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Abstract The eukaryotic translation initiation factor 2a (eIF2a) kinase GCN2 is activated by

amino acid starvation to elicit a rectifying physiological program known as the Integrated Stress

Response (ISR). A role for uncharged tRNAs as activating ligands of yeast GCN2 is supported

experimentally. However, mouse GCN2 activation has recently been observed in circumstances

associated with ribosome stalling with no global increase in uncharged tRNAs. We report on a

mammalian CHO cell-based CRISPR-Cas9 mutagenesis screen for genes that contribute to ISR

activation by amino acid starvation. Disruption of genes encoding components of the ribosome

P-stalk, uL10 and P1, selectively attenuated GCN2-mediated ISR activation by amino acid starvation

or interference with tRNA charging without affecting the endoplasmic reticulum unfolded protein

stress-induced ISR, mediated by the related eIF2a kinase PERK. Wildtype ribosomes isolated from

CHO cells, but not those with P-stalk lesions, stimulated GCN2-dependent eIF2a phosphorylation

in vitro. These observations support a model whereby lack of a cognate charged tRNA exposes a

latent capacity of the ribosome P-stalk to activate GCN2 in cells and help explain the emerging link

between ribosome stalling and ISR activation.

Introduction
Phosphorylation of translation initiation factor 2 on serine 51 of its alpha subunit (eIF2a) is a potent

mechanism for translational regulation in eukaryotes. Phosphorylated eIF2 impedes the guanine

nucleotide exchange activity of eIF2B thereby limiting the pool of active GTP-bound eIF2. The con-

sequences to rates of translation initiation are mRNA-specific. By way of this direct effect on protein

synthesis and its indirect consequences to the abundance of downstream effector proteins, levels of

eIF2a phosphorylation modulate gene expression translationally and transcriptionally

(Hinnebusch, 2014).

In animals four different kinases couple unrelated stress signals to eIF2a phosphorylation (eIF2aP).

eIF2aP effectively integrates these into a stereotypical downstream response referred to as the Inte-

grated Stress Response (ISR) (Harding et al., 2003). The ISR modulates biological processes ranging

from the cell autonomous endoplasmic reticulum unfolded protein response to organismal immunity,

memory and cognition (Pakos-Zebrucka et al., 2016; Wek, 2018). The four eIF2a kinases, GCN2,

PERK, PKR and HRI, share a similar kinase effector domain, but diverge in the molecular mechanisms

and nature of the upstream signals that regulate their kinase activities.

General Control Non-depressible 2 (GCN2) is the oldest eIF2a kinase, conserved in all known

eukaryotes. It was discovered as the product of a gene required for yeast adaptation to starvation

for any amino acid, as in its absence yeast were unable to mount a rectifying transcriptional General
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Control response (the yeast counterpart to animal cell ISR) (Hinnebusch and Fink, 1983). This amino

acid starvation-induced, GCN2-dependent unicellular gene expression program has as its targets

genes encoding transporters and biosynthetic enzymes that function to restore amino acid suffi-

ciency, as well as tRNA synthetases that promote amino acid utilization as building blocks of proteins

(Hinnebusch, 2005). These physiological features, in conjunction with the domain organization of

the GCN2 protein (including an eIF2a kinase module and a module highly related to histidyl-tRNA

synthetases, HisRS-like), suggested that uncharged tRNAs may serve as activating ligands of GCN2

as part of a feed-back mechanism that defends cellular pools of charged tRNAs (Wek et al., 1989;

Wek et al., 1990). This model was supported by the observations that mutations in the HisRS-like

module that interfere with uncharged tRNA-binding in vitro abolished GCN2 activity in yeast

(Wek et al., 1995; Zhu et al., 1996) and by evidence that tRNA binding to the HisRS-like portion of

GCN2 relieves an intramolecular repressive signal arising from its interaction with the kinase domain

(Dong et al., 2000).

Parallel lines of enquiry indicate that GCN2 activity also relies on direct (Ramirez et al., 1991;

Zhu and Wek, 1998) and indirect (Marton et al., 1997) interactions with ribosomes or ribosome-

associated proteins (Jiménez-Dı́az et al., 2013; Inglis et al., 2019). These latter observations sug-

gest that GCN2 activation may not arise solely by binary interaction between GCN2 and uncharged

tRNAs as activating ligands. Additionally, a recent genetic observation made in mice brought into

question the singular role of excess uncharged tRNAs as GCN2 activating ligands and instead sug-

gested that in some circumstances the interaction between GCN2 and ribosomes might take center

stage. A strain of mice (C57BL/6J) that lacks an abundant neuron-specific isoacceptor arginyl-tRNA

was noted to have higher levels of GCN2-dependent ISR activity in brain tissues compared with a

reference strain that expressed normal levels of the neuron-specific arginyl-tRNA. ISR activity in

arginyl-tRNA depleted C57BL/6J brain was not associated with globally elevated uncharged tRNAs,

but was increased by a second mutation that compromises the cells ability to re-cycle stalled ribo-

somes (Ishimura et al., 2016). Together, these observations suggest a mechanism for activating

mammalian GCN2 that emanates from a (stalled) ribosome-generated signal that arises when pools

of charged tRNAs are limiting. Whilst a role for localized pools of uncharged tRNAs remains possi-

ble, the findings of Ishimura (et al. 2016) suggest that GCN2 activation may proceed independently

of globally elevated levels of uncharged tRNAs.

Following up on these hints for the existence of additional aspects of mammalian GCN2 activa-

tion, we took advantage of recent developments in CRISPR-Cas9 technology to search for

eLife digest Often thought of as “workhorse” molecules, proteins take part in almost every

structure and activity in a living cell. They are constructed from smaller building blocks called amino

acids by molecular machines called ribosomes. Each cell needs a constant supply of amino acids to

make new proteins. If cells are running low on amino acids, they can change their internal

biochemistry to use amino acids more economically. GCN2 is one protein that helps activate these

biochemical changes, but it was unclear how a shortage of amino acids could activate GCN2.

Earlier in 2019, researchers reported that, in a test tube at least, isolated ribosomes could

themselves activate GCN2. They also identified a part of the ribosome called the P-stalk as playing

an important role in the interaction. Now, Harding et al. – who include some of the researchers

involved in the earlier study – explore the activation of GCN2 further, but this time based on

experiments with mammalian cells.

