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ABSTRACT

Chao Huang: Advanced Statistical Learning Methods for
Hetergeneous Medical Imaging Data
(Under the direction of Hongtu Zhu)

Most neuro-related diseases and disabling diseases display significant heterogeneity at

the imaging and clinical scales. Characterizing such heterogeneity could transform our

understanding of the etiology of these conditions and inspire new approaches to urgently

needed preventions, diagnoses, and treatments. However, existing statistical methods face

major challenges in delineating such heterogeneity at subject, group and study levels. In

order to address these challenges, this work proposes several statistical learning methods for

heterogeneous imaging data with different structures.

First, we propose a dynamic spatial random effects model for longitudinal imaging dataset,

which aims at characterizing both the imaging intensity progression and the temporal-spatial

heterogeneity of diseased regions across subjects and time. The key components of proposed

model include a spatial random effects model and a dynamic conditional random field model.

The proposed model can effectively detect the dynamic diseased regions in each patient and

present a dynamic statistical disease mapping within each subpopulation of interest.

Second, to address the group level heterogeneity in non-Euclidean data, we develop a

penalized model-based clustering framework to cluster high dimensional manifold data in

symmetric spaces. Specifically, a mixture of geodesic factor analyzers is proposed with mixing

proportions determined through a logistic model and Riemannian normal distribution in

each component for data in symmetric spaces. Penalized likelihood approaches are used to

realize variable selection procedures. We apply the proposed model to the ADNI hippocampal

surface data, which shows excellent clustering performance and remarkably reveal meaningful
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clusters in the mixed population with controls and subjects with AD.

Finally, to consider the potential heterogeneity caused by unobserved environmental,

demographic and technical factors, we treat the imaging data as functional responses, and set

up a surrogate variable analysis framework in functional linear models. A functional latent

factor regression model is proposed. The confounding factors and the bias of local linear

estimators caused by the confounding factors can be estimated and removed using singular

value decomposition on residuals. We further develop a test for linear hypotheses of primary

coefficient functions. Both simulation studies and ADNI hippocampal surface data analysis

are conducted to show the performance of proposed method.
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CHAPTER 1: INTRODUCTION

Most neuro-related diseases (e.g., Alzheimer’s disease) and disabling diseases (e.g., os-

teoarthritis) display significant heterogeneity at the imaging and clinical scales. Characterizing

such heterogeneity could transform our understanding of the etiology of these conditions and

inspire new approaches to urgently needed preventions, diagnoses, and treatments. However,

existing statistical methods face major challenges in delineating such heterogeneity at subject,

group and study levels. In order to address these challenges, this work proposes several

statistical learning methods for heterogeneous imaging data with different structures (e.g.,

longitudinal, non-Euclidean, or functional data).

First, we propose a dynamic spatial random effects model for longitudinal imaging dataset,

which aims at characterizing both the imaging intensity progression and the temporal-spatial

heterogeneity of diseased regions across subjects and time. The key components of proposed

model include a spatial random effects model and a dynamic conditional random field model.

To estimate the unknown parameters in proposed model, we employ a pseudo-likelihood

function and optimize it by using an expectation-maximization algorithm. To estimated the

dynamic diseased regions for each patient, the Maximum A Posteriori on Markov Random

Field (MRF-MAP) method is adopted. The proposed model can effectively detect the

dynamic diseased regions in each patient and present a dynamic statistical disease mapping

within each subpopulation of interest.

Second, to address the group level heterogeneity in non-Euclidean data, we develop a

penalized model-based clustering framework to cluster high dimensional manifold data in

symmetric spaces. Specifically, a mixture of geodesic factor analyzers is proposed with mixing

proportions determined through a logistic model and Riemannian normal distribution in

each component for data in symmetric spaces. A geodesic factor analyzer is established to

1



explicitly model the high dimensional features. Penalized likelihood approaches are used to

realize variable selection procedures. Simulation studies are performed on data generated from

Euclidean space, sphere, and shape space. We also apply the proposed model to the ADNI

hippocampal surface data, which shows excellent clustering performance and remarkably

reveal meaningful clusters in the mixed population with controls and subjects with AD.

Finally, to consider the potential heterogeneity caused by unobserved environmental,

demographic and technical factors, we treat the imaging data as functional responses, and

set up a surrogate variable analysis framework in functional linear models. In particular,

a functional latent factor regression model is proposed. An estimation procedure for the

proposed model is derived by using local linear regression techniques. The confounding factors

and the bias of local linear estimators caused by the confounding factors can be estimated and

removed using singular value decomposition on residuals. We further develop a test for linear

hypotheses of primary coefficient functions. Both simulation studies and ADNI hippocampal

surface data analysis are conducted to show the performance of proposed method.

2



CHAPTER 2: LITERATURE REVIEW

With the rapid growth of modern technology, many large-scale biomedical studies, e.g.,

Alzheimer’s disease neuroimaging initiative (ADNI) study (Mueller et al., 2005), Osteoarthritis

Initiative (OAI) study (Peterfy et al., 2008), and UK Biobank study (Sudlow et al., 2015),

have been conducted to collect massive datasets with large volumes of complex information

from increasingly large cohorts. Despite the numerous successes of biomedical studies, it has

been difficult to unravel the disease etiology largely due to its heterogeneity at the genomic,

imaging, and clinical scales. Specifically, imaging heterogeneity often represents at three

different levels: subject level, group level, and study level. At the subject level, diseased

regions can significantly vary across subjects and/or time in terms of their number, size,

shape, and location. At the group level, due to the complexity of disease progression, distinct

pathological subtypes are more likely to be found within the same patient group. At the

study level, since the dataset is usually collected from multiple centers or different studies,

the potential heterogeneity can result from the differences in study environment, population

(e.g., race), design and protocols (e.g., imaging acquisition protocol and/or preprocessing

pipeline), which are mostly unobserved (Leek and Storey, 2007). Therefore, understanding

such imaging heterogeneity may be critical for the development of urgently needed approaches

to the prevention, diagnosis, and treatment of these diseases, and precision medicine broadly.

Many studies have been conducting/conducted on various types of imaging data in

order to investigate the underlying heterogeneity at different levels. First, the subject-level

heterogeneity has been investigated through the individual disease pattern detection at

different scales (e.g., diseased region or tumor cell) based on different imaging modalities,

including magnetic resonance imaging (MRI), positron emission tomography (PET), computed

tomography (CT), and hematoxylin and eosin (H&E) stain (Yuan et al., 2012; Huang et al.,
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2015; Soufi et al., 2017; Liu et al., 2018). Among the studies, the developed methods can

be divided into two groups: supervised learning and unsupervised learning. For supervised

learning methods, due to the rapid development of artificial intelligence in precision medicine

field, deep learning algorithms, in particular convolutional networks, have already become

a popular methodology of choice for pattern detection and segmentation (see Litjens et al.

(2017) and references therein). However, in many practical problems, the ground truth of

disease pattern is not visible in neither training nor testing dataset due to some technical

difficulties. For example, in knee MRI data, due to the small volume of cartilage in relation

to the rest of knee, the exact locations of lesions are unknown or difficult to delineate even

by experts (Huang et al., 2015). In this case, some unsupervised learning methods, including

clustering analysis and hidden Markov model (HMM) based methods, have been developed

and applied in recovering the underlying pattern of interest (Geman and Geman, 1984; Li

and Singh, 2009; Inano et al., 2014). In particular, besides the cross sectional imaging data

analysis, Huang et al. (2015) proposed a semisupervised learning method via a HMM based

regression model, i.e., spatial random effects model (SREM), to detect the diseased regions

for each subject in longitudinal imaging dataset. However, for longitudinal imaging data, only

spatial correlation was set up via Potts model in their proposed model, where the temporal

correlation in the underlying disease pattern has not been considered yet.

Second, two main classes of approaches have been applied to assess the group-level

heterogeneity. The first class consists of identifying different pathological subtypes using a

supervised approach based on prior clinical, pathological, or neuroimaging criteria (Zhang

et al., 2014; Byun et al., 2015; Ferreira et al., 2017). The key issue for methods within

this class is that all these methods depend on an a priori disease subtype definition, which

may be either difficult to obtain (e.g., from autopsy near the date of imaging), or noisy and

non-specific (e.g., cognitive or clinical evaluations) (see Varol et al. (2017) and references

therein). The second class includes unsupervised learning methods such as clustering (Hwang

et al., 2016; Zhang et al., 2016) and semisupervised multivariate methods (Varol et al.,

4



2017) using voxel-based or surface-based morphometry measures. Although these studies

found diverse clusters of atrophy that were partially similar to the ones previously reported

in Whitwell et al. (2012), several challenges are faced for the second class of approaches.

First, the imaging measurements may lie in some non-Euclidean space, e.g., directional

data (Banerjee et al., 2005), shape data (Srivastava et al., 2005), and diffusion tensor data

(Rohlfing et al., 2007). Thus, most clustering methods (e.g., K-means, or mean shift) in

Euclidean space cannot be used anymore. Second, clustering manifold-value data are often

a high-dimensional-low-sample-size problem (Dryden et al., 2005; Banerjee et al., 2005).

For example, the dimension of whole brain cortical thickness data can be much larger than

the sample size in most imaging studies. Third, manifold data variation is associated with

some explanatory covariates (e.g., age, gender, and clinical biomarkers). Applying clustering

analysis without considering these covariates will lead to potential risk of estimating clusters

that reflect normal inter-individual variability from certain confounds instead of highlighting

group-level heterogeneity (Varol et al., 2017). For most existing manifold clustering methods,

e.g., K-subspaces (Wang et al., 2009) and nonlinear mean shift (Subbarao and Meer, 2009),

they only extend standard clustering algorithms by replacing the Euclidean metric with

the geodesic distance in symmetric spaces. Therefore, they are not able to address all the

challenges above. To explicitly address all these challenges, Huang et al. (2015) developed a

penalized model-based clustering framework to cluster landmark-based planar shape data,

which may be generalized for applications on other imaging data with complex structures.

Third, in multiple imaging studies integration, there is a greater need in handling the

unknown variance introduced by the study-level heterogeneity, which can hinder the detection

of imaging features associated with clinical covariates of interest and cause spurious findings.

However, the specific studies have only recently begun to grow substantially in the neuroimag-

ing field (see Guillaume et al. (2018) and references therein). For example, several statistical

harmonization techniques have been proposed in the context of different imaging modalities.

For conventional MRI studies, intensity normalization techniques have been developed to make
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the image intensities comparable across studies, including histogram matching (Nyúl et al.,

2000), WhiteStripe (Shinohara et al., 2014) and Removal of Artificial Voxel Effect by Linear

regression (RAVEL) (Fortin et al., 2016). Another method, called source-based morphometry,

adopted independent component analysis (ICA) to remove variability associated with certain

scanner parameters in structural MRI (Chen et al., 2014). For diffusion tensor imaging

(DTI) data, it has been proposed to use functional normalization, originally developed in

Fortin et al. (2014), for harmonizing DTI scalar maps. Another DTI harmonization technique

was proposed in Mirzaalian et al. (2016), which was based on rotation invariant spherical

harmonics (RISH) and combined the unprocessed DTI images across scanners. However,

a major drawback of this method is that it requires DTI data to have similar acquisition

parameters across sites, which is often infeasible in multi-site observational analyses. The

statistical harmonization was also studied on the cortical thickness measurements (Fortin

et al., 2018). In these studies, several statistical approaches that were previously developed for

genomics data were adopted for imaging data harmonization, including Functional normaliza-

tion, Surrogate variable analysis (SVA) (Leek and Storey, 2007) and ComBat (Johnson et al.,

2007). Recently, the study-level heterogeneity was considered for the mass-univariate analysis

of neuroimaging data (Guillaume et al., 2018), where the unknown covariates were modeled

via adopting and modifying the existing Confounder Adjusted Testing and Estimation (CATE)

approach (Wang et al., 2017). However, instead of the mass-univariate analysis, the image

measures across different voxels are more likely to be treated as a single functional response

because the functional data analysis (FDA) is a powerful tool, which can explicitly account

for the three key features of the functional data: spatial smoothness, spatial correlation, and

the low-dimensional representation. Therefore, it is of great importance to investigate the

study-level heterogeneity in some functional regression models, e.g., multivariate varying

coefficient model (MVCM, Zhu et al. (2012)).

Next, we will review several different statistical models used to delineate the underlying

heterogeneity at different levels.

6



2.1 Dynamic Diseased Region Detection

The Markov random field (MRF) models have been used for detecting the imaging

heterogeneity at subject level. To describe the model, the following notation are introduced

first. Let S represent the pixel (or voxel, in 3D problems) lattice, where one single image

y is observed. The model assumes that there are K regions, {R1, . . . ,RK}, such that

S =
⋃K
j=1Rj and Rj ∩Rk = ∅, i 6= k, so that the observation at pixel s ∈ S is given by

y(s) =
K∑
j=1

ξj(s)1{b(s) = j}+ ε(s), (2.1)

where ε(s) is a white noise field with known distribution (e.g., {ε(s), s ∈ S} are zero-mean,

independent, identically distributed Gaussian random variables with standard deviation

σ). ξj(s) is a parametric model that corresponds to region Rj, and b(s) indicates the

corresponding label information: b(s) = j ⇐⇒ s ∈ Rj. In this model, the label field

b = {b(s), s ∈ S} is assumed to be a sample from a MRF obtained with a Gibbs model:

f(b) =
1

Zb
exp{−

∑
(j,k)∈C

V (b(sj), b(sk))}, (2.2)

where Zb is a normalizing constant and the sum in the exponent ranges over all pixels and the

cliques of a given neighborhood system on S, and {V (b(sj), b(sk)), (j, k) ∈ C} are "potential

functions", each one of which depends only on the value of b at the sites that belong to the

clique C. These potential functions, together with the neighborhood system selected, control

the appearance of the sample field b. A potential that is often used is the generalized Ising

model, which considers cliques of size 2 (e.g., pairs of sites that are one unit apart), and

potentials of the form:

V (b(sj), b(sk)) =

 −η, if b(sj) = b(sk),

η, otherwise,
(2.3)
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where η is a parameter that controls the granularity of the field. Since the label field b is not

directly observable, it is often called a class MRF model. The class MRF model has been

explored widely in the literature. See, for example, Geman and Geman (1984), Marroquin

et al. (2003) and Li and Singh (2009).

For longitudinal imaging studies, an extension of (2.1) is Gaussian hidden Markov model

(GHMM, Huang et al. (2015)) which includes a spatial random effects (SRE) model and a

Potts model (Besag, 1986; Qian and Titterington, 1991; Zhang et al., 2001). Assume that

a longitudinal dataset is observed with imaging intensity {yij(sk) : k = 1, . . . ,m} measured

at time tj for j = 1, . . . , Ti and i = 1, . . . , n, where n is the total number of subjects,

and Ti is the total number of time points for the i-th subject. Let xi represent disease

status for each subject such that xi = 0 and 1, respectively, represent normal control and

diseased patient. For each subject, we assume that S can be decomposed into the union of

normal region Ri0, moderately diseased region Ri1, and severely diseased region Ri2, that is

S = Ri0 ∪Ri1 ∪Ri2 and Rik ∩Rik′ = ∅ for k 6= k′. It’s also assumed that normal controls

are expected to be perfectly healthy, i.e. to not have any diseased regions. For diseased

patients, the size and location of Ri1 and Ri2 may vary across subjects.

In GHMM, an unobserved random effect bi(sk) ∈ L = {0, 1, 2} is introduced to label

Ri0, Ri1, and Ri2 at each pixel sk of S for the i−th subject. Moreover, another unobserved

random effect vi(sk) is introduced to characterize temporal correlations among repeated

measures for each subject. Given bi and vi, a general spatial random effect model given by

yij(sk) = wT
j β(sk) +wT

j vi(sk) + εij(sk) + c(xi,wj, bi(sk), β̄), (2.4)

where wj is a qw × 1 vector of covariates (e.g., time, gender, or genetic marker) and β(sk)

is a qw × 1 vector of regression coefficients representing the dynamic intensity changes at

pixel sk in normal controls. Moreover, β̄ = (β̄(1), β̄(2))T is a 2qw × 1 vector of coefficients to

characterize the dynamic intensity changes in the diseased regions Ri1 ∪Ri2. The function
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c(xi,wj, bi(sk), β̄) is defined as

c(xi,wj, bi(sk), β̄) =


0, xi = 0,

2∑
l=1

wT
j β̄(l)δ(bi(sk), l) , xi 6= 0,

where δ(·, ·) is the Kronecker function. Thus, c(xi,wj, bi(sk), β̄) equals zero for all pixels for

normal controls and the pixels with bi(sk) = 0 for diseased patients. For diseased patients,

pixels in different diseased regions may have different dynamic intensity changes. Moreover,

εij(sk)s are independent measurement errors across subjects, time, and pixels, following

N(0, σ2
sk

). For the random effects bi and vi, it is assumed that bi = (bi(s1), . . . , bi(sm))T

and vi = {vi(sk) : k = 1, . . . ,m} are mutually independent. Moreover, vi(sk) are mutually

independent across pixels and vi(sk) follows N(0,Σvsk
) at pixel sk. It is assumed that bis

are independent across subjects and each bi follows a Potts model (Besag, 1986; Qian and

Titterington, 1991; Zhang et al., 2001), whose Gibbs form is given by

p(bi|τ) = exp{−U(bi)τ − logC(τ)}, (2.5)

where U(bi) = −
∑

sk∼sl δ(bi(sk), bi(sl)) and τ is introduced to encourage spatial smoothness

in homogeneous regions. Moreover, C(τ) is the partition function such that p(bi|τ) is a

probability function. The notation "
∑

si∼sj" means that si is a neighbor of sj and each

neighboring pair enters the summation only once.

However, for longitudinal imaging data, the Potts model (2.5) in GHMM only considered

the spatial correlation and the individual diseased regions are assumed to be unchanged across

time, which is not reasonable in practice. Thus, establishing both the temporal and spatial

correlations in the disease pattern is of great importance for disease early detection and

precision medicine. Some dynamic models have been proposed to set up the temporal-spatial

correlations, such as dynamic conditional random field models (Wang and Ji, 2005; Wang

et al., 2006; Sutton et al., 2007; Yin et al., 2009).
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2.2 Clustering High-Dimensional Manifold Valued Data

Model-based clustering is a popular approach for investigating the group-level heterogeneity

and recovering the pathological subtypes. In general, let X be an N × J data matrix, where

each row xi = (xi1, . . . , xip) is the realization of a p-dimensional vector of random variables.

Model-based clustering assumes that each observation arises from a finite mixture of K

probability distributions, each representing a different cluster or group (Fraley and Raftery,

2002; Bouveyron and Brunet-Saumard, 2014; McNicholas, 2016; Fop et al., 2018). The general

form of a finite mixture distribution is specified as follows:

f(xi; Θ) =
K∑
k=1

πkf(xi; Θk), (2.6)

where the πk are the mixing probabilities and Θk is the parameter set corresponding to

component k; Θ denotes the set of all parameters of the mixture. The component densities fully

characterize the group structure of the data and each observation belongs to the corresponding

cluster according to a latent cluster membership indicator variable zi = (zi1, . . . , ziK), such

that zik = 1 if xi arises from the k-th subpopulation (McLachlan and Peel, 2000).

For a fixed number of components, parameters are usually estimated using the EM

algorithm (Dempster et al., 1977a). After parameters have been estimated, each observation is

assigned to the corresponding cluster using the maximum a posteriori (MAP) rule (McLachlan

and Peel, 2000; McNicholas, 2016). The posterior probabilities P (zik = 1|xi) of observing

cluster k given the data point xi are estimated as follows:

P̂ (zik = 1|xi) =
π̂kf(xi; Θ̂k)∑K
k=1 π̂kf(xi; Θ̂k)

.

Then observation xi is assigned to cluster k if

k = argmax{P̂ (zi1 = 1|xi), . . . , P̂ (ziK = 1|xi)}.
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Nowadays, high-dimensional data are more and more common and the model based

clustering approach has adapted to deal with the increasing dimensionality. In particular, a

penalization term is introduced on the model parameters and variable selection is performed

by inducing sparsity in the estimates. The aim is to maximize a penalized version of the

log-likelihood under a mixture model and discard those variables whose parameter estimates

are shrunken to zero or to a common value across the mixture components. In its general

form, this penalized log-likelihood is as follows:

lQ =
N∑
i=1

log

{
K∑
k=1

πkf(xi; Θk)

}
−Qλ(Θ), (2.7)

where the penalization term Qλ(Θ) is a function of the Θ and λ. Generally, various methods

are differentiated by the form of the function Qλ(·), e.g., L1 penalty function (Pan and Shen,

2007), L2 penalty function (Xie et al., 2008), L∞ penalty function (Wang and Zhu, 2008),

and pairwise fusion penalty function (Guo et al., 2010).

Up to date, most penalized model-based clustering frameworks are based on the Gaussian

mixture model and developed for investigating the group-level heterogeneity in genomics data

(e.g., microarray data in Wang and Zhu (2008) and gene expression data in Guo et al. (2010)).

However, compared to genomics data, the imaging data usually presents in more complex

structures. For example, the contour data of some brain regions of interest after certain

transformations can be treated as samples from the shape space (Srivastava et al., 2005).

Another potential issue is the modeling of spatial correlation structure. For example, to reduce

the dimension of parameter space, the covariance matrix in each component distribution

is assumed to be common diagonal matrix (Pan and Shen, 2007). However, the spatial

correlation is ignored under this assumption. To address these challenges, Huang et al. (2015)

developed a penalized model-based clustering framework to cluster landmark-based planar

shape data. Specifically, a mixture of offset-normal shape factor analyzers (MOSFA) is

proposed with mixing proportions defined through a regression model (e.g., logistic) and an
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offset-normal shape distribution in each component for data in the curved shape space. A

latent factor analysis model is introduced to explicitly model the complex spatial correlation.

A penalized likelihood approach with both adaptive pairwise fusion Lasso penalty function

and L2 penalty function is used to automatically realize variable selection via thresholding

and deliver a sparse solution.

2.3 Surrogate Variable Analysis for Multivariate Functional Responses

Surrogate variable analysis (or latent effect adjustment, confounder adjustment), proposed

to tackle this study level heterogeneity, has been widely used in genomic studies. (Leek

and Storey, 2007; Wang et al., 2017; Lee et al., 2017). Several existing methods, including

EIGENSTRAT (Price et al., 2006), Surrogate Variable Analysis (SVA, Leek and Storey (2007,

2008); Lee et al. (2017)), Latent Effect Adjustment after Primary Projection (Sun et al.,

2012), Remove Unwanted Variation (RUV, Gagnon-Bartsch et al. (2013)), and Confounder

Adjusted Testing and Estimation (CATE, Wang et al. (2017)) were previously proposed to

estimate unknown covariates based on the assumption that massive univariate regression

models share a common set of unknown covariates.

