common use case for these distances is when the verifier (i) samples a pair of questions & =
(xo, 1), (ii) hands & to Alice and x; second to Bob, (iii) receives their answers ag and a; and
(iv) accepts if f(x,a0) = g(x,a1) for some functions f and g. Write {A30},, and {Bj!}4, for
Alice and Bob’s measurements, respectively. We can view these as measurements which receive
the pair (2, 1) and simply ignore one coordinate. Suppose the verifier accepts with probability
1 — 4. Using Notation 4.3, we can view this as performing the consistency game between the
measurements Ai?(x a0)=b] and B[gj}(_,,- Hence, we can derive the following two facts:

,a0 z,a1)="b]

Alf(w.an)=b) © IBob =5 Iaiice © By oy—ppr and Afg o1y © Toob 5 Latice ® By 0,y

This generic format will be the most common use of these notations.

Remark 4.15 highlights the importance of projective measurements when dealing with the “~
distance. This, and several other key facts about the “xs” distance, are true only for projective
measurements. As a result, we will sometimes apply Naimark’s theorem (Theorem 4.1) during our
proofs to “round” POVM measurements into projective measurements. However, there is a subtlety
in doing so, namely that because Naimark’s theorem preserves measurement outcomes, any “~;”
statements we have derived about our measurement operators will remain true, but Naimark’s
theorem is not guaranteed to preserve “=zs5” statements. In this work, we will be able to dispense
with this subtlety and assume all “~s” statements are preserved, because all “xs” statements in
our proofs will be derived from ‘“~g5”

b

~s5” statements, and so they will remain true after performing
Naimark’s theorem, since we could simply rederive them.

4.5 Miscellaneous properties of the state-dependent distances

In this section, we record some facts about the “~s” notation which we will use repeatedly through-
out the paper. A good rule of thumb is that everything one expects to be true about the “~4”
notation actually is true, except for those things which are not. As a result, we will be overly
pedantic in this section in order to call attention to these cases.

32

4.5.1 Simple state-dependent distance facts

Fact 4.16. For two vectors [i1) , [tb2), |[[1) + [w2) [< 2l [v1) [+ 2] [v2) |°
Fact 4.17. Let {A,} be a measurement. Then

Dl Aal) 1P < 1) 112

Proof. 1f {A,} is a measurement, then

ZHA) |I* = ZtrA Aa) (W]) < te(L - [w) (wl) = || [v) |1 O

Fact 4.18. Let {Ay}, {Ba} be measurements. Then for any state |¢),
ZH Aa = Ba)[9) I < 4- |l [v) |I°.

Proof. By Fact 4.16,
Zu Aq — Ba) 1) H2<2ZHA) H2+2ZHB) |12

The fact now follows from Fact 4.17. O

Fact 4.19. Let {AZ} and {BZ%} be POVM measurements. Then AL ~1 BZ.
Fact 4.20. Let {A%} and {BZ%} be matrices. Let {C}'} be matrices such that > ,(C{)1CY < I for
all y. (This includes the case when {C}} form projective or POVM measurements.) Then
A7 =5 By implies C} A% ~5 C} By
Proof. Fix questions z,y and answers a. Because of our property on {C’g o,

Do ICAT =GB) 1P =Y (Wl (A7 = BHNC)T(CY)(AF — BE) [4)
b

b
< (Y| (A7 — BN (AZ - BY) [v) = |I(A7 — BI) [¥) |

We can therefore derive our desired conclusion:

E > lCyaz —coyB W) P < B Y IAZ - B [0) P = 4. -
’ a,b 7

Fact 4.21. Let D,D’ be two distributions such that dyy(D,D') < €. Let {A*} and {B*} be
measurements, and suppose AX ~5 BY with respect to D. Then AL ~5.c BE with respect to D’.

Proof. By the definition of total variation distance, for any set of numbers {v, } satisfying 0 < v, <
¢, the expectations under the two distributions are similar:

E - E <c-e
| B el = B [l <ce

T~

We will take for our numbers v, = > [|(A% — B2) |¢) ||?, which is always less than 4 by Fact 4.18.
As a result,

E v, < E Vg +4e < 6 + 4e.
x~D’

This is O(d + €), which proves the fact. O

33

Fact 4.22. Suppose A% ~5 BZ on state |), and suppose || |¢) — |¢) ||* < e. Then A% ~s,. B® on
state |1).

Proof. Applying Fact 4.16 to (A7 — BY) [¢) and (A7 — BY)([¥) —),

B ST - BB P < B ST IAT - B 9) P+ B STI(AT - B - I
The first of these is bounded by O(§) by the assumption, and the second of these is bounded by 4e
by the assumption and Fact 4.18. O

Fact 4.23. Suppose A3 ~s5 BI' with respect to a distribution Dymargin on 1. Let D be a distribution
on (x1,x2) such that the marginal distribution on x1 s Dmargin. Then ALl =5 Bl with respect
to D.

Proof. This is a simple calculation involving Notation 4.3. O
Fact 4.24. Let k be a constant, and consider distributions over questions D1,...,Dy. Let D be
a mizture of these distributions, meaning that there is a probability distribution p = (p1,...,Dk)

such that a draw from D can be simulated as follows: draw © ~ p and output & sampled from D;.
Suppose AL ~s5 BY with respect to D;, for all i € [k]. Then AL ~s B with respect to D.

Proof. By definition, for each i € [k] there is some constant C; such that

Z I(AZ — BE)[¥) ||* < Cy - 6.
wN’D
Then we can bound the mixture with
By T~ B0 1P = BB ST — BY)14) ° < B G- < max{Ci} 5 = 00). O

Fact 4.25. Suppose {AZ} is a projective measurement and {BZX} is a set of matrices such that
each B is positive semidefinite and)", BY < I. Define C% such that for each x, there exists an a
such that C¥ := By + (I — _, B%) and for all other ' # a, C¥, := B%,. Thus, C* is a POVM for
each x. If A ~. BY then AL ~_, C¥

Proof. By Fact 4.16,
EZH —C3) 1) H2<2EZH — B P +2E (I - BY) |[4) ||

The first of these terms we can bound by O(e). As for the second,
_ x 2 _ x x
E||(1 ;Baﬂwu = ZB) < E (@] (I - ZB [)
—1—EZ (vl BT [v) <1—EZ (Wl (BZ)* [v)

Now, we write 1 = E Y, (| (A%)? |¢), which holds because A is a projective measurement. We
bound the result as follows.

EY (4] (A9 — (B2))) = <EZ Wl Aw+B”“)(AZf—BZ“)\w>>
<E¢Zu (42 + B2)) |2 - \/ZH By |y |

34

For each x, we can bound the first square root by O(1) due to Fact 4.16 and Fact 4.17. Having
done so, we can move the expectation into the second square root by Jensen’s inequality. The result
is O(€'/?) by assumption. This proves the fact. O

4.5.2 Data processing

In this section, we show a simple data processing inequality for the “~4” distance. We also observe
that one does not hold for the “~4” distance.

Fact 4.26. Suppose that A% @ Igop s Ialice @ BY. Then A[f(- ® Igob =5 IAlice @ Bﬁ(a):b].

Proof. Given question x, if Alice and Bob return a and @’ in which a = @/, then f(a) = f(a’). As
a result, applying f to their answers cannot decrease the probability they agree. O

Remark 4.27. We note that the same fact is not true for the “~4” distance. Consider answers
of the form a = (b,7), where b € {0,1} and i € [m]. Suppose A}, = I/(2m) for all a, whereas
Bf; = 1I/m and Bf, = 0 for all 4. Consider the function f(b,i) = b. It can be checked that in this
case, A7 @ Igob =1 /2m Iatice ® By but ATy 1 @ Iob ~1/2 TAlice @ Bifq)—y)-

4.5.3 Triangle inequalities

In this section, we give two triangle inequalities. Our first is for the state-dependent distance.
Fact 4.28 (Triangle inequality). Suppose A? ~s B% and B} ~. C¥. Then A ~5,c C¥.

Proof. Applying Fact 4.16 to (AZ — B¥) |[¢) and (BZ — C%) |¢),

B, DT~ O) P < 2 B ST I0AT — B 4) I +2 B, 5 1B — C) o I
<2(0 4 e). O
Note that this does not show that if
Ag @ Iob ~s Iniice ® By and By ® Igob X5 Ialice ® Cf

then AY ® Igop ~5 Inlice @ C¥. This would only follow if, for example, we also knew that DI ® Igop =5
Tpjice @ DE, for D equal to one of A, B, or C. We do, however, always have the following triangle-like
inequalities.

Fact 4.29 (Triangle-like inequalities). The following two facts are true.

1. Suppose AG & Ipob ~5 Iniice ® By, By @ Ipob ~5 Ipiice ® Cg, and CF @ Ipob ~5 Iplice ® Dy
Then Az @ Igob =25 Iniice ® Dy .

2. Suppose Ay @ Ipob =5 Iniice @ By, By @ Ipob X5 Iniice @ Cg, and CF @ Ipob X5 Inlice © Dy
Then Az ® Igob ~s Ialice @ Dy .

Before proving this, we need the following fact from linear algebra.

Fact 4.30. Suppose 0 < A, B,C,D < 1. Then

1-@lAe D)) <(1- @A B[p)+ (1 - (@B Cl) + (1 - (4 C @ D).

35

Proof. Rearranging, we want to show that

(W A® Bl) + (0] B C)+ (9] € ® D) — (4| A® DJw) < 2.

Or, equivalently
tr(|y) (Y] - (A©@B+B®C+C®D—A®D)) <2

The left-hand side is at most the maximum eigenvalue of AR B+ BC+C®D—-A®D. To
bound this maximum eigenvalue, we note that A B<ARI, BRC I®I[,andCRD <I®D.
As a result,

ARB+B®C+CR®D—-A®D XARQI+1QI+1®D—-AR®D.
Next, I D—ARD=(I—-A)®D < (I —A)® I because A < I. Thus,
ARI+I®I+TIRD—-ARD RAQI+IRI+([-A)1=2-1®1.
But the maximum eigenvalue of this is 2. O

Now we prove Fact 4.29.

Proof of Fact 4.29. The second fact follows from several applications of Fact 4.28. As for the first
fact, we can write the consistency as

EY (1 (| A7 ® DF |4))
Applying Fact 4.30, this is at most

EY (1- (@A ®BF)+ (1 - (| Bf ® CF [v)) + (1 - (¢| CF © DF [v))

Averaging over questions and summing over answers, each of these terms is at most J, by assump-
tion. O

4.5.4 Close strategies have close game values

In this section, we will show that two strategies which are close in state-dependent distance are also
close in value for any game 4. We note crucially that one of the two strategies must be projective
to apply this fact.

Fact 4.31. Let D be a distribution on questions x, and for each x let acc(x) be a set of “accepting”
answers. Given a state v and a strategy {AZ} define

wl(d)= B (@A),

a€acc(x)

Suppose {AL} and {BZX} are two strategies such that AL ~s5 BY on state ¢ and distribution D.
Suppose further that either A or B is a projective measurement (and the other is a POVM mea-
surement). Then

val(A) — O(6Y/?) < val(B) < val(A) + O(6"/?).

36

Proof. Assume without loss of generality that A is a projective measurement and B is a POVM
measurement. We will prove the fact by showing the following stronger statement: for each x,
let S(z) be any set of answers a, and define

val(4,8) ==E Y ()| AT [¥).
a€eS(x)
Then val(4,S) < val(B,S) + O(6'/?). By taking S(z) := acc(z) this implies the lower bound
val(A) — O(6'/?) < val(B), and by taking S(z) := rej(x), defined to be the set of answers not in
acc(z), then this implies the upper bound val(B) < val(A4) + O(5'/2).
If we write |uf) = A¥ |¢)) and |w?) = (B¥ — AZ) |¢), then

185 1) 12 = Il Tug) + [o3) 1* = [Tug) 117+ [wg) 1P+ (ug | wg) + (wg | ug) -
By definition,
wl(B)=E Y (4] B2)
aeS(x)
>E Z (1] (B®)? |y) (because B is a POVM)
T
aeS(x)

—E Y (B2 |?

a€S(x)
=E > (@) 1P+ [Hwd) P+ (uf | wf) + (wf | uf).
a€eS(x)

Averaging over questions and summing over answers, the first term is exactly val(A) because A is
projective. The second term is always nonnegative, so we lower bound it by zero. As for the last
two terms,

(ug | wg) + (wg [ug) = =2+ | {ug [wg) | = =2+ [Jugl - lwg . (18)

Applying Cauchy-Schwarz, Jensen’s inequality, and Fact 4.17,

E Y udl-fugl <E [Y Juzlz Y fuzft< (B Z)uwg’uz (19)

a€eS(x) a€eS(x) a€eS(x) aeS(x

But the expectation inside the root is at most O(J) because A? ~s5 BZ. Combining Equations (18)
and (19) completes the proof. O

We will typically, though not always, apply Fact 4.31 in the following special case.

Fact 4.32. Let & be a game whose questions (x1,x2) ~ 4 have marginal distribution 1 ~ D.
Suppose {AL} and {BZ} are measurements such that AL®1I ~5 BE®I on state ¢ and distribution D.
Consider the strategies Sq4 = {1, A} and Sp = {1y, B}. If either A or B is a projective measurement
(and the other is a POVM measurement), then

valy(Sa) — O(6"?) < valy(Sp) < valy(Sa) + O(6"?).
Proof. First, we observe that
Aii & Ai; =~ Aii & Bg:zz =~ B:ll & Bg:zz

by Fact 4.20. The result follows by applying Fact 4.32 with “A” set to A7l ® A72, “B” set to
Bjl ® B2, and “D” set to the distribution on (x1,x2). We note that “val(A)” there is equal to

ag”’

valy (S4) here and “val(B)” there is equal to valy(Sp) here. O

37

4.5.5 Generating new measurements

In this section, we show how to combine multiple measurements into a single measurement by
“sandwiching” them together.

Fact 4.33. Let k > 0 be a constant. Let {Aj .} be a projective measurement. For each
1 <i <k, let {(Bi)g,} be a projective measurement, and suppose that

(A2 Jnvce © Teab =5 Inice @ ((B)2,)b (20
Define the POVM measurement {Jj, .} as

Jar,ona, = (Br)a,, - (Ba2)g, - (B1)g, - (B2)g, -+ (Bk)g, -
Then
(AZ,....ax) Alice @ Igob 5172 Intice ® (g, q,)Bob-

Proof. For each 1 < i <k, Equation (20) implies that

(Ag,)Alice @ IBob ~s Ialice ® ((Bi)g,)Bob-
Now, we repeatedly apply this using Fact 4.20:

(A%, .. ax)Alice ® Tpob = (Ag, -+ Ag, - Ag, - Ag, -+ Ag,)Alice ® Ipob
~s (Ag, - Agy - Ay - Ag, - Ag,alice ® ((Bk)g,)Bob

~s Iatice ® ((Bi)g, =+ (B2)g, - (B1)a, - (B2)g, +* (Bk)a,)Bob
= Iplice ® (szl,...,ak)BOb'

The fact now follows from Fact 4.14 and the fact that A is a projective measurement. O

Next, we extend Fact 4.33 to the case of polynomial measurements (see Section 4.7 below).
These are structured measurements in which the prover returns the evaluation of a function sampled
independently from their input. The goal is to retain this structure even after “sandwiching” them
together.

Fact 4.34. Let £k > 0 be a constant. Let D be a distribution on questions © € X. For each
1<i<k, let G; be a set of functions g; : X — R;. and let {Gg} be a projective measurement with
outcomes from this set. Suppose that the set G; has the following distance property: for any two
nonequal gi, g € G, the probability that g;(x) = g.(x), over a random x ~ D, is at most e.

Let {Ag,} be a projective measurement with outcomes g; € F;. For each 1 < i < k, suppose
that

(Alg,(@)=a;])Alice ® IBob 25 Talice @ (Gly, (1)=a,1)Bob- (21)
Define the POVM measurement {Jg, . g.} as

Ak 2 1 2 k
ng,---vgk = ng T ng ’ Gg1 ’ ng e ng'

Then
(A[gl(m),...,gk(m):al,...,ak])Alice ® IBob 2(5.|_5)1/2 Tnjice ® (J[gl(gc),...,gk(gc):al,...,ak})Bob-

38

Proof. Let 1 <i < k. By Equation (21), if Alice measures with A, producing g,, and Bob measures
with G, producing g/, then the probability that g;(x) # g’(z) is O(5). Write 1 for the probability
that g; # g;. Then we have the expression 1 - (1 —€) < O(d) or, equivalently, n < O(3/(1 — ¢€)).
When € < 1/2, this gives the bound n < O(d), and when € > 1/2, we have the trivial bound
17 < O(e). As a result, n = O(J + ¢).
In conclusion,
(Ag;)Alice ® Iob ~5v¢ Iatice ® (G,)Bob-

We can now apply Fact 4.33 to Ay, .. g, and the Ggi measurements. It implies that

(Agy,....90) Alice ® IBob (510172 Lalice @ (Jgy,...,91,)Bob-
The fact now follows from the data processing inequality Fact 4.26. O

In our next fact, we show that Fact 4.34 holds even when we drop the structured assumption
on the A matrix. The tradeoff is that we must now assume that the k different measurements act
on different parts of the input string. In this case, the distance condition becomes slightly more
cumbersome to state.

Fact 4.35. Let k > 0 be a constant. Let D be a distribution on questions (z,yi,...,Yk), where
each y; € Y;. For each 1 < i < k, let G; be a set of functions g; : V; — R;. and let {(G,)ggﬂ}
be a projective measurement with outcomes from this set. (For the i = 1 case, we also allow this
measurement to be a POVM.) Suppose that the set G; has the following distance property: fix a
question z = (T, Y1, -+, Yi—1,Yit+1s-- -, Yk), and let D, be the distribution on y; conditioned on the
other outcomes z. Then for any two nonequal g;, g, € G;, the probability that g;(y;) = gi(y;), over
a random y,; ~ D,, is at most e.
Let {AGY 2%} be a projective measurement with outcomes g; € F;. For each 1 < i < k,
suppose that
(AG %) plice ® Igob 225 Talice ® ((Gi)y, (y1)=ay])Bob- (22)

Suppose also that
(AGYL Y% plice @ Tob 225 Tatice @ (Ag” %%)Bop- (23)
Define the POVM measurement {Jj, .} as
J;1,~~~,gk = (Gk)ggﬂk T (G2)ggﬂz) (Gl)gl ’ (G2)§2 o (Gk)ggﬂk

Then

(AZY a7)atice ® Iob “poly(s.e) LAlice @ (Jig, (y1),....g (y)=a1,....ax]) Bob-

Proof. First, we show how to reduce this to the k = 2 case. Then we prove it for that case. Assume
the fact holds when k = 2. Define the POVM measurement {(J;)7, ..} as

(Ji)gy....q0 = (Gi)g, -+ (Ga)g, - (G1)g, - (G2)g, - (Gi)yg,-
We will show by induction that

(Aai”a" Javice @ Tgob ~poly(s.c) Tatice @ ((Ji){gy (41),...4(51)=a1,....0:) JBobs (24)

the base case being trivial. Assume this holds for i. We apply the k = 2 case as follows: consider
the question tuple (y1,...,y;) as a single question and consider functions of the form (yi,...,y;) —
(91(y1)s---,9i(yi)). Then the first POVM measurement is J;, which satisfies Equation (22) due to

39

Equation (24). The second measurement is the projector G;41. Then the k = 2 case immediately
implies the i + 1 case of Equation (24).
Now we prove the k = 2 case. Our goal is to show that

Y1,y z
7?/]?7?/2 Z ¢| al 912 ?J22)Alice ® ((Gg) (Gl)[gl(yl)_al] (G2)92)B°b |¢> (25)

a1,92

is at least 1 — poly(d,€). We will do this by showing that

(G151 (y1)=a1] * (G2)gy)Atice @ TBob Rpoly(s.e) ((G2)g, (G1){y, (y1)=a1))Alice ® IBob- (26)
is at most poly(d,€). To see that this is sufficient, note that the related expression
B 2 AT e (), (G, (G-l ¥
7g

is exactly equal to 1 because G5 is a projector. Taking the difference between this and Equation (25),
we get

By 2 O AT Dt (G5, (G111 (G~ (G, (e 91

1,92

Cauchy-Schwarz allows us to bound this by

Do lIATEEE D aiice ® ((G2)Z,)Bob [¢) |12

a1,92

7y17y2

D> Maice ® (G1)fy, g,)=y (G2)5, = (G2)F, - (G1)Fy, gy,)=an o [0 I

a1,92

The expression inside the first square root is always at most 1. This allows us to bring the expecta-
tion into the second square root by Jensen’s inequality, and the resulting expression we can bound
due to Equation (26).

Now we bound Equation (26). Showing this is small is equivalent to showing

E > (GO, g)=ar (G2, = (G2)g, - (G1) ()i Alice @ Teob [¥) |1

T,Yq 7y2
ai,g2

is small. Expanding this, we get

,y?yQZ Wl ((C2)g, - (CUFwn=ar] * (CUG@)=ar] * (G2, © Toob

ai,g2
HG) gy)=ar] (G2)g, (G2)g, - (G, () =ar] ® TBob

—(G2)g, - (GG (yy)=ar] * (G2)g, - (G1){g, (yy)=ar] © TBob
~(G)fy w)=ar) " (G2)g * (G, (y)=ar) * (G2)g, @ Tob) 1) (27)

We do know that G; and G satisfy some form of commutation. Because they satisfy Equation (22)
and A is a projector, we know that

(G)fgs (1)=ar] * (G2)ga(ya)=as) JAice @ IBob 5 ((G2)lg, (y)=aa) * (G1)[g: (41)=a1)Alice ® TBob-

40

Expanding this as above, we can bound the following expression by d:

e, 22 WG el (CDuw=a " D=y (C2)foa(y)=ar) © Toob
ai,as

G wn=ar] * (G2){gaw)=as] * (G2)gawr)=as) " (G1)gs (y)=a1] © Bob
(G2 (ys)=az) * (G w)=ar) * (G2){gawy)=as) * (G){g1(5)=a1] © TBob
(G utyn=ar] (G2 o)=as) * (CD s wy)=ar] " (G2)ga(yz)=as) @ TBob) [¥0) - (28)

We can therefore show Equation (27) is small by upper-bounding (Equation (27)—Equation (28)).
There are four terms in this difference; write A; for the i-th term in Equation (27) minus the i-th
term in Equation (28). We will bound each A; one-by-one.

The first term in the difference, Aq, is

z y:E1}y2 Z Z <¢’ (GQ);:Q : (Gl)fgl(yl):al] (Gl)[gl(yl) ai] (GQ)ZQ ® IBOb ‘¢>

— E Y WG y—ar) (G yn—a) (G owr—ar) " (C2foa(yy)—aa) © LBob [¥) -

Z,Y1,Y2
ai,a2

The first of these terms is at most 1, and so we just have to show that the second term is close to 1
as well. Note that by repeated applications of Equation (22), we have that

(G2)fa(yn)=az) * (G w)=ar) (GO w)=ar) * (C2)Fayn)—az) @ TBob R Tatice © Aujds ™.

But then by Fact 4.31, the expression we want to lower-bound is O(6'/?)-close to

E Z (W] Intice ® Aayds™ |v)

Z,Y1,Y2
al

which is exactly 1. As a result, A; is at most O(6/2).
The second term in the difference, Ay, can be written as

e 2 (UG- (G (G (GO -an oo 1)

927592,
92(y2)= 92 (y2)

This is zero because G, is a projector.

The third and fourth terms in Equation (27) are complex conjugates of each other, as are the
third and fourth terms in Equation (28). As a result, it suffices to bound the magnitude of A4, and
this will serve to bound Ag as well. We begin by manipulating the fourth term in Equation (27);
specifically, we will show that it is close to

- E Z WG (y)=ar] - (G2)g, - (GG, (y))=ar] @ (G2)g, [¥) - (29)

7y17y2
a1,92

To do so, we take their difference:

E Z ’l/)| 91 yl al] . (GQ) (Gl)[g1(y1) } ® IBOb)

7y17y2
ai,g2

- (Iniice ® (G2)g, — (G2)g, ® Igob) |1) .

41

To bound the magnitude, we apply Cauchy-Schwarz:

o 2 NG ey (G2, - (G)) © Toob) 18} I

a1,91

D UG (1 1=ar) @ TBob) - (nice @ (G2)2, — (G2)E, ® Taob) [1) ||2.

a1,91

The expression inside the first square root is always at most 1. This allows us to bring the expec-
tation into the second square root by Jensen’s inequality. Because G is a POVM, we can bound
the resulting expectation by

E) [(Taice ® (G2)2, — (G2)%, @ Tnop) ¥} ||*. (30)

Z,Y1,Y2
91
To bound this, we note that Equations (22) and (23) along with Fact 4.29 imply that

(Gz)[HQ(yQ)_GQ] @ Igob 5 Iob © (G2)[92(yz) az]’

Using the distance properties of Go, this implies that
(G2)g, @ IBob ~5+¢ IBob @ (G2)g,

Hence, Equation (30) is at most O((6 + €)'/2). A similar argument shows that the fourth term in
Equation (28) is O(6/?)-close to

—o 2 UG w=a (C)fawa=ar) (D w=ar] @ (G)nyy=aa [0 (31)

ai,az

Now, we compute Equation (29) minus Equation (31):

vy]?ﬁ’lz Z Z {l (Gl)ﬁll(w):aﬂ ' (G2) (Gl)[gl(yl)—al] ® (GQ)ZZ)

92792
92(y2)#95(y2)

= y]?yz Z Z ¢| 91 (yy)=a1] (G2) (Gl)[gl(yl) 1] (GQ);Z |¢> : 1(927gé7y2)7

a1 gs,g5

where 1(g2, g5, y5) is the indicator that go # g5 but g2(ys) = g5(yy). This is the only part of the
expression that depends on y,, and by our distance assumption it is at most € in expectation. Since
the rest of the expression is guaranteed to be positive, we can upper-bound this by

E D23 G Can (G2 G-y @ (GG, 1) -

al g2 792

But the remaining part of the expression is at most 1, and so in total we can upper-bound it by e.
This completes the proof. O

42

4.6 Commuting EPR strategies

In this section, we introduce a class of strategies important for our proof.

Definition 4.36. A strategy S = (¢, M) is called an EPR strategy if it satisfies the following two
properties. First, there is an integer k and powers of two ¢, ..., qr such that

|7[)> = |EPR¢11> ® |EPRII2> - ® |EPR%> .

Second, for each question x, M¥ is a projective measurement. If for all questions x and answers a,
M? is a real-valued matrix, we say that the strategy is real

In addition, given a game ¢, we say that a real EPR strategy S is a real commuting EPR strategy
(with respect to &) if for every (x1,2) in the support of S and every ay,as, M} commutes with
Mg2. We denote the set of real commuting EPR strategies by ComEPR(¥).

Real commuting EPR strategies are motivated by the completeness cases that arise in this work.
We give a series of transformations which modify games to make them sound against increasingly
broader sets of strategies. Unfortunately, these transformations are not complete for all strategies,
in the sense that value-1 strategies may be mapped to value-less-than-1 strategies, but we will be
careful to ensure that they are complete for all commuting EPR strategies. For the majority of the
paper, the one property of commuting EPR strategies that we will use, not shared by all value-1
strategies, is the following.

Fact 4.37. Let (¢, M) be a real EPR strategy. Then MF® Igop ~0 Ialice @ MY for every distribution
on x.

Proof. From the definition of EPR strategies, we know that |¢)) = |[EPR,,) ® ... ® |[EPRy,) €
(Car-92-9%)®2 We may choose a basis {[i) : 1 <i<qi-qa-----qg} for CI""% so that

Tz[)> = Z |i>A|ice ® |Z'>Bob :

Let us denote the components of Mg by the notation (Mg);;, so that Mg = > ..(Mg):; |i) (jl-
Now, for an arbitrary pair z,a, we can compute the post-measurement states from applying M7
on Alice’s and Bob’s systems.

M; ® IBob |¢> = (M;;C @ IBob) Z |Z'>Alice ® |i>Bob
= Z)i i) @ |7)
= Z)i i) @)

= (IAIice ® Ma) |¢>)

where in going from the second to the third line, we have used the fact that M7 is real and
Hermitian, and thus symmetric. O

The following fact is a useful special case.

Fact 4.38. Letn >0, q=2', and W € {X,Z}. Then 1)V @ I ~q I @ 7V on the state |[EPRy).

43

Proof. By Equation (7), we can write

1 —trjuv
IT§>=%ZWH]I1}>7 70) = lu).

v€El,

The second of these self-evidently has real-valued coefficients. As for the first, ¢ = 2! implies that
p = 2. This means that w = —1 and tr[uv]| € {0,1} for all u,v. As a result, it too has real-valued
coefficients. The fact then follows from Fact 4.37. O

This property of real commuting strategies is useful for answer reduction because it allows us to
perform oracularization, giving one prover both questions z; and x5 so that they may simulate the
action of both provers by simultaneously measuring M®*! and M®2. For more details, see Part V.

4.7 Quantum soundness of the classical low-degree test

An important tool for quantum protocols is a version of the Raz-Safra theorem (Theorem 3.12) in
which the soundness of the low-degree test is extended to hold even in the case when the provers are
allowed to share entanglement. For the plane-versus-point test, this was first developed by Vidick
in [Vid16], but for technical reasons he could only show it for the case of three or more quantum
provers. In [NV18b], this was improved to hold for the two-prover case, and this is the result we
use in this work. We begin by defining the class of polynomial measurements.

Definition 4.39. Define PolyMeas(m, d, q) to be the set of POVM measurements whose outcomes
correspond to degree-d, F-valued polynomials. In other words, G € PolyMeas(m, d, q) if G = {G4}4
with outcomes degree-d polynomials g : Fj" — F,. More generally, we let PolyMeas(m, d, q,f) be
the set of measurements G = {Gy, ... 4, } outputting ¢ degree-d polynomials g; : Fy — Fy.

The following theorem establishes the quantum soundness of the classical low-degree test in the
k = 2 case.

