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Computationally-secure and composable remote state preparation

Alexandru Gheorghiu∗1 and Thomas Vidick†1
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Abstract

We introduce a protocol between a classical polynomial-time verifier and a quantum polynomial-

time prover that allows the verifier to securely delegate to the prover the preparation of certain single-

qubit quantum states. The protocol realizes the following functionality, with computational security:

the verifier chooses one of the observables Z, X, Y, (X + Y)/
√

2, (X − Y)/
√

2; the prover receives

a uniformly random eigenstate of the observable chosen by the verifier; the verifier receives a classical

description of that state. The prover is unaware of which state he received and moreover, the verifier can

check with high confidence whether the preparation was successful.

The delegated preparation of single-qubit states is an elementary building block in many quantum

cryptographic protocols. We expect our implementation of “random remote state preparation with veri-

fication” (RSPV), a functionality first defined in (Dunjko and Kashefi 2014), to be useful for removing

the need for quantum communication in such protocols while keeping functionality.

The main application that we detail is to a protocol for blind and verifiable delegated quantum com-

putation (DQC) that builds on the work of (Fitzsimons and Kashefi 2018), who provided such a protocol

with quantum communication. Recently, both blind an verifiable DQC were shown to be possible, under

computational assumptions, with a classical polynomial-time client (Mahadev 2017, Mahadev 2018).

Compared to the work of Mahadev, our protocol is more modular, applies to the measurement-based

model of computation (instead of the Hamiltonian model) and is composable. Our proof of security

builds on ideas introduced in (Brakerski et al. 2018).
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1 Introduction

In the problem of delegated computation a user (often referred to as client or verifier) is provided as input a

pair (C, x) of a circuit C and an input x for the circuit. The verifier’s task is to evaluate C(x) as efficiently

as possible. For this the verifier may delegate some or all of the computation to a powerful but untrusted

server (often referred to as the prover). Let n be the length of x and T the size of the circuit C. Ideally,

the runtime of the verifier is (quasi-)linear in n and poly-logarithmic in T, while the runtime of the prover

is quasi-linear in T. (Reducing space usage, for both the verifier and the prover, is also of interest, but for

simplicity we focus on time.)

A productive line of research in complexity and cryptography has led to protocols for delegated compu-

tation with increasing efficiency and whose soundness can be information-theoretic [GKR15] or based on

cryptographic assumptions [Kil92, KRR14]. The latter type include protocols utilizing public-key cryptog-

raphy and making standard cryptographic assumptions, such as [HR18], as well as non-interactive protocols

based on more non-standard assumptions, such as [GGPR13]. In addition to the natural applications in cloud

and distributed computing, research in delegated computation is motivated by cryptographic applications

(such as short zero-knowledge proofs [Gro10,BSCG+13]) and connections to complexity theory (such as the

theory of multiprover interactive proof systems [KRR14] and probabilistically checkable proofs [GKR15]).

In this paper we are concerned with the problem of delegating quantum computations (DQC). Here the

verifier is provided as input the classical description of a quantum circuit C, as well as a classical input x for

the circuit, and its goal is to obtain the result of a measurement of the output qubit of C in the computational

basis, when it is executed on x.1 In this context the main question is the following: What security guarantees

can DQC protocols achieve, and at what cost?

To gain an understanding of the current landscape around this question we briefly discuss the most

relevant known results, referring to [GKK] for a more extensive treatment. First we note that DQC protocols

come with two related but seemingly independent types of security guarantee: blindness and verifiability. A

DQC protocol is said to be blind if throughout the interaction the prover does not learn anything about the

delegated computation except for an upper bound on its size. A DQC protocol is said to be verifiable if it

is unlikely for the prover to succeed in convincing the verifier to accept a false statement. The question of

blind delegation of quantum computation was first considered by Childs [Chi01], who gave such a protocol

with quantum communication. Verifiable delegation of quantum computation was formalized in [ABOE08,

BFK09] (see also [ABOEM17, FK17]); the authors gave protocols for verifiable DQC, and just like Childs’

protocol, these protocols also require quantum communication.

Next we consider the question of efficiency of DQC protocols, focusing on the amount of quantum

communication required as a measure of the verifier’s “quantum effort”. A first class of protocols, such as

those from [ABOE08, BFK09], are known as prepare-and-send protocols. This is because the verifier is

required to prepare a number of small quantum states and send them to the prover. In [ABOE08] the size

of these quantum states (i.e. the number of qubits) depends on the protocol’s soundness (the probability that

the verifier accepts an incorrect outcome). In [FK17] the verifier is only required to prepare a number of

single-qubit states that depends on the protocol’s soundness. A second class of protocols is receive-and-

measure protocols such as [HM15,FHM18], in which the verifier receives single qubits from the prover and

is required to measure them in one of a small number of possible bases. The protocol that requires the least

quantum capability from the verifier is the one from [FHM18]; in their protocol, the verifier only needs to

1For simplicity we restrict to circuits that take classical inputs and return a single classical output bit obtained as the result of a

measurement that is promised to return a particular value, 0 or 1, with probability at least 2
3 . This setting corresponds to delegating

decision problems, i.e. problems in which the output is a single bit. Our results also apply to the setting of relational or sampling

problems for which the output consists of multiple bits.
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measure the single qubits it receives one at a time in one of two bases, computational and Hadamard. The

most communication-efficient protocols fall in the prepare-and-send category and require a total amount of

quantum communication that scales as O(T log(1/δ)) where δ is the soundness error [KW17]; the most

efficient protocols in the second category have a cubic dependence on T.

All the aforementioned protocols provide information-theoretic security (for either blindness or verifia-

bility), and all require some limited but nonzero quantum capability for the verifier. In a recent breakthrough

Mahadev introduced the first entirely classical protocol for DQC [Mah18b]. The protocol operates in the

Hamiltonian model of quantum computation, in which instead of directly performing the computation C the

prover encodes the outcome of C in the smallest eigenvalue of a local Hamiltonian HC.2 The goal of the

protocol is for the prover to provide evidence that it has prepared an eigenstate |ψ〉 of HC with associated

eigenvalue strictly smaller than a. At the heart of Mahadev’s result is a commitment procedure that allows

the prover to commit to individual qubits of |ψ〉, and subsequently reveal a measurement outcome for a basis

of the verifier’s choice, using classical communication alone.

The fact that the verifier in Mahadev’s protocol is entirely classical marks a major departure from pre-

vious works, yet it comes at a cost in terms of security and efficiency. The security of the protocol is

computational and rests on the post-quantum security of the learning with errors problem (LWE); moreover,

the protocol is not blind, as the circuit has to be communicated to the prover so that it can determine HC

and prepare an eigenstate.3 In terms of efficiency, the transformation from circuit to Hamiltonian results in

an eigenvalue estimation problem that needs to be solved with accuracy at least b− a = O(1/T2) for the

best constructions known [BC18]. As a result the prover has to prepare Ω(T2) copies of the ground state,

which implies that at least Ω(nT2) single qubits have to be sent by the prover. Moreover, preparation of a

smallest eigenvalue eigenstate |ψ〉 of HC requires a circuit whose depth scales linearly with T, rather than

with the depth of C. This induces a large overhead on the prover’s side when the circuit C has low depth but

high width4.

Finally, and arguably most importantly, the protocol is monolithic and not obviously composable: while

it solves the desired task of verification of quantum computation, it is not at first clear how or even if the

protocol can be simplified to solve more elementary problems (e.g. verifying the preparation of a single qubit

state or verifying the application of an elementary quantum operation) or combined with other cryptographic

primitives (e.g. to remove or reduce quantum communication in a larger protocol).

Our work is motivated by the following question: does there exist a delegation protocol for quantum

computation that combines the appealing feature of having an entirely classical verifier while maintaining

the relative efficiency (small polynomial overhead), simplicity (prover’s computation is as close as possible

to direct computation of delegated circuit), and security guarantees (verifiability, blindness, composability)

of protocols with quantum communication?

1.1 Our results

We answer the question in the affirmative by providing an efficient, composable classical protocol for blind

and verifiable DQC. The honest prover in our protocol only needs to implement the desired computation,

2If the circuit returns 0 with probability at least 2
3 , the smallest eigenvalue is smaller than a threshold a, and if it returns 0

with probability less than 1
3 , the smallest eigenvalue is larger than a threshold b > a (this is generally referred to as the “Kitaev

circuit-to-Hamiltonian construction” [KSVV02]).
3The protocol can in principle be made blind by combining it with a scheme for quantum homomorphic encryption [Mah18a]

but this introduces yet another layer of complexity.
4Such circuits are highly parallelizable and one might hope for the complexity of delegating one to scale with depth rather than

with total circuit size.
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expressed as a computation in the measurement-based model of computation, together with a sequential

pre-processing phase consisting of a number of rounds that depends on the circuit size but such that the

complexity of implementing each round scales only with the security parameter. The protocol combines

the benefits of the best prepare-and-send quantum-verifier protocols for DQC but requires only classical

communication; the downside is that our protocol is computationally sound.

Our DQC protocol is based on a basic quantum functionality that we develop and that we believe has

wider applicability than the specific application to DQC. More precisely, we provide a computationally

sound and composable protocol for the following two-party task, termed random remote state preparation

(RSP): Alice (whom we will later identify with the verifier) receives either a uniformly random bit b ∈
{0, 1} or a uniformly random value θ ∈ Θ = {0, π

4 , . . . , 7π
4 } and Bob (whom we will later identify with

the prover) receives the single-qubit state |b〉, in the case when Alice gets b, or the state |+θ〉 = 1√
2
(|0〉+

eiθ |1〉), in the case when Alice gets θ. Informally, this amounts to Alice having the ability to “steer” a

random state |+θ〉 (or |b〉) within Bob’s workspace, using classical communication only, and such that Bob

does not learn the value of θ (or b, respectively). (The actual functionality is slightly more complicated; see

Section 1.2 and Figure 1.)

The idea for RSP was introduced by Dunjko and Kashefi [DK16]. The main functionality they consider

is a weaker variant of RSP termed random remote state preparation with blindness, or RSPB. Intuitively, the

latter functionality ensures that Bob learns no information about θ, but it allows him to receive a state that is

different from |+θ〉. The authors show that RSPB (and variants of it) can be composed with a prepare-and-

send protocol due to [BFK09] to achieve blind (but not verifiable) delegated computation. In [CCKW18] a

candidate implementation of RSPB is given and shown secure against a limited class of adversaries referred

to as “honest-but-curious” adversaries. The authors of [DK16] also discuss a stronger form of their primitive,

called RSPS (for strong), and observe that it can be used to achieve blind and verifiable DQC by composing

it with the protocol of [FK17]. The authors do not, however, provide any instantiation of RSPS (other than

the trivial one, using quantum communication).

Our main contribution is to define an ideal functionality, denoted RSPV (random remote state prepara-

tion with verification),5 and show that it can be implemented using a protocol having computational security

and classical communication (see Theorem 4.2 for a formal statement and Section 1.2 for a definition of

RSPV):

Theorem 1.1 (Informal). Assuming the learning with errors problem is computationally intractable for ef-

ficient quantum algorithms, there exists a protocol with classical communication that implements the func-

tionality RSPV within distance ε > 0 and which has O(1/ε3) communication complexity.

Here, by “implements within distance ε”, we mean that any efficient quantum circuit has advantage at most

ε in distinguishing the real remote state preparation protocol from the ideal functionality RSPV .

To show this result we introduce a protocol for remote state preparation and show that it is secure based

on the learning with errors problem. This is achieved by building on ideas from [BCM+18b, Mah18b] as

well as from the literature on rigidity, self-testing, and quantum random access codes. Since this is our main

technical contribution, we explain the protocol in more detail in Section 1.3 below.

We view RSPV as a fundamental resource for the construction of interactive protocols that involve

classical communication between classical and quantum parties. For our result to be as widely applicable as

5It is not hard to verify that RSPV is functionally equivalent to RSPS, in the sense that either functionality can be used to

implement the other using a simple protocol. Since the definitions are syntactically different, we use a different name to avoid

confusion.
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possible, we establish security of our protocol in the abstract cryptography (AC) framework [MR11]. This

allows one to use the primitive as a building block in other protocols.

As a specific example of the versatility of RSP we obtain a new protocol for DQC that only requires

classical communication. The most natural protocol to which our construction applies is the delegated

computation protocol from [FK17]. As already observed in [DK16], having a remote state preparation

functionality immediately yields a blind and verifiable protocol for DQC with classical communication and

computational soundness (we explain this in more detail in Section 1.4). The resulting protocol is more

“direct” than the Mahadev protocol, in the sense that in our construction the operations that the prover has

to perform are closer to the quantum computation that the verifier is delegating. (The protocol from [FK17]

operates in the measurement-based quantum computing model,6 but we expect that protocols in the circuit

model such as [Bro18] can also be implemented from RSPV ; see Section 1.4 for a discussion.)

If one assumes that RSPV can be implemented at unit cost then the protocol we obtain is also more

efficient than Mahadev’s: for fixed soundness error, δ, the number of operations performed by the prover

scales linearly in the size of the delegated circuit and polynomially in the security parameter of the protocol.

Unfortunately, our current version of RSP does not have unit cost. Furthemore, the number of uses of RSP

required is linear in the circuit size, T. This implies that each use must be implemented with error O(δ/T).
With our current analysis, assuming we take δ to be a constant, this results in a total communication that

scales as O(T4) (see Section 5 for a more fine-grained analysis). This is not as good as the quasi-linear

complexity of prepare-and-measure protocols that use quantum communication. It is important to note,

however, that the added overhead of the protocol stems from RSPV . Thus, any improvement in the com-

plexity of doing the state preparation will lead to an improvement in the complexity of the resulting DQC

protocol. We believe reducing the overhead of RSPV is possible and mention a potential way of achieving

this in Section 1.4 below. We also note that our protocol consists of a sequence of simple tests that play a

similar role to the Bell test in multi-prover entanglement-based protocols for DQC [RUV13]. The protocol

allows for a constant fraction of failed tests, so that a partially faulty device may in principle be used to

implement the protocol successfully.

Before proceeding with more details of our approach it may be useful to briefly address the following

question: can one use the protocol from [Mah18b] directly to implement RSP? Specifically, couldn’t one

enforce that the prover prepares a small-eigenvalue eigenstate of the Hamiltonian Hθ = − |+θ〉〈+θ |? In

fact it is not at all straightforward to do this. The reasons are related to aspects of the Mahadev protocol

discussed earlier. First, the committment procedure results in a state that can be measured in one of two

possible bases, but it is not clear if any other form of computation besides a direct measurement can be

performed on the committed qubit. Second, the guarantee provided is only that the state “exists” (i.e. the

Hamiltonian has a small-eigenvalue eigenstate), but not that the state has actually been prepared by the

prover. Finally, the information that the prover may have about the state it prepared is not explicitly limited

(in the protocol from [Mah18b] the prover learns a classical description of the Hamiltonian, hence, in this

case, the value of θ); forcing the prover to prepare an unknown state may require adding an additional layer

of (quantum) homomorphic encryption to the protocol.

1.2 Remote state preparation: ideal resource

We formulate our variant of RSP as a resource in the abstract cryptography framework [MR11]. Abstract

cryptography (AC), similar to universal composability (UC) [Can01], is a framework for proving the security

6It should be noted that the translation from the circuit model to MBQC incurs only a linear increase in overhead and this is also

true for the protocol from [FK17], as explained in [KW17].
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of cryptographic protocols in a way that ensures that the protocols can be securely composed in arbitrary

ways. Informally, the idea is to argue that a given protocol, which we refer to as the real protocol, is

indistinguishable from an ideal functionality (or resource) that captures precisely what honest or dishonest

parties should be able to achieve in the protocol. This involves proving two things: correctness, meaning that

any efficient family of circuits (known as a distinguisher) that interacts either with an honest run of the real

protocol or with the ideal functionality has a negligible advantage in deciding which it is interacting with;

security, meaning that any attack that a malicious party could perform in the real protocol can be mapped to

an attack on the ideal functionality. This latter property is formalized by saying that there exists an efficient

family of (quantum) circuits, known as a simulator, such that any distinguisher interacting with the ideal

functionality and the simulator, or with the real protocol involving only the honest parties, has negligible

advantage in deciding which it is interacting with. Showing that such a simulator exists is usually the main

difficulty in proving security in AC. Since the existing results on the composability of DQC protocols are

expressed in the AC framework, we also present our results in AC. For more details on the framework we

refer to Section 2.4 and [MR11,DFPR14]. For the purposes of this introduction we assume basic familiarity

with the framework.

