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Abstract—Motivated by exploration of communication-
constrained underground environments using robot teams, we
study the problem of planning for intermittent connectivity in
multi-agent systems. We propose a novel concept of information-
consistency to handle situations where the plan is not initially
known by all agents, and suggest an integer linear program
for synthesizing information-consistent plans that also achieve
auxiliary goals. Furthermore, inspired by network flow problems
we propose a novel way to pose connectivity constraints that
scales much better than previous methods. In the second part of
the paper we apply these results in an exploration setting, and
propose a clustering method that separates a large exploration
problem into smaller problems that can be solved independently.
We demonstrate how the resulting exploration algorithm is able
to coordinate a team of ten agents to explore a large environment.

I. INTRODUCTION

In many multi-agent applications such as mapping, frontier
exploration, and search-and-rescue missions, communication
between agents is critical to gain awareness of the situation.
Significant effort has been devoted to study connectivity in
continuous models [1], [2], [3]. Although such models are
closer to the actual dynamics of robots, solution techniques
become difficult to apply in complex geometries. This paper
considers an alternative approach of planning on a discrete
graph model that abstracts away low-level dynamics but, in our
opinion, retains the core elements of the connectivity problem.

Various solutions have been proposed to maintain connec-
tivity between agents in environments like tunnel and cave
systems that suffer from severe communication constraints [4],
[5], [6]. The fundamental difference between these methods is
the type of connectivity constraint enforced between agents.
The situational awareness of agents increases with the strict-
ness of the constraint while a more relaxed constraint allows
them to perform individual tasks to a higher degree.

The strictest connectivity constraint is the continuous con-
nectivity constraint which demands that all agents are fully
connected at all times [7]. This implies that two arbitrary
agents in the network can share data with each other at any
time. Although this results in global awareness, it can degrade
the objective performance significantly. Recurrent connectivity
[8] is a relaxation of continuous connectivity that allows
agents to occasionally disconnect and instead enforces global
connectivity only at a specific time instant (such as the final
time), which allows more flexibility at the cost of awareness.

However, connectivity constraints like continuous and recur-
rent connectivity that occasionally enforce global connectivity
do not perform well in exploration tasks if the environment
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is large relative to the number of agents. For instance, the
exploration setting studied in [8] incorporates a fixed base
station that needs to be updated of the exploration progress.
In this case the recurrent connectivity constraint implies that
agents should be connected to the base station even when they
reach frontiers. If a frontier is further away than the reach
of the longest fully connected configuration it is therefore
not feasible to explore it, and even if the frontier is within
reach recurrent connectivity may be inefficient since a large
number of agents may be required to establish connectivity
and therefore can not partake in exploration.

Motivated by exploration settings where the environment
is large in relation to the number of robots we propose a
novel intermittent connectivity constraint that formalizes data
distribution behaviors. Intermittent connectivity does not ever
impose simultaneous global connectivity; it only requires a
way to pass data between certain agents within some time
horizon. This allows agents to transport data and distribute
it between each other in a collaborative manner. A stricter
version of intermittent connectivity was formulated via linear
temporal logic in [9], together with a way to generate trajec-
tories. Our formulation is more permissive as it does not pre-
suppose a division of agents into teams, and does not require
all members of a team to meet repeatedly at the same location.
Instead we allow for targeted information distribution which
leaves more flexibility to perform actual exploration tasks.
We also consider the case when the plan itself is part of the
data that needs to be distributed, i.e., agents that have not yet
received this data are not aware of the plan and can therefore
not be expected to act in accordance with it. We handle this
situation by designating a master agent with initial knowledge
of the plan, and pose master constraints that ensure that the
plan is consistent with information distribution constraints.

As previous work [8], [10], [11], [12], [13] we plan multi-
agent trajectories via an Integer Linear Program (ILP). Con-
nectivity problems have also been solved with the (mixed) ILP
approach: [14] proposed a MILP that keeps static source states
connected over time. Inspired by ideas from network flows
we introduce new linear constraints that guarantee our relaxed
intermittent connectivity criterion and show that this formu-
lation has better scalability properties than those found in
previous work; the number of constraints scales linearly with
the graph size instead of combinatorially. However, since ILPs
are NP-hard even the improved flow formulation encounters
scalability issues for large graphs. To mitigate this issue we
propose a clustering method tailored to exploration problems
that decomposes a large problem into smaller problems that
can be solved more efficiently.
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II. PRELIMINARIES AND PROBLEM FORMULATION

In this section we first present preliminaries in order to state
the intermittent connectivity problem that we seek to solve.

A. Environment model

When constructing the environment model the possibility
of communication between locations needs to be considered.
Determining whether communication is possible between two
locations could be done via models, data, or both. In order to
not restrict the framework we do not specify a communication
condition and instead use an abstract mobility-communication-
network as a model of the environment.

Definition 1. A mobility-communication-network N is defined
as the tuple N = (S,→, ):
• S: finite set of states s,
• →⊂ S × S: set of directed mobility edges (s, s′),
•  ⊂ S × S: set of directed communication edges (s, s′).

The states s ∈ S correspond to locations in the environment
and a mobility edge (s, s′) ∈→ denotes a directed traversable
path from s to s′. The existence of a communication edge
(s, s′) ∈ certifies that an agent located in s can send data
to an agent located in s′. We assume that agents in the same
state are able to share information with each other. It is also
assumed that  does not contain false positives.

