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 ABSTRACT 

Antonio Serrato-Capuchina: Exploring the Role of Transposable Elements in Reproductive 

Isolation 

(Under the direction of Daniel R. Matute) 

 

Understanding the phenotypic and molecular mechanisms that contribute to genetic 

diversity between and within species is fundamental in studying the evolution of species. In 

particular, identifying the interspecific differences that lead to the reduction or even cessation of 

gene flow between nascent species is one of the main goals of speciation genetic research. 

Genetic novelty is often implicated in the origin of new molecular functions and in some cases, 

new phenotypes. As a result, the mechanisms that produce genetic changes are integral in 

understanding the evolution of species as well as speciation itself.  Here, I explore the 

reproductive consequences of novel mobile genetic elements across the D. simulans complex and 

its influence on hybridization between Drosophila species along distinct points in the speciation 

continuum. A precise quantification of the frequency of P-elements (PEs), and transposable 

elements in general, across different species is still in its infancy. Even though the phenomenon 

of hybrid dysgenesis has been rigorously characterized in D. melanogaster, the discovery of PEs 

in other Drosophila species allows us to understand how these elements behave in different 

genetic backgrounds and the role PEs, and TEs generally, play in affecting gene flow between 

closely related species. My work suggests that the invasion of TEs in a genome should not be 

quantified as the singular phenotype of hybrid dysgenesis, but rather multiple distinct effects that 

vary in intensity based off PE copy-number. I also explore the how PEs affect gene 



flow between naturally hybridizing species, the first such case in understanding PEs and 

reproductive isolation between species. This work suggests that 1) the deleterious effects of PEs 

within a species is dependent on copy-number and 2) PEs lead to a reduction in hybrid fitness 

within a species-complex, increasing reproductive isolation and potentially facilitating the 

speciation process.  
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Chapter 1: The Role of Transposable Elements in Speciation 

Aim 1: Assess the importance of TEs in reproductive isolation. 

  My goal is to compile all the available literature to understand what is the relative importance 

of TEs in generating phenotypes that can either set the speciation process in motion or keep 

potentially hybridizing species apart. The compiled information will reveal whether there is a 

consensus on the role of these mutations in speciation or, on the contrary, if there are no particular 

known trends. 

Introduction 

Speciation is the evolutionary process by which one lineage splits into two reproductively 

isolated groups of organisms [1]. One of the central goals of speciation research is to understand 

the processes that drive the evolution of reproductive isolation (RI) between species [2–6]. 

Significant strides have been made towards identifying barriers that generate RI between species 

[1,7], the processes underlying their evolution [2,3,8–11], and the rate at which they evolve during 

speciation [4,5,12–15]. Even though some progress has been made in identifying genes and loci 

associated with RI, few studies have explored the evolutionary processes that produced these 

barriers. Because of this, there is not yet a consensus as to what types of mutations or which 

mechanisms are typically involved in speciation or RI. 

There are two broad approaches to identify the genetic underpinnings of RI. First, if crosses 

can be made, one can genetically map the loci underlying RI between organisms. Such studies can 

establish the genetic changes that maintain species identity and, if divergence is recent, potentially 
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reveal the molecular changes that were initially involved in speciation. This approach is 

particularly informative when coupled with closely related organisms at different 

stages of reduced gene exchange [1,16,17]. An alternative approach is to assess whether a 

particular type of molecular change is commonly associated with isolation between genotypes. If 

a barrier to gene flow is commonly caused by a certain type of molecular change, then one can 

argue that that molecular change is important in either the origin of new species or the persistence 

of them when they face the possibility of collapse through gene flow. This approach has, for 

example, revealed that chromosomal inversions are commonly associated with the suppression of 

recombination and frequently harbor gene combinations involved in isolation between species 

[18,19] (reviewed in [20]). However, this approach has rarely been used to understand the impact 

of other molecular changes on RI. Here we highlight transposable elements as recurring agents 

that underlie a variety of manifestations of RI, which suggests they should be explored across 

various taxa in order to better understand their mechanistic and evolutionary contributions. 

Transposable elements (TEs) are DNA sequences able to copy and insert themselves 

throughout the genome. TEs represent up to 80% of nuclear DNA in plants, 3–20% in fungi, and 

3–52% in metazoans [21–23]. TEs are classified according to the mechanism they use to transpose. 

Class I elements require an RNA intermediate in order to integrate/duplicate themselves within a 

genome, while Class II elements act without an intermediate through a cut-and-paste mechanism 

that replicates its DNA directly to DNA as it mobilizes (Figure 1). A full classification of TEs is 

shown in Table 1. Interestingly, the predominant class of TEs can vary greatly between taxa [24–

28] and species, and their genomic frequency, location, and activity levels can vary greatly even 

at the population level. TEs were described for the first time in maize by Barbara McClintock in 

1950 [29] where they lead to somatic mutations affecting various phenotypes/genes depending on 
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their chromosomal location and transposition time. The insertion of a TE can disrupt the coding 

or regulatory sequences of genes, which can cause deleterious effects by the modifying or 

eliminating a gene’s expression [30–34]. TEs are ubiquitous throughout nature [35–37] and their 

effect on their hosts’ fitness is generally considered to be deleterious; TEs are commonly 

considered selfish elements. However, gene disruptions are not the only consequence of TEs as 

they transpose throughout the genome. TEs can also cause regulatory changes, genomic 

expansions, and generate new chromosomal variants through the generation of inversions. 

Moreover, TEs can produce all of these changes rapidly [38–40] and in response to abiotic 

stressors—a hypothesis first advanced by McClintock [29]. These changes can provide genetic 

and phenotypic novelties upon which selection can act [41,42]. Due to their potential to generate 

novelty when it is needed, some have hypothesized that TEs are maintained in genomes through 

multilevel selection [43–45]. 

Thus, TEs are diverse and pervasive components of eukaryotic genomes that have the 

potential to impact rates of diversification and adaptation. TEs have also long been known to cause 

RI between genotypes (e.g., [46]). However, the role of TEs as a molecular mechanism capable of 

directly mediating the origin of new species remains underexplored experimentally. 

The idea of selfish genetic elements and their involvement in the formation of new species 

has been latent in speciation genetics for years [47,48]. RI due to intragenomic conflict (i.e., 

conflictual speciation, reviewed in [49]) seems to be common but until recently was thought to be 

rare. Meiotic drive, endosymbionts, and maternal effects have all been implicated as potential 

sources of RI [1], and theoretical models have examined what role they may play in speciation 

[50,51]. Yet, the role of TEs in the initiation of the speciation process and in maintaining species 

has only rarely been experimentally studied. In this review, we highlight research that emphasizes 
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TEs as important agents involved in the origin and persistence of species, with a focus the evidence 

for how TEs contribute to contemporary RI. We also propose future directions and questions that 

need to be addressed in order to understand whether transposable elements are involved in 

speciation, in the maintenance of species by generating reproductive isolation, and whether they 

cause distinct macroevolutionary dynamics. 

2. Transposable Elements and Reproductive Isolation 

Traits involved in keeping species apart can be classified depending on when they occur in 

the reproductive cycle. Premating barriers include ecological and behavioral traits that reduce the 

likelihood that two individuals will mate and include habitat isolation and mating choice. Post-

mating-prezygotic barriers involve interactions between gametes and include sperm/pollen-egg 

incompatibility. Finally, postzygotic barriers arise after fertilization has occurred, and include 

various forms of fitness reductions in hybrids [1,3,52]. The genetic basis of prezygotic and 

postzygotic reproductive isolating mechanisms has been studied in varying degrees (reviewed in 

[1,52]), and a few studies have examined their connection to TE transposition (Table 2). In the 

following sections, we compile the cases for which TEs have been found to affect a trait potentially 

involved in RI, in an effort to emphasize their potential role as agents involved in various forms 

of reproductive isolation. 

2.1. Premating Isolation I: Transposable Elements and Ecological Isolation 

TEs have been hypothesized to promote local adaptation and enable the invasion of new 

habitats [53]. The initial colonization of a new environment is often accompanied by a reduction 

in genetic diversity as a result of genomic bottlenecks or founder effects. This hypothesis posits 

that by rapidly creating new genetic diversity, the transposition of TEs might help populations 
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adapt to their new environment. Encountering a new environment is frequently stressful, and since 

TEs can be induced by stress TEs could facilitate an increase in genetic diversity exactly when it 

is needed [54–56]. The genomic shock model proposed by McClintock [29] that TEs mobilize in 

response to environmental challenges has been supported by many studies across multiple 

taxonomic groups [51,57,58]. New environments can select for different traits, and if these traits 

are associated with assortative mating (i.e., dual traits due to pleiotropy; [59,60]), then RI can 

evolve through divergent selection [61]. Therefore, we hypothesize that TEs could frequently 

underlie ecological adaptation and perhaps ultimately, speciation. A roadmap to assess whether 

local adaptation is commonly caused by TEs has been proposed elsewhere [53]. Notably, methods 

to detect TEs have evolved over the last five years and a fine scale dissection of the identity of the 

TEs in a genome and their copy-number throughout the genome is now feasible (Table 3), 

facilitating population level analysis. To examine evidence for our hypothesis, we focus on 

phenotypes that might lead to premating isolation and for which TEs have been shown to cause 

phenotypic differences. 

Flowering time: Differences in flowering time are a common barrier to gene flow in 

angiosperms [62]. The mode of action is simple: differences in flowering time lead to RI between 

genotypes as the gametes of the two genotypes show a reduced probability of encountering each 

other. Additionally, changes in flowering time have several downstream effects that can further 

reduce the possibility of gene flow [63]. Besides the lack of contact of gametes due to the temporal 

differences, differing flowering time might also lead to differences in pollinators and thus fosters 

even stronger isolation than that caused by temporal differences alone. 

In at least two cases, genetic mapping has revealed TEs underlying the disruption of genes 

involved in the pathways involved in flowering time and photoperiod. 
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The vegetative to generative transition 1 (Vgt, ZmRap2.7.1) locus in maize is an upstream (70 

kb) noncoding regulatory element of a repressor of flowering. At Vgt1, a miniature inverted repeat 

transposable element (MITE) insertion into a conserved noncoding sequence was previously found 

to be highly associated with early flowering in independent studies [64]. The insertion of a CACTA-

like transposon into the promoter of a second locus, ZmCCT, can suppress its expression through 

methylation and reduces maize sensitivity to photoperiod [65]. 

Similarly, in Arabidopsis, a recessive allele at the locus flowering locus C (FLC), is a result 

of disruptions of the gene by non-autonomous Mutator-like transposons, which ultimately leads to 

a delay in flower time. This transposon renders FLC subject to repressive chromatin modifications 

mediated by short interfering RNAs generated from homologous transposable elements in the 

genome [66]. 

TEs might play a role in floral induction and development in the rice shoot apex as a portion 

of them are silenced during floral induction [67]. The exact role these TEs play in floral induction 

is unknown, but the recurring activation and silencing of particular TEs, in particular Gypsy 

elements, at specific developmental stages suggests a regulatory overlap in reproductive 

development and TE produced small interfering RNA (siRNA). The downregulation of some 

retrotransposons stops them from repressing genes related to their transition into the reproductive 

phase, essentially activating genes required for flowering. 

These examples show that TEs can modify the mean flowering time through a variety of 

mechanisms (e.g., differential methylation in maize, repression of an intron via siRNA in 

Arabidopsis). However, to our knowledge, all flowering time mapping cases have been done 

within species, thus far no case of between species difference in flowering time has been ascribed 

to TEs. It is worth noting that different molecular mechanisms resulting from TE insertion can 
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produce the same phenotypic outcome. In maize, a TE insertion results in differential methylation 

in the regulatory region while in Arabidopsis there is repression at an intron through siRNAs. 

Interspecific differences in flowering time caused by TEs remain unidentified but it seems like a 

possible cause of isolation.  

Habitat isolation: Abiotic factors such as light and water availability can greatly influence the 

range over which a plant is able to spread, as well as influence the conspecific mates it will 

encounter. In the extreme, adaptation to a new environment can completely prevent contact with 

other members of a species, initiating the process of allopatric speciation. 

The CACTA-like TE insertion (in the promoter for ZmCCT; [65]) implicated in photoperiod 

sensitivity in maize, has also facilitated local adaptation to temperate long-day environments. 

Additionally, variation in drought tolerance has been linked to a TE inserted in the promoter region 

of ZmNAC111 [65]. This MITE insertion results in histone hypermethylation, which represses the 

expression of NAC resulting in a higher drought tolerance. 

Selection acting across a continuous distribution of habitat preference can lead to RI as a 

byproduct of local adaptation to changing environmental factors. TEs may have generated the 

alleles selected during adaptation to temperate climates in Drosophila melanogaster. A study 

comparing temperature/latitudinal clines along Australia and North America found 10 TEs that 

show signs of positive selection at their insertion points, resulting in local adaptation [53,58,68]. 

By causing mutations in genes associated with a suite of traits, including circadian rhythm 

regulation and starvation resistance, several types of TEs (Long terminal repeats (LTRs), Long 

interspersed nuclear elements-like (LINE-like), and Terminal inverted repeats (TIR)) are thought 

to underlie the phenotypic differences along the cline. Suggestively, the TEs were more likely to 

be adaptive in temperate populations compared to tropical populations where they were likely to 
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be neutral [68]. Taken together, these results strongly suggest that alleles generated by TEs were 

favored during local adaptation. 

Host specificity in oomycetes: One of the main mechanisms of RI in plant pathogens is host 

specificity, which is regulated by the repertoire of effector genes within each pathogen. Effector 

proteins alter host physiology and allow colonization by individual pathogens [69]. In oomycetes, 

genomic distribution of TEs is frequently predictive of host specificity [70–72]. For example, the 

genome of Phytophthora, a major pest of commercial crops, harbors multiple families of 

retrotransposons (copia, Gypsy/Ty) [72–76]. In Phytophthora infestans—the potato blight 

pathogen—host specificity is regulated in part by RXLR class effectors that enable P. infestans to 

utilize a host [77]. As in other systems, TE insertion in P. infestans causes epigenetic silencing of 

both the transposon and nearby genes, resulting in regulatory differences. Notably, synthetic 

chimeras of a short interspersed element (SINE) to an effector gene in P. infestans leads to the 

silencing of both the introduced fusion and endogenous homologous sequences [77]. This silencing 

is also likely to occur naturally in the genome of P. infestans, as transcriptional inactivation of 

effectors is known to occur and over half of RXLR effectors are located within 2 kb of transposon 

sequences in the P. infestans genome. Thus, it is possible that host range in P. infestans was shaped 

by TEs inserted near these genes. Since mating in oomycetes occurs on host plants, it is plausible 

that TE insertions that modify host specificity have led to reproductive isolation in P. infestans. 

However, a systematic exploration of effector genes and their interactions with TEs would be 

needed to test this hypothesis. 

2.2. Premating Isolation II: Transposable Elements and Sexual Isolation 

Self-incompatibility: Fungi engage in diverse reproductive strategies, which often vary 

between closely related species [78]. Fungi often employ a mating system whereby the mating 
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type—which is analogous to the sex—of the individual is determined by alternative alleles at one 

or several loci. In homothallic strains, which can mate with themselves (i.e., are self-compatible 

(SC)), additional loci generate allelic diversity at the mating type loci by a copy-paste mechanism 

(e.g., the homothallic switching (HO) endonuclease in Saccharomyces cerevisiae) [79,80]. Since 

single loci can effectively determine whether two individuals can interbreed or not, TEs can 

mediate transitions from homothallism (SC) to heterothallism (self-incompatible (SI)) in fungi by 

disrupting these loci. Transitions from self-incompatibility to self-compatibility are associated 

with speciation events (e.g., [81–83]) because selfing species are effectively isolated from other 

individuals and species (with the possible exception of somatic fusion; [84,85]). 

Retroelements have contributed to the shifts from heterothallic ancestors to homothallic 

species in the Neurospora genus through mediating translocations at the mating-type (MAT) loci 

[86]. Retrotransposon insertions in the MAT locus also occur in Blastomyces and might be 

involved in decreasing the likelihood of recombination between mating types [87]. In other fungi, 

transposons have been found within or flanking MAT loci (e.g., Neosartorya fischeri [88], 

Cryptococcus neoformans [89], Paracoccidioides brasiliensis [87,90]), thus potentially providing 

an avenue for mating type to evolve independently through a rapid TE-induced mechanism. 

Specifically, in Neurospora, the transposition of nsubGypsy has facilitated the movement of genes 

neighboring the MAT loci to a different chromosome [84]. Transposition of npanLTR facilitates 

unequal crossovers between unrelated intergenic regions of opposite mating types, which in turn 

facilitates the transition into self-crossing species. Phylogenetic studies in Neurospora and 

Kluyveromyces lactis show multiple transitions from SI to SC species [86,91]. Taken together, 

these studies demonstrate that TEs may frequently be inserted at MAT loci, but it remains to be 

seen whether these patterns can be extended to other species. 
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Besides these effects on mating compatibility, genomic rearrangements mediated by 

transposition can also lead to viability issues in hybrids [92,93]. Barley rusts, Ustilago hordei, 

show a large increase in TE activity not observed in other closely related species (Ustilago maydis 

or Sporisorium reilianum), which has also led to both the reorganization of the MAT loci in the 

former species as well as large chromosomal rearrangements [94]. Few reports have explored a 

potential causal connection between TE activity and genome reorganization. A systematic 

assessment of how often TEs are involved in gene movement across chromosomes is sorely 

needed. 

Transposons may also play an important role in transitions to self-compatibility in plants. 

Solanum, a flowering plant genus that contains tomatoes, consists of SC and (SI) taxa, with 

multiple transitions from self-incompatibility to self-compatibility [95]. SC taxa are characterized 

by low levels or no expression of stylar RNase (S-RNAse). The seven SC and the three SI taxa 

differ in the 5′ coding region of S-RNAse by several point mutations. Additionally, in one of the 

SI taxa, the source of low S-RNAse levels stems from an insertion of a transposon-like repetitive 

element. These results show how single-base mutations and the insertion of TEs can result in 

similar evolutionary outcomes [95]. 

These results suggest that transitions to self-fertility mediated by TEs might be common in 

fungi and plants. We hypothesize that since transitions to self-incompatibility have been associated 

with lower speciation rates and higher extinction rates in plants [96–98], TEs might be associated 

with differential diversification rates (i.e., species selection [99–101] in fungi. A formal test of this 

hypothesis remains to be performed. 