We denote our variant of the ideal RSP by RSPV , for random Remote State Preparation with Verifi-

cation. The name is chosen in direct analogy to the resource RSPB of random Remote State Preparation

with Blindness introduced in [DK16]. The resource RSPV is represented schematically in Figure 1. In the

resource, Alice inputs a bit W ∈ {X, Z} that denotes a measurement basis, computational (W = Z) or

Hadamard (W = X). Bob inputs a bit c ∈ {0, 1} that denotes honest (c = 0) or malicious (c = 1) behavior.

If c = 0 then in the case when W = Z Alice receives a uniformly random bit b ∈ {0, 1} and Bob receives

the state |b〉; in the case when W = X Alice receives a uniformly random value θ ∈ Θ = {0, π
4 , . . . , 7π

4 }
and Bob receives the state |+θ〉. If c = 1 both Alice and Bob receive an ERR message, indicating abort.

Alice Bob

b←U {0, 1}, θ ←U Θ

(s, ρ) =











(b, |b〉) if c = 0 & W = Z,

(θ, |+θ〉) if c = 0 & W = X,

(ERR, |ERR〉) if c = 1.

W

s

c

ρ

Figure 1: The resource RSPV . It chooses b uniformly at random from {0, 1} and θ uniformly at random

from Θ = {0, π
4 , . . . , 7π

4 }. It takes W ∈ {X, Z} as input from Alice and c ∈ {0, 1} as input from Bob.

When c = 0 it outputs either b to Alice and |b〉 to Bob, if W = Z; or θ to Alice and |+θ〉 to Bob, if W = X.

When c = 1 it outputs ERR to Alice and |ERR〉 to Bob.

Note that the resource RSPV can almost be understood as a communication channel from Alice to Bob

that would allow Alice to select one of 10 possible single-qubit states |0〉 , |1〉, or |+θ〉 for θ ∈ Θ and send

it to Bob. There are two differences: first, Alice does not choose the state, but instead the functionality

chooses it uniformly at random and tells Alice what it is. Second, Bob may decide to block the channel,
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in which case both parties receive an error message. This in contrast with the weaker resource of RSPB,

also introduced in [DK16] and for which [CCKW18] give a real protocol with security against “honest-but-

curious” adversaries, in which Bob is allowed to select the family of states {ρθ} that it receives (by explicitly

specifying them to the resource).7 The resource RSPV allows less flexibility to a dishonest user, making

it more useful as a building block. In particular, the rigidity of Bob’s output state is essential to obtain a

protocol that is verifiable.

1.3 Remote state preparation: real protocol

In the previous section we defined the ideal functionality for remote state preparation with verifiability,

RSPV . In this section we describe a protocol that we prove is computationally indistinguishable from the

ideal functionality. The protocol builds on ideas from [BCM+18b] and [Mah18b]. The main difficulty in

the implementation of RSPV is to obtain verifiability, i.e. the guarantee that an arbitrary (computationally

bounded) prover successfully interacting with the verifier must have prepared locally the correct state, and

yet have obtained no more information (computationally) about the state itself than could be gained had the

state been sent directly by the verifier (or the ideal resource). To achieve this we significantly strengthen

the rigidity argument from [BCM+18b] by giving more control, and freedom, to the verifier in the kinds of

states that are prepared.

In the real protocol, that we call the buffered remote state preparation protocol (BRSP), Alice and Bob

interact through two communication resources: a classical channel as well as a measurement buffer. The

measurement buffer takes as input a classical message M from Alice, and from Bob a specification (as a

quantum circuit) of a measurement for each of the possible messages of Alice, as well as a state on which the

measurement is to be performed (as a quantum state). The buffer then performs the measurement associated

with Alice’s message, forwards the outcome to Alice, and returns the post-measurement state to Bob.

Alice Bobr← F (M)(ρ)

M

r

F
ρ

r, [F (M)(ρ)]r

Figure 2: The measurement buffer. Alice inputs a message M. Bob inputs a specification F which takes

as input Alice’s message and returns a measurement F(M). Bob also inputs a state ρ. The buffer measures

ρ with F(M) producing classical outcome r and the post-measurement state denoted [F(M)(ρ)]r . Both

Alice and Bob receive r and Bob also receives [F(M)(ρ)]r .

The necessity of relying on a measurement buffer to obtain a secure protocol is a consequence of the use

of rigidity to obtain verifiability. Rigidity arguments require the assumption that, in an execution of the real

protocol, the measurements implemented by Bob are “local”; in other words, that the simulator constructed

in the security proof can interact directly with those measurements. In the AC framework, in general, a

malicious Bob may “delegate” any measurements that it wishes to make to the environment8 , which would

render them inaccessible to the simulator. By constructing the protocol from a measurement buffer resource

7The ρθ should satisfy the consistency condition shown in (6), which says that it is possible to generate the state ρθ by performing

a θ-dependent measurement on a fixed state ρ; we refer to [DK16] for details.
8In AC and UC, the environment represents anything that is external to the protocols under consideration [Can01, MR11]. This

can include other protocols, other parties etc.
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we explicitly prevent such behavior from Bob. (Note that the use of the buffer does not prevent Bob from

sharing entanglement with the environmnent, or from exchanging quantum states with it in-between any two

uses of the measurement buffer.) While the measurement buffer is necessary to obtain composable security,

the use of this resource can be omitted when considering stand-alone security only (since in that case, there

is no environment). Finally, note that the measurement buffer is not a “physical” resource of the protocol; in

an actual run of the protocol Alice and Bob interact only classically. The buffer is discussed in more detail

in Section 4.

We proceed with an informal description of the protocol and its analysis. Our starting point is the

work [BCM+18b], in which the authors give a classical protocol between a verifier and prover such that

provided the prover is accepted with non-negligible probability in the protocol, it is guaranteed that a subset

of the values returned by the prover contain information-theoretic randomness. This guarantee holds as long

as the prover is computationally bounded, and more specifically that it does not have the ability to break the

learning with errors (LWE) problem while the protocol is being executed.

We observe that the proof of [BCM+18b] explicitly establishes a stronger rigidity statement whereby

the prover is guaranteed, up to a local rotation on its workspace, to have prepared a |+〉 state and measured it

in the computational basis (hence the randomness). Formulated differently, the protocol from [BCM+18b]

implements a weak variant of RSPV in which only the option W = Z is available to Alice. This is not

sufficient for delegated computation, but it is a starting point.

To generate the other states needed for RSPV we need to go deeper in the protocol from [BCM+18b].

At a high level, the idea is to engineer the preparation of a state of the form

1√
2

(

|0〉 |x0〉+ |1〉 |x1〉
)

, (1)

where x0, x1 ∈ {0, 1}w are bitstrings defined as the unique preimages of an element y, provided by the

prover to the verifier, under a claw-free pair of functions f0, f1 : {0, 1}w → Y , where Y is some finite range

set. For the purposes of this discussion it is not important how the state (1) is obtained, as long as we can

guarantee that the prover prepares such a state.

In [BCM+18b] the next step is to ask the prover to measure the second register in the Hadamard basis

(i.e. implement the Fourier transform over Zw
2 and then measure in the computational basis). Labeling the

outcome as d ∈ {0, 1}w, the first qubit is projected to the state 1√
2
(−1)d·x0(|0〉 + (−1)d·(x0⊕x1) |1〉) that

provides the basis for the randomness generation described earlier.

Consider the following simple modification: by thinking of x0, x1 as elements of Z
w/3
8 (assuming w

is a multiple of 3) instead of {0, 1}w , we can ask the prover to implement the Fourier transform over Z8,

yielding an outcome d ∈ Z
w/3
8 and a post-measurement state

|ψθ〉 =
1√
2

ωd·x0(|0〉+ ωd·(x0+x1) |1〉) , (2)

where ω = e
2iπ

8 and the addition and inner product are taken modulo 8. Up to a global phase this is precisely

the state |+θ〉, for θ = π
4 d · (x0 + x1).

So far the argument establishes completeness: if Alice and Bob follow the protocol, Alice obtains an

angle θ and Bob obtains the state |+θ〉. Moreover, using a slight extension of the adaptive hardcore bit

statement from [BCM+18b] it is not hard to show that the value of θ is computationally indistinguishable

from uniform from Bob’s perspective. The main difficulty is to argue that the prover must have created

precisely the state |ψθ〉 in (2), and not for instance a related state such as |ψ3θ〉. Note that this would be

allowed in RSPB, but it is not in RSPV .
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In order to show that the prover must have a state that is equal, up to an isometry, to a state of the

form |ψθ〉 we combine rigidity arguments similar to those employed in [BCM+18b] with a new idea: we

introduce a test that asks the prover to demonstrate that the state it has prepared implements a near-optimal

2 7→ 1 quantum random access code (QRAC). A 2 7→ 1 QRAC is a procedure that encodes two classical

bits into a single qubit, in a way that maximizes the success probability of the following task: given a request

for either the first or the second bit (chosen with equal probability), perform a measurement on the single

qubit that returns the value of that bit with the highest possible probability. As shown in [ALMO08] the

optimum success probability of this task is 1
2 +

1
2
√

2
, and is achieved by encoding the two bits in one of the

four single-qubit states |+0〉 , |+ π
2
〉 , |+π〉 and |+ 3π

2
〉. More specifically, if the input bits are denoted b1, b2,

then the QRAC state is |+b1π+b2
π
2
〉. Moreover, the optimal measurement for predicting one bit or the other

is a measurement in the basis {|+ π
4
〉 , |+ 5π

4
〉}, if b1 is requested, or {|+ 3π

4
〉 , |+ 7π

4
〉}, if b2 is requested.

We extend the optimality proof from [ALMO08] to show that even a near-optimal family of states and

measurements must be close, up to a global rotation, to the ones described above. Next we enforce that the

prover’s states and measurements implement a near-optimal 2 7→ 1 QRAC by asking that the prover success-

fully predict certain bits of θ, given partial information about it. For example, the verifier can reveal to the

prover that θ ∈ {π
2 , 3π

2 } and ask which is the case; the prover should be able to answer with probability 1 by

performing the appropriate measurement. Or the verifier can reveal that θ ∈ {|+0〉 , |+ π
2
〉 , |+π〉 , |+ 3π

2
〉}

and ask the prover to guess one additional bit of θ; the prover should be able to succeed with probability
1
2 +

1
2
√

2
.

Making use of the rigidity argument to establish composable security requires the simulator to have

access to Bob’s measurement operators. For this reason, while most communication steps of the protocol

can be implemented using a classical communication channel, in the last step of the protocol, described in

the previous paragraph, the communication takes place through a measurement buffer: Alice inputs partial

information about θ, and Bob inputs a description of the measurement that he would have performed on each

of Alice’s possible questions, together with the quantum state on which the measurement is to be performed.

The complete argument is given in Section 3. We introduce a sequential protocol that consists of a

number N of tests, followed by a random stopping time. We show that any behavior of the prover that

has non-negligible probability of passing a fraction of tests that is within a small enough constant of the

optimal fraction is such that the following property holds: at the end of the protocol, the state of the prover

is unitarily equivalent to a state that is computationally indistinguishable (up to a small computational error

that depends on N and other parameters of the protocol) from a state of the form |ψθ〉 together with some

θ-independent side information.

1.4 Application: delegated computation

Having defined the ideal RSPV functionality as well as the real protocol that implements this functionality

from classical channels, we now discuss applications. As mentioned, the most natural application of RSP is

to verifiable delegated quantum computation. Intuitively, the idea is the following: suppose Alice wishes to

delegate C(x) to Bob, for some quantum circuit C having T gates. Using the measurement-based protocol

from [FK17], if Alice were to send Bob O(T log(1/δ)) randomly chosen states, from the ten possible

choices mentioned earlier (the |+θ〉 states, with θ ∈ Θ, and the |0〉, |1〉 states), she would be able to delegate

C(x) to Bob and the protocol would have soundness error at most δ. The RSPV functionality allows her

to do exactly this, using classical communication alone. Of course, unlike the protocol of [FK17], the

security of this construction would be computational, rather than information-theoretic. To summarize, in

the delegation protocol Alice first executes RSPV a certain number of times with Bob in order to prepare
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the required resource states in Bob’s quantum memory. She then engages in the protocol of [FK17] as if she

had sent the random states to Bob.

How many times does Alice need to execute RSPV? To delegate the circuit of size T and achieve

soundness error δ, the number of executions must clearly be at least Ω(T log(1/δ)). If the real protocol

used to implement RSPV prepared the intended states exactly, then we would have exactly that many runs.

Of course, this is not the case, and we need to account for the failure probability of the real protocol, which

we denote as ε. It was shown in [DFPR14, GKW15] that the protocol of [FK17] is robust to deviations in

the collective state of the resource qubits. If there are M such qubits, and the error per state is ε then by the

triangle inequality it follows that the deviation of the whole state is at most Mε. We therefore need to choose

ε = O(δ/M) and since M = Ω(T log(1/δ)), this means that ε = O
(

δ
T log(1/δ)

)

. As shown in Section 3,

to achieve error at most ε, the real protocol associated to RSPV must have a running time of O(1/ε3).
Putting everything together, this leads to a total number of operations that scales as O((T4/δ3) log4(1/δ)).
Ideally, one may hope for an implementation whose communication is linear in T. It may be possible to do

this by considering a single-use parallel version of our protocol, whereby all states would be generated in a

single iteration. Achieving this is likely to be technically challenging, and we leave the possibility open for

future work.

In the language of AC, the ideal functionality for verifiable DQC has already been defined in [DK16].

What we show is that this functionality is computationally indistinguishable from the real protocol described

earlier. To do this we first adapt the definitions of DQC resources to the setting of computational security.

We then show that the results pertaining to those resources in the information-theoretic case also hold in the

case of computational security. This is done in Section 5. Finally, we show that the RSPV functionality can

be used to implement the computational DQC functionalities. It follows that the real protocol we described

is computationally indistinguishable from the ideal DQC resource.

As already mentioned one of the main advantages to proving the security of RSPV in the AC framework

is that one can directly plug this primitive into other existing protocols. Aside from DQC, a related appli-

cation is to multi-party quantum computation (MPQC). In [KP17] the authors define AC functionalities

for multi-party quantum computation. Their protocol consists of a number of clients, each having its own

input, that wish to delegate a computation on their collective inputs to a quantum server. Its security, as

defined in [KP17], is guaranteed in the settings where either the server is malicious (but the clients are not),

or a subset of clients is malicious (but the server behaves honestly). The protocol works by having the

clients perform a remote state preparation protocol, in which the clients send quantum states to the server. It

then proceeds in a manner similar to the single-client DQC protocols. In principle, remote state preparation

could be replaced with our RSPV primitive, leading to an MPQC protocol in which the clients and the

server use only classical communication. We leave the formalization of this intuition to future work.

Upon completion of this work we became aware of the independent work “QFactory: classically-

instructed remote secret qubits preparation” by Cojocaru, Colisson, Kashefi and Wallden. Using our ter-

minology, their main result is the design of a protocol for RSPB, the blind variant of RSP, that they prove

computationally secure.

Outline. We start with Section 2, which contains the preliminaries for this work. Most notably, in this

section we recast some of the definitions pertaining to composability of DQC protocols, expressed in the AC

framework, in the setting of computational, rather than information-theoretic security. Then, in Section 3,

we describe the remote state preparation protocol and prove the rigidity statement about its functionality. In

other words we show that, provided the verifier accepts with non-negligible probability, the prover’s state is
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close (up to an isometry) to the ideal random state that the verifier receives a description of. In the proof,

we make use of an extended noisy trapdoor claw-free function family, for which we provide the relevant

definitions in Appendix A, as well as present the properties of these functions that we require. Next, in

Section 4 we describe the ideal RSPV functionality and prove, in the AC framework, that the protocol from

Section 3 implements this functionality from classical channels, under computational assumptions. Having

done this, we end in Section 5 by showing that the ideal RSPV functionality can be used to implement

the functionality for blind and verifiable delegated quantum computation. From the previous results, this

implies that one can have a computationally secure DQC protocol by using our RSP primitive to prepare the

quantum states used by that protocol. The specific DQC protocol we consider is the one from [FK17].
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2 Preliminaries

2.1 Notation

We write H for a finite-dimensional Hilbert space, using indices HA, HB to specify distinct spaces. L(H)
is the set of linear operators onH. We write IdA ∈ L(HA) for the identity operator, Tr(·) for the trace, and

TrB : L(HA ⊗HB) → L(HA) for the partial trace. Pos(H) is the set of positive semidefinite operators

and D(H) = {X ∈ Pos(H) : Tr(X) = 1} the set of density matrices (also called states).

