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ABSTRACT

Angel Davalos: Bayesian Methods for Correlated Predictors and Confounding Variables in Epidemiology
(Under the direction of Amy H. Herring)

In epidemiology, it is common to have a set of outcomes, exposures, and confounding variables on

different scales (i.e. continuous, count, categorical: nominal/ordinal). Confounding variables are expect to be

correlated with exposures and at times exposures may be highly correlated among themselves which present

model estimation complications. This is especially prevalent in environmental epidemiology, where studying

the joint or simultaneous effect of chemical mixture or air pollution exposures on health for example is of

interest. Dimension reduction techniques and shrinkage effect estimation are important tools to overcome

these difficulties.

Studying the multivariate dependence among mixed scale variables can aid investigators in developing

analysis plans but mixed-scale distribution modeling is not a simple task. Specifically, it may be of interest

to assess and quantify the degree of correlation among variables and or characterize different exposure-

confounding variable profiles. Certain dimension reduction methods, such as, mixture models can do both, as

well as, jointly model variables of mixed-scales. Shrinkage methods, on the other hand, do not transform a set

of correlated variables but implement a bias-variance trade-off to address effect estimation.

The overall goal of this research is to develop a suite of Bayesian methods for clustering via mixed-

scale distributional modeling and variable selection. First, motivated by sophisticated Bayesian mixed-scale

distribution modeling, we develop a joint model using modularized tensor factorization (MOTEF) as a

simplification for ease of implementation and computation. The performance of MOTEF is assessed via a

simulation study and applied to data from the National Birth Defects and Prevention Study (NBDPS) for

mixed-scale multivariate profiling. Second, we develop a Bayesian semi-parametric model with variable

selection for hierarchical interactions (BHIS). Its performance is assessed via simulation studies and applied to

the Mount Sinai Children’s Environmental Health Study. Lastly, building on Bayesian mixed-scale distribution

modeling, we develop a joint mixture model for compositional data with essential zeros. The model is applied

to accelerometry-assessed sedentary behavior and physical activity data from the Hispanic Community Health

Study / Study of Latinos for describing activity profiles and health risk.
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CHAPTER 1: INTRODUCTION

In environmental epidemiology, exposures and subject characteristics are measured on numerous scales.

For instance, exposure to phthalates, a potential endocrine disruptor, is often quantified on a continuous scale

as urine metabolite concentration, while subject characteristics such as gender and accelerometer-assessed

physical activity are categorical and compositional, respectively. Atop exposures and characteristics being

measured on different scales, some variables are highly correlated which introduce difficulties in estimation.

Recently, as the field of environmental epidemiology has moved toward studying simultaneous effects of

highly correlated exposures and characteristics (e.g. environment gene interaction), from previous emphasis

on effect of single exposures, novel statistical methods have been proposed to address this issue. One such

technique is dimension reduction, often two step procedures, where predictors are transformed into a set of

ideally lesser correlated variables, which are then used to model a health outcome of interest. Other methods

attempt to stabilize the estimation of effect parameters by incorporating a degree of bias into the estimation

procedure. These methods are generally referred to as shrinkage methods such as penalized regression or

Bayesian methods. In this work, we focus our attention on particular dimension reduction and shrinkage

methods.

The mixture model is often used as a dimension reduction technique because it offers distributional (or

model-based) clustering. Distributional clustering, as opposed to distance-based clustering, models the joint

distribution of a set of variables assuming a heterogeneous population. The clustering of a set of variables

allows investigators the capability to profile the characteristics of subpopulations in the data. Some mixture

models, such as the mixture of product kernels, additionally have the capability to jointly model mixed-scale

variables which is highly useful for environmental epidemiology. However, mixed-scale distribution modeling

requires non-standard ways of constructing a distribution. In the subsequent chapter, we review the literature

on mixed-scale distribution modeling. At the end of the chapter we introduce a section on compositional data

as a case study of a non-standard scale.

When it is of interest to quantify the effect of each predictor in assessing joint effects, certain shrinkage

methods can both stabilize estimation and perform variable selection. To complicate matters more in the

presence of highly correlated predictors, there may be non-homogeneous effects where it is necessary to assess

the degree of interaction among the predictors. Certain shrinkage methods, such as penalized and Bayesian
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techniques, have the capability to screen interactions while preserving hierarchy. Bayesian techniques offer

greater modeling control in the type of bias introduced over penalized regression via the prior distributions

assumed on model parameters. In the next chapter, we briefly review hierarchical interactions, and certain

penalized and Bayesian methods.

Motivated by statistical methods for studying simultaneous health effects of correlated exposures and

subject characteristics, the overall objective of this dissertation is to develop a suite of Bayesian methods

for addressing modeling challenges in the presence of correlated predictors via mixed-scale distribution

modeling and shrinkage methods. The following chapter reviews the literature of basic elements needed

for understanding our proposed methods, and the subsequent chapters present our proposed methods which

comprise our three paper dissertation work.
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CHAPTER 2: REVIEW OF LITERATURE

2.1 Mixed-scale distribution modeling

The topic of modeling the distribution of mixed scale variables has roots in psychology where correlation

models were used to assess the association between categorical and continuous variables (Tate, 1954; Olkin

and Tate, 1961). Although these may not have yielded a unified modeling of the joint distribution between

variables of different scales, it led to the eventual modeling of such for complete and missing data (Krzanowski,

1980; Little and Schluchter, 1985). During the 1980s and 1990s, mixed scale distribution modeling broadened

its focus to include conditional mixed scale distribution modeling where the a mixed scale multivariate vector is

modeled as an outcome conditional on covariates of interest, with a focus on repeated measures for applications

in clustered and longitudinal studies. The latter part of this review focuses on developments within Bayesian

non-parametric statistics as this is an area where most recent developments have occurred.

Many approaches have been proposed for modeling multivariate mixed-scale data but a standard distri-

bution does not exist. The approaches can be broadly grouped into two categories: (1) product conditional-

marginal modeling and (2) joint modeling. Consider the a multivariate mixed scale vector, y = (y1, . . . , yp)
′,

which can consist of multiple scales where sj denotes the scale of the variable. For simplicity, let sj ∈ {1, 2, 3}

which correspond to categorical with bounded support, count or ordinal categorical with unbounded sup-

port, and continuous variables with support onR, respectively. The product conditional-marginal modeling

approach defines a joint distribution though the product of a distribution of a set of variables of uniform

scale conditional on another set of uniform scale variables times the marginal distribution of the latter set of

variables. The joint modeling approach simply builds a joint model by incorporating various techniques that

include: estimating equations, kernel density estimation, copulas, and latent variable approaches. The latent

variable approach is also used within the first approach, however, it is commonly used to define a conditional

or marginal distribution.

2.1.1 Product Conditional-Marginal Distributions

Among product conditional-marginal modeling, the order in which the different sets of variables are

defined to take the conditional or marginal distribution define the model. We first begin by considering a case
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where the categorical variables of a mixed scale vector are modeled conditional on the set set of continuous

variables and the continuous variables are modeled marginally. For illustrative purposes let us assume a simple

case where in a mixed scale vector y there is only one binary variable s1 = 1 and the rest are continuous

sj = 3 for j = 2, . . . , p. One possible model definition could be to assume a logistic regression on the

conditional model, logit(γ) = β0 + β′y(−1) with E(y1) = γ and y(−1) denotes all variables except the first,

and y(−1) ∼ Np−1(µ,Σ). This is a special case of a general modeling framework first proposed by Cox and

Wermuth (1992) called conditional Gaussian regression for mixed binary and continuous variables (Cox and

Wermuth, 1992). This type of modeling can be extended to include categorical variables with bounded and

unbounded support as well possibly via a three tier hierarchical structure and using say multivariate polytomous

regression in tandem with Poisson regression and the marginal multivariate normal for continuous variables.

However, this type of modeling involves a degree of subjectivity in defining the conditional distributions where

a natural choice can be standard mean regression arguments.

The converse of the conditional Gaussian regression approach has also seen more study and development.

One approach, termed conditional Gaussian distribution, was introduced by ? was introduced for modeling

categorical with bounded support and continuous variables. Their approach entails defining a variable u that

is a linear index of all configurations of the categorical variables u1 = {yj : j ∈ sj = 1} which has d =∏
j:sj=1 dj levels where dj is the number of levels for {j : sj = 1}. Letting u2 = {yj : sj = 3} they jointly

model (u,u2) by assuming u2|u = h ∼ Np3(µh,Σh) and Pr(u = h) = πh where p3 =
∑p
j=1 I(sj = 3).

While this approach allows the modeling of nominal and bounded ordinal variables, the definition does not

facilitate modeling count variables. Also, computational issues arise in the presence of sparse data or a large

number of categorical variables since it will require the estimation of many covariance matrices. An approach

that involves the use of latent variables for modeling bounded categorical variables has also been studied

and at times referred to as the conditional grouped continuous model (Poon and Lee, 1987). This method

involves assuming latent continuous variables y∗ for the mixed scale vector y such that y∗ ∼ Np(µ,Σ),

F (yj) = Φ(
yj−µj

σjj
) for j ∈ {j : sj = 3}, and Pr(yj = h) = Φ(

qhj−µj

σjj
)−Φ(

qh−1,j−µj

σjj
) for j ∈ {j : sj = 1}

and h = 1, . . . , dj where Φ(·) denotes the cumulative distribution function of a standard normal random

variable. This idea of assuming an underlying continuous variable for categorical variables is at time referred

to as thresholding or rounding in literature. An appealing feature of this model is that it allows multivariate

analysis even in the presence of many categorical variables that may include count variables. This methods

ability to model many categorical variables comes at the cost of not adequately being able to model nominal

variables since the latent continuous variables assume some ordering of the categorical variable levels.

A model aimed at relieving the shortcomings of these two approaches has also been studied that is a

hybrid between the conditional Gaussian distribution and the conditional grouped continuous model. The
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joint distribution of y in this case is constructed by defining the triplet (u,u′1,u
′
2)′ such that u is a linear

index of all configurations of the nominal variables, u1 corresponds to the set of ordinal categorical variables

with corresponding continuous latent variables u∗1, and u2 corresponds to the set of continuous variables with

corresponding continuous latent variables u∗2. The joint distribution of y is induced by assuming (u∗1,u
∗
2)′|u =

h ∼ Np∗(µh,Σ) and Pr(u = h) = πh, such that µh = (µ′h1,µ
′
h2)′, F (uj1|u = h) = Φ(

uj1−µhj1

σjj1
), and

Pr(uj2 = l|u = h) = Φ(
qlj−µhj2

σjj
)− Φ(

ql−1,j−µhj2

σjj
). The idea behind this model is to assume a conditional

grouped continuous model indexed by configurations of the nominal variables as in the conditional Gaussian

distribution. The difference however is that homogeneous covariances are assumed across all configurations.

This is a model in difference to previous models that can account for all kinds of scales. However, the

computational limitations of the conditional Gaussian distribution are inherited because of the linear indexing

of configurations. A potential difficulty that all these models face is whether the multivariate normality may

hold although transformations may be applied to the continuous variables. This methodology called the general

mixed data model has been very developed and includes likelihood ratio tests, a Malhalanobis distance, and

methodology for classification, for further details, see de Leon and Carriègre (2007) (de Leon and Carriègre,

2007; de Leon and Carriégre, 2005; de Leon, 2007; De Leon et al., 2011).

de Leon and Carriègre (2007) have also suggested alternative approaches to circumvent the computational

issues that arise with estimating the general mixed data model. They propose using a pairwise likelihood

approach to estimating their model where a pseudo-likelihood is specified as a simplification to the conditional

component that corresponds to the latent variables of the ordinal variables using only bivariate normal distribu-

tion functions. They suggest this results in significant reduction of computing time and easily implemented

using S-plus. Generalized estimating equations as a generalization to the pseudo-likelihood approach, naturally,

has also been used for analyzing mixed scale data albeit in the context of mixed scale outcomes in correlated

data or longitudinal studies. For a thorough and historical account of the development of mixed scale data

methods within the context of both joint and outcome analysis which also include copula regression methods,

see De Leon and Chough (2013). The GEE introduces an alternative idea not considered up to this point where

modeling mixed scale data is done without the use of product conditional-marginal statements but rather by

using a joint approach.

2.1.2 Joint Modeling Approaches

The use of conditioning arguments to derive a mixed-scale distribution has been a very useful tool because

it facilitated the use of standard distributions with numerous choices in how to define. Each choice involves a

degree of subjectivity in defining with varying degrees of computational difficulty, and defines the assumed
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underlying data generating mechanism. Alternatively, methods for analyzing mixed scale data without the

use of conditioning arguments have been studied. We have briefly mentioned one approach that altogether

avoids the specification of a likelihood in generalized estimating equations. The complication with not

using conditional arguments is that no standard mixed scale joint distribution exists and as such have had

to use to creative tools to achieve analyzing mixed scale distributions. These methods have mainly applied

non-parametric and Bayesian approaches.

2.1.2.1 Kernel Density Estimation

In non-parametric statistics, an approach to density estimation is to smooth the unknown true density of a

vector. Non-parametric kernel density estimation has been very well developed for multivariate continuous

and discrete cases and methods for mixed scale distributions are developing (Nagler, 2017). Briefly, the aim of

kernel density estimation is to smooth the unknown density f of the mixed scale vector, y ∼ f . The smooth

form of the unknown density is defined:

f̃(y) =

L∑
l=1

αlK(yl,y;θ), (2.1)

where {y1, . . . ,yL} ∈ Y , Y = ⊗pj=1Yj , Yj denotes the support of the jth variable in the vector y, and for

some constants αl for l = 1, . . . , L and θ. The kernel K is defined as a measure of similarity with certain

regularity assumptions and often depends on some smoothing parameters. The form of (2.1) in certain cases

can be in an alternative basis formulation

f̃(y) =

H∑
h=1

ωhψh(y), (2.2)

where {ψh}Hh=1 is a set of orthogonal basis functions, each basis function may have a constant parameter, and

ω = {ωh}Hh=1 is a set of constant coefficients.

From the few efforts at establishing kernel estimating procedures for the mixed scale setting, Li and

Racine (2003) were the first to establish asymptotic normality their proposed smoothing parameters for the

class of product kernels. In continuous kernel estimation, a kernel K can be assigned to measure a multivariate

distance ‖yl − y‖, however, Li and Racine (2003) use the product kernel formulation. Let A = {j : sj = 3}

denote the set of indexes corresponding to continuous variables in y and assume sj ∈ {1, 3} for all j. The

continuous and discrete components of y are separated into yA and y(−A) with their product kernel density
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estimate defined as:

f̃(y) =
1

L

L∑
l=1

[{
g(θ∗)

∏
j∈A

w
(ylj−yj

θ∗j

)}

×
{ ∏
j′∈S\A

1
dj′−1 (1− λ)1−I(ylj′−yj′ )λI(ylj′−yj′ )

}]
, (2.3)

where S = {1, . . . , p}, I(·) denotes the indicator function, w is a univariate kernel, θ = (θ∗
′
, λ)′, and dj

denotes the number of levels in yj ∈ {1, . . . , dj} for j ∈ S \A. The product kernel assigns a univariate kernel

with respect to each component of the multivariate mixed scale vector and takes the mutual product across

all components. They estimate θ using a cross-validation approach which was shown to be consistent and

achieves asymptotic normality. One limitation of this approach is the assumption that each of the continuous

components of the mixed vector must come from a density that is four times differentiable.

Efromovich (2011) extended the Li and Racine idea through the use of a tensor product kernel. The tensor

product kernel can be loosely defined as:

f̃(y) =

H1∑
h1=1

· · ·
Hp∑
hp=0

θh1···hp

p∏
j=1

ψhj ,j(yj), (2.4)

where Ψ = {ψ0j , . . . , ψHjj}
p
j=1 is a set of basis functions for each variable j chosen with respect to the

measurement scale sj and θ = {θh1···hp
: hj = 0, 1, . . . ,Hj}pj=1 is a multidimensional fixed coefficient.

Through the use of mixed tensor-product basis defined by assigning cosine and discrete cosine basis with

respect to the scale of the variable they appealed to Parseval’s theorem where any multivariate mixed scale

density with a finite norm can be written as a Fourier series, he proposed an oracle estimator (Efromovich,

2011). Appealing features of this cosine tensor product kernel include simultaneous variable selection and

dimension reduction and the ability to allow different degrees of smoothness in each continuous variable

thereby relaxing the four times differentiable assumption of Li and Racine (2003). Even though this method is

an improvement on the relaxing of assumptions, it is limited by an assumption of its own where the continuous

variables were assumed bounded on the unit interval. This limitation may require a transformation of the

continuous variables perhaps via the inverse logit. Another possible limitation is the potential for computational

difficulties since it relies on truncation of the infinite Fourier series. Lastly, the estimation aspects of this

method are far from straightforward which may limit routine implementation.

The non-parametric kernel density methods offer nice data-driven alternatives to the parametric counter-

parts which use product conditional-marginal arguments by completely avoiding the use of conditional argu-

ments. However, the non-parametric methods may have more in common with the product conditional-marginal

7



since both methods assume their target joint distribution f is of the form, f(y) = f(yA|y(−A))p(y(−A)). It is

possible that the true underlying distribution may not be in the class of assumed target distributions. Given

that the true underlying data generating mechanism in practice will never be known, this is not to say that this

methodology may not be useful, where in fact it may be very useful even in the presence of misspecification.

Recently, a non-parametric analogue to the use of latent continuous variables in analyzing mixed scale

data was studied. Following the often used technique of introducing noise to categorical data in non-parametric

statistics, the idea was formalized and studied by Nagler (2017). The continuous convolution product kernel

density estimator was defined as:

f̃(y) =
g1(θ1)g2(θ2)

L

L∑
l=1

[{∏
j∈A

w1

(ylj−yj
θj1

)}
×
{ ∏
j′∈S\A

w2

(ylj′−yj′
θj′2

)}]
, (2.5)

where θ1,θ2 are smoothing parameters, yl = y∗l + el, el = (el1, . . . , elp)
′, elj ∼ η if j ∈ S \ A and

zero otherwise, and y∗l ∈ Y . Note this estimator is essentially the same as (2.3) with the exception that the

categorical components have noise added to them. The introduction of the noise variable implies the product

kernel with w2 components is now random. It was once thought that the introduction of noise would bias

results, however, it was shown that under certain assumptions on the distribution η adding noise to the discrete

variables does not negatively impact estimation (Nagler, 2017). Even though this is reassuring and appealing

for use in practice, it introduces a complication for nominal variables. Also, it is possible that the continuous

convolution technique modifies the target distribution.

2.1.2.2 Bayesian Approaches

We turn our focus to Bayesian methods that have in some cases facilitated mixed scale data analysis. The

methods we review use most of the techniques already presented albeit from slightly different viewpoints.

Bayesian methods assume parameters from a model are random variables themselves therefore inference is

based on the posterior distribution, f(θ|y) ∝ f(y|θ)p(θ) as opposed to maximizing a likelihood or estimating

equation for a single point estimate. When inference is based on the posterior distribution, one may consider

different summaries of it (e.g. median, mean, mode) that may be more appropriate for its shape. The use

of Markov Chain Monte Carlo methods allow approximate sampling from the posterior distribution (joint

if multivariate parameters or latent variables) which at times make it possible to address problems where

maximization may be intractable or computationally difficult. For example, consider the conditional grouped

continuous model where latent continuous forms of the discrete variables are integrated out and the resulting

likelihood is maximized over the thresholds and covariance parameters. In a Bayesian framework, sampling
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from latent variables with a standard distribution is significantly easier to do when coupled with carefully

chosen priors for the parameters so as to facilitate a Gibbs sampler.

2.1.2.3 Copulas

The extended rank likelihood approach proposed by Hoff (2007) was developed to jointly analyze mixed

scale data. Motivated by the degree of subjectivity involved with degree of subjectivity it takes to define a

mixed scale joint distribution, this method was developed with the use of a copula and estimated through a

Bayesian semi-parametric approach (Hoff, 2007). A copula is a multivariate distribution where the marginal

distribution of each variable is uniform on the unit interval. By Sklar’s theorem, any continuous multivariate

distribution can be elucidated by a unique copula, C:

F (y) = C(F1(y1), . . . , Fp(yp)), (2.6)

where Fj is the marginal distribution of the jth variable and the marginal distributions of the variables. This

is a greatly convenient theorem where one can jointly model a set of continuous variables by assuming a

copula structure and marginal distributions. The extended rank likelihood is semi-parametric in the sense that

it takes a parametric copula model, the Gaussian copula, and combines it with a non-parametric assumption of

unknown marginals. The extended rank likelihood is defined as Pr(Z ∈ R(Y )|C) which is a component of

the likelihood induced by the Gaussian copula:

Pr(Y |C, F1, . . . , Fp) = Pr(Y ,Z ∈ R(Y )|C, F1, . . . , Fp) (2.7)

= Pr(Z ∈ R(Y )|C)Pr(Y |Z ∈ R(Y ),C, F1, . . . , Fp), (2.8)

where Z = {zi}ni=1, zi ∼ Np(0,C), R(Y ) = {Z : zij < zi′j if yij < yi′j}, Y = {yi}ni=1, and yi mixed

scale data vector of the ith observation. The set R(Y ) introduces a partial ordering preserved from the ranks

of the observations. Posterior inference is carried out by assigning an inverse-Wishart prior on the correlation

matrix C and carried out via Gibbs sampling (Hoff, 2007). The extended rank likelihood has been shown to

achieve posterior consistency and was extended to include parsimonious decomposition of the correlation

matrix via the Gaussian Copula Factor model (Murray et al., 2013). One of the appealing features of this

model is that pairwise and higher order dependence can be carried out from the posterior correlation matrix

sample. The derivation of this idea is very different from from the Gaussian threshold idea from the conditional

grouped continuous model but ended up with similar modeling elements, as such it unfortunately is not useful

for nominal data.
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2.1.2.4 Mixture Models

The Bayesian mixture model has been heavily utilized in statistical applications because of its flexibility in

modeling non-standard data. In univariate densities (sj = 3) or probability mass functions for count variables

(sj = 2), the Bayesian mixture model can be defined as:

fj(yj) =

∫
Θj

Kj(yj |θj)dPj(θj), (2.9)

where Kj is a pdf or pmf scale appropriate for sj , Pj is a distribution of the kernel parameters θj over the

space Θj , and Θj is countable. By letting dj denote the size of the space Θj then an alternative formulation

can be:

fj(yj) =

dj∑
h=1

ωhjKj(yj |θhj), (2.10)

where Pj(·) =
∑dj
h=1 ωhjδθhj

(·). With this formulation, we can see that the mixture model can be finite or

infinite by setting dj <∞ or dj =∞, respectively. For a full Bayesian specification, a prior can be assigned

to the kernel weights, where the standard choice for the finite mixture model is the Dirichlet distribution

ωj ∼ Dir(aj) for dj < ∞. For the infinite case, dj = ∞, an example may be specifying geometric

weights where Pr(θhj) = ωhj = qj(1− qj)h−1 and the weight component can be assumed beta distributed

qj ∼ beta(aj , bj). Most of the time in practice, the values of the parameter index is unknown which gives

rise to the use of random measures for Pj where both the kernel weights and parameter index are assumed

random. The use of random measures as priors define Bayesian non-parametric methods, and in the case of

the mixture model the parameter index parameters are often chosen to be iid to be conjugate to the kernel.

The ubiquitous choice for Pj is the Dirichlet process where through its stick breaking construction, defines the

Dirichlet Process Mixture model (DPM) as Pj ∼ DP (αjP0j):

fj(yj) =
∑∞
h=1 ωhjKj(yj |θ∗hj),

ωj ∼ stick(αj), θ∗hj
iid∼ P0j ,

(2.11)

where ωj ∼ stick(αj) implies ωhj = vhj
∏
h′<h(1 − vh′j) and vj

iid∼ beta(1, αj) (Ferguson, 1973; Sethu-

raman, 1994). The infinite nature of the DPM traditionally made it difficult for routine implementation but

numerous samplers have been devised that have streamlined its use, see for example (Ishwaran and James,

2001; Walker, 2007; Papaspiliopoulos and Roberts, 2008; Kalli et al., 2011; Hastie et al., 2015).

The Bayesian mixture model can be thought of as a special class of the kernel density framework with

a positive unit constraint on the basis coefficients and parametric distributions acting as basis functions.
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Notice the similarity between (2.2) and (2.10) which in turn makes up the basis for Bayesian density esti-

mation. The connection between the Bayesian mixture model and the constrained positive unit coefficient

kernel density framework is a greatly appealing feature because of its intuitive interpretation as the average

of the kernels. When a latent indicator variable is introduced, this framework reveals another appealing

feature in effectively clustering observations, which is easily accommodated in the Bayesian setting. The

posterior distribution of the latent allocation variables reveals that observations are clustered according to

the indexed kernel with greatest probability. Thus, the Bayesian mixture model provides a flexible, intu-

itive to implement and interpret, and rich (i.e. clustering) perspective to kernel density estimation. The

mixture model, however, suffers from identifiability issues, which imply that different configurations of

the weights and parameter indexes lead to the same model and are manifested in two different forms. The

first is widely known as the label switching problem, which implies that any mixture model can be written

as fj(yj) =
∑dj
h=1 ωhjKj(yj |θhj) =

∑dj
l=1 ωτljKj(yj |θτlj) where τ = (τ1, . . . , τdj )′ is any permuta-

tion of the labels {1, 2, . . . , dj}. The second is a lesser emphasized problem where it is possible to have

fj(yj) =
∑dj
h=1 ωhjKj(yj |θhj) =

∑d′j
l=1 πljKj(yj |ηlj) where θj ,ηj ∈ Θj and ωj 6= πj . Numerous inves-

tigators have attempted to address these identifiability problems, mostly in the label switching context, for

some references see (Richardson and Green, 1997; Stephens, 2000; Jasra et al., 2005; Rodrı́guez and Walker,

2014; Mena and Walker, 2015). These identifiability issues do not concern density estimation since the focus

is on the overall density fj or functionals of it and not specific components of the weight and kernel index

parameter posteriors.

2.1.2.5 Induced Densities

We elaborate on the Bayesian mixture models because it has greatly facilitated the development of mixed-

scale distribution modeling. Most of these techniques have leveraged mixtures of multivariate Gaussians

coupled with data augmentation in the sense of thresholding/rounding for categorical variables while few

others have proposed alternative mixture modeling specifications that can avoid the use of rounding. Data

augmentation for rounding to model categorical data can be traced back to Albert and Chib (1993) in the

Bayesian setting and easily sampled via truncated variables. When this idea is coupled with the mixture model,

the estimation of the threshold cut-offs can be avoided if the mixture as whole is chosen to provide sufficient

flexibility as opposed to having to estimate the thresholds when a single Gaussian distribution is specified

(Canale and Dunson, 2011; Carmona et al., 2016). Further, in non-parametric Bayes literature, posterior

consistency has been demonstrated for multivariate kernels in multivariate density estimation (Wu and Ghosal,

2010). Poisson latent variables have also been leveraged for modeling mixed discrete outcomes which can
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serve as a foundation for alternative specifications since they can have appealing properties such as closed

form expressions for marginal summaries and improved interpretability (Dunson and Herring, 2005).

The rounding prior for mixed-scale density estimation can generally be described as:

f(y) =

∫
Cy(−A)

f∗(h−1
1 (yA),y∗(−A))|Jh−1

1 (yA)|dy
∗
(−A), (2.12)

where y = (y′A,y
′
(−A))

′ = (h1(y∗A)′, h2(y∗(−A))
′)′ = h(y∗), y∗ ∼ f∗ with f∗ a density with respect to

Lesbegue measure over Rp, A = {j : sj ≥ 3} is the set of indexes corresponding to continuous variables,

h1 is a set of monotone differentiable functions that individually map the real line to the support of yj for

sj ∈ A, h2 are thresholding functions for each categorical variable (sj 6∈ A) that replace elements of R

with non-negative integers according to the support of yj , Cy(−A)
= {y∗(−A) : y∗j ∈ Cyj ,j , j 6∈ A}, and

C·j = {C1j , . . . , Cdjj} is a mutually exclusive partition of R defined for each categorical variable sj 6∈ A

(Canale and Dunson, 2015). The behavior of any specified density of this type will largely be driven by the

assumed underlying continuous distribution f∗ and the continuous transformation components h1. Norets and

Pelenis (2012) were the first to study theoretical properties of this mixed scale distribution when f∗ is chosen

to be a finite mixture of multivariate Guassians with identity transformations for continuous variables (h1), and

showed posterior consistency for the density estimator (Norets and Pelenis, 2012). The appealing property of

this specification is it can be thought of as building upon some of the previously described methods by adding

flexibility with the mixture model. Canale and Dunson (2015) extended the theoretical findings to include a

larger class of functions f∗ and established sufficient conditions for posterior consistency. They note that the

choice of h1 the continuous transformation functions impact the smoothness of the continuous component of

the density and subsequently the convergence rate. Thus, when the identity function is chosen as in (Norets

and Pelenis, 2012) then the optimal rate is preserved for the continuous components. The DPM of multivariate

Gaussians has been shown to meet the necessary conditions as f∗ for mixed-scale density posterior consistency

(Canale and Dunson, 2015). Given its intuitive construction and great flexibility, it has been proposed for

use in potential spatial statistics applications and even extended to accommodate complex survey designs

albeit with a slightly more flexible Poisson-Dirichlet mixture (Molitor et al., 2016; Carmona et al., 2016). It

has also been extended to the mixed-scale multivariate regression setting with modeled threshold cut-offs

(Papageorgiou and Richardson, 2016). These developments are useful to know when deciding which model

would be appropriate for the situation at hand and whether one should use a finite or infinite mixture. As a

compromise between the two, one may choose an over-fitted mixture model as it has been shown to adequately

zero out extra components and is significantly simpler to implement (Rousseau and Mengersen, 2011). A

drawback to this mixed-scale modeling framework is its inability to appropriately account for nominal data.
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Recently, this was addressed by incorporating a set of binary indicator variables corresponding to each level

for each nominal variable where then a latent continuous variable is assumed for each component, and the

indicator variable corresponding to the observed nominal level is set to one when its continuous latent form

is the maximum value among the set of continuous latent forms (Kunihama et al., 2016). This methodology

was introduced as an extension for modeling mixed-scale variables in longitudinal studies. Related rounding

Bayesian methods where the underlying latent continuous distribution is not a mixture model but simply a

multivariate Gaussian that account for nominal variables as well, have also been proposed for mixed-scale

modeling, (Zhang et al., 2015; Mirkamali and Ganjali, 2016). One of the advantages of rounding with a

Gaussian kernel is that the covariance matrix facilitates assessing pairwise associations among variables across

the different scales. In the case of sets of underlying variables used for nominal variables, it is unclear how

association can be assessed between nominal and variables of other scales. An alternative to the mixture

model that can be used for mixed-scale modeling are Pólya trees, however, because the methodology requires

an iterative partitioning of the domain it produces non-smooth density estimates which is appropriate for

discrete data but not ideal for continuous (Lavine, 1992). The mixture model as we have seen relies on a

kernel specification that can produce both smooth or non-smooth density estimates for the continuous and

non-continuous components, respectively.

2.1.2.6 Mixture of Product Kernels

Another approach to modeling mixed scale variables within the mixture model setting which avoids the

use of latent continuous variables is defined by specifying the product kernel. The product kernel allows one

to choose a variable specific kernels thereby providing a technique which can avoid rounding for categorical

variables. It can be described as:

f(y) =

∫
Θ

p∏
j=1

Kj(yj |θj)dP (θ), (2.13)

where θ = (θ1, . . . , θp)
′, Θ = {Θj}pj=1 is a multidimensional parameter space, and θj ∈ Θj for all j (Dunson

and Bhattacharya, 2011). As in the case of the univariate mixture model, an appropriate prior can be assumed

for P which could yield the finite or infinite mixture model as:

f(y) =

H∑
h=1

λh

p∏
j=1

Kj(yj |θhj), (2.14)

where Θ = {θh}Hh=1 and θh = (θh1, . . . , θhp)
′. With this specification, it is clear to see that rounding can

be bypassed since an appropriate kernel can be chosen for all types of scales individually. Further, this

specification implies that multivariate dependence is induced as an average of independence models, and
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allows the ability to identify sub-classes where when a latent indicator is introduced implies local independence

within classes. Some have used this as a basis for the analysis of heterogeneous data recently albeit not within

the Bayesian setting (Amiri et al., 2017). The product kernel formulation has been used for characterizing the

population distribution of fibers between brain regions within and across individuals through the use of the

Nested Dirichlet Process (Zhang et al., 2016). The product kernel mixture model framework provides notable

simplifications to mixed-scale modeling over the rounding prior with its ease in incorporation of categorical

variables, which when coupled with a random distribution on the kernel parameter indexes maintains great

flexibility for modeling unconventional distributions. However, it is limited in assessing the strength of

association among the variables as opposed to the ease in assessing dependence in previously described

Bayesian methods albeit none facilitate cross nominal variable associations.

The product kernel infinite mixture model has been successfully used to model multivariate categorical data

where strengths of associations among nominal and ordinal variables are easily assessed. From a generalization

of singular value decomposition, Dunson and Xing (2009) showed that any probability tensor has a parallel

factors (PARAFAC) decomposition as:

π =

k∑
h=1

λh

p⊗
j=1

ψhj , (2.15)

where π = {πh1···hp , hj = 1, . . . , dj , j = 1, . . . , p}, λ is a k × 1 probability vector, ψhj is a dj × 1

probability vector for h = 1, . . . , k, and ⊗ denotes the outer product. This provided a basis for using mixture

models for analyzing multivariate unordered categorical data where they proposed the DPM of product

multinomials for a Bayesian non-parametric implementation which effectively automates the selection of

the rank k. Within this modeling framework, a model-based Cramer’s V statistic was proposed to quantify

pairwise associations and test pairwise independence which can be used for gauging multivariate dependence.

It has been successfully used to facilitate associations among nominal variables and across ordinal and nominal

scales. The immediate drawback is it is not directly useful for mixed scale data, however, it has provided a

framework for extensions of the mixture model in mixed-scale applications.

Murray and Reiter (2016) married multiple mixed-scale modeling ideas to jointly model continuous and

bounded categorical variables. They developed a mixture of mixtures called the hierarchically coupled mixture

model with local dependence (HCMM-LD) by combining mixture and general location-scale modeling ideas.

The HCMM-LD can be defined as:

f(y) =

H∑
h=1

λhfh(yA|y(−A))πh,y(−A)
, (2.16)
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where the marginal of the categorical and conditional of the continuous components are modeled as indexed

PARAFAC tensor decomposition (2.15) and DPM of multivariate Gaussians, respectively, as:

fh(yA|y(−A)) =
∑R
r=1 ωhr,1Npc(yA|D(y(−A))Br,Σr),

πh,y(−A)
=
∑S
s=1 ωhs,2

∏
j 6∈A ψsyj ,j ,

(2.17)

pc =
∑p
j=1 I(sj ≥ 3), and D(y(−A)) denotes a design matrix on the set of categorical variables that can

include various forms of dependence (Murray and Reiter, 2016). The conditional distribution specification

on the continuous components differs from the general location model in that it includes a set of regression

variable specific regression coefficients as opposed to the linear indexing of all combinations of the categorical

variable levels. It is a technique commonly implemented to overcome the sparsity induced by
∏
j 6∈A dj

dimensional split that the data would be required in the general location model. This formulation provides a

sound basis that could facilitate the assessment of association among variables truly across all scales since it

incorporates PARAFAC decomposition (2.15) components.

The mixture model provides infinite ways to formulate a mixed-scale distribution with great flexibility

but the unidirectional indexing of the parameter space may require a greater number of components. A multi-

directional exploration of the parameter space may be more efficient in capturing dependence with a smaller

number of clusters. To illustrate how the tensor mixture model can provide a more efficient way of exploring

the indexed kernel parameter space, consider the multivariate mixture of product kernels model defined in

(2.13). The parameter space Θ and the corresponding probability P define the type of induced mixture model.

Often for mathematical convenience, the parameter space is specified as a product space of each component

Θ =
⊗p

j=1 Θj . When Θ is specified on a linear index such that θh = (θh1, . . . , θhp)
′ ∈ Θ for all h then P is

univariate, however, when Θ is specified on its multivariate index such that θh1···hp
= (θh11, . . . , θhpp)

′ ∈ Θ

for all hj , j then P is a tensor. The mixture model subsequently, as opposed to the tensor mixture model, may

require the selection of more clusters in order to model the same structure when elements of the parameters

space are assumed random (i.e. Bayesian non-parametric modeling). Banerjee et al. (2013) extended the

Dunson and Xing (2009) tensor factorization (2.15) to the infinite tensor factorization (ITF) where the arms

ψhj are assumed to be infinite probability vectors and assumed to have stick-breaking priors ψhj ∼ stick(aj),

and simultaneously defined the infinite tensor mixture (ITM) model via product kernel:

f(y) =

∞∑
h1=1

· · ·
∞∑

hp=1

πh1···hp

p∏
j=1

Kj(yj |θhjj), (2.18)

15



which implies P (·) =
∑∞
h1=1 · · ·

∑p
hp=1 πh1···hpδθh1···hp

(·) and π is assumed ITF. Atop of ease in model

specification and enhanced flexibility in exploration of the index parameter space, the tensor mixture model

also facilitates assessing the strength of association between disparate scales. Latent cluster indicator variables

C1, . . . , Cp are inherently present in ITM such that Pr(C1 = h1, . . . , Cp = hp) = πh1···hp where the

dependence between the variables is induced via the dependence in the cluster indicators, therefore, variable

dependence can assessed without regard to the disparate scales. Further, this also alleviates complications

with nominal variables. Banerjee et al. (2013) proposed estimation of the ITM via Bayesian non-parametric

techniques and Kullback Leibler divergence quantities for assessing pairwise and higher dependencies. The

main drawbacks of this methodology are sampling requires a sophisticated blocked MCMC with partially

collapsed steps and incorporation of slice and retrospective sampling ideas in order to avoid approximations,

and computational complications may arise under certain scenarios with undue influence of the joint structure

hindering flexibility in the marginal distributions.