Mating behavior in Drosophila: Behavioral isolation in Drosophila is mediated through a 

multimodal signaling system that involves cuticular hydrocarbons (CHCs), visual cues, and 
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auditory signals [102–104]. CHCs are waxy compounds that are involved in desiccation protection 

(e.g., the species pair D. serrata/D. birchii; [105,106]) in the abdominal cuticle and are often 

necessary for mate discrimination and in some cases species discrimination [107–110]. Marcillac 

et al. [111] studied the effects of an insertion of a TE in the desat1 locus and measured two different 

traits: the expression of CHCs and the ability of males to discriminate between the sexes. Even 

though no naturally occurring TEs have been found in the desat1 locus, over 30 TEs have been 

found ~20–50 kb upstream of the gene [112,113]. desat1 mutants (i.e., with a TE insertion) had 

lower CHC abundance (reducing the natural sex dimorphism) than lines without the TE. Moreover, 

mutant males showed poorer discrimination between control males and females suggesting that 

the TE insertion changed not only the emitted sexual signal but also how that signal is recognized. 

It remains to be seen if there are naturally occurring transposon-induced mutants in desat1 or any 

other allele involved in the production of CHCs. 

TEs have been conclusively shown to lead to interspecific differences in mating song in some 

Drosophila. Male flies in the D. melanogaster species subgroup produce a courtship song with 

two components: trains of continuous sinusoidal sound, called sine song, and pulses separated by 

an interval, called pulse song [27,114]. In the case of the sister species Drosophila simulans and 

Drosophila mauritiana, two species that diverged within the last 240,000 years [115–117], D. 

mauritiana males have a higher song frequency than D. simulans males, which in turn affects 

mating behavior and is a trait used by females to distinguish between conspecific and 

heterospecific males [118,119]. A retrotransposon, Shellder, has caused the disruption of the 

slowpoke (slo) locus in D. simulans [120]. The slo gene is expressed broadly in the fly nervous 

system and influences many locomotor behaviors and the insertion of Shellder leads to alternate 

splicing of the gene. Shellder insertions are polymorphic in their insertion sites in wild type strains 
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of D. simulans and D. mauritiana, which strongly suggests that Shellder is probably propagating 

actively in Drosophila populations. The retrotransposon insertion seems to be polymorphic within 

D. simulans, which then leads to the question of whether this has led to isolation between different 

genotypes of D. simulans. 

2.3. Transposable Elements and Postzygotic Isolation 

TEs and chromosomal rearrangements: Chromosomal rearrangements are one of the genome 

features known to affect the likelihood of gene flow between species (extensively reviewed in 

[19,121–123]). In general terms, theoretical models indicate that chromosomal inversions can 

preclude gene flow at certain regions of the genome. Multiple empirical examples have shown that 

chromosome rearrangements can indeed contribute to postzygotic isolating mechanisms [124] and 

assortative mating [122], particularly when the rearranged regions contain alleles involved in 

reproduction. An active research program is trying to assess whether TEs can indeed lead to the 

origination of new chromosomal rearrangements (illustrated in [125] and reviewed in [126,127]). 

In Drosophila buzzati, the breakpoints of the 2j inversion contain TEs. It has been hypothesized 

that 2j might have originated by ectopic recombination of the TE at its breakpoints [128]. Even 

though this inversion has not been formally associated with RI, 2j is involved with differences in 

life history traits among D. buzzatii populations [129,130]. The phenotypic effects of 2j are 

contingent on genetic background, which suggests epistatic interactions with the rest of the D. 

buzzatii genome [131,132]. If TEs commonly induced inversions and other chromosomal 

aberrations, then TEs might play a role in maintaining species boundaries. 

TE reactivation: In animals, fungi and plants, TEs are often targeted and silenced by siRNAs 

[133]. In plants, siRNAs involved in heterochromatin formation often target TEs and silence them 

[134]. Unlike animals, where the germ cells are formed early in development, plant germ cells 
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differentiate from somatic cells in the adult and the chromatin remodeling ATPase decrease in 

DNA methylation 1 (DDM1) is crucial for this process. In Arabidopsis, DDM1 is necessary to 

silence TE activity [133–136]. Even though TE reactivation and accumulation is restricted to the 

vegetative nucleus and not the sperm cells, TE accumulation in the vegetative nucleus can affect 

the sperm cells of the pollen and result in heritable changes [133]. In tobacco, just as in 

Arabidopsis, cytoplasmic connections between sperm cells and the pollen vegetative nucleus have 

previously been observed [133,137] and might provide a channel for siRNA and facilitate TE 

silencing. As a result, TE misregulation, which in essence is a hybrid specific defect of the TE-

repressor system, might be a potential source of hybrid defects in pollen. 

DDM1 is also required to produce hybrid vigor (heterosis; [138]). Arabidopsis F1s between 

divergent accessions regularly show hybrid vigor in vegetative biomass throughout their 

lifecycle [139]. However, crosses involving DDM1 loss-of-function mutants do not show 

heterosis; TEs are extensively expressed, which in turn causes abnormal and expression of 

genes related to salicylic acid metabolism [140]. Since fitness is so drastically affected by TEs, 

through either heterosis or hybrid incompatibility, these results might indicate that expression 

of TEs in hybrids changes their epistatic landscape (in a way that does not occur in pure species) 

with potentially deleterious effects. The role that DDM1 plays in establishing RI could be tested 

by mutating ddm1 across multiple plant lineages. The results from such mutagenesis approach 

will reveal whether this epigenetic regulator of TEs is involved in reproductive isolation in 

multiple species pairs. 

Hybrid breakdown through deregulation of TEs is another postzygotic barrier between 

species. Lake whitefish lineages have repeatedly colonized postglacial lakes across North 

America. During these colonizations, a dwarf limnetic species has evolved from a benthic species 
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multiple times. This repeated evolution has led to incomplete RI between the limnetic and benthic 

lineages [141,142]. Although the two lineages can produce viable hybrids, there is significant 

mortality in all hybrid types and backcrosses regularly show a malformed phenotype. Analysis of 

the transcriptome of hybrids reveals a 232-fold increase in TE activity in malformed embryos 

compared to pure crosses. This transcriptome wide deregulation of TEs results in shutdown of vital 

metabolic pathways drastically reducing the fitness of hybrids [143]. 

The reactivation of retroelements in hybrids can also lead to changes in chromatin profiles. 

Interspecific crosses of two Wallaby species, Wallabia bicolor and Macropus eugenii, produce 

hybrids with autosomes from Macropus eugenii that have a larger centromere [144,145]. The 

extended centromeres differ from those found in either parental species as hybrid centromeres 

consist primarily of un-methylated retrotransposons. TEs, then, can also affect chromatin structure 

and chromosomal composition in hybrids. Transpositions resulting from TEs being released from 

siRNA, epistatic, or epigenetic suppression mechanisms are pervasive across various eukaryotic 

groups and drastically change the fitness of hybrids. 

Hybrid inviability: An extensively studied case of reproductive isolation is the genetic 

interaction between Hmr, Lhr, and gfzf in F1 hybrids between D. melanogaster females and D. 

simulans males. Alleles from these genes genetically interact to cause hybrid lethality between D. 

melanogaster and D. simulans [146–149]. RNA-seq analyses revealed that Hmr and Lhr are 

required to repress transcription from satellite DNAs and many families of TEs in their native hosts 

[149]. One possible cause of aberrant TE expression in hybrids is altered expression of Piwi-

interacting small RNAs (piRNAs), a class of small RNAs that interacts with the Piwi family of 

Argonaute proteins to control the expression of TEs in the germline [150]. This is because the 

piRNA population in a host rapidly adapts, within ~6 generations [151], to the TE content through 
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generation of new piRNA clusters, allowing de novo production of piRNA and other types of small 

RNAs for silencing of the invading TE [152,153]. Overexpression of TEs is frequently found in 

F1 hybrids, and is often associated with male sterility [154,155]. Overall these results suggest that 

the regulation of TEs might be of importance in maintaining contemporary species boundaries. 

Hybrid dysgenesis: Drosophila is arguably one of the premier systems to understand the 

spread of TEs in animals. At least three families (hobo, P-elements, I-elements) have been found 

in D. melanogaster [156–158]. Of these families, P-elements (PEs) have received the most 

attention, as a result of a suite of defects in F1 hybrids (i.e., hybrid dysgenesis). Hybrid dysgenesis 

occurs in F1 hybrids from crosses between an uninfected female and an infected male [159,160], 

whereas individuals from the reciprocal cross are fertile. In dysgenic individuals, TEs proliferate 

and lead to a suite of defects such as chromosomal breakage, germ line cell apoptosis, and an 

increase in point mutations [46,161–163]. Despite drastic consequences PEs have spread 

throughout D. melanogaster [112,158,164] and D. simulans worldwide [165]. PEs are thought to 

have originated in the neotropical D. willistoni species group [166–168]. Although mites have been 

proposed to serve as a vector for PEs, potentially as a byproduct of their syringe-like feeding 

method [169], the precise mechanisms of this horizontal transfer remain unknown and untested. 

The unidirectional development of hybrid dysgenesis between crosses stems from the way 

that genomes protect themselves the deleterious effects of PE activation. In F1 hybrid females, 

hybrid dysgenesis is only present in daughters from mothers with no PE and fathers with PEs. 

Usually the infertility that characterizes hybrid dysgenesis is silenced through piwi-interacting 

RNA silencing  [170–173], which are exclusively maternally inherited. piRNAs seem to be 

present in all arthropods [174], and in the case of Drosophila piRNAs are cytoplasmatically 

deposited in embryos from females that contain PEs. Recent work shows that piRNAs are not 
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alone in mitigating PE’s effects. PEs in D. melanogaster lead to hybrid sterility when the 

germoplasm does not carry the molecular machinery to regulate the expansion of PEs through 

minimizing cell apoptosis by co-opting the use of genomic maintenance genes such as p53 [175]. 

A similar phenomenon, yet much less studied, occurs in Drosophila virilis [176]. The 

elements Penelope, Ulysses, Paris and Helena and Telemac have rapidly increased in frequency 

in natural populations. Experimental injection of Penelope causes germ line mutations as well as 

the activation of other TEs [176]. Similar to the hybrid dysgenesis phenomenon observed in D. 

melanogaster, when uninfected females are crossed to infected males, the resulting progeny show 

a high level of gonadal sterility, chromosomal nondisjunction and rearrangements, male 

recombination, and the occurrence of multiple visible mutations. There are however, notable 

differences between these two systems. While in D. melanogaster only one family of TEs are 

activated at once, in the D. virilis dysgenesis, all families are activated simultaneously [176–177]. 

The Penelope family seems to be primarily responsible for the hybrid dysgenesis syndrome of D. 

virilis [176]. 

If hybrid dysgenesis is a mechanism that can generate RI in populations of the same species, 

then the molecular machinery that regulates TEs might be important to not only maintain species 

boundaries at present but also facilitate speciation. This includes an assessment of whether TEs 

and TE-repressor system act as traditional genetic incompatibilities in hybrids [178]. A valuable 

research avenue will be to evaluate the effects of PEs in interspecific crosses and whether hybrid 

dysgenesis is a source of selection for speciation via reinforcement.  

Genomic imprinting in endosperm: Maturation of the embryo in angiosperms is contingent on 

normal development of the endosperm, a tissue that feeds the embryo during seed development 

[179,180]. Allocation of nutrients in the endosperm is consistent with parental conflict theory and 
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excess dosage of paternal alleles promotes larger seeds while an excess of maternal alleles 

produces small seeds. This tissue is usually triploid and its normal development depends on the 

proper balance of gene imprinting [180]. Imbalances between paternally and maternally imprinted 

genes can lead to changes in gene expression through regulatory changes, a phenotype that is 

commonly aberrant in heterospecific hybrids (e.g., [181,182]). 

Arabidopsis arenosa and Arabidopsis thaliana hybrid seeds show an overgrown endosperm 

and arrested or abnormal embryo development. A. thaliana harbors LTR retrotransposons of the 

Ty3/Gypsy family, known as Athila. These elements are large, with an internal region up to 10.5 

kb long, flanked by an average of 1.8 kb LTRs on either side. This internal region produces two 

proteins: the gag capsid structural protein and pol, which carries the protease, reverse transcriptase 

and integrase domains essential for element duplication [183,184]. Seed inviability is positively 

correlated with the relative paternal genome dose, suggesting that maternal genomic excess 

suppresses incompatibilities in hybrids [181]. Moreover, the maternal genomic contribution (and 

thus seed viability) is inversely correlated with expression of Athila retrotransposons, expressed 

mostly from the pericentromeric regions. The normally silenced Athila (but not other TEs) is 

extensively expressed in hybrids. Only the paternal, and not the maternal, copies are expressed in 

these interspecific hybrids. 

The precise reason why TEs are misregulated in hybrids relative to parentals remains unclear 

and likely varies across species. The interactions between paternally and maternally imprinted 

genes might lead to changes in silenced regions, which in turn is a common cause of postzygotic 

isolation in heterospecific crosses. Imprinting in plants is intimately associated with changes to 

methylation of TEs [185,186], and TE activity is known to alter DNA methylation patterns and 

gene imprinting in plant genomes [187–189]. Alternative molecular mechanisms—that might act 



 

18 

 

in concert with perturbed imprinting—have also been proposed to account for seed failure, such 

as poor regulation of TEs by siRNAs in hybrids [190]. 

A systematic exploration of how often TEs promote post-zygotic isolation remains a 

promising research avenue to understand the link between TEs and speciation. 

3. Introgression and Transposable Elements 

Introgression, which is defined as the transfer of genetic material between species through the 

production of fertile interspecific hybrids, has recently been shown to be common across all 

domains of life [191,192]. Understanding what factors allow for gene exchange is crucial to 

understanding how species—especially nascent ones—persist in cases where they have the chance 

to interbreed and fuse into a single lineage. The relationship between transposable elements and 

introgression is multifaceted and includes (i) TE-aided introgression of non TE-DNA and (ii) 

interspecific transmission TEs alone. 

First, TEs might facilitate or hamper introgression of surrounding DNA. Surprisingly, this 

hypothesis remains untested even though its prediction is straight forward: if TEs increase the 

likelihood of introgression, then in hybridizing species regions that are TE-rich should show a 

larger amount of introgression compared to the rest of the genome. If, on the contrary, TEs hamper 

introgression through selection against regions containing TEs, then TE-rich regions should be 

refractory to introgression. These two scenarios are illustrated in Figure 2. Even though no 

systematic study has addressed whether TEs facilitate introgression, there are some indications 

TEs might be involved in horizontal gene transfer (HGT) [193,194]. The coffee berry borer beetle, 

Hypothenemus hampei [195], and the mustard leaf beetle, Phaedon cochleariae, appear to have 

acquired the genes necessary for their specialized diet through a HGT from bacteria [196], 

allowing them to degrade plant cell walls. Interestingly in both cases, the genes acquired by the 
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beetles are flanked by two transposons. The potential role TEs might have played in this transfer 

remains suggestive but inconclusive. 

Introgression might also lead to the transfer of TEs across species boundaries [197,198]. HGT 

have been linked to speciation events (or at least specialization events) in bacteria, providing novel 

gene sets that expand host specificity. Horizontal gene transfer regularly acts as a genetic bridge 

between vastly diverged species [193,194]. Horizontal transfers of TEs between angiosperm 

genomes have been documented in nature [199–201] and experimentally [202]. In Drosophila, 

HGT seems to have occurred from the willistoni species group to D. melanogaster. The two groups 

diverged over 50 million years ago and there is no possibility of hybridization [203]. Many other 

cases of HGT between species (with a rapidly growing list) have also been reported but the precise 

mechanisms of gene exchange remain largely unknown and might differ between taxa and 

reproductive strategies [179,204,205]. By serving as a pathway to TE acquisition, HGT can result 

in RI when coupled with the effects of new TEs entering a genome. 

The most likely mechanism of transfer of genetic material between closely related species is 

arguably the production of fertile hybrids with subsequent introgression. Even though it is clear 

that TEs can be mobilized by HGT, it remains unclear to what extent TE activation can occur 

through introgression. This question remains largely unexplored both in natural and experimental 

populations. This scarcity is puzzling because the proposal that introgression mediated by 

hybridization could lead to transposon introduction and mobilization within the genome of rice is 

not new (i.e., a genome shock, [206]). Two examples of TE mobilization following introgression 

stand out. First, recombinant inbred lines produced by hybridizing rice species (cultivar Matsumae 

and wild rice Zizania latifolia) have shown that the miniature-Ping (mPing) TE together with its 

putative transposase-encoding partner, Pong, can be mobilized between species [207,208]. Likely, 
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the mobilization of mPing and Pong is a result of introgression-induced malfunction of the 

established cellular control systems in the rice genome, as their transposition is transitory and 

rapidly repressed. 

The second example comes from experimental hybrid swarms between two divergent species 

of Drosophila: D. melanogaster and D. simulans. Both species harbor the Bari-I element, a Class 

II TE with an open reading frame able to encode a polypeptide with 339 amino acids. (The 

sequence of the putative protein in Bari-I is similar to the transposase of the Tc-1 element of 

Caernorhabditis elegans, which might in turn suggest HGT across animal orders [209].) In 

synthetic hybrid swarms using D. simulans C167.4, an unusual line that produces fertile hybrid 

offspring with D. melanogaster, Bari-I elements, originally from the D. melanogaster parent, are 

maintained in hybrid strains, suggesting that introgression can indeed be a mechanism of transfer 

of TEs. The element is present across the geographic range of both species and shows such similar 

sequence that it seems to be transmitted horizontally and not vertically [210]. 

Introgression of TEs has been hypothesized for Drosophila bifasciata and Drosophila imaii 

[211], species of the simulans complex [212], species of the groups willistoni (reviewed by [213]), 

saltans ([214,215]), and the species pair Drosophila serido and D. buzzatii [216]. The main lines 

of evidence in these studies have been the ability of these species to produce fertile hybrids and 

the sequence similarity of TEs across species [211,217–219]. A full and detailed characterization 

of the rates and nature of introgression awaits for most of these groups and should be coming in 

the near future as TEs will continue to be a focus of research due to their diverse effects across 

organisms. 
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4. Future Directions 

The relationship between TEs and RI is an open field of research that will likely increase in 

prominence over the next few years. Given the broad range of roles TEs have played in affecting 

gene exchange between various species, further study is required in order to better understand the 

extent to which TEs influence evolution and speciation. Box 1 lists focal questions that remained 

unanswered. These questions fall into three broad categories. 

4.1. Are Transposable Elements a Common Cause of Reproductive Isolation? 

Mapping the precise genetic basis of interspecific differences will reveal what type of 

mutations and genomic interactions are more likely to cause and maintain interspecific differences 

and their relative contribution to various forms of RI. This will lead to a better assessment of the 

relative importance of TEs as a genetic cause of RI. A second line of research will explore the role 

of TEs in adaptation to the peripheral areas of geographic range of a species. In maize, for example, 

Mutator TEs are reactivated in response to environmental stress [220], which is most likely to 

occur at the edge of the optimal range of the species. TE reactivation might induce to genomic 

changes that in turn lead to RI between peripheral populations in extreme environments and the 

central populations’ (akin to peripatric speciation; [1,221]). Moreover, hybrid zones are usually 

found at the edges of the range of the hybridizing species so the interplay of hybridization and 

potential activation of TEs due to environmental or competition induced stress should be examined 

(Questions 1–5 in Box 1). 