First, a genetic screen was conducted to identify genes that if mutated specifically prevented the

activation of GCN2 in cells that were starved of amino acids. This screen identified a few genes,

several of which are involved in creating the P-stalk of the ribosome. By isolating the mutant

ribosomes from these cells and studying them in the laboratory, Harding et al. then showed that

these ribosomes are unable to activate GCN2.

These findings confirm that the P-stalk of the ribosome plays an essential role in activating GCN2

in response to a shortage of amino acids. They shed light on a fundamental biological system, and

further work will undoubtedly seek to uncover the details of the process by which GCN2 is activated.
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mammalian genes whose compromise also enfeebles GCN2 activation. Our findings, pointing to a

role for the ribosomal P-stalk in coupling an amino acid starvation-induced change in the ribosome

to GCN2 activation, are described below.

Results

A genetic screen implicates the ribosomal P-stalk in ISR induction
selectively by histidinol or amino acid deprivation
As a first step towards identifying genes implicated in GCN2-mediated ISR induction we confirmed

the suitability of two reporter cell lines. In both HeLa and CHO cells inactivation of the GCN2-encod-

ing Eif2ak4 gene selectively abolished responsiveness of the ISR regulated CHOP::GFP reporter to

the histidinyl-tRNA synthetase inhibitor, histidinol. In both cell lines, the CHOP::GFP reporter

remained responsive to the glycosylation inhibitor tunicamycin, a toxin that activates the ISR orthog-

onally, through an ER stress inducible eIF2a kinase, PERK (Figure 1A and B). (Harding et al., 1999;

Harding et al., 2000). Furthermore, GCN2 ablation did not affect the tunicamycin-responsive XBP1::

mCherry reporter present in the CHO cells. The reporter cell lines were thus deemed suitable tools

to search for additional components that may contribute to GCN2-dependent ISR activation.

The HeLa reporter cells were targeted with pooled lentivirus expressing guide RNAs targeting

the entire human genome (Sanjana et al., 2014), treated with medium lacking lysine and arginine (-

KR), and enriched for CHOP::GFP dull cells (that mimic the GCN2-ablation phenotype) using fluores-

cence-activated cell sorting (FACS) (Figure 1C). After two rounds of sorting, sequencing of the

guides confirmed that those targeting the GCN2 encoding Eif2ak4 were amongst the most highly

enriched in the dull cells. Ontology cluster analysis also revealed enrichment for guides targeting the

mRNA cap binding complex, other translation initiation factors, and ribosomal proteins, consistent

with similar studies previously carried out in yeast (Hinnebusch, 2005).

Despite the enrichment for guides targeting genes plausibly implicated in amino acid starvation-

mediated ISR activation, many of the HeLa cells selected for CHOP::GFP dullness had also lost the

ability to respond to tunicamycin (not shown). Furthermore, it became evident that the clonogenic

potential of stressed HeLa cells was poor, compared with CHO cells (Figure 1—figure supplement

1A). These features were deemed to compromise the prospect of enrichment for guides targeting

genes of interest by further cycles of selection in HeLa cells. To circumvent this problem, we drew on

the sequence information derived from the targeted HeLa cells to create a CHO-based CRISPR

library focused on those genes enriched in the dull HeLa cells and expanded to other members of

their gene families. The resulting 19,305-guide library targeting 3,222 CHO genes (~6 guides per

gene) was used to mutagenize CHO cells. Flow cytometry-based sorting enriched for cells that were

selectively compromised in CHOP::GFP expression in response to histidinol but retained significant

responsiveness to tunicamycin (Figure 1D).

Sequencing of the integrated guides from genomic DNA isolated from the CHOP::GFP dull CHO

cells confirmed enrichment of guides targeting Eif2ak4 and a subset of genes encoding translation

initiation factors and ribosomal proteins. Among the latter was Rps10 (encoding eS10), previously

implicated in GCN2 responsiveness to amino acid starvation in yeast (Lee et al., 2015) (Figure 1—

figure supplement 1B). Guides targeting two other ribosomal genes were also conspicuously

enriched in the dull CHO cells: Rplp0 and Rplp1, encoding uL10 and P1, both components of the

acidic ribosomal P-stalk, a heteropentameric structure that also includes P2 (guides directed to the

P2-encoding Rplp2 gene were also modestly enriched in the dull population) (Figure 1E).

The enriched Rplp0 guides caught our interest, because they mapped to the region encoding the

C-terminus of uL10, which constitutes the helical spine of the P-stalk protrusion from the ribosome

surface and the linker connecting it to the ribosome core. Guides targeting the ribosome-embedded

N-terminal portion of uL10 were strongly depleted from all pools of CHO cells (regardless of their

ISR status) consistent with a role for this portion of the protein in cell fitness (Figure 1E and F).

These findings hinted at a possible role for the P-stalk in ISR activation in response to histidinol.

Given the proximity of the P-stalk to the ribosomal A site, we considered a role for the P-stalk in sig-

naling event(s) triggered by lack of charged tRNAs or by ribosome stalling.

To follow up on the genotype-phenotype relationship suggested by the screen, we targeted

CHO cells with the Rplp0 and Rplp1 guides found to be enriched in CHOP::GFP dull cells and

Harding et al. eLife 2019;8:e50149. DOI: https://doi.org/10.7554/eLife.50149 3 of 19

Research article Cell Biology Genetics and Genomics

https://doi.org/10.7554/eLife.50149


Figure 1. A CRISPR-Cas9-based genome-wide screen implicates the ribosomal P-stalk in ISR induction. (A) Overlay plot of the fluorescence signal from

wildtype (WT) or GCN2-ablated Eif2ak4D mutant HeLa cells with an ISR sensitive CHOP::GFP reporter (horizontal axis Ex: 488 nm/ Em530 ± 30 nm) and

a constitutive mCherry reporter (vertical axis Ex 561/Em 610 ± 20 nm). The cells were untreated (UT, red), treated with histidinol (2 mM HeLa, 0.5 mM

CHO, HD, blue) or tunicamycin (2 mg/ml, Tm, orange). Histograms of the signal in each channel are displayed on the axes. (B) Flow cytometry plot as in

Figure 1 continued on next page
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characterised genotypically-defined clones phenotypically. Histidinol induction of CHOP::GFP

expression was conspicuously compromised in the targeted clones, whereas their responsiveness to

ER stress-inducing agents was unaffected. A selective defect was also observed in Rplp0 and Rplp1

mutant cells in response to lysine and arginine depletion, albeit not to the level of GCN2 ablated

cells (Figure 2A and B). The defect in the ISR brought about by targeting cells with the Rplp0-

directed guide was rescued by restoring gene function, attained by re-targeting the mutant Rplp0

locus with a homologous repair template to reestablish the coding region of the gene (whilst adding

an epitope tag) (Figure 2C and D). These findings formally establish a correlation between CRISPR-

Cas9-induced lesions in the P-stalk and a selective defect in the inducibility of the CHOP::GFP ISR

reporter in response to inhibition of tRNA charging or to starvation for amino acids.