For optimization purposes we introduce edge weights C
and C̃ that associate weights with the edges in → and  ,
respectively. Likewise, state rewards R are used to associate
a reward to reaching certain locations. We seek to find finite-
time trajectories and denote the time horizon by T.

A key component to formalize the intermittent connectiv-
ity constraint is the time-extended version of the mobility-
communication network, which is built by stacking copies of
the network and associating each layer with a time step. The
mobility edges in each layer are rewired across time steps, as
illustrated in Fig 1. In the time-extended graph agents therefore
traverse over time steps but communicate within time steps.

We introduce some simplifying notation. Given a mobility-
communication-network N = (S,→, ), denote the set
of mobility and communication predecessors of state s as
C−→(s) = {s′ | (s′, s) ∈→} and C− (v) = {s′ | (s′, s) ∈ }.
Likewise, denote the set of mobility and communication
successor of state s as C+

→(s) = {s′ | (s, s′) ∈→} and
C+
 (v) = {s′ | (s, s′) ∈ }. It’s also useful to look at both

mobility and communication predecessors and successors;
denote the set of all predecessors by C−(s) = C−→(s)∪C− (s)
and the set of all successors by C+(s) = C+

→(s) ∪ C+
 (s).

B. Intermittent connectivity

An intermittent connection allows the agents to disconnect,
move around, and establish connections to other agents in
the network. Two agents 1 and 2 can therefore share data
with each other without ever being directly connected if other
agents set up a sequence of intermittent connections such that
data is transferred from 1 to 2, and vice versa. A simple
example is shown in Fig. 1 where the red and blue agents share
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Fig. 1. Mobility-communication-network N and the time-extended graph of
N for T = 2. Mobility edges are solid and communication edges are dashed.
A solution for the problem of sharing data between the blue and red agents
are shown in the time-extended graph. The colors of the communication edges
indicate the origin agent of the data that is transmitted.

information with each other using a sequence of intermittent
connections via the green agent. We seek to formalize this type
of intermittent connectivity and start by defining a mobility
path which encodes an agent trajectory.

Definition 2. Given a mobility-communication-network N =
(S,→, ), a mobility path is a sequence π : s0s1s2 . . . sT of
states s ∈ S such that (st, st+1) ∈→.

We use a superscript r to specify the mobility path for
agent r by πr = sr0s

r
1s
r
2 . . . s

r
T . Information can be transferred

spatially via two mechanisms: (i) agents can traverse mobility
edges and carry data with them, and (ii) agents can transmit
information to other agents over communication edges. These
two types of information transfer guides us to the notion of
an information path.

Definition 3. Given a mobility-communication network
N = (S,→, ), an information path is a sequence π̄ :
s00s

1
0 . . . s

n0
0 s01s

1
1 . . . s

n1
1 . . . snT

T of states sit ∈ S such that
(snt
t , s

0
t+1) ∈→ and (sit, s

i+1
t ) ∈ . In addition, an agent-to-

agent information path π̄i,j is an information path that begins
in the initial state of agent i and ends in the final state of agent
j, i.e., s00 = si0 and snT

T = sjT .

Note that only one mobility transition is allowed for each
time step t, while information can potentially travel over
multiple communication edges within a time step via a multi-
hop link. Fig. 2 shows an example where the red and blue
agents share information with each other using multiple com-
munication edges within a time step by sending information
via the green agent. To associate information paths with agent
mobility we introduce the notation of a valid information path.

Definition 4. Consider a network N = (S,→, ) and a col-
lection of mobility paths {πr : sr0s

r
1s
r
2 . . . s

r
T }. An information

path π̄ : s00s
1
0 . . . s

n0
0 s01s

1
1 . . . s

n1
1 . . . snT

T is valid with respect
to the mobility paths {πr} if the following conditions are
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Fig. 2. Mobility-communication-network N and the time-extended graph of
N for T = 1. A solution for the problem of sharing data between the blue
and red agents are shown in the time-extended graph.

satisfied for all t = 0, . . . , T :{
sit | i = 0, . . . , nt

}
⊆ {srt | r = 1, . . . , R} , (1)

(snt
t , s

0
t+1) ∈

{(
srt , s

r
t+1

)
| r = 1, . . . , R

}
. (2)

Equation (1) implies that there must be agents present at all
locations that are used to transmit information over commu-
nication edges, and equation (2) specifies that if information
moves along a mobility edge, then at least one agent must
undertake that transition at the same time step.

An advantage of intermittent connectivity is that it allows
for directed information transfer. In many applications we are
only interested in transferring information between specific
agents instead of sharing all information among all agents.
A useful formulation used throughout this work is to enforce
a subset of agents to transfer their information to all agents
in another subset. We denote the set of agents initially having
access to important information by sources src ⊂ {1, . . . , R}
and the set of agents that are to receive information by sinks
snk ⊂ {1, . . . , R}. We require that all agents in snk should
receive information from all agents in src, i.e. that there
should exist an agent-to-agent information path π̄i,j from
every agent i ∈ src to each agent j ∈ snk. We are now
ready to formulate the intermittent connectivity problem.