Theorem 4.40 (Quantum soundness of the classical low-degree test [NV18b, Theorem 2]). There
exists a constant ¢ > 0 and a function §(e) = poly(e,dm/q°) such that the following holds. Suppose
Alice and Bob are entangled provers who pass Ysurtace(m, d, q,2) with probability at least 1 — € using
the strategy (v, M), where M consists of projective measurements. Then there exists a POVM
measurement G € PolyMeas(m,d, q) such that

My @ Igob ~5(c) Ialice @ Glg(uw)=t]: Gg @ Iob () Lalice ® Gy,
where the first is on the uniform distribution over Fy".

Remark 4.41. The statement of Theorem 4.40 is modified from how it appears in [NV18b, The-
orem 2| to better suit our needs. In this remark, we show how to derive our version from theirs,
which is stated as follows.

o There exists a constant ¢ > 0 and a function d(e) = poly(e) such that the following holds. Sup-
pose ¢ > (dm/e)¢. Then if Alice and Bob pass the surface-versus-point test with probability
1 — ¢, there is a measurement G € PolyMeas(m, d, q) such that

EY > WIMpeGy)<dle), Y (lGyoI—GCy)ld)<d(e). (32)
9 f#gls 9

44

These are equivalent to the statements
M3 ® Igob ~s(e) Lalice ® Glg|,=1)» Gg @ Igob () Lalice ® Gy,

where the first is on the uniform distribution over surface in Fy. The second of these matches the
corresponding statement above. Next, by Fact 4.26 we derive

M ()=t) ® IBob ~5(e) LAlice ® Glguw)=p) and Glgw)=1] @ IBob ~(c) Lalice @ Glg(uw)=t-

with respect to the distribution (s, w) from %yface(m, d, q,2). On top of that, since the strategy
passes the test with probability 1 — ¢,

My® @ Igob ~e Iniice @ My (=)
As a result, if we use Fact 4.13 to switch these to “~;” statements, then

Mgﬂ ® Igob ~e Iplice @ M[Sf(w) b] 5(e) G[g(w):b] ® Igob ~s(e) Tajice ® G[g(w):b]’

The result now follows from the triangle inequality (Fact 4.28) followed by Fact 4.14 and the fact
that M was assumed to be projective.

Finally, we remove the condition on ¢ using a trick from [NV18a]. If ¢ < (dm/e), then we select
€’ > e such that ¢ = (dm/¢’)¢. Alice and Bob also pass the plane-versus-point test with probability
1 — € because 1 — € < 1 — ¢, and so we can apply the theorem with these parameters, giving
a robustness of §(¢') = 6(dm/q*/¢). (In the case when ¢ > 1, which is not allowed, this bound
trivially still holds because dm/ql/ ¢ > 1.) In general, then, we can remove the condition on ¢ so
long as we replace the robustness of poly(e) with poly(e, dm/q'/¢), which holds in both cases.

We will use the following proposition about polynomial measurements several times.

Proposition 4.42. Let d > 0 be an integer. Consider a distribution D on pairs (s,u), where s
is a subspace in FJ' and w is a uniformly random point in s. Let {M ;} be a measurement whose
outcomes are degree-d polynomials f : s — F,, and let G € PolyMeas(m, d, q). Suppose that

My =p) @ Iob ~5 LAtice ® Glg(u)=t]

with respect to D. Then
MG ® Isob ~54d/q Lniice ® Glg| =)

with respect to D.

Proof. Suppose the verifier (i) samples (s,u) ~ D, (ii) gives Alice s, who measures with M* and
returns her outcome f : s — F,, (iii) receives g : Fi® — F, from Bob, sampled via G, and (iv)
accepts if f(u) = g(u). Then by assumption, the verifier accepts with probability at least 1 —O(9).

We can use this to bound the probability that f and g disagree on the subspace s. By Schwartz-
Zippel (Lemma 3.6), conditioned on f and g disagreeing, the probability they disagree on a random
point u ~ s is at least 1 — d/q. This gives us the inequality Pr[f # g|s] - (1 — d/q) < O(5). Now,
assume first that ¢ > 2d. Then this bound implies, via Fact 4.13, that

M3 @ Igob ~sid/q Ialice ® Gig),=1- (33)

On the other hand, when ¢ > 2d, then this bound is also true for trivial reasons. This is because
we can pick §(-) such that §(e) > 1 in this case. O

45

4.8 Quantum soundness of the classical simultaneous low-degree test

We would now like to use Theorem 4.40 to show quantum soundness for the simultaneous classical
low-degree test. This will be done using the same reduction presented in Section 3.6. The main
result is the following.

Theorem 4.43 (Quantum soundness of the simultaneous classical low-degree test). There exists
a constant ¢ > 0 and a function 0(e) = poly(e,d(m + £)/q°) such that the following holds. Suppose
Alice and Bob are entangled provers who pass E?Séurface(m, d,q,2) with probability at least 1 — € using
the strategy (1, M), where M consists of projective measurements. Then there exists a measurement
G € PolyMeas(m, d, q,¢) such that

My, 5, @ Isob ~s(e) Talice @ Glgy (w),....go(w)=b1,....be] Gyy,....90 @ IBob ~5(e) alice ® Gy,g05
where the first is on the uniform distribution over Fy".

Proof. Suppose Alice and Bob pass %Szurface(m, d,q,2) with probability at least 1 —e. We will
use them to simulate two provers, “Combined Alice” and “Combined Bob”, who pass the single-
function low-degree test syrtace (¢ +m, d+ 1, q,2) with probability at least 1 —e. They are specified
as follows:

o Combined Alice: Given s C Fffm, draw s’ ~9 Sproj. Give it to Alice, who responds with
fis--..f¢: 8 = F, Output the function combine|s.

o Combined Bob: Given (x,y) € Fg*m, compute y € Fj". Give it to Bob, who responds with
bi,...,b; € Fy. Return combiney(x) € F,.

By Proposition 3.15, s’ and y are distributed as the questions in 45 . .(m.,d,q,2). Using our
assumption on Alice and Bob, this means that f,(y) = by, ..., f,(y) = by with probability
at least 1 —e. As a result, (combineg|s)(x,y) = combinep(y) with probability at least 1 — e.
By Proposition 3.16, combineg|s is a degree-(d + 1) function on s, and so it is a valid response
to subspace queries. This means Combined Alice and Bob pass %syrface(! + m,d + 1,¢,2) with
probability at least 1 — €.

Thus, we can apply Theorem 4.40. It gives a measurement G' € PolyMeas(¢ + m,d + 1, q) such

that
M biney (2)=v] @ IBob ~5(e) Taiice ® Glg(a,y)=u] Gy ® Igob ~5(c) Lalice ® Gy, (34)

where d(€) = poly(e, (d+ 1)(¢ +m)/q°). This means that if we give Alice y and she returns b, and
Bob simply returns g, then combiney(x) = g(x,y) with probability at least 1 — d(e).

We would like to show that g is exactly linear in z with high probability, over the randomness
in the measurement GG. Let us condition on a g which is not exactly linear. By Proposition 3.18,
the probability that g|, is not exactly linear is at least 1 — (d 4+ 1)/¢. On the other hand, because
combiney () is always exactly linear by construction, the probability that g|, () = combiney(x)
is at most (d + 1)/q by Schwartz-Zippel (Lemma 3.6). As a result, the probability that g(x,y) =
combinep () is at most (d+1)/q + (d+ 1)/q. Thus, if we write fijinear for the probability that g is
exactly linear, we have equality at most inear + 2(d + 1)/q fraction of the time. Rearranging, g is
exactly linear with probability

Hlinear > 1-— 25(6) - 2(d + 1)/q

Define a new measurement {H,, .} € PolyMeas(m,d, q,{) operationally as follows: first, mea-
sure G and receive g. If it is exactly linear, it can be written as >, x; - g;(y), and so output

46

gi,---,9,- If g is not exactly linear, output any arbitrary degree-d polynomials instead. When g is
exactly linear, we have combiney, . g,(z,y) = g(x,y). Since this happens with probability at least
1 —4(e), we can replace G with H in Equation (34), yielding

Mﬁtombineb(x):u} ® Igob =6(e) Injice ® H[combineg (z,y)=v]> (35)

On the other hand, because H is just G with data processing applied to its output, we can apply
Fact 4.26 to Equation (34). This produces the equation

Hg,....q0 @ Igob ~5(e) Lntice ® Hyy .. g,-
Consider g, ..., g, drawn by Bob using H. For any fixed b and y, if it is not the case that ¢; (y) =

bi, ..., ge(y) = by, then the probability that combineg(x,y) = combine,(x) over a random x is at
most 1/q by Schwartz-Zippel, since both are exactly linear functions. Thus, if Alice draws by, ..., by
given y, and we write n for the probability that g,(y) = b1, ..., g,(y) = by, then the probability

that combineg(x,y) = combiney(x) is at most n+ (1 —1n)-1/q. Combined with Equation (35), this
implies that

Prig;(y) = b1,...,94(y) = bl > 1= 6(e) — 1/q.
Or, equivalently,

Mg b, @ Teob ~sc) Latice © gy y),...00(w)=b1....b)- 0

4.9 Self-testing

The games presented in Sections 4.7 and 4.8 might be referred to as “measurement testers”: if a
strategy passes them with high probability, then we can extract some property on its measurements.
In this section, we will introduce a significantly stronger notion of testing called self-testing. A self-
tester is a game in which if a prover passes with high probability, then not only do we do exactly
which measurements the prover must be performing, we also know which exactly state it must be
performing them on (up to local isometry). (We note that some works use “self-testing” to refer
both to “measurement testing” and what we refer to as “self-testing” [NV18a]. In this work, we
will reserve the term exclusively for the latter.) We begin with a definition.

Definition 4.44. We say that S = (¢, M) is a partial strategy for & if M contains the POVM M*
for only a subset of the questions in ¢. We call this set of questions S’s question set. A strategy
S’ = (¢, M') extends S if (M')* = M® for every x in S’s question set.

Next, we define self-testing.

Definition 4.45 (Self-testing). Let S = (¢, G) be a partial strategy and D be a distribution over
its question set. A game ¥ is a self-test for S over D with robustness d(¢) if it satisfies the following
two conditions.

o Completeness: There exists a (full) strategy Sgy consistent with & which passes 4 with
probability 1.

o Soundness: Let S = (v, M) be a strategy which passes ¢ with probability 1 —e. Then there
exists a local isometry ¢ = @jocal @ dlocal and a state |aux) such that

1 [10) — [4) |aux) [I* < 6(e).
Furthermore, if we define the new matrices M7 := ¢jocal - Mz . (¢1oca1)T, then
Mg & Ipob ~s(c) (Ga ® laux) @ Igob, (36)
on states [¢) l[aux) and [¢') and distribution & ~ D.

47

We note that this definition of self-testing differs in several key places from the one given in
[NV18a, Definition 2.5]. We will explain these differences in more detail when we cite the quantum
low-degree test in Section 6.

Part I1I
Implementing the registers

5 Register overview

In this part, we implement the quantum registers. Our goal is force Alice and Bob to share a state
of the following form:

L [e | [[e | ® [aux |,

in which each register r; contains an EPR state, and aux is a symmetric auxiliary state. In addition,
we want the verifier to be able to (i) force the provers to perform Pauli basis queries on some of these
registers and report back the outcomes and (ii) “hide” the remaining registers from the provers so
that they do not measure them at all.

5.1 Definitions

In this section, we will begin by defining quantum registers for nonuniform games. Defining registers
for uniform games ¢ is a little more complicated because we allow the number and size of registers
for ¢4 (input) to depend on input. We detail this below in Section 5.3.

Definition 5.1. Let £ > 0 be an integer, and let n = (nqy,...,n;) and ¢ = (¢1,.-.,qx) be k-tuples
of integers. A (k,n, q)-register game ¥ is defined as follows.

o Questions x are formatted into two blocks z = (z1,22). The first block contains a list of k
Pauli basis queries x; = (W, ..., Wy), where each W; € {X,Z, H, L }.

o Answers a are formatted into two blocks a = (a1, a2). The first block contains a list of answers
to the Pauli basis queries a1 = (u1,...,ux). Here each u; € Fyi U {2}

An (k,n, q)-register strategy S is defined as follows.

o Alice and Bob share a state
) =|r1) @ @ |rg) ® |aux) .

Here, |r;) = [EPRy’) for each i, and |aux) is an arbitrary symmetric shared state.

o Given a question x = (x1,x2) with first block z; = (Wy,...,W}), Alice and Bob act as
follows. Let i € [k].

— If W; € {X, Z}, they measure 7" on the i-th EPR register and set u; to be the outcome.
— If W; € {H, L}, they set u; = @.

Introduce the notation 7} = I for W € {H, L}. We can write their measurement as

M2 = 7-;’[1/1 R ® TLIL/I;:k ® Loy (37)

48

To produce the second part of their answer as, Alice and Bob can measure any part of their
state except the EPR registers which have been “hidden”. This entails the following: let
S ={i| W; = H}. Then for any answer a, the corresponding POVM acts as follows:

M? = Mg ® Is. (38)

Here, Ig is the identity matrix on the EPR registers in S, whereas Mg is a POVM acting on
the EPR registers in S as well as the state |aux).

We define valy, , 4(¥) to be the maximum over valy(S), where S is any (k,n, g)-register strategy.

The X and Z questions specify the corresponding Pauli basis measurement, and the H question
specifies that the register is to be hidden. The L question is a “no-op” and does not restrict Alice
and Bob at all, other than making them respond with the “no-op” answer @. Thus, unlike with the
data hiding question, they are allowed to measure the register as they see fit. This will be useful
later when we want Alice and Bob to measure both X and Z observables on the same register.

In designing our compiler, it will be convenient to define a set of strategies called “semiregister
strategies”. These will be strategies which are intermediate between (k — 1)-register strategies and
k-register strategies in the sense that they have Pauli basis queries implemented on the final (k-th)
register but not data hiding queries. These are defined as follows.

Definition 5.2. A (k, n, q)-semiregister strategy is defined just as a (k,n, q)-register strategy, with
the following modification: the set S used in Equation (38) is changed tobe S = {i # k| W; = H}.

We define va chlq (%) to be the maximum over valg (S), where S is any (k, n, ¢)-semiregister strategy.

Thus, querying the k-th register of a semiregister strategy with a H is the same as querying it with
a L.

The following lemma shows that we can restrict to projective register strategies without loss of
generality.

Lemma 5.3. Let S be a (k,n,q)-register strategy. Then there exists a (k,n,q)-register strateqy S’
in which all measurements are projective, and which produces the same bipartite correlation as S.

Proof. Start with the strategy S, and let the measurements be denoted Mg 7. From the definition
of register strategies, we know that for every set of questions x1, x2, the corresponding measurement
can be written as a product

W
M = (™) © (A,

where S is the set of registers which receive a Pauli basis query in the set X, Z, H, S is its com-
plement, and the operators {Agy ">} form valid POVMs with outcomes as for every choice of
x1,T2,a1. We will apply Naimark’s theorem Theorem 4.1 using the universal auxiliary state |aux)

to the A operator to produce projectors Aggl’xz’al. Using these, we define a projective measurement

W
M = ()) © (A=),

It is not hard to see that M’ and |aux) form a valid Naimark dilation of M. Let S’ be the strategy
S with the shared state |¢) replaced by |¢) ® Jaux4) ® |auxp) and the measurements M replaced
by M’. By construction, &’ is a projective strategy. Further, from Corollary 4.8, it follows that the
bipartite correlations produced by the strategies S’ and S are the same. U

49

5.2 Results

The key elements of our compiler are two new nonlocal games called the Pauli basis test and the
data hiding game. The Pauli basis test ensures that the provers share an EPR state and honestly
answer Pauli basis queries to this state. The data hiding game allows us to “hide” this state from
the provers, ensuring that they do not use this register unless we ask them to.

Our compiler operates a register at a time and involves two subroutines, Cp_ssemi and Csemi—sk—1-
Given a k-register game, Ci_.semi produces a k-semiregister game. To do so, it removes the guarantee
that the provers data hide the k-th register and replaces it by playing the data hiding game on this
register. Thus, although the provers are no longer forced to hide the k-th register, they will have
to do so anyway if they want to pass the data hiding game. Similarly, given a k-semiregister game,
Csemi—k—1 produces a (k — 1)-register game. To do so, it removes the guarantee that the provers
have a k-th EPR register and replaces it by playing the Pauli basis test. Thus, by alternating these
two subroutines, we can compile a k-register game into a O-register game, i.e. a general game.

Before giving the properties of the Pauli basis compiler, we will need two definitions.

Definition 5.4. Given a string x = (z1,...,x) and an integer 0 < ¢ < k, write x|, := (z1,...,xp).
We extend this to register parameters 7 = (k,n,q) by setting 7|, := (¢,nl|s, ql¢). Thus, 7|; is the
register parameters for the first ¢ registers of 7.

Definition 5.5. Let n and ¢ be integers and 71 be a real number. We say they satisfy the Pauli
basis condition if

. 1

2
g=2 641og(n)
poly(n)

2 < ¢ < poly(n).

<n< 1
>N 9’
The following theorem describes the Pauli basis compiler.

Theorem 5.6. Let A = (k,n,q), and let ng, qi, and n satisfy the Pauli basis condition. Suppose
Gemi 1S a N\-semiregister game, and consider the \|x_1-register game %,_1 = Coemio (k—1)(eemi) -

o Completeness: Suppose there is a value-1 A-semiregister strateqy for Gsemi which is also a
real commuting EPR strategy. Then there is a value-1 \|p_1-register strateqy for .1 which
s also a real commuting EPR strategy.

o Soundness: If valy, (%—1) > 1— ¢ then valS™ (Goemi) > 1 — 0(€), where §(¢) = poly(e,n).

Furthermore,
Q-time(%y.—1) = Q-time(%semi) + O(log(nyk)),
Q-length(%—1) = Q-length(Zemi) + O(log(nk)),
A-time(%—1) = A-time(Zsemi) + poly (ng),
(Fe—1)

A-length(9;_1) = A-length(%semi) + O(ny - loglog(ng)).
The following theorem describes the data hiding compiler.

Theorem 5.7. Suppose 9 is a (k,n,q)-register game, and consider the (k,n,q)-semiregister game

gsemi = Ck—)semi (gk)

o Completeness: Suppose there is a value-1 (k,n,q)-register strategy for 4 which is also a
real commuting EPR strategy. Then there is a value-1 (k,n,q)-semiregister strategy for Gsemi
which is also a real commuting EPR strategy.

50

o Soundness: If vali'n (Ysemi) > 1 — € then valy . o(%) > 1 — 6(c), where §(e) = poly(e).

Furthermore,
Q-time(Zeemi) = O(Q-time(%,)), A-time(%emi) = O(A-time(%)),
Q-length(%semi) = O(Q-length(¥4;)), A-length(%emi) = O(A-length(¥;)).

Combining Theorems 5.6 and 5.7 gives us the main result of Part III, a compiler C which
compiles k-register games into general games.

Theorem 5.8. Let 4 be a (k,n,q)-register game. Let n = (m1,...,n;), and suppose n;, q;, and n;
pass the Pauli basis condition for all i € [k]. Write

g = C(gk) = Csemi—>0 (Cl—>semi(e Csemi—)k—l(ck—)SOmi (gk))))

o Completeness: Suppose there is a value-1 (k,n,q)-register strategy for % which is also
a real commuting EPR strateqy. Then there is a real commuting EPR strategy for 4 with
value 1.

o Soundness: If val(¥) > 1 — e then val (.,)(%) > 1 — d(¢), where 6(¢) = poly(e,n1, ..., Mk)-

Furthermore,
Q-time(¥4) = Q-time(¥%;) + O(log(ny)) + - - - + O(log(ng)),
Q-length(#) = Q-length(%,) + O(log(n1)) + - - - + O(log(nx)),
A-time(¥) = A-time(%;) + poly(n1) + - - - + poly(ng),
A-length(¥) = A-length(%);) + O(n; - loglog(ni)) + - - - O(ng - log log(ng)).

5.3 Registers for uniform games

In this section, we generalize the notion of registers to the case of uniform games, in which a
different set of register parameters might be used for each input. To compile these games, we will
need for the register parameters themselves to be uniformly generated.

Definition 5.9. Let Mp,;ams be a Turing machine which, given an input input, outputs A = (k,n, q).
Let ¢ be a (nonuniform) game. Then we say Mpayams outputs the register parameters of ¢4 if for
every input, 4(input) is a Mparams(input)-register game.

Given this, our compiler for uniform games is given as follows.

Corollary 5.10. Let 9(-) be a (uniform) game, and let Mparams be a Turing machine which
outputs its register parameters. Then there exists a (uniform) game Yoompile(-) with the following
properties. Given an input input, write ¢ = 9(input), Yoompile := YCompile(input), and X\ =
(k,n,q) := Mparams(input).

o Completeness: Suppose there is a value-1 (k,n,q)-register strategy for & which is also a
real commuting EPR strategy. Then there is a real commuting EPR strategy for 9compile with
value 1.

o Soundness: Let n = (m,...,n), and suppose n;, q;, and n; pass the Pauli basis condition
for alli € [k]. If val(Ycompile) > 1—€ then valy(¥) > 1—6(¢), where 6(e) = poly(e,n1,...,mk).

o1

Furthermore,

Q-time(¥) = Q-time(%;) + O(log(ny1)) + - - - + O(log(ng)) + time(Mparams(input)),
Q-length(¥) = Q-length(%) + O(log(n1)) + - - - + O(log(ng)),

A-time(¥) = A-time(%;) + poly(ni) + - - - + poly(ny) + time(Mparams(input)),
A-length(¥4) = A-length(%4;.) + O(n; - loglog(n1)) + - - - O(ny - log log(ng)).

Proof. We first compute A = Mparams(input) in time time(Mparams(input)). Then it can be checked
that the compiled game C(¥ (input)) from Theorem 5.8 can be efficiently simulated given the register
parameters . O

5.4 Organization

The remainder of Part III is organized as follows.
e In Section 6, we introduce the Pauli basis self-test and prove its correctness.
e Section 7 implements the Pauli basis compiler.

e In Section 8, we introduce the data hiding game.

Section 9 implements the data hiding compiler.

Section 10 contains a generalization of the data hiding game which allows us to hide more
general sets of Pauli observables. This is not needed to implement the quantum registers, but
it will be needed in Part IV when designing the NEEXP protocol.

6 A self test for the Pauli basis

In this section, we give a self test for the Pauli basis measurement. Given W € {X, Z}, this test
compels the prover to measure an EPR register in the W basis and return the outcome to the
verifier.

Definition 6.1. The Pauli basis strategy with parameters n and q (a prime power), denoted
Pauli(n, q), is the partial strategy with the state |[EPR;) and measurement matrices W for each
Wel{X,Z},uecly.

The main result of this section is the following self-test for the case when ¢ is a power of 2.

Theorem 6.2. Let W ~ {X,Z} uniformly at random. Let n, q, n satisfy the Pauli basis con-
dition. Then there is a self-test %asis = %pasis(n,q) for Pauli(n,q) over W with robustness
d(e) = poly(e,n). Moreover, there is a value-1 real commuting EPR strategy with auxiliary state
|EPRy2). Finally,

Q-length(%hasis) = O (log(n)), A-length(%,asi5) = poly(n),
Q-time(%asis) = O (log(n)), A-time(%asis) = poly(n).

We prove this by a straightforward reduction to the quantum low-degree test of [NV18a].

92

6.1 The quantum low-degree test

The goal of the quantum low-degree test of [NV18a] is to force the provers to use a “compressed”
version of the Pauli basis strategy. Given W, they should measure their register in the W basis,
receiving u € Fy. However, u, a length-n string, might be prohibitively expensive to communicate
to the verifier, so they should instead compute the low degree encoding g,, and return its evaluation
at a single point w € Fg* of the verifier’s choosing. (The point of this section is to “uncompress”
their protocol.)

Definition 6.3. Fix parameters for the low-degree encoding params := (¢ = p', h, H,m,n,)
satisfying the “low-degree conditions” h < ¢, and n < h". For any string u € Fy, these parameters
give a low-degree encoding g, : Fy* — Fy.

The low-degree Pauli strategy with parameters params, denoted £LD(params), is the partial strat-
egy with state [EPRy) and measurement matrices

Ww . W _ w
Ta " = Tgu(w)=a] = Z Tu

uigu(w)=a

for each W € {X,Z},w € Fi',a € F;. Equivalently, this is the strategy where we perform the
Pauli W-basis measurement and output the low-degree encoding of the outcome u evaluated at the
point w, i.e. the value g, (w).

The main result of [NV18a] is the following.

Theorem 6.4 ([NV18a, Theorem 3.2]). Fiz low-degree parameters params with p = 2 (so that
q=2") and m > 2, and let D be the uniform distribution over (W,w) with W € {X,Z},w € F}".
Then there is a self-test GQiowdes = YQiowdeg(pParams) for LD(params) over D with robustness
d(e) = poly(e,md/q°), with ¢ > 0. Moreover, there is a value-1 real commuting EPR strategy with
auzxiliary state |EPRg). Finally,

Q-length(%Qiowdeg) = O(mlogq), A-length(9qiowdes) = O(al2 log(q)),

Q-time(YQiowdeg) = O(mlogq), A-time(Yqiowdeg) = Poly(m,d,log q).

(We note that this result is stated in [NV18a] for general primes p. However, the p # 2 case
relied on a self-testing result for a generalization of the Magic Square game which was recently
discovered to contain a bug. Fortunately, the p = 2 case needs only a self-testing result for the
“traditional” binary Magic Square game, and this follows from [WBMS16].)

Remark 6.5. We note that the quantum low-degree test, as stated in [NV18a], does not have
value-1 real commuting EPR strategies. This is because it uses as a subroutine the standard magic
square game, and the magic square game does not have value-1 real commuting EPR strategies.
Its value-1 strategies are EPR strategies, and they are real (all observables are either X or Z, with
the sole exception of the Y ® Y observable, which can be rewritten as Y @ Y = - (X ® X) - (Z® Z),
manifestly real). But they are not commuting, because each row and column have at least one pair
of noncommuting observables.

Consider instead the following “oracularized” version of the magic square game: one player is
given a random row or column (and is expected to play as in the normal magic square game), and
the other player is given a random cell in that row or column, and the verifier simply checks that
they agree on that cell. In addition, with some constant probability, both players are given the
same cell and their answers are checked against each other. In this case, all observables measured

93

With probability % each, perform one of the following two tests.
1. Low-degree: Perform %qiowdeg(params).

2. Cross-check: Draw W ~ {X,Z}, w ~ F". Flip an unbiased coin b ~ {0,1}. Distribute
the questions as follows:

o Player b: Give W receive u € Fy.

o Player b: give (W, w); receive a.

Accept if gy (w) = a.

Figure 1: The game %asis(n, q).

are commuting, and so this variant has a value-1 real commuting EPR strategy. In addition, it
certifies the same state and measurements as the normal magic square game, and so we can use it
as a subroutine in the quantum low-degree test instead.

Remark 6.6. We note again that the soundness case in our definition of a self-test is quite different
from the one given in [NV18a, Definition 2.5], and it is not clear that a self-test in their sense implies
a self-test in our sense. However, for the quantum low-degree test, their soundness case does match
ours. By [NV18a, Lemma 4.1], there is a local isometry ¢ = ¢1 ® ¢o such that

1 [) — [Jaux) ||* < 6(e). (39)
and

) ST 6- 1™ @ Igoy) [8) — (1™ © Laux) © Igob [1) |aux) ||* < 8(e). (40)

The key difference from our self-test definition is that, as stated, their local isometry need not
be symmetric (i.e. ¢1 # ¢2), but their construction actually does give a symmetric isometry with
¢1 = ¢2. Then, from Equation (40) it is easy to derive Equation (36) using Equation (40) and the
triangle inequality (Fact 4.28).

6.2 Proof of Theorem 6.2: the Pauli basis test

We now state the Pauli basis test.

Definition 6.7. Let n,¢,n be as in Theorem 6.2. Fix the remaining low-degree parameters params
as follows:

h = [q"/?], m:2-“2§((z))l, d=m-(h—1).

Then the Pauli basis game %asis(n, q) is given by Figure 1.
These parameters are chosen so that they are valid low-degree parameters (guaranteeing the

existence of the low-degree code), which is necessary for the quantum low-degree test. In particular,
these satisfy (i) h < ¢ and (ii) n < A™. The first of these is immediate; as for the second,

" > (q1/2)2-10g(n)/10g(q) _ qlog(n)/log(q) —

In addition, the code has relative distance d/q < mh/q <.

d_ m-(h—1) < mh <3, log(n) 'q1/2 < 8log(n)

< <,
q q q log(q) ¢ q'/?

o4

where the final step is because n, ¢, n satisfy the Pauli basis condition. Finally, we note that even if ¢
is a large polynomial of n, m is always at least 2, which permits us to use the quantum low-degree
test. We now prove Theorem 6.2.

Proof of Theorem 6.2. The question lengths and times of both the quantum low-degree test and
the cross-check are given by

log(n)
log(q)

mloga) = 2 | 2 tag) = Oftog(r)

As for the answer lengths and times, these are bounded by poly(n) for both the quantum low-degree
test and the cross-check. We now consider the completeness and soundness cases separately.

Completeness. Let (1), M) be the value-1 commuting EPR strategy for the quantum low-degree
test guaranteed by Theorem 6.4. This has state 1) = |[EPRy) [EPR2) and measurement matrices
MXV W = TXV '@ Lux. If we add in the measurement matrices MXV = TQYV ® Iaux, then this strategy
passes the cross-check with probability 1. This is because after Player b measures u, the state
collapses to [72V) |[7W) |[EPR2), and so Player b will measure a = g, (w). As a result, this is a value-
1 strategy. Furthermore, it is a commuting EPR strategy because the cross-check measurements
MY and MW* commute. Finally, this strategy extends the Pauli basis strategy. This proves the
completeness case.

Soundness. Throughout the soundness, we will use d(¢€) to denote a function of the form poly/(e, n)
which may change from use to use. The d(¢) in Theorem 6.4 is of this form because d/q < .

