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ABSTRACT

Aaron Barrett: An Adaptive Viscoelastic Fluid Solver: Formulation,
Verification, and Applications to Fluid-Structure Interaction

(Under the direction of Boyce E. Griffith)

Many biological fluids exhibit non-Newtonian responses to stresses, and, as such, the Navier-

Stokes equations are inadequate to properly model these fluids. To model the polymeric, visco-elastic

fluids encountered in biological systems, we often turn to Oldroyd-B type models, where the immersed

polymers are modeled using a linear Hooke’s law for the restoring force. However, theory for how

these models behave is severely lacking, and obtaining convergence in numerical simulations of these

fluid models remains a significant challenge. These hyperbolic fluid models yield stress concentrations

near large extensional flows. Sufficient spatial resolution is required to accurately resolve highly

localized stress concentrations. However, away from such regions, lower computational resolution

often suffices. This thesis presents a novel adaptive viscoelastic fluid solver that allows for the

use of high spatial resolution where needed but permits the use of a coarser resolution away from

areas of interest. The fluid solver is built into the open-source Immersed Boundary Adaptive Mesh

Refinement (IBAMR) library to utilize recent adaptations of the immersed boundary method. We

present applications of the fluid solver with an immersed interface method for complex fluids and a

twirling flagellum in non-Newtonian fluids.
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CHAPTER 1

INTRODUCTION

Many biological systems involve flexible structures immersed in viscoelastic fluids, for example,

sperm in the reproductive tract [3], bacterial motion in the stomach [4], and cilial transport of

mucus in the lungs [5]. However, despite the ubiquity of viscoelastic fluids in real world applications,

it remains difficult to accurately and efficiently resolve even the simplest continuum models. The

models considered in this work are Maxwell type models [6] that are hyperbolic in nature. These

types of models generate large stress gradients near extensional points, which are frequently found

near fluid-structure interfaces. Recent work by Thomases et al˙ [7] have used asymptotic results in

extensional flows to show the development of singular solutions for high elasticity. Despite work

to develop high-fidelity finite element [2] and finite volume [8] numerical algorithms, relatively

simple problems such as flow past a confined cylinder still remain unsolved. Under-resolved fluid

flow in the wake of the cylinder causes oscillations in the drag coefficient of the cylinder, and it

is computationally challenging to deploy the mesh resolution required to fully realize the stress

gradients in the wake of the cylinder. In lid-driven cavity flow, boundary layers form near the corners

of the box, causing recirculation regions in the fluid [9].

It is interesting to ask whether these issues are numerical in nature, a feature of the model, or

physical in nature. In reality, it is likely a combination of all of the above. The molecular picture

of viscoelastic fluids is complex. The polymers are frequently highly entangled with a spectrum of

relaxation times. These polymers give rise to a number of different features, such as viscoelastic

rod climbing, shear-thinning behavior, and the generation of normal stress differences. Many of the

nonlinear observations can be understood through simple thought experiments. Consider a magnetic

bead being dragged through a viscoelastic fluid. In physical experiments, we obtain shear thinning

of the stresses as the bead approaches a steady-state velocity. This can be explained simply as the

polymers breaking as the bead builds up stresses and stretches polymers to their breaking point.

Normal stress differences can be explained by polymers naturally orienting themselves along fluid
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streamlines while entropic forces attempt to return the polymer to its undisturbed configuration.

While we can explain some of these nonlinear results, unphysical simplifying assumptions are

commonly employed to produce tractable models. As an example, although real biological fluids will

include constituents with a broad spectrum of relaxation times, the mathematical models that are

most frequently studied only have a single relaxation time. While we can overcome this by having

multiple stress modes, this introduces additional model parameters that must be fitted. Another

drawback is that the simpler models assume dilute solvents; however, as we increase the elasticity

parameters, we are inherently assuming the solute is becoming more and more prominent. This calls

into question the validity of our modelling assumption. As will be demonstrated in later chapters,

the nonlinear models give rise to high stress gradients. These high stress gradients are a feature of

the models. However, under-resolving these features results in unstable simulations. The typical

instabilities that appear in Newtonian fluid simulations are related to parcels of fluid moving more

than a fixed fraction of a grid cell which are a result of using too large of a time step. Simulations

with complex fluids can also have this kind of instability; however, in addition to the time step

requirement, the fluid grid needs to be sufficiently fine for stability.

There are many unsolved problems with complex fluids. This work aims to specifically address

the numerical issues found in simulating the most common viscoelastic models. We cannot answer all

the open questions, but we wish to provide a framework for exploring the features of different models

in future work. We attempt to overcome the issue of under-resolved simulations by building an

adaptive fluid solver that provides additional spatial resolution near large stress gradients. While our

discretizations are relatively simple, we show that by achieving this high level of spatial resolution,

we can obtain similar results to other, more complicated numerical methods. We then demonstrate

several methods of resolving simulations with fluid-structure interactions.

The remainder of this dissertation is divided into four parts. Chapter 2 gives an introduction

to fluid mechanics and derives the Maxwell type models that we will be using for the rest of the

work. We also demonstrate the sharp features that result from the Oldroyd-B model specifically.

Chapter 3 provides numerical details on the fluid solver with a few examples demonstrating the

accuracy and ability of the method. In chapters 4 and 5, we provide applications of the fluid solver

to fluid-structure interaction problems. In chapter 4, we explore the difference between the immersed

boundary and immersed interface methods, providing examples of each method. Finally, in chapter

2



5, we use the generalized immersed boundary method to simulate a twirling flagellum in both a

Newtonian fluid and viscoelastic fluids of different elasticities.
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CHAPTER 2

MATHEMATICAL MODELS OF NON-NEWTONIAN FLUIDS

In this chapter, we derive the equations of motion for Maxwell type models. While the discussion

in this chapter will be complete, we omit several details. We point the interested reader to the books

of Morosov and Spagnolie [6] and Larson [10] for more detailed discussions. We begin by deriving

the conservation of mass and momentum.

2.1 Conservation Equations

2.1.1 Lagrangian and Eulerian Variables

We can describe our state variables such as density, velocity, and pressure in two different ways.

The first is using a material or Lagrangian description. Here, we associate a particular parcel of

the fluid with some label X, usually chosen to be the initial position of the fluid parcel, as shown

in Figure 2.1. The velocity of the portion of fluid at a particular time t can be written as U(X, t).

We can also describe the fluid using a spatial or Eulerian description. Here, we describe the fluid

at a fixed position x in space. That is, the velocity at a particular position x and time t would

be written as u(x, t). We use the map χ that relates a particular Lagrangian coordinate X to its

current physical location x at some time t via x = χ(X, t). If we define the velocity of the fluid at

the point x as u(x, t), then we can define the velocity of the material point X as

dx

dt

∣∣∣∣
X

=
dχ(X, t)

dt
= u(χ(X, t), t). (2.1)

Suppose we have a scalar Lagrangian variable F . The time rate of change given in Lagrangian

coordinates is ∂F (X,t)
∂t . If we wish to describe this variable in terms of the spatial variables

f(χ(X, t), t) = F (X, t), then we must account for the change of frame. Using the chain rule,

4



Figure 2.1: The reference configuration (left) can be mapped into the current configuration (right)
by the mapping χ (X, t).

we obtain

d

dt
f(χ(X, t), t)

∣∣∣∣
X

=
∂f

∂t
+
∂f

∂xi

∂xi
∂t

(2.2)

=

(
∂

∂t
+ u · ∇

)
f =

Df

Dt
. (2.3)

The operator D
Dt is called the material derivative and represents the time derivative along material

trajectories. Using this derivative, we can represent the acceleration of a parcel of fluid as

Du (x, t)

Dt
=
∂u (x, t)

∂t
+ u (x, t) · ∇u (x, t). (2.4)

One important measure of deformation is the derivative of the map χ(X, t), called the deformation

gradient tensor, given by F = ∂x
∂X . One can think of F as a mapping that sends a line element dX in

a material configuration to a line element in dx in physical space as dx = F ·dX. We can characterize

the deformation by looking at the determinant of the deformation tensor J = detF, which satisfies

the following relation
∂J (X, t) , t

∂t
= (∇ · u (χ (X, t) , t)) J (X, t, t) . (2.5)

The Jacobian gives a measure of area change from the deformation. An incompressible material

is one for which J(X, t) ≡ 1, which implies that ∇ · u = 0 for all x and t. From now on, we will

assume that the fluid is incompressible.
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2.1.2 Conservation of Mass

The density of the fluid ρ(x, t) is defined as the mass per volume in an infinitesimal fluid parcel

centered at x. We now consider a volume of fluid in a deforming region Ω(t) ⊂ R3 in the current

configuration. The total mass of fluid in Ω(t) can be found by integrating the density over the

volume, M(t) =
∫

Ω(t) ρ(x, t)dVx. If we assume that no mass is created or destroyed, then the time

rate of change of the mass must be zero. We can write the conservation of mass in Eulerian form as

d

dt

∫
Ω(t)

ρ(x, t)dVx = 0, (2.6)

where dVx is a volume infinitesimal in the Eulerian frame. We can form a differential form of mass

conservation by changing coordinates to the Lagrangian format:

0 =
d

dt

∫
Ω(t)

ρ(x, t)dVx (2.7)

=
d

dt

∫
Ω(0)

ρ(χ(X, t), t)J (X, t) dVa (2.8)

=

∫
Ω(0)

(
Dρ(χ(X, t), t)

Dt
+ ρ(χ(X, t), t) (∇ · u (χX, t))

)
J (X, t) dVa (2.9)

=

∫
Ω(t)

(
Dρ(x, t)

Dt
+ ρ(x, t) (∇ · u (x, t))

)
dVx. (2.10)

Since this integral holds for any material volumes, we get that it must hold pointwise,

Dρ (x, t)

Dt
+ ρ (x, t) (∇ · u (x, t)) = 0. (2.11)

Because our fluid is incompressible, this equation reduces to Dρ
Dt = 0, or that the density of a material

point remains constant as it moves with the fluid. From here on out, we assume the density of the

fluid is uniform, so the statement of conservation of mass reduces to

∇ · u (x, t) = 0. (2.12)

2.1.3 Conservation of Momentum

We can define the momentum of a fluid in a given control volume Ω(t) can be written in terms

of Eulerian coordinates as P(t) =
∫

Ω(t) ρ(x, t)u(x, t)dVx. We can look at the rate of change of

6



momentum by following a similar technique in the previous section:

d

dt
P(t) =

d

dt

∫
Ω(t)

(ρu) (x, t)dVx (2.13)

=
d

dt

∫
Ω(0)

(ρu) (χ(X, t), t) JdVa (2.14)

=

∫
Ω(0)

(
Dρ

Dt
u + ρ

Du

Dt
+ ρu (∇ · u)

)
JdVa (2.15)

=

∫
Ω(0)

(
ρ
Du

Dt

)
JdVa =

∫
Ω(t)

ρ
Du

Dt
(x, t)dVx. (2.16)

Newton’s second law states that the rate of change of the momentum must be equal to the net

forces acting on the fluid. These forces come from two sources, external body forces such as gravity

denoted by f , and surface forces such as viscous or elastic stresses denoted by the traction t. We can

describe the surface traction by t = σ · n, where n is the outward-pointing normal vector and σ is

the Cauchy stress tensor. Balancing these forces with the time rate of change of the momentum

leads to the following integral form of momentum conservation

d

dt
P(t) =

∫
Ω(t)

ρ
Du (x, t)

Dt
dVx =

∫
Ω(t)

f (x, t) dVx +

∫
∂Ω(t)

t (x, t) dSx, (2.17)

where dSx is an infinitesimal surface area element and ∂Ω(t) is the boundary of Ω(t). We can convert

this integral to a volume integral using the divergence theorem:

d

dt
P(t) =

∫
Ω(t)

ρ
Du (x, t)

Dt
dVx =

∫
Ω(t)

f (x, t) dVx +

∫
Ω(t)
∇ · σ (x, t) dVx. (2.18)

Because this holds for any volume Ω(t), it follows that it must hold pointwise, which results in the

differential form of conservation of momentum:

ρ
Du (x, t)

Dt
= f (x, t) +∇ · σ (x, t) . (2.19)

2.1.4 The Cauchy Stress Tensor

Various fluid and material models reduce to a specification of the Cauchy stress tensor σ. Since

the traction on a surface is represented as t = σn where n is the outward unit normal vector, σij

represents the traction in the jth-direction on a surface that is perpendicular to the ith-direction. The
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net force F and torque L about a point x0 are given by integrating the traction over an immersed

surface with boundary ∂S:

F =

∫
∂S
σ · nda, L =

∫
∂S

(x− x0)× (σ · n) da. (2.20)

If we assume that there are no body torques that give rise to internal angular momentum, then it

can be shown that the stress tensor is symmetric σ = σT .

All that remains is to create a constitutive law that gives us the formulation of the Cauchy stress

tensor. We first decompose the stress tensor σ into its volumetric and deviatoric stress components.

Simply, we can write this as

σ = −pI + τ , (2.21)

where p is the pressure, I is the identity tensor, and τ is the deviatoric stress tensor. In a Newtonian

fluid model, the deviatoric stress is related to the local strain rate. We can decompose the gradient

of the velocity field into it’s symmetric and antisymmetric parts ∇u = 1
2 (γ̇ + ω), where

γ̇ =
(
∇u + (∇u)T

)
and ω =

(
∇u− (∇u)T

)
. (2.22)

Here, γ̇ is the rate of strain tensor and ω is the vorticity tensor. We note that the rate of strain

tensor corresponds to extensional flow, while the vorticity tensor corresponds to a rigid body rotation.