Suppose that Y is an n × m matrix of measured features, where m is the number of

features and n is the number of samples. For neuroimaging data, Y represents imaging

measurements on m voxels. Further, suppose thatX is an n×p matrix of observed covariates,

including an intercept, and Z is an n× q matrix of unobserved hidden factors. The following

model represents the true relationship between Y and (X,Z):

yj = Xβj +Zδj + εj, (2.8)

where yj demotes the j-th column of Y , βj is a p×1 vector of regression coefficients associated

with X, δj is a q × 1 vector of regression coefficients associated with Z, and εj is an n× 1

random vector which follows N(0, σ2
jI). In this model, βj and δj are assumed to be fixed

and unknown.
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To identify hidden factors Z, principal component analysis (PCA) on the original or

residualized features after removing the effects of observed dependent variables has often

been used (Price et al., 2006). However, PCA based approaches are less effective for gene

expression studies, where the hidden factors can affect a subset of features with relatively

large effects (Leek and Storey, 2007). To overcome this limitation, surrogate variable analysis

has been proposed. In particular, Leek and Storey (2007) initially developed a two-step

approach which involves first identifying a subset of features that may be affected by hidden

factors but not by primary variables, and then performing principal component analysis

on the selected features. Later, they modified the approach to a weighted PCA, where

each feature is weighted according to its probability of being affected by the hidden factors

only (Leek and Storey, 2008). Surrogate variable analysis has also been extended to factor

analysis (Friguet et al., 2009) and mixed-effect models (Listgarten et al., 2010). However,

strong correlation between hidden factors and primary variables can prevent the two-step and

weighted principal component based surrogate variable methods from identifying features

that are affected by hidden factors only. To address this issue, recently a direct surrogate

variable analysis (dSVA) was proposed in Lee et al. (2017). dSVA is based on the observation

that naive estimators of the effects of the primary variables are biased when the effects of

hidden factors are ignored in the analysis, but the bias can be estimated and removed using

singular value decomposition (SVD) on residuals.

However, instead of this mass-univariate analysis, the image measures across different

voxels are more likely to be treated as a single functional response, where the three key

features of the functional data can be explicitly accounted for : spatial smoothness, spatial

correlation, and the low-dimensional representation. Therefore, it is of great importance to

investigate the study-level heterogeneity in some functional regression models.
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CHAPTER 3: DYNAMIC DISEASED REGION DETECTION FOR

LONGITUDINAL MEDICAL IMAGING DATA

3.1 Method

Suppose that we observe a longitudinal imaging dataset for n unrelated subjects. Let

S0 ⊂ Rd, d = 2, 3, be a common template from the dataset, and s1, . . . , snv be the set of nv

voxels in S. The longitudinal imaging measurements for the i-th subject at the voxel s are

denoted as yi(s) = (yi,1(s), . . . , yi,mi(s))T , i = 1, . . . , n. Furthermore, let xi = (xi,1, . . . ,xi,mi)

and xi,j = (wT
i,j, z

T
i,j)

T , where wi,j is a (p−1)×1 vector including the intercept, demographic

and clinical covariates (e.g., gender, age, or treatment), and zi,j includes dummy variables

indicating the diagnostic status at the j-th time point. In particular, we assume that there are

3 diagnostic results, i.e., normal stage (zi,j = (0, 0)T ), early stage of disease (zi,j = (1, 0)T ),

and late stage of disease (zi,j = (0, 1)T ). In addition, for the i-th subject at the j-th time

point, we assume that S0 can be decomposed into the union of normal region R0
i,j and

diseased region R1
i,j, that is

S0 = R0
i,j ∪R1

i,j and R0
i,j ∩R1

i,j = ∅.

Here we also assume that: (i) subjects at the normal stage are expected to be perfectly

healthy, i.e. do not have any diseased regions; (ii) for subjects with certain stage of disease,

number, shape, size, and location of diseased regions R1
i,j may vary across subjects and

time points. To further illustrate the assumptions, an example including latent diseased

regions for 3 subjects is presented in Figure 3.1. Subject P1 (top) is at the normal stage for

the first two time points while at the early stage of disease for the follow-up two time points.
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One diseased region (red) occurs at the third time point and becomes larger at the forth

time point. Subject P2 (middle) is at the early stage of disease at baseline with one diseased

region detected. After that, the diseased regions grow in size and number, and the diagnostic

status changes to the late stage. For subject P3 (bottom), the diagnostic status is the early

stage of disease at the first three time points while changes to the late stage at the forth

time point. In this example, following the assumptions, subjects at the normal stage don’t

have any diseased regions, while the number, shape, size, and location of diseased regions are

different across subjects and time points.

P1

P2

P3

Time point 1 Time point 2 Time point 3 Time point 4

normal normal early stage early stage

early stage late stage

early stage early stage early stage

late stage late stage

late stage

Figure 3.1: An example showing assumptions of diseased regions for 3 subjects.

3.1.1 Dynamic Spatial Random Effects Model

Our dynamic spatial random effects (DSRE) model consists of a spatial random effects

(SRE) model (Besag, 1974; Geman and Geman, 1984; Diggle and Ribeiro, 2007; Li and Singh,

2009; Huang et al., 2015) and a dynamic conditional random field (DCRF) model (Wang and

Ji, 2005; Wang et al., 2006; Sutton et al., 2007; Yin et al., 2009).

First, SRE model is considered to characterize the conditional distribution of the observed

imaging measurements given two sets of random effects, i.e., {bi(s)}ni=1 and {γi(s)}ni=1. In

particular, bi(s) = (bi,1(s), . . . , bi,mi(s))T , where bi,j(s) = 0 if s ∈ R0
i,j, otherwise bi,j(s) = 1.

The other random effect γi(s) is a p× 1 vector indicating the subject-specific random effect.
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Given bi,j(s) and γi(s), the SRE model is given as

yi,j(s) = xTi,jβ(s) + xTi,jγi(s) + bi,j(s)xTi,jα(s) + εi,j(s), (3.1)

where β(s) is a p × 1 vector representing the fixed effect at voxel s, while α(s) is a

p× 1 vector representing the additional effect caused by the diseased regions. Denote that

εi(s) = (εi,1(s), . . . , εi,mi(s))
T , i = 1, . . . , n, and {εi(s)}ni=1 are independent measurement

errors across subjects and voxels, following the Gaussian distribution N(0, σ2(s)Imi). Based

on the proposed model, the potential heterogeneity (among different voxels, subjects, and

time points) are mainly captured by the term “bi,j(s)xTi,jα(s)". Additionally, for voxels in

normal regions, SRE model (3.1) can be simplified into a voxel-wised linear mixed model:

yi,j(s) = xTi,jβ(s) + xTi,jγi(s) + εi,j(s). (3.2)

Then, we model the random effects γi(s) and bi(s) as follows. First, it is assumed that

γi(s), bi(s) and εi(s) are mutually independent. Second, {γi(s), s ∈ S0}ni=1 are assumed

to be mutually independent across subjects and voxels, following N(0,Σ(s)). Moreover, to

formulate both spatial and temporal dependencies of consecutive riseased regions, {bi}ni=1 are

assumed independent across subjects and each bi = {bi(s), s ∈ S0} follows a DCRF model:

p(bi|τ, η) ∝ p(bi,ji0|τ)

mi∏
j=ji0+1

p(bi,j|bi,j−1, τ, η), (3.3)

where ji0 is the disease baseline for the i-th patient. For diseased regions at disease baseline,

p(bi,ji0|τ) = exp
{
− τ

∑
s∈S0

∑
s′∈Ns

U(bi,ji0(s), bi,ji0(s
′))
}
, (3.4)
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while for diseased regions at follow-up visits,

p(bi,j|bi,j−1, τ, η) = exp
{
−
∑
s∈S0

[
τ
∑
s′∈Ns

U(bi,j(s), bi,j(s
′))

+η
∑
s′∈Ms

U(bi,j(s), bi,j−1(s′))
]}
, (3.5)

U(bi,j(s), bi,j′(s
′)) =

1− δ(bi,j(s), bi,j′(s
′))

||s− s′||2 + 1
.

Here || · || denotes the Euclidean distance and δ(·) is the Kronecker delta function. Thus,

two neighboring voxels are more likely to belong to the same region than to different ones.

Both the spatial and temporal constraints become strong with decreasing distance between

the neighboring voxels. τ is introduced to encourage spatial smoothness in homogeneous

regions while η influences the strength of temporal dependencies. Moreover, both Ns and

Ms denote the neighboring voxels of s. It should be noted that Ms is not equivalent to the

neighborhood Ns: (i) Ms and Ns may have different sizes, and (ii) s /∈ Ns while s ∈Ms. To

distinguish them, Ns is called the spatial neighborhood and Ms the temporal neighborhood.

Throughout the paper, we consider Ns is the set of the closest 3d − 1 neighbors of pixel s,

while Ms = Ns

⋃
{s}. Further illustrations of DSRE model and DCRF model are presented

in Figure 3.2.

3.1.2 Estimation Procedure

Our next task is to estimate the random effects {bi}ni=1 and all unknown parameters

consisting of τ, η,β(s),α(s), σ2(s), and Σ(s) for s ∈ S0. We decompose these parameters

into three parts: (i) β(s), σ2(s),Σ(s), (ii) α(s), and (iii) τ, η. For parts (i) and (ii), the

maximum likelihood estimate (MLE) can be calculated by using the expectation-maximization

(EM) algorithm (Huang et al., 2015). In particular, the MLEs of β(s), σ2(s),Σ(s) can be

derived based on only the normal controls for computational efficiency, while the MLE of

α(s) can be derived based on a subpopulation, only including the patients. For part (iii), τ

and η can be predefined or dertermined by some data-driven method. In this paper, they are
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Figure 3.2: Illustrations of DSRE model and DCRF model. (left) Path diagram of DSRE
model for four different subjects (one normal control and three subjects); (right) Mechanism
of DCRF model.

estimated by using a pseudo-likelihood method (Geman and Graffigne, 1986) since the MLEs

of τ and η are generally difficult to compute due to the normalizing part of the probability

function in (3.3). In addition, the random effects {bi}ni=1 can be estimated via the MRF-MAP

method.

EM algorithm for parameters in parts (i) and (ii) To derive the EM algorithm for

parameters in part (i), we need to derive the complete-data log-likelihood function on the

normal controls as follows. Recall that the distribution of yi(s) conditional on γi(s) is

given by N(xTi (β(s) + γi(s)), σ
2(s)Imi). Let µi(s) = yi(s) − xTi (β(s) + γi(s)), and the

complete-data log-likelihood function is given by

logL0 ∝ −
∑n0

i=1 mi

2

nv∑
l=1

log(σ2(sl))−
n0

2

nv∑
l=1

log |Σ(sl)|

−
nv∑
l=1

1

2σ2(sl)

n0∑
i=1

µTi (sl)µi(sl)−
1

2

nv∑
l=1

n0∑
i=1

γTi (sl)Σ
−1(sl)γi(sl). (3.6)

Given the current estimate of θ0 = {β(s), σ2(s),Σ(s)} at iteration r, denoted as θ̂
(r)

0 , their

updates are obtained via maximizing the following Q-function Qθ̂(r)(θ0)
.
= E

θ̂
(r)
0

(logL0|y,x)
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with respect to θ0:

Q
θ̂
(r)
0

(θ0) ∝ −
∑n0

i=1 mi

2

nv∑
l=1

log(σ2(sl))−
n0

2

nv∑
l=1

log |Σ(sl)|

−
nv∑
l=1

1

2σ2(sl)

n0∑
i=1

E
[
µTi (sl)µi(sl)

∣∣∣yi(sl),xi, θ̂(r)

0

]
−1

2

nv∑
l=1

n0∑
i=1

E
[
γTi (sl)Σ

−1(sl)γi(sl)
∣∣∣yi(sl),xi, θ̂(r)

0

]
. (3.7)

We consider the E-step and M-step of the EM algorithm as follows.

E-step: In the E-step, we need to calculate two conditional expectations:

E
[
γi(s)

∣∣yi(s),xi, θ̂
(r)

0

]
and E

[
γi(s)γTi (s)

∣∣yi(s),xi, θ̂
(r)

0

]
.

Recall that, given xi, (yTi (s),γTi (s))T is normally distributed as

 yi(s)

γi(s)

 ∼ N

 xTi β(s)

0

 ,

 xTi Σ(s)xi + σ2(s)Imi xTi Σ(s)

Σ(s)xi Σ(s)


 .

Then, given yi(s) and xi, we have

E
[
γi(s)

∣∣∣yi(s),xi, θ̂
(r)

0

]
= Σ̂

(r)
(s)xi(x

T
i Σ̂

(r)
(s)xi + σ̂2(r)(s)Imi)

−1
(
yi(s)− xTi β̂

(r)
(s)
)
,

V ar
[
γi(s)

∣∣∣yi(s),xi, θ̂
(r)

0

]
= Σ̂

(r)
(s)− Σ̂

(r)
(s)xi(x

T
i Σ̂

(r)
(s)xi + σ̂2(r)(s)Imi)

−1xTi Σ̂
(r)

(s),

E
[
γi(s)γTi (s)

∣∣∣yi(s),xi, θ̂
(r)

0

]
= V ar

[
γi(s)

∣∣∣yi(s),xi,θ
(r)
0

]
+ E

[
γi(s)

∣∣∣yi(s),xi, θ̂
(r)

0

]⊗2

.

M-step: Taking derivatives of (3.7) with respect to θ0 and equating them to zeros, we find
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the updates of θ̂
(r)

0 as follows. For β(s), we have

β̂
(r+1)

(s) =

[ n0∑
i=1

xi(s)xTi

]−1 n0∑
i=1

xi

(
yi(s)− xTi E

[
γi(s)

∣∣∣yi(s),xi,θ
(r)
0

]])
. (3.8)

For the covariance matrix Σ(s), we have

Σ̂
(r+1)

(s) =
1

n0

n0∑
i=1

E
[
γi(s)γTi (s)

∣∣∣yi(s),xi,θ
(r)
0

]
. (3.9)

For σ2(s),

σ̂2(r+1)

(s) =
1∑n0

i=1mi

n0∑
i=1

E
[
µTi (s)µi(s)

∣∣∣yi(s),xi,θ
(r)
0

]
. (3.10)

The E-step and M-step are alternately repeated until the difference between logL0(θ̂
(r)

0 )

and logL0(θ̂
(r+1)

0 ) is smaller than a desired value (e.g., 10−4).

To derive the EM algorithm for parameters in part (ii), we need to derive the complete-data

log-likelihood function on the patents as follows.

logL1 ∝ −
nv∑
l=1

1

2σ2(sl)

n∑
i=n0+1

mi∑
j=ji0

ν2
i,j(sl), (3.11)

where νi,j(s) = yi,j(s)− xTi,j(β(s) + γi(s))− bi,j(s)xTi,jα(s). Given the estimate of θ0, i.e.,

θ̂0, the update of α̂(s)(r) at iteration r + 1 is

α̂(s)(r+1) =

[ n∑
i=n0+1

mi∑
j=ji0

E
[
bi,j(s)

∣∣∣yi(s),xi, θ̂0

]
xi,jx

T
i,j

]−1

n∑
i=n0+1

mi∑
j=ji0

{
E
[
bi,j(s)

∣∣∣yi(s),xi, θ̂0

][
yi,j(s)− xTi,jβ̂(s)

]
xi,j

−xTi,jE
[
γi(s)bi,j(s)

∣∣∣yi(s),xi, θ̂0

]
xi,j

}
. (3.12)

In order to calculate E
[
bi,j(s)

∣∣∣yi(s),xi, θ̂0

]
and E

[
γi(s)bi,j(s)

∣∣∣yi(s),xi, θ̂0

]
in (3.12),
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the class labels bi, τ and η should be estimated first. Here we consider the MRF-MAP

estimation for bi, which is efficient and commonly adopted in existing literature, e.g., Zhang

et al. (2001); Marroquín et al. (2002); Nie et al. (2009). For the MLEs of τ and η, the

pseudo-likelihood method (Geman and Graffigne, 1986) is considered. The detialed derivation

of these two estimation parts will be discussed later in next subsections.

Assumed that we have the MRF-MAP estimate of bi and the estimates of τ, η at iteration

r, i.e., b̂
(r)

i , τ̂ (r), η̂(r), the conditional expectation E
[
bi,j(s)

∣∣yi(s),xi, θ̂0

]
can be calculated as

f(yi(s)|xi,j, bi,j(s) = 1, b̂
(r)

i , θ̂0)P (bi,j(s) = 1|b̂
(r)

i , θ̂0, τ̂
(r), η̂(r))

1∑
t=0

f(yi(s)|xi,j, bi,j(s) = t, b̂
(r)

i , θ̂0)P (bi,j(s) = t|b̂
(r)

i , θ̂0, τ̂
(r), η̂(r))

, (3.13)

where yi(s)|xi, bi(s), θ̂0 ∼ N (xTi β̂(s) +Bi(s)x
T
i α̂(s)(r+1), Λ̂(s)), Bi(s) = diag(bi(s)), and

Λ̂(s) = xTi Σ̂(s)xi + σ̂2(s)Imi .

If j = ji0,

P (bi,j(s) = 1|b̂
(r)

i ,θ(r), τ̂ (r), η̂(r)) ∝ exp
{
− τ̂ (r)

∑
s′∈Ns

U(1, b̂
(r)
i,1 (s′))

}
,

otherwise,

P (bi,j(s) = 1|b̂
(r)

i ,θ(r), τ̂ (r), η̂(r)) ∝ exp
{
− τ̂ (r)

∑
s′∈Ns

U(1, b̂
(r)
i,j (s′))− η̂(r)

∑
s′∈Ms

U(1, b̂
(r)
i,j−1(s′))

}
.

Finally, the desired expectation E
[
γi(s)bi,j(s)

∣∣∣yi(s),xi, θ̂0

]
can be estimated as

E
[
γi(s)bi,j(s)

∣∣∣yi(s),xi, θ̂0

]
= E

[
γi,j(s)

∣∣∣yi(s),xi, θ̂0

]
P (bi,j(s) = 1|yi(s),xi, θ̂0). (3.14)

These two expectations are updated until the difference between logL1(α̂(s)(r+1), θ̂0) and

logL1(α̂(s)(r), θ̂0) is smaller than a desired value (e.g., 10−4).
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MRF-MAP estimation method The MRF-MAP estimation is an efficient method for

many practical applications (e.g., image segmentation) and adopted in many literatures, e.g.,

Zhang et al. (2001); Nie et al. (2009). According to the MAP criterion, given the current

estimate θ̂0, α̂(s)(r), τ̂ (r), and η̂(r) at iteration r, the estimate of bi is updated as

b̂
(r+1)

i = arg max
bi

{ nv∏
l=1

f(yi(sl)|xi, bi(sl), θ̂0)p(bi|τ̂ (r), η̂(r))

}
= arg min

bi

{
1

2

nv∑
l=1

{∑
s∈S0

[yi(sl)− ν
(r)
i (sl)]

T Λ̂i(sl)
−1[yi(sl)− ν

(r)
i (sl)]

+τ̂ (r)
∑
s∈S0

∑
s′∈Ns

U(bi,ji0(s), bi,ji0(s
′)) +

mi∑
j=ji0

∑
s∈S0

[
τ̂ (r)

∑
s′∈Ns

U(bi,j(s), bi,j(s
′))

+η̂(r)
∑
s′∈Ms

U(bi,j(s), bi,j−1(s′))
]}}

. (3.15)

To obtain the optimal solution to (3.15), in this paper, we adopt the iterated conditional

modes (ICM) algorithm (Besag, 1986), which uses a greedy iterative strategy for minimization.

Convergence is achieved after only a few iterations.

Pseudo-likelihood method Since τ and η in model (3.3) are not the primary parame-

ter of interest, we use an approximate, but computationally efficient method based on a

pseudo-likelihood function. A key advantage of using the pseudo-likelihood function is its

computational simplicity, since it does not involve the intractable partition function. The

pseudo-likelihood at iteration r is a simple product of the conditional likelihood

PL(b̂
(r)
, τ, η) =

∏
{i:zi=1}

∏
s∈S0−∂S0

PL(b̂
(r)

i (s)|b̂
(r)

i ), (3.16)
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where ∂S0 denotes the set of points at the boundaries of S0, and PL(b̂
(r)

i (s)|b̂
(r)

i ) is given by

p(b̂
(r)

i (s)|τ, η)
1∑

bi,ji0 (s)=0

· · ·
1∑

bi,mi (s)=0

p(bi(s)|τ, η)

.

Thus, the MPL estimates τ̂ (r+1) and η̂(r+1) can be obtained by solving

∂ lnPL(b̂
(r)
, τ, η)

∂τ
= 0,

∂ lnPL(b̂
(r)
, τ, η)

∂η
= 0. (3.17)

3.1.3 Inference Procedure

After all the parameters are estimated, we carry out formal statistical inference consisting

of three different statistical tools: (1) standard errors of β̂(s) and α̂(s); (2) hypothesis testing

on parameters of interest; and (3) dynamic statistical disease mapping.

Standard errors of β̂(s) and α̂(s) First, we calculate the standard errors of computed

MLEs, β̂(s) and α̂(s), at each voxel s. As the β̂(s) in (3.8) is derived only based on

the normal controls with the model (3.2), the estimated covariance matrix of β̂(s) can be

approximated by the positive square root of diagonal elements in the following matrix

[
1

n0

n0∑
i=1

xi
(
xTi Σ̂(s)xi + +σ̂2(s)Imi

)−1
xTi

]−1

. (3.18)

On the other hand, we consider the standard errors associated with α̂(s) conditional on

the estimates of θ0 and {bi(s)}ni=1. To tackle this problem, the wild bootstrap (Wu, 1986)

resampling method is considered here. The idea of wild bootstrap is to leave the regressors

at their sample value, but to resample the response variable based on the residuals values.

The detailed procedures are listed as follows:

1. Fit the model with the original data and retain the fitted values ŷi(s) = xTi β̂(s) +
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B̂i(s)xTi α̂(s) and the residuals ε̂i(s) = yi(s)− ŷi(s), i = n0 + 1, . . . , n;

2. Create synthetic response variables yi(s)∗ = ŷi(s) + aiε̂i(s), i = n0 + 1, . . . , n, where ai

is a random variable following standard normal distribution;

3. Given θ0 and {bi(s)}ni=n0+1, refit the model using the synthetic response variables yi(s)∗

and retain the estimates α̂(s)∗ as below,

α̂(s)∗ =

[ n∑
i=n0+1

xiB̂i(s)Λ̂
−1

i (s)B̂i(s)xTi

]−1 n∑
i=n0+1

xiB̂i(s)Λ̂
−1

i (s)
[
yi(s)∗ − xTi β̂(s)

]
,

in particular, let α̂(s)∗ = 0 if
∑n

i=n0+1 xiB̂i(s)Λ̂
−1

i (s)B̂i(s)xTi is not invertible;

4. Repeat Steps 1 and 2 K times (K = 100 in this paper, refer to Efron and Tibshirani

(1994)) to give K independent realizations of α̂(s)∗, denoted by α̂(s)∗1, . . . , α̂(s)∗K ;

5. The bootstrap covariance matrix of α̂(s) is estimated by

1

K − 1

K∑
i=1

(
α̂(s)∗ − α̂(s)∗

)(
α̂(s)∗i − α̂(s)∗

)T
, (3.19)

where α̂(s)∗ = 1
K

∑K
i=1 α̂(s)∗i . The standard error of α̂(s) can be estimated by the

positive square root of the diagonal element in (3.19).

Hypothesis testing In real applications, we are interested in testing (i) whether there is

any intensity progression across time at each voxel in normal regions; (ii) whether there is

any difference of intensity at baseline between normal regions and diseased regions; and (iii)

whether there is any difference of intensity progression across time between normal regions

and diseased regions. For each voxel, these hypothesis testing problems can be written in the
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following general forms:

H0(s) : Cβ(s) = 0 v.s. H1(s) : Cβ(s) 6= 0, (3.20)

H0(s) : Cα(s) = 0 v.s. H1(s) : Cα(s) 6= 0, (3.21)

where C is a 1× p vector. A sequence of Wald tests can be used here. The test statistics for

(3.20) and (3.21) can be respectively written as

Tβ(s) = Cβ̂(s)

[
CV ar[β̂(s)]CT

]−1

β̂
T

(s)CT , (3.22)

and

Tα(s) = Cα̂(s)

[
CV ar[α̂(s)]CT

]−1

α̂T (s)CT , (3.23)

where V ar[β̂(s)] and V ar[α̂(s)] can be obtained as described in Section 2.3.1. The corre-

sponding p-values can be derived based on the asymptotic properties of the test statistics

under H0. In particular, under the null hypothesis, when the sample size is large enough, both

Tβ(s) and Tα(s) approximately follow χ2 distribution with one degree of freedom. The false

discovery rate (FDR) adjustment method (Yekutieli and Benjamini, 1999) is also employed

here to calculate the adjusted p-values corrected for the multiple comparison problems (3.20)

and (3.21).