It is clear that investigators have had to develop ingenious techniques for addressing the complications

that arise when analyzing mixed-scale data and it is unlikely for there to be one one-size-fits-all technique

since the true data generating mechanism will seldom be known. We seek to study an exploratory mixed-scale

data analysis method that facilitates the assessment of dependence among all variables. Motivated by the

ITM, we seek to provide simplifications to this methodology where latent cluster indicators are also levied to

model dependence and alleviate some of the computational complications via a separation of marginal and

joint structures (i.e. modularization). This results in the study of a copula-like approach that assesses joint

dependence from unknown marginal distributions in chapter 3 .

2.2 Variable Selection for Hierarchical Interactions

In environmental epidemiology, it is of interest to model the exposure-response surface associations

between multiple exposures and characteristics and a health outcome of interest for quantifying and describing

the relationship. Inference often entails simultaneous interest in estimating regression coefficients, variable

selection, and grouping exposures based on magnitude of associations. Maximum likelihood estimation is not

reliable for quantifying the relationship and by itself unable to simultaneously accomplish variable selection

and grouping. Alternatively, certain shrinkage methods have the capability to accomplish all these. We focus

on methods for linear models as opposed to non-linear models.

Within the context of linear models, it is also of interest to determine whether there is evidence of

non-homogeneous associations via interactions. Interactions add another dimension of difficulty as some

statisticians argue there is a need for incorporating hierarchy in the selection because violations may result in
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non-sensible interpretation and reduced power (Bien et al., 2013; Cox, 1984; McCullagh and Nelder, 2019).

Incorporating hierarchy in interaction selection is hereby referred to as hierarchical interactions selection. For

illustration consider the pairwise interactions model,

g(µi) = z′iκ+ x′iβ1 +

p−1∑
j1=1

p∑
j2=j1+1

βj1j2xij1xij2 , (2.19)

where β1 = (β1, . . . , βp)
′, κ = (κ0, κ1, . . . , κp0)′, yi is a health outcome of interest, E(yi) = µi, xi =

(xi1, . . . , xip)
′ is a set of predictors, and zi = (1, zi1, . . . , zip0)′ is a set of covariates. We make a distinction

between predictors and covariates where predictors take the role of exposures being assessed and subject to

variable selection. Covariates on the other hand are a set of variables, often confounding variables, for which

investigators want to adjust for but not subject to variable selection. We hereafter use predictors and exposures,

and covariates and confounding variables (i.e. confounders) interchangeably. Hierarchical interactions impose

restrictions on the values higher order terms can take and have different strengths. Within the context of 2.19,

weak hierarchy implies βj1j2 6= 0 only if βj1 6= 0 or βj2 6= 0. Strong hierarchy, on the other hand, implies

βj1j2 6= 0 only if βj1 6= 0 and βj2 6= 0. Strong and weak hierarchy also hold within the n-way interaction

model where the degree of the interaction model (i.e. n) is less than or equal to the number of predictors (p).

Shrinkage methods are highly appealing in this setting because these not only make estimation possible but

some methods offer simultaneous variable selection.

Constrained optimization (i.e. penalized regression) methods offer shrinkage but not all have the capability

to simultaneously perform variables selection, and only recent methods have begun to incorporate ordered

selection for hierarchical interactions. Ridge regression as one of the first penalized regression methods offered

parameter stabilization but the L2 constraint on the regression parameters is not able to shrink estimates to

zero thereby incapable of performing simultaneous variable selection (Hoerl and Kennard, 1970). The Least

Absolute Shrinkage and Selection Operator (LASSO) is a widely used shrinkage estimator that uses the L1

norm constraint which allows parameter estimates to be shrunk to exactly zero (Tibshirani, 1996). LASSO

is a favorite and widely popular shrinkage technique because of its theoretical properties, fast and scalable

algorithms, and implementation in software (Lockhart et al., 2014). There have been numerous extension

of LASSO that can incorporate hierarchical interactions such as the hiernet, group-lasso interaction network

(GLINTERNET), and generalization framework for modeling interactions with a convex penalty (FAMILY)

(Bien et al., 2013; Haris et al., 2016; Lim and Hastie, 2015). LASSO and GLINTERNET have been carefully

studied in comparison to other variable selection methods within the context of correlated predictors for

interaction selection, see Barrera-Gómez et al. (2017); Sun et al. (2013). For all of the great theoretical and
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computational advances of LASSO and variants, there are still advances being made in quantifying uncertainty

in selection and estimation (Lockhart et al., 2014).

Bayesian methods offer an alternative way of achieving shrinkage and in some instances simplify charac-

terizing uncertainty with direct connections to some penalized regression methods. In Bayesian analyses, all

model parameters are assumed to have an underlying distribution called a prior, where then inference is based

on the posterior distribution. The optimization equation of the LASSO,

L(λ,β) = (y −Xβ)′(y −Xβ) + λ

p∑
j=1

|βj |, (2.20)

shows there is an equivalence to assuming an i.i.d. double exponential prior with zero mean on the regression

coefficients. Assuming this prior defines the Bayesian LASSO in the linear regression setting, where then

inference is based on the posterior distribution π(β|y) with samples obtained via Markov Chain Monte Carlo

algorithms (Li and Lin, 2010; Park and Casella, 2008). The variability can be characterized by the posterior

samples and testing performed by computing posterior inclusion probabilities as the proportion of βj /∈ (−ε, ε)

for some small ε > 0. The Bayesian analogue of the group LASSO has been developed, however, constructing

a prior that preserves hierarchy is not trivial (Xu et al., 2015). Priors can be carefully constructed to place

greater sparsity on higher order interaction terms, for example see Antonelli et al. (2017); Herring (2010), but

few if any exist that uphold strong hierarchy.

An alternative to LASSO type priors for shrinkage and variable selection is to use spike-slab priors on

regression coefficients. These priors offer simplification in testing for inclusion over continuous sparsity

inducing priors (e.g. LASSO type priors) because these allow parameters to assume the value zero. Thus

posterior inclusion probabilities can be easily constructed as the proportion not assuming zero, as opposed to

using interval type testing procedures. Spike-slab priors are defined as a two-component mixture distribution

between degenerate at zero (i.e. spike) and continuous distributions (e.g. Normal, double exponential, etc),

and generally require including more parameters (George and McCulloch, 1993; Geweke, 1996). Shrinkage

can be incorporated in two ways, through the prior: 1) probability of exclusion (i.e. probability of point mass

at zero) and 2) hyper-parameters on the slab distribution. These features allow investigators greater control

and facilitate the characterization of uncertainty in both estimation and variable selection. Spike-slab priors

however do not offer the capability to formally group or cluster predictors based on magnitude of associations.

Few Bayesian methods have been proposed which can simultaneously group predictors. The multiple

shrinkage and effect fusion priors are priors on regression coefficients that can be used to group predictors but

have not been explicitly used for assessing non-homogeneous associations MacLehose and Dunson (2010);

Malsiner-Walli et al. (2018). Herring (2010) proposed a semi-parametric pairwise interaction model with a
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modified spike-slab prior in the form:

βj ∼ π01δ0(·) + (1− π01)G1(·), for j = 1, . . . , p

βj1j2 ∼ π02δ0(·) + (1− π02)G2(·), for 1 ≤ j1 < j2 ≤ p

π0l ∼ Beta(aπl, bπl) (2.21)

Gl ∼ DP(αl, G0l)

G0l ≡ N(µBl, σ
2
Bl), for l = 1, 2,

δ0(·) is the degenerate distribution at zero, and DP denotes the Dirichlet Process distribution. This specification

offers numerous appealing properties. First, it preserves variable selection by including degenerate distributions.

Second, it separates the priors assumed on the main effect and interaction coefficients resulting in a grouping

of coefficients, where a group specific prior probability of exclusion can be specified via π0l. Lastly, the

non-parametric Bayes DP prior simultaneously provides a mechanism for within group clustering of predictors

based on the magnitude of the coefficients and shrinkage. This can be illustrated by observing the DP prior

within its stick-breaking representation,

Gl(·|Bl,λl) =

∞∑
h=1

λhlδBhl
(·), (2.22)

where λl ∼ stick(αl),Bl = {Bhl}∞h=1, and Bhl ∼ G0l (Ferguson, 1973; Sethuraman, 1994). The stick break-

ing prior implies λhl = νhl
∏
h′<h(1− νh′l) with νhl ∼ Beta(1, αl) (Sethuraman, 1994). The discreteness

of the DP prior shows regression coefficients are clustered by taking the same group specific block atom

value, Bhl, where then the atom values are shrunk toward the block specific base measure mean, µBl. Further,

the group specific precision parameter, αl, controls the degree of regression coefficient magnitude clustering

where smaller values favor clustering. The grouping and prior specification of 2.21 offers great flexibility in

incorporating prior shrinkage on the regression effects and inclusion probability by effect type, which can be a

way to control for hierarchy by specifying priors to favor inclusion of lower order terms. This is a sensible way

to achieve hierarchy in pairwise interaction models but can become difficult to control in n-way interaction

models and it does not completely guarantee hierarchy.

Bayesian methods offer the capability to simplify and incorporate shrinkage in numerous ways for

assessing non-homogeneous associations between moderate to highly correlated predictors and a health

outcome of interest. However, there is currently a void in Bayesian methods that can accommodate hierarchical

interactions as well as simultaneous provide estimation, variable selection, grouping of predictors, and
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characterization of variability. In Chapter 4, we propose and study a Bayesian semi-parametric model with

hierarchical interaction selection.

2.3 Compositional Data Analysis

Compositional data analysis is defined as a multivariate random vector of size D, y = (y1, . . . , yD)′, with

the constraint
∑D
j=1 yj = κ. The space defined by such vectors then defines the simplex of D parts as:

SD = {y = (y1, . . . , yD)′,

D∑
j=1

yj = κ, yj > 0, j = 1, . . . , D}, (2.23)

where κ is some positive constant. When κ = 1 then SD is the unit simplex where yj ∈ R[0,1] for all j.

Compositional data or compositional multivariate proportions lie in the unit simplex. The unit simplex is a

specific type of multivariate scale that is bounded on the real line.

The mixture model has been a useful tool for distributional clustering in heterogeneous populations and

has been adapted for compositional data in numerous ways. The mixture of Dirichlets modeling framework

is a natural approach for compositional data analysis because the Dirichlet distribution is defined on the

unit simplex. However, it has been seldom used in application primarily because estimation of the Dirichlet

distribution parameters is not trivial atop selecting the number of components in the model (Bouguila et al.,

2004; Calif et al., 2011a; Giordan and Wehrens, 2015). A class of Dirichlet Process mixture of Dirichlets

models has been recently developed where estimation of the number of components is circumvented by using

an infinite mixture (Barrientos et al., 2015). This Bayesian non-parametric framework has theoretical backing,

can provide density estimation, and is capable of model-based clustering. Another mixture model on the

simplex was defined using the principle of staying in the plane (Comas-Cufı́ et al., 2016). The principle of

staying the plane, briefly, consists of applying a one-to-one projection from the simplex space, SD to the real

space, RD−1, using log ratio transformations, where then standard statistical methods are applied (Aitchison,

1986; Pawlowsky-Glahn et al., 2015). Comas-Cufı́ et al. (2016) defined a mixture model on the simplex using

a multivariate normal kernel on the isometric log ratio coordinates. This mixture model was shown to be more

flexible in density estimation over a finite mixture of Dirichlet distributions but requires mixture component

selection. Current approaches for analyzing compositional data with heterogeneous populations are well suited

resources for dealing with the non-conventional scale of the simplex and distributional clustering, however,

because these rely on standard distributions, these are problematic at boundary elements (i.e. zero values in

composition components).
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Essential zeros, defined as a true absence of a component within a composition, have been traditionally

problematic. For instance, the compositional mean (i.e. measure of central tendency), defined as the scaled

geometric mean across all components is incapable of providing a true measure of central tendency because

zeros present within a component will zero out the corresponding component in the overall estimate. In terms

of modeling, methods that rely on standard distributions such as the Dirichlet or log ratio methods are also

problematic because these can be zero or undefined, respectively. Thus typically, compositional data containing

essential zeros is analyzed via stratification by zero pattern or imputing zeros with small positive quantities as

is done for rounded zeros (Martın-Fernandez et al., 2011; Kaul et al., 2017b). Stratification complicates the

interpretation of analyses without a way to jointly draw conclusions statistically, and imputation is not tenable

for certain applications such as physical activity time budget proportions. Recently, a method for accounting

for essential zeros via a conditional multivariate Gaussian distribution which characterizes essential zeros

and estimates means and covariance matrices has been developed (Kaul et al., 2017a). This methodology

is appealing because it has theoretical backing and is applicable on high dimensional data, however, this

methodology while compositional may not be directly applicable for vectors in the unit simplex.

The literature on mixture models for compositional data is limited and current methods cannot handle

essential zeros despite their great applicability. In environmental epidemiology, for example, it may be of

interest to profile the composition of household dust but it may be possible for some households to be devoid of

certain particles. Additionally, in physical activity epidemiology, it is often of interest to profile time budgets

of sleep, sedentary behavior, and physical activity using accelerometer devices where many adults may not

achieve moderate to vigorous levels of physical activity in a 24 hour time period. Thus, in Chapter 5, as a case

study of a particular scale, we develop a joint mixture model for compositional data with essential zeros.
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CHAPTER 3: JOINT MODELING OF MIXED SCALE VARIABLES USING MODULARIZED
TENSOR FACTORIZATIONS

3.1 Introduction

Recent technological developments in the ability to collect and store vast amounts of information on

subject units of interest have resulted in a need for development of statistical procedures that can accommodate

this scenario which can span multiple variable scales. In assessing how multiple exposures, risk factors, and

subject characteristics interrelate and affect human health, it may be overwhelming or infeasible to make

interpretations of results in moderate to high dimensions and may present computational difficulties in certain

statistical models, especially when some variables are highly correlated. Thus, simple exploratory data analysis

tools that can aid in understanding complex associations among variables of different scales are necessary to

aid model development and somehow summarize these. Dimension reduction tools have been successful for

summarizing multivariate subject characteristics by a smaller set of functionals (e.g. principal components,

clusters, latent classes, profiles, etc.) which make interpretations a bit more manageable. For example, these

methods have been in particular useful for assessing the intercorrelated nature of short-term air pollution

exposure effect on health (Davalos et al., 2017). Motivated by distributional approaches to clustering and

generating summary multivariate mixed-scale profiles, in this paper, we study modularized tensor factorizations

for assessing joint structures of multivariate mixed-scale variables.

Modeling multivariate mixed-scale distributions requires sophisticated statistical frameworks since there is

not a standard parametric distribution that do so, and only a recent few facilitate clustering of similar variables

(i.e. mixture modeling). Because there is no standard mixed-scale distribution, most methods have leveraged

continuous and discrete distributions using different assumptions to model mixed-scale data. Some methods

define a mixed scale distribution as a product of conditional and marginal distributions on the continuous

and categorical block of variables and use standard multivariate distributions (e.g. multivariate Gaussian for

continuous variables) on each respective homogeneous scale variable blocks (Edwards, 2012; Lauritzen and

Wermuth, 1989). Other approaches define a joint distribution as a functional of a multivariate distribution of

underlying continuous variables where the functional is defined by rounding (i.e. integrating out) on partitions

of R associated with categorical variables specified by thresholds (Canale and Dunson, 2015; Kunihama et al.,

2016; Poon and Lee, 1987; Zhang et al., 2015). Hybrid approaches combining both of these ideas have also
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been proposed where ordinal categorical variables are assumed to have latent continuous variables and the

latent multivariate continuous distribution is defined conditionally on the set of nominal variables (de Leon and

Carriègre, 2007; Murray and Reiter, 2016). The Gaussian copula has also been leveraged to model mixed-scale

distributions and ends up being related the rounding techniques (Hoff, 2007; Murray et al., 2013). Kernel

density estimation has also been developed for flexible modeling of mixed scale densities (Efromovich, 2011;

Li and Racine, 2003; Nagler, 2017). For a historical and detailed account of mixed-scale distribution modeling

with the exception of recent developments, see (De Leon and Chough, 2013). Few of the mentioned modeling

frameworks allow for an immediate leveraging of modeling components which can be used for clustering of

subjects. Further, most of these methods, especially those with rounding components, are not applicable for

nominal variables and those that are do not facilitate quick measures of association for nominal variables.

The product kernel mixture model is a very versatile statistical framework that has been exploited to

flexibly model many different types of data including unordered categorical and mixed-scale, while providing

a natural basis for multivariate distributional clustering. In mixed-scale modeling, the product kernel allows

for the specification of variable specific kernels which avoids the need for a latent continuous variables and

relaxes assumptions for nominal categorical variables. Dunson and Bhattacharya (2011) proposed the discrete

mixtures of product kernels (DMPK) model which provided a basis for the product kernel in mixed-scale

modeling but inference on the joint dependence structure of vector does not perform well (Banerjee et al.,

2013). The infinite tensor mixture model (ITM) was recently proposed and defined as a tensor mixture model

with product kernels which was shown to have comparable and improved prediction accuracy in certain

scenarios over the DMPK (Banerjee et al., 2013). The ITM is the first of a kind framework that facilitates

scale-free assessment of dependence. Another notable feature is that the tensor clustering mechanism allows

marginal as well as joint clustering which can be used to summarize multivariate profiles. However, with all

the highly appealing features, the ITM framework requires a sophisticated sampling algorithm and its tensor

(i.e. simultaneous marginal and joint) clustering may at times hinder performance where feedback from the

joint structure limits the flexibility of modeling the marginal structures.

The proposed method, simplifies the ITM by separating the modeling into two components which

consequently provides a framework for addressing multiple interesting statistical elements while preserving

its notable features. The ITM assumes conditional complete mutual independence among all variables

where dependence among the variables is inherited through the dependence of the cluster allocations, which

is exploited to construct scale-invariant measures for assessing pairwise or higher order dependence via

Kullback-Leibler style measures. This provides the basis and logic behind our two component approach to

mixed-scale modeling as MOdularized TEnsor Factorizations. In the first (marginal structures) module, we

separately assume each variable has an unknown marginal distribution which is modeled with a Bayesian
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non-parametric mixture model. In the second (interaction) module, the marginal cluster allocations are then

treated as an unordered multivariate contingency table which is modeled via the parallel factors (PARAFAC)

tensor factorization.The modularization and models chosen for each component immediately simplify the

ITM sampling algorithm and the separate marginal models can be implemented in parallel for computational

scalability and speed. Typical modularized approaches take a summary measure from the first module which

is then fed into the second module. In epidemiologic studies, non-interwoven studies are typically used, for

example, using latent factor/class analysis to estimate dietary patterns and then include indicators of pattern

membership in a second stage regression model (Sotres-Alvarez et al., 2013). By construction, MOTEF allows

a uni-directional sharing of information from module one to module two (i.e. interweave) which directly

addresses the second limitation of ITM. PARAFAC tensor factorizations have very useful tools for assessing

and quantifying pairwise and higher order dependence, but are not directly useful to mixed-scale data (Dunson

and Xing, 2009). Thus, MOTEF provides an adapted framework that allows those well developed methods to

be used in the mixed-scale setting, thereby preserving the appealing features of ITM.

MOTEF is a modeling framework conceptually similar to copulas but different from extended rank

likelihood copula methods for mixed-scale variables, where MOTEF assumes the unifying model is a tensor

as opposed to a multivariate Gaussian and the marginal structures are modeled (Hoff, 2007; Murray et al.,

2013). This leads us to first statistical element to study: the effectiveness of assessing joint dependence by

marginal structures. Recently, this was studied for exploring pairwise dependence and MOTEF can thought of

as an extension to p-variate vectors as opposed to bi-variate vectors (Filippi et al., 2016). Secondly, MOTEF

allows investigators to explore the complete mutual conditional independence data generating mechanism

much similar to the DMPK, which can be useful as an exploratory method to summarize moderate to high

dimensional data. This is a data generating mechanism that has seldom been assumed for mixed-scale data

since most methods have used some variation of rounding, but is a basis for certain ad-hoc mixed-scale

methods which categorize non-discrete variables and then assess all as multivariate discrete data (De Leon

and Chough, 2013). Lastly, MOTEF provides a unified modeling framework which accounts for uncertainty

in categorizing non-categorical variables by the interweaving into the interaction module. Interweaving has

been used to account for uncertainty in air pollution profile clusters in assessing the association between air

pollution and term low birth weight (Molitor et al., 2016). In a similar way, MOTEF accounts for variation in

marginal subject cluster membership in jointly modeling mixed-scale data.

Even though the idea behind MOTEF is simple, it is a unified method which has potential to be routinely

used as an exploratory data analysis tool with many attractive features. The paper proceeds as follows: Section

3.2 presents background and formulation of MOTEF, section 3.3 presents results of simulation experiments

aimed at assessing joint dependence by marginal structures, section 3.4 presents an application of the proposed
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method in describing associations among risk factors and confounding variables on the risk of selected

birth defects from a large population-based epidemiologic study of birth defects, the National Birth Defects

Prevention Study, and concludes with a discussion in section 3.5.

3.2 Modularized tensor factorizations

3.2.1 Background

Suppose we observe a multivariate mixed scale data vector, yi = (yi1, . . . , yip)
′ ∼ f , which comes

from an unknown joint density f and let sj ∈ {1, . . . , S} index the measurement scale for variable j, for

j = 1, . . . , p. One of the greatest complications to modeling f is the complexity involved with specifying

a multivariate distribution that can account for all the scales but a wealth of options exist for univariate

distributions with parametric and non-parametric approaches. The mixture model is a sound choice for

modeling an unknown marginal distribution of yij ,

fj(yij) =

∫
Θj

Kj(yij |θj)dPj(θj), (3.24)

where Kj(yij |θj) is a kernel appropriate for sj indexed by θj ∈ Θj and Pj is a probability distribution over

the space Θj , that can “categorize” by effectively clustering observations by the indexed kernel. The Dirichlet

process random measure has seen widespread use as a prior for the mixture model and the discovery of its

stick breaking representation has facilitated hierarchical modeling (Ferguson, 1973; Sethuraman, 1994). A

hierarchical specification is elucidated as,

yij ∼ Kj(yij |θ∗xij ,j), θ∗hj ∼ P0j , Pr(xij = h) = ωhj , (3.25)

where xij is a latent allocation variable, ωhj = ω∗hj
∏
h′<h(1 − ω∗h′j), and ω∗hj ∼ beta(1, αj). A short

hand representation of the prior specification on the weights is ωj ∼ stick(αj). In density estimation of

continuous variables, the mixture model with DP priors and Gaussian kernel (GDPM), is a staple method

among non-parametric techniques (Escobar and West, 1995). Additionally, in modeling count data, the GDPM

has been successfully used with great performance as a distributional assumption on continuous latent variables

where the discrete count distribution is obtained via rounding (Canale and Dunson, 2011). Given that we are

motivated to bring a formalized approach to the first ad-hoc version approach to multivariate dependence,

categorical variables may be left as observed (assume Dirac measure) or be assigned a multinomial kernel if

we would like greater compression. This is a simple convenient framework that we adapt for the univariate
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model assessment for variables with continuous and count scales. One of the highly appealing properties of

the mixture modeling is its ability to effectively model data that cannot be necessarily assumed distributed

according its kernel, for example the GDPM has been very successful in the density estimation of non-Gaussian

distributed data.

Mixture models have also been proposed for modeling multivariate mixed scale data. We highlight two

methods with distinct approaches. Canale and Dunson (2015) have recently developed theoretical properties

of Bayesian non-parametric modeling of mixed scale data by assuming a multivariate Gaussian DPM on latent

continuous variables where the joint distribution is induced by thresholding (i.e. rounding) the categorical

variables. The only drawback to this method, is its shortcoming where the latent continuous variable assumption

may not be justifiable for nominal variables thus making it difficult to interpret the degree of association

between nominal and continuous variables. Dunson and Bhattacharya (2011) proposed a different mixture

modeling approach by assuming conditional independence on product kernels where multivariate dependence

is induced by integrating out the allocation variable, that is,

f(yi1, . . . , yip) =

∫
Θ

p∏
j=1

Kj(yij |θj)dP (θ), (3.26)

θ = (θ1, . . . , θp)
′, P (·) = ⊗pj=1Pj(·), and Θ = ⊗pj=1Θj (Dunson and Bhattacharya, 2011). This approach

seemingly circumvents the nominal variable shortcoming of continuous latent variable approaches. Even

though these NPB approaches offer great flexibility, in the presence of moderate to high-dimensional variables

the unidirectional approach may under certain scenarios be restrictive and run into computational difficulties,

especially when using a high dimensional covariance or large number of parameters.

The non-parametric Bayes product multinomial mixture mode approach proposed by Dunson and Xing

(2009) has been highly successful in modeling multivariate categorical data and contingency tables applications.

Under the same framework, this mixture modeling approach has performed well because the joint probability

mass function is characterized as a low rank probability tensor through singular value decomposition on positive

value matrices, termed non-negative PARAFAC factorization (Dunson and Xing, 2009). The multivariate p.m.f

is modeled as

pr(xi1 = c1, . . . , xip = cp) = πc1···cp =

∞∑
h=1

λh

p∏
j=1

ψhcj ,j , (3.27)

where λ ∼ stick(α), ψhj ∼ Dirichlet(aj) for h = 1, . . . ,∞ and j = 1, . . . , p, and aj = (a1j , . . . , adj ,j)
′.

The brilliance behind this method is its simplicity and parsimony coupled with the DP assumption where from

a set of p categorical variables the number of parameters needed to estimated the multivariate multinomial
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reduces from
∏p
j=1 dj−1 to

∑p
j=1 dj−p, and the DP assumption to the weights which avoids the specification

of the tensor rank and who’s precision parameter can be specified to favor a smaller rank values or be assigned

a prior for a more data driven approach. This method however is not directly useful for mixed scale modeling

but has provided a basis for other methods.

The infinite mixture of product kernels framework for mixed-scale distribution modeling seems to

be powerful to tool that is simple, easy to understand and highly flexible where its only restriction is its

unidirectional search along the product space of the kernel parameters. By design, the product kernel mixture

model allows only a linear search along the product space of the kernel parameters, that is, the indexing

of the kernel parameters is across all parameters θh = (θh1, . . . , θhp)
′ which can be slow in exploring the

parameters space and eventually come across computational issues. Greater flexibility can be obtained by

allowing a multi-directional indexing as θh1···hp
= (θh1,1, . . . , θhp,p)

′. However, this leads to the tensor

mixture model where one has to also consider how to carefully incorporate the simultaneous estimation of the

multidimensional probability tensor.

The Dunson and Xing (2009) modeling of a probability tensor is one approach to defining and estimating a

tensor within a mixture model setting. Banerjee et al. (2013) simultaneously generalized the tensor factorization

to the infinite “arm” case (i.e. infinite tensor factorization, ITF) and developed the infinite tensor factorization

mixture (ITM). The ITF is defined as

π =

∞∑
h=1

λh

p⊗
j=1

ψhj , (3.28)

where ⊗ denotes the outer product, λ ∼ stick(α), and ψhj is an infinite probability vector (otherwise known

as “arms”) with ψhj ∼ stick(βj). By introducing a latent indicator variables that denotes the location of a cell

in the product infinite space such that pr(C1 = h1, . . . , Cp = hp) = πh1,...,hp
, then the ITM is defined as a

product kernel mixture model,

f(yi1 ∈ B1, . . . , yip ∈ Bp) =

∞∑
h1=1

· · ·
∞∑

hp=1

πh1,...,hp

p∏
j=1

Kj(Bj ; θhj ,j), (3.29)

where Bj corresponds to a Borel set from the product sigma algebra field generated from the product support

space of the data vector yi. This modeling scheme here addresses a larger problem called mixed domain

modeling which accounts not only for mixed scaled data but also data of other objects such as functions, shapes,

and images. The genius of this method is it achieves all desired purposes in that it is a simple straightforward

extension of the simple mixture model that allows multi-directional exploration of the kernel parameter space

that can be implemented via a not so simple Gibbs sampling scheme. Also, the unified approach to joint

modeling here is its blessing and its curse since the joint clustering may heavily influence the information
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fed into the estimation of the marginal structure, that is, θj may be unduly influenced by all other variables.

Additionally, even though it is an improvement upon the unidirectional mixture model, it too suffers from an

inevitable breakdown point and is not readily available in software for routine implementation.

Thus, we propose a separation of the fully unified approach to the ITM via modularization where the

first model captures a good estimate of each variable marginally then characterizes dependence via tensor

factorization. This results in a dramatic conceptual and implementation simplification of the ITM while

formalizing the current ad hoc approaches, and study how successful joint dependence is captured via marginal

structures and account for uncertainty as an improvement to modularization by allowing module 1 to feed into

module 2 at each iteration of the sampling which we call interweaving.

3.2.2 Data and model structure

In the previous section, we introduced the data vector of mixed scales, yi, as part of an i.i.d sample of

size n from an unknown joint density f and their respective scale indicators, sj . We let sj = 1, 2 correspond

to categorical and count variables having support {0, 1, 2, . . . ,∞}, respectively, with the remaining scales

correspond to continuous variables with support on some subset Ys ⊂ < of the real line. We proceed with the

definition of the MOTEF algorithm by defining the module 1 and module 2 models.

Module 1 (Marginal structures)

To flexibly model each marginal variable with index sj ≥ 2, as stated in the previous section, we assume

yij follows a mixture model as in 3.24. Note, the kernel, Kj , is chosen appropriate for sj . In hierarchical form,

we have,

yij ∼ Kj(θ∗xij ,j
, τj), Pr(xij = h) = ωhj ,

ωj ∼ Dir(aj1), θ∗hj
iid∼ P0j ,

(3.30)

where aj1 = (a1j1, . . . , adjj1)′, and τj is a shared global parameter that does not vary by sub-group. Note,

this is similar to a DPM with the simplification that the weights do not follow a stick breaking process and are

finite. We fix dj at a large value to correspond to an over-fitted mixture prior model which has been found to

favor automatic deletion of redundant components (Rousseau and Mengersen, 2011). When sj = 2 so that the

data are count-valued, we use the rounded Gaussian kernel mixture approach of (Canale and Dunson, 2011).

When sj ≥ 3 we instead use mixtures of Gaussian kernels truncated to the support Yj . In a simple case in

which none of the continuous variables have constrained support, we could have sj = 3, Y3 = < and can

choose Kj to correspond to a Gaussian location-scale mixture (in which case θ∗hj = (µhj , σhj)
′ is the location

and scale and there is no τj). For categorical variables, sj = 1, the structure of the mixture model is slightly
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modified where we have:

yij ∼ δxij , Pr(xij = h) = whj , ωj ∼ Dir(aj1), (3.31)

where δB(A) is the Dirac measure which corresponds to assigning the value B with probability one when

A = B, which simply passes the observed yij to xij .

Module 2 (Interaction)

In this module, we characterize the joint dependence among a functional of the collection of marginal

allocation variables, x∗i = g(xi) = g((xi1, . . . , xip)
′), as a low rank probability tensor via an adaptation of

the Dunson and Xing (2009) model presented in 3.27. The hierarchical model specification is as follows,

x∗ij ∼ Multinomial(1,ψzij), Pr(zi = c) = λc,

λ ∼ Dir
(

1
k0

1d0
)
, ψhj

iid∼ Dir(aj2),
(3.32)

where λ = (λ1, . . . , λd0)′, 1d0 denotes a size d0 vector of ones, and aj2 = (a1j2, . . . , ad′jj2)′. Note, (3.32)

corresponds to an over-fitted mixture of product multinomials while (3.27) is an infinite mixture of product

multinomials with stick-breaking weights.

MOdularized TEnsor Factorization (MOTEF) algorithm

1. Sample clusters independently. Conduct posterior computation for each of the variables j = 1, . . . , p

in parallel, to produce samples of xij , for i = 1, . . . , n based on the posterior distribution

π(xj ,ωj ,θ
∗
j , τj |yj),

xj = (x1j , . . . , xnj)
′, yj = (y1j , . . . , ynj)

′, θ∗j = (θ∗1j , . . . , θ
∗
djj

)′
(3.33)

which ignores information from the other variables yi(−j) and the interaction model (3.32).

2. Sample interaction parameters. Conduct posterior computation under model (3.30) based on the

posterior distribution

π(λ,ψhj , h = 1, . . . , k,z|x∗i , i = 1, . . . , n), z = (z1, . . . , zn)′ (3.34)

where the functional of the latent cluster data x∗i = (x∗i1, . . . , x
∗
ip)
′ are treated as known in this step.

Precise details of the above algorithms are described in the next subsection for certain choices of kernel.

In general, the modularization strategy cuts the dependence in conducting clustering on the individual-

variable level to avoid feedback across the different variables, which can contribute to lack of robustness and
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computational problems. Our unidirectional interwoven approach, that feeds module 1 allocation variables to

module 2, additionally accounts for uncertainty in the marginal clustering which is in contrast to traditional

modular who require a single point estimate x̂i to be fed to subsequent modules. This modularization is

philosophically appealing in that it makes sense that the cluster allocation and modeling of the marginal

distributions of the different variables does not depend on the other variables. In our separation of the marginals

and the dependence structure, we provide a simplification to the ITM and a conceptually similar alternative

to the Gaussian copula through discretization rather than using latent continuous variables (Banerjee et al.,

2013; Hoff, 2007). Instead we fully specify a probability model for the marginals and accommodate richer

dependence structure through our fully non-parametric interaction model in (3.27) which can accommodate

most variable scales including nominal.

3.2.3 Posterior Computation

The sampling for MOTEF can be conducted in blocks. It in fact can be implemented via simple Gibbs

sampling if the choice of module 1 permits. We are also interested in implementing an alternative form of

MOTEF where we use stick-breaking priors in all mixture models so these modifications will be presented at

the end of the section. Sampling steps are presented for the simple case where sj ∈ {1, 2, 3} for all j.

For variables with sj = 2, we use the rounded Gaussian kernel:

Kj
(
yij |θ∗xij ,j

)
=

∫ yij+1

yij

N
(
y∗ij |µxij ,j , σ

2
xij ,j

)
dy∗ij ,

where θ∗xij ,j
= (µxij ,j , σ

2
xij ,j

)′ (Canale and Dunson, 2011). Recall, for categorical variables, we set xij = yij

for {j : sj = 1}. For count and continuous variables we choose P0j to be the normal-inverse gamma prior,

N
(
µ0,

σ2

κ

)
× Inv-Ga(aσ, bσ).

Module 1

For each j update each component by sampling from each full conditional:

1. ωj |− ∼ Dir(ãj1) where ãj1 = (a1j1 + n1j1, . . . , adjj1 + ndjj1)′ and nhj1 =
∑n
i=1 I(xij = h).

2. Pr
(
xij = h| −

)
∝ ωhjKj(yij |θ∗hj) for h = 1, . . . , dj .

3. Update kernel specific parameters and latent variables

(a) If sj = 3, (µhj , σ
2
hj)|− ∼ N

(
µ̃hj ,

σ2
hj

κ̃hj

)
× Inv-Ga(ãhσj

, b̃hσj
), where ãhσj

= aσj
+ nhj1, b̃hσj

=

bσj
+ (SSh + κ̃hjphj(1− phj)(ȳhj − µ0j)

2)/2, SSh =
∑
i:xij=h(yij − ȳhj)2, phj =

κj

κj+nhj1
,

ȳhj =
∑
i:xij=h

yij
nhj1

, κ̃hj = κj + nhj1, and µ̃hj = phjµ0j + (1− phj)ȳhj for h = 1, . . . , dj .
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(b) If sj = 2, update

i. y∗ij |− ∼ tN(µhj , σ
2
hj , yij , yij + 1) for i = 1, . . . , n where tN denotes the truncated normal.

ii. (µhj , σ
2
hj)|− ∼ N

(
µ̃hj ,

σ2
hj

κ̃hj

)
× Inv-Ga(ãhσj

, b̃hσj
) as in (a) with the exception that yij is

replaced with y∗ij in b̃hσj
and µ̃hj .

Rather than pass along the latent allocation variables xi into the interaction module, we incorporate an

intermediate step that is a relabeling step. We observed greater efficiency in the dependence measures and

computation time by passing along x∗i into the interaction module instead, defined as the x∗i ∈ 1, . . . , d′j

where d′j =
∑dj
kj=1 I(nkjj1 > 0) for {j : sj 6= 1}. In other words, unoccupied labels are discarded. Note,

for non-nominal variables we pass through the observed data, yij = xij = x∗ij for j : sj = 1. Also, note that

d′j ≤ dj since we are relabeling and discarding unoccupied allocation labels.

Module 2

1. λ|− ∼ Dir( 1
k0

+m1, . . . ,
1
k0

+md0), where ml =
∑n
i=1 I(zi = l) for l = 1, . . . , d0.

2. Pr(zi = l|−) ∝ λl
∏p
j=1 ψlx∗ij ,j for l = 1, . . . , d0.

3. ψlj |− ∼ Dir(a1j2 +
∑
i I(zi = l, x∗ij = 1), . . . , ad′jj2 +

∑
i I(zi = l, x∗ij = d′j)), for l = 1, . . . , d0.