P-stalk lesions affect the endogenous ISR
Attenuated translation initiation is a common feature of the ISR. It is readily detected by tracking the

distribution of ribosomes in density gradients of cell lysates (Nilsen et al., 1982; Harding et al.,

2000). Amino acid starvation of wildtype cells resulted in the expected redistribution of ribosomes

from denser polysome fractions to lighter fractions and to free 40S and 60S subunits. This starvation-

induced shift in the ribosome profile was lost in GCN2-ablated cells, but only partially attenuated

even in the strongest single mutant lines (Figure 3A and B). This partial loss of function phenotype

is consistent with the partial defect in CHOP::GFP induction and with the predicted structure of the

mutant uL10, which retains the N-terminal portion of the P-stalk helical spine (Figure 2A and B).

In an effort to acquire a more penetrant lesion in the P-stalk, we targeted several Rplp0 mutant

clones with guides to Rplp1. Very few double mutant cells survived the procedure, but one such

clone Rplp0/Rplp1m29-132 (encoding a uL10 truncated at Y231 and a P1 protein lacking H17-D18 in

helix 1) phenocopied GCN2 ablation both in terms of its polysome profile and activation of the

CHOP::GFP reporter (Figure 3A–3C).

In wildtype cells amino-acid starvation led to a time dependent accumulation of activated hyper-

phosphorylated GCN2, which was conspicuously lacking in the Rplp0/Rplp1m29-132 cells. Note the

retarded mobility of GCN2 from the starved wild type when resolved on a PhosTag gel, compared

with GCN2 from mutant cells (Figure 3D and Figure 3—figure supplement 1A). Phosphatase treat-

ment of the lysate, prior to gel loading, confirmed that the heterogenous mobility shift indeed

reflected multiple phosphorylation events (Figure 3E and Figure 3—figure supplement 1B). Like

the GCN2 ablated cells, the compound P-stalk Rplp0/Rplp1m29-132 double mutant cells were also

selectively defective in induction of the endogenous ISR markers CHOP and ATF4 in response to

amino acid starvation but retained inducibility of the markers to ER stress (Figure 3F).

Immunoblotting of extracts from the wildtype and P-stalk mutant cells confirmed the truncation

of uL10 (detected with an antisera to the N-terminal portion of the protein) and the loss of its C-ter-

minus (revealed with a monoclonal antibody, 3BH5, reactive with a C-terminal peptide conserved in

all three P-stalk proteins) in both the single Rplp0m14 and the compound Rplp0/Rplpm29-132 double

Figure 1 continued

‘A’ but from wildtype or GCN2-ablated CHO cells with the CHOP::GFP reporter (horizontal axis) and an ER-stress sensitive XBP1::mCherry reporter

(vertical axis). Color-coding as in A. (C) Schema used to enrich for cells with CRISPR-Cas9 induced genetic lesions that impair ISR activation (CHOP::GFP

dull cells) and for identification of the guide RNA sequences they harbor. (D) Flow cytometry plot as in B but from pools of CRISPR-Cas9 mutagenized

CHO cells following two rounds of FACS-based enrichment for histidinol-treated CHOP::GFP dull cells. ‘R2 Med Dull’ and ‘R2 Dullest’ refers to pools

selected for medium or strong impairment of CHOP::GFP induction. (E) Plot of the mean log2 fold enrichment or depletion of guides. The vertical axis

compares the histidinol-treated CHOP::GFP dull population to an unselected population of histidinol-treated CHO cells. The horizontal axis reports on

the enrichment or depletion of guides from unselected cells compared to their abundance in the original library. Guides targeting Eif2ak4, Rplp0, Rplp1

and Rplp2 are color coded. All other ribosomal proteins are in dark grey. Note that only Rplp0 guides that were not depleted from the unselected pool

of transduced cells were enriched in the CHOP::GFP dull population. (F) Cartoon of the structure of the human ribosome with the position of the E, P,

and A, sites highlighted and the P-stalk (based on PDB 4v6x) in close up. The ribosome associated N-terminal domain (NTD) of uL10 and the P-stalk

protrusion are indicated. The unstructured acidic C-termini of uL10, P1, and P2, unresolved in PDB 4v6x, are not shown. The approximate positions on

the protein corresponding to the site targeted by the Rplp0 guides enriched in the CHOP::GFP dull cells or depleted from the unselected pool of

transduced cells are indicated by the red and grey translucent spheres, respectively.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Poor clonogenic potential of stressed HeLa compared with CHO cells.
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mutant (Figure 4A). Coomassie-stained SDS-PAGE gels of ribosomes isolated from the mutant cells

was conspicuous for the presence of a 34.2 kD protein (the predicted size of uL10) in the wildtype

that was missing from both mutants (Figure 4B). Furthermore, ribosomes isolated from the mutant

cells had diminished P1/P2 content (conspicuous in the Rplp0/Rplp1m29-132 double mutant but also