Problem 1 (Intermittent Connectivity). Consider a network
N with R agents, initial conditions {sr0}, and time horizon
T . Find mobility paths {πr} such that for each pair (i, j) ∈
src × snk there exists an agent-to-agent information path
π̄i,j that is valid with respect to {πr} and such that

R−
∑
r

T−1∑
t=0

C(t, srt , s
r
t+1)−

∑
b∈src

∑
(t,s,s′)∈Eb

C̃(t, s, s′) (3)

is maximized, where R is a reward function that gives rewards
for sending agents to states:

R =
∑
s∈S

R∑
k=1

R(s, k), if
R∑
r=1

1srT=s ≥ k,

0, otherwise,
(4)

where 1 is the indicator function, and Eb contains communi-
cation edges used in information paths from source b:

Eb =
{

(t, skt , s
k+1
t ) ∈ | skt , sk+1

t ∈ π̄b,j , j ∈ snk
}
. (5)

The objective function (3) penalizes agent transitions and
information transmission using the edge weights C and C̃,
while rewarding the final state of agents. In some applications
it can be beneficial to send multiple agents which is why the
state reward of reaching a state s in the final time step depend
on the number of agents that reach s. Note that collecting
reward R(s, k) for sending k agents to s implies that all
rewards R(s, i) for i < k are also received.

C. Information-Consistent Intermittent Connectivity

A potential issue with Problem 1 is that all agents may
not be in communication range when a new plan is to be
executed. If the optimal solution to Problem 1 is unique,
all agents could solve the problem and arrive at the same
solution, but this does not work if the solution is non-unique
or if not all agents are computationally equipped to solve
the problem. In this scenario a solution could be to solve a
single instance of Problem 1 and then distribute the resulting
plan to all agents via intermittent connectivity. However, there
are two effects that need to be considered when planning in
this fashion: agents that have not yet received the plan can
not be expected to (i) move from their initial position and
(ii) transmit information to other agents. These restrictions
need to be accounted for in the planning step. We assume
that there is a master agent that computes the plan and thus
knows it at t = 0, but that other agents can not act until
they have received information from the master agent. In the
following, information paths originating from the master agent
are denoted mπ̄.

Definition 5. Consider a mobility-communication-network
N = (S,→, ) and an information path mπ̄. A mobility path
π = s0s1s2 . . . sT is information-consistent with respect to
mπ̄ if for all t = 0, . . . , T it holds that

s0 6∈
{
sij ∈m π̄ | 0 ≤ j ≤ t, 0 ≤ i ≤ nj

}
=⇒ st = s0. (6)

Similarly, an information path π̄ = s00s
1
0 . . . s

n0
0 . . . snT

T is
information-consistent with mπ̄ if for all t = 0, . . . , T ,

slt 6∈
{
sij ∈ mπ̄ | 0 ≤ j ≤ t, 0 ≤ i ≤ nj

}
=⇒ nt = l. (7)

Equation (6) implies that an agent is not allowed to move
until the information path mπ̄ has reached the initial state s0.
Since an information path consists of one mobility edge in
each time step, enforcing nt = l as in (7) denies the usage of
any communication edge at time t and stage l. Thus an agent
at state slt is not allowed to transmit information until the
information path mπ̄ has reached that state. We are now ready
to formulate the information-consistent version of Problem 1.

Problem 2 (Information-Consistent Intermittent Connectivity).
Consider a network N with R agents, initial conditions {sr0},
time horizon T , and a designated master m ∈ {1, . . . , R}.
Find a collection of mobility paths {πr} such that:



• for each pair of src i and snk j there exists an
information path π̄i,j that is valid with respect to {πr},

• for each agent r there exists an information path mπ̄r
starting in sm0 that is valid with respect to {πr},

• all mobility paths are information-consistent with mπ̄r,
• all information paths are information-consistent with mπ̄i,

and such that

R−
∑
r

T−1∑
t=0

C(t, srt , s
r
t+1)−

∑
b∈src∪{m}

∑
(t,s,s′)∈Eb̃

C(t, s, s′) (8)

is maximized, where R is given by (4) and Eb by (5).

Problem 2 is analogous to Problem 1 but with the additional
requirement that for each agent r, there should exist a valid
information path mπ̄r that makes the mobility path πr and all
information paths π̄r,j information-consistent.

III. INTERMITTENT CONNECTIVITY VIA FLOWS

In combinatorial optimization, network flows are instrumen-
tal for solving many graph optimization problems. Examples
include the maximal flow and minimum-cost flow problems
[15]. Flow problems generally involve finding a feasible flow
that optimizes some cost function. A flow is feasible if it
starts in a source state, ends in sink states, and the flow
over each edge is less than its capacity. We note that the
intermittent connectivity problem has similarities with the
multi-commodity flow problem with multiple flows, sources
and sinks. Both Problem 1 and 2 involve finding multiple
information paths with predefined initial states. However,
there are two significant differences between a standard flow
problem and the intermittent connectivity problems: in the
intermittent connectivity problems, the terminal state for each
information path is the location of an agent instead of a static
state, and edge capacities depend on the movement of agents.

A. Intermittent Connectivity Problem

In the following we introduce variables and constraints that
form an ILP that solves Problem 1.

1) Variables: We start by introducing optimization vari-
ables. Since there are multiple information flows we annotate
flow variables with a flow identifier (or id).

Definition 6. Define variables zrst, ysk, xrijt, f bijt, f̄
b
ijt as

zrst =

{
1 if agent r is at state s at time t,
0 otherwise,

(9)

ysk =

{
1 if there are ≥ k agents in s at time T ,
0 otherwise,

(10)

xrss′t =

{
1 if agent r uses (s, s′) ∈→ at time t,
0 otherwise,

(11)

f bss′t = flow over (s, s′) ∈→ with id b at time t, (12)

f̄ bss′t = flow over (s, s′) ∈ with id b at time t. (13)

The variables zrst and xrss′t are binary variables that
encode positions and transitions of agents at each time step

while ysk counts how many agents that occupy certain states at
the final time step. To represent information transmitted over
mobility and communication edges we use f bss′t and f̄ bss′t.

