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ABSTRACT

Fan Zhou: Advanced Analysis Methods For Large-Scale Structured
Data

(Under the direction of Hongtu Zhu and Haibo Zhou)

In the era of ’big data’, advanced storage and computing technologies allow people to

build and process large-scale datasets, which promote the development of many fields such as

speech recognition, natural language processing and computer vision. Traditional approaches

can not handle the heterogeneity and complexity of some novel data structures. The target of

this dissertation is to develop new statistical models to solve all kinds of real-world problems

based on structured data from different areas.

Three different data structures are discussed in this dissertation. In the first part of the

dissertation, we introduce a novel data sampling scheme: muti-group association data, which

is widely adopted by recent medical studies with multi-class disease outcomes. We develop a

general regression framework for the secondary phenotype analysis using multi-group data to

correct the estimation bias caused by the uneven sampling rates of different sub-groups.

The second data type being included is the graph-based data, i.e. the network data. In this

dissertation, we discuss the graph-based semi-supervised learning problem with nonignorable

missingness, which is ignored by most previous studies. We do both simulation and real

analysis using citation networks to show the necessity of doing bias correction when there

exists nonignorable nonresponses.

Prediction of customer requests with both origin and destination locations in the future

is a fundamental question to the ride-sharing systems. In the last chapter of the dissertation,

we propose a deep-learning based model to jointly capture the spatial-temporal features of

this kind of Origin-Destination (OD) networks and make predictions for the flow values in
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the incoming time window given the historical information. Some experiments using the

demand data from DiDi demonstrates the advantage of our model in predicting OD flow data

in practice.
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CHAPTER 1: INTRODUCTION

By three different research topics, we explore how to combine useful tools, including both

traditional approaches and deep learning architectures, to develop new methodologies in

analyzing certain kinds of structured data. The first two topics try to correct the estimation

bias that results from unusual sampling designs. The latter two deal with some real-world

problems people are interested in generated by network data.

Multi-group design, such as the Alzheimer’s Disease Neuroimaging Initiative (ADNI), has

been undertaken by recruiting subjects based on their multi-class primary disease status,

while some extensive secondary outcomes are also collected. Analysis by standard approaches

is usually distorted because of the unequal sampling rates of different classes. In the first part

of the dissertation, we develop a general regression framework for the analysis of secondary

phenotypes collected in multi-group association studies. Our regression framework is built on

a conditional model for the secondary outcome given the multi-group status and covariates

and its relationship with the population regression of interest of the secondary outcome

given the covariates. Then, we develop generalized estimation equations to estimate the

parameters of interest. We use simulations and a large-scale imaging genetic data analysis

of the ADNI data to evaluate the effect of the multi-group sampling scheme on standard

genomewide association analyses based on linear regression methods, while comparing it with

our statistical methods that appropriately adjust for the multi-group sampling scheme.

In the past few decades, network data has been increasingly collected and studied in

diverse areas, including neuroimaging, social networks and knowledge graphs. In the second

part of the dissertation, we investigate the graph-based semi-supervised learning problem

with nonignorable nonresponses. We propose a Graph-based joint model with Nonignorable

Missingness (GNM) and develop an imputation and inverse probability weighting estimation
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approach. We further use graph neural networks (GNN) to model nonlinear link functions

and then use a gradient descent (GD) algorithm to estimate all the parameters of GNM. We

propose a novel identifiability for the GNM model with neural network structures, and validate

its predictive performance in both simulations and real data analysis through comparing with

models ignoring or misspecifying the missingness mechanism. Our method can achieve up to

7.5% improvement than the baseline model for the document classification task on the Cora

dataset.

Predictions of Origin-Destination (OD) flow data is an important instrument in trans-

portation studies. However, most existing methods ignore the network structure of OD flow

data. In the last part of the dissertation, we propose a spatial-temporal origin-destination

(STOD) model, with a novel CNN filter to learn the spatial features from the perspective of

graphs and an attention mechanism to capture the long-term periodicity. Experiments on a

real customer request dataset with available OD information from a ride-sharing platform

demonstrates the advantage of STOD in achieving a more accurate and stable prediction

performance compared to some state-of-the-art methods.
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CHAPTER 2: LITERATURE REVIEW

In this chapter, we review some existing representative works related to the topics covered

in this dissertation. In section 1.1, we introduce three unusual data types: muti-group

association data, graph-based data and origin-destination flow data. We briefly discuss

the research problems people are interested in and the accompanying statistical challenges

when analyzing these three kinds of structured data. In section 1.2, we review a large set of

literature on the development of statistical methods to eliminate the selection bias related to

ascertainment in case-control studies for secondary trait analysis. In section 1.3, we review the

main approaches to obtain unbiased parameter estimations in the presence of nonignorable

missingness. In section 1.4, we go through the developing history of prediction models applied

to dynamic spatial-temporal data.

2.1 Structured Data

2.1.1 Multi-Group Association Data

Case-control (Cornfield, 1951) is a special design of observational study, which recruits

two groups of people with potentially different outcomes to certain diseases to explore

their association with some exposure variables of interest. The case-control study follows a

retrospective design since the primary outcome of each individual is known before it being

enrolled and all the covariate information can be retrieved.

