
IMPROVED PREDICTIONS OF CONTAMINANT  
DEGRADATION IN WATER TREATMENT REACTORS 

Alexander Sean Gorzalski 

A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in 
partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department 

of Environmental Sciences and Engineering in the Gillings School of Global Public Health. 

Chapel Hill 

2019 

Approved by: 

Orlando Coronell 

Gregory Harrington  

Michael Aitken  

Gregory Characklis 

Will Vizuete 



ii 

© 2019 
Alexander Sean Gorzalski 

ALL RIGHTS RESERVED 



iii 

ABSTRACT 

Alexander Sean Gorzalski: Improved Predictions of  
Contaminant Degradation in Water Treatment Reactors 

(Under the direction of Orlando Coronell and Gregory Harrington) 
 

The efficacy of fundamental water treatment processes depends on reactor hydraulics. 

Despite the importance of reactor hydraulics, oversimplified hydraulic models have been used 

for the design, operation, and regulation of water treatment reactors. The most commonly used 

model assumes plug flow reactor (PFR) behavior with residence time equal to the time for the 

first 10 percent of flow to leave the reactor (PFR t10). This simplification is overly conservative 

when targeting low log reductions of contaminants, and may also overestimate treatment efficacy 

when targeting higher log reductions, such as in water reuse applications.  

The overall goal of this dissertation was to improve the prediction of contaminant 

degradation in water treatment reactors by accurately modeling reactor hydraulics. This goal was 

met through the following three objectives: (i) development of accurate models for residence 

time distribution (RTD) (i.e., macromixing); (ii) assessment of flow segregation and earliness of 

mixing (i.e., micromixing) in full-scale water treatment reactors; and (iii) quantitative evaluation 

of the effect of RTD model selection on predictions of contaminant degradation.   

This work generated a number of major conclusions and contributions to the modeling of 

contaminant degradation. (i) Reactor network (RN) models accurately represented observed RTD 

using fewer fitting parameters than alternative models and (ii) an open-source tool was created to 

fit RN models to tracer data. (iii) Micromixing was observed to be prevalent in full-scale 
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reactors, and (iv) the tanks-in-series (TIS) and certain RN models most accurately represented 

micromixing. (v) Micromixing had the greatest impact on predictions of pathogen disinfection 

when specific lethality coefficient and disinfectant decay rate were high. (vi) The PFR t10 model 

may cease to be conservative when predicting contaminant reductions >2-log. (vi) Designing 

reactors for 1-log reduction using the PFR t10 model may increase capital costs by 10-80% 

relative to an accurate RTD model like the RN model; (vii) at 6-log reduction, properly sizing 

oxidation processes using the RN model may increase costs by over 100% relative to the PFR t10 

model. 

Overall, this work provides a fundamental basis for the rational design, operation, and 

regulation of water treatment processes using the TIS or RN models.  
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CHAPTER 1  - INTRODUCTION 

1.1 Background and Motivation 

1.1.1 Applications of Reactor Modeling in Water Treatment 

1.1.1.1 Water Treatment Reactors 

The largest flow-through reactors in existence are used in water treatment (Crittenden et 

al. 2012). Water treatment reactors include clearwells, ozone contactors, sedimentation basins, 

and filters; reactions can occur in any unit process, and these reactions can be engineered or 

unintentional. Deviation from ideal performance increases with increasing reactor size, and thus, 

reactor design depends on understanding non-ideal reactor performance (Crittenden et al. 2012). 

1.1.1.2 Disinfection 

With the exception of a small number of high-quality groundwaters, public water systems 

in the United States are required to disinfect drinking water, and criteria for meeting disinfection 

requirements are based on reactor modeling (USEPA 1991, USEPA 2009, USEPA 2010). 

Waterborne pathogens present the greatest public health risk of any class of contaminants in 

drinking water. Even in the United States, which has greatly reduced the number of waterborne 

disease outbreaks through treatment and regulatory developments, microbial contaminants still 

present the greatest health risk (Seidel et al. 2014). The disinfection of pathogens is typically 

achieved using chemical disinfectants, although the use of ultraviolet light is a notable exception. 

Disinfection in the United States is most commonly performed using free chlorine; in a recent 

survey, 71% of systems used free chlorine, 21% used chloramines. Chlorine dioxide, ozone, and 
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ultraviolet light were each used by 7% of systems (AWWA 2018)1. Thus, disinfection in the 

United States is still predominantly performed with free chlorine, and models are used to 

determine what concentration and contact time is required to achieve adequate pathogen 

inactivation. 

1.1.1.3 Oxidation of Reactive Contaminants 

Another use of water treatment reactors is the degradation or transformation of chemical 

contaminants by oxidation. This includes the treatment of hydrogen sulfide, iron and manganese, 

color, as well as taste and odor compounds such as 2-methylisoborneol (MIB) and geosmin 

(Crittenden et al. 2012). Oxidation can be used to treat disinfection by-product (DBP) precursors, 

such as organic nitrogen that can form N-nitrosodimethylamine (NDMA) (Krasner et al. 2013). 

The use of water treatment oxidants is also a common treatment strategy for the control of algal 

toxins (Rodriguez et al. 2007) and degradation of certain endocrine disrupting compounds, 

pharmaceuticals, and personal care products (Westerhoff et al. 2005). 

1.1.2 Reactor Models 

1.1.2.1 Fundamentals of Reactor Modeling 

Reactor performance for a single fluid is a function of four factors: reaction kinetics, 

residence time distribution (RTD), degree of segregation, and earliness of mixing (Levenspiel 

1999). RTD is commonly referred to as macromixing, while degree of segregation and earliness 

of mixing are collectively referred to as micromixing. Predicting or modeling reactor 

                                                 

1Note that the sum of disinfection technologies used exceeds 100% as some systems used multiple disinfection 
technologies.  
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performance depends on determining, or assuming, these four factors.  

Degree of segregation and earliness of mixing become important when a reaction is not 

first order or pseudo-first order, RTD deviates from plug flow, conversion (or reduction) of a 

constituent is high, or multiple reactions occur simultaneously (Levenspiel 1999). However, 

degree of segregation and earliness of mixing (i.e., micromixing) are not important where there 

is no reaction, such as tracer studies performed with a conservative tracer. Also, reactions that are 

first order or pseudo-first order are not affected by micromixing (Levenspiel 1999).  

1.1.2.2 Ideal Reactor Models 

Batch Reactor 

Reaction rates are typically determined at laboratory scale in batch reactors, including 

disinfection studies (Crittenden et al. 2012). Reactants are initially added to a vessel, well mixed, 

and allowed to react before being discharged (Levenspiel 1999). Depictions of a batch reactor 

and other ideal reactors are shown in Figure 1.1. The batch reactor is operated in a non-steady 

state manner because concentrations of reactants and products change over time (Levenspiel 

1999). 

Plug Flow Reactor (PFR) 

The plug flow reactor (PFR) is an ideal, steady-state, flow-through reactor with no 

mixing or dispersion in the direction of flow (Levenspiel 1999). Mixing may occur transverse to 

the direction of flow, however the presence or absence of transverse mixing does not affect the 

definition of plug flow. The absence of longitudinal mixing and dispersion results in all flow 

elements having equal residence time in the reactor. The effluent concentrations of a PFR will be 

equal to the effluent concentrations of a batch reactor with equal residence time. Similarly, 
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concentrations in a batch reactor at any given time will be equivalent to the effluent of a PFR 

with the same residence time.  

Continuous-Flow Stirred Tank Reactor (CSTR) 

The continuous-flow stirred tank reactor (CSTR) is a steady state, flow-through reactor. It 

differs from the PFR in that perfect mixing is assumed in all directions, resulting in uniform 

conditions throughout the reactor (Levenspiel 1999). The concentration of reactants and products 

leaving the reactor at any time are thus equal to the concentration within the reactor. 

 

 

Figure 1.1. Schematic representation of the three ideal reactor types: batch reactor, plug flow 
reactor (PFR), and continuous-flow stirred tank reactor (CSTR). 
 
1.1.2.3 Non-Ideal Reactor Models and their use in Water Treatment 

Although reactors are typically designed so that their flows approach the ideal conditions 

described above (Levenspiel 1999), water treatment reactors commonly exhibit non-ideal flow 

(Crittenden et al. 2012). This section will describe reactor models used in the literature and in 

practice to describe non-ideal flow in water treatment reactors. 

PFR t10 

To account for short-circuiting through reactors, U.S. EPA credits the time for the first 

10% of flow to exit a reactor (t10) (USEPA 1991, USEPA 2010). The value of t10 should be 

determined via tracer study, although methods are available to estimate t10 from qualitative 

assessments of internal baffling (USEPA 1991). Dividing t10 by the nominal hydraulic residence 
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time, τ, produces the reactor baffle factor (BF). The PFR t10 model will behave the same as the 

PFR, except that the credited residence time is shorter. A schematic representation of PFR t10 and 

other non-ideal reactors is shown in Figure 1.2. 

 
Figure 1.2. Schematic representation of three non-ideal reactor types: t10 plug flow reactor 
(PFR), tanks-in-series (TIS), segregated flow (SF). 

 

Modeling RTD using t10 was demonstrated to be overly simplistic, requiring excessive 

contact time to receive credit for relatively low log reductions and, conversely, underestimating 

the contact time necessary to achieve higher log reductions (Lawler and Singer, 1993).  

Tanks-in-Series (TIS) and Axial Dispersion 

More accurate representations of hydraulic residence time distribution (RTD) can be 

provided by the tanks-in-series (TIS) or axial dispersion models (Teefy and Singer 1990, Lawler 

and Singer 1993, Crozes et al. 1999, Ducoste et al. 2001). These models have one parameter, 

number of tanks (n) or dispersion number (D), that can be fit to tracer data. The TIS and axial 

dispersion models produce similar results when dispersion in a reactor is low (Crittenden et al. 

2012). Although this is not true of all water treatment reactors, most disinfection reactors are 

designed to reduce dispersion. For this reason, only the TIS model is used here to avoid 

duplication of model results. 
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The TIS model divides the reactor into n equal-volume CSTRs arranged in series (see 

Figure 1.2). As n approaches infinity, TIS reactor performance will approach that of a PFR; as n 

approaches unity, TIS reactor performance will approach that of a CSTR. Any value of n where 1 

< n < ∞ will produce performance between that of a CSTR and a PFR. 

Bellamy et al. (1998) coupled one parameter models with the Hom model for pathogen 

inactivation and first-order oxidant decay to develop the integrated disinfection design 

framework (IDDF). The stated purpose of the IDDF was to balance pathogen disinfection with 

DBP formation by developing site-specific disinfection models. IDDF models were intended to 

provide disinfection treatment credit with lower oxidant concentrations or contact times than 

PFR t10. Limitations of the original IDDF were its reliance on complex integrals and that it could 

only be used when deviations from plug flow were small (i.e., BF > 0.5) (Carlson et al. 2001). 

Although efforts were undertaken to standardize the implementation of the IDDF so that it would 

be recognized by utility, academic, consulting, and regulatory communities (Carlson et al. 2001), 

the PFR t10 still remains the standard approach to disinfection some 18 years later. 

Segregated Flow (SF) 

The segregated flow (SF) model represents RTD as a number of PFRs arranged in 

parallel, each having different residence times (see Figure 1.2). The SF model assumes that fluid 

elements do not mix or interact with each other. Concentrations in reactor effluent can be 

calculated by estimating the reaction for each fluid element, and summing (i.e., mixing) all fluid 

elements at the point that flow leaves the reactor (Crittenden et al. 2012). Detailed descriptions 

of the SF model are available in chemical engineering (Levenspiel 1999) and water treatment 

engineering textbooks (Crittenden et al. 2012).  
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The SF model consists of only PFRs, and contaminant degradation in PFRs is equivalent 

to degradation in batch reactors with equal residence times (as discussed earlier). Therefore, 

contaminant degradation in SF can be calculated directly from laboratory batch experiments. By 

making the conservative assumption that disinfectant concentration throughout the reactor is 

equal to the observed effluent concentration, contaminant removal can be calculated for each 

hypothetical PFR based on observation in a batch reactor with the same exposure duration 

(Crittenden et al. 2012).   

The SWTR Guidance Manual describes the use of SF for Giardia and virus disinfection 

calculations (USEPA 1991). However, discussion of SF is limited to ozone disinfection, and was 

described in limited detail, hindering its implementation by utilities and state regulatory agencies 

(Najm et al. 2009). The use of SF is not a permissible method for calculating Cryptosporidium 

inactivation under the Long Term 2 Enhanced SWTR (LT2) (USEPA 2010); EPA requested 

comment in the draft guidance manual on whether SF should be included (USEPA 2003) and 

ultimately excluded SF from the final guidance due to questions about SF accuracy and lack of 

supporting experimental data (Najm et al. 2009).  

Limitations of SF include that it will overestimate contaminant degradation for reaction 

orders greater than 1.0 (Crittenden et al. 2012), which could present a risk to public health. SF 

also assumes that there is no mixing within a reactor; this assumption may not be accurate for 

many water treatment reactors. 

Part of U.S. EPA’s concern about the use of SF for disinfection credit in LT2 was that SF 

might overestimate pathogen inactivation (USEPA 2003). As discussed later, SF produces 

significantly higher estimates of inactivation than models that include mixing when 
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incorporating decaying oxidant concentrations (i.e., not assuming concentration throughout the 

reactor is equal to reactor effluent concentration) (Craik 2005, Pfeiffer and Barbeau 2014). 

Therefore, it would benefit the field to understand the extent to which mixing occurs within 

water treatment reactors. If reactor mixing is indeed significant, other models should be sought to 

accurately represent both RTD and internal mixing. 

Maximum Mixedness (MM) 

While the SF model assumes that flow entering the reactor does not mix with the reactor 

contents, the maximum mixedness (MM) model assumes the opposite: that flow entering the 

reactor perfectly mixes with reactor contents (Fogler 2005). The SF and MM models present 

opposite extremes of mixing assumptions for a reactor with a given RTD. For a single first-order 

reaction, the MM model and SF model produce equivalent predictions of contaminant 

degradation (Fogler 2005), such as Chick-Watson disinfection when oxidant concentration is 

constant (Craik 2005, Pfeiffer and Barbeau 2014). However, for a multi-reaction system such as 

disinfection with a decaying oxidant, SF and MM will produce different predictions of 

contaminant degradation (Craik 2005, Pfeiffer and Barbeau 2014).  

Computational Fluid Dynamics (CFD) 

Computational fluid dynamics (CFD) models have been used to predict pathogen 

inactivation, disinfectant residual, and disinfection by-product formation spatially throughout 

reactors (Greene et al. 2004, Greene et al. 2006, Angeloudis et al. 2014). A benefit of CFD over 

methods that rely on tracer data is that CFD can predict reactor performance prior to 

construction, estimate the effects of reactor design modifications, and simulate a range of flow 

conditions with relatively little additional effort.  
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However, CFD modeling remains too computationally resource-intensive for every day 

reactor design and operation (Laurent et al. 2014) at steady state, and simulations for dynamic 

conditions require even greater computing power (Wicklein et al. 2015). Further, modern CFD 

codes still generally perform poorly at estimating RTD (Naumann 2008). For these reasons CFD 

was not used in this dissertation. 

1.1.2.4  Equations for Step Dose Tracer RTD and Contaminant Removal  

Although tracer studies can be either pulse dose or step dose (Fogler 2005), this 

dissertation will be limited to the use of step dose tracers. This type is more commonly used in 

water treatment, and a guide on performing tracer studies can be found elsewhere (Teefy 1996). 

Figure 1.3 shows the cumulative distribution curve produced by a step dose tracer. Equations for 

tracer effluent predicted by ideal and non-ideal reactor types are shown in  1.1. 

 
Figure 1.3. Cumulative distribution curve for a step-dose tracer.  

 

For the tracer shown in Figure 1.3, C is the observed concentration of a conservative 

tracer over time, and C0 is the initial step dose concentration. The normalized residence time, ϴ, 

is equal to time (t) divided by τ. Dividing reactor volume (V) by flow rate (Q) yields τ. 
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Contaminant oxidation in water treatment reactors may be a function of numerous 

independent variables, including pH, temperature, flow rate, reactor volume, oxidant 

concentration, and contaminant concentration. These variables can be expressed as a single 

number: the Damköhler number (Da). Da is a unitless number defined by Fogler (2005) as  

𝐷𝐷𝐷𝐷 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑚𝑚𝑟𝑟𝑚𝑚𝑚𝑚 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑚𝑚𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

= −𝑟𝑟𝑟𝑟
�̇�𝑚

,   1.1 

where r is the reaction rate (mg/L-min), and ṁ is the mass flow rate (mg/min). Higher Da 

indicates more reaction (e.g., contaminant removal) and is generalizable to reactions of any order 

in flow through reactors (Fogler 2005, Howe et al. 2012). Consider an example reaction that is 

second order overall and first order with respect to each of two reactants [e.g., an oxidant (C) and 

a contaminant (N, mg/L), which could be microbial or chemical]. The Da for contaminant with 

concentration N in this case would be 

𝐷𝐷𝐷𝐷 = −rV
ṁ

= −k′CNV
QN

= −k′C𝜏𝜏 ,  1.2 

              
as used by Lawler and Singer (1993). Contaminant removal equations for the type of 

reaction described above are shown for ideal and non-ideal reactors in Table 1.1. 
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Table 1.1. Normalized step dose tracer concentration and contaminant remaining for ideal and 
non-ideal reactor models currently used in water treatment. Contaminant remaining equations are 
for reactions that are second order overall, first-order with respect to the contaminant and 
oxidant. Contaminant remaining equations are shown as a function of the Damköler number 
(Da). Modified from Chapter 2, Table 2.7 (Gorzalski et al. 2018).

  Reactor Reactor Effluent Tracer 
Concentration, C/C0 

Contaminant Remaining 
N/N0 

Batch N/A 
𝑁𝑁
𝑁𝑁0

= e−𝐷𝐷𝑟𝑟 

PFR For θ < 1  𝐹𝐹(𝜃𝜃) = 0 
For θ ≥ 1  𝐹𝐹(𝜃𝜃) = 1 

𝑁𝑁
𝑁𝑁0

= e−𝐷𝐷𝑟𝑟 

PFR t10 For θ < BF   𝐹𝐹(𝜃𝜃) = 0 
For θ ≥ BF   𝐹𝐹(𝜃𝜃) = 1 

𝑁𝑁
𝑁𝑁0

= e−𝐵𝐵𝐹𝐹𝐷𝐷𝑟𝑟 

CSTR 𝐹𝐹(𝜃𝜃) = 1 − e−𝜃𝜃 
𝑁𝑁
𝑁𝑁0

=
1

1 + 𝐷𝐷𝐷𝐷 

TIS 
𝐹𝐹(𝜃𝜃) = �

𝑛𝑛(𝑛𝑛𝜃𝜃)𝑟𝑟−1

Γ(𝑛𝑛) e−𝑟𝑟𝜃𝜃d𝜃𝜃
𝜃𝜃

0
 

where Γ(𝑛𝑛) = ∫ e−𝑥𝑥𝑥𝑥𝑟𝑟−1∞
0 d𝑥𝑥 

𝑁𝑁
𝑁𝑁0

=
1

�1 + 𝐷𝐷𝐷𝐷
n �

n 

SF N/A 

𝑁𝑁
𝑁𝑁0

= ���
𝐶𝐶
𝐶𝐶0
�
2
− �

𝐶𝐶
𝐶𝐶0
�
1
� 𝑒𝑒−𝐷𝐷𝑟𝑟

𝜃𝜃1+𝜃𝜃2
2 + ⋯

+ ��
𝐶𝐶
𝐶𝐶0
�
𝑧𝑧
− �

𝐶𝐶
𝐶𝐶0
�
𝑧𝑧−1

� 𝑒𝑒−𝐷𝐷𝑟𝑟
𝜃𝜃𝑧𝑧+𝜃𝜃𝑧𝑧−1

2  

 

1.1.3 Needs and Knowledge Gaps for Hydraulic Models of Water Treatment Reactors 

1.1.3.1 Accurate, Simple Models to Simulate RTD and Predict Contaminant Degradation 

As discussed in the previous section, there are numerous ideal and non-ideal reactor 

models that can be used to model water treatment reactors. However, very few of these models 

closely represent the observed RTD as determined by tracer study (see Figure 1.4). The PFR and 

PFR t10 models are unable to accurately represent RTD. The TIS model provides considerable 

improvement in fit accuracy compared to the PFR and PFR t10 models. However, the TIS model 

is limited in its ability to fit the observed RTD due to having only one fitting parameter. SF uses 

tracer data directly2, and thus can represent any observed tracer data. However, the equation to 

                                                 

2 For each tracer data point, the observed ϴ represents normalized residence time, and 
ΔC/C0 represents the fraction of flow that passes through the PFR. 
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describe contaminant degradation using SF is long and complex. For the tracer data shown in 

Figure 1.4, SF would require 72 PFRs and 146 unique inputs to predict contaminant degradation. 

This expression is considerably longer than the expressions for other reactor models as shown in 

Table 1.1. 

 
Figure 1.4. RTD as observed by a step dose tracer and predicted by PFR, PFR t10, and TIS 
models. 
 

Thus, the water treatment field would benefit from reactor models that can accurately 

represent RTD with less complexity than SF.  

1.1.3.2 Understanding Flow Segregation and Earliness of Mixing in Water Treatment 

Reactors 

As discussed in Section 1.1.2.1 above, reactor performance is a function of reaction 

kinetics, RTD, flow segregation, and earliness of mixing; these concepts are depicted in Figure 

1.5. However, reactor models commonly used in water treatment, including IDDF and SF, have 

considered only reaction kinetics and RTD, and make implicit assumptions about flow 

segregation and mixing. SF assumes perfect segregation throughout, with all flows mixing at the 

end of the reactor similar to a zero residence time CSTR. The MM model uses the same RTD as 
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SF, but assumes perfect mixing when flows enter the reactor. IDDF with TIS reactors assume 

perfect mixing in the reactor in a discrete series of CSTRs. Previous studies have shown that in 

the presence of a decaying oxidant, pathogen log inactivation would be predicted to increase 

with increasing flow segregation (i.e., MM < TIS < SF) (Craik 2005, Pfeiffer and Barbeau 2014).  

 
Figure 1.5. Visual representation of reactor segregation and mixing. Blue and yellow solutions, 
when mixed together, form a green solution. Solid lines represent boundaries through which flow 
cannot pass, while dashed lines represent boundaries through which flow can pass.  
 

Although differences in segregation and mixing can have important impacts on predicted 

contaminant degradation under certain conditions (i.e., reaction not 1st order, RTD deviates from 

plug flow, target reduction is high, multiple reactions), these concepts have not been investigated 

in drinking water treatment reactors. There is a gap in the existing literature regarding whether 

flow in full-scale reactors is perfectly segregated, perfectly mixed, or somewhere in between. A 

previous study (Gresch et al. 2011) successfully investigated these conditions using ammonia as 

a reactive tracer in an actively mixed nitrification reactor treating wastewater. A similar study 

could be performed in drinking water reactors if a suitable reactive tracer could be used at full 

scale. These findings would inform decisions about model selection (e.g., perfect segregation 

versus assumed mixing). 
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1.1.3.3 Effects of Model Selection on Contaminant Degradation Predictions 

Despite its shortcomings, the PFR t10 is still used for disinfection credit in the United 

States (USEPA 1991, USEPA 2010), as well as for predicting the degradation of emerging 

contaminants such as cyanotoxins (Stanford et al. 2016). Although the IDDF and SF provide 

more accurate predictions of reactor performance, the PFR t10 is generally considered to be a 

conservative lower bound of contaminant degradation (Crittenden et al. 2012). As a result, 

California allows up to 6-log reduction of pathogens in water reuse projects to be credited based 

on t10 (CDPH 2014). The pathogen risk assessment for a 1 MGD demonstration-scale facility in 

San Diego (Pecson et al. 2017) credited 6-log Giardia and virus credit for an ozone contactor 

based on t10.  

Crediting 6-log pathogen removal based on t10 raises questions about whether a parameter 

that specifies a minimum residence time for only 90% of flow can be used to credit 99.9999% 

degradation. The water treatment field would benefit from a study of the reductions at which the 

PFR t10 model typically ceases to be conservative for estimating disinfection in water treatment 

reactors.  

Further, the field would also benefit from a better understanding of the effect that flow 

segregation and earliness of mixing in different reactor hydraulic models have on estimates of 

contaminant degradation.  

1.1.3.4 Reactor Network Models in Water Treatment 

Reactor network (RN) models consist of different reactor types and sizes arranged in 

parallel and series combinations. Chemical engineering textbooks describe basic RNs, such as 

PFRs and CSTRs arranged in series (Levenspiel 1999, Fogler 2005). Reactor networks 
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consisting of three to five TIS reactors have been used to model RTD in high-dispersion, 

chemical engineering applications, such as a packed bed reactor, an internally recirculating 

CSTR, and a simulated cuboid with multi-port inlet manifold (Martin 2000). The RN models 

used by Martin (2000) were able to represent RTD accurately using fewer total reactors than 

networks using only PFRs and CSTRs. 

Reactor network models have the potential to improve modeling accuracy in water 

treatment reactors. However, reactor network models have not been used in the water treatment 

field to date. Numerous questions remain about their application. Whether they can more 

accurately represent RTD than models currently used in the field, what network arrangements 

should be used, and their relative effort and complexity compared to current models (i.e., PFR 

t10, TIS, SF) have yet to be investigated. 

1.1.3.5 Summary of Knowledge Gaps 

In summary, important knowledge gaps in water treatment reactor modeling include: 

1. Lack of accurate, simple models for representing reactor RTD. 

2. Limited understanding of the degree of flow segregation and earliness of mixing in 

water treatment reactors. 

3. Lack of guidance on the use of different RTD models when designing systems for 

different ranges of contaminant degradation (i.e., log reduction). 

1.2 Objectives 

1.2.1 Overall Dissertation Goal 

The overall goal of this dissertation was to identify and recommend accurate methods for 

the calculation of contaminant degradation in water treatment reactors. 
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1.2.2 Specific Objectives 

To accomplish this overall goal, I pursued the following specific objectives: 

1. Develop reactor network models for water treatment reactors. 

2. Assess the degree of full-scale reactor segregation and mixing using reactive tracers. 

3. Quantitative evaluation of how RTD model selection impacts predicted contaminant 

degradation.  

1.3 Dissertation Organization 

This dissertation consists of six chapters. Chapter 1 provides background and motivation 

for the research performed, including a discussion of applications of reactor modeling, 

description of individual reactor models, and summary of needs and knowledge gaps. Chapters 

2-4 consist of research project descriptions to address the specific objectives described in the 

previous section. Each chapter contains introduction, methods, results and discussion, and 

conclusion sections. A brief description of Chapters 2-4 is provided below: 

Chapter 2: Specific Objective 1 is addressed in this chapter. This chapter identified a 

short list of reactor network models that were broadly effective in modeling the RTD of tracer 

studies from literature. A process for selecting a single reactor network model for a given set of 

tracer data based on goodness of fit and model simplicity is also described. Tutorial videos were 

created and code for fitting reactor network models to tracer data were made publicly available 

on a website created for this purpose. Reactor network models are then used in Chapters 3 and 4.  

Chapter 3: Specific Objective 2 is addressed in this chapter. Flow segregation and 

earliness of mixing were investigated using reactive tracers generated from the seasonal 

conversion of residual disinfectant from chloramine to free chlorine. Reactor models used to 
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represent RTD in Chapter 2, each with differing assumptions about flow segregation and mixing, 

were used to predict concentrations of reactive tracers. Model predictions were compared to 

observation to indirectly assess flow segregation and mixing in water treatment reactors.  

Chapter 4: Specific Objective 3 is addressed in this chapter. For 35 reactors from 

literature, the effect of model selection on predicted contaminant degradation was studied in four 

ways. First, the Da required to achieve different target log reductions is computed for using 

different RTD models. Second, the range of log reduction at which the PFR t10 model can be 

considered conservative is calculated. Third, the impact of reactor model selection on capital 

costs of reactor construction is estimated. Finally, quantitative guidance is provided on the range 

of Da at which reactor modeling is necessary.   

Chapter 5 summarizes conclusions that were reached from the collective findings in 

Chapters 2-4. Conclusions reached from an individual chapter are contained within the 

conclusions section of each chapter. Chapter 6 provides additional research questions, along with 

why answering those question is important to the field and potential technical approaches to 

address each research question.   
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CHAPTER 2  - MODELING WATER TREATMENT REACTOR HYDRAULICS 
USING REACTOR NETWORKS3 

 

2.1 Introduction 

Improved design and operation of water treatment reactors through a more detailed 

understanding of reactor hydraulics has been the subject of education and research for over four 

decades (Weber 1972, Trussell and Chao 1977). In addition to improving reactor design and 

operation, this understanding of reactor hydraulics has served as a foundation for regulating the 

performance of water treatment reactors (USEPA 1991, Harrington et al. 1993). 

Reactor hydraulics are also fundamental to more recent developments in the drinking 

water field, including treating contaminants of emerging concern and planned wastewater reuse.  

