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Abstract— We consider the problem of designing policies for
partially observable Markov decision processes (POMDPs) with
dynamic coherent risk objectives. Synthesizing risk-averse op-
timal policies for POMDPs requires infinite memory and thus
undecidable. To overcome this difficulty, we propose a method
based on bounded policy iteration for designing stochastic but
finite state (memory) controllers, which takes advantage of
standard convex optimization methods. Given a memory budget
and optimality criterion, the proposed method modifies the
stochastic finite state controller leading to sub-optimal solutions
with lower coherent risk.

I. INTRODUCTION

With the rise of autonomous systems being deployed in real-
world settings, the associated risk that stems from unknown
and unforeseen circumstances is correspondingly on the rise.
In particular, in safety-critical scenarios, such as aerospace
applications, decision making should account for risk. For
example, spacecraft control technology relies heavily on a rel-
atively large and highly skilled mission operations team that
generates detailed time-ordered and event-driven sequences
of commands. This approach will not be viable in the future
with increasing number of missions and a desire to limit
the operations team and Deep Space Network (DSN) costs.
Future spaceflight missions will be at large distances and
light- time delays from Earth, requiring novel capabilities for
astronaut crews and ground operators to manage spacecraft
consumables such as power, water, propellant, and life support
systems to prevent mission failure. In order to maximize the
science returns under these conditions, the ability to deal with
emergencies and safely explore remote regions are becoming
more and more important [18]. Even in Mars rover navigation
problems, finding planning policies that minimize risk is of
utmost importance due to the uncertainties present in Mars
surface data [20] as illustrated in Figure 1.
Risk can be quantified in numerous ways. For example,
mission risks can be mathematically characterized in terms
of chance constraints [21]–[23]. The preference of one risk
measure over another depends on factors such as sensitivity to
rare events, ease of estimation from data, and computational
tractability. Artzner et. al. [3] characterized a set of natural
properties that are desirable for a risk measure, called a co-
herent risk measure, and have henceforth obtained widespread
acceptance in finance and operations research, among others.
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Fig. 1. Mars surface slope uncertainty for Mars rover navigation: regions
with slopes ranging any values within (blue) 5˝ ´ 10˝, (green) 10˝ ´ 15˝,
(yellow) 15˝ ´ 20˝, (orange) 20˝ ´ 25˝, (red) ě 25˝, and (the rest) ă 5˝

or no data.

An important example of a coherent risk measure is the
conditional value-at-risk (CVaR) that has received significant
attention in decision making problems such as Markov deci-
sion processes (MDPs) [5], [8], [9], [27]. General coherent
risk measures for MDPs were studied in [29], wherein it
was further assumed the risk measure is time consistent,
similar to the dynamic programming property. Following the
footsteps of the latter contribution, [32] proposed a sampling-
based algorithm for MDPs with static and dynamic coherent
risk measures using policy gradient and actor-critic methods,
respectively (also, see a model predictive control technique for
linear dynamical systems with coherent risk objectives [31]).
However, in many aerospace applications, sensing constraints
does not allow for full-state observation and decision making
involves partial observation [2], [19]. These problems can
be represented as a partially observable Markov decision
process (POMDP), where decision making is subject to
uncertainty stemming from stochastic outcomes as well as
partial observation [16]. In this paper, we propose a method
based on bounded policy iteration to design sub-optimal risk-
averse policies for POMDPs. To this end, we first discuss
that the problem of designing risk-averse optimal policies
is undecidable in general. Then, we show that a stochastic
but finite-memory controller can be synthesized to upper-
bound the dynamic risk. Given a memory budget, we propose
a policy iteration method to synthesize these finite-state
controllers that can increase the number of memory states
to improve risk-aversity. We illustrate our proposed method
with a numerical example of path planning under uncertainty.
The rest of the paper is organized as follows. The next section
reviews some preliminary notions and definitions used in the
sequel. In Section III, we discuss POMDPs with coherent risk
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measures. In Section IV, we propose sub-optimal stochastic
finite state controllers that minimize the upper-bound on
the coherent risk. In Section V, a bounded policy iteration
algorithm is formulated to design risk-averse stochastic finite
controllers. In Section VI, we elucidate our results with a
numerical example. Finally, in Section VII, we conclude the
paper and give directions for future research.

II. PRELIMINARIES

In this section, we briefly review some notions and definitions
used throughout the paper.