Dynamic statistical disease mapping Third, after obtaining the diseased region labels

across all voxels for each patient, we derive the dynamic statistical disease mapping at

population level for patients at different disease stage. In practice, some voxels are unlikely to

be affected by the disease, thus we consider a voxel-wise zero-inflated generalized linear mixed

model which can predict the diseased region label for each voxel s based on the observed

25



demographic, clinic, and disease stage information, for 1 ≤ k ≤ m,

Pr{bi,j(sk) = l} =

 πk + (1− πk) 1

1+e
λi,j,k

, l = 0,

(1− πk) e
λi,j,k

1+e
λi,j,k

, l = 1.
(3.24)

Based on the model, bi,j(sk) is assumed to come from the point mass distribution based at

zero with probability πk and Binomial distribution Bi(1, e
λi,j,k

1+e
λi,j,k

) with probability 1 − πk.

Here λi,j,k and πk are modeled by smooth functions at sk

λi,j,k = xTi,jξ(sk). (3.25)

Furthermore, some smoothing techniques can be adopted on ξ(s) here to model both the

spatial smoothness and spatial correlation within the disease map (Huang et al., 2017).

Given the estimates π̂k and ξ̂(s), the conditional probability that the pixel site belongs to

the diseased region given certain patient’s information (x0) is calculated via the following

regression equation:

Pr{s belongs to the diseased region | x0,w0} = (1− π̂k)
exp(xT0 ξ̂(s))

1 + exp(xT0 ξ̂(s))
. (3.26)

In particular, if we focuses on patients with specified age range, we can derive the dynamic

changes in statistical disease mapping across age, which is of great importance in disease

prevention at early stage. Also, given the age and gender information, the statistical disease

mapping for patients at different stages can be compared and helpful in prediction of disease

stage transition.

3.2 Simulation Studies

We examine the finite sample performance of DSRE model for dynamic diseased region

detection. Here we generated the data based on two different real datasets: (i) 2D thickness

maps derived from the 3D knee MRI data of normal controls in the Pfizer Longitudinal
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Study (PLS-A9001140); (ii) 3D RAVENS maps derived from T1 MRI data of normal controls

in ADNI study (Miranda et al., 2018). For each dataset, we first fitted the model (3.2) to

the image data from normal controls. More details about the first dataset can be found in

Huang et al. (2015), while the data description and processing of the second dataset will be

discussed in the real data analysis section. Then, we used the obtained parameter estimators

of β(sl), σ
2(sl),Σ(sl), k = 1, . . . , nv, as the true values for simulations. The covariates xi,

including intercept, age, gender, were generated according to the real dataset. Moreover, α(sl)

were set to −0.03 across all voxels within the diseased regions. We generated 30 subjects with

3 or 4 observations for each subject. In order to mimic the heterogeneity of diseased region

pattern, the number, shape, size, and location of all diseased regions were predetermined

and different across subject and time points. For these two datasets, the diseased regions

and observed maps for two simulated subjects are presented in Figure 3.3 and Figure 3.4

respectively.

Ground Truth Observed Images Detected Regions

0

1

2

3

0

1

2

3

ROC Curves

Figure 3.3: Diseased region detection on simulated 2D thickness maps: (left) ground truth
for diseased regions; (middle) simulated 2D thickness maps; (right) detected diseased regions.

We applied DSRE model to detect the diseased regions for each subject at each time

point. For the selected subjects, the detection results are presented in Figure 3.3 and Figure

3.4 respectively. It can be found that, the diseased regions for subjects at each time point
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Ground Truth Observed Images Detected Regions

0
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Figure 3.4: Diseased region detection on simulated 3D RAVENS maps: (left) ground truth
for diseased regions; (middle) simulated 3D RAVENS maps; (right) detected diseased regions.

can be successfully detected while the detection performance at follow-up visits is better than

that at baseline. The possible reason is that the diseased regions for subjects at baseline are

small and the difference between signal strength in the diseased region and normal region is

not significant. To compare DSRE model with other methods, we also applied the K-means

clustering method and hidden Markov model (HMM) to the simulated data. The adjusted

Rand index (aRI) is adopted here and reported in the boxplot (Figure 3.5). According to

Figure 3.5, (i) for all the three methods, The aRIs for detection on simulated 2D thickness

maps are higher than those for detection on 3D RAVENS maps; (ii) for both simulation

studies, our DSRE model outperforms other two methods in terms of aRI. The possible

reason is that both spectral clustering method and HMM only consider the spatial correlation

Within each single image. By comparison, our DSRE model considers both spatial and

temporal correlation, and the label information can be borrowed and exchanged from both

spatial neighborhood and temporal neighborhood.
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Figure 3.5: Comparison among on K-means, HMM, and DSRE model: (left) aRIs for detection
on simulated 2D thickness maps; (right) aRIs for detection on simulated 3D RAVENS maps.

3.3 Real Data Analysis

3.3.1 ADNI Data Description

Data used in the preparation of this article were obtained from the ADNI database

(adni.loni.usc.edu). The ADNI was launched in 2003 by the National Institute on Aging,

National Institute of Biomedical Imaging and Bioengineering, Food and Drug Administration,

private pharmaceutical companies and non-profit organizations as a $60 million, 5-year

public-private partnership. The primary goal of ADNI has been to test whether serial

magnetic resonance imaging (MRI), positron emission tomography, other biological markers,

and clinical and neuropsychological assessment can be combined to measure the progression

of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). Determination of

sensitive and specific markers of very early AD progression is intended to aid researchers and

clinicians in developing new treatments and monitoring their effectiveness, as well as lessening

the time and cost of clinical trials. The principal investigator of this initiative is Michael W.

Weiner, MD, at the VA Medical Center and University of California, San Francisco. ADNI

is the result of efforts of many coinvestigators from a broad range of academic institutions
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and private corporations, and subjects have been recruited from over 50 sites across the U.S.

and Canada. The goal was to recruit 800 subjects, but the initial study (ADNI-1) has been

followed by ADNI-GO and ADNI-2. To date, these three protocols have recruited over 1,500

adults, ages 55 to 90, to participate in the research, consisting of cognitively normal older

individuals, people with early or late MCI, and people with early AD. The follow-up duration

of each group is specified in the protocols for ADNI-1, ADNI-2 and ADNI-GO. Subjects

originally recruited for ADNI-1 and ADNI-GO had the option to be followed in ADNI-2. For

up-to-date information, see www.adni-info.org.

3.3.2 Data Processing

In this data analysis, we included 1179 MRI scans from healthy controls and individuals

with AD (50 AD, 50 MCI, and 100 healthy controls) from ADNI-1. The scans (from 107

men and 93 women, ages 75.63± 6.02 years), which were performed on a variety of 1.5 Tesla

MRI scanners with protocols individualized for each scanner, include standard T1-weighted

images obtained using volumetric 3-dimensional sagittal MPRAGE or equivalent protocols

with varying resolutions. The typical protocol includes: repetition time = 2400 ms, inversion

time = 1000 ms, flip angle = 8o, and field of view = 24 cm, with a 256× 256× 170 acquisition

matrix in the x−, y−, and z−dimensions, which yields a voxel size of 1.25 × 1.26 × 1.2

mm3. The T1-weighted images were processed using the Hierarchical Attribute Matching

Mechanism for Elastic Registration (HAMMER) pipeline. The processing steps include

anterior commissure and posterior commissure correction, skull-stripping, cerebellum removal,

intensity inhomogeneity correction, and segmentation. Then, registration was performed to

warp the subject to the space of the Jacob template (size 256 × 256 × 256 mm3). Finally,

we used the deformation field to compute the RAVENS maps. The RAVENS methodology

precisely quantifies the volume of tissue in each region of the brain. The process is based on

a volume-preserving spatial transformation that ensures that no volumetric information is

lost during the process of spatial normalization (Davatzikos et al., 2001).
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3.3.3 Data Analysis

First we applied DSRE model on the real dataset, and the estimates of coefficient functions

associated to the covariates gender, age and diagnostic status (MCI or AD) are presented in

Fig. 3.6. In order to test how the covarites of interest locally affect the regions, the local

Wald test statistics were calculated. The adjusted − log10 values across all vertices are shown

in Fig. 3.6. It indicates that, compared to the gender effect, age and diagnostic effects are

more significant in terms of local p-values.

Gender

Estimator

Age

MCI

AD

Adjusted -log10 p-value

2

-0.5

3

0

Figure 3.6: Coefficient estimators of four covariates (left); adjusted − log10 p-values of four
covariates (right).

The inference results of α are presented in Figure 3.7. For the diseased regions, the

detection results of randomly selected one MCI patient and one AD patient are plotted in

Figure 3.8, in which the red area indicates the detected diseased region. Both of these two

patients have three observations, in which the disease status changed from normal to MCI

at the second time point. The dynamic disease maps across ages were also be estimated

(See Figure 3.9). As the age is getting large, the diseased regions with empirical probability

larger than 0.5 include four ROIs: caudate nucleus (left and right), lingual gyrus (left and
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right), cingulate gyrus, and precuneus. In the existing literatures, both caudate nucleus and

cingulate gyrus are found to have CMRglc reductions due to AD (Madsen et al., 2010). Also,

the precuneus atrophy was found in early-onset Alzheimer’s disease (Karas et al., 2007).

Therefore, the detected diseased regions are meaningful and may be treated as potential

imaging biomarkers for AD.

Estimator Adjusted -log10 p-value

2

-0.5

3

0

Figure 3.7: Coefficient estimator of α(s) (left); adjusted − log10 p-values of α(s) (right).
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AD

0

1

2

MCI

Figure 3.8: Diseased region detection for two randomly selected patients. One AD patient
(left); One MCI patient (right).

60 years old 70 years old 80 years old

0.2 0.5

Figure 3.9: Dynamic disease maps across ages: 60 years old (left); 70 years old (middle); 80
years old (right).
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CHAPTER 4: CLUSTERING HIGH-DIMENSIONAL MANIFOLD

VALUED DATA IN SYMMETRIC SPACES

4.1 Method

4.1.1 Preliminaries of Riemannian Manifold and Symmetric Spaces

We review some basic results of Riemannian geometry. LetM be a p-dimensional complete

Riemannian manifold with distance function d. We denote the tangent space at x ∈ M

by TxM. For any v ∈ TxM, there is a unique geodesic curve γ : [0, 1] → R, with initial

conditions γ(0) = x and γ′(0) = v. It should be noted that the geodesic is only guaranteed

to exist in a neighborhood of x, where the largest neighborhood is denoted by Nx ∈ M.

The exponential map at x, Exp(x, ·) : TxM→Nx, is locally diffeomorphic and defined as

Exp(x,v) = γ(1). It means that the exponential map takes the initial conditions (position

x and velocity v) as input and returns the point Exp(x,v) ∈ M at time one. The log

map Log(x, ·) : Nx → TxM is defined as the inverse of exponential map. For any x′ ∈ Nx,

the Riemannian distance d(x,x′) = ‖Log(x,x′)‖, and the gradient of the squared distance

function ∇xd(x,x′)2 = −2Log(x,x′).

Next, we provide an overview of some necessary concepts of symmetric spaces. Recall

that an isometry of a Riemannian manifold is a diffeomorphism κ :M→M that preserves

the Riemannian metric, equivalently, such that d(x,x′) = d(κ(x), κ(x′)) for all x,x′ ∈ M.

Furthermore, the isometry κ is called involutive if it satisfies κ = κ−1. Then, a Riemannian

manifoldM is called a symmetric space if, for each point x ∈M, there exists an involutive

isometry κx that fixes x and reserves geodesics passing through x. Many useful manifolds are

symmetric spaces including Euclidean spaces, spheres, the spaces of positive-definite matrices,
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Grassmann manifolds, Stiefel manifolds and so on (Boothby, 2003).

4.1.2 Mixture of Geodesic Factor Analyzers

It is assumed that x1,x2, . . . ,xn are independently and identically distributed (i.i.d.)

random observations generated from a mixture model of generalized normal distributions

defined on a Riemannian manifold M,
∑K

k=1 πkg(x|αk,Ω), where πk ≥ 0,
∑K

k=1 πk = 1,

and g(x|αk,Ω) is the density function of a generalized normal distribution (Pennec, 2006;

Fletcher, 2013; Zhang and Fletcher, 2013) as

g(x|αk,Ω) = C−1(αk,Ω) exp

{
−1

2
LogT (αk,x)Ω−1Log(αk,x)

}
, x ∈M, (4.1)

where C(αk,Ω) =
∫

exp
{
−1

2
LogT (αk,x)Ω−1Log(αk,x)

}
dx, αk ∈ M is the location

parameter, and Ω is a p× p definite positive diagonal matrix shared across clusters. When

M is a symmetric space, this normalization term C(αk,Ω) does not depend on αk because

the distribution is invariant to isometrics. Consequently, the mixture model can be induced

as

K∑
k=1

πk
C(Ω)

exp

{
−1

2
LogT (αk,x)Ω−1Log(αk,x)

}
. (4.2)

In order to characterize the spatial correlation of high-dimensional manifold data, we

consider the idea of factor analysis in Euclidean space to establish the geodesic factor analysis

in Riemannian manifold. It is assumed that, for each observation xi ∈M, i = 1, . . . , n, the

location parameter αk can be formulated as follows:

αk = Exp(µk,Λkzki), k = 1, . . . , K, (4.3)

where z1i, . . . zKi are stochastic errors in Rq, distributed independently N(0, Iq), and Λk

is a p× q factor loading matrix with all columns of mutually independent tangent vectors

Λl
k, l = 1, . . . , q in TµkM. The idea of geodesic factor analysis is illustrated in Figure 4.1.
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Figure 4.1: Idea of geodesic factor analysis.

Furthermore, we define υki be a dummy variable which indicate whether xi comes from the

k-th component or not. Usually there are some covariates of interest besides the manifold data,

in order to integrate these covariates, denoted by wi, i = 1, . . . , n, into our proposed model

(4.3), we consider a logistic regression model of mixing proportions πki = Pr(υki = 1|wi).

Specifically, given the covariates wi ∈ Rd, the mixing proportions are defined through the

logistic model given by

log

(
πki(β)

πKi(β)

)
= wT

i βk for k = 1, . . . , K − 1 and i = 1, . . . , n, (4.4)

in which wi = (1, wi,1, . . . , wi,d−1)T , βk = (βk,0, βk,1, . . . , βk,d−1)T , β = (βT1 , . . . ,β
T
K−1)T , and

βK is set to 0 for identifiability. Under models (4.3) and (4.4), given the latent factor

zi = (zT1i, . . . z
T
Mi)

T , the mixture model (4.2) with respect to xi, f(xi|zi,θ), can be rewritten

as

f(xi|wi, zi,θ) =
K∑
k=1

πki(β)g(xi|zki,µk,Λk,Ω)

=
K∑
k=1

πki(β)

C(Ω)
exp

{
−1

2
hT (xi, zki,µk,Λk)Ω

−1h(xi, zki,µk,Λk)

}
,(4.5)

where h(xi, zki,µk,Λk) = Log(Exp(µk,Λkzki),xi), θ = (βT ,diag(Ω)T ,θT1 , . . . ,θ
T
K)T , and

θk consists of the unknown elements of µk, and Λk, k = 1, . . . , K. Here we term (4.5) a
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mixture of geodesic factor analyzers (MGFA).

In summary, there are several advantages of our MGFA:

(i) For each cluster, a feature space can be extracted from a high-dimensional manifoldM

to a low-dimensional latent factor space in TµkM.

(ii) WhenM = Rp, the exponential map is an adding operation and (4.1) is a multivariate

normal distribution with diagonal covariance matrix, then our MGFA reduces to a mixture

of factor analyzers below

xi = µk + Λkzki + eki with prior probabilities πki(β),

where eki ∼ Np(0,Ω) is independent of zki for i = 1, . . . , n, k = 1, . . . , K.

(iii) An association between mixing proportions and covariates of interest is built via a logistic

regression model.

4.1.3 Estimation Procedure

EM Algorithm for the MGFA Model We first develop the EM algorithm to calculate

the MLE of θ, denoted by θ̃, for low-dimensional manifold data, that is, p � n. The key

idea of the EM algorithm is to introduce missing data and then maximize the conditional

expectation of the complete-data log-likelihood function, called Q function. For our MGFA,

we introduce υki and zki for i = 1, . . . , n and k = 1, . . . , K as missing data. Then, the

complete-data log-likelihood function logL(θ) is proportional to

K∑
k=1

n∑
i=1

υki

{
log πki(β)− logC(Ω)− 1

2
hT (xi, zki,µk,Λk)Ω

−1h(xi, zki,µk,Λk)−
‖zki‖2

2

2

}
.

However, given θ̃ and {xi}ni=1, the Q function, i.e., Q(θ|θ̃) = Ez[logL(θ)|{xi}ni=1, θ̃], does

not yield a closed-form solution. So, the MCEM algorithm is considered instead to estimate

θ. Similar to other MCEM procedures, there are two main steps in our algorithm, i.e., E-step

and M-step.
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E-step: In the E-step, given θ̃
(r)

at the r-th iteration, we consider adopting the Hamiltonian

Monte Carlo (HMC) sampling method (Neal, 2011) to sample zmi from their posterior distri-

bution p(zki|υki = 1, {xi}i≤n, θ̃
(r)

). According to HMC method, we set up the Hamiltonian

dynamic system first. The Hamiltonian function can be written asH(zki, r) = U(zki)+ 1
2
rTk rk,

where U(zki) = − log p(zki|υki = 1, {xi}i≤n, θ̃
(r)

) is called the potential energy function. The

other item 1
2
rTk rk is called the kinetic energy, where rk, k = 1, . . . , K are auxiliary momen-

tum variables drawn independently from N(0, Iq). Because of the introduction of rk, the

Hamiltonian dynamics can be established as

dzki
dt

= rk,
drk
dt

= −∇zkiU(zki). (4.6)

Then the approximation solution to (4.6) can be obtained via the Leap Frog numerical

integration method (Neal, 2011) if the item ∇zkiU(zki) is calculated. In fact, the gradient

term ∇zkiU(zki) can be derived as below

∇zkiU(zki) = zjki −ΛT
k dvExp(µk,Λkz

j
ki)
†Ω−1h(xi, zki,µk,Λk), (4.7)

where dvExp(u,v) is the gradient of Exp(u,v) with respect to v, and † represents the

adjoint of a linear operator. Therefore, after obtaining the samples zjki, j = 1, . . . , Nz, the Q

function at the r-th iteration, i.e., Q(θ|θ̃
(r)

), is approximated via Monte Carlo method and

proportional to

1

Nz

Nz∑
j=1

K∑
k=1

n∑
i=1

τ̃
(r)
ki

{
log πki(β)− logC(Ω)− 1

2
hT (xi, z

j
ki,µk,Λk)Ω

−1h(xi, z
j
ki,µk,Λk)

}
,(4.8)

where

τ̃
(r)
ki =

∑Nz
j=1 πki(β̃

(r)
)g(xi|zjki, µ̃

(r)
k , Λ̃

(r)

k , Ω̃
(r)

)∑K
k=1

∑Nz
j=1 πki(β̃

(r)
)g(xi|zjki, µ̃

(r)
k , Λ̃

(r)

k , Ω̃
(r)

)
.

The performance of standard HMC method is highly sensitive to two user-specified
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parameters: a step size ε and a desired number of steps L. In particular, if L is too small

then the algorithm exhibits undesirable random walk behavior, while if L is too large the

algorithm wastes computation. Compared with the standard HMC, the No-U-Turn Sampler

(NUTS) (Hoffman and Gelman, 2014), an extension to standard HMC, can avoid setting the

tuning parameter L. Specifically, NUTS uses a recursive algorithm to build a set of likely

candidate points that spans a wide swath of the target distribution, stopping automatically

when it starts to double back and retrace its steps. Because of this, NUTS is adopted in this

paper. The details of NUTS algorithm is omitted here, and readers can refer to Section 3

and Algorithm 3 in Hoffman and Gelman (2014).

M-step: In the M-step, given the current estimate θ̃
(r)
, we update θ̃

(r+1)
by maximizing the

Q function in (4.8) with respect to θ. For β, a update equation can be derived according to

the Newton-Raphson algorithm (Huang et al., 2015). Let β̃
(s,r+1)

be the value of β̃
(r+1)

at

the s-th iteration of the Newton-Raphson algorithm and β̃
(0,r+1)

= β̃
(r)
. We update β̃

(s,r+1)

as follows:

β̃
(s+1,r+1)

= β̃
(s,r+1) −

[ n∑
i=1

ΥT
i Ci

(
β̃

(s,r+1))
Υi

]−1 n∑
i=1

ΥT
i

{
τ̃

(r)
i − πi

(
β̃

(s,r+1))}
, (4.9)

where τ̃ (r)
i = (τ̃

(r)
1i , · · · , τ̃

(r)
(K−1)i)

T , Υi = zTi ⊗ IK−1, Ci(β) = diag(πi(β)) − πi(β)πi(β)T ,

and πi(β) = (π1i(β), · · · , π(K−1)i(β))T . We update β̃
(s+1,r+1)

according to (4.9) until a

pre-specified tolerance is reached and then set β̃
(s+1,r+1)

from the last iteration as β̃
(r+1)

.

For the diagonal matrix Ω shared across clusters, the explicit update equations can also

be derived at the r-th iteration. It can be updated via solving the equation below:

2n

C(Ω)

∂C(Ω)

∂Ω
+

1

Nz

K∑
k=1

Nz∑
j=1

n∑
i=1

τ̃
(r)
ki h(xi, z

j
ki,µk,Λk)h

T (xi, z
j
ki,µk,Λk) = 0. (4.10)

The above update equation requires evaluation of the normalizing constant C(Ω) and its

derivative. For Gaussian distribution in Euclidean space, it’s straightforward to calculate
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that C(Ω) =
√

(2π)p|Ω| and ∂C(Ω)/∂Ω = −1
2
C(Ω)Ω.

For the location parameter µk and loading matrix Λk in each cluster, the problem on

maximization of Q function at the rth iteration can be written as an minimization problem

on the following object function

Q̃k(µk,Λk) =
Nz∑
j=1

n∑
i=1

τ̃
(r+1)
ki hT (xi, z

j
ki,µk,Λk)Ω̃

(r)−1

h(xi, z
j
ki,µk,Λk). (4.11)

In order to solve the optimization problem (4.11), the method of steepest descent (SD) is

considered here. SD algorithm approaches the minimum in a zig-zag manner, where the new

search direction is orthogonal to the previous. The choice of direction is opposite to the

gradient function at µ̃(r)
k and Λ̃

(r)

k . The gradient function of Q̃k with respect to µk is derived

as

∇µkQ̃k =
Nz∑
j=1

n∑
i=1

τ̃
(r)
ki duExp(µk,Λkz

j
ki)
†Ω̃

(r)−1

Log(Exp(µk,Λkz
j
ki),xi), (4.12)

where duExp(u,v) is the gradient of Exp(u,v) with respect to u. For the loading matrix

Λk, the gradient term is written as

∇ΛkQ̃k =
Nz∑
j=1

n∑
i=1

τ̃
(r)
ki dvExp(µk,Λkz

j
ki)
†Ω̃

(r)−1

k Log(Exp(µk,Λkz
j
ki),xi)z

jT

ki . (4.13)

Then, µ̃(r+1)
k and Λ̃

(r+1)

k can be updated according to (4.12) and (4.13) via SD algorithm,

while the step size parameter in the algorithm is chosen based on the linear search method.