Accurate modeling of reactor residence time is necessary to construct models of treatment 

efficacy for balancing disinfection with disinfection by-product formation and for oxidative 

degradation of emerging contaminants such as algal toxins (Rodriguez et al. 2007), N-

nitrosodimethylamine (NDMA) precursors (Krasner et al. 2013), and certain endocrine 

disrupting compounds, pharmaceuticals, and personal care products (Westerhoff et al. 2005). 

Planned reuse applications may also require improved hydraulic modeling compared to 

                                                 

3This chapter previously appeared as an article in Journal AWWA. The original citation is as 
follows: Published in Gorzalski, A.S., Harrington, G.W., Coronell, O. 2018. Modeling water 
treatment reactor hydraulics using reactor networks. Journal AWWA (2018), 110 (8): 13-29. 
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conventional surface water treatment due to vastly different regulatory requirements for pathogen 

barriers. For example, the state of California requires 107 times more reduction credit (i.e., 10-

log versus 3-log) for Giardia and Cryptosporidium in groundwater replenishment projects than 

in surface water treatment (CDPH 2014).  

Real-world, continuous flow reactors exhibit hydraulic behavior that falls between two 

ideal reactor types: the continuous flow stirred-tank reactor (CSTR) and the plug flow reactor 

(PFR). The CSTR is assumed to have infinite dispersion in all directions, giving rise to complete 

mixing throughout the reactor. The PFR is assumed to have zero dispersion parallel to the 

direction of flow, but infinite dispersion perpendicular to the direction of flow, and is 

mathematically equivalent to an infinite number of infinitesimal CSTRs connected in series. 

When a finite number of equally sized CSTRs (e.g., 2-100) are arranged in series, the resulting 

tanks-in-series (TIS) reactor exhibits dispersion between the CSTR and PFR. 

The Surface Water Treatment Rule (SWTR, USEPA 1991) addresses reactor dispersion in 

disinfection calculations by crediting only the time for the first 10 percent of flow to exit the 

reactor (t10). A reactor baffle factor is calculated by dividing t10 by the nominal hydraulic 

residence time (τ). Log reduction credit is calculated as the ratio of achieved CT (residual oxidant 

concentration, C, times t10) to required CT. The current regulatory approach was demonstrated to 

be overly simplistic, requiring excessively high chlorine CT values (i.e., the product of chorine 

residual multiplied by contact time, USEPA 1991) for low log reductions and, conversely, 

underestimating the CT necessary for higher log reductions (Lawler and Singer 1993).  

Reactor models with one fitting parameter, including the axial dispersion and the TIS 

models (Teefy and Singer 1990, Lawler and Singer 1993, Crozes et al. 1999, Ducoste et al. 
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2001), more accurately represent hydraulic conditions than t10/τ baffle factors. The axial 

dispersion and TIS models are roughly equivalent and perform well when deviations from plug 

flow are small (Levenspiel 1999). However, a single fitting parameter constrains model 

flexibility and thus accuracy, particularly for higher dispersion reactors. 

Computational fluid dynamics (CFD) presents the opposite end of the spectrum, 

producing flexible models with a large number of input parameters. Improvements in CFD 

modeling have enabled prediction of residence time indices (e.g., t10/τ) within ~10% (Templeton 

et al. 2006, Zhang et al. 2016). While CFD has utility in estimating performance before reactors 

are constructed or modified, tracer tests provide greater accuracy for existing reactors at lower 

cost using more transparent methods. In a review of residence time theory, Naumann (2008) 

commented that modern CFD codes generally perform poorly at estimating residence time 

distribution and expressed concern over the potential for CFD to be used improperly. 

Previous efforts have succeeded in modeling residence time distribution with greater 

accuracy than either single parameter or CFD models by modeling one reactor as a combination 

of multiple reactors. Najm et al. (2009) were able to accurately predict spore inactivation through 

an ozone contactor using segregated flow (SF). The SF model treated a single contactor as 26 

parallel PFRs. This approach accurately fit tracer data and predicted disinfection performance 

(Najm et al. 2009), but yielded a large number of reactors. In chemical engineering applications, 

Martin (2000) noted that combinations having only ideal PFRs and CSTRs can lead to large and 

cumbersome models. Martin was able to reduce the number of reactors by using TIS reactors 

arranged in various parallel and series combinations.  

In chemical reactor design, reactors arranged in parallel and series combinations, 
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typically of varying types and sizes, are known as reactor networks. Basic reactor networks using 

CSTRs and PFRs are described in chemical engineering textbooks (Levenspiel 1999, Fogler 

2005). Martin (2000) developed networks of three to five TIS reactors to describe high-

dispersion chemical engineering reactors, which included a packed bed reactor, an internally 

recirculating CSTR, and a simulated cuboid with multi-port inlet manifold. Reactor networks 

were shown to accurately represent non-ideal flow with relatively simple models. Water 

treatment plants operate the largest continuous flow reactors in existence, considerably larger 

than most chemical engineering reactors (Howe et al. 2012). Departure from ideal flow increases 

with reactor size, and therefore the design of water treatment reactors depends on understanding 

this nonideality (Howe et al. 2012). Thus, reactor networks could have utility in modeling 

drinking water reactors. However, to the authors’ knowledge, reactor networks have not yet been 

applied to water treatment reactors (e.g., clearwells and ozone contactors), nor have their benefits 

and drawbacks in terms of accuracy, broad applicability, modeling effort, and model complexity 

been compared to existing approaches (i.e., t10/τ baffle factors, TIS models, and SF).  

This work identifies a small number of reactor networks that accurately model residence 

time distributions across a wide range of water treatment reactors and describes the process for 

fitting these models to user-supplied data sets with open source software. In addition, this work 

provides the first application of reactor networks to water treatment reactors and compares 

reactor networks to existing approaches with a discussion of balancing goodness of fit with 

model complexity. 

2.2 Modeling Methods 

2.2.1 Tracer Studies 

A total of 19 tracer data sets from 14 reactors, including clearwells, ozone contactors, 
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clarifiers, and filters (see Table 2.1), were obtained both from literature and previously 

unpublished data. The unpublished tracer data corresponds to clearwell tracer studies, 1A and 

1B, conducted at full-scale using step-dose fluoride (ΔC ≈ 0.7 mg/L) experiments. 

2.2.2 Normalized F vs. θ curve 

There are two common types of tracer studies:  the pulse dose and the step dose (Fogler 

2005). A detailed guide on conducting tracer studies was provided by Teefy (1996) and thus is 

not provided here. All tracer data were converted to the normalized step dose F(θ) curve as 

described elsewhere (Levenspiel 1999). As shown in Figure 2.1, F is the tracer concentration 

leaving the reactor divided by the step dose concentration (C/C0), and θ is the normalized run 

time, where θ = t/τ. The nominal hydraulic residence time, τ, is defined as τ = V/Q where V is the 

reactor volume and Q is the volumetric flow rate. 

2.2.3 Reactor Network Hydraulic Models 

Hydraulic models for reactor networks were constructed from various combinations of 

PFR, CSTR, and TIS reactors. These included reactors arranged in parallel, series, or some 

combination thereof. All models contained four or fewer reactors. Twenty-nine models were 

developed with and without dead space for a total of 58 separate hydraulic models. 

 

 



 

Table 2.1. Summary of tracer data used for testing various hydraulic models. 
ID Plant Type Contactor Type Tracer Type Replicates t10/τ Reference 

1A Water Clearwell Step Dose 1 0.45 This Chapter 

1B Water Clearwell Step Dose 4 0.45 This Chapter 

2A Water Clearwell Step Dose 1 0.39 * Teefy and Singer 1990 

3A Water Filters (6) Pulse Input 1 0.50 * Teefy 1996 

3B Water Clearwell Step Dose 2 0.72-0.80 Teefy 1996 

3C Water Clearwell Step Dose 1 0.67 Teefy 1996 

3D Water Ozone Contactor Step Dose 2 0.61 Teefy 1996 

3E Wastewater Secondary Clarifier Pulse Input 1 0.19 Teefy 1996 

3F Wastewater Chlorine Contact Chamber Pulse Input 1 0.43 Teefy 1996 

3G Water Clearwell Step Dose 1 0.67 Teefy 1996 

3H Water Clearwell (Circular) Step Dose 1 0.57 Teefy 1996 

4A NR NR Step Dose 1 0.31 * Carlson et al. 2001 

5A Water Ozone Contactor Step Dose 1 0.69 * Najm et al. 2009 

5B Water Ozone Contactor Pulse Input 1 0.70 * Najm et al. 2009 

NR - not reported      
* Not reported, but calculated via linear interpolation from reported data 

26 
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Figure 2.1. The F(θ) cumulative distribution curve as shown for a step dose tracer.  

 

2.2.4 Screening for Well-Performing Hydraulic Models 

The process for selecting a shortlist of hydraulic models from the initial list of 58 

candidate hydraulic models is shown in the left half of Figure 2.2. Each of the 19 tracer data sets 

were fit with all 58 hydraulic models. For models with zero fitting parameters (i.e., PFR and 

CSTR), no fitting was performed but residuals (i.e., observed minus predicted values of C/C0) 

were calculated. For models with one or more fitting parameters, model regression was 

performed by minimizing the sum of squared residuals. Model regression was done in R (R Core 

Team 2016) using the optim and nlminb functions for single parameter and multiple parameter 

models, respectively, where sum of squared residuals was the objective function to be 

minimized. These optimization functions were used in place of regression functions (e.g., nls) 

because the optimization functions were less sensitive to initial conditions. To begin the iteration 

process used by the optimization function, initial parameter estimates for any given network 

model assumed equal proportioning of reactor volume and flow fraction between all reactors, 
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and n = 2 for TIS models. Once all of the 58 model regressions were completed for each data set, 

a subset of nine models was selected based on goodness of fit and number of successful fits. 

Metrics for goodness of fit are described in the following section. 

 
Figure 2.2. Process for selecting a reactor hydraulic model. Parameter statistics used in 
evaluating models include total number of parameters as well as p-value and confidence intervals 
for each parameter. 
MSE – mean squared error 
RSE – residual standard error 

2.2.5 Determining goodness of fit: MSE and RSE 

The goodness of fit for each model was determined using two statistical parameters: 

mean squared error (MSE) and residual standard error (RSE). MSE describes the goodness of fit 

without respect to the number of fitting parameters and was calculated as  
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2.1  

where j is the number of data points in the tracer study. RSE is similar to MSE, but penalizes 
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goodness of fit based on the number of fitting parameters used. RSE was calculated as  

𝑅𝑅𝑀𝑀𝑀𝑀 = �∑ �� 𝐶𝐶𝐶𝐶0
�
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2.2  

where p is the number of fitting parameters. Fitting parameters include reactor volume fractions, 

volume fraction of dead space, flow fractions for parallel trains, and number of tanks in a TIS 

reactor. RSE is defined in the stats base package in R (R Core Team 2016). 

2.2.6 Process for Selecting a Model for a Given Data Set 

The process of selecting a single hydraulic model for clearwells (CW) 1A and 1B is 

presented in detail in the results and discussion section, along with the selected models for the 

other 12 reactors. A visual representation of this process is shown in the right half of Figure 2.2. 

Regression was performed to fit the nine shortlisted models to each data set using nls, a function 

in R for estimating parameters in nonlinear models using least-squares. The nls function is more 

sensitive to initial values and consumes more computational resources than the nlminb 

optimization function. However, it provides additional information regarding the goodness of fit 

and fitting parameter statistics. Goodness of fit, visual inspection of fits, and statistics of fitting 

parameters were then used to select a single hydraulic model for each clearwell. 

2.2.7 Monte Carlo Analysis for Fit Confidence Limits 

A Monte Carlo analysis was performed to estimate the confidence limits of the overall 

fits for CW 1A and CW 1B. These limits represented the fit as a whole rather than for a single 

fitting parameter. The sum of squared error at the confidence limits was determined using the “F” 

statistical distribution used by Bellamy et al. (1998), not to be confused with the F(θ) curves 

discussed earlier. Using parameter estimates and standard deviations, 100,000 random 
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combinations of normally distributed fitting parameters were tested. Those that yielded the 

largest sum of squared error within the allowable sum of squared residuals constituted the 

confidence limits.  

2.2.8 Evaluating Reactor Models across Uniform Conditions 

Comparing hydraulic models requires a consistent set of reaction conditions. Lawler and 

Singer (1993) used k'Cτ (unitless) for disinfection, where k' is the inactivation rate constant (at a 

given temperature, pH, and chlorine concentration) and C is the disinfectant concentration. This 

unitless term is a disinfection-specific example of a more generalized term called the Damköhler 

number (Da). Da is a unitless number comparing the rate of reaction to the rate of transport, and 

is defined by Fogler (2005) as  

𝐷𝐷𝐷𝐷 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑚𝑚𝑟𝑟𝑚𝑚𝑚𝑚 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑚𝑚𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

= −𝑟𝑟𝑟𝑟
�̇�𝑚

,  2.3 

where r is the reaction rate (mg/L-min), and ṁ is the mass flow rate (mg/min). If a reaction rate 

is second order overall and first order with respect to each of two reactants [e.g., an oxidant (C) 

and a contaminant (N, mg/L), which could be microbial or chemical], then Equation 2.3 becomes 

𝐷𝐷𝐷𝐷 = −𝑟𝑟𝑟𝑟
�̇�𝑚

= −𝑘𝑘′𝐶𝐶𝐶𝐶𝑟𝑟
𝑄𝑄𝐶𝐶

= −𝑘𝑘′𝐶𝐶𝜏𝜏,  2.4   

as used by Lawler and Singer (1993). Da is used in this study because it is generalizable to 

reactions of any order in flow through reactors (Fogler 2005, Howe et al. 2012). This allows a 

comparison of the reactor models themselves, independent of water quality or flow conditions, 

and is generalizable to any oxidant (e.g., ozone, permanganate). Predicted log reduction versus 

Da for different reactor models are presented in the results and discussion section to illustrate the 

importance of selecting an accurate hydraulic model.   
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2.2.9 Code for Fitting RN Models to Tracer Data 

The code used for fitting RN models to tracer data is shown in APPENDIX A. This code, 

along with tutorial videos describing its use, are shown in www.tools4water.com.   

2.3 Results and Discussion 

2.3.1 Screening Hydraulic Models 

The 58 candidate hydraulic models (29 with and without dead space) were fit to 19 tracer 

data sets. Models were then evaluated on how well they fit the data sets. Desirable qualities in a 

model include good fit (e.g., low MSE and RSE, normally distributed residuals), ability to fit a 

large number of data sets, small number of fitting parameters, and ability to yield parameter 

estimates having a reasonably small p-value (i.e., p ≤ 0.1). Nine shortlisted models were 

identified and are shown in Figure 2.3, labeled Models A through I. The selection process for 

these nine models is described in this section.  

Table 2.2 is provided as an example of the MSE and RSE ranking process for different 

reactor network model fits to data set 1A. The short-listed models produced MSE and RSE 1-3 

orders of magnitude lower than poorly performing models (e.g., PFR, PFR and CSTR in series 

with PFR in parallel, and 3 CSTRs in parallel). Some models failed to converge on a fit, 

including Model C with dead space and Model F without dead space. The PFR & TIS in series 

repeated in parallel with dead space (Model I) had the lowest MSE, while the PFR & TIS in 

series with a TIS in parallel with dead space (Model E) had the lowest RSE. Model I is 

equivalent to Model F with the addition of a PFR in front of the second TIS; the additional PFR 

produced negligible improvement in the overall fit (MSE decreased 0.20%), not enough to offset 

the additional fitting parameter (RSE increased 0.65%). In all cases the addition of a dead space 

reactor improved the fit of the model compared to the same model without dead space. 

http://www.tools4water.com/
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Figure 2.3. Schematics of nine shortlisted reactor network models: (A) TIS, (B) 2 TIS in 
parallel, (C) 3 TIS in parallel, (D) PFR and CSTR in series, (E) PFR and TIS in series and CSTR 
in parallel, (F) PFR and TIS in series and TIS in parallel, (G) CSTR and 2 TIS in parallel, (H) 
PFR and CSTR in series with a parallel PFR and CSTR in series, (I) PFR and TIS in series with 
a parallel PFR and TIS in series. 

 

 



 

Table 2.2. Example of goodness of fit for the nine short-listed hydraulic models, with and without dead space, using data set 1A. 
Three poor performing hydraulic models are also provided as examples. 

Model Hydraulic Model Dead 
Space 

Fitting 
Parameters 

Successful 
Fit? 

MSE RSE 
Value Rank Value Rank 

A TIS N 1 Yes 8.96E-04 21 3.01E-02 21 
Y 2 Yes 4.67E-04 18 2.19E-02 17 

B 2 TIS in Parallel N 4 Yes 1.37E-04 8 1.20E-02 8 
Y 5 Yes 1.12E-04 4 1.10E-02 4 

C 3 TIS in Parallel N 7 Yes 1.31E-04 6 1.20E-02 7 
Y 8 No - 

 
- 

 

D PFR & CSTR in Series N 1 Yes 5.03E-03 26 7.14E-02 26 
Y 2 Yes 2.96E-03 25 5.52E-02 25 

E PFR & TIS in Series, CSTR in Parallel N 4 Yes 2.38E-04 15 1.59E-02 14 
Y 5 Yes 1.69E-04 10 1.35E-02 10 

F PFR & TIS in Series, TIS in Parallel N 5 No - 
 

- 
 

Y 6 Yes 3.58E-05 2 6.25E-03 1 
G CSTR and 2 TIS in Parallel N 6 Yes 1.31E-04 5 1.19E-02 5 

Y 7 Yes 6.00E-05 3 8.14E-03 3 
H PFR & CSTR in Series, Repeated in Parallel N 4 Yes 7.03E-04 20 2.73E-02 20 

Y 5 Yes 4.08E-04 16 2.09E-02 16 
I PFR & TIS in Series, Repeated in Parallel N 6 Yes 1.32E-04 7 1.20E-02 6 

Y 7 Yes 3.58E-05 1 6.29E-03 2  

N
ot

 S
el

ec
te

d 

PFR N 0 Yes 4.37E-02 46 2.09E-01 46 
Y 1 Yes 4.37E-02 46 2.10E-01 47 

PFR & CSTR in Series, PFR in Parallel N 3 Yes 1.70E-02 38 1.33E-01 37 
Y 4 Yes 1.70E-02 37 1.34E-01 38 

3 CSTRs in Parallel N 4 Yes 3.12E-02 43 1.82E-01 45 
Y 5 Yes 2.75E-02 42 1.72E-01 42 

MSE – mean squared error, RSE – residual standard error 
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Table 2.2 also shows how parallel flows produced better model fits. Having two TIS 

reactors in parallel (Model B) reduced MSE by 76% compared to a single TIS reactor (Model A); 

MSE was also reduced by 86% when the PFR and CSTR in series (Model C) was repeated in 

parallel (Model H). In addition to the number of parallel reactors, the reactor type also 

significantly impacts goodness of fit. For example, 2 TIS reactors in parallel reduced MSE 400 

fold compared to 2 PFRs in parallel (MSE = 0.00012 versus MSE = 0.044, data not shown).  

The identification of models with broad applicability in water treatment required testing 

models for tracer data from different reactors and reactor types. The remaining 18 data sets were 

fit with the 58 models and both MSE and RSE were calculated accordingly. A summary of how 

the nine shortlisted models performed for all 19 data sets is shown in Figure 2.3, along with 

examples from three poorly performing reactor networks. Average MSE and RSE rank across 19 

data set fits is shown (e.g., 2.3 and 2.4 for Model F, 44 and 43.5 for PFR), along with relative 

index of the average (e.g., 1st and 1st for Model F, 58th and 56th for PFR).  

As shown in Table 2.3, models with dead space had lower MSE and RSE than those 

without dead space. This is because reactors without dead space are constrained to a normalized 

reactor volume (Vnorm), or area to the left of the tracer curve, equal to one (see Figure 2.1). As 

discussed in detail in a subsequent section, reactor dead zones and metering issues can produce 

Vnorm ≠ 1. Only models containing dead space were selected for further analysis to ensure they 

would be applicable to data sets with Vnorm ≠ 1. 



 

 
Table 2.3. Relative performance of the nine short-listed hydraulic models, with and without dead space, for all 19 data sets. Three 
poor performing hydraulic models are also provided as examples. The relative performance of each model (e.g., see Figure 2.2 rank) 
was averaged for all 19 data sets to produce average mean squared error (MSE) and residual standard error (RSE) rank. The order of 
that average rank compared to the other 58 hydraulic models is shown in parenthesis.  

Model Hydraulic Model Dead 
Space 

Fitting 
Parameters 

Successful 
Fits 

MSE 
Rank RSE Rank 

Further 
Analysis Average Average Worst Best 

A TIS 
N 1 19 23.2 (31) 20.8 (26) 26 9 No 

Y 2 19 13.3 (17) 12.5 (15) 17 5 Yes 

B 2 TIS in Parallel 
N 4 15 18.7 (23) 19.3 (24) 30 5 No 

Y 5 12 5.6 (6) 4.8 (3) 8 3 Yes 

C 3 TIS in Parallel 
N 7 13 11.8 (16) 13.5 (18) 27 1 No 

Y 8 10 3.7 (3) 5.3 (4) 14 1 Yes 

D PFR & CSTR in Series 
N 1 19 24.7 (32) 24.1 (32) 32 15 No 

Y 2 19 14.3 (19) 13.3 (17) 28 1 Yes 

E PFR & TIS in Series, CSTR in Parallel 
N 4 18 9.7 (12) 9.2 (10) 22 1 No 

Y 5 19 5.3 (5) 5.9 (7) 16 1 Yes 

F PFR & TIS in Series, TIS in Parallel 
N 5 5 7.2 (8) 8.6 (8) 24 3 No 

Y 6 9 2.3 (1) 2.4 (1) 5 1 Yes 

G CSTR and 2 TIS in Parallel 
N 6 8 13.6 (18) 16 (19) 24 5 No 

Y 7 14 4.3 (4) 5.5 (5) 22 1 Yes 

H PFR & CSTR in Series, Repeated in Parallel 
N 4 19 18.6 (22) 18.9 (23) 28 6 No 

Y 5 19 9.3 (10) 9.6 (12) 30 1 Yes 

I PFR & TIS in Series, Repeated in Parallel 
N 6 12 11.3 (14) 13.3 (16) 27 4 No 

Y 7 14 2.9 (2) 3.7 (2) 11 1 Yes 
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Model Hydraulic Model Dead 
Space 

Fitting 
Parameters 

Successful 
Fits 

MSE 
Rank RSE Rank 

Further 
Analysis Average Average Worst Best 

N
ot

 S
el

ec
te

d 

PFR 
N 0 19 44 (58) 43.5 (56) 52 35 No 
Y 1 19 41.4 (54) 40.5 (53) 51 23 No 

PFR & CSTR in Series, PFR in Parallel 
N 3 19 27.2 (35) 27.4 (34) 46 6 No 
Y 4 19 28.1 (39) 29.5 (40) 41 9 No 

3 CSTRs in Parallel 
N 4 19 38.7 (52) 40.9 (54) 54 24 No 
Y 5 19 31.9 (45) 34.2 (48) 50 16 No 
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The first set of models added to the shortlist were those that fit tracer data with the lowest 

residual error, defined as an average MSE or RSE ranked in the top five. These included 2 TIS in 

parallel (Model B), 3 TIS in parallel (Model C), PFR and TIS in series with CSTR in parallel 

(Model E), PFR and TIS in series with another TIS in parallel (Model F), CSTR and 2 TIS in 

parallel (Model G), and PFR and TIS in series repeated in parallel (Model I). Although these six 

models fit data well, all six had a relatively high number of fitting parameters (5-8), and only one 

(Model E) was able to successfully fit all of the 19 data sets. By contrast, most of the worse 

performing models produced successful fits for all 19 data sets and had fewer fitting parameters 

(e.g., see Table 2.3, models not selected). The best fitting models were generally more complex, 

as indicated by the large number of fitting parameters and five of six having at least two parallel 

TIS reactors. Failure to converge on a solution for all 19 datasets also indicated that the best 

fitting models tended to be more sensitive to initial conditions than simpler models. For example, 

20 of 22 models with 3 or fewer fitting parameters fit at least 17 of 19 datasets, whereas 0 of 11 

models with 6 or more fitting parameters fit at least 15 of 19 datasets (data not shown). 

Additional models were selected for further analysis which had low residual error, 

successfully fit all 19 data sets, and were dissimilar from the six models described in the 

previous paragraph. The TIS reactor (Model A) was selected for its frequent use in literature and 

textbooks, and also its successful fitting of all 19 data sets with only two fitting parameters. Two 

parallel sets of PFR and CSTR in series (Model H) fit all 19 data sets and had the lowest MSE 

and RSE for a model that did not include a TIS reactor and was therefore also selected. The PFR 

and CSTR in series (Model D) was selected as the ninth and final model for detailed analysis 

because it had a number of desirable characteristics: it fit all 19 data sets, had only two fitting 

parameters, did not include a TIS reactor, and produced a good fit for CW 1B. Also known as the 
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‘fractional tubularity model,’ Model D was used in what was possibly the first fitting of reactor 

network models to tracer data (Naumann 2008). 

All of these shortlisted models contained between one and four reactors, not counting 

dead space as a reactor.  

2.3.2 Selecting a Single Hydraulic Model for a Reactor 

The next step was to use the nine short-listed models to determine the best reactor model 

for each tracer data set listed in Table 2.1. An appropriate hydraulic model should fit the tracer 

data well (i.e., low MSE) and have an appropriate number of parameters as indicated by RSE, 

number of fitting parameters, and parameter p-values < 0.1. This section describes in detail how 

models were selected for two primary disinfection clearwells: CW 1A and CW 1B. Model 

selections for the other 12 reactors are also provided. 

Fits of the nine short-listed models are shown for CW 1A and CW 1B in Figure 2.4 and 

Figure 2.5, respectively. For CW 1A, it is relatively clear which models fit the data better than 

others. Two or three TIS reactors in parallel (Models B and C) fit CW 1A data better than one 

(Model A). A PFR and CSTR in series did not fit well as a single train (Model D) or as a parallel 

reactor set (Model H). However, amongst Models B, C, F, G, and I, it was difficult to visually 

determine which model fit CW 1A data the best. For CW 1B, differences in fit are apparent 

amongst some of the models, but greater uncertainty in the observed data (which represent four 

separate step-dose tracer experiments at different flow rates) made it difficult to visually evaluate 

which models provided a better fit. Thus, metrics such as MSE and RSE were needed to 

supplement the information provided by visual inspection.   
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Figure 2.4. Results of fitting shortlisted models A-I to CW 1A tracer data. The schematic of 
each reactor model A-I is presented in Figure 2.3. MSE and RSE values from model fit are 
presented in Table 2.4. 
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Figure 2.5. Results of fitting shortlisted models A-I to CW 1B tracer data. The schematic of each 
reactor model A-I is presented in Figure 2.3. MSE and RSE values from model fit are presented 
in Table 2.4. Data were collected at four different flow rates, with circles (○) from 68 MGD, 
squares (□) from 77 MGD, diamonds (◊) from 94 MGD, and triangles (∆) from 104 MGD. 
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MSE and RSE produced by the fits are shown in Table 2.4. Models for CW 1A generally 

fitted better than those for CW 1B, as evidenced both visually and by MSE values on the order of 

10-5-10-4 for CW 1A and 10-3 for CW 1B. This is primarily attributable to the use of four separate 

tracer studies in CW 1B compared to one in CW 1A.  

Table 2.4. Mean squared error (MSE) and residual standard error (RSE) for fits of 9 shortlisted 
hydraulic models. 

Model Hydraulic Model 
CW 1A CW 1B 

MSE RSE MSE RSE 
A TIS 4.67E-04 2.19E-02 4.62E-03 6.87E-02 
B 2 TIS in Parallel 6.03E-05 8.05E-03 3.87E-03 6.39E-02 
C 3 TIS in Parallel 1.39E-05 3.96E-03 3.84E-03 6.47E-02 
D PFR & CSTR in Series 2.94E-03 5.50E-02 3.97E-03 6.36E-02 
E PFR & TIS in Series, CSTR in Parallel 1.69E-04 1.35E-02 3.97E-03 6.47E-02 
F PFR & TIS in Series, TIS in Parallel 6.06E-05 8.13E-03 3.88E-03 6.43E-02 
G CSTR and 2 TIS in Parallel 5.98E-05 8.13E-03 3.84E-03 6.43E-02 
H PFR & CSTR in Series, Repeated in Parallel 4.08E-04 2.09E-02 3.87E-03 6.38E-02 
I PFR & TIS in Series, Repeated in Parallel 3.58E-05 6.29E-03 3.87E-03 6.46E-02 

 

As was observed for the visual fits in Figure 2.5, all models for CW 1B achieved similar 

goodness of fit as measured by MSE and RSE; MSE and RSE values were within 20% and 7.9%, 

respectively, inclusive of TIS (Model A) and within 3.5% and 1.7% excluding the TIS model. 