Given A ∈ L(H), ‖A‖1 = Tr
√

A† A is the Schatten 1-norm and TD(A) = 1
2‖A‖1 the trace distance.

Given X, Z ∈ L(H) we write {X, Z} = XZ + ZX for the anticommutator and [X, Z] = XZ − ZX
for the commutator. σX , σY, σZ ∈ L(C2) are the single-qubit Pauli matrices. For an angle θ we let σX,θ =
cos θ σX + sin θ σY.

A completely positive trace-preserving (CPTP) map F : HA → HB is a linear map such that for any

HC and ρ ∈ Pos(HA⊗HC) it holds that (F ⊗ IdC)(ρ) ∈ Pos(HB⊗HC) and Tr(F ⊗ IdC(ρ)) = Tr(ρ).
We let Θ = {0, π

4 , 2π
4 , . . . , 7π

4 }. For θ ∈ Θ, |+θ〉 = 1√
2
(|0〉+ eiθ |1〉). We often identify elements of

Z8 with {0, 1, 2, . . . , 7}. For a finite set S we write x ←U S to mean that x is chosen uniformly at random

from S. A negligible function is a function δ : N → R that goes to 0 faster than any inverse polynomial,

i.e. p(λ)δ(λ)→λ→∞ 0 for any polynomial p.

2.2 Efficient states and operations

Definition 2.1. We say that a family of states {ρλ ∈ D(HAλ
)}λ∈N is efficiently preparable (or just

“efficient”) if there exists a polynomial-time uniformly generated9 family of circuits {Cλ}λ∈N acting on

HAλ
⊗HBλ

such that

∀λ , TrBλ

(

Cλ(|0〉〈0|Aλ
⊗ |0〉〈0|Bλ

)
)

= ρλ .

9By “polynomial-time uniformly generated we mean that there exists a Turing machine T that on input 1λ returns a description

of the circuit Cλ using some fixed finite universal gate set.
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Definition 2.2. We say that a family of CPTP maps {Fλ : L(HAλ
) → L(HBλ

)}λ∈N is efficient if there

exists a polynomial-time uniformly generated family of circuits {Cλ} acting on HAλ
⊗HBλ

⊗HCλ
such

that

∀λ , ∀ρ ∈ D(HAλ
) , TrAλCλ

(

Cλ(ρ⊗ |0〉〈0|BλCλ
)
)

= Fλ(ρλ) .

2.3 Computational distinguishability

Definition 2.3. Given two families of (not necessarily normalized) density operators {ρλ}λ∈N and

{σλ}λ∈N we say that ρ and σ are computationally distinguishable with advantage at most δ(λ), and write

ρ ≈c,δ σ, if for any polynomial-time uniformly generated family of circuits {Dλ}λ∈N, known as a distin-

guisher, there is a λ0 ∈ N such that

∀λ ≥ λ0 ,
1

2

∣

∣Tr
(

D†
λ(|0〉〈0| ⊗ Id)Dλρλ

)

− Tr
(

D†
λ(|0〉〈0| ⊗ Id)Dλσλ

)
∣

∣ ≤ δ(λ) . (3)

The best δ(λ) in Definition 2.3 implicitly depends on the specific polynomial bound that is placed on

the size of the distinguisher. In this paper it will always be the case that δ(λ) = δ + negl(λ), for some

constant δ and a negligible function of λ. The size of the distinguisher will affect the negligible function;

the statement should be interpreted as saying that for any polynomial size bound on the distinguisher there

is a negligible function of λ such that (3) holds.

Lemma 2.4. For any density operators {ρλ}λ∈N and {σλ}λ∈N, {ρλ}λ∈N and {σλ}λ∈N are computation-

ally distinguishable with advantage at most ‖ρλ − σλ‖1.

Proof. For any ρ, σ and 0 ≤ D ≤ Id it holds that:

1

2

∣

∣Tr
(

D†
λ(|0〉〈0| ⊗ Id)Dλρλ

)

− Tr
(

D†
λ(|0〉〈0| ⊗ Id)Dλσλ

)∣

∣ ≤ ‖ρλ − σλ‖1 (4)

Lemma 2.5. For b ∈ {0, 1} let {ρb
λ}λ∈N and {σb

λ}λ∈N be two families of density operators. For all λ,

let ρλ = ∑b |b〉〈b| ⊗ ρb
λ and σλ = ∑b |b〉〈b| ⊗ σb

λ. Suppose that {ρλ} and {σλ} are distinguishable with

advantage at most δ(λ). Then for b ∈ {0, 1}, {ρb
λ} and {σb

λ} are distinguishable with advantage at most

δb(λ) where δ0(λ), δ1(λ) are such that |δ0(λ) + δ1(λ)− δ(λ)| = negl(λ).

Proof. For b ∈ {0, 1} fix a family of efficient distinguishers {Db
λ} for {ρb

λ} and {σb
λ} with advantage

δb(λ). Then the distinguisher D = |0〉〈0| ⊗D0 + |1〉〈1| ⊗D1 is efficient and has distinguishing advantage

δ0(λ) + δ1(λ) for {ρλ} and {σλ}. This shows that δ0(λ) + δ1(λ) ≤ δ(λ). Conversely, let {Dλ} be an

efficient distinguisher for {ρλ} and {σλ} with advantage δ(λ). Then

∣

∣Tr(D†
λ(|0〉〈0| ⊗ Id)Dλρλ)− Tr(D†

λ(|0〉〈0| ⊗ Id)Dλσλ)
∣

∣

≤∑
b

∣

∣Tr((Db
λ)

†(|0〉〈0| ⊗ Id)Db
λρb

λ)− Tr((Db
λ)

†(|0〉〈0| ⊗ Id)Db
λσb

λ)
∣

∣ ,

where Db
λ is the efficient distinguisher that initializes an ancilla qubit to state |b〉〈b| and then runs Dλ.
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2.4 Composable security

Abstract cryptography (AC) is a framework for proving the security of protocols under composition. For

example if protocols π1 and π2 are shown to be secure in the AC framework then their sequential composi-

tion π1 ◦ π2 or parallel composition π1|π2 is automatically secure as well. For an in-depth introduction to

the framework of abstract cryptography specialized to the present context of two-party quantum protocols

we refer to [DFPR13]. Here we briefly recall the key notions and terminology.

The actions of the two players, generally called Alice and Bob, in a two-party protocol π are specified

by a sequence of CPTP maps πA = {Ei : L(HAC)→ L(HAC)}i and πB = {Fi : L(HCB)→ L(HCB)}i,

where A and B are Alice and Bob’s private registers respectively, and C represents a communication channel.

In AC the channel C is modeled as a resource R, where in general a resource is itself represented as a

sequence of completely positive trace-preserving (CPTP) maps with internal memory.

In the AC framework a protocol can be thought of as a process that constructs a resource, S , from some

other resource, R. For instance, a protocol πAB = (πA, πB) can construct an ideal resource for delegated

quantum computation from a resource consisting of classical and quantum channels. The resource πAR
obtained by plugging in one player’s strategy into the resource is another resource, itself modeled as a

sequence of CPTP maps, that can be thought of as a quantum strategy as defined in [GW07]. When both

Alice and Bob follow the protocol while interacting with the resource R we write πABR, or πARπB.10

Note that πARπB is again itself a resource, having input and output interfaces for both Alice and Bob.

Since the goal in the AC framework is to show that certain resources are indistinguishable from each

other, we need a notion of distinguishability of resources. Informally, two resources R1 and R2, each

modeled as a sequence of CPTP maps with input and output spaces of compatible dimension, are compu-

tationally distinguishable with advantage at most ε if no efficient distinguisher D (itself represented as a

family of efficient CPTP maps) can distinguish an interaction with R1 from an interaction with R2. Here,

the distinguisher is allowed to create an initial state as input to the resource (the state can be entangled with

a reference system kept by the distinguisher); then, upon having received the output of the first map, it can

modify it in an arbitrary (efficient) way and input it to the second map, etc., until it is required to make an

(efficient) measurement on the output of the last map (and its own reference system) in order to return a

guess for the resource with which it was interacting. We write the composition of D and Ri, for i ∈ {1, 2},
as DRi; this is a resource that takes no input and outputs a single bit.

Definition 2.6. Let ε = ε(λ) ∈ [0, 1] be a function of a security parameter λ ∈ N, and let R1 and R2

be two resources having input and output spaces of the same dimension. We say that R1 and R2 have

distinguishing advantage ε if for all efficient distinguishers D it holds that |Pr(DR1 = 1) − Pr(DR2 =
1)| ≤ ε. We write this as:

R1 ≈c,ε R2 . (5)

With this definition we have the following.

Definition 2.7. Let ε = ε(λ) ∈ [0, 1] be a function of a security parameter λ ∈ N. We say that a protocol

π = (πA, πB) constructs a resource S from a resource R with (computational) error (or distance) ε if:

• Correctness: πABR ≈c,ε S .

• Security: There exists an efficient simulator σ such that πAR ≈c,ε Sσ.

(Here πAB, R, S and σ may all implicitly depend on λ.)

10The ordering of the protocols, πA and πB, has no special significance.
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The first condition expresses the fact that if Alice and Bob follow the instructions of the protocol, the

resulting resource behaves as the ideal one. The second condition expresses the fact that if Bob does not

follow the protocol, any attack he performs on the real protocol can be mapped to an attack on the ideal

protocol. This mapping is referred to as a simulator. Note that Definition 2.7 implicitly assumes that Alice

always behaves honestly; this need not be the case in general but always holds in the context of this paper.

2.5 Rigidity

Definition 2.8. Let finite-dimensional Hilbert spaces HA and H
A
′ and operators R ∈ L(HA) and S ∈

L(H
A
′) be functions of a parameter δ > 0 (the dependence on δ is left implicit in the notation). We say

that R and S are δ-isometric with respect to |ψ〉 ∈ HA ⊗HB, and write R ≃δ S, if there exists an isometry

V : HA → HA
′ such that

∥

∥(R−V†SV)⊗ IdB |ψ〉
∥

∥

2
= O(δ).

We sometimes write the isometry as a CPTP map Φ(R) = VRV† for R ∈ L(HA), and also write Φ(|φ〉)
for V |φ〉, Φ(σ) for VσV†. If V is the identity, then we further say that R and S are δ-equivalent, and write

R ≈δ S for ‖(R− S)⊗ IdB |ψ〉 ‖2 = O(δ).

The following can be shown by a standard application of Jordan’s lemma. Furthermore, the isometry V
can be implemented using the “swap” isometry as in [MYS12].

Lemma 2.9. Let |ψ〉 ∈ HA⊗HB and Z, X, X′ observables onHA such that {Z, X} ≈δ 0 and {Z, X′} ≈δ

0. Then there exist δ′ = O(
√

δ), an isometry V : HA → C2 ⊗H
A
′ , and Hermitian commuting AX, AY on

H
A
′ such that A2

X + A2
Y = Id and

Z ≃δ′ σZ ⊗ Id, X ≃δ′ σX ⊗ Id, and X′ ≃δ′ σX ⊗ AX + σY ⊗ AY .

Furthermore, there exists a polynomial-time algorithm that given explicit circuits implementing Z, X and

X′ as input returns an explicit circuit that implements the isometry V.

2.6 Delegated quantum computation

2.6.1 Ideal functionalities

We recall the ideal resources for blind and verifiable delegated quantum computation (DQC), as defined

in [DFPR13]. We start with blindness.

Definition 2.10 (Definition 4.1 in [DFPR13]). The ideal DQC resource Sblind which provides both correct-

ness and blindness takes an input ψA at Alice’s interface, but no honest input at Bob’s interface. Bob’s

filtered interface has a control bit b, set by default to 0, which he can flip to activate the other filtered func-

tionalities. The resource Sblind then outputs the permitted leak ℓψA at Bob’s interface, and accepts two

further inputs, a state ψB and a map description |E〉〈E|. If b = 0, it outputs the correct result U(ψA) at

Alice’s interface; otherwise it outputs Bob’s choice E(ψAB).

Next we give the definition for blindness and verifiability. The main difference is that the ideal function-

ality is no longer allowed to return an output of Bob’s choice at Alice’s interface.

Definition 2.11 (Definition 4.2 in [DFPR13]). The ideal DQC resource Sblind
veri f which provides correctness,

blindness and verifiability takes an input ψA at Alice’s interface, and two filtered control bits b and c (set
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by default to 0). If b = 0, it outputs the correct result U(ψA) at Alice’s interface. If b = 1, it outputs the

permitted leak ℓψA at Bob’s interface, then reads the bit c, and conditioned on its value, it either outputs

U(ψA) or |ERR〉 at Alice’s interface.

We provide the definitions of the ideal resources for two variants of random remote state preparation

introduced in [DK16]:

Definition 2.12 (Definition 11 in [DK16]). The ideal resource called the strong random remote state prepa-

ration (RSPS) has two interfaces A, and B, standing for Alice and Bob. The resource first selects an angle θ

(from the set of 8 states) chosen uniformly at random. Bob’s interface has a filtered functionality compris-

ing a bit c which Bob can pre-set to zero or one, depending on whether he will behave maliciously. If Bob

pre-sets c = 0, the resource outputs the state |+θ〉〈+θ| on Bob’s interface. If Bob pre-sets c = 1, it awaits

a description of a CPTP map E from Bob. Once the set is received, the functionality outputs E(|+θ〉〈+θ|)
at Bob’s interface. In both cases, the resource outputs the angle θ at Alice’s interface.

Definition 2.13 (Definition 8 in [DK16]). The ideal resource called the random remote blind state prepa-

ration for blindness RSPB has two interfaces A, and B, standing for Alice and Bob. The resource first

selects a θ chosen uniformly at random. Bob’s interface has a filtered functionality comprising a bit c
which Bob can pre-set to zero or one, depending on whether he will behave maliciously. If Bob pre-sets

c = 0, the resource outputs the state |+θ〉〈+θ| on Bob’s interface. If Bob pre-sets c = 1, it awaits the set

{(θ,
[

ρθ
]

)}θ from Bob, where
[

ρθ
]

denotes the classical description of a quantum state, with the property

that ρθ + ρθ+π = ρθ′ + ρθ′+π, ∀θ, θ′. If the states Bob inputs do not satisfy the property above, the ideal

functionality ignores the set Bob has input and awaits a new valid set. Once the set is received, the function-

ality outputs ρθ at Bob’s interface. In both cases, the resource outputs the angle θ at Alice’s interface.

Briefly, the difference between RSPS and RSPB is as follows. In RSPS if Alice accepts she receives a

random angle θ, and Bob receives E(|+θ〉), for some CPTP map E , that is independent of θ. In the weaker

RSPB, the possible states, {ρθ}θ∈Θ, that Bob receives should satisfy

ρθ + ρπ+θ = Id . (6)

Importantly, there is no requirement that Bob’s state is the correct |+θ〉 state, up to to the action of an

independent CPTP map. It is precisely the possibility that the deviation map can depend on θ that makes

RSPB unsuitable for verifiability (though it does provide blindness).

2.6.2 Local criteria

Dunjko et al. [DFPR13] give “local” criteria, δ-local-blindness and independent δ-local-verifiability, that

can be used to establish the security of a protocol for delegated quantum computation in the AC framework.

Their definitions are geared to showing information-theoretic security. We adapt them to the setting of

computational security, as follows.

Definition 2.14. A DQC protocol provides δ-local-blindness if for all efficient adversaries {Fi : L(HCB)→
L(HCB)} in the protocol there is an efficient CPTP map F : L(HB) → L(HB) such that for all efficiently

preparable ψABR,

TrA ◦ PAB(ψABR) ≈c,δ F ◦ TrA(ψABR) , (7)

wherePAB is the map corresponding to an execution of the protocol with an honest Alice and a Bob specified

by the mapsFi and ◦ denotes composition. When no map acts on a space, it is to be assumed that the identity

is applied.
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Definition 2.15. A DQC protocol provides independent δ-local verifiability if for all efficient adversaries

{Fi : L(HCB) → L(HCB)} in the protocol there exist efficient alternative maps {F ′i : L(HCBB′) →
L(HCBB′)} such that the following hold:

1. For all efficient initial states ψAR1
⊗ ψR2B there is a 0 ≤ pψ ≤ 1 such that

ρ
ψ
AR1
≈c,δ pψ(U ⊗ IdR1

)(ψAR1
) + (1− pψ) |ERR〉〈ERR| ⊗ ψR1

, (8)

where ρ
ψ
AR1

is the final state of Alice and the first part of the reference system;

2. For all efficient initial states ψABR,

TrA ◦QAB′ ◦ PAB(ψABR) ≈c,δ TrA ◦ P ′ABB′ , (9)

where PAB and P ′ABB′ are the maps corresponding to an execution of the protocol with an honest

Alice and a Bob specified by the maps Fi and F ′i respectively, and QAB′ : L(HA) → L(HAB′) is

a map which generates from A a system B′ that contains a copy of the information whether Alice

accepts or rejects.