A Newtonian fluid is defined so that the deviatoric stress is linearly related to the rate of strain and

the fluid is isotropic. Because the stress is symmetric, the most general form of the deviatoric stress

tensor can be written using a traceless part and an isotropic part:

τ = µ

(
γ̇ − 2

3
(∇ · u) I

)
+ µ′ (∇ · u) I, (2.23)

where µ is the viscosity and µ′ is the dilational viscosity. In the case of an incompressible fluid, then

the total stress tensor has the form

σ = −pI + µγ̇. (2.24)

Inserting the stress into the momentum equation, we obtain the following incompressible Navier-
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Stokes equations:

ρ
Du

Dt
= −∇p+ µ∇2u + f (2.25)

∇ · u = 0. (2.26)

2.2 Viscoelastic Fluids

As discussed previously, a Newtonian fluid is a fluid in which the deviatoric stress is linearly

related to the rate of strain. In particular, Newtonian fluids do not include stresses that depend

on the flow history. Many fluids in biological settings contain microstructures, such as proteins

and DNA, that push or pull on the fluid in response to fluid flow. These viscoelastic fluids are

characterized by the presence of memory and stress anisotropy. Before we specify the constitutive

equation for the Cauchy stress, we look at simple one-dimensional models designed to demonstrate

elastic and viscous behavior.

2.2.1 Maxwell and Kelvin-Voigt Elements

Viscoelastic fluids are fluids that exhibit both elastic and viscous responses to deformation. We

can consider a simple shear deformation which is characterized by its gradient γ. The stress in a

simple elastic element under this deformation obeys Hooke’s law

σ = Eγ, (2.27)

where E is the elastic modulus of the material. Meanwhile, the stress in a simple viscous element

under this deformation is

σ = ηγ̇, (2.28)

where η is the viscosity of the material and γ̇ is the strain rate of the deformation. Note the strain

rate tensor γ̇ is the three-dimensional analog of γ̇. These elements can be simply thought of as

springs and dashpots and are denoted as such. Figure 2.2 shows the various elements as well as a

creep test in which one end of the element is displaced from time t0 to time t1, and the stress in

the element is measured over time. Springs exhibit perfect elastic behavior and are often used as a

simple model of an elastic solid. Dashpots, however, exhibit perfect viscous behavior and provide
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the basis of Newtonian fluid models. The simplest viscoelastic materials consist of a spring and

dashpot in either serial or parallel. The spring and dashpot in serial is referred to as a Maxwell

element and has the stress-strain relationship

σ +
η

E
σ̇ = ηγ̇. (2.29)

This element is an example of a viscoelastic fluid because at long time scales it behaves like a fluid.

To see this, consider a Maxwell element being displaced on both ends. Both the spring and dashpot

are stretched initially; however, when the spring relaxes, the resulting displacement can be shifted

back onto the dashpot. This keeps the total displacement constant and results in the stress at long

term behaving like a dashpot, σ ∼ γ̇. In fact, one can use the Maxwell element as a simple discrete

model of viscoelasticity by immersing the elements inside a viscous Newtonian fluid [11].

In contrast, a spring and dashpot in parallel is referred to as a Kelvin-Voigt element and has a

stress-strain relationship

σ = Eγ + ηγ̇. (2.30)

This element is an example of a viscoelastic solid. The long term behavior of Kelvin-Voigt elements

differs because the dashpot is no longer able to absorb the relaxation of the spring. This relaxes the

element back to its initial resting length, which results in the stress at long term behaving like a

spring, σ ∼ γ. Because our goal is to model polymeric fluids, we focus on the Maxwell element.

2.2.2 Maxwell Fluid Models

The linear Maxwell element combines viscous and elastic responses to deformations. Our first

attempt in creating a continuous viscoelastic fluid model would be to replace the stress with the

Cauchy stress, and the rate of strain with the rate of strain tensor

σ +
η

E

∂σ

∂t
= ηγ̇. (2.31)

The issue is that this model is not frame invariant. To see this, consider two different frames of

reference, a stationary frame, and a frame moving at a constant velocity of u0. Because the fluid is

moving at a constant velocity, the stress should be constant as there is no strain applied to the fluid.
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Figure 2.2: Creep tests for the different elements where a strain is applied to each element, and the
resulting stress is measured. Note the long time difference between the Kelvin-Voigt and Maxwell
elements.
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However, the Cauchy stress for the moving frame can be written as

∂

∂t
σ (x + u0t) =

∂

∂t
σ (x) + u0∇σ. (2.32)

The time derivative of the stress differs by a term proportional to u0, indicating that the derivative

∂
∂t is not frame invariant. Similar to the material derivative D

Dt = ∂
∂t + u · ∇, we need a frame

invariant derivative for tensors. For tensors, the material derivative is not sufficient because it does

not allow for the rotation and stretching of the local basis of the tensor. Before we introduce frame

invariant derivatives for tensors, we will demonstrate the importance of rotational frame invariance.

Consider a simple material where the constitutive equation for the stress is

σ = EF, (2.33)

where F is the deformation gradient. If the material then undergoes a simple rotation so that F = Q

where Q is a rotation tensor, then the resulting stress of the material is

σ = EQ. (2.34)

However, since the material is under no strain, we would expect there to be no stress in the material.

Clearly, the constitutive equation in equation (2.33) is not a valid relation since a solid body rotation

induces a stress. Instead consider the right Cauchy-Green tensor

C = FTF. (2.35)

The right Cauchy-Green tensor contains no rotational information from the resulting deformation.

Consider the length of a vector x after deformation:

xTx = XTFTFX = XTCX. (2.36)
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Therefore, C contains information about the stretch and shape change of vectors but is agnostic to

their rotation. Now consider a material where the constitutive stress relationship is given by

σ = EC. (2.37)

Now, under a solid body rotation where F = Q, the resulting stress is

σ = EC = EQTQ = EI. (2.38)

The material now is stress-free, only undergoing an isotropic pressure stress. The stress should not

depend on the deformation gradient, but instead on a definition of deformation that is invariant

under rotation, such as that provided by the right Cauchy-Green tensor. We can now look at how the

right Cauchy-Green tensor evolves over time. First, the time derivative of the deformation gradient

is
DF
Dt

=
D

Dt

∂x

∂X
=
∂x

∂X

∂Dx
Dt

∂X
= F∇u. (2.39)

From equations (2.39) and (2.35), it follows that

DC
Dt

= ∇uC + C∇uT . (2.40)

This time derivative of the right Cauchy-Green tensor defines our first frame invariant derivative.

Two common forms of frame invariant derivatives for tensors are the lower- and upper-convective

derivatives,

M
σ =

∂σ

∂t
+ u · ∇u + (∇u)T · σ + σ · ∇u, (2.41)

O
σ =

∂σ

∂t
+ u · ∇u−∇u · σ − σ · (∇u)T . (2.42)

We note that the upper-convective derivative is defined so that the derivative of the right Cauchy-

Green tensor is zero, which follows from equation (2.40). Using these frame-invariant derivatives, we

can finally define the Oldroyd models. We first separate the Cauchy stress into a Newtonian solvent
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component and a polymeric component

σ = τn + τp, τn = −pI + µn
(
∇u +∇uT

)
. (2.43)

The polymeric stress τp follows the Maxwell equation where the time derivative of the stress is

replaced with a convective derivative. This introduces the Oldroyd-A model

τp + λ
M
τp = µpγ̇ (2.44)

and the Oldroyd-B model

τp + λ
O
τp = µpγ̇, (2.45)

where λ is the relaxation time of the polymers and µp is the polymer contribution to the viscosity.

Typically, we discard the Oldroyd-A model since it yields results that disagree with experimental

results. We note that the above models can be derived from a molecular argument where the

immersed polymers are modelled with bead-spring chains. One major shortcoming of the Oldroyd-B

model is that it allows for unbounded stress growth in the presence of extensional flows as will be

demonstrated later. We can remedy this feature in the model by adding nonlinearities to the model.

The Giesekus model adds in a quadratic nonlinearity governed by a dimensionless parameter α

τp + λ
O
τp + α

λ

µp
τ 2
p = µpγ̇. (2.46)

We note that the Giesekus model can be derived from the same molecular bead-spring model as the

Oldroyd-B model, except that there is an anisotropic drag on the immersed polymers. The Giesekus

model assumes the preferred direction for the drag is in the direction of the stress tensor, and α

governs the amount of the anisotropic drag. Finally, the Rolie-Poly model is based on a detailed

representation of the molecular structure of the polymers themselves. The constitutive relation for

the model is

τp + λ
O
τp = µpγ̇ −

2

3
λ (τp : ∇u)

(
I + (1 + ε)

λ

µp
τp

)
. (2.47)

While we will not visit this model again, we note that we believe this model to provide the most

realistic results due to its derivation from a detailed molecular picture. The methods described in
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this paper can be applied to all models that are based on the Oldroyd-B model. In the future, we

will focus our applications on this model.

2.2.3 The Conformation Tensor

In this section, we derive the Oldroyd-B model using an alternative approach borrowing ideas

from solid mechanics. Recall the deformation gradient F = ∂χ
∂X where χ is the motion map that

relates the reference coordinates with the physical coordinates and X is the reference configuration.

We can define the left Cauchy-Green tensor

B = FFT (2.48)

which is a strain measure of how lengths of line elements and angles between line elements change

between configurations. The Cauchy stress in a neo-Hookean material can be described by

τ = G (B− I) . (2.49)

This is essentially the continuum analog of the one-dimensional elastic spring described earlier. A

simple viscoelastic material consists of a superposition of relaxing neo-Hookean materials. Given

some memory kernel M (t), the stress can be found by integrating over all previous configurations

τ =

∫ t

−∞
M
(
t− t′

)
(Bt′ (t)− I) dt′, (2.50)

where Bt′ (t) is the left Cauchy-Green tensor based on the deformation gradient where the reference

configuration is given at time t′. If the memory kernel consists of a single relaxation time M (t) =

G
λ e
−t/λ, then we can rewrite the model in a differential form and recover the Oldroyd-B model

τ + λ
O
τ = µγ̇. (2.51)

The benefit of this viewpoint is it allows a simple explanation of the conformation tensor C. When

derived from an elastic dumbbell model of the immersed models, the conformation tensor represents

an ensemble average of end to end points of the dumbbells. For the Oldroyd-B model, there is a
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Model S(C) g(C)

Oldroyd-B C− I − 1
λ (C− I)

Oldroyd-B with S.D. C− I − 1
λ (C− I) +D∇2C

Giesekus C− I − 1
λ

(
C− I + α (C− I)2

)
Rolie-Poly C− I

1
λd

(C− I)

− 2
λs

(
1−

√
3

tr((C)

)(
C + β

(
tr((C)

3

)δ
(C− I)

)
FENE-P C

1−tr((C)/l2
− I

1−3/l2
−1
λ

(
C

1−tr((C)/l2
− I

1−3/l2

)

Table 2.1: A sample of different viscoelastic fluid models.

linear relationship between the conformation tensor and the stress

τ = G (C− I) = S(C). (2.52)

In fact, this simple linear relationship is common to all the models that will be discussed in this

work. When approaching from the solid mechanics viewpoint, the conformation tensor represents a

superposition of relaxing left Cauchy-Green tensors

C (t) =
1

λ

∫ t

−∞
e−(t−t′)/λBt′ (t) dt′. (2.53)

Because the left Cauchy-Green tensor is symmetric positive definite, we conclude that the confor-

mation tensor must also be symmetric positive definite. If at any point during a simulation the

conformation tensor is not positive definite, then the simulation has lost physical relevance. Instead

of evolving the stress tensor, we instead will evolve the conformation tensor. We can convert equation

(2.53) into a differential equation which yields

λ
O
C = g (C) , (2.54)

where g (C) is the relaxation function takes different forms for different fluid models. A collection of

models is given in Table 2.1. We note that while equation (2.54) has no term enforcing the symmetric

positive definiteness of the conformation tensor, it can be shown [12] that if the conformation tensor

is initially symmetric positive definite, it will remain so for all time.

To conclude, we present a dimensional analysis of the complete model. For completeness, we
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summarize the equations of motion:

ρ

(
∂u

∂t
+ u∇u

)
= ∇ · σ + f (x, t) , (2.55)

∇ · u = 0, (2.56)

σ = −pI + µn · γ + τp, (2.57)

τp =
µp
λ

S (C) , (2.58)

λ
O
C = g (C) . (2.59)

The relevant dimensionless numbers are the Reynolds number Re = ρUL
µ where µ = µp + µn is the

total viscosity, the Weissenberg number Wi = λU
L and the Deborah number De = λ

tp
where tp is a

relevant time scale of observation. The Reynolds number is familiar from Newtonian fluid mechanics.

It is the ratio of inertial to viscous forces. For fluids with very large viscosities or for very small

length scales, the Reynolds number can be approximated as zero which reduces the equations to the

well known Stokes equations,

0 = ∇ · σ + f , (2.60)

0 = ∇ · u. (2.61)

The Weissenberg number gives the ratio of elastic forces to viscous forces. When Wi = 0.0, we are

back in the regime of Newtonian fluid flow. When the Weissenberg number is large Wi ∼ 1.0, the

fluid is strongly elastic and we see large concentrations of stress near regions of high strain rates.

The Deborah number is defined as the ratio between the relaxation time and a relevant time scale.