In routine implementation, we recommend the following default choices for prior specifications in the

simple case. For each j, set dj to some large value that exceeds the number of suspected clusters and set

aj1 = 1
kj

1dj . We follow previously recommended convention that for j such that sj = 3 variables be

normalized and set µ0j = 0, κj = 1, aσj
= 2, and bσj

= 4 (Gelman et al., 2014). For count variables

sj = 2, we follow an empirical Bayes approach with µ0j = ȳj , κj = 1/σ̂2
j , aσj

= 1, and bσj
= 2 where

ȳj =
∑n
i=1 yij and σ̂2

j =
∑n
i=1(yij − ȳj)2/(n− 1) (Gelman et al., 2014). In the second module, we let the

“arm” assume a symmetric Dirichlet with aj2 = 1d′j . In all of the over-fitted mixture model components we

set the number of components to a large number relative to sample size, say 100 as a default, dj = 100 for

j = 0, 1, . . . , p. And, in order to effectively zero out unnecessary components, we follow the recommended

practice of setting Dirichlet parameters to k0 = kj = 1025 for {j : sj 6= 1}. This specification is equivalent to

a sparse finite mixture models (Malsiner-Walli et al., 2016).

3.2.4 Inference

MOTEF does not have a unified model for defining an eMI. However, we combine each of its components

to define a pseudo-joint function by taking components of each module. Module one, the marginal component,

provides the cluster allocations which allow the transformation of the mixed-scale vector to become a p-way
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contingency table. One appealing feature of the first module is that at each iteration a corresponding mixture

model kernel can be identified for non-zero clusters. The non-zero clusters are important because for efficiency,

unoccupied labels are discarded. Thus, the pseudo-joint distribution functions can be defined from the modular

product kernel tensor mixture model:

f̃(yi) =

d′1∑
h1=1

· · ·
d′p∑

hp=1

π̂h1···hp

p∏
j=1

Kj(yij |θ̂hjj), (3.35)

where π̂h1···hp
is the estimated tensor from the interaction module and θ̂hjj is the parameter corresponding to

marginal module kernel parameters identified for the occupied labels.

The empirical mutual information measure for this model was defined as:

ζj1j2 = 1
n

n∑
i=1

log

(∑d′j1
hj1

=1

∑d′j2
hj2

=1 π̂hj1
hj2
Kj1(yij1 |θ̂hj1

j1)Kj2(yij2 |θ̂hj2
j2)

f̃j1(yij1)f̃j2(yij2)

)
, (3.36)

where f̃j(yij) =
∑d′j
hj=1 π̂hjKj(yij |θ̂hjj).

A mutual information measure is computed at each iteration of a sampler and summarized by the mean,

ζ̂j1j2 =
1

T

∑T
t=1 ζj1j2,t for all pairs of variables. For testing, P̂r(H1j1j2 |Y ) =

1

T

∑T
t=1 ζj1j2,t > 0 where

H1j1j2 is the alternative hypothesis of H0j1j2 : Yj1 ⊥ Yj2 . For defining dependence, we flag pairs of variables

as dependent if P̂r(H1j1j2 |Y ) > 1− α.

3.3 Simulation Study

The performance of the proposed method was assessed via a simulation study. We compared the

performance of MOTEF relative to the performance of the MPK. There is no standard or straightforward way

of modeling a mixed-scale distribution so we defaulted to the MPK because of its robustness, simplicity in

definition, and excellent computational performance. The aim of the simulation study was to compare the

ability to: 1) adequately model the dependence structure; 2) convergence diagnostics; 3) the posterior number

of clusters chosen.

The aims of our simulation study were rooted by our interest in determining how a collection of mixed-

scale variables interrelate and jointly profiling or clustering observations. The multivariate dependence

was assessed via the empirical mutual information measure defined in the previous section for MOTEF

with an analogous version defined for MPK. Since posterior mutual information measures were used for

determining the dependence structure, these posterior samples for all pairs were assessed for convergence

with the multivariate potential scale reduction factor and effective sample size (Brooks and Gelman, 1998).
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Given that we are using a distributional approach to clustering, it is important to monitor some measure of the

number of classes chosen. We chose to monitor the posterior median number of clusters chosen defined as the

number of occupied labels in the module 2 latent allocation variable z. The MPK in difference to MOTEF

only has one latent allocation variable which is used for defining the number of clusters. Additionally, we

monitor the number of clusters chosen from an optimal partition of the data computed using the least-squares

approach of Dahl (2006).

The simulated data consisted of p = 20 mixed-scale variables with 11 dichotomous 0/1 variables and three

variables each for polytomous, continuous, and ordered categorical scales. 500 data sets were generated with

the binary, polytomous, continuous, and ordered categorical variable blocks lined up adjacently in the specified

order for variables 1 - 20 assuming dependence among variables {2,3,7,8,12,15,18}. That is, dependence

was induced among four binary and one of each of the other types. We assumed data sets were composed

of three subpopulations where a three-class latent subpopulations indicator was generated with probability

(0.20, 0.55, 0.25). For binary and polytomous variables, the probability vector for each variable differed

within each subpopulation for j = 2, 3, 7, 8, 12. Continuous variables were generated from two (j = 15)

and three (j = 16, 17) component mixture models also with different mixture probability components within

each subpopulation for j = 15. Similarly, ordinal variables were generated by applying the floor function on

a latent continuous variable generated from a three component mixture with different mixture probabilities

within each subpopulation for j = 18. Lastly, all data sets were of sample size 1000.

Each data set was analyzed separately using the Gibbs sampling scheme detailed in the previous section.

For both the MOTEF and MPK procedures, their respective samplers were run for 5,000 iterations with a

1,000 iteration burn-in where every 4th iteration was stored. Additionally, five separate chains were initialized

at different starting allocation values for a total effective sample size of 5,000.

The results of the simulation study indicate that MOTEF and MPK differ slightly in elucidating the under-

lying dependence structure among the mixed scale variables. Figure 3.1 displays the proportion of simulations

at each variable pair flagged as dependent. The range of proportions for flagging true dependent ranged

between (0.42 - 1.00) and (0.73 - 1.00) for MOTEF and MPK, respectively. MOTEF notably outperforms

MPK in flagging location (15,18) with this location flagged as dependent in 99% of the data sets while MPK

flagged 73%. MPK notably outperforms MOTEF in flagging locations (7,18) and (8,18) with proportions 0.97

and 0.86, respectively, compared to MOTEF proportions of 0.42 and 0.74. False discovery proportions ranged

from (0.00 - 0.12) for MOTEF and (0.00 - 0.08) for MPK. Overall, MPK marginally outperforms MOTEF in

selecting the true dependence structure with slightly better performance at correctly flagging true dependence

and lower false discovery proportions.
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Figure 3.1: Results of simulations for MOTEF and MPK, which display percentages of simulations for each
variable pair flagged as dependent, P̂r(H1jj′ : ζjj′ > 0|Y ) > 0.95.

Table 3.1 displays simulation results for various diagnostics comparing MOTEF with MPK. The medians

of the multivariate potential scale reduction factors for MOTEF and MPK were estimated to be 1.14 and

2.40, respectively. Generally, values less than 1.2 indicate the chains have achieved stationarity and mixed

well which implies MOTEF outperforms MPK. MOTEF achieves good diagnostics on all pairwise empirical

mutual information measures treated as multivariate, which are used to characterize the dependence structure

of the simulated data sets. The median of the scaled multivariate effective sample size estimates also show the

superiority of MOTEF over the MPK with values of 0.75 and 0.29, respectively. Scaled multivariate effective

sample size values close to one indicate the multivariate posterior sample is akin to an independent identically

distributed sample. Thus, the characteristics of the MOTEF posterior samples are much better than MPK.

MOTEF also outperformed the MPK in selecting a number of clusters closer to the true number of

subpopulations. Table 3.1 also displays the proportion of data sets by posterior median number of clusters

and the number of clusters (i.e. occupied components) from the least squares selected optimal partition for

MOTEF and MPK. Across the overwhelming majority of data sets, MOTEF correctly estimated the posterior

median number of clusters at three using the posterior median and the optimal partition with 98.8% and 96.6%

of the 500 data sets. MPK on the other hand selected a greater number of clusters which ranged from four to

seven for both the posterior median number of clusters and number of clusters from the optimal partitions.

The mode of the median number of clusters for MPK was five in 58.2% data sets while the optimal number of

clusters chose five clusters in 51.2% of the data sets.
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Table 3.1: Simulation study results for various diagnostics
comparing MOTEF with MPK; median (IQR) for contin-
uous variables, percentages for integer valued diagnostics
(out of 500 data sets)

Diagnostic MOTEF MPK
PSRF1 1.14 2.40

(1.05 – 1.29) (1.35 – 3.56)
Eff. Sample Size2 0.75 0.29

(0.70 – 0.79) (0.19 – 0.43)
Median no. clusters
2 1.2 % 0 %
3 98.8 % 0 %
4 0.0 % 21.2 %
5 0.0 % 58.2 %
6 0.0 % 20.4 %
7 0.0 % 0.2 %
No. clusters - opt. part.
2 3.4 % 0 %
3 96.6 % 0 %
4 0 % 18.8 %
5 0 % 51.2 %
6 0 % 26.8 %
7 0 % 3.2 %
1 Multivariate potential scale reduction factor for empirical mutual

information measures from all pairs of variables
2 Scaled multivariate effective sample size by 5000 (1000 samples per

chain, 5 chains).
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Based on our simulation scenario, MOTEF has better performance over the MPK in efficiency and

subpopulation estimation with somewhat comparable performance in elucidation the multivariate dependence

structure. The proposed method has the ability to mostly characterize multivariate dependence correctly, and

offers the ability to identify latent classes for profiling. Additionally, MOTEF has the potential for being

computationally feasible for moderate to large data sets when coupled with parallelization for the first module

components. Lastly, in addition to providing a smaller number of subclasses, which is useful for investigators

seeking to jointly profile multiple mixed-scale variables, the modularization has the added feature providing

information about the marginal clustering of the non-nominal categorical variables. This feature is not unique

to MOTEF since it is also inherent in the ITM but MOTEF avoids the potential for undue feedback from the

multivariate clustering mechanism as can be observed in ITM.

3.4 Application to Birth Defects Data

The National Birth Defects Prevention Study (NBDPS) consists of cases of birth defects ascertained

through surveillance systems in participating sites: Arkansas, California, Georgia, Iowa, Massachusetts, New

York, North Carolina, Texas, and Utah. Control infants (i.e. children without birth defects) are matched by

geographic region through birth certificates or hospital records to cases. The study interviews mothers of

cases and controls to obtain information on maternal demographic characteristics, medical history, lifestyle,

occupational and environmental exposures, diet, and medication use before and during pregnancy. Paternal

characteristics and exposures were also obtained. Motivated by jointly profiling variables of mixed scale,

we take an exposome approach to jointly characterizing as many risk factors of select adverse outcomes as

an application of our method. By the mixed scale nature of maternal/paternal risk factors observed by the

NBDPS, we use this as a starting point for application of MOTEF and comparison to MPK.

In this application, we implement a stratified analysis of conotruncal heart and gastroschisis defects where

an encompassing list of risk factors is available in NBDPS for both outcomes. Conotruncal heart defects

encompass multiple heart defects which include: truncus arteriosus, transposition of the great arteries, double

outlet right ventricle and tetralogy of Fallot. Gastroschisis is a defect in the anterior abdominal wall. We model

the joint distribution of a set of risk factors on cases and controls. We include the case-control indicator as

means of constructing supervised risk factor profiles. The set of risk factors included 46 mixed scale variables

composed of maternal characteristics, medication use, lifestyle behaviors, proxys for fertility, and illness; and

paternal characteristics and behaviors. The set of risk factors includes those identified by recent reviews of risk

factors for congenital heart and gastroschisis defects which have some overlap and some outcome specific

factors (Feng et al., 2014; Frolov et al., 2010; Patel and Burns, 2013; Rasmussen and Frı́as, 2008). MOTEF
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and MPK are implemented for jointly profiling (i.e. identify clusters) the list of risk factors by defect. Analysis

was restricted to complete cases.

We ran both methods for 25,000 iterations with the first 10,000 discarded as burn-in samples, storing every

15th sample on five separate chains each. MOTEF was implemented with 100 mixture modeling components

and 30 components for each of the continuous and ordinal variable mixture modeling components. MPK was

implemented with 100 mixture modeling components.

The optimal partition for MOTEF indicated there were a smaller number of clusters than the optimal

partition for MPK. MPK observed 42 clusters in the gatroschisis and conotruncal analyses. MOTEF, on the

other hand, identified 9 clusters for both analyses. In terms of cluster size, MPK selected clusters with sizes

varying from 7.5% to <1% while MOTEF selected clusters with sizes between 28.0% and 4.6%. See Table

3.2 for a summary of the dependence clusters for both methods.

Table 3.2: Summary of optimal partition for dependence allocation variables for MOTEF and MPK by outcome

Gastroschisis Conotruncal

MOTEF MPK MOTEF MPK

Cluster n % n % n % n %

1 2268 23.2 733 7.5 2984 28.0 788 7.4

2 1377 14.1 573 5.9 2043 19.1 569 5.3

3 1129 11.6 504 5.2 1265 11.9 539 5.1

4 1081 11.1 483 4.9 1073 10.1 469 4.4

5 994 10.2 462 4.7 974 9.1 454 4.3

6 937 9.6 450 4.6 801 7.5 453 4.2

7 889 9.1 415 4.3 532 5.0 444 4.2

8 584 6.0 401 4.1 503 4.7 416 3.9

9 505 5.2 381 3.9 496 4.6 370 3.5

10 0 0.0 337 3.5 0 0.0 361 3.4

11 0 0.0 318 3.3 0 0.0 360 3.4

12 0 0.0 312 3.2 0 0.0 353 3.3

13 0 0.0 309 3.2 0 0.0 351 3.3

14 0 0.0 299 3.1 0 0.0 301 2.8

15 0 0.0 277 2.8 0 0.0 296 2.8

16 0 0.0 266 2.7 0 0.0 291 2.7

17 0 0.0 242 2.5 0 0.0 267 2.5

37



Table 3.2: Summary of optimal partition for dependence allocation variables for MOTEF and MPK by outcome

Gastroschisis Conotruncal

MOTEF MPK MOTEF MPK

Cluster n % n % n % n %

18 0 0.0 226 2.3 0 0.0 254 2.4

19 0 0.0 200 2.0 0 0.0 254 2.4

20 0 0.0 190 1.9 0 0.0 251 2.4

21 0 0.0 188 1.9 0 0.0 240 2.2

22 0 0.0 180 1.8 0 0.0 210 2.0

23 0 0.0 180 1.8 0 0.0 210 2.0

24 0 0.0 167 1.7 0 0.0 199 1.9

25 0 0.0 166 1.7 0 0.0 194 1.8

26 0 0.0 144 1.5 0 0.0 168 1.6

27 0 0.0 126 1.3 0 0.0 157 1.5

28 0 0.0 126 1.3 0 0.0 134 1.3

29 0 0.0 125 1.3 0 0.0 133 1.2

30 0 0.0 120 1.2 0 0.0 129 1.2

31 0 0.0 120 1.2 0 0.0 117 1.1

32 0 0.0 106 1.1 0 0.0 113 1.1

33 0 0.0 100 1.0 0 0.0 109 1.0

34 0 0.0 96 1.0 0 0.0 105 1.0

35 0 0.0 95 1.0 0 0.0 93 0.9

36 0 0.0 90 0.9 0 0.0 92 0.9

37 0 0.0 79 0.8 0 0.0 87 0.8

38 0 0.0 76 0.8 0 0.0 86 0.8

39 0 0.0 54 0.6 0 0.0 81 0.8

40 0 0.0 45 0.5 0 0.0 80 0.7

41 0 0.0 2 0.0 0 0.0 53 0.5

42 0 0.0 1 0.0 0 0.0 40 0.4

All 9764 100.0 9764 100.0 10671 100.0 10671 100.0
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One of the more appealing properties of MOTEF, or more generally tensor mixture models of product

kernels, is its ability to generate a smaller number of clusters relative to MPK. A large number of clusters

often implies the presence of several clusters with minor differences, or small and singleton class sizes.

These pose small sample difficulties for parameter precision and post-hoc analyses. Investigator input is

then required to collapse certain groups together, which can defeat the utility of latent class analyses as

methods that reveal underlying subclasses with distributional criteria. Additionally, when attempting to profile

and interpret clusters, a smaller set is easier to manage and reduces the number of comparisons in post-hoc

pairwise comparisons. The tensor mixture methodology has two layers of dependence, where the first induces

dependence among a set of mixed-scale variables via a set of marginal (i.e. variable specific) latent classes

and the second induces dependence among the set of marginal latent variables via a joint latent class. The

set of marginal latent variables are assumed mutually independent within each latent class and as such the

distribution of each marginal latent class can be summarized within each cluster. A smaller number of joint

latent classes implies the probability tensor (i.e multivariate categorical variables) has a simpler structure and

a single joint cluster implies mutual independence among all variables, conversely, a larger number of joint

latent classes implies a more complex dependence structure.

Cluster profile summaries can aid investigators in comparing the composition of clusters. Profile summaries

are constructed by taking all cross tabulations between each marginal and joint latent classes and displaying

cell specific cells. For instance the proportion of defect cases, can be computed and compared by cluster by

scaling the number of cases within a cluster relative to its total cluster size. Once proportions are computed,

then other measures such as the odds ratios can be computed for comparing clusters.

Figures 3.2 and 3.3 display optimal cluster risk factor profiles using the MOTEF dependence partitions (i.e.

joint latent classes) which are heat map plots of cross-tabulations between each risk factor latent class variable

and the optimal joint cluster for the gastroschisis and conotruncal defect analyses, respectively. Each column

represents one joint cluster. Risk factors are represented across rows corresponding to each class level and the

proportions displayed sum to one within each joint class. Marginal risk factor class levels are represented by

their class mean and level for non-categorical and categorical risk factors, respectively. Binary categorical

risk factors however display only one level. For instance, all medication use is binary and only displays yes

proportions, while site is displayed across 10 rows with each site labeled accordingly. The optimal clusters are

labeled in ascending order by descending sample size. That is, cluster 1 is the largest group while cluster 9 is

the smallest. Also, each profile panel is ordered in descending order by proportion of defect cases in each

group from left to right. In what follows, cluster profiles are summarized and compared separately by birth

defect.
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Table 3.3: Summary of cases by defect type and MOTEF clusters.

Gastroschisis Conotruncal
Cluster n % n %

1 34 1.5 540 18.1
2 42 3.1 411 20.1
3 233 20.6 172 13.6
4 42 3.9 182 17.0
5 325 32.7 163 16.7
6 93 9.9 139 17.4
7 70 7.9 114 21.4
8 4 0.7 116 23.1
9 173 34.3 86 17.3

The derived gastroschisis latent classes seem to uphold the evidence of many of the established risk factors.

The proportion of cases varied greatly by cluster from 32.7% for cluster 5 to <1% for cluster 8, see Table

3.3. In what follows we highlight some of the more obvious patterns in the profile compositions and how

these relate to risk factors of gastroschisis such as: parental age, maternal BMI, substance abuse, smoking,

income, birth weight, gestational age, and infection (Frolov et al., 2010; Rasmussen and Frı́as, 2008). One

of the immediately striking observations is the association between case status and parental age. Mother’s

age was found to have three marginal latent classes: late teens - early 20s (median: 19, IQR: (18 - 21)), mid

20s (median: 26, IQR: (23 - 28)), and late 20s - mid 30s (median: 31, IQR: (28 - 34)), while father’s age

was found to have four marginal latent classes: late teens - early 20s (median: 21, IQR: (19 - 23)), mid - late

20s (median: 27, IQR: (24 - 30)), late 20s - mid 30s (median: 32, IQR: (28 - 36)), and late 30s - mid 40s

(median: 42, IQR: (37 - 46)). The clusters with the three largest proportions of gastroschisis cases, clusters 9,

5, and 3, were composed of 53.1%, 66.1%, and 47.7% of mothers marginally classified as late teens - early

20s, respectively. By contrast, the clusters with the smallest proportion of gastroschisis cases, clusters 2, 1,

and 8, were composed of 51.3%, 73.2%, and 67.0% of mothers classified as late 20s - mid 30s, respectively.

Father’s age correlates with the maternal age, as visible in clusters 2, 1, and 8 which were composed of 58.5%,

69.8%, and 67.5% of fathers classified as late 30s - mid 40s, respectively. Furthermore, the odds ratios of

gastroschisis for clusters 9 and 5 relative to cluster 2 were 16.6 (95% CI: 15.5 - 17.7) and 15.4 (95% CI: 14.6 -

16.3), respectively. The profile of cluster 9 supports associations with substance abuse, smoking, and lower

income, since this cluster contains large proportions of such risk factors (maternal SA: 77.0%, paternal SA:

84.6%, maternal smoke: 77.6%, household smoke: 52.5%, income<10K: 33.1%). For comparison, the odds

of gastroschisis defect for cluster 9 was estimated to be 2.0 (95% CI: 1.9 - 2.1) times the odds for cluster 3, a

cluster composed of mostly young parents with little substance abuse and smoking. The protective effect of

advanced parental age and higher BMI can be observed by comparing cluster 5 with cluster 2 which has similar

characteristics except for larger percentage of parents classified as non- late teens - early 20s (2: 95.8% vs 5:
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53.6%) and overweight/obese mothers (2: 56.2% vs 5: 26.8%). The odds ratio of gastroschisis comparing

cluster 5 to cluster 2 was estimated to be 15.4 (95% CI: 14.6 - 16.3).

Some of the derived latent class profiles have similarities with demographic and exposure profiles observed

in previous NBDPS analyses of gastroschisis defects which include decreased risk with greater household

income and increased risk with younger women, smoking, and alcohol consumption (Mac Bird et al., 2009).

While our results generally overlap with these findings, our approach to deriving profiles was dependent on the

discovery of latent classes. As such, it is not possible to disentangle the effect of particular risk factors for

direct comparison with previous findings.

Three marginal latent classes were identified for both birth weight and gestational age. Birth weight

was classified as infants with class means at near very low (mean: 3.9 lbs, IQR: (2.7 - 5.1)), near average

(mean: 6.9 lbs, IQR: (5.9 - 7.9)), and just above average (mean: 7.6 lbs, IQR: (7.0 - 8.2)) US birth weight.

Similarly, gestational age was classified as infants with class means at very preterm (mean: 31.2 weeks,

IQR: (28 - 35)), preterm (36.8 weeks, IQR: (35 - 38)), and full term (39.1 weeks, IQR: (38 - 40)). The four

subclasses with greatest proportion of cases had proportions of low birth weight and very preterm at >3.9%

and >3.6%, respectively, compared to <2.4% and <2.2% in the rest of the classes, which can be used to

support associations between gastroschisis and low birth weight and low gestational age. Additionally, the

proportions of kidney/bladder/UTI infection by latent class correlate almost perfectly with the proportions of

cases as they observe an almost monotonic decreasing trend (9: 17.8%, 5: 14.7%, 3: 10.3%, 6: 9.4%, 7: 7.9%,

4: 6.1%, 2: 6.5%, 1: 3.2%, 8: 3.1%).
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Figure 3.2: Gastroschisis optimal cluster risk factor profiles using MOTEF dependence partitions.
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As expected, the profiles for conotruncal heart defects differ significantly from those for gastroschisis,

and in some ways the associations appear to be more complex (Figure 3.3). Because it is difficult to tease

out general observations, we describe the profiles with the greatest proportion of cases. Clusters 8 and 7 had

the greatest proportion of cases at 23.1% and 21.4%, respectively. By comparison, cluster 3 had the smallest

proportion at 13.6% and the overall was 18.0% (n=1,923). Cluster 8 surprisingly had a very healthy profile

with a large proportion mothers with a class mean age of 30.9 (73.2%), and the greatest proportion of mothers

with normal BMI (71.6%) and the smallest proportion of overweight/obese mothers (20.3%). Cluster 7, on the

other hand, had highest proportions of parental substance abuse (maternal: 66.7%, paternal: 82.7%), smoking

(maternal: 77.8%, household: 47.4%), and indications of illness (STD/HPV/HIV: 6.0%, Kid/Bladder/UTI:

15.4%, Fever: 17.1%). The odds of conotruncal defect for clusters 8 and 7 were increased by 90% and 70%,

respectively, relative to the odds for cluster 3. Some characteristics such as: low and high BMI, advanced

parental age, diabetes, febrile illness, and smoking, have been identified as risk factors for congenital heart

defects in general and specifically for conotruncal heart defects in review and previous NBDPS studies (Adams

et al., 1989; Botto et al., 2014; Feng et al., 2014; Gilboa et al., 2010; Green et al., 2010; Malik et al., 2008;

Patel and Burns, 2013). It is reassuring to see our method capture some of these characteristics in the derived

subclasses.
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Figure 3.3: Conotroncal optimal cluster risk factor profiles using MOTEF dependence partitions.
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3.5 Discussion

In this article, we have proposed a simpler form of the tensor mixture model with product kernels via

modularization where the complexity of analyzing mixed-scale data is simplified by essentially discretizing

non-nominal categorical variables to analyze the entire set of variables as a multivariate contingency table.

This is conceptually similar to the copula model where assumed marginal structures are combined with a

unifying copula distribution model. Further, it can be thought of as an extension to the exploration of pairwise

dependence via Dirichlet process mixtures of Filippi et al. (2016) albeit we assess dependence with different

measures. Similar to the method proposed by Hoff (2007) our model assumes unknown marginal distributions

but unified via a PARAFAC tensor model. It was shown that under certain scenarios it can appropriately

elucidate the underlying joint dependence structure as well as offer greater compression of latent subclasses

and improved MCMC diagnostics. The greater compression of latent subclasses can be particularly useful in

elucidating subclass variable mixture profiles in comparison to Dirichlet process mixtures which is known

for over selecting number of subclasses, which at times may require investigator input to collapse certain

groups (Stephenson et al., 2017). MOTEF can be useful as an exploratory data analysis tool for describing

multivariate mixed-scale profiles in moderate to large sets of variables. This framework can be scalable due

to its modularization since all of the first modules are independent of all other component and as such be

computed in parallel.

In spite of the appealing performance of MOTEF relative to MPK, there are some notable opportunities

for improvement. First, it was our experience that there was variability in the elucidation of the dependence

structure with respect to the measure used. One of our initial attempts at elucidating the dependence of MOTEF

was with the model based Cramer’s V statistic proposed by Dunson and Xing (2009), however, we opted to use

the empirical mutual information measure since there is no analogous Cramer’s V measure available for the

MPK. Additionally, we found the empirical mutual information measure with the pseudo-joint tensor mixture

defined in this paper to outperform the Cramer’s V measure. There is a possibility that this measure supports

the idea that it is beneficial to use the observed data when assessing dependence in the mixed-scale setting.

Filippi et al. (2016) used two different approaches than ours where: 1) included using the latent marginal

allocation variables to construct contingency tables for testing, and 2) included a modeling approach where

pairs of variables are modeled as a two-component mixture of marginal independent mixture models and

an MPK type model. Our approach is somewhat of a mixture between both of their approaches, however,

more investigation is required to determine which method or whether an alternative may perform better under

various scenarios. Second, there may be a more favorable label switching move that may help the efficiency of

MOTEF. We incorporated a simple label collapsing move that at each step of the algorithm occupied labels are
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relabeled from 1 up to the number of non-zero classes, x∗i , into the dependence module because improved

efficiency was observed over directly inputting xi into module two. The third point of possible improvement, is

one that generally plagues all mixture modeling with product kernels, the special case of uni-modal correlated

distributions. As a special case, MPK and MOTEF will presumably perform poorly if data is generated from

a bi-variate normal with non-zero correlation. We intend to extend the tensor mixture of product kernels

formulation to the tensor mixture model with dependent kernels which can accommodate this special case.
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CHAPTER 4: BAYESIAN SEMI-PARAMETRIC MODELING WITH VARIABLE SELECTION FOR
HIERARCHICAL INTERACTIONS

4.1 Introduction

The difficulties that arise when estimating the joint or simultaneous effect of correlated predictors are well

known. Recent calls for the need to develop methodology that can account for estimation instability resulted

in the development of statistical methods for addressing this issue (Davalos et al., 2017; Hamra and Buckley,

2018). Statistical methods used for overcoming difficulties with highly correlated predictors are necessary

tools for assessing health effects of exposure to complex chemical mixtures (e.g. air pollution, phthalates,

PBCs, etc.), and joint effects of multiple exposures in the exposome setting. In epidemiologic studies, in

addition to estimating effects, it is also of interest in clustering effects and identifying those associated with a

response (Dunson et al., 2008).

There are few statistical approaches that can address estimation issues with collinearity as well as

simultaneously incorporate variable selection and effect clustering. MacLehose et al. (2007) introduced a

Bayesian semi-parametric model where regression coefficients of correlated predictors are assumed to have a

Dirichlet process (DP) prior. The DP prior base measure is assumed to have spike-slab base measure with a

point mass at zero which facilitates variable selection. The DP prior as an almost sure discrete random measure

achieves clustering and greater flexibility over normal priors (Ferguson, 1973). Additionally, as a Bayesian

variable selection method, this semi-parametric framework simultaneously accounts for multiple comparison

and incorporates model averaging.

The Bayesian nature of the MacLehose et al. (2007) modeling framework offers appealing ways to

incorporate prior information. The non-parametric Bayes prior allows incorporating prior information on the

probability of exclusion via a specification of the hyperprior on the weight associated with the point mass at

zero in the DP prior. The inclusion of the point mass at zero frees up the hyperparameters on the slab portion

of the DP prior for incorporating prior information on the magnitude of the effect estimates. Without a spike,

then effect priors are often centered around zero for shrinking and variable selection. Lastly, the hyperprior on

the precision parameter of the DP prior allows informing the degree of clustering the regression coefficients

which can be used to favor or discourage a priori a high degree of clustering in the predictor effects.
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Herring (2010) extended this methodology by grouping main effects and pairwise interaction effects

separately via assigning different independent DP priors on each coefficient block of terms, thereby incor-

porating separate degrees of shrinkage by block or group. This methodology, albeit presented for pairwise

interactions, is more general by including different blocks in the model and assigning independent DP priors

on each block. For illustrative purposes and without loss of generality, we present our framework in terms of

the pairwise interaction generalized linear model. Let yi be an outcome of interest and the objective of the

analysis is to quantify the possibly non-homogeneous joint effect of a set of predictors, xi = (xi1, . . . , xip)
′,

while accounting for an encompassing set of confounding variables, zi = (1, zi1, . . . , zip0)′. Consider the

mean regression model with pairwise interaction terms:

g(µi) = z′iκ+ x′iβ1 +

p−1∑
j1=1

p∑
j2=j1+1

βj1j2xij1xij2 , (4.37)

where β1 = (β1, . . . , βp)
′, and κ = (κ0, κ1, . . . , κp0)′. This modeling specification allows investigators

to separately incorporate different degrees shrinkage for the main and interaction term effects. However,

the specification of independent priors for each of the coefficient blocks does not account for hierarchical

interaction terms. That is, if a main effect coefficient drops out of the model, it does not force all of the

corresponding interaction terms to drop out. Hierarchical interaction terms are of interest to investigators

because these facilitate interpretation and may positively influence estimation.

Hierarchical interactions impose a restriction on all lower order terms. For instance, in the case of model

(4.37), hierarchical interactions imply:

βj = 0, only if βj1j2 = 0 for j1, j2 = j. (4.38)

One way to incorporate this condition is by building a joint prior for (β1,β2), where β2 = {βj1j2 , j1 =

1, . . . , p− 1, j2 = j1 + 1, . . . , p} such that

Pr(β1,β2) = Pr(β1|β2)Pr(β2), (4.39)

where

Pr(βj |β2) = Pr1(βj)δ(A) + Pr2(βj)δ(A
c), (4.40)

and A = {βj1j2 = 0, for all j1, j2 = j}. For the pairwise interaction model, this is certainly achievable where

Pr(β2) = π0δ0 +(1−π0)G0 and G0 = DP, Pr2(βj) = G1, and Pr1(βj) = π1δ0 +(1−π1)G1 and G1 = DP.

However, there are certainly computational and tractability issues that should arise when incorporating higher
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order interactions. Thus, our aim is to develop a less expensive framework which can achieve the incorporation

of higher order interactions circumventing the hierarchical iterated conditioning by taking a decomposition of

the regression coefficients.

Regression coefficients are often decomposed to achieve difference purposes. Suh et al. (2011) used a

decomposition logistic regression coefficients of air pollutants within a two-step analyses where these were

decomposed by pollutant and chemical properties. We define a decomposition of regression coefficients into

independent components that when taken together achieve condition (4.38).

There are dual objectives with this chapter, to develop: 1) and study the performance of a Bayesian

semi-parametric model with hierarchical interaction selection (BHIS) thereby extending the Herring (2010)

framework, and; 2) a Matlab package for Bayesian semi-parametric modeling with blocked variable selection

(BBVS) which can be used for BHIS. The BBVS Matlab package will be able to handle n-way interaction

selection. The chapter proceeds as follows: Section 4.2 motivates and defines BHIS, Section 4.3 present results

from simulations, Section 4.4 applies our methodology to the Mount Sinai Children’s Environmental Health

Study, and concludes with a brief discussion.

4.2 Bayesian Hierarchical Interaction Selection

In the derivation that follows below, for illustrative purposes, consider model (4.37) where p = 2. The

framework below is applicable without loss of generality to the n-way interactions case.

4.2.1 Derivation

In a decomposition of effects, taking the sum of independent effects on lower order terms facilitates

the elucidation of priors within a Bayesian analysis which reduce to zero only if each of the component

effects is zero. Consider the case where p = 2 and for purposes of notation let the interaction effect equal an

independent effect, γ12 = β12. The main effects thus become a sum of a main effect specific component and

all corresponding higher order effects,

g(µi) = β0 + β1xi1 + β2xi2 + β12xi1xi2

= β0 + (γ1 + γ12)xi1 + (γ2 + γ12)xi2 + γ12xi1xi2

= β0 + γ1xi1 + γ2xi2 + γ12(xi1 + xi2 + x∗i1xi2)

= β0 + γ1x
∗
i1 + γ2x

∗
i2 + γ12x

∗
i12,

49



where x∗ij = xij and x∗i12 = (xi1 + 1)(xi2 + 1)− 1. From this, we observe that under our formulation we can

incorporate ordered variable selection for hierarchical interactions by simply modeling a different a model

with a different design matrix. In the propositions that follow, we detail the structure of the design matrix

required for BHIS for (4.37) and the three-way interaction model.

Proposition 1: Under the pairwise interaction effects model with independent coefficient effects, the corre-

sponding BHIS model is

g(µi) = γ0 + γ′1xi +

p−1∑
j1=1

p∑
j2=j1+1

γj1j2((xij1 + 1)(xij2 + 1)− 1), (4.41)

where γ1 = (γ1, . . . , γp)
′.

Proposition 2: Under the three-way interaction effects model with independent coefficient effects (p ≥ 3), the

corresponding BHIS model is

g(µi) = γ0+γ′1xi+

p−1∑
j1=1

p∑
j2=j1+1

γj1j2

( 2∏
l=1

(xijl+1)−1

)
+

p−2∑
j1=1

p−1∑
j2=j1+1

p∑
j3=j2+1

γj1j2j3

( 3∏
l=1

(xijl+1)−1

)
,

(4.42)

where γ1 = (γ1, . . . , γp)
′.

Proposition 3: Under the n-way interaction effects model with independent coefficient effects (3 < n ≤ p),

the corresponding BHIS model is

g(µi) = γ0 + γ′1xi +

p−1∑
j1=1

p∑
j2=j1+1

γj1j2

( 2∏
l=1

(xijl + 1)− 1

)
+

p−2∑
j1=1

p−1∑
j2=j1+1

p∑
j3=j2+1

γj1j2j3

( 3∏
l=1

(xijl + 1)− 1

)
+ · · ·+

p−(n−1)∑
j1=1

p−(n−2)∑
j2=j1+1

· · ·
p∑

jn=jn−1+1

γj1j2···jn

( n∏
l=1

(xijl + 1)− 1

)
, (4.43)

where γ1 = (γ1, . . . , γp)
′.

By proposition 3, we can incorporate any number of interactions (i.e. the n-way interaction model) by

simply modeling an alternative model with a design matrix of equivalent rank. Thereby, not increasing the

complexity or the number of terms needed to perform the analysis.
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4.2.2 Hierarchical Model

In this section, we develop a model corresponding to Proposition 1. The above framework presented

a framework for the corresponding model when lower order regression coefficients have a decomposition

which can facilitate variable selection for hierarchical interactions. The novelty in the decomposition is that it

allows the elucidation of independent priors by different blocks where then lower order terms are only set to

zero if their corresponding higher order terms also take the values zero. As such we specify the priors for the

coefficient components as:

γj ∼ π01δ0 + (1− π01)G1, j = 1, . . . , p

γj1j2 ∼ π02δ0 + (1− π02)G2, 1 ≤ j1 < j2 ≤ p

Gl = DP (αl, G0l), G0l = N(µBl, σ
2
Bl),

π0l ∼ Beta(aπl, bπl)

αl ∼ Gamma(aαl, bαl)

(µBl, σ
2
Bl) ∼ N(·|µ0Bl, τ

−1
Bl σ

2
Bl)Inv-Gamma(·|aσBl, bσBl),

for l = 1, 2. Note, that as the magnitude of the interactions grows, the index of the component coefficients γ

grows and the inclusion of an additional interaction will define another block of components distributed as

π0lδ0 + (1− π0l)Gl.