The following is an analogue of [DFPR13, Corollary 6.9] for the computational setting.

Theorem 2.16. If a DQC protocol π implementing a unitary transformation U is δc-correct and provides

δb-local-blindness and independent δv-local-verifiability for all efficient inputs that are classical on A,11 for

some δc, δb, δv ≥ 0, then it constructs Sblind
veri f computationally within ε = max(δc, 2δb + 4

√
δv).

Proof. The proof is identical to the proof of [DFPR13, Corollary 6.9] except for ensuring that the simulator

is computationally efficient. The first step is to combine local-blindness and local-verifiability to obtain the

condition of local-blind-verifiability, i.e. the existence of maps F ok and F ver such that, using the notation

from Definition 2.15,

ρ
ψ
AR1R2B ≈c,δ (U ⊗ IdR1R2

⊗F ok)(ψAR1
⊗ ψR2B) + |ERR〉〈ERR| ⊗ ψR1

⊗ (IdR2
⊗F err)(ψR2B) . (10)

The maps F ok and F ver can be defined from F ′ as in the proof of [DFPR13, Lemma 6.6] as

F ok = TrB′ ◦ P ok
B′ ◦ F ′ , F err = TrB′ ◦ P err

B′ ◦ F ′ ,

where P ok
B′ and P err

B′ are the projection on the corresponding states of B′. Clearly these maps can be im-

plemented efficiently, given that F ′ can. Next we need to show that any efficient distinguisher D for (10)

contradicts either local-blindness or local-verifiability. Write

ρ
ψ
AR1R2B = φok

ARB + |ERR〉〈ERR| ⊗ φerr
RB .

If D is a distinguisher for (10) with advantage δ, by Lemma 2.5 there exist distinguishers Dok between

φok
ARB and (U ⊗ IdR1R2

⊗F ok)(ψAR1
⊗ψR2B), and Derr between φerr

RB and ψR1
⊗ (IdR2

⊗F err)(ψR2B), with

advantage δ1 and δ2 respectively such that δ1 + δ2 ≥ δ.

Consider first the case of φerr
RB. Using (7), (9) and Lemma 2.5 it follows that δ2 ≤ δb + δv. Consider

next φok
ARB. Using the triangle inequality, D must distinguish between φok

AR1R2B and pψU(ψAR1
) ⊗ φok

R2B,

11We make the restriction that the input is classical for convenience; a more general version of the theorem, with some loss in

parameters, applies to quantum inputs. See [DFPR13, Corollary 6.9] for details.
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and between pψU(ψAR1
)⊗ φok

R2B and U(ψAR1
)⊗ F ok

B (ψR2B), with advantage δ′1 and δ′2 respectively such

that δ′1 + δ′2 ≥ δ1.

Using property (8) of local verifiability and Lemma 2.5 it follows that no efficient distinguisher can

distinguish φok
AR1

from pψU(ψAR1
) with advantage larger than δv. Using that the state U(ψAR1

) is effi-

ciently preparable, a specific distinguisher would be to perform a swap test with that state. It follows that

Tr(U(ψAR1
)φok

AR1
) ≤ 2δv. Using the relation between fidelity and trace distance and Uhlmann’s theorem it

follows that ‖φok
AR1R2B− pψU(ψAR1

)⊗ φok
R2B‖1 ≤

√
4δv, so by Lemma 2.4 it holds that δ′1 ≤

√
4δv as well.

Finally, using again (7), (9) and Lemma 2.5 it follows that δ′2 ≤ δb + δv.

Having established (10) for some δ ≤ 2δb + 4
√

δv, it remains to show the existence of a simulator σB

such that π ≈c,δ Sblind
veri f σB. The simulator is identical to the simulator constructed in the proof of [DFPR13,

Theorem 5.2]: the simulator simply interacts with Bob as Alice would in the protocol π, using an arbitrary

input ψB instead of Alice’s real input ψA. This simulator is clearly efficient. The remainder of the argument

is exactly the same, and we omit the details.

3 Remote state preparation: real protocol

In this section we describe and analyze our implementation of the ideal resource for random remote state

preparation with verification, RSPV . We refer to this implementation as the real protocol (to be contrasted

with the ideal protocol/functionality, introduced in the next section). As mentioned in the introduction,

our implementation builds upon the randomness certification protocol from [BCM+18b] by, informally,

performing the protocol modulo 8 (instead of modulo 2) and adding tests inspired from the study of quantum

random access codes to verify that the prover prepares the right state, up to a local isometry.

We start by recalling the definition of a QRAC in Section 3.1, and show a new result about rigidity

of 2 7→ 1 QRAC. In Section 3.2 we introduce the main building block for our protocol; we analyze its

soundness and rigidity properties in Section 3.3. Finally, we describe and analyze our protocol for RSPV in

Section 3.4.

3.1 Quantum random access codes

Definition 3.1. A 2 7→ 1 quantum random access code (QRAC) is specified by four single-qubit density

matrices {φu}u∈{1,3,5,7} and two single-qubit observables X0 and X2. For u ∈ {1, 3, 5, 7} let u0, u2 ∈
{0, 1} be such that u0 = 0 if and only if u ∈ {1, 7} and u2 = 0 if and only if u ∈ {1, 3}.12 The success

probability of the QRAC is defined as

1

4 ∑
u∈{1,3,5,7}

1

2 ∑
i∈{0,2}

Tr
(

Xui
i φu

)

.

Let OPTQ = 1
2 +

1
2
√

2
. As shown in [ALMO08, Theorem 3], the highest possible success probability of

a single-qubit 2 7→ 1 QRAC is OPTQ. More generally, we have the following rigidity statement.

Lemma 3.2. Let {φu} and X0, X2 be a 2 7→ 1 QRAC whose success probability is at least (1− δ)OPTQ,

for some 0 ≤ δ < 1. Then
1

4 ∑
u∈{1,3,5,7}

Tr
(

{X0, X2}2φu

)

= O(δ) .

12The motivation for the somewhat obscure indexing scheme will become clear later.
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Proof. Assume without loss of generality that both observables X0 and X2 are in the plane specified by σX

and σY. Let v0 = (x0, y0, 0) and v2 = (x1, y1, 0) be the Bloch sphere representation of the eigenvalue-1
eigenvector of X0 and X2 respectively, i.e. real unit vectors such that for i ∈ {0, 2}, Xi = xiσX + yiσY.

As shown in [ALMO08, Section 3.4], the optimal success probability of any 2 7→ 1 QRAC based on

X0 and X2 is 1
2(1 + S

8 ), where S = 2‖v0 + v2‖ + 2‖v0 − v2‖. In order for the QRAC to achieve a

success probability of (1− δ)OPTQ it is necessary that ‖v0 + v2‖+ ‖v0 − v2‖ ≥ 2
√

2− 16δ. Using 4 =

‖v0 + v2‖2 + ‖v0 − v2‖2 it follows that |‖v0 + v2‖2 − ‖v0 − v2‖2| = O(
√

δ), thus |v0 · v2| = O(
√

δ).
Since {X0, X2} = 2iv0 · v2 Id, we obtain ‖{X0, X2}‖2 = O(δ).

The following simple test will be used later to estimate the success probability of a QRAC. We introduce

it here to set some notation.

Definition 3.3. Let {φu}u∈{0,1,2,...,7} be arbitrary density matrices. In the QRAC test, the prover is given φu

for a uniformly random u ∈ {1, 3, 5, 7}. The verifier sends a uniformly random θ ∈ {0, 2} to the prover,

who replies with a bit v. If v 6= uθ, the verifier sets f lag ← f ailQ .

3.2 The qubit preparation test

The qubit preparation test described in Figure 3 forms the main building block of our remote state prepara-

tion protocol. The test relies on an extended variant of the family of claw-free functions used in [BCM+18b],

introduced in [Mah18b] and called an extended noisy trapdoor claw-free family (ENTCF). We recall the

definition of an ENTCF family (F ,G) in Appendix A, where we also present the main properties needed.

For the purposes of this section it is sufficient to think of both F and G as families of pairs of functions,

( fk,0, fk,1) or (gk,0, gk,1), where k denotes a public key, such that both functions in an f -pair (also called

claw-free pair) are bijections with the same domain and range, while both functions in a g-pair (also called

injective pair) are bijections with the same domain but non-intersecting ranges, and such that moreover given

a key k it is computationally impossible to distinguish if k corresponds to a claw-free or an injective pair.

We first show a completeness property of the qubit preparation test.

Lemma 3.4 (Completeness). There is an efficient quantum prover that is accepted with probability negligi-

bly close to 1 in the security parameter λ in each of the preimage test and part A. of the Xθ-measurement

test, and with probability negligibly close to OPTQ in part B. of the Xθ-measurement test (Figure 3). More-

over, in case the verifier selects G = 0 and a key k, after having returned a y ∈ Y in step 2. and an equation

d ∈ Zw
8 at the beginning of step 3. the state of the prover is the state

1√
2

(

e
2iπ

8 d·J(x0) |0〉 |x0〉+ e
2iπ

8 d·J(x1) |1〉
)

, (11)

where x0, x1 are the two preimages of y under fk,0 and fk,1 respectively and J is a simple map described in

Appendix A.

Proof. The honest strategy for the prover is as follows. Upon receipt of a key k that specifies a pair of

functions fk,0 and fk,1 the prover prepares a state |+〉 = 1√
2
|0〉+ 1√

2
|1〉, adjoins a uniform superposition

over all x ∈ X , evaluates f in superposition, and measures the outcome y. The result is the state

1√
2

(

|0〉 |x0〉+ |1〉 |x1〉
)

, (12)
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Let λ be a security parameter.

1. The verifier selects G ←U {0, 1}. If G = 0 they sample a key (k, tk) ← GENF (1λ). If G = 1 they

sample (k, tk)← GENG(1λ). The verifier sends k to the prover and keeps the trapdoor information tk

private.

2. The prover returns a y ∈ Y to the verifier. If G = 0, for b ∈ {0, 1} the verifier uses the trapdoor to

compute x̂b ← INVF (tk, b, y). If G = 1, the verifier computes (b̂, x̂b̂)← INVG(tk, y).

3. The verifier performs either of the following with equal probability.

(a) (preimage test) The verifier requests a preimage. The prover returns (b, x) ∈ {0, 1} × X . If

G = 0 and x 6= x̂b, or if G = 1 and (b, x) 6= (b̂, x̂b̂), the verifier sets f lag ← f ailp.

(b) (measurement test) The verifier requests an equation d ∈ Zw
8 from the prover. If G = 0, the

verifier computes θ̂ = θ̂(d) and v̂ = v̂(d).

The verifier performs either of the following tests with equal probability:

(i) (Z-measurement test) The verifier sends the label Z to the prover. The prover replies with

a bit b. If G = 1 and b 6= b̂, the verifier sets f lag ← f ailZ .

(ii) (Xθ-measurement test) The verifier selects θ ←U {0, 1, 2, 3} and sends θ to the prover. The

prover responds with a bit v. If G = 0, depending on the value of θ, the verifier performs

one the following tests:

A. If θ = θ̂ but v 6= v̂, the verifier sets f lag ← f ailX .

B. If θ ∈ {0, 2} and θ̂ ∈ {1, 3} the verifier performs the QRAC test (Definition 3.3).

Figure 3: The qubit preparation test.
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where x0 and x1 are the unique preimages of y under fk,0 and fk,1 respectively.13 (In case G = 1 the state

further collapses to a single |b, xb〉.)
If the verifier requests a preimage, the prover measures in the computational basis and returns (b, xb).

If the verifier requests an equation, the prover first evaluates the map J on the second register and then

measures all but the first register in the Fourier (over Z8) basis to obtain a string d ∈ Zw
8 . The resulting

state is
1√
2

(

e
2iπ

8 d·J(x0) |0〉 |x0〉+ e
2iπ

8 d·J(x1) |1〉
)

, (13)

where the inner products are taken modulo 8. Finally, the prover measures the qubit in (11) in the requested

basis, σZ in the case of a Z-measurement or σX,θ π
4

in the case of an Xθ-measurement, to produce its answer.

3.3 Rigidity

In this section we show that any prover, or device, that succeeds with probability close to optimum in the

qubit preparation test (Figure 3) must perform measurements that obey a form of rigidity. We generally use

ε to denote the failure probability of the device in the test or one of its parts (the definition of ε will always

be specified in context), and always assume that ε is larger than any term of the form negl(λ). The main

result of the section is the following.

Lemma 3.5. Let ε > 0 and λ a security parameter assumed to be chosen large enough so that ε =
ω(negl(λ)). Suppose that a quantum polynomial-time prover succeeds in the qubit preparation test with

probability at least 1− ε. Let Z be the observable associated with the prover’s strategy in step (b)(i) of the

protocol, and {Xθ}θ∈{0,1,2,3} the observables associated with the prover’s strategy in step (b)(ii).

Then there exists a universal constant c > 0, a δ = O(εc), an efficiently computable isometry Φ :
HB → C2 ⊗ HB′ , where HB is the Hilbert space on which the prover’s observables act, and a state

|AUX〉 ∈ HB′ ⊗HB′′ , where mHB′ is a purifying system for Bob’s initial state in HB, such that under the

isometry Φ the following hold:

• In case G = 1, the joint state of the bit b and the prover’s post-measurement state in step (b) of the

protocol, after having returned an equation d, is computationally indistinguishable from a state that

is within δ trace distance of

∑
b

|b〉〈b| ⊗ |b〉〈b| ⊗ |AUX〉〈AUX| .

• In case G = 0, the joint state of the angle θ̂, the bit v̂ and the prover’s post-measurement state in step

(b) of the protocol, after having returned an equation d, is computationally indistinguishable from a

state that is within δ trace distance of

∑
θ∈{0,1,2,3},v∈{0,1}

|θ〉〈θ| ⊗ |v〉〈v| ⊗ |+θ π
4 +vπ〉〈+θ π

4 +vπ| ⊗ |AUX〉〈AUX| .

The proof of Lemma 3.5 is given at the end of Section 3.3.5. We start by introducing notation to model

the behavior of an arbitrary prover in the test.

13Here for clarity we ignore the fact that fk,b ranges over the set of distributions over Y , rather than over Y itself. For details on

how the prover can construct the state (12) with success probability exponentially close to 1 in λ, we refer to [BCM+18a].
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3.3.1 Devices

Definition 3.6. A device D = (φ, Π, M, Z, {Xθ}θ∈{0,1,2,3}) is specified by the following.

1. A (not necessarily normalized) positive semidefinite φ ∈ Pos(HD ⊗HY). Here HD is an arbitrary

space private to the device, and HY is a space of the same dimension as the cardinality of the set Y ,

also private to the device. (We think of φ as the state of the device immediately prior to returning the

commitment string y. In particular, φ implicitly depends on the key k ∈ KF ∪KG .) For every y ∈ Y ,

define

φy = (IdD⊗ 〈y|Y) φ (IdD⊗ |y〉Y) ∈ Pos(HD) .

Note that φy is not normalized, and ∑y∈Y Tr(φy) = Tr(φ).

2. For every y ∈ Y ,

(a) A projective measurement {Π(b,x)
y } on HD, with outcomes (b, x) ∈ {0, 1} × X . For each y,

this measurement has two designated outcomes (0, x0) and (1, x1), which are the answers that

are accepted in the preimage test; recall that we use the notation Vy for this set. For b ∈ {0, 1}
we use the shorthand Πb

y = Π
(b,xb)
y , Πy = Π0

y + Π1
y, and Π2

y = Id−Π0
y −Π1

y.

(b) A projective measurement {Md
y} on HD, with outcomes d ∈ Zw

8 .

(c) A binary observable Z onHD.

(d) For every θ ∈ {0, 1, 2, 3}, a binary observable Xθ on HD.

By Naimark’s theorem, up to increasing the dimension of HD the assumption that {Π(b,x)
y }, {Md

y} and

Z, Xθ are projective is without loss of generality. For notational convenience we often drop the subscript y
from the measurements Πy and My, and the state φy.