The Deborah number describes whether the fluid is acting more solid-like or fluid-like. While the

Weissenberg and Deborah numbers have similar definitions and are frequently the same value, we

stress that they describe different phenomenons. The Deborah number measures the rate of change

of flow conditions. It is therefore related to the steadiness of flow conditions. The Weissenberg

number, on the other hand, gives a notion of the steady elasticity of the fluid [13].
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Figure 2.3: The four-roll mill physical setup (left) and the modelling approximation (right). The
force vector field is shown in green arrows while the vorticity is background color map.

2.2.4 The Oldroyd-B Model

Here, we discuss the features of the Oldroyd-B model and provide a motivation for the contents of

the remainder of the dissertation. As previously stated, the Oldroyd-B model allows for unbounded

stress growth in the presence of extensional points. We can rationalize the unbounded growth by

recalling the Oldroyd-B model models the polymers as Maxwell elements. If we pull on both sides of

the elements hard enough and long enough, the element can get stretched arbitrarily long creating

unbounded stress. To demonstrate this, we consider a four-roll mill flow. The four-roll mill experiment

was devised by Taylor to generate various types of flows, from pure rotational flows to pure extensional

flows by varying the rotation speed of the rollers. We model the four-roll mill geometry to create an

artificial extensional point by applying a background force of f (x, t) = (2 sinx cos y,−2 cosx sin y)T .

This force creates a hyperbolic, stagnation point at the point (0, 0). For a Newtonian fluid at the

zero Reynolds number (Stokes flow), the velocity satisfies u = 1
2 f . Figure 2.3 shows the physical

model as well as the computational setup. The force vector field is shown in green arrows while the

background color map shows the vorticity of a Newtonian fluid under the forcing conditions. We fix

the polymer viscosity to solvent viscosity µp
µn

= 0.5 and vary the Weissenberg number.

Figure 2.4 shows the developments of the singularities that appear in the idealized four-roll mill

geometry. For low Weissenberg numbers Wi ≤ 0.5, the conformation tensor remains smooth and
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Figure 2.4: The trace and off-diagonal component of the conformation tensor, and the voriticity of
the fluid for Weissenberg numbers 0.3 (top), 0.7 (middle), and 5.0 (bottom).

the vorticity remains slaved to the background force. As we increase the Weissenberg number to

intermediate values 0.5 <Wi ≤ 0.9, the conformation tensor forms a cusp near extensional points.

However, the vorticity still remains slaved to the background force. As the Weissenberg number

grows further Wi ≥ 1.0, the conformation tensor grows without bound, and the vorticity starts to

show recirculation regions near the extensional points [7]. Figure 2.5 shows a slice of the trace of

the conformation tensor along the line x = π. The cusps and exponential growth can be seen more

readily.

This simple model is an excellent demonstration of the challenging features that exist with

the Oldroyd-B model. The fine features shown in Figure 2.5 are common features in applications.
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Figure 2.5: The trace of the conformation tensor along the line x = π for Weissenberg numbers
0.1− 0.5, 0.6− 0.9, and 1.0− 5.0.

Extensional points occur frequently at fluid-structure interfaces because of the no-slip condition.

This will generate large stress gradients that need to be resolved sufficiently to get accurate results.

However, these fine features are localized to certain regions of the computational domain. Using

a fine uniform discretization results in prohibitive computational costs, especially in three spatial

dimensions. This motivates the remainder of the dissertation which involves using an adaptive

algorithm that provides fine spatial resolution near regions of large stress gradients while using a

coarse discretization where the flow is smooth.
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CHAPTER 3

AN ADAPTIVE SOLVER FOR OLDROYD-B TYPE EQUATIONS

The localized features that are present in the complex fluid models discussed in the previous

chapter need sufficient resolution to resolve. Using uniformly fine meshes throughout the computa-

tional domain, however, will quickly exceed the bounds of reasonable computational time, especially

in three spatial dimensions. Adaptive mesh refinement (AMR) is a methodology for placing fine

spatial resolution near key features while leaving a coarse description for the relatively smooth

regions [14,15]. Unstructured AMR methods are frequently used with finite element [16] or finite

volume methods [17]. Unstructured grids typically use simplices to discretize the domain, which

simplifies mesh generation as well as refinement; however, whenever a refine operation occurs, the

local connectivity relations must be rebuilt. Unstructured grids are useful for complex geometries

because they allow using a body-conforming grid for complex geometries. Structured AMR methods

can only be used on domains that can be described using logically Cartesian parameterizations.

However, they enable simple and efficient geometric multigrid level solvers to be used. They also

allow for local time-stepping algorithms, although this concept will not be explored in this work.

Although the major benchmark problems in the complex fluid literature are problems with compli-

cated geometries, such as flow past a confined cylinder or flow through an abrupt contraction, we

base our method on a structured AMR approach. In the next Chapter, we discuss how to model the

complex geometries that form using the immersed boundary and immersed interface methods, and

we discuss the ability of these methods to accurately resolve the dynamics near the boundary.

3.1 Discretization

We use a staggered-grid spatial discretization for the fluid velocity where the velocity field is

discretized so that the components normal to cell faces (or, in three spatial dimensions, faces) are

approximated at the centers of the edges (faces); see Figure 3.1. All other degrees of freedom (pressure

and the components of the conformation tensor C) are approximated at the cell centers. This type

of discretization, originally called the marker and cell method (MAC), was developed by Harlow and
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Welch [18] to solve the incompressible Navier-Stokes equations. We describe the discretization in two

spatial dimensions as the extension to a third spatial dimension is straightforward. The equations

are discretized on a hierarchical grid consisting of locally refined rectangular grid patches that are

organized into a sequence of patch levels where all the patches in a given patch level use the same

grid spacing. The computational domain consists of a rectangular box Ω such that the coarsest level

is a uniform discretization of Ω using grid spacings of
(
∆x0

1,∆x
0
2

)
. The different patch levels are

defined so that patch level ` uses grid spacings
(

∆x`1 =
∆x01
r`
,∆x`2 =

∆x02
r`

)
where r` is the refinement

ratio between levels. Although we do not denote it as such, there is no requirement that r remains

constant in different dimensions or across levels. We denote the cell index of a given level ` to be c`i,j

where the cell center is defined as xi,j =
(
(i+ 1

2)∆x`0, (j + 1
2)∆x`1

)
. The union of all grid patches

that compose level ` form a region Ω` is defined so that it is completely contained within the coarser

level, i.e. Ω` ⊂ Ω`−1.

Each patch level Ω` is padded with a layer of ghost cells to allow appropriate definitions of the

needed stencils. There are three different types of ghost cells for a given level ` of the domain. (1) A

ghost cell c`i,j could overlap the interior of another patch on the same level so that c`i,j ∈ Ω`. For

these ghost cells, we simply copy the corresponding value into the ghost cell. (2) A ghost cell c`i,j

could overlap with the interior of patch level `− 1 so that c`i,j ∈ Ω`−1. At these coarse-fine interfaces,

the ghost cell value is interpolated using a specialized quadratic interpolation procedure. (3) A ghost

cell c`i,j could be exterior to the domain so that c`i,j 6∈ Ω. In this case, we determine cell values by the

physical boundary conditions for the problem. The ghost filling operations are described in detail

in Griffith et al˙ [19]. We note here that the boundary conditions for the conformation tensor are

applied to each component separately only at inflow boundary conditions. At outflow boundaries, we

use linear extrapolation on the components of the conformation tensor. Figure 3.2 shows ghost cells

for (2) coarse-fine interfaces in blue and (3) physical boundaries in red. Case (1) typically occurs

when different patches on the same level are distributed across processors and are thus not shown.

We use second-order finite differences for the gradient of the pressure and Laplacian and divergence

of the velocity. The nonlinear term u · ∇u is computed using a dimension-by-dimension PPM [20]

approach based on the xsPPM7 scheme [21]. The nonlinear term u · ∇C is computed using a wave

propagation algorithm to be described in a later section. The velocity gradients in the stretching

term
(
∇uC + C∇uT

)
are computed using second-order finite differences. Because the discretization
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Level 0

Level 1

Level 2

Figure 3.1: The patch hierarchy with a locally refined Cartesian grid. The refinement ratio here
is r = 2. A sample patch in the patch hierarchy showing the MAC grid is to the right. The
normal components of u are approximated at cell edges (faces in three spatial dimensions) and the
components of C and the pressure are approximated at cell centers.

Figure 3.2: The ghost cells for the vertical component of the MAC grid. Two kinds of ghost cells are
shown. The red arrows demonstrate physical boundaries that are filled by interpolation. The blue
arrows demonstrate an interior ghost cell at a coarse-fine interface.
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on any given patch level is the same, we will drop the superscript ` used to denote the level from

now on.

3.1.1 Discrete Operators

Here we describe the discrete divergence of the conformation tensor, as well as the nonlinear

terms N2 (u,C) ≈ u · ∇C and N3 (u,C) ≈ C∇uT +∇uC. For a description of the discretization of

N1 (u,u) ≈ u · ∇u and the divergence and gradients of the velocity, see Griffith [22].

Discrete Divergence We use second-order finite differences to compute ∇h · C. Note that the

discrete operator must evaluate the normal components of the divergence of the conformation tensor

on cell edges. We first interpolate the off-diagonal components of the conformation tensor onto cell

edges (faces in three spatial dimensions)

(Cxy)i+ 1
2
,j+ 1

2
=

1

4

(
(Cxy)i.j + (Cxy)i+1,j + (Cxy)i,j+1 + (Cxy)i+1,j+1

)
. (3.1)

We can now approximate the divergence of the conformation tensor at cell centers via

((∇h · C)x)i+ 1
2
,j =

(Cxx)i+1,j − (Cxx)i,j
∆x

+
(Cxy)i+ 1

2
,j+1 − (Cxy)i+ 1

2
,j

∆y
, (3.2)

(
(∇h · C)y

)
i,j+ 1

2

=
(Cxy)i+1,j+ 1

2
− (Cxy)i,j+ 1

2

∆x
+

(Cyy)i,j+1 − (Cyy)i,j
∆y

. (3.3)

Advection We use a second-order wave propagation algorithm to compute u · ∇C. We first note

that our time discretization described in a later section allows us to treat the velocity u as a given

parameter instead of a state variable. This simplifies our solution to the Riemann problem needed to

use the wave propagation algorithm. For details on the wave propagation algorithm see Ketcheson

et al. [23]. We briefly highlight the process here. First, consider the hyperbolic linear initial value

problem in one spatial dimension,

qt +Aqx = 0, q(x, 0) = q̇(x), (3.4)
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where A = RΛR−1 is an m×m diagonalizable matrix with real eigenvalues. Then we can decouple

the linear system by substituting w = R−1q into equation (3.4) to get

wt + Λwx = 0, w(x, 0) = ẇ(x). (3.5)

We can now solve the pth equation to get wp(x, t) = wp(x− λpt, 0) where λp is the pth eigenvalue of

A. Finally, we can recover the original solution

q(x, t) = Rw(x, t) =
m∑
p=1

ẇp(x− λpt)rp, (3.6)

where rp is the pth eigenvector of A. We can, therefore, view q(x, t) as a superposition of waves

each propagating at a separate speed given by the eigenvalues of A. The Riemann problem for a

hyperbolic problem consists of equation (3.4) with initial data that consists of a single jump

q̇(x) =

 ql if x < 0

qr if x ≥ 0.
(3.7)

For this problem, each wave is the jump discontinuity along the ray x = λpt. Now consider the one

spatial dimension equation

qt +A(x)qx = 0 (3.8)

with A(x) a constant function within each cell. Integrating equation (3.8) over a cell Ci =[
xi− 1

2
, xi+ 1

2

]
and a small time step ∆t yields

Qi (t0 + ∆t)−Qi (t0) = − 1

∆x

∫ x
i+1

2

x
i− 1

2

Ai
∂

∂x
q (x, t0 + ∆t) dx, (3.9)

where Qi = 1
∆x

∫ xi+1
2

x
i− 1

2

q(x, t) is the cell average over cell Ci. Now suppose in each cell we can

diagonalize A(xi) = Ai = RiΛiR
−1
i . We denote the minimum of the wave speeds sL = minp λ

p and

the maximum wave speeds sR = maxp λ
p. Note that sL∆t is the furthest a traveling wave can move

to in the negative x direction while sR∆t is the furthest a wave can move in the positive x direction.
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If we approximate q(x, t) = q̃(x, t) with a piecewise constant function, such that

q̃(x, t) = Qi for x ∈ [xi− 1
2
, xi+ 1

2
], (3.10)

then the linear system in equation (3.8) consists of a series of local Riemann problems at each cell

interface, which we can express as a set of waves

Qi −Qi−1 =
∑
p

λp
i− 1

2

W p

i− 1
2

, (3.11)

where W p

i− 1
2

is an appropriately defined wave at the cell interface xi− 1
2
. This allows us to decompose

the integral in equation (3.9) into three separate integrals

∫ x
i+1

2

x
i− 1

2

Ai
∂

∂x
q̃ (x, t0 + ∆t) dx =

∫ x
i− 1

2
+sR∆t

x
i− 1

2

Ai
∂

∂x
q̃ (x, t0 + ∆t) dx (3.12)

+

∫ x
i+1

2

x
i+1

2
+sL∆t

Ai
∂

∂x
q̃ (x, t0 + ∆t) dx (3.13)

+

∫ x
i+1

2
+sL∆t

x
i− 1

2
+sR∆t

Ai
∂

∂x
q̃ (x, t0 + ∆t) dx. (3.14)

We can evaluate these integrals by using the solution to the Riemann problem from equation (3.11).