4.2. Are Transposable Elements Responsible for Differential Rates of Diversification? 

The broad range of genome sizes across eukaryotes is partially explained by the quantity of 

repetitive, non-coding DNA—including TEs—interspersed throughout the genome [22,179,222–
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226]. The consequences of genome expansions are significant and have been linked to the duration 

of meiosis, ecological distribution, speciation rate, and extinction risk (e.g., [227,228] reviewed in 

[229]). Genome rearrangements and, in particular, genome duplications have been associated with 

higher rates of diversification in teleosts [230–232] and angiosperms [233,234]. The reasoning 

behind why genome duplications lead to an increase in diversification rates remains unclear but 

generally there are two explanations. First, genome duplication allows for gene 

subfunctionalization and neofunctionalization that would not be possible in a non-duplicated 

genome [235–238]. Second, large genomes might simply have the chance to accumulate more 

hybrid incompatibilities. Only one systematic evaluation of the relationship of genome size and 

cladogenesis has been performed (for angiosperms) and it found evidence of a positive correlation 

between overall genome size and rates of speciation [239,240]. Since TEs commonly lead to an 

increase in genome size, this is consistent with the hypothesis that invasion by TEs can increase 

the rate of speciation. 

An evaluation of this hypothesis has been carried out in haplochromine cichlids. A 

comparative analysis to determine what traits were correlated with successful adaptive radiations 

in Lakes Malawi and Victoria found that traits like decoupled pharyngeal jaw and maternal mouth 

brooding—which have been hypothesized to be key innovations enabling diversification in 

cichlids—could not account for differences in the rate of diversification in this group. In contrast, 

increased numbers of SINE insertions preceded the extensive radiations within each lake [241]. 

These results are consistent with TEs mediating adaptation through either gene disruption or 

altered methylation patterns near insertion sites. However, determining whether TEs generally lead 

to increased speciation rates will require a formal macroevolutionary test in which the sample size 

(i.e., potential radiations caused by TEs) is larger than one [242]. 
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Conversely, TEs could result in increased extinction rates and therefore lead to decreased 

diversification rates. This is related to an intriguing hypothesis that posits that asexual groups form 

reciprocally monophyletic clusters (akin to asexual species) rapidly but also disappear rapidly due 

to the proliferation of deleterious transposons inherited from their sexual progenitors that cannot 

be purged by recombination, leading to extinction [42,243]. (Questions 6–9 in Box 1) Additional 

studies are required to move conclusively test a possible connection between TEs and 

diversification rates. 

4.3. Are Transposable Elements and Hybrid Dysgenesis a Source of Selection for 

Reinforcement? 

Hybrid dysgenesis is a phenomenon that occurs in animals and might also exist in plants. Even 

though its natural frequency remains currently unknown, it is possible that it might be rather 

common [174,177]. Similarly, reinforcement, the evolutionary process in which prezygotic 

isolation is strengthened as a byproduct of the production of unfit hybrids, seems to be pervasive 

in nature [244]. If F1 interspecific hybrids consistently suffer fitness defects due to hybrid 

dysgenesis, then natural selection might indirectly penalize individuals that mate with 

heterospecifics, thus fostering the completion of speciation (i.e., increasing RI until there is 

cessation of gene flow). This question also remains unanswered and will require the identification 

of sister species that hybridize in nature and for which hybrid dysgenesis represents a major cost 

to heterospecific mating (Questions 10–11 in Box 1). 
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Box 1. Unanswered questions about the connection between TEs and speciation. 

1. Are interspecific differences in flowering time disproportionately caused by TEs? 

2. Do transposons play a significant role in pathogen adaptation to new hosts? 

3. How commonly are TEs involved in antibiotic resistance? 

4. How is the likelihood of chromosomal inversions caused by recombination affected 

by TEs? 

5. What is the role of TEs in causing hybrid breakdown? 

6. Do TEs regularly mediate the transition from outcrossing to self-crossing in fungi? 

7. What is the taxonomical distribution of TEs? 

8. Do TEs cause changes in the net rates of diversification across the tree of life? 

9. Can TEs be deleterious enough to cause extinction? 

10. Is introgression facilitated or hampered by TEs? 

11. Does hybrid dysgenesis facilitate speciation by reinforcement? 

12. Can TE-repressor systems generate hybrid incompatibilities during speciation? 

5. Conclusions 

Transposable elements are hypothesized to promote bursts of diversification or biological and 

genomic differentiation between species (e.g., [51,56]). Yet there is little direct evidence that TEs 

can indeed facilitate RI and ultimately speciation. That does not mean TEs are not related to the 

generation of new genetic elements, genetic circuits, and ultimately of phenotypes. On the 

contrary, TEs are commonly associated with the origin of new genetic and phenotypic diversity 

through gene regulatory element innovation, genic disruptions, siRNA/epigenetic suppressor 

mismatches, and chromosomal remodeling. In vertebrates, TEs have regularly contributed to the 

evolution of regulatory and coding sequences, leading to new lineage-specific gene regulations 
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and functions. Their role has been pivotal to generate new phenotypic diversity. In primates for 

example, TEs are the main source of new variants in regulatory sequences [245]. In angiosperms 

a significant portion of adaptive novelty is due to the activity of TEs (active TE-Thrust), resulting 

in an extraordinary array of genetic changes, including gene modifications, duplications, altered 

expression patterns, and exaptation to create novel genes, with occasional gene disruption [179]. 

Even though it is clear that TEs are involved in generating the genetic material for new traits (some 

of them involved in adaptations), the question of whether TEs are involved in RI has remained 

largely understudied. The combination of natural history, genetics and genomics will reveal the 

prevalence of TEs in nature and to what extent they have played a role in generating and sustaining 

new organismal diversity. 
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Figure 1. A graphical classification of transposable elements (TEs). The left panel 

shows Class 1 retrotransposons, and the right panel shows Class 2 DNA transposons. The 

upper panels show three examples of the genetic structure of each of these two classes of 

elements. The lower panels show the mode of movement (transposition mechanism) of 

each class. LTR: Long Terminal Repeats; LINE: Long interspersed nuclear elements; 

SINE: Short interspersed elements. 
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Figure 2. Two possible scenarios that illustrate potential connections between TEs and the 

likelihood of introgression. Two species are illustrated (blue and red). Stripped bars show 

chromosomes that contain TEs, while solid bars are chromosomes with no TEs. The left panel 

(Scenario 1) shows a potential scenario in which TEs facilitate the transfer of a full chromosome. 

The right panel (Scenario 2) shows a potential scenario in which TEs cannot cross the species 

boundary and thus chromosomes that harbor them are less likely to be introgressed. For 

simplicity only one direction of introgression is shown. 
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Table 1. A classification of the different types of transposable elements. 

Type Name Activity 
Taxonomic 

Distribution 
Insertion  

Function/Path

way 

Influenced 

[Reference] 

Retro-

transposon  

(class 1) 

    

Replicate 

through 

reverse 

transcription 

of an mRNA 

intermediate, 

the resulting 

cDNA 

product 

integrates 

Long-

tandem 

repeats 

(class 1) 

     

 

BEL/Pao-

like 

elements 

non-

autonomous 
Metazoans Undescribed 

Second most 

abundant 

retrotransposo

n but very 

little is 

known.  

 

[246,247] 
 

 

DIRS1-like 

retro-

transposon 

autonomous 

Common in 

decapods, 

sparse 

among 

other 

Eukaryotes 

Preferentially 

integrates 

into other 

DIRS-1 

sequences 

and GTT 

sequences 

Undescribed 

[248,249] 

 

 Ty1/copia autonomous Eukaryotes 

Preference 

towards 

upstream 

region of 

RNA Pol III, 

near tRNA 

genes 

Mutational 

agent and can 

mediate 

genome 

rearrangement 

through 

recombination

[248,249] 
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 Ty3/gypsy autonomous Eukaryotes 

Upstream of 

RNA 

polymerase 

III 

transcription, 

near tRNA 

genes 

Mutational 

agent and can 

mediate 

genome 

rearrangement 

through 

recombination

. 

[250] 

 Ty5 
non-

autonomous 
Fungi 

Integrates 

near areas of 

silent 

chromatin at 

the telomeres 

and mating 

loci 

An increase in 

recombination 

at insertion 

points  

[252] 

 

 

Non-LTR 

(class 1) 
     

 Alu 
non-

autonomous 

Primate 

specific 

Fixed at C-

terminus of 

Human 

HPK1 and 

throughout 

genome 

Cause 

insertion 

mutations, 

increase 

recombination

, change gene 

expression 

through gene 

conversion 

[253] 

 

LINE (long 

intersperse

d nuclear 

elements: 

Jockey, L1, 

L2, R2) 

autonomous Eukaryotes 

R2 inserts 

into 28S 

ribosomal 

DNA genes 

but has a 

strong bias 

against 

previous R2 

insertions. 

Encodes 

proteins 

responsible 

for packing of 

RNA 

transcript and 

a polymerase 

that enables 

reverse 

transcription, 

with an 

endonuclease 

subsequently 

integrating it 

into the 

genome. 

[254] 
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 Penelope autonomous 

Metazoans, 

rare in 

Plants 

Insertions of 

element have 

been linked 

to 

breakpoints 

in inversions 

within D. 

virilis 

Element that 

underlies 

hybrid 

dysgenesis in 

D. virillis. 

[176,255] 

 

RTE (RNA 

transport 

element) 

non-

autonomous 
Metazoans 

Do not 

appear to be 

sequence 

specific 

Upon 

insertion has 

been shown to 

result in target 

site 

duplications 

[256-258] 

 

SINE (short 

intersperse

d nuclear 

element) 

non-

autonomous 

Plants, 

metazoans, 

fungi 

Bias against 

insertion in 

intronic 

splice sites 

and 

preferentially 

inserts into 

the 3′ region 

of introns 

Shown to 

control 

mRNA 

production 

and repress 

transcription 

of protein 

coding genes 

[259,260] 

 
VIPER/Nga

ro 
autonomous 

Metazoans, 

fungi 
Undescribed 

Undescribed 

[266] 

 

Transposon 

(class 2) 
    

Replicate 

through a 

DNA 

intermediate 

 CACTA autonomous Plants 
Located near 

centromere 

Results in 

increased 

methylation 

and structural 

changes 

between 

genetic 

orthologs 

[261] 

 Crypton autonomous 
Fungi, 

arthropods 
Unknown 

Crypton-

derived genes 

function as 

transcriptional 

regulators 

[262] 
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 Helitron autonomous 

Plants, 

metazoans, 

fungi 

Preferentially 

inserts in 

gene-rich 

regions 

Ability to 

capture gene 

sequences, 

including 

introns. 

[263] 

 hobo autonomous Arthropods 

Biased 

towards areas 

with high 

recombination 

rate 

Can mediate 

recombination 

and inversions 

[126,127,156,

175] 

 I-element autonomous 
Plants, 

metazoans 

Located near 

centromere 

heterochromat

in 

Transpose in 

germline at a 

high rate and 

are repressed 

maternally 

[264,265] 

 
Mariner/Tc

1  
autonomous All groups 

Associated 

with 

heterochromat

in 

Provide a 

hotspot of 

recombination 

in Drosophila 

females 

[217,266-268] 

 
Mavericks/

Polinton 
autonomous 

Eukaryotes

, some 

prokaryotes 

Unknown 

Retrovirus-

like and codes 

its own DNA 

polymerase 

[269,270] 

 Mutator autonomous Plants 

Insertions 

concentrate in 

epigenetically 

marked open 

chromatin 

Insertion sites 

are correlated 

with 

recombination 

rates 

[271] 

 P-element autonomous 
Plants, 

metazoans 

Insert at 

random with a 

preference for 

5′ 

untranslated 

regions 

Underlies 

hybrid 

dysgenesis 

and greatly 

increases 

mutation rate 

[46,167,211] 

 
PIF-

Harbinger 
autonomous Plants 

Target site 

preference for 

TAA 

Insertion into 

regulatory 

genes resulted 

in 

pigmentation 
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changes in 

maize 

[272] 

 piggyBac autonomous Metazoans 
Throughout 

the genome 

Acts as an 

insertional 

mutagen. 

[273,274] 

 pogo autonomous Metazoans 

Likely to 

insert in 

regions with 

low 

denaturation 

temperature 

Often leads to 

deletions 

[112,275] 

 Rag-like autonomous Metazoans Undescribed 

Linked to 

recombination 

and affects 

immune 

system 

response 

[276,277] 

 Transib autonomous Eukaryotes Undescribed 

May underlie 

the 

development 

of new genes 

[278,279] 
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Table 2. A summary of reproductive isolating barriers for which TEs have been 

invoked as a potential cause. A full description of the involvement of TEs is presented 

in the text. Stars represent cases that remain suggestive but for which more evidence is 

required (see text). 

Type of 

Reproductive 

Isolation 

TE-Mediated Phenotype Examples and References 

Premating 

isolation 

Adaptation to new 

habitats. 

Flowering time [67,261]  

Host specificity [76,77]  

Insertions at loci that 

control self-compatibility. 

Shift of reproductive strategies lead to 

reproductive isolation [89,280]  

TE movement can lead to gene 

movement and aneuploidy in hybrids 

[85]  

Changes in traits involved 

in recognition of 

conspecifics. 

Mating song frequency between sibling 

species [120] 

Changes in genome 

structure. 

TE-induced chromosomal inversions 

[128,131]  

Postzygotic 

isolation 

Hybrid sterility as a result 

of reactivated 

transposition. 

 

Hybrid dysgenesis [159,160,175,176] 
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Misregulation of TEs 

leading to hybrid 

inviability 

Overgrown endosperm; abnormal 

embryo development [179,180,186] 
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Table 3. Computational methods to detect transposable elements using genomic 

data. 

TE Detection Tool Year Language Reference 

MELT 2017 Java [281] 

IT IS 2015 Perl [282] 

Jitterbug 2015 Python [283] 

DD_DETECTION 2015 C++ [284] 

TIDAL 2015 Perl, R [285] 

Mobster 2014 Perl [286] 

Tangram 2014 Java [287] 

T-lex2 2014 Perl [288] 

TIF 2014 Perl [289] 

TranspoSeq 2014 Java, R [290] 

TraFiC 2014 Perl [291] 

TIGRA 2014 C++ [292] 

TE-Tracker 2014 Perl [293] 

GRIPper 2013 Python [294] 

RelocaTE 2013 Perl [295] 

Tea 2012 R [296] 

ngs_te_mapper 2012 R [297] 

TE-Locate 2012 Java, Perl [298] 

REPET 2011 Python [40] 

VariationHunter 2010 C++, Python [299] 



 

36 

 

HYDRA-SV 2010 C++, Python [300] 

MITE-Hunter 2010 Perl [301] 

SeqGrapheR 2010 R [302] 

RISCI 2010 Perl [303] 

MoDIL 2009 Python [304] 

LTRharvest 2008 C [305] 

HelitronFinder 2008 Perl [306] 

TransposonPSI 2008 Perl [307] 
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Chapter 2: Paternally inherited P-element copy number affects the magnitude of hybrid 

dysgenesis in Drosophila simulans and D. melanogaster 

 

Aim 2: If the number of TEs is related to deleterious effects, this provides a window 

through which TEs can increase their frequency within hosts throughout populations before 

selection can act on any copy-number dependent deleterious effects. P-elements (PE) in 

Drosophila provide an ideal system through which to study whether the number of PEs, and TEs 

generally, are an important factor in determining phenotypic defects that within-species F1s 

suffer. We address this question by inferring the number of PEs in individual isofemale line 

genomes and measuring whether there is an effect of the P-element copy number on multiple 

phenotypes associated with the HD syndrome in two species of Drosophila. 

 

INTRODUCTION 

Transposable elements (TEs) are common across Eukaryotes and make up a large portion 

of their genomes across various taxa, yet the extent of their effects as they propagate are poorly 

understood despite the vital information it provides in understanding how TEs are so prevalent. 

Insertions of TEs in host genomes have been associated with a variety of effects, mostly 

deleterious, and include genic disruptions, regulatory changes, and chromosome structural 

changes [1]. Despite this, TEs can account for a large portion of the genome in both metazoans 

and plants, making up 69% of the DNA in humans and  85% in maize [2,3], with TE content 

varying between species and even populations [4,5]. Most TEs are localized within noncoding 
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and untranslated regions, however the high frequency of elements also results in regularly 

indirect effects on genes or even direct insertions that selection is more likely to act on [6]–[8]. 

Transposition and excision of TEs is reduced through evolutionary time, as uncontrolled 

transposition can have drastic fitness consequences and the host genome evolves TE-repression 

mechanisms [9–11]. A natural hypothesis is that an increase in copy-number of TEs increases the 

likelihood of negatively affecting the host through disrupting or altering normal expression, 

particularly in TEs associated with gametic proliferation as the effects on fitness are direct. 

Despite this, little is known regarding the relationship between TE copy number and the intensity 

of deleterious effects, as studies have modeled and explored this prospect to varying degrees but 

with mixed conclusions [12,13]. Here, we explore how the presence of a single gamete specific 

TE, that varies in copy number between individuals of two distinct species affects five metrics of 

fecundity. The aim of which is to test whether there is differential selection acting on individuals 

at distinct stages of TE invasion, as TEs increase in frequency within a genome, providing an 

avenue through which TEs can propagate through a population before selection acts against 

them.  