Because most of the models achieved similar goodness of fit, the choices were narrowed to the 

models with the fewest fitting parameters. The TIS (Model A) and the PFR and CSTR in series 

(Model D) models had 2 fitting parameters each, including dead space volume, which was 

significant for CW 1B. The other seven models had between 5 and 8 fitting parameters. The first 

model with two fitting parameters, the TIS model, was the worst fitting (i.e., highest MSE and 

RSE) out of the original nine (see Table 2.4) and predicted t10/τ = 0.36; all other models 

predicted t10/τ of 0.41 to 0.44 (see Figure 2.4). Conversely, the PFR and CSTR in series model 

was the best fitting (i.e., lowest RSE) of the original nine models and both fitting parameter p-
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values were << 0.0001. The PFR and CSTR in series model (Model D) was thus selected for CW 

1B.  

Based on RSE, the five best fitting models for CW 1A were 3 TIS in parallel (Model C), 

PFR and TIS in series repeated in parallel (Model I), 2 TIS in parallel (Model B), CSTR and 2 

TIS in parallel (Model G), and PFR and TIS in series with a TIS in parallel (Model F). Further 

analysis was needed to select one of these five models. A summary of fitting information is 

provided in Table 2.5. All five models produced fits with low RSE (RSE < 0.0081), and the t10/τ, 

t50/τ, and t90/τ ratios from all five model fits were within 7% of those observed in the tracer data. 



 

 
Table 2.5. Residual standard error (RSE), flow indices, fitting parameter estimates, and p-values for best performing CW 1A 
hydraulic models. The t10/τ, t50/τ, and t90/τ from tracer data were 0.45, 0.99, and 1.57, respectively. 

Model Model RSE t10/τ t50/τ t90/τ # Par Parameters Estimate P-Value 

B 2 TIS in 
Parallel 0.0080 0.48 1.00 1.54 5 

VF_TIS1 0.024 0.000 
VF_TIS2 0.993 - 
VF_dead -0.017 0.000 

Q1 0.079 0.000 
Q2 0.921 - 
n1 32.288 0.025 
n2 8.784 0.000 

C 3 TIS in 
Parallel 0.0040 0.44 0.99 1.57 8 

VF_TIS1 0.781 0.000 
VF_TIS2 0.036 0.000 
VF_TIS3 0.198 - 
VF_dead -0.016 0.000 

Q1 0.773 0.000 
Q2 0.107 0.000 
Q3 0.120 - 
n1 13.551 0.000 
n2 18.175 0.000 
n3 53.210 0.000 

F 
PFR & TIS in 
Series, TIS in 

Parallel 
0.0081 0.48 1.00 1.54 

6 
 

 

 

VF_PFR1 0.010 0.744 
VF_TIS2 0.015 0.620 
VF_TIS3 0.992 - 
VF_dead -0.017 0.000 

Q1 0.079 0.000 
Q2 0.921 - 
n2 11.579 0.818 
n3 8.786 0.000 
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G 
CSTR and 2 

TIS in 
Parallel 

0.0081 0.48 1.00 1.54 7 

VF_CSTR1 0.018 0.370 
VF_TIS2 0.025 0.000 
VF_TIS3 0.980 - 
VF_dead -0.023 0.156 

Q1 0.010 0.700 
Q2 0.079 0.000 
Q3 0.911 - 
n2 32.928 0.075 
n3 8.992 0.000 

I 

PFR & TIS in 
Series, 

Repeated in 
Parallel 

0.0063 0.44 0.99 1.55 7 

VF_PFR1 0.384 0.000 
VF_TIS2 0.591 0.000 
VF_PFR3 0.016 0.548 
VF_TIS4 0.030 - 
VF_dead -0.020 0.000 

Q1 0.875 0.000 
Q2 0.125 - 
n2 3.616 0.000 
n4 5.770 0.619 

44 
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Parameter estimates and p-values were used to eliminate Models F, G, and I. Multiple 

fitting parameters in each of these models had p-values > 0.35, far greater than commonly-used 

benchmarks of 0.05 or 0.10 for determining if a fitting parameter adds value. Volume fractions 

for one PFR or CSTR in each of these models were also near 0.01 (i.e., the lower bound allowed 

for fitting), which indicated that a better fit could possibly have been achieved in the absence of 

these fitting parameters. In fact, the two parallel PFR and TIS in series (Model I) becomes the 

PFR and TIS in series with TIS in parallel (Model F) when one of the PFR volumes approaches 

zero. Similarly, the PFR and TIS in series with TIS in parallel (Model F) becomes the 2 TIS in 

parallel (Model B) when the volume fraction of the only PFR approaches zero. This suggests that 

a multiple TIS in parallel construct is capable of explaining most of the variation in CW 1A. 

Having eliminated Models F, G, and I in Table 2.5, the model options left were the 2 TIS 

in parallel (Model B, RSE = 0.0080, five fitting parameters) and 3 TIS in parallel (Model C, RSE 

= 0.004, eight fitting parameters). As indicated by their low and similar RSE values (0.0081 vs 

0.0040), the two models fit the tracer data well, and achieved effectively the same goodness of 

fit. Also, the two models had similar t10/τ, t50/τ, and t90/τ ratios (i.e., within 9.4%, 1.0%, and 

1.9%, respectively). Parameter estimates were all greater than the lower bound of 0.01 and had 

p-values ≤ 0.025. It was determined that the incremental improvement in RSE of 3 TIS in 

parallel over 2 TIS in parallel did not justify increasing the number of fitting parameters from 

five to eight, and therefore the 2 TIS in parallel (Model B) was selected to represent CW 1A.    

Dead space fitting parameters were statistically significant for all five models (p-value < 

0.001) despite only representing an additional 1.6-2.3% of reactor volume. This supports the 

decision to use only models which contained dead space. 
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A Monte Carlo analysis was performed to determine confidence limits for overall fits, 

rather than for individual fitting parameters (data not shown). For CW 1A, which achieved low 

residual error from least squares regression fit (i.e., MSE < 10-3), the 95% confidence limits were 

visually indistinguishable from the best fit line. The 95% confidence limits for CW 1B were also 

similar to the best fit line. This is because the large number of observations, 73 for CW 1A and 

97 for CW 1B, resulted in allowable error that was less than 20% larger than the best fit error. 

These findings give greater confidence in the accuracy of the fits found by regression.  

The model selection process was repeated for the remaining 12 reactors. Selected models 

for each reactor are shown in Table 2.6. The most common best fitting reactor model was the 2 

TIS in parallel model (Model B), which was selected for 6 of the 14 reactors. Single or parallel 

sets of a PFR and CSTR in series (Models D or H, respectively) were each selected for 2 of the 

14 reactors. The remaining four reactors were best fit with Models A (TIS), C (3 parallel TIS), G 

(CSTR and 2 TIS in parallel), and E (PFR and TIS in series, CSTR in parallel). These represent 7 

of the 9 shortlisted models. Models F (PFR and TIS in series with TIS in parallel) and I (PFR and 

TIS repeated in parallel) were not selected as the best fit for any of the 14 reactors. 
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Table 2.6. Selected hydraulic model and normalized reactor volume, Vnorm, for all data sets. 
Reactor 

ID t10/τ Selected Hydraulic Model Model Normalized 
Volume, Vnorm 

1A 0.45 2 TIS in Parallel B 1.02 
1B 0.45 PFR and CSTR in Series D 0.81 
2A 0.39 * TIS A 1.00 
3A 0.50 *,a 3 TIS in Parallel C 1.12 
3B 0.72-0.80 PFR and CSTR in Series, Repeated in Parallel H 1.22 
3C 0.67 2 TIS in Parallel B 1.25 
3D 0.61 PFR and CSTR in Series, Repeated in Parallel H 1.24 
3E 0.19 CSTR and 2 TIS in Parallel G 0.84 
3F 0.43 PFR and TIS in Series, CSTR in Parallel E 1.19 
3G 0.67 2 TIS in Parallel B 1.27 
3H 0.57 2 TIS in Parallel B 1.12 
4A 0.31 * PFR and CSTR in Series D 1.12 
5A 0.69 * 2 TIS in Parallel B 1.26 
5B 0.70 * 2 TIS in Parallel B 1.23 

* Not reported, but calculated via linear interpolation from reported data 
a Truncated at C/C0 = 0.80, recovery < 0.95 at θ > 4 requires Vnorm ~ 3.0 

 

2.3.3 Normalized Reactor Volume 

A simple and prudent check on the feasibility of a reactor model, and validity of the 

tracer study, is to look at the normalized reactor volume, Vnorm. Vnorm is the area to the left of the 

tracer output curve in Figure 2.1, which can be conceptualized as the volume needed to fit a 

model to tracer data divided by the available volume of the reactor.  

Table 2.6 shows the Vnorm values produced by best fit models for all 14 reactors. Two 

reactors had Vnorm within 2% of unity (1A and 2A) and two reactors had Vnorm 16 to 19% lower 

than unity (1B and 3E). The fitting process assumes that Vnorm < 1 is due to the presence of dead 

volume in the reactor, but the difference could also be due to a reactor volume smaller, or a flow 

rate larger, than estimated during the tracer test. Steps should be taken to identify the underlying 
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causes when Vnorm is significantly less than unity because short-circuiting may not be the only 

cause. There may have been issues with metering volume or flow (i.e., tracer study validity) as 

well.    

Ten reactors produced Vnorm > 1.1, six of which exceeded 1.2. Vnorm > 1 is impossible in a 

reactor with steady flow, steady volume, and a conservative tracer that neither reacts nor adheres 

to reactor surfaces. Vnorm > 1 could be caused by either a flow rate smaller than originally 

estimated and/or a reactor volume greater than originally estimated. A result of Vnorm > 1 should 

prompt further investigation of volume and flow estimates, because one or both were determined 

erroneously. 

Reactor flow metering at many plants may be imprecise or inaccurate. Typical drivers for 

accurate metering, including accounting (e.g., billing) or critical chemical pacing (e.g., ammonia 

for chloramination), may not apply to many reactors. A recent study of 33 systems in the state of 

Washington found that 58% did not directly measure flows for disinfection calculations (Deem 

and Feagin 2016); 85% of systems also did not calibrate or verify the peak hourly flow or the 

plant effluent flow meter. A reactor where influent flow exceeds effluent flow (i.e., volume 

accumulation in a reactor used for both storage and disinfection) could also produce Vnorm > 1.  

Reactor volume estimates may have accuracy limitations as well. These limitations may 

stem from incorrectly estimating reactor geometry (i.e., water level versus volume) or incorrectly 

estimating how water level changes over time. Deem and Feagin (2016) found that 55% of 

systems did not verify contact chamber volume and that dimensions of contact chambers in five 

of 11 systems measured did not match the dimensions used for contact volumes. They also 

observed that half of systems using tanks or clearwells for disinfection contact did not record 
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tank levels. Their findings suggest widespread issues with clearwell volume estimates, which 

could in part explain the observed deviation of Vnorm from unity in tracer data from literature. 

Non-negligible residence time may also be introduced by reactor influent channels, effluent 

channels, and sample lines, leading to an underestimation of volume. 

Systems are likely to overestimate disinfection or other reactor performance metrics if 

Vnorm > 1. For example, one case study of a chlorine contact basin (reactor 3B in Table 2.1 and 

Table 2.6) produced t10/τ = 0.72 and 0.80 (Teefy 1996). The author commented that they were 

surprised at the high t10/τ given contact basin geometry. Fitting Model H to these two data sets 

produced Vnorm = 1.16 and 1.32, respectively, or 1.22 when fit to both data sets simultaneously. 

Dividing t10/τ by Vnorm would produce t10/τ = 0.62 and 0.60, respectively, for the two tracer tests. 

Thus, t10/τ may be overestimated when Vnorm > 1. 

These results should not be misinterpreted as questioning the utility of previous tracer 

tests in protecting public health through assurance of adequate disinfection. There are numerous 

conservative factors in the SWTR that protect public health, such as basing 3-log Giardia credit 

on the 99% upper confidence limit for 4-log observed inactivation (SWTR 1991). Also, the value 

of t10 would not be affected by Vnorm > 1, except due to residence time in a sample line. If tracers 

were conducted under conditions representative of routine operation, then CT achieved (i.e., 

C*t10) should be representative as well. Problems with metering flow and assessing volume 

would instead manifest in potentially inaccurate determinations of τ, and subsequently the t10/τ 

baffle factor. Water systems should consider the importance of flow metering and reactor volume 

determination when conducting future tracer tests on new or modified reactors.  

One benefit of the reactor network models over the t10/τ baffle factor calculation and 
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segregated flow (SF) models is that reactor networks yield Vnorm. The t10/τ baffle factor and SF 

methods can be completed without any check on the validity of the tracer study and, hence, the 

reactor volume or flow, thereby potentially allowing overestimation of reactor residence time. 

Regardless of the method used to interpret tracer study results, practitioners should verify that 

Vnorm ≤ 1. This is equivalent to verifying that the calculated average residence time is less than or 

equal to τ.  

2.3.4 Log Reduction Calculations by Reactor Networks, SF, and SWTR 

Results presented prior to this section have focused on how different hydraulic models 

represent reactor residence time distributions as determined by tracer studies. This section 

discusses how hydraulic model selection impacts predicted reactor performance (e.g., 

contaminant removal). Specific topics include the value of hydraulic models that accurately 

represent tracer data, an illustration that t10/τ baffle factors are not universally conservative, and a 

comparison of reactor networks with SF, which accurately predicted disinfection in an ozone 

contactor (Najm et al. 2009). 

An important application of hydraulic models is the assessment of disinfection adequacy. 

Lawler and Singer (1993) demonstrated that the SWTR’s t10/τ approach would overestimate the 

necessary CT for low log inactivations and underestimate the necessary CT for high log 

inactivations in a CSTR, an ideal reactor with infinite dispersion. Their analysis was expanded 

from an ideal CSTR to a real-world clearwell, and added SF and reactor network models. 

Predicted contaminant reduction in CW 1A, a real-world clearwell used for primary 

disinfection, is shown in Figure 2.6A. Modeled log reduction vs. Da is reported for ideal PFRs 

and CSTRs, along with SF, the 2 TIS reactor network selected for CW 1A, and the credit 
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provided by the SWTR (PFR t10, where t10/τ = 0.45). For PFR t10, residence time is equal to 

0.45τ, whereas for all other models residence time is equal to τ. The blue and gray lines show 

predicted log reduction versus Da in plug flow and perfectly mixed flow, respectively. Real-

world reactors behave between these two extremes, which the SWTR accounts for by crediting 

t10 (green line). However, none of these three models accurately represents residence time 

distribution.  
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Figure 2.6. Effect of reactor model selection on predicted log reduction for CW 1A.  (A) 
Comparison of predicted log reduction versus Da for CW 1A using different models:  PFR, 
PFR t10, 2 TIS in parallel, SF, and CSTR. (B) Difference in predicted log reduction between 
SWTR procedures and the selected reactor network model for CW 1A (2 TIS in parallel).Results 
shown are for reactions that are second order overall, first-order with respect to the contaminant 
and oxidant (see Equation 2.4).  
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Reactor network and SF models both represent residence time distribution more 

accurately than the models used to show compliance with the SWTR. These are shown by the red 

and black dashed lines, respectively. Figure 2.6A shows that the SWTR calculation method (PFR 

t10) overestimates the necessary Da (e.g., CT) for CW 1A at reductions less than 2.95-log, and 

underestimates necessary Da at higher log reductions. The difference in log reduction between 

the SWTR calculation method and the 2-TIS reactor network model (found to be the optimum 

model for CW 1A in the sections above) is shown in Figure 2.6B.  

The SWTR requires 3.0-log reduction of Giardia, with conventional treatment and direct 

filtration receiving 2.5 and 2.0-log credit, respectively, and the remaining 0.5 or 1.0-log credit 

required through disinfection. Under the reaction conditions (i.e., Da) that would achieve 0.5 and 

1.0-log disinfection credit in CW 1A by either the reactor network or SF model, SWTR would 

credit only 0.25 and 0.56-log, respectively, as shown in Figure 2.6A. At SWTR credit of 0.5 and 

1.0-log, the reactor network and SF models predict 0.92 and 1.52-log, respectively. This indicates 

that at relatively low log reduction credits, the SWTR overestimates CT necessary for Giardia 

disinfection in CW 1A. This overestimation has implications for simultaneous compliance with 

both disinfection and disinfection by-product requirements. The SWTR approach may result in 

feeding twice as much chlorine or having contact times twice as long as necessary, consuming 

more chlorine and producing higher concentrations of disinfection by-products.  

Conversely, the t10/τ baffle factor approach in the SWTR underestimates the necessary CT 

at > 2.95-log reduction in CW 1A. Current regulations do not require > 2.95-log reduction in 

CW 1A, but higher reductions are necessary for reactors in water reuse applications. California 

requires a 12-log virus, 10-log Giardia, and 10-log Cryptosporidium reduction for groundwater 

replenishment projects, with up to 6-log credit being issued for a single treatment process 
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(CDPH 2014). Texas requires a baseline removal of 8-log virus, 6-log Giardia, 5.5-log 

Cryptosporidium, which can be increased depending on wastewater effluent quality (TWDB 

2015). Assuming PFR hydraulics with t10/τ baffle factors may overestimate treatment efficacy at 

these higher log reductions. The design of ozone contactors for 6-log Giardia and virus reduction 

credit in potable reuse applications based on t10/τ baffle factors (Calvet et al. 2017) raises 

questions about the expansion of SWTR disinfection modeling to reuse regulations. Modeling 

treatment efficacy for high log reductions could be improved by more accurate representations of 

residence time distribution, which can be provided by reactor network models or SF.  

Reactor network models and SF were compared for their ability to model reactor 

performance. As shown in Figure 2.6A, both reactor networks and SF modeled log reduction 

versus reaction conditions (i.e., Da) similarly: within 0.14% up to 4-log reduction.  

Results in this section demonstrate that the t10/τ baffle factor may be conservative for the 

purpose it was originally implemented under the SWTR, i.e., calculating disinfection credit at 

low log reductions. However, the t10/τ baffle factor may not be conservative for current and 

future needs in water treatment, including simultaneous compliance, water reuse, and removal of 

emerging contaminants. The t10/τ baffle factor accurately represents reactor performance at a 

single, reactor-specific log reduction:  1.54-log in a CSTR (Lawler and Singer, 1993), 2.95-log 

in CW 1A. Reactor networks and SF more accurately represent reactor performance at a range of 

log reduction targets. Future regulatory revisions should consider SFA, beyond the discussion in 

the SWTR of its use for calculating ozone disinfection credit, and the reactor network approach 

to hydraulic modeling at the national level. 
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2.3.5 Reactor Network Modeling vs Segregated Flow 

In the previous section, reactor networks and SF were shown to produce nearly 

equivalent predictions of contaminant removal. However, reactor networks having some 

advantages relative to SF, including concise equations, ability to fit multiple tracer data sets, and 

a built-in check on Vnorm.  

With regard to tracer data sources, two benefits of reactor networks over SF are that i) a 

single network can be fit to multiple tracer data sets and ii) fitting reactor networks yields Vnorm. 

A single representative tracer data set needs to be selected to perform SF, while regression in 

reactor network fitting provides flexibility in the number of tracer data sets used. This allowed 

the reactor network model for CW 1B to use data from all four tracer data sets, while SF would 

require selecting a single representative tracer data set. Reactor networks, which yield Vnorm, 

provide a check on tracer data that SF does not. Najm et al. (2009) used a pilot-scale ozone 

contactor to validate disinfection predicted by SF modeling; however, tracer data the authors 

provided for a full-scale contactor had Vnorm ≥ 1 (1.23-1.26, see Table 2.6 ID’s 5A and 5B). 

Reactor networks highlight potential tracer data issues more clearly than SF.  

Reactor networks and SF vary in the number of reactors used as well as reactor type. SF 

uses only PFRs, consistent with the SWTR t10/τ approach. However, SF requires a large number 

of reactors, one less than the number of data points in a tracer test. For example, the SF equation 

for a reaction in CW 1A with 72 reactors is given by 
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While this works well in a spreadsheet, the written equation is cumbersome. Conversely, 

the reactor network models use far fewer reactors. The equation for the 2 TIS in parallel reactor 

(Model B) takes the form   
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where VTIS,1 and VTIS,2 are the volume fractions (0 ≤ V ≤ 1) of the two reactors, n1 and n2 are the 

number of CSTRs in each TIS reactor, and Q1 and Q2 are the flow fractions (0 ≤ Q ≤ 1) for each 

of the two reactors (see Table 2.5 for volume and flow fraction examples). This example reactor 

network model uses 2 reactors and 5 fitting parameters for CW 1A, while SF used 72 reactors 

and 146 inputs for the same clearwell, demonstrating the advantage of the reactor network 

approach in terms of simplicity. Substituting parameter estimates from Table 2.5 into 2.6 yields 

Equation 2.7, which is simpler than the SF equation.  
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2.7 

The equation for CW 1B can be described even more concisely as 
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where VPFR,1 and VCSTR,2 are the volume fractions of the PFR and CSTR, respectively. These 

equations are provided in Table 2.7, along with those for PFR, CSTR, and TIS (with Vnorm = 1, 
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which differs from Model A). This table also shows the equations for effluent tracer 

concentrations from step dose tracer studies. 

Table 2.7. Equations for reactor effluent tracer concentration and remaining contaminant for 
different reactor types: PFR, CSTR, TIS, Model B, and Model D. It should be noted that in the 
TIS shown, Vnorm is constrained to unity, unlike Model A. 

Reactor 
Reactor Effluent Tracer 

Concentration, C/C0 
Contaminant Remaining 

N/N0 

PFR For θ < 1  𝐹𝐹(𝜃𝜃) = 0 
For θ ≥ 1  𝐹𝐹(𝜃𝜃) = 1 

𝑁𝑁
𝑁𝑁0

= e−Da 
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Note: Contaminant remaining equations are for reactions that are second order overall, first-order with respect to the 
contaminant and oxidant (see Equation 2.4). 
 

2.3.6 Benefits and Drawbacks of Modeling Approaches 

Although the t10/τ baffle factor approach used in the SWTR overestimates necessary CT 

for low log reductions and underestimates the CT necessary for higher log reductions, it still 

presents numerous benefits. The SWTR approach is understood by regulators and water systems 

alike, and enables operators to quickly calculate disinfection credit by hand. It also uses the 

simplest hydraulics: those of a PFR. Further, t10/τ can be estimated in the absence of tracer data 

using knowledge about reactor geometry (e.g., length:width ratio, Crozes et al. 1999).  

Similarly, the number of tanks in a single TIS reactor can be estimated from a reactor’s 
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length:width ratio inclusive of baffling (Crozes et al. 1999). The TIS reactor provides significant 

accuracy improvement over the t10/τ baffle factor (see Figure 2.4A and Figure 2.5A); however, it 

should still be fit to tracer data, preferably using a least-squares regression. The TIS reaction 

equation is also more complicated than those of a PFR or CSTR. Although it was beyond the 

purpose of this study, accounting for a decaying oxidant in a TIS introduces further complexity. 

SF can accurately predict disinfection efficacy as demonstrated by Najm et al. (2009) at 

pilot scale and also uses simple PFR hydraulics. However, SF requires a large number of reactors 

to fit tracer data, which makes the reaction equations cumbersome. It also cannot account for 

multiple tracer data sets without creating multiple models. 

Reactor networks are able to account for multiple tracer data sets and can approximate 

residence time with a much smaller number of reactors than SF. However, they require non-

linear least squares regression to fit the models to data sets; although this process is described in 

detail in this work and can be automated using open source software, this process is nontrivial. 

Users also need to select from a set of broadly applicable models, which requires the application 

of engineering judgment.  

With these factors in mind, it appears that there is no single “best” modeling approach, 

and that users should choose which model to use based on the resources at their disposal and the 

end goal of the modeling effort. PFRs with t10/τ baffle factors are best suited to situations where 

low log reductions are necessary and overdesign does not have adverse consequences. SF and 

reactor networks should be used for modeling higher log reductions or where reactor overdesign 

is undesirable. SF is appropriate for spreadsheet-based analyses, and reactor networks are better 

suited to situations where a compact equation or dynamic (i.e., real-time) calculation is needed. 
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Finally, the TIS (or axial dispersion) model is appropriate for moderate log reductions.  

2.3.7 Implications and Future Work 

Water treatment plants are preparing to address currently unregulated contaminants which 

can be treated by oxidation processes, including NDMA precursors and algal toxins. Quantifying 

treatment for these contaminants will likely require a more advanced understanding of reactor 

hydraulics than t10/τ baffle factors. Reactor networks can provide that advanced understanding. 

Moving forward, reactor networks could be used in predicting treatment efficacy for unregulated 

contaminants.  

The important subject of reactor mixing was beyond the scope of this study. According to 

Levenspiel (1999), there are two overlapping aspects to mixing: degree of segregation and 

earliness of mixing. Segregation describes whether a fluid is mixed at the microscopic or 

macroscopic level, and earliness of mixing describes whether the mixing of fluids occurs early or 

late within a reactor. SF and reactor network models make very different assumptions about 

mixing. The following chapter will test how multiple reactor models perform in explaining water 

quality changes where mixing is important, using seasonal conversion from chloramines to free 

chlorine as a reactive tracer. 

2.4  Conclusions and Recommendations 

Based on the results and discussion presented in this work, the following conclusions 

were reached: 

1. Some systems may overestimate reactor performance based on volume and flow 

metering inaccuracies. Regardless of what reactor modeling method is used, it is 

advised that Vnorm be calculated as a verification of tracer data quality.  
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2. Nine reactor network models with broad applicability to water treatment reactors 

were identified. The best fitting models most often had two parallel TIS reactors. 

3. Reactor networks and SF both approximate reactor hydraulics well, while reactor 

networks use far fewer reactors and can accommodate replicate tracer tests conducted 

at different flow rates. 

4. The SWTR t10/τ approach underestimates treatment efficacy at low log reductions, 

and overestimates treatment efficacy at higher log reductions. For one of the 

clearwells studied (CW 1A), the SWTR would credit only 0.25-log reduction for 

disinfection but both reactor network and SF models would credit 0.5-log reduction.  

5. Different hydraulic modeling approaches each have their respective benefits and 

drawbacks. Reactor networks and SF are more complicated than the SWTR approach 

for Giardia disinfection. However, potential revisions to disinfection treatment 

techniques should consider adding more accurate modeling methods (e.g., reactor 

networks and SF) as options for compliance calculations. Doing so would assist the 

balancing of disinfection with disinfection by-product formation, as well as other 

simultaneous compliance considerations.   
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CHAPTER 3  - ASSESSING FLOW SEGREGATION AND MIXING BY MODELING 
RESIDUAL DISINFECTANT CONVERSION 

 

3.1 Introduction 

Diverse applications of reactors in environmental engineering include catalytic converters 

in automobiles (Oh and Cavendish 1985), production and transport of gas and heat in landfills 

(El-Fadel et al. 1996), scrubbers in power plants (Kiil et al. 1998), activated sludge tanks in 

wastewater treatment (Henze et al. 2000), and chlorinated clearwells in water treatment (Clark 

1998). This work focuses on water treatment reactors, which may include ozone contactors, 

clearwells, filters, or raw water pipelines. Regardless of the reactor, performance is a function of 

the same four factors:  reaction kinetics, residence time distribution (RTD), degree of 

segregation, and earliness of mixing (Levenspiel 1999). Modeling reactor performance requires 

either experimentally determining or assuming these four factors. 

Reaction kinetics can be determined by experimentation in controlled laboratory 

environments. RTDs are known for ideal reactors, such as the plug-flow reactor (PFR) and 

continuous flow stirred-tank reactor (CSTR), and can be determined for real-world reactors via 

tracer studies (Teefy 1996, Crittenden et al. 2005). RTD describes the macromixing of a reactor, 

capturing conditions such as short-circuiting and stagnation zones (Fogler 2006, Pfeiffer and 

Barbeau 2014). Modeling a single first-order or pseudo first order reaction in a reactor requires 

knowing only the reaction kinetics and macromixing (i.e., RTD) (Fogler 2006). Such reactions 

are common in disinfection regulation, including prediction of pathogen inactivation using 
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Chick-Watson kinetics and residual oxidant concentration (Crittenden et al. 2005). 

Modeling reactions that are not first order overall requires understanding micromixing 

within the reactor (Levenspiel 1999, Fogler 2006). Micromixing encompasses both degree of 

segregation and earliness of mixing. Micromixing describes how flow entering the reactor 

encounters water that is already in the reactor (Fogler 2006). If flow elements of differing ages 

do not mix at all, then flow is considered to be perfectly segregated and can be represented by 

the segregated flow (SF) model (Fogler 2006) (see Key Concepts below and APPENDIX B for 

additional explanation). If flow entering a reactor is assumed to be immediately mixed with all of 

the reactor contents, it is represented by the maximum mixedness (MM) model (Fogler 2006). 

Reactions that require understanding micromixing conditions include pathogen inactivation 

according to Chick-Watson kinetics in the presence of a decaying oxidant (Pfeiffer and Barbeau 

2014, Craik 2005).   