∫ x
i+1

2

x
i− 1

2

Ai
∂

∂x
q̃ (x, t0 + ∆t) dx =∆t

m∑
p=1

(
λi− 1

2

)+
W p

i− 1
2

(3.15)

+ ∆t
m∑
p=1

(
λi+ 1

2

)−
W p

i+ 1
2

(3.16)

+ 0, (3.17)

where (λ)+ = max (0, λ) and (λ)− = min (0, λ) and the last integral is 0 because q̃ is constant within

that fraction of the cell. Taking the limit as ∆t→ 0, we get the semi-discrete system

∂Qi
∂t

=

∆t

m∑
p=1

(
λi− 1

2

)+
W p

i− 1
2

+ ∆t

m∑
p=1

(
λi+ 1

2

)−
W p

i+ 1
2

 . (3.18)
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If we replace the piecewise constant approximation with a pth order polynomial reconstruction, then

the integral in equation (3.14) is no longer zero. In general, this integral must be evaluated using a

quadrature rule. The final wave propagation scheme is given as

∂Qi
∂t

= − 1

∆x

A+∆qi− 1
2

+A−∆qi+ 1
2

+

∫ x
i+1

2

x
i− 1

2

Aiq̃xdx

 . (3.19)

Because we can solve the Riemann problem exactly, the last integral in equation (3.19) reduces to

A∆qi = A+∆qi +A−∆qi, a fictitious ‘internal’ Riemann problem for Cartesian grid cell i. In two

spatial dimensions, we proceed in a dimension by dimension manner. For the equation

qt +A(x, y)qx +B(x, y)qy = 0, (3.20)

the algorithm becomes

∂Qij
∂t

= − 1

∆x∆y

(
A−∆qi+ 1

2
,j +A+∆qi− 1

2
,j +A∆qi,j +B−∆qi,j+ 1

2
+B+∆qi,j− 1

2

)
. (3.21)

We note that for higher than second-order accuracy, the fluctuations would require integrals over

cell edges.

To reconstruct the values of C at cell edges, we use a fifth-order WENO reconstruction algorithm

[24], which we overview in the appendix. We note that although the above algorithm and original

wave propagation paper advances the cell averages Qij , we solve for the values at the cell centers,

which is a second-order approximation to the cell average. Therefore the overall order of accuracy

remains second order.

Stretching The last term we have to discretize is the stretching term N3 (u,C) ≈ C∇uT +∇uC.

Here, we use second-order finite differences.

The normal velocity terms are standard centered differences:

(
∂u

∂x

)
i,j

=
ui+ 1

2
,j − ui− 1

2
,j

∆x
, (3.22)(

∂v

∂y

)
i,j

=
vi,j+ 1

2
− vi,j− 1

2

∆y
. (3.23)
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For the other terms, we need to use a wider stencil, so the derivatives become

(
∂u

∂y

)
i,j

=
ui+ 1

2
,j+1 + ui− 1

2
,j+1 − ui+ 1

2
,j−1 − ui− 1

2
,j−1

4∆x
, (3.24)(

∂v

∂x

)
i,j

=
vi+1,j+ 1

2
+ vi+1,j− 1

2
− vi−1,j+ 1

2
− vi−1,j− 1

2

4∆y
. (3.25)

Refinement Criteria At a specified interval, we undergo a regridding process. During the

regridding operation, we tag cells that need to be refined. Each level has a threshold based on the

absolute or relative magnitude of the divergence of the conformation tensor, above which a cell is

tagged for refinement. To ensure that enough cells exist in a level to accurately capture the features,

we use a large tag buffer to tag adjacent cells. For higher Reynolds number simulations, we also tag

cells based on vorticity thresholds.

3.1.2 Time Discretizations

We use an explicit time discretization that is motivated by the implicit midpoint rule:

ρ

(
un+1 − un

∆t
+ N1

)
= −∇hpn+ 1

2 + µs∇2
hu

n+ 1
2 +

µp
λ
∇h · Cn+ 1

2 + fn+ 1
2 , (3.26)

∇h · un+1 = 0, (3.27)

Cn+1 − Cn

∆t
+ N2 −N3 = S

(
Cn+ 1

2

)
, (3.28)

where un+ 1
2 = 1

2

(
un + un+1

)
and N1,N2, and N3 are discretizations of the nonlinear terms described

previously.

Instead of solving the fully coupled problem, we solve two separate equations and cycle between

solving the two. The first problem is

ρ

(
un+1,k+1 − un

∆t
+ N1

(
un+ 1

2
,k
))

=

−∇hpn+ 1
2
,k+1+µs∇2

hu
n+ 1

2
,k+1 +

µp
λ
∇h · Cn+ 1

2
,j + fn+ 1

2 (3.29)

∇h · un+1,k+1 = 0, (3.30)
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where Cn+ 1
2
,j is the most recent approximation to Cn+ 1

2 . The second problem is

Cn+1,j+1 − Cn

∆t
+ N2

(
Cn+ 1

2
,j
)
−N3

(
un+ 1

2
,k,Cn+ 1

2
,j
)

= S
(
Cn+ 1

2
,j
)
, (3.31)

where un+ 1
2
,k is the most recent approximation to un+ 1

2 . Note that when the relaxation function f

is chosen to include stress diffusion, we treat the resulting Laplacian implicitly. At the end of each

iteration, we project C to the closest symmetric non-negative definite matrix in the two-norm [25].

Let C have the diagonalization C = RΛR−1. Then we claim that the closest symmetric non

negative-definite matrix is C+ = RΛ+R−1 where Λ+ is the matrix where the positive eigenvalues

are left alone, and the negative eigenvalues are replaced by zero. Suppose that C̃ is a symmetric non

negative-definite matrix that is closer to C in the two-norm than C+. Then

∣∣∣C− C̃
∣∣∣
2
≤
∣∣C− C+

∣∣ =
∣∣C−∣∣ =

∣∣λ−∣∣ , (3.32)

where C− = C− C+ and λ− is the largest negative eigenvalue in absolute value of C. Let v be the

corresponding normalized eigenvector such that

vTCv = λ−. (3.33)

Then we can bound the quadratic form
∣∣∣vT (C− C̃

)
v
∣∣∣ from below by

∣∣∣vT (C− C̃
)

v
∣∣∣ =

∣∣λ− − µ∣∣ , µ > 0 (3.34)

>
∣∣λ−∣∣ . (3.35)

We can also bound the same quadratic form from above by

∣∣∣vT (C− C̃
)

v
∣∣∣ ≤ |v| ∣∣∣(C− C̃

)
v
∣∣∣ (3.36)

≤
∣∣∣C− C̃

∣∣∣ (3.37)

≤
∣∣λ−∣∣ , (3.38)

which is a contradiction of the previous inequality. Therefore, C+ is the closest symmetric non-
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negative definite matrix to C in the two-norm.

We use a fixed number of fixed-point iterations nns for the first problem and nav for the second. In

general, we can use a different number of iterations for each equation. After iterating, the final values

for the variables at the new time step are un+1 = un+1,nns , pn+ 1
2 = pn+ 1

2
,nns , and Cn+1 = Cn+1,nav .

The resulting linear systems for the conservation of mass and momentum equations are solved

using a flexible GMRES algorithm with a projection method as a preconditioner [22].

3.1.3 Implementation

The solver is built into IBAMR [19], an open-source adaptive and distributed memory parallel

implementation of the immersed boundary method. IBAMR is built on top of SAMRAI [26] which

provides infrastructure for structured adaptive mesh refinement. The resulting linear systems are

solved using implementations provided by PETSc [27].

3.2 Results

3.2.1 Manufactured Solutions

We test the implementation using the method of manufactured solutions. We add an extra

forcing term to the original equation for the conformation tensor:

O
C = S (C) + h (x, t) . (3.39)

We now choose the forcing terms f (x, t) and h (x, t) to drive the solution to a predetermined function.

We choose as the exact solution for the velocity and pressure to be the well known Taylor vortices,

which are exact solutions to the viscous Navier-Stokes equations

u = 1− 2 cos(2π(x− t)) sin(2π(y − t))e−8π2µt (3.40)

v = 1 + 2 sin(2π(x− t)) cos(2π(y − t))e−8π2µt (3.41)

p = −(cos(4π(x− t)) + cos(4π(y − t))e−16π2µt. (3.42)

For the extra stress, we choose

C = (sin(2π(x− t)) sin(2π(y − t)) + 2)I, (3.43)
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Figure 3.3: Static grid used for manufactured solutions.

where I is the identity tensor. We set the constants ρ = 1, µ = µp = 0.01, and λ = 0.1. This

corresponds to a Reynolds number of Re ≈ 100 and a Weissenberg number of Wi ≈ 0.1. The domain

is the unit square with periodic boundary conditions. We run the simulation with a locally refined

L-shaped region as shown in Figure 3.3. The refined region has a refinement ratio of 4 relative to

the coarsest level. The simulations are run such that the coarsest grid uses a N × N grid with

N = 16, 32, 64, and 128. The timestep is chosen so that simulations are run at an advective CFL

number of approximately 0.3. Figure 3.4 shows the convergence rates for the method of manufactured

solutions. We achieve second-order accuracy for the velocity and components of the conformation

tensor.

3.2.2 Pipe flow

There exists an analytic solution for Poiseuille flow. We set up a computational domain of

Ω = [0, 3] × [0, 1]. We set the initial conditions to be at rest u = 0,C = I, and at time t = 0, we
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Figure 3.4: Convergence plots for method of manufactured solutions. Here, ∆x refers to the finest
grid spacing.

specify the boundary conditions to be

u =
∆p

2 (µ+ µp)
y(1− y)

tanh
(
t−th
τ

)
+ tanh

(
th
τ

)
1 + tanh

(
th
τ

) , (3.44)

v = 0, (3.45)

Cxx = 1 + 2

(
λ
∂u

∂y

)2

, (3.46)

Cyy = 1, (3.47)

Cxy = λ
∂u

∂y
, (3.48)

where ∆p is a given pressure differential and th and τ are parameters to control the rate at which

the velocity inflow is prescribed. Here, we set th = 0.5 and τ = 0.125. The above initial conditions

approach the exact solution for Poiseuille flow as t → ∞. We note that at the outflow boundary

we use linear extrapolation on the components of the conformation tensor. The simulation is run

with µ = µp = 0.5, ρ = 1.0, and λ = 0.1 which corresponds to the Reynolds number Re = 2 and

Weissenberg number Wi = 0.1. We use a grid with a locally refined region with refinement ratio 2
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Figure 3.5: Static grid used for Poiseuille flow.
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Figure 3.6: Convergence rates for Poiseuille flow.

located in the center of the domain, shown in Figure 3.5.

Convergence rates are presented in Figure 3.6. We see second-order convergence rates in all

norms except the max norm for the components of the conformation tensor. We note that the

reduction to first-order accuracy lies at the physical corners of the computational domain. In order

to restore second-order accuracy at these points, we need to use a more careful treatment of the

boundary conditions. Due to the hyperbolic nature of the equations, the error advects into the

domain, causing first-order accuracy in the interior of the domain as well. However, these points do

not spoil the overall convergence rates for the L1 and L2 norms.
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3.2.3 Lid driven cavity

We now turn to the classical problem of lid-driven cavity flow. In this geometry, fluid motion is

induced in a box by the translation of one of the walls. Under Stokes flow conditions, where Re→ 0,

a main recirculation region appears in the middle of the domain that is symmetric across the center

line of the domain. Two smaller corner eddies are induced at the bottom corners of the box. As

the aspect ratio Λ = H
L grows, these corner eddies grow and eventually become a second major

recirculation region. Under viscoelastic fluid conditions, the left-right symmetry condition is broken,

and the central recirculation region moves closer to the top right, as demonstrated experimentally [9].

Computationally, a major issue is the corner singularities where the fluid velocity jumps from no-slip

conditions to a constant value of U . This yields infinite shear rates at the corners that, for Oldroyd-B

type viscoelastic models, will yield stress singularities. The effective Deborah number De = λ
τ where

τ is a characteristic residence time is infinite near the corner singularity. A common modelling fix to

this issue is to use a quartic polynomial approximation to the wall velocity [28].

Here, we restrict ourselves to the square lid-driven cavity where Λ = 1. At the three stationary

walls, we use zero slip boundary conditions u = 0 and zero flux boundaries for the components of

the extra stress. Following Sousa et al˙ [29], at the moving wall, we specify,

u(x, 1) =


1

0.220.82
Ux2 (1− x)2 if 0 ≤ x ≤ 0.2

U if 0.2 < x < 0.8

1
0.220.82

Ux2 (1− x)2 if 0.8 ≤ x ≤ 1.

(3.49)

This form of the inlet velocity maintains the lid velocity of U across 60% of the lid. While the

velocity and velocity gradient vanish at the corners, the velocity gradient is not continuous at the

points of change between the polynomial and constant velocity profile. We adopt the standard

definition of the Weissenberg number to use the peak velocity. However, we note that when using the

mean velocity across the domain, our Weissenberg number is approximately 1.4 times higher than

corresponding literature values that use the quartic inflow condition. The simulations are initialized

with a coarse grid of 64 points in each dimension but are run with a maximum of four levels each

with a refinement ratio of two. If the entire domain were refined to this level, this would result in a

grid with 512 points in each dimension. Every eight timesteps, we undergo a regridding operation
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Figure 3.7: The locally refined Cartesian grid showing the different levels and grid resolution at the
final time, for the Newtonian case (left) and the case with an Oldroyd-B fluid with Weissenberg
number Wi = 1 (right).

where cells are tagged for refinement based on one of two criteria. We also tag a cell for refinement if

the magnitude of the divergence of the polymeric stress tensor is greater than 1.0 for the first level,

2.5 for the second level, and 5.0 for the finest level. These values were chosen based on uniform

simulations on a coarse grid to provide sufficient resolution at the boundaries while maintaining a

coarse grid near the bottom of the domain. We note that for every simulation in which Wi > 0, the

coarsest level is always completely covered by a finer level. In the absence of fluid elasticity, we

refine based on the relative magnitude of the vorticity. Figure 3.7 shows the meshes at the final time

step. We run the simulations to a final time of T = 20 with a time step chosen to maintain a CFL

number of 0.1.