A. Markov Chains

A Markov chain M is composed of the state space S, the
transition probability defined as the conditional distribution
T p.|sq : S Ñ r0, 1s such that

ř

s1PS T ps
1|sq “ 1, @s P S,

and the initial distribution ιinit such that
ř

sPS ιinitpsq “ 1.
An infinite path, denoted by the superscript ω, of the Markov
chain M is a sequence of states π “ s0s1 ¨ ¨ ¨ P Sω such
that T pst`1|stq ą 0 for all t and ιinitps0q ą 0. The
probability space over such paths is the defined as follows.
The sample space Ω is the set of infinite paths with initial
state s P S, i.e., Ω “ Pathspsq. ΣPathspsq is the least σ-
algebra on Pathspsq containing Cylpωq, where Cylpωq “
tω1 P Pathspsq | ω is a prefix of ω1u is the cylinder set.
Finally, in order to specify the probability measure over all
sets of events in ΣPathspsq, it is sufficient to provide the
probability of each cylinder set, which can be computed as
PrM rCylps0 . . . snqs “ ιinitps0q

ś

0ďtďn T pst`1 | stq. Once
the probability measure is defined over the cylinder sets, the
expectation operator EM is also uniquely defined. In the
sequel, we remove the subscript whenever the Markov chain
is clear from the context.

B. Partially Observable Markov Decision Process

Definition 1 (POMDP): A POMDP, PM, consists of:

‚ States S “ ts1, . . . , s|S|u of the autonomous agent(s)
and world model,

‚ Actions Act “ tα1, . . . , α|Act|u available to the robot,
‚ Observations O “ to1, . . . , o|O|u,
‚ A Transition function T psj |si, αq,
‚ A cost, cpsi, αiq ě 0, for each state si P S and

action αi P Act.

This paper considers finite POMDPs where S, Act, and O
are finite sets. For each action the probability of making a
transition from state si P S to state sj P S under action
α P Act is given by T psj |si, αq. For each state si, an
observation o P O is generated independently with probability
Opo|siq. The starting world state is given by the distribution
ιinitpsiq. The probabilistic components of a POMDP model
must satisfy the following:

$

’

&

’

%

ř

sPS T ps|si, αq “ 1, @si P S, α P Act
ř

oPO Opo|sq “ 1, @s P S
ř

sPS ιinitpsq “ 1.

Given a POMDP, we can define beliefs or distributions over
states at each time step to keep track of sufficient statistics
with finite description [4]. The beliefs b P ∆pSq, with ∆pSq
being the set of probability distributions over S, for all s P S
can be computed using the Bayes’ law as follows:

b0psq “
ιinitpsqOpo0 | sq

ř

oPO ιinitpsqOpo | sq
, (1)

btpsq “
Opot | s, αtq

ř

s1PS T ps | s
1, αtqbN´1ps

1q
ř

sPS Opot | s, αtq
ř

s1PS T ps | s
1, αtqbN´1ps1q

,

(2)

for all t ě 1. It is also worth mentioning that (2) is referred
to as the belief update equation.

C. Stochastic Finite State Control of POMDPs

It is well established that designing optimal policies for
POMDPs based on the (continuous) belief states require
uncountably infinite memory or internal states [7], [15],
[17]. This paper focuses on a particular class of POMDP
controllers, namely, stochastic finite state controllers. These
controllers lead to a finite state space Markov chain for the
closed loop controlled system.

Definition 2 (Stochastic Finite State Controller): Let PM
be a POMDP with observations O, actions Act, and initial
distribution ιinit. A stochastic finite state controller for PM
is given by the tuple G “ pG,ω, κq where

‚ G “ tg1, g2, . . . , g|G|u is a finite set of internal states (I-
states).

‚ ω : G ˆ O Ñ ∆pGˆActq is a function of internal
stochastic finite state controller states gk and observation
o, such that ωpgk, oq is a probability distribution over
Gˆ Act. The next internal state and action pair pgl, αq
is chosen by independent sampling of ωpgk, oq. By abuse
of notation, ωpgl, α|gk, oq will denote the probability of
transitioning to internal stochastic finite state controller
state gl and taking action α, when the current internal
state is gk and observation o is received.

‚ κ : ∆pSq Ñ ∆pGq chooses the starting internal FSC
state g0, by independent sampling of κpιinitq, given
initial distribution ιinit of PM. κpg|ιinitq will denote
the probability of starting the FSC in internal state g
when the initial POMDP distribution is ιinit.

Closing the loop around a POMDP with a stochastic finite
state controller yields the following transition system.

Definition 3 (Global Markov Chain): Let POMDP PM
have state space S and let G be the I-states of stochastic
finite state controller G. The global Markov chain MPM,G

SˆG
(or simply M, where the stochastic finite state controller
and the POMDP are clear from the context) with execution
σ “ trs0, g0s, rs1, g1s, . . . u, rst, gts P S ˆ G evolves as
follows:

‚ The probability of initial global state rs0, g0s is

ιMinit prs0, g0sq “ ιinitps0qκpg0|ιinitq.