2) Dynamics constraints: For space reasons we omit the
sets of “for all” quantifiers in the following. That is, instead
of ∀r ∈ {1, . . . , R}, ∀s ∈ S, and ∀t ∈ {0, . . . , T} we simply
write ∀r, ∀s, and ∀t. We can encode the dynamics of the agents
in the mobility-communication-network N using the variables
(9) and (11) [8]. The possible transitions at each time can be
written as follows.

zrs(t+1) =
∑

s′∈C−→(s)

xrs′st, ∀r, s, t, (14)

zrst =
∑

s′∈C+
→(s)

xrss′t, ∀r, s, t. (15)

Equation (14) means that an agent transiting to a state s must
do so via an incoming mobility edge (s′, s) ∈→ and equation
(15) specifies that an agent at state s must use an outgoing
mobility edge (s, s′) ∈→.

3) Flow constraints: In order to establish information paths
from each src to each snk we look at the net inflow of
information with identifier b to a state. To simplify notation,
let F bst denote the net inflow to state s at time t of flow b:

F bst =
∑

s′∈C−→(s)

f bs′s(t−1) +
∑

s′∈C− (s)

f̄ bs′st

−
∑

s′∈C+
→(s)

f bss′t −
∑

s′∈C+
 (s)

f̄ bss′t.
(16)

We can construct a one-to-many flow from one agent i ∈
src to all agents j ∈ snk and thus incorporate all information
paths ∪

j∈snk
π̄i,j into a single flow. In this case the identifier

b for the flow corresponds to the source agent. The resulting
constraint can be written as follows.

F bst =


−|snk|zbs0, if t = 0,∑
r∈snk

zrsT , if t = T ,

0, otherwise,

∀b ∈ src, s, t. (17)

We note that the state including the source agent initially
outputs |snk| units of flow and that the net inflow to any
state is zero for 0 < t < T . This ensures that information
can not vanish or be created and that all information initially
comes from the source agents. The condition for the final time
T implies that a state with k agents from snk at time T
receives k units of this flow. Therefore each agent in snk
is guaranteed to receive one unit of the flow with identifier
b. As this constraint should hold for all information paths we
enforce this constraint for all source agents b ∈ src. Note that
in constraint (17) the terminal state of each agent is free and
is determined by zrst, as opposed to classical flow problems
where it is predefined.

4) Bridge constraints: As previously mentioned, in clas-
sical flow problems the capacity of each edge is static and
predefined. However, in a mobility-communication network
with dynamic agents, the capacity of each edge is dynamic and



a function of the position of the agents. For communication
edges, information can be transmitted over an edge (s, s′) ∈ 
at time t only if there is an agent in state s and another agent
in state s′ at time t. This can be written as the big-M constraint
(18) where N ≥ R. For a mobility edge, information can only
be transferred over the edge if an agent traverses it. Therefore,
the flow over a mobility edge (s, s′) ∈→ at time t must be
zero unless at least one agent utilizes that edge, which can be
written as the big-M constraint (19).

f̄ bss′t ≤ N min

(∑
r

zrst,
∑
r

zrs′t

)
, ∀b, s, s′, t, (18)

f bss′t ≤ N
∑
r

xrss′t, ∀b, s, s′, t. (19)

5) Cost function: To implement the objective function in
Problems 1 and 2, we can penalize state transitions and
information transmission costs C and C̄ using the variables
(9)-(13). The cost of using the mobility (resp. communication)
edge (s, s′) at time t can be written as xrss′tC(t, s, s′) (resp.
f̄ bss′tC̄(t, s, s′)). We can formalize the reward of reaching state
s with k agents in the final time as R(s, k)ysk. We now apply
the cost and reward for all time steps, states, edges, and agents
and get the following objective function that is linear in the
variables introduced above:

cobj =
∑
s∈S

(
R∑
k=1

yskR(s, k)− g1(s)− g2(s)

)
, (20)

g1(s) =
∑

r∈{1,...,R}
s′∈C−→(s)

t∈{0,...,T−1}

xrs′stC(t, s′, s), (21)

g2(s) =
∑

s′∈C−→(s)
t∈{1,...,T}
b∈src

f̄ bs′stC̄(t, s′, s). (22)

Note that for the transition and communication costs, only the
incoming edges C− are used to prevent double-counting of
costs. Collecting a reward is restricted by ysk to agents final
state, therefore the reward R in Problem 1 and 2 is

R =
∑
s∈S

R∑
k=1

yskR(s, k).

It follows by inspection that∑
r

T−1∑
t=0

C(t, srt , s
r
t+1) =

∑
s∈S

g1(s),∑
b∈src∪{m}

∑
(s,s′)∈Eb

C̃(t, s′, s) =
∑
s∈S

g2(s).

Therefore (20) is equivalent to the objective function (3) in
the intermittent connectivity problem. If we change the index
set to b ∈ src ∪ {m} in (22), then (20) is equivalent to the
information-consistent objective function (8).