Case-control studies have several advantages over traditional sampling mechanisms. Ran-

domly selecting subjects from the whole population requires a larger sample size to significantly

discriminate the cases from controls especially in the rare disease case, which results in inef-

ficient data utilization. Case-control design addresses this issue by oversampling the cases

and hiring a matched number of control subjects. White (1982) extends case-control to a

two-stage situation, and demonstrates its advantage over one-stage design. The two stages
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follow different sampling schemes, where the first stage is equivalent to a standard case-control

sample and subjects in the second stage are subdivided into four groups: two case groups

(diseased and exposed/unexposed) and two control groups (normal and exposed/unexposed).

The two-stage design is more efficient and flexible because the sample sizes of the four

subgroups can vary with the disease and exposure rates. Breslow and Cain (1988) propose

an irregular logistic regression for the two-stage case-control design, the efficiency of which

is maximized when the exposure rate is rare. Flanders and Greenland (1991) introduces a

pseudo-likelihood approach to analyze the data acquired from two-stage case-control studies.

Although case-control design has been widely used in biological studies, they are insufficient

for many complex diseases, such as Alzheimer’s disease and breast cancer. These diseases

may have multiple subtypes with distinct morphologies and clinical implications. To recruit

enough people for each disease subtype, multi-group design can be employed to sample

subjects within different groups in different proportions from the whole population. One

typical example following the multi-group design is the Alzheimer’s Disease Neuroimaging

Initiative (ADNI), which has three main groups: Alzheimer’s disease (AD), mild cognitive

impairment (MCI), and elderly controls (NC). The major goal of ADNI data set is to promote

the development of longitudinal, multi-site, imaging-genetic methods in analyzing Alzheimer’s

disease. Patients from the three groups are non-randomly sampled with different probabilities

where a total of 800 subjects including 200 normal controls, 400 individuals with MCI, and

200 subjects with mild AD are recruited by ADNI1. More than 50% subjects in the sample

are with MCI since researchers want to explore more about the transition mechanism from

MCI to AD while no more than 15% of people older than 55 are in MCI status in the whole

population. ADNI has gone though four phases from ADNI1, GO, 2 to ADNI3 from 2004

until 2016 and the whole sample size is extended to over 1700. A new cohort Significant

Memory Concern (SMC) is added since ADNI2.

Another field multi-group design being widely used is the cancer study. Wang et al. (2017)

discusses a tissue microarray (TMA) imaging dataset for thyroid cancer. Patients who had
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surgery for thyroid cancer at Mackay Memorial Hospital between January 2001 and May

2012 are recruited to build the sample. The TMA data is usually generated by the tissue

sections cut from both normal and tumor samples. The proportion of subjects in the sample

with more severe cancer stages are much higher than those in the whole population, which

makes the TMA dataset a non-random sample.

Similar to the case-control design, estimations by standard models using the muti-group

association data can be extremely misleading. In this dissertation, we build a general

framework to properly correct the sampling bias when analyzing secondary phenotypes in

multi-group association studies.

2.1.2 Graph-Based Data

Graphs can be used to represent either symmetric or asymmetric relations between a

group of discrete objects. With technology development and population growth, large-scale

graph-based datasets are generated to solve all kinds of real-world problems.

Graph-based semi-supervised learning problem has been increasingly studied, the goal

of which is to predict the node responses of all the unlabelled vertexes (such as documents)

in a graph (such as a citation network) based on only a small subset of observed ones. The

labelling information is usually smoothed over the graph via some form of explicit graph-based

regularization.

A popular method is to use the graph Laplacian regularization to learn node represen-

tations, such as label propagation (Zhu et al., 2003), manifold regularization (Belkin et al.,

2006) and deep semi-supervised embedding (Weston et al., 2012).

Recently, attention has been shifted to the learning of network embeddings, which is

first discussed in skip-gram model (Mikolov et al., 2013). Perozzi et al. (2014) presents

Deep-Walk to learn the latent representations of vertices in a network using local information

obtained from truncated random walks. LINE (Tang et al., 2015) and node2vec (Grover and

Leskovec, 2016) improve Deep-Walk by allowing more flexibility when exploring neighborhoods

through random walks. However, all these methods are based on a multi-step framework,
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where the generation of random walks and the main semi-supervised classifier are built and

optimized individually. Yang et al. (2016) proposes a novel graph-based semi-supervised

learning framework. Different from the above two-step procedures, the network embedding

and the final classification model are jointly trained by an end-to-end architecture. The graph

embedding and hidden representation learned from the classifier are concatenated to feed

into the final prediction layer.

In the past few years, more efforts have been devoted to developing deep learning

models to capture the spatial information of network data (Bruna et al., 2013; Henaff

et al., 2015; Duvenaud et al., 2015; Li et al., 2015). They either pay attention to problem-

specific specialized architectures or utilize graph convolutions known as spectral graph theory.

Defferrard et al. (2016) designs a localized convolution network for general graph structures.

The lower layers of the network is convolutional in the sense that the same local filter is

applied to each graph vertex and its neighboring nodes. Then a global pooling procedure

combines the features captured by a multi-layer propagation from all the vertexes.

We consider a weighted graph structure consisting of an undirected (or directed) graph

G = (V,E) as well as an adjacency matrix A = (aij), where aijs’ are nonegative edge

weights, V = {v1, . . . , vN} is a set of |V | = N vertices, and E is a set of edges. Moreover,

(vi, vj) ∈ E ⊂ V × V is an edge equipped with an nonegative weight aij. The adjacency

matrix A = (aij) ∈ RN×N encodes the node connections. x ∈ RN×c is the node-level signals

where c is the length of feature vectors.

aAn widely-used operator in spectral graph analysis is the graph Laplacian (Chung and

Graham, 1997). Formally, the graph Laplacian given the adjacency matrix A is defined

as L = IN − D−
1
2AD−

1
2 where D ∈ RN×N is a diagonal degree matrix with Dii =

∑
j aij.