‚ The state transition probability, TM, is given by

TM prst`1, gt`1s |rst, gts q “
ÿ

oPO

ÿ

αPAct

Opo|stqωpgt`1, α|gt, oqT pst`1|st, αq.

Note that the global Markov chain arising from a finite state
space POMDP also has a finite state space.

D. Coherent Risk Measures

Consider a probability space pΩ,F , P q, a filteration F0 Ă

¨ ¨ ¨FN Ă F , and an adapted sequence of random vari-
ables (stage-wise costs) ct, t “ 0, . . . , N , where N P

Ně0Yt8u. We further define the spaces Ct “ LppΩ,Ft, P q,
p P r0,8q, t “ 0, . . . , N and let Ct:N “ Ct ˆ ¨ ¨ ¨ ˆ CN and
C “ C0ˆC1ˆ¨ ¨ ¨ . We further assume that the sequence c P C
is almost surely bounded, i.e.,

max
t

essup |ctpωq| ă 8.

In order to describe how one can evaluate the risk of subse-
quence ct, . . . , cN from the perspective of stage t, we require
the following definitions.

Definition 4 (Conditional Risk Measure): A mapping ρt:N :
Ct:N Ñ Ct, where 0 ď t ď N , is called a conditional risk
measure, if it has the following monoticity property:

ρt:N pcq ď ρt:N pc
1q, @c,@c1 P Ct:N such that c ď c1, (3)

where the inequalities should be understood componentwise.

Definition 5 (Dynamic Risk Measure): A dynamic risk mea-
sure is a sequence of conditional risk measures ρt:N : Ct:N Ñ
Ct, t “ 0, . . . , N .

One fundamental property of dynamic risk measures is their
consistency over time. That is, if c will be as good as c1 from
the perspective of some future time θ, and they are identical
between time τ and θ, then c should not be worse than c1

from the current time’s perspective.

Definition 6 (Time-Consistent Risk Measure): A dynamic
risk measure tρt:Nu

T
t“0 is called time-consistent if for all

0 ď t ď τ ă θ ď T and all sequences Z,W P Ct:N the
conditions

ct “ c1t, t “ τ, . . . , θ ´ 1, and
ρθ,T pZθ, . . . , ctq ď ρθ,T pWθ, . . . , c

1
tq

imply
ρτ,N pcτ , . . . , ctq ď ρτ,N pc

1
τ , . . . , c

1
tq. (4)

If a risk measure is time-consistent, we can define the one-step
conditional risk measure ρt : Ct`1 Ñ Ct, t “ 0, . . . , N ´ 1 as
follows:

ρtpct`1q “ ρt,t`1p0, ct`1q, (5)

and for all t “ 1, . . . , N , we obtain:

ρt,N pct, . . . , cN q “ ρt
`

ct ` ρt`1pct`1 ` ρt`2pct`2 ` ¨ ¨ ¨

` ρN´1 pcN´1 ` ρN pcN qq ¨ ¨ ¨ qq
˘

. (6)

Note that the time-consistent risk measure is completely
defined by one-step conditional risk measures ρt, t “

0, . . . , N ´ 1 and, in particular, for t “ 0, (6) define a risk
measure of the entire sequence c P C0:N .
At this point, we are ready to define a coherent risk measure.

Definition 7 (Coherent Risk Measure): We call the one-step
conditional risk measures ρt : Ct`1 Ñ Ct, t “ 1, . . . , N ´ 1
as in (6) a coherent risk measure if it satisfies the following
conditions

‚ Convexity: ρtpλc`p1´λqc1q ď λρtpcq` p1´λqρtpc
1q,

for all λ P p0, 1q and all c, c1 P Ct`1;
‚ Monotonicity: If c ď c1 then ρtpcq ď ρtpc

1q for all
c, c1 P Ct`1;

‚ Time Consistency: ρtpc` c1q “ c` ρtpc
1q for all c P Ct

and c1 P Ct`1;
‚ Positive Homogeneity: ρtpβcq “ βρtpcq for all c P Ct`1

and β ě 0.