As the terminal state reward R(s, k) can only be collected
if there are k agents in state s at time T we need to constrain

ysk. Enforcing the following constraint for all k:s associated
with rewards is equivalent with Definition 10.

ysk ≤
∑
r zrsT
k

∀s. (23)

We are now ready to pose a solution to Problem 1.

Proposition 1. Consider the ILP:

max (20),
subject to (14), (15), (17)− (19), (23).

(24)

A solution to (24) is also a solution to Problem 1.

Proof. By the argument in Section III-A5, equation (20) is
equivalent to the cost function in Problem 1 when (23) holds.
By [8] constraints (14) and (15) result in dynamically feasible
mobility paths. Under (17), for each agent r ∈ src there
exists a flow over the time-extended graph that starts at sr0 and
that has sinks at the locations at time T of the snk agents.
The flow decomposition theorem [15, Theorem 3.5] implies
that this flow can be decomposed into information paths, and
these information paths are valid since (18) and (19) prohibit
flow over edges that violate the validity requirement.

Remark 1. We can pose an alternative constraint to (17) that
also guarantees existence of the desired information paths.
Instead of constructing a one-to-many flow, we can use a
many-to-one flow from all agents i ∈ src to a single agent
j ∈ snk. The interpretation of the identifier b for this flow then
changes to the single sink agent j ∈ snk. This formulation
would yield a different cost associated with the communication
edges in the objective in Problems 1 and 2 as the sum would
be over sinks instead of sources. This many-to-one flow is
formalized by the following constraint:

F bst =


−
∑

r∈src
zrs0, if t = 0,

|src|zbsT , if t = T ,

0, otherwise,

∀b ∈ snk, s, t. (25)

Each one of the constraints (17) and (25) ensure the existence
of an information path from each source r ∈ src to all sinks
r ∈ snk. Constraint (17) results in a total of |src||S|(T +1)
constraints and constraint (25) in |snk||S|(T + 1). It may be
advantageous to select the one with the lowest number.

B. Information-Consistent Intermittent Connectivity Problem

We now seek to extend the result in Proposition 1 to a
solution for Problem 2. The difference between Problem 1
and 2 is the existence of yet another information path mπ̄r for
each agent r that the mobility path πr and all information paths
π̄r,j are information-consistent with. In the following we will
refer to the information path mπ̄r as the master information
path for r as it is initialized by the master agent. In the same
manner as in Section III-A, we associate the union of the
master information paths ∪

r

mπ̄r with a flow in the network,
naturally called the master flow. Denote the net inflow of the
master flow into state s at time t by Fmst , defined as in (16).



1) Master constraints: The main difference between a
regular flow F b and the master flow Fm is that the amount of
flow F b and its terminal state are predefined in terms of agent
positions, leading to equality constraints in (17) and (25). For
the master flow, there is no predefined amount of flow nor
fixed terminal state. Therefore, we cover the worst case where
master flow is supplied to every state in the network, leading to
the initialization of at most |S| units of master flow in the state
containing the master agent. As there are no hard constraints
on the terminal state for the master flow, we use inequality
constraint to allow any terminal state. Let s0(r) denote the
initial state of agent r and let m denote the master agent; the
constraint on the master flow can be formalized as follows:

Fmst ≥

{
−|S|, if s = s0(m), t = 0,

0, otherwise,
∀s, t. (26)

In order to make sure that mobility path πr and all information
paths {π̄r,j} are information consistent with some master
information path mπ̄r we need to enforce that agent r is
(i), static, and (ii), does not transmit information to other
agents until its initial position intersects with mπ̄r. This can
be ensured with the following constrains that should hold for
all r such that s0(r) 6= s0(m):

zrs0(r)t ≥ 1−
t−1∑
τ=0

Fms0(r)τ , ∀r, t, (27)

N

t∑
τ=0

Fms0(r)τ ≥
∑
j

f̄ bs0(r)jt, ∀b, r, t. (28)

These constraints require a net outflow of the master flow
to have occurred, as captured by the sum of net flow over
time, before mobility (eq. (27)) or communication (eq. (28))
is allowed. Together with flow balancing (26) these constraints
imply information consistency as defined in Section II-C.

Proposition 2. Consider the ILP:

max (20)
subject to (14), (15), (17)− (19), (23), (26)− (28)

(29)

A solution to (29) is also a solution to Problem 2.

Proof. Problem 2 is a further constrained version of Problem
1, thus Proposition 1 applies for the constraints that are
common between the two. As motivated above, constraints
(26)-(28) in addition ascertain the information consistency
requirements in Problem 2.

C. Extensions

In order to demonstrate the flexibility of the optimization
framework, this section demonstrates multiple extension rele-
vant to multi-agent networks.

1) Agent Heterogeneity: In a multi-agent exploration set-
ting, agents might be equipped with different types of sensors
so that only a subset of the agents are capable of exploring
and mapping unknown parts of the environment, while other
agents perform tasks in the known environment. Therefore

it can be useful to only allow a subset of agents to collect
rewards by reaching a terminal state. This is can be solved by
only summing over agents capable of exploring in constraint
(23). Agents may also have different mobility capabilities
(e.g., ground and aerial agents), which can be accommodated
by imposing additional constraints that specify that certain
mobility edges can only be used by certain agents.