Definition 3.7 (Efficient devices). We say that a device D = (φ, Π, M, Z, {Xθ}) is efficient if the state φ

can be prepared efficiently, and each of the measurements can be implemented efficiently.

We introduce notation for some post-measurement states of a device.

Definition 3.8. Let D = (φ, Π, M, Z, {Xθ}) be a device. Let θ ∈ {0, 1, 2, 3} and v ∈ {0, 1}. Define a

sub-normalized density matrix

φy,θ,v = ∑
d: (θ̂(d),v̂(d))=(θ,v)

(

IdY⊗Md
y

)

φy

(

IdY⊗Md
y

)

. (14)

We sometimes omit y and write φθ,v for the same state. Note that since we assumed that {Md
y} is projective,

the 8 states φθ,v are orthogonal. We write φθ = φθ,0 + φθ,1.

3.3.2 Preimage test

In this section we draw consequences from the assumption that a device succeeds with probability at least

1− ε in the preimage test.

22



Lemma 3.9. Let D = (φ, Π, M, Z, {Xθ}) be an efficient device that succeeds with probability at least 1− ε

in the preimage test, for some 0 ≤ ε ≤ 1. Then there is an efficient device D′ = (φ′, Π, M, Z, {Xθ}) such

that ‖φ′ − φ‖1 = O(
√

ε) and such that D′ succeeds with probability negligibly (in the security parameter

λ) close to 1 in the preimage test. In particular, for any k ∈ KF the state of D′ after having returned y has

the form

|φ′y〉 = ∑
b∈{0,1}

|b, xb〉 |φy,b〉 , (15)

where for b ∈ {0, 1}, xb = INVF (tk, b, y), |φy,0〉 and |φy,1〉 are arbitrary, and the basis is chosen such that

the measurement {Π(b,xb)} is a computational basis measurement of the first two registers. Similarly, for

k ∈ KG the same state can be expressed as

|φ′y〉 = |b̂, xb̂〉 |φy,b̂〉 , (16)

where (b̂, xb̂) = INVG(tk, y).

Proof. The proof is analogous to the reduction to a “perfect prover” shown in [Mah18c, Claim 7.2], and we

only sketch it here. Given φy, the device can evaluate CHKF in superposition to check if it would succeed

in the preimage test. The device D′ then repeatedly prepares φ and measures y as D would, until it has

obtained a state φy that passes the preimage test with certainty (or until a polynomial number of attempts to

do so have failed). The distance between D and D′ is bounded by the gentle measurement lemma (Lemma 9

in [Win99]).

Lemma 3.10. Let D be an efficient device that succeeds with probability 1 in the preimage test. Then

for every θ ∈ {0, 1, 2, 3} and v ∈ {0, 1}, no polynomial-time quantum procedure can predict θ̂(d) given

(y, d, φθ,v) with advantage non-negligibly larger than 1
4 . Moreover, for every θ ∈ {0, 1, 2, 3} no polynomial-

time quantum procedure can predict v̂(d) given (y, d, φθ,v, θ) with advantage non-negligibly larger than 1
2 .

In particular, the joint distribution of (θ̂(d), v̂(d)) computed by the verifier in the measurement test is

negligibly close to uniform, where the probability is taken over the device’s actions, including the choice of

y and d.

Proof. Suppose for contradiction that there exists a distinguisher that achieves success probability notice-

ably larger than 1
8 , where the probability is over y and d as computed by the device as well as the dis-

tinguisher’s internal randomness. Suppose first that the distinguisher can predict θ̂(d)) with advantage

noticeably larger than 1
4 . Using the collapsing property (Lemma A.7) and the fact that {Md

y} is efficient

and the distinguisher are assumed efficient, it is still the case that the distinguisher has advantage noticeably

larger than 1
4 in predicting θ̂(d)) when the device first measures {Π(b,xb)

y } to obtain (b, xb) and then only

applies {Md
y} to obtain d. This contradicts the hardcore bit property (35).

Similarly, if the distinguisher has advantage noticeably larger than 1
2 in predicting v̂(d), conditioned on

its guess for θ̂(d) being correct, using the collapsing property we construct an adversary that contradicts the

hardcore bit property (34).

3.3.3 Z-measurement test

Lemma 3.11. Let D be an efficient device that succeeds with probability 1 in the preimage test, and at least

1− ε in the Z-measurement test. Then on average over y ∈ Y ,

∑
d,b

Tr
(

(MdΠb − ZbMd)†(MdΠb − ZbMd)φ
)

≤ 2 ε + negl(λ) . (17)
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Proof. The assumption of success 1− ε in the Z-measurement test implies that, on average over k ∈ KG
and y ∈ Y ,

∑
b,d

Tr
(

Zb MdΠbφΠbMd
)

≥ 1− ε− negl(λ) , (18)

where we used that for k ∈ KG by Lemma 3.9 it holds that φ = ∑b ΠbφΠb. Since Π, M and Z can all be

efficiently implemented, using the collapsing property (Lemma A.7) (18) holds on average over k ∈ KF as

well.

Let Π = Π0 −Π1 act on the first qubit of φ (written as in (15)). Again using the collapsing property,

ΠφΠ and φ are computationally indistinguishable, so

∑
b,d

∣

∣Tr
(

Zb Md(φ−ΠφΠ)Md
)∣

∣ = negl(λ) . (19)

Using that φ−ΠφΠ = 2(Π0φΠ1 + Π1φΠ0), combining (18) and (19) gives

∑
b,d

(

Tr
(

ZbMdΠbφMd
)

+ Tr
(

Zb MdφΠbMd
))

≥ 2
(

1−O(ε)
)

− negl(λ) .

Expanding the square in (17), this proves the lemma.

3.3.4 Xθ-measurement test, part A

Lemma 3.12. Let D = (φ, Π, M, Z, {Xθ}) be an efficient device. Define a sub-normalized density

φ̃YBXD = ∑
y∈Y
|y〉〈y|

Y
⊗ ∑

b∈{0,1}
|b, xb〉〈b, xb|BX

⊗Π
(b,xb)
y φy Π

(b,xb)
y

= ∑
b∈{0,1}

|b, xb〉〈b, xb|BX
⊗ φ̃

(b)
YD

. (20)

Then φ̃YBXD is the post-measurement state of the device at the end of the preimage test. For v ∈ {0, 1} and

θ ∈ {0, 1, 2, 3} let

σθ,v = ∑
y∈Y

∑
b∈{0,1}

|b, xb〉〈b, xb|BX
⊗ ∑

d:θ̂(d)=θ

|d〉〈d| ⊗ (IdY⊗Xv
θ Md

y)φ̃
(b)
YD

(IdY⊗Md
yXv

θ ) . (21)

Then for any θ ∈ {0, 1, 2, 3}, σθ,0 and σθ,1 are computationally indistinguishable.

Proof. The proof is almost identical to the proof of [BCM+18a, Lemma 7.1]. Suppose for contradiction

that there exists a θ ∈ {0, 1, 2, 3} and an efficient observable O such that

Tr(O(σθ,0 − σθ,1)) ≥ µ , (22)

for some non-negligible function µ(λ). We derive a contradiction with the hardcore bit property (34).

Consider the following efficient procedure A. A first prepares the state φ̃YBXD in (20). This can be done

efficiently by first preparing φYD, then measuring a y ∈ Y , then applying the measurement {Π(b,x)
y } to φy,

and returning a special abort symbol if the outcome is invalid, i.e. CHKF (k, b, x, y) = 0.

A then applies the measurement {Md
y} to φ̃YBXD, obtaining an outcome d ∈ Zw

8 . Next, it measures

using {Xv
θ} to obtain v ∈ {0, 1}. At this point, the procedure has prepared either σθ,0 or σθ,1. Finally, the

procedure measures O to obtain a bit u, and returns (b, x, d, θ, u⊕ v).
This defines an efficient procedure. Using (22) it follows that the procedure violates the hardcore bit

property (34). To see why, note that the guarantee (22) only holds when θ = θ̂(d), but this is precisely

when (34) requires that there should be no distinguishing advantage.

24



Corollary 3.13. Let D = (φ, Π, M, Z, {Xθ}) be an efficient device that succeeds in the preimage test with

probability 1, and in the Z-measurement test with probability at least 1− ε. Then on average over y,

∑
θ∈{0,1,2,3}

∑
b∈{0,1}

∣

∣

∣
Tr
(

X0
θ ZbφθZb

)

− Tr
(

X1
θ ZbφθZb

)

∣

∣

∣
= O

(√
ε
)

,

where φθ is defined in Definition 3.8.

Proof. Lemma 3.12 implies that σθ,0 and σθ,1 must have traces that are negligibly far from each other, i.e.

for every θ and on average over y ∈ Y ,

∑
d: θ̂(d)=θ

∑
b

∣

∣

∣
Tr
(

X0
θ MdΠbφΠbMd

)

− Tr
(

X1
θ MdΠbφΠbMd

)

)
∣

∣

∣
= negl(λ) .

Using Lemma 3.11 and the Cauchy-Schwarz inequality, this expression is within O(
√

ε) of

∑
d: θ̂(d)=θ

∑
b

∣

∣

∣
Tr
(

X0
θ ZbMdφMdZb

)

− Tr
(

X1
θ ZbMdφMdZd

)

)∣

∣

∣
= negl(λ) ,

as desired.

The following lemma shows a strong form of incompatibility between the measurements Z and Xθ , for

any efficient device.

Lemma 3.14. Let D = (φ, Π, M, Z, {Xθ}) be an efficient device such that D succeeds with probability 1
in the preimage test, and with probability at least 1− ε in both the Z-measurement test and part A. of the

Xθ-measurement test. Then there exists εAC = O(ε1/4) such that on average over y ∈ Y ,

∑
θ∈{0,1,2,3}

Tr
(

{Z, Xθ}2φθ

)

≤ εAC .

Proof. The assumption that D succeeds with probability 1− ε in part A. of the Xθ-measurement test implies

that on average over y ∈ Y and θ distributed according to Tr(φθ),

∑
v∈{0,1}

Tr(Xv
θ φθ,v) ≥ 1− ε . (23)

Let φ̃θ be the normalized state φθ/Tr(φθ). Using Lemma 3.10 to argue that the renormalization is roughly

uniform for all but a negligible fraction of all y, Corollary 3.13 implies that on average over y,
∣

∣∑
b

Tr(X0
θ Zbφ̃θZb)−∑

b

Tr(X1
θ Zbφ̃θZb)

∣

∣ = O
(√

ε
)

+ negl(λ) .

Since ∑b,v Tr(Xv
θ Zbφ̃θZb) = 1, it follows that for any θ ∈ {0, 1, 2, 3} and v ∈ {0, 1},

µθ,v =
∣

∣

∣

1

2
−∑

b

Tr(Xv
θ Zbφ̃θZb)

∣

∣

∣
= O

(√
ε
)

. (24)

Conditions (23) and (24) place us in a position to apply [BCM+18a, Lemma 7.2], with φ = φθ,v (renor-

malized), M = Xv
θ , and Π = Z0. Taking ω = 1

2 + Ω(ε1/4), the lemma implies that the projection K on

eigenspaces of the operator
1

2

(

ZXv
θ Z + Xv

θ

)

= Z0Xv
θ Z0 + Z1Xv

θ Z1

with associated eigenvalue bounded away from 1
2 by Ω(ε1/4) satisfies Tr((Id−K)φ) = O(

√
ε). Thus for

v ∈ {0, 1}, Tr(([Z, Xv
θ ]− 1

2 Z)2φ) = O(ε1/4). The lemma follows.
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Lemma 3.14 specifies that Z and Xθ are close to anti-commuting on the state φθ. The following lemma

uses the collapsing property and the hardcore bit property to argue that anti-commutation extends to any φu,

for u ∈ {0, 1, 2, 3}.
Lemma 3.15. Under the same assumptions as Lemma 3.14, on average over y ∈ Y and for all θ ∈
{0, 1, 2, 3},

∑
u∈{0,1,2,3}

Tr
(

{Z, Xθ}2φu

)

≤ ε′AC ,

for some ε′AC = O(
√

εAC).

Proof. First we observe that for a (possibly unknown) u the value Tr
(

{Z, Xθ}2φu

)

can be estimated effi-

ciently. This is because for any |ψ〉, it is possible to implement

|ψ〉 7→ 1√
2

(

|ψ〉 |0〉+ |ψ〉 |1〉
)

7→ 1√
2

(

ZXθ |ψ〉 |0〉+ XθZ |ψ〉 |1〉
)

, (25)

at which point a measurment of the last qubit in the Hadamard basis returns |+〉 with probability
1
2 〈ψ| {Z, Xθ}2 |ψ〉. By the collapsing property, ∑u Tr

(

{Z, Xθ}2φu

)

is within negligible distance of

∑u Tr
(

{Z, Xθ}2φ̃u

)

, where φ̃u is the result of first measuring {Π(b,xb)} on φ and then measuring {Md}.
Now suppose for contradiction that there exists an u′ such that Tr

(

{Z, Xθ}2φu′
)

is noticeably larger

than Tr
(

{Z, Xθ}2φu

)

, for all u 6= u′. As argued above, by the collapsing property the same holds with

respect to the states φ̃u′ and φ̃u.

Consider the following efficient procedure A. Starting from φ, measure {Π(b,xb)} to obtain (b, xb).
Then measure {Md} to obtain d. Finally, implement the test described in (25). If the outcome is |+〉, return

u′. If the outcome is |−〉, repeat a uniformly random u ∈ {0, 1, 2, 3}.
Then A returns (b, xb, d, u′) such that u′ = θ̂(d) with probability noticeably larger than 1/4, violating

the adaptive hardcore bit property (35).

3.3.5 Xθ-measurement test, part B

Lemma 3.16. Let D = (φ, Π, M, Z, {Xθ}) be an efficient device, such that D succeeds with probability 1
in the preimage test, with probability at least 1− ε in both the Z-measurement test and part A. of the Xθ-

measurement test, and with probability at least (1− ε)OPTB in part B. of the Xθ-measurement test. Then on

average over y ∈ Y ,

∑
u∈{0,1,2,3}

1

2 ∑
θ∈{0,1}

Tr
(

{Xθ , Xθ+2}2φu

)

≤ ε′′AC ,

for some ε′′AC = O((ε′AC)
1/4).

Proof. We perform a reduction to Lemma 3.2. The main work we need to do is argue that the observables

X0 and X2 can be represented as observables acting on the same qubit. (The case of X1 and X3 is similar.)

Applying Lemma 3.15 for θ = 0 and θ = 2 followed by Lemma 2.9 we deduce that there is an isometry

V : HD → C2 ⊗ H
D
′ and δ′ = O(

√
εAC) under which which Z ≃δ′ σZ ⊗ Id, X0 ≃δ′ σX ⊗ Id, and

X2 ≃δ′ σX ⊗ AX + σY ⊗ AY, where AX, AY are Hermitian commuting such that A2
X + A2

Y = Id.

Let {|vj〉} be a joint diagonalization basis of AX and AY. Let ρ = ∑u∈{0,1,2,3}VφuV†, as a density

matrix on C2 ⊗ H
D
′ (ρ implicitly depends on y, so it is not normalized). Define a distribution pj,y =

Tr(ρ(j)), with ρ(j) the single-qubit density matrix

ρ(j) = (Id⊗ 〈vj|)ρ(Id⊗ |vj〉) . (26)
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For any j, y define a 2 7→ 1 QRAC as follows. The encoding of u + 4v ∈ {1, 3, 5, 7}, with u ∈ {1, 3}
and v ∈ {0, 1}, is the renormalized density matrix ρ

(j)
u,v, defined as ρ(j) in (26) with ρu,v instead of ρ. The

observables are σX and 〈vj| AX |vJ〉 σX + 〈vj| AY |vj〉 σY.

Using Lemma 3.10 and the assumption on the device’s success probability in part B. of the Xθ-

measurement test it follows that this QRAC, on average over (y, j), satisfies the assumption of Lemma 3.2,

for some δ = O(
√

δ′). The conclusion follows.

We end with the proof of the main lemma of the section, Lemma 3.5.

Proof of Lemma 3.5. Fix a strategy for the prover that is accepted with probability at least 1− ε in the qubit

preparation test. Then the strategy is accepted with probability at least 1− 2ε in the preimage test, and at

least 1− 4ε in each of the Z-measurement test and the Xθ-measurement test.