Figure 3.8 shows the trace of the conformation tensor. We see exponential growth in the trace

of the conformation tensor near the discontinuities in the velocity gradient. Figure 3.8 also details

the vertical component of the velocity across the line y = 0.75. In the Newtonian fluid, we see

symmetry across the x = 0.5 line. However, as we increase the Weissenberg number, the vertical

velocity sharply increases in the right half of the domain, while only slowly decreases in the left half

of the domain.

As done in Sousa et al˙ [29], we use the flow-type parameter ξ = |D|−|Ω|
|D|+|Ω| to classify the flow locally

where |D| and |Ω| are the magnitudes of the strain rate tensor and vorticity tensor, |D| =
√

1
2D : D
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Increasing Wi

Increasing Wi

Figure 3.8: Plots of the trace of the conformation tensor at the top of the box (left) and the vertical
velocity at the line y = 0.75 (right) as the Weissenberg number increases.

and |Ω| =
√

1
2Ω : Ω. ξ = −1 corresponds to a pure extensional flow, ξ = 0 corresponds to a pure

shear flow, and ξ = 1 corresponds to solid-body rotation. Figure 3.9 shows the flow types. As we

increase the Weissenberg number, the rotation region migrates towards the top of the box. We also

see the growth of an additional shearing region near the corner singularity.

36



Figure 3.9: Plots of the flow type parameter ξ for Wi = 0.0 (top left), Wi = 0.3 (top right), Wi = 0.5
(bottom left), and Wi = 1.0 (bottom right). A realization of the AMR grid structure is shown in
Figure 3.7.
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CHAPTER 4

APPLICATIONS WITH AN IMMERSED INTERFACE MODEL

Fluid-structure interactions is a key component in the study of biological fluid flow. Swimming

organisms push off the fluid in order to propel themselves forward [30]. Heart valves open and close

due to the pressure of the blood flowing against them [31,32]. Even the complex polymeric fluids

models we have derived are microscopic fluid-structure interaction problems [11,33]. This Chapter

provides an overview of both the immersed boundary (IB) method and the immersed interface

method (IIM) which are two different ways of modeling fluid-structure interaction. We then compare

the two approaches to the classical problem for flow past a confined cylinder. We then follow up on

the four-roll mill problem first introduced in the previous chapters.

4.1 The Immersed Boundary Method

The immersed boundary method was first described in 1972 to study blood flow around heart

valve leaflets by Charles Peskin [34]. It has since been used to model a plethora of biomechanics

problems. Some applications include heart dynamics [35], insect flight [36], aquatic locomotion [37],

and cellular mechanics [3]. The fundamental approach has since been extended to form the basis of

different methods, such as the immersed finite element method [38], the fictitious domain method [39],

and the ghost-cell IB method [40]. The strength of the IB method is that it avoids mesh-conforming

discretizations, which makes this method particularly appealing to problems with complex geometries.

The IB formulation uses a single momentum equation for both the fluid and the structure expressed

in a Eulerian form. The structural mechanics are then described in a Lagrangian framework

approximated on a curvilinear mesh. Interaction between the two meshes are mediated with integral

equations.

The IB method is agnostic to the fluid model. However, a key aspect of the IB formulation is

that the momentum equation is valid both inside and outside the structure, see Figure 4.1. This

modeling assumption causes structures to adopt the same fluid features as the outer fluid [41]. In

some applications, these modelling assumptions can be seen as beneficial, such as in modelling
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Figure 4.1: In the immersed boundary method, the physical domain Ω consists of a fluid that exists
throughout the entire domain with a corresponding Cauchy stress σ and a thin immersed structure
described by the curve U .

cellular mechanics where the inside of the cell is fluid-like as well. The momentum equation that we

impose in the Eulerian frame is coupled with an incompressibility condition

ρ

(
∂u

∂t
+ u · u

)
= ∇ · σ + f (4.1)

∇ · u = 0, (4.2)

where u is the fluid velocity, σ is the Cauchy stress of the fluid, and f is the force per unit volume

applied by the structure to the fluid. The interactions between the fluid and immersed structure are

given by

f (x, t) =

∫
Ω

F (X, t) δ (x− χ (X, t)) dX (4.3)

∂χ (X, t)

∂t
= U (χ(X, t) , t) =

∫
U

u (x, t) δ (x− χ (X, t)) dx, (4.4)

where X is the current configuration of the Lagrangian structure and F is the Lagrangian force

density. Equation (4.3) spreads the Lagrangian force onto the Eulerian mesh, while equation (4.4)

specifies that the structure moves at the local fluid velocity. The form of the Lagrangian force

density is determined by the constitutive model of the Lagrangian structure. When we discretize the

continuous equations in space, we replace the delta function with a regularized delta function. First,
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recall the defining feature of the delta function δ (x) = δ (x) δ (y),

∫
V
δ (x−X) dx =

 1 if X ∈ V

0 otherwise.
(4.5)

We wish for our regularized delta function δh (x) = 1
h2
φ
(
x
h

)
φ
( y
h

)
to satisfy the same conditions as

h approaches 0. Several axioms have been proposed for choosing the definition of φ [19, 42]. For our

present purposes, we show one possible formulation of φ called the IB four-point delta function:

φ4 (r) =


1
8

(
3− 2 |r|+

√
1 + 4 |r| − 4r2

)
if 0 ≤ |r| < 1

1
8

(
5− 2 |r| −

√
−7 + 12 |r| − 4r2

)
if 1 ≤ |r| ≤ 2

0 otherwise.

(4.6)

The application of a singular force layer given by equations (4.3) and (4.4) induces discontinuities at

the interface due to force balance. These discontinuities are regularized by using a smooth kernel

function. Smoothing out the stress discontinuities appears to result in non-convergence of stresses at

the interface, although stresses can be accurately captured away from the interface.

4.2 The Direct Forcing Method

In the comparisons that follow, we use a modified version of the immersed boundary method

that we refer to as the direct forcing method (DF). In this method, instead of interpolating the

fluid velocity to the structure, we specify the displacement of the structure. This relaxes the no-slip

condition on the structure. To approximate the no-slip condition, we apply a direct force to the

momentum equation to penalize the difference between the specified motion of the structure and the

computed velocity of the fluid. Mathematically, we replace equation (4.3) with

F = η

(
∂χ (X, t)

∂t
− u (χ (X, t) , t)

)
(4.7)

and specify the location of the structure by eliminating equation (4.4). While we no longer have to

worry about the location of the structure with this method, we now allow some amount of leakage

through our structure. The magnitude of this leak is controlled by the penalty parameter η.
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4.3 The Immersed Interface Method

A limitation of the IB method is that it yields low-order accuracy at fluid-structure interfaces [19].

An alternative approach known as the immersed interface method (IIM) is to incorporate known

jump conditions about the fluid flow into the finite difference stencils [43]. A drawback for IIM is

that the jump conditions must be known beforehand. We start by deriving the jump conditions for

the stress [44,45]. We remark that for the continuous equations of motion, the IB method and the

IIM formulation are equivalent [46].

We define the jump in a function as

JfK (x) = lim
ε→0+

f(x + εn)− lim
ε→0−

f(x + εn), (4.8)

where n is the outward unit normal to the interface. The fluid velocity is continuous JuK = 0 because

of the no-slip condition along the interface. Using this result, we can additionally show that the

jump in the material derivative of the velocity is also zero

D JuK
Dt

=
Du (X+, t)

Dt
− Du (X−, t)

Dt
(4.9)

=
∂u (X+, t)

∂t
+∇u

(
X+, t

) ∂X+

∂t

− ∂u (X−, t)

∂t
+∇u

(
X−, t

) ∂X−

∂t
(4.10)

=

s
Du (X, t)

Dt

{
= 0. (4.11)

To derive the jump condition for the stress, we take an infinitesimal area δS along an interface S.

We then extend δS in the normal directions n and −n by ε/2. We denote this region by δV . We

integrate equation (4.1) over the region δV and take the limit as ε→ 0:

lim
ε→0

∫
δV
ρ

(
∂u

∂t
+ u · ∇u

)
dV = lim

ε→0

∫
δV

(∇ · σ) dV + lim
ε→0

∫
δV

fdV. (4.12)

We note that the left-hand side of the equation is 0 from Reynolds transport theorem and equation
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(4.9). We apply Gauss’ theorem to the right-hand side integral to obtain

lim
ε→0

∫
δV
∇ · σdV = lim

ε→0

∫
δS
σ · ndS (4.13)

= JσK · nδS. (4.14)

The final term in equation (4.12) is

lim
ε→0

∫
δV

fdV = lim
ε→0

∫
S

∫
δV

Fδ (x−X) dV dX (4.15)

= Fδs, (4.16)

where δs is the infinitesimal area of the region in reference coordinates. Combining the above

equations we get

JσK · nδS + Fδs = 0 (4.17)

or that

JσK · n = −FJ−1, (4.18)

where J is the Jacobian of the mapping between the reference and current configurations. We note

that this is the jump in the total stress regardless of the constitutive equation for the Cauchy stress

tensor σ. In the case of a Newtonian fluid, we can decompose the jump for the total stress into

jumps for the velocity gradient and pressure. First, let σ = −pI + µ
2

(
∇u +∇uT

)
which reduces

equation (4.18) to

− JpK n + µ J∇uK n = −FJ−1. (4.19)

Multiplying equation (4.19) by n and noting that
q
∂u
∂t

y
=

q
∂u
∂b

y
= 0 where t and b are the tangential

and binormal unit vectors, we get the jump conditions for the pressure and the normal derivative in

the velocity for the Newtonian case:

JpK = J−1F · n, (4.20)

µ

s
∂u

∂n

{
=

(F · n) n− F

J−1
. (4.21)
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Although there are higher-order jump conditions for the normal derivative of the pressure as well

as the second normal derivative of the velocity, the jump conditions involve the curvature of the

structure [47]. Since our discretization, which will be described in more detail in the next section,

involves using discrete surface representations, the curvature is not well defined. Therefore, we do

not account for these jump conditions in this work. There are also jump conditions in the temporal

derivatives of the velocity as the boundary moves. However, it has been demonstrated that these

jumps have little effect on the overall accuracy of the method [45], and therefore we do not account

for these jumps either.

We stress that while the jumps in the pressure and normal derivative of the velocity are different

when changing the constitutive equations for the stress, the jump in the total stress is the same.

This is beneficial when discretizing the equations. For clarity, we briefly discuss the discretization

of the jumps here. Consider a standard second-order central difference to the first derivative of a

function φ(x)

∂φ

∂x

(
xi+ 1

2
,j

)
=
φi+1,j − φi,j

∆x
, (4.22)

where x = (x, y), φi,j = φ(xi, yj), and ∆x is the spacing in the x-direction. Using Taylor series

expansions, it can be shown that if an interface has a jump at the point xo such that xi,j ≤ xo < xi+1,j

such that xi,j and xi+1,j lie on different sides of the interface, then the derivative of φ is

∂φ

∂x

(
xi+ 1

2
,j

)
=
φi+1,j − φi,j

∆x
+

sgn{nx}
∆x

2∑
m=0

d+

m!

s
∂mφ

∂xm

{
(xo) +O

(
∆x2

)
, (4.23)

where d+ = xi+1,j − xo > 0, nx is the x-component of the normal vector n at the intersection

point xo. The importance of equation (4.23) is that we can rearrange it so that the standard finite

difference stencil is given in terms of the jump and function value

φi+1,j − φi,j
∆x

=
∂φ

∂x

(
xi+ 1

2
,j

)
− sgn{nx}

∆x

2∑
m=0

d+

m!

s
∂mφ

∂xm

{
(xo) +O

(
∆x2

)
. (4.24)

Therefore, it doesn’t matter which stencil in the divergence of the Cauchy stress the jumps are

applied to, the components will sum together appropriately.
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4.4 Discretization

The numerical discretization for the fluid equations is described in detail in the previous chapter.

The details for the fluid-structure interaction component as well as the modified finite difference

stencils are described in detail in Kolahdouz et al˙ [48]. Here, we provide a short summary of the

relevant components. An important implementation is that while we are building the correct stress

jumps into the conservation of momentum equation, we use standard central differences for the

velocity gradient when evolving the extra stress tensor. At the time of this work, the jumps in the

normal derivative of the velocity are unknown.

4.4.1 Eulerian Discretization

We use a staggered-grid (MAC) discretization of the fluid equations where we approximate the

fluid velocity along the cell edges, while the pressure and components of the conformation tensor are

approximated at the cell centers. We use standard second-order finite differences for the gradient,

divergence, and the Laplacian. The discrete divergence ∇h · u and gradient of the velocity ∇hu are

evaluated at the cell centers. The discrete gradient of the pressure ∇hp, the discrete Laplacian ∇2
hu

and the discrete divergence of the conformation tensor ∇ · C are evaluated at cell sides. We use a

wave-propagation algorithm with WENO reconstructions to evaluate the nonlinear advection terms

u∇ · u and u∇ · C [23, 24]. At regions of high-stress gradients, we use a locally refined Eulerian

discretization generated by an adaptive mesh refining algorithm. Near the interface, the finite

difference stencils for the conservation of momentum equation are modified to include the jump

conditions by using modified Taylor series expansions. However, we currently do not include the

jump conditions in the stencils for the evolution of the conformation tensor. In particular, the

gradient of the velocity ∇hu used in the nonlinear stretching term uses standard second-order finite

differences at all points in the domain.