Micromixing is also important for other reactions that are not first order or pseudo-first 

order and for multiple reactions that occur simultaneously (Levenspiel 1999). Many 

microorganisms do not follow first-order Chick-Watson kinetics (Crittenden et al. 2005), and 

oxidation reactions for cyanotoxins such as microcystin follow second-order kinetics, only 

becoming pseudo-first order when the oxidant concentration is assumed to be constant (Acero et 

al. 2005). Multiple, simultaneous, and non-first-order reactions occur in water treatment reactors 

for processes such as the formation of bromate (von Gunten 2003), ammonia breakpoint and 

chloramination (Jafvert and Valentine 1992), and the formation of chlorinated disinfection 

byproducts (DBPs) (Deborde and von Gunten 2008). Thus, there are many situations where 

micromixing (i.e., segregation and earliness of mixing) affects reactions of interest in water 

treatment. 
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However, most water treatment reactor models, including those used in regulation, do not 

account for micromixing. The CT method, which is based on the product of disinfectant residual 

and time for the first 10% of flow to leave the reactor (t10), accounts only for reaction kinetics 

and macromixing (USEPA 1991, USEPA 2010). The extended t10 and extended CSTR methods 

for ozone contactors credit greater CT by incorporating oxidant decay (USEPA 2010), but do not 

account for micromixing. Alternative reactor models more accurately represent macromixing, 

including the axial dispersion, tanks-in-series (TIS), segregated flow (SF), and reactor network 

(RN) models (Teefy and Singer 1990, Ducoste et al. 2001, Najm et al. 2009, Crittenden et al. 

2005, Chapter 2). The TIS, SF, and RN models, which are described in detail in APPENDIX B, 

vary significantly in their assumptions about micromixing (see Table 3.1). It would be valuable 

to assess which models accurately represent micromixing in water treatment reactors. 

Table 3.1. Assumptions about degree of segregation and earliness of mixing for five different 
reactor models. Mixing in TIS reactors occurs in stages, where mixing is immediate in the first 
CSTR, and then occurs in successive stages in subsequent CSTRs. Degree of segregation and 
earliness of mixing in RN models varies depending on the type, number, and arrangement of 
simplified reactor types. 

Model Type Degree of Segregation Earliness of Mixing 

Plug flow reactor (PFR) None None 

Continuous flow stirred-tank reactor (CSTR) None Immediate 

Tanks-in-series (TIS) None Staged 

Segregated flow (SF) Perfect Latest possible 

Maximum mixedness (MM) None Immediate 

Reactor network (RN) Varies Varies 

 
Previous work has studied the effect of micromixing assumptions on predictions of 

contaminant decay in water treatment reactors. Computer simulations by Craik (2005) in the 

presence of a decaying oxidant predicted degree of inactivation as follows:  PFR > SF > TIS > 

MM. The SF, TIS, and MM models produced similar predictions when disinfectant decay was 

negligible. Craik (2005) studied a range of micromixing (i.e., PFR, SF, TIS, MM) and 
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macromixing (i.e., TIS with 2-100 CSTRs) conditions, but did not compare predictions to 

experimental data. Pfeiffer and Barbeau (2014) compared predictions from SF, TIS, MM, and 

regulatory models with observed E. coli inactivation in a pilot-scale chlorine contactor. They 

found that the CT, extended t10, and SF models overestimated inactivation, and recommended the 

TIS model for its relative accuracy and simplicity. MM was not recommended because it was the 

most complicated to be implemented at a water utility.   

As noted by Pfeiffer and Barbeau (2014), validation of disinfection reactor models has 

rarely been achieved. Efforts have been made to explore micromixing through computational 

fluid dynamics (CFD), scale modeling, and the use of reactive tracers. Specifically, CFD models 

have been used to provide spatially-resolved predictions of pathogen inactivation, disinfectant 

residual, and disinfection by-product formation (Greene et al. 2004, Greene et al. 2006, 

Angeloudis et al. 2014); 3D laser-induced fluorescence was used to directly observe mixing in 

bench-scale ozone contactors (Kim et al. 2010a, Kim et al. 2010b) and UV reactors (Gandhi et 

al. 2011, Gandhi et al. 2012); and a reactive tracer (i.e., ammonia) was used to observe mixing in 

a wastewater nitrification reactor equipped with axial mixers (Gresch et al. 2011). However, 

CFD modeling remains too computationally intensive for every day reactor design and operation 

(Laurent et al. 2014), particularly for unsteady flows (Wicklein et al. 2015); 3D laser-induced 

fluorescence is not applicable to full-scale reactors (Kim et al. 2010a); and most drinking water 

treatment reactors (e.g., ozone contactors, clearwells) are unlike the nitrification reactor studied 

in some important ways (e.g., reactors are often baffled to encourage plug flow rather than 

actively mixed, and target contaminants do not lend themselves to real-time measurement).  

However, a reactive tracer could provide a mechanism to study micromixing in drinking 

water treatment reactors if it were detectable using common online monitoring equipment and 
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safe to apply at detectable concentrations. Such a reactive tracer experiment occurs in systems 

that periodically convert between free chlorine and monochloramine as a residual disinfectant. 

This conversion is known as temporal disinfectant switching, and may be performed to meet 

state requirements or control nitrification (Vikesland et al. 2006), as well as facilitate distribution 

system flushing or maintenance activities. Temporal disinfectant switching has been used to 

estimate residence time in distribution storage tanks (Vikesland et al. 2006) and validate water 

age models (Deason et al. 2017). However, to the authors’ knowledge, temporal disinfectant 

switching has not been used to assess the degree of micromixing in water treatment reactors. 

The primary objective of this study was to investigate the nature of micromixing in full-

scale water treatment reactors. Different reactor models (i.e., SF, TIS, RN, and MM), with 

differing implicit assumptions about degree of segregation and earliness of mixing (see Table 

3.1), were tested for their accuracy in predicting observed free and combined chlorine species 

during temporal disinfectant switching. The effect of model assumptions regarding micromixing 

on predictions of microbial inactivation are discussed as well.  

A secondary objective of this work was to assess whether accepted chloramine reaction 

kinetics (i.e., Jafvert and Valentine 1992, Vikesland et al. 2001) could be coupled with an 

appropriate reactor model to predict breakpoint in full-scale flow-through reactors. The 2017 

AWWA disinfection survey found that 9% of respondents blended chlorinated and chloraminated 

water in their distribution systems, and that 44% of respondents using chloramines as a residual 

disinfectant periodically converted to free chlorine (AWWA 2018). Both practices would result in 

breakpoint reactions in the distribution system, yielding time periods with little to no disinfectant 

residual. Breakpoint reactions have long been of interest, and have been investigated at bench 

(Barrett et al. 1985) and pilot scale (Saunier and Selleck 1985). To the authors’ knowledge, there 
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has been no demonstration coupling accepted reaction kinetics with an appropriate reactor model 

to predict breakpoint at full scale. This work provides such a demonstration, which is expected to 

benefit the field by informing operations of distribution systems where chlorinated and 

chloraminated waters are blended and for systems that conduct temporal disinfectant switching.  

3.2 Modeling Methods 

3.2.1 Description of Reactor Systems 

Two full-scale clearwells were studied at water treatment plants with production 

capacities of 225 and 120 million gallons per day (MGD). For the time periods used in this study, 

both plants had two clearwells operated in series. A free chlorine residual was maintained 

through the first clearwell for primary disinfection, with ammonia added prior the second 

clearwell to form chloramines. Ammonia was added in the form of liquid ammonium hydroxide 

(19% as ammonia), injected at full strength without the use of upstream carry water or dilution 

water at the point of injection. There was no mechanical mixing at the point of injection; 

however, flow conditions were turbulent at the point of injection and downstream as detailed in 

APPENDIX B, indicating that ammonia was likely well mixed with the bulk flow. The 

clearwells containing chloramine are referred to as A and B and had volumes of 32.4 and 20.3 

million gallons, respectively. Plan views of Clearwells A and B are shown in Figure B.1 and 

Figure B.2 of APPENDIX B. Figure B.3 in APPENDIX B shows a detail of a submerged 

overflow structure in Clearwell A near the end of the clearwell where intermittent chlorine and 

ammonia feeds are located. These feed locations can be used if the primary disinfection clearwell 

is out of service. Photographs from each clearwell are shown in Figure B.4 and Figure B.5 of 

APPENDIX B. 
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3.2.2 Observation of Reactor Effluent 

Concentrations of reactive tracers were measured using online process monitoring 

equipment. Total and free chlorine were measured using CL17 chlorine analyzers (Hach 

Company, Loveland, CO). CL17 analyzers use N,N-diethyl-p-phenylenediamine (DPD) for 

colorimetric analysis of chlorine concentrations and provide readings every 2.5 minutes. Online 

chlorine readings were checked hourly using amperometric titrations according to Standard 

Method 4500-Cl Part D (APHA 1992). Total ammonia and monochloramine were measured 

using a ChemScan UV-2150/S (ASA Analytics, Waukesha, WI) with readings taken every 10 

minutes. 

3.2.3 Modeling of Reactor Effluent 

Modeling concentrations of reactive tracer species in Clearwells A and B required a 

chemical reaction model, different hydraulic models, operations data for model inputs, and a 

method for calculating concentrations of reactive species.  

The chemical reaction model is summarized in Table 3.2 and is based on an accepted 

chloramine model developed by others (i.e., Jafvert and Valentine 1992, Vikesland et al. 2001). 

This model assumes the absence of other chloramine-consuming reactions with clearwell 

surfaces and substances such as natural organic matter and reduced iron. Reactions involving 

bromide were neglected because annual maximum source water bromide concentrations were < 

0.1 milligrams per liter (mg/L) (Luh and Mariñas 2014, Vikesland et al. 2001). Both reactors had 

upstream free chlorine contact of > 700 mg-min/L, and reductions in total chlorine residual 

across Clearwells A and B were less than 0.1 mg/L during normal operation. Therefore, free 

chlorine demand and decay were neglected during modeling.  



 

Table 3.2. Model predicting the reaction of chloramine species with free chlorine. Adapted from monochloramine decay models 
developed by Jafvert and Valentine (1992) and Vikesland et al. 2001. 

Reaction Stoichiometry Rate Expression Rate Constant 
(1) HOCl + NH3 → NH2Cl + H2O k1[HOCl][NH3] k1 = 2.37 × 1012e−1510/T     L/mol-h 
(2) NH2Cl + H2O → HOCl + NH3 k2[NH2Cl] k2 = 6.7 × 1011e−8800/T       1/ h 
(3) HOCl + NH2Cl → NHCl2 + H2O k3[HOCl][NH2Cl] k3 = 1.08 × 109e−2010/T     L/mol-h 
(4) NHCl2 + H2O → HOCl + NH2Cl k4[NHCl2] k4 = 2.3 × 10−3       1/ h 

(5) NH2Cl + NH2Cl → NHCl2 + NH3 k5[NH2Cl]2 

k5 = kH+[H+] + kHCO3−[HCO3
−] + kH2CO3[H2CO3] 

kH+ = 3.78 × 1010e−2169/T     L2/mol2-h 
kHCO3− = 1.5 × 1035e−22144/T     L2/mol2-h 
kH2CO3 = 2.95 × 1010e−4026/T     L2/mol2-h 

(6) NHCl2 + NH3 → NH2Cl + NH2Cl k6[NHCl2][NH3][H+] k6 = 2.2 × 108     L2/mol2-h 
(7) NHCl2 + H2O → I k7[NHCl2][OH−] k7 = 4.0 × 105     L/mol-h 
(8) I + NHCl2 → HOCl + products k8[I][NHCl2] k8 = 1.0 × 108     L/mol-h 
(9) I + NH2Cl → products k9[I][NH2Cl] k9 = 3.0 × 107     L/mol-h 
(10) NH2Cl + NHCl2 → products k10[NH2Cl][NHCl2] k10 = 55     L/mol-h 

(11) HOCl + NHCl2 → NCl3 + H2O k11[HOCl][NHCl2] 

k11 = kHPO42−[HPO4
2−] + kOCl−[OCl−] + kOH−[OH−] 

kHPO42− = 5.72 × 107     L2/mol2-h 
kOCl− = 3.14 × 108     L2/mol2-h 
kOH− = 1.18 × 1013     L2/mol2-h 

(12) NHCl2 + NCl3 + 2H2O → 2HOCl + products k12[NHCl2][NCl3][OH−] k12 = 2.0 × 1014     L2/mol2-h 
(13) NH2Cl + NCl3 + H2O → HOCl + products k13[NH2Cl][NCl3][OH−] k13 = 5.0 × 1012     L2/mol2-h 
(14) NHCl2 + 2HOCl + H2O → NO3

− + 5H+ + 4Cl− k14[NHCl2][OCl−] k14 = 8.3 × 105     L/mol-h 
(E1) HOCl ↔ OCl− + H+ N/A p𝑘𝑘a = 1.18 × 10−4T2 − 7.86 × 10−2T + 20.5 
(E2) NH4

+ ↔ NH3 + H+ N/A p𝑘𝑘a = 1.03 × 10−4T2 − 9.21 × 10−2T + 27.6 
(E3) H2CO3 ↔ HCO3

− + H+ N/A p𝑘𝑘a = 1.48 × 10−4T2 − 9.39 × 10−2T + 21.2 
(E4) HCO3

− ↔ CO3
2− + H+ N/A p𝑘𝑘a = 1.19 × 10−4T2 − 7.99 × 10−2T + 23.6 

where temperature, T, is in degrees Kelvin 
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Commonly used chemical species are abbreviated, including combined chlorine 

(CombCl2), free chlorine (FreeCl2), and total chlorine (TotalCl2). Abbreviations for frequently 

referenced chemical species, groups of species, and temporal disinfectant switching are included 

in Table 3.3.  

Table 3.3. Abbreviations for common chemical species, groups of species, and temporal 
disinfectant switching. 

Abbreviation Description 
NH3, NH4

+ Ammonia, ammonium 
Free ammonia Sum of NH3, NH4

+ 
HOCl, OCl- Hypochlorous acid, hypochlorite 
FreeCl2 Free chlorine, equal to sum of HOCl and OCl- 
NH2Cl, NHCl2, NCl3 Monochloramine, dichloramine, trichloramine 
CombCl2 Combined chlorine, equal to sum of NH2Cl, NHCl2, and NCl3 
TotalCl2 Total chlorine, equal to sum of FreeCl2 and CombCl2 
Total ammonia Sum of free ammonia, CombCl2  
CombCl2 → FreeCl2 Temporal disinfectant switching from CombCl2 to FreeCl2 
FreeCl2 → CombCl2 Temporal disinfectant switching from FreeCl2 to CombCl2 

 

Reactor models for the two clearwells included SF, MM, TIS, and RN models, which are 

discussed in detail in APPENDIX B. Description of these models can also be found in Chapter 2, 

as well as reference textbooks and the literature (Crittenden et al. 2005, Fogler 2006, Levenspiel 

1999, Najm et al. 2009, Craik 2005, Pfeiffer and Barbeau 2014). Models were developed from 

the tracer data in Figure 3.1, which shows the normalized tracer concentration (C/C0) versus θ 

(normalized run time, θ = t/τ). The nominal hydraulic residence time, τ, is equal to V/Q where V 

is the reactor volume and Q is the volumetric flow rate. The number of tanks, n, for TIS models 

representing Clearwells A and B were found to be 5 and 3, respectively, via least squares 

regression. RN models were selected based on fits to non-reactive tracer data using a process 

described in Chapter 2. The parallel TIS RN model was selected for Clearwell A (see diagram on 

Figure 3.1A for fitting parameters). The RN model selected for Clearwell B was PFR and CSTR 

in series, repeated in parallel (see diagram on Figure 3.1B for fitting parameters). SF and MM 
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models for Clearwells A and B were developed from RN model fits shown in Figure 3.1 using 

steps of 0.05θ from 0 to 3θ. This was done to eliminate errors that may result from noise in tracer 

data. 

All inputs for modeling full-scale reactors were either observed, or calculated from, 

online flow meters or online analyzers. Figure 3.2A shows an example of how model inputs 

change over time. Effluent flow varied from 24 to 90 MGD. This range of flow occurred in less 

than a three-hour period, and flow changes caused τ to vary 4.7 to 18.9 hours. Thus, reactor 

operation was typically not at steady state, and neither were the reactor models used. Model 

input data were collected at five-minute increments, which is consistent with response time of 

the ChemScan instrument (ChemsScan Inc. 1998). Five-minute increments were also used for 

predicted outputs from different reactor models. Downscaling five-minute data to one-minute 

data using linear interpolation and rerunning models did not have a noticeable effect on model 

outputs (data not shown). Influent chlorine concentration and ammonia dose were relatively 

steady prior to a conversion from chloramines to free chlorine (i.e., CombCl2→FreeCl2) (Figure 

3.2Figure 3.2B). Chlorine feed rates were adjusted to target an effluent residual of 3.7 mg/L-Cl2 

when CombCl2 was used a residual disinfectant, and 3.0 mg/L when FreeCl2 was used. To 

convert from CombCl2→FreeCl2, ammonia feed was ceased and dose became zero. 

Model initial conditions were set equal to reactor effluent conditions at a time no less 

than 48 hours prior to change in disinfectant. For example, if a disinfectant change occurred on 

March 15 at 6:00am, the model was initialized no later than March 13 at 6:00am. Observed time-

dependent model inputs (e.g., process flow rate, clearwell volume, chlorine concentration, 

ammonia dose) without any averaging were then used to model reactor outputs before, during, 

and after breakpoint for comparison with observed reactor effluent.   
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Figure 3.1. Tracer data for (A) Clearwell A and (B) Clearwell B fit with TIS and RN models. 
The SF model uses tracer data directly and therefore is not shown in the figure. Normalized run 
time, Θ = t/τ. 
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Figure 3.2. Example online, full-scale data used as model inputs. These include (A) reactor 
influent and effluent flows, calculated clearwell volumes (from online level indicators), metered 
bulk ammonia influent flow, and τ. The three model inputs that varied over time were (B) 
chlorine concentration, influent ammonia concentration, and τ. 
 

Clearwell effluent concentrations of the chemical species in Table 3.2 were predicted 

using SF, MM, TIS, and RN models. The process for calculating the effluent species 

concentrations is described in detail for each model in APPENDIX B. All models involve setting 
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up a series of differential equations from the chemical reactions shown in Table 3.2 and solving 

them using the deSolve package (Soetaert et al. 2010) in R (R Core Team 2016). Example code 

for solving the SF, MM, TIS, and RN models is shown in APPENDIX B.  

3.2.4 Quantifying Model Error 

The difference between modeled and observed concentrations over a given range of time 

was quantified using normalized root-mean-square error (NRMSE). NRMSE was calculated as 

follows 

𝑁𝑁𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀 =  1
𝐶𝐶𝑂𝑂𝑜𝑜𝑜𝑜

�∑ �𝐶𝐶𝑀𝑀𝑚𝑚𝑚𝑚,𝑖𝑖−𝐶𝐶𝑂𝑂𝑜𝑜𝑜𝑜,𝑖𝑖�
2𝑍𝑍

1
𝑍𝑍

,        
3.1 

where CMod is the modeled concentration, CObs is the observed concentration, 𝐶𝐶𝑂𝑂𝑂𝑂𝑚𝑚 is average 

observed concentration, and Z is the total number of observations, individually denoted as i. 

3.2.5 Reactions in Reactor Effluent 

Model outputs indicated that breakpoint reactions may be incomplete in clearwell effluent 

near the time of observed minimum disinfectant residual, and therefore the ability of different 

reactor models to predict residual disinfectant stability was also studied. Samples of Clearwell A 

effluent were collected both before and after the minimum observed effluent chlorine residual 

during CombCl2→FreeCl2. Sample collection times included 55 minutes before, 15 minutes 

before, and 25 minutes after the minimum chlorine residual. Minimum chlorine residual was 

observed nine hours and 20 minutes after ammonia feed was ceased. Total residual chlorine in 

each collected sample was measured over time using a DPD pocket colorimeter (Hach Co., 

Loveland, CO). These results were compared to predicted decay in modeled SF, TIS, and RN 

effluent following holding time in a hypothetical batch reactor (i.e., predicted concentrations 
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downstream). 

3.2.6 Microbial Inactivation Using Segregated and Mixed Models 

The effects of flow segregation and earliness of mixing (i.e., micromixing) on predicted 

microbial inactivation were investigated. Microbial inactivation was calculated for two models 

with equivalent kinetic parameters and RTD, but with different assumptions micromixing: SF 

and TIS models.  

A hypothetical disinfection contactor was used for this analysis instead of Clearwells A or 

B. Clearwells A and B had relatively low rates of observed oxidant decay, and therefore flow 

segregation and mixing would be relatively unimportant. The hypothetical disinfection contactor 

was assumed to have τ = 10 minutes and RTD described by TIS with n = 5. Initial oxidant 

concentration was assumed to be 1 mg/L. First-order oxidant decay was assumed such that  

𝑑𝑑𝐶𝐶
𝑑𝑑𝑟𝑟

= −𝑘𝑘𝑑𝑑𝐶𝐶,        3.2 

where C is the oxidant concentration (mg/L) and kd is the rate constant for first-order decay (min-

1). Microbial inactivation was assumed to follow Chick-Watson kinetics (Crittenden et al. 2005)  

𝑑𝑑𝐶𝐶
𝑑𝑑𝑟𝑟

= −𝑘𝑘𝑟𝑟𝐶𝐶𝑁𝑁,        3.3 

where ki is the coefficient of specific lethality (L/mg-min) and N is the microbial concentration 

(i.e., concentration of viable microbes). This expression becomes pseudo-first order when C is 

constant, although for this study oxidant decay was assumed. For the TIS reactor, oxidant and 

microbial concentrations in each CSTR were calculated according to  
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𝐶𝐶
𝐶𝐶0

= 1
1+𝑘𝑘𝑚𝑚𝜏𝜏/𝑟𝑟

 ,        3.4 

  

and 

𝐶𝐶
𝐶𝐶0

= 1
1+𝑘𝑘𝑖𝑖𝐶𝐶𝜏𝜏/𝑟𝑟

 ,   

      

3.5 

where C0 and N0 are the influent concentrations of disinfectant and microbial contaminants, 

respectively (Levenspiel 1999). For the SF model, concentrations of disinfectant and microbial 

contaminants were calculated using Equations 3.2 and 3.3 in the deSolve package. The SF model 

used one PFR for every 0.01θ up to 3θ, or 300 PFRs.  

Microbial inactivation was predicted over a range of oxidant decay constant and specific 

lethality constant values. The oxidant decay constant was varied from 0 to 0.5 min-1 and the 

specific lethality coefficient from 0 to 5 L/mg-min (Crittenden et al. 2005). 

3.3 Key Concepts – Summary  

A detailed discussion of flow segregation and mixing (i.e., micromixing), reactor model 

types, and how different model types respond to temporal disinfectant switching is provided in 

APPENDIX B. A brief summary of these ‘Key Concepts’ is included in this section. These 

conceptual investigations are important for framing the predicted full-scale results that follow. 

Visual representations of perfect segregation, perfect mixing, early segregation, and late 

segregation are shown in Figure 3.3. Assumptions about flow segregation and mixing have 

important consequences when mixing reactants (e.g., free and combined chlorine). Temporal 

disinfectant switching in a CSTR produces breakpoint (see Figure B.6 in APPENDIX B), while 

breakpoint would not occur in a PFR due to lack of longitudinal mixing (see Figure B.7 in 
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APPENDIX B). CSTRs and PFRs are the building blocks of more complex models, including 

the TIS and SF models. The TIS model predicts breakpoint (see Figure B.8 in APPENDIX B). 

However, breakpoint reactions may not have progressed to completion, even with residence 

times on the order of hours (see Figure B.9 in APPENDIX B). This phenomenon is more 

pronounced for SF models as shown in Figure B.10 in APPENDIX B. Loss of chlorine residual 

is predicted after flow leaves the SF reactor because there is no internal mixing, so free and 

combined chlorine are first assumed to mix leaving the reactor.  

 
Figure 3.3. Visual representation of reactor segregation and mixing. Blue and yellow solutions, 
when mixed together, form a green solution. Solid lines represent boundaries where flow cannot 
pass between, while dashed lines represent boundaries through which flow can pass.   
 

3.4 Results and Discussion 

3.4.1 Full-Scale Results: Observed and Modeled 

Figure 3.4 shows ammonia dose along with observed and modeled TotalCl2 residual in 

Clearwell A for CombCl2→FreeCl2, including the preceding 79 hours since model initialization. 
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Prior to the switch from chloramines to free chlorine, NRMSE values between modeled and 

observed TotalCl2 concentrations were 8.3, 2.8, 15.6, and 1.1% for SF, TIS, MM, and RN 

models, respectively. The SF model tended to underestimate effluent TotalCl2 due to NH2Cl 

decay in PFRs with long residence time. Over the period shown in which ammonia was added, 

average τ was 11.5 hours. This long residence time, coupled with tracer data showing 38% of 

flow spending longer than τ in the reactor (see Figure 3.1A), was likely the cause of the SF 

model underestimating effluent TotalCl2 concentrations. The MM model underestimated effluent 

TotalCl2 due to the model assumption that both FreeCl2 and ammonia (rather than NH2Cl) are 

injected throughout the length of the reactor. This resulted in partial breakpoint before NH2Cl 

could be formed. TIS and RN model predictions were substantially closer to the observed 

concentrations.  

 
Figure 3.4. Observed and modeled TotalCl2 for CombCl2→FreeCl2 in Clearwell A.  
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For the period after ammonia feed was ceased, breakpoint chemistry was observed and 

Figure 3.4 shows significant differences among reactor model predictions of TotalCl2. The SF 

model predicted no reduction in TotalCl2 because flows from individual PFRs mix at the reactor 

effluent with zero time for breakpoint reactions to occur (see Figure B.10 and Key Concepts in 

APPENDIX B). The SF model prediction differed significantly from observation, with NRMSE 

of 36%. The TIS model performed well (NRMSE of 7%) except for a period after breakpoint 

where TotalCl2 was overestimated by 4 to 22% relative to observed concentrations, before later 

converging to similar concentrations after complete conversion to free chlorine. The MM model 

predicted breakpoint earlier than was observed, and predicted free chlorine concentrations would 

increase more quickly than was observed (NRMSE = 20%). The RN model performed similarly 

to the TIS model toward the beginning and end of breakpoint. However, the RN model predicted 

a local maximum in TotalCl2 in between two local minima. This resulted from two segregated 

flows with differing residence times mixing together with zero time for breakpoint reactions (see 

Figure 3.1A for parallel TIS RN model). NRMSE for the RN model in the period after ammonia 

feed was ceased was 22%. 

Model outputs were compared to observation for total ammonia, NH2Cl, and FreeCl2 in 

addition to TotalCl2. This comparison was performed for both the baffled Clearwell A and 

unbaffled Clearwell B. CombCl2→FreeCl2 and FreeCl2→ CombCl2 conversions are shown in 

Figure 3.5 and Figure 3.6 for Clearwell A and in Figure 3.7 and Figure 3.8 for Clearwell B. Data 

are shown specifically for a 24-hour period in which breakpoint occurs. Results shown in Figure 

3.5A are similar to Figure 3.4, but for a different year. 
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Figure 3.5. Observed and modeled species concentrations for CombCl2→FreeCl2 in 
Clearwell A. Results shown in panel A are similar to those in Figure 3.4 but for a different year. 

 

 
Figure 3.6. Observed and modeled species concentrations for FreeCl2→CombCl2 in 
Clearwell A. 
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Figure 3.7. Observed and modeled species concentrations for CombCl2→FreeCl2 in 
Clearwell B. 
 

 
Figure 3.8. Observed and modeled species concentrations for FreeCl2→CombCl2 in 
Clearwell B.  
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SF model predictions generally differed from observation, with TotalCl2 NRMSE of 35, 

40, 46, and 58% over the 24-hour periods shown in Figure 3.5 - Figure 3.8. The SF model did a 

poor job of predicting breakpoint reactions, indicating that SF is also a poor predictor of 

micromixing in the reactors studied. The SF model predicted numerous step changes in species 

concentrations, particularly for Clearwell B (Figure 3.7, Figure 3.8). Similar step changes in 

concentrations were observed for the MM model that coincided in time with those for the SF 

model. To investigate a potential explanation, model prediction was compared with τ as shown in 

Figure 3.9. Large changes in predicted concentration corresponded to changes in τ, which 

resulted from finished water pumps being turned on and off (i.e., effluent flow changes). This in 

turn effected how far back in time (τ*ϴi) the models looked for inputs due to unsteady operation 

(see Figure B.11). When flow decreased, τ increased and with it the proportion of model inflows 

containing ammonia as the SF and MM models referenced inflows that occurred farther back in 

time. This led to higher predicted concentrations of NH2Cl. As flow increased, τ decreased and 

with it the proportion of model inflows containing ammonia as the models referenced more 

recent inflows. This led to higher predicted concentrations of FreeCl2. Susceptibility to unsteady 

flow rates likely explain the concentration step changes predicted by the SF and MM models. 

The TIS and RN models did not predict step changes, indicating that these models are less 

sensitive to unsteady flows than the SF and MM models. 
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Figure 3.9. SF and MM model predictions for free chlorine and monochloramine compared with 
τ and percentage modeled inflows containing ammonia. The period represented is equivalent to 
that shown in Figure 3.7.  
 