The E-step and M-step are repeated until the difference between logL(θ̃
(r+1)

) and

logL(θ̃
(r)

) is smaller than a pre-specified number, say 10−4. The MCEM procedure for

MGFA clustering is presented in Algorithm 1.

40



Algorithm 1 MCEM algorithm for MGFA clustering

Input Data: xi,wi, i = 1, . . . , n

Initialize tuning parameters: K, q

Initialize parameters of interest: β,Ω,µk,Λk, k = 1 . . . , K

Repeat

• Monte Carlo E-step

• Sample zki, 1 ≤ i ≤ n, 1 ≤ k ≤ K, via HMC method

• M-step

• Update β and Ω based on (4.9)− (4.10)

• Update µk and Λk, k = 1, . . . , K, via SD method

End repeat

Output: cluster membership of xi based on υ̂ki, 1 ≤ i ≤ n, 1 ≤ k ≤ K.

EM Algorithm for the Penalized MGFA Clustering In high dimensional manifold

clustering, many ‘non-informative’ variables exist in the manifold data, which prevent the

underlying clustering structure from being uncovered. Therefore, directly using θ̃ in high

dimensional manifold data clustering may not work well. Thus, it is of great importance

to remove such ‘non-informative’ variables and use the informative ones in data clustering.

In order to achieve variable selection in MGFA, we develop a penalized MGFA clustering

framework below.

To realize variable selection in MGFA, we consider a penalized log-likelihood function

41



given by

logLp(θ) = logL(θ)− λ1

p∑
l=1

∑
1≤k,k′≤K

alk,k′ |ηkl − ηk′l| − λ2

p∑
l=1

K∑
k=1

‖Λkl‖2, (4.14)

where ηkl is the l-th element in the vector ηk = ψk(µk), in which ψk(·) : M → Rp is an

embedding for µk, and alk,k′ are the pre-specified weights. Λkl is the l-th row of the factor

loading Λk, and ‖·‖2 denotes the L2 norm in Euclidian space. In the second term of (4.14), the

pairwise fusion Lasso penalization (Guo et al., 2010) is introduced on the position parameters

µk based on a chord distance onM. Although this penalty function is not inspired from an

intrinsic way, the aim of shrinking the difference between every pair of cluster centers can

be achieved as well when they are close to each other. In the third term of (4.14), since the

latent variable zki is defined in Euclidian space, it is reasonable to introduce a L2 penalty on

Λk to shrink small Λkj to be exactly zero.

In this penalty, there are
(
K
2

)
terms of pairwise differences for each element of embedding in

Rp and the total number of terms increases by an order of O(K2) given p fixed, which contains

many redundant constraints and imposes great computational challenges (Ke et al., 2015;

Shen and Huang, 2010; Tang and Song, 2016). To address this issue, the fusion penalty in

(4.14) can be written as a simplified penalty function that uses the information on the ordering

of coefficients. For the l-th element in the location parameter, let U l = (U1l, . . . , UKl)
T be

the ranking with no ties of η.l = (η1l, . . . , ηKl)
T , from the smallest to the largest. Specifically,

Ukl =
∑K

k′=1 1{ηk′l ≤ ηkl} if there are no ties in η.l; otherwise, the ties in U l are resolved by

the first-occurrence-wins rule according to k to ensure rank uniqueness. Then, the second

term in (4.14) with parameter orderings U l, l = 1, . . . , p takes the form

λ1

p∑
l=1

K∑
k=1

K∑
k′>k

alk,k′1(|Ukl − Uk′l| = 1)|ηkl − ηk′l|, (4.15)

where the constraints occur effectively only on adjacent ordered pairs. Clearly, the penalty

in (4.15) only involves K − 1 terms, which is of an order O(K) given p fixed. Furthermore,
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we can also encourage sparsity for the coefficient closest to zero in η.l. Specifically, let

V l = (V1l, . . . , VKl)
T be the ranking with no ties, from the smallest to the largest, of the

absolute values of η.l, i.e., (|η1l|, . . . , |ηKl|)T . Similar to U l, the ties in V l can also be resolved

by the first-occurrence-wins rule according to k. Then, for the l-th element, consider a set of

transformed parameters ζ .l = (ζ1l, . . . , ζKl)
T defined by

ζ1l = ηtl, Vtl = 1; and ζkl = η(kl) − η((k−1)l), k = 2, . . . , K, (4.16)

where (η(1l), . . . , η(Kl))
T is the ascending order of elements in η.l. Based on the definition,

(4.15) can be simplified written as

λ1

p∑
l=1

K∑
k=1

alk|ζkl|, (4.17)

where alk is pre-specified as

alk =

 σ̃−1
l |µ̃(1l)|−1, if k = 1,

σ̃−1
l |µ̃(kl) − µ̃((k−1)l)|−1, if k > 1.

(4.18)

Here σ̃2
l is the estimated l-th diagonal element of Ω as K = 1 and Λ = 0, while µ̃(kl) is

the estimates of µ(kl) in MGFA without any penalization. Since no ties are allowed in the

parameter ordering of η.l, one-to-one transformation exists between η = (η.1, . . . ,η.p)
T and

ζ = (ζ .1, . . . , ζ .p)
T by suitable sorting matrix S and reparameterization matrix R; that is,

ζ = RSη and η = (RS)−1ζ with both S and R being full-rank square matrices. For

Euclidean space, the optimization problem can be solved with respect to coefficient vector ζ

and transformed observations RSxi, i = 1, . . . , n.

Here the MCEM algorithm can also be adopted to calculate the maximum penalized

likelihood estimate (MPLE). In fact, Since the penalty functions in (4.16) only depend on ηk

and Λk, the update equations of β and Ω are the same as those given in (4.9) and (4.10). To
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efficiently update the estimation of µk and Λk, The optimization problem can be solved via

Alternating direction method of multipliers (ADMM) (Boyd et al., 2011). Here the ADMM

algorithm on manifold (Kovnatsky et al., 2016) is adopted, the idea of which is similar to

the one in Euclidian spaces. Specifically, denote that Λ = (Λ1, . . . ,ΛK). Then, at the r-th

iteration of MCEM algorithm, a minimization problem is given by

minimize Q̃p(η,Λ) + pλ1(ζ) + pλ2(ν)

subject to RSη.l = ζ .l, Λkl = νkl, l = 1, . . . , p, k = 1, . . . , K,

where ζ .l,νkl, l = 1, . . . , p, k = 1, . . . , K are a set of augmented variables. For the functions

Q̃p(η,Λ), pλ1(ζ), and pλ2(ν), we have

Q̃p(η,Λ) =
K∑
k=1

Nz∑
j=1

n∑
i=1

τ̃
(r+1)
ki hT (xi, z

j
ki, ψ

−1
k (ηk),Λk)Ω̃

(r)−1

h(xi, z
j
ki, ψ

−1
k (ηk),Λk),

pλ1(ζ) = λ1

p∑
l=1

K∑
k=1

alk|ζkl|, and pλ2(ν) = λ2

p∑
l=1

K∑
k=1

‖νkl‖2.

The corresponding augmented Lagrangian function is

Lρ(η,Λ, ζ,ν, δ,κ) = Q̃p(η,Λ) + pλ1(ζ) + pλ2(ν)

+
ρ

2

p∑
l=1

[
‖RSη.l − ζ .l + δ.l‖2

2 +
K∑
k=1

‖Λkl − νkl + κkl‖2
2

]
.(4.19)

where ρ > 0 and δ = (δ.1, . . . , δ.p)
T , κ = (κ1, . . . ,κK), and κkl is the l-th row in κk. Both δ

and κ have to be chosen and updated appropriately. This formulation now allows splitting

the problem into two optimization sub-problems with respect to {η,Λ} and {ζ,ν}, which

are solved in an alternating manner, followed by an updating of {δ,κ}. Observe that in

the first sub-problem with respect to {η,Λ}, we minimize a smooth function with manifold

constraints, and in the second sub-problem with respect to {ζ,ν} we minimize a non-smooth

function without manifold constraints. The manifold ADMM procedure is presented in
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Algorithm 2.

Algorithm 2 Manifold ADMM procedure for penalized MGFA clustering

Initialize: t← 1, ζ(t) = η(t),ν(t) = Λ(tk), δ(t) = 0,κ(t) = 0.

Repeat

• Update η : η(t+1) = argminη Q̃p(η,Λ
(t)) +

ρ

2

p∑
l=1

‖RSη.l − ζ
(t)
.l + δ

(t)
.l ‖

2
2

• Update Λ : Λ(t+1) = argminΛ Q̃p(η
(t+1),Λ) +

ρ

2

p∑
l=1

K∑
k=1

‖Λkl − ν(t)
kl + κ

(t)
kl ‖

2
2

• Update ζ : ζ
(t+1)
.l = STλ1/ρ,a(RSη

(t+1)
.l + δ

(t)
.l ), l = 1, . . . , p

• Update ν : ν
(t+1)
kl = VSTλ2/ρ(Λ

(t+1)
kl + κ

(t)
kl ), l = 1, . . . , p, k = 1, . . . , K

• Update δ.l : δ
(t+1)
.l = δ

(t)
.l +RSη

(t+1)
.l − ζ(t+1)

.l , l = 1, . . . , p

• Update κkl : κ
(t+1)
kl = κ

(t)
kl + Λ

(t+1)
kl − ν(t+1)

kl , l = 1, . . . , p, k = 1, . . . , K

• t← t+ 1

End repeat until convergence.

Here STλ1/ρ,a(·) is the element-wise soft thresholding operator (STO) proposed while

VSTλ2/ρ(·) is the vector soft thresholding operator (VSTO). The definitions of STO and

VSTO can be found in Huang et al. (2015).

Note that the manifold ADMM is extremely simple and easy to implement. The updates of

{η,Λ} can be carried out using any standard smooth manifold optimization method, e.g., SD

method (Townsend et al., 2016). Similarly to common implementation of ADMM algorithms,

there is no need to solve the optimization problem exactly; instead, only a few iterations

of manifold optimization are done. Furthermore, for Euclidean space, these optimization

problems have closed-form solutions (Huang et al., 2015). On the other hand, the updates of

{ζ,ν} also have closed-form expressions here. ρ is the only parameter of the algorithm and
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its choice is not critical for convergence. In our experiments, we used a rather arbitrary fixed

value of ρ, though in the ADMM literature it is common to adapt ρ at each iteration, e.g.

using the strategy described in Boyd et al. (2011).

4.1.4 Convergence Properties and Asymptotic Properties

Motivated by Wen et al. (2012), we can establish that, under some regularity con-

ditions, any limit point of the iteration sequence generated by Algorithm 2, denoted

as (η,Λ∗, ζ∗,ν∗, δ∗,κ∗), is a KKT point of Lρ(η,Λ, ζ,ν, δ,κ), which satisfies, for l =

1, . . . , p, k = 1, . . . , K,



∇η.lQ̃p(η
∗,Λ∗) + ρ

∑p
l=1 S

TRT (RSη∗.l − ζ
∗
.l + δ∗.l) = 0

∇ΛklQ̃p(η
∗,Λ∗) + ρ

∑p
l=1

∑K
k=1(Λ∗kl − ν∗kl + κ∗kl) = 0

ζ∗.l = STλ1/ρ(RSη
∗
.l + δ∗.l)

ν∗kl = VSTλ2/ρ(Λ
∗
kl + κ∗kl)

RSη∗.l = ζ∗.l

Λ∗kl = ν∗kl

(4.20)

The convergence property is summarized in Theorem 4.1, and the proof is given in Appendix.

Theorem 4.1. Assume that ψ(·) :M→ Rp is an identity embedding, and function Q̃p(η,Λ)

is nonconcave with respect to η and Λ. Let {(ηt,Λt, ζt,νt, δt,κt)} be a sequence generated

by Algorithm 2. Assume that limt→∞ ‖δt+1− δt‖ = 0, limt→∞ ‖κt+1−κt‖ = 0, and {(ζt,νt)}

are bounded, then there exists a subsequence of {(ηt,Λt, ζt,νt, δt,κt)} such that it converges

to a KKT point satisfying Equation (4.20).

Second, besides the convergence properties, we can further establish the consistency of

penalized estimator in MGFA for fixed number of parameters dim(θ), fixed number of factors

q and fixed number of clusters K (Khalili and Chen, 2007; Städler et al., 2010). Instead of the

definition of θ in (4.5), we re-define θ as (βT ,diag(Ω)T ,vec(η)T ,vec(Λ)T )T , which can be

treated as an embedding in Euclidean space. Here we considered two cases: (i) the parameter
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orderings U l and V l are known; (ii) consistently estimated parameter orderings are used.

Let the collection of true location parameter orderings and their absolute values ordering

be W = {U l,V l}pl=1, and the estimated orderings based on the consistent estimators in

MGFA without penalization be Ŵ = {Û l, V̂ l}pl=1. Denote the penalized estimator in MGFA

as θ̂
W

n when W is known, and θ̂
Ŵ

n when Ŵ is used. When the true location parameter

orderings and their absolute values ordering W is known, the consistency of θ̂
W

n is presented

in Theorem 4.2. Proof of Theorem 4.2 is provided in Appendix.

Theorem 4.2. Let (xi,wi), i = 1, 2, . . . , n, be a random sample drawn from f(x|w,θ0)p(w).

The penalty parameters satisfy λj = O(n−
1
2 ) for j = 1, 2, and the initial estimates σ̃l and

µ̃kl in the weights alk are
√
n-consistent. If the true location parameter orderings and their

absolute values ordering W is known, then under some mild regularity conditions (see (C1)

and (C2) in Appendix), there exists a local maximizer θ̂
W

n of the penalized log-likelihood

function logLp(θ) such that

‖θ̂
W

n − θ0‖2 = Op(n
− 1

2 ), (4.21)

where ‖ · ‖2 represents the L2 norm in Euclidean space.

Before we show the consistency based on the estimated parameter ordering Ŵ , the

consistency of Ŵ is presented in the following Lemma 4.1.

Lemma 4.1. If θ̂ is a root-n consistent estimator of θ, then we have

lim
n→∞

P (Û l = U l) = 1, and lim
n→∞

P (V̂ l = V l) = 1, l = 1, . . . , p. (4.22)

The proof of Lemma 4.1 is given in Appendix. By using Lemma 4.1, we are able to extend

the properties in Theorem 4.2 to the estimator based on the estimated parameter ordering

Ŵ . Proof of Theorem 4.3 is provided in Appendix.

47



Theorem 4.3. Let (xi,wi), i = 1, 2, . . . , n, be random samples from f(x|w,θ0)p(w). The

penalty parameters satisfy λj = O(n−
1
2 ) for j = 1, 2, and the initial estimates σ̃l and µ̃kl in

the weights alk are
√
n-consistent. If consistently estimated parameter orderings Ŵ are used,

then under some mild regularity conditions (see (C1) and (C2) in Appendix), there exists a

local maximizer θ̂
Ŵ

n of the penalized log-likelihood function logLp(θ) such that

‖θ̂
Ŵ

n − θ0‖2 = Op(n
− 1

2 ), (4.23)

Third, we present the oracle property of estimator of ζ = RSη in our penalized MGFA

according to two cases mentioned above. In addition, let A = ∪{Al}pl=1 be the index set of

nonzero values in ζ, i.e., Al = {(l, k), ζkl 6= 0}, l = 1, . . . , p, and Ac is the complement of A.

Then ζ can be divided into two parts, the true-zero set ζAc and the nonzero set ζA. Similarly,

let ÂW and ÂŴ be the index sets of nonzero elements in ζ̂
W

and ζ̂
Ŵ
.

Theorem 4.4. Suppose that tuning parameters satisfy λj = o(n−
1
2 ), nλj →∞, j = 1, 2, and

the initial estimates σ̃l and µ̃kl in the weights alk are
√
n-consistent. If the true location

parameter orderings and their absolute values ordering W is known, then under some mild

regularity conditions (see (C1) and (C2) in Appendix), the penalized estimator ζ̂
W

satisfies

• (i) (Selection Consistency) limn→∞ P (ÂW = A) = 1;

• (ii) (Asymptotic Normality)
√
n[ζ̂

W

A − ζA] −→
d
N(0, I(ζA)−1), where I(ζA) is the sub-

matrix of Fisher information matrix I(θ0) corresponding to set A.

Theorem 4.4 states that when the location parameter orderings W is known, under mild

regularity conditions, the penalized estimator enjoys selection consistency and asymptotic

normality. The proof of Theorem 4.4 follows the augments in Zou (2006), Städler et al. (2010),

and Tang and Song (2016), and is given in Appendix.

Theorem 4.5. Suppose that tuning parameters satisfy λj = o(n−
1
2 ), nλj →∞, j = 1, 2, and

the initial estimates σ̃l and µ̃kl in the weights alk are
√
n-consistent. If consistently estimated
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parameter orderings Ŵ are used, then under some mild regularity conditions (see (C1) and

(C2) in Appendix), the penalized estimator θ̂
Ŵ

satisfies

• (i) (Selection Consistency) limn→∞ P (ÂŴ = A) = 1;

• (ii) (Asymptotic Normality)
√
n[ζ̂

Ŵ

A − ζA] −→
d
N(0, I(ζA)−1), where I(ζA) is the sub-

matrix of Fisher information matrix I(θ0) corresponding to set A.

Theorem 4.5 states that when consistently estimated parameter orderings Ŵ are used,

under mild regularity conditions, the penalized estimator still enjoys selection consistency

and asymptotic normality. The proof of Theorem 4.5 is given in Appendix. The asymptotic

normality for µ can also be derived by a simple linear transformation.

4.1.5 Model selection

We use the 2-fold cross predictive log-likelihood method as our model selection criterion to

select the number of factors q, the number of components K, and the penalty parameters λ1

and λ2 through an exhaustive search. Specifically, in the 2-fold cross predictive log-likelihood

method, the original dataset is randomly partitioned into 2 equal size sub-datasets, where

one sub-dataset is retained as the testing dataset, and the other is used as the training

dataset. For any given (q,K, λ1, λ2), we estimate the penalized estimator θ̂ based on the

training dataset, and calculate the predictive log-likelihood function logL(θ̂) based on the

testing dataset. Then we estimate θ̂ based on the testing dataset and calculate the predictive

log-likelihood function logL(θ̂) based on the training dataset. Consequently, these two

predictive log-likelihood function values can be averaged, and the optimal (q̂, K̂, λ̂1, λ̂2) is

chosen based on the largest average predictive log-likelihood value.

We use the random EM algorithm to compute the penalized estimator of θ, since the

EM algorithm is an iterative procedure and its performance strongly depends on its starting

points. For MGFA, a good initialization is crucial for calculating θ̂ due to the presence of

multiple local maxima of the penalized likelihood function. Specifically, for any given value

of (q,K, λ1, λ2), multiple starting points are chosen and the relevant log-likelihood functions
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are calculated. The initial values that have the highest log-likelihood function are used as

the starting point of the EM algorithm. In simulation studies and real data analysis, the

manifold K-means method (Canas et al., 2012) is used for initializing mean parameter µm,

while the principal geodesic analysis method (Fletcher et al., 2004) is used to initialize the

factor loading matrices Λm and the common covariance matrix Ω.

4.2 Simulation studies

In this section, we apply our MGFA model on data simulated from three different

symmetric spaces, including (i) Euclidean space Rp; (ii) sphere Sp; and (iii) shape space. For

the data in shape space, we simulated the data from ADHD-200 Corpus Callosum Shape

Data (Huang et al., 2015; Cornea et al., 2017). We set the sample size n = 100, and the

number of cluster K = 2. The detailed simulation settings and performance are listed in the

following subsections. For each setting, we simulated N = 200 data sets.

4.2.1 Euclidean space Rp

In Euclidean space, our MGFA is equivalent to the Mixture of factor analyzers (MFA).

Here we compared our method with other clustering methods established in Euclidean space,

including K-means, Gaussian mixture model (GMM), and our MGFA without penalization.

The following mixture model is considered.

2∑
k=1

πk(ziβk)φ(xi,µk,Σk), i = 1, . . . , n, (4.24)

where φ(·) is probability density function for multivariate normal distribution (p = 100).

In each cluster, the parameter µk = (cT0 , c
T
1 , c

T
2 )T for k = 1, 2. Here c0 is a 10 × 1 vector

which is different across clusters, c1 is a 70 × 1 vector shared by different clusters, and c2

is a 20× 1 vector with all elements zeros. In particular, all the elements in c0 and c1 were

generated from N(0, 0.5). We set zi = (1, zi,1) in the logistic model of mixing proportions, in

which zi,1 were independently generated from uniform U(−1, 1). We also set β1 = (1, 2)T
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and β2 = (−1, 1)T , respectively. In order to demonstrate the robustness of our MGFA, we

considered two different cases for the spatial correlation structure as follows:

• Case 1: simple diagonal matrix: Σk = σ2
kI100, k = 1, 2;

• Case 2: AR(2) model: Σj,j′

k = σ2
k(0.25k)|j−j

′|, j, j′ ≤ 2, k = 1, 2

• Case 3: latent factor analysis model: Σk = ΛkΛ
T
k + Ω, k = 1, 2.

The scale parameters σk, k = 1, 2 in Cases 1 and 2 were generated from U(0.5, 0.6) and

U(0.8, 1), respectively. In Case 2, the number of loading factors was set as q = 2. The latent

variable bmi was generated from N(0, I2), while the diagonal elements in Ω, independently

of bmi, were generated from N(0, 0.5). For the loading matrices Λk, k = 1, 2, the elements

of the first 50 rows of each matrix were independently generated from N(1, 2) and N(2, 1),

respectively, while the elements in the rest of rows were set as zero.

For all the three cases, we fitted GMM, MGFA, and penalized MGFA to each simulated

data set with unspecified correlation structure. The Rand index (RI) (Rand, 1971b) and

adjusted Rand index (aRI) (Hubert and Arabie, 1985b) were used to compare the clustering

results with the ground truth and to evaluate the finite sample performance of all the four

models. Table 4.1 presents the simulation results for Cases 1-3. For Case 1, all the four

models show excellent clustering performance, i.e, both RI and aRI are above 0.9. From Case

2 to Case 3, as the correlation structure becomes more complex, the performance of K-means,

GMM and MGFA are getting poorer and poorer. In the contrast, the penalized MGFA is

stable in terms of clustering performance (all above 0.85). Therefore, our proposed model is

robust to the misspecification of correlation structure and shows high clustering performance

in Euclidean space.

4.2.2 Sphere Sp

In order to demonstrate the robustness of our MGFA, we applied the R package movMF

(Banerjee et al., 2005; Hornik and Grün, 2014) to generate the data from mixtures of von
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Table 4.1: Performance of K-means, GMM, MGFA, and penalized MGFA models in Cases
1-3.

Case 1
Cluster K̂ K-means GMM MGFA penalized MGFA

1 0 1 0 1
2 193 195 194 198
3 7 4 6 1

RI(aRI) 0.93(0.90) 0.95(0.92) 0.95(0.92) 0.98(0.97)
Case 2

Cluster K̂ K-means GMM MGFA penalized MGFA
1 0 6 2 1
2 183 185 189 193
3 17 9 9 6

RI(aRI) 0.87(0.83) 0.88(0.83) 0.89(0.84) 0.97(0.93)
Case 3

Cluster K̂ K-means GMM MGFA penalized MGFA
1 1 8 3 2
2 173 175 177 190
3 26 17 20 8

RI(aRI) 0.70(0.64) 0.74(0.69) 0.74(0.68) 0.89(0.85)

Mises-Fisher distributions (Mardia and Jupp, 2009). The probability density function of the

von Mises-Fisher distribution for x ∈ Sp is given by:

fp(x;µ, κ) = Cp(κ) exp
(
κµTx

)
, (4.25)

where Cp(κ) is the normalization constant, µ ∈ Sp is called the mean direction, and κ ≥ 0 is

called the concentration parameter. The smaller the concentration parameter is, the more

scatteredly points drop on the sphere.