Henceforth, all the risk measures considered are assumed to
be coherent. In this paper, we are interested in the discounted
infinite horizon problems. Let γ P p0, 1q be a given discount
factor. For N “ 0, 1, . . ., we define the functionals

ργ0,N pc0, . . . , cN q “ ρ0,N pc0, γc1, . . . , γ
NcN q

“ ρ0

ˆ

c0 ` ρ1
`

γc1 ` ρ2pγ
2c2 ` ¨ ¨ ¨

` ρN´1

`

γN´1cN´1 ` ρN pγ
NcN q

˘

¨ ¨ ¨ q
˘

˙

,

which are the same as (6) for t “ 0, but with discounting
γt applied to each ct. Finally, we have total discounted risk
functional ξγ : C Ñ R defined as

ξγpZq “ lim
NÑ8

ργ0,N pc0, . . . , cN q. (7)

From [29, Theorem 3], we have that ξγ is convex, monotone,
and positive homogenoeus.

III. RISK-AVERSE POMDPS

Notions of coherent risk and dynamic risk measures discussed
in the previous section have been developed and applied in mi-
croeconomics and mathematical finance fields in the past two
decades [33]. Generally speaking, risk-averse decision making
is concerned with the behavior of agents, e.g. consumers and
investors, who, when exposed to uncertainty, attempt to lower
that uncertainty. The agent averts to agree to a situation with
an unknown payoff rather than another situation with a more
predictable payoff but possibly lower expected payoff. In a
Markov decision making setting, the main idea in risk-averse
control is to replace the conventional conditional expectation
of the cumulative reward or cost objectives with more general
risk measures.
Consider a stationary (policies, transition probabilities, and
cost functions do not depend explicitly on time) controlled
Markov process tstu, t “ 0, 1, . . .. Each policy π “ tπtu8t“0



leads to a cost sequence ct “ cpst, αtq, t “ 0, 1, . . .. We
define the dynamic risk of evaluating the γ-discounted cost
of the policy π as

Vγpπ, s0q “ ξγ
`

cps0, α0q, cps1, α1q, . . .
˘

, (8)

where ξγ is defined in (7). In this work, we are interested in
addressing the following problem:

Problem 1: For a given POMDP PM, a discount factor
γ P p0, 1q, and a total risk functional Vγ as in (8) with tρtu8t“0

being coherent risk measures, compute

π˚ P argminπVγpπ, b0q.

We refer to a controlled Markov process with the “nested”
objective (8) a risk-averse Markov process. Many applica-
tions such as portfolio allocation problems [10] and organ
transplant decisions [14] require a risk-averse Markov model.
It was also previously demonstrated in [9], [24] that coherent
risk measure objectives can account for modeling errors and
parametric uncertainty in MDPs.
The main challenge is that at any time t, the value of ρt is
Ft-measurable and is allowed to depend on the entire history
of the process ts0, s1, . . .u and we cannot expect to obtain a
Markov optimal policy [25].
In order to obtain Markov optimal policies, we need to
make the following assumption (see [29, Section 4] for more
details):

Assumption 1: For any function φpst, at, st`1q, we have

ρtpφpst, at, st`1qq “ R tφpst, at, ¨q, st, ppst, atqu , (9)

where at “ πpstq. The function R is called a Markov risk
transition mapping.

Note that the Markov risk transition mapping depends on the
function φ, the states s, and probability vector pps, aq. The
dot in φpst, at, ¨q on the right hand side of (9) represents a
dummy variable that is integrated/summed out with respect
to the st-th row of the transition probability matrix ppst, atq.
The simplest case of the Markov risk transition mapping is
the conditional expectation Et¨ | st, atu, i.e.,

R tφpst, at, ¨q, st, ppst, atqu “ Etφpst, at, st`1q | st, atu

“
ÿ

st`1

φpst, at, st`1qT pst`1 | st, atq.

If R is a coherent risk measure as described in Definition 7,
then the Markov policies are sufficient to ensure optimal-
ity [29]. In particular, for the CVaR risk measure, the Markov
risk transition mapping is given by

Rtφ, s, pps, aqu

“ inf
zPR

#

z `
1

α

ÿ

s1

`

φps, a, s1q ´ z
˘

`
T ps1 | s, aq

+

. (10)

The risk-averse formulation can be extended to POMDPs as
follows.

Theorem 1: Consider the POMDP PM with the nested
risk objective (8) and γ P p0, 1q. Let Assumption 1 hold,
let ρt, t “ 0, 1, . . . be coherent risk measures as described
in Definition 7, and suppose cp¨, ¨q be non-negative and
upper-bounded. Then, the stationary optimal policy π˚ “
tπ˚t u

8
t“0 “ tπ

˚u8t“0 is the solution of the following Bellman’s
equations

Vγpbq “ min
αPAct

´

cpb, αq ` γR
 

Vγpb
1q, b, ppb1 | b, αq

(

¯

,

(11a)

π˚pbq P argminαPAct

´

cpb, αq ` γR
 

Vγpb
1q, b, ppb1 | b, αq

(

¯

,

(11b)

where cpb, αq “
ř

sPS cps, αqbpsq.