Figure 2. CRISPR-Cas9-based P-stalk lesions impair CHOP::GFP induction upon histidinol treatment or amino acid starvation. (A) Flow cytometry

analysis of the ISR-inducible CHOP::GFP and the UPR inducible XBP1::mCherry reporters from untreated (UT red), histidinol-treated (0.5 mM, HD, blue),

thapsigargin-treated (1 mM, Tg, orange), or cells starved for lysine and arginine (-KR, purple) all for 20 hr. Cells were targeted with guides to the

indicated genes. (B) Depiction of the genetic lesion in the Rplp0-mutant clones whose flow cytometry profile is shown above. Shown is a ribbon

diagram of the P-stalk (as in Figure 1E) Red arrows indicate the boundaries of the mutations and deleted regions are colored light grey. (C) Flow

cytometry analysis of parental (wildtype, WT) CHO cells, the Rplp0m9 mutant and the mutant following restoration of the P-stalk by re-targeting the

mutant Rplp0 with a repair template encoding a wildtype allele with an HA epitope tag (Rplp0m9-RS7) (D) Anti-HA immunoblot of cytoplasmic extracts

from the parental Rplp0m9 and rescued Rplp0m9-RS7 cells.
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Figure 3. Impaired translational control, GCN2 activation, and ISR induction in amino acid starved P-stalk mutant cells. (A) Overlaid A260 traces from

10–50% sucrose gradients loaded with cytoplasmic extracts from wildtype and the indicated mutant cells left untreated (UT, black) or starved for lysine

and arginine (-KR, red). The 40S, 60S, 80S, and polysome peaks are labeled for orientation. Note the marked re-distribution of ribosomes from the

denser polysome fractions to the lighter fractions in stressed wildtype cells, the lack of such redistribution in both the GCN2-ablated Eif2ak4D and

Figure 3 continued on next page

Harding et al. eLife 2019;8:e50149. DOI: https://doi.org/10.7554/eLife.50149 7 of 19

Research article Cell Biology Genetics and Genomics

https://doi.org/10.7554/eLife.50149


apparent in the Rplp0m14 single mutant (Figure 4B, middle panel), consistent with a destabilizing

effect of the mutations on the association of P1 and P2 with the ribosome.

Ribosomes isolated from P-stalk mutant cells are defective in
stimulating GCN2 dependent eIF2a phosphorylation in vitro
While these studies were ongoing, we learned of findings, now published, indicating a physical inter-

action between GCN2 and the mammalian ribosomal P-stalk and providing evidence that intact ribo-

somes, or their isolated P-stalk, can stimulate GCN2-mediated phosphorylation of eIF2a in vitro

(Inglis et al., 2019). At the concentrations used, isolated ribosomes had negligible associated eIF2a

kinase activity. However, in our hands too, nanomolar concentration of ribosomes isolated from wild-

type CHO cells markedly stimulated eIF2a phosphorylation by GCN2 (Figure 5A and Figure 5—fig-

ure supplement 1A). Interestingly, ribosomes isolated from the Rplp0 and compound Rplp0/Rplp1

mutant cells were impaired in GCN2-dependent eIF2a phosphorylation. This was evident in multiple

preparations of wildtype and mutant ribosomes (Figure 5A–5C and Figure 5—figure supplement

1A-C). Furthermore, the hierarchy of the defect in GCN2 activation by the different ribosome prepa-

rations in vitro correlated with the ISR impairment of their source mutant cells in vivo, in that the in

vitro defect was more severe in preparations of ribosomes from compound Rplp0/Rplp1m29-132

mutant cells than its Rplp0m9 single mutant parent or the unrelated Rplp0m14 single mutant

(Figure 5A–5C and Figure 5—figure supplement 1C).

The stimulatory effect of ribosomes appeared to be GCN2 specific, as the related PERK kinase

was only minimally activated in vitro (Figure 6A). This finding is consistent with the lack of effect of

the P-stalk lesions on the PERK-dependent ISR induction by ER stress in cells (Figures 2A and 3B–

3F).

To further characterize ribosome P stalk-dependent GCN2 activation, we compared experimen-

tally accessible enzymatic features of GCN2 alone with those of a compound enzyme constituted of

GCN2 and ribosomes. At physiological substrate concentrations of 2 mM eIF2a (Chen et al., 2015),

the approximately 10-fold increase in the rate of GCN2-dependent eIF2a phosphorylation brought

about by the presence of wildtype ribosomes (Figure 5C) could be mimicked by a 10-fold increase

in the concentration of GCN2 in in vitro reactions without ribosomes. However, the relationship

between reaction velocity and substrate concentration proved very different when comparing GCN2

(2.5 nM) with ribosomes (50 nM) to GCN2 alone (at 25 nM). While the former reaction saturates at

less than 50 mM (substrate Km of ~7.8 mM (95% confidence 5.2–10.4 mM) and a Vmax of 130 min�1

(95% confidence 116–140 min�1)) the latter reaction was not saturated with substrate concentrations

attainable experimentally (Figure 6B and C). The kinetic properties of GCN2, reacted with ribo-

somes from the mutant Rplp0/Rplp1m29-132 cells, resembled GCN2 alone, establishing a role for the

P-stalk in this shift in the enzymatic properties of the kinase (Figure 6—figure supplement 1A and

B).

In keeping with recent observation (Inglis, 2018 and Inglis et al., 2019), we also noted that ribo-

some-mediated potentiation of GCN2’s eIF2a-directed kinase activity was not associated with a

Figure 3 continued

compound P-stalk lesioned Rplp0/Rplp1m29-132 mutants and the partial defect in the weaker Rplp0m14 and Rplp0m9 mutants. Shown are representative

traces of A260 (vertical axis) vs. sedimentation velocity (horizontal axis) from one of two such experiments. (B) Bar diagram of the ratio of the polysome

to the free 60S subunit signal in stressed and unstressed cells of all five genotypes in the two experiments. The height of the bar reflects the mean of

two experiments with values from matched experiments shown in open and closed circles respectively. (C) Flow cytometry analysis of wildtype (WT),

GCN2-ablated (Eif2ak4D) or the compound P-stalk Rplp0/Rplp1m29-132 double mutant cells with treatments as in Figure 2A indicated. To the right is a

ribbon diagram of the P-stalk (color coded as in Figure 2B). The red arrows point to the (H17–D18) deletion in P1 and the orange arrow to the

truncation in uL10 at Y231. (D) GCN2 immunoblot of extracts from wildtype (WT), compound P-stalk Rplp0/Rplp1m29-132 double mutant cells, or GCN2-

ablated Eif2ak4D mutant cells, untreated or starved of lysine and arginine (-KR) resolved by phos-tag SDS-PAGE. (E) As in ‘D’ but following in vitro

exposure of the lysate to l phosphatase (l phos). (F) CHOP and ATF4 immunoblots of extracts from wildtype (WT), compound P-stalk Rplp0/Rplp1m29-