4.2.3 Posterior Computation

For purposes of notation, assume the joint distribution of the outcomes is denoted by K
(
y|{Xl}Ll=1,Z,

{βl}Ll=1,κ,θ
)

where θ can be a global parameter across all subjects or a subject specific or both depending on

the need, Xl = [x1l,x2l, . . . ,xnl]
′, and Z = [z1, . . . , zn]′. Note, the Dirichlet Process prior assumed on each

block of the regression coefficients requires the introduction of L pairs of infinite parameters that characterize

the probabilities and the domain values of the DP and when combined with the spike for simultaneous variable

selection requires the introduction of some notation for the distribution Gl. This is visible as follows:

Gl(·|ψl,Bl) =

∞∑
h=0

ψhlδBhl
(·),

where ψl = {ψhl}∞h=0, B0l = {0}, Bhl
iid∼ G0l, ψl = {π0l, (1 − π0l)λl}, λl = {λhl}∞h=1, λhl =

νhl
∏
h′<h(1− νh′l), and νhl

iid∼ Beta(1, αl) for l = 1, . . . , L and h = 1, . . . ,∞.
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The full joint distribution is thus:

f
(
y,κ,θ, {βl}Ll=1,π0, {Bl}Ll=1, {νl}Ll=1, {θBl}Ll=1,θκ,α

)
=

K
(
y|{Xl}Ll=1,Z, {βl}Ll=1,κ,θ

)
π(κ|θκ)π(θ)π(θκ)

×
L∏
l=1

{ pl∏
j=1

Gl
(
βjl|ψl,Bl

)
π(π0l)

∞∏
h=1

π
(
νhl|αl

)
G0l

(
Bhl|θBl

)}
π(θBl)π(αl),

where π0 = {π0l}Ll=1 and α = {αl}Ll=1.

The Dirichlet process assumption on the regression coefficient blocks requires specialized techniques to

make sampling tractable given the infinite stick breaking parametrization. As previously stated, the Polya-urn

sampler has been successfully used in modeling the GLM semi-parametric model (Dunson et al., 2008). This

sampling technique however, is not completely straightforward especially for updating the precision parameter.

A straightforward alternative could be the blocked Gibbs sampler by Ishwaran and James (2001) but can

potentially be computationally intensive for large truncation. We consider slice sampling as an alternative that

combines the efficiency of the Polya-urn and the ease of updating precision parameters via the stick-breaking

representation as would be used in a truncation (Ishwaran and James, 2001; Mena and Walker, 2015). In

the following we focus on incorporating the slice sampling on the prior of a single block of coefficients

since we will capitalize on the independence assumption for block updating and potential speed-ups through

parallelization in computation. Consider the prior for a single block of coefficients, βjl:

pl∏
j=1

Gl
(
βjl|ψl,Bl

)
=

pl∏
j=1

∞∑
h=0

ψhlδBhl
(βjl)

=

∞∑
h1=0

· · ·
∞∑

hpl
=0

pl∏
j=1

ψhj lδBhjl
(βjl),

where the equivalence is established by iterated distributive law and noting the change in indexing the second

equivalence. To make the iterated infinite sum tractable, at this point we incorporate slice sampling as was

done in Mena and Walker (2015) by introducing a regression block specific latent uniform variable and a

deterministic parameter ξl. This results in a joint prior as:

π
(
βl, ul|ψl,Bl

)
=

∞∑
h1=0

· · ·
∞∑

hpl
=0

1(ul < ξh1···hpl
,l)ξ
−1
h1···hpl

,l

pl∏
j=1

ψhj lδBhjl
(βjl),

where ξh1···hpl
,l =

∏pl
j=1(1− ωl)ω

hj

l . The introduction of the latent uniform has the effect of reducing the

dimensionality of the labeling space from infinite to finite and the independent geometric assumption on the
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deterministic parameter has the effect of jointly favoring smaller labels with almost no gaps (Mena and Walker,

2015). We introduce an allocation variable from the finite set that indicates if βjl = Bhl then djl = h. This

implies:

π
(
βl,dl, ul|ψl,Bl

)
= 1(ul < ξd1l···dpll,l)ξ

−1
d1l···dpll,l

pl∏
j=1

ψdjllδBdjll
(βjl).

We augment the full joint distribution with uniform variables and latent allocation variables:

f
(
y,κ,θ, {βl}Ll=1,π0, {Bl}Ll=1, {νl}Ll=1, {θBl}Ll=1,θκ,α,u, {dl}Ll=1

)
=

K
(
y|{Xl}Ll=1,Z, {βl}Ll=1,κ,θ

)
π(κ|θκ)π(θ)π(θκ)

×
L∏
l=1

{ pl∏
j=1

1(ul < ξd1l···dpll,l)ξ
−1
d1l···dpll,l

pl∏
j=1

ψdjllδBdjll
(βjl)π(π0l)

×
∞∏
h=1

π
(
νhl|αl

)
G0l

(
Bhl|θBl

)}
π(θBl)π(αl),

where u = (u1, . . . , uL)′ and dl = {djl}plj=1.

The posterior sampling will depend on the underlying assumption of the outcome yi. Consider the linear

regression setting:

y =

L∑
l=1

Xlβl +Zκ+ ε, (4.44)

where y = {yi}ni=1 is an (n× 1) vector,Xl is a (n× pl) matrix for l = 1, . . . , pl, κ = {κj}p0j=1 is a (p0 × 1)

vector, βl = {βjl}plj=1 is a (pl × 1) vector for l = 1, . . . , pl, and ε ∼ Nn(0,Σε) with Σε = σ2
εIn. We further

assume κ ∼ Np0(µκ,Σκ), µκ = µκJp0 , Σκ = σ2
κIn, and (µκ, σ

2
κ) ∼ N(µ0κ, τ

−1
κ σ2

κ)Inv-G(aσκ, bσκ).

Below we inspect the posterior distributions for certain updates and detail a Gibbs sampling algorithm for the

linear regression setting:

1. Coefficient block specific slice variable: π(ul|−) = 1(ul < ξd1l···dpll,l)

• For l = 1, . . . , L sample ul ∼ U(0, ξd1l···dpll,l).

2. Coefficient block specific measure weights:

(a) Point mass at zero weight: π(π0l|−) ∝ π(π0l)
∏pl
j=1 ψdjll.

• For l = 1, . . . , L sample π0l ∼ beta(âπl, b̂πl) where âπl = aπl + n0l, b̂πl = bπl + m0l,

nhl =
∑pl
j=1 1(djl = h) for h = 0, . . . , d̃l, d̃l = max{dl}, and mhl =

∑
h′>h nh′l.

(b) DP weights components: π({νhl}Kl

h=1|−) ∝
∏pl
j=1 ψdjll

∏Kl

h=1 π
(
νhl|αl

)
, where Kl = max{A1l,

. . . , Apll}.
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• For h = 1, . . . , d̃l and l = 1, . . . , L sample νhl ∼ beta(1 + nhl, αl +mhl).

3. DP atoms and confounder coefficients:

π(κ, {Bl}Ll=1|−) ∝ K
(
y|{Xl}Ll=1,Z, {βl}Ll=1,κ,θ

)
π(κ|θκ)

L∏
l=1

Kl∏
h=1

π
(
Bhl|θBl

)

• Sample B∗ ∼ Np∗(µ̂B∗ , Σ̂B∗) where B∗ = {{Bhl, h = 1, . . . , d̃l}Ll=1,κ} is a (p∗ × 1) vector,

Σ̂B∗ = (X∗′Σ−1
ε X

∗+Σ−1
B∗)
−1, µ̂B∗ = Σ̂B∗(X

∗′Σ−1
ε y+Σ−1

B∗µB∗),X∗ =
[
X∗1 , · · · ,X∗L,Z

]
,

X∗l = XlWl,Wl = {1(djl = h)}jh is a (pl× d̃l) indicator matrix, µB∗ = {{µBl}Ll=1,µκ} is a

(p∗ × 1) vector, p∗ = p0 +
∑L
l=1 d̃l, µBl = µBlJd̃l , ΣB∗ = blkdiag(ΣB1, . . . ,ΣBL,Σκ), and

ΣBl = σ2
BlIn.

4. Global kernel parameter: π(θ|−) ∝ π(θ)K
(
y|{Xl}Ll=1,Z, {βl}Ll=1,κ,θ

)
• Sample σ2

ε ∼ Inv-Gamma(âε, b̂ε) where âε = aε + n/2, b̂ε = bε + e′e/2, e = y −X∗B∗

5. Coefficient block specific DP base measure parameters: π(θBl|−) ∝ π(θBl)
∏Kl

h=1 π
(
Bhl|θBl

)
.

• For l = 1, . . . , L sample:

a. σ2
Bl ∼ Inv-Gamma(ãσBl, b̃σBl) where ãσBl = aσBl + d̃l, b̃σBl = bσBl +

∑d̃l
h=1(Bhl −

B̄l)
2/2 +

τBld̃l

τBl + d̃l
(B̄l − µ0Bl)

2/2, and B̄l =
∑d̃l
h=1Bhl.

b. µBl ∼ N(µ̃Bl, σ̃
2
Bl) where σ̃2

Bl = σ2
Bl/(τBl + d̃l), and µ̃Bl =

τBl

τBl + d̃l
µ0Bl +

d̃l

τBl + d̃l
B̄l.

6. Confounder coefficient hyper-parameters: π(θκ|−) ∝ π(θκ)π
(
κ|θκ

)
.

• Sample:

a. σ2
κ ∼ Inv-Gamma(ãσκ, b̃σκ) where ãσκ = aσκ + p0, b̃σκ = bσκ +

∑p0
h=1(κh − κ̄)2/2 +

τκp0

τκ + p0
(κ̄− µ0κ)2/2, and κ̄ =

∑p0
h=1 κh.

b. µκ ∼ N(µ̃κ, σ̃
2
κ) where σ̃2

κ = σ2
κ/(τκ + p0), and µ̃κ =

τκ
τκ + p0

µ0Bl +
p0

τκ + p0
κ̄.

7. Coefficient latent allocation variables: π(djl = h|−) ∝ ψhlω
−h
l K

(
y|{Xl}Ll=1,Z, {βl}Ll=1,κ,θ

)
for

h = 1, . . . , Ajl, Ajl = max{h : ul < ξd1l···dj−1,lhdj+1,l···dpll,l}, j = 1, . . . , pl, and l = 1, . . . , L.

Note, βl′ = (β1l′ , . . . , βpl′ l′)
′ = (Bd1l′ l′ , . . . , Bdp

l′ l
′ l′)
′ then the corresponding coefficient is updated

as βjl = Bdjll.

• For j = 1, . . . , pl, and l = 1, . . . , L sample djl such that:

Pr(djl = h) ∝ ψhl
ωhl

Nn
(
ejl|XjlBhl,Σε

)
,
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where Xjl is the jth column of Xl, ejl = y −
∑
l′ 6=lXl′βl′ − X−jlβ−jl, X−jl is the Xl

matrix without the jth column, β−jl is the lth coefficient block without the jth coefficient, and

h = 0, . . . , djl +

⌊
log u∗l
logωl

⌋
. Note, b·c is the floor function.

8. Coefficient block specific precision parameters: π(αl|−) ∝ π(αl)
∏Kl

h=1 π
(
νhl|αl

)
.

• For l = 1, . . . , L sample αl ∼ gamma(âαl, b̂αl) where âαl = aαl + d̃l and b̂αl = bαl −∑d̃l
h=1 log(1− νhl).

The linear regression case is straightforward since we have conjugate priors for the atom and confounder

coefficient parameters. Other types such as binomial, negative binomial, and Poisson may require data

augmentation to preserve the Gibbs sampling scheme.

4.2.4 Testing

Under the proposed method, we can test for the exclusion of any term within hierarchical interactions

models. In the case of the pairwise interaction model, we may test for exclusion of the interaction effects:

H0j1j2 : βj1j2 = 0 which is equivalent to H0j1j2 : γj1j2 = 0 for 1 ≤ j1 < j2 ≤ p. We may also test

for the exclusion of main effects: H0j : βj = 0 which is equivalent to H0j : γj = γj1j = γjj2 = 0 for

1 ≤ j1 < j < j2 ≤ p. From the sampling output, we may compute posterior probabilities P̂r(H0j1j2 |Y ,X)

and P̂r(H0j |Y ,X) by simply counting the number of times the respective conditions are met across the

sampler and dividing by the total number of iterations. That is,

P̂r(H0j1j2 |Y ,X) =

∑B
t=b I(γj1j2,t = 0)

B − b
(4.45)

P̂r(H0j |Y ,X) =

∑B
t=b I(γj,t = 0, γ1j,t = 0, . . . , γj−1j,t = 0, γjj+1,t = 0, . . . , γjp,t = 0)

B − b
, (4.46)

where b corresponds to a value of a burn in period and B corresponds to the total number of iterations a chain

MCMC is run.

4.3 Simulation Experiments

The purpose of the simulation experiments was to assess the performance of our proposed method in

various scenarios within the n-way interaction linear regression setting. We attempt to simulate scenarios

arising in environmental epidemiology, where the aim is to assess the simultaneous effect of chemical mixtures

(i.e. five continuous predictors) while adjusting for mixed-scale covariates (i.e. confounding variables) which
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are not subject to variable selection. The primary focus of the experiments was on variable selection with a

secondary focus on estimation.

4.3.1 Data structure

All generated data had the structure of the three-way interaction regression model. Letting yi be the

outcome of interest each data set, we specified:

g(µi) = κ0 + z′iκ+ x′iβ1 +

p−1∑
j1=1

p∑
j2=j1+1

βj1j2xij1xij2 +

p−2∑
j1=1

p−1∑
j2=j1+1

p∑
j3=j2+1

βj1j2j3xij1xij2xij3 , (4.47)

where E(yi) = µi, xi = (xi1, . . . , xip)
′, zi = (zi1, . . . , zip0)′, β1 = (β1, . . . , βp)

′, κ = (κ1, . . . , κp0)′, and

yi ∼ N(µi, σ
2). Note, the similarities between equation 4.47 and 4.44, where the z covariates (confounders)

are elucidated as such because these are variables which will not be subject to selection.

The set of predictors, x, and confounding variables, z, are jointly generated. Each data set consisted of

five continuous predictors, p = 5, along with 10 mixed-scale confounding variables, p0 = 10. Details of

the data generating mechanism for these variables are presented in Appendix A. In brief, the predictors and

confounding variables were jointly generated from a rounded induced density with varying correlation among

all variables (Canale and Dunson, 2015; Kunihama et al., 2016). High correlation was induced among all

predictors with correlations varied from 0.52 to 0.92. Correlation among confounding variables varied from

-0.1 to 0.2. Lastly, cross correlation between predictors and confounders varied between -0.3 and 0.1.

The coefficients for covariates not subject to selection were set to either -1 or 1 across all data sets. Specific

values were:

(κ0,κ) = (1, 1, 1,−1, 1, 1,−1, 1, 1, 1,−1).

The specification of the true values for the predictor coefficients (i.e. variables subject to selection)

varied according to the simulation scenario. However, the following remained fixed across all scenarios

β1 = β3 = β4 = β5 = 1.

4.3.2 Simulation Scenarios

Eight simulation scenarios were considered to assess performance when the true data generating mech-

anism contains strong and combined (i.e. strong and weak) hierarchical interactions, as well as, assess the

effect of incorporating high correlation between one confounding variable (always confounding variable 4)

and one predictor (either x2 or x5). Within each simulation scenario, 500 data sets were generated each with

sample size 500.
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The simulation scenarios are summarized in Table 4.4. Scenario 1 was the main effects simulation scenario

where β2 = 1. Scenarios 2 to 7 had the following pairwise interaction effects set to one, β1,3 = β1,4 = β1,5 =

β3,4 = 1, thereby inducing strong hierarchy among predictors 1,3, and 4. Scenarios 5 to 7 additionally had

β2,3 = 1 which induced weak hierarchy among predictors 2 and 3. Scenario 8 had pairwise interactions

specified in scenarios 2 - 4 and the three-way interaction between predictors 1, 3, and 4 set to one, β1,3,4 = 1.

Among all scenarios if coefficients are not specified then they were set to zero. Scenarios 3 and 6 additionally

had high correlation induced between predictor 5 and a confounding variable. Scenarios 4 and 7 had high

correlation induced between predictor 2 and a confounding variable. Scenario 4 should help to assess whether

the correlation of among a confounding variable confounds the null predictor 2.

Table 4.4: Summary of simulation scenarios

Hierarchy
type β2 β2,3 β1,3,4

Predictor with
high conf. corr.

Scenario 1 main effects 1 0 NA NA
Scenario 2 strong 0 0 NA NA
Scenario 3 strong 0 0 NA x5

Scenario 4 strong 0 0 NA x2

Scenario 5 combined 0 1 NA NA
Scenario 6 combined 0 1 NA x5

Scenario 7 combined 0 1 NA x2

Scenario 8 strong 0 0 1 NA

4.3.3 Methods

The BHIS was implemented using Proposition 1 for scenarios 1 to 7, while Proposition 2 was used in

assessing scenario 8. These implementations used different block specifications for the main effect, pairwise,

and three-way interactions where applicable, using model 4.44. That is, each block had an independent set

specific probability of exclusion built into the model.

We additionally applied a BBVS model where, similar to the BHIS, separate non-parametric Bayes priors

were assumed on regression coefficients by main effects and interaction degree as in Herring (2010). Recall,

this specification will allow the estimation procedure to consider models interaction effect only models.

Standard Bayesian procedures were followed in the implementation of BBVS and BHIS. For each model

(i.e. model within each data set within each scenario), five MCMC chains were run each for 15,000 iterations

discarding the first 5,000 as a burn-in and storing every 10th iteration for a total effective posterior sample size

of 5,000. Weakly informative priors were used for most parameters with the exception of interaction terms

where prior specification favoring exclusion was used. That is, the expected prior probability of exclusion for

each interaction term was set 0.9.
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We compared the performance of the above with two gold standard frequentist methods, least absolute

shrinkage and selection operator (LASSO) and one of its hierarchical interactions selection extension group-

lasso interaction network (GLINTERNET). The ubiquitously used LASSO was chosen because of it is a

gold standard for analysis in the presence of correlated predictors and the R package glmnet allows the

implementation of LASSO with a penalty on certain variables (Friedman et al., 2009; Tibshirani, 1996).

GLINTERNET was chosen as a frequentist alternative that can implement hierarchical interactions, however,

its R implementation requires a specification of a model with all pairwise interactions (Lim and Hastie, 2013,

2015). As such, GLINTERNET was implemented on all pairwise interaction models in all scenarios with

the predictors and confounding variables as candidates for exclusion. GLINTERNET was not considered in

scenario 8 because it cannot incorporate three-way interactions.

4.3.4 Results

Figure 4.4 displays average sensitivity and false discovery proportion and relative model across all data

sets and scenarios by method. Sensitivity proportion was computed as the average of proportions of terms in

the true model included in the fitted model across all data sets. For LASSO and GLINTERNET, the sensitivity

proportion for a data set is determined by the number of true term estimates not equal to zero. The sensitivity

proportion for BBVS and BHIS is determined by the number of true terms whose posterior probability for

inclusion exceed 0.5, or equivalently, whose posterior log odds for inclusion greater than zero. False discovery

proportion was computed as the average of proportions of terms not in the true model included in the fitted

model across all data sets. Relative model size was computed as average of the number of terms in the fitted

model relative to the number of terms in the true model across all data sets.

Figure 4.4: Results of all simulation scenarios displaying mean of summary measures across all 500 data sets.

All methods mostly performed comparably in terms of sensitivity across all scenarios with the exception

of a few scenarios. All methods except for LASSO had perfect performance in terms of sensitivity in the

main effects only scenario, scenario 1. In scenarios 2 through 7, LASSO, BBVS, and BHIS had similar

sensitivity performance with average proportions around 80%. GLINTERNET seemed slightly outperform all
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other methods with the highest sensitivity proportion averages except in scenario 4, where its performance

really suffered. This may indicate that GLINTERNET is confounded by having high correlation between

confounding variables and non-significant predictors. In scenario 8, the proposed BHIS slightly outperformed

all other methods an average sensitivity proportion of approximately 90% while LASSO and BBVS observed

averages less than 80%.

The false discovery proportion averages revealed that the higher performing methods in terms of sensitivity

also came with trade offs in false discovery. For instance, GLINTERNET in the main effects scenario performed

perfectly in choosing significant predictors but observed a false discovery proportion of approximately 20%.

The same holds for GLINTERNET across all scenarios with the exception of scenario 4. The same is

reflected in terms of relative model size. In terms of false discovery overall, LASSO and BBVS had improved

performance over GLINTERNET and the proposed BHIS across all scenarios with average false discovery

proportions less than 15%.

The proposed BHIS was the best performer in scenario 8. Table 4.5 displays coefficient median (2.5th −

−97.5th) percentiles of the posterior mean or estimate across all 500 data sets. Inclusion probability column

displays the proportion of data sets with estimated log odds greater than 0 flagging for inclusion for BBVS

and BHIS. Although BHIS had greater false discoveries, in this scenario: BBVS failed to identify the only

true three-way interaction as significant and LASSO identified it only 19% of the time, while the proposed

identified it in 72%. Additionally, the median estimate of β1,3,4 across all data sets in LASSO was 0.00 with

an associated 2.5th −−97.5th percentiles of 0.00 – 0.94 while the corresponding estimates for BHIS were

0.41 with percentiles straddling the true value 1, (0.05 – 1.12).

For details of each simulation scenario performance by method, see Appendix B and C.

Table 4.5: Simulation scenario 8 results summary comparing LASSO, BBVS versus BHIS. Median estimate
column displays the median (2.5th − −97.5th) percentiles of the posterior mean across all 500 data sets.
Inclusion probability column displays the proportion of data sets with estimated log odds greater than 0
flagging for inclusion.

LASSO BBVS BHIS

true Median Incl Prop Median Median

Coeff. value Estimate Sel flag Estimate Incl Prop Estimate Incl Prop

β1 1
1.13

(0.21 – 2.00)
0.99

1.07

(0.62 – 1.58)
0.99

1.17

(0.64 – 1.34)
0.99

β2 0
0.00

(0.00 – 0.54)
0.20

0.28

(0.01 – 0.88)
0.40

0.15

(0.00 – 0.61)
0.29
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Table 4.5: Simulation scenario 8 results summary comparing LASSO, BBVS versus BHIS. Median estimate
column displays the median (2.5th − −97.5th) percentiles of the posterior mean across all 500 data sets.
Inclusion probability column displays the proportion of data sets with estimated log odds greater than 0
flagging for inclusion.

LASSO BBVS BHIS

true Median Incl Prop Median Median

Coeff. value Estimate Sel flag Estimate Incl Prop Estimate Incl Prop

β3 1
0.80

(0.00 – 1.62)
0.96

0.93

(0.41 – 1.29)
0.97

0.84

(0.32 – 1.24)
0.98

β4 1
0.96

(0.10 – 1.85)
0.99

1.04

(0.55 – 1.47)
0.99

1.00

(0.42 – 1.32)
0.99

β5 1
0.68

(0.00 – 1.53)
0.94

1.01

(0.34 – 1.33)
0.96

0.70

(0.07 – 1.19)
0.93

β1,2 0
0.00

(0.00 – 0.41)
0.06

0.14

(0.01 – 0.81)
0.06

0.12

(0.01 – 0.54)
0.18

β1,3 1
0.27

(0.00 – 1.94)
0.63

0.51

(0.05 – 2.43)
0.39

0.68

(0.13 – 1.19)
0.92

β1,4 1
0.77

(0.00 – 2.25)
0.78

0.81

(0.10 – 2.89)
0.62

0.84

(0.24 – 1.24)
0.95

β1,5 1
0.20

(0.00 – 1.32)
0.63

0.45

(0.02 – 1.66)
0.44

0.60

(0.04 – 0.98)
0.88

β2,3 0
0.00

(0.00 – 0.55)
0.13

0.04

(0.00 – 0.73)
0.03

0.04

(0.00 – 0.24)
0.02

β2,4 0
0.00

(0.00 – 0.35)
0.06

0.10

(0.00 – 0.63)
0.04

0.08

(0.00 – 0.46)
0.09

β2,5 0
0.00

(0.00 – 0.00)
0.02

0.04

(0.00 – 0.40)
0.01

0.04

(0.00 – 0.28)
0.03

β3,4 1
0.21

(0.00 – 1.37)
0.61

0.30

(0.02 – 1.31)
0.28

0.53

(0.15 – 1.15)
0.91

β3,5 0
0.00

(0.00 – 0.62)
0.11

0.11

(0.01 – 0.71)
0.04

0.28

(0.01 – 0.92)
0.48

β4,5 0
0.00

(0.00 – 0.89)
0.15

0.14

(0.01 – 0.94)
0.08

0.42

(0.03 – 1.02)
0.65
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Table 4.5: Simulation scenario 8 results summary comparing LASSO, BBVS versus BHIS. Median estimate
column displays the median (2.5th − −97.5th) percentiles of the posterior mean across all 500 data sets.
Inclusion probability column displays the proportion of data sets with estimated log odds greater than 0
flagging for inclusion.

LASSO BBVS BHIS

true Median Incl Prop Median Median

Coeff. value Estimate Sel flag Estimate Incl Prop Estimate Incl Prop

β1,2,3 0
0.00

(0.00 – 0.00)
0.02

0.00

(-0.00 – 0.04)
0.00

0.02

(0.00 – 0.17)
0.00

β1,2,4 0
0.00

(0.00 – 0.00)
0.00

0.00

(-0.00 – 0.07)
0.00

0.05

(0.00 – 0.33)
0.03

β1,2,5 0
0.00

(0.00 – 0.00)
0.00

0.00

(-0.00 – 0.02)
0.00

0.02

(0.00 – 0.19)
0.00

β1,3,4 1
0.00

(0.00 – 0.94)
0.19

0.00

(-0.00 – 0.20)
0.00

0.41

(0.05 – 1.12)
0.72

β1,3,5 0
0.00

(0.00 – 0.30)
0.04

0.00

(-0.00 – 0.05)
0.00

0.17

(0.01 – 0.74)
0.29

β1,4,5 0
0.00

(0.00 – 0.52)
0.12

0.00

(-0.00 – 0.05)
0.00

0.27

(0.01 – 0.72)
0.50

β2,3,4 0
0.00

(0.00 – 0.77)
0.26

0.00

(-0.00 – 0.04)
0.00

0.00

(-0.00 – 0.12)
0.00

β2,3,5 0
0.00

(0.00 – 0.00)
0.02

0.00

(-0.00 – 0.02)
0.00

0.00

(-0.00 – 0.05)
0.00

β2,4,5 0
0.00

(0.00 – 0.00)
0.00

0.00

(-0.00 – 0.02)
0.00

0.01

(-0.00 – 0.11)
0.00

β3,4,5 0
0.00

(0.00 – 0.00)
0.01

0.00

(-0.00 – 0.05)
0.00

0.04

(0.00 – 0.58)
0.07

4.4 Application

The objective of the application was to compare the performance of the BHIS to BBVS and showcase

the pros ad cons of each. The BBVS is slightly more flexible in allowing specific terms to drop out while the
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BHIS allows for hierarchical interaction selection at the expense of more terms in the model. The modeling to

be presented was motivated by an assessment of the association between prenatal urinary phthalate metabolite

concentrations and childhood fat mass in a New York City cohort.

4.4.1 Cohort Analysis Sample

The Mount Sinai Children’s Environmental Health Study is a prospective study which followed mother-

infant pairs at Mount Sinai Hospital and two adjacent facilities in New York City. The study enrolled 479

primiparous women who delivered at Mount Sinai Medical Center between 1998 and 2002. Mother-infant pairs

in the cohort were invited to three follow-up visits at approximately ages 4–5.5, 6, and 7–9 years. Maternal

and infant demographic and lifestyle characteristics were obtained via questionnaires administered during the

third trimester and at follow-up visits. The cohort analysis sample consists of 144 infants from the Mount

Sinai Children’s Environmental Health Study with prenatal phthalate metabolite concentrations measured in

maternal urine and at least one outcome measurement at follow-up.

4.4.2 Phthalate Exposures

Spot maternal urine samples were analyzed for the following phthalate metabolites: monoethyl phthalate

(MEP), mono-n-butyl phthalate (MnBP), monoisobutyl phthalate (MiBP), mono(3-carboxypropyl) phthalate

(MCPP), monobenzyl phthalate (MBzP), and four metabolites of DEHP: mono(2-ethylhexyl) phthalate

(MEHP), mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono(2-ethyl-5-oxohexyl) phthalate (MEOHP),

and mono(2-ethyl-5-carboxypentyl) phthalate (MECPP) between 25 and 40 weeks’ gestation. Due to the high

correlation among the four metabolites of DEHP, the molar sum of the metabolite concentrations was used in

all analyses.

4.4.3 Outcome

Percent fat mass defined as (fat mass / weight) ×100 was the outcome of interest. Weight and body

composition were measured in children at each follow-up visit using a pediatric Tanita scale (model TBF-300;

Tanita Corporation of America).

4.4.4 Covariates

All modeling included adjustment for confounding variables similar to those previously identified via

directed acyclic diagrams (Buckley et al., 2015). Covariates included: maternal race/ethnicity (non-Hispanic
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white/non-Hispanic black/Hispanic), age (years), education (less than college/college degree or more), employ-

ment status during pregnancy (employed/unemployed), prepregnancy BMI, gestational weight gain, smoking

during pregnancy (yes/no), breastfeeding (ever/never), year of urine collection, natural log creatinine, and child

physical activity at follow-up (active/inactive). Child sex and age in months at follow-up were also covariates

included, however, their inclusion in models differed by method implemented. All continuous variables were

standardized by the sample mean and two times the standard deviation (Gelman et al., 2013).

4.4.5 Modeling Specifics

The methodology presented in section 4.2 was adapted to account for multiple observations per child

by including random-intercepts using a Bayesian hierarchical model. The subject specific intercepts were

assumed i.i.d from a normal distribution with a population intercepts. To account for uncertainty in the

population intercept, a conjugate normal-inverse gamma hyper prior was assumed on the population intercept

and variance.

The associations of maternal urinary phthalate metabolite concentrations with fat mass were assessed

with hierarchical models including BBVS and BHIS, separately. Following similar to previous analyses,

each model was adjusted for factors listed in (4.4.4) which included cubic maternal age and weight gain;

and quadratic prepregnancy BMI and log creatinine polynomials (Buckley et al., 2015). Two modeling

strategies were considered. Model 1 included variable selection on all pairwise interactions among phthalate

concentrations, and interactions between child sex and phthalates. Model 2 included variable selection on all

pairwise interaction among phthalate concentrations, child sex, and child age. The BBVS was implemented

using models 1 and 2, while BHIS only using model 2. Variables not considered for selection were included in

the model by using a normal prior on the these regression coefficients (i.e. not assumed DP; forced into the

model). For instance, model 1 includes an interaction term between child sex and age at follow-up and their

main effect terms assuming the corresponding regression coefficients have a normal prior. Additionally, the

BBVS modeling includes separate variable selection blocks for the main and interaction effects, that is, there

is a distinct probability of inclusion parameter for the interaction and main effects. The BHIS similarly has a

blocking scheme albeit on the re-parametrized interaction components.

Sensitivity analyses were conducted to assess the effect of using informative priors on the probability of

exclusion (i.e. β=0) of main effect terms. The informative priors were specified to favor inclusion of main

effect terms in the model by specifying π01 ∼ beta(0.001, 1), that is, our prior belief is that probability of

main effects are excluded from the model is on average approximately 0.001.
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The MCMC for each model was run on five separate chains each run for 50,000 iterations after discarding

the first 10,000 as a burn-in and stored every 50th iterate. Potential scale reduction factors and trace plots

were used to assess model convergence (Gelman et al., 2013). Weakly informative prior and hyperprior

specifications were used. For instance, consider a normal-inverse gamma prior with parameters µ, τ, a, b then

hyper parameters can be set as: µ = 0 and τ = a = b = 0.001.

4.4.6 Results

The analysis presented here consists of complete case analysis discarding missing observations in the

percent fat mass outcome and confounding variables. There were 144 mother-child pairs with complete case

data in the analysis cohort and total n = 285 observations.

In general, convergence diagnostics among all regression coefficients were satisfactory using the potential

scale reduction factor score (PSRF) below 1.10, with the exception a few coefficients in two different models.

In BBVS model 2, convergence on the MiBP:MCPP interaction term coefficient was less than optimal with an

observed PSRF of 1.12 while four regression coefficients were less than optimal in the BHIS model (MiBP:

1.20; Age (months): 1.16; MiBP:Age (months): 1.24; Sex (female):Age (months): 1.12). All PSRF factors for

models with informative priors on probability of coefficient exclusion were less than 1.10.

Across all scenarios there was insufficient evidence to support the inclusion of any pairwise phthalate

interaction nor main effect terms in model since all corresponding coefficient probabilities of inclusion were

less than 0.5 using weakly informative priors. However, both variable selection procedures in model 2

supported inclusion of child sex by age interactions with estimate posterior probabilities of inclusion at 1.00

and 0.96 for BBVS (mean: 6.11: 80% CI 4.76, 7.83) and BHIS (mean: 3.17; 80% CI 1.29, 4.05), respectively.

By construction of the BHIS, the inclusion of the sex by age interaction implies inclusion of the corresponding

main effects which is observed in the corresponding estimated posterior inclusion probabilities of 0.96 for

sex (mean: 2.58; 80% CI 0.00, 3.95) and 1.00 for age (mean: 3.55; 80% CI 2.67, 4.09). For a summary of

regression coefficient variable selection, see Table 4.6.
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Table 4.6: Summary of variable selection regression coefficients displaying posterior mean estimate (80% Cred. Int.), probability of inclusion, and potential scale
reduction factor for models with weakly informative priors on block probability of exclusion by selection and model type.

BBVS BHIS
Model 1 Model 2 Model 2

Term Estimate Pr. Incl. PSRF Estimate Pr. Incl. PSRF Estimate Pr. Incl. PSRF
MnBP -0.00 (0.00, 0.00) 0.0012 1.00 0.00 (0.00, 0.00) 0.0096 1.02 0.00 (0.00, 0.00) 0.0130 1.01
MiBP 0.00 (0.00, 0.00) 0.0012 1.00 0.12 (0.00, 0.00) 0.0700 1.04 0.19 (0.00, 1.23) 0.1596 1.20
MEP 0.00 (0.00, 0.00) 0.0008 1.00 0.01 (0.00, 0.00) 0.0116 1.03 0.00 (0.00, 0.00) 0.0078 1.00
MBzP -0.00 (0.00, 0.00) 0.0004 1.00 0.06 (0.00, 0.00) 0.0414 1.04 0.01 (0.00, 0.00) 0.0224 1.01
MCPP -0.00 (0.00, 0.00) 0.0006 1.00 0.11 (0.00, 0.00) 0.0694 1.07 0.07 (0.00, 0.00) 0.0632 1.08
Sex (F) 0.01 (0.00, 0.00) 0.0144 1.00 2.58 (0.00, 3.95) 0.9572 1.10
Age (mos.) 0.46 (0.00, 2.09) 0.2258 1.09 3.55 (2.67, 4.09) 1.0000 1.16
ΣDEHP -0.00 (0.00, 0.00) 0.0020 1.00 0.00 (0.00, 0.00) 0.0062 1.00 0.00 (0.00, 0.00) 0.0062 1.00
MnBP:MiBP 0.00 (0.00, 0.00) 0.0002 1.00 0.01 (0.00, 0.00) 0.0320 1.02 0.00 (0.00, 0.00) 0.0036 1.01
MnBP:MEP 0.00 (0.00, 0.00) 0.0000 0.00 (0.00, 0.00) 0.0024 1.00 0.00 (0.00, 0.00) 0.0006 1.00
MiBP:MEP 0.00 (0.00, 0.00) 0.0000 0.00 (0.00, 0.00) 0.0088 1.01 0.00 (0.00, 0.00) 0.0012 1.00
MnBP:MBzP 0.00 (0.00, 0.00) 0.0000 0.00 (0.00, 0.00) 0.0086 1.02 0.00 (0.00, 0.00) 0.0010 1.00
MiBP:MBzP 0.00 (0.00, 0.00) 0.0000 0.03 (0.00, 0.00) 0.0708 1.03 0.00 (0.00, 0.00) 0.0010 1.00
MEP:MBzP 0.00 (0.00, 0.00) 0.0000 0.00 (0.00, 0.00) 0.0128 1.04 0.00 (0.00, 0.00) 0.0008 1.00
MnBP:MCPP 0.00 (0.00, 0.00) 0.0000 0.00 (0.00, 0.00) 0.0162 1.01 0.00 (0.00, 0.00) 0.0014 1.00
MiBP:MCPP 0.00 (0.00, 0.00) 0.0000 0.17 (0.00, 0.69) 0.2658 1.12 0.00 (0.00, 0.00) 0.0022 1.01
MEP:MCPP 0.00 (0.00, 0.00) 0.0000 0.00 (0.00, 0.00) 0.0110 1.00 0.00 (0.00, 0.00) 0.0004 1.00
MBzP:MCPP 0.00 (0.00, 0.00) 0.0002 1.00 0.06 (0.00, 0.33) 0.1306 1.03 0.00 (0.00, 0.00) 0.0012 1.00
MnBP:Sex (F) 0.00 (0.00, 0.00) 0.0000 0.00 (0.00, 0.00) 0.0210 1.00 -0.00 (0.00, 0.00) 0.0024 1.01
MiBP:Sex (F) 0.00 (0.00, 0.00) 0.0012 1.00 0.06 (0.00, 0.16) 0.1062 1.01 0.01 (0.00, 0.00) 0.0122 1.06
MEP:Sex (F) 0.00 (0.00, 0.00) 0.0000 0.00 (0.00, 0.00) 0.0118 1.00 -0.00 (0.00, 0.00) 0.0012 1.00
MBzP:Sex (F) 0.00 (0.00, 0.00) 0.0000 0.01 (0.00, 0.00) 0.0322 1.00 0.00 (0.00, 0.00) 0.0022 1.00
MCPP:Sex (F) 0.00 (0.00, 0.00) 0.0006 1.00 0.06 (0.00, 0.00) 0.0908 1.00 0.00 (0.00, 0.00) 0.0022 1.00
MnBP:Age (mos.) 0.04 (0.00, 0.00) 0.0970 1.01 0.00 (0.00, 0.00) 0.0030 1.00
MiBP:Age (mos.) 0.10 (0.00, 0.40) 0.1578 1.01 0.17 (0.00, 1.20) 0.1354 1.24
MEP:Age (mos.) 0.04 (0.00, 0.00) 0.1020 1.01 0.00 (0.00, 0.00) 0.0008 1.00
MBzP:Age (mos.) 0.14 (0.00, 0.72) 0.2136 1.02 0.01 (0.00, 0.00) 0.0130 1.02
MCPP:Age (mos.) 0.06 (0.00, 0.29) 0.1294 1.00 0.07 (0.00, 0.00) 0.0514 1.08
Sex (F):Age (mos.) 6.11 (4.76, 7.83) 1.0000 1.02 3.17 (1.29, 4.05) 0.9572 1.12
MnBP:ΣDEHP 0.00 (0.00, 0.00) 0.0000 -0.00 (0.00, 0.00) 0.0032 1.00 -0.00 (0.00, 0.00) 0.0010 1.00
MiBP:ΣDEHP 0.00 (0.00, 0.00) 0.0000 0.00 (0.00, 0.00) 0.0060 1.01 0.00 (0.00, 0.00) 0.0006 1.00
MEP:ΣDEHP 0.00 (0.00, 0.00) 0.0000 -0.00 (0.00, 0.00) 0.0024 1.00 -0.00 (0.00, 0.00) 0.0004 1.00
MBzP:ΣDEHP 0.00 (0.00, 0.00) 0.0000 0.00 (0.00, 0.00) 0.0070 1.00 -0.00 (0.00, 0.00) 0.0008 1.00
MCPP:ΣDEHP 0.00 (0.00, 0.00) 0.0000 0.00 (0.00, 0.00) 0.0082 1.00 0.00 (0.00, 0.00) 0.0010 1.00
Sex (F):ΣDEHP 0.00 (0.00, 0.00) 0.0000 -0.00 (0.00, 0.00) 0.0104 1.00 -0.00 (0.00, 0.00) 0.0006 1.00
Age (mos.):ΣDEHP 0.17 (0.00, 0.61) 0.3244 1.02 -0.00 (0.00, 0.00) 0.0010 1.00
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The analysis with informative priors on the exclusion probability of main effect regression coefficients

yielded similar results. All posterior probabilities of inclusion on pairwise interactions including phthalate

metabolite concentrations were estimated to be less than 0.14, and the child sex by age interaction had

probability of inclusion of 1.00 in both the BBVS and BHIS model 2 models. In different results, there was

not sufficient evidence to influence excluding main effects from each model since all estimated posterior

probabilities of exclusion were greater than 0.50 in the presence of informative exclusion probability priors

(see Table 4.7). In BBVS model 1, phthalate main effects varied from -0.05 to -0.03 and all corresponding 80%

credible intervals straddled zero (MnBP: -0.04 (-0.20, 0.10); MiBP: -0.03 (-0.20, 0.11); MEP: -0.03 (-0.20,

0.10); MBzP: -0.03 (-0.19, 0.11); MCPP: -0.03 (-0.20, 0.11); ΣDEHP: -0.05 (-0.21, 0.09)).