4.4.2 Lagrangian Discretization

We use a finite element representation of the interface. We discretize the structure Ωs using a

triangulation Th = ∪eKe. On Th, we define Lagrangian basis functions {φl (X)}ml=1 where m is the

total number of nodes in the triangulation. We approximate the interfacial deformation by

χh (X, t) =
m∑
l=1

χl(t)φl(X), (4.25)
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where χl(t) is the time-dependent physical position of the Lagrangian node indexed by l. Here we

use C0 basis functions which provides a discontinuous approximation of the deformation gradient.

In particular, the normal direction of the interface is discontinuous. Because of this, we project the

jump conditions onto the space spanned by the Lagrangian basis.

4.4.3 Time Integration

Starting from values of χn, un, and Cn at time tn and pn−
1
2 at time tn−

1
2 , we must determine

values of χn+1, un+1, Cn+1, and pn+ 1
2 . We first determine an approximate structure position at an

intermediate time
χ̂n+1 − χn

∆t
= J nun, χn+ 1

2 =
χ̂n+1 − χn

2
, (4.26)

where J n is the velocity Eulerian to Lagrangian interpolation. Using this position approximation,

we then solve for un+1, Cn+1, and pn+ 1
2 :

ρ

(
un+1 − un

∆t
+ N

n+ 1
2

1

)
= −∇hpn+ 1

2 + µs∇2
hu

n+ 1
2 +

µp
λ
∇h · Cn+ 1

2 + fn+ 1
2 (4.27)

∇h · un+1 = 0 (4.28)

Cn+1 − Cn

∆t
+ N

n+ 1
2

2 −N
n+ 1

2
3 = S

(
Cn+ 1

2

)
, (4.29)

where N
n+ 1

2
1 and N

n+ 1
2

2 are approximations to the nonlinear advection terms, N
n+ 1

2
3 is the approx-

imation to the nonlinear stretching term, and fn+ 1
2 is the correction terms involving the jump

conditions at time tn+ 1
2 at position χn+ 1

2 . Instead of solving the fully coupled problem, we cycle

between two separate equations. The first is the conservation of mass and momentum equation

ρ

(
un+1,k+1 − un

∆t
+ N

n+ 1
2
,k

1

)
= −∇hpn+ 1

2
,k+1 + µs∇2

hu
n+ 1

2
,k+1 +

µp
λ
∇h · Cn+ 1

2
,j + fn+ 1

2 (4.30)

∇h · un+1,k+1 = 0, (4.31)

where Cn+ 1
2
,j is the most recent approximation to Cn+ 1

2 . The second problem is

Cn+1,j+1 − Cn

∆t
+ N

n+ 1
2
,j

2 −N
n+ 1

2
,j

3 = S
(
Cn+ 1

2
,j
)
, (4.32)

45



where un+ 1
2
,k is the most recent approximation to un+ 1

2 . We use a fixed number of fixed-point

iterations nns for the Navier-Stokes equations and nav for the stress evolution equation. At the end

of the iterations we set un+1 = un+1,nns , pn+ 1
2 = pn+ 1

2
,nns , and Cn+1 = Cn+1,nav . Finally, using the

new velocity, we solve for χn+1:

χn+1 − χn

∆t
= J n+ 1

2

(
un+1 + un

2

)
. (4.33)

The resulting linear systems of equations for the velocity and pressure are solved using the

flexible GMRES algorithm with the projection method as a preconditioner [22].

4.4.4 Implementation

The solver is built into IBAMR [19], an open-source adaptive and distributed memory parallel

implementation of the immersed boundary method. IBAMR is built on top of SAMRAI [26] which

provides infrastructure for structured adaptive mesh refinement. The resulting linear systems are

solved using implementations provided by PETSc [27]. The finite element discretization is provided

by libMesh [49].

4.5 Results

4.5.1 Flow Past a Cylinder

A common benchmark problem for complex fluid solvers is flow past a confined cylinder. Despite

possessing a smooth geometry, flow past a confined cylinder remains a challenging problem for

viscoelastic fluids. Thin stress layers along the edge of the cylinder and in the immediate wake

of the cylinder give strong spatial restrictions to accurately resolve boundary features. There has

been recent success in using complicated finite element [2, 50, 51] and finite volume [52, 53] methods

with body-conforming grids to resolve simulations at larger Weissenberg numbers. However, for

Weissenberg numbers above Wi ≥ 0.7, converged stress results remain an unsolved problem. Here we

test whether a much simpler fluid solver can accurately resolve the features of flow past a confined

cylinder with the help of adaptive mesh refinement.

We use an immersed interface representation of the fluid-structure interaction. A penalty force is

applied to the surface of the cylinder,

F(X, t) = κ (X− χ (X, t)) + η (U− u) , (4.34)
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where κ is the spring stiffness penalty parameter and η is the damping penalty parameter. As

κ→∞, the formulation approaches that of a rigid body. Numerical experiments have shown that the

damping parameter allows for a more stable simulation that can be run at much higher advective CFL

numbers. For convergence studies in which the displacement of the cylinder D = X− x = O
(
h2
)
,

because the force F = O (1) under grid refinement, we require that κ satisfy κ = O
(

1
h2

)
. In a similar

argument, in order for the velocity V = U− u = O (h), we require that η = O
(

1
h

)
. We choose the

form κ = κ0
1
h2

and η = η0
1
h , and then choose κ0 and η0 so that the largest possible stable value is

used on the finest grid considered in the convergence study for a given time step.

In order to compare against literature results, we set the viscosity ratio as µN
µN+µp

= 0.5 and set

the initial inflow and outflow boundary conditions to be that of fully developed pipe flow. No-slip

boundary conditions for the velocity with homogeneous Neumann boundaries for the conformation

tensor are used for the top and bottom of the domains. The radius of the cylinder is R = 1, and

the width of the channel is Ly = 4R. The length of the computational domain is Lx = 20R. This

ensures that our assumption of a fully developed pipe flow is valid. We run at an advective CFL

number of ≈ 0.001 until a final time of T = 40. While the fluid solver is stable up to a convective

CFL number of 0.3, a significantly smaller timestep is required in order to ensure the cylinder moves

no more than a fraction of a grid cell. The computational grid is discretized so that the smallest

level uses Ny = 8 grid points in the y-direction and Nx = Ny
Lx
Ly

. The computational grid is shown in

Figure 4.2. To compare against literature results, we measure the drag coefficient along the surface

of the cylinder. Most of the literature results are run at the zero Reynolds number; however, our

adaptive discretization breaks down as Re→ 0, therefore we run at a small but non-zero Reynolds

number of Re ≈ 10−5. We therefore do not expect to get the same drag coefficients or results as

those in the literature. The drag coefficient can be found by integrating the normal stress along the

surface of the cylinder:

Cd =
1

η

∫
S
σ · n · exda, (4.35)

where n is the outward unit normal and ex is the unit vector in the x-direction. Since the structure

is stationary, the penalty force is balanced with the stress along the cylinder. Therefore, we can
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instead integrate the penalty force

Cd =
1

η

∫
S
−F · exda. (4.36)

A comparison of drag coefficients against literature values is presented in Table 4.1. For moderate

Weissenberg numbers 0.4 ≤Wi ≤ 0.7, we achieve differences around one percent when compared

against literature values. However, for small Weissenberg numbers Wi ≤ 0.3, we achieve differences

that are much smaller than one percent. Note that since other methods do not see convergence for

high Weissenberg numbers, we do not attempt to run at these values.

Figure 4.3 shows the plot of the top right component of the conformation tensor Cxx. Note the

formation of an extra recirculation region for the component for larger Weissenberg numbers as

found in other studies [2]. It has been suggested that to achieve converged results, the recirculation

region must be sufficiently resolved [2]. We believe the tools described in this paper will eventually

allow us to have converged results in this recirculation region.

To assess the convergence rates of flow past a cylinder, we use Richardson extrapolation and

focus on the Re = 1.0 and Wi = 0.3 case. Given solutions on the three grids uh, u2h and u4h, the

convergence rate can be found by q = log2
|u4h−u2h|
|u2h−uh| . We run on a grid with three levels with a

refinement ratio of two. Initially, the coarsest level uses 8 grid cells in the y-direction. The finer

grids use 16 and 32 grid cells on the coarsest level in the y-direction respectively. We then run to a

final time of T = 1. To compute the difference between the two solutions, we interpolate the fine

grid onto the coarser grid. Table 4.2 shows the convergence rates. We do not see convergence in the

max norm for the components of the conformation tensor. However, if we remove the area within

five grid cells of the interface from the computations of the norms, we restore first-order accuracy in

the max norm.

A comparison between the drag coefficients computed from the immersed interface (IIM), direct

forcing (DF), and immersed boundary (IB) methods is given in Figure 4.3. In these comparisons, we

use the same time step and grid and select the penalty parameters to be as large as possible and

still have a stable simulation. In order to achieve a stable simulation with the IB method, we must

use a timestep that is four times smaller than the other methods. We achieve slightly better drag

coefficients in the low Weissenberg number cases for the IIM method, however as we increase the
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Figure 4.2: The computational setup for flow past a cylinder. Top: The full computational grid.
Bottom: A close up near the surface of the cylinder.

Figure 4.3: The top right component of the conformation tensor Cxx for Weissenberg numbers
Wi = 0.3 (top) and Wi = 0.7 (bottom) for a Reynolds number of Re = 1.0.
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Re = 0.0 Re = 0.01

Wi Cd Claus et al˙ [2] Percent Difference Cd Claus et al˙ [2] Percent Difference
0.1 130.152 130.364 0.163 130.154 130.364 0.161
0.2 126.704 126.626 0.0614 126.707 126.627 0.0632
0.3 123.919 123.192 0.590 123.922 123.194 0.591
0.4 122.107 120.593 1.26 122.110 120.595 1.26
0.5 121.208 118.826 2.00 121.218 118.831 2.01
0.6 121.014 117.776 2.75 121.020 117.781 2.75
0.7 121.414 117.316 3.49 121.421 117.323 3.49

Re = 0.1 Re = 1.0

Wi Cd Claus et al˙ [2] Percent Difference Cd Claus et al˙ [2] Percent Difference
0.1 130.172 130.368 0.150 130.558 130.609 0.039
0.2 126.734 126.636 0.0774 127.187 126.938 0.196
0.3 123.951 123.211 0.601 124.457 123.597 0.696
0.4 122.143 120.622 1.26 122.719 121.106 1.33
0.5 121.254 118.868 2.01 121.918 119.460 2.06
0.6 121.075 117.831 2.75 121.874 118.542 2.81
0.7 121.489 117.387 3.50 122.436 118.233 3.55

Table 4.1: Drag coefficients and percent differences between Clause et al˙ [2] and our simulations at
varying Reynolds numbers. Because our AMR solvers are currently limited to treating Re > 0, we
approximate the zero Reynolds number case by Re = 10−5.

Cxx Cyy
Full domain Excluding interface Full domain Excluding interface

L1 Norm 1.092684643 1.161744269 1.327913467 1.699105396
L2 Norm 0.5174536385 1.032426126 0.5309904965 1.464332698
L∞ Norm 0.07403476449 0.9422156601 -0.5494829672 0.9136947393

Cxy U

Full domain Excluding interface Full domain Excluding interface
L1 Norm 1.284044673 1.450108172 2.009731988 5.390432122
L2 Norm 0.4589699265 1.445853863 1.964305873 1.929699451
L∞ Norm -0.8085236839 0.7283321233 1.263609924 0.8164007733

Table 4.2: Convergence rates for flow past a cylinder computed using Richardson extrapolation.
Convergence rates are given for both the entire domain and a domain that excludes the interface.
Note that while the velocity is first order in the max norm in either case, we do not see convergence
for the components for the conformation tensor unless we exclude the interface.
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Re = 1.0

Wi Cd - II Cd - DF Cd - IB Claus et al˙ [2]
0.1 130.558 131.143 132.681 130.364
0.2 127.187 127.895 129.384 126.626
0.3 124.457 125.037 126.746 123.192
0.4 122.719 122.998 125.248 120.593
0.5 121.918 121.735 124.899 118.826
0.6 121.874 121.080 124.788 117.787
0.7 122.436 120.904 125.532 117.291

Table 4.3: Drag coefficients and relative differences between Clause et al˙ [2], the immersed interface
method (IIM), the direct forcing IB method (DF), and the conventional immersed boundary method
(IB) at Reynolds number Re = 1.0.

Weissenberg number, the DF method gives more accurate drag coefficients. For all Weissenberg

numbers tested, the IB method gives consistently less accurate results. Figure 4.4 shows the normal

component of the velocity along the surface of the cylinder at the final time for the IIM and DF

methods. We get significantly more flow through the cylinder using the DF method as it does a

relatively poor job of enforcing the no-slip condition. In particular, the only place where the fluid

velocity is not negligible for the IIM method is near the top and bottom of the cylinder, where the

shearing creates large stress gradients in the polymeric stress. The drag coefficients computed in the

DF method, therefore, do not account for the excess fluid velocity. In these cases, the IIM method is

able to enforce the no-slip constraint better than the direct forcing method. Figure 4.5 shows the top

right component of the conformation tensor for the DF method for the two Weissenberg numbers

0.3 and 0.7. We see comparable values and locations of stress for the low Weissenberg number of 0.3.

However, for the largest Weissenberg number tested, we see a significant decrease in the maximum

values of the conformation tensor as well as additional stress components forming inside the cylinder.