132 double mutant cells and GCN2-ablated Eif2ak4D mutant cells, untreated, starved of lysine and arginine (-KR) or exposed to 1 mM thapsigargin (Tg)

for the indicated time. Protein disulfide isomerase (PDI) serves as a loading control.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Impaired translational control, GCN2 activation, and ISR induction in amino acid starved P-stalk mutant cells (reporting on

reproducibility of the observations shown in Figure 3).
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consistent difference in the known GCN2 auto-activation mark, phosphorylation of activation-loop

residue Thr899 (Romano et al., 1998) (Figure 6D). It is noteworthy that in vitro, ribosomes promote

GCN2 phosphorylation on residues other than threonine 899 (Inglis, 2018). Unfortunately the antise-

rum directed towards human GCN2 pThr899 used here fails to recognise the hamster protein, thus

Figure 4. Defective ribosome association of P1 and P2 in mutant CHO cells. (A) Immunoblot of cytoplasmic

extracts from untreated or histidinol-treated (HD, 0.5 mM) wildtype and the indicated mutant CHO cells. The

polyclonal serum (anti uL101-200) recognizes the N-terminal portion of uL10 and the monoclonal antibody (MoAb

3BH5) recognizes the conserved acidic C-terminus of all three P-stalk proteins. The deletion mutants of uL10 are

readily distinguishable in both immunoblots, but wildtype P1, P2, and the P1DH17-D18 mutant are not resolved. (B)

Coomassie blue stained SDS-PAGE gel (left) and immunoblots of the protein content of ribosomes purified from

wildtype (WT) or mutant CHO cells as in ‘A’ above. Note the near absence of P1/P2 proteins associated with

ribosomes purified from the Rplp0/Rplp1m29�132 mutant cells, despite their presence in the whole cell extract

(above).

Harding et al. eLife 2019;8:e50149. DOI: https://doi.org/10.7554/eLife.50149 9 of 19

Research article Cell Biology Genetics and Genomics

https://doi.org/10.7554/eLife.50149


we are unable to ascertain if the defect in GCN2 phosphorylation observed in amino acid deprived,

P-stalk mutant cells (Figure 3D and E and Figure 3—figure supplement 1) encompasses that resi-

due. However, given that the phos-tag gels report on multiple phosphorylation events in the amino

acid deprived wildtype cells that are absent from P-stalk mutant cells, it seems reasonable to con-

clude that the ribosome-mediated signal also results in phosphorylating events other than pThr899

in vivo. Their relationship to GCN2’s activity as an eIF2a kinase remains to be determined. Together

with the altered kinetics of the ribosome-associated enzyme, these features suggest a ribosome-

dependent process extending beyond activation-loop autophosphorylation.
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Figure 5. P-stalk lesions impair ribosome stimulation of eIF2a directed GCN2 kinase activity. (A) Immunoblot of eIF2a from in vitro phosphorylation

reactions resolved by phos-tag SDS-PAGE. The concentration of purified GCN2 kinase, ribosomes, and the genotype of the ribosomes is indicated

above the panel. The fraction of phosphorylated eIF2a is below the panel, the incubation time is on the left, and the migration of the phosphorylated

(eIF2aP) and non-phosphorylated protein (eIF2a0) is on the right. (B) A time course of eIF2a phosphorylation reactions with 30 nM ribosomes annotated

as in ‘A’ above. (C) Graph depicting the percent phosphorylation plotted against time from reactions shown in ‘B’ above and two similar experiments,

all data points are shown along with the mean and range. (Shown are representative of experiments reproduced more than three times with

independently isolated wildtype and mutant ribosomes).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. P-stalk lesions (reproducibly) impair ribosome stimulation of eIF2a directed GCN2 kinase activity.
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Discussion
The correlation, established here, between a selective defect in GCN2-mediated ISR activation in

cells with genetic lesions to their P-stalk and a defect in ability of their ribosomes to activate GCN2

in vitro implicates the P-stalk in propagating a signal from ribosomes perturbed by amino acid star-

vation to GCN2. This finding bridges recent genetic and cell biological observations implicating

stalled ribosomes in GCN2 activation (Ishimura et al., 2016; Darnell et al., 2018) with biochemical

evidence that the ribosome P-stalk can activate GCN2 in vitro (Jiménez-Dı́az et al., 2013;

Inglis et al., 2019), establishing that the in vitro observation, suggestive of a role for the ribosome
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Figure 6. Ribosome activation alters GCN2 enzyme kinetics. (A) Coomassie-stained phos-tag PAGE of eIF2a from in vitro phosphorylation reactions

with purified GCN2 or the cytosolic kinase domain of PERK, in presence or absence of wildtype ribosomes. (B) Immunoblot of eIF2a from in vitro

phosphorylation reactions with escalating concentration of eIF2a substrate. Aliquots of each reaction containing equal amounts of eIF2a (~120 ng) were

applied to the phos-tag gel. (Shown is a representative of experiments reproduced twice). (C) Plot of individual values of enzyme velocity (in min�1)

against substrate concentration (in mM) of the reactions shown in ‘B’ and Michaelis–Menten curve fit. Reactions with ribosomes appears to reach

saturation at around 50 mM eIF2a whereas reactions without ribosomes exhibited no saturation at the highest concentrations tested. (D) Top panel:

Immunoblot of phospho-GCN2-T899P signal from reactions incubated for 10 min with the indicated concentration of wildtype or mutant ribosomes in

the presence of ATP. Lower panel: Coomassie-stain of the bovine serum albumin present in all reactions and serving as a recovery marker.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Ribosome activation alters GCN2 enzyme kinetics.
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in GCN2 activation, relate to a process required for GCN2 activation by amino acid starvation in

cells.

The implication of the P-stalk as an agent in GCN2 activation brings up interesting questions

relating to the coupling between a process common to amino acid starvation and inhibition of tRNA

charging and alteration in the state of the P-stalk. The location of the P-stalk on the surface of the

ribosome adjacent to the A site and its functional role in recruiting elongation factors to the ribo-

some (Helgstrand et al., 2007; Nomura et al., 2012) and in stimulating their GTPase activity

(Mohr et al., 2002), implicate the P-stalk in translation elongation. In elongating ribosomes, charged

cognate tRNAs (in complex with eEF1A) followed by eEF2, cycle through the A site (reviewed in

Brown and Shao, 2018; Dever et al., 2018). It is tempting to speculate on a scenario whereby the

cycling of these factors in proximity to the P-stalk restrains the latter’s GCN2 stimulatory activity.