Proof: Note that a POMDP can be represented as
an MDP over the belief states (2). Hence, a POMDP is a
controlled Markov process with states b P ∆pSq, where the
controlled belief transition probability is described as

ppb1 | b, αq “
ÿ

oPO
ppb1 | b, o, αq ppo | b, αq

“
ÿ

oPO
δ

ˆ

b1 ´
Opo | s, αq

ř

s1PS T ps | s
1, αqbps1q

ř

sPS Opo | s, αq
ř

s1PS T ps | s
1, αqbps1q

˙

ˆ
ÿ

sPS
Opo | s, αq

ÿ

s2PS
T ps | s2, αqbps2q, (12)

with

δpaq “

#

1 a “ 0,

0 otherwise.

Then, given that cp¨, ¨q is non-negative and upper-bounded,
from [16, Theorem 8.6.2] and [29, Theorem 4], we infer that
from the Bellman equations (11) we can obtain the optimal
policies.
We can use a method based on policy iteration to solve the
dynamic programming equations (11) to design risk-averse
optimal policies. To this end, for k “ 0, 1, . . ., given a
stationary Markov policy πk, we calculate the corresponding
value function as

V kγ pbq “ c
`

b, πkpbq
˘

`γR
 

V kγ pbq, b, ppb
1 | b, πkpbq

(

. (13a)

Then, we compute the next policy πk`1 as

πk`1pbq P argminπ

´

cpb, πpbqq`γR
 

V kγ pbq, b, ppb
1 | b, πpbq

(

¯

.

(13b)
Unfortunately, the problem of designing risk-averse optimal
Markovian policies for POMDPs is undecidable in general.
This follows from [17, Theorem 4.4] by noting that infπ Vγ “
supπ p´Vγq.
In the subsequent section, we demonstrate that, if instead
of considering policies with infinite-memory we search over
finite-memory policies, then we can minimize upper-bounds
on the total risk cost functional (8).



IV. RISK-AVERSE STOCHASTIC FINITE STATE
CONTROLLERS

Under a stochastic finite state controller, the POMDP is trans-
formed into a Markov chain MPMˆG

SˆG with design probability
distributions ω and κ. We define the total risk functional of
this parametric Markov chain as

VγpG, ιinitq “ ξγ
`

cprs1, g1s, α1q, cprs2, g2s, α2q, . . .
˘

, (14)

where αts and gts are drawn from the probability distribu-
tion ωpgt`1, αt | gt, otq. In this setting, Problem 1 can be
expressed as

Problem 2: For a given POMDP PM, a stochastic finite
state controller G, a discount factor γ P p0, 1q, and a total
risk functional Vγ as in (14) with tρtu8t“1 being coherent risk
measures, compute

pω˚, κ˚q P argminω,κVγpG, ιinitq.

The optimal value of Problem 2 provides an upper-bound to
that of Problem 1, since a stochastic finite state controller only
contains finite memory states and it can be at best as good
as the belief-based optimal policy (with infinite memory).
The latter claim can also be shown using [12, Theorem 1],
which indicates that any improvement in the parameters of
a stochastic finite state controller (in the sense of optimizing
the value functions) is at most as good as the belief value
function.
For POMDPs controlled by stochastic finite state controllers,
the dynamic program is developed in the global state space
S ˆ G. The value function is defined over this global state
space, and policy iteration techniques must also be carried
out in the global state space. For a given stochastic finite
state controller, G, and the POMDP PM, the value function
Vγ,Mprs, gsq is the discounted dynamic risk measure under
G, and can be computed by solving a set of equations:

Vγ,Mprs, gsq

“
ÿ

αPAct

ÿ

g1PG,oPO
ωpg1, α | g, oqOpo|g1qcprs, gs, αq

` γR
!

Vγ,Mprs
1, g1sq, rs, gs, TM `

rs1, g1s |rs, gs
˘

)

, (15)

where

ppα | gq “
ÿ

g1PG,oPO
ωpg1, α | g, oqOpo|g1q.

Then, for each s, the optimal value function over the induced
Markov Chain M can be computed by taking the minimum
of the above equation over all I-states g

V ˚γ,Mpsq :“ min
gPG

Vγ,Mprs, gsq. (16)

Since v ÞÑ Rpv, ¨, ¨q is convex (because R is a coherent risk
measure), (15) can be solved by a convex optimization.
We end this section by demonstrating that the optimal values
obtained using the stochastic finite state controllers upper-
bound those of the belief-based (infinite-memory) policy.