4.5.2 Four-Roll Mill

The four-roll mill was a physical device invented by Taylor [54] to asses the physical properties

and formation of emulsions. These devices can be used to generate various types of flows from

pure rotational to pure extensional by varying the rotational speed of the rollers and are now

utilized to assess rheological properties fluids. Recently, Thomases and Shelley [7] demonstrated

the singularities that arise with Maxwell type models by using an idealized four-roll mill geometry

by applying a background force to generate extensional points in the computational domain. The
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Figure 4.4: The normal component of the velocity along the cylinder for the immersed interface
(top) and direct forcing (bottom) methods for a Reynolds number of Re = 1.0 and Weissenberg
number of Wi = 0.7.
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Figure 4.5: The top right component of the conformation tensor Cxx for Weissenberg numbers
Wi = 0.3 (top) and Wi = 0.7 (bottom) for the direct forcing method for a Reynolds number of
Re = 1.0.
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Figure 4.6: The computational domain for the four-roll mill geometry.

idealized geometry consists of a background force density acting directly on the fluid to produce

counter-rotating vortices in a Newtonian fluid. When applying this background force to complex

fluids, they showed two bifurcations where the trace of the conformation tensor goes from smooth to

forming a cusp and finally to growing exponentially in time. This section demonstrates that the

same qualitative features arise in a realistic geometry.

We model the four-roll mill geometry by immersing four disks of radius R = 1 in a computational

domain Ω = [−2.5, 2.5]× [−2.5, 2.5]. Each disk is centered a distance B = 1.25 in each coordinate

away from the center of the domain giving a blockage size of R−B = 0.5 between each disk [55].

To match results to Thomases and Shelley [7], we use bi-periodic boundary conditions. This gives

a computational domain that simulates an infinite array of disks each of distance 0.5 away from

each other. At time t = 0, we specify the rotational rate of each disk to be ω = 1. We specify

the rotational direction of the disks in quadrant one and three to be the opposite of the rotational

direction of the disks in quadrant two and four. This produces an extensional point in the center of

the domain. We define the Weissenberg number to be Wi = ω
λ , where λ is the relaxation time of

the fluid. Following Thomases and Shelley, we specify the fluid viscosity ratio β =
µp
µn

= 0.5. We

fix the Reynolds number at Re = 1.0. Simulations are run to a final time of T = 30Wi so that a

steady-state solution is obtained. Figure 4.6 shows the computational grid.
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Figure 4.7: A plot of the flow-type parameter ξ for Weissenberg number Wi = 0.1 (left) and Wi = 0.9
(right).

As done by Lee et al˙ [56], the type of fluid motion can be described by the flow-type parameter

ξ = |E|−|Ω|
|E|+|Ω| , where |E| and |Ω| are the magnitudes of the deformation and vorticity tensors respectively.

Using this parameter, the flow can be described as either purely rotational ξ = −1, purely shear

ξ = 0, or purely extensional ξ = 1. Figure 4.7 shows the flow type parameter for Weissenberg

numbers Wi = 0.1 and Wi = 0.9. As we increase the Weissenberg number, the flow becomes less

rotational and more extensional.

Figure 4.3 shows the trace of the conformation tensor for varying Weissenberg numbers. As

the Weissenberg number increases, we see the formation of singular structures near extensional

points in the domain. We note that the location of the singular features differs from the described

by Thomases and Shelley [7]. We suspect that this is because of the distance between the disks.

The idealized geometry effectively removed the distance between the cylinders, thus removing an

extensional point. Figure 4.9 shows a slice of the trace of the conformation tensor along the line

y = 0 through the center of the domain. We see similar features with a bifurcation happening around

a critical Weissenberg number of Wi ≈ 0.5, where a cusp begins to form at the center of the domain.
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Figure 4.8: The trace of the conformation tensor for Weissenberg numers Wi = 0.1 (top left),
Wi = 0.4 (top right), Wi = 0.6 (bottom left), and Wi = 0.9 (bottom right).
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Figure 4.9: A slice of the trace of the conformation tensor for Weissenberg numbers Wi = 0.1− 0.5
(left), Wi = 0.6− 0.9 (right) through the line y = 0.
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CHAPTER 5

APPLICATIONS WITH BACTERIAL FLAGELLA

Single-celled organisms use a variety of techniques to swim [57, 58]. Organisms like Eċoli use

multiple rotating flagellar filaments that are connected to a rotary motor by a flexible short hook.

These organisms switch between two different phases of motion, a run and tumble phase [59]. In the

run phase, all the flagella motors rotate counterclockwise. The hydrodynamic interactions cause the

flagella to bundle together and form a superflagellum that propels the organism forward, see Figure

5.1. In the tumble phase, one or more motors switch directions, causing those flagella to change the

chirality of the helical shape. This transformation causes the bundle to deform, which causes the

cell to rotate and tumble. Eventually, all the motors resume the original counter-clockwise motion,

which forms the superflagellum and allows the organism to resume its forward swimming motion.

The environment plays an important role in the motility of organisms [60]. Organisms frequently

navigate a complex environment composed of a viscous Newtonian solvent with suspended mi-

crostructures such as proteins and filament networks. While the physics of motion is well understood

in Newtonian fluids [30], a complete understanding of the motion of microorganisms in a complex

fluid is still lacking. In a single-phase viscoelastic fluid, Lauga [61] showed that an infinite undulating

sheet is always hindered by viscoelasticity. However, Teran et al˙ [62] showed that a finite sheet can

achieve a speed boost in velocity when its amplitude is tuned with the relaxation time of the fluid.

Thomases and Guy [63] showed that both body shape and body elasticity must be tuned together

to achieve the speed up for undulating sheets. Fu et al˙ [64] showed that small pitch angle helical

swimmers are hindered by elasticity. For sufficiently large angles, the swimming speed can increase

with a peek found near a Deborah number of De ≈ 1.0 [65, 66]. Wrobel et al˙ [11] used a discrete

model of viscoelasticity to show that swimmers can get an increase in speed, but they need to use

additional power to maintain their gait.

Elastic bacterial flagella can be modelled using Kirchhoff rod theory because the flagellum is long

(≈ 10 µm) but very thin (≈ 10 nm). Kirchhoff rod theory describes the forces and torques generated
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Figure 5.1: A cell body with four flagella. When each flagella’s motor spins counter-clockwise, the
flagella combine to form a superflagellum which propels the cell forward. This image is reproduced
from Ko et al. [1].

by an elastic rod in terms of the position of the centerline and an orthonormal set of director

vectors attached to the center line. Goldstein et al˙ [67] introduced a bistable energy formulation

for Kirchoff rod theory to permit two stable helical configurations. Darnton and Berg [68] used

Kirchoff rod theory to estimate the bending rigidity of the flagellum by fitting a Kirchoff rod model

to experimental data. Lim and Peskin [69] incorporated hydrodynamic interactions by creating a

generalized immersed boundary method based on Kirchoff rod theory. Ko et al˙ [1] incorporated a

bistable energy formulation into the generalized immersed boundary method to model polymorphic

transformation.

In this Chapter, we use the bistable energy formulation utilized by Ko et al˙ [1] and explore the

effects of viscoelasticity on the shape as well as the pumping efficiency of the flagellum.

5.1 Mathematical Model

We consider the motion of a single helical flagellum immersed in an incompressible Maxwell-

type fluid. The flagellar element is described by Kirchoff rod theory, in which the flagella is

modelled as a thing rod and stresses are applied on the cross-section along the rod. The configu-

ration of the flagella is given by the centerline X (s, t) and an orthonormal set of director vectors

{D1 (s, t) ,D2 (s, t) ,D3 (s, t)}, where s is the arclength along the rod in its reference configuration

and t is the current time. To describe the force and torque balance along the filament, let Frod (s, t)

and Nrod (s, t) be the force and moment respectively that are generated across a cross-section of the

rod at point s along the centerline. Let F (s, t) and N (s, t) be the applied force and torque densities.
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Then the momentum and angular momentum balance equations are

0 = F +
∂Frod

∂s
, (5.1)

0 = N +
∂Nrod

∂s
+

(
∂X

∂s
× Frod

)
. (5.2)

Here, we expand Frod and Nrod in the basis of the local director vectors

Frod =
3∑
i=1

FiD
i, Nrod =

3∑
i=1

NiD
i. (5.3)

The constitutive relations are given as

Fi = bi

(
∂X

∂s
·Di − δ3i

)
, i = 1, 2, 3 (5.4)

N1 = a1 (Ω1 − κ1) , (5.5)

N2 = a2 (Ω2 − κ2) , (5.6)

N3 = a3 (Ω3 − τ1) (Ω3 − τ2)

(
Ω3 −

τ1 + τ2

2

)
− γ2∂

2Ω3

∂s2
, (5.7)

where δ3i is the Kronecker delta function and γ is the twist-gradient coefficient. The coefficients

a1 and a2 are the bending moduli and a3 is the twist modulus. In standard Kirchoff rod theory,

D1, D2, and D3 are constrained to be a set of local orthonormal director vectors. In the present

work, equation (5.4) is a penalty force to maintain the director vectors. The coefficients b1 and b2

are the shear moduli and b3 is the stretching modulus. The strain twist vector (Ω1,Ω2,Ω3), where

Ωi = ∂Dj

∂s ·D
k and (i, j, k) is a cyclic permutation of (1, 2, 3), determines the properties of the helical

flagellum. The parameter κ =
√
κ2

1 + κ2
2 is the intrinsic curvature and τ1 and τ2 are the intrinsic

twists. The intrinsic twist strain vector (κ1, κ2, τ) determines the equilibrium shape of the helical

flagellum characterized by the radius R and pitch P

R =
κ

κ2 + τ2
, (5.8)

P =
2πτ

κ2 + τ2
, (5.9)
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Parameter Symbol Value
Helical Radius R0 0.2067 µm

Length L 6 µm
Shear modulus b1, b2 0.8 g µm/s2

Stretch modulus b3 0.8 g µm/s2

Bending modulus a1, a2 3.5× 10−3 g µm3/s2

Twist modulus a3 1.0× 10−4 g µm5/s2

Twist-gradient coefficient γ 1.0× 10−3 g1/2 µm3/2/s
Intrinisic curvature κ 1.3057 µm−1

Right-hand intrinsic twist τ1 −2.1475 µm−1

Left-hand intrinsic twist τ2 2.1475 µm−1

Newtonian viscosity µn 1.0× 10−6 g/µm s
Polymeric viscosity µp 1.0× 10−6 g/µm s

Fluid density ρ 1.0× 10−12 g/µm3

Nonlinearity parameter α 0.3
Time step size ∆t 2.5× 10−7 s

Filament grid size ∆s 0.06 µm
Fluid grid size ∆x 0.078 125 µm

Table 5.1: Table of physical and computational parameters for both the model flagellum and the
fluid.

where τ is either τ1 or τ2. In general, the values of κ1, κ2, τ1, and τ2 need not be constant along

the flagellum. We note that the constitutive relations are derived from a variational argument of

the elastic energy potential. In particular, equation (5.7) comes from a bistable energy formulation

allowing for two different stable handed helices.

The flagellum is immersed in a viscoelastic fluid described by the Giesekus equations where the

Cauchy stress tensor consists of a Newtonian solvent τn and embedded polymers τp:

ρ

(
∂u

∂t
+ u · ∇u

)
= ∇ · σ + g, (5.10)

∇ · u = 0, (5.11)

σ = τn + τp, (5.12)

τn = −pI + µn2D, (5.13)

O
τp =

µp

λ
2D− 1

λ
τp −

α

λ
τ 2

p , (5.14)

where D = 1
2

(
∇u +∇uT

)
is the rate of strain tensor, u is the Eulerian velocity, p is the isotropic

pressure, g is the external body force density acting on the fluid, and O
τ is the upper convected
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derivative defined by
O
τ =

∂τ

∂t
+ u · ∇τ −

(
τ∇uT +∇uτ

)
. (5.15)

Instead of evolving the polymeric stress tensor, we evolve the conformation tensor C, which represents

an ensemble average of the spatial arrangements of the immersed polymers. The conformation tensor

is linearly related to the stress tensor via τp = G (C− I), where G =
µp
λ is the elastic modulus of the

polymers. Then the evolution of the conformation tensor is

O
C =

1

λ
(C− I) +

1

λ
(C− I)2 . (5.16)

The force density g is generated by the deformation of the rotating elastic flagellum, given by

g =

∫ L

0
−F (s, t) δw (x−X (s, t)) ds+

1

2
∇×

∫ L

0
−N (s, t) δw (x−X (s, t)) ds, (5.17)

where δw(x) = δw(x1)δw(x2)δw(x3) is a smooth compactly supported kernel function that mediates

coupling between the Lagrangian and Eulerian variables. The linear and angular velocities at the

filament are computed using by interpolating the Eulerian velocity onto the filament

∂X

∂t
=

∫
Ω

u (x, t) δw (X− x) dx, (5.18)

∂Di

∂t
=

1

2

∫
Ω

(∇× u (x, t)) δw (X− x) dx, for i = 1, 2, 3. (5.19)

We note that the presence of the smooth kernel function δw appears in both the continuum equations,

as well as the discretized equations. This is in contrast to traditional IB methods, where δw only

appears in the discretized equation. In traditional IB methods, w represents a numerical parameter

proportional to the Eulerian mesh width. In this context, the parameter w is a physical parameter

of the model which can be viewed as controlling the effective thickness of the rod. Larger values of

w will yield rods with larger effective thickness.