We set wi = (1, wi,1) and βk, k = 1, 2, in the logistic model of mixing proportions, in

which wi,1 were independently generated from uniform U(−1, 1) and βk = (1,−1)T , k = 1, 2.

For the dimension of the sphere Sp, two cases were considered: (1) 2D sphere (p = 2); and (2)

high dimensional hyper-sphere (p = 49). For Case 1, the mean directions in (4.25) were set as

µ
1

= (1, 0, 0)T and µ
2

= (0, 1, 0)T , while in Case 2 µ
1

= e1 and µ
2

= e25, in which ei is the i-
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th standard basis vector in R50. Three different settings of the concentration parameters were

demonstrated for both Case 1 and Case 2: In Case 1, (i) (κ1, κ2) = (8, 10), (ii) (κ1, κ2) = (5, 6),

and (iii) (κ1, κ2) = (2, 3); in Case 1, (i) (κ1, κ2) = (18, 22), (ii) (κ1, κ2) = (16, 14), and (iii)

(κ1, κ2) = (8, 10).

We fitted mixtures of von Mises-Fisher distributions (movMF) (Banerjee et al., 2005),

MGFA, and penalized MGFA to the simulated data set, where movMF and MGFA were

conducted in Case 1 while movMF and penalized MGFA in Case 2. In both cases, we

considered three set-ups with different values of the concentration parameters (κ1 and κ2).

In order to visualize the MGFA clustering results in Case 1, we randomly chose one

data set and its clustering result. In Fig. 4.2, data points from Group 1 are labeled in ‘∗’,

while points from Group 2 are labeled in ‘•’. For clustering results, points in Cluster 1 are

highlighted with symbol ‘�’, while points in Cluster 2 are in circles. It can be found out

that, for all three different set-ups, no matter whether points in each group are concentrate

or not, most points within the same group are clustered together, which shows the excellent

performance of MGFA in low dimensional cases.
 

 

Sphere
Group 1
Group 2
Cluster 1
Cluster 2

 

 

Sphere
Group 1
Group 2
Cluster 1
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Figure 4.2: 2D Sphere data clustering for different settings of the concentration parameters.

Table 4.2 presents the simulation results corresponding to different settings of concentration

parameters in both Cases 1 and 2. From Table 4.2, movMF, MGFA (Case 1), and penalized

MGFA (Case 2) all perform well (Rand Index are all above 0.85) when data points from the

same group are centralized, whereas the clustering performance of all three models decline

when the data points belonging to the same group drop scatteredly on the sphere. Moreover,
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in Case 2, the performance index of movMF drops down very fast (adjusted Rand Index is

below 0.1 in the third set-up) when the concentration parameters become smaller. In contrast,

the performance index of penalized MGFA drops down slowly and performs much better

than movMF. Therefore, even though the underlying distribution is unknown to MGFA

and penalized MGFA, both MGFA and penalized MGFA perform as well as movMF when

concentration parameters are of large scales, and outperform movMF when concentration

parameters become smaller in Cases 1 and 2. Therefore, our proposed model is robust to

the unknown underlying distribution and show excellent clustering performance in both low

dimensional and high dimensional cases.

Table 4.2: Performance of movMF, MGFA, and penalized MGFA for Cases 1 and 2

Case 1: 2D sphere (p = 2)
Model Cluster K̂ (κ1, κ2) = (8, 10) (κ1, κ2) = (5, 6) (κ1, κ2) = (2, 3)

1 0 1 22
movMF 2 199 187 158

3 1 12 20
RI(aRI) 0.982(0.943) 0.862(0.723) 0.750(0.501)

1 0 3 13
MGFA 2 200 190 176

3 0 7 11
RI(aRI) 1.000(0.998) 0.888(0.776) 0.781(0.549)

Case 2: high dimensional hyper-sphere (p = 49)
Model Cluster K̂ (κ1, κ2) = (18, 22) (κ1, κ2) = (16, 14) (κ1, κ2) = (8, 10)

1 8 32 73
movMF 2 177 124 65

3 15 44 62
RI(aRI) 0.854(0.707) 0.718(0.435) 0.526(0.052)

1 2 21 34
penalized 2 189 160 121
MGFA 3 9 19 45

RI(aRI) 0.922(0.883) 0.817(0.700) 0.741(0.461)
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4.2.3 Shape space

For the data in shape space, we simulated the data from ADHD-200 Corpus Callosum

Shape Data (Lin et al., 2017; Huang et al., 2015; Cornea et al., 2017). For comparison, along

with our penalized MGFA, compared it with the mixtures of offset-normal shape (MOS)

model (Kume and Welling, 2010), and penalized mixtures of offset-normal shape factor

analyzers (MOSFA) (Huang et al., 2015). To show the robustness of our MGFA for shape

data, we simulated CC shape data from the MOSFA, in which the offset-normal probability

density function can be written as

fu(u;µ,Σ) =
|Γ| 12 exp(−g/2)

(2π)k−2|Σ| 12

k−2∑
i=0

(
k − 2

i

)
E(l2ix |ξx, σ2

x)E(l2k−4−2i
y |ξy, σ2

y), (4.26)

where Σ = ΛΛT + Ω, Γ = (W TΣ−1W )−1, g = vec(µ)TΣ−1vec(µ) − νTΓ−1ν, ν =

ΓW TΣ−1vec(µ), and (ξx, ξy)
T = ΨTν, in which Ψ is the eigenvector matrix of Γ such

that Γ = ΨDΨT and D = diag(σ2
x, σ

2
y). Moreover, E(lr|ξ, σ2) denotes the rth moment of

N(ξ, σ2). All the simulation settings are same as those in (Huang et al., 2015). For the

completeness of simulation studies, we described the settings as follows. The number of

landmarks along the CC contour is 50. The contours of two randomly selected subjects (one

normal control and one patient) from the ADHD-200 data were set as the mean shapes of

two different clusters (see Figure 4.3). In each cluster, the landmark configuration of each

subject was set as the true value of the parameter µk for k = 1, 2. We set zi = (1, zi,1) in

the logistic model of mixing proportions, in which zi,1 were independently generated from

uniform U(−1, 1). We also set β1 = (1, 2)T and β2 = (−1, 1)T , respectively. For the factor

analyzer structure, the number of loading factors was set as q = 2. The latent variable

was generated from N(0, I2), while the error terms, independently of the latent variable,

were generated from N(0,Ω), where the diagonal elements in Ω were simulated from U(1, 2).

For the loading matrices Λk, k = 1, 2, the elements of the first `0 rows of each matrix were

independently generated from N(c1, 2) and N(c2, 1), respectively, while the elements in the
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rest of rows were set as zero.
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Figure 4.3: Contours and landmarks of two randomly selected subjects from the ADHD-200
data set.

Table 4.3 presents the simulation results corresponding to different values of (`0, c1, c2)

for MOS, penalized MOSFA, and penalized MGFA. Table 4.3 shows that both MGFA and

penalized MOSFA outperform MOS. Furthermore, penalized MGFA has the smallest Rand

index and adjusted Rand index being larger than 0.85 for all values of `0 in the two set-ups.

In contrast, penalized MOSFA performs better for `0 = 90 in Set-up 1, whereas penalized

MGFA performs better for `0 = 60 and `0 = 90 in Set-up 2.

4.3 Real data analysis

4.3.1 ADNI data description

Data used in the preparation of this article were obtained from the ADNI database

(adni.loni.usc.edu). The ADNI was launched in 2003 by the National Institute on Aging,

National Institute of Biomedical Imaging and Bioengineering, Food and Drug Administration,

private pharmaceutical companies and non-profit organizations as a $60 million, 5-year

public-private partnership. The primary goal of ADNI has been to test whether serial

magnetic resonance imaging (MRI), positron emission tomography, other biological markers,

and clinical and neuropsychological assessment can be combined to measure the progression
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Table 4.3: Comparison of MOS, penalized MOSFA, and penalized MGFA.

Set-up 1: c1 = 2, c2 = 1 Set-up 2: c1 = 5, c2 = 2

Model Cluster K̂ `0 = 30 `0 = 60 `0 = 90 `0 = 20 `0 = 40 `0 = 60
1 0 25 29 32 46 56

MOS 2 200 172 22 139 102 31
3 0 3 149 29 52 113

RI(aRI) 1(1) 0.95(0.92) 0.59(0.17) 0.86(0.74) 0.76(0.54) 0.61(0.20)
1 0 0 1 1 1 5

penalized 2 200 199 195 198 185 169
MOSFA 3 0 1 4 1 14 26

RI(aRI) 1(1) 1(0.99) 0.98(0.93) 0.99(0.99) 0.90(0.89) 0.86(0.82)
1 0 0 2 0 2 6

penalized 2 200 198 193 198 188 176
MGFA 3 0 2 5 2 10 18

RI(aRI) 1(1) 1(0.99) 0.96(0.92) 0.99(0.99) 0.92(0.90) 0.88(0.85)

of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). Determination of

sensitive and specific markers of very early AD progression is intended to aid researchers and

clinicians in developing new treatments and monitoring their effectiveness, as well as lessening

the time and cost of clinical trials. The principal investigator of this initiative is Michael W.

Weiner, MD, at the VA Medical Center and University of California, San Francisco. ADNI

is the result of efforts of many coinvestigators from a broad range of academic institutions

and private corporations, and subjects have been recruited from over 50 sites across the U.S.

and Canada. The goal was to recruit 800 subjects, but the initial study (ADNI-1) has been

followed by ADNI-GO and ADNI-2. To date, these three protocols have recruited over 1,500

adults, ages 55 to 90, to participate in the research, consisting of cognitively normal older

individuals, people with early or late MCI, and people with early AD. The follow-up duration

of each group is specified in the protocols for ADNI-1, ADNI-2 and ADNI-GO. Subjects

originally recruited for ADNI-1 and ADNI-GO had the option to be followed in ADNI-2. For

up-to-date information, see www.adni-info.org.
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4.3.2 Data Processing

In this data analysis, we included 410 MRI scans from healthy controls and individuals

with AD (186 AD and 224 healthy controls) from ADNI-1. The scans (from 214 men and

196 women, ages 75.88± 6.21 years), which were performed on a variety of 1.5 Tesla MRI

scanners with protocols individualized for each scanner, include standard T1-weighted images

obtained using volumetric 3-dimensional sagittal MPRAGE or equivalent protocols with

varying resolutions. The typical protocol includes: repetition time = 2400 ms, inversion time

= 1000 ms, flip angle = 8o, and field of view = 24 cm, with a 256× 256× 170 acquisition

matrix in the x−, y−, and z−dimensions, which yields a voxel size of 1.25× 1.26× 1.2 mm3.

We processed the MRI data by using standard steps, including anterior commissure and

posterior commissure correction, skull-stripping, cerebellum removing, intensity inhomogeneity

correction, segmentation, and registration. Subsequently, we carried out automatic regional

labeling by labeling the template and by transferring the labels following the deformable

registration of subject images. After labeling 93 ROIs, we were able to compute volumes for

each of these ROIs for each subject.

We adopted a hippocampal subregional analysis package based on surface fluid registration

(Shi et al., 2013; Wang et al., 2011) that uses isothermal coordinates and fluid registration to

generate one-to-one hippocampal surface registration for computing the surface statistics.

Then, we computed the radial distance at each vertex on the surface (p=15,000 vertices on

both left and right hippocampal surfaces). In order to remove the volumetric information, we

normalized the radial distance such that the radial distances of all the vertices were projected

to one point lying on the high dimensional unit sphere Sp−1. In the following section, we will

compared our proposed penalized MGFA with some other methods in clustering the spherical

data.

4.3.3 Data Analysis

We compared our penalized MGFA model and other two methods: mixtures of von

Mises-Fisher distributions (movMF) and spherical K-means (spkmeans (Buchta et al., 2012)).
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In penalized MGFA, we set w =(1, Gender, Handedness, Education length, Age, RD norm),

where RD norm is the norm used for radius distance normalization for each subject. The

clustering results for all the three methods are summarized in Table 4.4.

Table 4.4: Comparison of movMF, spkmeans, and penalized MGFA for both left and right
hippocampal surfaces.

Left Hippocampal surface
Model K̂ cluster size NC subgroup AD subgroup

movMF 2 (208, 202) (153, 71) [68.3%] (55, 131) [70.4%]
spkmeans 2 (232, 178) (172, 52) [76.8%] (40, 126) [67.7%]

penalized MGFA 3 (206 ,43, 161) (198, 9, 9) [88.4%] (8, 34, 152) [81.7%]
Right Hippocampal surface

K̂ cluster size NC subgroup AD subgroup
movMF 1 - - -

spkmeans 1 - - -
penalized MGFA 2 (221, 189) (180, 45) [80.4%] (41, 144) [77.4%]

For the left hippocampal surface, both movMF and spkmeans detect 2 clusters while

our penalized MGFA detected 3 clusters. If we recalled the diagnostic information for each

subjects, it can be found that our penalized MGFA outperforms other two methods in terms

of consistency between clustering membership and diagnostic status. Specifically, in penalized

MGFA, the first cluster contains most of normal controls (88.4%) while the third cluster

contains most ADs (81.7%). For the right hippocampal surface, movMF and spkmeans fail

in clustering, i.e., only one cluster was detected by either on the two method. In comparison,

our penalized MGFA successfully detects 2 clusters where the first cluster includes 80.4%

normal controls while the second one contains 77.4% ADs. The estimated location parameters

in each cluster are presented in Figure 4.4. For both left and right hippocampal surfaces, the

estimated parameters are consistent at most components across different clusters, which means

the pairwise fused lasso is reasonable in this clustering task. In addition, the cluster-wise

difference in estimated position parameters is consistent with the diagnosis information: most

normal controls are in the first cluster, whereas most ADs are in the last cluster. To better

understand the subregions where the estimated parameters are different across clusters, the
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cytoarchitectonic subregions mapped on blank MR-based models at 3T of the hippocampal

formation (Frisoni et al., 2008) is considered here and presented in right plot of Figure 4.4.

It shows that all the subregions associated with the cluster-wise difference in the estimated

parameters are found in the CA1 subfield. It is interesting to note that atrophies at similar

hippocampal subregions were found in AD (Frisoni et al., 2008), indicating that this finding

based on our penalized MGFA is in agreement with those of previous work.

Cluster 1

Cluster 2

Cluster 3

Left Right

0.20

Frisoni et al. (2008) Brain

Figure 4.4: ADNI hippocampal surface data analysis: (left) estimated location parameters in
three clusters for left hippocampal surface; (middle) estimated location parameters in two
clusters for right hippocampal surface; (right) the cytoarchitectonic subregions mapped on
blank MR-based models at 3T of the hippocampal formation.

4.4 Conclusions

We have developed a penalized MGFA clustering framework for clustering high-dimensional

manifold data in symmetric spaces. MGFA can successfully address the major challenges

including a symmetric space, a high dimensional feature space, and manifold data variation

associated with some covariates. An efficient MCEM algorithm coupled with the Hamiltonian

Monte Carlo algorithm has been developed to calculate the penalized MLE. Our simulations

on data from diferent symmetric spaces like Euclidean space, sphere, and shape space,

have confirmed that our MGFA outperforms some existing clustering methods in different
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scenarios. The clustering results on ADNI hippocampal surface data analysis has shown that

penalized MGFA can undercover meaningful clusters which are consistent with the diagnosis

information. Investigations on some other symmetric spaces, e.g., Grassmannians, and the

spaces of positive-definite symmetric matrices, will be conducted in our future work.
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CHAPTER 5: SURROGATE VARIABLE ANALYSIS FOR

MULTIVARIATE FUNCTIONAL RESPONSES IN IMAGING DATA

5.1 Method

5.1.1 Functional latent factor regression model (FLFRM)

Suppose that we observe both the imaging data and clinical covariates from n unrelated

subjects. Assumed that all the imaging data has been well registered to a common template,

i.e., S ⊂ Rd. The template S includes nv points, s1, . . . , snv , which have common density p(s)

with support supp(p) ⊆ Rd. For each registered image, there are J imaging measurements

(or features) that have been derived, which will be treated as the functional responses later.

In particular, at each point sk, the image data including J features is denoted as an n× J

matrix, y(sk) = (y.1(sk), . . . ,y.J(sk)). In addition, letX be an n×p full column rank matrix

of observed covariates including the intercept. In order to build up the relationship between

multivariate imaging responses and covariates of interest, a multivariate varying coefficient

model (MVCM) was developed in Zhu et al. (2012):

y.j(sk) = Xβj(sk) + η.j(sk) + ε.j(sk), j = 1, . . . , J, (5.1)

where B(sk) = (β1(sk), . . . ,βJ(sk)) is a p × J matrix representing the primary effect

related to the observed covariates X. Moreover, η(sk) = (η.1(sk), . . . ,η.J(sk)) is an n× J

matrix which characterizes both subject-specific and location-specific spatial variability, and

ε(sk) = (ε.1(sk), . . . , ε.J(sk))
T are measurement errors. It is also assumed that the i-th row

in η(sk) and that in ε(sk) are mutually independent and identical copies of SP(0,Ση) and

SP(0,Σε), respectively, where SP(µ,Σ) denotes a stochastic process vector with mean function
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µ(s) and covariance function Σ(s, s′). Moreover, Σε(s, s
′) takes the form of Ωε(s)1(s = s′),

where Ωε(s) is a diagonal matrix and 1(·) is the indicator function.

In MVCM, the unobserved or latent factors can be captured by the individual functions

η(s) based on the functional PCA approach (Wang et al., 2016). Specifically, we consider

a spectral decomposition of Ση(s, s
′) = (Ση,jj′(s, s

′)) and its approximation. According to

Mercer’s theorem (Mercer, 1909), if Ση(s, s
′) is continuous on S ×S, then Ση,jj′(s, s

′) admits

a spectral decomposition as

Ση,jj′(s, s
′) =

∞∑
l=1

κjlψjl(s)ψjl(s
′) j = 1, . . . , J, (5.2)

where κj1 ≥ κj2 ≥ · · · ≥ 0 are ordered eigenvalues of a linear operator determined by Ση,jj

with
∑∞

l=1 κjl <∞ and the ψjl(s)’s are the corresponding principal components (Yao and

Lee, 2006; Hall et al., 2006). Then each individual function ηi(s) = (ηij(s)) admits the

Karhunen-Loeve expansion as

ηij(s) =
∞∑
l=1

ζijlψjl(s), (5.3)

where ζijl =
∫
S
ηij(s)ψjl(s)ds is referred to as the jl-th functional principal component (PC)

scores of the i-th subject such that E(ζijl) = 0 and E(ζ2
ijl) = κjl. Furthermore, all the PC

scores {ζijl} can be used to recover the structure of latent factors. However, according to

the estimation procedure in Zhu et al. (2012), the observed covariates X are assumed to be

uncorrelated with the latent factor information stored in individual functions η(s), which is

not applicable in practice. For example, in Alzheimer’s disease (AD) study, the diagnostic

information is usually observed and of interest while the marital status information is usually

unlikely to be included into the analysis. In fact, the association between marital status and

AD has been confirmed many times in the existing literature (Helmer et al., 1999; Sundström

et al., 2016; Sommerlad et al., 2018).
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In order to address this issue, our FLFRM is described as below:

y.j(sk) = Xβj(sk) +Zγj(sk) + η.j(sk) + ε.j(sk), j = 1, . . . , J, (5.4)

where Z is a n× q full column rank matrix of latent factors, and q is the number of latent

factors, which is unknown. The q × J matrix Γ(sk) = (γ1(sk), . . . ,γJ(sk)) represents the

effect caused by Z. Besides the distribution assumptions of η(s) and ε(s) in FLFRM (5.4),

another assumption is required here on the coefficient functions B(s) and Γ(s):

Assumption 5.1. Given that s1, . . . , sm have common density p(s) with support supp(p) ⊆

Rd, the row vectors of B(s) and the row vectors of Γ(s) are orthogonal with respect to (w.r.t.)

p(s) on S after mean centering, i.e.,

∫
s

B(s)(IJ − P J)ΓT (s)p(s)ds = 0,

where P J = 1J(1T1J)−11TJ , and 1J is a J-dimensional vector having each entry equal to 1.

Similar assumptions for model identification can be found in some existing methods

(see Sun et al. (2012); Lee et al. (2017)). Actually, this assumption is also reasonable in

practice. For example, in neuroimage data analysis, batch effects are usually caused by the

study-level heterogeneity in imaging acquisition protocols. Their effect sizes would not be

correlated with those of population differences (Lee et al., 2017). In the following subsections,

both estimation procedure and inference procedure will be discussed, and the corresponding

asymptotic properties will be investigated as well.

5.1.2 Estimation procedure

The estimation procedure can be divided into three steps here: Step 1. local linear kernel

(LLK) smoothing on FLFRM after reparameterization; Step 2. singular value decomposition

(SVD) on extended residual matrix; Step 3. bias correction of estimates in Step 1.
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Step 1: LLK smoothing on FLFRM after reparameterization Our FLFRM can be

reparameterized by applying the orthogonal decomposition on the matrix Z (see Figure 5.1):

Figure 5.1: Orthogonal projection of the columns in Z onto the column space of X.

y.j(sk) = Xβ∗j(sk) +Z∗γj(sk) + η.j(sk) + ε.j(sk), j = 1, . . . , J, (5.5)

where β∗j(sk) = βj(sk)+(XTX)−1XTZγj(sk), Z
∗ = (In−PX)Z, and PX = X(XTX)−1XT .

Obviously, the columns of X are orthogonal to those of Z∗. Then, given that y.j(sk), j =

1, . . . , J, and X are observed, the multivariate LLK smoothing technique (Ruppert and

Wand, 1994; Fan and Gijbels, 1996; Zhang and Chen, 2007) can be applied here to derive the

weighted least squares (WLS) estimator of β∗j(sk) in (5.5). Specifically, let K(·) be the kernel

function, and Hβ be the bandwidth matrix, which is positive definite (e.g., a simple diagonal

form). Also, denote KHβ(s) = |Hβ|−1K(H−1
β s), and zHβ(sk − s) = (1, (sk − s)TH−1

β )T . For

each j and fixed Hβ, the WLS estimator of β∗j(sk) is derived as

β̂
∗
j(s) = (XTX)−1XT

nv∑
k=1

ak(Hβ, s)y.j(sk), (5.6)

where ak(Hβ, s) = (1,01×d)[
∑nv

k=1KHβ(sk − s)zHβ(sk − s)⊗2]−1KHβ(sk − s)zHβ(sk − s).

Since there is no linearity assumption on the coefficient function β∗j(s), the local linear

smoother β̂
∗
j(s) is a biased estimator (Fan and Gijbels, 1996). To overcome this issue, a
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standard technique considered here is the bias correction. Following the pre-asymptotic

substitution method in Fan and Gijbels (1996), the bias term can be obtained by using local

cubic fit with a pilot bandwidth selected in (5.6). Furthermore, according to the definition of

β∗j(s), the key aim in the following two steps is to seek an estimate of Zγj(s). Then the

estimate of βj(s) can be derived by subtracting the term (XTX)−1XT Ẑγj(s) from β̂
∗
j(s).

Step 2: SVD on extended residual matrix The residual term in Step 1 is defined as

r.j(s) = y.j(s)−X[β̂
∗
j(s)− ̂

bias(β̂
∗
j(s))], j = 1, . . . , J, (5.7)

where ̂
bias(β̂

∗
j(s)) is an estimate of the bias term in β̂

∗
j(s). Then, given S,X, and Z, the

conditional expectation of the residual term can be derived as (Ruppert and Wand, 1994):

E[r.j(s)|S,X,Z] = Z∗γj(s) + op(Tr(H2
β)), j = 1, . . . , J, (5.8)

where Tr(·) is the trace of a given matrix. To estimate the primary term Z∗ in (5.8), the

SVD technique is first performed on the n× Jnv extended residual matrix

R̄
.
= [r.1(s1), . . . , r.1(snv), . . . , r.J(s1), . . . , r.J(snv)] . (5.9)

Then the corresponding SVD is denoted as R̄ = UΛV T , where the columns of U and V

consist of the left and right singular vectors, respectively, and Λ is a diagonal matrix whose

diagonal entries are the ordered singular values of R̄. According to the results in Lee et al.