Let S = (v, M) be a strategy with valg, . (S) =1 —e. Then this strategy must pass YQlowdeg
with probability at least 1 — 2¢. By Theorem 6.4 this gives us a local isometry ¢ = @iocal @ Plocal
and a state |aux) with the following properties: if we define the new strategy S in which |¢) = ¢ [+))
and MZ = diocal - My - 61 ., then

19) — [EPRY) laux) [|* < 8(e), Mg"" @ Igob Xs(e) (7a ™ © Taux) © Igob, (41)

on state [1) and distribution D. Because S is just a rotated version of S, it also passes %asis With
probability 1 —e. As a result, S passes the cross-check in Section 6.2 with probability at least 1—2e.
By Fact 4.13, we conclude that

M[Igi(w):a} & IBob e IAIice & M;/V’w %6(5) IAIice & (T;Mw b2y Iaux) = IAIice b2y (T[‘;/J(w):a] ® Iaux) (42)
on state |¢). By Fact 4.14 and the fact that the 7 measurements are projective, this implies that
M[Igi(w):a] ® IBob ~5(c) LAlice ® (T[Igi(w):a] ® Taux)

Now by Proposition 4.42 (where we let s be the singleton distribution on the “trivial” subspace
s = F}') and the fact that d/q <7, we can conclude that

MY @ Igob ~5(e) Tatice ® (T ® Laux)-
Applying Fact 4.13 again, this yields
MZV ® Ipob 5 (e) Tplice ® (TZV & Iaux) ~5(e) (TZV ® Iaux) ® Ipob (43)

on state [i), where the last step uses Fact 4.22 to combine Fact 4.38 with Equation (41). The
analogous statement for the state |[EPRy) follows from Fact 4.22. This establishes the theorem. [

95

Flip an unbiased coin b ~ {0,1}. With probability % each, perform one of the following four tests.
1. Pauli basis: Draw (z,@') ~ %asis(nk, qk,n). Distribute the questions as follows:

k—1

o Player b: give (H"™ ', x); receive a = (a1, as).

o Player b: give (H*!,2'); receive @’ = (a},a}).
Accept if ag and al, are accepting answers to the Pauli basis test.

2. Cross-check: Draw (z,z') ~ %emi. Write € = (x1,22) with &1 = (Wy,...,Wy). Dis-
tribute the questions as follows:

o Player b: give x; receive a = (a1, az), where a1 = (uq,...,ug).

o Player b: give (H¥~1, W); receive strings a) = (u},...,u}), u} € -
If Wy, € {X, Z}, accept if up = u). Otherwise, accept if uy = @.
3. Consistency check: Draw (x,@’) ~ %m;. Distribute the questions as follows:

o Player b: give x; receive a

o Player b: give x; receive a’.
Accept if a = a’.

4. Play game: Perform Yem;.

Figure 2: The game Cyemiy (k—1)(%semi)-

7 Compiling games with the Pauli basis test

In this section, we show how to use the Pauli basis test to implement the compiler Cyepmi_y(x—1)- Our
construction is given in the following definition.

Definition 7.1. Let %em; be a (k,n, q)-semiregister game. Then its compiled version is the game
Coemizs (k—1)(%semi) defined in Figure 2.

In words, the provers might try to “trick” the verifier by using one of their (k — 1) existing EPR
registers to answer queries meant for the new k-th register. To prevent this, the verifier performs
the Pauli basis test with the first £k — 1 registers hidden, forcing the provers to introduce a new
EPR register. It then cross-checks the provers’ answers in the Pauli basis test with their answers
in the game %;omi. The performance of the compiler is given by the following theorem.

Theorem 7.2. Let A = (k,n,q), and let ng, qi, and n satisfy the Pauli basis condition. Suppose
Yeemi 15 @ A\-semiregister game, and consider the A|_1-register game 91 = Coemizs (k—1)(%semi)-

o Completeness: Suppose there is a value-1 A-semiregister strateqy for Ysemi which is also a
real commuting EPR strateqy. Then there is a value-1 \|x_1-register strategqy for %._1 which
1s also a real commuting EPR strategy.

o Soundness: If valy|, (9—1) > 1—¢ then val$™ (Zyemi) > 1 — 0(€), where §(¢) = poly(e,n).

o6

Furthermore,
Q-length(%)_1) = Q-length(%emi) + O(log(n)),
Q-time(%y.—1) = Q-time(%emi) + O(log(n)),
A-length(9;_1) = A-length(%semi) + poly(n),
A-time(9j,_1) = A-time(%semi) + poly(n).

Proof. The communication and time complexities are the result of combining the communication
and time complexities from ¥,c,; with the values for the Pauli basis test from Theorem 6.2.

Completeness. Let (¢, M) be a value-1 A-semiregister strategy for %em; which is also a real
commuting EPR strategy. Then [¢) = |r1) - - - |r) [aux), where each |r;) = |[EPRj’) and |aux) is
an EPR state. In addition, let (¢)', M’) be the value-1 real commuting EPR strategy for %asis
guaranteed by Theorem 6.2. Then [¢)') = [EPRy*) |aux’), where |aux’) is an EPR state.

Consider the following strategy for ¢;_;. For its state, it uses |r1)---|r) |aux) laux’). For
inputs drawn from %, it uses the matrices in M applied to all but the |aux’) register. For inputs
of the form (H*~', z), where x is sampled from %, it outputs @*~! along with the result of
applying M’ to |ry) and |aux’). Finally, for inputs of the form (H*~!, H) and (H*~!, 1), it outputs
@*. This forms a valid A|,_;-register strategy for %,_;. In addition, its “auxiliary register” is
|7k) laux) |aux’), which is an EPR state. Now we show that it has value 1.

By construction, this strategy passes the Pauli basis test and %,emi with probability 1. As for the
cross-check, when W, € {H, L}, the strategy always succeeds because (1, M) is a A-semiregister
strategy. On the other hand, when W, € {X, Z}, this implies that wuy is the result of applying the
Wk measurement to |ry,), putting it in state |7 ©) |7ar *). But then because (¢, M) implements
the Pauli basis strategy on |r), the outcome u), is also the result of applying the Wk measurement
to |rg). As a result, u) = uy.

Finally, it is clear that this forms an EPR strategy. As a result, by Fact 4.37, the consistency
check passes with probability 1. Thus, the strategy passes the overall test with probability 1. Next,
we show that this gives a commuting EPR strategy. For the questions that arise in the Pauli basis
test, the consistency check, and %emi, commutation follows because M and M’ are commuting.
As for the cross-check, consider the case when W € {X,Z}. Then the first (i.e. Player b’s)
measurement is given by

Z1,%2 _ W Z1,T2
(Mf1177¢12)17---7k73UX ® Iaux’ - Tuk ® (Aul’,...,uk,l,ag)1,...,k—1,aux,aux’a

where A is some measurement. This follows because M is a A-semiregister strategy. Similarly, the
second (i.e., Player b’s) measurement is given by

H H W, Wi,
(Tg X Q Ty)1,...,k—1 & (Mu;c k)k,aux’ ® Laux = Tu;f & Il,...,k—l,aux,aux’-

By inspection, these two commute. On the other hand, when W, € {H, L}, then Player b always
outputs @¥. Their measurement for this outcome is the matrix I 1,... kaux,aux’s and is the zero matrix
for every other outcome. These clearly commute with any strategy for Player b.

Finally, because M and M’ are real strategies, this strategy is also real. As a result, this gives
a value-1 real commuting EPR strategy.

Soundness. Suppose Sreg = (Yreg; Mreg) is a A|p_i-register strategy for ¢,_; with value 1 — e.
By Lemma 5.3, we can assume without loss of generality that M is projective. For 1 < i < k, write
Ir;) := |EPRg?). By definition, [treg) = [r1) ® -+ @ [rp_1) ® [auXseg). Our goal will be to decode
Sreg into a A-semiregister strategy Ssemi for %emi With nearly the same value.

o7

Using the Pauli basis test. Passing the overall test with probability 1 — ¢ means that Syeg
must pass the test in Item 1 with probability 1 — 4e. This test only involves measurements of the
form {(Mreg)i’;(;z’H’x}al,az. Because the first k¥ — 1 coordinates are hidden, Equation (38) allows us
to write

(Mreg)g"”7H’x = [1,...,k—1 ® (Agz)aum

where {A?}, is some set of measurements. As a result, the state |aux,es) and measurements { A7 },
form a strategy for the game %asis(nk, gk, 7) Which succeeds with probability 1—4e. By Theorem 6.2
this gives us a local isometry ¢ = Procal ® Plocal and a state |aux) such that

16 [auxeeg) — |ri) Jaux) |* < é(e), (44)

(@blocal : AZV : @b;rocal)Alice ® Igob ~5(e) (TXV @ Iaux)AIice ® IBob, (45)

on state |rg) |aux) and the uniform distribution on {X, Z}.
Define the new strategy S in which [¢) = |r1) ® -+ ® |rp_1) ® (¢ |auxyee)) and

M;;C - (Il,...,k—l X (¢local)aux) . (Mreg)i . ([1,...,k—1 & ((ﬂocal)aux)'

Then Equations (44) and (45) implies that
) = [r1) @ -+ @ i) [aux) |2 < 6(e), (46)

(MHHWY e @ Tgop ~se) (1, k-1 ® T2 @ Toux) Alice @ TBob, (47)

on state |¢) and the uniform distribution on {X, Z}. Because S is just a rotated version of Syeg, it
also passes ¥;_1 with probability 1 — e. In addition, it is also a A|,_;-register strategy.

Performing the cross-check. To analyze the cross-check, we begin with a definition. Given
W e{X,Z,H,1} and u € Fy} U {2}, define nully (u) = u if W € {X, Z} and & otherwise. The
cross-check in Item 2 checks equality between wuj and nullyy, (u}). As a result,

H7"'7H7Wk
[nullwk (U;):Uk}

(M3,)Alice @ Iob ~e Intice ® (M,)Bob-

Next, we note that when Wy, € {H, L},

H7"'7H7Wk

— Wi,
[mullyy, (uf)=ug] — I k-1 @7y, " ® L,

because both sides are the identity when u; = @ and zero otherwise. On the other hand, when
Wi, € {X, Z}, these two are close due to Equation (47). Applying Fact 4.24 and Fact 4.28, we get

(M atice @ Tgob ~s(e) Iatice ® (I1,... k1 ® Tyt ¥ @ Laux)Bobs (48)

7

where we have also applied Fact 4.13 to switch to the “~5,)” notation.

Extracting a strategy. Now we use this to define a A\-semiregister strategy Ssemi for %emi. This
strategy will have state [tsemi) = |r1) - |rk) |aux). In addition, for each input z = (z1,2z2) and
output a = (a1, az), it will have a matrix

AT = (I ko1 @ Tyt E @ Taue) - MEH™ (I1,)1 @ To @ Loy

a1,a2 (U1, ug—1),02

o8

First, it follows from M being a A|p_1-strategy that this is indeed a A-semiregister strategy. This
is because

Wi
Aiivlé — (I k=1 ® Tukk ® Iaux) . M,;Cll’xz

ooy Uk —1

1, : (Il,...,k—l b2y TK,:IC b2y Iaux)

Wi
= (Il,...,k—l & TXZ’“ & Iaux) : (7—12/1 Q- ® Tukill X Ik,aux) : (Il,...,k—l & TE,:IC & Iaux)
:Tgf ®~'<X>7'J:Z’C ® Tux.

In addition, if S = {i # k| W; = H}, then

AT = Iy, ko1 @ Ty ¥ ® Tau) - (Is @ Ag) - (I1,. k1 @ Ton* @ Loux) = Is ® A%,

ai,az

where A and A’ are matrices acting on the registers not in S and on the auxiliary register.
Next, we show that this has good value. Write D for the marginal distribution of questions
given to player 1 in %sni- By the consistency check,

(M[}*2)Alice © IBob ~5(¢) Talice ® (M1)Bob

(U1, ug—1),02 (U1, sup—1),02
with respect to D. As a result, Equation (48) and Fact 4.33 imply that
(AZ)Alice ® IBob ~5(c) Lalice @ (Mg)Bob ~s(e) (Mg)Alice @ IBob,

where the last step uses the self-consistency of M . Applying Fact 4.32, Sgemi passes Zsemi With
probability at least valy, _, (S) — d(€e). Thus, val3™ (%emi) > 1 — d(€), and we are done. O

8 The data hiding game

In this section, we introduce a new, simple game called the data hiding game. This game assumes
two (k,n,q)-semiregister provers with a shared state |ry)---|rg)|aux). The goal is to test that a
given measurement { M7}, acts as the identity on the k-th register.

Definition 8.1. Let z = (z1,z2) with zy = (Wy,...,Wy), and suppose Wi, = H. Then the data
hiding game %hide := %hide() is given by Figure 3. It has the following parameters:

Q-time(%hide), Q-Iength(?fhide) = O(|:E|), A-time({fhide), A—|ength(ghide) = O(Zznl log(qi) + f).

Here ¢ is the maximum of |as], |a}| over all answers ay and a}, given by the provers.

Draw W ~ {X,Z}. Set &’ = (2, x2), where &} = (Wi,...,Wj_1,W). Flip an unbiased coin
b ~ {0,1}. Distribute the questions as follows:

o Player b: give z; receive (a1, as).
o Player b: give '; receive (a}, a}).

Accept if as = d,.

Figure 3: The game %qe(z), with input z = (x1,x2)

For a measurement {M,}, which operates on multiple subsystems, it will be convenient to
define a version of the measurement in which one of the subsystems is “hidden”.

99

Notation 8.2. Let M be a matrix which operates on H1 ® - -+ @ Hi @ Haux, and let i € [k]. Define
the notation

1

If {M,}, is a measurement, then so is {hidey(M,)}, (though it may not be projective, even if
{M,}, is). Our main result regarding the data hiding game is that passing it with high probability
certifies that {M,}, is close to {hidey(M,)}.

Theorem 8.3. Let x be as in Definition 10.35.

o Completeness: Let Spartial = (¥, M*) be a partial (k,n, q)-register strategy which is also a
real commuting EPR strategy. Then there is a (k,n,q)-register strategy S extending Spartial
which is also a real commuting EPR strategy such that valg, (S) = 1.

o Soundness: LetS = (1, M) be a projective (k,n, q)-semiregister strategy such that valg, ., (S) >
1 —e€. Then
(Mg) Alice ® Iob e (hideg,(My))alice @ Igob

on the singleton distribution on input x.

This section is organized as follows: in Section 8.1 we introduce the Pauli twirl, and in Section 8.2
we use it to prove Theorem 8.3. Finally, in Section 9, we design our compiler from layer-two to
layer-one. This last step is essentially standard and is included for completeness.

8.1 Some facts about the Pauli twirl
Definition 8.4. The Pauli twirl 7 : B((C?)®") — B((C%)®") is the linear operator

T(A)= E_[Xw)Z) A -Z(—u)X(-u)].

/
u,u’'~Fy

Proposition 8.5. Let P be a Pauli matriz on n qudits of dimension q. Then & (P)= P if P is a
multiple of the identity, and otherwise J (P) = 0.

Proof. The case when P is a multiple of the identity follows from the definition. Otherwise, we can
write P = w?X (a)Z(b), where at least one of a and b is nonzero. Then

T (P) = u% (X(uw)Z(u) - P Z(—u)X(—u)]
=w’ E [X(uw)Z(u) X(a)Z(b) - Z(—u) X (—u)] .

w,u’

By the Pauli X and Z commutation relations (Equation (10)), this rearranges to

R D) [wtr[u’-a—wb]] . X(CL)Z(b) - E [wtr[u’u—u-b}} .P—E [wtr[u’u}] ‘E [w—tr[u-b}] .P=0.
u/

w,u’ uw,u’ u
Here the last step uses Fact 3.1 and the fact that at least one of a or b is nonzero. O

In the next couple of sections, we will consider the effects of applying the Pauli twirl to our
measurements. For convenience, we will “group” our state into two parts: [i¢1) = |rg) is the
subsystem we want to hide, and |¢)9) = |r1) -+ |rp_1) |aux) is the remaining part of this state. In
this way, we can consider our measurements as operating on the bipartite state |¢1) |¢2).

60

Proposition 8.6. Let {M,} be a measurement on the state [1)) = |11) [t2). Then
(7 ® id2)[M,] = hide; (M,),

where idy is the identity superoperator applied to the second register.

Proof. Let Py be the elements of the Pauli group on n qudits of dimension ¢, with Py = I. Because

these form a basis for the set of matrices, we can write

My =Y P;®M,;,
J

where the M, ;’s are matrices acting on the auxiliary register. Using Proposition 8.5,

(7 ®ida)[Ma] =Y T (Py) ® My =Py @ Moo =I® Myy.
J

On the other hand, because Py is traceless unless J = 0 (i.e. Py is the identity),

1
hide; (M,) =Y hidey(Py ® My y) = i I ®tr1(Pr® Myy) =1® M,p.

J J

These two are equal, completing the proof.

8.2 Hiding a single coordinate

In this section, we prove Theorem 8.3. Prior to doing so, we prove a couple of technical lemmas.
The first shows that a measurement which approximately commutes with the Pauli measurements

also approximately commutes with the Pauli observables.

Lemma 8.7. Let W € {X,Z}. Suppose {M,} is a measurement on the state |1)) =

for which
(Mg - (7} ® D)) Alice ® Tob =6 (7 @ I2) - My)alice @ Igob-

Then the statement
(Mg - (W (u) @ I2))Atice @ Igob =5 (W (u) @ I2) - My)Alice @ Iob
holds with respect to the uniform distribution on u € Fy.

Proof. Our goal is to bound

EE:II u) @ L) — (W(u) @ I) - M) @ I|) ||*.

by §. To do so, for a fixed u we introduce the notation
Al = Ma-(W()®IQ)—(W()®[2)-Ma

= Z wtr[uv Ma ®[2) (J,/V ®IQ) . Ma).
velFy NG

We record the following identity, which follows from Equation (50):

(A“ AL =E > WAL)T Ay = Y (D) Ag.

v,v' €FY veFp

61

[EPRY) [1)2)

As a result,

EZH Az Dy | = EZ WHADTAY & I |v)

—ZZ (] (Dgw) Agp @ T [1h)

a vely

=N A @I [0) |2

a,v
But this is at most O(d), by assumption. This completes the proof. O

The next technical lemma shows that a measurement which approximately commutes with
products of X and Z observables is approximately equal to its own Pauli twirl.

Lemma 8.8. Consider the distribution D on pairs (u,u’), where u,u’ ~ Fy. Suppose {M,} is a
measurement on the state |) = [EPRY) [12) for which

(Z(W)X(uw) ® Io) - My) @ Igop 5 (Mg - (Z(u') X (1) ® I5)) @ Igob.

on distribution D. Then
M, ® Igop ~5 (F @ ida)[M,] ® Igop.

Proof. By definition,

(7 ®id2)[M,] = E [(X(w)Z(w) ® L) - M, - (Z(~u')X(~u) @ L)}

Similarly,
M, = E [(X(w)Z(u)® L) (Z(—u)X(—u) ® I5) - M,].

w,u’
As a result, if we set A% = X(u)Z(u') ® I, and
B = (Z(—u)X(~u) ® L) - My — My - (Z(—u) X (—u) © I),
then
Ay =M, — (7 ®idy)[M,] = E [A¥Y . B%Y],

w,u’

We can therefore establish the lemma as follows:

D e e e 9 = 321 B[4 5] @ T 1) |
a ’

< E Z H(Au’u/ : B;"ul) @ Igop |1) |2 (Jensen’s inequality)
w,u’
= Z |(Bg" ad) @ Igob 1) |2 (A”’"/ is unitary)
u,u’
By assumption, this quantity is O(d). This concludes the proof. O

Now we prove Theorem 8.3.

Proof of Theorem 8.3. We consider the completeness and soundness cases separately.

62

Completeness. Let Sparial = (1, M™) be a partial (k,n, g)-register strategy which is also a real
commuting EPR strategy. To this strategy we will add matrices for the questions =’ = (z, x2)
with x’l = (Wl, ey Wi, W).
Let a1 = (u1,...,ug), where u; = @ if W; € {H, L}. Let S = {i | W; # L}. By definition of a
(k‘, n, q)-register strategy,
MF = Q) @ ME™,

i€S
where Mg;*" acts on the auxiliary registers and the registers not in S. Next, set a’ = (a}, az) where
! !/ !/
ay = (u1,...,up—1,u;) and uy € Fpk. Then we set
! m/17332 _ W, w T,a
(M) = Q@) m @7 @ M.
i€S\k

This is a (k, n, q)-register strategy for %4 by design. To see that it is value 1, suppose on question z
Player b measures a;. Then by Fact 4.38, Player b will measure a} in which w} = u; for all i < k.
As a result, to measure ay, Player b will measure M*® and Player b will measure M*!, both on
state |rg) laux). As this is an EPR state, by Fact 4.37 the outcomes will always be the same, and
so this strategy has value 1. The fact that this a real strategy follows from the assumption that
the matrices MZ are real, and the fact that for W € {X, Z},)V is a real matrix. Finally, the fact
that this is a commuting strategy follows from the fact that M* and (M’)ﬁ,, are commuting.

Soundness. We write x and 2’ = (2}, z2) with 2} = (Wy,...,Wj_1,W) as in the test. Because
the test passes with probability 1 — ¢, Fact 4.13 implies that

(MZ))atice ® Igob e Ialice @ (M2,)Bob-

Because S is a (k, n, ¢)-semiregister strategy, Equation (37) implies that Mf; = TX[]: ® I, where we
write It := I k—1,aux- Our next step is to show that the measurements approximately commute.
This follows the analysis of the commutation test (cf. [CGJV18, Lemma 28]).

MZ M2, @ Igop ~e Mg, @ M, (Fact 4.20)
~0 LAlice ® Mf;Mff; (Fact 4.38)
= Iplice ® Mf;Mf;
~e ME, @ MT (Fact 4.20)
~o MZME @ Igop. (Fact 4.38)

In summary,
(Y & If) - MZ,) atice ® Tob ~e (M, - (T4 @ It)) Atice ® Igob-
Recall this is with respect to the distribution W where W ~ {X, Z} is uniform. Therefore, it also
holds with respect to the distribution where W is fixed to either X or Z. As a result, for a fixed
W e {X,Z}, by Lemma 8.7,
(Mg, - (W (u) ® I)) Alice ® Iob ~e (W (u) @ If) - Mg,) Alice ® Ipob-
on distribution u ~ Fy. As a result, by Fact 4.38 and Fact 4.20,
(Mg, - (Z(W') X (u) ® If))Atice @ Ipob ~o (Mg, - (Z(u') @ If))Alice ® (X (—u) ® It)pob
e (Z() ® Ir) - Mg,)Alice ® (X (—u) @ IT)Bob
0 (Z(W) ® Ig) - Mg, - (X (u) ® If))Atice ® Tpob
e (Z(u) X (u) ® If) - My,)Alice ® IBob,

Q

Q

Q

63

With probability % each, perform one of the following three tests.

1. Data hiding: Draw (z,z',C) ~ 9%, where * = (x1,z2) and ©1 = (Wq,..., Wy). If
W = H, play %iqe With question .

2. Play game: Perform ¥;.

Figure 4: The game Cj_semi(%)-

on distribution u,u’ ~ F?. Applying Lemma 8.8 and Proposition 8.6, we can therefore conclude
’ q

Mg; ® Igob e (% & idz)[Mng] ® Igop = (hidek(M(fz)) ® IBob- O

9 Compiling games with the data hiding test

Now we can show how to compile games from the second layer to the first layer. Our construction
is given in the following definition.

Definition 9.1. Let % be a (k,n,q)-register game. Then its compiled version is the game
Cr—semi(9Yk) defined in Figure 4.

Theorem 9.2. Suppose 9. is a (k,n,q)-register game, and consider the (k,n, q)-semiregister game

gsemi = Ck—>somi (gk) .

o Completeness: Suppose there is a value-1 (k,n,q)-register strategy for 4. which is also a
real commuting EPR strategy. Then there is a value-1 (k,n,q)-semiregister strategy for Gsemi
which is also a real commuting EPR strategy.

o Soundness: If V&li‘fﬁiq(%emi) > 1 — € then valy , (%) > 1 — 6(€), where §(e) = poly(e).

Furthermore,
Q-length(%semi) = O(Q-length(%:)), A-length(%emi) = O(A-length(%)),
Q-time(%semi) = O(Q-time(9)), A-time(%emi) = O(A-time(%)).

Proof of Theorem 9.2. The communication and time complexities are the result of combining the
communication and time complexities from %, with the values for the data hiding game from
Definition 10.3.

Completeness. Let (¢, M) be a value-1 (k,n, q)-register strategy for ¥, which is also a com-
muting EPR strategy. Then for every x = (x1,x2) where x1 = (Wh,...,Wy) with Wi, = H, by
Theorem 8.3 we can extend this strategy to one that passes the data hiding game with question x
with probability 1. Thus, this strategy has value 1 overall. In addition, Theorem 8.3 implies this
strategy is a real commuting EPR strategy as well.

Soundness. Suppose S = (¢, M) is a (k,n, q)-semiregister strategy for Femi with value 1 — e.
By Lemma 5.3, we can assume without loss of generality that M is projective. Our goal will be to
decode § into a (k,n, q)-register strategy Sy with nearly the same value.

64

Using the data hiding test. For a fixed question z, write v, for the probability that S passes
the test in Item 1. Then on average, the probability that & passes this test is Eg v, which is
at least 1 — 2¢ because the overall test passes with probability at least 1 — e. This implies that
vy > 1 — €'/2 with probability at least 1 — 2¢!/2. Given a matrix M and a W € {X,Z H, L}, let
us write hidey (M) := hidex (M) if W = H and hidey (M) := M otherwise. For a question z, if
Wy # H, then hidew, (M7) = MY trivially. On the other hand, suppose W), = H. Then either
vy > 1— €2, in which case Mg & Iob ~5() hidew, (M) @ Igop by Theorem 8.3, or v, <1 — el/?,
in which case we have the trivial bound M} ® Igop &1 hideyw, (M7) ® Igop from Fact 4.19. Since
this latter case happens with probability at most 2¢!/2, averaging over all z gives us

Mg ® Igob ~s(c) hidew, (Mg) ® Ipob, (51)

on the distribution D.

Extracting a strategy. Define the strategy Sy = (¢, A), in which A? := hidey, (M7). First, we
show that Sy is a (k,n, q)-register strategy. To do so, fix x = (z1,z9) with 1 = (Wy,...,W;) and
a = (a,az) with a; = (uy,...,ug). Then

Azl = hidGWk(TXIl/l (SR ®TXZk ® Iaux) = TX‘I/I Q- ®T1‘L/Zk ® Laux.

The first equality is by definition of A and the fact that S is a (k,n, ¢)-quasiregister strategy. The
second equality is trivial when Wy # H and follows from the fact that Tg/ k=T when Wy, = H.
Next, define S = {i # k | W; = H}. If Wy, # H then A} = M7 = Mg ® Ig for some matrix M.
Otherwise, if Wy, = H, set F = tr(I}). Then

. . 1 1
A; = hidey (M) = hidey (Mg ® Is) = £ I @ try (Mg ® Is) = £ Isup ® trg(Mzg).
The matrix try(Mg) - E~! only acts on the registers in S Uk and the auxiliary register, and as a
result, this strategy satisfies data hiding. Thus, Sy is a (k,n, ¢)-register strategy.

It remains to show that Sy has good value. This follows by combining Equation (51) with Fact 4.32:
valg, (S;) > valg,, . (S) — d(e), and so valy . 4(%%) > 1 — d(e). O

Isemi

10 Partial data hiding

The data-hiding game presented above was used to show that the provers’ measurement acts as
identity on a subset of the provers’ qudits, and thus the prover learns no information from those
qudits. In particular, the measurement outcome of any X- or Z-observable measurement on the
qubits in the subset is hidden from the prover. In this subsection, we generalize this idea to show
how to certify that certain partial information about a register is hidden from a prover. This test
is a crucial component in our technique of introspection, wherein two provers measure a shared
EPR state to sample from the joint distribution over questions of a classical game. The partial
data hiding test will prevent one prover from learning the question sampled by the other prover.

Notation 10.1. Given a set v = {vq,...,v} of k vectors in [y, denote their span by V =
span({v1,...,vx}). The orthogonal complement of their span is the subspace V+ = {a : Vi €
{1,...,k}, (a,v;) = 0}. We denote by Surfaces, the set of all affine subspaces parallel to V, i.e. sets
of the form:

s:{u+/\1v1—|—---—|—/\kvk 2D ST V4 GFq}.

65

For a subspace s € Surfaces,, the subspace projector II? is the projector

I =) |w)wl.

wES
Lemma 10.2. Given a set of vectors {v1,..., v}, let
X _ X
T¥iuvi=a;] = Z Tu -
w:Vi,u-v;=a;
Then Tfi%(i,u-vizai} commutes with I1Y for all s € Surfaces,,.

Proof. The proof is by calculation.

His}T[)V(i,wvi:ai} = Z |w> <w| Z qu(

wes w:Vi,u-v;=a;

=> > %:w—tf[b'ul lw) (w| X (b).

wes u:Vi,u-v;=a;

We note an important fact: for any two outcomes u, v’ satisfying u - v; = v/ - v; = a; for all 7, the
difference u — ' must lie in V. Fixing some appropriate outcome vector g, we can then express
the summation variable u as ug + x where z runs over V-1:

=> > B P00l ju) fu) X (b)

weSs eVl

— Z Z %w—tr[b-(uo—l—x)] ’w> <w - b‘)

wes geV L

Now, the summation over z vanishes unless b € (V1)L = V, by Fact 3.2. This happens with
probability ¢*~" which cancels out the factor of ¢"~* from evaluating the sum over z € V1,
yielding:

= E w bl) (w—b).
e beV

Now, since b € V, and the summation variable w runs over an affine subspace parallel to V', we
can shift it from w to w + b, yielding

= E w7l 4 b) (w].
beV
wes

Finally, we can perform the same manipulations in reverse:

_ X v
- T[Vi,u'vi:ai]ns' O

Definition 10.3. The partial data-hiding game is given by Figure 5.

Theorem 10.4. Let S be any set of k-tuples of vectors in Fy, and let x be an arbitrary query.

66

Given a set S of k-tuples of linearly independent set of vectors vy,...,v; € Fy and a query string
x. Sample v = {vy,...,v,} uniformly from S. Flip an unbiased coin b ~ {0,1}. Perform one of
the following three tests with probability 1/3 each.