One of the best studied cases of the phenotypic effects of TEs across Eukaryotic systems 

is P-elements (PEs) in Drosophila. PEs have rapidly spread worldwide throughout populations of 

the genetic model system, D. melanogaster. The first report of PE carrying (PE+) D. 

melanogaster individuals was in 1977; PE infection frequencies among populations increased 

rapidly and  no non-PE carrying wild-type lines have been found since 1974 [14,15]. Despite the 

self-replicating nature of PEs, this spread throughout the entirety of a species is puzzling, due to 

the drastic negative phenotypic effects they can cause in the host [15]. PEs in D. melanogaster 

lead to F1 sterility when the germ line of the female does not carry the molecular machinery 
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regulating the expansion of PEs [16,17]. When a female who lacks PEs mates with a male PE 

carrier, the resulting F1s (both females and males)  are sterile, show elevated rates of 

chromosomal breakage and increased mutation rates, a suite of traits referred to collectively as 

hybrid dysgenesis (HD) [15]. Conversely, if a female with PEs mates with a PE male carrier, the 

F1s are fertile and show no signs of HD. In this case, the effects of PEs are silenced through a 

maternally inherited and germline-specific subclass of small non-coding RNAs, piRNAs (PIWI-

interacting RNAs). This RNA facilitated silencing mechanism is not specific to PEs and has been 

shown to underlie repression throughout multiple classes of TEs and seems to play a role in 

repression across a variety of plant and mammalian hybrids [16].  However, misexpression of 

genes in hybrids is common and the extent to which TEs are more or less susceptible to 

derepression in hybrids remains unknown [18,19]. Ideally, understanding the effects that TEs 

have on a genome should be carried out in a system with closely related species that can utilize a 

large foundation of genetic information and can be experimentally manipulated, in order to better 

decouple causation from correlation among a broad range of genetic differences. We focus on 

the model system of Drosophila. In Drosophila, F1 sterility due to PEs is a simple and elegant 

model of how relatively simple genomic changes (i.e., the invasion of a TE) can induce 

reproductive isolation between genotypes rapidly and potentially lead to speciation [20].   

Recently, PEs were also found in populations of D. simulans, another cosmopolitan 

human commensal of the melanogaster species subgroup. PEs spread into D. simulans’ entire 

range within 15 years and the phenotypic effects of PEs, in the form of sterility of F1s, is similar 

in both species [21]. Since the hybrid progeny between D. melanogaster and D. simulans are 

sterile [22,23], there is no obvious genetic bridge through which PEs could have entered D. 

simulans from D. melanogaster through horizontal transmission. As a result, a natural question is 
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whether the genomes of related species have also been invaded by PEs and whether there are any 

conserved patterns in their transmission and intensity of phenotypic effects [20,24,25]. 

Intriguingly, PEs are not present in D. sechellia nor D. mauritiana, the other two species that 

form the simulans clade; both species show signatures of introgression from D. simulans [26] 

and PEs could have migrated through hybridization but have not been detected in previous 

studies despite being present in D. simulans [27].   

 PEs are polymorphic in copy number in terms of their presence or absence across the 

geographic range in D. simulans, but also vary in the number of PE copies per genome both in D. 

simulans and D. melanogaster. One of the outstanding questions in our understanding of PEs is 

whether the number of PE copies affects the magnitude of hybrid dysgenesis. This hypothesis 

was originally proposed in 1980 by Montgomery et al and stated that the higher the number of 

PE copies, the more likely that PEs will be misregulated in F1s produced in crosses between PE- 

mother and PE+ fathers [11]. In spite of the straightforward nature of this hypothesis, the 

proposition remains largely unresolved. In D. melanogaster, there seems to be a positive, but 

weak, relationship between PE number and the proportion of dysgenic female progeny in crosses 

between ♀PE- and ♂PE+ males [28]; In D. simulans the relationship between these two 

phenotypes has been reported as strong and biological meaningful. However, other reports argue 

the correlation does not exist and that the magnitude of variation in gonadal dysgenesis across 

strains of D. melanogaster cannot be explained by the number of PEs in the paternal genome. No 

consensus has been achieved whether there is a correlation between these two traits. This is an 

important question because it shows whether PEs are just mildly deleterious when they first 

invade a genome (i.e., low number of PE copies cause only weak HD) and if, as they increase in 

copy number, they become deleterious enough that the number of copies might plateau or the 
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lineage might go extinct [29], preventing the PEs from further propagating throughout 

populations.  

 Despite the large body of work that has explored PEs and led to PEs becoming the 

leading model to understand the evolution of TEs, establishing the extent of PE copy variation in 

individual genomes is a recent development. Earlier studies have used; Southern blotting, in situ 

hybridization to polytene chromosomes, and qPCR to estimate the number of PE copies in a 

genome. These approaches, however, are difficult to scale to population levels and provide low 

resolution. Genome sequencing provides a solution to quantifying the number of PE copies in a 

genome because, one can infer not only how many copies are present but also verify where they 

are inserted. Recent work has compared different computational methods and found that 

estimated copy-number are highly correlated across different bioinformatics approaches. From a 

technical standpoint, it is now possible to count the number of PE copies per genome to a high 

degree of confidence.  

 In this report, we estimate the number of PE copies in the genomes of seven D. simulans 

lines and seven D. melanogaster lines. We confirmed the presence of full PEs using PCR and 

also used Paired-end read data to infer the number of PEs per genome in isofemale lines 

collected in the island of Bioko. The results indicate the number of PEs per genome in our 

sample ranges from 5 to 20 in each species. We then measured the magnitude of hybrid 

dysgenesis in crosses between PE+ and PE- lines in D. simulans, by scoring for five traits 

associated with HD syndromes. We found that HD in D. simulans is not restricted to just 

atrophied gonads in F1 PE-/PE+ individuals but instead can manifest itself as a continuum in the 

form of: reduced ovariole number in non-sterile females, reduced male fertility, and early onset 

of reproductive senescence in females. Finally, we tested whether the number of PEs in the 
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paternal genome was correlated with the strength of each of the 6 metrics that constitute HD. We 

find that in both species, D. simulans and D. melanogaster, the number of PEs in the genome is 

indeed correlated with the magnitude multiple phenotypes associated to the syndrome of HD but 

the strength of the correlation differs between phenotypes and species.  

 

METHODS 

Stocks  

D. simulans: DRM collected six D. simulans lines in the island of Bioko in the year 2013. 

These lines were later inferred to be infected with PEs (See immediately below). All flies were 

collected in locations reported elsewhere [30,31] using yeasted banana traps. We used female 

flies from this collection to start isofemale lines (i.e., stable stocks derived from the progeny of a 

single female). All lines have been maintained in corn-meal food bottles since they were started. 

An additional line was collected in Florida, where the first report of PEs into D. simulans was 

inferred [21].  

D. melanogaster: We collected D. melanogaster lines from Malawi, Zambia and Namibia 

in 2015. We obtained five females that were then maintained as isofemale lines. As expected, all 

these lines were infected with PEs (see below). All collections, isofemale line establishment, and 

fly rearing and maintenance was done as described above for D. simulans. Additionally, we used 

three lines from the Drosophila Genetic Reference Panel that were infected with PEs.  

PE detection  

We used PCR and Illumina sequencing to detect PEs;. We assessed whether individuals 

from these lines had any of the four exons that constitute a full PE. Since PEs require all four 

exons to be functional, our goal was to type all the individuals for each exon individually using 
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PCR. We extracted genomic DNA from one female of each isoline (or an individual in ethanol) 

following the 96-well Gentra Puregene extraction kit protocol. To individually amplify each of 

the 4 exons that make up the full PE with both positive and negative controls during each run, we 

used primers described in (Hill, Schlötterer, & Betancourt, 2016). We did all PCRs using NEB 

reagents in a 10ul reaction (1ul 10x buffer, 1ul 10mM MgCl2, 0.5 ul 10mM dNTPs, 0.3 ul 10mM 

F+R primers, 1ul DNA, 0.05 Taq Polymerase, 5.85 ul H20) with a thermocycling cycle of 92° 

denaturing, 59° annealing, 72° extension for 35 cycles in an Applied Biosystems 2720 Thermal 

Cycler. To score presence/absence of each exon, we ran 5ul of the PCR product in a 2% 

(APExBIO) agarose gel for 60 minutes at 120 volts and visualized the results using ethidium 

bromide staining. Sanger sequencing (Eurofins) was used to verify for PE presence in isolines 

that amplified for each primer to ensure the presence of the full continuous element.   

 Second, we used short-read (Illumina) for each isofemale line included in this study from 

the three focal species (D. simulans, and D. melanogaster). Paired-end Illumina reads were 

aligned to the canonical D. melanogaster PE (https://flybase.org/reports/FBte0000037.html) 

using minimap2 in short-read mode ("-cx sr"). Pairs where either read aligned partially or fully to 

the PE were separately aligned to the D. simulans reference sequence r2.02 

(ftp://ftp.flybase.net/genomes/Drosophila_simulans/dsim_r2.02_FB2017_04/fasta/dsim-all-

chromosome-r2.02.fasta.gz). PE insertions sites were detected using a custom Python script. 

Briefly, if a single read partially aligned to the P-element and the reference sequence, the exact 

insertion site can be trivially determined, with most sites supported by several reads. Pairs where 

one read aligned fully to the P-element and one fully to the reference sequence add support for 

an insertion site anywhere within ~400bp of the reference-aligned read. Each insertion site is 

supported by an average of 9.8 read pairs. All lines that showed fewer than 0.5 copies of the PEs 
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(i.e., a single heterozygote PE copy), were considered PE-negative. This approach also allowed 

us to infer how many PE copies each sampled isofemale line harbored.  

 

Scoring HD Phenotypes  

D. simulans F1 females from crosses between PE- females and PE+ males are likely to 

show atrophied ovaries [32]. In D. melanogaster, HD has been extensively studied and in 

addition to the number of atrophied ovaries, other defects have been associated to the HD 

syndrome, namely, dysgenic (sterile) males, reduced number of ovarioles, and rapid reproductive 

senescence. We studied each of these defects in D. simulans using a diallelic design (i.e., all 

possible crosses in both reciprocal directions) in which we crossed four D. simulans lines that 

carried PEs and four lines that had no evidence of PE infection. All PE+ lines correspond to the 

P-cytotype as they have intact copies of the PE (see above for the information in the isofemale 

lines). 

Gonad number⎯Counts: First, we scored whether F1 individuals had zero, one or two developed 

gonads, with healthy females and males having two ovaries and two testes respectively, at both 

23° and 29°C. After 4 to 9 days flies were anesthetized with CO2 and their gonads removed with 

metallic forceps [33]. Gonads from each individual were subsequently fixed on a precleaned 

glass slide with chilled Drosophila Ringer’s solution (Cold Spring Harbor Protocols). We 

counted the number of non-atrophied gonads for each individual. Ovaries were considered 

atrophied if they had no ovarioles. Testes were considered atrophied if they had less than half the 

length of wild-type testes. In the case of females, we also counted the number of ovarioles (see 

below) in each mature ovary using a Leica, S6E stereoscopic microscope. We scored >100 

females at 23ºC and >40 females at 29ºC, as higher temperatures are associated with an increase 
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of TE transposition [34]. Table 1 shows the number of females dissected for each genotype. For 

ovariole counts, we only scored flies for which the dissection contained both left and right 

gonads.  

Ovary number⎯Statistical analyses: We scored whether each F1 female had zero, one, or 

two ovaries as described above. To quantify the magnitude of heterogeneity among F1 

genotypes, we fitted a multinomial regression using the function multinom in the library nnet 

[35] where the number of ovaries was the response of the multinomial assay and the mother and 

father genotypes were the fixed effects. We also included the interaction between these two 

effects to account for the interplay between the genome of the two parents. The significance of 

the effects was inferred using the function set_sum_contrasts (library car [36]), and a type III 

ANOVA (library stats [37]) in R. Since we did experiments at two different temperatures (23ºC 

and 29ºC), we fitted two multinomial regressions. To do post-hoc comparisons between crosses, 

we used a Two-Sample Fisher-Pitman Permutation Test (library coin, function ‘oneway_test’; 

[38]) and adjusted the critical P-values for significance to 0.008 to account for multiple 

comparisons (6 comparisons). 

Ovariole number⎯statistical analyses: A second potential phenotype of HD is the 

reduction in the number of ovarioles per ovary in female F1s, in females that did not show 

atrophied ovaries [39]. In these females, even with two ovaries, their reproductive potential can 

be limited through a lack of ovarioles [40]. We quantified whether the genotype of the mother, of 

the father, or the interaction between these two terms affected the number of ovarioles. We 

analyzed the mean number of ovarioles per ovary (i.e., females with two ovaries will have more 

total ovarioles than females with one ovary) to account for difference in the number of ovaries. 

We excluded those females that showed completely atrophied ovarioles from this analysis 
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because they contain zero ovarioles. We used a Poisson-distributed linear model (library stats, 

function ‘glm’ [37]). To assess the significance of interactions, we followed a maximum-

likelihood model simplification approach [41]; we first fitted a fully factorial model containing 

all factors and interactions and then simplified it by a series of stepwise comparisons, starting 

with the highest-order interaction and progressing to lower-order interaction terms and then to 

main effects. 

Female reproductive senescence⎯counts. We tested whether the age of the female had 

an effect on the number of ovarioles in PE+ and PE- females. Specifically, we explored whether 

HD manifested itself as a shorter reproductive period in females that carried PEs [40]. In this 

scenario PE+ will show a sharper decline in their ovariole number compared to their PE- females. 

To score females of different age, we cleared bottles and collected newly eclosed virgins within 

8 hours of clearing as described above (Section ‘Crosses’). To account for heterogeneity across 

lines, we studied 5 different isolines per population type: 5 PE+ isofemale lines, and 5 PE- 

isofemale lines, for a total of 10 isofemale lines per time point. Female virgins were then 

dissected every 5 days for 25 days to count the ovariole count as they aged. In total there were 

500 observations: 5 time points  5 isolines  10 individuals per line  2 distinct population 

types.  

Female reproductive senescence⎯Statistical analyses: We used an Analysis of 

covariance (ANCOVA) to assess whether the presence of PEs affected the reproductive capacity 

of a female at different ages. We used the function lm in the R library stats [37]. First, we used 

the regression coefficients from the ANCOVA to compare the intercept of the linear regressions 

of females with and without PEs. This test assessed whether genotypes had inherent differences 

in the number of ovarioles (i.e., whether the effect of genotype⎯if a female is PE+ or PE-⎯was 
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significant). Second, we compared the rate of decline of fertility among genotypes.  To this end, 

we quantified differences in the slope of the regressions of number of ovarioles as age 

progressed (i.e., the interaction between female age and her genotype). To evaluate the 

significance of the interaction, we used information obtained with the function lm as described 

immediately above and also performed a likelihood ratio test (LRT; function lrtest, R library 

lmtest [42]).  

Male fertility⎯sperm motility. We scored whether F1 male progeny produced motile 

sperm. We dissected the testes of each individual with metallic forceps (Miltex Catalogue 

number: 17-301, McKesson, Richmond, VA) and mounted them on chilled Ringer’s solution. 

We mounted up to five males per slide and scored whether they had motile sperm within 5 

minutes of starting the first dissection. We scored 843 F1 males at 23ºC and 542 F1 males at 

29ºC. To quantify the effect of the genotype on sperm motility among F1 genotypes, we fitted a 

binomial regression (library stats, function ‘glm’). Whether a male had fertile sperm or not was 

the response of the binomial model, while the mother and father genotypes were the fixed 

effects. We also included the interaction between these two effects to account for the interplay 

between the genome of the two parents. We used LRTs (described above) to test whether to 

retain the interaction and the fixed effects. We found no sterile males at 23ºC, so we fit a single 

linear model at 29ºC. 95% confidence intervals for point estimates of the proportion of F1 

individuals which were sterile were calculated using the conjugate beta prior on the distribution 

of successes (library binom, function ‘binom.cloglog’ [43]).To do posthoc tests, we used a Tukey 

Honest significance difference test (library multcomp, function ‘glht’). 
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Male fertility⎯ progeny count. Finally, we scored whether F1 male progeny showed 

reduced fertility despite showing normal size testes (see above). We collected F1 males from the 

four F1 genotypes raised at the two studied temperatures (23ºC and 29ºC) and mated them to 

virgin PE- females. We watched the matings to ensure they were not abnormally short (less than 

10 minutes [44]); as soon as the mating was over, we removed the male from the vial. We let the 

female lay eggs for 10 days. After this period, we removed the females and let the progeny 

develop at 23ºC. Every two days, we counted the progeny produced by each female until no 

more flies emerged. We quantified the heterogeneity of the amount of progeny using a 

generalized linear model similar to the one described above (section ‘Ovariole 

number⎯statistical analyses’) where the number of progeny produced by each individual female 

was the response, the genotype of the cross and temperature at which the cross was performed 

were the fixed effects.  

 

Effects of the number of PEs on the magnitude of HD.  

 We tested whether the number of PEs affected the magnitude of three phenotypes within 

the HD syndrome. We studied the effect of PEs on F1 female fecundity (i.e., ovary number and 

mean ovariole number per ovary) and F1 male fertility. For these experiments we used seven 

lines that showed evidence of PE presence (inferred from the Paired end genome data) and that 

showed a range in the number of PEs they harbored. In the case of D. simulans, we used seven 

lines that did not contain PEs and in the case of D. melanogaster we used four PE- lines. As 

described above, ovary number can only take values of 0,1, and 2 per individual (see ‘Scoring 

HD Phenotypes’). We treated this phenotype as a multinomial outcome. We scored 10 females 

per line combination for a total of 490 females in D. simulans and 280 in D. melanogaster. To 
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determine whether the trait was affected by the number of PE copies, we used a multivariate 

regression as described above. 

 We used a similar approach to study mean ovariole number and male fertility. For these 

experiments we used the same combinations of isofemale lines (and sample sizes) used for the 

number of ovaries per female analyses described immediately above. Ovariole number and male 

fertility of F1 was scored as described above (see ‘Scoring HD Phenotypes’). All linear 

regressions were done using the R package glm (i.e., day females or males were dissected). 

RESULTS 

PE insertions show overlap in D. simulans 

Using PE Illumina reads, we found that all lines collected in Bioko island were PE+ but 

the number of PEs in each genome differed. We found an estimated number of PEs that range 

from 6 to 18 (mean number of copiessim = 11.21) This number of copies per genome is slightly 

lower than the number of insertions found in D. melanogaster (mean number of copiesmel = 

16.44; t = 3.2799, df = 6.2416, p-value = 0.01589). We identified 1,311 exact and 118 

approximate insertion positions, of which 45 are shared by multiple lines. In total; 1,215 sites 

were unique to each genome, 40 sites were shared by 2 genomes, 4 sites shared by 4, and 1 site 

was shared in 4 of the 6 unique genomes.  

 

Intraspecific effects of PEs within D. simulans 

 Previous reports have found evidence of HD within D. simulans in the form of ovary 

number reduction [45]. We explored whether F1 D. simulans from crosses between PE- and PE+ 

lines showed evidence of an increased of HD associated phenotypic effects (F1 male sterility, 
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early reproductive senescence, and reduced number of ovarioles) based on PE copy number. We 

report the results of each phenotype as follows. 