Proposition 1: Consider the POMDP PM and the Markov
chain M induced by the stochastic finite state controller G.
Then, for all s P S, we have V ˚γ pbpsqq ď V ˚γ,Mpsq.

Proof: The value function of the induced Markov chain
M satisfies (15) for all rs, gs P S ˆG. For each I-state g, the
value function in beliefs can be computed as

Vγprb, gsq :“
ÿ

sPS
bpsqVγ,Mprs, gsq,

and the optimal value function given by

V ˚γ pbq “ min
gPG

ÿ

sPS
bpsqVγ,Mprs, gsq.

Applying Hölder inequality to the right-hand side of the above
equality, we obtain

V ˚γ pbq ď min
gPG

˜

sup |
ÿ

sPS
bpsq|

¸

|Vγ,Mprs, gsq|

“ min
gPG

Vγ,Mprs, gsq,

where in the last inequality we used the fact that
ř

s bpsq “ 1
since b P ∆pSq and the fact that Vγ,Mprs, gsq is non-negative
(since c is non-negative). From (16), we infer V ˚γ ď V ˚γ,M.

V. A BOUNDED POLICY ITERATION ALGORITHM FOR
RISK-AVERSE STOCHASTIC FINITE STATE CONTROLLERS

So far, we showed that synthesizing an infinite memory
controller for POMDPs with coherent risk objectives is
undecidable. On the other hand, a stochastic finite state
controller can upper-bound the coherent risk for a POMDP.
In this section, we provide a computational method based
on bounded policy iteration to design risk-averse stochastic
finite state controllers. Furthermore, we propose techniques
for minimizing the upper bound on the total coherent risk
by adding I-states to the algorithm in order to escape local
minima.
Policy iteration incrementally improves a controller by alter-
nating between two steps: Policy Evaluation and Policy Im-
provement, until convergence to an optimal policy [6]. During
policy improvement, a dynamic programming update using
the so called dynamic programming backup equation (DP
Backup) is used. For a risk-averse POMDP, the DP Backup
is given by

Vγpbq “ min
αPAct

´

cpb, αq ` γR
 

Vγpbq, b, ppb
1 | b, αq

(

¯

,

The r.h.s. of the DP Backup can be applied to any risk value
function. The effect is a risk reduction (if possible) at every
belief state. However, DP Backup is difficult to use directly
as it must be computed at each belief state in the belief space,
which is uncountably infinite.
In [13], [26], a methodology called the Bounded Policy Iter-
ation is proposed for stochastic finite state controllers, which
allows stochastic finite state controllers with fewer I-states to
have comparable performance in comparison with determinis-
tic finite state controllers, while allowing the stochastic finite



state controller to grow in a bounded fashion – only one (or
a few) I-state(s) need to be added at a time to escape a local
minima.
Before presenting our proposed bounded policy iteration
method for risk-averse stochastic finite state controllers, we
recall the following important definition.

Definition 8 (Tangent Belief State): A belief state b is called
a tangent belief state, if Vγpbq touches the DP Backup of
Vγpbq from above. Since Vγpbq must equal V βg for some g,
we also say that the I-state g is tangent to the backed up value
function Vγ at b.

Equipped with this definition, the two steps involved in our
algorithm is described next.

A. I-States Improvement via Convex Optimization

Let ~Vγ,Mpgq P R|S| denote the vectorized VMprs, gsq in s.
We say that an I-state g is improved, if the tunable stochastic
finite state controller parameters associated with that I-state
can be adjusted so that ~V ˚γ,Mpgq decreases.
As a first step, we point out that the search over κ can be
dropped. This is simply because the initial I-state is chosen by
computing the best valued I-state for the given initial belief,
i.e., κpginitq “ 1, where

ginit “ argmin
g

`

~ιMinit
˘T ~Vγ,Mpgq.

After initialization, we pose the improvement as a convex
optimization as follows:
I-state Improvement Convex Optimization: For the I-state
g, the following convex optimization is constructed over the
variables ε, ωpg1, α|g, oq, @g1, α, o

max
εą0,ωpg1,α|g,oq

ε

subject to
Improvement Constraint:

Vγ,Mprs, gsq ` ε ď r.h.s. of (15), @s P S,
Probability Constraints:

ř

pg1,αqPGˆAct

ωpg1, α | g, oq “ 1, @o P O,

ωpg1, α | g, oq ě 0, @g1 P G,α P Act, o P O. (17)