(2017), we will show that the first q columns in U , U 1:q, can be treated as an estimator of

linear combinations of the columns of Z∗. Then there exists a q × q orthonormal matrix Q

and a function αj(s) such that

U 1:q = (In − PX)G+ op(1), G = ZQ, and αj(s) = QTγj(s). (5.10)
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Step 3: bias correction of estimates in Step 1 To derive the estimate of αj(s), the

residual terms in (5.7) are treated as the functional responses. Then, a new varying coefficient

model is constructed via substituting the SVD results:

r.j(s) = U 1:qαj(s) + η.j(s) + ε.j(s), j = 1, . . . , J. (5.11)

Similar to the derivation of β̂
∗
j(s), for each j and fixed Hα, the WLS estimator of αj(s) is

given as

α̂j(s) = UT
1:q

m∑
k=1

ak(Hα, s)r.j(sk), j = 1, . . . , J. (5.12)

We further define ̂bias(α̂j(s)) as an estimate of bias term in α̂j(s), and the coefficient

matrix A(s) = (α1(s), . . . ,αJ(s)). Then an estimating equation can be constructed as

below:

XB̃
∗
(s) +U 1:qÃ(s) = XB(s) +GÃ(s), (5.13)

where B̃
∗
(s) = B̂

∗
(s)− ̂

bias(B̂
∗
(s)) and Ã(s) = Â(s)− ̂bias(Â(s)). Recalling Assumption

5.1 on B(s) and Γ(s), we can derive the estimator of G as

Ĝ = U 1:q +X

∫
s

B̃
∗
(s)(IJ − P J)Ã

T
(s)p(s)dsΩ−1, (5.14)

where Ω =
∫
s
Ã(s)(IJ − P J)Ã

T
(s)p(s)ds. Since ZΓ(s) = GA(s), we can derive the

estimator of B(s) as:

B̂(s) = B̂
∗
(s)− (XTX)−1XT ĜÂ(s). (5.15)
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5.1.3 Other issues in estimation procedure

Smoothing individual functions After the estimator of B(s) is derived and the unob-

served part ZΓ(s) is figured out by ĜÃ(s), we consider smoothing the individual functions

(rows in η(s), i.e., ηi.(s), i = 1, . . . , n) based on the updated residual matrix, which can be

derived as (Ruppert and Wand, 1994):

η̂(s) =
m∑
k=1

ak(Hη, s)[y(s)−XB̂(s)− ĜÂ(s)], (5.16)

where Hη is the fixed bandwidth matrix. Furthermore, their empirical covariance

Σ̂η(s, s
′) =

1

n− p− q
η̂i.(s)η̂Ti. (s

′)

can be straightforwardly used to estimate Ση(s, s
′).

Bandwidth Selection To select the optimal bandwidth in B̂(s) and Â(s), we use the

leave-one-curve out cross-validation (CV), while for the optimal bandwidth in η̂(s), we use

the generalized cross validation (GCV) score method. Readers interested in the details for

deriving the CV and GCV scores can refer to Zhang and Chen (2007) and Zhu et al. (2012).

In practice, we standardize all covariates to have mean zero and standard deviation one, and

also standardize all the features in functional response data to a comparable scale. Then we

can choose a common bandwidth for all covariates and features.

Determining the number of latent factors In SVD representation (5.10), the number

of latent factors, q, is unknown and required to estimate. In order to obtain the estimator,

four different kinds of methods are considered here: permutation version of the parallel

analysis (PA) (Buja and Eyuboglu, 1992), analytical-asymptotic (AA) approach (Johnstone,

2001; Leek, 2011), eigenvalue difference (ED) method (Onatski, 2010), and bi-cross-validation

(BCV) method (Owen et al., 2016). We will compare all the four different methods in the
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simulation studies and the one with both high detection accuracy and less computation time

will be adopted in the rest data analysis.

5.1.4 Inference procedure

In this section, we study global tests for linear hypotheses of coefficient functions and

simultaneous confidence bands for each varying coefficient function. They are essential for

statistical inference on the coefficient functions.

Hypothesis testing We consider the linear hypothesis on B(s) as below:

H0 : Cvec(B(s)) = b0(s) for all s vs. H1 : Cvec(B(s)) 6= b0(s), (5.17)

where C is a r × Jp matrix with rank r and b0(s) is a r × 1 vector of functions. The global

test statistic Tn is defined as:

Tn =

∫
s

Tn(s)p(s)ds, Tn(s) = δT (s)[C(Σ̂η(s, s)⊗ [M̂M̂
T

])CT ]−1δ(s), (5.18)

where δ(s) = Cvec(B̂(s))− b0(s), M̂ = (Ip,0q×q)(Ŵ
T
Ŵ )−1Ŵ

T
, and Ŵ = [X, Ĝ].

As the asymptotic distribution of Tn under H0 is quite complicated, it is difficult to derive

the percentiles of Tn directly from the asymptotic result. To address this issue, the wild

bootstrap method is developed here (Zhu et al., 2012), including the following four steps:

1. Fit the FLFRM under H0 onX and y(sk), k = 1, . . . , nv, which yields Ĝ, Â(s), B̂(s), η̂(s),

ε̂(s), and the global test statistic Tn;

2. Generate random vectors τ (m)
i and τ (m)

i (sk) independently from the standard normal

distribution N(0, In) for k = 1, . . . , nv, and then construct

y(m)(sk) = XB̂(sk) + ĜÂ(sk) + diag(τ
(m)
i )η̂(sk) + diag(τ

(m)
i (sk))ε̂(sk),

where diag(a) denotes a diagonal matrix with the vector a lying on the diagonal;
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3. Based on X and {y(m)(sk)}nvk=1, recalculate B̂
(m)

(s) and the global test statistic T (m)
n ;

4. Repeat the previous two steps M times to obtain {T (1)
n , . . . , T

(M)
n }, which yields the

p-value

p =
M∑
m=1

1(T (m)
n > Tn).

Simultaneous confidence bands Construction of simultaneous confidence bands for

coefficient functions is also of great interest in statistical inference for FLFRM (5.4). For a

given confidence level α, we construct the 1− α simultaneous confidence band for βtj(s) is

given by

(
β̂tj(s)− Ctj(α)√

n
, β̂tj(s) +

Ctj(α)√
n

)
, 1 ≤ t ≤ p, 1 ≤ j ≤ J, (5.19)

where Ctj(α) is a scalar, which is to be determined. Here an efficient resampling method is

developed to approximate Ctj(α) as follows (Kosorok, 2003; Zhu et al., 2007, 2012):

1. Fit the FLFRM on X and y(sk), k = 1, . . . , nv, which yields the updated residuals

ν .j(s) = y(s)−Xβ̂(s) + Ĝα̂(s), j = 1, . . . , J ;

2. Generate the random vector τ (m)
i from the standard normal distribution N(0, In), and

then construct

ω
(m)
tj (s) =

√
neTt M̂diag(τ

(m)
i )

nv∑
k=1

ak(H , s)ν .j(sk), j = 1, . . . , J,

where et is a p× 1 vector with the t-th element 1 and 0 otherwise;

3. Repeat the previous step M times to obtain {sups |ω
(1)
tj (s)|, . . . , sups |ω

(M)
tj (s)|}, and

use their 1− α empirical percentile to estimate Ctj(α).
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5.2 Asymptotic properties

We systematically investigate the asymptotic properties of all estimators proposed in

Section 5.1.2 and several inference procedures in Section 5.1.4.

5.2.1 Assumptions

Throughout the paper, the following assumptions are used to facilitate the technical

details. Some of the assumptions might be weakened but the current version simplifies the

proof.

(A.1) Both n and nv converge to ∞ with nv/n→∞. Furthermore, let | · |D = det(·), where

det(·) is the determinant of some given matrix. Then |Hβ|D = o(1), nv|Hβ|D → ∞, and

|Hβ|−1
D | log(|Hβ|D)|1−2/l ≤ n

1−2/l
v for l ∈ (2, 4).

(A.2) The common density function p(s) has a continuous second-order derivative and

bounded support supp(p). Moreover, for some pl > 0 and pu < ∞, pl < p(s) < pu for all

s ∈ supp(p).

(A.3) Let the row vectors in X and those in Z are respectively independently and identically

distributed, where both ||X||∞ and ||Z||∞ are almost surely bounded. Furthermore, let

W = (X,Z) be the matrix with p + q columns formed by concatenating X and Z, then

W TW is nonsingular.

(A.4) Let ψl is the l-th largest singular value of (In − PX)ZΓ̄, where

Γ̄ = [γ .1(s1), . . . ,γ .1(snv), . . . ,γ .J(s1), . . . ,γ .J(snv)] .

Then ψl = O(ψl′), ψl′ = O(ψl), and n
−1/2
v ψl →∞ for 1 ≤ l, l′ ≤ q.

(A.5) Let σ2
jk be the variance of ηij(sk) + εij(sk) for 1 ≤ j ≤ J, 1 ≤ k ≤ nv, and f(t) =

n−1
v

∑
j,k(σ

2
jk − σ̄2)2, where σ̄2 = n−1

v

∑
j,k σ

2
jk. Then either of the following is satisfied: (i)

f(2) = o(n−2nv); or (ii) f(2) = o(n−3/2nv), f(4) = O(1), and f(4) = o(n−4n3
v).

(A.6) The kernel function K(t) is a symmetric density function with a bounded support

supp(p), and is Lipschitz continuous. Moreover, inf |H|<h0,s∈S |ΩK(H , s)|D is above 0 for some
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small scalar h0, where ΩK(H , s) =
∫
S
KH(u− s)zH(u− s)⊗2p(u)du.

(A.7) All components of B(s) and Γ(s) have continuous second derivatives on S.

(A.8) For all the elements in ε(s), E[sups |εij(s)|l] <∞ for some l > 4.

(A.9) Each component of {η(s) : s ∈ S}, {η(s)ηT (s′) : (s, s′) ∈ S2}, and {W Tη(s′) : (s ∈

S} are Donsker classes.

(A.10) |Hη|D = o(1), nv|Hη|D →∞, and |Hη|−4
D (log(n)/n)1−2/t = o(1) for t ∈ (2,∞).

(A.11) The sample path of ηij(s) has continuous second-order derivative on S and

E[sup
s∈S
‖η(s)‖r12 ] <∞, E{sup

s∈S
‖[η̇(s)‖2 + ‖η̈(s)‖2]r2} <∞

for some r1, r2 ∈ (2,∞), where ‖ · ‖2 is the Euclidean norm.

5.2.2 Asymptotics of estimation procedure

The following theorem tackles the theoretical properties of B̂(s) and Ĝ. The detailed

proofs can be found in the appendix.

Theorem 5.1. Under Assumptions 5.1 and A.1-A.9, we have the following results:

• (i) The columns of Ĝ span the same column space as the columns of Z in probability.

• (ii)
√
n{[IJ ⊗ [M̂M̂

T
]−

1
2 ]vec(B̂(s)− E[B̂(s)])|s ∈ S} weakly converges to a centered

Gaussian process with covariance matrix Ση(s, s)⊗ Ip.

5.2.3 Asymptotics of inference procedure

The following theorem derives the asymptotic distribution of global test statistic Tn under

the null hypothesis and its asymptotic power under local alternative hypotheses.

Theorem 5.2. Under Assumptions 5.1 and A.1-A.11, we have the following results:

• (i) Tn →
∫
s
ξ(s)Tξ(s)ds under the null hypothesis H0, where ξ(s) is a centered Gaussian

process with covariance function.
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• (ii) P{Tn > Tn,α|H1n} → 1 as n → ∞ for a sequence of local alternatives H1n :

Cvec(B(s)) − b0(s) = n−τ/2δ(s), where τ is any scalar in [0, 1), Tn,α is the upper

100α percentile of Tn under H0, and 0 < ‖
∫
s
δ(s)ds‖ <∞.

5.3 Simulation studies

We first assessed the ability of our methodology in a toy example using synthetic curve

data, which we generated from the following model:

yij(sk) = xTi βj(sk) + ziγj(sk) + ηij(sk) + εij(sk), j = 1, 2, (5.20)

where s1 = 0 ≤ s2 ≤ · ≤ sm = 1, and sk ∼ U(0, 1), k = 2, . . . ,m − 1. For the observed

predictors, xi = (1, xi1, xi2, xi3), where xi1 ∼ Bernoulli(0.5), (xi2, xi3)T ∼ N((0, 0)T , I2), i =

1, . . . , n. For the latent factors, zi was constructed as follows:

zi = xTi α+ ωi, ωi ∼ N(0, 1), i = 1, . . . , n, (5.21)

where α is 4-dimensional vector to be determined later. For the random effect, ηij(s) admits

the KarhunenLoeve expansion as ηij = ξij1ψj1(s) + ξij2ψj2(s), where ψjl(s) are the eigen

functions and ξijl ∼ N(0, 0.5) for j = 1, 2, l = 1, 2. For the measurement error, (εi,1, εi,2)T ∼

N((0, 0)T , 0.5 ∗ diag(σ2
1, σ

2
2)), where σ2

l ∼ InvGamma(10, 9) for l = 1, 2. Furthermore, we

assume that sk, xi1, xi2, xi3, ωi, ξi11, ξi12, ξi21, ξi22, σ
2
1 and σ2

2 are independent random variables.

Also, we set the functional coefficients and eigenfunctions as belows:

β1(s) = (3s2, 3(1− s)2, 6s(1− s),−s2)T ,

β2(s) = (12(s− 0.5)2, 1.5
√
s, 3s2,−2

3
s)T ,

γ1(s) = −
√

2 sin(πs), γ2(s) =
√

2 cos(2πs),

ψ11(s) = 0.5, ψ12(s) = s− 0.5, ψ21(s) = 2s− 1, ψ22(s) = 1.
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Throughout this example, we set the sample size n = 50, and the number of location points

m = 2000.

Here we compared our FLFRM with the two other methods, i.e., CATE (Wang et al.,

2017) and MVCM (Zhu et al., 2012), where the curved data was treated as multivariate

responses and the R-package CATE was adopted when implementing CATE method. Four

different simulation scenarios are considered on the parameter α .
= (u1(2b1 − 1), u2(2b2 −

1), u3(2b3 − 1), u4(2b4 − 1))T , where {bi} are i.i.d. generated from Bernoulli(0.5): (i) ul = 0;

(ii) ul ∼ U(0, 0.2); (iii) ul ∼ U(0.2, 0.5); and (iv) ul ∼ U(0.5, 1) for l = 1, 2, 3, 4. These four

scenarios indicate that latent factors Z are (i) independent with X, (ii) weakly correlated

with X, (iii) moderately correlated with X, and (iv) highly correlated with X, respectively.

For each simulation scenario, 200 datasets were generated and the performance of each

method was evaluated based on the integrated square error (ISE) on the estimation of

B(s) :
∑2

j=1

∫ 1

0
||β̂j(s) − βj(s)||2ds, where β̂j(s) is the estimator of βj(s). In CATE and

our FLFRM, the number of latent factors needs to be estimated. Specifically, for fairly

comparison, the eigenvalue difference (ED) method (Onatski, 2010) was considered in both

CATE and our FLFRM. In particular, the EV method estimates the number of factors as

q̂ = max{j < qmax : λ2
j − λ2

j+1 ≥ ∆0},

where asymptotically qmax should be a slowly increasing function of n (which is fixed as

20 here), λj is the ordered singular values, and ∆0 is calculated via a calibration method

described in Onatski (2010). If {j < qmax : λ2
j − λ2

j+1 ≥ ∆0} is empty, then q̂ = 0. The

comparisons among CATE, MVCM and FLFRM for all these scenarios are presented via the

boxplots in Figure 5.2.

According to the boxplots in Figure 5.2, it can be found that: ¬ different from MVCM,

the performance for both CATE and FLFRM is stable, which is not affected too much by the

correlation between X and Z; ­ our FLFRM outperforms CATE for all the four different
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Figure 5.2: Simulation results for comparisons among CATE, MVCM and FLFRM on
synthetic curve data in terms of ISE. Four scenarios were considered: the latent factors Z
are (A) indepedent with X, (B) weakly correlated with X, (C) moderately correlated with
X, and (D) highly correlated with X, respectively.

scenarios; ® when the latent factors are independent with X, the estimation performance

of FLFRM and MVCM is almost the same; ¯ when the correlation is getting higher, the

performance of MVCM becomes much worse in terms of both mean ISE and standard

deviation of ISE, which means our FLFRM shows advantages when the unobserved factors

exist and correlated with the observed ones.

In our SVD representation (5.10), the number of latent factors, q, is required to estimate.

As described previously, we derived the estimator of q based on the ED method. To check

whether the ED method is a reasonable one, we would like to compare it with other three

methods, i.e., permutation version of the parallel analysis (PA) (Buja and Eyuboglu, 1992),

analytical-asymptotic (AA) approach (Johnstone, 2001; Leek, 2011), and bi-cross-validation

(BCV) method (Owen et al., 2016). The estimation results for all the four methods are

reported in Table 5.1. It can be found that, PA approach, ED method and BCV method

can achieve almost 100 percent estimation accuracy. Also all the three methods outperform

the analytical-asymptotic approach, which is with low estimation accuracy around 30%. In
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addition, in terms of average computation time, ED method ( 0.8s on one dataset) is much

more efficient than BCV method ( 10s on one dataset) and PA approach ( 70s on one dataset).

Thus, the choice of ED method for esitmating the number of latent factors is reasonable here.

Table 5.1: Comparison of four different approaches to estimate the number of latent factors:
q = 1. Four scenarios were considered: the latent factors Z are (A) indepedent with X, (B)
weakly correlated with X, (C) moderately correlated with X, and (D) highly correlated
with X, respectively.

Method Scenario
A B C D

PA 190/200 191/200 192/200 191/200
AA 62/200 65/200 64/200 64/200
ED 200/200 200/200 198/200 198/200
BCV 200/200 196/200 196/200 196/200

Although the great performance of our FLFRM was shown above, it should be noted

that there are some outliers in terms of ISE, especially when Z and X are highly correlated.

Actually, some of these outliers were caused by the failures in detection the number of latent

factors, q. Therefore, it is important to investigate the sensitivity of our FLFRM with respect

to the misspecification of q. We reconsidered the four scenarios and tried different choices of

q in FLFRM. In particular, q = 1 is the true value, and q = 2 was also taken into account.

The ISE for each choice of q on all the simulated datasets were shown in Figure 5.3.

According to the boxplots in Figure 5.3, we can conclude two findings: ¬ when the latent

factor Z is indepedent or weakly correlated with the observed ones, if q is misspecified, the

average performance of our FLFRM is still relatively stable in term of ISE. However, the

performance variability is increasing in term of the standard deviation of ISE; ­ when Z is

moderately or even highly correlated with the observed ones: if q is misspecified as 2, the

average performance of our FLFRM is somehow similar to the one when q = 1 in terms of

ISE, while the performance variability is getting higher in terms of standard deviation of ISE.

In the estimation procedure, we are also interested in the estimated latent factors. As

claimed in Section 5.2, under certain assumptions, the columns of detected latent factors span
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Figure 5.3: Simulation results for FLFRM with different choice of q on synthetic curve data.
Four scenarios were considered: the latent factor Z is (A) indepedent with X, (B) weakly
correlated with X, (C) moderately correlated with X, and (D) highly correlated with X,
respectively.

the same column space as the columns of Z in probability. Here we would like to validate this

asymptotic property via simulation studies. For all the four scenarios, the absolute values of

Pearson correlation coefficient between estimated latent factors and Z were calculated are

plotted in Figure 5.4. According to the results, the absolute values of Pearson correlation

coefficient for all the four scenarios are above 0.9, which indicates the consistency between the

column space of detected factors and that of the true one. In addition, when the correlation

between Z and X is getting higher, the absolute values of Pearson correlation coefficient are

closer to 1.

Next, we only focused on Scenario (C), where α = (u1,−u2, u3,−u4)T , ul ∼ U(0.2, 0.5).

Then, except for β14(s) and β24(s) for all s, all other parameters were fixed at the values

specified above, whereas we assumed β14(s) = −cs2, β24(s) = −2c
3
s, where c is a scalar

specified later. We want to test the hypotheses

H0 :β14(s) = β24(s) = 0 for all s, H1 :β14(s) 6= 0 or β24(s) 6= 0 for at lease one s. (5.22)
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Figure 5.4: Correlation between estimated latent factors and Z on synthetic curve data.
Four scenarios were considered: the latent factor Z is (A) indepedent with X, (B) weakly
correlated with X, (C) moderately correlated with X, and (D) highly correlated with X,
respectively.

We set c = 0 to assess the type I error rates for Tn, and set c = 0.1, 0.2, 0.3, 0.4, and 0.5 to

examine the power of Tn. We set the sample size as n = 100 and 200. For each situation,

the significance levels were set at α = 0.05 and 0.01, and 500 bootstrap replications were

generated to constructed the empirical distribution of Tn under H0. Figure 5.5 depicts the

power curves. It can be seen that the rejection rates for Tn based on the wild bootstrap

method are accurate for moderate sample sizes, such as (n = 100 or 200) at both significance

levels (α = 0.01 or 0.05). As expected, the power increases with the sample size.

Final, we considered the coverage probabilities of simultaneous confidence bands of the

functional coefficients B(s) based on the resampling method. Here we still focused on

Scenario (C). In particular, the number of grid was set as nn = 200 and 2000, and all

other parameters were fixed at the values specified above. Based on the generated data,

we calculated the simultaneous confidence bands for each component in B(s), where 200

replications were generated for the band construction. Table 5.2 summarizes the empirical

coverage probabilities for α = 0.05 and 0.01. It can be found that the coverage probabilities
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Figure 5.5: Power curves for hypothesis testing problem (5.22) based on FLFRM with different
choice of c in β14(s) and β24(s).

improve with the number of grid points nv.

Table 5.2: Empirical coverage probabilities of 1− α simultaneous confidence bands

α nv β11 β12 β13 β14

200 0.935 0.920 0.925 0.920
0.05 2000 0.945 0.950 0.950 0.950

200 0.985 0.990 0.995 0.980
0.01 2000 0.990 0.995 0.990 0.995
α nv β21 β22 β23 β24

200 0.915 0.915 0.930 0.940
0.05 2000 0.945 0.945 0.955 0.950

200 0.980 0.995 0.990 0.990
0.01 2000 0.995 0.995 0.990 0.995

5.4 Real data analysis

5.4.1 ADNI data description

Data used in the preparation of this article were obtained from the ADNI database

(adni.loni.usc.edu). The ADNI was launched in 2003 by the National Institute on Aging,

National Institute of Biomedical Imaging and Bioengineering, Food and Drug Administration,
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private pharmaceutical companies and non-profit organizations as a $60 million, 5-year

public-private partnership. The primary goal of ADNI has been to test whether serial

magnetic resonance imaging (MRI), positron emission tomography, other biological markers,

and clinical and neuropsychological assessment can be combined to measure the progression

of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). Determination of

sensitive and specific markers of very early AD progression is intended to aid researchers and

clinicians in developing new treatments and monitoring their effectiveness, as well as lessening

the time and cost of clinical trials. The principal investigator of this initiative is Michael W.