1. Distribute the questions as follows:

o Player b: Give (L, z,v); receive (&, as).

o Player b: give (Z, x,v); receive (a},al).
Accept if as = al).
2. Distribute the questions as follows:

o Player b: Give (L, z,v); receive (&, as).
o Player b: give (L, x, {X,v}); receive (3, ab, {al;,...ai;})
Accept if as = al).
3. Distribute the questions as follows:

“w»

o Player b: Give (X, -); receive (a1,-). (Here, is the empty string.)

o Player b: give (L, L, {X,v}); receive (@9,2,{a}1,...a};}).
Accept if @) ; = v; - @y for all i € {1,...,k}.
4. Distribute the questions as follows:

o Player b: Give (L, z,{X,v}); receive (&, a2,{ai1,...,ai}).
o Player b: give (L, L, {X,v}); receive (&, 9, {a ,...,a],}).

Accept if a1 ; = a) ; for all i € {1,...,k}.

Figure 5: The partial data-hiding game %40 (S, x).

67

o Completeness: Let Spartial = (¥, ML) be a partial (1,n, q)-register strategy for ige(S,),
which is also a real commuting EPR strategy, and for which
Myy™ =) M@ AR,
s€Surfaces,
for some measurement Ag)”* acting only on the aux register. Then there is a (1,n,q)-register
strategy S extending Spartial for which valg, ., (S) = 1.

o Soundness: LetS = (Y, M) be a projective (1,n, q)-register strategy such that valg, ., (s2)(S) >

1 —¢. Then there exists an ideal measurement Mu—"" with the property that

Lo v S,X,V
M, = E ITy @ M;™",

seSurfaces,

v

such that the measurement Mz used by strategy S in response to the query x is close to

M/J_,x,v.

a :
MJ_,LE,U X T ~ M/J_,x,v X T
(Mz""") Alice ® IBob ~e (M) Alice ® IBob-

To prove this theorem, we will start with some basic facts about the subspace projector mea-
surements. Let us denote the linear subspace spanned by the vectors vy,...,v; by V.

Definition 10.5. For any distribution I over unitary matrices, the twirl by U is the linear operator
T B((CH)®™) — B((C?)®™) defined by

Tu(A) = B [UAUT] .

Definition 10.6. Let v = {v1,...,v;} be a set of linearly independent vectors over F,. Further let
V be the uniform distribution over the set {X(a) : a € V'}, Z be the uniform distribution over the
set of all Pauli Z operators {Z(a) : a € Fy}, and S be the distribution over products M N where
M is drawn from V and N from Z. Then the v-subspace twirl is the twirl over S:

TIs =P oTz

Proposition 10.7. Let A be a Hermitian matriz and v a set of k wvectors over F,. Then the
v-subspace twirl of A is a linear combination of projectors onto affine subspaces along v:

(s ®idaw)(A) = 3 TI® (Mo)au,

s€Surfaces,
for some choice of Hermitian matrices My indexed by subspaces s.

Proof. Start by decomposing A into a linear combination of Pauli matrices:

A= Z X(u)Z(u') & (Au,u’)aux'

After the twirl over Z, the only terms that survive are those with no X part, i.e.

A/ = (:72 & idaux)(A) - Z Z(U) ® (AO,u)aux

68

Now if we perform the twirl over V, we get

(P @ idaux)(A)) = }EEVX(CL)Z(U)X(CL)T ® (Ao,u)aux
a
_ E wtr[<a,u>}z(u) ® (Ao.u)aux
acV
= Z Z(u) @ (Aou)aux (Fact 3.2)
ueV+L
_ Z Zwter,uﬂ [w) (w| @ (Ag.u)aux
ueV+t w
- Z lw) (w| ® Z W (A 4)au (52)
ueV-=+

Now, consider a surface s € Surfaces,. For some x € Fy, s is the set of points written w = = + v,
where v € V. Then for any v € V*, (w,u) = (x +v,u) = (z,u), a quantity which depends only on
the subspace and not on the point w. Call this quantity c;,. As a result,

(52) = Z Z |w> <’LU| ® Z Cs,u(AO,u)aux = Z Hg ® (As)aum

s€Surfaces, WESs uevL s€Surfaces,

where Ay =3 1 Csudou- O

Lemma 10.8. Let W € {X, Z}, and let v = {vy,..., v} be a set of k linearly independent vectors
in Fy and V' be their span. Suppose {M,,} is a measurement for which

(Ma2 ' (T[Igg,vral:al,i} ® Iaux)) ® IBOb g ((T[‘é/[;7vi‘a1:a1,i] ® IaUX) : Mfl2) ® IBOb7 (53)
where
w w
T[Vi,vivalzal’i] = Z Tal *
a1:Vi,v;-a1=a ;
Then

(Mag : (W(u) ® Iaux)) ® Igob ~5 ((W(u) ® Iaux) : Mag) ® Igob,

for a uniformly random w drawn from V.

Proof. To start, given a set of outcomes ai1,...,a1, suppose u and u' are outcomes for a full
W -basis measurement consistent with these outcomes, i.e. u and u’ are vectors such that for all 7,
w-v; = a1;. Then it must hold that u —u’ € VL. Using this, the bound in Equation (53) becomes

Z |VJ_| Z H Z az ’ u—l—w X [aux) - (Tﬁw ® [aux) : Mag) ® IBob \¢> H2 S 57 (54)
weV+

where the factor of 1/|V1| is because each outcome ajj,--- ,a1 corresponds to [V4| different
choices of u.
Our goal is to bound

uNVZ [(May - (W (1) ® Ton) — (W (1) ® L) - May) © Taap 1) 1. (55)

69

by §. To do so, for a fixed u we introduce the notation

Au 1= Moy - (W (1) @ Laux) — (W (1) @ Taux) - Ma, (56)
= > W Moy - (1 © L) = (1 ® L) - Ma). (57)
z€Fg Aay.z

We record the following identity, which follows from Equation (57) and Fact 3.2:

u]EV(AgZ)T . Au _ E Z tr[u (z'—x) a2 m a2 o = Z Z as,x a27m+w,

x @' €FD z€FP weV -+

As a result,

:EZH(L @ Isob) [9) [|* = EZ (W] (A%)TAY, ® Tgop 1))
asz

_ZZ Z QM a2, ag,x+w®[Bob’w>

a2 ZBE]F" wGVJ—

1 2

= ZWH Z Aag,x-{-w@[Bob W}>)
az,r UJGVJ‘

where the factor of 1/|V*| is again to deal with overcounting. But this is at most O(9), by Equation (54).
This completes the proof. O

Lemma 10.9. Let {M,} be a measurement and U be a distribution over unitaries, and suppose
that for U drawn uniformly from U,

(U ® Loux) - Ma) ® Igob ~5 (Ma - (UT ® Laux)) © Igob,
where the distribution inherent in the s notation is the uniform distribution over U. Then
My ® Igob ~5 (Tu ® Taux)[Ma] @ Igob-
Proof. By definition,

(% ® Iaux)[Ma] = UE)Z/{[(U ® Iaux) . Ma . (UT ® Iaux)]'

Similarly,

= (U .
My = B [(U& L) - (U'® L) - M)

As a result, if we set
BU)o = (U'® L) - Mo — My - (U' @ Lux),
then

B =My = (78 L) (M) = B [U-BU)].

We can therefore establish the lemma as follows:

D180 Teon) [= 2 B, U - BUL] & Tacs [0}

< EZ (U - B(U),) @ Isop |¥) |2 (Jensen’s inequality)
a
= g%: IB(U)a ® Igob |¥) |I? (U is unitary)
By assumption, this quantity is O(d). This concludes the proof. O

Proof of Theorem 10.4. We consider the completeness and soundness cases separately.

70

Completeness Let Spartial = (¢, M+®7) be a partial (k,n,q)-register strategy for %iqe(S,)
which is also a real commuting EPR strategy, and for which the measurement Mj;’x’v has the form

Lxw v S,X,V

Ma™ = Y II® AL

s€Surfaces,
To this strategy we will add matrices for the remaining questions.
o Question (Z,z): the measurement is

Z,xv) _ v 7 5,2,V

MZED) = N ML rl @ AT

s€Surfaces,

This is a well-defined measurement as II? is diagonal in the Z basis and thus commutes with

z
Ta
o Question (L,z,{X,v1,...,v;}): the measurement is
M(J-vxv{X7v}) _ Z e - X Q@ ASTY
{a1,1,-a1k}a2 s " TIVi,a1vi=ay ;] az -
s€Surfaces,
This is a well-defined measurement as II commutes with 7'[{52. a1-vizar] by Lemma 10.2.
o Question (L, L, {X,vy,...,v5}): the measurement is
(L,L{X,v}) X

{al,lv"'val,kvg = T[Vival'vi:al,i] ® I

o Question (X, 1): the measurement is

M) =75 @ Lux.
This is a (1,n, q)-register strategy for %q by design, and it is not hard to see that it achieves
value 1 on the game. Assuming that the partial strategy Spartial is a real commuting EPR strategy,
it is not hard to see that the full strategy above is also real (this is because if M7 is real and of
the given form, then the matrices A;;"" must also be real). That the strategy is also commuting
follows from the description of %;q.. In particular, note that while MaZ Y does not commute with
MLE=X0Y or with MXL, the test never requires these measurements to be measured at the same
time.

Soundness Recall that a strategy S for this game consists of a state |[¢p) = |[EPRy) ® |aux)
M(J‘7:B7U)

and measurement operators of three types, corresponding to the four types of queries: Mg ;°",

(Z,SC,’U) J.,SC,{X{U}, (Xv)
Mol as 7, M{a’l,p---va’l,k}va’z’ and Mg, .

We start by analyzing the third and fourth parts of the test. The goal of these parts of the
test is to certify that when given the query ({X,v},z), the prover returns k answers a/171, ... ,a’MC
that are consistent with measuring the X (vy),..., X(vx) observables on the state. We certify this
in two stages. In part three of the test, we ask the first prover to do a complete measurement
in the X basis, and send the second prover the query {X,v} indicating that it is to perform a
partial X measurement, and check consistency of outcomes. Importantly, in this part of the test,

we cannot send the second prover the query x, since the corresponding IIY measurement does not

71

commute with the complete X measurement performed by the first prover. Thus, in part four of
the test, we send one prover the query {X,v} and the other (z,{X,v}), and check consistency of
their outcomes.

Since S is a (k, n, q)-register strategy, Equation (37) implies that MC(Lf() = 7. ® Igob. We thus
have from the third part of the test that

MJ_,J_,{X,U}

~ X
{a} 1,may)} ® Ipob ~e TWiuvi=a; ;] © IBob-

From the above equation and the fourth part of the test, we have

MJ_,x,{X,U}

/ /
{ah,15m00] g,

MJ_,J_,{X,U}

!
{‘11,17---7“1 k

}®IBob 3 }®[Bob ~e T[Vzuv—a }®IBob

Next, we look at the first and second parts of %,iqe(S,). These are essentially two instances
of the commutation test. The first part of %;qc certifies that the second outcome of Mazlgflzv is

L
consistent with Mg7",

and the hypothesis that the strategy S is a (1,n, q)-register strategy tells

us that the first outcome of MaZ1 %, is consistent with 77 © ® Igop. Thus, applying the analysis of the
commutation, it follows that

(Mz75" - (7 @ L)) © Igob ~e (17 @ Tpop) - Mz75") @ Iob-
A similar analysis for the second part of %,iqe(S) certifies that

((% il ® IaUX) Mé_;zv) ® Igob e (Mé_(;czv ’ (% - ® [aUX)) ® Igob.-

[Vz ai- vl—a [Vz,ayvi:alyl
As a result, it holds that W € {X, Z}, by Lemma 10.8,
(Mé_;zv : (W(U) & [aux)) X IBob e ((W(U) ® [aux) Mé_,fzv) ® [Bob'

where if W = X, then w is chosen uniformly over V, and if W = Z, then u is drawn uniformly
from Fy. As a result, by Fact 4.38 and Fact 4.20,

(Ma2" - (Z(u') X (1) @ Taux)) © Tgob =0 (Ma753" - (Z(1') @ L)) © (X (—11) © Laux)
(Z(u') @ Lux) - M) @ (X(—1) ® Tau)
(Z(0) @ L) - Mz - (X (1) @ Lux)) @ b
(Z(W)X (1) ® Lowx) - Mg2") @ Tpop,

6

~0

(
(
(
e (

on the distribution where v is chosen from S, and then u ~ V', u’ ~ Fy. Applying Lemma 10.9
and Proposition 10.7, we can therefore conclude that

Mé_;ﬁzv ® Igob e (Ts @ Laux)[M ag] ® Igob = Z Iy ® (Aﬁf’s)aux ® Igob,

s€Surfaces,

. T, U,8 .
for some choice of measurements Ag, ~ on the aux register. O

72

Part IV
NEEXP protocol

11 A review of a classical PCP theorem
We begin Part IV by reviewing the following classical PCP theorem:
Succinct-3Sat € PCPn, poly(n)]. (58)

This implies, by standard reduction, that Succinct-3Sat € MIP, which is the main result of [BFLI1].
Reviewing this serves two purposes: (i) our MIP* protocols are inspired by this PCP construction,
and (ii) their correctness is actually shown by reduction to the correctness of this PCP construction
(Lemma 15.6 below). This section closely follows the excellent course notes of Harsha [Har10].

11.1 The instance

The input to the verifier is an instance of the Succinct-3Sat problem, i.e. a circuit C of size s with
3n+3 inputs. We apply the Tseitin transformation to it to produce a formula F with n’ = 3n+3+s
inputs. It encodes the 3Sat formula v := ¢ on N = 2" variables which contains (ac?l \% xg’? vV wzg)
as a clause if and only if F (i, j, k, b1, ba, by, w) = 1 for some w € {0,1}°.

11.2 Encoding assignments

Writing S = {0,1}", an assignment to the variables of 9 is a string a € {0,1}%, or equivalently a
string in {0,1}". The first step of the PCP theorem is to take the low-degree encoding of a. We
begin by choosing parameters.

Definition 11.1. Recall that N = 2", h = 2!t ¢ = 2!2, and m are admissible parameters if t; < to
and h™ > N. We call them ezxactly admissible if the stronger condition A" = N = 2™ holds.

We select n, h = 2, ¢ = 22, and m to satisfy our “rule of thumb” parameter settings
(Equation (1)):
n
h=0 =0 —— = 0((n)19).

Note that ¢ depends on n’ rather than just n.

It remains to choose H and w. Our construction requires that the permutation 7 be efficiently
computable, and so we pick these according to the canonical low-degree encoding (Definition 3.8).
This entails setting H = Hy, +,. As for m, we modify the construction slightly. This is because the
canonical low-degree encoding is designed for strings whose coordinates are indexed by an integer
i € [n], which must first be converted to binary when computing 7. However, the coordinates of
our strings a € {0,1}° are indexed by elements of S = {0,1}", which are already written in binary,
allowing us to skip the conversion. Hence, within this section, we define 7 := 7,4, 4, : S — H™ by
setting

(b1, bn) = Ongyto (b1, by) = (0(b1, .., by), 0 (b1, b2t), oo, 0 (bt 1, - - b)),

where 0 := 0y, 1,. Given these parameters, an assignment a is encoded as a degree-O(mh) polyno-
mial g, : Fg* — F,.

73

The crucial property of 7w that we will need later is that it has an efficiently-computable, low-
degree inverse. We will show this here. To do so, we begin by recalling the notation indgy ,(y) for
the indicator function of x € H over H:

_ hpzaly —0)
[Toz0(z —0)

where b ranges over H. This is a degree-h polynomial which can be computed in time poly(h, q).

indH,x(y)

Definition 11.2. Let N = 2", h = 2t, ¢ = 22, and m be exactly admissible parameters. Set
H = Hy, t,, 0 = 04 t,, and ™ = Ty 4, 1,. Consider the function p := py, 4, : Fg — Fgl whose i-th
component is defined as
pi(y) = Z indp . (y)-
x€H:trle;x]=1
Let y = b1 -ey1+ -+ + by - ey be an element of H. Then yu,(y) = b;, and so u(y) = (b1,...,by).
This means that p(o(by,...,b,)) = (b1,...,by). As aresult, if we define the function v := v, 4, 4, :
Fy' — Sy to be
v(@y, .o @) = (@), - p(@m))
then v(m(z)) = x for any z € S,. Each component of v is the sum of % indicator functions,
and is therefore degree-h and computable in time poly(h, q). As a result, v is computable in time
poly(n, h,q).

11.3 Encoding the formula

Our next step is to produce a similar “low-degree encoding” for the formula . This will be
a function g, : qu/ — Fg, for m’ = 3m + 3 + s, with the property that for all 4,5,k € S,
b1,ba,b3 € {0, 1}, and w € {0, 1}8,

91/1(7T(i)777(j)77r(k)7 b17b27 b37w) = f(i,j, k?, bla b27 b37w)-

This can be accomplished by setting S’ := {0, 1}"I, viewing F as computing a string ay, € {0, 1}8/,
and setting g, to be its low-degree encoding. However, the verifier in our protocol will be required
to evaluate g, on a particular input, and this seems challenging given that this g, is computed by
interpolating over an exponential number of points. Instead, we will produce a g, which we can
efficiently evaluate at any point using the fact that we have a succinct formula F representing .

To begin, we convert F into an algebraic formula which operates over Fy-valued inputs using
arithmetization (cf. Definition 3.28). Set Fayith := arith,(F). This is a function Fayieh : F;‘/ — F,
with the property that for any x € {0, 1}",, Farith () = F(z). Furthermore, Fyi, has degree O(n')
and is computable in time poly(n’,¢). We can now define the function gy, as follows.

Definition 11.3. Let N = 2", h = 2t, ¢ = 2%, and m be exactly admissible parameters. Set
V= Upy t,. Let C be a Succinct-3Sat instance whose Tseitin transformation F has n’ = 3n+3+s
inputs and encodes the formula v := 97, and let Fyien = arithy(F). Write m' = 3m+3+s. Then
we define gy == gy nt1 1 F;”/ — Iy to be the function

9y (1,2, T3, b1, ba, b3, w) 1= Farien (v(21), v(22), v(73), b1, b2, b3, w).
This is degree h - O(n’) and can be computed in time poly(n’, h, q).

For shorthand, we will often write inputs to g, as tuples (z,b,w) € Fgm+3+37 where z =
(w1, 72, x3) contains three strings in Fy* and b = (b1, bg, b3) contains three numbers in F,.

74

11.4 Zero on subcube

Given a function g : Fg* — Fy, we would like to check that it is the low-degree encoding of an
assignment which satisfies ¢. To do so, we define the following function.

Definition 11.4. Let N = 2", h = 2% ¢ = 2?2 and m be exactly admissible parameters. Let C be
a Succinct-3Sat instance whose Tseitin transformation F has n’ = 3n+ 3+ s inputs and encodes the
formula ¢ := ¥, and let gy = Gy.n,t1 t,- Set m' = 3m+3+s. Then given a function g : Fg' — Fy,
we define saty, 5 1= saty, gn.t1.ts : IE‘Z”/ — I, to be the function

saty, g(z,b,w) = gy(x,b,w) - (g(x1) — b1)(g(z2) — b2)(g(x3) — b3).

The crucial property we would like to check is that saty , is zero on the subcube Hyero =
H3m ® {0’ 1}3+8.

Proposition 11.5. The function saty, 4 is zero on the subcube Hyero for some g : Fy' — Fy if and
only if 1 is satisfiable. If it is satisfiable, g may be taken to be degree-O(mh), in which case saty 4
is degree-O(mh + hn').

Note what Proposition 11.5 does not say. It does not say that if sat, 4 is zero on the subcube,
then ¢ is the low degree encoding of a satisfying assignment of . It does not even say that g
must be low-degree. (Indeed, g might have high degree, as saty , only checks g on those numbers
in the range of w.) What it does say is that if 1 is satisfiable, then there exists such a g which
is low-degree: the low-degree encoding of a satisfying assignment. Our strategy, then, will be to
verify that that g is low-degree and then use this fact to verify that saty, , is zero on the subcube.
(We can then “forget” that g is low-degree, as it is no longer required for the analysis.)

To verify this that saty , is zero on Hero, we would like it to be encoded so that this is self-
evidently true. This entails expanding sat,, , in a “basis” of simple polynomials which are zero on
the subcube. To begin, given a subset S C [F,, define

zerog(z) = H(m —b).
besS

¢

The following proposition shows how to expand into this “zero” basis.

Proposition 11.6. Let f : Fy — Fy be a degree-d polynomial which is zero on the subcube H =
Hy®---® Hy,. Then there exist degree-(d — h) “coefficient polynomials” c1,...,cy, such that

n

f(z) = zeroy ¢(x) := ZzeroH(:Ei) ().
i=1
For simplicity, we will write zerog . instead of zerog,,, .. We would like our proof to consist

of the function g and the coefficient polynomials cq,..., ¢, so that we may check the equality
saty g = zerog .. The following lemma shows so long as these functions are low-degree, we can
verify that they are equal, and therefore show that ¢ is satisfiable.

Lemma 11.7. Let N = 2", h = 21, ¢ = 22, and m be exactly admissible parameters. Let C be
a Succinct-3Sat instance whose Tseitin transformation F has n' = 3n + 3 + s inputs and encodes
the formula v := v F,. Set m' =3m +3+5s. Let g : Fy' — Fy, and set saty, g := saty g nt 1, Let
Cly- vy Copt IE‘Z”/ — F,, set Hyero = H*™ @ {0,1}3%%, and write zeroy, := zerop,,,, .. Suppose that
g is degree-di, and suppose that ci,...,cp are degree-ds. Suppose

h /
Pr [saty (@) = zerog o(z)] > max{O(hn') + 3d1,h + do}

mNIFgL’ q

Then v is satisfiable.

75

Proof. By Definition 11.3, sat,, ; has degree h- O(n’) 4+ 3d;. In addition, zerog . has degree h+ ds.
Define f = saty g, — zeroy,.. Then f has degree max{O(hn') + 3d;,h + d2}. By assumption,
f(x) = 0 with probability larger than deg(f)/q over a uniformly random x ~ IFZ”’. By Schwartz-
Zippel (Lemma 3.6), this means that f = 0, which implies that sat, , = zerog.. But zerop, is
self-evidently zero on the subcube H,e;,, meaning that sat, , is as well. By Proposition 11.5, 9 is
satisfiable. O

Ensuring that sat, , is low-degree requires ensuring that g is low-degree, and this can be ac-
complished with the low-degree test. Arguing similarly for zerog . requires ensuring that each ¢;
is low-degree, and this can be done with the simultaneous plane-versus-point low-degree test
(Theorem 3.19).

11.5 The PCP

We can now state the contents of our probabilistically checkable proof for the satisfiability of ¢. It
consists of the following four tables.

A claimed low-degree polynomial g : Fj* — .
A set of claimed low-degree polynomials ci, ..., cpy : IF‘Z”/ — Fy.

1.
2.
3. A “planes table”, containing for each plane s in Fy" a degree-d bivariate polynomial.
4.

Another planes table, containing for each plane s in F;”/ an m/-tuple of degree-d bivariate
polynomials.

The verifier works as follows: first, it performs the low-degree test between g and its planes table.
Second, it performs the simultaneous low-degree test between the ¢;’s and their plane table. Both
of these use the degree parameter d = O((n’)?), which is chosen to upper-bound both ©(mh)
and ©(mh + hn'). Finally, it picks a uniformly random (z,b,w) € IF‘Z”’ and checks the equality
saty g(x, b, w) = zerog .(x,b, w). It accepts if all the tests accept individually.

When ¢ is satisfiable, there is always a proof that makes the verifier accept with probabil-
ity 1. This entails setting g to be the low-degree encoding of a satisfying assignment, and setting
C1,...,Cyy to be the coefficient polynomials of saty, 4. The following proposition shows that when 1)
is not satisfiable, the verifier always rejects with probability at least %.

Proposition 11.8. If the verifier accepts with probability at least 9/10, then i is satisfiable.

Proof. 1f the verifier accepts with probability at least 9/10, then each individual test accepts with
probability at least 9/10. Applying Theorems 3.12 and 3.19, we get degree-d functions g : Fy — Fy

and ¢1,...,Cpyy : IE‘Z”, — IFy such that
dist(g,9) < %, dist(c,?) < %, dist(saty, 4, zerop) < %.

(Here, we are assuming that ¢ is a sufficiently large function of m and h.) By the union bound,
dist(saty, 4,saty 5) < 3dist(g,g). As a result, by the triangle inequality

dist(saty g, zeropz) < dist(saty, g, saty, g) + dist(saty g, zerog) + dist(zeroy . + zerop)
< 3dist(g,g) + dist(saty,g, zerog o) + dist(c,2) <3- & + 5 + & = 5.

By Lemma 11.7, % is therefore satisfiable. O

76

Time and communication complexity.

o Question length: The verifier performs two low-degree tests and draws a random point in
F;”/. These are of size ©(mlog(q)), ©(m’log(q)), and ©(m'log(q)), respectively, all of which
are O(n') bits.

o Answer length: The verifier performs one normal low-degree test, and then a second low-
degree test with answer complexity m’ times the normal answer complexity. These are of
total length (m/ + 1) - d?log(q) = O((n/)?). Finally, in the last test, it queries each of g and
Ci,...,Cpy for a point in Fy, a total communication cost of (m' + 1)log(q) = O(n'). In total,
the answer length is poly(n/).

o Runtime: The verifier runs in time poly(n’). This includes computing saty, 4(x, b, w), which
requires computing gy (¢, b, w), taking time poly(n’, h, q) = poly(n’).

12 NEEXP preliminaries

12.1 Introspection games

In this section, we introduce introspection games. These are games in which, rather than the verifier
sampling the questions, the provers sample them instead.

Definition 12.1 (Introspection games). An introspection game is played between two provers Alice
and Bob in which Alice returns two strings x4 and a and Bob returns two strings xp and a’ (the
verifier does not specify a question). Here, x4 and zp are interpreted as Alice and Bob’s “share” of
the jointly sampled “question” z = (z4,x3), and a and o’ are interpreted as their “answers”. The
verifier then applies its evaluation function V to the answers and accepts if V(z4,2p,a,b) = 1.

The following three facts show that we can convert between strategies for a “normal” game and
strategies for an introspective version of the game. This allows us to prove soundness results for
the “normal” game and “bootstrap” them up to the introspective game as well.

Fact 12.2. This fact concerns two games and two strategies.

1. Let %o be the introspective game with evaluation function V. Consider a strategy Sintro
for Alice and Bob with shared state |intro) = |question) ® |answer) in which Alice and Bob’s
measurements are given by

{Pay ® Ad*}asar {Qup © B tapars

respectively. Write D for the distribution on outcomes (x4, xp) when the measurement {P,®
Qup tza.zp is performed on |question).

2. Let 4 be the “normal” game played as follows: sample * = (xa,xp) ~ D. Distribute the
questions as follows:

o Alice: give x 4; receive a.

o Bob: give xp; receive b.

Accept if V(xa,xp,a,b) = 1. Write S for the strategy with shared state |answer) in which
Alice’s strategy is {AZA}q and Bob’s strategy is {B," }qr.

Then valy(S) = valg,_ . (Sintro)-

7

Fact 12.3. Let {AZ}, and {BZ}, be measurements such that
Ag @ Iob ~5 By @ Isop (59)

on state |answer) and distribution D. Next, let {Q, }, be a measurement and |question) be a bipartite
state such that the distribution of measurement outcomes produced by measuring {Q, ® Igop}s 0N
|question) is D. Then

(Qz ® A7) Alice @ Igob =5 (Qz @ BY)Alice @ IBob (60)

on state |question) ® |answer). Moreover, if Q. is a projective measurement, then the reverse
implication holds: if Equation (62) holds on |question) ® |answer), then Equation (61) holds on the
state |answer).

Proof. First, we show the forward implication. By definition, we want to bound

Z 1(Qz ® AT @ Igop — Qp @ BE @ Igop) |question) @ |answer) ||

z,a

= Z (Qz @ I)question ® (Ag ® I — By ® I)answer |question) ® |answer) II?

z,a

= Z (question| ® (answer| (Qu @ I)ayestion @ (A% @ I — BY ® I)2qer |question) ® [answer)

z,a

< Z (question| ® (answer| (Q; ® I)question @ (A% @ I — BY @ I)2,quer |question) ® |answer)

z,a

= EZ (answer| (A% ® I — B® @ I)? |answer)

:EZ |(A? ® I — B ® I)? |answer) ||.

But this is at most § by assumption. Now, for the reverse implication, note that if Q, is projective,
then the inequality above becomes an equality. O

Fact 12.4. Let {AL}, and {BZ}, be measurements such that

(A%) Alice ® Igob 225 Ialice ® (Bg)Bob (61)

on state |answer) and distribution D. Next, let {Q,}, be a measurement and |question) be a bipartite
state such that

(Qz)Alice ® Igob 225 IAlice ® (Qz)Bob

on |question). Furthermore, suppose that the distribution of measurement outcomes produced by
measuring {(Qz)alice ® Igob}z on |question) is D. Then

(Qz ® A7) plice @ Iob 25 Talice ® (Qz @ By)Bob (62)

on state |question) ® |answer).

78

12.2 Subroutines and superregisters

In the next few sections, we will design a set of protocols to be used as a subroutine for our main
NEEXP protocol. In doing so, we will encounter the following notational difficulty: a subroutine ¢
might be a A\ = (k,n,q)-register game, whereas the overall protocol which calls it might be a
w = (£, m,q)-register game. When \ is not equal to u, how can we use 47 We will consider two
answers to this question. In both of them, we will consider the case when all the register field sizes
are the same value “q”, as this is the case relevant to our application.

Notation 12.5. First, the registers in A might appear as a subset of the registers in u. In this case,

we will specify an injection : [k] — [{] such that n; = m,;. Given a string W = (Wy,..., W),
we write x(W) for the length-¢ string with W, ;) in coordinate i, for each i, and the “hide” symbol
H in the remaining coordinates. Similarly, given string a = (a1, ...,as), we write £~ 1(a) for the

length-k string with a,;) in its i-th coordinate. Then playing & on registers r(1),. .., x(k) means
to do the following.

1. Draw (z,2') from ¥.
2. Send (k(x1),x2) to Alice and (k(x}),x)) to Bob.
3. Receive a,a’. Accept if 4 accepts on the answers (k~!(a1),az2) and (v~ 1(a}), a}).