By favoring the inclusion of main effects in BBVS and BHIS model 2 models, the magnitude of the

posterior mean effects increased in phthalate metabolite coefficients, child sex and age. For example, the

BBVS model 2 observed the greatest magnitude increase in the posterior mean effect estimate of age increasing

from 0.46 (80% CI: 0.00, 2.09) to 0.71 (80% CI: 0.00, 2.26) in the weakly informative and informative priors,

respectively. The BHIS observe more modest increases in the phthalate concentration effects with MBzP

observing the greatest increase from 0.01 (80% CI: 0.00, 0.00) to 0.14 (80% CI: 0.00, 0.35), while effects for

child sex and age remained similar.
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Table 4.7: Summary of variable selection regression coefficients displaying posterior mean estimate (80% Cred. Int.), probability of inclusion, and potential scale
reduction factor for models with informative priors on main effects favoring inclusion on block probability of exclusion by selection and model type.

BBVS BHIS
Model 1 Model 2 Model 2

Term Estimate Pr. Incl. PSRF Estimate Pr. Incl. PSRF Estimate Pr. Incl. PSRF
MnBP -0.04 (-0.20, 0.10) 0.6436 1.01 0.16 (-0.11, 0.43) 0.8496 1.01 0.09 (0.00, 0.32) 0.6310 1.03
MiBP -0.03 (-0.20, 0.11) 0.6430 1.01 0.29 (0.00, 0.55) 0.8638 1.01 0.21 (0.00, 0.52) 0.6758 1.03
MEP -0.03 (-0.20, 0.10) 0.6430 1.01 0.21 (-0.03, 0.45) 0.8506 1.03 0.11 (0.00, 0.32) 0.6308 1.05
MBzP -0.03 (-0.19, 0.11) 0.6428 1.01 0.26 (0.00, 0.49) 0.8514 1.03 0.14 (0.00, 0.35) 0.6444 1.03
MCPP -0.03 (-0.20, 0.11) 0.6432 1.01 0.25 (-0.00, 0.50) 0.8542 1.02 0.15 (0.00, 0.37) 0.6552 1.02
Sex (F) 0.17 (-0.12, 0.44) 0.8494 1.01 2.74 (-0.14, 3.98) 1.0000 1.04
Age (mos.) 0.71 (0.00, 2.26) 0.8742 1.02 3.59 (3.01, 4.07) 1.0000 1.01
ΣDEHP -0.05 (-0.21, 0.09) 0.6434 1.02 0.14 (-0.15, 0.42) 0.8492 1.01 0.06 (-0.04, 0.29) 0.6342 1.03
MnBP:MiBP 0.00 (0.00, 0.00) 0.0004 1.00 0.00 (0.00, 0.00) 0.0124 1.01 0.00 (0.00, 0.00) 0.0072 1.03
MnBP:MEP 0.00 (0.00, 0.00) 0.0000 0.00 (0.00, 0.00) 0.0030 1.01 0.00 (0.00, 0.00) 0.0068 1.03
MiBP:MEP 0.00 (0.00, 0.00) 0.0000 0.00 (0.00, 0.00) 0.0038 1.01 0.00 (0.00, 0.00) 0.0048 1.00
MnBP:MBzP 0.00 (0.00, 0.00) 0.0000 0.00 (0.00, 0.00) 0.0100 1.04 0.00 (0.00, 0.00) 0.0070 1.03
MiBP:MBzP -0.00 (0.00, 0.00) 0.0002 1.00 0.01 (0.00, 0.00) 0.0210 1.02 0.00 (0.00, 0.00) 0.0124 1.03
MEP:MBzP -0.00 (0.00, 0.00) 0.0002 1.00 0.00 (0.00, 0.00) 0.0016 1.00 0.00 (0.00, 0.00) 0.0082 1.03
MnBP:MCPP 0.00 (0.00, 0.00) 0.0000 0.00 (0.00, 0.00) 0.0062 1.01 0.00 (0.00, 0.00) 0.0068 1.03
MiBP:MCPP 0.00 (0.00, 0.00) 0.0000 0.04 (0.00, 0.00) 0.0652 1.01 0.00 (0.00, 0.00) 0.0086 1.00
MEP:MCPP 0.00 (0.00, 0.00) 0.0002 1.00 0.00 (0.00, 0.00) 0.0034 1.00 0.00 (0.00, 0.00) 0.0062 1.03
MBzP:MCPP 0.00 (0.00, 0.00) 0.0004 1.00 0.02 (0.00, 0.00) 0.0402 1.03 0.00 (0.00, 0.00) 0.0100 1.01
MnBP:Sex (F) 0.00 (0.00, 0.00) 0.0002 1.00 0.00 (0.00, 0.00) 0.0074 1.00 -0.00 (0.00, 0.00) 0.0060 1.01
MiBP:Sex (F) 0.01 (0.00, 0.00) 0.0070 1.01 0.03 (0.00, 0.00) 0.0402 1.01 0.01 (0.00, 0.00) 0.0170 1.05
MEP:Sex (F) 0.00 (0.00, 0.00) 0.0002 1.00 -0.00 (0.00, 0.00) 0.0026 1.00 -0.00 (0.00, 0.00) 0.0058 1.00
MBzP:Sex (F) 0.00 (0.00, 0.00) 0.0004 1.00 0.00 (0.00, 0.00) 0.0102 1.00 0.00 (0.00, 0.00) 0.0062 1.00
MCPP:Sex (F) 0.00 (0.00, 0.00) 0.0008 1.00 0.02 (0.00, 0.00) 0.0366 1.00 0.00 (0.00, 0.00) 0.0072 1.01
MnBP:Age (mos.) 0.02 (0.00, 0.00) 0.0336 1.00 0.00 (0.00, 0.00) 0.0056 1.01
MiBP:Age (mos.) 0.10 (0.00, 0.25) 0.1056 1.01 0.07 (0.00, 0.00) 0.0682 1.02
MEP:Age (mos.) 0.01 (0.00, 0.00) 0.0340 1.01 0.00 (0.00, 0.00) 0.0060 1.00
MBzP:Age (mos.) 0.07 (0.00, 0.00) 0.0974 1.02 0.01 (0.00, 0.00) 0.0180 1.01
MCPP:Age (mos.) 0.04 (0.00, 0.00) 0.0566 1.00 0.03 (0.00, 0.00) 0.0338 1.01
Sex (F):Age (mos.) 6.73 (4.99, 8.45) 1.0000 1.01 3.46 (2.92, 4.02) 1.0000 1.01
MnBP:ΣDEHP 0.00 (0.00, 0.00) 0.0000 -0.00 (0.00, 0.00) 0.0032 1.00 0.00 (0.00, 0.00) 0.0034 1.00
MiBP:ΣDEHP -0.00 (0.00, 0.00) 0.0002 1.00 0.00 (0.00, 0.00) 0.0030 1.01 0.00 (0.00, 0.00) 0.0066 1.03
MEP:ΣDEHP 0.00 (0.00, 0.00) 0.0000 0.00 (0.00, 0.00) 0.0008 1.00 0.00 (0.00, 0.00) 0.0074 1.03
MBzP:ΣDEHP 0.00 (0.00, 0.00) 0.0000 -0.00 (0.00, 0.00) 0.0008 1.00 0.00 (0.00, 0.00) 0.0076 1.02
MCPP:ΣDEHP 0.00 (0.00, 0.00) 0.0006 1.00 0.00 (0.00, 0.00) 0.0034 1.01 0.00 (0.00, 0.00) 0.0072 1.01
Sex (F):ΣDEHP -0.00 (0.00, 0.00) 0.0002 1.00 -0.00 (0.00, 0.00) 0.0054 1.00 -0.02 (0.00, 0.00) 0.0318 1.06
Age (mos.):ΣDEHP 0.07 (0.00, 0.41) 0.1336 1.01 0.00 (0.00, 0.00) 0.0062 1.01
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In terms of confounding variables, there was great consistency across priors and variable selection

procedures. These findings were not surprising since varying the prior on the selection probability should have

minimal effect on non-selection variables. This is observed by noting that effect estimates for the confounding

variables vary minimally across prior selection specification within each selection and model type (see Tables

4.8 & 4.9). The coefficients for BBVS and BHIS in model 2, were also similar across variable selection type

even though these observed different variable selection results by exclusion probability priors. The magnitude

of effect estimates for common coefficients between models 1 and 2 were different, with model 1 coefficients

observing greater magnitudes in general with the exception of the cubic maternal age terms.

Table 4.8: Summary of confounder regression coefficients displaying posterior mean estimate (80% Cred.
Int.), probability of inclusion, and potential scale reduction factor for models with weakly informative priors
on block probability of exclusion by selection and model type.

BBVS BHIS
Model 1 Model 2 Model 2

Term Estimate PSRF Estimate PSRF Estimate PSRF
Intercept (Pop.) 1.19 (-11.15, 13.90) 1.02 13.98 (8.48, 19.39) 1.01 13.52 (7.99, 19.05) 1.01
Creatinine 3.03 (1.56, 4.47) 1.00 0.10 (-0.05, 0.19) 1.00 0.11 (-0.05, 0.23) 1.01
Creatinine2 2.13 (0.53, 3.79) 1.00 0.07 (-0.05, 0.16) 1.00 0.08 (-0.06, 0.20) 1.00
Maternal age 1.54 (0.13, 2.92) 1.01 0.07 (-0.05, 0.17) 1.01 0.08 (-0.05, 0.19) 1.01
Maternal age2 -0.05 (-0.11, 0.01) 1.01 0.01 (-0.01, 0.03) 1.00 0.01 (-0.01, 0.03) 1.00
Maternal age3 0.00 (-0.00, 0.00) 1.01 -0.00 (-0.00, 0.00) 1.00 -0.00 (-0.00, 0.00) 1.00
Race (black) 1.06 (-0.83, 2.93) 1.00 0.05 (-0.06, 0.14) 1.00 0.06 (-0.06, 0.17) 1.00
Race (hispanic/other) 2.55 (0.77, 4.41) 1.00 0.08 (-0.05, 0.16) 1.00 0.09 (-0.05, 0.19) 1.00
Sex (F) -0.80 (-2.14, 0.52) 1.00
Sex (F):Age (mos.) 5.23 (4.20, 6.29) 1.00
Maternal smoking 2.37 (0.73, 4.00) 1.00 0.09 (-0.05, 0.19) 1.00 0.09 (-0.05, 0.22) 1.01
Year urine collection 0.60 (-0.74, 1.96) 1.00 0.03 (-0.06, 0.13) 1.00 0.05 (-0.06, 0.16) 1.00
Age (mos.) 2.74 (2.02, 3.47) 1.00
Breastfed (ever) -1.23 (-2.82, 0.32) 1.00 -0.01 (-0.08, 0.10) 1.00 0.00 (-0.08, 0.12) 1.00
Education (≥college) -0.06 (-1.97, 1.83) 1.00 0.02 (-0.06, 0.11) 1.00 0.02 (-0.07, 0.12) 1.00
Mother unemployed 0.59 (-1.10, 2.31) 1.00 0.04 (-0.06, 0.14) 1.00 0.05 (-0.06, 0.18) 1.00
Phys. activity (active) 0.52 (-0.09, 1.14) 1.00 0.05 (-0.05, 0.17) 1.00 0.06 (-0.05, 0.20) 1.00
Maternal BMI 3.59 (1.86, 5.42) 1.00 0.10 (-0.05, 0.18) 1.00 0.11 (-0.05, 0.23) 1.01
Maternal BMI2 -2.16 (-3.53, -0.79) 1.00 -0.00 (-0.07, 0.11) 1.00 0.00 (-0.07, 0.13) 1.00
Gest. weight gain 1.33 (-0.41, 3.02) 1.00 0.06 (-0.05, 0.17) 1.00 0.07 (-0.05, 0.19) 1.00
Gest. weight gain2 0.09 (-1.95, 2.09) 1.00 0.04 (-0.06, 0.14) 1.00 0.04 (-0.06, 0.16) 1.00
Gest. weight gain3 -0.80 (-2.57, 0.89) 1.00 0.03 (-0.06, 0.13) 1.00 0.04 (-0.06, 0.17) 1.00

Additionally, the population intercepts differed greatly by model type. The population intercept for model

1 was observed to be much lower than (Weak: 1.19; Inf. ME: 1.58) those observed in BBVS (Weak: 13.98; Inf.

ME: 11.20) and BHIS (Weak: 13.52; Inf. ME: 12.23) model 2 models, and the corresponding 80% credible

intervals straddled zero (Weak: -11.15, 13.90; Inf. ME: -11.38, 14.62). This may be an artifact of the larger

effects of confounding variables observed in model 1, and it is worrisome that the range of percent fat mass

estimates can be negative. The population intercept 80% credible intervals for model 2 models, on the other
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hand, all spanned sensible ranges (BBVS Weak: 8.48, 19.39/Inf. ME: 5.11, 17.69; BHIS Weak: 7.99, 19.05/Inf

ME: 6.32, 18.13).

Table 4.9: Summary of confounder regression coefficients displaying posterior mean estimate (80% Cred.
Int.), probability of inclusion, and potential scale reduction factor for models with informative priors on main
effects favoring inclusion on block probability of exclusion by selection and model type.

BBVS BHIS
Model 1 Model 2 Model 2

Term Estimate PSRF Estimate PSRF Estimate PSRF
Intercept (Pop.) 1.58 (-11.38, 14.62) 1.01 11.20 (5.11, 17.69) 1.01 12.23 (6.32, 18.13) 1.02
Creatinine 3.22 (1.48, 5.02) 1.01 0.07 (-0.05, 0.14) 1.03 0.07 (-0.05, 0.15) 1.01
Creatinine2 2.19 (0.50, 3.88) 1.00 0.05 (-0.06, 0.13) 1.01 0.06 (-0.05, 0.14) 1.01
Maternal age 1.55 (0.07, 3.06) 1.01 0.06 (-0.05, 0.13) 1.02 0.05 (-0.06, 0.13) 1.01
Maternal age2 -0.05 (-0.11, 0.01) 1.00 0.01 (-0.01, 0.03) 1.00 0.01 (-0.01, 0.03) 1.00
Maternal age3 0.00 (-0.00, 0.00) 1.00 -0.00 (-0.00, 0.00) 1.00 -0.00 (-0.00, 0.00) 1.00
Race (black) 1.17 (-0.76, 3.11) 1.00 0.04 (-0.06, 0.12) 1.01 0.04 (-0.06, 0.13) 1.01
Race (hispanic/other) 2.62 (0.80, 4.50) 1.00 0.06 (-0.05, 0.14) 1.02 0.06 (-0.06, 0.14) 1.01
Sex (F) -0.80 (-2.17, 0.55) 1.00
Sex (F):Age (mos.) 5.24 (4.19, 6.34) 1.00
Maternal smoking 2.46 (0.81, 4.10) 1.00 0.07 (-0.05, 0.14) 1.02 0.06 (-0.05, 0.15) 1.01
Year urine collection 0.66 (-0.68, 1.96) 1.00 0.02 (-0.06, 0.12) 1.00 0.03 (-0.06, 0.12) 1.00
Age (mos.) 2.74 (1.98, 3.49) 1.00
Breastfed (ever) -1.22 (-2.81, 0.31) 1.00 -0.01 (-0.08, 0.09) 1.00 0.00 (-0.07, 0.10) 1.00
Education (≥college) -0.13 (-2.09, 1.82) 1.00 0.02 (-0.07, 0.10) 1.00 0.02 (-0.07, 0.11) 1.00
Mother unemployed 0.62 (-1.07, 2.32) 1.00 0.03 (-0.06, 0.12) 1.00 0.04 (-0.06, 0.12) 1.00
Phys. activity (active) 0.52 (-0.07, 1.14) 1.00 0.05 (-0.05, 0.14) 1.01 0.04 (-0.05, 0.14) 1.01
Maternal BMI 3.68 (1.85, 5.62) 1.00 0.08 (-0.05, 0.15) 1.02 0.07 (-0.05, 0.16) 1.01
Maternal BMI2 -2.21 (-3.63, -0.82) 1.00 -0.00 (-0.07, 0.10) 1.01 0.01 (-0.07, 0.11) 1.00
Gest. weight gain 1.28 (-0.44, 3.02) 1.00 0.05 (-0.05, 0.14) 1.01 0.05 (-0.05, 0.15) 1.01
Gest. weight gain2 0.11 (-1.93, 2.14) 1.00 0.03 (-0.06, 0.12) 1.00 0.03 (-0.06, 0.12) 1.00
Gest. weight gain3 -0.80 (-2.59, 1.01) 1.00 0.02 (-0.06, 0.12) 1.00 0.03 (-0.06, 0.13) 1.00

The findings we observed were similar to previous findings. The credible interval estimates straddling

zero in model 1 estimates, was also observed in phthalate metabolize concentration effects by Buckley et al.

(2015), albeit their modeling strategy did not include variable selection in their analyses, and it included effect

modification by child sex. In either case, their 80% credible intervals for overall concentration effects also

included zero. However, the estimates we observed seemed to be highly influenced by shrinkage relative to

their estimates. Also, our modeling although influenced by their analysis was not an exact replication. Their

analyses included a larger list of confounding variables and accounted for missing covariate observations and

imputation for concentrations below limits of detections (LOD). Our analysis may be limited and influenced

by the reduced sample size as a complete case analysis and use of LOD imputation for concentrations below

LOD. However, the similarities with our model 1 and previous analyses is encouraging.

Our decision to compare associations by using an informative prior favoring inclusion of main effects was

guided by previous findings. A recent study assessing simultaneous associations between urinary phthalate

concentrations and childhood BMI and obesity, used variable selection on phthalate concentrations through
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Bayesian Kernel Machine Regression (BKMR), and found mostly linear positive associations with MEP, MnBP,

MBzP, and ΣDEHP with BMI z-scores in children at age 12 while MCPP observed a negative relationship

(Harley et al., 2017). Our observations of positive simultaneous associations between all phthalate metabolite

concentrations encouragingly coincides with their findings except for MCPP.

4.5 Discussion

In this chapter, we have studied a Bayesian semi-parametric modeling framework with variable selection

for hierarchical interactions. We have found that the proposed method performs as well as LASSO in most

simulation scenarios and found its flexibility by design is advantageous in screening for significant variables in

three-way interaction models with highly correlated predictors while adjusting for mixed-scale confounding

variables. This modeling framework is useful for epidemiologic research as it allows simultaneous estimation,

model averaging, variable selection, effect clustering, automatically accounts for hierarchical interactions;

and preserves grouping, incorporation of prior information on block specific exclusion probability, and effect

magnitude as in Herring (2010). We have additionally developed a Matlab package that can implement

Bayesian hierarchical semi-parametric with blocked (i.e. grouped) variable selection which can account for

repeated measures (i.e. as analogous random intercept linear mixed models) and can accommodate hierarchical

interactions. This Matlab package will also have functionality to account for variables subject to observations

below limits of quantification by leveraging its Bayesian nature.

The methodology proposed in this chapter is computationally burdened in the presence of increasing

number of predictors and greater degree of n-way interactions. LASSO and its variants are a great resource

for their scalability to screening variables in the high dimensional setting with feasible computational time

(Tibshirani, 1996; Lim and Hastie, 2015). BHIS estimation, however, relies on an MCMC sampler where it

may advantageous to consider alternative estimation procedures for it.
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CHAPTER 5: A JOINT MIXTURE MODEL FOR COMPOSITIONAL DATA WITH ESSENTIAL
ZEROS: PROFILES OF PHYSICAL ACTIVITY AND HEALTH RISK

5.1 Introduction

Jointly modeling time spent in sedentary behavior and physical activity has been a difficult problem to

approach because of the compositional nature of the data, that is the sum of time is constrained by the observed

time interval (e.g. 24 hours in a day, wake time, etc.), especially when the behaviors are multicomponent (e.g.

intensity levels or by type of activity). Accelerometry-assessed sedentary behavior and physical activity are

often reported as a four-part component of time (e.g., a day of wear time) spent in behaviors of incremental

intensity: sedentary, light, moderate, and vigorous activities. This implies that the variables are constrained to

the wear time and thus it is important to ensure these data are analyzed as a composition. Latent class (also

known as latent profile) analysis and clustering techniques have been used for patterning, but each have been

implemented with some shortcomings (Carson et al., 2015; Evenson et al., 2015, 2016; Huh et al., 2011; Liu

et al., 2010; Patnode et al., 2011).

Latent class analysis for assessing sedentary behavior and physical activity include separate analyses on

each component or joint analyses ignoring the compositional nature of the data (Carson et al., 2015; Evenson

et al., 2015, 2016; Huh et al., 2011; Liu et al., 2010; Patnode et al., 2011). Separate analyses often have the

advantage of simplicity. However, current approaches do not make the most efficient use of the data and do

not yield information about how all the components interrelate. Joint analyses, ignoring the compositional

nature of the data may yield inconsistent results (Aitchison, 1986; Dumuid et al., 2017b; Gupta et al., 2018;

Leech et al., 2014; Fernández et al., 2015). Furthermore, it has been shown that when summarizing a sample

of compositions with arithmetic means, these over-estimate proportions for non-sedentary times (Chastin et al.,

2015). For compositional data, the normalized geometric means of each component are more appropriate

measures of central tendency (Aitchison, 2005; Pawlowsky-Glahn and Egozcue, 2002).

Compositional data analysis is an area of active research, and with recent developments, researchers have

begun applying these methods to analyzing 24-hour time budgets of sleep, sedentary, and physical activity

behaviors. Current approaches have relied on implementing appropriate transformations (i.e. isometric log

ratio transformations) of the data that achieve desirable properties of linear-like behaviors and have applied

k-means clustering for patterning of behaviors (Dumuid et al., 2017a). These transformations preserve good
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mathematical properties in terms of distances between compositions, but they rely on log-ratios of components,

which are not directly usable in the presence of zeros (Martın-Fernandez et al., 2011).

Many people do not engage in vigorous activity, which introduces the essential zero difficulty into

compositional data. Essential zeros are defined as true absence of a composition element, which is different

from rounded zeros, where levels of a composition are below limits of detection. Current methods for

accounting for zeros in compositional data include stratification, data imputation, or conditional distribution

methods (Kaul et al., 2017b,a; Martın-Fernandez et al., 2011). In physical activity, imputation is not a

tenable approach, as it would impute data where data does not exist. On the other hand, stratification, defined

as separate analyses by zero pattern configuration, does not make the most effective use of the data and

complicates interpretation. Conditional distribution methods model the distribution of a composition (e.g.

using a multivariate Gaussian) conditional on a zero patter configuration and can discern group differences

via discriminant analysis (Kaul et al., 2017a). However, it may be difficult to discover profiles present in the

data given that it requires prior knowledge of how many subclasses exist. Thus, there is currently a need for

latent class methods which can account for essential zeros in compositional data. Additionally, essential zeros

pose a unique difficulty in estimation of some measures of central tendency because zero values imply zero

summaries (i.e. zeros in geometric means).

A general form of the latent class model for compositional data has been previously defined; however, it

does not incorporate essential zeros (Comas-Cufı́ et al., 2016). In this paper, we will develop a new latent

class method specifically designed for analyzing compositional data with essential zeros. To our knowledge,

this will be the first unified latent class modeling approach for such data.

This paper is organized as follows: Section 5.2 describes the motivation for the proposed joint mixture

model in the physical activity setting and how it relates to compositional data. Section 5.3 defines the

proposed joint mixture model and presents properties of the model, the algorithm for posterior inference, and

centroids for compositional data with essential zeros. Section 5.4 presents results from simulation experiments.

Section 5.5 applies our method to the Hispanic Community Health Study / Study of Latinos (HCHS/SOL) for

characterizing latent profile of accelerometry-assessed sedentary behaviors and physical activity and describing

associations with abdominal obesity (adiposity). Lastly, section 5.6 provides a summary of our work with a

discussion of future work and potential applications.
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5.2 Motivation

5.2.1 Notation and Data Structure

Compositional data, mathematically, is defined as multivariate random vectors of sizeD, y = (y1, . . . , yD)′,

which lie within the simplex of size D:

SD = {y = (y1, . . . , yD)′,

D∑
j=1

yj = κ, yj > 0, j = 1, . . . , D}, (5.48)

where κ is some positive constant. Let physical activity time use variables, ti = (ti1, ti2, ti3, ti4)′, represent

the amount of time spent in sedentary, light, moderate, and vigorous activity for the ith participant, respectively.

When all study participants are observed over the same time period, κ =
∑4
j=1 tij for i = 1, . . . , n, then each

study participant’s time use variables are four part compositions, ti ∈ S4.

The Hispanic Community Health Study / Study of Latinos (HCHS/SOL) is a community based prospective

cohort study of 16,415 self-identified Hispanic/Latino adults (aged 18 - 74 year) from randomly selected

households in four U.S. field centers (Chicago, IL; Miami, FL; Bronx, NY; San Diego, CA), whose goals

are to describe the prevalence of risk and protective factors of certain chronic conditions and quantify certain

health outcomes of interest over time (LaVange et al., 2010). At baseline, study participants were instructed

to wear accelerometers on their right hip for seven days during wake hours. In HCHS/SOL, accelerometry-

assessed time use variables do not have uniform wear time across participants, κ but subject specific wear time,

κi =
∑4
j=1 tij . To circumvent this issue and project these time use variables to a four component simplex

space, time use variables can be scaled by wear time which defines time budget proportions, yi = ti/κi.

Time budget proportions are contained within the four component unit simplex, yi ∈ S4 which implies

yij ∈ R[0,1] for all j and κ = 1. This restriction can be thought of as focusing on scaled compositional data or

compositional multivariate proportions. In the rest of the paper, we index the compositional data to include the

ith observation in a sample of size n and lth repeated measure, yil = (yil1, . . . , yilD)′.

5.2.2 Mixtures on the simplex

Mixture models have been an important tool for analyzing multivariate non-homogeneous data, however,

these have been limited for compositional data. The mixture of Dirichlet distributions model has been used for

analyzing non-homogeneous compositional data, however, the Dirichlet distribution is very restrictive, for

example, only allowing a particular negative dependence in the elements (Barrientos et al., 2015; Calif et al.,

2011b; Comas-Cufı́ et al., 2016).
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Log ratio methods have contributed greatly to the development of more flexible and interpretable modeling

of compositional data (Pawlowsky-Glahn et al., 2015; Mateu-Figueras et al., 2013). Log ratio methods rely on a

mathematical framework which induces a measure on the simplex via a one-to-one mapping, h : SD → RD−1,

from the simplex to the real space (Mateu-Figueras et al., 2011, 2013). This is called the principle of working

on the coordinates and is appealing because all standard statistical methods and properties can be applied on

and transfered to the simplex (Mateu-Figueras et al., 2013). The function h is called a coordinate function and

often chosen to be a log ratio. The isometric log ratio coordinate function,

h(y) = ilr(y) =

(√
j

j + 1
ln

( j

√∏j
j∗=1 yj∗

yj+1

))
j

, j = 1, . . . , D − 1, (5.49)

is an orthonormal log ratio coordinate system which has recently been used for analyzing compositional data

(Chastin et al., 2015; Dumuid et al., 2017b; Rivera-Pinto et al., 2018). Other log ratio coordinate functions

have been used as well, such as, the additive log ratio (alr) and the centered log ratio (clr) (Aitchison, 2005).

The additive log ratio coordinate function is defined as,

h(y) = alr(y) =

(
ln

(
yj
yD

))
j

, j = 1, . . . , D − 1. (5.50)

The normal distribution on the simplex was defined using this framework which allows for improved flexibility

over the Dirichlet distribution (Mateu-Figueras et al., 2013).

5.2.2.1 The mixture model on the simplex

The principle of working on the coordinates enabled the definition of mixture models on the simplex.

Comas-Cufı́ et al. (2016) specify, however, note that the mixture methodology requires mixtures to be defined

on basis invariant distributions and most common distributions are basis invariant (e.g. multivariate normal).

The mixture model for compositional data is defined as:

f(y|θ) =

K∑
k=1

πkK(y∗|θk), (5.51)

where y∗ = h(y), h is a coordinate function, θ = {θk}Kk=1, and K is a multivariate kernel (i.e. distribution)

(Comas-Cufı́ et al., 2016). The mixtures of multivariate Gaussian (BMMG) and skewed-normals on the

simplex are defined by choosing the respective kernel. The BMMG is a versatile method for modeling

non-homogeneous compositional data that can capture more general forms of dependence over the mixture of

Dirichlet distributions.
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5.2.2.2 The mixture of product kernels on the simplex

The mixture of product kernels methodology can be adapted for compositional data using the principle of

working on the coordinates. The mixture of product kernels methodology assumes all variables are mutually

independent conditional on a latent class and is highly flexible (Dunson and Bhattacharya, 2011). When

this framework is combined with the principle of working on the coordinates, the mixture of product kernels

(BMPK) on the simplex is defined as:

f(y|θ) =

K∑
k=1

πk

D−1∏
j=1

Kj(y∗j |θk), (5.52)

y∗ = h(y), h is a coordinate function, θ = {θk}Kk=1, and Kj is a coordinate component specific kernel. We

hereafter refer to BMPK for the case when the coordinate function is the ilr with component specific normal

kernels. This specification is a special case of the BMMG with zero correlations.

The mixture of product kernels is similar to latent profile analysis (LPA) and equivalent to latent class

analysis (LCA) when analyzing n-way contingency tables using a mixture of product multinomials model

(Dunson and Xing, 2009). An appealing feature of this methodology is that BMPK can be used to build

densities for mixed-scale variables by simply augmenting compositional data with other variables and selecting

an appropriate kernel (Davalos et al., 2019; Dunson and Bhattacharya, 2011). This idea can be leveraged to

jointly profile physical activity and a health outcome of interest thereby producing supervised latent profiles.

5.2.2.3 Limitations

The Center for Disease Control and Prevention (CDC) estimates that approximately 22.9% of U.S. adults

aged 18–64 meet the recommended physical activity guidelines of at least 150 minutes of MPA, 75 minutes of

VPA, or a combination of both per week. In HCHS/SOL, using objectively measure SBPA, approximately

60% and 70% of the target population do not achieve any vigorous physical activity during the week and

weekend, respectively. In attempting to characterize objectively measure SBPA from a time use perspective,

these figures highlight the need for compositional data analysis methods that can account for essential zeros.

The mixture modeling methods presented in the previous sections cannot account for essential zeros

because of limitations in the coordinate functions and kernels. The log ratio coordinate functions can yield

infinite or undefined values in the presence of essential zeros. Consider the ilr coordinates of time budget

proportions on participants who do not achieve MVPA, yi = (yi1, yi2, 0, 0), then the third coordinate is

undefined as ∝ ln(0/0). The third ilr coordinates for participants with no VPA, yi = (yi1, yi2, yi3, 0), are
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infinite, ∝ ln(
∏3
j=1 yij/0). Additionally, it is not possible to evaluate common distribution kernels (e.g.

multivariate normal, Dirichlet) at these values.

5.2.2.4 Essential zeros adjustment strategies

Essential zeros can be adjusted for in mixture models on the simplex by imputing zeros or stratification.

There are many imputation methods for rounded zeros (i.e. zeros below limit of detection) which include

simple methods of replacing zero values with a small arbitrary non-zero value to highly sophisticated robust

methods (Martı́n-Fernández et al., 2012). However, treating essential zeros as rounded zeros may not be

a tenable approach for SBPA since there can be a large amount of zeros and the non-zero values that do

inform the imputation process may unduly bias the time budget proportions of participants with no MVPA.

For profiling SBPA, it is possible imputed zero values may obscure some of the latent classes.

Stratification, or stratified analyses by essential zero configuration, may be an alternative to circumventing

essential zeros in compositional data. For objectively measured SBPA, essential zero configurations are

typically of the form: all sedentary (1, 0, 0, 0), no MVPA (yi1, yi2, 0, 0), no VPA (yi1, yi2, yi3, 0), and no

zeros (yi1, yi2, yi3, yi4). A stratified analysis would entail modeling the no MVPA, no VPA, and no zeros

configurations separately which can pose modeling difficulties if there are few participants in some of the

configurations. Additionally, two sets of stratified analyses will have to be considered when profiling weekday

and weekend SBPA time budget proportions. The difficulty with stratification by essential zero configuration

is that profiles are defined by the zero configurations and it may be useful to, for instance, collapse profiles of

individuals with high MPA and no VPA with individuals with moderate MPA and low VPA. Lastly, stratification

complicates interpretation when latent profiles are derived within each configuration in attempting to draw

unified conclusions.

5.3 Tensor mixture model on the simplex

The principle of working on the coordinates and product kernels modeling can be jointly leveraged to

account for essential zeros im mixture modeling. As detailed in the previous section, the ilr coordinates are

not useful in the presence of zeros, however, the alr coordinates can allow accounting for zeros in all but

one compositional component. The alr coordinates together with the product kernels allows the use of zero

inflated-like kernels for accounting for essential zeros. Additionally, the tensor mixture model is used to

conveniently enumerate all zero pattern configurations. In the subsections that follow, we derive our proposed

methodology.
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5.3.0.1 Derivation

Definition 5.1. (Tensor mixture model on the simplex) Let π = {πk1···kD−1
, kj = 1, . . . ,Kj , j = 1, . . . , D−

1} ∈ ΠK1···KD−1
a probability tensor in the space of all probability tensors of size K1 × · · · ×KD−1 and

y ∈ SD. The density is said to be tensor mixture on the simplex if:

fY (y|θ) =

K1∑
k1=1

· · ·
KD−1∑
kD−1=1

πk1···kD−1
fY ,k1···kD−1

(y|θk1···kD−1
), (5.53)

where each fY ,k1···kD−1
(·|θk1···kD−1

) is density defined on the simplex.

Following Comas-Cufı́ et al. (2016), we extend the mixture model on the simplex. We define the tensor

mixture model on the simplex by defining a tensor mixture model of product kernels on the coordinates.

Definition 5.2. (Tensor mixture of product kernels model on the simplex (BTMPK)) Let h : SD → RD−1 be

a coordinate function, y ∈ SD, and y∗ = h(y). The density fY is a tensor mixture of product kernels on the

simplex if:

fY ,k1···kD−1
(y|θk1···kD−1

) = f∗k1···kD−1
(h(y)|θk1···kD−1

) (5.54)

=

D−1∏
j=1

Kkjj(y∗j |θkjj), (5.55)

where y∗ = (h1(y), . . . , hD−1(y))′ and Kkjj is a kernel.

The tensor mixture modeling framework allows analysts great flexibility in building multivariate models

because of how it separates a kernel for each distributional component. It is this flexibility that we leverage to

build a distribution that can account for the presence of essential zeros. We emphasize that in difference to

other specifications of a tensor mixture of product kernels, the indexing of the kernel not just by j but also by

the marginal component kj . As presented in the next section, we use this to define the zero inflated mixture of

Gaussians kernel.