The above convex optimization searches for ω values that
improve the I-state value vector ~V ˚γ,Mpgq by maximizing the
decision variable ε. If an improvement is found, i.e., ε ą 0,
the parameters of the I-state are updated by the corresponding
minimizing ω.
Algorithm 1 outlines the main steps in the bounded policy
iteration for risk-averse stochastic finite state controllers. The
algorithm has two distinct parts. First, for fixed parameters
of the stochastic finite state controller (ω), policy evaluation
is carried out, in which Vγ,Mprs, gsq is computed using the
following convex optimization (Steps 2, 10 and 18): For each

Algorithm 1 Bounded Policy Iteration For Synthesizing Risk-
Averse Stochastic Finite State Controllers
Input: (a) An initial feasible stochastic finite state controller,

G. (b) Maximum size of stochastic finite state controller
Nmax. (c) Nnew ď Nmax number of I-states

1: improvedÐ True
2: Compute the value vectors, ~Vγ,M based on the convex

optimization (18).
3: while |G| ď Nmax and improved “ True do
4: improvedÐ False
5: for all I-states g P G do
6: Set up the I-State Improvement Convex Optimiza-

tion (17).
7: if I-State Improvement Convex Optimization results

in optimal ε ą 0 then
8: Replace the parameters for I-state g
9: improvedÐ True

10: Compute the value vectors, ~Vγ,M based on the
convex optimization (18).

11: if improved “ False and |G| ă Nmax then
12: nadded Ð 0
13: N 1new Ð minpNnew, Nmax ´ |G|q
14: Try to add N 1new I-state(s) to G via Algorithm 2 in

Section V-B.
15: nadded Ð actual number of I-states added in previ-

ous step.
16: if nadded ą 0 then
17: improvedÐ True
18: Compute the value vectors, ~Vγ,M based on the

convex optimization (18).
Output: G

I-state g, we have the following:

min
ε1ą0,ε2ą0,Vγ,M

ε1 ´ ε2

subject to
Vγ,Mprs, gsq ´

`

r.h.s. of (15)
˘

ď ε1, @s P S,
Vγ,Mprs, gsq ´

`

r.h.s. of (15)
˘

ě ε2, @s P S. (18)

In fact, the above optimization solves (15) for Vγ,M. Sec-
ond, after evaluating the current coherent risk function, an
improvement is carried out either by changing the parameters
of existing I-states, or if no new parameters can improve any
I-state, then a fixed number of I-states are added to escape the
local minima (Steps 14-17). This is described in Section V-B.

B. Escaping Local Minima by Adding I-States

At some point of running the algorithm, no I-state may be im-
proved with further iterations, i.e., @g P G, the corresponding
convex optimization (17) yields an optimal value of ε “ 0.
Then, policy iteration has reached a local minimum if and
only if ~Vγ,Mpgq is tangent to the backed up value function
for all g P G [26]. The dual variables corresponding to the
Improvement Constraints in (17) provide those belief states
that are tangent to the risk function. The process for adding



Algorithm 2 Adding I-states to Escape Local Minima
Input: (a) Set B of tangent beliefs for each I-state. (b)

A function node : B Ñ G identifying the I-state
which yields each tangent belief. (c) Nnew the maximum
number of I-states to add. (d) ~Vγ,Mpgq the computed risk
value functions at each node g P G.

1: Nadded Ð 0.
2: repeat
3: Pick b P B, B Ð Bztbu, g Ð nodepbq.
4: Fwd “ H
5: for all pα, oq P pActˆOq do
6: if Prpo|bq “

ř

sPS bpsqOpo|sq ą 0 then
7: Look ahead one step to compute forwarded beliefs

bo,αps
1q “

ř

s T ps
1|s, αq Opo|sqbpsq

ř

o1PO Opo1|sqbpsq .

8: FwdÐ FwdY tbo,αu.
9: for all b P Fwd do

10: Apply a dynamic programming backup step

V BUγ pbq “ min
αPAct

´

cpb, αq

` γR
 

Vγpbq, b, ppb
1 | b, αq

(

¯

,

where Vγpbpsqq “ mingPG bo,αpsqVγ,Mprs, gsq and
bo,α is computed for each product state s1 P S as
follows bo,αps1q “

ř

s T ps
1|s, αq Opo|sqbpsq

ř

o1PO Opo1|sqbpsq .

11: Note the minimizing action α˚ and I-state g˚.
12: if V BUγ pbq ă Vγpbq for b P Fwd then
13: Add new deterministic I-state gnew such that

ωpgnew|g
˚, α˚, oq “ 1, @o P O.

14: Nadded Ð Nadded ` 1.
15: if Nadded ě Nnew then
16: return
17: until B “ H.