Applying Lemma 3.15 and Lemma 3.16 followed by Lemma 2.9 to Z, X0 and X2 if follows that there

exists an efficient isometry V from HB to C2 ⊗HB′ under which Z ≃δ1
σZ ⊗ Id, X0 ≃δ1

σX and X2 ≃δ1

σY ⊗ Id, for some δ1 = O(
√

ε′′ac). It follows from success in part (b)(ii)A. that, under the isometry, for

θ ∈ {0, 2} and v ∈ {0, 1} the state φθ,v is within O(δ1) of |+θ π
4 +vπ〉〈+θ π

4 +vπ| ⊗ |AUXθ,v〉〈AUXθ,v|, for

some states |AUXθ,v〉. Using success in part (b)(ii)B. (the QRAC test) and applying Lemma 3.2 it similarly

follows that for θ ∈ {1, 3} and v ∈ {0, 1} the state φθ,v is, under the same isometry, within O(δ1) of a state

of the form |+θ π
4 +vπ〉〈+θ π

4 +vπ| ⊗ |AUXθ,v〉〈AUXθ,v|.
Recall that by Lemma 3.10 the states φθ are computationally indistinguishable. According to the previ-

ous paragraph,

φθ ≃δ1

1

2
(|0〉〈0|+ |1〉〈1|

)

⊗
(

|AUXθ,0〉〈AUXθ,0|+ |AUXθ,1〉〈AUXθ,1|
)

+
(

eiθ π
4 |0〉 〈1|+ e−iθ π

4 |1〉 〈0|
)

⊗
(

|AUXθ,0〉〈AUXθ,0| − |AUXθ,1〉〈AUXθ,1|
)

.

Since the operators eiθ π
4 |0〉 〈1|+ e−iθ π

4 |1〉 〈0| have constant trace distance for distinct values of θ, it follows

that |AUXθ,0〉〈AUXθ,0| ≈c |AUXθ,1〉〈AUXθ,1| for all θ, and that they are computationally indistinguishable

for different values of θ.

This gives the second condition in the lemma. To obtain the first, recall that under V it holds that Z ≃δ1

σZ ⊗ Id. Using success in part (b)(i) of the protocol the state at the beginning of step (b)(i) is of the form

∑b |b〉〈b| ⊗ |b〉〈b| ⊗ |AUXb〉〈AUXb|, where the first b is held by the verifier and |AUXb〉 ∈ HB′ are abitrary

(not necessarily normalized). Using the collapsing property (Lemma A.7), for b ∈ {0, 1}, |AUXb〉〈AUXb| is
computationally indistinguishable from any of the |AUXθ,0〉〈AUXθ,0|+ |AUXθ,1〉〈AUXθ,1|.

3.4 Real protocol for remote state preparation

In this section we introduce a many-round protocol that repeatedly calls the qubit preparation test. Eventu-

ally, the protocol returns either “abort”, or an angle θ ∈ Θ. The protocol is described in Figure 4.

To show that the protocol can be used to implement the RSPV resource, which will be done in the next

section, we prove the following.

Theorem 3.17. Suppose the remote state preparation protocol (Figure 4) with security parameter λ > 0,

maximum number of rounds N ∈ N and error tolerance δ ∈ [0, 1] is executed with an arbitrary quantum

polynomial-time prover. Assume that the protocol succeeds with probability at least ω, for some ω > 0
such that N ≥ δ−3 log(2/δω). Then there exists an efficient isometry Φ and a state |AUX〉 such that the
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Let λ be a security parameter, N ≥ 1 a maximum number of rounds, δ an error tolerance parameter, and

W ∈ {X, Z} a basis choice.

At the start of the protocol, the verifier communicates N to the prover. The verifier privately samples a

number of rounds R←U {1, . . . , N}.

1. For i = 1, . . . , R, the verifier executes the qubit preparation test, Figure 3. They record the outcome

of the verifier in the test: either pass, or f ailp, f ailZ , f ailX or f ailQ.

2. The verifier sets f lag ← abort if any of the following conditions is satisfied:

(a) The fraction of preimage tests that returned f lag = f ailp is larger than δ;

(b) The fraction of Z-measurement tests that returned f lag = f ailZ is larger than δ;

(c) The fraction of Xθ-measurement tests, part A., that returned f lag = f ailX is larger than δ;

(d) The fraction of Xθ-measurement tests, part B., that returned f lag = f ailQ is larger than (1−
OPTQ) + δ.

If f lag = abort, the verifier aborts and sends the message ERR to the prover.

3. The verifier samples a key (k, tk) ← GENF (1λ) (if W = Z) or (k, tk) ← GENG(1λ) (if W = X),

sends k to the prover and keeps the trapdoor information tk private.

4. The prover returns a y ∈ Y to the verifier.

5. The verifier requests an equation d ∈ Zw
8 . If W = Z the verifier computes (b, xb) ← INVG(tk, y)

and returns b. If W = X the verifier computes (θ̂, v̂) = (θ̂(d), v̂(d)) and returns θ = θ̂ π
4 + vπ.

Figure 4: The remote state preparation protocol. See Section A for notation associated with the extended

NTCF family F .
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joint state of the verifier’s input bit W, his output angle b (W = Z) or θ (W = X), and the prover’s final

state, conditioned on not aborting in step 2., is such that

ρSΘB ≃ε pZ |Z〉〈Z|S ⊗
1

2 ∑
b∈{0,1}

|b〉〈b|Θ ⊗Φ(|b〉 |AUX〉
)

B

+ pX |X〉〈X|S ⊗
1

8 ∑
θ∈Θ

|θ〉〈θ|Θ ⊗Φ(|+θ〉 |AUX〉)B , (27)

where ε = O(δc) + negl(λ), for some constant c > 0, and pZ, pX are the verifier’s prior probability

of choosing W = Z or W = X respectively. Moreover, the honest strategy introduced in the proof of

Lemma 3.4 succeeds with probability negligibly close to 1 in the protocol. At the end of the protocol, the

verifier returns a uniformly random b ∈ {0, 1} and the prover’s state is |b〉 (W = Z) or θ ∈ Θ (W = X)

and the prover’s state is |+θ〉.

Proof. The completeness property follows from Lemma 3.4 and a standard concentration bound.

To show soundness, fix a strategy for the prover that succeeds with probability at least ω. For i ∈
{1, . . . , N} let Ti ∈ {0, 1} be a random variable that equals 1 if and only if the prover does not cause the

verifier to raise a f ail flag in the i-th round. By assumption on the prover’s success probability it holds that

T = 1
R ∑

R
i=1 Ti ≥ (1− δ)OPT with probability at least ω, where OPT = 3

4 +
1
4 OPTQ.

Applying Azuma’s inequality, the probability that T deviates from its expectation by more than δ is at

most 2e−δ2R/2. It follows that as long as

2e−δ2R/2ω ≤ δ , (28)

the expectation of T conditioned on success satisfies E[T|not abort] ≥ (1− δ)OPT. Under the assumption

on N, δ and ω made in the theorem, condition (28) is satisfied with probability at least 1− δ over the choice

of R. Applying Markov’s inequality, a randomly chosen round satisfies E[Ti|not abort] ≥ 1−O(
√

δ) with

probability at least 1−O(
√

δ). Provided such a round is chosen as the R-th round, we can apply Lemma 3.5

to conclude.

4 Remote state preparation: ideal functionality

In this section we show that the remote state preparation protocol introduced in Section 3 constructs the

ideal RSPV resource described in Section 1. The definition of RSPV (illustrated in Figure 1) is as follows:

Definition 4.1 (Random Remote State Preparation with Verification). The resource receives W ∈ {X, Z}
from Alice’s interface and the bit c ∈ {0, 1} from Bob’s interface. If c = 0 and W = Z, Alice receives

a uniformly random bit b ∈ {0, 1} and Bob receives the state |b〉. If c = 0 and W = X Alice receives a

uniformly random value θ ∈ Θ = {0, π
4 , . . . , 7π

4 } and Bob receives the state |+θ〉. If c = 1 both Alice and

Bob receive an ERR message.

Recall that our goal is to show that an implementation of the RSP protocol described in the previous

section, based on a classical channel and a measurement buffer as communication resources,14 securely

implements RSPV . In the AC language, the implementation of RSP using the communication resources is

14The measurement buffer is used each time the measurement test, step 3(b) of the qubit preparation test in Figure 3, is executed.

The classical channel is used for all other steps.
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known as the real protocol, and we denote it BRSP, for buffered remote state preparation. As an abstract

functionality, we illustrate it in Figure 5. Alice has an input W,15 specifying the basis for state preparation,

and produces as output either a random b if W = Z, a random θ if W = X, or ERR if Bob behaved

maliciously. Bob takes as input the bit c, specifying whether he should behave honestly or maliciously.

Mirroring Alice, his output is either a state |b〉, a state |+θ〉, or ERR. The two interact via a classical

channel and a measurement buffer according to the specification given in Figure 5.

...

πA

Alice ...

πB

Bob

R

πBu f f

...

πBu f f

W c

b/θ/ERR |b/ +θ /ERR〉

Figure 5: The remote state preparation protocol, illustrated here schematically as an AC functionality.

Alice and Bob interact with the measurement buffer (which behaves as described in Figure 2), πBu f f , and

the classical channel, R, for a number of rounds. At the end of the interaction, upon success Alice obtains

a bit b or an angle θ and Bob obtains the state |b〉 or the state |+θ〉. Otherwise, both parties obtain ERR.

While not explicitly shown in the figure, Bob exchanges both classical and quantum messages with the

buffer, whereas Alice interacts only classically with the buffer and R.

We note that in BRSP the buffer is only needed for step 3(b) of the protocol — from Figure 4 — in

which there is a constant number of challenges, so that it remains efficient for Bob to forward a specification

of each of its measurements. The fact that we build the real protocol from a measurement buffer is necessary

for the security proof to go through. Informally, and outside of the AC framework, the measurement buffer

is “without loss of generality”: in any execution of the protocol, Bob’s answer to a challenge from Alice

is obtained by making a measurement on a quantum state; since we assume that Bob is computationally

efficient an explicit description of the measurement exists, and this is all that is needed for the stand-alone

security proof.

Obtaining composable security is more subtle, and this is why the buffer is needed. Note that its use does

not preclude Bob from sharing a prior entangled state with the environment, nor from exchanging quantum

messages with the environment in-between any two uses of the measurement buffer. In this sense the use

of the buffer is comparable yet much less restrictive to the way a “device” is defined to obtain composable

security of device-independent protocols for e.g. randomness expansion [Por17]. In that context, Alice (the

verifier) interacts with a device that is prepared by Bob (the eavesdropper). Bob is allowed to provide the

initial state of the device, but he does not interact with it at any later stage of the protocol, and in particular

is not allowed to receive the contents of the internal memory of the device at the end of the protocol. In our

setting, this latter point is allowed.

15Alternatively, we say that Alice and Bob receive their inputs from (and return their outputs to) an environment.
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Summarizing, we view the protocol as consisting of three parties π = (πA, πBu f f , πB), where πA de-

notes Alice’s actions, πB denotes Bob’s actions and πBu f f the actions of the measurement buffer. Whenever

step 3 of the protocol is executed Bob sends his state and measurements to the buffer, where it is measured

according to the measurement specified by Alice’s challenge. The measurement result is sent to both Alice

and Bob. Bob, in addition, receives Alice’s challenge and the post-measurement state. We now show that

BRSP constructs the ideal RSPV resource from classical channels.

Theorem 4.2. The buffered remote state preparation protocol implements the ideal RSPV functionality. In

other words, let R denote a classical channel and π = (πA, πBu f f , πB) denote the BRSP protocol:

• πA takes as input a bit W, specifying either the Z basis or the X basis and produces as output either

a bit b, an angle θ or the ERR flag. The actions that Alice performs in πA are exactly the same as in

the RSP protocol, as described in Figure 5. πA interacts with the classical channel R.

• πB takes as input a bit c, specifying either honest (when c = 0) or malicious (when c = 1) behavior

and outputs either |b〉, |+θ〉 or the ERR flag. It ignores the bit c and always behaves honestly,

i.e. perform the actions instructed by Alice in RSP. For each measurement test performed, πB sends

the state to be measured to πBu f f and expects to receive the measurement outcome and the post-

measurement state.

• πBu f f receives a message from Alice. It receives from Bob a specification F of a measurement to per-

form for each of Alice’s messages, as well as a state ρ to be measured. It measures the state according

to F(M). The measurement outcome is returned to both Alice and Bob. The post-measurement state

is returned to Bob.

We denote by ⊥B a filtered functionality for Bob that has him set c = 0 in RSPV . Additionally, let λ > 0
denote the security parameter used in BRSP, and δ > 0 denote the error tolerance parameter of BRSP. Then

it holds that

πARπBu f f πB ≈c,ε1
RSPV ⊥B , (29)

and there exists a polynomial-time quantum simulator σB such that

πARπBu f f ≈c,ε2 RSPV σB , (30)

where ε1 = negl(λ) and ε2 = O(δc) + negl(λ), for some constant c > 0.

Proof. Eq. (29) follows immediately from the completeness of BRSP, that is inherited from the completeness

of RSP (see Theorem 3.17). Indeed, if Alice, Bob and the buffer follow the protocol, their results are exactly

those obtained in the ideal functionality.

For Eq. (30), note that we are assuming that Bob is the only malicious party, whereas Alice and the

buffer still follow their honest actions in the protocol. Let us consider a simulator σB that executes the BRSP

protocol with Bob. More specifically, the simulator executes the “buffered” analogue of the protocol from

Figure 4 with Bob.

If the protocol aborts before step 3, the simulator sets c = 1 in the ideal RSPV functionality, indicating

ERR. If the protocol does not abort, the simulator chooses uniformly at random whether to perform the

WS = Z or the WS = X run of the protocol. (We denote by WS the simulator’s choice of basis to avoid

confusion with W, which denotes Alice’s choice.) In step 4, the simulator takes Bob’s state and performs

the measurement that returns the string y. Note that at step 5, from the point of view of Bob, the situation
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is indistinguishable from step 3(b) in the qubit preparation test (Figure 3). The simulator requests measure-

ments for Bob associated with that step, that is, a “preimage measurement” as well as measurements Z and

Xθ associated with part (b)(ii). (To ensure that Bob does not detect this modification, we may assume that

in the buffered protocol execution Bob’s measurements for step 3 are always requested at the end of step 2,

irrespective of whether step 3 is performed or not, i.e. prior to round R or not.)

If the simulator does not receive a state and measurements of matching dimension it sets c = 1 and

causes the ideal functionality to abort. Assuming the simulator has not aborted after receiving Bob’s final

state, it sets c = 0 in the RSPV functionality, and takes the resulting state. Using the specification of

Bob’s measurement operators Z and Xθ it computes the isometry Φ whose existence is guaranteed by

Theorem 3.17,16 “undoes” the isometry by applying its inverse, replaces the first qubit of the B register

in (27) by the qubit obtained from RSPV , and re-applies the isometry. It returns the resulting state to Bob.

Let us now consider a distinguisher that interacts with either πARπBu f f or RSPVσB and which has the

initial state ψ. In the first case we denote the distinguisher’s final state as τ
ψ
AB. Assuming that in the protocol

Alice accepts with probability 1− pψ, for some pψ > 0, we have that:

τ
ψ
AB = (1− pψ)ρ

ψ
AB + pψ |ERR〉 〈ERR|A ⊗ γ

ψ
B (31)

where

ρ
ψ
AB ≃ε2 p

ψ
Z |Z〉〈Z|A ⊗

1

2 ∑
b∈{0,1}

|b〉〈b|A ⊗Φψ(|b〉 |AUX
ψ〉

)

B
+

+ p
ψ
X |X〉〈X|A ⊗

1

8 ∑
θ∈Θ

|θ〉〈θ|A ⊗Φψ(|+θ〉 |AUX
ψ〉))B (32)

and γ
ψ
B is some state on Bob’s side that is consistent with the protocol having aborted and the initial state of

the system being ψ. The expression from Eq. (32) follows from the rigidity theorem (Theorem 3.17), since,

conditioned on success, the reduced state of Alice and Bob takes the form in (32). Note that the probabilities

for the choices W = Z and W = X, respectively, as well as the isometry on Bob’s system and his auxiliary

state, are determined by the initial state ψ.