L = UTΛU is the eigenvalue decomposition of L with U being the matrix of eigenvectors and

Λ = diag([λ0, λ1, . . . , λN−1]) being the diagnal matrix containing eigenvalues. We consider

spectral convolutions on graphs defined as the multiplication of the input matrix x ∈ RN×c

with a filter gθ in the Fourier domain (Defferrard et al., 2016). The filter gθ serves as the
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function of the eigenvalues of L, i.e. gθ(Λ). Hammond et al. (2011) suggests that gθ(Λ) can

be well-approximated by a truncated expansion in terms of Chebyshev polynomials Tk(x) up

to K-th order:

gθ(Λ) =
K−1∑
k=0

θkTk(Λ) (2.1)

The Chebyshev polynomials are recursively defined as Tk(z) = 2zTk−1(z) − Tk−2(z) with

T0 = 1 and T1 = z.

The spectral graph convolutions at the l-th layer incorporated with input ml
t ∈ RN×cl

can be modified as:

gθ ∗ml
t ≈

K−1∑
k=0

Tk(L̃)ml
tWl (2.2)

where L̃ = 2
λmax

L − IN with λmax being the maximum eigenvalue of the Laplacian matrix.

Wl ∈ Rcl×d is the GCN projection matrix to learn. Assuming x̃k = Tk(L̃)x, by the recurrence

relations we have x̃k = 2L̃x̃k−1 − x̃k−2 with x̃0 = x and x̃1 = L̃x.

Kipf and Welling (2016) simplify the graph convolution networks proposed by Defferrard

et al. (2016) to highly increase the training efficiency and obtain a higher prediction accuracy.

The layer-wise transformation is defined as:

f(H(l), A) = σ(AH(l)W (l)) (2.3)

where W (l) is a weight matrix for the l-th layer and σ(·) is a non-linear activation function

such as the ReLU. H(0) = X serves as the input and H(L) = Z is the final output when

there are in total L layers. Despite the simple structure the proposed operation, the model is

powerful in capturing the graph-based spatial information.

There are two main limitations of the operation above. One is the multiplication of A

at each layer, which models the spatial information of neighboring nodes but dismisses the

target node itself unless self-loops exist in the graph. A simple solution to solve this problem

is to add an identity matrix to A.
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Another limitation is that A is not normalized and multiplication with A will keep

changing the scale of the output representations at each layer. Therefore, Kipf and Welling

(2016) normalize A to make the row sums to be one, i.e. D−1A, where D is the diagonal

matrix summing up each row of A. Multiplying with D−1A is equivalent to take a weighted

sum over the neighboring grids and the center grid itself. A more advanced way is to use

a symmettic normalization D−1/2AD−1/2 (as this no longer amounts to mere averaging of

neighboring nodes). With the normalization of the the mutliplication, (2.3) is modified to

f(H(l), A) = σ(D̂−
1
2 ÂD̂−

1
2H(l)W (l)) (2.4)

where Â = A+ I, where I is the identity matrix and D̂ is the diagonal node degree matrix of

Â. The propagation rule could be seen as the first-order approximation of localized spectral

filters on graphs (Defferrard et al., 2016).

2.1.3 OD flow data

Spatial-temporal prediction of large-scale OD flow networks plays an important role in

traffic flow control, urban routes planning, infrastructure construction, and policy design of

ride-sharing platforms, among others. On ride-sharing platforms, customers keep sending

requests with origins and destinations at each moment. Knowing the exact original location

and destination of each future trip allows platforms to prepare sufficient supplies in advance

to optimize resource utilization and improve users’ experience. Given the destinations of

prospective demands, platforms can predict the number of drivers transferring from busy

to idle status. Prediction of dynamic demand flow data helps ride-sharing platforms to

design better order dispatch and fleet management policies for achieving the demand-supply

equilibrium as well as decreased passenger waiting times and increased driver serving rates.

There is a great interest in building spatial-temporal models to predict the total number

of customer requests at each origin-destination pair generated in the (t+ j)-th time interval,

given the historical demand data until the current time window t. We consider the set of
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dynamic OD flow maps as a sequence of graph snapshots G = {G1, . . . , GT}. With the

OD flow network at each time t ∈ {1, . . . , T}, we can define a weighted graph Gt = (V,Ot)

with a fixed vertex set V = {v1, . . . , vN} representing |V | = N urban regions. The dynamic

adjacency matrix Ot = (oijt ) ∈ RN×N describes flow amounts within all N2 OD flows, where

oijt represents the flow amount from node vi to node vj at timestamp t.

Many efforts have been devoted to developing traffic flow prediction models in the past

few decades. Before the rise of deep learning, traditional statistical and machine learning

approaches dominate this field. These methods are usually built on linear transformations,

so they often ignore non-linear correlations among the OD flows. Some other methods

further use additional external features obtained from feature engineering, but they fail to

automatically extract the spatial representation of OD data. Moreover, they roughly combine

the spatial and temporal features when fitting the prediction model instead of dynamically

model their interactions.