In systems where it is useful to have static agents, such as
exploration with a static base station, stationarity must be con-
sidered in the planning. This is incorporated by not allowing
an agent to leave its initial position using the constraint

zrst =

{
1, if s = s0(r),

0, otherwise,
∀t, r ∈ Rstatic, (30)

where Rstatic is the set of static agents.
2) Collision Avoidance: In multi-agent networks, we can

guarantee that two agents i and j can not be in the same
position or use facing edges by enforcing the following
constraints:

xiss′t+xjs′st≤1 ∀t, (s, s′) ∈→, (i, j) ∈
(
{1, . . . , R}

2

)
, (31)

zist + zjst ≤ 1 ∀t, s, (i, j) ∈
(
{1, . . . , R}

2

)
, (32)

where
({1,...,R}

2

)
is the set of all possible 2-combinations of

agents in the network. In a heterogeneous group of agents,
this constraint might only be necessary for a certain subsets
of agents and vertices in the network. As an example, an
application may require that ground agents avoid other ground
agents, that aerial agents avoid other aerial agents, but allow
ground and aerial agents to be in the vicinity of each other.

3) Awareness-Based Reward: In applications such as explo-
ration or mapping it might not be enough to only have agents
in beneficial positions unless they also have information about
its duties, such as exploration a new area or acting as a relay
for other agents. It is therefore natural to require that agents
have knowledge about the execution plan in order to collect
rewards. This is not an issue in Problem 1 as all agents plan
deterministically, but for Problem 2 we have to restrict the
ability to receive the terminal state reward R(v, k) to agents
with knowledge about the solution. We can accomplish this
with the following constraint:

ysk ≤
T∑
τ=0

Fmsτ ∀k, s 6= s0(m). (33)

Constraint (33) together with (27) ensures that an agent that
collects a reward has been provided with master information.

4) Multiple Master Agents: In some settings the master
plan may be available to multiple agents at the initial time step.
This would for example be the case if a subset of agents solve
Problem 2 deterministically and find the same unique solution,
or in a tunnel exploration scenario where planning is done
outside the tunnel but the tunnel has multiple openings where
agents can enter. It is straightforward to extend Problem 2 and
its solution to the case with multiple masters by substituting
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Fig. 3. Block diagram illustrating the use the pre-exploration and post-
exploration plans. The final agent positions in the post-exploration problem
become the initial positions in the subsequent pre-exploration problem, as
indicated by the self-loop in the planning block.

the condition s0(r) 6= s0(m) for s0(r) 6∈ {sr(0)|r ∈ m} in
constraints (26)-(28) and (33). This corresponds to initializing
|S| units of master flow in the initial state of each master
agent. Even with this extension only a single master flow is
used since the master information is the same irrespective of
master agent.

IV. EXPLORATION AND CLUSTERING FOR SCALABILITY

We now present a way to leverage the framework developed
in Section III to explore an unknown environment using a
team of mobile agents. We study a case where there is a static
base station and a heterogeneous group of agents that should
explore a communication-constrained tunnel-like environment.
Although the flow approach is capable of solving problems
of moderate size, large networks are still challenging since
solving ILPs is NP-hard. To mitigate this issue we propose a
clustering method that separates a large exploration problem
into smaller problems that can be solved independently.

A. Exploration via Intermittent Connectivity

The main goal in an exploration scenario is to get agents
to frontiers, which are states on the boundary between known
and unknown space. However, it is also important to share
information about the progress between agents and potentially
with an external operator. For this reason we require that a
static base station is periodically updated with the progress.

Since we do not assume continuous connectivity it is
necessary to synthesize a plan that gets agents to frontiers,
and also a plan that distributes the new information to the base
station when frontier exploration is finished. We call these two
planning problems pre-exploration and post-exploration. Fig.
3 shows how the two problems are solved and executed in a
repeating manner to explore an unknown environment.

In pre-exploration we use Proposition 2 with a single desig-
nated master that computes a global plan. The master could be
the base station, or it could be a mobile agent that has sufficient
computational capabilities for solving the planning problem.
Since the only information that needs to be shared is the plan
itself, there are no sources or sinks in this problem instance,
i.e., src = snk = ∅. To promote exploration we assign high
rewards to frontiers states. In addition, we include a heuristic
reward based on the betweenness-centrality measure of a state
[16], which implies that agents get a higher reward by finishing
in a state that is more central in the graph. This is useful for
efficient data distribution in the subsequent post-exploration
step. Executing the resulting plan sends agents to frontier states
from which a suitable exploration behavior can be executed.

S1

S2

S3

S4

Fig. 4. Illustration of clustering for exploration. States are depicted with
circles, and occupied states are filled. The master agent is marked with a
black circle. The master cluster S1 has two child clusters S2 and S4, and
S3 is the child of S2. Each child cluster has a designated submaster agent
(shown as a larger circle) whose state is connected to a state in the parent
cluster via a communication edge.

For the post-exploration problem we again solve an instance
of Problem 2, this time with information sources src set
to the agents that performed exploration (and thus have new
information), and the information sinks src set to the base
station and the master agent. It is possible that agents that were
idle during pre-exploration are useful in post-exploration. For
this purpose, in the post-exploration problem each agent that
received the pre-exploration plan is considered a master agent
in the post-exploration instance of Problem 2 (leveraging the
multi-master extension discussed in Section III-C4).