Number of ovaries. We assessed whether the mother and father genotype had an effect on 

the number of functional ovaries in F1 females. We pooled all lines into genotypic categories to 

perform a multinomial regression. We find that at the two temperatures, the effect of the father is 

significant (23ºX: 2
2 = 40.293, P= 1.781  10-9; 29ºC: 2

2 = 39.972, P= 2.09  10-9), while the effect of 

the mother was not significant at either of the two temperatures (23ºX: 2
2 = 2.318, P= 0.31388; 

29ºC: 2
2 = 2.318, P= 0.36846). The interaction between mother and father genotypes was 

significant (23ºX: 2
2 = 8.033, P= 0.01802; 29ºC: 2

2 = 7.712, P= 0.02115). We used permutation-

based pairwise comparisons to determine whether F1 D. simulans from the PE-  PE+ cross from 

crosses of lines collected in the island of Bioko had fewer ovaries than females from any of the 

other three possible genotypes. We find that females from this cross have, on average, fewer 

ovaries than the rest of the possible crosses at both temperatures (Table 1). The other three 

crosses did not differ among themselves. This result is in line with a previous report from a D. 

simulans population from Florida also suffers from hybrid dysgenesis [32]. 

Number of ovarioles: Hybrid dysgenesis can manifest itself not only as the absence of 

ovaries but also through the development of “rudimentary” ovaries, i.e. ovaries with fewer 

ovarioles. Since F1s in D. simulans crosses might show absent ovaries depending on the 

genotype of the parents (e.g., ♀PE-  ♂ PE+), we used the mean number of ovaries per 

individuals and instances of atrophied ovaries were treated as missing data. We found that just as 

is the case with ovary number, ovarioles are affected by HD. Patterns were similar at both 

temperatures but were more pronounced at 29ºC. We found that at both temperatures, the 

mother, and father genotypes affected the number of ovarioles on F1s (Table 2). The father effect 
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had an effect size more than three times larger than three mother effect. The interaction terms 

between the two effects were also significant at both temperatures, being larger at 29ºC (Table 

2). Notably, we also found differences between temperatures. At 23ºC the line effects were not 

significant but they were at 29ºC (Table 2). We compared the magnitude of paired crosses using 

a linear model in which the only effect was the interaction of the genotypes using a linear model 

that only incorporated the interaction term. As expected by hybrid dysgenesis, PE-/PE+ progeny 

have fewer ovarioles than the other three types of F1 females (Table 3). We found no significant 

difference between any of the other six pairwise comparisons at any of the two temperatures 

(Table 3). 

Reproductive senescence: A second potential phenotype in hybrid dysgenesis is that PE-

carrying females show a rapid decrease in fertility as they age [46]. Specifically, we tested 

whether the presence of PEs was predictive of reproductive output throughout the lifespan of 

females. We tested this possibility by counting the number of ovarioles of females with and 

without PEs at five different ages for 25 days (Figure 1). The number of ovarioles decreases as 

females age at similar rates. The intercept was similar for both types of females which indicates 

the initial reproductive potential is similar in females carrying and not carrying PEs (genotype 

effect: Table 3). Additionally, the rate of decrease (i.e., the slope of the linear regression) was not 

different for the two regressions either (genotype by age interaction). These results indicate that 

PEs in D. simulans do not induce early reproductive senescence at 23ºC. Due to high mortality of 

D. simulans at high temperature, we did not test the effect of PEs at 29ºC. 

Male sterility. We studied whether PE presence increased male sterility in two ways, 

scoring sperm motility and counting progeny produced when mated to a PE- D. simulans lines. 

First, we dissected the testes of F1 males from crosses between D. simulans PE- and PE+ 
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individuals. We used a diallelic cross scheme in which we crossed all the possible combinations 

of two PE- and two PE+ lines. At 23ºC, all F1 males, regardless of their genotype, contained 

functional testes (n = 20 males per line combination). All males had motile sperm at this 

temperature. At 29ºC, male sterility was most often observed in individuals produced from the 

crosses that involved a PE+ parent (PE-/ PE+, PE+/ PE-, and PE+/ PE+) than in males with no PEs 

(PE-/ PE-;). It is worth noting that the number of dissected males at higher temperatures was 

lower than that at 23ºC (n = 15 males per line combination in average) because D. simulans is 

sensitive to high temperatures  [47]. PE-/PE+ males were more likely to be sterile (proportion of 

sterile males PE-/PE+= 0.4722222; 95% CI= [0.3758025-0.5625837]), than any of the other three 

crosses (proportion of sterile males PE+/PE-= 0.4259259; 95% CI= [0.3318431-0.5166623]; the 

other two crosses show even lower rates of sterility). There was significant heterogeneity in the 

F1 male fertility caused by whether the father carried PEs (Mixed model logistic regression 

followed by a type ‘III’ ANOVA: 2
1 = 6.9187, P = 0.00853), and to a lesser extent of the 

whether the mother carried PEs (2
1 = 5.1861, P = 0.02277). The effect of the interaction 

between genotypes was not significant (2
1 = 3.0712, P = 0.07969). 

Second, we scored the fertility of the four different genotypes of D. simulans F1 males 

when they were mated to PE- females. When males were raised at 23ºC, we found that number 

of progeny produced between genotypes was similar and showed no differences (mean of all 

genotypes pooled25ºC= 61.02399, SD25ºC =4.215693; F3,538 = 0.6378, P = 0.591). Consistent with 

previous studies [47,48], we found that crosses at 29ºC produce fewer progeny than crosses at 

23ºC in D. simulans (mean of all genotypes pooled29ºC= 37.26753, SD29ºC = 8.105156; t = 

60.674, df = 819.25, P < 1  10-10). At 29ºC, the effect of PEs in male fertility is noticeable and 

both the effects of the mother (F3,538 = 262.77, P < 1 10-10) and the father (F3,538 = 161.74, P < 1 
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10-10) are significant, mirroring similar patterns seen in D. melanogaster.  The interaction effect 

was also significant (F3,538 = 262.77, P < 1 10-10). Pairwise comparisons, based on a linear 

model that includes only the interaction term, indicate that F1 males from the PE-/PE+ cross 

produce fewer progeny than any of the other three crosses (Table 4). These results are consistent 

with HD causing reduced male fertility which manifests as slower fecundity but not as complete 

gonadal atrophy. This defect only manifests itself at higher temperatures.   

 

The number of PEs in the D. simulans genome is correlated with the magnitude of HD in D. 

simulans and D. melanogaster 

 

 The experiments described above revealed that HD in D. simulans is not restricted to 

atrophied ovaries but can also manifest as reduced number of ovarioles in non-dysgenic ovaries, 

reduced male fertility and no difference in the rate of female reproductive senescence. These are 

the same phenotypes that have been previously reported for D. melanogaster. Using this suite of 

phenotypes and the estimation of the number of PEs per genome in D. simulans and D. 

melanogaster, we tested whether the number of PE copies in the genome was correlated with the 

strength of hybrid dysgenesis. This hypothesis poses the possibility that in crosses involving a 

PE- female and a PE+ male, males with more PE copies will cause stronger HD than males with 

fewer copies of PEs. To this end, we expanded the studies on HD from 4 D. simulans lines to 14 

D. simulans lines (seven with PEs and seven without PEs). We followed a similar approach for 

D. melanogaster (11 lines). Since we identified PE+ D. simulans lines with a PE copy number 

that ranged between 6 and 12 copies per genome, and D. melanogaster lines that ranged between 

5 and 20 copies per genome, we tested whether there was a positive relationship between the 

number of PE copies and the strength of HD in both of these species. 
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Ovary number: As the range of the number of ovaries is narrow (zero, one, or two), we 

used multinomial regressions to assess whether PEs affects the number of ovaries in F1 females 

in each of the two species. In the case of D. melanogaster, the effect of the number of PEs in the 

number of ovaries is negative but minimal (23ºC: 2
2 = 6.1208, P = 0.04687; 29ºC: 2

2 = 5.0755, 

P = 0.07904). We found a similar, but stronger trend in D. simulans; as the number of PEs 

increases in the paternal line, the number of ovaries per ovary per female decreases at 23ºC (2
2 = 

19.962, P = 4.626  10-5) and at 29ºC (2
2 = 12.772, P = 0.001685). These results indicate that 

the number of PE copies in the paternal genome does indeed affect the magnitude of HD, in the 

form of atrophied ovaries, but that the importance of the effect is contingent on the species. 

Ovariole number: Next, we assessed whether PE number on the paternal genome also 

affected the number of ovarioles in F1 females from crosses between PE- females and PE+ 

males. Table 5 shows the regression coefficients for each of the four linear models (2 

temperatures  2 species). In the case of D. melanogaster, the relationship between PE copy 

number and the mean number of ovarioles is negative and strong, both at 23ºC (F1,278 = 12.487, P 

= 0.0004797) and 29ºC (F1,278 = 29.972, P = 9.8  10-8). We see a similar pattern in D. simulans. 

PE copy number has a negative effect on the number of ovarioles per ovary per female at 23ºC 

(F1,488= 35.124, P = 5.854  10-9) and 29ºC (F1,488= 37.204, P = 2.167  10-9). These results 

indicate that, just as described with ovary number, that HD is a quantitative syndrome that is 

affected by the number of PEs in the parental lines. Moreover, it also suggests that ovariole 

number might be a finer scale phenotype to study HD than ovary number. 
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Male fertility: Finally, we assessed whether the fertility of males from F1 crosses 

between PE- females and PE+ males was affected by the number of PE copies in the paternal 

genome. We scored the progeny production of these males after single matings to PE- females. 

In the case of D. melanogaster, we find a modest effect of the number of PEs in male fertility. 

This effect is larger at 29ºC (F1,278= 5.4951 P=0.01977) than at 23ºC (F1,278= 4.1815, P=0.04181). 

In the case of D. simulans, the importance of PEs for male fertility is larger. We find a strong 

effect of the PE copy number at 23ºC (F1,488 = 18.262, P=2.316  10-5) and 29ºC (F1,488= 29.544, 

P = 8.648  10-8). These results indicate that just as is the case with female fertility (i.e., ovary 

and mean ovariole number), male fertility is affected by the number of PEs in the paternal 

genome, and that fertility reduction in males, as part of the HD syndrome, is a continuous trait. 

 

DISCUSSION 

PEs are arguably the best studied TE in animals that can be experimentally manipulated 

and their phenotypic effects in Drosophila provides an ideal system to understand the organismal 

fitness effects during their spread within genomes. The most recent invasion of PEs into a novel 

species has occurred in D. simulans, where they lead to atrophied ovaries in PE-/PE+ females 

[45], mirroring effects seen in D. melanogaster [14]. We expanded our understanding of the 

phenomenon of HD in D. simulans by testing whether other HD-associated phenotypes observed 

in D. melanogaster also occur in D. simulans. We find that in PE-/PE+ F1s, females with 

functional gonads have a reduced ovariole number. We also find that PE-/PE+ males show 

reduced fertility, despite containing functional sperm. This suite of traits is similar to the 

phenotypic defects associated to HD in D. melanogaster, the first species where HD was 

reported [15]. The discovery of PEs in D. simulans [27], and the associated HD caused by the 

invasion suggest that if PEs succeed at invading a species (i.e., do not get purged or caused 
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extinction of the lineage) then the outcome of HD might be predictable. Notably, we also find 

differences between species; HD causes a more noticeable reduction of female and male fitness 

in D. simulans than in D. melanogaster. The reasons for this difference remain unknown but 

might be related to either the recency of the PE invasion or the HD-suppression mechanisms 

within each species. These possibilities need to be formally addressed, as little is known 

regarding the evolution of RNAi repression systems in response to TE activity [9,49]. 

Even though the phenomenon of hybrid dysgenesis has been rigorously characterized in 

D. melanogaster [9], the discovery of PEs in other Drosophila species allows us to understand 

how these elements behave in different genetic backgrounds. Additionally, PEs being 

incorporated into the genome of a species within a hybridizing species complex provides the first 

case of PE effects being tested between distinct species. Hybrid dysgenesis is contingent on the 

genotype of the father and of the mother (i.e., presence or absence of PEs). PEs inherited from 

the father become overly active in the F1 germ line and lead to sterility when the female mate 

does not have the PIWI systems required to repress PE transposition. Fine scale assessments 

have revealed that the nuclear genome of the mother is also involved in the phenomenon of HD. 

In particular, variation at the bruno locus of D. melanogaster is associated to variability in the 

magnitude of female hybrid dysgenesis by modulating germline stem cell (GSC) loss in the 

presence of P-element activity [50]. There is certainly variability in the phenomenon of HD in D. 

simulans, but whether this locus also has an effect on this species is an open question that can be 

addressed through the use of QTL (i.e., [50]) or inbred lines panels [51]. 

One of the aspects that has remained unresolved is the effect of the copy number of PEs, 

and TEs generally, in the affecting phenotypes within hosts. Our report improves previous 

experiments for two reasons. First, previous studies had mostly focused on the percentage of 
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dysgenic females, in the form of atrophied ovaries, per isofemale line. Besides measuring more 

phenotypes, we also incorporate the magnitude of variation among individuals instead of 

focusing solely on the variation among isofemale lines. This is an important distinction because 

isofemale lines are routinely not fully inbred allowing for significant⎯and to some extent 

surprising⎯variation among individuals within a line. Second, we measured ovary number per 

female, ovariole number per ovary, and individual male fertility. It is worth noting that we focus 

on the PE number of copies exclusively; however studying whether other different TEs interact 

to cause HD in F1 individuals (e.g., [52]) will shed light on how different TE infections interact 

with each other and their host.  

The dynamics of PEs, and TEs generally, after they invade a genome is an open field of 

study that continues to be explored as PEs actively propagate throughout populations and 

species. While it is clear that PEs have increased their frequency in both D. simulans and D. 

melanogaster, little is known about the progression of the copy number per species and its 

associated effects. PEs seem to increase in copy number as time passes from the original 

invasion. Nonetheless, some PEs will accumulate differences and will change the cytotype of the 

infected line: if most PEs are inactive, then they might change from a P-type, able to cause HD, 

to an intermediate cytotype, which might not cause full HD. One exception to this dearth of 

knowledge is the follow-up of PEs in experimental cages of D. simulans after experimental 

invasions of PEs at different temperatures. At hot temperatures (mean: ~23ºC), PEs spread 

rapidly from 1.79 copies per genome but to an average of 31.7 copies per genome after just 20 

generations. At this point, the infection plateaued in terms copy number [53]. Since this 

experiment obtained PE information using poolSeq it is impossible to determine whether this 

stabilization was truly caused by frequency increase across individuals or an increase in the 
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number of copies per genome. Some of these PEs were internally deleted, which shows how 

quickly PEs can degenerate after an invasion and calls into questions whether the PEs invasions 

of the paulistorum and stutervantii group, groups that show highly degenerated PEs, are truly as 

old as previously proposed. The pattern was slightly different at cold temperatures. While there 

also a monotonic increase in the total number of PE copies per population at cool temperatures 

(mean: ~15ºC) over 40 generations, there was no plateau even after 40 generations of evolution 

and copy number continued to increase. This is intriguing because PEs do not cause HD at 

temperatures lower than 24ºC, so one would expect less fitness costs to the expansion of PEs in 

populations that would not show HD and thus a faster increase in the number of copies at a 

population than at higher temperatures who would experience the deleterious effects of HD. This 

last result means that there are phenotypic aspects of PEs that remain unknown, namely, that in 

any model that assesses the evolution of TEs, and PEs in particular, needs to incorporate 

temperature/environment as an important factor to explain evolutionary dynamics. 

Notably, also within 20 generations, a piRNA system to counteract the effect of PEs also 

emerged within these experimental populations, suggesting that some P-elements transposed into 

piRNA producing loci (i.e. piRNA cluster), facilitating the production of piRNAs 

complementary to the PEs [53]. These results suggest that the dynamics of PE invasions are very 

rapid and that even a window of 20 years (as it is the timeline of the D. simulans and D. 

melanogaster natural invasions) might to be too long for our understanding of TE invasions in 

nature. Other studies of the importance of PEs in nature are concordant with this observation. A 

drastic example of this consists of a TE insertion in the first intron of the gene cortex of Biston 

betularia increased rapidly in frequency right after the industrial revolution [54]. The insertion 

changes the wing color of this moth from white to black, which aids moths camouflage in darker 
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trees, which became more common after industrialization. In longitudinal studies of genome 

evolution in maize, some lines showed dramatic decreases in genome size, losing an average of 

398 Mb from their genomes over just six generations due to the purging of TEs [55]. 

Collectively these results indicate that TEs and genome interactions are highly dynamic and that 

longitudinal studies at a fine scale are sorely needed. 

 The study of HD has historically acknowledged the importance of moving away from the 

paradigm of HD being defined by the presence vs. absence of PEs in the genome [9]). Since the 

discovery of PEs, several cytotypes have been reported to exist in D. melanogaster. P and M (PE 

free) strains, show coupled paternal induction and maternal repression of PEs. While P strains 

show both, M strains exhibit neither phenotype. Three more cytotypes do exist; Q, P′ and KP. In 

these three cases, paternal induction from maternal repression is decoupled. Q strains repress but 

do not induce dysgenesis, making them fully fertile with P and M strains in both directions of 

crossing (Kidwell 1979). On the other end of the spectrum, P′ strains can induce but do not 

robustly repress hybrid dysgenesis even in crosses within their own type (Quesneville and 

Anxolabéhère 1998). KP strains harbor PEs with partially deleted internal sequences and can 

suppress dysgenesis but do not induce it. KP strains are common as PEs seem to be particularly 

prone to lose functional segments that are required for the elements to move. Our study addresses 

a different facet of variation in HD related to the number of PEs, number of PE copies in the 

paternal genome and finds support for its importance. Nonetheless, there are other factors that 

are likely to be important in determining how strong HD is in intra and interspecific crosses. We 

focused on complete PEs (of the P cytotype) but the number of copies of different cytotypes 

might be of importance in D. simulans as well.  
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 A natural follow-up question involves testing whether the strength of HD increases with 

genetic distance. Previous experiments in our lab have shown that PEs increase some barriers 

between species stronger in the simulans species group. The experiments we present in this 

report involve only intraspecific crosses information we can gather across interspecific crosses 

would be limited. D. simulans can hybridize with six of the eight other species in the 

melanogaster species subgroup [56]. Nonetheless, only two of these crosses yield fertile 

progeny: the crosses with D. sechellia and D. mauritiana. These two species, however, form a 

hard polytomy with D. simulans and the genetic distances between the three species are almost 

identical [57]. This curtails the possibility of using these two hybridizations to assess the effect 

of PEs along a continuous range of genetic divergences. All the other hybridizations, including 

the ones with D. melanogaster, yield sterile progeny (i.e., with already atrophied gonads) and for 

that reason they are not conducive to the study of HD. 

PEs are arguably the best characterized transposable element, not only in their molecular 

function but also in the phenotypes they can induce. Here we study the importance of paternal 

copy number for HD in D. melanogaster and D. simulans, expanding previous studies that have 

found a relationship between these two traits [13]. The genomic features that might affect the 

strength of HD, besides the presence and absence of PEs remain largely unknown (but see [50]). 