Weiner, MD, at the VA Medical Center and University of California, San Francisco. ADNI

is the result of efforts of many coinvestigators from a broad range of academic institutions

and private corporations, and subjects have been recruited from over 50 sites across the U.S.

and Canada. The goal was to recruit 800 subjects, but the initial study (ADNI-1) has been

followed by ADNI-GO and ADNI-2. To date, these three protocols have recruited over 1,500

adults, ages 55 to 90, to participate in the research, consisting of cognitively normal older

individuals, people with early or late MCI, and people with early AD. The follow-up duration

of each group is specified in the protocols for ADNI-1, ADNI-2 and ADNI-GO. Subjects

originally recruited for ADNI-1 and ADNI-GO had the option to be followed in ADNI-2. For

up-to-date information, see www.adni-info.org.

5.4.2 Data Processing

In this data analysis, we included 936 MRI scans from normal controls (NC) and individuals

with MCI or AD from three different phases: ADNI-1, ADNI-GO, and ADNI-2. The

demographic information of all the subjects is summarized in Table 5.3, including phase,

gender, handedness, age, education length and disease status.

The scans in ADNI-1 were performed on a variety of 1.5 Tesla MRI scanners with

protocols individualized for each scanner, include standard T1-weighted images obtained

using volumetric 3-dimensional sagittal MPRAGE or equivalent protocols with varying

resolutions. The typical protocol includes: repetition time = 2400 ms, inversion time = 1000
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Table 5.3: ADNI hippocampal surface data: demographic information of all the 936 subjects,
including phase, gender, handedness, age, education length and disease status.

Phase ADNI-1 ADNI-GO ADNI-2 Total
Size 800 24 112 936

Gender (F/M) 465/335 13/11 61/51 539/397
Handedness (R/L) 738/62 20/4 9/103 861/75
Age range (years) [58, 95] [55, 84] [53, 87] [53, 95]

Edu. length range (years) [4, 20] [12, 20] [8, 20] [4, 20]
Disease (NC/MCI/AD) 224/389/187 0/24/0 29/58/25 253/471/212

ms, flip angle = 8o, and field of view = 24 cm, with a 256× 256× 170 acquisition matrix in

the x−, y−, and z−dimensions, which yields a voxel size of 1.25× 1.26× 1.2 mm3. The scans

in ADNI-GO and ADNI-2 were performed at 3 Tesla MRI scanners with T1-weighted imaging

parameters similar to those in ADNI-1. We processed the MRI data by using standard

steps, including anterior commissure and posterior commissure correction, skull-stripping,

cerebellum removing, intensity inhomogeneity correction, segmentation, and registration.

Subsequently, we carried out automatic regional labeling by labeling the template and by

transferring the labels following the deformable registration of subject images. After labeling

93 ROIs, we were able to compute volumes for each of these ROIs for each subject.

We adopted a hippocampal subregional analysis package based on surface fluid registra-

tion (Shi et al., 2013) that uses isothermal coordinates and fluid registration to generate

one-to-one hippocampal surface registration for computing the surface statistics. Then,

we computed the various surface statistics on the registered surface, such as multivariate

tensor-based morphometry (TBM) statistics, which retain the full tensor information of the

deformation Jacobian matrix, together with the radial distance, which retains information on

the deformation along the surface normal direction. More details can be found in Wang et al.

(2011).
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5.4.3 Data Analysis

The hippocampus is believed to be involved in memory, spatial navigation and memory,

and behavioral inhibition. In AD, the hippocampus is one of the first regions of the brain

to be affected, leading to the confusion and loss of memory so commonly seen in the early

stages of the disease (Huang et al., 2017). Recent work has revealed that the hippocampus is

structurally and functionally asymmetric, and hippocampal asymmetry changes with AD

progression, with the left hippocampus affected first by dementia, followed by atrophy in the

right hippocampus after a time lag (Maruszak and Thuret, 2014; Shi et al., 2009; Rabl et al.,

2014).

Before conducting this analysis, we would like to check if there is any batch effects caused

by the phase-level heterogeneity. For both left and right hippocampal surfaces, we calculated

three quantiles (i.e., Q1, Q2, and Q3) of the logged radial distances across all the vertices

for each subject, which are shown in Figure 5.6. It can be found that, at each of the three

levels, the pattern of calculated quantile varies across different phases (e.g., ADNI-1 v.s

ADNI-GO and ADNI-2). It indicates that the phase-level heterogeneity does exist in the

ADNI hippocampal surface data. Therefore, the phase information should be included as

predictors in the data analysis.
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Figure 5.6: ADNI hippocampal surface data: three quantiles of the logged radial distances
across all the vertices for each subject.
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The object of this data analysis was to integrate the data from three different data

phases (i.e., ADNI-1, ADNI-GO, and ADNI-2) and exam the effects of clinical variables

and demographic variables on either the left or right hippocampus. Moreover, the latent

factors were expected to be recovered and discussed. To achieve this objective, we applied

FLFRM with either the left or right hippocampal surface data as the functional responses.

For comparison, the MVCM was also considered here. Specifically, in model (5.4) we

calculated the logged radial distance and three TBM statistics measured over 7,500 vertices

on the hippocampal surface (3,750 on each side). Moreover, we included an intercept,

gender, handedness, education length, age, diagnostic information (two dummy variables

were introduced to represented MCI and AD), and phase information (two dummy variables

were introduced to represented ADNI-GO and ADNI-2) as predictors.

After fitting the model, we statistically tested the effects of all the primary variables

on the functional responses across all the vertices on hippocampal surfaces. In particular,

the following hypothesis testing problems are considered: for each t, the null hypothesis is

described as

H0 : βt1(s) = βtj(s) = βtj(s) = βtj(s) = 0, ∀s ∈ S. (5.23)

The global test statistic was calculated and 500 replications were generated in wild bootstrap

approach. The corresponding p-values are summarized in Table 5.4, where p-values less than

the significant level are highlighted in red. Given the significant level 0.05, both the disease

effect (AD vs. NC) and age effect are found to be significant on the left hippocampal surface

based on MVCM. In comparison, more variables are detected based on FLFRM. For example,

significant age effect is found on the left hippocampal surface, while both education length

effect and disease effect (AD vs. NC) are significant on left and right hippocampal surfaces.

Among these variables, education length is the one which was detected in FLFRM but not

in MVCM. In fact, education length is an important factor for the changes of hippocampus
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structure because of the strong correlation between education length and AD, has been found

in existing literature (Arenaza-Urquijo et al., 2013; Liu et al., 2012).

Table 5.4: ADNI hippocampal surface data: comparison of p-values for primary variables
between MVCM and FLFRM.

Variable P -value
Left Hippocampus Right Hippocampus
MVCM FLFRM MVCM FLFRM

Gender 0.212 0.092 0.234 0.116
Handedness 0.652 0.102 0.704 0.082

Education length 0.132 0.036 0.244 0.048
Age 0.048 0.048 0.096 0.052

MCI vs. NC 0.156 0.066 0.082 0.064
AD vs. NC 0.046 0.034 0.054 0.040

ADNI-GO vs. ADNI-1 0.134 0.112 0.136 0.120
ADNI-2 vs. ADNI-1 0.118 0.106 0.112 0.114

For those variables detected by the global test statistic in FLFRM, we are also interested

in the significant subregions detected by the local test statistic. Here the false discovery rate

(FDR, Benjamini et al. (2001)) adjusted − log10(p)-value maps are presented in Figure 5.7.

To better understand the significant subregions, the cytoarchitectonic subregions mapped

on blank MR-based models at 3T of the hippocampal formation (Frisoni et al., 2008) is

considered here and presented in right plot of Figure 5.7. It shows that all the significant

subregions associated with age and disease are circled in red and found in the CA1 subfield,

some are found on the lateral and medial aspects of the tail (CA1 subfield), and others are

found on the dorsolateral aspect of the head (CA1 subfield). It is interesting to note that

volumes of similar hippocampal subregions were found to be affected in AD (Frisoni et al.,

2008), indicating that the findings based on our FLFRM are in agreement with those of

previous work.

Besides the relationship between the functional responses and some primary variables of

interest, it is also of great importance to investigate the potential hidden factors estimated

by our FLFRM. By applying the ED method, three latent factors were detected, and
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Figure 5.7: ADNI hippocampal surface data: FDR adjusted − log10(p)-value maps (left) and
the cytoarchitectonic subregions mapped on blank MR-based models at 3T of the hippocampal
formation (right).

the correlation between primary variables and detected latent factors are shown in Table

5.5, where the Pearson correlation was calculated for between two continuous variables

while the polyserial correlation was calculated between a continuous variable and a discrete

one. According to Table 5.5, it can be found that, on both left and right hippocampal

surfaces, the detected factors are highly related to education length, age, disease status, and

phase information. Recall that the latent factors and primary variables are assumed to be

uncorrelated in MVCM, which is violated here. Thus, the inference results based on MVCM

may not be reasonable on this dataset.

Another interesting thing is about the phase information. In the hypothesis testing problem

(5.23), we don’t have enough evidence to show the existence of phase-level heterogeneity in

terms of the p-values associated to the phase information. While the detected latent factors

are highly correlated to the phase information according to Table 5.5. Thus, it is expected to

find some variables not included in the current FLFRM but strongly correlated with the latent

factors. Here we considered 7 new variables in three categories here: ethnic group information

(three dummy variables were introduced to represented Asian, African American, and White),
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Table 5.5: ADNI hippocampal surface data: correlation between primary variables and
detected latent factors.

Variable Latent factor
Left Hippocampus Right Hippocampus

factor 1 factor 2 factor 3 factor 1 factor 2 factor 3
Gender -0.038 0.015 -0.048 0.006 0.023 -0.045

(0.358) (0.724) (0.239) (0.883) (0.582) (0.278)
Handedness -0.013 -0.041 0.076 0.041 -0.055 0.047

(0.835) (0.517) (0.209) (0.494) (0.382) (0.435)
Education length -0.021 0.024 0.090 0.058 0.014 0.074

(0.531) (0.466) (0.006) (0.078) (0.665) (0.025)
Age 0.120 0.089 -0.079 -0.163 0.071 -0.131

(<0.001) (0.007) (0.015) (<0.001) (0.030) (<0.001)
MCI vs. NC -0.045 0.061 0.020 0.064 0.003 0.062

(0.272) (0.144) (0.617) (0.119) (0.944) (0.131)
AD vs. NC 0.087 -0.058 0.061 -0.094 -0.029 -0.008

(0.041) (0.228) (0.507) (0.039) (0.530) (0.853)
ADNI-GO vs. ADNI-1 -0.305 0.392 0.215 0.440 -0.176 0.403

(<0.001) (<0.001) (0.011) (<0.001) (0.064) (<0.001)
ADNI-2 vs. ADNI-1 -0.221 -0.318 0.213 0.271 -0.469 0.466

(<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)

marital status (three dummy variables were introduced to represented widow, divorce and

no-married), and retirement status. The correlation between new variables and detected

latent factors are shown in Table 5.6. It can be found that, on the left hippocampal surface,

the detected latent factors are strongly correlated to ethnic group information, marital status,

and retirement status, while on the right hippocampal surface, the detected latent factors are

only correlated to marital status.

In addition, for each latent factor, we considered conduct a multiple regression model

where the relationship between the latent factor and all the variables (both primary and new

ones). The inference results are summarized in Table 5.7. It can be concluded that: education

length, age, disease status, phase information, ethnic group information, marital status, and

retirement status significantly affect the left hippocampal surface; age, phase information, and

marital status significantly affect the right hippocampal surface. It is interesting to see that

the early disease effect (MCI vs. NC) is found to be significant only on the left hippocampal
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Table 5.6: ADNI hippocampal surface data: correlation between new variables and detected
latent factors.

Variable Latent factor
Left Hippocampus Right Hippocampus

factor 1 factor 2 factor 3 factor 1 factor 2 factor 3
Asian -0.105 -0.032 0.119 0.036 0.001 0.004

(0.270) (0.757) (0.207) (0.696) (0.994) (0.963)
African American -0.187 0.015 0.017 0.045 0.113 0.042

(0.006) (0.830) (0.811) (0.526) (0.084) (0.544)
White 0.165 0.009 -0.047 -0.038 -0.066 -0.024

(0.007) (0.892) (0.453) (0.534) (0.280) (0.695)
Widow -0.116 0.051 -0.068 0.028 0.135 -0.087

(0.028) (0.325) (0.205) (0.593) (0.006) (0.090)
Divorce 0.004 0.013 0.032 -0.011 -0.021 0.078

(0.952) (0.830) (0.619) (0.863) (0.745) (0.215)
No-married -0.069 0.030 0.002 -0.005 0.058 0.001

(0.352) (0.685) (0.980) (0.949) (0.420) (0.992)
Retirement status 0.145 -0.074 0.064 -0.080 -0.027 -0.049

(0.002) (0.107) (0.181) (0.097) (0.569) (0.307)

surface, which is consistent with the previous finding on hippocampus asymmetry: the left

hippocampus is affected first by dementia, followed by atrophy in the right hippocampus

after a time lag (Maruszak and Thuret, 2014; Shi et al., 2009; Rabl et al., 2014).

5.5 Conclusions

In this paper, we proposed a functional latent factor regression model which is efficient to

investigate the relationship between functional responses and primary variables of interest

while adjusting the unknown factors. Both estimation procedures, hypothesis testing, and

simultaneous confidence band construction have been established in the statistical inference.

For the asymptotic results, the consistency of detected latent factor space and the weak

convergence of estimated coefficient functions are systematically investigated. Both Monte

Carlo simulations and the real data example on hippocampal surface data from ADNI study

have shown that our FLFRM outperforms both traditional SVA (massive-univariate analysis)

and existing functional regression models (e.g., MVCM).
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Table 5.7: ADNI hippocampal surface data: regression analysis between each detect latent
factor and all the variables (both primary and new ones).

Variable P -value
Left Hippocampus Right Hippocampus

factor 1 factor 2 factor 3 factor 1 factor 2 factor 3
Gender 0.842 0.414 0.354 0.626 0.908 0.258

Handedness 0.993 0.627 0.318 0.883 0.395 0.633
Education length 0.981 0.179 0.028 0.402 0.150 0.306

Age 0.025 0.377 0.432 0.016 0.251 0.716
MCI vs. NC 0.966 0.060 0.570 0.666 0.590 0.383
AD vs. NC 0.358 0.991 0.180 0.202 0.937 0.323

ADNI-GO vs. ADNI-1 0.002 <0.001 0.011 <0.001 0.014 <0.001
ADNI-2 vs. ADNI-1 <0.001 <0.001 0.001 <0.001 <0.001 <0.001

Asian 0.223 0.817 0.408 0.764 0.826 0.730
African American 0.012 0.804 0.555 0.477 0.179 0.268

White 0.750 0.565 0.736 0.895 0.102 0.727
Widow 0.015 0.811 0.984 0.121 0.016 0.600
Divorce 0.741 0.825 0.638 0.661 0.946 0.307

No-married 0.384 0.470 0.989 0.829 0.214 0.880
Retirement status 0.026 0.051 0.076 0.688 0.728 0.603
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APPENDIX A: TECHNICAL DETAILS OF CHAPTER 4

In this chapter, we give the proof to the main theoretical results: Lemma 4.1, Theorem

4.1, Theorem 4.2, Theorem 4.4 and Theorem 4.5.

Proof of Theorem 4.1

Since limt→∞ ‖δt+1 − δt‖ = 0, limt→∞ ‖κt+1 − κt‖ = 0, we get from Algorithm 2 that

lim
t→∞
‖RSηt+1

.l − ζ
t+1
.l ‖ = 0, lim

t→∞
‖Λt+1

kl − ν
t+1
kl ‖ = 0, k = 1, . . . , K, l = 1, . . . , p. (A.1)

Then both ηt.l and Λt
kl are bounded by (A.1) and the boundedness assumption on {(ζt,νt)}.

It follows from Algorithm 2 and the boundedness of {(ηt.l,Λt
kl)} and {(ζt,νt)} that {(δt,κt)}

is bounded. Since {(ηt,Λt, ζt,νt, δt,κt)} is bounded and the augmented Lagrangian function

Lρ(η,Λ, ζ,ν, δ,κ) is continuous, we can obtain that Lρ(η,Λ, ζ,ν, δ,κ) is bounded. As the

function Q̃p(η,Λ) is nonconcave, it holds that,

Lρ(η
t,Λt, ζt,νt, δt,κt)− Lρ(ηt+1,Λt, ζt,νt, δt,κt) ≥

p∑
l=1

∇η.lLρ(η
t+1,Λt, ζt,νt, δt,κt)T (ηt.l − ηt+1

.l ) + cη

p∑
l=1

‖ηt.l − ηt+1
.l ‖

2,

Lρ(η
t+1,Λt, ζt,νt, δt,κt)− Lρ(ηt+1,Λt+1, ζt,νt, δt,κt) ≥

K∑
k=1

p∑
l=1

∇ΛklLρ(η
t+1,Λt+1, ζt,νt, δt,κt)(Λt

kl −Λt+1
kl )T + cΛ

K∑
k=1

p∑
l=1

‖Λt+1
kl −Λt

kl‖2,

where both cη and cΛ are constants. In addition, based on the minimization problems in

Algorithm 2, we have

∇η.lLρ(η
t+1,Λt, ζt,νt, δt,κt)T (ηt.l − ηt+1

.l ) ≥ 0,

∇ΛklLρ(η
t+1,Λt+1, ζt,νt, δt,κt)(Λt

kl −Λt+1
kl )T ≥ 0.
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Then we can obtain that

Lρ(η
t,Λt, ζt,νt, δt,κt)− Lρ(ηt+1,Λt, ζt,νt, δt,κt) ≥ cη

p∑
l=1

‖ηt+1
.l − η

t
.l‖2,

Lρ(η
t+1,Λt, ζt,νt, δt,κt)− Lρ(ηt+1,Λt+1, ζt,νt, δt,κt) ≥ cΛ

K∑
k=1

p∑
l=1

‖Λt+1
kl −Λt

kl‖2. (A.2)

Moreover, based on Algorithm 2, we have

Lρ(η
t+1,Λt+1, ζt+1,νt, δt,κt) ≤ Lρ(η

t+1,Λt+1, ζt,νt, δt,κt),

Lρ(η
t+1,Λt+1, ζt+1,νt+1, δt,κt) ≤ Lρ(η

t+1,Λt+1, ζt+1,νt, δt,κt). (A.3)

Combining (A.1) to (A.3), we can get that

Lρ(η
t,Λt, ζt,νt, δt,κt)− Lρ(ηt+1,Λt+1, ζt+1,νt+1, δt+1,κt+1) +

p∑
l=1

‖δt.l − δt+1
.l ‖

+
K∑
k=1

p∑
l=1

‖κtkl − κt+1
kl ‖ ≥ cη

p∑
l=1

‖ηt+1
.l − η

t
.l‖2 + cΛ

K∑
k=1

p∑
l=1

‖Λt+1
kl −Λt

kl‖2.(A.4)

Since Lρ(ηt,Λt, ζt,νt, δt,κt) is bounded, there exists a subsequence tj such that

lim
tj→∞

Lρ(η
tj ,Λtj , ζtj ,νtj , δtj ,κtj) = limt→∞Lρ(η

t,Λt, ζt,νt, δt,κt). (A.5)

According to (A.4) and the assumption that limt→∞ ‖δt+1−δt‖ = 0 and limt→∞ ‖κt+1−κt‖ =

0, we can derive that

limtj→∞‖η
tj+1
.l − ηtj.l ‖

2 = 0, limtj→∞‖Λ
tj+1
kl −Λ

tj
kl‖

2 = 0, (A.6)

k = 1, . . . , K, l = 1, . . . , p. Recall the result in (A.1), we have

limtj→∞‖ζ
tj+1
.l − ζtj.l ‖

2 = 0, limtj→∞‖ν
tj+1
kl − ν

tj
kl‖

2 = 0, (A.7)
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k = 1, . . . , K, l = 1, . . . , p. Then, by the boundedness of {(ηt,Λt, ζt,νt, δt,κt)}, there exists a

convergence subsequence, denoted by {tj′} such that {(ηtj′ ,Λtj′ , ζtj′ ,νtj′ , δtj′ ,κtj′ )} converges

to some point (η∗,Λ∗, ζ∗,ν∗, δ∗,κ∗). Based on the result in (A.1), we have

RSη∗.l = ζ∗.l, Λ∗kl = ν∗kl, k = 1, . . . , K, l = 1, . . . , p. (A.8)

In addition, by the assumption of function Q̃p(η,Λ), point (η∗,Λ∗, ζ∗,ν∗, δ∗,κ∗) should

satisfy that

∇η.lQ̃p(η
∗,Λ∗) + ρ

p∑
l=1

STRT (RSη∗.l − ζ∗.l + δ∗.l) = 0

∇ΛklQ̃p(η
∗,Λ∗) + ρ

p∑
l=1

K∑
k=1

(Λ∗kl − ν∗kl + κ∗kl) = 0 (A.9)

Finally, by taking the limit of both sides in updating equations of ζ and ν in Algorithm 2,

we have

ζ∗.l = STλ1/ρ(RSη
∗
.l + δ∗.l)

ν∗kl = VSTλ2/ρ(Λ
∗
kl + κ∗kl). (A.10)

Combining (A.8) with (A.9) and (A.10), we obtain that (η∗,Λ∗, ζ∗,ν∗, δ∗,κ∗) is a KKT point

of Lρ(η,Λ, ζ,ν, δ,κ) satisfying (4.20).

Proof of Theorem 4.2

We introduce some notation as follows. First, we divide the true parameter Λ0k into

two parts including Λ
(1)
0k and Λ

(2)
0k , where Λ

(2)
0k contains rows with all zeros in Λ0k. For each

component l = 1, . . . , p, we define Al = {k : ζkl = 0, ζ .l = RSµ.l}, which contains all pairs

that do not contribute to the separation of any two clusters. We define the complement of

Al as Acl for l = 1, . . . , p. Let ∆n logLp(u) = logLp(θ0 + n−
1
2u)− logLp(θ0), where u is a

dim(θ)× 1 vector such that ||u||2 = O(1). Our aim is to show that for any given ε, there is a
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large constant M̃ε such that we have

P{ sup
‖u‖2=M̃ε

∆n logLp(u) < 0} ≥ 1− ε. (A.11)

This implies that with probability tending to 1, there is a local maximum θ̂n in the ball

{θ0 + n−
1
2u : ‖u‖2 ≤ M̃ε} such that ‖θ̂n − θ0‖2 = Op

(
n−

1
2

)
.

Before we prove Theorem 4.2, some mild regularity conditions are listed as follows without

any detailed verification.

• (C1) The first, second, and third partial derivatives of log f(x|w,θ) with respect to θ

exist. There is a sufficiently large open set O including θ0 such that ∀θ ∈ O, all the

derivatives are bounded by a non-negative function M2(x,w) with E{M2(x,w)} <∞;

• (C2) Both the observed information matrix − 1
n

∂2

∂θ∂θT
logL(θ)|θ=θ0

and the Fisher

information matrix In(θ0) are finite and positive definite.