To eliminate the effect of unsteady flows, the SF and MM models were also run using a 

constant τ. The value of τ used was the average over the period shown in Figure 3.7 and Figure 

3.9 (i.e., 8.5 hours). Results of the constant and variable τ model runs are shown in Figure 3.10. 

The step changes in predicted concentrations did not occur when the average τ was used. The SF 

model poorly predicted observed species concentrations even when using average τ. MM model 

predictions improved significantly in accuracy when using average τ; NRMSE was reduced from 

28, 58, 27, and 25% to 14, 17, 23, and 20% for TotalCl2, FreeCl2, NH2Cl, and total ammonia, 

respectively. These findings indicate that average τ improves the accuracy of MM predictions.  
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Figure 3.10. SF and MM model predictions from Figure 3.7 along with model predictions 
calculated using the average τ over the time period shown. 
 

Even at steady flows, the MM model tended to predict lower minimum TotalCl2 

concentrations at breakpoint than were observed. This was particularly pronounced in Figure 3.5 

and Figure 3.6, where the MM model predicted minimum TotalCl2 concentrations of <0.1 mg/L, 

compared with observed minima of 0.81 and 0.58 mg/L. The NRMSE for MM TotalCl2 in Figure 

3.5 - Figure 3.8 was 20, 22, 28, and 14%. The FreeCl2→ CombCl2 conversion shown in Figure 

3.8 had relatively steady τ, with only one flow change (data not shown) which is evident in the 

predicted species concentrations. Except during the period of τ change, the MM model 

predictions shown in Figure 3.8 matched observation more closely than in Figure 3.4 – Figure 

3.7. This finding suggests that the MM model performs reasonably well in predicting 

micromixing when there is no or poor baffling and reactor operation is steady (i.e., steady τ 

resulting from steady volume and flow).  
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The TIS model performed well in both Clearwell A (n = 5) and Clearwell B (n = 3). 

TotalCl2 NRMSE was 5, 11, 12, and 14% in Figure 3.5 – Figure 3.8 respectively, which was 

lower than for all other models. This also held true for other species, such as FreeCl2 and NH2Cl. 

The TIS model’s predicted timing of breakpoint and species (i.e., TotalCl2, TotalNH3, NH2Cl, 

FreeCl2) concentrations were all consistent with observation. However, TIS often predicted that 

the oxidant initially present (i.e., NH2Cl, FreeCl2) would persist longer, and that the influent 

oxidant (i.e., FreeCl2, NH2Cl) would appear sooner after breakpoint, than was observed. 

Predictions of TotalCl2 were generally not improved by changing the number of n tanks found by 

tracer fitting, although for Clearwell B n-1 produced lower NRMSE (see Figure B.12 in 

APPENDIX B). Overall, TIS model predictions closely matched observation, indicating that the 

TIS model also likely provides an accurate representation of micromixing in the reactors studied. 

For the RN model, predictions matched observation more closely for Clearwell B than for 

Clearwell A. TotalCl2 NRMSE values for CombCl2→FreeCl2 and FreeCl2→ CombCl2 in 

Clearwell B were 13 and 16% (see Figure 3.7, Figure 3.8), similar to the 12 and 14% for TIS. 

However, the RN model did not perform as well for Clearwell A. TotalCl2 NRMSE values for 

CombCl2→FreeCl2 and FreeCl2→ CombCl2 were 20 and 25% (see Figure 3.5 and Figure 3.6), 

worse than the 5 and 11% for TIS. The RN model for Clearwell A significantly overestimated all 

species near observed minimum TotalCl2, although the RN model for Clearwell B produced 

estimates closer to observed concentrations. Further investigation into model outputs suggests 

that more accurate prediction by the RN model for Clearwell B than Clearwell A appear to be 

related to residence times in segregated (i.e., parallel) flows as discussed next.  

RN models achieve better fits to nonreactive tracer data as the number of parallel flows 

increases from one to two, and from two to three (see Chapter 2). This can be seen in Figure 
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3.1A, where the parallel TIS RN model achieved a better fit than a single TIS reactor. Better fits 

result, in part, from parallel flows having different residence times. In the Clearwell A RN model, 

61.1% of the flow passed through 43.3% of the volume (exiting 41.1% faster than the overall τ), 

while 38.9% of the flow passed through 52.6% of the volume (exiting 26.0% slower than the 

overall τ) (see fitting parameters in Figure 3.1). For the Clearwell B RN model, 58.3% of the 

flow passed through 53.4% of the volume (exiting 9.2% faster than the overall τ) while 41.7% of 

the flow passed through 44.6% of the volume (exiting 6.5% slower than the overall τ). 

Differences in residence times between the parallel flows in Clearwell A (41.1% faster, 26.0% 

slower than τ) result in the prediction of two TotalCl2 minima that are seen in Figure 3.4 – Figure 

3.6. By contrast, the two parallel flows for Clearwell B have relatively similar residence times:  

only 9.2% faster and 6.5% slower than τ. As a result, the Clearwell B RN model predicts a single 

TotalCl2 minimum (see Figure 3.7 and Figure 3.8). This finding suggests that parallel (i.e., 

segregated) flows in reactor networks improve the prediction of macromixing conditions, but do 

not necessarily improve the prediction of micromixing conditions.    

In summary, the TIS models performed well in predicting reactor effluent species for both 

baffled and unbaffled clearwells (TotalCl2 NRMSE 5-14%). The SF model did not perform well, 

predicting concentrations that varied significantly from observed results (TotalCl2 NRMSE 34-

53%). RN models performed similarly to TIS for Clearwell B (TotalCl2 NRMSE 13-16%) but 

worse for Clearwell A (TotalCl2 NRMSE 20-25%); this can be explained by the difference in τ 

for parallel flows in each model. The MM model accurately predicted species concentrations in 

unbaffled Clearwell B when flows were steady (TotalCl2 NRMSE 14%), but was less accurate 

for the baffled Clearwell A or when flows were unsteady (TotalCl2 NRMSE 20-28%). These 

results indicate that TIS model most accurately and consistently represented micromixing 
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conditions in the reactors studied.  

This work also demonstrated that when combined with an appropriate reactor model 

(e.g., TIS), the generally accepted kinetic model of Jafvert and Valentine (1992) and Vikesland et 

al. (2001) was capable of predicting breakpoint reactions in full-scale, flow through reactors. 

3.4.2 Reactions in Reactor Effluent 

The previous section highlighted that SF models, along with RN models for Clearwell A, 

predicted TotalCl2 residuals that were significantly greater than observed values. For these 

models, CombCl2 and FreeCl2 were predicted to co-occur in reactor effluent due to the late 

mixing of segregated flows. Co-occurrence of CombCl2 and FreeCl2 would be expected to result 

in breakpoint reactions. Figure 3.11 compares observed TotalCl2 effluent concentrations to 

modeled concentrations leaving Clearwell A before and after 60 minutes in a PFR (or batch 

reactor). Observed results from grab samples were allowed to react in batch reactors for 60 

minutes prior to TotalCl2 measurement. Modeled values are presented for a PFR receiving 

effluent from SF, TIS, MM, and RN models. Differences in model outputs before and after a 60-

minute hold time result from breakpoint reactions (i.e., kinetic model in Table 3.2). 
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Figure 3.11. Observed and predicted TotalCl2 concentrations in Clearwell A effluent before and 
after a 60-minute hold during CombCl2→FreeCl2 shown in Figure 3.4.  
 

As shown in Figure 3.11, continued loss of Total Cl2 was observed when clearwell 

effluent samples were held in a batch reactor for 60 minutes. Thus, even though Clearwell A had 

residence time on the order of nine hours during CombCl2→FreeCl2 (see Figure 3.2), breakpoint 

reactions were incomplete in the reactor effluent and are expected to continue as water enters the 

distribution system. Following a modeled 60-minute reaction period, SF and RN results for 

Clearwell A were much closer to observed concentrations. The MM model predictions were 
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largely unchanged after the 60 minute reaction time, and were similar to the SF model 

predictions after a 60 minute reaction time. The TIS model effectively predicted breakpoint 

reactions in both reactor effluent and in the held samples. These results indicate the importance 

of representing micromixing in reactive systems. Internal micromixing was prevalent in the 

reactors studied as evidenced by observed loss of TotalCl2. This is likely the case for many water 

treatment reactors, with flow segregation in RN and SF models possibly being an artifact of the 

inability to perfectly simulate micromixing using combinations of PFRs, CSTRs, and TIS 

reactors to model RTD (i.e., macromixing). 

3.4.3 Modeled Microbial Inactivation in Reactors with and without Mixing 

A common application of water treatment reactors is to degrade chemical or microbial 

contaminants. The purpose of this section is to investigate how predictions of microbial 

inactivation might be affected by model selection when the models make different assumptions 

about degree of segregation and earliness of mixing, specifically TIS and SF models.  

Results of this analysis are shown in Figure 3.12. Panels A and B show log reduction 

calculated by SF and TIS, respectively, and Panel C shows the difference in the two calculations. 

Note that SF and TIS are modeling the same RTD. For both models, as expected, higher log 

reductions are calculated when specific lethality coefficient, ki, is large and oxidant decay rate, 

kd, is small (i.e., rapid disinfection, persistent disinfectant). Fast disinfectant decay and/or a 

resistant microorganism results in lower calculated log reductions. Although the overall trends 

are the same for TIS and SF, the magnitude of calculated log reduction differs considerably 

between the two models. 
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Figure 3.12. Influence of hydraulic model selection on predicted contaminant reduction. 
Assumed reaction conditions include 1 mg/L initial oxidant concentration, τ = 10 min, first-order 
contaminant degradation (e.g., Chick-Watson), and first-order oxidant decay. (A) Predicted log 
reduction in a SF reactor with RTD equivalent to TIS with n = 5, (B) predicted log reduction in a 
TIS reactor with n = 5, and (C) the difference in predicted log reduction between SF and TIS. 
Example specific lethality coefficients for microorganisms with various oxidants include:  
0.0327 L/mg-min – E. coli with monochloramine,  0.83 L/mg-min – Cryptosporidium with 
ozone, 1.9 L/mg-min – Giardia with Ozone, 3.4 L/mg-min – MS-2 with chlorine (Crittenden et 
al. 2005). 
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The SF model predicted significantly higher log reduction than the TIS model despite 

using the same RTD. SF predicted more than 100 times more removal than TIS (i.e., >2-log 

difference) for some conditions shown. The SF model assumes that the high initial oxidant 

concentration is in contact with the high initial microorganism concentration, whereas the TIS 

model assumes that both are immediately diluted in the first of a series of CSTRs. A hypothetical 

microorganism that short circuits (i.e., low residence time) would be in contact with much lower 

oxidant concentrations in each CSTR of a TIS reactor than a microorganism passing through a 

PFR with low residence time in SF. These differences in model assumptions likely explain the 

difference in predicted log inactivation shown in Figure 3.12C. Results presented earlier in this 

work demonstrate that the TIS model was more effective in describing internal reactor 

segregation and mixing conditions than the SF model for the clearwells studied. Thus, the SF 

may overestimate disinfection efficacy in reactors like Clearwells A and B. This is consistent 

previously-reported model predictions (Craik 2005, Pfeiffer and Barbeau 2014) 

However, it is important to differentiate the situations where model selection has 

significant influence on predicted log reductions from the situations where model selection is 

less important. Model selection is clearly important where specific lethality and oxidant decay 

are high (upper right corner of Figure 3.12C). Such an example includes the use of ozone for 

virus inactivation in wastewater reuse where decaying, not residual, ozone is used to determine 

treatment credit. Model selection would be less important where specific lethality is low (left 

area of Figure 3.12C) or residual oxidant is used (bottom area of Figure 3.12C). Such examples 

include the use of monochloramine for Giardia or virus inactivation or when residual 

disinfectant is used in calculating CT (USEPA 1991). This is consistent with a study by Craik 

(2005), who predicted similar inactivation using the SF, TIS, and MM models when oxidant 
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decay rate approached zero. If residual oxidant is used, then selecting from PFR t10, TIS, SF, or 

RN model will be governed by the resources available to the modeler, the ultimate use of the 

model, and potential detrimental consequences of reactor overdesign (see Chapter 2).  

These results demonstrate that two models using the same RTD will produce differing 

estimates of microbial inactivation based on assumptions about micromixing. Micromixing does 

not affect model predictions for a single first-order reaction (Levenspiel 1999). However, when 

multiple reactions occur simultaneously, micromixing is important. The reactor with mixing and 

without segregation (i.e., TIS) predicted disinfection to be less effective than the reactor without 

mixing and with segregation (i.e., SF model). When calculating microbial inactivation in reactors 

with a decaying oxidant, micromixing can have important implications, particularly when high 

log reductions are required. Micromixing should thus be considered when developing models for 

multiple reactions or pathogen inactivation by a decaying oxidant. 

Model results can also inform the design and modification of disinfection contactors. 

Although segregated flows are expected to achieve more disinfection than mixed flows, it is not 

readily apparent how traditional baffling or inlet/outlet modifications could encourage flow 

segregation. Random packing has recently been proposed as a method to reduce dispersion in 

water treatment reactors (Barnett et al. 2014, Kattnig and Venayagamoorthy 2015). A similar 

concept could be employed using structured, tubular packing. Tubular packing could be similar 

to tube settlers, which have a long history of use in sedimentation (Willis 1978). Packing would 

likely be made of plastic with zero degrees of inclination. Retrofit or initial design of such 

packing into disinfection reactors could encourage SF behavior, potentially improving 

disinfection.   
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The conclusions for microbial inactivation can also be applied more broadly to other 

reactive contaminants. This includes predicting the degradation of contaminants such as 

cyanotoxins and disinfection by-product precursors. 

3.5 Conclusions and Recommendations 

In this study, temporal disinfectant switching was used to investigate flow segregation 

and earliness of mixing (i.e., micromixing) in full-scale water treatment reactors. Results 

presented herein demonstrate that micromixing was significant in the two full-scale clearwells 

studied, and that assuming flow segregation produced inaccurate predictions of reactive tracer 

concentrations in some models. Specific findings include: 

1. When combined with an accepted kinetic model, hydraulic models that accurately 

represented micromixing were capable of predicting breakpoint reactions in flow-through 

reactors at full scale with an acceptable level of accuracy. 

2. The TIS model satisfactorily predicted free and combined chlorine species concentrations 

for both the baffled Clearwell A and the unbaffled Clearwell B. The SF model was the 

worst performing model. The RN model performed similarly to the TIS model for 

Clearwell B, but did not perform as well for Clearwell A. This can be attributed primarily 

to the two segregated flows having significantly different residence times in the RN 

model for Clearwell A. The MM model provided similar accuracy to the TIS model for 

an unbaffled clearwell when flow through the reactor was steady, but otherwise produced 

inaccurate predictions. 

3. SF models for both clearwells and the RN model for Clearwell A produced predictions 

that were closer to observation when segregated flows were modeled to react for 60 

minutes following the mixing of segregated flows, but not as close as the TIS model.  
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4. For a given RTD, reactor models without micromixing (e.g., SF) predicted greater 

microbial inactivation than reactors with micromixing (e.g., TIS) under the conditions 

tested:  Chick-Watson disinfection kinetics and first-order oxidant decay. Given that 

significant internal mixing existed in Clearwells A and B, contaminant removal may be 

overestimated if models do not account for internal mixing. Although microbial 

inactivation was the focus of this study, these findings are also generalizable to reactive 

contaminants and precursors. 

5. If a slowly-decaying or residual oxidant concentration was used, all models (e.g., TIS, 

SF, RN) would yield similar predictions of microbial inactivation provided that they 

similarly represent observed RTD.  

ACKNOWLEDGEMENTS 

This work was supported by the Larson Aquatic Research Support Scholarship from 

AWWA, the Abel Wolman Fellowship from AWWA, and the National Defense Science and 

Engineering Graduate Fellowship.  

  



96 

REFERENCES 

Acero, J. L., Rodriguez, E., Meriluoto, J. 2005. Kinetics of reactions between chlorine and the 
cyanobacterial toxins microcystins. Water Research, 39 (8): 1628-1638. 
 
American Public Health Association (APHA). 1992. Standard Methods for the Examination of 
Water and Wastewater, 18th edition. American Public Health Association, Washington, D.C. 
 
American Water Works Association (AWWA). 2018. 2017 Water Utility Disnfection Survey 
Report. 
 
Angeloudis, A., Stoesser, T., Falconer, R. A. 2014. Predicting the disinfection efficiency range in 
chlorine contact tanks through a CFD-based approach. Water Research, 60: 118-129. 
 
ChemScan Inc. 1998.  ChemScan UV-2150 Series Technical Specification. 
 
Barnett, T. C., Kattnig, J. J., Venayagamoorthy, S. K., Whittaker, G. 2014. Improving the 
hydraulics of drinking water contact tanks using random packing material. Journal AWWA, 106 
(2): E98-E104. 
 
Barrett, S. E., Davis, M. K., McGuire, M. J. 1985. Blending chloraminated and chlorinated 
waters. Journal AWWA, 77(1): 50-61. 
 
Clark, R. M. 1998. Chlorine demand and TTHM formation kinetics: a second-order 
model. Journal of Environmental Engineering, 124 (1): 16-24. 
 
Craik, S.A. 2005. Effect of micro-mixing conditions on predictions of Cryptosporidium 
inactivation in an ozone contactor. Ozone:  Science and Engineering, 27:6:  487-494. 
 
Crittenden, J. C., Trussell, R. R., Hand, D. W., Howe, K. J., & Tchobanoglous, G. 2005. MWH's 
water treatment: principles and design. 2nd Ed. Hoboken, NJ:  John Wiley & Sons. 
 
Deason, R. D., Civardi, J., Woldemariam, E. 2017. Development and Performance of Tracer 
Study to Improve Water Distribution Operations. 2017 WQTC: Portland, OR. 
 
Deborde, M., Von Gunten, U. 2008. Reactions of chlorine with inorganic and organic 
compounds during water treatment – kinetics and mechanisms: a critical review. Water 
Research, 42 (1-2): 13-51. 
 
Ducoste, J., Carlson, K., Bellamy, W. 2001. The integrated disinfection design framework 
approach to reactor hydraulics characterization. Journal of Water Supply: Research and 
Technology – AQUA, 50 (4): 245-261. 
 
El-Fadel, M., Findikakis, A. N., Leckie, J. O. 1996. Numerical modelling of generation and 
transport of gas and heat in landfills I. Model formulation. Waste Management & Research, 14 
(5): 483-504. 



97 

 
Fogler, H. S. 2006. Elements of Chemical Reaction Engineering. 4th ed. Pearson Education: 
Boston, MA. 
 
Gandhi, V., Roberts, P. J., Stoesser, T., Wright, H., Kim, J. H. 2011. UV reactor flow 
visualization and mixing quantification using three-dimensional laser-induced 
fluorescence. Water Research, 45 (13): 3855-3862. 
 
Gandhi, V. N., Roberts, P. J., Kim, J. H. 2012. Visualizing and quantifying dose distribution in a 
UV reactor using three-dimensional laser-induced fluorescence. Environmental Science & 
Technology, 46 (24): 13220-13226. 
 
Gorzalski, A.S., Harrington, G.W., Coronell, O. 2018. Modeling water treatment reactor 
hydraulics using reactor networks. Journal AWWA, 110 (8): 13-29. 
 
Greene, D.J., Farouk, B., Haas, C.N. 2004. CFD Design Approach for Chlorine Disinfection 
Processes. Journal AWWA, 96 (8): 138-150.  
 
Greene, D. J., Haas, C. N., Farouk, B. 2006. Computational fluid dynamics analysis of the effects 
of reactor configuration on disinfection efficiency. Water Environment Research, 78 (9): 909-
919. 
 
Gresch, M., Braun, D., Gujer, W. 2011. Using reactive tracers to detect flow field anomalies in 
water treatment reactors. Water Research, 45 (5): 1984-1994. 
 
Henze, M., Gujer, W., Mino, T., van Loosdrecht, M. C. M. 2000. Activated sludge models 
ASM1, ASM2, ASM2d and ASM3. IWA Publishing. 
 
Jafvert, C. T., Valentine, R. L. 1992. Reaction scheme for the chlorination of ammoniacal 
water. Environmental Science & Technology, 26 (3): 577-586. 
 
Kattnig, J. J., and Venayagamoorthy, S. K. 2015. A Hybrid Approach for Increasing Baffling 
Factors in Contact Tanks. Journal AWWA, 107 (12): E702-E711. 
 
Kiil, S., Michelsen, M. L., Dam-Johansen, K. 1998. Experimental investigation and modeling of 
a wet flue gas desulfurization pilot plant. Industrial & Engineering Chemistry Research, 37 (7): 
2792-2806. 
 
Kim, D., Nemlioglu, S., Roberts, P. J., Kim, J. H. 2010a. Ozone-contactor flow visualization and 
quantification using three-dimensional laser-induced fluorescence. Journal AWWA, 102 (1): 90-
99. 
 
Kim, D., Elovitz, M., Roberts, P. J., Kim, J. H. 2010b. Using 3D LIF to investigate and improve 
performance of a multichamber ozone contactor. Journal AWWA, 102 (10): 61-70. 
 



98 

Laurent, J., Samstag, R. W., Ducoste, J. M., Griborio, A., Nopens, I., Batstone, D. J., Wiks, J. D., 
Saunders, S., Potier, O. 2014. A protocol for the use of computational fluid dynamics as a 
supportive tool for wastewater treatment plant modelling. Water Science and Technology, 70 
(10): 1575-1584. 
 
Levenspiel, O. 1999. Chemical Reaction Engineering. 3rd ed. New York: Wiley and Sons. 
 
Oh, S. H., Cavendish, J. C. 1985. Mathematical modeling of catalytic converter lightoff. Part III: 
Prediction of vehicle exhaust emissions and parametric analysis. AIChE Journal, 31 (6): 943-
949. 
 
Luh, J., Mariñas, B. J. (2014). Kinetics of bromochloramine formation and 
decomposition. ES&T, 48 (5): 2843-2852. 
 
Najm, I.; Brown, N.P.; Gramith, K.; Hargy, T. 2009. Validating Disinfection in Ozone 
Contactors. Water Research Foundation. Denver, CO. 
 
Pfeiffer, V., Barbeau, B. 2014. Validation of a simple method for predicting the disinfection 
performance in a flow-through contactor. Water Research, 49: 144-156. 
 
R Core Team. 2016. R: A language and environment for statistical computing. R Foundation for 
Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. 
 
Saunier, B. M., Selleck, R. E. 1979. The kinetics of breakpoint chlorination in continuous flow 
systems. Journal AWWA, 71(3): 164-172. 
 
Soetaert, K., Petzoldt, T., Setzer, R. W. 2010. Solving differential equations in R: package 
deSolve. Journal of Statistical Software, 33 (9): 1-25. 
 
Teefy, S.M., Singer, P.C. 1990. Performance and Analysis of Tracer Tests to Determine 
Compliance of a Disinfection Scheme with the SWTR. Journal AWWA, 82 (12):  88-98. 
 
Teefy, S. 1996. Tracer Studies in Water Treatment Facilities:  A Protocol and Case Studies. 
AWWA Research Foundation. Denver, CO. 
 
United States Environmental Protection Agency (USEPA). 1991. Guidance manual for 
compliance with the filtration and disinfection requirements for public water systems using 
surface water sources. Washington, DC. 
 
United States Environmental Protection Agency (USEPA). 2010. Long Term 2 Enhanced 
Surface Water Treatment Rule Toolbox Guidance Manual. Washington, DC. 
 
Von Gunten, U. 2003. Ozonation of drinking water: Part II. Disinfection and by-product 
formation in presence of bromide, iodide or chlorine. Water Research, 37 (7): 1469-1487. 
 



99 

Vikesland, P. J., Ozekin, K., & Valentine, R. L. 2001. Monochloramine decay in model and 
distribution system waters. Water Research, 35 (7): 1766-1776. 
 
Vikesland, P. J., Love, N. G., Chandran, K., Fiss, E. M., Rebodos, R., Zaklikowski, A.E., 
DiGiano, F.A., Ferguson, B. 2006. Seasonal Chlorination Practices and Impacts to 
Chloraminating Utilities. AWWA Research Foundation. Denver, CO. 
 
Wicklein, E., Batstone, D. J., Ducoste, J., Laurent, J., Griborio, A., Wicks, J., Saunders, S., 
Samstag, R., Potier, O., Nopens, I. 2015. Good modelling practice in applying computational 
fluid dynamics for WWTP modelling. Water Science and Technology, 73 (5): 969-982. 
 
Willis, R. M. 1978. Tubular settlers—A technical review. Journal AWWA, 70 (6): 331-335. 



100 

CHAPTER 4  - IMPACT OF MODEL SELECTION ON PREDICTED CONTAMINANT 
DEGRADATION IN FULL-SCALE WATER TREATMENT REACTORS 

 

4.1 Introduction 

The modeling of contaminant removal is fundamental to the design, operation, and 

regulation of reactive contaminants in water treatment processes. The concentrations of 

microbial contaminants in finished drinking water are typically too low to be reliably measured 

(USEPA 1992). For this reason, regulations for enteric viruses, Giardia, and Cryptosporidium are 

not based on observed finished water concentrations. Instead, treatment (i.e., log reduction value, 

LRV) requirements are based on risk assessment, and treatment credits are provided based on 

pathogen inactivation models (USEPA 2010, USEPA 2008, USEPA 1991). The acceptable level 

of risk in surface water systems has been defined as one case of illness per 10,000 people per 

year (USEPA 1992), and water reuse requirements typically have targeted this same population 

health risk (Amoueyan et al. 2017, WateReuse Colorado 2018, TWDB 2015, USEPA 2017).  

Modeling of contaminant oxidation has also proven to be useful for contaminants of 

emerging concern (CECs), such as cyanotoxins (Gorzalski et al. 2017, Stanford et al. 2016). 

Cyanotoxins can occur in the absence of a visible cyanobacterial bloom (Westrick and Szlag 

2018), complicating attempts to develop triggered monitoring strategies based on bloom 

observation. Current analytical methods for cyanotoxins also have limitations in terms of 

sensitivity and specificity (Guo et al. 2017, Westrick and Szlag 2018), providing further 

motivation for the development of models to assess the efficacy of oxidative treatment barriers.  
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Contaminant degradation is a function of four factors: reaction kinetics, residence time 

distribution (RTD), degree of segregation, and earliness of mixing (Levenspiel 1999). If reaction 

kinetics are assumed to be first order, such as for Chick-Watson inactivation kinetics used in 

disinfection regulations (USEPA 2010, 1991) or cyanotoxin degradation when oxidant 

concentration is constant (Acero et al. 2005, Rodríguez et al. 2007b), degree of segregation and 

earliness of mixing can be ignored (Fogler 2005, Levenspiel 1999, Chapter 3). Reaction 

modeling is then only a function of reaction kinetics and RTD. For pathogen regulations, reaction 

kinetics are typically provided in the form of CT tables (USEPA 2010, 1991), where CT is the 

product of disinfectant concentration (C) and contact time (T). For cyanotoxins, extensive studies 

of reaction kinetics are available in the literature (Acero et al. 2008, Acero et al. 2005, Onstad et 

al. 2007, Rodríguez et al. 2007a, Rodríguez et al. 2007b, Rodríguez et al. 2007c). As 

demonstrated in Chapter 2, RTD information can be gained through tracer studies (Crittenden et 

al. 2012, Gorzalski et al. 2018, Teefy 1996), empirical models relating RTD to reactor geometry 

(Crozes et al. 1999, Porter et al. 2018), or computational fluid dynamics (Wols et al. 2010, Zhang 

et al. 2014).   

For over 25 years, the plug flow reactor (PFR) t10 model for RTD has been the standard 

reactor model used in pathogen inactivation regulations (USEPA 2010, USEPA 1991). 

Limitations of the PFR t10 model have been well-documented, including how it tends to 

underestimate pathogen inactivation at low LRVs and overestimate pathogen inactivation at high 

LRVs as discussed in Chapter 2 (Gorzalski et al. 2018, Lawler and Singer 1993, Pfeiffer and 

Barbeau 2014). Alternative frameworks for calculating disinfection efficacy were developed, 

which used reactor models such as the axial dispersion, tanks-in-series (TIS), segregated flow 

(SF), and reactor network (RN) models (Bellamy et al. 1998, Carlson et al. 2001, Najm et al. 
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2009, Chapter 2). The maximum mixedness model yields equivalent predictions to the SF model 

when oxidant concentration is constant (Craik 2005, Pfeiffer and Barbeau 2014), and therefore is 

not discussed here. Despite the plethora of models developed, validating models with observed 

data has proven difficult, even at pilot scale (Pfeiffer and Barbeau 2014). The models that most 

closely represent observed results also tend to vary between studies (Haas et al. 1998, Najm et al. 

2009, Pfeiffer and Barbeau 2014, Smeets et al. 2006, Tang et al. 2005). In the absence of a 

consistently verifiable alternative, the PFR t10 model has continued to be applied not just for the 

disinfection of surface water (USEPA 2010, USEPA 1991), but water reuse as well (Olivieri et al. 