A precise quantification of the frequency of PEs, and TEs in general, as well as an overlap in 

their effects across different species is still in its infancy [20,24]. The assessment of allele 

frequencies of different PE insertions in natural populations will serve to inform the forces that 

foster or hamper the spread of PEs across populations and across species. The number of PEs in 

the parental genome is correlated with the strength of HD but it is not the only factor that 

determines the degree of the phenotypes experienced. Polymorphism at the gene Bruno and other 
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loci associated with TE regulation within the Piwi-RNA pathway can have drastic effects as 

well, but the interaction between copy-number and distinct natural polymorphisms remains 

unexplored [50,58].  
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TABLE 1. The presence of PEs affects the number of ovaries in F1 D. simulans female 

(from intraspecific matings) at 23ºC and 29ºC. N is the number of dissected females that 

produced the means (percentage of females mated) and standard deviations (SD). The last four 

columns show pairwise comparisons as 4 × 4 matrices for each cross. The upper triangular 

matrix shows the Z value from an approximate Two-Sample Fisher-Pitman Permutation Test 

(9,999 permutations). The lower triangular matrix shows the P-value associated to the 

comparison. Only pairwise comparisons with P < 0.008 were considered significant. 

23ºC 

Cross N Mean 

# of 

Ovaries 

SD Pairwise comparisons 

♀ PE+   

♂ PE+ 

♀ PE+   

♂ PE- 

♀ PE-  

♂ PE+ 

♀ PE-  

♂ PE- 

♀ PE+  

♂ PE+ 

40 1.800 0.564 * 1.897 -3.669 2.188 

♀ PE+  

♂ PE- 

40 1.962 0.194 0.071 * -5.536 1.247 

♀ PE-  ♂ 

PE+ 

40 1.147 0.821 1  10-4 < 1  10-

10 

* 5.234 

♀ PE-  ♂ 

PE- 

40 2.000 0.000 0.054 0.493 < 1  10-

10 

* 

29ºC 

Cross N Mean SD Pairwise comparisons 
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♀ PE+   

♂ PE+ 

♀ PE+   

♂ PE- 

♀ PE-  

♂ PE+ 

♀ PE-  

♂ PE- 

♀ PE+  

♂ PE+ 

40 1.675 0.616 * 0.278 4.466 3.144 

♀ PE+  

♂ PE- 

40 1.712 0.637 0.869 * -4.88 2.755 

♀ PE-  ♂ 

PE+ 

40 0.853 0.744 < 1  10-10 < 1  10-

10 

* 6.449 

♀ PE-  ♂ 

PE- 

40 2.000 0.000 6.001  10-4  3.3  10-3 < 1  10-

10 

* 
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TABLE 2. Ovariole number in F1 D. simulans females depends on PE status of the parents. 

Fully-factorial linear models for each temperature shows that female fecundity is affected by the 

interaction between the mother and father genotype (i.e., whether the parent harbors PEs). Df: 

degrees of freedom.  

23ºC 

 Df Sum of the 

squared 

differences 

Mean 

squared 

error 

F-value P-value 

mother                        1 228.3   228.28   6.9789   0.009128 

father                         1 767.6   767.57 23.4660 3.155 10-6 

mother:line                 5 332.7    66.55   2.0345   0.076998 

father:line                   3 210.3    70.09   2.1428   0.097274 

mother:father                  1 261.4   261.38   7.9907   0.005348 

mother:father:line          2 297.4   148.70   4.5460   0.012123 

mother:line1:father             

 

1 34.4    34.35   1.0502   0.307114     

mother:line1:father:line    2 153.0    76.51   2.3390   0.099957 

Residuals                     

 

149 4873.8 32.71                         

29ºC 

 Df Sum of the 

squared 

differences 

Mean 

squared 

error 

F-value P-value 
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mother                        1    68.1    68.15   2.9049 0.0903966 

father                         1   271.9   271.88 11.5888 0.0008526 

mother:line                 5   566.8   113.35   4.8315 0.0004007 

father:line                   3   306.5   102.15   4.3542 0.0056833 

mother:father                  1   638.2   638.25 27.2051 6.022  10-7 

mother:father:line          2   347.7   173.86   7.4108 0.0008545 

mother:line1:father             1   193.6   193.59   8.2518 0.0046659 

mother:line1:father:line    2   288.0   144.02   6.1386 0.0027427 

Residuals                     

 

149  3495.6    23.46                         
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TABLE 3. Pairwise comparisons for the average number of ovarioles at two different 

temperatures between the four possible genotypes. N is the number of dissected females that 

produced the means (average number of ovarioles per females) and standard deviations (SD). 

The last four columns show pairwise comparisons as 4 × 4 matrices for each cross. The upper 

triangular matrix shows the t value from a HSD Tukey test following a linear model that includes 

only the interaction between fixed effects. The lower triangular matrix shows the P-value 

associated to the comparison. Only pairwise comparisons with P < 0.008 were considered 

significant. 

29ºC 

Cross N Mean SD Pairwise comparisons 

♀ PE+   

♂ PE+ 

♀ PE+   

♂ PE- 

♀ PE-  

♂ PE+ 

♀ PE- 

 ♂ 

PE- 

♀ PE+  

♂ PE+ 

40 18.825 4.733 * -0.099 4.614 -1.038 

♀ PE+  

♂ PE- 

41 18.952 4.400 1.000 * 4.769 -0.952 

♀ PE-  ♂ 

PE+ 

40 12.825 6.594 3.94  10-5 2.30  10-

5 

* -5.652 

♀ PE-  ♂ 

PE- 

40 20.175 7.125 0.727 0.777 < 1  10-5 * 

23ºC 
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Cross N Mean SD Pairwise comparisons 

♀ PE+   

♂ PE+ 

♀ PE+   

♂ PE- 

♀ PE-  

♂ PE+ 

♀ PE- 

 ♂ 

PE- 

♀ PE+  

♂ PE+ 

40 23.450 6.477 * -1.218 4.075 -1.417 

♀ PE+  

♂ PE- 

40 25.000 4.049 0.617 * 5.342 -0.216 

♀ PE-  ♂ 

PE+ 

40 18.200 6.182 3.8  10-4 < 1  10-4 * -5.492 

♀ PE-  ♂ 

PE- 

40 25.275 6.089 0.491 0.996 < 1  10-4 * 
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Figure 1: Number of ovarioles observed in PE+ and PE- females as they age. Each isoline is 

represented by 10 individuals at each age (days). The red line shows the linear regression for 5 

PE- lines. The blue line shows the linear regression for 5 PE+ lines. We found no difference in 

the intercept or the slope of the two regressions, which indicates that PE elements have no 

discernable effect on the rate of reproductive senescence. 
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TABLE 4. ♀ PE-  ♂ PE+ male fertility in D. simulans is lower than the fertility of the other 

three possible crosses genotype at 29ºC. Fertility was scored as the number of progeny 

produced when a male of each of the four shown genotypes was mated to a PE- D. simulans 

female. N is the number of dissected females that produced the means (average number of 

ovarioles per females) and standard deviations (SD). The last four columns show pairwise 

comparisons as 4 × 4 matrices for each cross. The upper triangular matrix shows the t value from 

a HSD Tukey test following a linear model that includes only the interaction between fixed 

effects. The lower triangular matrix shows the P-value associated to the comparison. Only 

pairwise comparisons with P < 0.008 were considered significant. 

29ºC 

Cross N Mean SD Pairwise comparisons 

♀ PE+   

♂ PE+ 

♀ PE+   

♂ PE- 

♀ PE-  

♂ PE+ 

♀ PE-  

♂ PE- 

♀ PE+  

♂ PE+ 

110 40.63889 3.993319 * -1.154 17.857 -0.344 

♀ PE+  

♂ PE- 

120 41.45098 3.502892 0.656 * 20.942 0.820 

♀ PE-  ♂ 

PE+ 

120 28.16981 8.469758 <1  10-4 <1  10-4 * -18.878 

♀ PE-  ♂ 

PE- 

119 40.89344 3.856533 0.986 0.844 <1  10-4 * 
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TABLE 5. The number of PEs in the paternal genome reduces the number of mean ovarioles per 

ovary in F1s from PE-  PE+ in two Drosophila species and at two different temperatures. 

Species Temperature Estimate Std. Error t value P 

D. 

melanogaster 

23ºC -0.34857     0.09864   -3.534   0.00048 

D. 

melanogaster 

29ºC -0.36756 0.06714 -5.475 9.8  10-8 

D. simulans 23ºC -0.58503 0.09871 -5.927 5.85  10-9 

D. simulans 29ºC -0.4093 0.0671 -6.10 2.17  10-9 
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TABLE 6. Male fertility is negatively affected by the number of PEs in the paternal 

genome. We fitted four linear models (2 species  2 temperatures) and found that increasing the 

number of PEs leads to a reduction in male fertility in PE-/PE+ F1 males of D. simulans and D. 

melanogaster.  

Species Temperature Estimate Std. Error t value P 

D. 

melanogaster 

23ºC -0.2955 0.1445 -2.045 0.0418 

D. 

melanogaster 

29ºC -0.3236 0.1381 -2.344 0.0198 

D. simulans 23ºC -0.5928 0.1387 -4.273 2.32  10-5 

D. simulans 29ºC -0.6311 0.1161 -5.435 8.65  10-8 
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Chapter 3: P-elements strengthen reproductive isolation within the Drosophila simulans 

species complex 

 

Aim 3: PEs can cause reproductive isolation between PE+ and PE- lineages of the same 

species. However, it is unclear whether they can also contribute to the magnitude of RI in crosses 

between species. We use the simulans species complex to assess whether differences in PE load 

between D. simulans and its sister species, D. sechellia/D. mauritiana, contribute to F1 fitness. 

 

INTRODUCTION 

Gene flow is a homogenizing force that opposes genome divergence and species 

diversification. The development of reproductive isolation (RI), which reduces gene flow, signals 

that speciation is in process or has been completed [1,2] and allows for genetic variation to be 

partitioned in nature. For this reason, the genetic factors that determine the strength of 

reproductive isolation between species in nature are a central focus of studies throughout 

speciation research. Barriers to gene flow can be categorized depending on where in the 

reproductive cycle they occur [3,4]. Prezygotic isolation includes all RI traits that occur before a 

zygote is formed and include ecological, behavioral and gametic incompatibilities [4]. 

Postzygotic barriers occur after a hybrid zygote is formed and include phenotypes as extreme as 

hybrid sterility and inviability [5,6], but also more nuanced traits, such as hybrid behavioral 

defects [7,8] and delays in development. Prezygotic isolation traits seem to evolve faster between 

species and have commonly been implicated in setting the speciation process in motion [9–12]. 

Nonetheless, prezygotic isolation barriers are not impervious to the effect of gene flow, as 
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species that only show behavioral isolation are more likely to collapse into a single gene pool 

than species that also show some postzygotic isolation [13]. Postzygotic isolation traits tend to 

evolve slower than prezygotic traits and are thought to be crucial in the persistence of species in 

the face of gene flow once they come into secondary contact. Both prezygotic and postzygotic 

isolation are important for the origin and persistence of species, and their relative importance 

likely differs between different taxa [11]. 

The last three decades have seen significant progress on identifying alleles involved in 

isolation (reviewed in [14,15]). Several hypotheses have emerged regarding the types of alleles 

involved in species divergence. First, intrinsic RI is commonly caused by epistatic interactions 

that go awry in hybrids (i.e., the Dobzhansky Muller model). In some (but not all) instances, 

selection causes the divergence of epistatic partners. In this case, RI is a by-product of local 

adaptation [1,14,15]. Genetic conflict can also lead to hybrid sterility [16]; a handful of cases in 

which a single allele can cause hybrid sterility and segregation distortion support this idea 

[17,18]. Some alleles involved in RI show the signature of positive selection at the molecular 

level, lending some support to these hypotheses [19–21]. Gene movement within a genome can 

also lead to hybrid incompatibilities, as crosses between individuals with chromosomal 

translocations can produce some aneuploid progeny (Theory: [19–21], Empirical: [22–25]).  

A different hypothesis is that particular types of molecular changes result in deleterious 

interactions in hybrids not at the individual loci level but at the genome level (i.e., ‘genome 

clashes’), which might result in RI [29–31]. Transposable elements (TEs) are a potential 

candidate to cause such clashes. TEs are repetitive genetic units found ubiquitously across life 

and have been regularly linked to molecular and phenotypic novelty [32,33]. TEs can facilitate 

rapid genotypic change by causing genic interruptions, duplications, or gene expression changes 
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through their transposition [34]. Derepression of TEs through a mismatch of regulatory systems 

might activate dormant transposons which in turn can have deleterious fitness implications in 

hybrids (see below). This prediction has been in place since 1984 [35] and the support for it has 

been mixed. In Arabidopsis hybrids, seed viability is inversely correlated with the expression of 

pericentromeric retroelements (ATHILA) that are exclusively derepressed in hybrids. TE 

mobilization and proliferation are observed in rice [36] and sunflowers [37]. In animals, the 

evidence is less clear (reviewed in [38]) but TEs do cause hybrid dysfunction in some cases. 

Interspecific hybrids between Australian wallaby species (Macropus eugenii and Wallabia 

bicolor) show dramatically extended centromeres due to proliferation of additional centromeric 

material consisting of unmethylated retroelements [39,40]. These studies show that hybrids 

exhibit derepression of TEs but do not provide evidence that hybrids suffer fitness defects 

because of that derepression. A natural hypothesis, given their prevalence, is that TEs might 

strengthen reproductive isolating barriers between species [41]. The potential connection 

between TEs and RI is tantalizing, because TEs can readily move within and across genomes, 

generate phenotypic novelty [42–44], and show a higher activity in hybrids than in pure species 

[41].  

One example of the connection between TEs and RI is P-elements (PEs). PEs in 

Drosophila melanogaster might arguably be the best studied TE in terms of molecular action and 

phenotypic consequences. The invasion of PEs in all populations of D. melanogaster occurred 

over the course of less than 40 years [45]. PEs in D. melanogaster cause a variety of phenotypes 

described as hybrid dysgenesis (HD), a syndrome of deleterious effects in F1s that occurs when 

the mother lacks the PE and the father carries a PE. F1s from these crosses show a suite of 

defects that include sterility, chromosomal breaks, and increased mutation rates [45–49]. 
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Conversely, in crosses where the mother carries PEs, F1s do not show hybrid dysgenesis 

regardless of the genotype of the father. This asymmetry is explained by maternally mediated PE 

repression in the germoplasm, a germline-specific subclass of small non-coding RNAs, piRNAs 

(PIWI-interacting RNAs). This silencing mechanism is not specific to PEs and underlies the 

repression of multiple classes of TEs across multiple taxa (reviewed in Michalak, 2009).  

 While it is clear that PEs can cause hybrid dysgenesis within species, the role of PEs in 

strengthening RI in between well-formed species remains largely untested. This is an important 

question because nascent species come into contact often and if RI is not complete, lineages 

might merge into a single population [50]. Testing this hypothesis requires the study of PE 

effects on a group of species in which: i) some species harbor PEs while others do not, ii) species 

hybridize and produce viable progeny, and iii) since PEs mostly affect the reproductive fitness of 

F1s, hybrids must be at least partially fertile in order to propagate through the population. The 

closest known extant species to D. melanogaster are the three species of the simulans species 

complex, D. simulans, D. sechellia, and D. mauritiana. D. melanogaster can intercross with 

these three species but all crosses produce sterile hybrids, with only certain very rare strains 

being able to produce fertile F1 progeny [51–53]. PEs are also present in species of the 

willinstoni and saltans species group, but all species (and semi-species) within the group have 

been infected by PEs [54–56], preventing comparisons of PE status influencing the magnitude of 

RI in well-formed species.  

The simulans species group is an ideal system to assess the potential effects of TEs in RI 

for at least three reasons. First, PEs recently invaded D. simulans [57] and are only present in 

some lines. While many D. simulans individuals collected after 2015 harbor functional PEs, 

neither D. sechellia nor D. mauritiana show any evidence for their presence, past or present [54]. 
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Second, the three sister species, D. simulans, D. sechellia and D. mauritiana, produce fertile 

female and sterile male F1 hybrids when crossed in all their pairwise crosses [58,59]. Third, 

there is evidence of hybridization and admixture in nature between these three species. D. 

simulans and D. sechellia hybridize in the central islands of the Seychelles archipelago [60] and 

show signatures of gene exchange [18,61,62]. In spite of the absence of a contemporary hybrid 

zone between D. mauritiana and D. simulans,  these two species also show evidence of 

introgression [61,63]. The simulans species groups is thus a powerful system to assess RI 

conferred by TEs in nature, because the natural variation in D. simulans lines allows for the test 

of whether populations with PEs show stronger RI towards the sister species than populations 

without PEs.  

Here, we leverage the recent PE invasion of D. simulans to test whether the magnitude of 

pre- and post-zygotic reproductive isolation barriers was affected by the presence of PEs. We 

found that PEs have no effects on the magnitude of prezygotic isolation. PEs also have no effect 

on hybrid viability, a measure of somatic effects. On the other hand, PEs do have an effect on F1 

fecundity, mirroring observations of hybrid dysgenesis described between genotypes within-

species (where F1s from the cross where the father harbors PEs but the mother does not) show 

more pronounced fitness reduction than the reciprocal direction. This effect is only observable in 

F1 females, as F1 males from interspecific crosses between species of the simulans species 

complex are invariably sterile. Our results serve as a formal test on the putative role of PEs on RI 

between sister species. We discuss the next steps required to address the potential role of TEs on 

setting the speciation process in motion and on the persistence of species in the face of gene 

flow.   
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MATERIALS AND METHODS 

 

Isofemale lines 

All experiments reported in this manuscript used isofemale lines, and all have been previously 

reported. We used the three different species of the simulans species group. We used seven lines 

for each species. The details for each species lines are reported as follows. 

 

D. simulans: D. simulans started showing evidence of PEs in the last 15 years and this TE has 

rapidly increased in frequency [54]. We used six PE+ lines collected in the island of Bioko in 

2013, which showed evidence of P-elements: Riaba_1, Riaba_9, H9, Cascade1, H1, and LB1.  

DRM collected all these lines in the northern rim of the Lago Biao Caldera at 1,400 meters above 

sea level. These lines vary in their PE load (See: Dissertation Chapter 2). We also used seven 

lines with no evidence for the presence of PEs: MD19, MD98, NC105, MD99, Anro6, Anro10, 

and Anro43. All of these lines were collected using banana-yeast traps. 