Now let us consider the case when the distinguisher interacts with the ideal functionality and the sim-

ulator. We denote the final state, prior to the simulator performing the qubit swap, as σ
ψ
ASB. Once again,

assuming the probability of acceptance for BRSP (as run by the simulator this time) is 1− pψ, with pψ > 0,

we have that:

σ
ψ
ASB = (1− pψ)ρ

ψ
ASB + pψ |ERR〉 〈ERR|A ⊗ |ERR〉 〈ERR|S ⊗ γ

ψ
B

where γ
ψ
B is the same as in (31). At this point in the protocol, ρ

ψ
ASB = ρ

ψ
A ⊗ ρ

ψ
SB, since, conditioned on

acceptance in BRSP, the simulator has not yet interacted with the ideal functionality. Using the rigidity

theorem again, we get

ρ
ψ
SB ≃ε2

1

2
|Z〉〈Z|S ⊗

1

2 ∑
b∈{0,1}

|b〉〈b|S ⊗Φψ(|b〉S |AUX
ψ〉SB

)

+

+
1

2
|X〉〈X|S ⊗

1

8 ∑
θ∈Θ

|θ〉〈θ|S ⊗Φψ(|+θ〉S |AUX
ψ〉SB)) .

16As long as the measurements are observables of the same dimension the isometry is always well-defined, whether the assump-

tions of the theorem are satisfied or not.
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Note that the probabilities for the Z and X tests are equal, since we’ve established that the simulator chooses

which to perform uniformly at random. Also note that the |AUX
ψ〉 system is shared between the simulator

and Bob. The simulator now sets c = 0 in the ideal functionality and receives the state it provides. As

already described, it then “undoes” the isometry on the state it has from Bob, replaces the first qubit with

the one from the ideal functionality, reapplies the isometry and sends the state to Bob.

As in the interaction with the real protocol, supposing that Alice (as controlled by the distinguisher)

chooses to perform the two tests with probabilities p
ψ
Z and p

ψ
X, respectively, the output she receives from the

ideal functionality is either b or θ, with the associated probabilities. The state that the simulator receives and

swaps into Bob’s system is of course classically correlated with this output, being either |b〉 or |+θ〉. If we

now write the state of the system upon the completion of this last step we have

σ̃
ψ
ASB = (1− pψ)ρ̃

ψ
ASB + pψ |ERR〉 〈ERR|A ⊗ |ERR〉 〈ERR|S ⊗ γ

ψ
B ,

where

ρ̃
ψ
ASB ≃ε2 p

ψ
Z |Z〉〈Z|A ⊗

1

2 ∑
b∈{0,1}

|b〉〈b|A ⊗ ζ
ψ
SB(b) + p

ψ
X |X〉〈X|A ⊗

1

8 ∑
θ∈Θ

|θ〉〈θ|A η
ψ
SB(θ)

and ζ
ψ
SB(b), η

ψ
SB(θ) are states on the joint system of the simulator and Bob, given by:

ζ
ψ
SB(b) ≃ε2

1

2
|Z〉〈Z|S ⊗

1

2 ∑
b′∈{0,1}

|b′〉〈b′|S ⊗ |b′〉〈b′|S ⊗Φψ(|b〉 |AUX
ψ〉

)

B
+

1

2
|X〉〈X|S ⊗

1

8 ∑
θ′∈Θ

|θ′〉〈θ′|S ⊗ |+θ′〉〈+θ′ |S ⊗Φψ(|b〉 |AUX
ψ〉))B ,

η
ψ
SB(θ) ≃ε2

1

2
|Z〉〈Z|S ⊗

1

2 ∑
b′∈{0,1}

|b′〉〈b′|S ⊗ |b′〉〈b′|S ⊗Φψ(|+++θθθ〉 |AUX
ψ〉

)

B
+

1

2
|X〉〈X|S ⊗

1

8 ∑
θ′∈Θ

|θ′〉〈θ′|S ⊗ |+θ′〉〈+θ′ |S ⊗Φψ(|+++θθθ〉 |AUX
ψ〉))B .

The boldface letters highlight the state that was planted in Bob’s system. Now notice that if we trace out the

simulator’s system from both of these states we get:

TrS(ζ
ψ
SB) = ζ

ψ
B(b) ≃ε2 Φψ(|b〉 |AUX

ψ〉))B ,

TrS(η
ψ
SB) = η

ψ
B (θ) ≃ε2 Φψ(|+++θθθ〉 |AUX

ψ〉))B .

Tracing out the simulator from ρ̃ASB and plugging in the above expressions we obtain

ρ̃
ψ
AB ≃ε2 p

ψ
Z |Z〉〈Z|A ⊗

1

2 ∑
b∈{0,1}

|b〉〈b|A ⊗Φψ(|b〉 |AUX
ψ〉))B+

+ p
ψ
X |X〉〈X|A ⊗

1

8 ∑
θ∈Θ

|θ〉〈θ|A Φψ(|+θ〉 |AUX
ψ〉))B .

Finally, if we trace out the simulator from σ̃
ψ
ASB and use the above state, we have:

σ̃
ψ
AB = (1− pψ)ρ̃

ψ
AB + pψ |ERR〉 〈ERR|A ⊗ γ

ψ
B .
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From the triangle inequality ρ
ψ
AB ≃2ε2 ρ̃

ψ
AB, and therefore we have that:

πARπBu f f ≈c,2ε2 RSPVσB ,

concluding the proof.

5 Blind and verifiable computation from remote state preparation

In [DK16] the authors show that a measurement-based protocol for blind delegation of quantum circuits,

the Universal Blind Quantum Computing protocol of Broadbent et al. [BFK09] (BFK) can be constructed

from the ideal functionality RSPB and classical communication channels. Their result builds upon the work

of Dunjko et al. [DFPR14], who showed composable security of the BFK protocol in the AC framework.

Dunjko et al. also showed composable security of a blind and verifiable variant of the BFK protocol intro-

duced by Fitzsimons and Kashefi [FK17] (FK). Both protocols are designed to delegate a computation that

is expressed in the model of measurement-based quantum computing (MBQC). In this model, a quantum

computation is implemented by preparing a graph state (a collection of qubits that are entangled according

to the structure of a graph) and then performing adaptive measurements on the qubits in the graph state. The

main difference between the FK protocol and the BFK protocol is the use of traps to ensure verifiability in

FK. Informally, trap qubits are qubits initialized in a |+θ〉 state, with θ chosen uniformly at random from

Θ, and such that all neighbors of the trap qubit in the underlying graph state are initialized in a random

computational basis state; these are called dummy qubits. The role of the dummy qubits is to isolate the trap

qubits from the computation, so that the prover’s measurements on the trap qubits can be verified indepen-

dently of the computation. This isolation happens because, in the specific implementation of MBQC used

by the FK and BFK protocols, the graph state is prepared by entangling |+θ〉 states using the Controlled-Z
operation. But note that this operation does not create entanglement if either of its input qubits is a state in

the computational basis. We sketch the structure of the FK protocol in Figure 6, at a level that is sufficient

to follow the arguments in this section; we refer to the description of Protocol 7 and Protocol 8 in [FK17]

for full details.

Our goal in this section is to show that by replacing the quantum communication channel used by Alice

to send single qubits to Bob in the FK protocol with BRSP we obtain a protocol that implements the ideal

Sblind
veri f resource for blind and verifiable delegated computation. Importantly, the resulting protocol involves

only classical communication and is composable. We proceed in a number of incremental steps.

Note first that the set of single-qubit states prepared by the verifier in the FK protocol, |+θ〉 for θ ∈ Θ

and |0〉 , |1〉, is precisely the set of states that can be generated using the BRSP resource. We therefore define

two variants of the FK protocol which we call RSPV-FK and RSP-FK. The former is identical to the FK

protocol, except Alice uses the ideal resource RSPV in order to prepare the states she is supposed to send to

Bob in FK. RSP-FK is the same, except Alice uses the BRSP protocol to perform this preparation.

From the description of the FK protocol given in Figure 6, it is clear that the number of times Alice uses

the ideal RSPV functionality or the BRSP protocol respectively is equal to the number of qubits she sends

to the prover. As was shown in [KW17], there exist graph states such that this number is linear in the size

of the quantum circuit she wishes to delegate. Given this, we can show the following:

Lemma 5.1. Let δBRSP > 0 be the error tolerance parameter of the BRSP protocol used by Alice in RSP-FK,

δFK > 0 be the error (soundness) of FK, T > 0 the size of the computation Alice wishes to delegate to Bob17

17Alternatively, we can say that T is the size of Alice’s input and assume that she always delegates a universal circuit.
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The inputs to the protocol are an error parameter ε > 0, a unitary quantum circuit C, and a classical input

ψA.

1. Alice selects a set of measurement angles {φi}i∈{1,...,N}, such that each φi ∈ Θ, that implement the

computation specified by C. (For clarity we omit the choice of graph and flow.) Alice also selects a

set of dummy qubit locations D ⊆ {1, . . . , N} and trap locations T ⊆ {1, . . . , N}. Alice determines

an update function C(i, φi, θi, ri, s).

2. Alice selects angles {θi}i∈{1,...,N} uniformly at random from Θ, {ri}i∈{1,...,N} uniformly at random

from {0, 1} and {di}i∈D uniformly at random from {0, 1}. She initializes values {si}i∈{1,...,N} to 0.

3. Alice prepares qubits in the state |di〉 for i ∈ D, and Zd′i |+θi
〉 for i /∈ D, where d′i is a predetermined

function of {dj}j∈{1,...,N}, and sends the qubits one by one to Bob.

4. For i from 1 to N:

(a) Alice computes an angle δi = C(i, φi, θi, ri, s) and sends it to Bob.

(b) Bob returns bi ∈ {0, 1}.
(c) Alice sets si ← bi + ri.

5. Alice accepts if si = ri for all i ∈ T. She returns the state contained in the output qubits of the

computation.

Figure 6: Summary of the FK protocol. For an explanation of the notation and more details, see Protocol 8

in [FK17].
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and λ > 0 the security parameter used in BRSP. Then, RSP-FK constructs RSPV-FK, computationally,

within distance 2δFK +O(Tε), where ε = O(δc
BRSP) + negl(λ), for some constant c > 0.

Proof. From Theorem 4.2 we know that if δBRSP is the error of BRSP, then BRSP implements RSPV to

within computational distance ε. We also know that RSPV-FK involves O(T log(1/δFK)) uses of the RSPV

functionality, since to achieve error δFK the FK protocol uses O(T log(1/δFK)) qubits [KW17]). In RSP-

FK these are replaced with calls to BRSP. The compositionality theorem of AC (see [MR11, DFPR14]) im-

plies that each replacement comes at an additive cost of ε. In other words, up to an error O(T log(1/δFK)ε),
RSP-FK behaves exactly the same as RSPV-FK. The fact that RSPV-FK has error δFK means that (condi-

tioned on acceptance) it arrives at the correct result, except with error δFK. The same will be true of RSP-FK,

with the added error of O(T log(1/δFK)ε) stemming from the use of BRSP. A triangle inequality leads us

to conclude that RSP-FK implements RSPV-FK within distance 2δFK +O(T log(1/δFK)ε).

As a point of clarification, δFK represents the maximum deviations from the correct outcomes of the

respective protocols, conditioned on Alice accepting. Also note that Alice can make the O(T log(1/δFK)ε)
term be of order δFK by taking δBRSP = (δFK/(T log(1/δFK)))

1/c.

We now show the following:

Lemma 5.2. Let δFK > 0 be the error of FK. RSPV-FK implements FK within distance 2δFK.

Proof. We denote the two protocols as πRSPV−FK = (πRSPV−FK
A , πRSPV−FK

B ) and πFK = (πFK
A , πFK

B )
respectively. Additionally, let Rcq denote a resource consisting of classical and quantum channels. We will

show that

πRSPV−FK
A RcqπRSPV−FK

B = πFK
A RcqπFK

B , πRSPV−FK
A Rcq ≈2δ πFK

A RcqσB , (33)

for some simulator σB.

Correctness is immediate: if Alice and Bob behave honestly in both RSPV-FK and in FK the results are

statistically indistinguishable.

For security note the following. In RSPV-FK, for each use of RSPV Alice chooses the preparation bases

for the |+θ〉 states at random, and for the dummies she consistently chooses the Z basis. The only difference

between this and the actual FK protocol is that because she is using the RSPV functionality, Bob can force

Alice to abort in the preparation stage by triggering the ERR flag. To show that RSPV-FK implements

FK, we need to show that the simulator, σB, interacting with πFK
A Rcq, can make its interaction with Bob

indistinguishable from that of πRSPV−FK
A Rcq. First of all, to match RSPV-FK in terms of inputs and outputs

it must be that for each qubit to be prepared the simulator receives the c bit from Bob indicating whether he

wants to cause the current preparation to abort, as per the specification of RSPV (see Figure 1).

Consider a simulator that works as follows. The simulator first collects all the qubits sent by Alice

through Rcq. Then, for each qubit that it is supposed to send to Bob, it first receives the bit c corresponding

to that qubit. If c = 0, indicating to not abort, the simulator sends that qubit to Bob. Otherwise, it sends the

ERR flag to Bob and also causes Alice to abort18. If the simulator sends all of the qubits to Bob (i.e. there

was no abort in the preparation stage) it then acts as a classical channel between Alice and Bob, forwarding

the messages Alice sends (step 4.(a)) to Bob and then forwarding his responses to Alice (step 4.(b)).

18The simulator can cause Alice to abort by providing random responses to the measurement outcomes she expects from Bob.

The probability that these responses will match all of Alice’s expected outcomes on the trap states is exponentially small. In

other words, Alice will abort with probability 1− exp(−O(T)). This will mean that RSPV -FK implements FK within distance

2δFK + exp(−O(T)) but since we will always consider δFK = Ω(exp(−T)), we omit this inverse exponential term.
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From the soundness of FK it follows that at the end of either πRSPV−FK
A Rcq or πFK

A RcqσB the state of

the system (conditioned on acceptance) is δFK-close to the correct output. Applying the triangle inequality,

the output states in the two situations are 2δFK-close to each other. This concludes the proof.

Note that the result of Lemma 5.2 holds within statistical distance. Of course, the result is also true when

restricting to the computationally efficient setting, since the simulator is efficient (it simply needs to store

states and forward messages received from Alice and Bob).

Finally, we use the following result from [DFPR13]:

Lemma 5.3 (Lemma C.1 in [DFPR13]). If the FK protocol is run with parameters such that it has error δFK,

then it is 4
√

2δ1/4
FK N2-blind-verifiable, where N is the dimension of the subsystem of Alice’s input which is

quantum.

For convenience we restrict our attention to classical inputs for Alice. In this case it follows that FK

(with classical input) with soundness parameter δFK implements the ideal Sblind
veri f resource within distance

O(δ1/4
FK ). With this fact, we can show the main result of this section.

Theorem 5.4. The RSP-FK protocol with error δFK > 0 and security parameter λ > 0 implements the

ideal Sblind
veri f resource within distance O(δ1/4

FK ) + negl(λ).

Proof. From Lemmas 5.1 and 5.2 we see that RSP-FK with error δFK and security parameter λ > 0 imple-

ments FK with error O(δFK) + negl(λ). Combining this with Lemma 5.3 leads us to conclude that RSP-FK

implements the Sblind
veri f resource within distance O(δ1/4

FK ) + negl(λ).

The result of Theorem 5.4 states that using BRSP together with the FK protocol yields a protocol that

is computationally indistinguishable from the ideal blind-verifiability functionality. If we take the distin-

guishing advantage to be δ > 0, what will be the total complexity (in terms of total of number of operations

performed by the verifier) of RSP-FK for a computation of size T? From Theorem 5.4 it follows that in

order to implement Sblind
veri f to within distance δ we need to perform RSP-FK with soundness error δ4. Im-

plementing the FK protocol so that it achieves soundness error δ4 requires O(T log(1/δ4)) operations,

where T is the size of the computation. The change from δ to δ4 only increases the overhead by a con-

stant factor, so that overall the prover requires O(T log(1/δ)) operations to implement FK. In our case,

however, for each state sent by the verifier to the prover, the verifier executes BRSP. Thus the overhead is

O(CBRSP T log(1/δ)), where CBRSP is the cost of running one instance of BRSP. If we wish to achieve

soundness error δ4 in RSP-FK, BRSP needs to have error at most (δ4/(T log(1/δ)))1/c. The specific con-

stant c can be determined from the proof of Theorem 3.17 to be c = 1/3. Thus we can estimate the cost of

BRSP as CBRSP = (T3/δ12) log3(1/δ)poly(λ), where λ is the security parameter. This gives a total cost

of O((T4/δ12) log4(1/δ) poly(λ)). Note that this is the cost of implementing the ideal blind-verifiable

resource. If we merely wish to implement FK itself, the cost would be O((T4/δ3) log4(1/δ) poly(λ)),
since we would not incur the 1/δ→ 1/δ4 increase stemming from Lemma 5.3.