Notation 12.6. Second, the registers in A might appear as the concatenation of register in p. In
this case, we will specify concatenation lengths c(1) +---+c(k) = £ such that ny = my+---+me(),
ng = Me1y41 + ° + Me(1)4¢(2)- Pictorially, the first register in A will be created as the following
concatenation:

IEPR!) ® |EPR!?) ® - -- @ [EPRg“"™") ® |[EPR*)) .

n1+---+nc(1)

[EPR)

We refer to these concatenations of registers as superregisters. A Pauli basis query W € {X,Z, H, 1}
to a given superregister R can be simulated as follows:

1. Implement each Pauli basis query W by sending W to each register r;,,...,r;, in the super-

c

register.

2. W € {X,Z}, the prover measures 7‘12/ on each register r; in R, and the verifier receives the

outcomes wu;, € Fy'™, ... u;, € Fy', concatenated as u = (u;,, ..., u;,).
3. If W = H, the prover performs I ® ... ® I on the registers in the superregister, and verifier
—_———

4
receives ¢ consecutive @’s, interpreted as a single &.

4. If W = 1, the prover may perform any measurement it likes on the registers in the superreg-
ister. The verifier receives ¢ consecutive @’s, interpreted as a single &.

The game ¢ will usually be proven sound against A-register strategies, but in our cases it will
be straightforward to extend this soundness to p-register strategies in the case when ¢ is applied
as a subroutine as detailed above. For example, suppose we know that a strategy A which passes ¢
with probability 1 — e must satisfy (Ag)alice ® Igob 5 (Ba)alice @ Igob. Then it is straightforward to
derive that if ¢ is played as a subroutine on the second register of p (this is the case when k =1
and n; = my), and if A passes the subroutine with probability 1 — €, then

(Ag)Alice @ Igob s (I1 ® (Ba)2 ® I3 ¢)Alice- @ IBob

79

Likewise, suppose ¥ is played as a subroutine on one superregister consisting of all the registers
of p (this is the case when k& = 1 and ny = mq + --- + my). If A passes the subroutine with
probability 1 — €, then

(Ag)Alice ® Igob =5 ((Ba)1,....¢)Alice @ IBob-

For our applications, it will be straightforward to extend the soundness of our games to the case
when they are played as subroutines, and we will leave this step implicit in our proofs.

13 The introspective low-degree test

In this section, we give the introspective low-degree test. This is an introspection game which
simulates the classic surface-versus-point test, but is able to reduce the question complexity by
making the provers sample the questions themselves. We allow for a fully general k-dimensional
surface, though in our application we will only use £ = 1 (lines) and k = 2 (planes).
Given an integer n > 0 and a power of two ¢, the introspective low-degree test is a (k+ 1,n, q)-
register game. In other words, the provers share a state of the following form:
) = [EPRg), ® |[EPRy), ® -+ ® [EPRY), ® |aux)

aux *

The intended behavior is this: the “points” prover should measure the point w € Fy from register 0.
The “surface” prover should measure directions v = {wvq,..., v} from registers 1 through & and
then should receive their surface s from the surface measurement {II?}csurfaces, On register 0.
If the provers act honestly, then w will be a uniformly random point in s, generating the same
distribution as the questions in the surface-versus-point low-degree test.

The key difficulty is preventing the surface prover from fully measuring the register 0 and thus
learning the value of the point w. In this section, we design a test to enforce this behavior on
the surface prover, using an introspected version of the partial data-hiding game developed in
Section 10. This game lets us command the surface prover to erase all information about u except
its value modulo linear combinations of the directions vy, ..., vy; we give it in Section 13.1 below.
We use this test in Section 13.4 to design the introspective low-degree test and prove its soundness.

13.1 Introspected partial data-hiding

In this section, we give an introspected version of the partial data-hiding game, which will be used
to implement the surface and intercept-scrambling measurements described above.

Definition 13.1. Let k,n > 0 be integers, let ¢ be a power of 2, and let A = (k + 1,n,q)
be register parameters. Let x be an arbitrary query. Then the introspected partial data-hiding
game Gintronide(A,) is given in Figure 6.

The performance of the introspected partial data-hiding game is given in the following theorem.

Theorem 13.2. Let k,n > 0 be integers, let q be a power of 2, and let A = (k+ 1,n,q) be register
parameters. Let x be an arbitrary query. Then Dntrotide ‘= PAntrotide (A,) satisfies the following
two properties.

o Completeness: Let Spartial = (w,Ml’Z""’Z’I) be a partial \-register strateqy for DntroHide,
which is also a real commuting EPR strategy, and for which

1.Z,...Z,x v Z Z z,s,v
M&vh---,vk,az - E : Hs ® Toy ®...0 Top, ® Aaz ’

s€Surfaces,

80

Flip an unbiased coin b ~ {0, 1}, and perform one of the following three tests with probability 1/3
each.

1. Distribute the questions as follows:

o Player b: Give (L, Z,...,Z, x); receive (&, v1,...,Vk, a2).
k

o Player b: Give (Z,Z,...,Z,x); receive (a},v1,..., vy, ab).
k

Accept if as = a))

2. Distribute the questions as follows:

o Player b: Give (L, Z,...,Z, x); receive (&, v1,...,Vk, a2).
k

o Player b: Give (1, Z,...,Z,x,{X}); receive (@, v1,..., v, ab, {a} ... 7a/1,k})'
k

Accept if as = a).

3. Distribute the questions as follows:

o Player b: Give (X, Z,...,Z,9); receive (a1, v1,...,Vk, D).
k
o Player b: Give (L1, Z,...,Z,1,{X}); receive (,v},...,v},,2,{a},...a} . }).
N k / b b
Accept if v; = v} and @ ; = v; - @y for all i € {1,...,k}.

4. Distribute the questions as follows:

o Player b: Give (L,z,7,...,2Z,{X}); receive (&,v1,...,V5,a2,{ai1,...,a1x}).
k
o Player b: give (L, L,Z,...,Z,{X}); receive (&,v},...,v,@,{a},...,a},}).
\ k / b b

Accept if a1 ; = a); for all i € {1,...,k}.

Figure 6: The introspected partial data-hiding game Hnironide (A,).

81

for some measurement Ag)”" acting only on the aux register. Then there is a value-1 \-register

strategy for Ymirotide evtending Spartial which is also a real commuting EPR strategy.

o Soundness: Let S = (¢, M) be a projective \-register strategy passing Yntrotide With prob-
ability at least 1 —e. Then there exists an ideal measurement MY . with the property
that

Iz _ 7 Z v z,s,v
ME a=Te®..®12® S @ (M)au | -
s€Surfaces,

1.Z..Zx

such that the measurement My, """ . used by strategy S in response to the query (L, Z,. .., Z, x)
—

; Iz .
is close to My 4 0y

(M5 Z 227 pjice @ Tgob e (M%) Alice ® Tgob-

Proof. We first show completeness. Very similarly to the non-introspected partial data-hiding game,

we introduce measurements for the remaining questions as follows:
YAV A _ § : v Z Z Z T,8,v
Mal,vl,...,vk,ag - (HS ’ Tal) ® TUl ®...0 Tvk ® Aaz)

s€Surfaces,

X Z,...Zz _ X Z Z
Mahvu o = Tay ®Tvl @ ... ®7—vk ®IaUX7

J_,Z,...,Z,"E,{X} I v X Z Z x,s,v

D015, 0k,02,{01,1 5,501 K} Z (HS ’ T[Vi,al'vi=a1,i}) OT)y ®... 0T, ® A‘12v
s€Surfaces,

1.Z,..Z{X} X

@,01,..,0,9,{a1,1,...,a1, k} [Vi,ayvi:al,i} ® Tuy ... v

By essentially the same arguments as in the proof of Theorem 10.4, it follows that these measure-
ments define a value-1 real commuting EPR strategy for uniroHide-

We now show soundness. Suppose that the provers succeed in the game with probability 1 — e
using a A-register strategy. From the definition of a register strategy, we know that the measurement
operators used by the provers have the following form.

MG = U5 a7 5 07
ey = (B MmO T © @7
MEZ A2 =1l @TE @ @TE @ (CLMT)y,
S o) = D @ T © @ T
where the operators {Ag}" """}, {B;sz%;h; 7a1k}} {Ca* "%}, and {Dayy %, } form valid

POVMs for every choice of x,a1,v1,...,v,. We further know that the shared state of the provers
is of the form
lv) = [EPRy), ® |[EPRy), ® --- ® [EPRy), ® [aux)

From success in the four parts of the test, we may also deduce the following conditions:

17,2 - 2,2,.. 2,
(Mo 750) Alice @ IBob e Iatice @ (M%7 %0") Bobs

M2 1.2,...Zx,{X}
(az,v1,...,0 Ma2,vlv Uk)

)
(1,2,...Z,L{X})
)

aux *

Alice @ IBob ~¢ Iplice ®

o1, {a11,001 5}
(M {X)
V1o, Vk,401,150-,01 K }

L2 ZadX)
VlseeyVk»@2,{ Q1,1 50501 o

(
Alice @ IBob ~¢ Iplice ® (TVZ Ja1-v;=a ;] & 7—1)1 RX...Q Ti & Iaux)Boba
(M,

Alice ® IBob ~e TAlice ®)Bob-

82

We would now like to argue that the operators A, B,C, D form a good strategy for the partial
data-hiding game. By Fact 12.3, it holds that under the uniform distribution over vy, ..., v,

K EARAS] ~ Z) K EARAS]
(Azzm M) Alice @ IBob e Iplice ® (Z Tay © 052111 vl vk)Bob’

ai
(AZ") Alice @ Igob e Tniice @ (B3 ") gy

T,01,...,0 , ~ Tro V1,0
(B{a1,17~~~,a1,k})A|'ce ® Igop = Talice ® (D{a1,1,~~~,a1,k})B°b

[AR) X
(Df{);/l’lf_)_'f,arl k})AIice @ Igob e Iplice ® (T[al.vlza/1717___7a1.vk:aflyk] ® Taux)Bobs
as well as the same conditions with the Alice and Bob registers exchanged.

These are precisely the conditions of winning the partial data-hiding game %;q.(S, x), where
S is the set of all tuples v1,...,v; in Fy, with probability 1 — O(e). Hence, by Theorem 10.4, it
follows that there exists a measurement Any"" " such that

/
Aa55271’17 Ve — E Hg ®A27$7U’

s€Surfaces,

(ALY ") Alice @ Tgob ~e (A" "%) lice ® Igob-
The operator M’ in the conclusion of the theorem can then be taken to be

1L Z,...Zx __ 1Z,01 ...,V Z Z
M, oot = (A)Ty ®... T, . O

13.2 An introspective surface sampler

In this section, we will use the introspective data hiding game to implement the “surface prover”.
This is a prover who samples a surface s from register 0 using the II¥ measurement and then
reports back s to the verifier, along with a degree-d polynomial f : s — IF,. As above, the prover
is expected not to measure register 0 any further, so that f depends only on s and v. We can
enforce this by running the introspective data hiding game and interpreting the provers’ answers
as as = {s, f}. However, we must also verify that s corresponds to the actual surface measured by
the prover in the 0-th register and not some other surface. We do this with a slight modification
to the introspective data hiding game we call the “introspective surface sampling game”.

Definition 13.3. Let k,n,d > 0 be integers, let ¢ be a power of 2, and let A\ = (k + 1,n,q)
be register parameters. Then the introspective surface sampling game DntroSurfSamp (A, d) is given
in Figure 7.

o Play the game @ntromide(A,) with z = “surface”, and with the answer ag taking the form
{s, f}, where s is a surface and f is a degree-d function f:s — F,.

o Consider the test in Item 1 of utromide(A,). Here, Player b replies with the answer
(@,v1,...,vk, {8, f}), and Player b replies with (a},v1,...,vx,{s’, f'}). In the case where
this test is chosen, accept if ntromide (A,) accepts and also if s is the surface {a) —i—Zle Aiv;
A, A, € Fg}. (We call this additional check the “Correct Surface Check”.) If this query
is not given to the provers, then accept if Yntromide(\,) accepts.

Figure 7: The game glntroSurfSamp()‘v d)

83

Notation 13.4. In the case when a prover is given the question (L, Z, ..., Z, “surface”), we refer
to it as the surface prover. It has the following intended behavior.

1. Surface prover:

Input: Pauli basis queries (L, Z,...,Z) and an auxiliary query “surface”.
k
Output: Pauli basis answers @ and v1,...,v, € Fy, a k-dimensional surface s, and the

coefficients of a degree-d polynomial function f : F’; — [Fy, where the domain of f is to
interpreted as s.

Goal: The prover measures II” on register 0 and sets s to be its outcome. They then set
f = gl|s, where g : [y, — Fy is a global degree-d polynomial selected independently of s
or v.

In the case when k = 1, we may also refer to it as the lines prover, and in the case when k = 2, we
may also refer to it as the planes prover. We will also refer to the surface prover’s measurement,
which refers to the measurement {A,, ., s} given by

A o 1,Z,....7Z, “surface”
VL,V S S T Mg 0r L ugs, f

The following theorem shows that the introspective surface sampling game forces the surface
prover to output the correct surface s.

Theorem 13.5. Let k,n,d > 0 be integers, let q be a power of 2, and let A\ = (k+1,n,q) be register
parameters. Write {Ay, _ v..s.f} for the surface prover’s measurement. Then %ntroSurfSamp ‘=
DintroSurtSamp (A, d) has the following two properties.

o Completeness: Suppose there is a degree-d polynomial g : Fyj — F, such that
Ay s =TT @ @ 7 @ L - 1[f = gld].

Then there is a value-1 A-register strategy for DmtroSurtSamp With A as the surface prover’s
measurement.

o Soundness: Let S be a projective \-register strategy which passes GtroSurtSamp With proba-
bility at least 1 — e. Then there exists an ideal measurement A’ of the form

A= @7l @ @7l & (M)aux,

with M;’U an arbitrary measurement on the aux register, such that A’ is close to the surface
provers’ measurement A in S:

(Aus.f)Alice @ Tob Rpoly(e) (Ay.s, 1) Alice ® IBob-
In particular, the surface output by A’ is the same surface measured by A’ in register 0.

Proof. First, the completeness follows immediately from the completeness guarantee of Theorem 13.2.

Next, we show soundness. Passing with probability 1 — e implies passing @Antromide (A, “surface”)
with probability 1 — e. By Theorem 13.2, this implies an ideal measurement M{ff y with the
property that

geees UL sS

M{)17~~~7vk757f = TUZl ® o ® T’Ii ® Z H"ls)l ® (Mssv.}’rv)aux ’

s’ eSurfaces,

84

Flip an unbiased coin b ~ {0,1}. Distribute the questions as follows.

o Player b: Give (L, Z,...,Z, “surface”); receive (&, v1,..., v, S, f).
k
o Player b: Give (Z, H, ..., H, “point”); receive (u,d,...,d,v), where v € F,.
— -

Accept if f(u) = v.

Figure 8: The game HntroCross(A, d).

(Auy o5, 1) Alice @ Igob e (My, o #)Alice @ IBob-

(Note that the measured surface s’ in M’ is allowed to be different than the output surface s.)
Next, set By, . v,,s = 11 ® TUZl Q- ® Té ® Iux. Then passing the Correct Surface Check with
probability 1 — O(e) implies that

(Av,s)Alice ® IBob e IAIice ® (Bv,s)Bob-

Note that M/ sf and B, ; commute. Thus, if we define C, 5y := M then

) 1/)787f ’ vas = Bv75 - M,
by Fact 4.20,

vy, f?
(Ays,f)Alice @ IBob = (Aus,f - Av,s)Alice @ IBob

e (Av,s,f)Alice ® (Bu,s)Bob

¢ (M3, ¢ ¢)Atice ® (Buy,s)Bob

¢ (M, ; ¢+ Bu,s)Aiice ® Ipob

= (Cu,s,f)Alice @ IBob;

Q

Q

Q

where the second-to-last step is by Fact 4.38. Now, set C;’v =M }) Then we can write

Copecvps,f = g © Tzi ®-Q Tzi ® (C]s”’v)aux-

These matrices are almost of the form guaranteed by the theorem, except they do not necessarily
form a measurement because the matrices C’;’v do not necessarily sum to the identity. However,
this is still sufficient to imply the theorem by Fact 4.25. O

13.3 The introspective cross-check

In this section, we introduce the other subroutine in the introspective low-degree test. In this
subroutine, known as the “introspective cross-check”, we introduce a new prover known as the
“points prover”. This is a prover who samples a point w from register 0 and then reports back a
value v € I, interpreted as their assignment to the point w. By data hiding, we can assume the
points prover does not read registers 1 through k. Then the introspective cross-check queries the
points prover and the surface prover and checks that their outputs agree on the point .

Definition 13.6. Let k,n,d > 0 be integers, let ¢ be a power of 2, and let A = (k + 1,n,q) be
register parameters. The introspective cross-check, denoted Yntrocross(A, d), is defined in Figure 8.

Notation 13.7. In the case when a prover is given the question (Z, H, ..., H, “point”), we refer
to it as the points prover. It has the following intended behavior.

85

2. Points prover:

Input: Pauli basis queries (Z, H, ..., H) and auxiliary query “point”.
Output: String v € Fy and ,...,2. A number v € F,.

Goal: The prover sets v = g(u), where g : Fj — [F, is a global degree-d polynomial selected
independently of w.

We will also refer to the point prover’s measurement, which refers to the measurement {B,, ,, } given
by
Z,H,...,H7“ int”
Bu,u = My gz, . . ov Pt
Our next lemma shows that if the surface prover’s measurement for f depends only on the
surface s and directions v and not on the point u, then we can relate the value of the introspective

cross-check to its non-introspected variant, %y ace-

Lemma 13.8. Let k,n,d > 0 be integers, let q be a power of 2, and let A = (k+ 1,n,q) be register
parameters. Let S be a \-register strategy for DntroCross ‘= DntroCross(A, d). Let {A, ¢} be the
surface prover’s measurement and {B, ,} be the point prover’s measurement, and write |aux) for
the auxiliary state. Suppose

Aps.t =H§®T£ ®"'®Tzi ® A%,

By, =71/21®...9 [&BY,
k

where {A?U} and {B}} are POVM measurements on the auziliary register. Consider the strategy
Ssurface = (allX, {As,v, Bu}) fO’/“ the game gsurface = surface(na q, ka d) Then

Valf/surfacc (Ssurface) = ValrflntroCross (8)

Proof. By the definition of II¥ and 77, it follows that for any choice of k vectors v, if Alice and

Bob each measure their half of register 0 using the measurements I1Y and 77, respectively, then
the measurement outcomes obtained will be pairs (s, u) where s is a uniformly random surface in
Surfaces,, and u is a uniformly random point in s. Moreover, if Alice measures her half of registers 1
through k, she will obtain a uniformly random k-tuple v = {vy,..., v} C [Fy. Combining these
facts, we see that if Alice measures her half of registers 0 through £ with IIY ® TUZI ®...0 Ti, and

Bob measure his half with 77 ® I ® ... ® I, they obtain a pair of outcomes (x4 = (s,v),Tp = u)
—_———

k
distributed exactly according to the question distribution in % face. Thus, applying Fact 12.2, we
conclude that valy . (Ssurface) = Valg,,.ocrow (S)- O
13.4 The introspective low-degree test
In this section, we state the completed introspective low-degree test.

Definition 13.9. Let k,n,d > 0 be integers, let ¢ be a power of 2, and let A = (k+1,n, ¢) be register
parameters. The introspective surface-versus-point low-degree test, denoted & := DntroLowDeg (A, d),
is defined in Figure 9. It has the following properties:

Q-length(¢) = O(1), A-length(¢) = O(knlog(q) + (d + k) log(q)),
Q-time(¥4) = O(1), A-time(¥) = poly(knlog(q), (d + k)* log(q)).

86

With probability % each, perform one of the following three tests.
1. Surface sampler test: Play %yirosurtsamp (A, d)-

2. Cross-check test: Play @nirocross(A, d).

Figure 9: The game ytroLowDeg (A, d).

The question complexities are immediate. As for the answer length, the provers return (k + 1)
elements of Fy and degree-d polynomials on k-surfaces, encoded as Fg-valued strings of length
dlk] < (d+ k;)k Finally, all operations made by the verifier, such as polynomial evaluation, are
efficient, so the answer time complexity is polynomial in the answer length.

Naturally, we analyze the introspective low-degree test via introspection. This involves a reduc-
tion to the non-introspected version of the game, i.e. the “normal” surface-versus-point low-degree
test. By Theorem 4.40 we know quantum soundness for this test in the £ = 2 (i.e. planes) case. As
a result, we get soundness for the introspective low-degree test in this case as well.

Theorem 13.10. Fiz k = 2. Let n,d > 0 be integers, let q be a power of 2, and let A = (k+1,n,q)
be register parameters. Write G := GntroLowDeg (A, d).

o Completeness: Suppose there is a degree-d polynomial g : Fyj — F, such that
By, =170 ® L ® L 1[v = g(u)].

Then there is a value-1 A-register real commuting EPR strategy for ¢ with B as the point
prover’s measurement.

o Soundness: There exists a constant ¢ > 0 and a function §(e) = poly(e,dm/q°) such that the
following holds. Suppose S is a projective A-register strateqy with value 1 —e. Write {By, .}
for the point prover’s measurement. Then there exists a POVM {G4} in PolyMeas(n,d, q)
such that

(Buw)Alice ® Tpob g(e) (77 @ [t ® I @ (Glg(u)=1])aux) Alice ® IBob-

Proof. Throughout this proof, we will write {A, s ¢} for the surface prover’s measurement. We first
show completeness. Assign the surface prover’s measurement as follows:

Ay pi=1I ®TUZ1 ®TUZ2 ® Lux - 1[f = gls]-

This is clearly a A-register strategy. By the completeness case of Theorem 13.5, this can be ex-
tended into a real commuting EPR strategy that passes %ntrosurfSamp(A, d) with probability 1.
By Lemma 13.8, the strategy using A and B passes the cross check with the same probability as
the honest classical strategy to %surtace (12, ¢, k, d) answering according to the low-degree polynomial
g, which is 1. Hence, this strategy passes both parts of ¢ with probability 1.

Now, we show soundness. The strategy S is a A-register strategy, so we can write the points
prover’s measurement as

Bu,u = TuZ QL1 R®DHL® (Bg)aux-

Passing %ntroSurtSamp (A, d) with probability 1 — 2e implies via Theorem 13.5 a measurement A’u’v’ 7
such that
st = o @77 @7 @ ((A)7)awe,

87

(Ay,s.7)Alice @ IBob Rpoly(e) (Ats.) Alice @ IBob
where {(A’);U} ¢ is a measurement on the auxiliary register. By assumption, the measurement
{A, s 5} is projective, so we can apply Fact 4.31 to deduce that replacing A, s 5 by A;#’f changes
the game value by at most poly(e). Moreover, by applying Theorem 4.2, we can, by performing a
dilation of the auxiliary space, simulate the A;’ s,f Ineasurements by a projective measurement of

the form
Agvs,f = Hg ® Tii ® Tii ® ((A”)?v)aum

where (A")‘;v is a projective measurement on the (expanded) aux register. (Note that a direct
invocation of Naimark’s theorem Theorem 4.1 would not have sufficed as the dilated measurement
would not necessarily act as desired on the non-aux registers.) Using the dilated A” measurements
instead of A’ does not change the value of the game. Thus, we deduce that the projective strategy
using measurements B, , and A;L s.f Dasses GintroCross (A, d) with probability 1 — poly(e).

Now we are in a position to reduce to the soundness of the non-introspective game. Define
the strategy Splane := (aux,{B",(A”)*"}). Then by Lemma 13.8, Splane also passes %plane with
probability 1 —poly(e). Applying Theorem 4.40, we have that there exists a measurement {G,} in
PolyMeas(n, d, q) such that

By @1 =5 Gu=g(u) © 1
on state |aux).
The theorem then follows from Fact 12.3. O

13.5 The introspective simultaneous low-degree test

In this section, we extend the introspective low-degree test to handle multiple functions at once.
This is the introspective version of the simultaneous low-degree test from Definition 3.13.

Definition 13.11. Let m > 1. Let k,n,d > 0 be integers, let ¢ be a power of 2, and let A =
(k + 1,n,q) be register parameters. The introspective simultaneous low-degree test, denoted ¥ :=
DintroLowDeg (A, d,m), is defined by the following modifications to the introspective low-degree test.
First, the prover roles are modified as follows.

o Surface prover: Rather than returning a function f : s — Fy, it should return m functions
fi,--+s fm : 5 — Fy. The intent is that f; = g;[s for each i, where each g; : Fj — [, is a global
degree-d polynomial selected independently of s or v.

o Points prover: Rather than returning a single number v € F,, it should return m num-
bers vq,...,vym € F,. The intent is that v; = g;(u) for each i, where each g; is selected
independently of w.

Next, the subroutines are modified as follows.

o Introspective surface sampling game: The answer as has the form s, f,..., f,, (rather
than s, f for a single function f).

o Introspective cross-check: Receive f,...,f, : s — [F, from the surface prover and
Vi,...,Vny € Fy from the points prover (rather than a single f and v). Check that f;(u) = v;
for all i.

It has the following properties:
Q-length(¢) = O(1), A-length(¥) = O(knlog(q) + m(d + k)* log(q)),
Q-time(¥4) = O(1), A-time(¥) = poly(knlog(q), m(d + k)*log(q)).

88

The following theorem gives the performance of the introspective simultaneous low-degree test
in the case of kK = 2 (i.e. planes).

Theorem 13.12. Fiz k = 2. Let n,d,m > 0 be integers, let q be a power of 2, and let X\ =
(k+1,n,q) be register parameters. Write 9 := DngroLowDeg (A, d,m).

o Completeness: Suppose there are degree-d polynomials g, ..., gm : Fy — Fy such that
Bu,ul,...,um = TuZ R ®I® Ly - I[VZ, Vi = gz(u)]

Then there is a value-1 A-register real commuting EPR strategy for ¢ with B as the point
prover’s measurement.

o Soundness: There exists a constant ¢ > 0 and a function §(e) = poly(e,d(n + m)/q%) such
that the following holds. Suppose S is a projective \-register strategy with value 1 —e. Write
{Buui,...m for the point prover’s measurement. Then there exists a POVM {Gg, . 4.}
in PolyMeas(n, d, q, m) such that

(Bu,ul,...,l/m)Alice @ Igob ~5(e) (TuZ @L®L® (G[gl(u),...,gm(u):ul,...,um})aux)AIice ® Igob-

The proof, which we omit, is analogous to the proof of Theorem 13.10, except rather than
reducing to Theorem 4.40, we reduce to the soundness of the non-introspective simultaneous low-
degree test given by Theorem 4.43.

14 The intersecting lines test

The introspective low-degree test forces a prover to sample a point from a register and return the
evaluation of a global function at that point. In our eventual protocol, we will want the prover to
use the same global function to answer point queries sampled from multiple different registers. In
this section, we design a game which allows us to “transfer” global functions used from one register
to another. We keep in mind the following picture:

) = [EPRy), ® |[EPRg), ® |aux)

aux *

We view register 1 as the register with the global function and register 2 as the register we would
like to transfer this global function to.

To accomplish this, we introduce a new test called the “intersecting lines test”. This involves
performing two introspective line-versus-point low-degree tests. The first uses register 1 as its
point register and register 2 as its slope register. This gives us a points prover who samples u from
register 1 and returns a label on it and a line prover who samples v from register 2 and returns
a function on the line {u + Av}, and we know that if the points prover labels their point using a
low-degree polynomial g, then the line prover must label their line with the same polynomial g.
The second low-degree test uses register 2 as its point register and register 1 as its slope register.
This gives a second line prover who returns a function on the line {v + Au}. Noting that the point
u + v is contained in both line provers’ lines, we can check consistency between their functions by
comparing them on this point, forcing the second line prover to label their line using g as well.
This then entails that the second line prover from the second low-degree test must also label their
point v using g. Thus, we have successfully “transferred” the function g from the first register to
the second.

In Section 14.1, we first introduce the intersecting lines test and prove soundness. Following
that, in Section 14.2 we introduce an introspective version of this test which will later be used in
our NEEXP protocol.

89

14.1 The intersecting lines test

Definition 14.1 (Intersecting lines test). Let n,d > 0 be integers, and let ¢ be a power of 2.
The intersecting lines test, denoted ptersect (12, ¢, d), is defined as follows. Sample u, v uniformly at
random from F}!, and let £ and £’ be the two lines £ := {u+Av : X € F} and £ := {v+Xu: X € Fg}.
The test is performed as follows.

o The line £ and v are given to Alice, who responds with a degree-d polynomial f : £ — F,.

o The line £ and u are given to Bob, who responds with a degree-d polynomial f’: € — F,.
Alice and Bob pass the test if f(u +v) = f'(u + v).

We begin by showing that although Bob knows u, since he doesn’t know v, the point u + v
looks like a uniform point in £ to him.

Fact 14.2. Conditioned on £ and w, the point u+v is distributed as a uniformly random element
in £

Proof. Let w be a point in F}; such that £ ={w+ A u:\e€F,}. Then for any c € F,, £ is also
equal to the set {(w+cu)+ (A —c)u: A € F,}. Hence, v is equally likely to be any element in the
set {w + cu : c € Fy}, and therefore so is u + v. Since this set is also equal to £, this proves the
fact. O

We will be interested in the case when Alice responds using a global function g : Fy — Fy, always
setting f = gl¢. In this case, the following lemma shows that to succeed with high probability, Bob
must usually play the same global function as Alice.

Lemma 14.3. Let (b, M) be a POVM strategy for the intersecting lines game with value 1 — €.

Suppose further that there is a measurement {Gg4}4 in PolyMeas(n,d, q) such that M]{’v = Ggl,=f]-
Then

(M]{ ") Alice @ IBob ~etd/q Iaiice @ (G|, =f])Bob-

Proof. Success on the test implies that
VAR
(G[g(u+v):u})Alice ® Iob e Ialice ®@ (M[f(u_H,):V])Bob'

But by Fact 14.2, conditioned on £ and u, u + v is distributed as a uniformly random point in £'.
As a result, if we let w be a uniformly random point in £, then

(Glg(w)=v])Alice ® IBob ¢ Talice @ (Méc’(z,):l,})Bob'

The lemma then follows from Proposition 4.42. O

14.2 The introspective intersecting lines test

Now we introduce the introspective intersecting lines test. This will be an introspective version of
the intersecting lines test.