 

D. sechellia: Unlike D. simulans, D. sechellia lacks functional P-elements ([64], see below). We 

used 4 lines collected on the island of Mahé (Anse Royale Beach) by DRM and J.F. Ayroles in 

2012: LD10, AnRo104, Denis100, CEnisNF10. Instead of banana-yeast traps, females were 

collected using bottles seeded with ripe Morinda fruits, due to resource preference. Additional 

details for the lines have been published elsewhere [60]. 
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D. mauritiana: Similar to D. sechellia, D. mauritiana show no evidence of PE presence. We 

used four lines collected in the island of Mauritius by Womack in 2009: M13, R13, M12, and 

M32. Lines were collected using banana traps.  

 

F1 Production 

Hybrids were produced by placing 4 to 9 day-old virgins of each species in 30mL bottles with 

yeast. Due to females being choosier sex, we used a 1:2 ratio of females to males in each cross, 

with no more than 50 total flies per bottle. We allowed each cross the opportunity to mate for 6 

days before removing all flies and inserting KimWipes treated with 0.5% propionic acid  to 

provide a laying substrate. F1s produced were collected for up to 15 days after parentals were 

removed.  

 

Male hybrid sterility. F1 hybrids between all interspecific crosses in the melanogaster species 

subgroup are sterile at 23ºC [11]. We evaluated whether PE infection status made a difference on 

this barrier, though unlikely. Hybrid males were produced as described above at two different 

temperatures. Four to eight-day-old males from conspecific and heterospecific crosses were then 

lightly anesthetized with CO2. Their testes were then extracted with forceps and mounted in 

chilled Ringer's solution. An average of 5 to 10 pairs of testes were mounted per slide. Using a 

microscope, we scored whether each pair of testes had motile sperm within 5 minutes of having 

mounted the samples.  For each interspecific genotype combination, we scored sperm motility 

for 100 males per cross (398 combinations: 39,800 total males).  
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Female fecundity, generalities. One of the most pronounced phenotypes of the HD syndrome is 

reduced female fecundity as evidence by lower number of gonads (ovaries) and ovarioles per 

ovary. We scored these two traits in conspecific and heterospecific F1 females. We scored at 

least 20 females for each of the conspecific and heterospecific combinations which yielded a 

total of ~11,760 scored females (588 combinations  ~20 females per combination). The 

procedure for conspecific and heterospecific crosses was identical. We produced F1 females as 

described above (See ‘F1 Production’). To score female fecundity, we counted the number of 

gonads in each F1 female (i.e., 0, 1 or 2 ovaries). We collected females aged 4 to 9 days post 

eclosion, anesthetized them with CO2, and extracted their female reproductive tracts. While 

females were under anesthesia, we removed their reproductive tract using forceps [65]. The 

ovaries from each individual were then fixed on a precleaned glass slide with chilled Drosophila 

Ringer’s solution (Cold Spring Harbor Protocols, Serrato-Capuchina et al. 2018). We counted 

the number of functional and atrophied gonads for each individual. An ovary was considered 

functional if it contained at least one ovariole. We also recorded the number of ovarioles (egg 

chambers) in each ovary. We used a Leica, S6E stereoscopic microscope to score all dissections. 

Table S2 shows the number of females dissected for each cross and each temperature.  We used 

this dataset to study the effect of PEs on two phenotypes, ovary number and ovariole number. 

We describe each of these two traits as follows. 

 

Female fecundity, ovary number. One of the classical traits of HD is a reduced number of 

ovaries in PE-/PE+ females. Our goal was to assess whether presence of PEs led to a more 

pronounced HD phenotype in heterospecifics than in conspecifics. A previous study reported that 

PE copy number has a negative effect on the number of ovaries [57].  
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First, we compared whether different crosses showed differences in the proportion of 

dysgenic females they produced. For crosses that showed more than 1% of dysgenic females, we 

used a proportion test (function ‘prop.test’, R library stats). For instances where female 

dysgenesis was rare, we used a Two-Sample Fisher-Pitman Permutation Test (library coin, 

function ‘oneway_test’; [66]), adjusting the critical P-values for significance to account for 

multiple comparisons (8 comparisons). 

For each of two types of interspecific crosses, we fitted a linear mixed model where the 

response of the model was whether a female showed evidence of dysgenesis or not, the type of 

cross (a cross was either conspecific or heterospecific) was a fixed effect, and the number of PE 

copies in the D. simulans genome was a continuous trait. We fitted a binomial regression using 

the function glmer in the library lme4. We included the interaction between these two effects to 

account for differences in HD caused by the number of PE copies and assessed its significance 

using a likelihood ratio test (function ‘lrtest’, R library lmtest) by comparing a model with the 

interaction and a model without it. This tested whether the slope of the regression differed 

between same species F1s and heterospecific F1s by comparing the fully factorial model with 

one that did not have the interaction. The fully factorial model followed the form: 

 

ovary number ~ type of crossi + PE copy numberj + (type of cross X PE copy number)ij + Errorij 

 

 To quantify the significance of each effect, we used a type III ANOVA (library stats 

[67]) in R. In total we fitted 8 linear models, one for each combination of cross and temperature 

(4 types of crosses  2 temperatures). Additionally, we fitted linear models identical to the ones 

described above with the only difference being that instead of the number of PE copies, we 
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studied whether the presence or absence of PE elements affected whether a female was dysgenic 

or not. The full factorial model for this analysis followed the form: 

 

ovary number ~ type of crossi + PE copy numberj + Errorij 

 

Female fecundity, ovariole number. A second aspect of hybrid dysgenesis is a reduced 

number of ovarioles in PE-/PE+ females. We quantified whether there were differences in the 

mean number of ovarioles in within-species and interspecific hybrid F1 females. For these 

analyses, we excluded females that showed completely atrophied ovarioles. The procedure is 

similar to the one described above for ovary numbers (See ‘Female fecundity, ovary number’). 

We used the mean number of ovarioles per female, treating dysgenic ovaries as missing data to 

control for the effect of only having one ovary. We used a Poisson-distributed linear model 

(function ‘glmer’, library ‘lme4’) to fit a linear regression. We fitted two linear models, one for 

each type of interspecific cross. The mean number of ovarioles per female was the response, 

while the type of cross and the PE infection status were fixed effects. To fit the model, we 

approximated to the next nearest integer number of mean ovariole number. We included the 

interaction between these two effects to account for differences in HD caused by the number of 

PE copies and assessed its significance using a likelihood ratio test (function ‘lrtest’, R library 

lmtest) by comparing a model with the interaction and a model without it. The full factorial 

model for this analysis followed the form: 

 

ovariole number~type of crossi + PE copy numberj + (type of cross X PE copy number)ij + Errorij 
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 Additionally, we fitted linear models identical to the ones described above with the only 

difference being that instead of the number of PE copies, we studied whether the presence or 

absence of PE elements affected the mean number of ovarioles per ovary per female. The full 

factorial model for this analysis followed the form: 

ovariole number ~ type of crossi + PE copy numberj + Errorij 

 

RESULTS 

 

Male fertility 

Consistent with previous work, all F1 males from all interspecific crosses (N >100 per 

cross), were completely sterile and produced no sperm.  

 

Female fecundity 

 

The classical phenotype in hybrid dysgenesis (HD) is a reduction in F1 female fecundity 

in crosses between PE- mothers and the PE+ fathers. We assessed whether the presence of PEs 

had an effect on hybrid female fecundity in two ways, counting the number of ovaries in females 

from crosses between PE+ and PE- individuals, and scoring the number of ovarioles in non-

atrophied ovaries. We describe these results as follows: 
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Ovary number. The regressions of the number of ovaries against the number of PE copies 

in heterospecific crosses and conspecific crosses are shown in Figure 1. We studied whether the 

presence/absence of PEs in the paternal genome had an effect on the number of ovaries in 

conspecific crosses involving a D. simulans PE+ father and a D. simulans PE- mother, and in 

hybrid crosses involving a D. simulans PE+ father and a mother from a different species (i.e., D. 

sechellia or D. mauritiana). We did this in two ways. First, we studied whether PE-  PE+ F1s 

were more likely to be dysgenic than females from the PE-  PE- cross. Second, we measured 

the effect of the PE copy number in the paternal genome on the number of ovaries produced in 

each cross. 

 At 23ºC there is a small signal of HD in conspecific crosses as F1 females from the PE-  

PE+ crosses were more likely to show atrophied ovaries than females from PE+  PE- crosses 

(Table 1). At 29ºC, the signature of HD was even more pronounced as a higher proportion of F1 

females from the PE-   PE+ crosses showed atrophied ovaries than females from PE+   PE- 

crosses (Table 1). These results are concordant with the expectations from previous reports that 

show that HD is stronger at higher temperatures in conspecific crosses. 

 Second, we studied whether the presence of PEs in the maternal genome had an effect on 

the number of dysgenic females in hybrid crosses involving D. simulans PE+ and D. simulans 

PE- females and D. sechellia and D. mauritiana males. In general, all crosses where the D. 

simulans was the mother showed low proportion of dysgenic females; no cross showed more 

than 1% of dysgenic females (Table 2).  Regardless of the cross and the temperature, the vast 

majority of conspecific and hybrid females had two ovaries (i.e., were non-dysgenic). We 

avoided doing pairwise comparisons where one of the crosses had no dysgenesis (NA in Table 

2). Crosses between D. simulans PE+ females and D. sechellia males show a slightly higher 
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proportion of dysgenic hybrid females than crosses between D. simulans PE- and D. sechellia 

males. This result is puzzling and not consistent with HD but may be governed by the 

exceedingly low proportions of dysgenic females observed in this direction of the cross.  

 We furthered analyzed whether in addition to the number of dysgenic females in each 

cross, PEs in the paternal genome also affected the mean number of ovaries per female. This 

correlation has been previously observed in within-species HD syndromes in D. melanogaster 

[45] and D. simulans [68].  We compared the number of ovaries in females from D. mauritiana  

D. simulans crosses to that of females from conspecific (D. simulans  D. simulans) crosses. The 

results at the two temperatures, 23ºC and 29ºC, were qualitatively similar (Figure 1A, B; Table 

3). In both cases, the cross effect and the number of PEs were significant indicating that both the 

type of cross (i.e., conspecific vs heterospecific) and the number of PEs affected the number of 

ovarioles in conspecific and heterospecific matings. D. simulans  D. simulans F1 females are at 

least 2.5 times more likely than D. mauritiana  D. simulans females to be non-dysgenic at both 

23ºC and 29ºC (Table 2). As the PE copy number in the paternal genome increases, the number 

of ovaries in the progeny decreases (23ºC: Coefficient estimate = -0.21330, SE = 0.02052, Z= -

10.393, P < 1  10-10; 29ºC: Coefficient estimate = -0.29418, SE = 0.01516, Z= -19.401, P < 1  

10-10). The rate of decrease in ovary number as the number of PEs increased in the paternal 

genome did not differ between conspecific and heterospecific crosses (i.e., the two regressions 

had a similar slope, Table 3) suggesting that the effect of PE copy number is similar for both 

types of crosses.  

 The comparisons of the number of ovaries in D. sechellia  D. simulans and D. simulans 

 D. simulans crosses yielded similar results (Figure 1A, B). The cross effect was significant 

indicating that both the type of cross and the number of PEs affected the number of ovarioles in 
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conspecific and heterospecific matings. D. simulans  D. simulans F1 females are at least twice 

more likely than D. sechellia  D. simulans females to be non-dysgenic at both 23ºC and 29ºC 

(Table 3). The PE copy number was also significant indicating the existence of  a negative 

relationship between paternally inherited PEs and ovary number in the female PE-/PE+ progeny 

(23ºC: Coefficient estimate = -0.24387,   SE = 0.01938, Z= -12.58, P < 1  10-10; 29ºC: 

Coefficient estimate = - 0.23846,   SE = 0.01741, Z= - 13.694, P < 1  10-10). Unlike all other 

regressions, the interaction in the comparison at 29ºC was tangentially significant (Likelihood 

Ratio test; 2 = 4.072, df=1, P=0.044) which suggests that the slope between conspecific and 

heterospecific crosses differs (Slope sim  sim - slope sech  sim = -0.06157, SD=0.03051, Z= -2.018). 

This in turn indicates that the effect of PEs in decreasing ovary number is more severe in some 

heterospecific crosses (D. sechellia  D.  simulans) than in conspecifics (D.  simulans  D.  

simulans) or other heterospecific crosses (D. mauritiana  D.  simulans). These results suggest 

that hybrid females from crosses between PE- females and PE+ males suffer the effect of hybrid 

dysgenesis.  

 We also assessed whether the maternal number of PEs had an effect on ovary number on 

crosses involving D. simulans females. At 23ºC, all D. simulans  D. sechellia females 

(regardless of the PE-status of D. simulans) had two ovaries (i.e., we dissected almost 4,000 

females and did not see a single dysgenic fly), strongly suggesting that there was no effect on the 

number of ovaries by the maternal number of PE copies. (Attempts to fit linear models to this 

dataset failed as the model never converged due to the low variability in the data.) We observed a 

similar⎯but not as dramatic⎯ low level of dysgenic progeny in D. simulans  D. mauritiana 

crosses at both temperatures. The factors were not significant in any of these comparisons (Table 

2, Figure 1C, D).  This suggests that the conspecific and heterospecific crosses have similar 
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fecundities (at least in their number of ovaries), and that the PE copy number has no effect on the 

number of ovaries in this direction of the cross. Notably, the two effects, PE-copy number and 

type of cross, and the interaction between them were significant in D. simulans  D. sechellia 

crosses at 29ºC (Table 3). These results are mostly consistent with the expectation of HD in 

which females from crosses between PE+ females and PE- males have no deleterious effects. 

 The overall results from these analyses, which involve studying HD either as the 

proportion of females with atrophied gonads or the effect of the PE copy, are consistent with the 

expectations of the patterns of HD observed within species in D. simulans and D. melanogaster, 

in which females from crosses between PE- females and PE+ males show a reduction in the 

number of functional gonads, while females from crosses between PE+ females and PE- males 

tend to not produce dysgenic progeny. These results suggest that HD induced by PEs is also 

present in heterospecific matings. 

 

Ovariole number. A second aspect of hybrid dysgenesis is that even when females show 

non-atrophied gonads, their ovaries might have fewer ovarioles than females from non-dysgenic 

crosses. Our hypothesis for this trait was similar to that described for ovary number: females 

from crosses between PE- females (either conspecific or heterospecific) and D. simulans PE+ 

males should show fewer mean number of ovarioles per ovary than females from the reciprocal 

crosses. In fact, the reciprocal cross should show no differences regardless of the PE status of the 

mother. First, we studied whether the presence of PEs in the paternal genome had a different 

effect on the mean number of ovarioles in hybrid crosses involving a D. simulans PE+ father 

(i.e., with D. sechellia and D. mauritiana females) than in conspecific crosses involving a D. 

simulans PE+ father and a D. simulans PE- mother. The results at 23ºC and 29ºC are 
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qualitatively similar. When we treated PEs as a two-level fixed effect (PE+ vs PE-), we found 

that the number of ovarioles per ovary per female is lower in D. mauritiana  D. simulans PE+ 

than in D. mauritiana  D. simulans PE- (Table 4). We observed the same pattern in D. sechellia 

 D. simulans heterospecific crosses. These results suggest that, similar to the observations from 

conspecific crosses, the presence of PEs in the paternal genome reduced the number of ovarioles 

in F1 females that result from heterospecific crosses. 

 Next, we studied whether progeny from D. simulans females and males from other 

species, showed reduced mean number of ovarioles. This is a test on whether maternal number of 

PE copies have an effect of the number of ovarioles in F1 females. We found that in three out of 

the four crosses, females from PE+/PE- crosses do not show reduced number of ovarioles. In one 

case, D. simulans  D. sechellia, females did show a reduced number of ovarioles per ovary at 

29ºC. With the exception of this last case, these results are in line with the expectation of no 

reduced fecundity in this direction of the cross in conspecific crosses (Table 5). 

 We also studied whether the mean number of ovarioles per ovary per female was affected 

by the PE copy number in the paternal genome. The regressions of the number of the mean 

number of ovarioles per female against the number of PE copies in heterospecific crosses and 

conspecific crosses are shown in Figures 2 and 3.  First, we compared the number of ovarioles in 

females from D. mauritiana  D. simulans crosses to that of females from conspecific, D. 

simulans  D. simulans. The results at the two temperatures, 23ºC and 29ºC were qualitatively 

similar (Table 5). Similar to the results on ovary number (see above), we found strong 

differences between conspecific and heterospecific crosses. D. mauritiana  D. simulans crosses 

had lower number of ovaries (23ºC: Coefficient estimate sim  sim – Coefficient estimate mau  sim = 

0.202787, SE = 0.010140, Z = 20.00, P <1  10-10; 29ºC: Coefficient estimate sim  sim – 
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Coefficient estimate sech  sim = 0.288953, SE = 0.011463, Z = 25.21, P <1  10-10), and increases 

in PE copies led to decreases in ovarioles (23ºC: Coefficient estimate = -0.086018, SE = 

0.001915, Z = -44.93, P <1 10-10; 29ºC: Coefficient estimate = -0.113181, SE = 0.002368, Z = -

47.80, P <1 10-10). Unlike, ovary number, the interaction between PE-copies and cross was 

significant suggesting differences in the slope of the regression (Table 5) which in turns means 

that the PE-copy effect on ovariole number was more pronounced in the hybrid females than in 

the pure species temperatures (23ºC: Slope estimatesim  sim - slope estimatemau  sim = 0.072919, 

SE= 0.002589, Z= 28.17, P <1 10-10; 29ºC: Slope estimatesim  sim - slope estimatemau  sim =, SE 

=, Z =, P <1 10-10).  

 Comparisons of the number of the mean number of ovarioles between D. sechellia  D. 

simulans and D. simulans  D. simulans crosses yielded similar results at both 23ºC and 29ºC. 

The cross effect and the number of PEs were both significant indicating that both the type of 

cross and the number of PEs both affected the number of ovarioles in conspecific and 

heterospecific matings. Namely, D. sechellia  D. simulans crosses had lower number of ovaries 

(23ºC: Coefficient estimate sim  sim – Coefficient estimate sech  sim = 0.313862, SE = 0.010432, Z 

= 30.09, P <1  10-10; 29ºC: Coefficient estimate sim  sim – Coefficient estimate sech  sim = 

0.384615, SE = 0.011697, Z = 32.88, P <1  10-10), and increases in PE copies led to decreases 

in ovarioles (23ºC: Coefficient estimate = -0.042500, SE = 0.001762, Z = -24.12, P <1 10-10; 

29ºC: Coefficient estimate = -0.058029, SE = 0.002079, Z = -27.92, P <1 10-10). The interaction 

between these two effects in this case was significant (Table 2) which suggests that the slope 

between conspecific and heterospecific crosses differs at both temperatures (23ºC: Slope 

estimatesim  sim - slope estimatesech  sim = 0.028546, SE=0.002500, Z=  11.42, P <1 10-10; 29ºC: 
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Slope estimatesim  sim - slope estimatesech  sim = 0.036049, SE = 0.003117, Z = 11.56, P <1 10-

10). This result indicates that, just as it occurs in D. mauritiana x D. simulans crosses, the effect 

of PEs in decreasing ovariole number per ovary is more severe in D. sechellia  D. simulans 

crosses than in conspecific crosses. We found no difference in the slope of the regression 

between the number of ovarioles and PE copies between D. mauritiana  D. simulans and its 

reciprocal cross. These results indicate that HD is more pronounced in heterospecific crosses and 

the effect of PE copy number is stronger in heterospecific crosses than in conspecific crosses. 