When the master is a static base station it is necessary
that it can communicate to a mobile agent for a plan to be
distributable. To ensure this property we add an additional con-
straint to the post-exploration problem that requires at least one
dynamic agent to be in communication range with the static
master. If we denote the set of dynamic agents by Rdyn and the
set of states connected to the master, possibly via other static
relay agents, by mSstatic, we add the following constraint to
the post-exploration problem to guarantee feasible information
distribution in the subsequent pre-exploration problem.∑

r∈Rdyn

∑
s∈mSstatic

zrsT ≥ 1. (34)

B. Clustering for Improved Scalability

We next exploit the inherent structure of the exploration
setting to improve scalability. We remark that agents that are
far away from each other in the network are unlikely to directly
interact, and therefore aim to divide the network into multiple
sub-networks, or clusters, and constrain the movement of each
agent to a single cluster. We exploit the hierarchical structure
of the problem to design an information sharing scheme that
passes information between clusters.

Definition 7. A clustering of a mobility-communication net-
work N = (S,→, ) with agent positions {sr0} and master m
is a partition of S into connected (via mobility edges) subsets
S1, . . . , Sk such that the following holds:
• sm0 ∈ S1 and we call S1 the master cluster,
• Each cluster S2, . . . , Sk has a designated parent cluster,
• Each cluster Si except the master cluster has a submaster,

which is an agent r s.t. sr0 ∈ Si s.t. there is a communi-
cation edge from a state in the parent cluster to sr0.



An illustration of the clustering concept in Definition 7 is
shown in Fig. 4. To arrive at a clustering that satisfies these
requirements we start by grouping agents together via spectral
clustering [17],[18], which takes a similarity matrix A and
desired number of clusters K as inputs and categorizes the
agents into clusters by performing K-means clustering based
on the spectrum of A. The similarity matrix A is constructed
by defining the similarity Ai,j of two agents i and j as the
inverse of the shortest weighted distance between i and j using
only mobility edges and the transition costs as weights.

Once agents have been grouped together into agent clusters,
the next step is to find corresponding subgraphs, or state
clusters. Naturally, if agent r belongs to agent cluster k, then
s0(r) should belong to the k:th state cluster. Algorithm 1 starts
by assigning these initial states to clusters, and then iteratively
expands the state clusters in a way that guarantees that the
conditions in Definition 7 are satisfied. It starts with only the
master cluster being active, and at each iteration finds a free
(i.e., not assigned to a cluster) state s that is at the minimal
distance to any agent in an active cluster S, and assigns s to
S. If s has a communication edge to an agent r in an inactive
cluster S′, then S′ is activated as a child of S and r becomes
the submaster of S′. In case the algorithm results in a non-
connected state cluster, the corresponding agent cluster is split
and the algorithm restarted.

C. Exploration Planning on a Clustering

We next discuss how to plan for exploration as in Fig. 3
by solving intermittent connectivity problems locally in each
cluster. For the pre-exploration plan we solve an instance of
Problem 2 for each cluster in a reverse breath-first manner: we
first solve for clusters with no children (leaf clusters), proceed
by solving for clusters that only have leaf clusters as children,
and so on, until the master cluster is reached.

Consider the problem instance for a cluster Sk. The sub-
master of Sk is considered the master agent in the problem
instance, and submasters of child clusters of Sk are included
as static agents so that information can be transferred to from
Sk to its child clusters. The reward for passing information
to a submaster is set to the optimal value of the optimization
problem in the corresponding child cluster, so that it becomes
beneficial to pass the plan to high-value child clusters. If a
cluster Sk does not receive plan information from its parent,
agents in Sk become inactive and not part of the overall plan.

For the post-exploration plan we require that every cluster
that received the pre-exploration plan should send information
back to the submaster. Both information from frontiers, as well
as information from child clusters, should be passed to the
parent cluster. To achieve this we solve an instance of Problem
2 where each agent that received the pre-exploration plan is
considered a master, src contains all agents that reached
frontiers and all submasters of child clusters, and src contains
the cluster submaster. This forces every agent that may have
new information—either from a frontier or from a child
cluster—to transmit that information to the cluster submaster.

Algorithm 1: Agent clustering to state clustering.
Result:
• clusters: map from id to set of vertices

Input:
• N: mobility-communication network
• agent clusters: map from cluster id to agent cluster
• activate(N, s): id:s of clusters that s can activate
• closest free state(N, clusters): state that is at minimal

distance to any agent in a cluster id∈ clusters
1 active clusters = {master cluster};
2 clusters[id] = {s0(r) : r ∈ agent clusters[id]};
3 free states = S \ (

⋃
k clusters[k]);

4 while free states not empty do
5 s, id = closest free state(N, active clusters)
6 clusters[id].add(s)
7 free states.remove(s)
8 for new id ∈ activate(N, s) \ active clusters do
9 active clusters.add(new id);

Since this is repeated in every cluster new information from
frontiers eventually reaches the global master.

V. RESULTS

We next show how the results in this paper can be used to
plan for exploration. We start with a numerical example that
exhibits the difference between intermittent connectivity, and
information-consistent intermittent connecivity, and then show
numerical results of the improved scalability of our flow-based
constraints for information sharing. Finally, we show how the
clustering method can be used to plan for exploration in very
large environments. All the results in this section have been
computed with our Python toolbox COPS1, using Gurobi [19]
as the underlying ILP solver. The computations are performed
on a laptop with an Intel Core i7-8850H processor.

A. Information-Consistency in Intermittent Connectivity

We first demonstrate solutions to the intermittent connectiv-
ity problems synthesized by solving the ILPs in Proposition 1
and 2. Fig. 5a shows a solution of Problem 1 where all four
agents are required to share information with each other, i.e.
src = snk = 0, . . . , 3. As can be seen from the figures, all
agents are moving and sharing information as expected and are
therefore the problem only requires T = 2. However, since all
four agents move in the first time step this plan is contingent
upon all agents knowing the plan at time t = 0.