Definition 14.4. Let n,d > 0 be integers, let ¢ be a power of 2, and let A = (2,n,q) be register
parameters. The introspective intersecting lines test, denoted @ntromtersect (A, d), is a A-register game
involving two registers, named “1” and “2”, and a possible third auxiliary register. It involves two
line-versus point low-degree tests, instantiated as follows.

90

With probability % each, perform one of the following four tests.
1. Low degree test 1: Play ¢.
2. Low degree test 2: Play %.

3. Intersecting lines test: Flip an unbiased coin b ~ {0,1}. Assign the first role to Player b
and the second role to Player b.

o Lines;: Receive £, v, f : € — F,.

o Linesy: Receive £, u, f': € —TF,.
Accept if £ and £ both contain u + v and f(u +v) = f'(u + v).
4. Consistency test: Assign the first role to Player 1 and the second role to Player 2.

o Pointsy: Receive v.

o Pointsy: Receive v/.

Accept if v = V.

Figure 10: The game Eqlntrolntersoct()\a d)

o Let Gi be a copy of @ntroLowbeg (A, d) using register 1 as the point register and register 2 as
the slope register. Write Lines; for the surface prover in G; and write Points; for the points
prover.

o Let Gy be a copy of HntroLowbeg (A, d) using register 2 as the point register and register 1 as
the slope register. Write Linesy for the surface prover in G, and write Pointsy for the points
prover.

Then Hntromntersect (A, d) is defined in Figure 10.

Remark 14.5. We remark that although the test runs two separate introspective low-degree tests,
we cannot from these alone conclude that either of the points provers answers according to a
global function. This is because we use the lines (k = 1) introspective low-degree test, whereas
from Theorem 13.10 we only know soundness for the planes (k = 2) introspective low-degree test.
Hence, proving soundness for the introspective intersecting lines test will require an additional
assumption, i.e. that one of the two points provers already answers queries according to a global
function.

Our main result about the introspective intersecting lines test is the following theorem.

Theorem 14.6. Let n,d > 0 be integers, let q be a power of 2, and let X = (2,n,q) be register
parameters. Write 9 := ntromntersect (A, d). Write A for the point prover’s measurement in %, and
write B for the point prover’s measurement in 4.

o Completeness: Suppose there is a degree-d polynomial g : Fyj — Fy such that
Ay = TuZ @I @ Lux -1y =g(u)], By, =1® 7'1)Z ® Lux - 1[v = g(v)].

Then there is a value-1 \-register real commuting EPR strategy strateqy for 4 extending A
and B.

91

o Soundness: There ezists a function §(e) = poly(e,d/q) such that the following holds. Let
S be a projective A-register strategqy which passes &G with probability 1 — €. Further, suppose
that there ezists a projective measurement {Gy}y in PolyMeas(n,d, q) acting on the auxiliary
register such that

Au,y = TuZ QI ® G[g(u):,,}.
Then
(Buw)aiice ® Isob Xy (11 @ 7 @ Gly(v)=1))Alice @ IBob-

Furthermore,
Q-length(¢4) = O(1), A-length(¥¢) = O(nlog(q) + dlog(q)),

Q-time(¥) = O(1), A-time(¥) = poly(nlog(q),dlog(q)).

Proof of Theorem 14.6. The runtime and communication complexities follows from the k = 1 case
of the low-degree test. The completeness follows immediately from the completeness of the intro-
spective low-degree test.

Now, we show soundness. Write C' for the line prover’s measurement in %, and write E for the
line prover’s measurement in %. We can write the point provers’ measurements as

Auy =77 ® I ® Glypuy=), By, =L &t/ By
The strategy passes the consistency test with probability 1 — d(e). As a result,
Auy @ Igob ~5(e) atice @ Ay
By Fact 12.2, this implies that
Glg(u)=v] @ IBob ~5(e) {Alice ® Glg(u)=y] (63)
on state |aux) and the uniform distribution on Fy. By Fact 4.26, this implies that
Glgle=11 @ TBob ~5() Latice @ Glgl,=y]; (64)

where £ is distributed as £ = {u + Av : A € F,} for uniformly random u,v € Fy.
Next, the strategy passes both introspective low-degree tests % and % with probability 1—4(e).
By Theorem 13.5, this implies measurements {Cﬁ’v} and {Efi,’u} on the auxiliary register such that

(Cov,1)Alice @ IBob Rs(e) <HZ RT® Cﬁ’v) aice & Igob, (65)

~ zZ u 0
/7 3 ~o(e / 4 N
(B u,f7) Alice @ Iob ~5(c) <Tu @y ® Ly) . ® Igob (66)

Alic
By Fact 4.32, we can assume Equation (65) holds with equality, incurring a loss of only d(¢) in the
game value. (We will do the same for Equation (66) later.)

The strategy is now in a form that allows us to apply Lemma 13.8 to the introspective cross-
check in 4. This implies that the measurements G[y(,)=,] and Cﬁ’v give a good strategy for the
line-versus point test. In other words,

4, N -
C[ft()u):y} ® Igob =5(e) Thjice ® G[g(u):,,].
on state |aux). By Proposition 4.42, this implies that

C?v @ IBob ~5(c) {Atice @ Glgl,=f)-

92

Via Equation (64), this implies
C}" ® Iob ~s() aiice @ Glgl,=1) ~s(e) Glgli=f) © Teob.
As a result, by Fact 12.3,
(Crw.f)atice © Igob () (1} @ 7 @ Glgl,—) Alice @ TBob-

By assumption, the right-hand side is projective. As a result, by Fact 4.32, we can assume this
expression holds with equality, incurring a loss of only §(e) in the game value. Following this, we
apply Fact 4.32 again to assume Equation (66) holds with equality.

The distribution given by on (¢,v) and (¢,u) when we measure with C' and E is exactly the
question distribution of the (non-introspective) intersecting lines test. As a result, Fact 12.2 implies

that the measurements G[g4,—s and Efi,,“ pass the intersecting lines test with probability 1 — d(e).
In other words,

él
E[f;?u—i-v)zu] ® Iplice =5(e) Igob ® G[g(u—l—v):u]’
on state |aux). Then by Lemma 14.3,
Efi/’u @ Igob ~5(c) Laiice ® Glg),=11-
Via Equation (64), this implies
EL" @ Igop ~(e) Taiice ® Glgl,=p] o (e) Clgly=f] © Tgob-
Thus, Fact 12.3 implies that
(B u,f)Alice © IBob ~6(c) (TuZ @17 ® G[gly=f’})A|ice ® Igop-

By assumption, the right-hand side is projective. As a result, by Fact 4.32, we can assume this
expression holds with equality, incurring a loss of only §(¢) in the game value.

The strategy is now in a form that allows us to apply Lemma 13.8 to the introspective cross-
check in %. This implies that the measurements By and G 9]y (v)=v] = Glg(v)=v] 81Ve a good strategy
for the line-versus-point low-degree test. In other words,

By @ Iob ~5(e) Latice @ Glg(v)=v]-
on state |aux). Via Equation (63), this implies
By @ Iob ~5(e) Latice @ Glgv)=v] ~s(e) Glg(v)=v] @ IBob-
As a result, by Fact 12.3,
(Buw)Alice @ Iob ~s(e) (11 © 77 @ Glg(u)=))Alice © Iob-

This completes the proof of the theorem. O

93

15 The introspective NEEXP protocol

In this question, we give the complete short-question, introspective NEEXP protocol. The goal is a
protocol for Succinct-Succinct-3Sat instances of size siust With poly(sinst) question length and run-
ning time and poly(2%inst) answer length and running time. Our construction will be an introspec-
tive version of the classical PCP construction from Section 11, in which we replace the low-degree
tests and simultaneous low-degree tests with our introspective low-degree test and introspective
simultaneous low-degree test.

We summarize the protocol here. Given the Succinct-Succinct-3Sat instance Cingt of size Singt,
let C be the size-s, (3n + 3)-input Succinct-3Sat instance it succinctly represents, where s and n are
roughly exponential in sjyg¢. Following Section 11, we would like the introspective prover to sample
strings @1, 9, x3 € F' and (b, w) € IFZ’*S, which they should return to the verifier. In addition,
they should return the evaluations g(x1), g(x2), g(x3) and ¢1 (x, b, w), ..., ¢y (x, b, w), where g and
the ¢;’s are purported degree-d polynomials. This suggests using the following registers:

m m m 3+s
[EPRY"), ® |[EPRY"), ® |[EPR]"), ® [EPR™), .

The difficulty in this protocol is ensuring that the polynomials involved are low-degree. To begin,
we can run the introspective low-degree test on the first register, which guarantees that g(x)
corresponds to a low-degree polynomial. Doing the same on registers 2 and 3 would guarantee the
functions evaluated on @ and x3 are also low-degree polynomials, but it would not guarantee that
the prover is using same low-degree polynomial g on all three. Instead, we run the introspective
intersecting lines test twice, ensuring that prover evaluates @1, €2, and a3 using the same function g.

Next, we consider the coefficient polynomials ¢y, ..., c,. They are evaluated on the concate-
nated outputs of the four registers, i.e. the string (x, b, w). As a result, we view the four registers
as a single superregister of length m’ = 3m + 3 + s, and we would like to perform the introspective
simultaneous low-degree test on this superregister. However, this test requires two additional su-
perregisters of length m/ to serve as the direction registers. As a result, the shared state between
the two provers will be of the following form:

|71Z)> = (|EPRZL>1) ® |EPR¢T>2 ® |EPR31>3 ® |EPR2+8>4)SuperReg1
® (’EPRZL >5)SuperReg2 ® (’EPRZL >6)SuperReg3 ® ’aux>aux :

Having checked that the provers’ functions are low-degree, we conclude with a consistency check
between g and the ¢;’s to ensure that they encode a satisfying assignment to our Succinct-3Sat. In
Section 11, this was done by the “formula test”, i.e. the check that saty, 4(x, b, w) = zerog (x,b, w).
Here, this will be accomplished by an introspective version of this test, in which the provers sam-
ple , b, and w themselves. Passing this test with high probability proves that Ci,st is a YES
instance of the Succinct-Succinct-3Sat problem.

This section is organized as follows. In Section 15.1, we will discuss the register parameters
algorithm, needed for the register compiler from Section 5. Next, Section 15.2 introduces the intro-
spective formula game. Finally, Section 15.3 completes the construction and gives the introspective
NEEXP game.

15.1 Computing the register parameters

Given the Succinct-Succinct-3Sat instance Cinse of size siust, let C be the size-s, (3n + 3)-input
Succinct-3Sat instance it succinctly represents. To compile our protocol to one sound against general
provers, we need a register parameters algorithm which runs in time poly(sinst) (Definition 5.9).

94

As described above, the register parameters will be simple functions of the numbers s and n (for
example m, a simple function of n to be determined later). However, s and n themselves may not
be easy to compute, as the natural way of computing them involves first computing C, a time 2%inst
task. We solve this by “guessing” values for these numbers which are guaranteed to be larger than
the actual values, and then later “fixing” the circuit C so that it actually has the guessed input
length and size. This is detailed in the following definition.

Definition 15.1. Let Cj,s be a size-sing instance of the Succinct-Succinct-3Sat problem.

1. Let C be the size-s Succinct-3Sat instance it succinctly represents. This circuit takes inputs
1,7, k, each of some length n, and bits b1, bo,b3. Then s and n can both be trivially upper-
bounded by N := 2%inst,

2. Consider a new circuit Cp,q with inputs 4, j, k € {0,1}" and b € {0,1}3. We write i = (i1, i2),
where iy is of length N — n and iy is of length n, and likewise for j and k. Let this circuit
act as follows:

o Compute the V of the bits in i1, j1, and k1. Output 0 if this is 1.
o Otherwise, output Cyec(i2, jo, k2, b1, ba, b3).

As defined, this circuit has size s+3(N —n)+2 < 4N =: S, and we will pad it with additional
gates in a trivial manner so that it has exactly S gates. It can be checked that it succinctly
represents the same 3Sat formula as Cyec.

We set PadC(Cinst) := Cpad, PadN(Cingt) := N, and PadS(Cinst) := 4 - N. We note that given Cingt,
the value of N is efficiently computable.

15.2 An introspective formula game

In this section, we introduce the “introspective formula game”. This game is the introspective
version of the formula check in Section 11, in which we check saty, 4(x, b, w) = zeroy .(x, b,w) on
a randomly chosen point (x, b, w) in qu/. Prior to stating the introspective formula game, we will
begin by recalling what this notation means.

Let Cingt be a size-(singt) Succinct-Succinct-3Sat instance. Let C = PadC(Cipst) be a Succinct-3Sat
instance, and let n = PadN(Cipst) and s = PadS(Cipst). Then C is a size-s, (3n + 3)-variable circuit
which is a YES instance of the Succinct-3Sat problem if and only if Ci,s is a YES instance of the
Succinct-Succinct-3Sat problem. Introduce h = 2!, ¢ = 22, and m such that N = 2", h, ¢, and m
are exactly admissible parameters (Definition 11.1). Set n’ =n+3+sand m’ =m+ 3+ s. We
also recall the following pieces of notation.

o (Definition 3.8): Write H := Hy, ,.
o (Definition 11.4): Given a function g : F* — [y, recall the notation saty, , := saty, g1, 1, -

o (Proposition 11.6): Writing Hyero = H>™ ® {0,1}3%5. Given c1,..., ¢ : qu/ — Fy, recall
the notation zeroy . = zerog,,,, .-

Before stating the introspective formula game, we must first dispense with the following annoy-
ing technicality.

95

Flip an unbiased coin b ~ {0, 1}.

o Player b: Give (Z, Z, Z, Z, “formula”); receive ui,us,us, (b,w) and vq,vo,vs and
IJ’17"'7IJ’M"

Compute saty, , (u, b, w) and zeroy ,,(u, b,w). Accept if they are equal.

Figure 11: The game %ytrororm (Cinsts 2y ¢, m).

Notation 15.2. In the classical case (Section 11), we have a fixed proof which contains fixed
functions which may or may not be low-degree. In the quantum case, however, we are dealing not
with a fixed proof but an interactive prover, and the formula prover may not respond based on fixed
functions (their responses might be randomized, for example). To account for this, we modify the
definitions of sat and zero as follows. First, we recall the notation gy := gy n.t, +, (Definition 11.3).

o Given vy,v,v3 € Fy, define
saty, (2,0, w) := gy(z,b,w) - (11 — b1)(v2 — ba)(v3 — b3).

o Given fi1,..., iy € Fy, define

m
zerop , (x g ZETO(H,0,0): (Ti) * His
=1

where by definition (Hyeo); = H for i € [3m] and (Hyero); = {0, 1} otherwise.

We note that if there is a function g such that v; = g(z;), then saty,, = saty 4. Similarly, if there
are functions ci, ..., ¢y such that p; = ¢;(x), then zeroy ;, = zerog .

Now we state the introspective formula game.

Definition 15.3. Let Cig¢ be a size-(sinst) Succinct-Succinct-3Sat instance. Let n = PadN(Cipst)
and s = PadS(Cinst). Suppose n, h = 21, ¢ = 22, and m are exactly admissible parameters. The
introspective formula game, denoted 4 := HntroForm (Cinst, s ¢, m), is defined in Figure 11. This is

a ACpng i= (4,0, q)-register game, for £ = (m,m,m,3 + s). Furthermore,

Q-length(¥4) = O(1), A-length(¥4) = O(m/log(q)),

Q-time(¥) = O(1), A-time(¥) = poly(s,n,n’, h,q,m’).

Notation 15.4. In the case when a prover is given the question (Z, Z, Z, Z, “formula”), we refer
to it as the formula prover. It has the following intended behavior.

3. Formula prover:

Input: Pauli basis queries (Z, Z, Z, Z) and auxiliary query “formula”.

Output: Strings uy,ug,u3 € Fy" and (b,w) € Fg’“. Three numbers vy, vy, v3 € F, and m/
numbers fi1, ..., fyy € Fy.

Goal: The prover should act as follows.

o The prover sets v; = g(uy), va = g(ug), vs = g(us), where g : Fy' — Fy is a global
degree-d; polynomial selected independently of u.

96

o They then set p; = ¢;(uy,ug,us,b,w), where for each i, ¢; : IF‘Z”’ — [, is a global
degree-dy polynomial selected independently of (u, b, w).

Here, di and dy are polynomial degrees which will be selected later. We will also refer to the
formula prover’s measurement, which refers to the measurement {Fu7b7w,yi,uj} such that

F o Z,7,7,7, “formula”
Ub,W,V1,12,V8, 11 s flyt u,b,w,01,02,U3, 1415 byt

We begin by showing the completeness case of the introspective formula game.

Proposition 15.5 (Introspective formula game completeness). Suppose Cing is a YES instance of
the Succinct-Succinct-3Sat problem. Let a : {0,1}" — {0,1} be a satisfying assignment to the 3Sat
instance it encodes, and let g := gq : F* — Fy be its low-degree encoding. Let ci, ..., Cpy : IF‘Z”’ — Iy
be the coefficient polynomials guaranteed to make saty , = zerop,, . . by Proposition 11.6. Both g
and the ¢;’s are degree-O(hn') polynomials. Consider the Xc,,, q-register strategy (¢, A) with no
auzxiliary register in which

Aupwiy = Toy ® T @ T @1, - v = glwi), pj = ¢;(u, b,w))],
where the indices range over i € (3] and j € [m']. Then this strateqy passes YntroForm (Cinst, 1y ¢, M)
with probability 1.

Proof. This game is simply the oracularized version of the formula check in the classical PCP. The
proposition follows from the discussion in Section 11.5. O

Our next lemma covers the soundness case of the introspective formula game. It concerns provers
of a particular form, namely those whose measurements correspond to low-degree polynomials. We
show that if there exists such a prover with nonnegligible value, then the formula must be satisfiable.

Lemma 15.6 (Formula game partial soundness). Let Cinst be a Succinct-Succinct-3Sat instance,
and set 9 = YntroForm (Cinst, b, ¢, m). Let S = (P, A) be a A¢,,,, q-register strategy. Consider a
measurement on the auxiliary register

G = {Gg7017---7cm/}

with outcomes degree-dy polynomials g : F* — K, and degree-dy polynomials ci, ..., Cpy : Fgl — IFy.
Suppose A has the following form: for each u, b, w, v, and p,
Au,bywﬂ/vﬂ = TU,Z1 ® TuZ2 ® TUZB ® 7—bZ7w ® (G[‘g(ui)zvi,Cj(u,b,w):p/j}) bl (67)

aux

where the subscript of the G measurement ranges over all i € [3] and j € [m']. If the probability S
passes G is at least

maX{O(hn’) + 3d1, h + dg}
q 9
then v is satisfiable.

Proof. Consider the following three step strategy:
1. Measure the auxiliary register with {Gy., .. ,}, receiving functions g, €1, ..., cpy.

2. Measure the EPR registers in the Z basis, receiving u, b, and w.

97

3. Output u, b, w, g(u1), g(usz), g(us) and ¢;(u, b, w) through cpp (u, b, w).

This passes the formula game with probability valg(S). Then there exists functions g, c1, ..., ¢y
such that conditioned on measuring them in step one, this strategy passes with probability at least
valg(S). By the remark at the end of Notation 15.2, this is the probability that

saty ¢(, b, w) = zeroy (x, b, w),

where (x, b, w) is drawn from qu/ uniformly at random. The lemma follows from Lemma 11.7. O

15.3 The complete introspective protocol

In this section, we introduce the introspective protocol for NEEXP and prove its correctness.
The introspective NEEXP protocol builds on top of the introspective formula game by using a
series of introspective low-degree tests to ensure that the formula prover satisfies the condition in
Equation (67). Having done this, we can then apply Lemma 15.6, ensuring that if a strategy passes
with high probability, then the instance is satisfiable.

Definition 15.7. Let Ci,g¢ be a size-(sinst) Succinct-Succinct-3Sat instance. Let n = PadN(Cipst)
and s = PadS(Cinst). The verifier chooses h = 2!, ¢ = 22, m, and d such that m, h, ¢, and m are
exactly admissible parameters satisfying

h=©(n), m=06 <$> , g=poly(n), d=O0(hn")=0(n?.
(We will choose the polynomial for ¢ in Theorem 15.8 below.) The verifier sets A = (6,4, q), where
0= (m,m,m,3+s,m',m').
We begin by instantiating the following list of subroutines.

o Let ALp = (3,m, q) be register parameters. Let 4,p be a copy of YnrorowDeg (ALD, d), using
register 1 as the point register and registers 2 and 3 as the direction registers. Write Points;
for the points prover.

o Let Ai, = (2,m,q) be register parameters. Let 41 be a copy of Hntromntersect (AL, d) on
registers 1 and 2 whose points prover for register 1 is Points; from % . Write Points, for the
points prover on register 2.

o Let %2 be a copy of @ntromntersect (AIL, d) on registers 1 and 3 whose points prover for register 1
is Points; from % p. Write Pointssg for the points prover on register 3.

o Let % be a copy of Hntrororm (Cinst, 2, ¢, m) on registers 1, 2, 3, and 4. Write Formula for the
formula prover.

o Let ALpsup = (3,m/, ¢) be register parameters. Let 4,psup be a copy of %ntroLowDeg (ALDSUP, d, 3+
m’), applied to the following three superregisters: registers 1 through 4 are combined into
the point superregister, register 5 is used as the first direction superregister, and register 6 is
used as the second direction superregister. In addition, use Formula from % as its points
prover.

Then the introspective NEEXP game, denoted Hpnroneexp (Cinst), is defined in Figure 12.

The main result Part IV is the following theorem.

98

With probability % each, perform one of the following nine tests.
1. Low degree test: Play 4p.
2. Intersecting lines test 1: Play “r,.
3. Intersecting lines test 2: Play ..
4. Simultaneous low degree test: Play 4 psup.
5. Formula test: Player 4.

For the remaining tests, flip an unbiased coin b ~ {0,1}. Assign the first role to Player b and the
second role to Player b.

6. Consistency test 1:

o Pointsy: Receive v.

o Formula: Receive v;.
Accept if v = .
7. Consistency test 2:

o Pointsy: Receive v.

o Formula: Receive vs.
Accept if v = vs.
8. Consistency test 3:

o Pointss: Receive v.

o Formula: Receive vg.
Accept if v = v3.
9. Consistency test 4:

o Formula: Receive vq,vo,vs and py, ..., -

o Formula: Receive v, v5, v and i, ... (1 .

Accept if v; = v; and p; = p} for all i € [3], j € [m/].

Figure 12: The game poneEXP (Cinst)-

99

Theorem 15.8. Let Cingt be a size-(sinst) Succinct-Succinct-3Sat instance. Let q be a sufficiently
large poly(n) and € > 0 a sufficiently small constant such that Equation (72) is at least % and
Equation (73) is less than % Write 9 := YintroNEEXP (Cinst) -

o Completeness: Suppose Cingt encodes a satisfiable formula. Then there is a value-1 A-register
strategy for G with no auxiliary register.

o Soundness: If there is a A-register strategqy for G with value at least 1 — €, then Cingy encodes
a satisfiable formula.

Furthermore,
Q-length(¢4) = O(1), A-length(¥) = poly(2°it),

Q-time(¥) = O(1), A-time(¥) = poly(2%st).

Proof. The question lengths and question runtimes are both O(1) because all involved subtests
have O(1) question complexity. The answer lengths and question runtimes are both poly(2%inst)
because all our parameters are at most polynomial in n = 2%»st and the question lengths and
question runtimes of all involved subtests are polynomial in these parameters.

We name the measurements used by the provers as follows.

Points; : A, Pointsy : B, Pointsg: C, Formula: F.

We will write the identity matrix on registers 5 and 6 as Isg := Is ® I.

Completeness. Suppose Cinst encodes a satisfiable formula. By Proposition 15.5, there are
degree-d polynomials g : Fi" — F, and ¢1,..., ¢y IE‘Z”/ — IFy such that if we define

Fu,b,w,u,u = TuZI ®7_u22 & TuZ3 & TbZ,w & 15,6 : 1[7/2' = g(ui)wuj = Cj(ua b,ZU)],

then this strategy passes the formula test with probability 1. We extend this strategy to the
remaining measurements as follows.

Ay =12 0L @ LR 14 Iss - 11 = g(u1)],

By =h @72 @ o 11 Isg - 1[vo = g(u2)],
Cug,l/3 = [1 0y I2 ® TuZ3 ® [4 & [576 . 1[V3 = g('LL3)]

By the completeness of the introspective low-degree and intersecting lines tests, these can be ex-
tended to a strategy which passes the whole test with probability 1.

Soundness. Throughout this proof, we use §(¢) to represent functions of the form
d(€) = poly(e,m - d/q%),

where e > 0 is an absolute constant.

100

Low-degree tests. The strategy passes the introspective low-degree test with probability 1—4(e).
Applying Theorem 13.10, there is a measurement G' = {G,4} in PolyMeas(m, d, q) such that

(Auyn)Alice @ TBob ~s(e) (T2, © 12 @ I3 ® I @ Is.6 @ (Gg(ur)=)aux) pjice @ Bob-

By Fact 4.32, we can assume this holds with equality with a loss of only d(€) in the game value. In
addition, by Theorem 4.1, we can assume that the G measurements are all projective.

Next, the strategy passes the two introspective intersecting lines tests with probability 1 — d(e)
each. By Theorem 14.6, this implies that

(Bus,vm)Alice ® Igob () (I @775 @ I3 @ Iy ® Is 6 @ (Glg(ug)—ro] Jaux) pice @ IBobs (68)

(Cug,u3)A|ice ® IBob %6(5) (Il & I2 ® TuZ3 ® [4 ® [5,6 ® (G[g(ug):ug])aux)Ance & IBob- (69)

Similarly, the strategy passes the introspective simultaneous low-degree test with probability 1—
d(e). Applying Theorem 13.12, there is a measurement J = {Jy, 1, fs.c1,...c,, } in PolyMeas(m’, d, ¢, 3+
m’) such that

(Fu,b,w,u,u)Alice & IBob

~ot0 (T @ T @ TE @, © I @ (J[fi<u,b,w>:uz—7cj(u,b,w>:m)aux>Alice ® Igop, (70)

where the subscript of the J measurement ranges over all i € [3] and j € [m/]. By Fact 4.32, we
can assume Equations (68) to (70) holds with equality with a loss of only d(e) in the game value.
In addition, by Theorem 4.1, we can assume that the J measurements are all projective.

Consistency tests. The strategy passes the four consistency tests with probability 1 —d(e) each,
implying

(ul,ul)Allce ® IBob —5 IAIlce ® Au1,V1)BOb7
(Fuuz o
)

(
Alice @ IBob ~5(¢) IAlice @ (Bugy,us)Bobs
(Fug,vs)Alice @ IBob ~5(c) Talice @ (Cusz,vs)Bobs

(Fubw,v) Alice @ IBob ~5(e) Iatice @ (Fiub,w,v,p)Bob-
By introspection (Fact 12.4), these imply the following statements:

(J1f1 (w,bw)=1])Alice @ IBob ~s(e) Talice @ (Glg(ur)=1])>

(J[fz(u,b,w)zug])Alice ® IBob =5(e) Talice ® (G[g(ug)zug})a
(J1fs(u,bav)=vs)) Alice @ IBob 5(e) Lalice @ (Glg(uz)=vs])>
(Jle; (ubaw)=p;]) Alice @ IBob ~5(c) Latice ® (Je; (u,bav)=p;])s

where the subscript of the J measurement ranges over all i € [3] and j € [m/]. Here, these
statements are with respect to the strategy’s auxiliary state and to the uniform distribution on
(u,b,w) € F™.

Now we apply Fact 4.34. To do so, let us specify the sets G; and the distance parameter. The
three sets Go, G3, and G4 will just contain all degree-d polynomials g : IFZ”’ — ;. (Note that
we can view the outputs of G, as degree-d polynomials which disregard all of their input (u, b, w)
aside from one of the three strings uj, ug, or us.) By Schwarz-Zippel, these have distance at
least 1 — d/q. The remaining set, Gy, is defined as follows: for each tuple of degree-d polynomials

101

Cl,. .., Cpy, it contains a function ¢ defined as c(u, b, w) = (¢1(u,b,w), ..., cp (u,b,w)). Any two

nonequal ¢, ¢ € G have some coordinate ¢ in which ¢; # ¢, and on this coordinate alone they will

have distance at least 1 — d/q by Schwarz-Zippel. Thus, ¢ and ¢ have distance at least 1 — d/q.
Define the measurement {K,c, .. ,} as

Kg,Cl,...,C ;= GQ ’ Jcl7“'7c7n/ ’ GQ’

m

Then Fact 4.34 implies that

(J1s b =vise; (uwbaw)=p;]) Alice @ TBob ~5(e) Tatice © (K[g(u,)=vi, (ub,w)=ps;])>
where the subscripts range over all ¢ € [3] and j € [m/]. By introspection (Fact 12.4), this implies
that

(Fu,b,w,u,u)Alice & IBob

=5(e) (TuZl ® TuZz ® TuZ3 ® wa ® 15,6 ® (K[g(ui)zui,cj-(u,b,w):uj])aux) e ® IBob, (71)

Ali

where the subscripts range over all i € [3] and j € [m/]. By Fact 4.32, we can assume Equation (71)
holds with equality with a loss of only d(€) in the game value.

Formula test: At this point, the formula prover’s strategy F satisfies the condition in Equation (67)
with di = dy = d. In addition, it passes the introspective formula test with probability

1- pOIY(67 m- d/q)v (72)
which by our setting of parameters is at least % Finally, our setting of parameters also implies that

max{O(hn') 4+ 3d,h + d}
q

(73)

is less than % As a result, we can apply Lemma 15.6 to conclude that v is satisfiable. O

Theorem 15.8 only proves soundness of the introspective NEEXP protocol against A-register
strategies. Our last step is to compile this protocol into one which is sound against general strate-
gies, while only slightly increasing the question length.