 Second, we studied whether the presence of PEs in the maternal genome had an effect on 

the mean number of ovarioles per female involving D. sechellia and D. mauritiana females with 

D. simulans PE+ and D. simulans PE- males compared to conspecific crosses within D. 

simulans. Females from this direction of the cross⎯from either conspecific or heterospecific 

crosses⎯generally do not show reductions in the mean number of ovarioles regardless on the 

number of PEs in the genome of the D. simulans mother. Table 5 lists the results for the linear 

models that assessed the effect of the number of PE copies in the maternal genome fitted for each 

combination of cross and temperature and are consistent with the linear models that studied the 

effect of PE presence in the maternal genome (Table 4). With the exception of D. simulans   D. 

sechellia at 29ºC, increases in PE copy number in the maternal genome did not lead to reductions 

in the mean number of ovariole number per ovary. As mentioned above, the reasons behind the 

decrease in ovariole number in D. simulans   D. sechellia at 29ºC remain unknown. 

 Collectively, these results suggest that the magnitude of HD in the form of reduced 

number of ovarioles per ovary is higher in heterospecific crosses than in conspecific crosses 

when PEs are present in the genome of the father but not when they are present in the genome of 

the mother, consistent with the expectations of the phenomenon of PE-induced HD.  
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DISCUSSION 

Hybrid dysgenesis in Drosophila is caused by PEs and remains one of the best 

understood cases of how TEs interact with their host genome. The vast majority of studies of PEs 

have focused on their effects on pure species and few have addressed the effects of PEs on 

interspecific crosses. We studied the role of PEs in RI between three closely related species of 

the simulans species complex by crossing D. simulans lines that vary in whether they carry PEs 

to its two sister species which do not carry PEs. We find that PE status of the father (and the 

number of copies) affected F1 female fertility in interspecific crosses. This effect is stronger than 

the effect of PEs in within-species crosses, suggesting that hybrids are more susceptible to suffer 

the effects of HD than pure species individuals. 

 The importance of PE invasions for ensuring or furthering the speciation process remains 

largely unexplored. One of the possible effects of TEs is the rapid onset of reproductive isolation 

between populations. HD dysgenesis is an example in which PE+ and PE- ‘populations’ can be 

moderately reproductively isolated. In the case of D. melanogaster, PEs have taken over most of 

the species ranges and no PE-free wildtype lines have been found since 1974 [49]. Since PEs 

have spread over the whole range of this species, and no PE-free population seems to exist, PEs 

have played no role in generating stable RI. In the case of D. simulans, it remains to be seen if 

PEs also overtake the whole geographic range but there is no evidence that PE+ and PE- 

populations might be isolated from each other. Understanding whether PEs can ensure 

differentiation is a question of whether the isolation provided by HD in PE-/PE+ F1s is strong 

enough to overcome the gene flow that might occur through the reciprocal direction (PE+/PE-).  

PEs can also make existing reproductive isolating mechanisms stronger. One way in 

which TEs could foster and complete the speciation process would be by reducing the fitness of 
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hybrids. This would thus provide an indirect source of selection for prezygotic-isolation to be 

strengthened. The process in which speciation can be completed as a byproduct of selection 

against hybrids, coined reinforcement, seems to be a common step towards the completion of 

speciation in nature [69]. If PEs cause F1 interspecific hybrids to suffer fitness consequences due 

to HD, then natural selection could lead to an eventual decrease of gene flow between D. 

simulans and D. sechellia that coexist in the central islands of the Seychelles archipelago. Yet, 

D. simulans has not been reported in the Mauritius islands, the endemic range of D. mauritiana. 

Thus far, there is no evidence of reinforcement in the simulans species group. However, there is 

extensive variation in the magnitude of isolation between species in this group across all barriers 

that have been systematically studied, which in turn suggests there is potential for reinforcement 

to occur. Notably, PEs primarily affect the female progeny from the PE- mother and PE+ fathers, 

which would allow for extensive gene flow in the reciprocal direction of the cross. 

Reinforcement can be completed in the face of gene flow, but too much hybridization and 

introgression can hamper the effect of indirect natural selection favoring the completion of 

speciation [70] and will eventually lead to the collapse of the species boundary. In the simulans 

species group, the PE-  PE+ cross that would produce dysgenic individuals are crosses between 

island endemics (D. sechellia and D. mauritiana) and D. simulans, which occur rarely. On the 

other hand, matings between D. simulans females and the island endemic species are much more 

common [71]. Understanding whether PEs can induce reinforcing selection is a similar question 

to whether PEs can generate stable RI within species (see above) but with the key difference that 

while in intraspecific matings, mating choice tends to be weak, in interspecific crosses mating 

choice⎯and the asymmetry in the direction of the mating⎯is usually strong. The dynamics and 

potential involvement of PEs in reinforcement merits a formal theoretical treatment which 
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models the intraspecific fitness costs of a PE invasion (i.e., intraspecific HD), the likelihood of 

hybridization (including potential asymmetry), and the costs associated with hybridization (i.e., 

interspecific HD). This treatment also establishes under which circumstances the potential 

advantages of interspecific HD (through reducing gene flow) can outweigh the intraspecific HD 

costs, ultimately serving as a possible mechanism to facilitate speciation by reinforcement. 

Hybrids often result in the misregulation of transposable elements, a phenomenon not observed 

in the parental species. In whitefish for example, transposable elements reactivation is much 

more common in malformed F1s than in properly developed F1 embryos, strongly suggesting 

that TEs are involved in the massive dysregulation specific to the F1s [72]. 

 Besides the effect of PEs on RI, an additional aspect that deserves consideration is 

whether hybridization facilitates the transmission of PEs across species boundaries. The rapid 

increase in PE frequency in both D. simulans and D. melanogaster, despite fitness costs, remains 

a puzzle. A similarly intriguing question is why PEs have not been found in D. mauritiana and 

D. sechellia. In the case of D. mauritiana, there is evidence for interspecific introgression with 

D. simulans [18,61,72]. This begs the question of why PEs have not been transferred from D. 

simulans to D. mauritiana while other alleles have crossed those species boundaries. One likely 

possibility is that hybridization and introgression is ancient and precedes the invasion of PEs in 

D. simulans. The case of D. sechellia is even more puzzling. Not only do D. sechellia and D. 

simulans show signatures of introgression [74], these two species form a contemporary hybrid 

zone in the central islands of the Seychelles archipelago [60]. Although as of 2014 D. simulans 

in the Seychelles Islands did not contain the PEs, there is precedence for gene exchange between 

the species [64]. This indicates that, at present, there is ample opportunity for gene 

exchange⎯and for interspecific transfer of PEs. 
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Introgressive hybridization cannot explain the invasion of PEs in D. melanogaster, as this 

species does not produce fertile hybrid progeny with any of the species where PEs have been 

found (i.e., species from the willinstoni and saltans group). In the case of D. simulans, invasions 

of PEs following hybridization with D. melanogaster is a very unlikely (but not impossible) 

event as some D. simulans mutants can produce weakly fertile progeny when they are mated to 

Hmr- D. melanogaster mutants [51,52]. These mutants seem to segregate at very low frequency 

in nature and thus the most parsimonious explanation is that PEs invaded D. simulans through a 

horizontal gene transfer event that did not involve hybridization. The precise mechanisms of 

transmission of TEs across species lines remain unknown, but exploring this within a well-

documented element such as PEs can provide insight in this and other longstanding evolutionary 

questions regarding TEs. A prevailing hypothesis regarding horizontal transfer of PEs has 

involved mites, a natural predator for Drosophila eggs, through their syringe-like feeding 

transferring DNA between species, but the evidence for this animal-mediated horizontal gene 

transfer remains circumstantial (Houck et al., 1991). It is likely that multiple mechanisms play a 

role in transmission of PEs and only a robust systematic assessment of the relative frequency of 

PEs on different species of Drosophila and the putative vectors will reveal what is each 

mechanism’s importance in the spread of PEs within and between species. Our results show that 

the dynamics of PEs, and possibly of TEs in general, should not only be addressed with a lens on 

the fitness effects that PEs have on within-species crosses, but also on the effects that they might 

have on interspecific hybrids. 
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TABLE 1. PE-/PE+ are more likely to produce dysgenic females than PE-/PE- crosses in 

conspecific and heterospecific crosses. Females with atrophied ovaries are more common in 

heterospecific than in conspecific crosses in this direction of the cross. Each row shows a type of 

cross. ‘mother’ represents the conspecific or heterospecific female used in the cross, as indicated 

under “Cross”. We used a 2-sample test for equality of proportions for this set of pairwise 

comparisons. 

Cross 

23ºC 29ºC 

Proportion of 

dysgenic females 

2, df=1 Proportion of 

dysgenic females 

2, df=1 

♀ mother  

♂sim-PE+ 

♀ mother  

♂sim-PE- 

♀ mother 

 ♂sim-

PE+ 

♀ mother  

♂sim-PE- 

D. simulans  

D. simulans 

0.002 0.0170 10.299,  

P = 1.331  

10-3 

0.126 0.057 28.257,  

P = 

1.062  

10-7 

D. mauritiana  

D. simulans 

0.149 0.001 152.5,  

P < 1  10-10 

0.272 0.000 306.8, P 

< 1  10-

10 

D. sechellia  

D. simulans 

0.179 0.014 149.9,  

P < 1  10-10 

0.260 0.024 223.67, 

P < 1  

10-10 
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TABLE 2. PE+/PE- female progeny show low proportion of dysgenesis, both in conspecific 

and heterospecific crosses. Each row shows a type of cross. ‘father’ means whether the cross is 

conspecific or heterospecific as indicated in “Cross” column, with the mother D. simulans PE 

status indicated first. Unlike the comparisons in Table 1 which used a Wald test (based on a 2 

test), here we used a permutations-based test (approximative Two-Sample Fisher-Pitman) 

because the number of dysgenic females was low in all crosses. NA refers to comparisons we did 

not perform as one or two values were zero. 

 

Cross 23ºC   29ºC   

 Mean HD ♀ 

sim-PE+ 

♂father 

Mean HD ♀ 

sim-PE-

 ♂father 

 Mean HD ♀ 

sim-PE+ 

♂father 

Mean HD ♀ 

sim-PE- 

♂father 

Approximative 

Two-Sample 

Fisher-Pitman 

Permutation 

Test 

D. simulans  

D. simulans 

4.082   

10-3 

0.000 Z = 

1.891, 

P = 

0.121 

1.020  

10-3 

0.000 NA 

D. simulans  

D. mauritiana 

2.041   

10-3 

1.020  

10-3 

NA 9.183  

10-3 

0.000 NA 

D. simulans  

D. sechellia 

0.000 0.000 NA 0.013 0.0173 Z = 3.1659, P 

= 2.2  10-3 
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TABLE 3. PE copy number in the paternal genome affects the number of functional 

ovaries in conspecific and heterospecific produced F1 females. Each row shows the results for 

each cross at one of two temperatures (ºC). The linear models for each combination of cross and 

temperatures were binomial models fitted to compare the effect of paternally inherited PEs on 

conspecific and hybrid F1 females. The effect ‘cross’ had two levels (sim x sim and a 

heterospecific cross) while the PE copies effect was continuous and ranged from 0 (i.e., no PEs) 

to 11.58. 

 

  Odds ratio Linear model 

Cross ºC Estimate 95%CI PE copies cross PE copies 

 cross 

D. sechellia  

D. simulans   

23 13.702   8.684- 

22.922 

158.35,  

P < 1  10-10 

112.98,  P < 1 

 10-10 

2.644,  

P = 0.104 

D. sechellia  

D. simulans   

29 2.395   1.68-  

3.787 

187.514,  

P < 1  10-10 

24.200, P = 

8.684  10-7 

3.926,  

P = 0.048 

D. mauritiana 

 D. simulans   

23 8.931  5.06-15.20 108.004,  

P < 1  10-10 

72.817, P < 1  

10-10 

3.493,  

P = 0.062 

D. mauritiana 

 D. simulans   

29 2.077  1.523-

3.164 

376.417,  

P < 1  10-10 

15.657    

7.593e-05 

7  10-4,  

P = 0.979 

D. simulans   

D. sechellia  

23 NA NA 0.387,  

P =  0.534 

1.6491    

0.199081 

1.332,  

P= 0.249 
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D. simulans   

D. sechellia 

29 1.453    0.826- 

2.600 

0.628, 

 P = 0.428 

0.315,  

P =     0.575 

NA 

D. simulans   

D. mauritiana 

23 0.749,     0.147-     

3.410 

2.498,  

P =    0.114 

0.142,  

P = 0.706 

1.235, 

P = 0.266 

D. simulans   

D. mauritiana 

29 9.07 1.700-  

167.410 

8.891,  

P =0.012 

7.542, 

 P = 0.023 

2.713,  

P = 0.100 
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TABLE 4. The presence of PEs leads to a lower number of ovarioles in the progeny of PE- 

 PE+ in hybrid crosses but not in most PE-  PE+ crosses. Linear models are described in 

the methods section. ‘mother’ and ‘father’ refer to whether the female or male involved in the 

cross were either D. sechellia or D. mauritiana as indicated in column “Cross”. 

  Mean number of ovarioles per ovary  

Cross ºC mother   

D. simulans PE+ 

mother   

D. simulans PE- 

Linear model 

D. sechellia   

D. simulans   

23 10.863 (3.573) 14.250 (1.506) 1094.3,  

P < 1  10-10 

D. sechellia   

D. simulans   

29 11.484 (3.328) 7.653 (3.138) 1639.6,  

P < 1  10-10 

D. mauritiana   

D. simulans   

23 8.629 (3.286) 16.711 (3.134) 2944.5,  

P < 1  10-10 

D. mauritiana   

D. simulans   

29 13.151 (3.578) 5.603 (3.205) 1639.6,  

P < 1  10-10 

Cross ºC D. simulans PE+  

father 

D. simulans PE-

 father 

Linear model 

D. simulans    

D. sechellia  

23 15.702 (1.584) 16.807 (2.073) 12.148,  

P = 4.913  10-4 

D. simulans    

D. sechellia 

29 17.861 (2.845) 15.512 (2.777) 50.108,  

P < 1  10-10 

D. simulans    23 16.586 (2.489) 17.686 (3.269) 9.109,  
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D. mauritiana P = 2.544 10-3 

D. simulans    

D. mauritiana 

29 13.248 (3.043) 13.116 (3.003) 1.139,  

P =     0.286 
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TABLE 5. PE copy number in the paternal genome has a negative effect on the number of mean 

ovarioles per ovary in heterospecific crosses at the two assayed temperatures (ºT). Each row 

shows a linear model that compares the effect of PE copy number in heterospecific crosses with 

conspecific crosses (D. simulans  D. simulans) of the same type (i.e., PE+  PE-, or PE-  

PE+). 

  Linear model 

Cross ºT PE copies cross PE copies  cross 

D. sechellia  

D. simulans 

23 581.82, 

P < 1  10-10 

905.15, 

P < 1  10-10 

135.67, 

P < 1  10-10 

D. sechellia  

D. simulans 

29 779.30, 

P < 1  10-10 

1081.28, 

P < 1  10-10 

140.05, 

P < 1  10-10 

D. mauritiana 

 D. simulans 

23 2018.43, 

P < 1  10-10 

399.97, 

P < 1  10-10 

800.15, 

P < 1  10-10 

D. mauritiana 

 D. simulans 

29 2018.43, 

P < 1  10-10 

399.97, 

P < 1  10-10 

848.34, 

P < 1  10-10 

D. simulans   

D. sechellia 

23 25.760, 

P = 3.867  10-7 

639.975, 

P < 1  10-10 

17.965, 

P = 2.249  10-5 

D. simulans   

D. sechellia 

29 15.941, 

P = 6.533  10-5 

121.698, 

P < 1  10-10 

17.965, 

P = 2.249  10-5 

D. simulans   

D. mauritiana 

23 0.202, 

P =0.653 

221.761, 

P < 1  10-10 

 

 

0.048, 

P = 0.827 
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D. simulans   

D. mauritiana 

29 0.529, 

P = 0.467 

336.511, 

P < 1  10-10 

0.396, 

P = 0.529 
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FIGURE 1. The number of ovaries in F1 hybrid females in the simulans complex is affected 

by the status of PE-infection of the D. simulans parent but only in PE-  PE+ crosses. Black 

lines show conspecific crosses within D. simulans, blue lines show crosses between D. sechellia 

and D. simulans and red lines show crosses between D. simulans and D. mauritiana. A. Number 

of ovaries of F1 PE-  PE+ females raised at 23ºC. B. Number of ovaries of F1 PE-  PE+ 

females raised at 29ºC. C. Number of ovaries of F1 PE+  PE- females raised at 23ºC. D. 

Number of ovaries of F1 PE+  PE- females raised at 29ºC.
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FIGURE 2. The mean number of ovarioles in F1 hybrid females in the crosses between D. 

mauritiana and D. simulans is affected by the status of PE-infection of the D. simulans 

parent but only when D. simulans is the father. Regressions show the mean number of 

ovarioles per female in conspecific and heterospecific crosses at 23ºC and 29ºC. Black points 

and lines correspond to conspecific crosses, red points and lines correspond to heterospecific 

crosses. A. D. mauritiana  D. simulans at 23ºC. B. D. mauritiana  D. simulans at 29ºC. C. D. 

simulans  D. mauritiana at 23ºC. D. D. simulans  D. mauritiana at 29ºC.
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FIGURE 3. The mean number of ovarioles in F1 hybrid females in the crosses between D. 

sechellia and D. simulans is affected by the status of PE-infection of the D. simulans parent 

but only when D. simulans is the father. Regressions show the mean number of ovarioles per 

female in conspecific and heterospecific crosses at 23ºC and 29ºC. Black points and lines 

correspond to conspecific crosses, red points and lines correspond to heterospecific crosses. A. 

D. sechellia  D. simulans at 23ºC. B. D. sechellia  D. simulans at 29ºC. C. D. simulans  D. 

sechellia at 23ºC. D. D. simulans  D. sechellia at 29ºC. 
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