5.3.0.2 Zero inflated mixture of Gaussians kernel

In order to gain insight into the derivation of our proposed model for modeling compositional data with

essential zeros, we present a base case working with a three part composition and go through an algebraic

exercise of different parameterizations of the tensor mixture model. As a starting point consider the alr

coordinate function which requires a referent component to construct the log ratio. We choose to work with

this coordinate system since it facilitates accounting for essential zeros in the physical activity time budget
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data scenario where it is tenable to assume the sedentary time budget will be non-zero for all participants.

Assume the referent component is free from essential zeros but other components can have zeros, yD 6= 0

while yj ∈ [0, 1). When D = 2 then the presence of essential zeros can be handled by using a zero inflated

Gaussian distribution:

fY (y|θ) = π1δ0(y1) + π2N(h1(y)|µ, σ2), (5.56)

where θ = (µ, σ2), h(y) = log(y1/y2), π ∈ S2, y2 = 1− y1, and δ0(·) is the degenerate distribution at 0.

Extending the this framework to higher dimensions is more involved but we increase to one more

dimension to reveal greater generalization. Consider y ∈ S3 and assume y3 6= 0 and the additive log

ratio coordinate function. Under this scenario, essential zeros can be present in the following combinations:

(0, y2, y3), (y1, 0, y3), (0, 0, y3) which implies that we have four different configurations. Let any π ∈ Π2,2

be a probability tensor in the space of all probability tensors of size 2 × 2, a model can be formulated as a

tensor mixture of product kernels on the simplex in the following manner:

fY (y|θ) = π11δ0(y1)δ0(y2) + π12δ0(y1)N(y∗2 |µ2, σ
2
2)

+ π21N(y∗1 |µ1, σ
2
1)δ0(y2) + π22N(y∗1 |µ1, σ

2
1)N(y∗2 |µ2, σ

2
2), (5.57)

where y∗ = (y∗1 , y
∗
2)′ = (log(y1/y3), log(y2/y3))′. This is a unified way of modeling the simplex distribution

with essential zeros in difference to a stratified approach by data with essential zero pattern type. By theorem 1

of Dunson and Xing (2009), the probability tensor π can be characterized by the PARAFAC decomposition

where πk1k2 =
∑K
k=1 λkψk11kψk22k, λ = (λ1, . . . , λK)′ ∈ SK , and ψjk = (ψ1jk, ψ2jk)′ ∈ S2 for k =

1, . . . ,K and j = 1, 2. With this, 5.57 can be reparametrized as:

fY (y|θ) =

K∑
k=1

λk

2∏
j=1

(
ψ1jkδ0(yj) + ψ2jkN(y∗j |µj , σ2

j )

)
. (5.58)

This reparameterization under the PARAFAC assumption on the tensor shows an equivalence between the

tensor mixture of product kernels with the mixture of product mixtures model. With the latter, we can see

that the specification we started with yields the mixture of product zero-inflated Gaussians model. Greater

flexibility can be built in if the zero-inflated Gaussians mixture is extended to the zero-inflated mixture of

Gaussians.
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Definition 5.3. (Zero-inflated mixture of Gaussians) Let y ∈ SD, ψj ∈ SK , and y∗j = log(yj/yD) with

yD 6= 0. The following density is said to be a zero-inflated mixture of Gaussians if,

f∗j (y∗j |θj) = ψ1jδ0(ey
∗
j ) +

Kj∑
kj=2

ψkjjN(y∗j |µkj−1,j , σ
2
kj−1,j). (5.59)

The structure of the tensor mixture coupled with the form of the zero-inflated mixture of Gaussian allows

one to see how the mixture model can be leveraged to account for essential zeros inD component compositions.

This can be done by simply increasing the number of variables in the tensor mixture of product kernels and

using a referent component as a component absent of essential zeros. Note, this is not an issue in certain

applications such as our motivating example in SBPA where everyone has some sedentary time, but it can be

have limited use in other applications such as dietary intake or microbiome data.

5.3.0.3 Hierarchical Model

In this section, we present the unified extension to stratifying the composition by type with respect to

essential zero configuration to compositions of size D as a tensor mixture and in hierarchical form. We define

the distribution on the simplex as by defining a tensor mixture on the alr transformed compositions.

Let y ∈ SD with y∗ = h(y) and π ∈ ΠK1···KD−1
a probability tensor. Our proposed tensor mixture

model on the simplex (TMS) is defined as:

fY (y|θ) =

K1∑
k1=1

· · ·
KD−1∑
kD−1=1

πk1···kD−1

D−1∏
j=1

Kkjj(y∗j |θkjj), (5.60)

where K1j(y
∗
j |θ1j) = δ0(yj), Kkjj(y∗j |θkjj) = N(y∗j |µkj−1,j , σ

2
kj−1,j) for kj = 2, . . . ,Kj , y∗ = h(y),

and h is the alr coordinate function hj(y) = log(yj/yD). We assume a PARAFAC decomposition on the

probability tensor where we augment the data with latent joint and marginal indicator variables similar to the

specification of the infinite tensor mixture model (ITM) of Banerjee et al. (2013). We simplify the ITM by

taking an sparse finite mixture model approach rather than using a non-parametric Bayes prior (Malsiner-Walli

et al., 2016; Rousseau and Mengersen, 2011). Additionally, by fixing the first component of each component

to the Dirac measure and augmenting the data with a latent indicator, we inherently augment data similar in

spirit to Dunson and Herring (2005). Suppose x = (x1, . . . , xD−1)′ is the collection of marginal indicator

variables then xj = 1 if yj = 0 and xj = 2, . . . ,Kj otherwise.
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Supposing fY is BTMPK and yi ∼ fY with yi ∈ SD for i = 1, . . . , n, our proposed model can be

expressed in hierarchical form as:

y∗ij |xij ∼ Kxijj(θkjj) (5.61)

Pr(xij = kj |zi) = ψkjjzi (5.62)

Pr(zi = k) = λk (5.63)

ψjk = (ψ1jk, . . . , ψKjjk)′ ∼ Dir(aj), for k = 1, . . . ,K (5.64)

λ = (λ1, . . . , λK)′ ∼ Dir(α) (5.65)

µkjj |σ2
kjj ∼ N(µj , σ

2
kjj/τj) (5.66)

σ2
kjj ∼ IG(aσj , bσj), for kj = 1, . . . ,Kj − 1 (5.67)

µj ∼ N(µ0j , σ
2
0j), for j = 1, . . . , D − 1, (5.68)

where α = (α1, . . . , αK)′, aj = (a1j , . . . , aKjj)
′, θ1j = ∅, and θkjj = (µkj−1,j , σ

2
kj−1,j)

′ for kj =

2, . . . ,Kj and j = 1, . . . , D − 1.

The joint likelihood with the augmented latent indicator variables can be expressed as:

L(Y ,X, z|θ,π) =

n∏
i=1

πxi
fY ,xi

(yi|θxi
) (5.69)

=

n∏
i=1

πxi
f∗Y ∗,xi

(y∗i |θxi
) (5.70)

=

n∏
i=1

λzi

D−1∏
j=1

ψxijjziKxijj(y
∗
ij |θxijj) (5.71)

=

{ n∏
i=1

λzi

}{D−1∏
j=1

K∏
k=1

ψ
n1jk

1jk

}{D−1∏
j=1

∏
i:xij>1

ψxijjziN(y∗ij |µxij−1,j , σ
2
xij−1,j)

}
, (5.72)

where nkjjk =
∑n
i=1 I(xij = kj)I(zi = k) for kj = 1, . . . ,Kj , j = 1, . . . , D, and k = 1, . . . ,K.

5.3.0.4 Gibbs sampling algorithm

The Gibbs sampling algorithm proceeds as follows:

1. Update the probability tensor π by update all components:

(a) Sample λ|− ∼ Dir(n+α) where n = (n1, . . . , nK)′ and nk =
∑n
i=1 I(zi = k).

(b) Sample ψjk|− ∼ Dir(njk + aj) where njk = (n1jk, . . . , nKjjk)′, nkjjk =
∑n
i=1 I(xij =

kj)I(zi = k), and k = 1, . . . ,K.
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2. Update joint allocation variables for i = 1, . . . , n by sampling zi such that Pr(zi = k|−) ∝

λk
∏D−1
j=1 ψxijjk.

3. Update marginal allocation variables for j = 1, . . . , D − 1 and i = 1, . . . , n by sampling xij such that

Pr(xij |−) ∝ ψkjjziKkjj(y∗ij |θkjj). Equivalently, Pr(xij = kj |−) ∝ ψkjjziN(y∗ij |µkj−1,j , σ
2
kj−1,j) if

yij 6= 0 otherwise set xij = 1.

4. Update base measure atoms for kj = 1, . . . ,Kj − 1 and j = 1, . . . , D − 1 by sampling σ2
kj ,j
|− ∼

IG(âσkjj , b̂σkjj) and µkjj |− ∼ N(µ̂kjj , σ
2
kjj
/(τj + nkjj)) where nkjj =

∑n
i=1 I(xij = kj + 1),

âσkjj = aσj + nkjj/2, b̂σkjj = bσj +
1

2

[
SSkjj + (nkjj + τj)(1− pkjj)pkjj(ȳ∗kjj − µj)

2
]
, SSkjj =∑

i:xij=kj+1(y∗ij − ȳ∗kjj)
2, pkjj = τj/(τj +nkjj), ȳ∗kjj =

∑
i:xij=kj+1 y

∗
ij/nkjj , and µ̂kjj = pkjjµj +

(1− pkjj)ȳ∗kjj .

5. Update base measure hyperparameters for j = 1, . . . , D − 1 by sampling µj |− ∼ N(µ̂0j , σ̂
2
0j), where

σ̂2
0j = (τj(

∑Kj

kj=1 σ
−2
kj ,j

) + σ−2
0j )−1 and µ̂0j = σ̂2

0j(τj
∑Kj

kj=1(µkjj/σ
2
kj ,j

) + (µ0j/σ
2
0j)).

By construction, the BTMPK maximizes the use of the data. Stratified approaches do not allow use of all

the data because these require partitioning of the data conditional on essential zero configuration type.

We can incorporate additional days of data by increasing the multivariate index to include more repeated

measures. Given that the BTMPK is defined on the alr coordinates, the general framework of the tensor mixture

of product kernels can allow us to jointly model the distribution of repeated measure by simply including more

tensor components.

5.3.0.5 Clustering for subclass identification

Researchers often wish to classify study participants by activity patterns (e.g. sedentary, weekend warriors).

A single joint allocation variable is used to derive the profiles of the clusters. We select an optimal joint

allocation variable as the allocation variable minimum mean squared error of all pairwise participant cluster

matching (Dahl, 2006). This can be thought of as selecting the joint allocation variable that maintains greatest

consistency in the cluster make-up.

5.3.0.6 Centroids

When staying in the simplex plane, the usual definition of expectation or center is updated since densities

are defined with respect the simplicial Lesbegue measure and not the usual Lesbegue measure on RD−1. The

compositional expectation is also referred to as the center or centroid. The following definition is adapted
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the simplex from Mateu-Figueras et al. (2013) where they present a more general definition of any subset of

E ⊂ RD.

Definition 5.4. (Compositional Expection) Let y ∈ SD and h : SD → RD−1 a coordinate function on SD.

The expectation on the simplex is:

Cen(y) = ESD (y) = h−1
( ∫

y∗fY ∗(y
∗)dy∗

)
(5.73)

= h−1(E(y∗)), (5.74)

where y∗ = h(y) and E(y∗) exists (Mateu-Figueras et al., 2013).

The closed geometric mean from a sample of compositions is the compositional linear and unbiased

estimator of the centroid (Pawlowsky-Glahn and Egozcue, 2002). The closed geometric mean is also equivalent

to the inverse alr of the sample mean of alr transformed compositions. The sample mean being the MLE of a

normal distribution coupled with the alr assumption on the composition implies the centroid estimator can be

deduced via.

The closure of the geometric mean is a problematic in the presence of essential zeros. The presence of an

essential zero is problematic because if present the geometric mean for a component containing the zero is

also zeroed producing the effect of zeroing out a component. Conversely, if one ignores zeros in a component

then the resulting estimator can over-inflate other components leading to misleading results. The problems

with the closure of the geometric mean in the presence of essential zeros can be circumvented by defining

alternative estimators.

Definition 5.5. (Convex combination centroids) Let Y be D-part compositions with essential zeros then the

convex combination centroid is:

Cen(Y ) =

1∑
k1=0

· · ·
1∑

kD=0

πk1···kDζk1···kD , (5.75)

where πk1···kD = 0 when kj = 0 for all j, ζk1···kD = (ζ1,k, . . . , ζD,k)′ ∈ SD and ζj,k = 0 if kj = 0.

Consider the case where D = 3, then the convex combination of centroids becomes:

Cen(Y ) = π100ζ100 + π010ζ010 + π001ζ001 + π011ζ011 + π101ζ101 + π110ζ110 + π111ζ111 (5.76)

where sub-centroids ζk1k2k3 with two indices set to zero correspond to a corner composition. For instance,

ζ001 = (0, 0, 1)′. By construction of BTMPK, then we can summarize the sub-centroid for each essential

82



zero configuration. In physical activity data, for instance, when time budgets are multivariate compositional

proportions of sedentary, light, and moderate to vigorous activity then the corresponding sub-centroids would

be centroids for participants with all sedentary time (ζ100), no MV (ζ110), and some MV (ζ111). All other

subcentroids can be ignored as it is unlikely there may be participants whose entire waking hours are composed

of moderate to vigorous behaviors. As such, we may restrict using the zero-inflated mixture of Gaussian

kernels only to higher end of physical activity intensities as these may be the only ones with essential zeros. As

a result, our methodology can be used to estimate the essential zero probability configurations, the probability

tensor π.

5.4 Simulation Experiments

The objective of the simulation experiments was to assess the performance of our proposed tensor mixture

model on the simplex versus three other latent class methods. We focused our attention on the determining

if the methods identified the correct number of true underlying subpopulation and whether these underlying

subpopulations produced centroids representative of true subpopulation centroids. A secondary objective was

to assess whether jointly modeling the compositions with a dichotomous outcome improved performance,

which is hereafter referred to as supervised.

Three simulation scenarios were considered, two of which had similar data generating mechanism while

the third a different. The first two scenarios were generated using a three component mixture model on the unit

simplex, each with three subclasses which correspond to different centroids (Comas-Cufı́ et al., 2016). The

first scenario within this framework (scenario 1) was generated with each subclass having positive correlation

(AllPosCorr). The second scenario within this framework (scenario 2) generated data with two subclasses

having positive correlation and one subclass with negative correlation (2Pos1NegCorr), see Figure 5.5 for

ternary plots of example data sets in each scenario. Rounded zeros were induced in two of the three subclasses

by rounding down to zero all values below the 10th percentile in the corresponding subclass. Within each

scenario, 500 data sets were generated each with a sample size of 1000.

The third simulation scenario (scenario 3) generated data according to a four component tensor mixture

model (TMPK 4 comp) on the simplex similar the hierarchical model presented in section 5.3.0.3 with three

latent subclasses. This framework has the capability to truly model essential zeros without artificially inducing

rounded zeros as in the other scenarios. Essential zeros in this scenario were included in the third and fourth

components only. Within this scenario, 500 data sets were generated each with a sample size of 3000. See

Figure 5.6 for all combinations of three component sub-composition ternary plots of an example data set in
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this scenario. Because all simulated data sets contain zeros, all cluster-specific centroids are summarized by

the proposed convex-combination centroid.

The proposed method was implemented on each simulated data set within each scenario along with

three other latent class methods for comparison. The other methods included: a modularized version of

the proposed method (MOTEF), mixture of product kernels (BMPK), and a mixture model on the simplex

(BMMG) (Comas-Cufı́ et al., 2016; Dunson and Bhattacharya, 2011). The mixture of product kernels can be

thought of as a special case of the mixture model on the simplex since the mixture of product kernels assumed

a multivariate Gaussian kernel with zero correlation among all components. BMPK and BMMG methods

cannot handle zeros. Thus, in order to implement these two approaches, zero values were treated as rounded

and in a pre-implementation step were imputed for each data set separately using the robCompositions package

in R. Additionally, the BMMG method is the only method not implemented using supervision. Table 5.10

displays a summary of all latent class method features.

Table 5.10: Summary of latent class methods features.

Method Supervision Essential Zeros
BTMPK Yes Yes
MOTEF Yes Yes

BMPK Yes No
BMMG No No

All data sets were generated with an additional dichotomous variable with different probabilities con-

ditional on a subclass. This variable was used for assessing the effect of supervision on the methods where

applicable.

All methods were implemented within a Bayesian framework with the same cluster selection procedure.

Cluster selection included: 1) specifying symmetric Dirichlet distribution with precision parameter set to

1e− 25 and 2) selecting an optimal clustering by minimizing Binder’s loss (Dahl, 2006). For the AllPosCorr

and 2Pos1NegCorr scenarios, each method was run for 3,000 iterations dropping the first 1,000 as a burn-in

and storing every other iterate with five chains initialized with the number of joint clusters ranging from 50 to

100. For the TMPK 4 component scenario, each method was run for 10,000 iterations dropping the first 5,000

as a burn-in and storing every fifth iterate, with five chains initialized with the number of joint clusters ranging

from 50 to 100.

Table 5.11 displays a summary of the unsupervised simulation experiments by method and scenario. The

proposed method tended to select one more cluster than the three true underlying subclasses in the AllPosCorr

and 2Pos1NegCorr by selecting four clusters in 74.4% and 72.3% of the data sets. In the TMPK 4 component

scenario, the proposed method tended to select 5+ latent classes in 85.6% of the data sets. MOTEF produced
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the smallest number of clusters with little variability. In the AllPosCorr and 2Pos1NegCorr scenarios, MOTEF

selected two clusters in 97.8% of the data sets in each scenario, while correctly selecting three subclasses

in the TMPK 4 component scenario in all 500 data sets. As expected, the BMPK method selected the most

clusters across all scenarios with modes at 7 in the AllPosCorr (71.0%) and 2Pos1NegCorr (60.4%) scenarios,

and 10 clusters for the TMPK 4 component scenario (73.4%). Lastly, the BMMG method performed similar

to MOTEF in the AllPosCorr and 2Pos1NegCorr scenarios with modes at two selected clusters, but mostly

selected four clusters (96.6%) in the TMPK 4 component scenario.

Supervision seemed to be helpful for MOTEF, ineffective for BMPK, and harmful for BTMPK in terms

adequately selecting the true number of underlying subclasses. For MOTEF, supervision improved the number

of selected clusters from two to three in the AllPosCorr and 2Pos1NegCorr scenarios by selecting three in

57.4% and 96.4% of the data sets, respectively. The BTMPK method, on the other hand, had increased modes

of number of selected clusters from four to five in 79.6% and 87.8% of the data sets in the AllPosCorr and

2Pos1NegCorr scenarios, respectively. For BMPK, supervision seemed largely ineffective in reducing the

number of selected clusters where the modes were preserved at 7 in the first scenarios and 10 in the TMPK 4

component scenarios.

In what follows, we describe the quality of the centroids by method and simulation scenario. For methods

with supervision, we describe the effect of supervision as well. Figure 5.7 displays ternary plots of estimated

cluster-specific convex combination centroids for each data set in the AllPosCorr simulation scenario by

supervision status and method. The proposed method, when unsupervised, selected too many clusters in the

AllPosCorr scenario and disappointingly only appropriately concentrated centroids across all the data sets in

one subclass. However, the concentration of identified subclasses improved for two of the three true centroids

under supervision, albeit with a greater number of identified subclasses. MOTEF seemed to concentrate

centroids near the true but only when the selected number of subclasses was found to be three (2.2% of data

sets). Under supervision, MOTEF concentrations were near the true improved when the number of selected

clusters was three (96.4%). The BMPK method seemed largely unaffected by supervision and as expected

the method had to select more clusters to capture the correlation in the data. Interestingly, near the center of

the simplex, the BMPK seemed to ignore correlation in contrast to the clusters near the edges of the simplex

where more clusters were selected.

In the 2Pos1NegCorr scenario, similar results were observed except for MOTEF. MOTEF observed

consistency in the models selected when two clusters were observed in the unsupervised scenario. When

supervised, MOTEF selected the correct number of subclasses in most of the data sets (96.4%) and the

corresponding centroids concentrated near the true. The supervised BTMPK method, even though it selected
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too many clusters, concentrated most estimates near the true subclass centroids. The BMMG method performed

similar to the unsupervised MOTEF method in the AllPosCorr and 2Pos1NegCorr scenarios (Figure 5.9).

In the TMPK 4 component simulation scenario, as expected, the proposed methods concentrated centroids

near the true while the other methods captured different features of the data. Figures 5.10 - 5.13 display ternary

plots of estimated cluster-specific convex combination centroids across all data sets by every three component

sub-composition combination and method. The MOTEF and BTMPK methods concentrated centroids near

the true across all sub-composition combinations, although the BTMPK selected more centroids than the true.

MOTEF identified the true number of centroids in all of the data sets correctly concentrated centroid estimates

but with some degree of bias in one of the true centroids. The BMMG seemed to capture different features

of the data driven by the sub-composition (1,2,3) but the true centroids were mostly missed in the (1,3,4)

and (2,3,4) sub-compositions. A similar finding was observed by the BMPK method with a larger number of

clusters, however, there was consistent coverage of the true centroids.

In all, the proposed tensor mixture methodology performs best in the presence of essential zeros and

may perform adequately under certain circumstances in the presence of rounded zeros. The tensor mixture

methodology consistently achieved greater compression of group clustering, especially so for the MOTEF

method across all scenarios. Additionally, the proposed methodology performed best in the presence of larger

samples or a greater number of variables. The BMPK and BMMG methods performed well at revealing unique

features of the data in the presence of essential zeros, with BMPK outperforming the latter in concentrating

centroids near the true but at the cost of greatly over selecting clusters. A smaller number of clusters may be

appealing to investigators when the goal is to select parsimonious distinguishable groupings in the presence

of essential zeros, in which case the proposed methodology is recommended. However, if the goal is feature

selection, then the BMMG or the BMPK methods may be preferable.

Figure 5.5: Ternary plot of a simulated data set for Scenario 1 (AllPosCorr) and 2 (2Pos1NegCorr).
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Table 5.11: Simulation study clustering summary by method and scenario; mean (sd) for continuous
variables, percentages for integer valued summaries (out of 500 data sets for each scenario)

Method
Scenario Summary BTMPK MOTEF BMPK BMMG

AllPosCorr Post. Mn. N 3.74 (0.5) 2.02 (0.2) 6.72 (0.5) 2.01 (0.1)
No. Opt. Clus

2 0 (0.0%) 489 (97.8%) 0 (0.0%) 498 (99.6%)
(*) 3 125 (25.0%) 11 (2.2%) 0 (0.0%) 2 (0.4%)

4 372 (74.4%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
5 3 (0.6%) 0 (0.0%) 6 (1.2%) 0 (0.0%)
6 0 (0.0%) 0 (0.0%) 138 (27.6%) 0 (0.0%)
7 0 (0.0%) 0 (0.0%) 355 (71.0%) 0 (0.0%)
8 0 (0.0%) 0 (0.0%) 1 (0.2%) 0 (0.0%)

2Pos1NegCorr Post. Mn. N 3.79 (0.4) 2.05 (0.2) 6.55 (0.5) 2.03 (0.2)
No. Opt. Clus

2 0 (0.0%) 489 (97.8%) 0 (0.0%) 494 (98.8%)
(*) 3 123 (24.6%) 11 (2.2%) 0 (0.0%) 6 (1.2%)

4 363 (72.6%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
5 14 (2.8%) 0 (0.0%) 17 (3.4%) 0 (0.0%)
6 0 (0.0%) 0 (0.0%) 180 (36.0%) 0 (0.0%)
7 0 (0.0%) 0 (0.0%) 302 (60.4%) 0 (0.0%)
8 0 (0.0%) 0 (0.0%) 1 (0.2%) 0 (0.0%)

TMPK 4 comp. Post. Mn. N 4.85 (0.5) 3.00 (0.0) 10.13 (0.5) 4.01 (0.2)
No. Opt. Clus

(*) 3 49 (9.8%) 500 (100.0%) 0 (0.0%) 9 (1.8%)
4 23 (4.6%) 0 (0.0%) 0 (0.0%) 483 (96.6%)
5 280 (56.0%) 0 (0.0%) 0 (0.0%) 8 (1.6%)
6 148 (29.6%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
9 0 (0.0%) 0 (0.0%) 33 (6.6%) 0 (0.0%)

10 0 (0.0%) 0 (0.0%) 367 (73.4%) 0 (0.0%)
11 0 (0.0%) 0 (0.0%) 98 (19.6%) 0 (0.0%)
12 0 (0.0%) 0 (0.0%) 2 (0.4%) 0 (0.0%)

1 Posterior N1: Posterior mean of number of clusters.
2 (*): The true number of underlying subclasses.
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Table 5.12: Simulation study clustering summary of supervised versions by method
and scenario; mean (sd) for continuous variables, percentages for integer valued
summaries (out of 500 data sets for each scenario)

Method
Scenario Summary BTMPK MOTEF BMPK

AllPosCorr Post. Mn. N 4.59 (0.5) 2.51 (0.5) 6.65 (0.5)
No. Opt. Clus

2 0 (0.0%) 213 (42.6%) 0 (0.0%)
(*) 3 8 (1.6%) 287 (57.4%) 0 (0.0%)

4 94 (18.8%) 0 (0.0%) 0 (0.0%)
5 398 (79.6%) 0 (0.0%) 12 (2.4%)
6 0 (0.0%) 0 (0.0%) 149 (29.8%)
7 0 (0.0%) 0 (0.0%) 337 (67.4%)
8 0 (0.0%) 0 (0.0%) 2 (0.4%)

2Pos1NegCorr Post. Mn. N 4.86 (0.3) 3.00 (0.1) 6.54 (0.5)
No. Opt. Clus

2 0 (0.0%) 17 (3.4%) 0 (0.0%)
(*) 3 0 (0.0%) 482 (96.4%) 0 (0.0%)

4 61 (12.2%) 1 (0.2%) 0 (0.0%)
5 439 (87.8%) 0 (0.0%) 20 (4.0%)
6 0 (0.0%) 0 (0.0%) 181 (36.2%)
7 0 (0.0%) 0 (0.0%) 297 (59.4%)
8 0 (0.0%) 0 (0.0%) 2 (0.4%)

TMPK 4 comp. Post. Mn. N 4.59 (0.6) 3.00 (0.0) 10.20 (0.5)
No. Opt. Clus

(*) 3 80 (16.0%) 500 (100.0%) 0 (0.0%)
4 89 (17.8%) 0 (0.0%) 0 (0.0%)
5 245 (49.0%) 0 (0.0%) 0 (0.0%)
6 85 (17.0%) 0 (0.0%) 0 (0.0%)
7 1 (0.2%) 0 (0.0%) 0 (0.0%)
9 0 (0.0%) 0 (0.0%) 16 (3.2%)

10 0 (0.0%) 0 (0.0%) 394 (78.8%)
11 0 (0.0%) 0 (0.0%) 87 (17.4%)
12 0 (0.0%) 0 (0.0%) 3 (0.6%)

1 Posterior N1: Posterior mean of number of clusters.
2 (*): The true number of underlying subclasses.
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Figure 5.6: Ternary plots of a simulated data for the TMPK 4 component composition scenario displaying all
four combinations of the three component sub-compositions.

Figure 5.7: Results of unsupervised and supervised simulations for scenario 1 (AllPosCorr): Ternary plots of
estimated cluster-specific convex combination centroids for each data set by applied method.
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Figure 5.8: Results of unsupervised and supervised simulations for scenario 2 (2Pos1NegCorr): Ternary plots
of estimated cluster-specific convex combination centroids for each data set by applied method.

Figure 5.9: Results of unsupervised BMMG simulations for scenarios 1 (AllPosCorr) and 2 (2Pos1NegCorr):
Ternary plots of estimated cluster-specific convex combination centroids for each data set by applied method.
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Figure 5.10: Results of unsupervised and supervised BTMPK simulations for scenario 3 (TMPK 4 component
compositions): Ternary plots of estimated cluster-specific convex combination centroids for each data set by
every 3 component sub-composition combination.

Figure 5.11: Results of unsupervised and supervised MOTEF simulations for scenario 3 (TMPK 4 component
compositions): Ternary plots of estimated cluster-specific convex combination centroids for each data set by
every 3 component sub-composition combination.
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Figure 5.12: Results of unsupervised and supervised BMPK simulations for scenario 3 (TMPK 4 component
compositions): Ternary plots of estimated cluster-specific convex combination centroids for each data set by
every 3 component sub-composition combination.

Figure 5.13: Results of BMMG simulations for scenario 3 (TMPK 4 component compositions): Ternary
plots of estimated cluster-specific convex combination centroids for each data set by every 3 component
sub-composition combination.
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5.5 Hispanic Community Health Study/Study of Latinos

The aim of our study is to jointly profile weekday and weekend accelerometry-assessed sedentary behavior

and physical activity in HCHS/SOL and assess associations with adiposity. Associations with adiposity were

assessed using a two-stage approach. In the first stage, latent classes are derived using our proposed approach.

In the second stage, associations between adiposity and the latent classes were assessed via logistic regression

with pairwise comparisons of prevalence adiposity by latent classes. We consider the proposed (BTMPK)

method with three other methods: Bayesian Mixture of Product Kernels (BMPK), Bayesian Mixture of

Multivariate Gaussians (BMMG), and a modularized version of our proposed method (MOTEF). Additionally,

we construct and compare abdominal adiposity supervised profiles using the BTMPK, MOTEF, and BMPK

methods. Supervised profiling entailed jointly modeling the weekday and weekend accelerometry assessed

variables together with abdominal adiposity.

5.5.1 Study population

The analysis was conducted on a subsample of approximately 25% HCHS/SOL participants with adherent

accelerometer data from the baseline visit (at least three days with 10 or more hours/day of wear time) and at

least one adherent weekend day (≈3,000 participants). Out of the 16,415 study participants, 12,750 wore the

accelerometer for at least 10 hours per day for at least 3 days. Out of the accelerometer adherent participants,

11,328 wore the accelerometer for at least one weekend day. 2,954 of these participants were included in the

stratified random sample provided for analysis.

5.5.2 Accelerometry data

The study accelerometer (Actical) records omnidirectional movement in g forces, and using a proprietary

algorithm provides movement as a count per unit time (i.e. epoch). In HCHS/SOL, counts were recorded

in one minute epochs, and non-wear was defined as at least 90 consecutive minutes of zero counts, with

allowance of 1 or 2 minutes of nonzero counts if no counts were detected in a 30 minute window upstream

and downstream of the 90 minute period (Choi et al., 2011). Days with less than 10 hours of wear time (i.e.

non-adherent days) were excluded. For all other days, each minute of wear time was classified as one of

four non-overlapping levels: sedentary, light, moderate, and vigorous using standard methods (Colley et al.,

2011; Wong et al., 2011). We construct an aggregate total time in each intensity (sedentary, light, moderate,

vigorous) separately for adherent weekday and weekend days, instead of taking the arithmetic mean of time

within each intensity across adherent days. The aggregate total time in each intensity will be scaled by the
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aggregate total wear time to construct compositional multivariate proportions (i.e. % sedentary, % light, %

moderate, and % vigorous) for each participant separately for weekday and weekend measures. We hereby

refer to these measures as the weekday and weekend time budget proportions (i.e. a total of eight variables).

The time budget proportions give us a complete sense of determining how participants distribute their physical

activity time by intensity during the weekday and weekend, respectively.

5.5.3 Adjustment for subsampling

The subsampling of the HCHS cohort resulted in the implementation of a two-phase design with strat-

ified sampling in the second phase. All corresponding estimates were as such adjusted for the two phase

implementation.

5.5.4 Latent class methods implementation

There were four latent class methods implemented which jointly model the distribution of weekday and

weekend time budget proportions. Latent class methods included: 1) BTMPK, 2) MOTEF, 3) BMPK, and

4) BMMG. A feature of the latent class methods except for BMMG is that they can additionally jointly

model mixed-scale variables. We leveraged this feature to derive abdominal adiposity (i.e. binary variable)

supervised profiles using these methods by jointly modeling weekday and weekend sedentary behavior and

physical activity with adiposity. The BMPK and BMMG cannot account for essential zeros and essential zeros

were imputed with non-zero values. These methods are the same methods implemented in the simulation

experiments, see Table 5.10.

The tensor mixture methodology (BTMPK) was previously. The modularized versions of the tensor

mixture model on the simplex followed similar to those described in Chapter 3.

The zero imputed methods were implemented using a two-step approach. In the first step, essential zeros

in time budget proportions were treated as rounded or zeros by limits of detection and were then imputed. In

the second step, then the imputed data set was analyzed using BMPK and BMMG.

The mixture of multivariate Gaussians latent class method was implemented using the isometric log ratio

method. That is, given a weekday and weekend time budget proportion, (yi,weekday,yI,weekday), and its corre-

sponding latent class indicator, zi = h then the corresponding ILR coordinates (h(yi,weekday), h(yI,weekday))

are assumed multivariate Gaussian, N6(µh,Σh), from the hth kernel. A description of this methodology is

detailed elsewhere (Comas-Cufı́ et al., 2016).

The mixture of product kernels method was implemented similarly. The mixture of product kernels, or

latent class analysis, modeling assumptions are such that variables are mutually independent given a latent
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class membership, zi = h. For implementation on the simplex, then it is further assumed, given zi = h then

y∗ijweekday is assumed to be normal, N(µjh, σ
2
jh) where y∗ijweekday is the jth ILR coordinate of the weekday

time budget.

All methods were implemented within a Bayesian framework. Five chains were run on each method

for 10,000 iterations discarding the first 5,000 as a burn-in and storing every fifth iterate for a total posterior

sample size of 5,000. Each chain was initialized with random groups varying in size from 50 to 100. Standard

weakly-informative and empirical priors were used for prior hyper parameters.

5.5.5 Cluster selection

All methods were implemented using a sparse finite mixture model specification with a symmetric Dirichlet

prior on component weights and a precision parameter set to 1e-25 (?). This highly aggressive approach to

reducing the redundant clusters effectively automated selection of modeling components. Uncertainty in the

latent class membership was taken into account by selecting a single posterior sample to represent the identified

cluster groups as recommended by Dahl (2006). The representative posterior latent class memberships were

selected using the minimum least squares pairwise observation similarity approach (Dahl, 2006).

5.5.6 Associations with adiposity

The associations between abdominal adiposity and latent class sedentary behavior and physical activity

membership were assessed via logistic regression. Tukey adjusted multiple comparisons were performed for

pairwise comparisons of adiposity proportion by latent classes.

5.5.7 Statistical analysis software

Initial data management was conducted using SAS (Institute, 2015). The zero value imputation performed

using the robCompositions package in R (Templ et al., 2018). The two phase and logistic regression analyses

were implemented using the survey package (Lumley et al., 2004; Lumley and Lumley, 2019). The multiple

comparisons were conducted using the multcomp package in R (Hothorn et al., 2017). All latent class analysis

was performed using a Matlab Bayesian latent class analysis for compositional data toolbox developed for this

paper.

5.5.8 Results

The stratified subsample reflects the characteristics of the HCHS/SOL cohort (Table 5.13). For instance,

participants aged 45+ make up 40.2% of the HCHS/SOL cohort while these make up 40.8% of the analysis
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subsample. The similar characteristics of the subsample to the full cohort gives us confidence that our findings

can be generalizable to the HCHS/SOL target population.

Table 5.13: Summary of HCHS/SOL characteristics displaying n (weighted %) by full study sample, time
budget adherent sample, and stratified subsample

Analysis
Characteristic Levels Full Adherent Subsample

All 16415 11328 2954
Age 18 - 44 6701 (59.8) 4166 (59.2) 1079 (59.2)

45+ 9714 (40.2) 7162 (40.8) 1875 (40.8)
Gender Female 9835 (52.1) 6790 (52.4) 1773 (54.1)

Male 6580 (47.9) 4538 (47.6) 1181 (45.9)
Background Dominican 1473 (9.9) 1130 (10.7) 322 (10.2)

Central American 1732 (7.4) 1096 (7.1) 279 (7.3)
Cuban 2348 (20) 1393 (18.8) 313 (17.3)

Mexican 6472 (37.4) 4655 (37.5) 1168 (37.6)
Puerto Rican 2728 (16.1) 1961 (16.8) 579 (17.7)

South American 1072 (5) 742 (4.9) 206 (4.9)
More than one/Other heritage 503 (4.1) 327 (4.1) 80 (4.9)

BMI Underweight 130 (1.2) 83 (1.1) 21 (1.4)
Normal 3190 (22.1) 2211 (21.9) 574 (21.9)

Overweight 6115 (37.2) 4312 (37.5) 1121 (35.7)
Obese 6909 (39.6) 4701 (39.5) 1235 (40.9)

Table 5.14 displays a distributional breakdown of the different activity intensity zero configurations by

weekday and weekend. In the HCHS/SOL cohort, approximately half of the participants do not achieve

weekday vigorous physical activity, with 70% not achieving this level over the weekend. These characteristics

of the data may imply that data imputation may not be a tenable approach when such a high percentage of the

data is treated as missing.

Table 5.14: Summary of HCHS/SOL accelerometer-assessed sedentary behavior and physical activity configu-
ration displaying unweighted n (weighted %) by full study sample, time budget adherent sample, and stratified
subsample.