We next solve Problem 2 to demonstrate what information-
consistency implies for the same problem. The purple agent
0 is the master agent and again, we require all 4 agents
to share information with each other. The resulting plan is
illustrated in Fig. 5b. Naturally, the additional information-
consistency requirement implies that more time steps are
needed to perform the information sharing task. We see that

1COPS is available at https://github.com/FilipKlaesson/cops.

https://github.com/FilipKlaesson/cops
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Fig. 5. Simulation of intermittent connectivity with (a) and without (b) master constraints. All agents are required to share information with each other.

agents do not perform any tasks before master information
(black communication edges) is received, which fulfills the
requirement of information consistency.

B. Scalability

To demonstrate the improved scalability of flow information
sharing constraints compared to previous work we compute
optimal solutions for a linear graph of length N . In these
experiments there are three agents positioned in 0,

⌈
N
2

⌉
and

N −1, with the constraint that all agents are required to share
information with each other. We compare the performance
with two other methods. In [8], a configuration with recurrent
connectivity constraint is planned by looking at the powerset
2S of the vertices in the network and requiring that if an
agent is in a set A ∈ 2S , then the solution has to use
at least one communication edge into A. We extended the
powerset idea to plan for intermittent connectivity over time
by including dynamics and enforce constraints as in [8] on

s0

s1

s2

s3

s4

0 10 20 30 40 50

10−2

10−1

100

101

102

103

Graph Size N

C
om

pu
ta

tio
n

Ti
m

e
(s

)

Powerset
Adaptive Powerset

Flow

Fig. 6. Computation time of the intermittent connectivity problem as a
function of graph size N with agents in state 0,

⌈
N
2

⌉
and N − 1, and all

agents are required to share information with each other.

the time-extended graph. The powerset of the time extended
graph scales poorly: there is a copy of the original graph for
each time step and hence 2(T+1)|S| different subsets.

We also consider an adaptive version of the powerset
method that first solves the optimization problem without
any communication constraints, and, in case a communication
constraint is violated, adds the corresponding subset constraint
to the problem and solves it again. Thus, constraints cor-
responding to additional subsets are added until a feasible
solution is found or the problem becomes infeasible.

Computational times for solving problems on a linear graph
are presented in Fig. 6 for the three methods. The adaptive
powerset method outperforms the original powerset method,
however both are unable to solve the problem for moderately
sized graphs which limits their practical applicability. The flow
method scales better and is practical for graphs of moderate
size, which is expected since the number of constraints is much
lower in the flow formulation: the number scales linearly with
the number of edges in the network, instead of combinatorially
with graph size. The relationship between the flow approach
and the powerset approach is similar to that between the
max-flow and min-cut problems. Although the two are dual
[15], flows are parameterized by a linear number of variables,
whereas there are combinatorially many cuts.

C. Exploration via Clustering

The clustering method presented in Section IV-B allows
us to solve much larger problems than what is possible
with a single intermittent connectivity problem. In addition,
further scalability improvements are possible via heuristics
that disregard states that are unlikely to be used (dead states),
and evacuating agents in clusters that have no child cluster
or frontiers (dead clusters). As an example we consider
exploration via the strategy in Fig. 3 of a network with
100 states, using 10 agents including a static base station
as master, with initially just one state known. Exploration
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Fig. 7. Simulation of intermittent connectivity constraint in an exploration setting using 10 agents in a network with 100 states. The color of the states
indicates the cluster they belong to. Agent 0 in state 0 is a static base station acting as master and is systematically updated about the progress between each
exploration cycle.

of the whole environment required computing and executing
nine pre-exploration and post-exploration plans, resulting in
a total of 48 solved intermittent connectivity problems. The
computation time in any cluster takes no more than 1.82
seconds which is negligible in networks of this size where
real-world execution of a single plan can take several minutes.

The time evolution of the exploration can be seen in Fig.
7 that shows how the known set of states is expanded2. The
color of a state indicates the cluster the state belong to. States
that are not used in the optimization problem (dead states) are
shown as white. Agents are well distributed in the network
and simultaneously explore different parts of the network.

VI. CONCLUSION

In this article we studied intermittent connectivity planning
in multi-robot systems. Motivated by information constraints
in applications, we proposed information-consistent intermit-
tent connectivity to handle situations where the plan itself is
part of the information that should be distributed. As a solution
to this problem we presented an Integer Linear Program based
on ideas from the literature on network flows, and showed
that it scales better than established methods. In addition,
we proposed novel “master constraints” that ensure that the
resulting plan is information-consistent.

Motivated by utilizing intermittent connectivity for explo-
ration, we presented an exploration strategy based on repeated
solutions of information-consistent intermittent connectivity
problems. To further improve scalability of this strategy we
proposed a clustering method that decomposes a large inter-
mittent connectivity problem for exploration into smaller prob-
lems that can be solved independently, and demonstrated in
simulation how the resulting algorithm is capable of efficiently
exploring a 100-node network using a team of 10 robots.

Current work includes real-world implementation of the
exploration algorithm for use in the DARPA Subterranean
Challenge by NASA Jet Propulsion Laboratory.

2Full simulation available at https://youtube.com/watch?v=VQjEOFJNRjk.
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