Corollary 15.9. There is an absolute constant € > 0 such that the following is true. Let Cingt be a
size-(sinst) Succinct-Succinct-3Sat instance. Then there ezists a game 9 = DniroNeExP (Cinst) with
the following properties.

o Completeness: Suppose Cingt encodes a satisfiable formula. Then there is a value-1 real
commuting EPR strategy for 4.

o Soundness: If there is a strategy for 4 with value at least 1—e, then Cingg encodes a satisfiable
formula.

Furthermore,
Q-length(¥) = O(sinst), A-length(¥) = poly(2°st),

Q-time(¥) = O(sinst), A-time(¥) = poly(27=t).

102

Proof. Let n = PadN(Cinst) and s = PadS(Cinst). Set m = O(n/log(n)) and ¢ = poly(n), as
in Definition 15.7. Set A = (6,¢,q), where £ = (m,m,m,3 + s,3m + 3 + s,3m + 3 + s). Then
GintroNEEXP (Cinst) 18 @ A-register game. Furthermore, by Definition 15.1, the register parameters are
computable in time poly(Sinst)-

Let € > 0 be as in Theorem 15.8, and select a constant ¢ > 0 and 7,...,76 = 1/poly(n)
such that 0(¢') < e, where §(¢’) = poly(€¢/,m1,...,1m6) is as in Corollary 5.10. Now, if we apply
Corollary 5.10, it gives us a game ¢ with the following properties.

o If Cis a “Yes” instance, then “pntroNeexp (Cinst) has a value-1 strategy with no auxiliary state,
which implies that ¢ has a value-1 commuting EPR strategy.

o If C is a “No” instance, then every A-register strategy for YniroNeexp (Cinst) has value less than
1 — €. By our choice of parameters, this is less than 1 — §(€¢’), which implies that ¢ has no
strategy with value 1 — ¢'.

Furthermore, log(m) = O(log(n)) = O(sinst) and log(s) = O(log(n)) = O(sinst), giving us our
desired question complexities, and poly(m) = poly(n) = poly(2%rst) and poly(s) = poly(n) =
poly(2%inst) | giving us our desired answer complexities. O

Part V
Answer reduction

16 Testing error-correcting codes

In Section 17 below, rather than the prover sending the verifier their entire “large” answer a, they
will instead encode it into Enc(a) using an error correcting code and allow the verifier to query
individual bits of the encoding. (The fact that the verifier is allowed to query bits of the encoding
rather than the original string stems from the PCPP technology we use. See Section 17.3 for
more details.) In this section, we develop the tests which verify that provers are performing this
task honestly, so that when we query a subset of the bits I, they respond based on the bits of a
codeword which was sampled independently of I. We will develop such a test for the low-degree
code (Section 16.1).

Our proofs are entirely standard: we start with the known property tester for this code (i.e..
Theorem 4.40), which allows us to query the prover’s codeword at a uniformly random location.
Then we use the local decodability properties of this code to allow us to query arbitrary subsets of
coordinates. We begin by stating a slightly nonstandard definition of error-correcting codes relevant
to our application.

Definition 16.1 (Error-correcting codes). Let m and ¢ be integers, and let n € [0,1]. An
(n,m, q,n)-error-correcting code Code = (Enc, Dec, Sub) is defined as follows.

o Sub is a subset of Fj" such that for each z # y € Sub, z and y have normalized Hamming
agreement at most 7 (i.e. the probability, over a uniformly random ¢ € [m], that z; = y; is at
most 7).

o Enc: {0,1}" — Sub C F{* is the encoding map.
o Dec : F" — {0,1}" U {L} is the decoding map. For each x € {0,1}", Dec(Enc(x)) = =. In

addition, for every w not in the range of Enc, Dec(w) = L.

103

Remark 16.2. The purpose of the subset Sub is this: in this section, we are designing games
which test that a prover responds according to an error-correcting code. This means that the
prover should respond based on the encoding Enc(z) of some string € {0,1}". However, the
games we design may only be able to test if the prover responds based on a string in Sub, which
contains the encodings Enc(z) but may include other strings as well. This definition ensures that
these other strings are still far from each other in Hamming distance.

The next definition defines a subset tester.

Definition 16.3. Let Code = (Enc, Dec, Sub) be an (n,m, ¢, n)-error-correcting code. Let k be an
integer. Given a game ¥ (-) whose inputs are from the set of subsets of [m] of size k and a probability
distribution D over this set, we write ¢(D) for the game in which we first sample I ~ D and then
play 4(I). Then ¥ is a k-subset tester with robustness d(e) for Code if it satisfies the following two
properties.

o Completeness: Let (¢, M) be an EPR strategy in which {M,,} is a measurement with
outcomes in {0,1}". Consider the partial strategy (¢, G) in which

Gt[lhm,ak = M[Enc(w)|1=a17m7ak]‘
Then this can be extended to a (full) real commuting EPR strategy which, for each I, passes
¢ (I) with probability 1.
o Soundness: For any distribution D, consider a strategy (¢, M) which passes ¥ (D) with
probability 1 —e. Then there exists a measurement {G,, },, with outcomes w in Sub such that

M[fl,,..,ak ® Igob ~5(c) LAlice @ Glu|;=an,....az]-

16.1 Testing the low-degree code

In this section, we show how to test the low-degree code. This is essentially an exercise in general-
izing Theorem 4.40 to arbitrary subsets. We begin with some notation.

Notation 16.4. We write F" for the family Foe ={F CF | |[F| < k}.
Now we define the low-degree code tester.

Definition 16.5. Let m, ¢, and d be integers. Let k£ be an integer, and let ' be an element of Foe:
Then 4 psubset (M, ¢, d, F) is the game defined in Figure 13.

The performance of the low-degree subset game is given by the following theorem.

Theorem 16.6. Consider low-degree parameters params = (n,q,h, H,m,S,w). Set d =m(h —1).
Set m' = ¢™. We will identify strings in an’ with functions g : F' — Fy. Given a € {0,1}",
define Enc(a) = g, and Dec(g,) = a. For all other g : Fj — F, (i.e. those which are not the
low-degree encoding of a string a), define Dec(g) = L. Finally, define Sub to be the set of degree d
polynomials g : T — F,. Then Code = (Enc, Dec, Sub) is an (n,m', q,d/q)-error-correcting code.

Furthermore, there exists a constant ¢ > 0 and a function 6(e) = poly(e,dm/q°) such that the
following holds. Let k be an integer. Then 9 psubset ‘= DDsubset (M, ¢, d, *) is a k-subset tester for
LDCode with robustness 0(¢).

Finally,

Q-time(ZLpsubset) = Poly(m, k,log q), A-time(%psubset) = poly(m, d¥,log q),
Q‘Iength(gLDsubset) = O(km IOg Q)a A'length(gLDsubset) — O(dk lOg(Q))

104

With probability % each, perform one of the following two tests.
1. Low-degree: Perform %gy;face(m, d, q,2).

2. Cross-check: Flip an unbiased coin b ~ {0,1}. Let s be a uniformly random subspace of
dimension k + 1 containing the points in F'. With probability % each:
(a) Let w be a uniformly random point in s. Distribute the questions as follows:
o Player b: give w; receive a value y € [Fy.
o Player b: give s; receive a degree-d polynomial g : s — [F,.
Accept if g(w) = y.
(b) Distribute the questions as follows:
o Player b: give s; receive a degree-d polynomial g : s — [F,.
o Player b: give F’; receive a function f : F — F,.

Accept if g|p = f.

Figure 13: The game 4 psubset (M, ¢, d, F).

Before proving this, we need the following proposition.

Proposition 16.7. Let F C IF;” be of size at most k. Consider the distribution Diwostep OT
points x € F* generated by the following two-step process: (i) let s be a uniformly random subspace
of size k + 1 containing F, and (i) draw x uniformly at random from s. Let Dynis be the uniform
distribution on Fy'. Then drv(Diwostep Punit) < 1/q-

Proof. Let z1,...,xy be a maximal set of linearly independent elements from F. A uniformly ran-
dom subspace of size k+ 1 containing F' can be generated as follows: first, pick a uniformly random
nonzero vector y,, linearly independent from F, then pick a uniformly random nonzero vector
Yy, o linearly independent from F'U {y,,}, and so forth. Set s = span{x1,...,Z¢,Yri1,- -+ Ypi1}-
A uniformly random point in s will be of the form

r=tz1+- -+ txe+teraYe T+ r1Yptas

where each ¢; is a uniformly random element in F,. Because all the y;’s are linearly independent, the
linear combination €4 1yy, 1 + - + tp11Yy,q is zero only when ¢,y = --- = ;41 = 0. Otherwise,
this linear combination is distributed as a uniformly random nonzero vector linearly independent
from F. Thus, with probability (¢**'=¢)~!, x is distributed as a uniformly random vector in the
span of F', and otherwise it is distributed as a uniformly random vector outside the span of F.
Given that the span of F has ¢’ points, the total variation distance is

1]|g™—¢* 1 of 1 1 1
= —(1-——)|=¢ - —) <= O
+ 9 ' qm qk-l-l—é q qk—i-l qm ~q

Now we prove Theorem 16.6.

q 1
q_m B qk—i-l—é

1
2

Proof of Theorem 16.6. The fact that Code is an (n,m’, q,d/q)-error-correcting code follows from
Schwartz-Zippel (Lemma 3.6).

105

Completeness. Let (¢, M) be an EPR strategy in which {M,,} is a measurement with outcomes
in {0,1}". Consider the strategy (¢, G) in which for any subset of points F' = {y1,...,y¢},

1 L
Gal,...,ae = M[gz(y1)~~~,gz(ye)=a1,...,ae}’

(This covers the case of points (¢ = 1) and subsets F' (¢ = k).) In addition, for any subspace s,

G = Mig,|.=r)
(This covers the case of the 2-dimensional subspaces used in %point and the (k + 1)-dimensional
subspaces used for the local decoding.) By construction, (¢, G) is an EPR strategy, and it is easy
to see that it is a commuting one as well.

We claim that (¢, G) passes 9.psubset (M, ¢, d, D) with probability 1. We begin with the low-
degree test. By Fact 4.37, My, ® Igop ~0 Ialice ® My, Then by Fact 4.26,

Mg, (w)=b] ® IBob 0 LAlice ® Mg, (w)=b]-
This implies passing the low-degree test with probability 1, because
Glrw)=p) @ IBob = Mg, (w)=t] ® Iob 20 Taiice ® Mg, (w)=b] = LAlice ® G} -

A similar argument shows the other tests pass with probability 1 as well.

Soundness. Let D be a distribution, and let (1), M) be a strategy which passes 4 psubset (M, ¢, d, D)
with probability 1 —e. The outline of the proof is as follows: first we will use the low degree test in
Item 1 to ensure the test correctly answers low-degree point queries. Item 2a will then bootstrap
this to subspaces, and Item 2b will further bootstrap this to subsets, proving the theorem.

Using the low-degree test. Passing the test with probability 1 — € means passing the low-
degree test with probability at least 1 — 2e. By Theorem 4.40, this means that there exists a
POVM measurement G € PolyMeas(m, d, q) such that

My’ @ Igob ~s(c) Iniice @ Glguwy=t), Gg ® IBob ~5(c) Laiice @ Gy, (74)
where the first is on the uniform distribution over Fj".
Bootstrapping to subspaces. Define Diyostep t0 be the two-step sampling process (F', s, w) as

in Item 2a. By Proposition 16.7, the marginal distribution on w has total variation distance at
most 1/q with Dypir. As a result, we can apply Fact 4.21 to Equation (74), yielding

My’ @ Igob ~5(e) Ialice ® Glg(uw)=) (75)
on distribution Diyostep- Similarly, by Fact 4.26,
Glg(w)=b] @ IBob ~5(e) TAlice ® Gg(w)=b] (76)

on distribution Diwostep-
Next, because the strategy passes the test in Item 2a with probability at least 1 — 4e,

M’ @ Igob ~e Ialice @ M, (77)

=yl
on distribution Dyyestep. Combining Equations (75) to (77) with our second triangle inequality
(Fact 4.29),

Miz(w)=y] @ Igob ~5(e) Latice @ Glg(w)=b-
By Proposition 4.42, we conclude that

M7 ® Igob ~5(e) Inlice ® Glgl,—g)- (78)

106

Concluding with subsets. The strategy passes the test in Item 2b with probability at least
1 —4e. As a result,
M ® Igob ~c Iaiice ® Mf -

Applying Fact 4.26 to Equation (78),
M), — 5 © Isob ~5(e) Lalice @ Glp|p=)-
Similarly, applying Fact 4.26 to Equation (74),
Glnlp=1) © IBob ~5(c) LAlice ® Gin|p=]
Applying the triangle inequality (Fact 4.29) to these three equations, we get
M ® Iob ~5(6) Iniice ® Gyl

with respect to distribution Diwestep, and therefore, by Fact 4.23, with respect to D. O

16.2 Efficiently decodable codes

Our application requires error-correcting codes with two further properties. The first property is
that the decoding map Dec(-) be efficiently computable. (The encoding map, on the other hand,
is allowed arbitrary complexity. This is because we will leave the task of computing the encoding
maps to the provers.) The second, more technical property is we require that the code embed the
codeword, in the following sense: the encoding Enc(z) of a string x should actually contain the
string x, and the function for where to find each bit of z in Enc(x) should be efficiently computable.

Definition 16.8 (Efficiently-decodable error-correcting codes). Let m,q : ZT — ZT, and let
n: Zt — [0,1]. Let tpec,tpmp : ZT — ZT. We say that Code, = (Enc,, Dec,, Sub,) is an
(n,m, q,1n, tbec, tEmb) -efficient code family if the following three conditions are true.

o For each n, (Enc,, Dec,,, Sub,,) is an (n,m(n),q(n),n(n))-error-correcting code.

o There exists an algorithm Algp,. which, on input (n,w), outputs Dec,(w). Furthermore,
Algp.. Tuns in time tpec(n).

o There exists an embedding p, : [n] — [m(n)] such that for each i € [n], z; = (Enc,(x)),,,)
Furthermore, there is an algorithm Algg,,, which, on input (n,7), computes p, (i) in time
tEmb(n)‘

Now, we show that the low-degree code is efficiently-decodable. The decoding algorithm follows

a simple strategy: assuming that the input is a proper encoding of a message, they can directly
read off the message from the input. Then they compute the encoding of the purported message
and check that it equals the input.

Fact 16.9. There is a (n,m’, q,n, tDec, tEmpb)-error-correcting code Code with parameters set as

follows:
1

~ polylog(n)’
tpec(n) = poly(n), tEmn(n) = polylog(n).
In addition, Code has a k-subset test 4 with robustness d(€) = poly(e,1/log(n)) such that
Q-time(9) = poly(logn, k), A-time(¥) = poly(log(n)*),
Q-length(¥) = O(klogn), A-length(¥) = O(log(n)?").

m/(n) = poly(n), q(n) = polylog(n), n(n)

107

Proof. We instantiate the canonical low-degree encoding from Definition 3.8 with the “rule of
thumb” parameters from Equation (1):

) = Oltos(n)), i) =© (L)) = polylog(n)
If we set d(n) = m(n) - (h(n) — 1), then this is a code with distance n(n) = 1 — d(n)/q(n) =
1 — 1/polylog(n). In addition, it has length m/(n) = q(n)™™ = poly(n). Finally, the canonical
low-degree encoding gives us the embedding pgpmn := om, 1, By Proposition 3.9, it takes time
tEmb(n) = polylog(n) to compute.

Now we design the decoding algorithm Algp,.. On input (n,w), it rejects if w is not length m/'.
Otherwise, it interprets w as a function f : Fy®* — Fy. It queries g on the points 7w(1),...,m(n). Let
a € {0,1}" be the received answers. If g is a codeword, it equals the low-degree function g,. So
the algorithm simply iterates over all x € Fg* and checks that f (x) = gq(x). By Proposition 3.9,
computing g,(x) can be done in time poly(n), and so this takes time tpec(n) = poly(n) in total.

Finally, the performance of the subset tester follows from Theorem 16.6 with our setting of
parameters. O

17 Answer reduction

In this section, we carry out the answer reduction. Our main result will be to take the poly(n)
question complexity, O(2") answer complexity MIP* protocol for Succinct-Succinct-3Sat given by
Corollary 15.9 and convert it to one whose answer complexity is also poly(n); this is Theorem 17.12
below.

Our answer reduction will apply to any game with a value-1 real commuting EPR strategy. We
will require two properties of these strategies: first, that they can be extended to strategies that pass
subset tests with probability 1, as in Definition 16.3; and second, that they are “oracularizable”.
We explain this second property in the next section.

17.1 Oracularization

Our technique will not work for all entangled games but only for a subset, for which a single prover
can simulate both prover’s actions if required to. We call such games “oracularizable” games.

Definition 17.1. Given a two-player entangled game ¥, its oracularization is the game Copacle(9)
given in Figure 14. If ¢ is value-1, then we call it oracularizable, if val(Coracle(¥4)) = 1 as well. We
also note that for any game ¢, if val(¢) < 1 — 4, then val(Coracie(¥4)) < 1 — O(9).

A real commuting EPR strategy allows “Player b” to sample both questions &g and x; simultane-
ously. As a result, if a game ¢ has a value-1 real commuting EPR strategy, then it is oracularizable.

The value of oracularization is that when the verifier checks V(xg,x1,a9,a1) = 1, both ag
and a; come from the same prover rather than two different provers. This seems like a minor
change, but in fact it makes all the difference. Our goal is to reduce the verifier’s runtime by
having the provers encode their answers using PCP technology. When the answers come from both
provers, the relevant piece of PCP technology is a distributed PCP, but it is known by a simple
argument of Reingold that distributed PCPs do not exist (see the discussion in [ARW17]). The key
difficulty comes from the fact that Alice needs to prepare her PCP proof without knowing Bob’s
question and answer, and vice versa, and this turns out to be impossible in general. On the other
hand, when the answers come from a single prover, we can use traditional PCPs to implement the

108

Given a game ¢, sample a tuple (xg,x1,C) ~ ¥, and flip two unbiased coins b, ¢ ~ {0,1}. With
probability % each, perform one of the following two tests.

1. Verify: Distribute the questions as follows:

o Player b: send the pair (g, 1) and receive answers (ag, ay).

o Player b: send x. and receive an answer as.
2. Consistency: Play the consistency game with question xq, x;.

Accept if as = a. and V(mo,ml,ao,m) =1

Figure 14: The oracularized game Cyrac1e(9).

answer reduction, of which we have a variety of constructions. We note that oracularized games
do still have checks between players, but these are equality checks and will be easy to implement
in the answer reduction regime.

17.2 Probabilistically checkable proofs of proximity

In this section, we introduce the main PCP technology we will use for our answer reduction. In the
oracularized game, the provers want to convince us not just that V(-,-, -, -) is satisfiable—which we
already know to be true by construction—but that (x¢, 21, ag, a1) is a particular assignment which
satisfies it. For this, we need a stronger notion of a PCP called a probabilistically checkable proof of
prozimity (PCPP). These allow one to check that an input « is close to a satisfying assignment of a
circuit C' (hence the “proximity”) by making a small number of queries to x. These were originally
introduced in the independent works of [BSGH'06] and [DR06] (where they were called assignment
testers).

In our case, we will need even stronger PCPPs in which the verifier is not only query-efficient but
time-efficient as well. The history of these time-efficient PCPPs goes back to the original proof of
MIP = NEXP and the various attempts to “scale it down” [O’D05]. The most famous line of research
considered proof systems in which the verifier’s query complexity is restricted, and this eventually
led to the proof of the PCP theorem [AS98, ALMT98]. A parallel line of research considered proof
systems in which the verifier’s runtime is restricted (so-called “transparent” proofs) [BFLS91]. The
latter of these was revisited in the work of Ben-Sasson et al. [BSGH'05], who showed that both
lines of research could be remerged in the “scaled down” setting by constructing a PCPP in which
the verifier is both query-efficient and time-efficient. Though their main result is actually sufficient
for our purposes, we will cite the work of Mie [Mie09], which improves on their result in the regime
we care about. Finally, we note the work of Meir [Meil4], who reproves the bounds of Ben-Sasson
et al. [BSGH™'05] using combinatorial methods.

To our knowledge, ours is the first use of a time-efficient PCPP specifically for its time-efficient
properties in the quantum literature. Natarajan and Vidick [NV18a] used the time-efficient PCPP
of [BSGHT05] to prove the quantum games PCP conjecture, but the property they needed was
not that it was time-efficient, but that the bits of the proof are linear functions of the bits of the
assignment. We note that we do not need this property here.

In this literature, it is common to consider “pair languages” consisting of strings (x,y) in which =
is small and given to the verifier and y is large and accessible only through query access. This maps
perfectly onto our scenario, in which the verifier supplies the “small” questions xg,x; and the
prover supplies the “large” answers ag, a;.

109

Definition 17.2. A pair language L is a subset of {0,1}* x {0,1}*. Given z € {0,1}*, we write
L, = {y € {071}* | (:an) € L}

The next two definitions state the notion of an efficient PCPP verifier.

Definition 17.3 ([BSGH'05, Definition 2.1]). Let r,q : Z* — Z* and t : ZT x ZT — ZT. An
(r,q,t)-restricted PCPP verifier is a probabilistic machine that, given a string = (called the explicit
input) and a number K (in binary) as well as oracle access to an implicit input y € {0,1}¥ and to
a proof oracle m € {0,1}*, tosses r(|z|+ K) coins, queries the oracles (y,) for a total of ¢(|z| + K)
symbols, runs in time ¢(|z|, K'), and outputs a Boolean verdict in {accept, reject}.

Definition 17.4 ([BSGHT05, Definition 2.2]). For functions r,q : ZT — Z*, t : Zt x ZT — ZT,
and constants s,y € [0,1], a pair language L C {0,1}* x {0,1}* is in PCPP, ,[r, ¢,] if there exists
an (r,q,t)-restricted PCPP verifier V' with the following properties:

o Completeness: If (x,y) € L then there exists a 7 such that Prg[V¥™(x, |y|; R) accepts] = 1,
where V¥ (z, |y|; R) denotes the decision V on input (z, |y|), oracle access to (y,7), and coin
tosses I.

o Soundness: If (z,y) is such that y is y-far from L, N $I¥l. then for every = it holds that
Prr[V¥7™(z,|y|; R) accepts] < s.

Mie’s time-efficient PCPP is states as follows.

Theorem 17.5 ([Mie09, Theorem 1]). Suppose that L is a pair language in NTIME(T) for some
non-decreasing function T : Z+t — ZT. Then, for every two constants s,y > 0, we have L €
PCPP; ,[r,q,t], for

o Randomness complexity r(m) = logy T'(m) + O(loglog T'(m)).
o Query complezity q(m) = O(1),
o Verification time t(n, K) = poly(n,log K,log T'(n + K)).

We note that this is in fact a much stronger than what we will actually need. In particular, we
will only apply this to languages L in deterministic TIME(T), which are trivially in NTIME(T).

17.3 Composing with an error-correcting code

The verifier in a PCPP rejects any input which is y-far from an accepting input, but of course we
want our verifier to reject all non-accepting inputs, no matter their distance. To do this, we will
(i) encode the verifier’s inputs using an error-correcting code and (ii) check that the inputs are
properly encoded (using, for example, the low-degree test). This approach of composing a PCPP
with an error-correcting code is standard and stretches back in spirit to the transparent proofs
of [BFLS91] (see the discussion of this in [BSGH'06]).

Now we show how to compose an MIP* game with an error-correcting code.

Definition 17.6 (Error-correcting the provers’ answers). Let V = (Algq, Alg,) be an MIP* verifier
(the language it verifies is not important). Suppose on inputs of size n it has question length g (n)
answer length ¢4 (n). Write L, for the language decided by Alg,. Let Codex, = (Ency, Decy, Suby)
be a (k,m, q,n, tpec, tEmp)-efficient code family with decoding algorithm Algp,.. Then Lj o Code is
a new language defined as follows: suppose (input, zg, z1,%0,%1) € La. Let n be the length of input
and ¢ = ¢p(n). Then (input, zo, z1, Ency(yo), Ency(y1)) € La o Code.

110

Now, we prove a couple of properties about the composed verifier. First, we show that its
runtime is not much slower than the original verifier’s.

Proposition 17.7 (Runtime of the composed verifier). Let V' and Codey be as in Definition 17.6.
Suppose Algn runs in time T(n). Then there is an algorithm, which we denote Alg, o Code,
deciding the language Lp o Code. In addition, on inputs (input, xg, x1, 20, 21) in which |input| = n,
|zo| = |z1] = Lq(n), and |zo| = |21| = m(€a(n)), the algorithm runs in time T'(n) + tpec(fa(n)).

Proof. On input (input, xg, x1, 20, 21), we define the action of Alg, o Code as follows.
1. Compute n, the length of input. Set ¢ := 5 (n).
2. Check that zp and z; have length m(¢). If they don’t, reject.
3. Compute yo = Algpe.(4, 20) and y1 = Algpe. (¢, z1). If either yp or y; is L, reject.

4. Otherwise, we know that yg,y; € {0,1}*. Run Alg, (input, o, 21,90, y1). Accept if it accepts,
and reject if it rejects.

It is immediate that Alg, o Code computes L o Code. As for the time complexity, Item 3 runs
in time tpec(fa(n)) and Item 4 runs in time 7'(n). Combined, these two give the bound in the
proposition statement. O

Next, we show that this construction solves the “problem” discussed at the beginning of the
section, namely that if we perform answer reduction by replacing Alg, o Code with a PCPP verifier,
rather than just Alg,, then the verifier will reject all inputs which are not in the language, not
just those which are J-far, provided that those inputs are encoded as per Definition 17.6.

Proposition 17.8. Let V and Codey be as in Definition 17.6. Let s,y > 0 be constants, and let
Vecpp be the PCPP verifier for the language La o Code guaranteed by Theorem 17.5 with these
parameters. Suppose that 1 —n(k) > 2vy for all k. Then we have the following soundness condition.

o Soundness: Consider (input,zg,x1, 20, 21) for input of length n, xo and z1 of length £g(n),
and zp,z1 € Suby, for £ := €x(n). Suppose this does not correspond to the encoding of an
accepting assignment in La. In other words, suppose that there are no yo,y1 € {0,1}° such
that (input, o, z1,Y0,y1) s in La and zop = Ence(yo), 21 = Ence(y1). Then Vpcpp accepts
(input, xg, 1, 20, 21) with probability at most s. In math, for every m it holds that

P;%r[VPf%’f)};W(input,:Eo,:El, |z0] + |21]; R) accepts] < s.

Proof. Given (input,xo, 21,20, 21), write A := (LA o Code)input,zg,z1 M FLZ&‘)HZI‘. By assumption,

(20, 21) is not in A. Using this, we would like to show that (29, z1) is in fact y-far from A, in which
case the PCPP verifier accepts with probability at most s.

To do this, suppose (2§, 2;) € A. By design, there exists yj, 7} € {0,1}¢ such that z) = Enc(y})
and z{ = Enc(y}). This means that z(, 2] € Suby. On the other hand, since (zp, z1) is not in A, we
must have either z{ # zp or 2] # 21 (or both). We will assume the first without loss of generality.
Then by the distance property of the code, since zp, 2, € Suby, their normalized Hamming distance
is at least 1 —n(¢) > 2~. This immediately means that (zo, z1) and (z{, 2). are at least v-far apart,
and we are done. O

111

17.4 The answer reduction protocol

We are almost ready to state the answer reduction protocol. Before doing so, we discuss one final
nuisance, which is that we will also need the prover to encode their proof with an error-correcting
code. The reason is that we would like to query the proof on a view J sampled by the PCPP
verifier. However, the prover might cheat and respond based only on the view J rather than a
global proof . To prevent this, we force them to commit to a global error-correcting encoding of
their proof 7 using a tester as in Definition 16.3. Then, we use the fact that the error-correcting
code embeds their string to allow us to extract the view J by asking for the coordinates in p(J).
We now state the answer reduction protocol.

Definition 17.9. We instantiate the answer-reduced MIP* protocol with the following algorithms
and parameters.

o Let V' = (Algg,Algy) be an MIP* verifier for a language L. Write La for the language
decided by Alg,. Suppose on inputs of size n, the verifier V' has question length fy.q(n),
answer length ¢y 4 (n), question time ty,q(n), and answer time ¢y a(n).

o Let Coder, = (Ency, Decg, Suby) be a (k, m, ¢, 0, tDec, tEmp)-efficient code family with decoding
algorithm Algp,.. and embedding py.

o Let % be a game which tests for Code; with robustness yx(e). Suppose it has question
length fy o (k), answer length £y A (k), question time ty q(k), and answer time ty A (k).

o Let 5,0 > 0 be constants, and let Vpcpp be the PCPP verifier for the language L o Code
guaranteed by Theorem 17.5 with these parameters. Suppose on inputs of size n it has proof
length ¢, (n). By Proposition 17.7, La o Code is in time tcompose (1) = tv,a (1) + tpec (v,a(n)).
We can therefore write Vpcpp’s verification time as

tpcpp(n) = poly(n + Ly,q(n),log(m(Ly,a(n))), log(tcompose(n)))-

FinallY7 €7r (n) = tcompose(n) : pOIYIOg(tCOmpose (n))
Write £1 := ly a(n) and ¢5 := £;(n). Then the answer reduction game Ganswer (input; V, Code, ¥, s,)

is given in Figure 15. We write Vapswer for the corresponding verifier.

Theorem 17.10. Suppose V', Code, ¢4, and Vpcpp are as in Definition 17.9. Suppose s, are cho-
sen to be constants such that n(k) > 2~ for all k. Suppose further that V' has the following property:
for any input in L, the provers have a real commuting EPR strategy with value 1. Then Vingwer 1S
also an MIP* wverifier for L with the following two conditions:

o (Completeness) If input € L, then there is a value-1 strategy.

o (Soundness) Given input, suppose there is a strategy with value 1 —e. Then there is a strategy
for' V' on input input with value 1 — 6(¢), where 0(¢) is given by

d(€) == poly(xe, (poly(e)), xe, (Poly(€)), n(£1), n(£2)).

Hence, if we choose our parameters so that 1 —6(€) is greater than the soundness of V, this implies
that Vanswer 5 an MIP* wverifier for L with soundness 1 — €.