The development of deep learning technologies brings a significant improvement of OD

flow prediction by extracting non-linear latent structures that cannot be easily discovered

by feature engineering. For instance, convolutional operations are often used to capture

more complicated spatial patterns in the OD flow data, most of which treat each Ot as an

image. In this case, some nearby OD flows in Ot covered by a single CNN kernel may not be

semantically correlated. On the other hand, two neighboring OD flows with shared vertexes

in the graph can be far from each other in terms of images. As we mentioned in the previous

section, graph-based neural networks (GNN) (Kipf and Welling, 2016; Defferrard et al., 2016)

are proved to be powerful tools for modelling network structures. However, none of them are

directly applicable here since both the input and output of GNNs are node-level features.

For OD flow prediction problems, the spatial information in edge space is more important

because of the equivalence between OD flows and graph edges by our definition.
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2.2 Secondary Phenotype Analysis

In this section, we review the existing methods for secondary phenotype analysis. We will

focus on the case-control design since almost all the existing methods are designed for the

two-group situation, where both the binary disease status and some secondary phenotypes

are collected.

In case-control studies, subjects of disease and control groups are selected with different

probabilities from the whole population. Therefore, fitting a standard regression model is

statistically biased when analyzing the secondary phenotypes. There are several ways to

correct the estimation bias caused by the uneven sampling rates of the two groups. Before

moving to the details of these approaches, we introduce some important notations first. Let

D be the primary binary outcome (case-control status) and Y be the secondary outcome

(which could be either continuous or categorical). X denotes the set of covariates to analyze.

The simplest method is to fit a standard regression model using a subset of observations.

All these naive approaches can fall into four broad categories depending on the groups of

subjects being included:

1. Regress Y over X using control subjects only.

2. Regress Y over X using case subjects only.

3. Regress Y over X using the entire sample.

4. Include the case-control status D as an additional covariate in the regression models.

However, none of these approaches are statistically correct. (1) and (2) require a strong

assumption that there exists no significant group difference regarding the covariate effects

onto the target secondary phenotypes. Moreover, dropping a certain number of observations

can substantially decrease the estimation efficiency and statistical power. (3) is another naive

approach which treats the case-control sample as a random sample from the whole population.

Jiang et al. (2006); Lin and Zeng (2009); Monsees et al. (2009) point out that (3) is valid if
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and only if Y ⊥ D|X. (4) may yield flawed conclusions, since the associations between the

secondary outcome and an exposure of interest in the case and control groups can be quite

different from that in the underlying target population (Tchetgen Tchetgen, 2014).

Faced with the increasing demand in analyzing secondary traits on case-control sample,

a number of well-designed modified statistical approaches are proposed. All these methods

can be roughly divided into three main classes: (1) Inverse Probability Weighting (IPW)

methods. (2) Likelihood-based methods. (3) Semiparametric efficient estimating methods.

2.2.1 Inverse Probability Weighting

Various weighted likelihood approaches, such as the inverse probability weighting (IPW),

have been widely used (Richardson et al., 2007; Monsees et al., 2009; Schifano et al., 2013;

Sofer et al., 2017) to correct sampling bias. The IPW-based approaches replace the normal

log-likelihood function by a weighted sum using weights wi given by the reciprocal of the

selection probability for each subject in the case-control sample. We let the target of inference

be fβ(Y |X) with β including all the parameters related to the the conditional mean model.

If the total sample size is N , the weighted log-likelihood function is defined as:

l(β) =
N∑
i=1

1

wi
log fβ(Yi|Xi) (2.5)

which is proved to provide unbiased estimation of β and appropriate type-one error rates.

Schifano et al. (2013) extends the IPW approach to multiple-response situation, improving

the statistical power by borrowing strength across outcomes with a one degree of freedom test

and jointly estimating the outcome-specific exposure effects when the secondary phenotypes

are positively correlated. Suppose yi = (yi1, . . . , yiM) denotes the M-dimension correlated

continuous phenotypes and σ2
i being the phenotype-specific variance, the weighted estimating

equations is defined as:
N∑
i=1

wiXT
i R
−1(

yi
σi
−Xiγ) = 0 (2.6)
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and
N∑
i=1

wi{
yij
σj

(
yij
σj
− xTi β)− 1} = 0, j = 1, . . . ,M (2.7)

where R is the working correlation matrix and

Xi =



xTi 0T . . . 0T

0T xTi . . . 0T

... . . . ...

0T 0T . . . xTi


The weight wi equals to the global prevalence divided by the sample-level group proportions.

Schifano et al. (2013) proves that the proposed estimating equation is unbiased.

Sofer et al. (2017) points out that IPW is inefficient because of ignoring the data generating

mechanism. To address this issue, they propose a novel class of estimators which combine

traditional IPW with specification of the disease outcome probability model via a mean

zero control function. The control-function assisted IPW estimating equations is defined as

follows:

U(β) =
N∑
i=1

1

π(Di)
(h1(Xi)[Yi − g−1{µ(Xi; β)}]− h2(Xi, Di)) = 0 (2.8)

where π(Di) = Pr(Si = 1|Xi, D) and [Y |X] = g−1{µ(X; β)} are the population-level

conditional mean model. Si is a binary variable indicating whether a subject is selected into

the sample. h1(X,D), h2(X,D) are the control functions which depend on the disease model

and satisfies {h2(X,D)/π(D)|X,S = 1} = 0. In this case, the inverse probability weight

becomes h2(X,D)/π(D) with mean zero sum.

In practice, IPW-based methods are usually inefficient since some information related to D

is not fully utilized. Likelihood-based and semiparametric estimation approaches could solve

this problem to some extent, the details of which are discussed in the following subsections.