A description of the Lagrangian discretization can be found in Griffith and Lim [70] and is

implemented in the open-source software IBAMR. The Eulerian discretization is discussed in the

previous chapters.
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5.2 Results

The helical filament is initialized as

X (s, t) =

 0 0 ≤ s ≤ Lh

R0

(
1− e−c(s−Lh)2

)
Lh ≤ s ≤ Lh + Lf .

(5.20)

The helical radius is 0 for the hook and gradually increases to a radius of R0. Here, we choose c = 2.

The radius R, as well as the other parameters are given in Table 5.1. The vector D3 is initially

defined as the unit tangent vector to the flagellum, whereas D1 and D2 are the normal and binormal

unit vectors. The flagellum is driven by a rotary motor. We fix the point at s = 0 in space and

specify the rotation of the director vectors as

D1 (0, t) = (cos (2πωt) ,− sin (2πωt) , 0) , (5.21)

D2 (0, t) = (sin (2πωt) , cos (2πωt) , 0) , (5.22)

D3 (0, t) = (0, 0, 1) , (5.23)

where ω is the specified rotation rate. The sign of ω determines the direction of the rotation. The

rotation of the motor generates a torque that is then transmitted to the flagellum through the

compliant hook. Figure 5.2 shows a schematic view of the filament. The filament is placed in a

computational domain Ω which is a cube of length H = 20
3 L = 40 µm. We specify zero viscous stress

at the boundaries, and zero flux on the components of the conformation tensor at outflow boundaries.

The computational domain is discretized using N = 512 points in each direction on the finest level

of the AMR grid. Figure 5.2 shows the flagellum in the computational domain. We discretize the

Lagrangian structure so that the structure contains about one point per grid cell.

The motor is attached to the helical body by a flexible structure called the hook. The hook for an

E. coli bacterium ranges from 50 µm to 80 µm. Here we specify the hook’s length to be 2∆s = 60 µm.

To make the hook flexible, we specify the bending modulus to be two orders of magnitude smaller

than the filament. We also assume the hook to be intrinsically straight so that τ = κ = 0.

Figure 5.3 shows the shape of superimposed flagella spinning in fluids of varying Deborah numbers.

We note that the initial configuration of the flagellum is initialized in a left-handed helix, but spinning

the motor counter-clockwise switches the stable configuration to a right-handed helix. Figure 5.4
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Figure 5.2: A schematic view of the flagellum (left). The body of the flagellum is attached to the
rotary motor by a compliant hook. The right magnifies the computational domain in the viscinity of
the flagellum. The edge of the finest level of the AMR grid is shown on the edges. The flagellum is
discretized so that there is approximately one Lagrangian point per grid cell.

shows the pitch and radius from equation (5.8). A clear transition in handedness can be seen as the

transition propagates upward along the flagellum. A zoomed image of the radius and pitch is shown

in Figure 5.5. The flagellum in a Newtonian fluid with De = 0 shows a much looser helix as well as

being more twisted. Adding in the complex fluid tightens the helix by decreasing the radius as well

as reducing the pitch. However, as we decrease the Deborah number, we decrease the radius and

pitch even more.

We measure the volumetric flow rate through a disk D of radius R = 1 µm at the plane z = 5.5 µm.

While the flagellum’s length is 6 µm, the flagellum’s coiled length is approximately 5.25 µm. Therefore,

the tip of the flagellum never passes through the disk D. The volumetric flow rate is calculated as

Q =

∫
D

u · ndA, (5.24)

where n is the outward unit normal. We note that the choice of region D determines the flux

measure, because in the limit as the radius R tends to infinity, the volumetric flow rate Q tends to

zero as we encapsulate more regurgitation flow in the Newtonian limit. Figure 5.6 shows the region

through which the flow rate is calculated. Since we are specifying the rotation rate of the motor, we
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Figure 5.3: Views from the side (top row) and top (bottom row) of the flagella for varying Deborah
numbers. Images are shown for the total rotations of the motor tp = 0, 5, 10, and 12. Note that
after 10 rotations, an approximate steady rotation of the flagella is reached.
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Figure 5.4: Pitch (top) and radius (bottom) for a point at the middle (left) and top end (right) of
the flagellum for varying Deborah numbers. Note the transition of the handedness of the helix from
left- to right-handed.
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Figure 5.5: Magnification of Figure 5.4 showing the pitch (top) and radius (bottom) for a point at
the middle (left) and top end (right) of the flagellum for varying Deborah numbers.

can also calculate the power required to turn the motor at the specified frequency. We calculate the

total torque acting the hook from equation (5.2). Note that this represents torque being applied by

the motor as well as the restoring torque from the rest of the filament.

Figure 5.7 shows the flow rate Q through the region D as well as the total torque acting on the

hook. A positive torque represents the motor supplying greater power to the hook, while a negative

torque represents the rest of the flagellum pushing down on the hook. A flagellum spinning in a fluid

with a Deborah number of De = 0.1 has the smallest net torque acting on the hook. As we increase

the Deborah number, we see more negative torque acting on the hook. A flagellum spinning in a

Newtonian fluid has about the same torque applied to the hook as a complex fluid with Deborah

number De = 0.3. This suggests that a complex fluid can decrease the net torque acting on the hook,

possibly because the motor is supplying less power to maintain its rotation rate.

We fit a sine curve f(t) = Q̄+A sin (wt+ φ) through the last ten rotations of the flagellum. We

fix the frequency of the fit to be w = 2π 100 rad/s to match the rotation rate of the motor. The

value Q̄ is the average flow rate through the region D, A is the magnitude of the oscillation, and

phi is the phase of the oscillation. Table 5.2 shows the average torques and the parameters of the

fit for time 0.1 ≤ t ≤ 0.2 after the flagellum has reached a steady spinning rate. Although the
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Figure 5.6: The red region indicates the the area through which the volumetric flow rate is computed.

De average torque Q̄ A φ

0.0 −1.219× 10−4 g µm/s2 45.51 µm3/s 5.649 µm3/s 0.956 rad
0.1 −9.601× 10−5 g µm/s2 45.15 µm3/s 1.646 µm3/s −0.481 rad
0.3 −1.250× 10−4 g µm/s2 46.17 µm3/s 3.317 µm3/s 0.411 rad
0.5 −1.310× 10−4 g µm/s2 45.81 µm3/s 4.120 µm3/s 0.583 rad
0.7 −1.324× 10−4 g µm/s2 45.58 µm3/s 4.583 µm3/s 0.669 rad

Table 5.2: The average torque supplied to the hook and the parameters of the sine curve fit for
varying Weissenberg numbers for the time 0.1 ≤ t ≤ 0.2.

net torque decreases significantly for De = 0.1, the average flow rate remains relatively constant

for all the Deborah numbers tested. The amplitude, however, shows a significant variation among

the Deborah numbers. The flagellum spinning in a Newtonian fluid achieves the largest change in

amplitude in the flow rate, while the flagellum spinning in a complex fluid with Deborah number

De = 0.1 achieves the lowest variation. As we increase the Deborah number further, we achieve

larger amplitudes further approaching the Newtonian value. This suggests that the relaxation rate

of the polymers can significantly hinder the ability of the flagellum to successfully pump fluid. There

is also a significant phase lag between the oscillations in the flux that follows the same pattern as

the amplitude which suggests the presence of the complex fluid affects how quickly the motion of

the motor travels up the flagellum. We expect that additional probing of the Deborah numbers to

yield more insight into these discussed patterns.
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Figure 5.7: The volumetric flow rate and torque generated by a flagellum spinning in fluids of varying
Deborah numbers. The right column shows a zoomed in image of the left.
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APPENDIX A

WENO INTERPOLATION

Here we describe the process of WENO interpolation and compare it against standard interpola-

tion. We start with a review of Newton interpolation. We present the analyis in one spatial dimension.

For higher dimensions, we proceed in a dimension by dimension reconstruction. The fundamental

interpolation problem is given a set of data points {(xi, f(xi) = yi)}Ni=0, we wish to construct a

polynomial p(x) that interpolates the data points, p(xj) = yj . If we write p(x) =
∑N

i=0 ãix
i, then

apply the interpolation condition, we have

p(xj) = yj =

N∑
i=0

ãix
i
j for j = 0, . . . , N, (A.1)

which is an (N + 1) by (N + 1) system that we can solve for the coefficients ãi. However, this

results in a matrix that is ill conditioned as N becomes large and the points get closer together.

Alternatively, in the Newton form of the interpolating polynomial, we choose the basic form of the

polynomial to be

p(xj) = a0 + a1 (x− x0) + a2 (x− x0) (x− x1) + ·+ aN (x− x0) · (x− xN−1) . (A.2)

With this form of p(x), we can evaulate the polynomial at the interpolant points:

p(x0) = a0,

p(x1) = a0 + a1 (x1 − x0) ,

p(x2) = a0 + a1 (x2 − x0) + a2 (x2 − x0) (x2 − x1) .

This allows us to define the coefficients in a recursive fashion

f [xi] = yi, f [xi, · · · , xi+j ] =
f [xi+1, · · · , xi+j ]− f [xi, · · · , xi+j−1]

xi+j − xi
. (A.3)
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These are known as divided differences, and the polynomial becomes

p(x) =

N∑
i=0

f [x0, · · · , xi]
i−1∏
k=0

(x− xk) . (A.4)

We consider three test functions,

f1(x) = cos (πx) , (A.5)

f2(x) =
1

1 + 25x2
, (A.6)

f3(x) = H(x) =

 1 if x ≥ 0,

0 if x < 0.
(A.7)

Figure A.1 shows the resulting interpolants. For functions with derivatives with controlled oscillations,

such as f1(x), we obtain excellent results. For functions where the derivatives have large gradients,

such as f2(x), or for which the derivative is discontinuous, such as f3(x), we see oscillations in the

interpolant.

We can fix this issue by returning to the divided difference. For smooth functions, the divided

difference satisfies f [xi, · · · , xi+j ] = f (j)(ξ)
j! . However, if f(x) is not smooth, then f [xi, · · · , xi+j ] ∼

O
(

(∆x)−j
)
. In other words, the divided difference gives us a notion of the smoothness of the

function. If the divided difference is small, then the derivative of f(x) is small, making f(x) smooth.

If the divided difference is large, either f(x) is discontinuous or the derivative has large changes in it.

We can use this idea to build up a smooth stencil for our interpolation. We start with two points

{xi, xi+1} so that p1(x) = f [xi] + f [xi, xi+1] (x− xi). We now add a second point to get our second

interpolant

L(x) = p1(x) + f [xi−1, xi, xi+1] (x− xi) (x− xi+1) ,

R(x) = p2(x) + f [xi, xi+1, xi+2] (x− xi) (x− xi+1) .

The only difference between the two interpolants is the choice of divided difference. We then choose

the interpolant that has the smallest divided difference. We can then repeat this process until we’ve

hit the desired degree of polynomial N . This method is called Essentially Non-Oscillatory (ENO)
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interpolation because it builds up a stencil so that the interpolating polynomial is smooth.

When choosing our stencil, we looked at a total of 2N − 1 points, but ended up choosing

a stencil that only had N points. At smooth points, we could use all 2N − 1 points to get a

polynomial of degree 2N − 2. However, when the function is not smooth, we would like to use

a smaller number of points in a weighted direction to get a smoother interpolant. Suppose we

have k stenciles Sr(i) = {xi−r, ·, xi−r+k−1} for r = 0, ·, k − 1 that give k different reconstructions

yr
i+ 1

2

=
∑k−1

j=0 crjqi−r+j . Then a Weighted Essentially Non-Oscillatory (WENO) reconstruction uses

a convex combination of all the reconstructions

yi+ 1
2

=

k−1∑
r=0

wry
r
i+ 1

2

, wr ≥ 0,

k−1∑
r=0

wr = 1. (A.8)

If f(x) is smooth in all the candidate stencils, then there exists constants dr such that

yi+ 1
2

=

k−1∑
r=0

dry
r
i+ 1

2

= f(xi+ 1
2
) +O

(
∆x2k−1

)
. (A.9)

We would like wr ≈ dr when f(x) is smooth in stencil Sr and wr ≈ 0 otherwise. We choose wr to be

of the form

wr =
αr∑k−1
i=0 αi

, αr =
dr

(ε+ βr)
2 , (A.10)

where βr is a smoothness indicator of the function f(x) in the stencil Sr. We would like βr to be

large when near a discontinuity. Here, we choose βr to be

βr =

k−1∑
l=1

∫ x
i+1

2

x
i− 1

2

∆x2l−1

(
∂lpr(x)

∂xl

)2

dx. (A.11)

To demonstrate the ability of WENO interpolation to capture sharp features, we interpolate the

function f4(x) = sin(2πx)4. This function is a classical function used to test interpolation methods

due to its steep gradients despite being a C∞ function. We evaluate the function f4(x) on cell sides

xi = i∆x and then reconstruct the function at cell centers xi+ 1
2

=
(
i+ 1

2

)
∆x using a 7th order

WENO approximation. Figure A.2 shows the results. The function is shown in blue with the values

of the interpolant shown in red circles. The right figures show the weights wr that are used for the

interpolation. The circles are the actual weights that are being used by the interpolation, while the
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Figure A.1: The three test functions f1(x) = cos (πx), f2(x) = 1
1+25x2

, and f3(x) = H(x) and the
interpolants with N = 10 points.

lines show the weights that would be required to get 7th order approximations. Note that as we

increase the number of points, we use weights that are closer to the ideal weights.
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Figure A.2: Seventh-order WENO reconstructions of f4(x) = sin (2πx)4 for N = 64, 128, and 256
points. Left: The function is shown in blue with the resulting interpolant evaluations shown in red
circles. Right: The weights used in the reconstruction.
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