This may occur through elongation factor mediated steric blocking of the interaction between GCN2

and domain II of uL10 (shown to be essential for GCN2-P-Stalk binding, Inglis et al., 2019), by com-

petition for the attention of the acidic C-terminal tails of the P-stalk proteins (which are important

for activation of GCN2, Inglis et al., 2019), or by eliciting conformational changes in the P-stalk. Dis-

ruption of this elongation cycle by lack of cognate charged tRNA presumably stalls ribosomes in a

conformation that relieves such restraint(s), exposing the dormant capacity of the P-stalk to activate

GCN2 (Figure 7).

A ribosome-centered activation event, mediated by the P-stalk, fits the genetic data whereby in

neurons lacking an abundant isoacceptor arginine tRNA, GCN2 activation is favored by lesions in

GTPBP2-a mammalian ribosome rescue factor whose absence stabilizes stalled ribosomes

(Ishimura et al., 2014; Ishimura et al., 2016). The notion that the activating signal arises from

stalled ribosomes is also in keeping with the positive correlation noted between GCN2’s response

to single amino acid starvation in different mammalian cell lines and the extent of ribosome pausing

(Darnell et al., 2018). Indeed, the relationship between stalling and GCN2 activity is likely homeo-

static as GCN2D cells exhibit more stalling in response to amino acid starvation (Darnell et al.,

2018).

Ribosomes isolated from actively-translating fed cells (with repressed GCN2), were nonetheless

potent activators of GCN2 in vitro (our observation and Inglis et al., 2019). Presumably ribosome

isolation disrupts the aforementioned constraints on the P-stalk and exposes its latent ability to acti-

vate the kinase in vitro. In this vein, it is interesting to compare the P-stalk’s role in yeast and mam-

malian GCN2 activation. Activation by the mammalian P-stalk requires both the ribosome-associated

N-terminal domain II of uL10 and the acidic C-termini of the three P-stalk components that extend

from the ribosomes surface (Inglis et al., 2019). By contrast, the yeast P1/P2 proteins are sufficient

for GCN2 activation in vitro (Jiménez-Dı́az et al., 2013). These observations fit the genetic evidence

of a role for the free (not ribosome-associated) pool of yeast P2 in GCN2 activation in vivo. Interest-

ingly, the free pool of yeast P2 contributes to GCN2 activation in response to osmotic stress and glu-

cose deprivation, but is dispensable for GCN2 activation by histidine depletion. The latter

observation is consistent with the notion that GCN2’s response to amino acid starvation might

depend on a ribosome-coupled P-stalk mediated signal, which may be provided adequately by yeast

uL10 even in the absence of associated P1/P2 (Jiménez-Dı́az et al., 2013).

The importance of the physical coupling between the P-stalk and the ribosome to mammalian

GCN2 activation is suggested by the strong phenotype of the compound Rplp0/Rplp1m29-132 mutant

in which the truncation of uL10 and the internal deletion of P1 conspire to deplete ribosomes of

associated P-stalk acidic C-termini, whilst retaining a substantial pool of cytosolic P proteins with

intact C-termini. The notion that efficient delivery of the P-stalk’s message to GCN2 relies on prox-

imity to the ribosome is consistent with the importance of other contacts made between GCN2 and

the mammalian ribosome, such as those dependent on eS10 (Lee et al., 2015) (a product of a gene

also ‘hit’ in our screen for CHOP::GFP dull cells). Whilst the ribosome takes central stage in GCN2

activation by amino acid starvation, it is interesting to consider that in mammals too there may be a

role for the free pool of P1/P2 proteins in GCN2 activation in response to other non-ribosomal stress

signals.

The nature of the P-stalk dependent activating event raises other questions. Yeast P1/P2 proteins

markedly stimulated GCN2 autophosphorylation in vitro (Jiménez-Dı́az et al., 2013). However,

mammalian ribosomes had no consistent effect on the phosphorylation status of GCN2 Thr899

(here, Inglis, 2018 and Inglis et al., 2019). Nonetheless, mammalian ribosomes imparted on GCN2
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new enzymatic properties, reflected in the lowering of the enzymes Km. The nature of this activating

event(s) is an open question, as is the linked question whether stimulation of the eIF2a-directed

kinase activity of GCN2 requires the continued presence of ribosomes, or if the activated state sur-

vives dissociation of GCN2 from ribosomes.

The importance of GCN2’s relationship with ribosomes to activation of the ISR (known in yeast as

the GCN4-dependent General Control gene expression program) was first recognized before
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Figure 7. A model for ribosome state-dependent GCN2 activation by the P-stalk. (A) In amino acid replete cells, charged tRNAs and elongation factors

eEF1A and eEF2 cycle through the GTPase associated centre repressing the P-stalk’s latent ability to activate GCN2. Repression may arise from

competition for domain II of uL10 (a GCN2 binding site, shaded deep purple), engagement of the acid C-terminal tails of the pentameric P-stalk

(cartooned as tentacle-like extensions) or imposition of a conformation that is not conducive to GCN2 activation, amongst other mechanisms. (B) By

limiting the pool of charged tRNAs, amino acid starvation or inhibition of tRNA synthetases disrupts the cycling of factors through the GTPase

associated centre exposing the latent ability of the P-stalk to activate GCN2. This is speculatively presented as arising from the sequential binding of

inactive GCN2 to the P-stalk and a subsequent activation step in which the acid C-terminal tails play a role. Active GCN2 (possibly in complex with

uncharged tRNAs engaging its HisRS domain (pale blue)) phosphorylates its substrate, eIF2a.
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identification of eIF2a as GCN2’s substrate (Ramirez et al., 1991; Zhu and Wek, 1998) and subse-

quently buttressed by identification of ribosome-associated factors such as GCN1 and GCN20 as

important GCN2 co-factors (Marton et al., 1997). These seminal early findings, together with more

recent work (of which this paper is part), point to a role for a stalled ribosome-initiated P-stalk-medi-

ated activation signal. Moreover, these observations suggest the possibility that GCN2, the first

eIF2a kinase, evolved initially as part of a simple feed-back loop attenuating translation initiation in

response to ribosome stalling. The coupling of GCN2’s activity to a gene expression program that

acts physiologically to relieve some of the more common causes of stalling, may have emerged later

and eventually evolved into the ISR we recognize today in multicellular organism.