2.2.2 Likelihood-based Methods

Lee et al. (1997) develops a maximum likelihood estimating equation to jointly model the
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conditional distribution of D and Y given X when the sampling rates for the two groups are

known. Jiang et al. (2006) carries out an extensive investigation of efficiency and proves that

the semi-parametric maximum likelihood methods are theoretically more efficient than the

weighted likelihood methods.

Lin and Zeng (2009) introduces a retrospective likelihood function by explicitly condition-

ing on the sampling scheme. If Y is a continuous outcome, a linear regression model could

be used when assuming Y given X follows a normal distribution with mean β0 + β1X and

variance σ2. When Y is the binary outcome, we model Y |X by a logistic regression:

P (Y = 1|X) =
eβ0+β1X

1 + eβ0+β1X
(2.9)

Moreover, another logistic regression is used to describe the relationship between D and

(Y,X) as:

P (D = 1|X, Y ) =
eγ0+γ1X+γ2Y

1 + eγ0+γ1X+γ2Y
(2.10)

Because the sampling is conditional on the case-control status, the likelihood function takes

the retrospective form:

N∏
i=1

{
P (Di = 1|Xi, Yi)P (Yi|Xi)P (Xi)

P (Di = 1)

}Di {P (Di = 0|Xi, Yi)P (Yi|Xi)P (Xi)

P (Di = 0)

}1−Di
(2.11)

where P (Di = 1) =
∑

y

∑
x P (Di = 1|x, y)P (y|x)P (x), P (Di = 1) = 1− P (Di = 0). Lin and

Zeng (2009) proposes a profile-likelihood approach to eliminate the nuisance parameters from

the potential high-dimensional probability distribution of continuous environmental covariates.

Specifically, they treat the distribution of x as discrete point masses pi = p(xi) based on

the N finite observations in the case-control sample.
∑N

i=1 pi = 1 is the added additional

constraint when maximizing the objective likelihood function. According to simulation results,

their method provides an unbiased estimation, accurately controlling the type-one error and

maximizing the statistical power.
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He et al. (2012) uses a gaussian copula approach, allowing more flexible distributions of the

secondary outcome Y compared to Lin and Zeng (2009), which works for the multiple-outcome

case.

2.2.3 Semiparametric and Estimating Equation Methods

Wei et al. (2013) proposes a robust estimation method for secondary analysis of case-control

data by assuming that the secondary trait Y given X follows a homoscedastic regression

model, which is defined as

Y = α + µ(X, β) + ε (2.12)

where α is the intercept and µ is a known function. ε is the zero-mean error term which is

independent of X.

The method by Wei et al. (2013) allows the model for Y given X to be incorrect, and

makes the estimation approach robust. One main assumption of this method is that the

disease rate is given or could be well estimated. They pursue a sequential approach to

estimate the parameters related to the target regression model Y |X. The details of the

algorithm are described in three steps as follows:

1. Estimate the logistic regression of D given (X, Y ) and obtain the related parameters κ,

θ1. The logistic model is defined as:

P (D = 1|X, Y ) =
eθ0+m(Y,X;θ1)

1 + eθ0+m(Y,X;θ1)
(2.13)

On the other hand, κ = θ0 + log(n1/n0) − log(π1/π0) where n1, n0 are the number

of subjects in case and control group, and π1, π0 are global prevalences for the two

groups in the whole population. Prentice and Pyke (1979); Chatterjee and Carroll

(2005) demonstrate that θ1 and κ can be consistently estimated by the standard logistic

regression using the case-control sample. Moreover, it is assumed that a consistent

estimation of θ0 could also be obtained by solving an estimating equation.

2. Define a proper score function for β when (Y,X) are randomly sampled from the whole
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population. The simplest way to acquire the score function is to take the derivative of

the ordinary least squares {Y − α− µ(X, β)}2, making the score funtion to be

L{R(β), X, α, β} = µβ(X, β){R(β)− α} (2.14)

where R(β) = Y − µ(X, β). The score (2.14) is then adjusted to have zero-mean under

case-control design.

3. Denote Ω = (κ, θ0, θ1) and replace α in the score function by α(β,Ω). Solve the adjusted

score equation and get the estimation of β and hence α.

Song et al. (2016) introduces a set of counter-factual estimation functions under an

alternative disease status, and combines the observed and counter-factual estimation functions

into a set of weighted estimation equations (WEE). Simulations results demonstrates that

WEE is more robust against biased sampling and less sensitive to model misspecification.

Assuming S(X, Y, β) is an estimating function with EY (X, Y, β∗)|X) at true value β∗, the

unbiased counterfactual estimating equation by conditional expectation is defined as:

Sn(β) =
N∑
i=1

[S(xi, yi, β)p(di|xi) + Eỹi [S(xi, ỹi, β)|xi]p(1− di|xi)] = 0 (2.15)

where yi is the observation in the sample and ỹi is the counter-factual secondary outcome

under the alternative disease status. Estimating equation (2.15) remains unbiased when

S(xi, ỹi, β) is non-linear. Another estimation approach is to fit the model Y |X for cases and

controls separately, and then generate pseudo counter-factual observations using the resulting

stratified models.