Analysis
Characteristic Levels Full Adherent Subsample

Weekday No MV 510 (2.9) 366 (3) 95 (3)
Configuration No Mod 7 (0) 5 (0) 1 (0)

No Vig 8253 (48.6) 5585 (45.4) 1461 (47.4)
No zeros 7645 (48.5) 5372 (51.6) 1397 (49.5)

Weekend No LMV 5 (0) 3 (0) 2 (0.1)
Configuration No MV 2008 (11.4) 1380 (10.9) 353 (11.2)

No Mod 18 (0.2) 11 (0.2) 2 (0.1)
No Vig 10170 (60.2) 6932 (58.7) 1807 (58.4)

No zeros 4214 (28.2) 3002 (30.2) 790 (30.2)

Table 5.15 displays population adjusted estimates of overall weekday and weekend time budget proportions

by type of estimators extrapolated to 16 hours (i.e. non-sleep hours) for simplicity in presentation. The table
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displays centroids using the arithmetic mean, the arithmetic mean with non-zero time budgets (arithmetic mean

no zeros), the geometric mean for non-zero data (centroid no zeros), and the proposed convex combination of

geometric means by configuration (centroid convex combination). Overall, we find that both the arithmetic

mean and the convex combination estimators indicate that participants slightly increase their weekend sedentary

time relative to the weekday by displacing weekday time across all physical activity behaviors. The centroid

restricted to non-zero data indicates the opposite and displace some sedentary time for light physical activity.

The arithmetic mean and the non-zero centroid have similar weekday behavior times which indicates the

arithmetic mean likely overestimates time in physical activity behaviors. As such, hereafter the convex

combination estimator is used to convey summaries of time budgets due to the large number of zeros in the

data for better representation of the true centroids. With this measure, typical participants were found to spend

over 12 hours in sedentary, three and a half hours in light, approximately 16 minutes in moderate, and one

minute in vigorous activities during the weekday (Table 5.15). Approximately twelve minutes of weekday

physical activity are displaced by sedentary time in the weekend.

Table 5.15: Population adjusted estimates of overall weekday and weekend time budget proportions by type of
estimators displayed in digital time format (HH:MM:SS) out of 16 hours

Activity Intensity
Estimator Time of Week Sedentary Light Moderate Vigorous

Arithmetic mean WEEKDAY 11:52:43 03:41:53 00:21:58 00:03:24
WEEKEND 12:02:46 03:37:27 00:17:19 00:02:26

Arithmetic mean (no zeros) WEEKDAY 11:22:18 03:58:21 00:32:27 00:06:52
WEEKEND 11:14:09 04:03:44 00:33:59 00:08:06

Centroid (conv. comb.) WEEKDAY 12:12:19 03:30:49 00:15:46 00:01:04
WEEKEND 12:23:52 03:23:32 00:11:41 00:00:53

Centroid (no zeros) WEEKDAY 11:42:11 03:50:32 00:25:05 00:02:10
WEEKEND 11:36:45 03:54:24 00:25:54 00:02:56

5.5.9 Latent classes

The number of identified latent classes, or clusters, varied by method (Table 5.16). The BMPK selected

the most clusters at 18 while MOTEF selected the least at three. BMMG, BTMPK, and the supervised

BTMPK methods selected nine, 10, and seven clusters, respectively. The modularized methods selected the

most robust cluster groupings with each finding two large clusters of size approximately 47% and 42% and

one small cluster of size 11%. The BMMG and BTMPK picked up a few clusters composed of outlying

observations. However, the grouping were largely different. The two largest BMMG clusters accounted for

approximately 88% with all other clusters ranging from 0.4% to 4.6%. Three BTMPK latent classes were

approximately balanced in size at 30%, 24.2%, and 21.5% with the rest ranging from 0% to 9.8%. The BMPK
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latent classes ranged in distributional breakdown from 0.5% to 13.1%. The supervised clustering seemed

useful for re-allocating singleton clusters in the BTMPK.

Table 5.16: Summary of number of latent classes selected by method.

Method Unsupervised Supervised
BTMPK 10 7
MOTEF 3 3
BMPK 18 18
BMMG 9

5.5.10 Time-budget centroids

The derived accelerometry-accessed weekday and weekend sedentary behaviors and physical activity

profiles had some commonalities. In the descriptions that follow, all time budget centroids are described out of

16 hours of wear time. Most latent classes identified had weekend sedentary time remain the same or increase

from week day sedentary time across all methods (Tables 5.25 - 5.31). The few clusters whose sedentary time

notably decreased from weekday to weekend, decreased by approximately 20 and 40 minutes in BTMPK

cluster 6 (n=141) and BMPK cluster 3 (n=22), respectively. Additionally, there were some cluster profiles

seemingly present across all methods except for BMPK. For instance, the MOTEF (clusters 3, n=1150;1127

supervised), BTMPK (cluster 8 n=650, supervised cluster 7 n=649), and the BMMG (cluster 6, n=714)

methods each derived a cluster with approximately 25+ moderate to vigorous physical activity and 11.5 hours

of sedentary time in weekday and weekend days. However, the size of this cluster varied greatly.

The MOTEF methods observed the most interpretable and robust latent classes with clear incremental

physical activity pattern distinctions. Tables 5.25 and 5.26 display summaries of the weekday and weekend

time budget centroids for the MOTEF methods. Similar trends are observed in both the unsupervised and

supervised derived latent classes. Cluster 1 (n=318;319 supervised) is the most sedentary group with only two

minutes of moderate weekday physical activity, little to no vigorous activity, and approximately two hours

of light physical activity time. The second clusters (n=1486;1505 supervised) have approximately 10 and 5

minutes of weekday and weekend moderate physical activity, respectively, with very few seconds of vigorous

physical activity. The third clusters (n=1150;1127 supervised) are the most active groups with close to 4 hours,

more than 20 minutes, and 2 minutes of light, moderate, and vigorous physical activity, respectively, during

both the weekday and weekend.

The BTMPK methods, discovered more which depict greater variation in the weekday and weekend

moderate to vigorous physical activity. For instance, clusters 5 (n=47) and 3 (n=47) in the unsupervised

and adiposity supervised, respectively, are clusters with the same profile characterized by displacement of
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all weekday MVPA and 40+ minutes of LPA into sedentary weekend time. Tables 5.27 and 5.28 display

centroid summaries for the unsupervised and supervised derived latent classes. BTMPK methods additionally

discovered another common cluster (cluster 6, n=141; cluster 5, n=135 supervised) characterized by a

displacement of approximately 18 minutes of weekday sedentary time into 10 weekend LPA and 8 weekend

MVPA minutes.

The supervised BTMPK profiles seemed more robust to outliers relative to the unsupervised profiles. The

unsupervised profiles identified clusters 1 and 2 as singleton clusters with unusual physical activity patterns.

Cluster 1 observed no moderate weekend physical activity but some VPA while cluster 2 observed the same

pattern during the weekday. Additionally, the unsupervised method identified two clusters, clusters 9 (n=130)

and 10 (n=83), who had much higher weekday LPA at more than 6.5 hours while weekday LPA was at most

just under 4 hours in the other clusters. The supervision was successful in collapsing reallocating the outlying

centroid latent classes and thereby reducing the number of latent classes from 10 to 7.

The BMMG method selected clusters with few zero pattern configurations in difference to the BTMPK

but seemed to pick up multiple outliers (Table 5.29). For instance, cluster 1 (n=3) is composed of highly

sedentary individuals with only about 20 minutes of light activity thought the week. On the other end, cluster 9

(n=11) was estimated to have more time in light PA at almost 10 hours with just shy of six hours of sedentary

time. Cluster 8 (n=37) had the largest increase in with 4 more hours of sedentary time in the weekend versus

the weekend, which was largely displaced from weekday light activity. Cluster 7 (n=3) was an outlier with

individuals estimated to have close to an hour of moderate PA during the week and 25 minutes in the weekend.

The largest cluster (n=1867), cluster 4, was estimated to have sedentary behavior and physical activity similar

to the overall time budget with just over 12 hours of sedentary time, 3.5 hours of light activity, and 10 minutes

of MVPA.

The BMPK methods derived many clusters with little discernible differences but was successful in picking

out highly physically active groups. For instance, in the unsupervised approach, clusters 15 – 18 were high

active with 36, 43, 85, and 52 weekday MVPA minutes. Cluster 15, however, had a noticeable decrease in

weekend MVPA to 14 minutes. The rest of the clusters had somewhat sustained MVPA time. Clusters 17

(n=88;87 supervised) had remarkable time in vigorous physical activity at 27+ and 24+ minutes in the weekday

and weekend, respectively. See Tables 5.30 and 5.31.

5.5.11 Associations with adiposity

Adiposity generally decreased with higher levels of physical activity as expected. Figures 5.34 and 5.32

display confidence interval plots of estimated group adiposity prevalence by method and latent class. Note, the
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cluster labels correspond to ranks (order statistics) of the corresponding group centroid weekday sedentary

time. All methods had at least two non-overlapping 95% confidence intervals where the profiles of the different

latent classes were characterized by different levels of physical activity. For instance, in the MOTEF analysis,

cluster 3 observed 25+ MVPA weekday and weekend minutes and estimated adiposity estimate of 0.42 (95%

ci, 0.38 – 0.45) while clusters 1 and 2 observed less than 11 MVPA weekday and weekend minutes and

estimated adiposity prevalences of 0.76 (95% ci, 0.67 – 0.84) and 0.65 (95% ci, 0.60 – 0.69), respectively. On

the other end, for the supervised BMPK analysis, as an example, one of its most physically active latent class

(cluster 16) had 25+ weekday and weekend MVPA minutes with an observed adiposity prevalence of 0.32

(95% ci, 0.25 – 0.39) compared to 0.91 and 0.99 (95% ci, 0.88 – 1.00) and 0.85 (95% 0.69 – 0.92) in the least

physically active clusters.

Figures 5.33 and 5.31 display summaries of Tukey adjusted all pairwise comparisons of adiposity by

method and latent class membership. Note, pairwise significance was influenced by cluster size and estimated

adiposity in the unsupervised BTMPK and BMMG methods. A lot of the significance in the pairwise

comparisons for these methods were identified because a cluster had an extreme value estimate in adiposity.

For instance, cluster 2 in unsupervised BTMPK and cluster 7 in BMMG had estimated adiposity of 1.

Additionally, cluster 1 in BTMPK was a singleton cluster with an estimated adiposity of 0.00. The BMPK

method had the smallest rate of significant findings out of all pairwise comparisons at 34/153 while the

MOTEF supervised method determined adiposity significantly differed among all the groups at 3/3 pairwise

comparisons. The BTMPK, BMMG, and unsupervised MOTEF methods each had 22/45, 12/36, and 2/3

pairwise comparisons flagged as significant, respectively. The supervised BTMPK observed 9/21 significant

pairwise comparisons.

The supervised MOTEF method produced the clearest associations between adiposity and latent classes

(Table 5.26). The inverse relationship between physical activity and adiposity is clear with estimated adiposity

of 0.83 (0.76 – 0.88), 0.69 (0.64 – 0.73), and 0.36 (0.32 – 0.39) for clusters 1 - 3 which had approximately

1 hour differences in weekday and weekend sedentary time. Another way to look at the characterization of

the physical activity is, clusters 1 - 3 had estimated 12, 65, and 211 minutes of moderate physical activity per

week, respectively. Note, by construction, time budgets centroid summaries by weekday and weekend depict

a typical day. In the summary tables used for characterizing the profiles, these are extrapolated to 16 hours

which represent wake hours. In a similar manner, the centroids can be extrapolated to depict approximate week

long estimates of duration in each activity intensity. This depiction is most useful for comparison with the US

recommendation guidelines of physical activity as 150 minutes of MPA or 75 minutes of VPA per week or

a combination of the two. Interestingly, only cluster 3 appeared to achieve the American Heart Association

physical activity recommendation of 150 minutes of MPA, and it had the lowest prevalence of adiposity.
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The proposed supervised BTMPK method provides another clear relationship between physical activity

and adiposity. Clusters 2, 1, and 4 had the largest prevalences of adiposity at 0.93, 0.77, and 0.69 and the least

estimated amount of estimate MPA per week at only 8, 12, and 50 minutes, respectively. Clusters 5 and 3

had moderate amounts of MPA each with 98 minutes of MPA per week and estimate adiposity prevalences

of 0.59 and 0.52, respectively. A feature of jointly modeling the weekday and weekend time budgets is

that it allows one to see how participants distribute their time activity intensities. Clusters 5 and 3 with

seemingly similar week long MPA, have different routes to this accumulation where cluster 3 accumulates all

MVPA during the weekdays while cluster 5 accumulate MVPA through out the week (Table 5.28). Clusters

6 and 7 had the greatest amount of MPA minutes per week at 132 and 268 with adiposity prevalences of

0.47 and 0.38, respectively. The associations observed with the latent classes support recent findings where

similar associations between accelerometry-assessed MVPA were observed in US, Greenland, and UK cohorts

(Murabito et al., 2015; Dahl-Petersen et al., 2017; McGrath et al., 2017; Myers et al., 2018; Moon et al., 2017).

5.6 Discussion

In this chapter, we have proposed a Bayesian joint mixture model for compositional data with essential

zeros for profiling of physical activity and health risk via the tensor mixture of product kernels. The tensor

mixture methodology together with the principal of working in the coordinates allowed the building of a

mixture modeling framework that is the first of a kind to be able to account for essential zeros in compositional

data for subclass identification. The methodology leveraged a sparse mixture model specification for automatic

deletion of redundant latent classes thereby automating cluster selection. We found the proposed methodology

outperforms competitors in mixtures of product kernels and multivariate Gaussian adapted to compositional

data with imputation of zeros. We additionally developed a Matlab package that can implement the joint

mixture models presented in this chapter, and was combined with capability to for including mixed-scale

variables (i.e. continuous, count, categorical).

Although the proposed methodology performed well in certain scenarios, there are a few opportunities

for improvement. The first, is to conduct further investigation to understand scenarios where the proposed

methodology has a loss of information. The second, is to adequately extend the mixture methodology to

account for repeated and correlated observations. Lastly, it may be useful to build in a model based adjustment

for complex survey designs.
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APPENDIX A: SIMULATION DETAILS FOR CHAPTER 4

The purpose of this section is to elucidate details of the details of the simulation experiments for Bayesian

semi-parametric modeling with variable selection.

The predictors and confounding variables are assumed to have a simple mixed-scale distribution:

f(xi, zi) =

∫
R(zi)

f(xi, z
∗
i )dz∗i , (5.77)

where R(zi) = {z∗i ∈ Rp0+1 : zij = g(z∗ij), j = 1, . . . , p0 + 1} and (xi, z
∗
i ) ∼ Np+p0+1(0,Σ). We impose

the following functions to induce the different scales on the confounding variables:

• indicator variables coded for three level nominal variable: zij = I(z∗i,j+1 = max
1≤j≤3

z∗ij), for j = 1, 2.

• binary variables: zij = I(zi,j+1 > aj) for j = 3, . . . , 6, 8 where (a3, . . . , a6, a8) = (1.2816, 0.2533,

-0.5244, -0.8416, 1/3).

• bounded ordinal: zij = (
∑31
r=0(r + 14)I(ajr < 10 ∗ z∗i,j+1 + 25 ≤ aj,r+1) − 25)/10 where j = 7,

ajr = 14 + r for r = 1, . . . , 31, and set aj0, aj = −∞,∞.

• continuous: zij = z∗i,j+1 for j = 9, 10.

Note, continuous and bounded ordinal variables are scaled by 2 to facilitate comparison with the indicator

variables to used in modeling with mixed-scale confounding variables (as done and suggested in Buckley et al.

(2015) and Gelman et al. (2013), respectively). Further, we let

Σ =

 ΣX Σ′XZ

ΣXZ ΣZ

 (5.78)

the covariance matrix is partitioned by sub-components corresponding to predictor, confounder, and predictor-

confounder covariance matrices. Setting ΣXZ to a non-zero matrix ensures association between the predictor

and confounding variables.

Below we elucidate correlation structures used for generating data in all scenarios unless otherwise

detailed in Table 4.4.
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ΣX =



1.00 0.52 0.63 0.68 0.84

0.52 1.00 0.92 0.77 0.51

0.63 0.92 1.00 0.85 0.54

0.68 0.77 0.85 1.00 0.59

0.84 0.51 0.54 0.59 1.00


(5.79)

ΣZ =



1.0 0.0 0.0 0.1 0.2 0.0 0.1 −0.1 0.0 −0.1 0.1

0.0 1.0 0.0 0.1 0.1 0.1 0.1 −0.1 0.0 0.1 0.0

0.0 0.0 1.0 0.0 0.2 0.0 0.1 0.1 0.1 0.0 −0.1

0.1 0.1 0.0 1.0 −0.1 −0.1 0.0 −0.1 −0.1 0.0 0.1

0.2 0.1 0.2 −0.1 1.0 0.1 −0.1 0.0 0.1 0.0 −0.1

0.0 0.1 0.0 −0.1 0.1 1.0 −0.1 −0.1 0.1 0.0 −0.1

0.1 0.1 0.1 0.0 −0.1 −0.1 1.0 0.1 0.1 0.0 0.0

−0.1 −0.1 0.1 −0.1 0.0 −0.1 0.1 1.0 0.1 0.0 0.1

0.0 0.0 0.1 −0.1 0.1 0.1 0.1 0.1 1.0 0.0 −0.1

−0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.2

0.1 0.0 −0.1 0.1 −0.1 −0.1 0.0 0.1 −0.1 0.2 1.0



(5.80)

ΣXZ =



−0.1 −0.1 −0.1 −0.1 −0.1

−0.2 −0.2 −0.2 −0.2 −0.2

−0.3 −0.3 −0.3 −0.3 −0.3

0.1 0.1 0.1 0.1 0.1

−0.2 −0.2 −0.2 −0.2 −0.2

−0.1 −0.1 −0.1 −0.1 −0.1

0.1 0.1 0.1 0.1 0.1

−0.1 −0.1 −0.1 −0.1 −0.1

−0.2 −0.2 −0.2 −0.2 −0.2

−0.1 −0.1 −0.1 −0.1 −0.1

0.1 0.1 0.1 0.1 0.1



(5.81)

103



Table 5.17: Summary of data set characteristics by simulation scenario, type of confounding variables used,
and true outcome standard deviations. Each simulation scenario configuration (row) is composed of 500
data sets each with 500 observations. Summary measures display mean and (2.5th − −97.5th) percentiles
across all data sets within the row configuration. R2 and R2

adj correspond to mean of estimated coefficient
of determination values for each data set computed from a model with only the model terms used in the
generation. Sensitivity displays the mean of the proportions of true terms detected (excluding confounding
variables where applicable) by the fitted model for each data set.

Scenario Confounders σ R2 R2
adj Sensitivity

1 none 13.5 0.10 (0.05 – 0.15) 0.09 (0.04 – 0.15) 0.11 (0.00 – 0.40)
1 none 8.9 0.20 (0.14 – 0.26) 0.19 (0.13 – 0.25) 0.19 (0.00 – 0.40)
1 none 6.8 0.29 (0.23 – 0.36) 0.29 (0.23 – 0.35) 0.29 (0.00 – 0.60)
1 continuous 13.5 0.11 (0.06 – 0.16) 0.08 (0.03 – 0.14) 0.10 (0.00 – 0.40)
1 continuous 8.9 0.19 (0.14 – 0.26) 0.17 (0.11 – 0.24) 0.18 (0.00 – 0.40)
1 continuous 6.8 0.28 (0.22 – 0.34) 0.26 (0.19 – 0.32) 0.28 (0.00 – 0.60)
1 mixed-scale 8 0.10 (0.06 – 0.15) 0.07 (0.03 – 0.12) 0.10 (0.00 – 0.60)
1 mixed-scale 4.7 0.20 (0.14 – 0.26) 0.17 (0.11 – 0.24) 0.17 (0.00 – 0.40)
1 mixed-scale 3.5 0.30 (0.23 – 0.36) 0.27 (0.20 – 0.34) 0.28 (0.00 – 0.60)
2 none 17.9 0.10 (0.05 – 0.16) 0.09 (0.04 – 0.15) 0.10 (0.00 – 0.38)
2 none 11.9 0.20 (0.13 – 0.27) 0.18 (0.11 – 0.25) 0.19 (0.00 – 0.50)
2 none 8.7 0.31 (0.23 – 0.39) 0.30 (0.22 – 0.38) 0.31 (0.00 – 0.50)
2 continuous 21 0.10 (0.06 – 0.16) 0.07 (0.02 – 0.12) 0.09 (0.00 – 0.38)
2 continuous 12.5 0.20 (0.13 – 0.26) 0.17 (0.10 – 0.24) 0.17 (0.00 – 0.38)
2 continuous 9 0.31 (0.24 – 0.39) 0.28 (0.21 – 0.37) 0.29 (0.00 – 0.50)
2 mixed-scale 8 0.10 (0.06 – 0.15) 0.07 (0.02 – 0.12) 0.08 (0.00 – 0.25)
2 mixed-scale 4.7 0.21 (0.14 – 0.27) 0.18 (0.11 – 0.24) 0.18 (0.00 – 0.38)
2 mixed-scale 3.5 0.30 (0.23 – 0.37) 0.27 (0.20 – 0.35) 0.26 (0.00 – 0.50)
8 none 23.3 0.10 (0.05 – 0.17) 0.09 (0.03 – 0.16) 0.11 (0.00 – 0.33)
8 none 15.2 0.20 (0.12 – 0.30) 0.19 (0.10 – 0.29) 0.20 (0.00 – 0.44)
8 none 11.4 0.30 (0.21 – 0.41) 0.29 (0.19 – 0.40) 0.27 (0.11 – 0.56)
8 continuous 25 0.10 (0.06 – 0.17) 0.07 (0.02 – 0.14) 0.10 (0.00 – 0.33)
8 continuous 15 0.20 (0.13 – 0.29) 0.17 (0.09 – 0.26) 0.19 (0.00 – 0.44)
8 continuous 11 0.30 (0.21 – 0.41) 0.28 (0.18 – 0.39) 0.29 (0.11 – 0.56)
8 mixed-scale 8.3 0.11 (0.06 – 0.16) 0.07 (0.03 – 0.13) 0.08 (0.00 – 0.33)
8 mixed-scale 5.1 0.20 (0.14 – 0.27) 0.17 (0.11 – 0.24) 0.15 (0.00 – 0.33)
8 mixed-scale 3.9 0.29 (0.22 – 0.37) 0.26 (0.18 – 0.34) 0.22 (0.00 – 0.44)

Notable findings from the computation of data characteristics:

• including more predictor terms generally increases model precision thereby requiring a larger outcome

standard deviation to achieve a desired R2 level.

• there is an inverse relationship between outcome standard deviation and R2.

• including a set of 10 continuous confounding variables does not seem to have a material effect.

• including mixed-scale variables decreases model precision thereby requiring a smaller outcome standard

deviation, and has a reduction in sensitivity.
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APPENDIX B: SIMULATION RESULTS FIGURES FOR CHAPTER 4

Figure 5.14: Results of simulations for scenario 1 for all 500 data sets each of size 500: Coefficient estimates.
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Figure 5.15: Results of simulations for scenario 1 displaying coefficient specific posterior probability and log
odds for inclusion for each data set.

Figure 5.16: Results of simulations for scenario 2 for all 500 data sets each of size 500: Coefficient estimates.
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Figure 5.17: Results of simulations for scenario 2 displaying coefficient specific posterior probability and log
odds for inclusion for each data set.

Figure 5.18: Results of simulations for scenario 3 for all 500 data sets each of size 500: Coefficient estimates.
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Figure 5.19: Results of simulations for scenario 3 displaying coefficient specific posterior probability and log
odds for inclusion for each data set.

Figure 5.20: Results of simulations for scenario 4 for all 500 data sets each of size 500: Coefficient estimates.
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Figure 5.21: Results of simulations for scenario 4 displaying coefficient specific posterior probability and log
odds for inclusion for each data set.

Figure 5.22: Results of simulations for scenario 5 for all 500 data sets each of size 500: Coefficient estimates.
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Figure 5.23: Results of simulations for scenario 5 displaying coefficient specific posterior probability and log
odds for inclusion for each data set.

Figure 5.24: Results of simulations for scenario 6 for all 500 data sets each of size 500: Coefficient estimates.
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Figure 5.25: Results of simulations for scenario 6 displaying coefficient specific posterior probability and log
odds for inclusion for each data set.

Figure 5.26: Results of simulations for scenario 7 for all 500 data sets each of size 500: Coefficient estimates.
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Figure 5.27: Results of simulations for scenario 7 displaying coefficient specific posterior probability and log
odds for inclusion for each data set.
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Figure 5.28: Results of simulations for scenario 8 for all 500 data sets each of size 500: Coefficient estimates.
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Figure 5.29: Results of simulations for scenario 8 displaying coefficient specific posterior probability and log
odds for inclusion for each data set.

Figure 5.30: Results of all simulation scenarios displaying median of summary measures across all 500 data
sets.
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APPENDIX C: SIMULATION RESULTS TABLES FOR CHAPTER 4

Table 5.18: Simulation scenario 1 results summary comparing LASSO, GLINTERNET, BBVS versus BHIS.
Median estimate column displays the median (2.5th −−97.5th) percentiles of the posterior mean across all
500 data sets. Inclusion probability column displays the proportion of data sets with estimated log odds greater
than 0 flagging for inclusion.

LASSO GLINTERNET BBVS BHIS
true Median Incl Prop Median Incl Prop Median Median

Coef. value Estimate Sel flag Estimate Sel flag Estimate Incl Prop Estimate Incl Prop

β1 1 0.72
(0.00 – 1.53) 0.96 0.88

(0.13 – 1.70) 1.00 1.00
(0.58 – 1.23) 0.99 1.00

(0.53 – 1.25) 0.99

β2 1 0.38
(0.00 – 1.43) 0.75 0.79

(0.01 – 1.76) 0.98 0.99
(0.55 – 1.21) 0.98 0.99

(0.54 – 1.21) 0.99

β3 1 1.17
(0.00 – 2.11) 0.96 1.04

(0.01 – 2.21) 0.98 0.99
(0.68 – 1.33) 1.00 0.99

(0.65 – 1.33) 1.00

β4 1 0.78
(0.00 – 1.51) 0.97 0.88

(0.17 – 1.65) 1.00 0.99
(0.55 – 1.26) 0.99 0.99

(0.55 – 1.26) 0.99

β5 1 0.60
(0.00 – 1.34) 0.94 0.84

(0.19 – 1.59) 1.00 0.98
(0.54 – 1.28) 0.99 0.98

(0.53 – 1.28) 0.99

β1,2 0 0.00
(0.00 – 0.00) 0.00 0.00

(-0.32 – 0.41) 0.16 0.00
(-0.00 – 0.00) 0.00 0.00

(-0.00 – 0.00) 0.00

β1,3 0 0.00
(0.00 – 0.00) 0.00 0.00

(-0.37 – 0.24) 0.15 0.00
(-0.00 – 0.00) 0.00 0.00

(-0.00 – 0.00) 0.00

β1,4 0 0.00
(0.00 – 0.00) 0.00 0.00

(-0.43 – 0.38) 0.22 0.00
(-0.00 – 0.00) 0.00 0.00

(-0.00 – 0.00) 0.00

β1,5 0 0.00
(0.00 – 0.00) 0.00 0.00

(-0.48 – 0.42) 0.39 0.00
(-0.00 – 0.00) 0.00 0.00

(-0.00 – 0.00) 0.00

β2,3 0 0.00
(0.00 – 0.00) 0.00 0.00

(-0.43 – 0.34) 0.28 0.00
(-0.00 – 0.00) 0.00 0.00

(-0.00 – 0.00) 0.00

β2,4 0 0.00
(0.00 – 0.00) 0.00 0.00

(-0.34 – 0.39) 0.21 0.00
(-0.00 – 0.00) 0.00 0.00

(-0.00 – 0.00) 0.00

β2,5 0 0.00
(0.00 – 0.00) 0.00 0.00

(-0.33 – 0.53) 0.24 0.00
(-0.00 – 0.00) 0.00 0.00

(-0.00 – 0.00) 0.00

β3,4 0 0.00
(0.00 – 0.00) 0.00 0.00

(-0.31 – 0.26) 0.20 0.00
(-0.00 – 0.00) 0.00 0.00

(-0.00 – 0.00) 0.00

β3,5 0 0.00
(0.00 – 0.00) 0.00 0.00

(-0.29 – 0.47) 0.17 0.00
(-0.00 – 0.00) 0.00 0.00

(-0.00 – 0.00) 0.00

β4,5 0 0.00
(0.00 – 0.00) 0.00 0.00

(-0.39 – 0.37) 0.17 0.00
(-0.00 – 0.00) 0.00 0.00

(-0.00 – 0.00) 0.00
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Table 5.19: Simulation scenario 2 results summary comparing LASSO, GLINTERNET, BBVS versus BHIS.
Median estimate column displays the median (2.5th −−97.5th) percentiles of the posterior mean across all
500 data sets. Inclusion probability column displays the proportion of data sets with estimated log odds greater
than 0 flagging for inclusion.

LASSO GLINTERNET BBVS BHIS
true Median Incl Prop Median Incl Prop Median Median

Coef. value Estimate Sel flag Estimate Sel flag Estimate Incl Prop Estimate Incl Prop

β1 1 0.94
(0.07 – 1.75) 0.98 1.04

(0.41 – 1.64) 1.00 0.96
(0.56 – 1.37) 0.99 1.17

(0.58 – 1.86) 1.00

β2 0 0.00
(0.00 – 0.68) 0.27 0.08

(-0.16 – 0.75) 0.87 0.27
(0.02 – 0.85) 0.44 0.06

(-0.58 – 0.79) 0.69

β3 1 0.70
(0.00 – 1.44) 0.93 0.71

(0.09 – 1.40) 1.00 0.81
(0.17 – 1.12) 0.94 0.92

(0.09 – 1.65) 0.99

β4 1 0.89
(0.11 – 1.64) 0.99 0.90

(0.31 – 1.63) 1.00 0.92
(0.39 – 1.31) 0.98 1.05

(0.35 – 1.65) 1.00

β5 1 0.70
(0.00 – 1.40) 0.96 0.75

(0.20 – 1.36) 1.00 0.93
(0.43 – 1.28) 0.98 0.90

(0.16 – 1.35) 0.98

β1,2 0 0.00
(0.00 – 0.71) 0.09 0.00

(0.00 – 1.17) 0.27 0.13
(0.01 – 1.02) 0.06 0.09

(0.01 – 0.56) 0.04

β1,3 1 0.39
(0.00 – 1.96) 0.66 0.69

(0.00 – 2.20) 0.78 0.55
(0.07 – 2.05) 0.44 0.39

(0.05 – 1.20) 0.41

β1,4 1 0.81
(0.00 – 2.15) 0.86 0.95

(0.00 – 2.45) 0.87 0.77
(0.11 – 2.79) 0.63 0.52

(0.08 – 1.22) 0.59

β1,5 1 0.33
(0.00 – 1.22) 0.72 0.70

(0.00 – 1.64) 0.92 0.64
(0.03 – 1.68) 0.56 0.62

(0.06 – 1.44) 0.66

β2,3 0 0.00
(0.00 – 0.51) 0.12 0.00

(0.00 – 0.82) 0.28 0.04
(0.00 – 0.54) 0.03 0.04

(0.00 – 0.41) 0.02

β2,4 0 0.00
(0.00 – 0.31) 0.06 0.00

(0.00 – 0.85) 0.21 0.10
(0.00 – 0.70) 0.05 0.09

(0.01 – 0.60) 0.05

β2,5 0 0.00
(0.00 – 0.01) 0.03 0.00

(-0.11 – 0.62) 0.14 0.04
(0.00 – 0.40) 0.01 0.04

(0.00 – 0.35) 0.01

β3,4 1 0.36
(0.00 – 1.44) 0.71 0.56

(0.00 – 1.76) 0.81 0.41
(0.02 – 1.55) 0.38 0.49

(0.04 – 1.42) 0.54

β3,5 0 0.00
(0.00 – 0.55) 0.11 0.00

(0.00 – 1.01) 0.29 0.10
(0.00 – 0.61) 0.02 0.19

(0.01 – 0.74) 0.12

β4,5 0 0.00
(0.00 – 0.89) 0.16 0.00

(0.00 – 1.35) 0.37 0.14
(0.01 – 0.98) 0.10 0.23

(0.02 – 0.88) 0.20
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Table 5.20: Simulation scenario 3 results summary comparing LASSO, GLINTERNET, BBVS versus BHIS.
Median estimate column displays the median (2.5th −−97.5th) percentiles of the posterior mean across all
500 data sets. Inclusion probability column displays the proportion of data sets with estimated log odds greater
than 0 flagging for inclusion.

LASSO GLINTERNET BBVS BHIS
true Median Incl Prop Median Incl Prop Median Median

Coef. value Estimate Sel flag Estimate Sel flag Estimate Incl Prop Estimate Incl Prop

β1 1 0.93
(0.07 – 1.69) 0.98 1.01

(0.37 – 1.63) 1.00 0.95
(0.52 – 1.35) 0.99 1.17

(0.50 – 1.85) 1.00

β2 0 0.00
(0.00 – 0.75) 0.29 0.07

(-0.23 – 0.70) 0.85 0.30
(0.01 – 0.85) 0.43 0.06

(-0.71 – 0.84) 0.63

β3 1 0.67
(0.00 – 1.48) 0.92 0.71

(0.10 – 1.54) 1.00 0.81
(0.22 – 1.18) 0.94 0.95

(0.12 – 1.64) 0.97

β4 1 0.86
(0.06 – 1.62) 0.98 0.89

(0.29 – 1.64) 1.00 0.91
(0.34 – 1.29) 0.97 1.03

(0.36 – 1.71) 0.99

β5 1 0.71
(0.00 – 1.45) 0.96 0.75

(0.19 – 1.39) 1.00 0.92
(0.38 – 1.27) 0.98 0.91

(0.12 – 1.50) 0.97

β1,2 0 0.00
(0.00 – 0.48) 0.08 0.00

(0.00 – 1.05) 0.27 0.12
(0.01 – 0.79) 0.07 0.08

(0.01 – 0.56) 0.05

β1,3 1 0.33
(0.00 – 1.95) 0.66 0.65

(0.00 – 2.18) 0.74 0.51
(0.06 – 2.57) 0.43 0.39

(0.05 – 1.18) 0.41

β1,4 1 0.80
(0.00 – 2.25) 0.82 0.95

(0.00 – 2.49) 0.90 0.82
(0.10 – 2.97) 0.65 0.50

(0.08 – 1.40) 0.59

β1,5 1 0.33
(0.00 – 1.25) 0.73 0.73

(0.00 – 1.65) 0.91 0.67
(0.02 – 1.56) 0.57 0.58

(0.05 – 1.44) 0.65

β2,3 0 0.00
(0.00 – 0.53) 0.15 0.00

(0.00 – 0.76) 0.27 0.05
(0.00 – 0.71) 0.04 0.04

(0.00 – 0.44) 0.03

β2,4 0 0.00
(0.00 – 0.19) 0.05 0.00

(0.00 – 0.83) 0.20 0.09
(0.01 – 0.60) 0.03 0.07

(0.00 – 0.51) 0.04

β2,5 0 0.00
(0.00 – 0.00) 0.02 0.00

(0.00 – 0.52) 0.14 0.04
(0.00 – 0.37) 0.01 0.04

(0.00 – 0.38) 0.01

β3,4 1 0.29
(0.00 – 1.33) 0.66 0.53

(0.00 – 1.58) 0.80 0.35
(0.02 – 1.46) 0.33 0.46

(0.05 – 1.34) 0.49

β3,5 0 0.00
(0.00 – 0.74) 0.12 0.00

(0.00 – 1.27) 0.32 0.10
(0.01 – 0.72) 0.04 0.21

(0.01 – 0.85) 0.16

β4,5 0 0.00
(0.00 – 0.78) 0.14 0.00

(0.00 – 1.16) 0.35 0.13
(0.01 – 0.83) 0.08 0.25

(0.02 – 0.84) 0.18
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Table 5.21: Simulation scenario 4 results summary comparing LASSO, GLINTERNET, BBVS versus BHIS.
Median estimate column displays the median (2.5th −−97.5th) percentiles of the posterior mean across all
500 data sets. Inclusion probability column displays the proportion of data sets with estimated log odds greater
than 0 flagging for inclusion.