A Claw-free functions with adaptive hardcore

Our construction relies on a variant of a cryptographic primitive called a “noisy trapdoor claw-free fam-

ily (NTCF),” introduced in [BCM+18b], and its extension to an “extended noisy trapdoor claw-free fam-

ily (ENTCF),” given in [Mah18b]. We rely on definitions and notation from [BCM+18a, Section 3]

and [Mah18c, Section 4].

37



A key property of an NTCF is the adaptive hardcore bit property, property 4. in [BCM+18a, Definition

3.1]. We need a slightly stronger variant of the property, that works over Z8 instead of Z2. The property we

need is formulated in the following definition.

Definition A.1. Let λ be a security parameter. Let X and Y be finite sets. Let KF be a finite set of keys. A

NTCF family

F =
{

fk,b : X → DY
}

k∈KF ,b∈{0,1}

is said to have adaptive Z8 hardcore if it satisfies the following conditions, for some integer w that is a

polynomially bounded function of λ.

1. For all b ∈ {0, 1} and x ∈ X , there exists a set Gk,b,x ⊆ Z8 such that Prd←UZw
8
[d /∈ Gk,b,x]

is negligible, and moreover there exists an efficient algorithm that checks for membership in Gk,b,x

given k, b, x and the trapdoor tk.

2. There is an efficiently computable injection J : X → Zw
8 , such that J can be inverted efficiently on its

range, and such that the following holds. For any y ∈ Y , define functions θ̂ : Zw
8 → {0, 1, 2, 3} and

v̂ : Zw
8 → {0, 1} as the unique values such that d · (J(x0) + J(x1)) mod 8 = θ̂(d) + 4v̂(d), where

for b ∈ {0, 1}, xb = INVF (tk, b, y), if d ∈ Gk,0,x0
∩ Gk,1,x1

,19 and θ̂(d) = v̂(d) = ⊥ otherwise.

Then if

Hk =
{

(b, xb, d, θ, v) | b ∈ {0, 1}, (x0, x1) ∈ Rk, (θ, v) = (θ̂(d), v̂(d))
}

, 20

Hk = {(b, xb, d, θ, v) | (b, x, d, θ, v⊕ 1) ∈ Hk

}

,

then for any quantum polynomial-time procedure A there exists a negligible function µ(·) such that

∣

∣

∣
Pr

(k,tk)←GENF (1λ)
[A(k) ∈ Hk]− Pr

(k,tk)←GENF (1λ)
[A(k) ∈ Hk]

∣

∣

∣
≤ µ(λ) . (34)

Similarly, if for w ∈ {0, 1, 2, 3},

H
(w)
k =

{

(b, xb, d, θ) | b ∈ {0, 1}, (x0, x1) ∈ Rk, θ = θ̂(d) + w
}

,

then for any quantum polynomial-time procedure A′ there exists a negligible function µ(·) such that

for all w ∈ {1, 2, 3},
∣

∣

∣
Pr

(k,tk)←GENF (1λ)
[A′(k) ∈ H

(0)
k ]− Pr

(k,tk)←GENF (1λ)
[A′(k) ∈ H

(w)
k ]

∣

∣

∣
≤ µ(λ) . (35)

A.1 The adaptive hardcore property

It is straightforward to verify that the same construction of an NTCF introduced in [BCM+18a] has adaptive

Z8 hardcore.

Lemma A.2. The NTCF family introduced in [BCM+18a] has adaptive Z8 hardcore, i.e. it satisfies item 2.

in Definition A.1.

19The sets Gk,b,x are defined in (40).
20Note that although both x0 and x1 are referred to to define the set Hk, only one of them, xb , is explicitly specified in any 4-tuple

that lies in Hk.
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The proof of Lemma A.2 is very similar to the adaptive hardcore bit condition shown in [BCM+18a,

Lemma 4.7], with some modifications to obtain a hardness statement mod8 instead of mod2. We indicate

the main changes needed, referring directly to statements from [BCM+18a, Section 4.4].

The main step of the proof consists in showing the following Lemma, a direct analogue of [BCM+18a,

Lemma 4.2]. The main difference is the requirement on d̂. For a string x ∈ {0, 1}n we write |x|H for the

Hamming weight of x.

Lemma A.3. Let q be a prime, ℓ, n ≥ 1 integers, and C ∈ Zℓ×n
q a uniformly random matrix. With

probability at least 1− qℓ · 2− n
8 over the choice of C the following holds. For a fixed C, all v ∈ Zℓ

q and

d̂ ∈ {0, 1}n such that |d̂|H ≥ n
8 , the distribution of (d̂ · s mod 8), where s is uniform in {0, 1}n conditioned

on Cs = v, is within statistical distance O(q
3ℓ
2 · 2− n

80 ) of the uniform distribution over {0, 1}.

The first change in the proof of [BCM+18a, Lemma 4.2] required to obtain Lemma A.3 is to the defini-

tion of a moderate matrix:

Definition A.4. Let b ∈ Zn
q . We say that b is moderate if it contains at least n

4 entries whose unique

representative in (−q/2, q/2] has its absolute value in the range ( q
32 ,

3q
32 ]. A matrix C ∈ Zℓ×n

q is moderate

if its entire row span (except 0n) is moderate.

Lemma A.5. Let q be prime and ℓ, n be integers. Then

Pr
C←UZ

ℓ×n
q

(

C is moderate
)

≥ 1− qℓ · 2− n
32 .

Proof. The proof is identical to [BCM+18a, Lemma 4.5], except for replacing q/8 with q/32.

Lemma A.6. Let C ∈ Zℓ×n
q be an arbitrary moderate matrix and let d̂ ∈ {0, 1}n be such that |d̂| ≥ n

8 . Let

s be uniform over {0, 1}n and consider the random variables v = Cs mod q and z = d̂ · s mod 2. Then

(v, z) is within total variation distance at most 2q
ℓ

2 · 2− n
80 of the uniform distribution over Zℓ

q × {0, 1}.

The proof of the lemma is similar to the proof of [BCM+18a, Lemma 4.5], with a small difference due

to the mod8 condition. This is where the additional requirement that |d̂| ≥ n
10 (as opposed to simply d̂ 6= 0

in [BCM+18a]) is used.

Proof. Let f be the probability density function of (v, z). Interpreting z as an element of Z8, let f̂ be

the Fourier transform over Zℓ
q ×Z8. Let U denote the density of the uniform distribution over Zℓ

q ×Z8.

Applying the Cauchy-Schwarz inequality,

1

2

∥

∥ f −U
∥

∥

1
≤ 2

√

qℓ
∥

∥ f −U
∥

∥

2

=
1

2

∥

∥ f̂ − Û
∥

∥

2

=
1

2

(

∑
(v̂,ẑ)∈Zℓ

q×Z8\{(0,0)}

∣

∣ f̂ (v̂, ẑ)
∣

∣

2
)1/2

, (36)

where the second line follows from Parseval’s identity, and for the third line we used f̂ (0, 0) = Û(0, 0) = 1
and Û(v̂, ẑ) = 0 for all (v̂, ẑ) 6= (0ℓ, 0). To bound (36) we estimate the Fourier coefficients of f . Denoting
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ω8q = e
− 2πi

8q , for any (v̂, ẑ) ∈ Zℓ
q ×Z2 we can write

f̂ (v̂, ẑ) = Es

[

ω
(2·v̂TC+q·ẑd̂T)s
8q

]

= Es

[

ωwTs
8q

]

= ∏
i

Esi

[

ω
wisi
8q

]

, (37)

where we wrote wT = 8 · v̂TC + q · ẑd̂T ∈ Zn
8q.

We first bound f̂ (0ℓ, ẑ) for ẑ ∈ Z8\{0}. In this case (37) simplifies to

∣

∣ f̂ (v̂, ẑ)
∣

∣ = ∏
i:d̂i=1

∣

∣Esi

[

e−
2iπẑ

8 si
]
∣

∣

= ∏
i:d̂i=1

∣

∣

∣
cos

(π

2

ẑ

4

)∣

∣

∣

≤ ∏
i:d̂i=1

cos
(π

8

)

≤ 2−
n
80 . (38)

Next we observe that for all i ∈ {1, . . . , n} such that the representative of (v̂TC)i in (−q/2, q/2] has

its absolute value in ( q
32 ,

3q
32 ] it holds that wi

q ∈ ( 1
4 , 3

4 ] mod 1, in which case

∣

∣Esi
[ωwisi

8q ]
∣

∣ =
∣

∣

∣
cos

(π

2
· wi

q

)
∣

∣

∣
≤ cos

(π

8

)

≤ 2−
1

10 . (39)

Since C is moderate, there are at least n
4 such entries, so that from (37) it follows that | f̂ (v̂, ẑ)| ≤ 2−

n
40 for

all v̂ 6= 0. Recalling (36) and (38), the lemma is proved.

The proof of Lemma A.3 follows from Lemma A.6 exactly as in [BCM+18a], and we omit the details.

With Lemma A.3 in hand, the proof of the adaptive Z8 condition, item 2. in Definition A.1, is very similar to

the proof of the adaptive hardcore bit condition in [BCM+18a]. The main change needed is in the definition

of the sets Gk,b,x, for k = (A, As + e), b ∈ {0, 1} and x ∈ X , that is defined as follows:

Gk,b,x =
{

d ∈ {0, 1}w
∣

∣

∣

∣

∣Ib,x(d){b n
2 ,...,b n

2 +
n
2 }
∣

∣

H
≥ n

4

}

, (40)

where Ib,x(d) is the vector whose each coordinate is obtained by taking the inner product mod 2 of the

corresponding block of ⌈log q⌉ coordinates of d and of J(x) ⊕ J(x − (−1)b1), where J : X → {0, 1}w is

such that J(x) returns the binary representation of x ∈ X and 1 ∈ Zn
q is the vector with all its coordinates

equal to 1 ∈ Zq.

A.2 The collapsing property

The following lemma shows that any ENTCF has the collapsing property, introduced by Unruh [Unr16].

Lemma A.7. Let (F ,G) be an ENTCF family. Let φ = ∑y∈Y |y〉〈y| ⊗ φy be a state that can be prepared

efficiently, given as input a key k ∈ KF ∪ KG . Let Π = {Π(b,xb)} be an efficiently implementable POVM

such that Tr(Π(b,xb)φy) = 0 if fk,b(xb) 6= y (if k ∈ KF ) or gk,b(xb) 6= y (if k ∈ KG). Then there is no

40



efficient procedure such that, given k ← GENF (1λ) and y distributed according to Tr(φy), the procedure

has a non-negligible advantage in distinguishing φy from φ′y = Π(0,x0)φyΠ(0,x0) + Π(1,x1)φyΠ(1,x1), where

for b ∈ {0, 1}, xb is such that fk,b(xb) = y.

Proof. Suppose for contradiction that there exists such a procedure. Since the procedure is efficient, using

the property of injective invariance of an ENTCF (Definition 4.2 in [Mah18c]) it should produce compu-

tationally indistinguishable outcomes given k ← GENF (1λ) or k ← GENG(1λ). In the second case,

φ′y = φy, so that no such procedure exists.
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[FHM18] Joseph F Fitzsimons, Michal Hajdušek, and Tomoyuki Morimae. Post hoc verification of

quantum computation. Physical review letters, 120(4):040501, 2018.

[FK17] Joseph F Fitzsimons and Elham Kashefi. Unconditionally verifiable blind quantum computa-

tion. Physical Review A, 96(1):012303, 2017.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span pro-

grams and succinct nizks without pcps. In Annual International Conference on the Theory

and Applications of Cryptographic Techniques, pages 626–645. Springer, 2013.

[GKK] Alexandru Gheorghiu, Theodoros Kapourniotis, and Elham Kashefi. Verification of quantum

computation: An overview of existing approaches. Theory of computing systems, pages 1–94.

[GKR15] Shafi Goldwasser, Yael Tauman Kalai, and Guy N Rothblum. Delegating computation: inter-

active proofs for muggles. Journal of the ACM (JACM), 62(4):27, 2015.

[GKW15] Alexandru Gheorghiu, Elham Kashefi, and Petros Wallden. Robustness and device indepen-

dence of verifiable blind quantum computing. New Journal of Physics, 17(8):083040, 2015.

[Gro10] Jens Groth. Short non-interactive zero-knowledge proofs. In International Conference on the

Theory and Application of Cryptology and Information Security, pages 341–358. Springer,

2010.

[GW07] Gus Gutoski and John Watrous. Toward a general theory of quantum games. In Proceedings

of the thirty-ninth annual ACM symposium on Theory of computing, pages 565–574. ACM,

2007.

[HM15] Masahito Hayashi and Tomoyuki Morimae. Verifiable measurement-only blind quantum

computing with stabilizer testing. Physical review letters, 115(22):220502, 2015.

[HR18] Justin Holmgren and Ron Rothblum. Delegating computations with (almost) minimal time

and space overhead. In 2018 IEEE 59th Annual Symposium on Foundations of Computer

Science (FOCS), pages 124–135. IEEE, 2018.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments. In Proceedings of the

twenty-fourth annual ACM symposium on Theory of computing, pages 723–732. ACM, 1992.

[KP17] Elham Kashefi and Anna Pappa. Multiparty delegated quantum computing. Cryptography,

1(2):12, 2017.

42



[KRR14] Yael Tauman Kalai, Ran Raz, and Ron D Rothblum. How to delegate computations: the

power of no-signaling proofs. In Proceedings of the forty-sixth annual ACM symposium on

Theory of computing, pages 485–494. ACM, 2014.

[KSVV02] Alexei Yu Kitaev, Alexander Shen, Mikhail N Vyalyi, and Mikhail N Vyalyi. Classical and

quantum computation. Number 47. American Mathematical Soc., 2002.

[KW17] Elham Kashefi and Petros Wallden. Optimised resource construction for verifiable quantum

computation. Journal of Physics A: Mathematical and Theoretical, 50(14):145306, 2017.

[Mah18a] Urmila Mahadev. Classical homomorphic encryption for quantum circuits. In 2018 IEEE

59th Annual Symposium on Foundations of Computer Science (FOCS), pages 332–338. IEEE,

2018.

[Mah18b] Urmila Mahadev. Classical verification of quantum computations. In 2018 IEEE 59th Annual

Symposium on Foundations of Computer Science (FOCS), pages 259–267. IEEE, 2018.

[Mah18c] Urmila Mahadev. Classical verification of quantum computations. arXiv preprint

arXiv:1804.01082, 2018.

[MR11] Ueli Maurer and Renato Renner. Abstract cryptography. In In Innovations in Computer

Science. Citeseer, 2011.

[MYS12] Matthew McKague, Tzyh Haur Yang, and Valerio Scarani. Robust self-testing of the singlet.

Journal of Physics A: Mathematical and Theoretical, 45(45):455304, 2012.

[Por17] Christopher Portmann. Composability in quantum cryptography, 2017. Tutorial given at

QCRYPT’17, Cambridge, UK.

[RUV13] Ben W Reichardt, Falk Unger, and Umesh Vazirani. Classical command of quantum systems.

Nature, 496(7446):456, 2013.

[Unr16] Dominique Unruh. Computationally binding quantum commitments. In Annual International

Conference on the Theory and Applications of Cryptographic Techniques, pages 497–527.

Springer, 2016.

[Win99] Andreas Winter. Coding theorem and strong converse for quantum channels. IEEE Transac-

tions on Information Theory, 45(7):2481–2485, 1999.

43


	1 Introduction
	1.1 Our results
	1.2 Remote state preparation: ideal resource
	1.3 Remote state preparation: real protocol
	1.4 Application: delegated computation

	2 Preliminaries
	2.1 Notation
	2.2 Efficient states and operations
	2.3 Computational distinguishability
	2.4 Composable security
	2.5 Rigidity
	2.6 Delegated quantum computation
	2.6.1 Ideal functionalities
	2.6.2 Local criteria


	3 Remote state preparation: real protocol
	3.1 Quantum random access codes
	3.2 The qubit preparation test
	3.3 Rigidity
	3.3.1 Devices
	3.3.2 Preimage test
	3.3.3 Z-measurement test
	3.3.4 X-measurement test, part A
	3.3.5 X-measurement test, part B

	3.4 Real protocol for remote state preparation

	4 Remote state preparation: ideal functionality
	5 Blind and verifiable computation from remote state preparation
	A Claw-free functions with adaptive hardcore
	A.1 The adaptive hardcore property
	A.2 The collapsing property