Ma and Carroll (2016) constructs a class of semiparametric estimation procedures which

does not rely on a fully parametric distributions of the error term, specified disease rates or

an approximation in the whole population. Only the regression mean model is specified while

the error term can be heteroscedastic and depend on the covariates. The Regression model
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of Y given X in the whole population is defined as:

Y = m(X, β) + ε (2.16)

where m(·) is a known function and ε is the zero-mean error term. To relax the assumptions

of error distribution and disease rates, the concept of a superpopulation (Ma et al., 2010) is

adopted. Under the superpopulation framework, the regression model can be rewritten as:

f trueY |X(X, y) = η2{y −m(X, β), X} (2.17)

where η2 is an unknown probability density function that has mean 0 givenX. The case-control

sample could be considered as a random sample from an imaginary infinite superpopulation,

where the ratio between disease and normal is N1/N0. N1 and N0 here are group sizes in the

case and control groups, respectively. The joint density of D, Y,X in the superpopulation is

defined as:

fX,Y,D(x, y, d) =
Nd

N

η1(x)η2(ε, x)H(d, x, y, α)

ptrueD (d, α, β, η1, η2)
(2.18)

where θ = (αT , βT )T is the parameter of interest; η1(·) and η2(·, ·) are the nuisance parameters.

An efficient estimator can be obtained by solving the semiparametric score equation

N∑
i=1

[S(Xi, Yi, Di)− g{Yi −m(Xi, β)Xi} − (1−Di)v0 −Div1] = 0 (2.19)

where S() is the score function and g() is an arbitrary function. It is mentioned in the paper

that the proposed estimator is not only efficient for the constructed superpopulation but also

the real whole population.

2.3 Non-ignorbale Non-response

In this section, we review the existing approaches for missing data imputation and estimate

parameters in the presence of non-response. We focus on the methods applicable to situations

when the non-response is not missing at random (NMAR), that is to say the probability
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a response is labelled depends on not only the observed but also the missing observations

(Little and Rubin, 2019). In this case, the non-response cannot be ignored.

With the presence of non-ignorable non-response, disregarding such a missing mechanism

may destroy the representativeness of the remaining samples and subsequently lead to

significant estimation bias (Baker and Laird, 1988; Diggle and Kenward, 1994; Ibrahim

et al., 1999; Molenberghs and Kenward, 2007). We assume that the problem of interest is to

unbiasedly learn an outcome model Y |x. Without loss of generality, when y is continuous,

we consider a linear model given by

Y = α + xβ + ε, (2.20)

where ε = (ε1, · · · , εN)T ∼ N(0, σ2I) and ε ⊥ x is the error term with zero unconditional

mean, that is, E(εi) = 0. We let ri ∈ {0, 1} be the “labeling indicator”, where yi is observed

if and only if ri = 1. With the non-ignorable missingness, dropping out missing data can

lead to strongly biased estimates when r depends on y. The parameter estimates will not be

consistent since E{εi|ri = 1} and E{εixi|ri = 1} are not zero. The missing values could not

be imputed even if we would have consistent estimates since

E{yi|ri = 0, xi;α, β} =
E{yi(1− ri)|xi;α, β}
1− P (ri = 1|xi;α, β)

= α + βTxi −
cov(yi, πi|xi;α, β)

1− E(πi|xi;α, β)
6= α + βTxi.

(2.21)

Modeling non-ignorable missingness is challenging because the MNAR mechanism is usual-

lyunknown and may require additional model identifiability assumptions (Chen, 2001; Qin

et al., 2002; Tang et al., 2003; Ibrahim et al., 2005). Little and Rubin (2019) classifies the

approaches dealing with missing data into four different categories:

• Methods based on completely observed units. These approaches are completely

based on the fully observed subjects while discarding observations that contain missing

values. They are usually easy to implement in practice, but may result in estimation
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inaccuracy because the complete cases are not randomly sampled from the whole

population (Little and Rubin, 2019).

• Weighting procedures. These methods assign the inverse of estimated response

probabilities as weights to the responding units (Robins et al., 1995; Carpenter et al.,

2006) when building the likelihood function, but most of these procedures are designed

for the missing at random (MAR) mechanism instead of NMAR. Very few methods,

such as the one proposed by Deville (2000) and Chang and Kott (2008) can work for the

non-ignorable non-response situation. The weighting approaches are usually based on

the auxiliary information available for all the subjects, and the conditional probability

to respond is always considered as propensity score (Rosenbaum and Rubin, 1983).

• Imputation Procedure Another class of methods is to impute missing data by using

observed data (Rubin, 1976; Schafer and Schenker, 2000; Little and Rubin, 2019). These

methods are based on the derived fully likelihood function including all the subjects,

with non-respondents valued by estimations using information of respondents. The

imputation procedures fall into two broad groups: single imputation and multiple

imputation. Single imputation assigns a single value to each missing unit. The missing

outcomes can be imputed by simply using the sample means or a random draw from the

estimated conditional distribution (stochastic regression imputation). The disadvantage

of single imputation is that it does not facilitate estimation of the variances due to

non-response. To address this issue, multiple imputation can be employed by generating

a set of plausible values for each missing unit based on several independent random

draws from the posterior predictive distribution. The original multiple imputation

method is proposed by Rubin (1976), and elaborated by Rubin (2004). The existing

publications discussing imputation-based approaches include Glynn et al. (1993); Rubin

(1996); Schafer (1997); Schafer and Schenker (2000).

• Model-based procedures These methods estimate the related parameters using the
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likelihood function based on the fully observed units. The advantage of model-based

methods is that they are flexible enough to handle both MAR and NMAR non-response.

To account for the missingness of NMAR, model-based approaches are usually employed

in two different ways: selection models or pattern-mixture models, which can be solved

from the perspective of either Bayesian or frequentist.