2016, Pecson et al. 2017).  

Water reuse requires greater pathogen LRVs, both in overall treatment trains and 

individual unit processes, due to elevated pathogen concentrations in wastewater effluent. 

California requires 12/10/10-log reduction of viruses, Cryptosporidium, and Giardia (CA 

SWRCB 2018, WateReuse Colorado 2018), while Texas requires a minimum of 8/5.5/6-log for 

these pathogens which can be increased based on source concentrations (WateReuse Colorado 

2018, TWDB 2015). Both states target one illness per 10,000 people per year (WateReuse 

Colorado 2018, USEPA 2017), but LRV requirements differ due to assumed starting points for 

treatment (i.e., raw wastewater in California, treated wastewater effluent in Texas (WateReuse 

Colorado 2018)). These higher overall reductions are also accompanied by higher LRVs in unit 

process. California allows for up to 6-log reduction in each treatment barrier (CA SWRCB 

2018), while Texas allows 5-log reduction for ozone disinfection of viruses, with greater 

reductions potentially being approved on a site-specific basis (TWDB 2015). At these higher 

LRVs, it is unclear whether the PFR t10 model would underestimate or overestimate treatment 

performance.  
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The potential for short-circuiting to compromise disinfection efficacy at high LRVs (e.g., 

6-log) has been recognized in recent studies (Olivieri et al. 2016, Pecson et al. 2017). It has been 

advised that evidence of reactor hydraulics be provided when crediting high LRVs (Olivieri et al. 

2016). However, the PFR t10 model is still being used in risk assessments crediting 6-log 

reduction through oxidation processes (Pecson et al. 2017). There is a lack of quantitative 

guidance regarding LRVs at which PFR t10 should be used, and limited examples of how LRV 

prediction is affected by reactor model selection (e.g., PFR t10 versus TIS, SF, RN).    

Reactor model selection is not only important for predicting pathogen inactivation, but 

also for CECs that are susceptible to oxidation. CECs such as NDMA precursors (Krasner et al. 

2013), numerous endocrine disrupting compounds (Westerhoff et al. 2005), and cyanotoxins 

(Rodríguez et al. 2007b) are susceptible to oxidation. Cyanotoxins are of particular interest 

because they have resulted in ‘do not use’ orders in multiple US cities as well as drinking water 

advisories internationally (Davis et al. 2019), have well-studied degradation kinetics (Acero et al. 

2008, Acero et al. 2005, Onstad et al. 2007, Rodríguez et al. 2007a, Rodríguez et al. 2007b, 

Rodríguez et al. 2007c), and have reaction rates that vary over orders of magnitude depending on 

the toxin and oxidant of interest. Given increased interest in predictive modeling for cyanotoxin 

oxidation (Gorzalski et al. 2017, Stanford et al. 2016), the effect of reactor model selection on 

predicted degradation warrants further investigation. 

The objective of this work was to perform a quantitative evaluation of how reactor model 

selection affects prediction of contaminant degradation across a range of different reactor types 

and sizes, and to use this knowledge to provide guidance on reactor model selection for different 

LRVs. Results are presented here to:  
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i) quantify the level of treatment (e.g., CT) that would be required using different 

reactor models,  

ii) calculate the log reductions at which the PFR t10 model is conservative,  

iii) estimate the impacts of reactor model selection on reactor capital costs, and  

iv) provide quantitative guidance on conditions where predictions of treatment efficacy 

are sensitive to reactor model selection.  

The conclusions from this analysis are intended to inform the design, operation, and regulation of 

water treatment reactors.  

4.2 Modeling Methods 

4.2.1 Reactor Models  

Five different reactor models were used in this work: PFR, PFR t10, TIS, SF, and RN. The 

PFR model assumes all water spends the same amount of time in the reactor. That time is equal 

to the average hydraulic residence time, τ [min], which is defined as V/Q where V is the reactor 

volume [gal] and Q [gal·min-1] is the volumetric flow rate. The PFR t10 model similarly assumes 

that all water spends the same amount of time in the reactor, but that time is assumed to be equal 

to the time it takes the first ten percent of flow to exit the reactor, t10, rather than τ. The baffle 

factor (BF), calculated as t10/τ, was obtained from tracer data and t10 was obtained from the 

product of BF and τ. The TIS reactor consists of a finite number of continuous flow stirred tank 

reactors (CSTRs) arranged in series (Levenspiel 1999). Although a wide variety of RN models 

can be constructed, a single RN model was used in this study. The RN model used consisted of 

two TIS reactors in parallel (one TIS reactor on each parallel flow path), which was shown in 

Chapter 2 to accurately fit tracer data from numerous water treatment reactors. TIS and RN 

models were fit to tracer data using nonlinear least squares regression as described elsewhere 
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(Chapter 2). The SF model consists of PFRs with differing τ arranged in parallel; details on the 

SF model are provided elsewhere (Chapter 2, Najm et al. 2009).  

The maximum mixedness model was excluded because it yields equivalent predictions to 

the SF model when oxidant concentration is constant (Craik 2005, Pfeiffer and Barbeau 2014). 

4.2.2 Tracer Studies and Data Correction  

Data sets from tracer studies using conservative, non-reactive tracers for 35 water 

treatment reactors were gathered from the literature (see Table C.1 in APPENDIX C). Reactor 

types included clearwells, chlorine contactors, ozone contactors, filters, and clarifiers. For 

reactors with multiple tracer data sets, a single representative tracer was selected. All tracer data 

were converted to normalized step dose tracer plots of F/F0 versus ϴ, where F/F0 is the observed 

tracer concentration divided by step dose tracer concentration and ϴ = t/τ. It was assumed that all 

reactors had closed boundary conditions, meaning that flow elements can only enter and exit the 

reactor one time (i.e., plug flow upstream and downstream). As was discussed in detail in 

Chapter 2 (see also Figure C.1 and corresponding discussion in the APPENDIX C), fitting of RN 

models to tracer data indicated that overestimation of flow and/or underestimation of volume 

potentially occurred in a majority of tracer studies reported in the literature. Such tracer studies 

had normalized reactor volume (Vnorm), conceptualized as the volume needed to fit a model to 

tracer data divided by the actual total volume of the reactor, that exceeded unity. For any tracer 

study where fitting with the RN model produced Vnorm > 1.05, ϴ was divided by Vnorm to correct 

the data set.  

4.2.3 Calculating Contaminant Removal Using the Damköhler Number  

This work is limited to reactions that are first order with respect to the contaminant of 
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interest and the oxidant concentration is constant. Many reactions in water treatment can be 

described as being second order overall, first order with respect to a contaminant N (mg·L-1 or 

organisms·L-1) and first order with respect to an oxidant C (mg·L-1) as given by 

 
d𝐶𝐶
d𝑟𝑟

= −𝑘𝑘𝐶𝐶𝑁𝑁,        4.1 

 

where k (L·mg-1·min-1) is the second-order rate constant. Note that Equation 4.1 applies only to 

batch reactors. Common reactions described by this rate law include organisms that are 

disinfected according to Chick-Watson kinetics (Crittenden et al. 2012) and the oxidation of 

cyanotoxins (Acero et al. 2005, Onstad et al. 2007, Rodríguez et al. 2007c, 2007b). 

Assuming oxidant concentration does not vary with time, integrating Equation 4.1 for a 

batch reactor produces  

ln � 𝐶𝐶
𝐶𝐶0
� = −𝑘𝑘𝐶𝐶𝑘𝑘,        4.2 

 

where t is reaction time (min). To calculate pathogen removal in a PFR, the batch reaction time 

(t) is replaced with the reactor residence time (τ). Lawler and Singer (1993) used the 

dimensionless parameter kCτ to describe the extent of disinfection in PFR, CSTR, and TIS 

reactors. kCτ can be calculated easily for any treatment plant or operating conditions (Lawler and 

Singer 1993).  

The parameter kCτ is analogous to the Damköhler number (Da), a generalized term used 

to compare the rate of reaction to the rate of transport in flow-through reactors (Fogler 2005). 

The Damköhler number is calculated as  
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𝐷𝐷𝐷𝐷 = reaction rate
mass transport rate

= −𝑟𝑟𝑟𝑟
�̇�𝑚

,        4.3 

 

where r is the reaction rate (mg·min·L-1), and ṁ is the mass flow rate (mg·min-1). For the first-

order reaction with constant oxidant concentration described above, Da becomes 

𝐷𝐷𝐷𝐷 = −𝑟𝑟𝑟𝑟
�̇�𝑚

= −𝑘𝑘𝐶𝐶𝐶𝐶𝑟𝑟
𝑄𝑄𝐶𝐶

= −𝑘𝑘𝐶𝐶𝜏𝜏,        4.4 

 

When C is constant, the rate constant becomes pseudo first order such that  

𝑘𝑘′ = −𝑘𝑘𝐶𝐶,        4.5 
 

 

where k’ (min-1) is the pseudo first-order rate constant, and the expression for Da becomes  

𝐷𝐷𝐷𝐷 = −𝑟𝑟𝑟𝑟
�̇�𝑚

= −𝑘𝑘′𝐶𝐶𝑟𝑟
𝑄𝑄𝐶𝐶

= −𝑘𝑘′𝜏𝜏,        4.6 

 

From Equation 4.2, the equation for contaminant removal in a batch reactor would 

become 

ln � 𝐶𝐶
𝐶𝐶0
� = −𝑘𝑘′𝑘𝑘.        4.7 

 

Both kCτ and k’τ yield the same unitless parameter (i.e., Da), thus yielding equivalent 

results. 

Table 4.1 shows contaminant degradation equations as a function of Da for both ideal 

(e.g., PFR, CSTR) and non-ideal (e.g., TIS, SF, RN) reactor models. These equations apply only 
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to conditions where the oxidant concentration is constant and reaction kinetics are first order 

with respect to the contaminant of interest. 

Table 4.1. Contaminant degradation equations for PFR, PFR t10, TIS, SF, and RN models. These 
equations assume that the reaction is first-order with respect to the contaminant of interest. 

a Baffle factor (BF) equal to t10/τ. b VTIS indicates volume fraction(s) found through non-linear regression. c F and F0 
indicate observed output and input step dose tracer concentrations, respectively. 
 
4.2.4 Cyanotoxin Oxidation  

The Da for the oxidation of microcystin, cylindrospermopsin, and anatoxin-a by free 

chlorine was calculated from Clearwell 1A operations data. Operations data were collected on an 

hourly basis over a three-year period and included parameters such as clearwell volume, flow 

rate, pH, temperature, and chlorine residual. The reaction rate constant k was calculated as a 

function of temperature and pH according to kinetic models from the literature for microcystin 

(MC) (Acero et al. 2005) and cylindrospermopsin (CYL) (Rodríguez et al. 2007c). Microcystin 

was assumed to be in the form of the MC-LR congener. The rate constant for anatoxin-a (ANA) 

was set equal to a value obtained from the literature at pH 7 and 25°C (Rodríguez et al. 2007c); 

adjustments for pH and temperature were not available from the literature (Stanford et al. 2016).   
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4.2.5 Disinfection Kinetics  

To use the Da concept for disinfection, k was calculated from CT tables provided by 

USEPA. This calculation was performed as (Lawler and Singer 1993)  

𝑘𝑘 =
−ln� 𝑁𝑁𝑁𝑁0

�

𝐶𝐶𝑟𝑟
=

−ln(10)×log10�
𝑁𝑁
𝑁𝑁0
�

𝐶𝐶𝑟𝑟
.        

4.8 

 
For example, USEPA uses the Chick-Watson model to describe the inactivation of 

microorganisms by chlorine (USEPA 1991) and ozone (Clark et al. 2002, USEPA 2010, 1991). 

Alternative kinetic models have been tested (Driedger et al. 2001, Li et al. 2003, Oppenheimer et 

al. 2000), including the Hom model, but were not found to result in significant improvement in 

model fit (Clark et al. 2002), and thus the Chick-Watson model was used in this study. The 

inactivation of Cryptosporidium, Giardia, and virus by ozone can be modeled according to 

(USEPA 2010) 

𝐿𝐿𝐿𝐿𝐿𝐿 𝐶𝐶𝐶𝐶𝑒𝑒𝐶𝐶𝐶𝐶𝑘𝑘𝐶𝐶𝑟𝑟𝐶𝐶𝑡𝑡𝑟𝑟𝑟𝑟𝑚𝑚𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑟𝑟𝐶𝐶𝑚𝑚 = 0.0397 × (1.09757)𝑇𝑇𝑟𝑟𝑚𝑚𝑡𝑡 × 𝐶𝐶𝐶𝐶,      4.9 
 

 

𝐿𝐿𝐿𝐿𝐿𝐿 𝐶𝐶𝐶𝐶𝑒𝑒𝐶𝐶𝐶𝐶𝑘𝑘𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑟𝑟𝑟𝑟 = 1.0380 × (1.0741)𝑇𝑇𝑟𝑟𝑚𝑚𝑡𝑡 × 𝐶𝐶𝐶𝐶,   4.10  

 
and 

 

  

𝐿𝐿𝐿𝐿𝐿𝐿 𝐶𝐶𝐶𝐶𝑒𝑒𝐶𝐶𝐶𝐶𝑘𝑘𝑣𝑣𝑟𝑟𝑟𝑟𝐶𝐶𝑚𝑚 = 2.1744 × (1.0726)𝑇𝑇𝑟𝑟𝑚𝑚𝑡𝑡 × 𝐶𝐶𝐶𝐶,        4.11  

 
where C is ozone concentration (mg·L-1), Temp is temperature (˚C), and T is contact time (min) 

(USEPA 2010). From Equations 4.9 – 4.11, the expression for k for each pathogen can be 

expressed as  
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𝑘𝑘𝐶𝐶𝑟𝑟𝐶𝐶𝑡𝑡𝑟𝑟𝑟𝑟𝑚𝑚𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑟𝑟𝐶𝐶𝑚𝑚 = ln(10) × 0.0397 × (1.09757)𝑇𝑇𝑟𝑟𝑚𝑚𝑡𝑡,        4.12 

𝑘𝑘𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑟𝑟𝑟𝑟 = ln(10) × 1.0380 × (1.0741)𝑇𝑇𝑟𝑟𝑚𝑚𝑡𝑡,  4.13 

 
and 

𝑘𝑘𝑣𝑣𝑟𝑟𝑟𝑟𝐶𝐶𝑚𝑚 = ln(10) × 2.1744 × (1.0726)𝑇𝑇𝑟𝑟𝑚𝑚𝑡𝑡.  4.14 

 

For pathogens that follow Chick-Watson kinetics, k has units of L·mg-1·min-1 and is 

referred to as the specific lethality coefficient.  

4.2.6 Model Accuracy  

This work compares predictions from different reactor models but does not provide 

physical validation. Contaminant degradation was assumed to occur according to kinetics shown 

in Equation 4.1, as indicated in published literature and required by regulation as described 

above. Analyses have been restricted to first-order and pseudo-first-order reactions, and therefore 

the accuracy of model predictions is assumed to be a function only of the hydraulic model’s 

accuracy in representing observed RTD. Model accuracy in representing RTD increases as 

follows: PFR t10 < TIS < SF ≈ RN (Chapter 2). Therefore, any discussion of model accuracy in 

this study pertains to the model’s accuracy in representing RTD rather than physical validation. 

4.2.7 Cost Analysis  

An analysis was conducted to determine how model selection would affect capital costs 

of constructing water treatment facilities. Models of capital costs for water treatment unit 

processes are available in the literature (Clark and Dorsey 1982, McGivney and Kawamura 

2008, Sethi and Clark 1998). This work used the cost estimating manual from McGivney and 
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Kawamura (2008). Their cost models were indexed to September 2007 in Los Angeles, CA 

(Engineering News Record Construction Cost Index = 8889). No attempt was made to update 

costs for the current year or to make location-specific adjustments. Instead, changes in capital 

costs were calculated on a percentage basis (rather than absolute dollars) depending on the 

change in required Da.  

The three capital costs studied were ozone generation equipment, ozone contactor 

construction, and clearwell construction (below ground). Ozone generation and contactor 

construction costs were both reported to be power functions with respect to generator capacity 

and contactor volume, respectively, while the cost of clearwell construction was linear with 

respect to volume (McGivney and Kawamura 2008). The design parameters were assumed to fall 

in the middle of the range of data from which the cost functions in the manual (McGivney and 

Kawamura 2008) were developed: 1755 lb/day of ozone generation capacity, 0.21 million gallon 

ozone contactor, and 4 million gallon clearwell. Differences in cost were compared between the 

PFR t10 model, which is commonly used in disinfection regulation (USEPA 2010, USEPA 1991), 

and the RN model, which accurately represents observed RTD (see Chapter 2).  

Required Da to achieve 1-log and 6-log reduction were calculated using the PFR t10 and 

RN models. Because Da increases linearly with increasing C and τ (see Equation 4.4), percent 

difference in required Da between the PFR t10 and RN models corresponds to the same percent 

difference in either C (e.g., ozone generation) or τ (e.g., contactor or clearwell volume) under a 

given set of reaction conditions (i.e., k) and flow rates (i.e., Q = V/τ). Percent change in cost was 

calculated from the change in C or τ (i.e., change in Da) using the cost curves described above 

(McGivney and Kawamura 2008). This allowed comparison of cost between the PFR t10 and RN 

models.  
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Percent changes in ozone generation and contactor costs were similar for a given change 

in required Da because the two cost curves are power functions to a similar exponent (difference 

of 0.5%) (McGivney and Kawamura 2008). For this reason, percent change in costs were 

reported as an average of the two percent changes (i.e., ozonation). 

All 35 tracer data sets were used for both the ozone cost analysis and the clearwell cost 

analysis regardless of reactor type. All tracer data was used to maximize the number of data 

points available and capture the widest range of RTDs.   

4.3 Results and Discussion  

Results are presented in a progression from applied case studies to analyses inclusive of 

all 35 reactors. Case studies are provided for cyanotoxin oxidation and pathogen inactivation 

using different RTD models. Effect of model selection is then discussed in more generalizable 

terms, using Da in place of specific contaminants. Analyses are presented to define the 

conservative range of the PFR t10 model, followed by the impact of model selection on the sizing 

of oxidation facilities and associated capital costs. Finally, guidance is presented on the ranges of 

Da in which reactor selection is important; outside of these ranges Da is either too low to 

achieve the target log reduction or sufficiently high that the target log reduction is likely to be 

predicted by all reactor models.  

4.3.1 Cyanotoxin Oxidation – Clearwell 1A Case Study  

The impact of model selection on predicted contaminant degradation was investigated 

using cyanotoxins as illustrative contaminants of interest. A chlorinated clearwell (i.e., Clearwell 

1A) was used as an illustrative treatment barrier. Clearwell 1A was selected for this case study 

because the authors had access to operations data, while for most reactors only tracer data were 
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available from the literature. The analysis involved calculating Da across three years of varying 

operating conditions, comparing Da for three toxins that had chlorine reaction rates which varied 

by over three orders of magnitude, and comparing predictions of log degradation with the levels 

needed for public health protection.  

Figure 4.1 shows the cumulative distribution of Da values for microcystin, 

cylindrospermopsin, and anatoxin-a over a three-year period and Figure 4.2 shows predicted log 

reduction versus Da using different model types. The range of Da observed in Figure 4.1 for 

each individual cyanotoxin can be explained by variability in operating conditions (e.g., 

temperature, pH, residence time, chlorine concentration), while the differences between 

cyanotoxins is a result of different reactivities with chlorine (i.e., k). For a given Da, different 

models yield different predictions of LRV. At Da <14.3 and LRV <2.7, the PFR t10 model 

underestimates LRV relative to the TIS, SF, and RN models. At higher Da and LRV, the PFR t10 

model overestimates LRV relative to the TIS, SF, and RN models. Observed Da (Figure 4.1) can 

be combined with predictions of contaminant degradation (Table 4.1, Figure 4.2) to draw 

conclusions about the efficacy of treatment and importance of reactor model selection.  
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Figure 4.1. Cumulative distribution of values of Da in Clearwell 1A over a 3-year period for 
microcystin (MC), cylindrospermopsin (CYL), and anatoxin (ANA). 

 

 
Figure 4.2. Predicted log reduction in Clearwell 1A versus Da for different reactor models.   

 

Anatoxin-a is not particularly susceptible to degradation by free chlorine, and had a 

median Da of 0.16, for which no model would predict more than a 15% reduction in this 

clearwell (data not shown, see equations in Table 4.1). Thus, because chlorine was not an 
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effective barrier to anatoxin-a, the selection of model was not particularly important for 

predicting anatoxin-a oxidation in Clearwell 1A (see Da = 0.16 in Figure 4.2). This is an 

example of how low reactivity can render model selection unimportant.  

Compare this to cylindrospermopsin, which is more susceptible to chlorine oxidation and 

had a median Da of 227.2. At this level of treatment all models would predict >8-log removal in 

this clearwell. Reducing the highest observed concentration (4.4 µg/L) in the National Lake 

Assessment to below the 0.7 µg/L health advisory level for children less than 6 years of age 

(USEPA 2015) would require only 0.8-log reduction. Therefore, the selection of hydraulic model 

was not particularly important for predicting the oxidation of cylindrospermopsin in Clearwell 

1A. This is an example of how high reactivity (coupled with a low required LRV) can render 

model selection unimportant. 

Microcystin-LR was a cyanotoxin for which the selection of reactor model was 

important. The PFR t10 model ceases to be conservative relative to other reactor models at a Da 

of 14.3, which is within the observed operating range of Clearwell 1A for microcystin-LR. Table 

4.2 shows the predicted log removal of microcystin at typical and design flows (see caption for 

description of flow conditions) using the PFR t10 and TIS models. At typical flows, reductions in 

microcystin-LR were predicted to be ≥ 3.27-log (99.95%) for all models. Results were similar 

for all models except the PFR (see Figure 4.2) and also indicate a robust treatment barrier for the 

toxin. At design flows, the five models yielded differing predictions. The PFR t10 model 

predicted 0.57-log (73%) reduction, while the TIS, SF, and RN models predicted approximately 

1-log (90%) reduction. These differences increased further when the rate constant was reduced 

by 50%, as might occur at higher pH or lower temperature (Acero et al. 2005), or if contaminant 

removal is measured using the enzyme-linked immunosorbent assay (ELISA) method rather than 
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liquid chromatography with tandem mass spectrometry (He et al. 2017). Under these conditions, 

the PFR t10 model would have predicted a 0.29-log (48%) reduction in toxin concentration, while 

the TIS, SF, and RN models would have predicted 0.57-log (73%) reduction.   

Table 4.2. Predicted log removal of microcystin-LR by chlorine in Clearwell 1A using five 
reactor models under typical flows, design flows, and design flows with k reduced by 50%.  

Model Typical Flows Design Flows Design Flows, 0.5*k 
PFR 7.79 1.26 0.63 

PFR t10 3.57 0.57 0.29 
TIS 3.38 1.03 0.57 
SF 3.29 1.01 0.57 
RN 3.27 1.01 0.57 

Note: All three conditions were assumed to operate at 20˚C and pH 7.5 with effluent chlorine residual was assumed 
to be 4 mg·L-1. Typical flows were considered to be 100 MGD with the clearwell containing 5.5 MG. At typical 
flows the Da equal to 17.94 was approximately equal to median value from Figure 4.1. Plant design capacity is 225 
MGD, and the clearwell was assumed to contain 2 MG due to high demands under the design flows condition (Da = 
2.90). The third column uses Da = 1.45 which uses the same design flows, but reduces k by 50% as might occur at 
higher pH, lower temperatures, or the use of a different analytical method (i.e., enzyme-linked immunosorbent 
assay) from that used to establish reaction kinetics (i.e., liquid chromatography with tandem mass spectrometry)(He 
et al. 2017). 

 

4.3.2 Disinfection with Ozone – Contactor 5A Residual Oxidant  

The previous section focused on evaluating the effect of model selection on predictions of 

the degradation of cyanotoxins (as case study contaminants) based on observed Da. This analysis 

was complemented by investigating the effect of model selection on predictions of the CT (i.e., 

Da) required to inactivate pathogens. An ozone contactor was selected because ozone is effective 

for Cryptosporidium, Giardia, and viruses, while chlorination is not effective for 

Cryptosporidium (USEPA 2010) . Ozone Contactor 5A was specifically chosen because it was 

used in a study focused on validating disinfection models (Najm et al. 2009). Predicted log 

reduction was first calculated based on Da using the equations in Table 4.1, and then required CT 

to achieve a given LRV was calculated using different reactor models (Equations 4.4 and 4.9 – 

4.11).  
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Log reductions predicted by the PFR, PFR t10, TIS, SF, and RN models as a function of 

Da are shown in Figure 4.3. The TIS, SF, and RN models produced similar predictions up to 

approximately 3-log reduction. At higher LRVs, greater discrepancies are observed, with the RN 

model being the most conservative. The PFR model was the least conservative, and the PFR t10 

model ceased to be conservative at higher LRVs. 

 
Figure 4.3. Predicted log reduction in Ozone Contactor 5A versus Da for different reactor 
models.   

 
Table 4.3 shows the Da that would be required for ozone contactor 5A to achieve 

different LRVs using the PFR t10 and RN models, as well as the corresponding CT values, at 

20˚C. To achieve a given LRV, the PFR t10 model requires greater Da and CT up to LRV = 2.53-

log (Da = 10), above which the RN model requires greater Da and CT (Figure 4.3).  
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Table 4.3. Required CT to achieve different target log reductions for Cryptosporidium, Giardia, 
and virus in ozone contactor 5A at 20˚C. Required Da was determined from Figure 4.3 and CT 
required was calculated by dividing Da by the k shown in Equations 4.12 – 4.14. 

  CT Required (mg·min·L-1) 
Log 

Reduction 
Da Required Cryptosporidium Giardia Virus 

PFR t10 RN PFR t10 RN PFR t10 RN PFR t10 RN 
0.5 2.0 1.3 3.4 2.2 0.2 0.1 0.1 0.1 
1.0 4.0 2.8 6.8 4.8 0.4 0.3 0.2 0.1 
2.0 8.0 6.8 13.6 11.6 0.8 0.7 0.4 0.3 
3.0 11.9 14.0 20.2 23.8 1.2 1.4 0.6 0.7 
4.0 15.9 26.0 27.0 44.2 1.6 2.6 0.8 1.3 
5.0 19.8 42.9 33.7 72.9 2.0 4.3 1.0 2.1 
6.0 23.8 65.7 40.5 111.7 2.4 6.6 1.2 3.2 

 

This has important implications for how disinfection systems are designed. For example, 

consider the assigning of disinfection credit in a water reuse system. A recent quantitative 

microbial risk assessment by Pecson et al. (2017) credited 6 logs of Giardia and virus removal 

when adequate ozone CT was achieved for 1-log Cryptosporidium credit. This is consistent with 

regulatory requirements, and appears conservative using the PFR t10 model. The PFR t10 model 

would require a CT of 6.8 mg·min·L-1 for 1-log Cryptosporidium, which is much higher than the 

2.4 and 1.2 mg·min·L-1 required for 6-log Giardia and virus credit.  

However, the PFR t10 model provides false confidence in the factor of safety for 6-log 

Giardia and virus credit compared to the RN model. The PFR t10 model CT value for 1-log 

Cryptosporidium corresponds to factors of safety of 2.9 and 5.8 for 6-log Giardia and virus, 

respectively. However, these factors of safety are reduced to 1.0 and 2.1 for Giardia and virus, 

respectively, when considering the CT required for 6-log credit using the RN model: 6.6 and 3.2 

mg·min·L-1. Therefore, design, operation, or regulation of 6-log Giardia or virus inactivation 
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based on 1-log Cryptosporidium credit is not recommended for this reactor.  

If disinfection credit is not sought for Cryptosporidium, systems practicing water reuse 

may still target 6-log credit for Giardia and virus. In order to get this credit by using the PFR t10 

model for Ozone Contactor 5A, a CT of 2.4 mg·min·L-1 would be needed. However, if the RN 

model were used to get this credit, a CT of 6.6 mg·min·L-1 would be required, 2.76 times higher 

CT for the same LRV. The RN model is assumed to be more accurate than the PFR t10 model as 

described in Chapter 2 and Section 4.2.6 above. Therefore, the use of the PFR t10 model may 

result in significant underdesign of Da for disinfection (or operation at insufficient CT), 

potentially providing insufficient public health protection. Use of the PFR t10 model for 

designing, operating, or crediting 6-log pathogen reduction is not recommended for this reactor.  

The discrepancy between the PFR t10 and RN models is not limited to water reuse and 

may also impact conventional and direct filtration systems. Consider that conventional systems 

are required to achieve 0.5-log Giardia and 2.0-log virus credit by disinfection, while direct 

filtration systems must achieve 1.0-log Giardia and 3.0-log virus credit. For Ozone Contactor 

5A, the RN model would require 35% and 30% lower CT for 0.5- and 1.0-log Giardia credit 

compared with the PFR t10 model. For virus credit, required CT would be 15% lower for 2.0-log 

credit, but 18% higher for 3.0-log credit using the RN model compared to the PFR t10 model. 