LASSO GLINTERNET BBVS BHIS
true Median Incl Prop Median Incl Prop Median Median

Coef. value Estimate Sel flag Estimate Sel flag Estimate Incl Prop Estimate Incl Prop

β1 1 0.97
(0.05 – 1.78) 0.98 0.00

(0.00 – 1.18) 0.10 0.96
(0.54 – 1.39) 0.99 1.19

(0.53 – 1.89) 1.00

β2 0 0.00
(0.00 – 0.61) 0.27 0.00

(0.00 – 0.16) 0.07 0.27
(0.01 – 0.84) 0.43 0.04

(-0.65 – 0.76) 0.64

β3 1 0.72
(0.00 – 1.55) 0.93 0.00

(0.00 – 0.97) 0.10 0.81
(0.21 – 1.13) 0.92 0.94

(0.11 – 1.68) 0.98

β4 1 0.90
(0.00 – 1.67) 0.97 0.00

(0.00 – 1.20) 0.10 0.92
(0.37 – 1.33) 0.97 1.06

(0.34 – 1.71) 0.99

β5 1 0.67
(0.00 – 1.46) 0.96 0.00

(0.00 – 1.04) 0.10 0.92
(0.36 – 1.29) 0.97 0.87

(0.21 – 1.40) 0.97

β1,2 0 0.00
(0.00 – 0.55) 0.07 0.00

(0.00 – 0.00) 0.01 0.12
(0.01 – 0.84) 0.06 0.08

(0.01 – 0.55) 0.04

β1,3 1 0.42
(0.00 – 2.01) 0.65 0.00

(0.00 – 1.20) 0.07 0.57
(0.05 – 2.41) 0.46 0.39

(0.05 – 1.23) 0.42

β1,4 1 0.84
(0.00 – 2.15) 0.84 0.00

(0.00 – 1.31) 0.09 0.80
(0.10 – 2.72) 0.64 0.50

(0.07 – 1.33) 0.58

β1,5 1 0.31
(0.00 – 1.34) 0.71 0.00

(0.00 – 1.15) 0.09 0.65
(0.03 – 1.65) 0.58 0.61

(0.05 – 1.45) 0.66

β2,3 0 0.00
(0.00 – 0.42) 0.12 0.00

(0.00 – 0.00) 0.02 0.04
(0.00 – 0.50) 0.02 0.04

(0.00 – 0.39) 0.01

β2,4 0 0.00
(0.00 – 0.41) 0.06 0.00

(0.00 – 0.00) 0.02 0.11
(0.01 – 0.77) 0.06 0.08

(0.00 – 0.60) 0.05

β2,5 0 0.00
(0.00 – 0.00) 0.02 0.00

(0.00 – 0.00) 0.01 0.03
(0.00 – 0.27) 0.00 0.03

(0.00 – 0.32) 0.01

β3,4 1 0.31
(0.00 – 1.45) 0.72 0.00

(0.00 – 1.08) 0.09 0.44
(0.02 – 1.43) 0.39 0.49

(0.04 – 1.43) 0.53

β3,5 0 0.00
(0.00 – 0.50) 0.08 0.00

(0.00 – 0.13) 0.03 0.09
(0.01 – 0.61) 0.03 0.19

(0.01 – 0.78) 0.14

β4,5 0 0.00
(0.00 – 0.65) 0.14 0.00

(0.00 – 0.18) 0.04 0.12
(0.01 – 0.97) 0.07 0.22

(0.02 – 0.95) 0.19
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Table 5.22: Simulation scenario 5 results summary comparing LASSO, GLINTERNET, BBVS versus BHIS.
Median estimate column displays the median (2.5th −−97.5th) percentiles of the posterior mean across all
500 data sets. Inclusion probability column displays the proportion of data sets with estimated log odds greater
than 0 flagging for inclusion.

LASSO GLINTERNET BBVS BHIS
true Median Incl Prop Median Incl Prop Median Median

Coef. value Estimate Sel flag Estimate Sel flag Estimate Incl Prop Estimate Incl Prop

β1 1 0.95
(0.00 – 1.80) 0.98 0.99

(0.30 – 1.72) 1.00 0.94
(0.50 – 1.37) 0.99 1.12

(0.32 – 1.89) 1.00

β2 0 0.00
(0.00 – 0.68) 0.32 0.13

(-0.23 – 0.70) 0.97 0.33
(0.02 – 0.81) 0.49 0.12

(-0.65 – 0.88) 0.98

β3 1 0.65
(0.00 – 1.49) 0.90 0.74

(0.11 – 1.42) 1.00 0.78
(0.24 – 1.17) 0.92 0.94

(0.03 – 1.80) 1.00

β4 1 0.84
(0.00 – 1.63) 0.97 0.84

(0.21 – 1.51) 1.00 0.89
(0.35 – 1.29) 0.97 0.94

(0.23 – 1.62) 1.00

β5 1 0.69
(0.00 – 1.51) 0.96 0.74

(0.22 – 1.47) 1.00 0.92
(0.49 – 1.30) 0.99 0.85

(0.18 – 1.51) 0.99

β1,2 0 0.00
(0.00 – 1.01) 0.13 0.00

(0.00 – 1.42) 0.32 0.22
(0.03 – 1.03) 0.10 0.20

(0.02 – 0.69) 0.12

β1,3 1 0.57
(0.00 – 2.25) 0.72 0.73

(0.00 – 2.66) 0.75 0.62
(0.08 – 2.41) 0.50 0.48

(0.10 – 1.17) 0.50

β1,4 1 0.39
(0.00 – 2.05) 0.65 0.68

(0.00 – 2.32) 0.78 0.61
(0.09 – 1.83) 0.49 0.56

(0.13 – 1.19) 0.61

β1,5 1 0.29
(0.00 – 1.25) 0.69 0.70

(0.00 – 1.61) 0.90 0.65
(0.03 – 1.68) 0.56 0.84

(0.10 – 1.49) 0.81

β2,3 1 0.22
(0.00 – 1.45) 0.60 0.47

(0.00 – 1.75) 0.70 0.54
(0.04 – 1.65) 0.48 0.44

(0.05 – 1.20) 0.46

β2,4 0 0.00
(0.00 – 0.98) 0.14 0.00

(0.00 – 1.64) 0.35 0.33
(0.03 – 1.04) 0.16 0.31

(0.04 – 0.87) 0.24

β2,5 0 0.00
(0.00 – 0.15) 0.03 0.00

(0.00 – 0.76) 0.17 0.06
(0.00 – 0.45) 0.00 0.09

(0.01 – 0.45) 0.02

β3,4 1 0.88
(0.00 – 2.26) 0.84 0.87

(0.00 – 2.46) 0.82 0.70
(0.10 – 1.79) 0.58 0.71

(0.20 – 1.53) 0.80

β3,5 0 0.00
(0.00 – 0.72) 0.17 0.00

(0.00 – 1.24) 0.35 0.13
(0.01 – 0.80) 0.06 0.23

(0.03 – 0.82) 0.16

β4,5 0 0.00
(0.00 – 0.56) 0.12 0.00

(0.00 – 1.22) 0.31 0.14
(0.01 – 0.75) 0.05 0.27

(0.04 – 0.74) 0.20
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Table 5.23: Simulation scenario 6 results summary comparing LASSO, GLINTERNET, BBVS versus BHIS.
Median estimate column displays the median (2.5th −−97.5th) percentiles of the posterior mean across all
500 data sets. Inclusion probability column displays the proportion of data sets with estimated log odds greater
than 0 flagging for inclusion.

LASSO GLINTERNET BBVS BHIS
true Median Incl Prop Median Incl Prop Median Median

Coef. value Estimate Sel flag Estimate Sel flag Estimate Incl Prop Estimate Incl Prop

β1 1 0.93
(0.05 – 1.83) 0.98 1.01

(0.36 – 1.74) 1.00 0.95
(0.51 – 1.47) 0.99 1.11

(0.40 – 1.93) 1.00

β2 0 0.00
(0.00 – 0.72) 0.28 0.11

(-0.28 – 0.76) 0.95 0.30
(0.01 – 0.83) 0.46 0.07

(-0.75 – 0.85) 0.98

β3 1 0.58
(0.00 – 1.54) 0.90 0.72

(0.14 – 1.46) 1.00 0.76
(0.17 – 1.10) 0.91 0.92

(0.11 – 1.75) 1.00

β4 1 0.86
(0.03 – 1.77) 0.98 0.87

(0.28 – 1.65) 1.00 0.92
(0.39 – 1.43) 0.98 1.00

(0.33 – 1.76) 1.00

β5 1 0.65
(0.00 – 1.44) 0.94 0.73

(0.13 – 1.39) 1.00 0.90
(0.34 – 1.30) 0.96 0.82

(0.08 – 1.46) 0.98

β1,2 0 0.00
(0.00 – 0.76) 0.12 0.00

(0.00 – 1.38) 0.30 0.20
(0.02 – 0.92) 0.10 0.18

(0.02 – 0.62) 0.09

β1,3 1 0.53
(0.00 – 2.22) 0.70 0.66

(0.00 – 2.49) 0.74 0.56
(0.08 – 2.35) 0.44 0.48

(0.07 – 1.09) 0.50

β1,4 1 0.40
(0.00 – 1.93) 0.68 0.71

(0.00 – 2.40) 0.76 0.59
(0.08 – 1.82) 0.49 0.56

(0.13 – 1.18) 0.64

β1,5 1 0.27
(0.00 – 1.28) 0.67 0.71

(0.00 – 1.70) 0.91 0.64
(0.03 – 1.78) 0.56 0.83

(0.13 – 1.66) 0.81

β2,3 1 0.24
(0.00 – 1.46) 0.61 0.49

(0.00 – 1.76) 0.74 0.54
(0.03 – 1.61) 0.46 0.41

(0.02 – 1.19) 0.44

β2,4 0 0.00
(0.00 – 0.87) 0.13 0.00

(0.00 – 1.59) 0.34 0.30
(0.03 – 1.06) 0.15 0.30

(0.05 – 0.87) 0.21

β2,5 0 0.00
(0.00 – 0.09) 0.03 0.00

(0.00 – 0.84) 0.14 0.06
(0.00 – 0.44) 0.01 0.08

(0.00 – 0.44) 0.02

β3,4 1 0.95
(0.00 – 2.20) 0.84 0.91

(0.00 – 2.45) 0.83 0.74
(0.12 – 1.93) 0.59 0.75

(0.18 – 1.79) 0.83

β3,5 0 0.00
(0.00 – 0.86) 0.16 0.00

(0.00 – 1.28) 0.34 0.14
(0.01 – 0.75) 0.06 0.24

(0.02 – 0.73) 0.15

β4,5 0 0.00
(0.00 – 0.61) 0.13 0.00

(0.00 – 1.09) 0.30 0.12
(0.01 – 0.80) 0.06 0.27

(0.03 – 0.77) 0.23
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Table 5.24: Simulation scenario 7 results summary comparing LASSO, GLINTERNET, BBVS versus BHIS.
Median estimate column displays the median (2.5th −−97.5th) percentiles of the posterior mean across all
500 data sets. Inclusion probability column displays the proportion of data sets with estimated log odds greater
than 0 flagging for inclusion.

LASSO GLINTERNET BBVS BHIS
true Median Incl Prop Median Incl Prop Median Median

Coef. value Estimate Sel flag Estimate Sel flag Estimate Incl Prop Estimate Incl Prop

β1 1 0.91
(0.07 – 1.85) 0.98 0.99

(0.40 – 1.75) 1.00 0.94
(0.55 – 1.39) 0.98 1.10

(0.46 – 1.88) 1.00

β2 0 0.00
(0.00 – 0.86) 0.28 0.14

(-0.31 – 0.87) 0.96 0.32
(0.02 – 0.85) 0.48 0.10

(-0.74 – 0.88) 0.98

β3 1 0.67
(0.00 – 1.53) 0.91 0.74

(0.14 – 1.50) 1.00 0.79
(0.21 – 1.12) 0.92 0.93

(0.12 – 1.84) 1.00

β4 1 0.87
(0.00 – 1.69) 0.97 0.88

(0.21 – 1.57) 1.00 0.91
(0.38 – 1.39) 0.98 1.00

(0.23 – 1.67) 1.00

β5 1 0.70
(0.00 – 1.47) 0.95 0.76

(0.19 – 1.40) 1.00 0.92
(0.38 – 1.29) 0.97 0.87

(0.18 – 1.48) 0.99

β1,2 0 0.00
(0.00 – 0.80) 0.11 0.00

(0.00 – 1.29) 0.31 0.22
(0.03 – 0.95) 0.10 0.19

(0.02 – 0.67) 0.09

β1,3 1 0.62
(0.00 – 2.31) 0.72 0.76

(0.00 – 2.48) 0.77 0.58
(0.08 – 2.18) 0.47 0.49

(0.07 – 1.08) 0.54

β1,4 1 0.43
(0.00 – 2.26) 0.66 0.69

(0.00 – 2.39) 0.76 0.63
(0.10 – 1.81) 0.53 0.54

(0.13 – 1.19) 0.63

β1,5 1 0.31
(0.00 – 1.38) 0.70 0.71

(0.00 – 1.66) 0.90 0.70
(0.03 – 1.86) 0.57 0.82

(0.13 – 1.69) 0.81

β2,3 1 0.30
(0.00 – 1.53) 0.64 0.45

(0.00 – 1.79) 0.74 0.54
(0.04 – 1.66) 0.46 0.42

(0.04 – 1.20) 0.44

β2,4 0 0.00
(0.00 – 1.00) 0.13 0.00

(0.00 – 1.54) 0.35 0.31
(0.04 – 1.06) 0.15 0.30

(0.04 – 0.95) 0.24

β2,5 0 0.00
(0.00 – 0.05) 0.04 0.00

(0.00 – 0.77) 0.16 0.06
(0.00 – 0.47) 0.02 0.09

(0.01 – 0.43) 0.01

β3,4 1 0.77
(0.00 – 2.14) 0.80 0.73

(0.00 – 2.33) 0.80 0.65
(0.10 – 1.86) 0.54 0.71

(0.20 – 1.60) 0.78

β3,5 0 0.00
(0.00 – 0.90) 0.16 0.00

(0.00 – 1.34) 0.31 0.13
(0.01 – 0.83) 0.06 0.25

(0.02 – 0.77) 0.17

β4,5 0 0.00
(0.00 – 0.73) 0.16 0.00

(0.00 – 1.27) 0.38 0.14
(0.01 – 0.84) 0.09 0.30

(0.03 – 0.83) 0.27
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Table 5.25: Convex combination centroid summary for the modularized tensor mixture model by latent class
identified displayed as time (HH:MM:SS) in activity intensity out of 16 hours.

Sample Adiposity Time in Activity Intensity (out of 16 hrs)
Cluster n (%) % (95% CI) Time of Week Sedentary Light Moderate Vigorous

1 318 0.76 WEEKDAY 14:03:50 01:53:49 00:02:19 00:00:00
(11.6) (0.67 – 0.84) WEEKEND 14:06:39 01:50:39 00:02:36 00:00:04

2 1486 0.65 WEEKDAY 12:19:27 03:30:04 00:10:14 00:00:12
(46.7) (0.60 – 0.69) WEEKEND 12:35:05 03:19:13 00:05:39 00:00:02

3 1150 0.42 WEEKDAY 11:26:47 04:03:38 00:26:55 00:02:38
(41.7) (0.38 – 0.45) WEEKEND 11:37:28 03:58:16 00:22:02 00:02:12

Table 5.26: Convex combination centroid summary for the supervised modularized tensor mixture model by
latent class identified displayed as time (HH:MM:SS) in activity intensity out of 16 hours.

Sample Adiposity Time in Activity Intensity (out of 16 hrs)
Cluster n (%) % (95% CI) Time of Week Sedentary Light Moderate Vigorous

1 319 0.83 WEEKDAY 13:46:42 02:11:10 00:02:06 00:00:00
(10.3) (0.76 – 0.88) WEEKEND 13:56:28 02:02:36 00:00:51 00:00:03

2 1505 0.69 WEEKDAY 12:25:55 03:23:38 00:10:13 00:00:12
(48.2) (0.64 – 0.73) WEEKEND 12:39:02 03:14:44 00:06:09 00:00:03

3 1127 0.36 WEEKDAY 11:29:48 04:00:54 00:26:37 00:02:39
(41.5) (0.32 – 0.39) WEEKEND 11:40:52 03:55:11 00:21:43 00:02:12
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Table 5.27: Convex combination centroid summary for the proposed Bayesian tensor mixture of product
kernels (BTMPK) by latent class identified displayed as time (HH:MM:SS) in activity intensity out of 16
hours.

Sample Adiposity Time in Activity Intensity (out of 16 hrs)
Cluster n (%) % (95% CI) Time of Week Sedentary Light Moderate Vigorous

1 1 0.00 WEEKDAY 14:37:53 01:18:25 00:02:13 00:01:28
(0.1) (0.00 – 0.00) WEEKEND 14:52:56 01:06:30 00:00:00 00:00:32

2 1 1.00 WEEKDAY 14:20:25 01:39:17 00:00:00 00:00:16
(0.0) (1.00 – 1.00) WEEKEND 14:20:21 01:39:07 00:00:30 00:00:00

3 308 0.78 WEEKDAY 13:30:40 02:26:45 00:02:34 00:00:00
(9.8) (0.69 – 0.84) WEEKEND 13:52:25 02:07:34 00:00:00 00:00:00

4 977 0.70 WEEKDAY 12:51:30 03:01:26 00:07:03 00:00:00
(30.2) (0.66 – 0.75) WEEKEND 12:57:09 02:57:58 00:04:52 00:00:00

5 47 0.54 WEEKDAY 12:29:38 03:11:52 00:17:16 00:01:12
(1.5) (0.32 – 0.75) WEEKEND 13:35:57 02:24:02 00:00:00 00:00:00

6 141 0.59 WEEKDAY 12:24:23 03:24:25 00:11:10 00:00:00
(6.0) (0.43 – 0.74) WEEKEND 12:05:04 03:35:32 00:18:08 00:01:14

7 616 0.46 WEEKDAY 12:07:10 03:32:14 00:19:21 00:01:13
(21.5) (0.41 – 0.52) WEEKEND 12:29:39 03:21:20 00:09:00 00:00:00

8 650 0.38 WEEKDAY 11:28:54 03:55:22 00:31:53 00:03:49
(24.2) (0.33 – 0.42) WEEKEND 11:29:00 03:59:07 00:28:14 00:03:37

9 130 0.65 WEEKDAY 09:14:07 06:34:42 00:11:09 00:00:00
(4.4) (0.52 – 0.76) WEEKEND 10:01:55 05:49:19 00:08:44 00:00:00

10 83 0.55 WEEKDAY 08:41:41 06:49:01 00:27:34 00:01:41
(2.3) (0.39 – 0.69) WEEKEND 10:23:53 05:24:15 00:11:51 00:00:00

Table 5.28: Convex combination centroid summary for the proposed supervised Bayesian tensor mixture of
product kernels (BTMPK) by latent class identified displayed as time (HH:MM:SS) in activity intensity out of
16 hours.

Sample Adiposity Time in Activity Intensity (out of 16 hrs)
Cluster n (%) % (95% CI) Time of Week Sedentary Light Moderate Vigorous

1 309 0.77 WEEKDAY 13:30:19 02:27:08 00:02:31 00:00:00
(9.8) (0.68 – 0.84) WEEKEND 13:52:14 02:07:45 00:00:00 00:00:00

2 40 0.93 WEEKDAY 13:30:04 02:29:55 00:00:00 00:00:00
(1.3) (0.82 – 0.98) WEEKEND 13:16:29 02:39:35 00:03:32 00:00:22

3 47 0.54 WEEKDAY 12:29:38 03:11:52 00:17:16 00:01:12
(1.5) (0.32 – 0.75) WEEKEND 13:35:57 02:24:02 00:00:00 00:00:00

4 1073 0.69 WEEKDAY 12:27:15 03:24:53 00:07:51 00:00:00
(33.5) (0.64 – 0.73) WEEKEND 12:37:22 03:17:08 00:05:28 00:00:00

5 135 0.59 WEEKDAY 12:23:32 03:24:54 00:11:32 00:00:00
(5.9) (0.42 – 0.74) WEEKEND 12:05:39 03:34:56 00:18:10 00:01:13

6 698 0.47 WEEKDAY 11:50:08 03:48:20 00:20:14 00:01:16
(23.8) (0.42 – 0.52) WEEKEND 12:18:59 03:31:42 00:09:17 00:00:00

7 649 0.38 WEEKDAY 11:29:16 03:55:03 00:31:51 00:03:48
(24.1) (0.33 – 0.42) WEEKEND 11:29:32 03:58:34 00:28:14 00:03:38
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Table 5.29: Convex combination centroid summary for the Bayesian mixture of multivariate Gaussians
(BMMG) by latent class identified displayed as time (HH:MM:SS) in activity intensity out of 16 hours.

Sample Adiposity Time in Activity Intensity (out of 16 hrs)
Cluster n (%) % (95% CI) Time of Week Sedentary Light Moderate Vigorous

1 13 0.90 WEEKDAY 15:38:59 00:20:48 00:00:11 00:00:00
(0.4) (0.67 – 0.98) WEEKEND 15:37:22 00:22:37 00:00:00 00:00:00

2 126 0.82 WEEKDAY 13:53:43 02:05:57 00:00:17 00:00:01
(4.6) (0.67 – 0.91) WEEKEND 14:04:32 01:53:02 00:01:53 00:00:31

3 154 0.68 WEEKDAY 12:48:08 03:00:48 00:10:44 00:00:18
(5.0) (0.56 – 0.78) WEEKEND 12:58:45 03:00:22 00:00:48 00:00:03

4 1867 0.60 WEEKDAY 12:15:43 03:30:46 00:12:58 00:00:32
(59.7) (0.56 – 0.63) WEEKEND 12:29:35 03:22:55 00:07:25 00:00:03

5 29 0.51 WEEKDAY 12:11:35 03:39:27 00:05:46 00:03:09
(1.1) (0.28 – 0.73) WEEKEND 12:41:13 03:13:44 00:04:57 00:00:04

6 714 0.42 WEEKDAY 11:41:44 03:46:25 00:28:42 00:03:08
(27.3) (0.36 – 0.48) WEEKEND 11:38:14 03:52:14 00:26:24 00:03:06

7 3 1.00 WEEKDAY 11:23:30 03:42:54 00:53:13 00:00:21
(0.2) (1.00 – 1.00) WEEKEND 12:13:40 03:21:07 00:25:11 00:00:00

8 37 0.70 WEEKDAY 10:01:32 05:35:44 00:21:18 00:01:24
(1.2) (0.50 – 0.84) WEEKEND 14:03:22 01:52:12 00:04:11 00:00:13

9 11 0.71 WEEKDAY 05:47:10 09:53:34 00:18:43 00:00:31
(0.5) (0.30 – 0.93) WEEKEND 05:59:09 09:52:49 00:07:56 00:00:05
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Table 5.30: Convex combination centroid summary for the Bayesian mixture of product kernels (BMPK) by
latent class identified displayed as time (HH:MM:SS) in activity intensity out of 16 hours

Sample Adiposity Time in Activity Intensity (out of 16 hrs)
Cluster n (%) % (95% CI) Time of Week Sedentary Light Moderate Vigorous

1 13 0.89 WEEKDAY 14:49:04 01:08:48 00:02:06 00:00:00
(0.4) (0.67 – 0.97) WEEKEND 15:11:23 00:48:01 00:00:35 00:00:00

2 96 0.85 WEEKDAY 13:58:30 02:01:18 00:00:11 00:00:00
(3.1) (0.73 – 0.92) WEEKEND 14:06:56 01:52:59 00:00:04 00:00:00

3 22 0.46 WEEKDAY 13:41:33 02:17:40 00:00:46 00:00:00
(0.9) (0.22 – 0.73) WEEKEND 13:00:55 02:50:29 00:06:39 00:01:56

4 44 0.90 WEEKDAY 13:32:52 02:27:03 00:00:04 00:00:00
(1.3) (0.76 – 0.96) WEEKEND 13:30:41 02:26:51 00:02:26 00:00:00

5 228 0.74 WEEKDAY 13:04:22 02:51:01 00:04:35 00:00:00
(7.2) (0.63 – 0.82) WEEKEND 13:26:56 02:33:00 00:00:02 00:00:00

6 79 0.79 WEEKDAY 13:00:28 02:58:34 00:00:57 00:00:00
(3.5) (0.63 – 0.90) WEEKEND 13:25:14 02:32:40 00:02:05 00:00:00

7 427 0.68 WEEKDAY 12:33:54 03:17:56 00:08:08 00:00:00
(13.1) (0.60 – 0.75) WEEKEND 12:30:31 03:22:23 00:07:05 00:00:00

8 250 0.68 WEEKDAY 12:20:08 03:32:33 00:07:18 00:00:00
(7.6) (0.58 – 0.76) WEEKEND 12:46:34 03:11:50 00:01:34 00:00:00

9 79 0.56 WEEKDAY 12:20:00 03:23:16 00:15:35 00:01:07
(2.5) (0.38 – 0.73) WEEKEND 13:14:58 02:44:42 00:00:18 00:00:00

10 121 0.62 WEEKDAY 12:10:47 03:33:16 00:15:56 00:00:00
(5.2) (0.45 – 0.77) WEEKEND 11:57:04 03:40:50 00:20:56 00:01:08

11 174 0.51 WEEKDAY 12:08:26 03:39:34 00:11:17 00:00:42
(6.2) (0.42 – 0.61) WEEKEND 12:28:42 03:27:49 00:03:27 00:00:00

12 262 0.66 WEEKDAY 11:58:48 03:38:18 00:22:53 00:00:00
(7.8) (0.59 – 0.72) WEEKEND 12:03:20 03:35:26 00:21:12 00:00:00

13 247 0.47 WEEKDAY 11:56:20 03:44:26 00:18:28 00:00:44
(8.4) (0.39 – 0.54) WEEKEND 11:54:57 03:44:20 00:19:07 00:01:34

14 284 0.52 WEEKDAY 11:48:39 03:49:38 00:21:09 00:00:32
(8.9) (0.45 – 0.60) WEEKEND 12:08:02 03:36:13 00:15:43 00:00:00

15 207 0.36 WEEKDAY 11:33:06 03:49:29 00:31:55 00:05:28
(7.7) (0.27 – 0.46) WEEKEND 12:18:54 03:27:10 00:13:55 00:00:00

16 316 0.32 WEEKDAY 11:22:52 03:53:00 00:37:37 00:06:29
(12.1) (0.26 – 0.39) WEEKEND 11:28:24 03:57:51 00:30:09 00:03:34

17 88 0.34 WEEKDAY 10:21:01 04:12:56 00:58:24 00:27:37
(3.7) (0.20 – 0.50) WEEKEND 10:16:00 04:27:30 00:52:02 00:24:25

18 17 0.75 WEEKDAY 09:51:45 05:15:47 00:52:02 00:00:25
(0.5) (0.46 – 0.92) WEEKEND 10:15:08 05:04:00 00:40:50 00:00:00
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Table 5.31: Convex combination centroid summary for the supervised Bayesian mixture of product kernels
(BMPK) by latent class identified displayed as time (HH:MM:SS) in activity intensity out of 16 hours

Sample Adiposity Time in Activity Intensity (out of 16 hrs)
Cluster n (%) % (95% CI) Time of Week Sedentary Light Moderate Vigorous

1 19 0.99 WEEKDAY 15:00:05 00:59:13 00:00:41 00:00:00
(1.2) (0.88 – 1.00) WEEKEND 15:28:16 00:31:19 00:00:24 00:00:00

2 87 0.84 WEEKDAY 13:58:45 02:01:05 00:00:08 00:00:00
(2.6) (0.69 – 0.92) WEEKEND 14:04:48 01:55:08 00:00:02 00:00:00

3 18 0.54 WEEKDAY 13:40:14 02:19:08 00:00:36 00:00:00
(0.8) (0.24 – 0.81) WEEKEND 13:15:24 02:34:54 00:07:18 00:02:22

4 47 0.91 WEEKDAY 13:23:39 02:36:13 00:00:06 00:00:00
(1.5) (0.79 – 0.97) WEEKEND 13:24:49 02:32:45 00:02:24 00:00:00

5 225 0.74 WEEKDAY 13:02:58 02:52:44 00:04:16 00:00:00
(7.2) (0.64 – 0.82) WEEKEND 13:23:23 02:36:34 00:00:02 00:00:00

6 417 0.70 WEEKDAY 12:26:40 03:25:37 00:07:42 00:00:00
(12.4) (0.61 – 0.77) WEEKEND 12:26:53 03:26:11 00:06:55 00:00:00

7 180 0.52 WEEKDAY 12:21:07 03:26:51 00:11:14 00:00:46
(6.2) (0.42 – 0.63) WEEKEND 12:42:10 03:14:43 00:03:06 00:00:00

8 67 0.56 WEEKDAY 12:20:34 03:23:15 00:15:03 00:01:06
(2.2) (0.36 – 0.74) WEEKEND 13:13:31 02:46:14 00:00:14 00:00:00

9 256 0.65 WEEKDAY 12:19:47 03:32:53 00:07:19 00:00:00
(7.4) (0.55 – 0.74) WEEKEND 12:47:54 03:10:33 00:01:32 00:00:00

10 265 0.64 WEEKDAY 12:14:03 03:22:43 00:23:13 00:00:00
(8.6) (0.55 – 0.73) WEEKEND 12:13:18 03:27:07 00:19:33 00:00:00

11 84 0.77 WEEKDAY 12:13:58 03:44:50 00:01:10 00:00:00
(2.9) (0.61 – 0.88) WEEKEND 12:31:59 03:25:23 00:02:36 00:00:00

12 123 0.61 WEEKDAY 12:12:25 03:32:15 00:15:19 00:00:00
(5.2) (0.43 – 0.77) WEEKEND 11:54:13 03:44:32 00:20:06 00:01:08

13 232 0.48 WEEKDAY 11:52:53 03:48:07 00:18:17 00:00:41
(7.9) (0.40 – 0.57) WEEKEND 11:54:22 03:45:21 00:18:44 00:01:31

14 284 0.51 WEEKDAY 11:43:29 03:54:54 00:21:03 00:00:32
(9.2) (0.42 – 0.60) WEEKEND 12:02:56 03:41:41 00:15:22 00:00:00

15 210 0.37 WEEKDAY 11:29:11 03:53:29 00:31:48 00:05:31
(7.5) (0.28 – 0.47) WEEKEND 12:16:37 03:29:16 00:14:06 00:00:00

16 335 0.32 WEEKDAY 11:28:00 03:48:23 00:37:30 00:06:05
(13.2) (0.25 – 0.39) WEEKEND 11:29:36 03:56:03 00:30:40 00:03:39

17 85 0.34 WEEKDAY 10:07:07 04:20:28 00:59:13 00:33:11
(3.2) (0.22 – 0.48) WEEKEND 10:12:59 04:27:19 00:51:56 00:27:44

18 17 0.53 WEEKDAY 09:22:56 05:48:56 00:47:42 00:00:24
(0.6) (0.23 – 0.80) WEEKEND 09:34:45 05:40:02 00:45:11 00:00:00
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Figure 5.31: Pairwise comparisons of adiposity by latent class membership for the Bayesian mixture of
multivariate Gaussians model. Color filled cells denote Tukey adjusted p-values < 0.05 for each latent class
pairwise comparison of adiposity. Cluster labeling within each method is ordered by estimated weekday
sedentary behavior time budget proportion (sedentary component of estimated convex combination latent class
centroid). The estimated percentage of adiposity for each latent class is enclosed in parenthesis.
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Figure 5.32: Confidence interval plots of estimated adiposity proportion by latent class for the Bayesian
mixture of multivariate Gaussians model.

127



BTMPK

U
ns

up
er

vi
se

d

Clu 2, (1.00)

Clu 3, (0.78)

Clu 4, (0.70)

Clu 9, (0.65)

Clu 6, (0.59)

Clu 10, (0.55)

Clu 5, (0.54)

Clu 7, (0.46)

Clu 8, (0.38)

Clu 1, (0.00)

Clu 
2,

 (1
.0

0)
Clu 

3,
 (0

.7
8)

Clu 
4,

 (0
.7

0)
Clu 

9,
 (0

.6
5)

Clu 
6,

 (0
.5

9)
Clu 

10
, (

0.
55

)
Clu 

5,
 (0

.5
4)

Clu 
7,

 (0
.4

6)
Clu 

8,
 (0

.3
8)

Clu 
1,

 (0
.0

0)

MOTEF

Clu 1, (0.76)

Clu 2, (0.65)

Clu 3, (0.42)

Clu 
1,

 (0
.7

6)

Clu 
2,

 (0
.6

5)

Clu 
3,

 (0
.4

2)

BMPK

Clu 4, (0.90)

Clu 1, (0.89)

Clu 2, (0.85)

Clu 6, (0.79)

Clu 18, (0.75)

Clu 5, (0.74)

Clu 7, (0.68)

Clu 8, (0.68)

Clu 12, (0.66)

Clu 10, (0.62)

Clu 9, (0.56)

Clu 14, (0.52)

Clu 11, (0.51)

Clu 13, (0.47)

Clu 3, (0.46)

Clu 15, (0.36)

Clu 17, (0.34)

Clu 16, (0.32)

Clu 
4,

 (0
.9

0)

Clu 
1,

 (0
.8

9)

Clu 
2,

 (0
.8

5)

Clu 
6,

 (0
.7

9)

Clu 
18

, (
0.

75
)

Clu 
5,

 (0
.7

4)

Clu 
7,

 (0
.6

8)

Clu 
8,

 (0
.6

8)

Clu 
12

, (
0.

66
)

Clu 
10

, (
0.

62
)

Clu 
9,

 (0
.5

6)

Clu 
14

, (
0.

52
)

Clu 
11

, (
0.

51
)

Clu 
13

, (
0.

47
)

Clu 
3,

 (0
.4

6)

Clu 
15

, (
0.

36
)

Clu 
17

, (
0.

34
)

Clu 
16

, (
0.

32
)

A
di

po
si

ty
 S

up
er

vi
se

d

Clu 2, (0.93)

Clu 1, (0.77)

Clu 4, (0.69)

Clu 5, (0.59)

Clu 3, (0.54)

Clu 6, (0.47)

Clu 7, (0.38)

Clu 
2,

 (0
.9

3)
Clu 

1,
 (0

.7
7)

Clu 
4,

 (0
.6

9)
Clu 

5,
 (0

.5
9)

Clu 
3,

 (0
.5

4)
Clu 

6,
 (0

.4
7)

Clu 
7,

 (0
.3

8)

Clu 1, (0.83)

Clu 2, (0.69)

Clu 3, (0.36)

Clu 
1,

 (0
.8

3)

Clu 
2,

 (0
.6

9)

Clu 
3,

 (0
.3

6)

Clu 1, (0.99)

Clu 4, (0.91)

Clu 2, (0.84)

Clu 11, (0.77)

Clu 5, (0.74)

Clu 6, (0.70)

Clu 9, (0.65)

Clu 10, (0.64)

Clu 12, (0.61)

Clu 8, (0.56)

Clu 3, (0.54)

Clu 18, (0.53)

Clu 7, (0.52)

Clu 14, (0.51)

Clu 13, (0.48)

Clu 15, (0.37)

Clu 17, (0.34)

Clu 16, (0.32)

Clu 
1,

 (0
.9

9)

Clu 
4,

 (0
.9

1)

Clu 
2,

 (0
.8

4)

Clu 
11

, (
0.

77
)

Clu 
5,

 (0
.7

4)

Clu 
6,

 (0
.7

0)

Clu 
9,

 (0
.6

5)

Clu 
10

, (
0.

64
)

Clu 
12

, (
0.

61
)

Clu 
8,

 (0
.5

6)

Clu 
3,

 (0
.5

4)

Clu 
18

, (
0.

53
)

Clu 
7,

 (0
.5

2)

Clu 
14

, (
0.

51
)

Clu 
13

, (
0.

48
)

Clu 
15

, (
0.

37
)

Clu 
17

, (
0.

34
)

Clu 
16

, (
0.

32
)

Figure 5.33: Panel displaying pairwise comparisons of adiposity by latent class membership and method implemented. Color filled cells denote Tukey adjusted
p-values < 0.05 for each latent class pairwise comparison of adiposity. Cluster labeling within each method is ordered by estimated weekday sedentary behavior
time budget proportion (sedentary component of estimated convex combination latent class centroid). The estimated percentage of adiposity for each latent class is
enclosed in parenthesis.

128



BTMPK

A
di

po
si

ty
 %

●

●

●

●

●

● ●

●

●

●0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Clu 
2,

 (1
)

Clu 
3,

 (3
08

)
Clu 

4,
 (9

77
)

Clu 
9,

 (1
30

)
Clu 

6,
 (1

41
)

Clu 
10

, (
83

)
Clu 

5,
 (4

7)
Clu 

7,
 (6

16
)

Clu 
8,

 (6
50

)
Clu 

1,
 (1

)

MOTEF

A
di

po
si

ty
 %

●

●

●

0.
4

0.
5

0.
6

0.
7

0.
8

Clu 
1,

 (3
18

)

Clu 
2,

 (1
48

6)

Clu 
3,

 (1
15

0)

BMPK

A
di

po
si

ty
 %

●
●

●

●

●
●

● ●
●

●

●

● ●

● ●

●
●

●

0.
2

0.
4

0.
6

0.
8

1.
0

Clu 
4,

 (4
4)

Clu 
1,

 (1
3)

Clu 
2,

 (9
6)

Clu 
6,

 (7
9)

Clu 
18

, (
17

)

Clu 
5,

 (2
28

)

Clu 
7,

 (4
27

)

Clu 
8,

 (2
50

)

Clu 
12

, (
26

2)

Clu 
10

, (
12

1)

Clu 
9,

 (7
9)

Clu 
14

, (
28

4)

Clu 
11

, (
17

4)

Clu 
13

, (
24

7)

Clu 
3,

 (2
2)

Clu 
15

, (
20

7)

Clu 
17

, (
88

)

Clu 
16

, (
31

6)

BTMPK Supervised

A
di

po
si

ty
 %

●

●

●

●

●

●

●

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Clu 
2,

 (4
0)

Clu 
1,

 (3
09

)
Clu 

4,
 (1

07
3)

Clu 
5,

 (1
35

)
Clu 

3,
 (4

7)
Clu 

6,
 (6

98
)

Clu 
7,

 (6
49

)

MOTEF Supervised

A
di

po
si

ty
 %

●

●

●

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Clu 
1,

 (3
19

)

Clu 
2,

 (1
50

5)

Clu 
3,

 (1
12

7)

BMPK Supervised

A
di

po
si

ty
 %

●

●

●

●
●

●

● ●

●

●
● ● ● ●

●

●

●
●

0.
2

0.
4

0.
6

0.
8

1.
0

Clu 
1,

 (1
9)

Clu 
4,

 (4
7)

Clu 
2,

 (8
7)

Clu 
11

, (
84

)

Clu 
5,

 (2
25

)

Clu 
6,

 (4
17

)

Clu 
9,

 (2
56

)

Clu 
10

, (
26

5)

Clu 
12

, (
12

3)

Clu 
8,

 (6
7)

Clu 
3,

 (1
8)

Clu 
18

, (
17

)

Clu 
7,

 (1
80

)

Clu 
14

, (
28

4)

Clu 
13

, (
23

2)

Clu 
15

, (
21

0)

Clu 
17

, (
85

)

Clu 
16

, (
33

5)

Figure 5.34: Confidence interval plots of estimated adiposity proportion by latent class and method.
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