Recently, two advanced methods have been proposed to facilitate model identification

when dealing with non-ignorable missingness under the exponential tilting model (Kim and

Yu, 2011). (Zhao et al., 2013; Tang et al., 2014) estimate the tilting model using external data,

but such data is often unavailable in many applications, making these methods infeasible.

The other method is to introduce an instrumental variable, which is associated with the

response of interest but conditionally independent of the data missingness (Wang et al., 2014;

Zhao and Shao, 2015; Yang et al., 2014; Shao and Wang, 2016).

In the rest of this section, we summarize the model-based approaches for non-ignorable

non-response according to Sikov (2018). We assume that the covariate set x is observed for

all the units and the response y is partially observed. We let Y = (y1, . . . , yr, yr+1, . . . , yn) =

(Yobs;Ymis), x = (x1, . . . , xn) and J = (R1, . . . , Rn). Specifically, Yobs and Ymis here represent

the subsets of respondents and non-respondents, respectively. We can derive the pdf of the

observed data as:

f(yobs, J |x; ξ) = f(y1, . . . , yr, R1, . . . , Rn|x1, . . . , xn, (1, . . . , n) ∈ S; ξ) (2.22)

=

∫
· · ·
∫
f(y1, . . . , yn, R1, . . . , Rn|x1, . . . , xn, (1, . . . , n) ∈ S; ξ)dyr+1, . . . dyn

=

r∏
i=1

f(yi, Ri|xi, i ∈ S; ξ)

n∏
i=r+1

∫
f(yi, Ri|xi, i ∈ S; ξ)dyi

where ξ denotes the vector of unknown parameters related to the joint model. Both the two

model-based methods could be non-identifiable unless some arbitrary modelling assumptions

hold. More details about these two model settings will be discussed as follows.
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2.3.1 Selection models

Under the framework of selection models, we have

f(yi, Ri|xi, i ∈ S; ξ = (θ, γ)) = Pr(Ri|yi, xi, i ∈ S; γ)fS(yi|xi; θ) (2.23)

where fS(yi|xi; θ) and Pr(Ri|yi, xi, i ∈ S; γ) model the sample pdf and missing mechanism,

respectively. θ and γ are the parameters to estimate. In this case, the fully observed units

can be seen as a sub-group, sampled in probabilities Pr(Ri = 1|yi, xi, i ∈ S; γ). Based on

the model specification, selection models works better when the main target of inference

is the marginal distribution of the complete data. By assuming the sample outcomes are

independent given the covariates, the fully likelihood can be written in the form:

L =

∫
. . .

∫ n∏
i=1

Pr(Ri = 1|yi, xi, i ∈ S; γ)fS(yi|xi; θ)dyr+1 . . . dyn (2.24)

=
r∏
i=1

Pr(Ri = 1|yi, xi, i ∈ S; γ)fS(yi|xi; θ)
n∏

i=r+1

Pr(Ri = 0|xi, i ∈ S; θ, γ)

where

Pr(Ri = 0|xi, i ∈ S; θ, γ) = 1−
∫
Pr(Ri = 1|yi, xi, i ∈ S; γ)fS(yi|xi; θ)dyi (2.25)

The missing mechanism can be modelled as

Pr(Ri = 1|yi, xi, i ∈ S; γ) = g(γ0 + xiγ1 + yiγ2) (2.26)
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with some function g valued in the range (0, 1). In this case, the missing values can be

imputed by the expectations ERc(yi|xi) = E(yi|xi, Ri = 0) based on the Bayes theorem:

ERc(yi|xi) =

∫
yif(yi|xi, i ∈ S,Ri = 0)dyi (2.27)

=

∫
yiP (Ri = 0|yi, xi, i ∈ S)fS(yi|xi)dyi∫
P (Ri = 0|yi, xi, i ∈ S)fS(yi|xI)dyi

In practice, the probabilities and densities in (2.27) are replaced by the maximum likelihood

estimations. The imputed values can also be obtained by drawing random samples from

fRc(yi|xi) = f(yi|xi, i ∈ S,Ri = 0). The frameworks of selection model are discussed in

(Greenlees et al., 1982; Heckman, 1976; Ibrahim and Lipsitz, 1996; Peress, 2010). Selection

model is able to estimate all the unknown parameters, but the use of the likelihood is

inevitable based on strong distribution assumptions as noted by (Little, 1994).

Beaumont (2000) improves the model robustness by relaxing the normality assumption of

the residuals. The parameter γ can be estimated by maximizing the response likelihood:

L =
r∏
i=1

Pr(Ri = 1|yi, xi, i ∈ S; γ)
n∏

i=r+1

Pr(Ri = 0|xi, i ∈ S; θ, γ)

with respect to γ, assuming that θ is known. Similarly, estimation of θ can be obtained by

solving a weighted least square equations, given γ. The estimation procedure is updated

iteratively until convergence. Specifically, they expand Pr(Ri = 1|yi, xi; i ∈ S; γ) around

the mean ES(yi|xi) = βtxi. The imputed missing outcomes obtained by the expectations

with respect to the sample distribution ÊS(yi|xi) = ES(yi|xi; θ̂, γ̂) is biased since the the

missing outcomes must be imputed either by ÊRc(yi|xi) or by random sample drawn from

the distribution fRc(yi|xi; θ̂, γ̂).