Thus, the RN model could allow systems to operate at lower CT when required LRV is low, but 

would require systems to operate at higher CT when target LRV is high. Regulators should 

consider the use of a more accurate RTD model, such as the RN model, when approving designs 

for new processes or reevaluating treatment efficacy for existing processes (i.e., required CT for 

a target LRV).  
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4.3.3 Relationship Between Log Reduction and Da for Various Reactor Models  

The preceding sections provided examples of how predicted LRV for a given Da and 

required Da for a target LRV are dependent on the reactor model used to represent the RTD. A 

similar analysis was performed for all 35 reactors, and this section discusses the corresponding 

results. Figure 4.4 shows plots of log reduction versus Da for the PFR, PFR t10, TIS, SF, and RN 

models for three example reactors. Plots for all 35 reactors are included in Figure C.2 through 

Figure C.6 of APPENDIX C. As expected, the PFR model predicts the highest log reduction for 

any given Da. PFR t10 predicts the lowest log reduction up to a given Da that varies from reactor 

to reactor. At higher Da, the PFR t10 model predicts more removal than the TIS, SF, and RN 

models.  
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Figure 4.4. Log reduction versus Da plots for three example reactors. Selected reactors provide 
examples where (A) SF model produces errant predictions due to nonmonotonic tracer data, (B) 
TIS, SF, and RN models yield similar predictions, and (C) TIS model predictions differ 
significantly from SF and RN models. APPENDIX C contains these plots for all 35 reactors, and 
panels (A), (B), and (C) correspond to reactors 3H, 3F, and 5B shown in Figure C.3 in 
APPENDIX C. 
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For some reactors, the LRV predicted by the SF approached infinity when Da exceeded a 

certain threshold (e.g., Figure 4.4A). This is an artifact resulting from nonmonotonic tracer data. 

When the observed tracer concentration decreases, particularly early in the tracer run, the SF 

model predicts negative contaminant concentrations for that particular PFR, which when 

summed with the other hypothetical PFRs produces an errantly high prediction of log reduction. 

Nonmonotonic tracer curves could result from fluctuating background concentrations of the 

tracer or from inaccuracies in measuring tracer concentrations. This should be considered a 

limitation of the SF model: it should not be used for nonmonotonic tracer data due to erroneous 

predictions that become increasingly significant above a threshold Da or log reduction. 

Predictions of log reduction for TIS, SF, and RN models were similar at lower log 

reductions, with differences in predictions occurring at higher log reductions. This indicates that 

the higher the target LRV, the more important the selection of reactor model. Depending on the 

observed RTD and the corresponding fit of reactor models, the TIS may yield similar predictions 

to the more complex RN and SF models as shown in Figure 4.4B. However, there were also 

reactors where the TIS model did not have the same flexibility to represent the observed RTD, 

resulting in predictions that differed significantly from the SF and RN models (e.g., Figure 

4.4C). 

Box and whisker plots were created to visualize the range of Da required for the 35 

reactors to achieve a target log reduction using different models. These results, shown in Figure 

4.5, excluded the PFR and SF models. The PFR model was excluded because it underestimates 

required Da (see Figure 4.2 through Figure 4.4), and the SF model was excluded due to the issue 

with nonmonotonic tracer data discussed earlier (Figure 4.4A and corresponding discussion). The 

results shown in Figure 4.5 are applicable to any first-order reaction where oxidant concentration 
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is constant. At low log reductions such as 0.5-log, higher Da would be required if the PFR t10 

model was used than if the TIS or RN models were used. This supports the use of the PFR t10 

model in disinfection regulation when conservative reactor design and operation is desirable for 

LRVs of 0.5.  

At higher log reductions, the TIS and RN models require higher Da than the PFR t10 

model. For example, the median values of Da for the TIS and RN models were approximately 

twice as high as for the PFR t10 model when targeting 6-log reduction. Because the TIS and RN 

models more accurately represent RTD than the PFR t10 model, especially at the lower residence 

time portions of the RTD curve (Chapter 2), the TIS and RN models are more appropriate for 

processes targeting 6-log reduction. This finding should inform the selection of RTD model in 

the design and regulation of disinfection, particularly in water reuse applications where higher 

log reductions are required. 

The PFR t10, TIS, and RN models required similar Da at 3.0-log, but significantly 

different Da at 0.5-log or 6.0-log (see Figure 4.5). The log reduction versus Da figures in 

APPENDIX C show that predictions from the PFR t10, TIS, and RN models often intersect 

around 2.0- to 4.0-log. The PFR t10 model predictions are likely most accurate in this range. The 

following section will examine at what log reduction the PFR t10 model ceases to be 

conservative, which is also the point at which it is most accurate (i.e., produces the same 

prediction as the RN model). 
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Figure 4.5. Required Da to achieve different log reductions using PFR t10, TIS and RN models. 
Note that of 35 reactors, one at the 6-log treatment target would require values of Da greater than 
1000 using the RN model, and thus is not shown on the plot. This box and whiskers plot provides 
the 25th percentile, median, and 75th percentile as horizontal lines. The vertical lines represent 
observations that are within 1.5 times the interquartile range. Individual data points are outliers 
that are outside the range represented by the vertical lines.  
 

4.3.4 Conservative Range of PFR t10  

The LRV where PFR t10 ceased to be conservative was defined as the point at which the 

PFR t10 and RN models yield the same predictions. At lower LRVs, the PFR t10 model would 

predict less degradation than the RN model, and at higher LRVs, PFR t10 would predict more 

degradation. The RN model was used as a reference for accuracy given that it can accurately 

represent RTD observed by tracer studies as demonstrated in Chapter 2. Four example reactors 

and their log reduction intersections are shown in Figure 4.6. All four have similar t10/τ baffle 

factors (0.55-0.58) but different log reduction intersections (2.5- to 4.6-log). Tracer data and 

fitted RN models are shown in Figure 4.6A – Figure 4.6D, along with log reduction versus Da 
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for both PFR t10 and RN models in Figure 4.6E– Figure 4.6H. When the tracer was observed to 

leave the reactor earlier in the tracer run (e.g., Figure 4.6D, Figure 4.6H), PFR t10 ceased to be 

conservative at lower LRVs (i.e., 2.5-log). In contrast, reactors where tracer concentration was 

not observed in the effluent until later in the tracer run (e.g., Figure 4.6B, Figure 4.6F), PFR t10 

ceased to be conservative at relatively high LRVs (i.e., 4.6-log). These results illustrate that the 

higher the target LRV, the more important a small percentage of flow breakthrough becomes. 
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Figure 4.6. Tracer data and log reduction intersection. Tracer data and RNM model fit (A-D) 
with log reductions predicted by PFR t10 and RN models (E-H). 
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Figure 4.7 shows the log reduction intersection for 35 reactors versus different metrics for 

earliness of tracer breakthrough (t10/τ, t5/τ, t1/τ, t0.1/τ). Log reduction intersection varied 

significantly, between 2.1- and 11.4-log. Ninety percent of reactors had log reduction 

intersections less than 5.5-log, and 30% had log reduction intersections less than or equal to 3.0-

log. This indicates significant variability in the range of contaminant degradation at which PFR 

t10 ceases to be conservative. Despite this variability, none of the 35 reactors analyzed had a log 

reduction intersection less than 2.0-log. Thus, the PFR t10 model can be assumed to be 

conservative up to 2.0-log, and it is advisable to test an additional reactor model when designing 

or calculating higher log reductions.  

 
Figure 4.7. Correlation between log reduction intersection and t10/τ (A), t5/τ (B), t1/τ (C), and 
t0.1/τ (D). Filled red circles indicate the reactors shown in Figure 4.6 and open circles represent 
the other 31 reactors.  
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Figure 4.7 also shows that the strength of correlation between log reduction intersection 

and flow parameter increased with decreasing fractions of flow (i.e., t0.1/τ had the strongest 

correlation). The four example reactors in Figure 4.6 are represented by filled red circles in 

Figure 4.7. For these example reactors, it was observed that log reduction intersection was poorly 

correlated with t10/τ and t5/τ, but correlated well with t1/τ and t0.1/τ. This is consistent with the 

finding for the 35 reactors overall, where 10%, 5%, 1%, and 0.1% of tracer breakthrough can 

explain 55%, 65%, 83%, and 89% of the observed variation (see R2 values in Figure 4.8).  

The relatively high correlation observed between log reduction intersection and t0.1/τ 

suggests that when targeting high log reductions, t0.1 is more important in characterizing reactor 

performance than t10. This may add complexity to conducting tracer studies, as differentiating a 

0.1% increase in common tracer substances (e.g., fluoride) from background concentrations is 

much more difficult than differentiating 10% of step dose tracer concentration. For this reason, 

accounting for low residence time portions of flow in disinfection calculations would likely 

require fitting an appropriate RTD model to tracer data.  

Findings in this section have important implications for the regulation, and subsequently 

design and operation, of water treatment reactors. When targeting LRVs >2-log, the use of 

alternative RTD models such as TIS, SF, or RN should be considered. The use of the PFR t10 

model may overestimate reactor performance at higher LRVs.  

4.3.5 Cost Analysis  

The previous section showed how the use of TIS and RN models in place of the PFR t10 

model would result in lower Da requirements at low LRVs, but higher Da requirements at higher 

LRVs. The purpose of this section is to estimate how facility capital costs might be affected by 



129 

model selection. Specifically, the PFR t10 and RN models are compared for contaminant 

reductions of 1-log and 6-log.  

Figure 4.8 shows how capital costs would increase using the PFR t10 model relative to the 

RN model when designing for 1-log degradation. This can also be conceptualized as the cost of 

using a conservative model (i.e., PFR t10) rather than an accurate model (i.e., RN). Cost increases 

are plotted versus t5/τ because t5/τ had the strongest correlation to cost increases of any of the 

flow parameters tested in the previous section (i.e., t10/τ, t5/τ, t1/τ, and t0.1/τ). For 1-log 

degradation, ozonation capital costs are estimated to be 9% to 73% higher with a median of 35% 

using the PFR t10 model rather than the RN model, while clearwell costs would be estimated to 

be 12% to 80% higher with a median of 45%. This finding is consistent with the conclusion 

reached by Lawler and Singer (1993) that the PFR t10 model used in the SWTR may be 

unnecessarily costly for many water treatment plants.  

 
Figure 4.8. Additional capital cost that would result from using the PFR t10 model relative to the 
RN model when designing for 1-log reduction, plotted versus t5/τ. The PFR t10 model is 
conservative at 1-log reduction, and thus the additional cost of using the PFR t10 model relative 
to the RN model represents the cost of using a conservative model. 
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The cost of being conservative had an inverse linear relationship with t5/τ where the t5/τ 

parameter can explain 84%-86% of the variability in cost increase. This indicates that using the 

PFR t10 model is most costly in reactors with the greatest short-circuiting (i.e., closer to CSTR 

than PFR behavior). In other words, the use of the RN model in place of the PFR t10 model could 

result in the greatest cost savings for reactors that have generally poor baffling. Even if the 

overall size of the reactor were not reduced (e.g., clearwell storage requirements dictate design 

volume rather than disinfection), use of the RN model could reduce the number of baffle walls 

required, thereby reducing cost.  

Using the PFR t10 model is more costly than the RN model at low LRVs, but using the 

PFR t10 is less costly than the RN model at higher LRVs. This is because the PFR t10 model 

predicts greater log reductions for a given Da than the TIS, SF, and RN models when LRV is 

high as demonstrated earlier. Accurately modeling RTD with a RN model would increase the 

cost of clearwells and ozone contactors as shown in Figure 4.9. For 6-log degradation, using a 

RN model in place of the PFR t10 model would increase the cost of ozonation processes by as 

much as 254%, with a median of 37%. For clearwells, the cost would be expected to increase by 

as much as 557%, with a median of 57%. Caution should be used in interpreting cost 

increases >100%, as these values were extrapolated outside the range of observed cost data used 

by McGivney and Kawamura (2008) to develop cost curves. Note that for the three reactors with 

log reduction intersections >6-log, RN models would reduce the cost by 2%-6%.  
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Figure 4.9. Additional capital cost that would result from using the RN model in place of the 
PFR t10 model when designing for 6-log reduction, plotted versus the ratio of t0.1:t10. The PFR t10 
model is generally not conservative at 6-log reduction, and using an accurate RTD model like the 
RN model would increase capital cost. Note that data are only included for 31 of 35 reactors. 
Three reactors had log reduction intersections >6-logs and they produced negative cost increases 
(i.e., cost decrease), and one reactor required Da > 1,000 to achieve 6-log reduction which was 
outside the range tested. Caution should be used in interpreting cost increases >100%, as these 
values were extrapolated outside the range of observed data used by McGivney and Kawamura 
(2008) to develop cost curves. 

 

For some reactors with early tracer breakthrough, the increase in cost would be large 

enough to potentially make the treatment process impractical. For example, increased contactor 

and clearwell sizes might exceed available site footprint, or push process design toward UV 

disinfection for chlorine-resistant pathogens like Giardia and Cryptosporidium. The use of an 

accurate RTD model such as the RN model may limit the feasible LRV in any individual reactor 

unless reactor hydraulics can be improved (e.g., achieve t0.1 similar to t10).  

When target LRV is high and RTD differs significantly from plug flow, it may be more 

cost-effective to arrange reactors in series. Consider a target 4-log reduction for the reactor 

shown in Figure 4.4C. A Da of 37 would be required in a single reactor. However, 2-log 
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reduction requires only a Da of 7. Arranging two 2-log reactors in series would provide 4-log 

reduction with a total Da of 14, which is 62% lower than a Da of 37 that would be required if 4-

log reduction was sought in a single reactor. 

The increase in cost that would result from using the RN model is log linear with respect 

to the ratio of t0.1:t10 (Figure 4.9). The ratio of t0.1:t10 can explain 95%-96% of the observed 

variability in cost increase. The cost increase is expected to be less than 10% when the ratio of 

t0.1:t10 is greater than or equal to 0.6. Likewise, the cost increase is expected to be greater than or 

equal to 100% when the ratio of t0.1:t10 is less than or equal to 0.3. This supports the finding from 

the previous section that when designing reactors for high log reductions (e.g., 6-log), lower 

residence time portions of the RTD become increasingly important. 

4.3.6 Guidance on the Range of Da at which Model Selection is Important  

An objective of this work was to define a range of Da at which model selection is 

important for assessing treatment efficacy. For each reactor, the maximum Da required between 

the PFR t10, TIS, and RN models to achieve a given LRV is shown in Figure 4.10. This was 

considered a reasonable representation of the range of reactors used in water treatment given the 

number (35) and variety of reactors studied. Outliers were identified using the box and whisker 

plots shown in Figure C.7 in APPENDIX C. The estimated bounds for the importance of Da are 

also show in Figure 4.10. The lower bound is equal to ideal PFR performance. The upper bound 

is equal to the maximum non-outlier observation. Da can be calculated for any first order 

reaction and compared to Figure 4.10. If a reactor has a Da below the lower bound, it will fail to 

meet the target log reduction regardless of the reactor model used. Similarly, for any of the non-

outlier reactors studied, if the reactor has a Da above the upper bound it will be predicted to 

achieve the target log reduction regardless of the reactor model used. Only Da within these 
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ranges requires modeling for most reactors. 

 

 
Figure 4.10. Range of Da in which model selection is important. Outliers were identified using 
the box and whisker plots shown in Figure C.7 in APPENDIX C. Black circles indicate 
observations of the worst-case Da (i.e., maximum Da required between the PFR t10, TIS, and 
RN models) for each of 35 reactors that were not outliers. Estimated bounds at which model 
selection is important are shown by the solid and dashed red lines. Lower bound is equal to the 
required Da for an ideal PFR, and upper bound indicates the highest observed Da for non-outlier 
reactors. Below the lower bound of Da, target log inactivation will not be achieved regardless of 
the model selected. Above the upper bound Da, target log reduction would be achieved in all 
non-outlier reactors. Note that one observation for 6-log reduction is not included due to required 
Da > 1,000. 

 

Consider the Da results from the Clearwell 1A case study. The median Da was 0.16 for 

anatoxin-a, too low to achieve 0.5-log reduction even in a PFR. The median Da of 227.2 for 

cylindrospermopsin would be sufficient to obtain > 6-log reduction in the reactors studied. For 

these two cyanotoxins, the potential for contaminant removal could be quickly assessed without 

performing reactor modeling. 

Another example is virus disinfection with free chlorine. For a groundwater at 10˚C and 

pH 6-9, the specific lethality coefficient (i.e., k of disinfection) is equal to 1.5 L·mg-1·min-1. If 4-

log disinfection were desired for compliance with the Groundwater Rule (USEPA 2008), the 
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required CT in a pipeline (assumed by regulation to be a PFR) would be only Da / k = 9.2 / 1.5 

L·mg-1·min-1 = 6.1 mg·min·L-1. However, if that disinfection occurred in a tank with a RTD 

differing from the ideal PFR, the required CT may be as high as Da/k = 66 / 1.5 L·mg-1·min-1 = 

44 mg·min·L-1 depending on the observed RTD and reactor model used.  

This analysis also demonstrates that deviation from plug flow becomes increasingly 

important at higher log reductions. The ratio of upper bound to lower bound is approximately 3.0 

at log reductions of 0.5-, 1,0-, and 2.0-log. This indicates that even for high-dispersion reactors, 

the CT required would be only 3.0 times higher than for a PFR. However, at 4.0-, 5.0-, and 6.0-

log reduction, the ratio of upper bound to lower bound is 7, 10, and 16, respectively. Thus, 

designing reactors to achieve RTD similar to a PFR is more important at high log reductions than 

low log reductions.  

This guidance may allow for rapid screening of treatment efficacy without performing 

reactor modeling. For contaminants with known k and processes with known CT, Da can be 

calculated and compared to Figure 4.10.  

4.4 Conclusions and Recommendations  

The results and analyses presented in this work support the following conclusions and 

recommendations: 

1. When designing for log reductions >2-log, hydraulic models that more accurately 

represent RTD should be considered, including TIS, SF, or RN models. 

2. Metrics of earliness of tracer breakthrough such as t1 and t0.1 better characterize 

reactor performance than the commonly used t10 when targeting high log reductions.   
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3. This work estimated the ranges of Da at which reactor modeling is important for 

target log reductions between 0.5-log and 6.0-log reduction. Below these Da ranges, 

reactors will not achieve the target performance. Above these Da ranges, the reactor 

will achieve the target performance with a high degree of confidence, regardless of 

the reactor model used. 

4. The use of a more accurate model such as the RN model may reduce capital costs 

compared to the PFR t10 model when designing for low log reductions (e.g., 1-log). 

However, using the RN model may result in significantly higher costs at higher log 

reductions (e.g., 6-log), particularly if the ratio of t0.1:t10 is small. 
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CHAPTER 5 - CONCLUSIONS 

The goal of this dissertation was to improve the prediction of contaminant degradation in 

water treatment reactors by accurately modeling reactor hydraulics. This goal was divided into 

three objectives. The first objective was to develop models for residence time distribution (RTD) 

that were more accurate than the plug flow reactor (PFR) t10 model while using fewer input 

parameters than alternative methods, such as the segregated flow (SF) model. The second 

objective was to assess whether flow segregation and earliness of mixing (i.e., micromixing) 

were significant in full-scale water treatment reactors. The final objective was to perform a 

quantitative evaluation of the effect of RTD model selection on predictions of contaminant 

degradation for a range of reactor types and sizes.  

These three objectives progressed in order of dependence on modeling. The first 

objective required modeling RTD using a conservative, non-reactive tracer that could be directly 

observed at full scale. The second objective used chlorine and chloramine species as reactive 

tracers, and required modeling numerous simultaneous reactions. Modeled reactor outputs for 

this objective could be compared to full-scale observation. For the final objective, contaminant 

degradation was predicted using different reactor models without validation at full-scale. This 

objective depended on knowledge gained in objectives one and two to reach conclusions in the 

absence of full-scale validation. 
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From the research presented in this dissertation, the following major conclusions were 

reached: 

1. Increasing the number of parallel, segregated flows in a reactor model (e.g., SF, certain 

reactor network (RN) models) produces more accurate models of RTD. Such parallel 

flows are appropriate for modeling a single first-order reaction, such as crediting 

disinfection using residual oxidant concentration. However, increasing the number of 

parallel, segregated flows may decrease the accuracy of micromixing representation. 

Therefore, when modeling conditions where micromixing is important, such as multiple 

simultaneous reactions or a single non-first-order reaction, caution should be used in 

creating models containing parallel, segregated flows.   

2. Micromixing was found to be significant in both baffled and unbaffled clearwells at full 

scale. Micromixing was studied by observing chloramine breakpoint associated with 

temporal disinfectant switching.  

3. The tanks-in-series (TIS) model provided significant improvement in RTD representation 

over the PFR t10 model and was capable of accurately representing observed micromixing 

in the reactors studied. For most reactors, the TIS model adequately balances accuracy 

and simplicity when modeling low log reductions (e.g., ≤ 3-log).  

4. The SF model is not recommended for predicting contaminant degradation. For the 

reactors studied, the SF model required a large number of model inputs, poorly predicted 

micromixing conditions, likely overpredicted contaminant degradation in the presence of 

a decaying oxidant, and yielded errant predictions of contaminant degradation for non-

monotonic tracer data.    
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5. The RN model accurately predicted RTD using fewer fitting parameters than the SF 

model. The RN model is best suited to conditions where accurately representing RTD is 

of high importance. Such situations include modeling high levels of inactivation (e.g., 6-

log) in a single reactor or when designing for greater Da has adverse consequences (e.g., 

cost or formation of disinfection by-products). RN models may not accurately represent 

micromixing. Therefore, caution should be used when modeling multiple reactions. 

The findings generated from this dissertation provide a fundamental basis for the rational 

design, operation, and regulation of water treatment processes. The TIS or RN models are 

recommended to be used for these purposes. 
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CHAPTER 6 - FUTURE WORK 

Research presented in this dissertation provides a fundamental basis for improved 

prediction of contaminant degradation in water treatment reactors. This work also raises 

additional research questions: 

1. Could methods be developed to validate high log reductions at full scale in 

clearwells or ozone contactors? This work compared predictions from different 

reactor models targeting 6-log reduction. Currently, there are no methods available to 

validate 6-log reduction at full-scale in clearwells and ozone contactors. The 

regulatory approach used by USEPA to compute pathogen log reduction in oxidation 

processes is based on the ratio CT achieved to CT required for a given log 

inactivation (USEPA 1991, USEPA 2010). Validation is not performed because 

pathogen concentrations in finished water are too low to be reliably measured 

(USEPA 1992). Conversely, methods exist for validating high log reductions in UV 

reactors using surrogates (USEPA 2006), with validation typically occurring at 

specialized testing facilities. There are also methods for validating log reduction in 

membrane filtration and assigning log removal credit (USEPA 2005, CDPH 2014). 

Developing methods for validating pathogen removal in full-scale clearwells and 

ozone contactors would provide greater assurance of public health protection, 

particularly in water reuse applications. Potential methods could include molecular 
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techniques or naturally occurring, non-pathogenic surrogates which have been used 

previously to demonstrate lower log reductions (Facile et al. 2000, Talbot et al. 2012).  

2. Could computational fluid dynamics (CFD) more accurately represent 

micromixing than the tanks-in-series (TIS) model? The TIS model was observed 

to provide a reasonably accurate representation of micromixing in the reactors 

studied. Predictions from CFD could be compared to those from the TIS reactor. If 

CFD more accurately represented observed micromixing, CFD could provide more 

accurate predictions of contaminant degradation in multi-reaction systems (e.g., 

disinfection with a decaying oxidant). However, if the predictions are similar or less 

accurate than the TIS reactor, such findings would provide confidence that relatively 

simple methods such as the TIS model are sufficient for representing complex 

reaction and transport processes.  

3. Does the TIS reactor accurately represent micromixing in ozone contactors as 

well as clearwells? This work indirectly observed micromixing in clearwells. The 

efficacy of the TIS reactor for representing micromixing should also be demonstrated 

in ozone contactors, where ozone injection is expected to affect reactor hydraulics.  

4. How could distribution system operations be modified to reduce the mixing of 

free chlorine and chloramine, and what would the effects be on disinfectant 

residual? This work modeled temporal disinfectant switching in relatively simple 

systems: clearwells with single points of inflow and outflow. The methods presented 

here provided a reasonably accurate representation of breakpoint reactions in water 

treatment plants. However, distribution system hydraulics are considerably more 

complex. Distribution systems typically receive water from multiple entry points, 
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which may contain different concentrations of chlorine and/or ammonia. Distribution 

systems also have numerous storage reservoirs, which may not be flow-through 

reservoirs (i.e., common inlet and outlet) and are unlikely to have residence time 

distribution (RTD) characterized by tracer studies. Distribution system models such 

as EPANET are capable of performing source tracing (USEPA 2000), and recent 

advancements have allowed the simulation of multiple chemical species (EPA 2011). 

Modeling breakpoint chemistry in distribution systems would be expected to inform 

operations to reduce chlorine and chloramine mixing, improving stability of 

disinfectant residuals and reducing taste and odor complaints associated with di- and 

trichloramine species.  
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APPENDIX A – SUPPORTING INFORMATION FOR CHAPTER 2 

A.1. Example Code for Fitting Reactor Models to Tracer Data 
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APPENDIX B – SUPPORTING INFORMATION FOR CHAPTER 3 

B.1. Description of Clearwells And Mixing Conditions 

As shown in Figure B.1, ammonia was injected upstream of Clearwell A. An 8 by 8.5-

foot rectangular box conduit then carries the water 262 feet to Clearwell A. There was no 

mechanical or static mixing at the point of injection, but flow within the box conduit was 

turbulent (typical Reynolds number between 400,000 and 3,000,000 depending on temperature 

and flow). There was also active mixing where lime is injected into the clearwell (see Figure 

S4A) along with a static mixing chamber (see Figure B.4B). Clearwell A was baffled (see Figure 

B.1 and Figure B.4C), and all flow passed through a submerged overflow weir and through a 

second mixing chamber (see Figure B.3 and Figure B.4D) equipped with intermittently used 

chlorine and ammonia injection points. Water exited the clearwell to the adjacent pumping 

station. Online process monitoring equipment was fed by a sample tap located on a high-service 

main that receives continuous flow. 

Ammonia was injected upstream of Clearwell B in an unmixed flow diversion chamber 

connected to a 78-inch diameter circular pipe that carries water 235 feet from the chamber to 

Clearwell B. The flow in the 78” pipe was turbulent with Reynolds Number between 300,000 to 

4,000,000 depending on temperature and flow. Online process monitoring equipment was fed by 

a sample pump located near the clearwell effluent as shown in Figure B.2 (see picture in Figure 

B.5C).  



 

 
Figure B.1. Plan view of Clearwell A with schematic showing flow to distribution system and online analyzers. Views labeled A-D 
(red outlined arrows) are shown in Figure B.4. Intermittent feed lines are used when the upstream primary disinfection clearwell is out 
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of service, and ammonia is added to form chloramines leaving the second clearwell. 
 
 

 
Figure B.2. Plan view of Clearwell B with schematic showing flow to distribution system and online analyzers. Views labeled A-C 
(red outlined arrows) are shown in Figure B.5. Intermittent feed lines are used when the upstream primary disinfection clearwell is out 
of service, and ammonia is added to form chloramines leaving the second clearwell. 
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Figure B.3. Detail of the submerged weir and feed lines for chlorine and ammonia at the end of the clearwell. View D in Figure B.1 
and Figure B.4 are taken looking upstream from the end of the stainless steel plate. This structure allows for the addition of chlorine 
and/or ammonia to potentially mitigate depressed chlorine residual associated with temporal disinfectant switching. 
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Figure B.4. Photographs of the interior of Clearwell A. Views A-D are indicated in Figure B.1, 
where photos correspond to (A) lime mixing pump, (B) lime mixing chamber, (C) mid clearwell 
at the end of one baffle wall, and (D) mixing chamber where chlorine and ammonia can be fed 
(see Figure B.2). 
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Figure B.5. Photographs of the interior of Clearwell B. Views A-C are indicated on Figure B.3, 
where photos correspond to (A) flow meter used for pacing ammonia feed, (B) mid clearwell, 
and (D) clearwell effluent with sample point and intermittent feed lines for chlorine and 
ammonia. Intermittent feed lines are used when the upstream primary disinfection clearwell is 
out of service, and ammonia is added to form chloramines leaving the second clearwell.   
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B.2. Model Calculations – Non-Steady State Calculation of Reactive Species in SF, TIS, and 

RN Models 

Variable names used in R code are represented in this section by italicized text. 

Abbreviations such as ΔC/C0, ϴi, and τj represent parameters from tracer data and operations data 

and are not variable names used in R code.   

B.2.1 Model Inputs and Reaction Function Common to All Models 

All models rely on the same inputs:  date (Date), residence time (HRT) equal to volume 

divided by flow, free chlorine (FreeCl) molar concentration, and molar dose of ammonia (NH3). 

All of these inputs are stored in the variable Influent.  