Materials and methods

Plasmid construction and materials
Standard cloning techniques were used to create the recombinant DNA vectors listed in the Key

Resources Table (supplementary Table 1). The table also lists the antibodies, cell lines, reagents, oli-

gonucleotides and software used in this study.

Cell line construction
HeLa cells were maintained in DMEM supplemented with 10% Fetalclone II serum (Hyclone), 0.5% b-

mercaptoethanol, 1x MEM-non-essential-amino-acids, and 1X pen-strep. CHO cells were maintained

in Hams’ F12 supplemented with 10% Fetalclone II serum (Hyclone) and 1x pen-strep. For lysine and

arginine starvation, cells were washed 3x in PBS+ Mg2+ Ca2+ incubated in Advanced DMEM/F-12

(12634010, Thermo-Fisher) with 10% dialyzed FCS for 2–4 hr before the start of the experiment.

Treated samples were then washed 3x with PBS + Mg2+ Ca2+ and incubated in SILAC Advanced

DMEM/F-12 Flex Media (A2494301, Thermo-Fisher) supplemented with 17.5 mM glucose, and 10%

dialyzed FCS for the indicated period.

HeLa cells were stably transfected with a linearized CHOP::GFP vector (lab m31) and pRc/RSV

(Invitrogen) 10:1 and selected for G418 resistance and ISR induction. The selected line was then sta-

bly transfected with a constitutive mCherry expression vector to yield (Hela CGC55). A previously-

described CHOP::GFP-C30 cell line (Novoa et al., 2001) was transfected with plasmid UK1313

pCAX-F-XBP1DDBD-mCherry (MP5) 10:1 with pbabe-puro (Addgene 1764) and a puromycin-resis-

tant clone with tunicamycin induced XBP1::mCherry expression identified and the puromycin resis-

tance was removed by transient transfection with sgCRISPR-RNA-expression vectors targeting the

puromycin N-acetyltransferase gene (UK1901+UK1902) to yield the DP19 clone used throughout this

study. Cas9 expressing derivatives of the HeLa CGC55 and CHO DP19 reporter lines were made by

infecting the cells with lentivirus prepared from packaging Lenti-Cas9-Blast (UK1674, Addgene

1000000049) by co-transfection with helpers pMD2.g (UK1700, Addgene 12259), psPAX2 (UK 1701,

Addgene 12260), in HEK 293 T cells and selecting for blasticidin resistance (10 and 30 mg/ml for

HeLa and CHO respectively).

CRISPR screening
Using the pooled human GECKO 2.0 CRISPR library and following an established protocol (Addgene

1000000049, Sanjana et al., 2014) we infected HeLa Cas9 expressing reporter cells library lentivirus

at a MOI <0.3 and selected for Puro resistance resulting in a final representation of >60 surviving

cells/guide for each of library segments A and B. After a week of expansion, cells were treated in

arginine and lysine free medium for 20 hr followed by collection in PBS-EDTA, washing in PBS +

0.2% BSA and 8.47*107 cells sorted with the dullest ~3% (2.6 � 106) collected on an Influx or Melody

cell sorter (BD biosciences). An equal number of treated cells were passed without sorting as a con-

trol group. The collected cells were replated, expanded and aliquots frozen or passed for another

round of treatment and sorting.

Genomic DNA was prepared from 3.6 � 107 cells from each round using the DNAzol method

(Chomczynski et al., 1997) from the separately maintained A and B library segments. PCR inserts

were prepared for NGS sequencing with two rounds of PCR with primers UK 1433 and UK 1434 for

the first round and primers UK 1432 and one of the barcoded reverse primers (UK1418-UK1432) for

the second round. After quantification the products were subjected to NGS sequencing using
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custom primer UK1435 and the illumina indexing primer with single-end reads of 50 bp on a hiseq

4000. The sequences were processed and guide counts, gene rankings and statistics were generated

using MAGECK software (Li et al., 2014). The top 1% (200 hits) were submitted to metascape

(Zhou et al., 2019) for gene annotation analysis and genes in the top enriched ontology clusters

were added to the list along with the next ~9% of genes selected in the screen. Guides to 1500

unrelated CHO genes and 200 non-targeting control guides were also included in the library (NCBI

Geo database; accession numbers awaiting assignment). CHO homologues were identified from a

gene list from the CHO-K1 reference genome (GCF_000223135.1). Guides based on improved effi-

ciency rules (Doench et al., 2014) were designed against the selected genes and pooled single

stranded oligonucleotides (see oligo UK2580) were synthesized as part of a full genome library

made with two sets of arms for independent PCR amplification and cloning (Twist Biosciences, Cali-

fornia USA). The 19305 guide library (CHO-mini-library) targeting 3222 CHO genes (six guides per

gene) was PCR amplified from the pool in 8 rounds of PCR with primers UK1855 and UK1856),

digested with Bbs1, and the 27 bp fragments purified by PAGE and cloned into a BbsI cut UK1789

pKLV-U6gRNA (BbsI)-PGKpuro2ABFP vector (Addgene 50946) as described (Koike-Yusa et al.,

2014).

The resulting focused library was used to mutagenize the CHO-CHOP::GFP, XBP1::mCherry dou-

ble reporter cells at a MOI of 0.1 and a representation of ~350 cells for each library guide in dupli-

cate pools. In the first round, 4–5% of the dullest cells following 20 hr induction with histidinol were

selected and corresponding unselected pools maintained. In the second round three levels of dull

cells corresponding to the lowest ~4.6, 11, and 24% were collected from each duplicate along with

pools of treated unsorted cells. The selected guides were PCR amplified from genomic DNA as

above but using primers UK1758 and UK1434 for the first round and primers UK1432 and one of the

barcoded reverse primers (UK1759-UK1776) for the second round of PCR. The PCR products were

subjected to NGS sequencing and analysis by MAGECK software as above for the HeLa screen. The

figures show an average of the duplicates for both the dullest and medium dull selected cells (n = 4)

compared to the average for the duplicate unselected controls (n = 2). The CHO CRISPR screening

data has been submitted to NCBI Geo database (study accession number GSE134917).