112

Flip two unbiased coins b,c ~ {0,1}. Sample questions (o, x1) ~ Algq(input). Sample a view
Iy, I,,J ~ Vpcpp(input, g, @1). Set J' = g, (J). Select ig,21 € [m(f1)] and j € [m(r(n))]
uniformly at random. Set To = IoU {i0}, T1 = I1 U {¢1}, and U = J' U {j}. With probability %
each, perform one of the following eight tests.

1. Verify: Distribute the question as follows:
o Player b: give (xg,x1), To,T1,U; receive ag,aq, as.
Accept if Vpcpp (instance, g, 1) accepts on aolr,,a1lr,, az| -
2. Cross checks:

(a) Consistency test: Distribute the questions as follows:
o Player b: give (xo, 1), To,T1,U; receive ag, a, as.
o Player b: give (zg,x1), To,T1,U; receive a), a’j, al.
Accept if ap = af,, a1 = a}, and ay = d).
(b) Answer cross-check: Distribute the questions as follows:
o Player b: give (xo,x1), To,T1,U; receive ag, a, as.
o Player b: give x., T.; receive a..
Accept if a. = a..
(c) Proof cross-check: Distribute the questions as follows:
o Player b: give (xo, 1), To,T1,U; receive ag, a, as.
o Player b: give zg, z1,U; receive al.

Accept if as = al,.
3. Code checks:

(a) Answer code check: Sample questions (wg,w1) ~ %, (T). Distribute the questions
as follows:

o Player b: give x.,wq; receive ag.
o Player b: give x.,w1; receive a;.
Accept if 4, (T'.) accepts on ag, a;.

(b) Proof code check: Sample questions (wq,w1) ~ %, (U). Distribute the questions as
follows:

o Player b: give xg, x1, wop; receive ag.
o Player b: give xg, 1, wi; receive a.

Accept if 4, (U) accepts on ag, a;.

Figure 15: The answer reduction game %, swer(input; V, Code, ¥, s, 9).

113

Furthermore, the question and answer lengths and runtimes are dominated by two subroutines:
the “Verify” subroutine S1 and the “Code Check” subroutine So (consisting of both the answer code
check and the proof code check). The complexity of the Verify subroutine is

Q-length(S1) = O(ly,q(n) + log(m(lv,a(n))) + log(m(€x(n)))),
A-length(S1) = O(log(q(¢v,a(n))) + log(q(l=(n)))),
Q-time(S1) = O (tv,q(n) + tpcpp(n) + tEmb (€x(n)))
A-time(S1) = O(tpcpp(n)).
In addition, the complexity of the Code Check subroutine is
Q-length(S2) = O(ly q(lv,a(n)) + by q(x(n)) + Lv,q(n)),
A-length(S2) = O(ly A (ly,a (1)) + Ly A(Lx(n))),
Q-time(S2) = O(ty q(tva(n) + ty.q(En(n) + tvig(n) + toms (6 (n)),
A-time(S2) = O(ty A (ly,a(n)) + ty a(lx(n))).

Thus, the complexity of the overall protocol is the sum of these two.

Proof. The fact that S; and S5 dominate the lengths and runtimes of the protocol is because Sy
dominates the lengths and runtimes of the two cross-check subroutines, whose questions and answers
are subsets of those in S;. Now we compute the complexity of 5.

o Question length: The pair (xo,x;) has total length ¢y.q(n) by definition. The pair Iy, I;
are subsets of indices of constant size into each of the implicit inputs of L o Code, which are
supposed to be encodings of strings of size ¢y, 4 (n). Hence, the encodings have size m(¢fy a(n)),
and so each input is specified with the log of this many bits. Finally, J is a constant-sized
set of indices into a proof of size ¢, (n), and p(J) converts these into indices into an encoding
of of this proof. As the encoding has length m(¢,(n)), each index can be specified with the
log of this many bits.

o Answer length: The strings ag, a; contains values from an error-correcting code with alpha-
bet ¢(¢y a(n)), and the string as contains values from an error-correcting code with alphabet

q(lx(n)).

o Question time: The running time of Alg, is ty,q (n). The running time of Vpcpp is tpcpp(n).
Finally, the running time to compute u(J) given J is tgmp (€r(n)).

o Answer time: The running time is simply the running time of Vpcpp, i.e. tpcpp(n).

As for the complexity of S, it just performs the code tester ¢, for message lengths k = fy o (n)
and /;(n) and so inherits the lengths and runtimes of the tester for these two values of k, except
on top of that it also has to sample (2o, 1) and compute J'. Sampling (xg, z1) takes time ty,q(n)
and contributes O(¢y.q(n)) to the question lengths, and computing J' takes time tgmp (¢ (n)).

Completeness. Suppose input is in L. Then there is a real commuting EPR strategy (¢, M)
with value 1 for V on input. We will use this to demonstrate a value-1 strategy for Vinswer. This
will be the strategy (¢, G) which uses the same EPR state |¢) and has measurement matrices G
defined as follows.
Fix questions xg, x1, Ty, 11, and U. We begin by defining the simplest measurement,
GzeTe .= M . (79)

[Ency, (zc)| e =ac]

114

If Alice and Bob measure with M*9 and M*! and receive strings zg, z1, then because this strategy
is value 1, we will always have V(input,zg,z1,20,21) = 1. As a result, there always exists some
proof for Vpcpp that (input,zg,x1,Ency, (20), Ency, (21)) is in La o Code. We denote this proof
m(xo, X1, 20, 21); if there are multiple such proofs, we pick one arbitrarily. Then we define the
measurement

GggmuU e (Mmo . Mwl)[EHCZQ(W($07I1,20721)) (80)

lu=az-
Next, we define the measurement
z0,21,70,71,U ._ zo x1
G = (M*™ - M)[En%(

ap,a1,a2 20) |1y, Ence, (21) |1y ,Ence, (7(z0,21,20,21))[u=ao,a1,a2]

Now, via Equations (79) and (80), the G measurement is exactly of the form required by Definition 16.3.
As a result, it can be extended to a measurement which passes the answer and proof code checks
with probability 1. Performing this extension concludes the design of the strategy.

By construction, this strategy passes the answer and proof code checks with probability 1. As
for the remaining tests, let us begin with the answer cross-check in the case of ¢ = 0, the other
case being symmetric. Because M is a real commuting EPR strategy, by Fact 4.37 we have that
MZ®Igop ~0 Ipiice @ M for any distribution on x. If we consider the measurement (M®°-M?*1), ..,
then (M*0 - M™),, = MZ°. As a result,

(M*™0 - M™)., @ Igob ~0 IAlice ® M0,
Finally, by data processing (Fact 4.26), this implies that

(Mo Mxl)[Encel(Zo)\To =ag] ® Tgob 20 Iptice @ Mg

[Encg, (20) |7y =ao]"

But this is equivalent to saying that Gg) LTI o 1o g Tafce ® Gan ’TO, which implies passing
the cross-check test with probability 1. A similar argument holds for the other tests, with the
exception of the verification step.

Consider the measurement MZ°-M7!. By construction and the properties of the PCPP verifier,
if this measurement always outputs zg, z; such that V(input, zg, z1, 20, 21) = 1, then the G strategy
always passes the verify step. But because M is a real commuting EPR strategy, MY ® Igop ~o
Ipjice ® M7, which implies that

o) Tl ~u xo 1
Mzo ®Mz1 =~ Mzo 'le ® Igob-

Thus, these two measurements have the same output distribution. But the left-hand side always
outputs zg, z1 which satisfy the verifier, because this strategy passes the verifier with probability 1.
This concludes the completeness step.

Soundness. Suppose input is not in L. Let (¢, M) be a strategy that passes with probability
1—e

Code checks. Passing the overall test with probability 1 —e means the strategy passes the answer
code check with probability 1 — 8e. Given values ¢, x., write 1 — €., for the probability the code
check passes conditioned on these values. Then with probability at least 1 — 8el/2, €ere < b/,
When this occurs, Theorem 16.6 implies that there exists a measurement {Gic},, with outcomes
in Suby, such that

MFTe @ Igob ~5(c) Iatice ® G

[wlr.=ad]

115

with respect to the distribution of T'. conditioned on ¢ and x.. When this does not occur, we still
can assume such a measurement so that

MZeTe @ Igop =1 Tafice @ G

[w|r,=a]
trivially, by Fact 4.19. Thus, if we average over ¢ and x.,
M;EC’TC ® Igob =6(e) Tnjice ® GFUC}\TCZ‘I} (81)

with respect to the distribution on ¢, @, Te. A similar argument with respect to the consistency
guarantee of Theorem 16.6 implies that

Gi]c ® IBob :6(5) IAIice ® Gic (82)
By Fact 4.26, this implies that

Gie

[w]r.=a]

® Igob = Ialice @ Glpp, _ -
As a result, if we apply Fact 4.13 to this and Equation (81) and then use the triangle inequality
(Fact 4.28), we conclude

M;C’IC ® Igob ~5(e) G ® Igob (83)

Zc
[w|1.=a]
with respect to the distribution on ¢, x., I..

Applying a similar argument yet again, this time to the proof code check, implies that for every
xo, 1, there exists a measurement {Hy "'}, with outcomes in Suby, such that

M;O’II’U ® Igob ~5(e) H[ﬁ)";;a} ® Igob (84)

with respect to the distribution on xg, 1, U. Thus, by Fact 4.32, we can assume that Equations (83)
and (84) hold with equality with a loss of only d(¢) in the game value. In addition, by Theorem 4.1,
we can assume that the G and H measurements are all projective, possibly replacing ¢ with a
different state.

Cross checks. Our next step is to apply the cross-checks. Passing these with probability 1 —d(e)
implies the bounds

xo,x1,T0,11,U ~) z0,To _ . -
Ma(;) VT © Teob —4(e) Thlice ® Ma(;) * = Talice @ G[12|To:ao}’ (85)
xg,x1,T0,11,U ~) 21,71 _ . -
Mot 7 707 @ Igob ~5(c) Iatice ® M) = Tniice ® Gy _q,s (36)
Z0,T ,T ,T 7U ~ . 0,T 7U o) Z0,%1
Mg™™70 "7 @ Tgob () Tatice © Mog™™" = Iniice ® Hyyf 21,
’ 7T 7T 7U ~) R ’T ’T 7[]
My atay " @ Isob ~g(e) Latice @ Mag e ay 17 - (87)

At this point, we would like to apply Fact 4.35. To do so, we have to verify the distance property
of our functions, and this will follow from the fact that we augmented our index sets I, I, and J’
with an additional uniformly random index. To see this, consider two nonequal w and w’ in Suby,.
Then for them to agree on Ty, they must agree on 2y, and this happens only n(¢;) fraction of the
time. The same holds for U, with the bound of n(¢2). As a result, Fact 4.35 implies the following:
consider the POVM measurement {Ayy %, .~} with outcomes wg, w; in Suby, and 7 in Suby, defined
as

Aoy m = G - Gul - HIO™ -G - Gl (88)

Wo,W1,™

116

Then
Mo 0T @ Tgop 250y Tatice ® Aot (89)

a0,a1,a2 [wol|ry, w1l ,7|lu=a0,a1,a2]"
From this, Equation (87) implies

z0,71,10,11,

U ~ Z0,T1
Magaras ® Ipob ~s(e) A

[wolTy w1l ;7lu=ao,a1,a2]

® Iob- (90)

Thus, by Fact 4.32, we can assume that Equation (90) holds with equality by replacing M with G,
incurring a loss of only d(€) in the game value. (Unlike before, here we do not invoke Theorem 4.1
on J*0*1 to make it a projective measurement, as that would likely change the structure in
Equation (88), which we will need later.)

Verification. The strategy passes the verify check with probability 1 — §(e). By Equation (90)
(which we now assume is equality), this is the same probability as if we (i) sample xg, x1, (ii) use A
to draw wy, w1, m, (iii) draw Iy, I1,J conditioned on xg, x1, (iv) then draw Ty, T, U conditioned
on Iy, I1,J, (v) compute ag = wo|r,, a1 = wi|r,, and as = wq|y, and (vi) give aolr,, a1lr,, azls
to Vpcopp and accept if it accepts.

Condition on a fixed choice of xy,z1 and a draw for wg,wy,w. The PCPP verifier receives
answers to its Iy and I queries based on wy and w;, which are in Suby,. In addition, although 7 is
in Suby, and may not correspond to the encoding of an actual proof string, the verifier only queries it
at points in the image of the embedding fs,. As a result, the answers Vpcpp receives to its J queries
are consistent with some fixed proof string. Thus, by Proposition 17.8, since 1 — n(k) > 2v for
all k, if the probability the verifier accepts is greater than s, then there are strings yo,y1 € {0, 1}51
such that woy = Ency, (yo), w1 = Ency, (y1) and V (input, zg, 1, y0,y1) = 1. Averaging over all g, x;
and wq, w1, ™, we conclude that

1—4(e) —s

Pr[V (input, o, x1, Decy, (wy), Decy, (w1)) = 1] T,

Y

=1-—4(e). (91)

Recall that the decoding map is one-to-one except on those strings not in the range of the encoding
map, which it maps to L instead. As we can assume that the verifier V' always rejects when it
receives L for an answer, this tells us that Decy, (wp), Decy, (w1) # L with probability at least

1—9(e).

Wrapping it up. Now we give a strategy for causing the verifier V' to accept with high probability
on input. It uses state 1, and given question z it applies the measurement {A%}, defined as

Ag = UFDngl (w)=a]"

Consider the verifier V' which samples (xg, 1), gives them to Alice and Bob, receives wy, w1, and
accepts if V (input, g, 1, Decy, (wy), Decy, (w1)) = 1. Then V accepts on strategy A with the same
probability that V' accepts on strategy G. In other words, if we define S(zg,z1) to be the set of
(wp, w1) such that

V (input, o, 21, Decy, (wo), Decy, (w1)) = 1,

then the probability that V'’ accepts on strategy G is

E > (V] Gy ® Gy |¥) - (92)
(x0,21)
wo,wles(mo,ml)

117

To show this is large, we begin by showing that the G’s commute with each other. To see this,
note that Equations (85) and (86) implies that for a fixed ¢ € {0, 1},

0,71
[wC‘Tc

—a) @ TBob () Lniice © Gy

[welTe=ac]’
However, by the distance properties of our code and the fact that T'. contains a uniformly random
index, this implies that
AG™ @ Igob ~5(c) Lalice ® Gy (93)
As a result,
G - Gl @ Iob Rg(e) Gin @ Ao ™
%6(5) IAIice ® Aiofxl ,Aﬁ]%@l
%6(5) IAIice ® Aggm ,Aﬁ}olﬁm
%5(6) Gtwull ® Afu%7m1
~5(e) Gﬁ}l : Gi% ® Igob-
A similar argument as the one establishing (93) implies that
G @ Iob ~5(e) Iatice @ Gy, -
Thus,
Gy ® Gyt =G - Gt @ Gy
~5(e) Ga% : Gﬁ% : Gill ® IBob
~s(e) Gy Gy Gy @ IBob
= Afu%’,mu}l ® Igob-

As a result, by Fact 4.31, Equation (92) is at least 1 — d(e) by Equation (91). This concludes the
proof of the theorem. O

17.5 Applying the answer reduction protocol

In this section, we instantiate Theorem 17.10 with the low-degree code and then apply it to our
NEEXP protocol.

Theorem 17.11. Let V = (Algq, Algy) be an MIP* werifier for a language L. Write La for the
language decided by Alg,. Suppose on inputs of size n, the verifier V' has question length fy.q(n),
answer length ly a(n), question time ty,g(n), and answer time tya(n). Then there exists another
MIP* werifier Vans for L with the following parameters.

Q-length(Vins

(Vans) = O(lv.q(n) +log(fv,a(n)) + log(tv.a(n))),
A-length(Vans) = O(polylog(fv,a(n)) + polylog(tv,a(n))),
Q-time(Vans) = O (tv,q(n)) + poly(n + fy.q(n), log(Ev: (), log by (n)))
A-time(Vans) = poly(n + ly.q(n),log(fv,a(n)),log(ty.a(n))).

Proof. We instantiate the low-degree code in Fact 16.9. It gives an error correcting code with
parameters (n,poly(n), polylog(n), polylog(n)~!, poly(n), polylog(n)) and a c-subset test %, with
robustness x(€) = poly(e,log(k)~!) such that

Q-time(%;) = poly(log k,c), A-time(¥;) = poly(log(k)°),

118

Q-length(%,) = O(clogk), A-length(%,) = O(log(k)*).

We then apply Theorem 17.10 with s,v = %0' At this point, the theorem follows immediately, but
as deriving it can be cumbersome, we fill in the details.
By construction, tpec(n) = poly(n). As a result,

tcompose(n) = tV,A(n) + tDec(e\/,A(n)) = tV,A(n) + pOlY(EV,A(n))-

Thus,
Eﬂ'(n) = 75v:omposo(n) : pOlleg(tcompose (n)) = pOIY(tV,A(n)7 EV,A (’I’L))
Now, m(n) = poly(n). Thus,

tpcpp(n) = poly(n + Lv,q(n), log(m(fv,a(n))),10g(tcompose(n)))
= poly(n + fv,q(n),log(tv,a(n)),log(tv,a(n)))-
Furthermore, ¢(n) = polylog(n) and tgy,p(n) = polylog(n). As a result,
log(m(lx(n))) = O(log(€v,a(n)) + log(tv,a(n))),
lr(n))) =0

log(q(£x(n))) = O(loglog(fy,a(n)) + loglog(tv,a(n))),
tEmb (¢x(n)) = poly(log(ly,a(n)),log(tv,a(n))).

The theorem now follows from applying these bounds to Theorem 17.10. O

Crucially, although polynomial factors of ty,g(n) and fy.g(n) appear in Theorem 17.11, only
the logarithms of ty a(n) and fy 4(n) appear in this theorem. As a result, if we apply this to
Corollary 15.9, we arrive at our main result.

Theorem 17.12. There is an MIP* verifier & for Succinct-Succinct-3Sat with parameters
Q-length(¢) = O(n), A-length(¢) = poly(n),

Q-time(¥) = poly(n), A-time(¥) = poly(n).

References

[ALM198] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
Proof verification and the hardness of approximation problems. Journal of the ACM,
45(3):501-555, 1998. 1, 17.2

[ARW17] Amir Abboud, Aviad Rubinstein, and Ryan Williams. Distributed PCP theorems for
hardness of approximation in P. In Proceedings of the 58th Annual IEEE Symposium
on Foundations of Computer Science, 2017. 2.5, 17.1

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: a new characteri-
zation of NP. Journal of the ACM, 45(1):70-122, 1998. 1, 17.2

[Bel64] John Bell. On the Einstein Podolsky Rosen paradox. Physics, 1(3):195-200, 1964. 1

[BFLI1] Laszl6 Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponential time
has two-prover interactive protocols. Computational complezity, 1(1):3-40, 1991. 1,
2.2, 11

119

[BFLS91]

[BOGKWSS]

[BSGHT05]

[BSGH*06]

[CGIV1S]

[CHTWO4]

[Col06]

[CY14]

[DROG]

[Eke91]

[EPR35]

[FIVY19]

[FL18]

[FV15]

Laszl6 Babai, Lance Fortnow, Leonid A Levin, and Mario Szegedy. Checking compu-
tations in polylogarithmic time. In Proceedings of the 23rd Annual ACM Symposium
on Theory of Computing, pages 21-32, 1991. 17.2, 17.3

Michael Ben-Or, Shafi Goldwasser, Joe Kilian, and Avi Wigderson. Multi-prover
interactive proofs: How to remove intractability assumptions. In Proceedings of the
20th Annual ACM Symposium on Theory of Computing, pages 113-131, 1988. 1

Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan.
Short PCPs verifiable in polylogarithmic time. In Proceedings of the 20th Annual
IEEE Conference on Computational Complezity, pages 120-134, 2005. 17.2, 17.3,
17.4

Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan.
Robust PCPs of proximity, shorter PCPs, and applications to coding. SIAM Journal
on Computing, 36(4):889-974, 2006. 17.2, 17.3

Andrea Coladangelo, Alex Grilo, Stacey Jeffery, and Thomas Vidick. Verifier-on-a-
leash: new schemes for verifiable delegated quantum computation, with quasilinear
resources. In 21st Conference on Quantum Information Processing, 2018. 8.2

Richard Cleve, Peter Hoyer, Benjamin Toner, and John Watrous. Consequences and
limits of nonlocal strategies. In Proceedings of the 19th Annual IEEE Conference on
Computational Complexity, pages 236-249, 2004. 1

Roger Colbeck. Quantum and relativistic protocols for secure multi-party computa-
tion. PhD thesis, University of Cambridge, 2006. 1

Matthew Coudron and Henry Yuen. Infinite randomness expansion with a constant
number of devices. In Proceedings of the 46th Annual ACM Symposium on Theory
of Computing, pages 427-436, 2014. 1

Irit Dinur and Omer Reingold. Assignment testers: Towards a combinatorial proof
of the PCP theorem. SIAM Journal on Computing, 36(4):975-1024, 2006. 17.2

Artur Ekert. Quantum cryptography based on Bell’s theorem. Physical review letters,
67(6):661, 1991. 1

Albert Einstein, Boris Podolsky, and Nathan Rosen. Can quantum-mechanical de-
scription of physical reality be considered complete? Physical review, 47(10):777,
1935. 1

Joseph Fitzsimons, Zhengfeng Ji, Thomas Vidick, and Henry Yuen. Quantum proof
systems for iterated exponential time, and beyond. In Proceedings of the 51st Annual
ACM Symposium on Theory of Computing, 2019. 1, 1, 1

Bill Fefferman and Cedric Yen-Yu Lin. A complete characterization of unitary quan-
tum space. In Proceedings of the 9th Innovations in Theoretical Computer Science,
pages 4:1-4:21, 2018. 1

Joseph Fitzsimons and Thomas Vidick. A multiprover interactive proof system for
the local Hamiltonian problem. In Proceedings of the 6th Innovations in Theoretical
Computer Science, pages 103-112, 2015. 1

120

[Har10] Prahladh ~ Harsha. Lecture 9 from Limits of Approxima-
tion Algorithms: PCPs and Unique Games. Found at
http://www.tcs.tifr.res.in/~prahladh/teaching/2009-10/1limits/lectures/lec09.pdf,
2010. 11

[Has97] Johan Hastad. Some optimal inapproximability results. In Proceedings of the 29th
Annual ACM Symposium on Theory of Computing, pages 1-10, 1997. 1

[IKW12] Tsuyoshi Ito, Hirotada Kobayashi, and John Watrous. Quantum interactive proofs
with weak error bounds. In Proceedings of the 3rd Innovations in Theoretical Com-
puter Science, pages 266-275, 2012. 1

[IV12] Tsuyoshi Ito and Thomas Vidick. A multi-prover interactive proof for NEXP sound
against entangled provers. In Proceedings of the 53rd Annual IEEE Symposium on
Foundations of Computer Science, pages 243-252, 2012. 1

[Jil7] Zhengfeng Ji. Compression of quantum multi-prover interactive proofs. In Proceedings
of the 49th Annual ACM Symposium on Theory of Computing, pages 289-302, 2017.
1,1

[KRR14] Yael Kalai, Ran Raz, and Ron Rothblum. How to delegate computations: the power

of no-signaling proofs. In Proceedings of the 46th Annual ACM Symposium on Theory
of Computing, pages 485-494, 2014. 1

[MBG'13] Alfred J Menezes, Ian F Blake, XuHong Gao, Ronald C Mullin, Scott A Vanstone,
and Tomik Yaghoobian. Applications of finite fields. Springer Science & Business
Media, 2013. 3.1, 3.1

[Meil4] Or Meir. Combinatorial PCPs with efficient verifiers. Computational Complexity,
23(3):355-478, 2014. 17.2

[Mie09] Thilo Mie. Short PCPPs verifiable in polylogarithmic time with o(1) queries. Annals
of Mathematics and Artificial Intelligence, 56(3-4):313-338, 2009. 17.2, 17.5

[MROS] Dana Moshkovitz and Ran Raz. Sub-constant error low degree test of almost-linear
size. SIAM Journal on Computing, 38(1):140-180, 2008. 3.5

[MY98] Dominic Mayers and Andrew Yao. Quantum cryptography with imperfect apparatus.
In Proceedings of the 39th Annual IEEE Symposium on Foundations of Computer
Science, pages 503-509, 1998. 1

[NV18a] Anand Natarajan and Thomas Vidick. Low-degree testing for quantum states, and a
quantum entangled games PCP. In Proceedings of the 59th Annual IEEE Symposium
on Foundations of Computer Science, 2018. 1, 1, 2.3, 3.6, 4.41, 4.9, 4.9, 6, 6.1, 6.1,
6.4, 6.1, 6.5, 6.6, 17.2

[NV18b] Anand Natarajan and Thomas Vidick. Two-player entangled games are NP-hard.
In Proceedings of the 38rd Annual IEEE Conference on Computational Complexity,
2018. 1, 1, 1, 4.7, 4.40, 4.41

[O’D05] Ryan O’Donnell. A history of the PCP theorem, 2005. 17.2

121

http://www.tcs.tifr.res.in/~prahladh/teaching/2009-10/limits/lectures/lec09.pdf

[Pap94]

[Per12]

[RS97]

[RUV13]

[Sch8&0]

[Slo16]

[Slo19]

[SWsS]

[Tsi80]

[Vid11]

[Vid16]

[WBMS16]

[Zip79]

Christos Papadimitriou. Computational complexity. Addison Wesley, 1994. 3.7, 3.7,
3.7, 3.7

Attila Pereszlényi. Multi-prover quantum Merlin-Arthur proof systems with small
gap. Technical report, arXiv:1205.2761, 2012. 1

Ran Raz and Shmuel Safra. A sub-constant error-probability low-degree test, and
a sub-constant error-probability PCP characterization of NP. In Proceedings of the
29th Annual ACM Symposium on Theory of Computing, pages 475-484, 1997. 3.5,
3.12

Ben Reichardt, Falk Unger, and Umesh Vazirani. A classical leash for a quantum
system: Command of quantum systems via rigidity of CHSH games. Nature, 496:456—
460, 2013. 1

Jacob Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
Journal of the ACM, 27(4):701-717, 1980. 3.6

William Slofstra. Tsirelson’s problem and an embedding theorem for groups arising
from non-local games. Technical report, arXiv:1606.03140, 2016. 1, 1

William Slofstra. The set of quantum correlations is not closed. In Forum of Math-
ematics, Pi, volume 7, page el, 2019. 1, 1

Stephen Summers and Reinhard Werner. Maximal violation of Bell’s inequalities
for algebras of observables in tangent spacetime regions. Annales de I’IHP Physique
théorique, 49(2):215-243, 1988. 1

Boris Tsirelson. Quantum generalizations of Bell’s inequality. Letters in Mathematical
Physics, 4(2):93-100, 1980. 1

Thomas Vidick. The complexity of entangled games. PhD thesis, University of Cali-
fornia, Berkeley, 2011. 4.4

Thomas Vidick. Three-player entangled XOR, games are NP-hard to approximate.
SIAM Journal on Computing, 45(3):1007-1063, 2016. 1, 4.7

Xingyao Wu, Jean-Daniel Bancal, Matthew McKague, and Valerio Scarani. Device-
independent parallel self-testing of two singlets. Physical Review A, 93(6):062121,
2016. 6.1

Richard Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings of
the 2nd International Symposium on Symbolic and Algebraic Manipulation, pages
216-226, 1979. 3.6

122

	I Introduction
	1 Introduction
	2 Overview of our proof
	2.1 Basic quantum notation and qudits
	2.2 Our starting point: a classical interactive proof for NEEXP
	2.3 Restricting the strategies: registers and compilers
	2.4 Question reduction through introspection
	2.5 Answer reduction through PCP composition
	2.6 Organization

	II Preliminaries
	3 Classical preliminaries
	3.1 Finite fields and polynomials
	3.2 Two-player one-round games and MIP
	3.3 Low-degree code
	3.4 A canonical low-degree encoding
	3.5 Low-degree testing
	3.6 Simultaneous low-degree testing
	3.7 NEXP, NEEXP, and complete problems for them
	3.8 The Tseitin transformation

	4 Quantum preliminaries
	4.1 Quantum measurements
	4.2 Nonlocal games and MIP*
	4.3 Pauli matrices and the EPR state
	4.4 State dependent distances
	4.5 Miscellaneous properties of the state-dependent distances
	4.5.1 Simple state-dependent distance facts
	4.5.2 Data processing
	4.5.3 Triangle inequalities
	4.5.4 Close strategies have close game values
	4.5.5 Generating new measurements

	4.6 Commuting EPR strategies
	4.7 Quantum soundness of the classical low-degree test
	4.8 Quantum soundness of the classical simultaneous low-degree test
	4.9 Self-testing

	III Implementing the registers
	5 Register overview
	5.1 Definitions
	5.2 Results
	5.3 Registers for uniform games
	5.4 Organization

	6 A self test for the Pauli basis
	6.1 The quantum low-degree test
	6.2 Proof of thm:basis-test: the Pauli basis test

	7 Compiling games with the Pauli basis test
	8 The data hiding game
	8.1 Some facts about the Pauli twirl
	8.2 Hiding a single coordinate

	9 Compiling games with the data hiding test
	10 Partial data hiding

	IV NEEXP protocol
	11 A review of a classical PCP theorem
	11.1 The instance
	11.2 Encoding assignments
	11.3 Encoding the formula
	11.4 Zero on subcube
	11.5 The PCP

	12 NEEXP preliminaries
	12.1 Introspection games
	12.2 Subroutines and superregisters

	13 The introspective low-degree test
	13.1 Introspected partial data-hiding
	13.2 An introspective surface sampler
	13.3 The introspective cross-check
	13.4 The introspective low-degree test
	13.5 The introspective simultaneous low-degree test

	14 The intersecting lines test
	14.1 The intersecting lines test
	14.2 The introspective intersecting lines test

	15 The introspective NEEXP protocol
	15.1 Computing the register parameters
	15.2 An introspective formula game
	15.3 The complete introspective protocol

	V Answer reduction
	16 Testing error-correcting codes
	16.1 Testing the low-degree code
	16.2 Efficiently decodable codes

	17 Answer reduction
	17.1 Oracularization
	17.2 Probabilistically checkable proofs of proximity
	17.3 Composing with an error-correcting code
	17.4 The answer reduction protocol
	17.5 Applying the answer reduction protocol