I-states involves forwarding the tangent beliefs one step and
then checking if the value of those forwarded beliefs can be
improved. The procedure for adding I-states is provided in
Algorithm 2.
Algorithm 2 can be understood as follows. Assume that a
tangent belief b exists for some I-state g. Instead of directly
improving the value of the tangent belief, the algorithm
tries to improve the value of forwarded beliefs reachable
in one step from the tangent beliefs. First, the forwarded
beliefs are computed (Step 4-8). Then, the corresponding
risk value functions are applied to a DP Backup (Steps 9-
11). If some action α˚ and successor I-state g˚ can in fact
reduce the risk value (Step 12), then a new I-state is added
which deterministically leads to this action and successor I-
state (Steps 13-14). Note that at the end of the algorithm,
the newly added I-states, gnew have no incoming edges, i.e.,
no pre-existing I-states transition to gnew. However, when the
other I-states are improved in subsequent policy improvement
steps, they generate transitions to any gnew added. This new
I-state then improves the value of the original tangent belief.

VI. NUMERICAL EXAMPLE

An agent (e.g. a robot) has to autonomously navigate a two
dimensional terrain map (e.g. Mars surface) represented by a
10ˆ 10 grid world (100 states) with 15 obstacles of different
shapes. At each time step the agent can move to any of its
eight neighboring states (diagonal moves are allowed). Due
to sensing and control noise, however, with probability δ
a move to a random neighboring state occurs. The stage-
wise cost of each move until reaching the destination is 1,
to account for fuel usage. In between the starting point and
the destination, there are a number of obstacles that the agent
should avoid. Hitting an obstacle incurs the cost of 10 leading
to termination, while the goal grid region has reward 80. The
discount factor is γ “ 0.95. After a move is chosen, the
observation of the agent is assumed to be binary, i.e., either
an obstacle is detected in the next cell that the robot is moving
to or not. Similar to [9], in our simulations, we included an
obstacle and target position perturbation in a random direction
to one of the neighboring grid cells with probability 0.2 to
represent uncertainty in the terrain map (recall the uncertainty
in Mars terrain maps as shown in Figure 1).
The objective is to compute a safe (i.e., obstacle-free) path
that is fuel efficient. To this end, we consider CVaR as the
coherent risk measure. CVaR is given by

ρtpct`1q “ inf
zPR

"

z `
1

α
E rpct`1 ´ zq` | Fts

*

, (19)

where p¨q` “ maxt¨, 0u and the infimum should be un-
derstood point-wise. In general, the confidence level α may
be Ft-measurable function with values in the interval p0, 1q.
Here, we assume α P p0, 1q. A value of α » 1 corresponds to
a risk-neutral policy; whereas, a value of α » 0 is rather
a risk-averse policy. For CVaR risk measure, (15) can be
computed as

Vγ,Mprs, gsq “
ÿ

α,g1,o

ωpg1, α | g, oqOpo|g1qcprs, gs, αq

` γ inf
zPR

"

z `
1

α

ÿ

g1,s1,o,α

`

V
`

rs1, g1s
˘

´ z
˘

`

ˆOpo | sqωpg1, α | g, oqT ps1 | s, αq

*

,

where the infimum on the right hand side of the above
equation can either be solved by line search techniques or by
representation in terms of an elementary linear programming
problem since it is convex in z [28, Theorem 1] (the function
p¨q` is increasing and convex [25, Lemma A.1., p. 117]).
Figure 2 depicts the policies and the value functions computed
for the grid world based on the bounded policy iteration
technique in Section V. For these experiments, we used 2
internal states for the stochastic finite state controller and the
corresponding convex optimizations were solved using CVX
toolbox [11] in MATLAB.
As it can be observed from Figure 2, the risk-neutral policy
leads to shorter paths from different cells to the target.
However, on 100 perturbed scenarios, it performed poorly
with 43 failures. On the other hand, the risk-averse policy



Fig. 2. Numerical results obtained based on the proposed risk-averse control
method for two different confidence levels of (top) α “ 0.9 and (bottom)
α “ 0.1. The yellow square at p1, 2q denotes the goal region. The arrows
represent the actions (or the moves) with the highest probability.

leads to longer routes from cells to the target chooses, but
it resulted only in 3 failed scenarios. These results parallel
those obtained in [9], wherein risk-averse policies in terms of
CVaR for MDPs were studied.

VII. CONCLUSIONS

We proposed a method based on bounded policy iteration
and convex optimization to design risk-averse stochastic finite
state controllers for POMDPs. Future research will explore
risk-averse polices for POMDPs that maximize the satisfac-
tion probability of a set of high-level mission specifications
in terms of temporal logic formulae [1], [30]. Furthermore,
the risk-averse policy synthesis technique will be applied
for designing risk-averse planning policies for traversing on
uncertain Mars surface (as depicted in Figure 1).
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