Individual CRISPR-Cas9 mutant CHO cell lines were made by co-transfecting the indicated sgRNA

expression vector with the Cas9-Blast plasmid (UK1674) into parental DP19 (CHOP::GFP; XBP1::

mCherry reporter cells), selecting for the puromycin resistance encoded by the sgRNA expression

vector (6 mg/ml) for two days. Reporter induction was measured by flow cytometry of at least 10000

gated live singlets on a Becton Dickinson LSR Fortessa on 2–4 independent experiments for each

condition and mutant line.

The cell lines used in this study were all made in our lab from HeLa (ATCC Cat# CRL-7924, RRID:

CVCL_0058) or CHO.K1 (ATCC Cat# CRL-9618, RRID:CVCL_0214) cell lines obtained from and

authenticated by the ATCC. The identity of both the human (HeLa) the non-human (CHO.K1) cell

lines has been authenticated using the criteria of A. successful targeting of essential genes using

species specific CRISPR whole genome library, and B. sequencing of the wildtype or mutant alleles

of the genes studied that confirmed the sequence reported for the corresponding genome. The cell

lines have tested negative for mycoplasma contamination using a commercial kit (MycoAlert (TM)

Mycoplasma Detection Kit, Lonza). None of the cell lines is on the list of commonly misidentified cell

lines maintained by the International Cell Line Authentication Committee.

Cell extracts and immunoblotting
Cells were treated as indicated and lysates prepared and ATF4 and CHOP detected using rabbit

antiserum as previously reported except that proteins were transferred to PVDF and IR-800 (LI-COR)

conjugated secondary antisera were used (Harding et al., 1999; Harding et al., 2000). Anti P-pro-

tein immunoblots were probed with a mouse monoclonal 3BH5 (1:5) that recognizes the conserved

acidic C-terminus of all three P-proteins (Vilella et al., 1991) followed by anti-mouse IR800 and

detection by LI-COR scanning and then the blot was incubated with rabbit monoclonal anti uL10 1–

200 (AbCam, Cambridge, UK ab192866, 1:1000), followed by anti-rabbit HRP and detection by

chemiluminescence.

Samples containing CHO cell extracts (mock or l phosphatase treated where indicated) or human

GCN2 were denatured and separated on 5% Tris-acetate phos-tag or 7% Tris-acetate gels respec-

tively and transferred in bicine transfer buffer (Cubillos-Rojas et al., 2012) and probed with anti-
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GCN2 (phospho T899) antibody (1/1000, AbCam, Cambridge, UK ab75836) or an antibody raised

against the bacterially-expressed kinase domain of mouse GCN2 antibody (lab name NY168) mixed

5:1 with non-affinity purified P-GCN2 890–904 (phospho T899) (human numbering, but the peptide

is identical in mouse and human) (lab name 6779) in the case of CHO cell extracts (Harding et al.,

2000) used at 1:3000.

Polysomes and ribosome isolation
For polysome analysis cell lysis and 10–50% sucrose gradients were carried out as described in

Johannes and Sarnow (1998). Ribosomes were purified as described (Khatter et al., 2014) using

modified buffers as follows: Cells were lysed in (15 mM Tris, pH 7.5, 0.5% IGEPAL, 6 mM MgCl2,

150 mM NaCl, 1 mM DTT, and 10 ml/ml RNAsin Plus (Promega), and protease inhibitors (Sigma

S8830)), cleared 4 times at 18000g � 5 min and layered on a 3 ml sucrose cushion buffer D-30% (50

mM HEPES pH 7.5, 2 mM Mg(OAc)2, 150 mM KOAc, 30% sucrose), and centrifuged for 660 min at

40000 rpm in a TLA110 rotor. The pellet was resuspended in wash buffer (50 mM HEPES pH 7.5, 4.4

mM Mg(OAc)2, 35 mM KOAc, 314 mM KCL, 6% sucrose 0.5 mg/ml puromycin, 1.2 mM GTP and 5

ml/ml RNAsin Plus) and rotated for 30 min at 4 ˚C to release nascent peptides, cleared for 10 min at

18000 g and then the supernatant re-pelleted through a sucrose cushion as described above. The

final pellet was resuspended in the buffer D made with 6.8% sucrose and 2 mM TCEP.

In vitro analysis of GCN2 activity (eIF2a phosphorylation assays)
GCN2, expressed as a StrepII-tagged protein was purified from insect Sf9 cells as described

(Inglis et al., 2019) and stored in small aliquots at �80 ºC. Phosphorylation reactions were carried

out in PCR tubes at a total volume of 20 mL in an assay buffer consisting of 20 mM HEPES (pH 7.4),

50 mM potassium acetate, 5 mM magnesium acetate, 2 mM ATP, 0.5 mM tris(2-carboxyethyl)phos-

phine (TCEP), 0.05 mg/mL bovine serum albumin. Ribosomes isolated from CHO cells (or an equal

volume of ribosome resuspension buffer D, see above) were combined with GCN2 (to a concentra-

tion of 2.5 nM in the final assay) and allowed to equilibrate at 17 ˚C for 10 min. The reaction was initi-

ated by adding the N-terminal domain of human eIF2a (residues 1–185) purified from bacteria

(Ito et al., 2004) to a final concentration of 2 mM, and allowed to progress at 17 ˚C for the indicated

time until terminated by adding 6.6 mL of 4% SDS, 200 mM dithiothreitol in a tris-glycine buffer.

Samples were resolved on a 50 mM phos-tag/100 mM manganese chloride (Apex Biotechnology,

Hsinchu City, Taiwan cat # F4002) 15% SDS-PAGE. The gel was soaked for 20 min in 50 mM EDTA,

0.1% SDS in tris-glycine buffer to chelate the phos-tag reagent and transferred onto a PVDF mem-

brane and immunoblotted with a primary rabbit serum directed to the N-terminus of eIF2a (residues

1–185) (lab name NY1308) and an IRDye fluorescently labeled secondary anti-rabbit IgG (LI-COR)

(Chen et al., 2015). The fluorescence signals were detected with an Odyssey near-infrared imager

(LI-COR) and quantified by ImageJ (NIH).
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