There is a function that constitutes the reaction model. This function calculates the 

speciation of chlorine and ammonia based on pH, calculates the rates of reaction based on pre-

defined rate constants and current concentrations of associated species, and then calculates the 

rate of production or loss of a particular species based on the rates of reaction (see Table 3.2 in 

Chapter 3). This function returns the rate of production or loss for each species, which is used in 

the differential equation solving function ode in the deSolve package (Soetaert et al. 2010) in R 

(R Core Team 2016) to calculate changes in species concentrations over time. The ode function 

also requires initial species concentrations and durations of reaction as inputs. 

B.2.2 Segregated Flow (SF) Model 

For the SF model, the predicted effluent chemical species concentrations were calculated 

as the sum of individual PFR effluents weighted by ΔC/C0 (i.e., fraction of flow passing through 

each PFR). Each individual PFR effluent was predicted from influent species concentrations and 

reactions that would take place in the PFR (i.e., chloramine decay). Influent species were 
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selected by looking back in time ϴi*τj minutes, where ϴi is the normalized run time of the 

associated tracer data point and τj is observed overall reactor τ at the time of interest. After 

solving for the PFR effluent concentrations using ode, the weighted concentrations can then be 

summed. This summary will be described in more detail in the following paragraphs. 

At any single time point in the model (CurDate), the influent species concentrations will 

be different for each PFR because each PFR searches back a different period of time. To find the 

influent species for each PFR i at each point in time j in CurDate, the values of ϴi*τj (where τj = 

HRT at time j) are stored in a vector, BackTime. The target timestamps (Tstamps), are then found 

by subtracting BackTime from CurDate. Because Tstamps are unlikely to exactly match Dates, 

an index (vector equal to the length of tracer dataset) is found that minimizes the difference in the 

two date vectors (Tstamps and Dates).  

A matrix of concentrations entering the overall reactor (yLoop) is then created. This 

matrix consists of FreeCl[index] and NH3[index], with all other species set to zero (i.e., NH2Cl, 

NHCl2, NCl3, NO3, intermediates). Concentrations of individual PFR effluents (PFReffs) are 

then calculated from the yLoop initial conditions at time ϴi*τj using the ode function in R. Each 

of the chemical species of interest is then calculated according the SF model:  the summation of 

the product of ΔC/C0 and the average concentration output by successive PFRs. 

The above then repeats for each time element of Influent. 

B.2.3 Maximum Mixedness (MM) Model 

The MM model used the same process for finding yLoop as was described above for the 

SF model. However, rather than using yLoop as the influent to i parallel PFRs, the MM model 

assumes a single reactor with flow injected at i locations throughout its length. Beginning with 
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the longest residence time i inject (ϴi*τj), reaction products of yLoop[i] after (ϴi - ϴi+1)*τj time 

were calculated using the ode function to find the bulk reactor concentration, Cbulk. Note that 

for the MM model, calculation begins with the longest residence time inject such that ϴi > ϴi+1 

and (C/C0)i > (C/C0)i+1. At each successive injection point an initial Cbulk concentration, 

CbulkInitial, is calculated by from an assumed mixing of species from Cbulk at the previous time 

step with yLoop weighted by the proportion of flows represented (i.e., C/C0 and ΔC/C0) as shown 

in the equation below.  

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘𝐶𝐶𝑛𝑛𝐶𝐶𝑘𝑘𝐶𝐶𝐷𝐷𝐶𝐶 =
𝐶𝐶𝑂𝑂𝐶𝐶𝐶𝐶𝑘𝑘∗�1−� 𝐶𝐶𝐶𝐶0

�
𝑖𝑖
� + 𝐶𝐶𝑦𝑦𝑟𝑟𝑟𝑟𝑡𝑡[𝑟𝑟+1]∗�� 𝐶𝐶𝐶𝐶0
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𝑖𝑖
 − � 𝐶𝐶𝐶𝐶0

�
𝑖𝑖+1

� 

1 − � 𝐶𝐶𝐶𝐶0
�
𝑖𝑖+1

.       
B.1 

Reaction products of CbulkInitial after time (ϴi+1 - ϴi+2)*τj were computed using the ode 

function and became the new Cbulk. This process was then repeated for each i inject, and the 

overall process repeated for each time j in the model input time series. 

B.2.4 Tanks-Series (TIS) Model  

For the TIS model, predicted reactor effluent species concentrations were equal to the 

concentration in the last of a series of CSTRs. Concentrations in each CSTR were calculated 

from influent species concentration, flow displacement, and reactions that would take place in 

each CSTR. Unlike the retrospective selection of influent conditions used in the SF and MM 

models, the TIS model used influent flow to displace a volume in the CSTR. For example, if a 

TIS had τ = 300 minutes and n = 3, residence time in each CSTR would be 100 minutes. Using 

the five-minute time increment mentioned earlier, at each time step 5% of volume in each CSTR 

would be displaced, or 1.6�% of the overall reactor volume. Species concentrations in each CSTR 

prior to reaction would be assumed to contain 95% of the previous time step plus 5% influent 

flow, with a reaction time in each CSTR equal to the time step divided by n (e.g., 5 min / 3 = 1.6� 
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min). This summary will be described in more detail in the following paragraphs. 

The fraction of reactor volume displaced by each time step (step) was calculated by 

dividing the duration of the timestep by the τj vector. The number of tanks, n, is specified. The 

residence time each CSTR, TauTank, is equal to τj/n. The size of step in each tank, nstep, is 

calculated as n times step.  

The initial concentration of species throughout the TIS reactor (Initial) is assumed to be 

equal to the observed effluent conditions at the first point in the data set. Initial concentrations 

may include FreeCl, NH3, and combined chlorine, assumed to be in the form of monochloramine 

(NH2Cl). To eliminate background noise, FreeCl, NH3, and NH2Cl were assumed to be equal to 

zero if observed at concentrations of less than 10 µM, 20 µM, and 10 µM, respectively. These 

initial conditions are applied to the each CSTR (e.g., C_1, C_2, C_3) in the TIS reactor. A matrix 

of influent conditions (C_inf) is created, which consists of FreeCl and NH3, with all other 

species set to zero (i.e., NH2Cl, NHCl2, NCl3, NO3, intermediates).  

After the initial conditions have been set at the first time step, for each subsequent time 

step the CSTR concentrations before (e.g., C_1init, C_2init, C_3init) and after (e.g., C_1, C_2, 

C_3) reaction are calculated. For the first CSTR, the initial concentration is calculated as  

𝐶𝐶_1𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑟𝑟 = 𝐶𝐶_1𝑟𝑟−1 ∗ (1 − 𝑛𝑛𝑛𝑛𝑘𝑘𝑒𝑒𝑛𝑛)  +  𝐶𝐶_𝐶𝐶𝑛𝑛𝑖𝑖𝑟𝑟−1 ∗ 𝑛𝑛𝑛𝑛𝑘𝑘𝑒𝑒𝑛𝑛.       B.2 

 

For the second CSTR, the initial concentration is calculated as  

𝐶𝐶_2𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑟𝑟 = 𝐶𝐶_2𝑟𝑟−1 ∗ (1 − 𝑛𝑛𝑛𝑛𝑘𝑘𝑒𝑒𝑛𝑛)  +  𝐶𝐶_1𝑟𝑟−1 ∗ 𝑛𝑛𝑛𝑛𝑘𝑘𝑒𝑒𝑛𝑛.       B.3 

This process continues for each CSTR in the TIS reactor. The post-reaction 
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concentrations (e.g., C_1, C_2, C_3) are calculated using the initial conditions (e.g., C_1init, 

C_2init, C_3init) after the reaction time stepi-1*TauTanki-1 using the ode function in R. Species 

concentrations leaving the last CSTR in the series were equal to the reactor effluent 

concentrations. 

B.2.5 Reactor Network (RN) Models 

The RN models were calculated using the processes described above for each TIS reactor 

in the parallel TIS RN model and for the PFR and CSTRs in series, repeated in parallel RN 

model. There are a few differences to note. For the parallel TIS RN model (Clearwell A), 

TauTank and nstep vary for each TIS reactor.  

For the first TIS, Tau1Tank = τj/n1tanks*VTIS1/QTIS1 , n1step = step*n1tanks*QTIS1/VTIS1 , 

and reaction times are equal to stepi-1*Tau1Tanki-1 where VTIS1 and QTIS1 are volume and flow 

fractions. Similar calculations are made for the second TIS using n1tanks, VTIS1, and QTIS1. 

Effluent species concentrations are then calculated as described above, and summed after 

weighting by QTIS1 and QTIS2. The overall effluent concentration for Clearwell A then becomes  

𝐶𝐶𝑟𝑟𝑒𝑒𝑒𝑒𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐶𝐶_13 ∗ 𝑄𝑄𝑇𝑇𝑇𝑇𝑇𝑇1  +  𝐶𝐶_9 ∗ 𝑄𝑄𝑇𝑇𝑇𝑇𝑇𝑇2.       B.4 

For the PFR and CSTR in series, repeated in parallel RN model, residence time in each 

reactor is calculated as by taking τj times volume fraction over flow fraction. The process 

described above for SF is then used to calculate the effluent concentrations of each PFR. The 

concentrations in each CSTR are then calculated as described above for the TIS reactor. Effluent 

species concentrations are then summed after weighting by flow fractions as described for the 

first RN model. The effluent concentration was calculated as  
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𝐶𝐶𝑟𝑟𝑒𝑒𝑒𝑒𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝐶𝐶1 ∗ 𝑄𝑄1  +  𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝐶𝐶2 ∗ 𝑄𝑄2.       B.5 

B.3. Key Concepts – Detailed Discussion 

B.3.1 Flow Segregation and Mixing 

The concepts of flow segregation and earliness of mixing (i.e., micromixing) are both 

interrelated, and also intertwined with RTD (Levenspiel 1996). Degree of segregation describes 

to what extent flow within a reactor flows along separated paths, as opposed to mixed. Earliness 

of mixing describes whether flow entering a reactor mixes with the reactor contents when it 

enters, when it exits, or somewhere in between. To illustrate these concepts, Figure 3.3 (see 

Chapter 3) shows simple reactors where a yellow fluid and a blue fluid mix to form a green fluid. 

In a reactor with perfect segregation throughout (A), two flows would not mix until they leave 

the reactor; this is conceptually equivalent to having a zero residence time CSTR at the end of 

two PFRs, which produces the latest possible mixing. Conversely, with perfect mixing 

throughout (B), the reactor would function as a CSTR, immediately forming the green fluid. This 

would create the earliest possible mixing. If flow in the reactor was initially segregated and later 

mixed (C), the blue and yellow fluids would exist prior to forming the green fluid. Finally, if 

mixing occurred early in the reactor with subsequent segregation (D), the green fluid would be 

formed immediately before splitting into two separate flows of the green fluid. 

B.3.2 Reactor Models 

The tanks-in-series (TIS) reactor is made up of a finite number (n) of equal-volume, 

perfectly-mixed CSTRs arranged in series. Reactor network (RN) models are combinations of 

PFR, CSTR, and/or TIS reactors arranged in parallel and series combinations (see Chapter 2). 

The RN model sub-reactors are not assumed to have equal volume, volumes are instead 

determined by least squares regression. The reactor examples provided in Figure 3A, C, and D 
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are all examples of reactor networks. The segregated flow (SF) model represents a reactor as 

numerous parallel PFRs (Najm et al. 2009, Crittenden et al. 2005), and thus can be considered a 

special type of RN model that only uses PFRs. The SF model is similar to Figure 3A where the 

blue and yellow fluids have different residence times. The maximum mixedness (MM) model 

assumes that flow enters the reactor at multiple locations, perfectly mixing with reactor contents 

at the point of injection. This can conceptualized as a Figure 3C repeated in series for every entry 

point to the reactor. 

The PFR, CSTR, TIS, and MM all assume only a single flow path, and thus have no flow 

segregation. Flow segregation is assumed to be perfect in SF model, and varies for RN model 

depending on whether the model splits flow into multiple paths. For earliness of mixing, the PFR 

and CSTR represent two extremes:  flow entering a PFR is assumed to never mix with the 

original reactor contents, while in a CSTR influent flow is assumed to mix perfectly and 

instantaneously. The MM model assumes perfect mixing occurs as flows enter the reactor at 

multiple locations, but no longitudinal mixing. Mixing in a TIS reactor occurs in n stages. The 

SF model assumes that flow mixes at the latest possible time:  when flow exits the reactor. 

Earliness of mixing will vary for a RN model depending on which reactor types are used and 

how these model types are arranged. 

B.3.3 Predictions in Ideal Reactors: PFR and CSTR  

Concentrations of relevant chemical species during CombCl2 → FreeCl2 and FreeCl2 → 

CombCl2 were predicted for two ideal reactors: the PFR and CSTR. The purpose of studying 

disinfectant switching in ideal reactors is twofold. The first reason is to introduce the reader to 

the building blocks of more complex models (i.e., TIS, SF, MM, RN). The second is to 

demonstrate what would happen if water treatment reactors were assumed to follow the two 
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extremes of plug and mixed flow.  

The following water quality conditions were assumed for both reactors:  pH 7.5, 

temperature 25ºC, 2 mM total inorganic carbon (TIC), 0 μM PO43-, 50 μM influent 

monochloramine (NH2Cl) or FreeCl2, and 5 μM excess free ammonia when NH2Cl was fed. A 

perfect step change in oxidant at time zero was assumed. Results from a CSTR and a PFR with 

nominal hydraulic residence time (τ) of 1 hour are shown in Figure B.6 and Figure B.7, 

respectively. These figures show both CombCl2 → FreeCl2 and FreeCl2 → CombCl2. 

 
Figure B.6. Predicted effluent concentrations of species from a CSTR with τ = 1 hour for (A) 
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CombCl2 → FreeCl2 and (B) FreeCl2 → CombCl2. Species that remain near zero include NCl3 
and I.  
 

 
Figure B.7. Predicted effluent concentrations of species from a PFR with τ = 1 hour when (A) 
CombCl2 → FreeCl2 and (B) FreeCl2 → CombCl2.   
 

The CSTR assumes complete internal mixing. For CombCl2 → FreeCl2 and FreeCl2 → 

CombCl2, CombCl2 and FreeCl2 species will react in the CSTR according to the reactions in 

Table 3.2 (see Chapter 3). This produces a predicted breakpoint phenomena. Reaction 
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predictions vary depending which disinfectant, CombCl2 or FreeCl2, was initially in the reactor. 

For CombCl2 → FreeCl2, the minimum TotalCl2 concentration predicted was 13.5 μM at 0.67 

hours, while the minimum TotalCl2 concentration predicted was 12.9 μM was 0.94 hours. 

Although the two minimum concentrations are similar, the breakpoint reaction proceeds more 

quickly for CombCl2 → FreeCl2. For example, predicted effluent TotalCl2 concentrations fell 

below 14.5 μM (1 mg/L) for 0.15 hours (from 0.60-0.75 hours) for CombCl2 → FreeCl2, less 

than half as long as for FreeCl2 → CombCl2 (0.31 hours, from 0.79-1.10 hours). Another 

difference to note is that CombCl2 → FreeCl2 (panel A) produces more NHCl2 than FreeCl2 → 

CombCl2 (panel B). Since chloramine loss is primarily limited by the formation of NHCl2 at 

circumneutral pH values (Jafvert and Valentine 1992, Vikesland et al. 2001), this may in part 

explain predictions of more rapid breakpoint in CombCl2 → FreeCl2 than FreeCl2 → CombCl2.  

However, the period of NHCl2 formation was brief and concentrations were low; NH2Cl 

was the predominant chloramine species. For this reason, further results in this Key Concepts 

section report predictions for the sum of chloramine species (i.e., CombCl2).   

The PFR, unlike the CSTR, assumes no internal longitudinal mixing. There is no 

breakpoint in the absence of mixing as shown in Figure S7. This results in a predicted step 

change in species concentration at time t = τ. Species exiting a PFR at time t are only dependent 

on the influent species at time t-τ. This will be important for the SF model, which assumes 

reactors behave as a set of parallel PFRs, none of which will individually predict breakpoint. 

In summary, the CSTR predicted breakpoint phenomena, while the PFR did not. The 

predicted reactions in the CSTR were also different depending on whether free chlorine is added 

to NH2Cl or NH2Cl is added to free chlorine. 



167 

B.3.4 Predictions in SF and TIS Models 

The next step in model development is to use the results from the previous section for 

PFRs and CSTRS to develop increasingly complex models:  SF and TIS. This section presents 

results for hypothetical SF and TIS models. Reaction conditions are the same as those described 

in the preceding section, with only CombCl2 → FreeCl2 results shown. 

The conversion from CombCl2 to FreeCl2 was modeled for a TIS with n = 3 as shown in 

Figure B.8. Total reactor residence time was 1 hour, or 1/3 hour for each CSTR. Similar to 

Figure B.6, breakpoint was predicted for each CSTR in the TIS. Lower total chlorine residuals 

were predicted from each successive CSTR, with the overall reactor effluent (T3) being the 

lowest of the three. The TIS reactor with n = 3 predicted a higher minimum total chlorine 

residual than the single CSTR: 21.0 versus 13.5 μM. However, this may be due in part to 

insufficient time for breakpoint reactions in the reactor. Consider where the CombCl2 and 

FreeCl2 lines intersect for each of the three CSTRs. The model predicts that at this point, 

CombCl2 and FreeCl2 leave each CSTR at equal concentrations. Any such solution would be 

unstable, resulting in breakpoint reactions until only CombCl2 or FreeCl2 remain; which one 

remained would depend on free ammonia concentrations in the solution.   
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Figure B.8. Predicted effluent concentrations following CombCl2 → FreeCl2 for each CSTR in a 
TIS reactor with n = 3. Total reactor τ = 1 hour, 1/3 hour per CSTR. 
 

To study this issue further, an analysis was performed to predict how incomplete 

breakpoint reactions would proceed over time. Consider the predicted effluent concentrations of 

the third tank in Figure B.8. Figure B.9 shows how effluent concentrations of FreeCl2, CombCl2, 

and TotalCl2 would change after 0, 5, and 60 minutes of additional reaction time. These “post-

effluent” concentrations model what would happen downstream of the reactor, such as in a 

distribution system. Results show that for n = 3 and τ = 1 hour (panel A), breakpoint reactions 

would proceed after flow leaves the reactor, with predicted minimum TotalCl2 residual reduced 

from 21.0 to 13.9 μM (7.1 μM difference, 34% reduction) after 5 minutes, and to 2.8 μM (18.2 

μM difference, 87% reduction) after 60 minutes. If reactor residence time were increased from 1 

hour to 10 hours, there would be more time for breakpoint reactions to occur, resulting in 

reduced effluent chlorine residuals as shown in Figure B.9B. The minimum TotalCl2 residual in 
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the effluent flow (i.e., 0 min) would be reduced from 21.0 to 8.2 μM when residence time 

increased from 1 to 10 hours. The magnitude of change in post-effluent TotalCl2 was reduced, 

however, from 7.1 to 1.2 μM after 5 minutes, and from 18.2 to 5.4 μM after 60 minutes, when 

residence time increased from 1 to 10 hours. This was because there was more time for 

breakpoint reactions to occur when τ = 10 hours. In summary, breakpoint reactions may be 

incomplete leaving TIS reactors, particularly when reactor residence time is short.  
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Figure B.9. Predicted effluent and post-effluent concentrations of FreeCl2, CombCl2, and 
TotalCl2 following CombCl2 → FreeCl2 for TIS reactors where n = 3 and (A) 1 hour residence 
time and (B) 10 hour residence time. Post-effluent concentrations show predictions of species 
concentration if a given sample of water was collected from the reactor effluent and held for 
some time in a batch reactor (i.e., 0, 5, or 60 minutes). Changes in post-effluent concentrations 
over time suggest that break point reactions are not yet complete in clearwell effluent, and model 
what would happen downstream of the clearwell, such as in a distribution system. Results 
indicate that breakpoint reactions in a TIS reactor (n = 3) would be much farther from 
completion in a reactor with a 1-hour residence time (panel A) than a 10-hour residence time 
(panel B).  
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An even more extreme example of breakpoint reactions not proceeding to completion is 

the SF model. There is no mixing in the SF model until flow leaves the reactor; at that time 

individual flows are assumed to be perfectly mixed but given zero time for reactions to take 

place. Consider a SF model consisting of three PFRs as shown in Figure B.10A. This 

hypothetical SF model has flow split evenly through the PFRs, each having τ equal to 0.5, 1.0, 

and 1.5 hours. It was assumed that CombCl2 → FreeCl2 occurred at time zero. For time less than 

τ of the first PFR (i.e., t < 0.5 hr), all three reactors had CombCl2 in their effluent (Figure 

B.10B). For time 0.5 < t < 1.0 hr, the smallest PFR has FreeCl2 in the effluent, while the other 

two have CombCl2. Despite having both CombCl2 and FreeCl2 in the overall reactor effluent (see 

Figure B.10B), the SF model predicted no loss of TotalCl2 residual because there was zero time 

for reactions to take place. As was discussed for the TIS reactor, the co-occurrence of FreeCl2 

and CombCl2 in SF effluent would result in a loss of TotalCl2 residual in post-effluent flow due 

to breakpoint reactions. Post-effluent breakpoint for time 0.5 < t < 1.0 hr is shown in Figure 

B.10C. Breakpoint behavior would also be observed in post-effluent for time 0.5 < t < 1.0 hr (see 

Figure B.10D), although this was predicted to produce a FreeCl2 residual due to two of three 

PFRs having effluent free chlorine. Analysis of the SF model illustrated an important concept:  

reactor effluents from parallel flows have zero time for breakpoint reactions to occur, thus 

underestimating TotalCl2 loss during temporal disinfectant switching. This finding is important 

not just for the SF model, but also for any RN model with parallel flows, including those selected 

for Clearwells A and B.  
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Figure B.10. (A) Schematic of a hypothetical segregated flow (SF) model, where PFRs in the SF 
model have τ = 0.5, 1.0, and 1.5 hours, with overall τ = 1.0 hour. (B) SF predictions of effluent 
species concentrations after CombCl2 → FreeCl2. SF model assumes mixing leaving the reactor 
without time for reactions. After exiting the reactor, flow leaving the SF model between (C) 0.5 
and 1.0 hours and (D) 1.0 and 1.5 hours would undergo reactions resulting in breakpoint from 
the mixing of CombCl2 and FreeCl2. 
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B.4. Representations of SF and MM at Steady State and Unsteady State 

 
Figure B.11. Representations of the (A) segregated flow model at steady state, (B) maximum 
mixedness model at steady state, (C) segregated flow model with unsteady operation (i.e., used 
in this work), and (D) maximum mixedness model with unsteady operation (i.e., used in this 
work).  
 
B.5. TIS Model Predictions When n is Varied 

Reactor flows varied significantly throughout disinfectant conversion (see Figure 3.2 and 

Figure 3.9 in Chapter 3), unlike the conditions in which tracer studies were conducted (see in 

Figure 3.1 in Chapter 3). Therefore, it was of interest to test whether differences in RTD might 

produce better model fits. TIS models with n identified through least squares regression were 

compared with TIS models using n-2, n-1, n+1, and n+2 for Figure 3.4 – Figure 3.8 in Chapter 3. 
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The NRMSE for TotalCl2 is shown in Figure B.12. For Clearwell A (see Figure 3.4 – Figure 3.6 

in Chapter 3), the fitted value of n produced the best fit (i.e., had the lowest NRMSE). For 

Clearwell B (see Figure 3.7 and Figure 3.8 in Chapter 3), n-1 produced the best fit, with n 

performing the second best. These results indicate that the RTD model found by fitting n to tracer 

data was also the best n for predicting TotalCl2 concentrations for Clearwell A, and second best 

for Clearwell B. This gives greater confidence that the RTD was not varying substantially with 

flow rate. 

 
Figure B.12. TotalCl2 NRMSE for TIS model predictions using n found by least squares 
regression (see Figure 3.1) as well as n-1, n-2, n+1, and n+2.  
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B.6. Example Code for Predicting Concentrations of Reactive Tracer Species  

Code shown is for Clearwell A. 
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APPENDIX C – SUPPORTING INFORMATION FOR CHAPTER 4 

Table C.1. Tracer data information. 

ID Plant Type Contactor Type 
Tracer 
Type 

Volume 
(MG) 

Flow 
(MGD) 

τ 
(min) t10/τ Reference 

1A Water Clearwell Step Dose 7.9 85 134 0.45 Chapter 2 
1B Water Clearwell Step Dose 11.9-12.4 68-104 165-252 0.45 Chapter 2 
2A Water Clearwell Step Dose 9.9 150 94.8 0.39 Teefy and Singer 1990 
3A Water Filters (6) Pulse Input 0.38 13.7 40 0.50 * Teefy 1996 

3B Water Chlorine Contact Basin Step Dose 0.05 1.4 50 
0.72-
0.80 Teefy 1996 

3C Water Chlorine Contact Basin Step Dose 0.07 1.4 69 0.67 Teefy 1996 
3D Water Ozone Contactor Step Dose 0.02 1.4 23 0.61 Teefy 1996 
3E Wastewater Secondary Clarifier Pulse Input 1.9 10 270 0.19 Teefy 1996 
3F Wastewater Chlorine Contact Chamber Pulse Input 0.02 1.1 30 0.43 Teefy 1996 
3G Water Clearwell Step Dose 2.10 7.9 384 0.67 Teefy 1996 
3H Water Clearwell (Circular) Step Dose 1.32 6.1 312 0.57 Teefy 1996 
4A NR NR Step Dose NR NR 1.9 0.31 * Carlson et al. 2001 
5A Water Ozone Contactor Step Dose 0.18 25.5 10 0.69 * Najm et al. 2009 
5B Water Ozone Contactor Pulse Input 0.18 25.5 10 0.70 * Najm et al. 2009 
6A Water Clearwell Step Dose 32.40 137 340 0.40 Chapter 3 
6B Water Clearwell Step Dose 19.61 104 272 0.40 Chapter 3 
8A Water Clearwell Step Dose 0.22 2.12 149.4 0.72 Porter et al. 2019 
8B Water CT Basin Step Dose 0.01 0.03 335.5 0.45 Porter et al. 2019 
8C Water CT Basin Step Dose 0.12 1.76 98.0 0.75 Porter et al. 2019 
8D Water CT Basin & Clearwell in Series Step Dose 0.06 0.49 177.3 0.69 Porter et al. 2019 
8E Water Clearwell Step Dose 0.01 0.05 200.3 0.35 Porter et al. 2019 
8F Water Disinfection Wet well Step Dose 0.01 1.08 15.0 0.9 Porter et al. 2019 
8G Water Clearwell Step Dose 0.01 0.43 39.0 0.72 Porter et al. 2019 
8H Water Clearwell Step Dose 0.27 3.36 117.0 0.91 Porter et al. 2019 
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8I Water Clearwell Step Dose 0.04 0.57 96.9 0.65 Porter et al. 2019 
8J Water Clearwell Step Dose 0.18 2.17 118.2 0.53 Porter et al. 2019 
8K Water Flocculatin Basin Step Dose 0.001 0.114 13.3 0.46 Porter et al. 2019 
8L Water Clearwell Step Dose 0.08 1.30 83.8 0.66 Porter et al. 2019 
8M Water Ozone Contactor Step Dose 0.0002 0.0278 10.1 0.51 Porter et al. 2019 
8N Water Chlorine Contact Basin Step Dose 0.14 1.01 200.5 0.64 Porter et al. 2019 
8O Water CT Basin Step Dose 0.19 1.03 262.0 0.43 Porter et al. 2019 
8P Water Clearwell Step Dose 0.28 5.69 72.1 0.93 Porter et al. 2019 
8Q Water Clearwell Step Dose 0.05 0.83 91.2 0.75 Porter et al. 2019 
8R Water Clearwell Step Dose 0.04 0.46 129.2 0.76 Porter et al. 2019 
8S Water Clearwell Step Dose 0.17 1.79 138.1 0.59 Porter et al. 2019 
NR - not reported 
* Not reported, but calculated via linear interpolation from reported data 
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Plots of t10/τ baffle factor versus Vnorm before and after correction are shown in Figure 

C.1. Out of 35 uncorrected reactor data sets, 18 had Vnorm > 1.05. For reactors with t10/τ > 0.65, 

nearly two-thirds had Vnorm > 1.2. This suggests that many baffle factors may be overestimated 

due to inaccuracies in volume and/or flow metering. This further supports findings from Chapter 

2 that volume and flow metering issues in tracer studies may be common. 

 

 
Figure C.1. Baffle factor (t10/τ) versus normalized reactor volume (Vnorm) before (A) and after 
data correction (B). 
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Figure C.2. Log reduction versus Da plots for reactors 1A through 3E. 
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Figure C.3. Log reduction versus Da plots for reactors 3F through 6B. 
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Figure C.4. Log reduction versus Da plots for reactors 8A through 8H. 
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Figure C.5. Log reduction versus Da plots for reactors 8I through 8P. 
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Figure C.6. Log reduction versus Da plots for reactors 8Q through 8S. 
  



193 

 

Figure C.7. Box and whisker plot of Da required to achieve different log reductions for each of 
the 35 reactors in Table C.1. Note that one observation for 6-log reduction is not included due to 
required Da > 1,000. 
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