We define uklΛ and uklζ as the subcomponents of u corresponding to the subcomponents

Λ
(1)
0kl and ζAcl , respectively. Then, we have

∆n logLp(u) ≤ logL(θ0 + n−
1
2u)− logL(θ0)

− λ1

p∑
l=1

∑
k∈Acl

alk

(
|ζkl + n−

1
2uklζ | − |ζkl|

)

− λ2

K∑
k=1

∑
Λ
(1)
0kl⊂Λ

(1)
0k

(
‖Λ(1)

0kl + n−
1
2uklΛ ‖2 − ‖Λ(1)

0kl‖2

)
, E1 + E2 + E3. (A.12)

It follows from the property of convex functions, Cauchy-Schwarz inequality, triangular

inequality and the consistency of MLE σ̃l and µ̃kl in alk that the last two lines on the

right-hand side of (A.12) can be bounded above as follows:

E2 ≤
√

2K(K − 1)C̄−1√p‖u‖2, E3 ≤
√
Kp‖u‖2, (A.13)
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where C̄ = min1≤l≤p mink∈Acl σl|ζkl|. Furthermore, the first line on the right-hand side of

(A.12) can be written as

E1 = n−
1
2

{
∂

∂θ
logL(θ)

∣∣∣∣
θ=θ0

}T

u+
1

2n
uT

{
∂2

∂θ∂θT
logL(θ)

∣∣∣∣
θ=θ0

}
u

+
1

6n
3
2

∂

∂θT

(
uT
{

∂2

∂θ∂θT
logL(θ)

}
u

)∣∣∣∣
θ=θ̌

u , I1 + I2 + I3, (A.14)

where θ̌ lies between θ0 and θ0 + n−
1
2u. By using (C1), we have

|I1| = n−
1
2 |{ ∂

∂θ
logL(θ)|θ=θ0}Tu| ≤ n−

1
2‖ ∂
∂θ

logL(θ)|θ=θ0‖2‖u‖2 = Op(1)‖u‖2 (A.15)

For I2, it follows from (C2) that

I2 = −1

2
uT In(θ0)u+ op(1)‖u‖2

2. (A.16)

For I3, it follows from Cauchy-Schwarz inequality and condition (C1) that

|I3| =
1

6n
3
2

|
p∑

i,j,k

∂3

∂θl∂θj∂θk
logL(θ)|θ=θ0δlδjδk| ≤ op(n

− 1
2 )‖u‖2

2. (A.17)

Then, by (A.13)-(A.17), and choosing a sufficiently large M̃ε > 0, we know that all terms

E2, E3, I1, and I3 are dominated by I2, which is negative. Therefore, for any given ε > 0,

there exists a sufficiently large constant M̃ε such that

lim
n→∞

P{ sup
‖u‖2=M̃ε

logLp(θ0 + n−
1
2u) < logLp(θ0)} ≥ 1− ε. (A.18)

Thus, there is a local maximum in {θ0 + n−
1
2u : ‖u‖ ≤ M̃ε} with high probability and the

local maximizer θ̂n satisfies
√
n‖θ̂n − θ0‖2 = Op(1). This completes the proof.
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Proof of Lemma 4.1

The estimated ordering Û l of η.l is only determined by the differences between distinct

parameter groups within η.l, l = 1, . . . , p. First note that for any 0 < ε < 1, if two parameters

ηkl and ηk′l are in the same parameter group assigning arbitrary ordering between them will

not affect the estimated ordering of the parameters between groups, because the ordering

within the same parameter group is exchangeable. On the other hand, when two parameters

ηkl and ηk′l are from different parameter groups, without loss of generality, let ηkl > ηk′l, the

probability of estimating a wrong ordering

P (1{η̂kl ≥ η̂k′l}) = P (η̂kl ≥ η̂k′l)

≥ P (|η̂kl − ηkl|+ |η̂k′l − ηk′l| > 0)

= 1− P (η̂kl = ηkl)P (η̂k′l = ηk′l)→ 0 (A.19)

asn → ∞ since η̂kl and η̂k′l are independent and consistent estimators. Similarly, the

consistency of the estimated ordering V̂ l of the absolute values in vector η.l can be derived

by taking the square of the absolute values and following the same argument as for Û l.

Proof of Theorem 4.3

Here we assume the same regularity condition ((C1) and (C2)) as in Theorem 4.2. To

complete this proof, we first define the event W when the orderings of all components are

correctly assigned as

W = ∩pl=1({Û l = U l} ∩ {V̂ l = V l}). (A.20)

Let θ̂
Ŵ

n be θ̂n,W when W occurs; otherwise, denote it as θ̂n,Wc . Then, the estimator can be

rewritten as

θ̂
Ŵ

n = θ̂n,W1{W}+ θ̂n,Wc1{Wc}
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and therefore

√
n(θ̂

Ŵ

n − θ0) =
√
n(θ̂n,W − θ0)1{W}+

√
n(θ̂n,Wc − θ0)1{Wc}. (A.21)

By Theorem 4.2, we have
√
n(θ̂n,W − θ0) = Op(1) and

√
n(θ̂n,Wc − θ0) = Op(1) as n→∞.

By Lemma 4.1, we have P (W) → 1 and P (Wc) → 0 as n → ∞. Therefore, by Slutsky’s

Theorem,
√
n(θ̂

Ŵ

n − θ0) = Op(1), which completes the proof of Theorem 4.3.

Proof of Theorem 4.4

Proof of Theorem 4.4: Selection Consistency

For all (l, k) ∈ A, we easily see from consistency of η̂W that P ((l, k) ∈ ÂW )→ 1. It then

remains to show that for all (l, k) ∈ Ac, P ((l, k) ∈ [ÂW ]c) → 1. Assume the contrary, i.e.,

w.l.o.g there is an l ∈ {1, . . . , p} with ζ1l = 0 such that ζ̂1l 6= 0 with non-vanishing probability.

By Taylor’s theorem, applied to the function 1
n

∂ logLp(θ)

∂ζl1
, there exists a (random) vector θ̄

on the line segment between θ0 and θ̂
W

n such that

1

n

∂ logLp(θ)

∂ζ1l

|θ=θ̂Wn =
1

n

∂ logL(θ)

∂ζ1l

|θ=θ0 +
1

n

∂2 logL(θ)

∂ζ1l∂ζ1l

(ζ̂W1l − ζ1l)

+
1

2n

∂3 logL(θ)

∂ζ1l∂ζ1l∂ζ1l

(ζ̂W1l − ζ1l)
2 − λ1a

l
1sgn(ζ̂W1l ), (A.22)

where sgn(·) is the sign function. Now, using the regularity assumptions ((C1) and (C2)),

the central limit theorem and the law of large numbers, we have

1

n

∂ logL(θ)

∂ζ1l

|θ=θ0 = Op(n
− 1

2 ),
1

n

∂2 logL(θ)

∂ζl1∂ζ1l

= Op(1),
1

2n

∂3 logL(θ)

∂ζ1l∂ζ1l∂ζ1l

= Op(1).

Since ζ̂W1l is root-n consistent, we get

1

n

∂ logLp(θ)

∂ζ1l

|θ=θ̂Wn =
1√
n

(
nλ1√
nσ̃lζ̃W1l

sgn(ζ̂W1l ) +Op(1)). (A.23)
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From the assumption on the initial estimator, we have

nλ1√
nσ̃lζ̃W1l

=
nλ1

Op(1)
=∞, as nλ1 →∞. (A.24)

Therefore, the first term in the brackets of (A.23) dominates the second term and the

probability of the event

{
sgn

(
1

n

∂ logLp(θ)

∂ζ1l

|θ=θ̂Wn

)
= −sgn(ζ̂W1l ) 6= 0

}

tends to 1. But this contradicts the assumption that θ̂Wn is a local minimizer.

Proof of Theorem 4.4: Asymptotic Normality

Write

θ = (βT ,diag(Ω)T , ζTA, ζ
T
Ac ,vec(Λ)T )T

and

θζ̂A,0 = (βT ,diag(Ω)T , (ζ̂
W

A )T , ζTAc ,vec(Λ)T )T ,

where ζAc = 0. From Theorem 4.2 and the selection consistency, it follows that with

probability tending to one θζ̂A,0 is a root-n local minimizer of −n−1 logLp(θ). By using a

Taylor expansion we find,

0 =
1

n

∂ logLp(θ)

∂ζA
| ˆζWA

=
1

n

∂ logL(θ)

∂ζA
|ζA +

1

n

∂2 logL(θ)

∂ζA∂ζ
T
A
|ζA(ζ̂

W

A − ζA)

+
1

2n

∑
(l,k)∈A

(ζ̂Wkl − ζkl)
∂

∂ζkl

∂3 logL(θ)

∂ζA∂ζ
T
A
| ¯ζA(ζ̂

W

A − ζA)

−
√
nλ1

∑
(l,k)∈A

n−
1
2alksgn(ζ̂Wkl ), (A.25)
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where ζ̄A is on the line segment between ζA and ζ̂
W

A . According to the results in (A.23) and

(A.24), law of large numbers, and regularity conditions (C1) and (c2), we have

1

n

∂2 logL(θ)

∂ζA∂ζ
T
A
|ζA = −I(ζA), ζ̂

W

A − ζA = op(1),
1

n

∂

∂ζkl

∂3 logL(θ)

∂ζA∂ζ
T
A
| ¯ζA = Op(1),

(A.26)

where I(ζA) is the submatrix of Fisher information matrix I(θ0) corresponding to set A.

Then we have

(−I(ζA) +Op(1))
√
n(ζ̂

W

A − ζA)−
√
nλ1Op(1) = − 1√

n

∂ logL(θ)

∂ζA
|ζA . (A.27)

Notice that 1√
n
∂ logL(θ)

∂ζA
|ζA −→d N(0, I(ζA)−1) by the central limit theorem. Furthermore,

√
nλ1 = op(1) as λ1 = op(n

− 1
2 ). Therefore,

√
n[ζ̂

W

A − ζA] −→
d
N(0, I(ζA)−1),

(A.28)

which completes the proof.

Proof of Theorem 4.5

Here we assume the same regularity condition ((C1) and (C2)) as in Theorem 4.2. Similar

to the proof in Theorem 4.3, we first define the eventW when the orderings of all components

are correctly assigned as

W = ∩pl=1({Û l = U l} ∩ {V̂ l = V l}). (A.29)
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Let ζ̂
Ŵ

A be ζ̂
W

A when W occurs; otherwise, denote it as ζ̂A∩Wc . Then, the estimator can be

rewritten as

ζ̂
Ŵ

A = ζ̂
W

A 1{W}+ ζ̂A∩Wc1{Wc}

and therefore

√
n(ζ̂

Ŵ

A − ζA) =
√
n(ζ̂

W

A − ζA)1{W}+
√
n(ζ̂A∩Wc − ζA)1{Wc}. (A.30)

By Theorem 4.4, we have
√
n(ζ̂

W

A − ζA) = Op(1) and
√
n(ζ̂A∩Wc − ζA) = Op(1) as n→∞.

By Lemma 4.1, we have P (W) → 1 and P (Wc) → 0 as n → ∞. Therefore, by Slutsky’s

Theorem,
√
n(ζ̂

Ŵ

A − ζA) converges to the same distribution as
√
n(ζ̂

W

A − ζA). Similar, by

results from Theorem 4.4 and Lemma 4.1, we have selection consistency

P (ÂŴ = A) = P (ÂŴ = A|W)P (W)→ 1, n→∞. (A.31)

It completes the proof of Theorem 4.5.
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APPENDIX B: TECHNICAL DETAILS OF CHAPTER 5

In this chapter, we give the proof to the main theoretical results: Theorem 5.1 and

Theorem 5.2. The proofs rely on the following lemmas:

Lemma B.1. Under Assumptions 5.1 and A.1-A.9, we have the following results:

B̃
∗
(s) = B∗(s) + op(1), Γ̃(s) = Γ(s) + op(1), U 1:q = (In − PX)G+ op(1). (B.1)

Proof: By right multiplying PX on both sides of (5.5), we have

y̆.j(sk) = Xβ∗j(sk) + η̆.j(sk) + ε̆.j(sk), j = 1, . . . , J,

where y̆.j(sk) = PXy.j(sk), η̆.j(sk) = PXη.j(sk), and ε̆.j(sk) = PXε.j(sk). It is easy to

check that the LLK smoother of β∗j in the model above is exactly the same as β̃
∗
j . Recall

the assumptions in the model above and Theorem 1 in Zhu et al. (2012), the first part in

this lemma follow immediately. Next, for the residual model (5.11), if the third part in this

lemma holds, similarly it can be shown that Ã(s) = A(s) + op(1), which leads to the second

part due to the fact that Γ(s) = QA(s). Thus, the main task here is to prove the third part.

Actually, by applying SVD, we have

(In − PX)ZΓ̄ = ŨΛ̃Ṽ
T
, (B.2)

where Ũ is a n × q orthonormal matrix, Ṽ is a Jnv × q orthonormal matrix, and Λ̃ is

a q × q diagonal matrix of the ordered singular values. Then, based on the result that

B̃
∗
(s) = B∗(s) + op(1), the extended residual matrix R̄ can be written as

R̄ = ŨΛ̃Ṽ
T

+ M, (B.3)

where M = η̄ + ε̄ + op(1), and η̄ + ε̄ are constructed in the same way as R̄. Then, from
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Assumption A.5, Theorem 1 in Lee et al. (2014), and Lemma 1 in Lee et al. (2017), we have

UT
1:qŨ = Iq + op(1), which yields U 1:q = Ũ + op(1). Recall the definition of matrix Ũ in

(B.2), there exists a q × q orthonormal matrix Q such that Ũ = (In − PX)ZQ, which leads

to the third part of this lemma.

Lemma B.2. Under Assumptions 5.1 and A.1-A.9, we have that for each j, the following

result holds uniformly for all s ∈ S:

√
nM

nv∑
k=1

ak(H , s)ε.j(sk) = op(1), (B.4)

where M = (Ip,0q×q)(W
TW )−1W T .

Proof: According to the definition of ak(H , s) and the properties of Kronecker product, the

left hand side in (B.4) can be written as

[Ip,0q]

{
[
1

n
W TW ]−1 ⊗

[
(1,01×d)[

1

nv

nv∑
k=1

KH(sk − s)zH(sk − s)⊗2]−1

]}
εX.j (s),

where εX.j (s) = n−1/2n−1
v

∑nv
k=1[W T ⊗KH(sk − s)zH(sk − s)]ε.j(sk). According to Lemma 1

and Lemma 2 in Zhu et al. (2012), when d = 1, we have that

1

nv

nv∑
k=1

KH(sk − s)zH(sk − s)⊗2 = ΩK(H , s) + op(1), εX.j (s) = op(1) (B.5)

hold uniformly for all s ∈ S. In addition, all the results above can be straightforwardly

extended to the situations that d > 1. Thus, combining the fact that 1
n
W TW = Ωw + op(1),

we can finish the proof of Lemma B.2.

Lemma B.3. Under Assumptions 5.1 and A.1-A.9, we have that for each j,

√
n[MTM ]−

1
2M

nv∑
k=1

ak(H , s)η.j(sk)

weakly converges to a centered Gaussian process with covariance function Σj,j(s, s
′)Ip, where
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Σj,j(s, s
′) is the j-th diagonal element in Σ(s, s′).

Proof: This proof consists of 2 steps. In step 1, it follows from the standard central limit

theorem that for each s ∈ S,

√
n[MTM ]−

1
2M

nv∑
k=1

ak(H , s)η.j(sk)
L−→ N(0,Σj,j(s, s)Ip), (B.6)

where L−→ denotes convergence in distribution.

In step 2, we show the asymptotic tightness of
√
n[MTM ]−

1
2M

∑nv
k=1 ak(H , s)η.j(sk).

we first define that

∆(H , ηij(s)) =
1

nv
KH(sk − s)zH(sk − s)ηij(sk)−

∫
S
KH(u− s)zH(u− s)ηij(u)p(u)du.

According to the results in Lemma B.2, we can show that
√
nM

∑nv
k=1 ak(H , s)η.j(sk)[1 +

op(1)] an be approximated by three terms as follows:

√
nM

nv∑
k=1

ak(H , s)η.j(sk)[1 + op(1)] = (I) + (II) + (III),

where

(I) = Ω−1
w ⊗ [(1,01×d)Ω

−1
K (H , s)]n−1/2

n∑
i=1

wi ⊗∆(H , ηij(s)),

(II) = n−1/2Ω−1
w W

Tη.j[1 + op(|H|)],

(III) = Ω−1
w ⊗ [(1,01×d)Ω

−1
K (H , s)]∫

D
n−1/2

n∑
i=1

[wi(ηij(s+Hu)− ηij(s))]⊗ [KH(u)zH(u)]p(s+Hu)du.

Here D .
= {u : u ∈ S and s+Hu ∈ S}. We investigate the three terms above as follows.
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For item (I), it follows from Lemma 3 in Zhu et al. (2012) that

sup
S
|n−1/2

n∑
i=1

wi ⊗∆(H , ηij(s))| = op(1), (B.7)

which yields that the term (I) converges to zero uniformly.

For item (II), we define that

εη
.
= {f(s,W ,η.j) = Ω−1

w W
Tη.j(s) : s ∈ S}.

Due to Assumption A.9, εη is a P -Donsker class (Kosorok, 2008).

For term (III), by using the same argument in the second term (II), we can show that

the asymptotic tightness of n−1/2W Tη.j(s). Therefore, for any |H| → 0, we have

sup
s∈S,u∈D

|n−1/2

n∑
i=1

[wi(ηij(s+Hu)− ηij(s))]| = op(1). (B.8)

It follows from Assumptions A.1 and A.6 and (B.8) that the term (III) converges to zero

uniformly.

Combining (B.7), (B.8) and the Donsker property of term (II), it suffices to show the

asymptotic tightness. Thus, we can finish the proof of Lemma B.3.

Proof of Theorem 5.1

Proof of Theorem 5.1 (i):

Since G = ZQ, G can be treated as linear combinations of columns in Z. Thus the column

space of G is the same as that of Z. To prove the first part in Theorem 5.1, we only need to

show that Ĝ = G+ op(1). According to Assumption A.2 and the results in Lemma B.1, Ĝ

in (5.14) can be derived as

Ĝ = (I − P x)G+X

∫
s

B∗(s)(IJ − P J)AT (s)p(s)dsΩ̄
−1

+ op(1), (B.9)
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where Ω̄ =
∫
s
A(s)(IJ − P J)AT (s)p(s)ds. Substituting the definition of B∗ into (B.9), we

have

Ĝ = G+

∫
s

B(s)(IJ − P J)ΓTQdsΩ̄
−1

+ op(1), (B.10)

which yields that Ĝ = G + op(1) according to Assumption 5.1. This completes the proof.

Proof of Theorem 5.1 (ii):

According to the expressions of β̂
∗
j(s) in (5.6) and α̂j(s) in (5.12), we have

β̃j(s) = (XTX)−1XT (In − ĜUT
1:q)

nv∑
k=1

ak(H , s)y.j(sk), j = 1, . . . , J, (B.11)

which holds when Hβ = Hα = H. Recall the results that U 1:q = (In − PX)G + op(1)

in Lemma B.1 and Ĝ = G + op(1) in proving Theorem 5.1 (i), β̃j(s), j = 1, . . . , J, can be

written as

β̃j(s) = M
nv∑
k=1

ak(H , s)y.j(sk) + (XTX)−1XT
nv∑
k=1

ak(H , s)y.j(sk)op(1), (B.12)

where M = (XTX)−1XT [In − GGT (In − PX)]. According to the partitioned matrix

inversion theory (Bhatia, 2013), it’s easy to show that M = (Ip,0q×q)(W
TW )−1W T . Here

we define

√
n(β̃j(s)− E[β̃j(s)])

.
= T 1,j(s) + T 2,j(s) + T 3,j(s), j = 1, . . . , J,
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where

T 1,j(s) =
√
nM

nv∑
k=1

ak(H , s)ε.j(sk), T 2,j(s) =
√
nM

nv∑
k=1

ak(H , s)η.j(sk),

T 3,j(s) =
√
n(XTX)−1XT

nv∑
k=1

ak(H , s)[η.j(sk) + ε.j(sk)]op(1). (B.13)

Next, we can investigate the three terms above. First, according to Lemma B.2, T 1,j(s) =

op(1) holds uniformly for all s ∈ S. Second, according to Lemma B.3, [MMT ]−
1
2T 2,j(s)

weakly converges to a centered Gaussian process with covariance matrix Σj,j(s, s
′)Ip. Third,

by using the same argument in proving Lemma B.1 and Lemma Lemma B.3, T 3,j(s) = op(1)

holds uniformly for all s ∈ S. Combining the properties of the three terms, it is easy to show

the weak convergence in the second part of Theorem 5.1. This completes the proof.

Proof of Theorem 5.2

Theorem 5.2 (i):

Theorem 5.2 (i) is similar to Theorem 4 in Zhu et al. (2012) and Theorem 7 in Zhang and

Chen (2007). All of the three theorems characterize the asymptotic distribution of the global

test statistic under null hypothesis. In particular, the asymptotic distribution is delineated

as a χ2-type mixture in Zhang and Chen (2007). All discussions and proof associated with

Theorem 7 in Zhang and Chen (2007) are valid here, and therefore, we do not repeat them

for the sake of space.

Proof of Theorem 5.2 (ii):

First we define that δ̃(s)
.
= [C(Σ̂η(s, s)⊗ [M̂M̂

T
])CT ]−1/2δ(s). Under H1n, we have

δ̃(s)
asymp∼ GP (µ1n(s),Λ1n(s, s′)), (B.14)

where µ1n(s) = [C(Σ̂η(s, s)⊗ [M̂M̂
T

])CT ]−1/2n−τ/2[Cvec(B(s))−b0(s)], and Λ1n(s, s′) =

cov(δ̃(s), δ̃(s′)). We consider a Hilbert space of r-dimensional vectors of functions in L2(s)
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denoted by H. Define the corresponding inner product as

< f(s), g(s) >H=
r∑
t=1

< ft(s), gt(s) >, < ft(s), gt(s) >=

∫
S

ft(s)gt(s)p(s)ds.

By the multivariate version of Mercer’s theorem, there exists a set of orthonormal basis

functions φl(s) = (φl1(s), . . . , φlr(s)) in H such that

Λ1n(s, s′) =
∞∑
l=1

λlφl(s)φTl (s′).

Let ξlt =< δ̃t(s),φlt(s) >, in which δ̃t(s) is the t-th element in δ̃(s). Then we have

ξlt ∼ N(νlt, λl), where νlt =< µ1n,t(s), φlt(s) >, and µ1n,t(s) is the t-th element in µ1n(s). It

is assumed that the eigenvalues are ordered in decreasing values. Without loss of generality,

the first m eigenvalues are assumed to be positive. If all eigenvalues are positive, we set

m =∞. It is easy to see that

Tn =

∫
S

δ̃(s)T δ̃(s)p(s)ds =
∞∑
l=1

r∑
t=1

ξ2
lt =

m∑
l=1

λlAl +
∞∑

l=m+1

r∑
t=1

ν2
lt,

where Al ∼ χ2
r(ν

2
l /λl), in which ν2

l =
∑r

t=1 ν
2
lt. Similar results have been obtained and

discussed in Zhang and Chen (2007) and Zhang (2011).

Under H1n, we have ν2
l = n1−τζ2

1n,l, where ζ1n,l is given by

ζ1n,l =
r∑
t=1

∫
S

{[C(Σ̂η(s, s)⊗ [M̂M̂
T

])CT ]−1/2δ(s)}tφlt(s)p(s)ds.

Note that Al
d
=
∑r−1

t=1 a
2
lt + [alr + n(1−τ)/2λ

−1/2
l ζ1n,l]

2, where alt ∼ N(0, 1). Thus, we have

Tn
d
=

m∑
l=1

λlA
∗ + 2n(1−τ)/2

m∑
l=1

λ
1/2
l ζ1n,lalr + n1−τ

m∑
l=1

ζ2
1n,l

by dropping higher order terms, where A∗ ∼ χ2
r. As n → ∞, the last two terms on the
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right-hand side above dominate the first term. Therefore, Tn is asymptotically normally

distributed under H1n with mean n1−τ∑m
l=1 ζ

2
1n,l and variance 4n1−τ∑m

l=1 λla
2
lr. Therefore,

we have

P{Tn > Tn,α|H1n} = Φ

(
n(1−τ)/2

∑m
l=1 ζ

2
1n,l

2
√∑m

l=1 λla
2
lr

)
+ op(1)

which tends to 1 as n→∞. This completes the proof.
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