Overall, selection models are more intuitive to implement in practice but the modelling of

NMAR may be non-identifiable and thus require unverifiable model assumptions.
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2.3.2 Pattern-mixture models

Different from selection models, pattern-mixture models formulate distinct models for

response and non-response units:

f(yi, Ri|xi, i ∈ S; ξ = (ψ(l), ψr)) = f(yi|xi;ψ(l)
m )Pr(Ri|xi, i ∈ S;ψr) (2.28)

where f(yi|xi;ψ(l)
m , l = 0, 1) and Pr(Ri|xi, i ∈ S;ψr) model the pdf of Y under the different

patterns of the missing data and the response probability given sample selection, respectively.

l = 1 corresponds to the respondents and l = 0 for the non-respondents. In this case, the

likelihood function can be defined as:

L =

∫
. . .

∫ n∏
i=1

f(yi|xi;ψ(l)
m )Pr(Ri|xi, i ∈ S;ψr)dyr+1 . . . dyn (2.29)

=
r∏
i=1

fS(yi|xi, i ∈ S;ψ(l)
m )Pr(Ri = 1|xi, i ∈ S;ψr)

n∏
i=r+1

Pr(Ri = 0|xi, i ∈ S;ψr)

Similar to the selection models, the unverifiable assumptions is necessary to obtain the

identification. Specifically, the factorization (2.28) partitions the parameters of full-data

model into the identified and non-identified sets. The parameters related to the respondents’

model f(yi|xi;ψ(1)
m ) and the probability to respond Pr(Ri|yi, xi, i ∈ S;ψr) can be identified.

The parameters corresponding to the non-respondent model f(yi|xi;ψ(0)
m ) are not identifiable

from the data. Identification of the pattern-mixture models is based on the postulating

unverifiable links among the distributions of the outcomes conditional on the patterns of

non-response. Little (1994) explores the potential relationships between the parameters

governing the models holding for different missingness patterns, and compare pattern-mixture

and selection models by some real examples. Chambers et al. (2012) studies the applications

of pattern-mixture models in the situation when some non-respondents are available through

a more intensive follow-up survey.

Different from the selection models, pattern-mixture models split the whole parameter
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set into the identified and un-identified parts, and build a framework for sensitivity analysis

(Thijs et al., 2002; Daniels and Hogan, 2008). The weakness of pattern-mixture models is

that the model for non-responding units f(yi|xi;ψ(0)
m ) can not be obtained from the fitted

models f(yi|xi;ψ(1)
m ) and Pr(Ri|yi, xi, i ∈ S;ψr). Moreover, the parameters associated with

the distribution for the complete respondents can not be easily estimated, which requires

marginalization of the distribution of outcomes over non-response patterns.

2.3.3 Pseudo-likelihood method

Tang et al. (2003) proposes a ’pseudo-likelihood’ method using the conditional pdf fS(xi|yi)

for the responding units, where the specification of this sample pdf and the marginal pdf

gS(xi) is required. The method assumes that the probability to respond only depends on

y, i.e. gR(xi|yi) = gS(xi|yi), where gR(xi|yi) is the conditional pdf for a respondent. The

likelihood is defined as

L =
r∏
i=1

gS(xi|yi; θ, η) =
r∏
i=1

fS(yi|xi; θ)gS(xi; η)∫
fS(yi|xi; θ)gS(xi; η)dxi

(2.30)

Although the product only covers the responding units, estimations of gS(xi) requires the

covariates to be known for all the observations. The method combines the estimation of

gS(xi; η) based on the complete units with the conditional distribution fS(xi|yi; θ) using the

fully observed units. They propose a two-step procedure to estimate θ and η:

1. Estimate η as η̂ = argmaxη
∏n

i=1 gS(xi; η) or as η̂ = Gn(x), where Gn(x) is the empirical

sample distribution of X

2. Estimate θ by maximizing the likelihood (2.30) with η replaced by η̂.

Although they demonstrates that this method is robust to the mis-specification of the missing

mechanism, it is less efficient than selection models when the responding probability is

correctly specified. They discuss the case when the responding probability depends on

Y ∗ = Y + λtX. If λ is known, the pseudo-likelihood method can be applied to data (X, Y ∗).
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2.4 Spatial-Temporal Predictions

Data-driven prediction for spatial-temporal traffic systems has drawn wide attention

for decades. The main target of these problems is to predict the expected value at each

spatial location within an incoming time window based on the system dynamics learned from

historical data. In this section, we discuss some state-of-the-art methods for spatial-temporal

traffic predictions and their limitations when applied to origin-destination flow data.

A large number of approaches have been proposed for spatial-temporal prediction problems,

most of which fall into two main groups: traditional statistical methods and more advanced

deep learning methods. Some early statistical methods including Auto-regressive integrated

moving average (ARIMA), Kalman filtering, and their variants, model the spatial-temporal

data as multi-dimensional time-series, which cannot capture enough spatial information (Li

et al., 2012; Lippi et al., 2013; Moreira-Matias et al., 2013; Shekhar and Williams, 2008). Idé

and Sugiyama (2011); Zheng and Ni (2013) smooth the spatial similarities among nearby

locations based on the road networks and time sequences according to given regularizations.

Kwon and Murphy (2000); Yang et al. (2013) capture the spatial-temporal correlations by

using Hidden Markov Model, which can only work for small-scale traffic data. However, all

these approaches use some pre-calculated spatial features instead of capturing the correlations

among different OD flows by the model itself when predicting future OD flow values. Deng et al.

(2016) learns the time-dependent latent attributes by finding the optimal decomposition of the

dynamic traffic flow matrices. Their method assumes that the latent attribute representations

constantly evolve with time. However, some recurring incidents or emergency situations can

result in non-stationarity.

Deep learning enables prediction models to automatically extract non-linear spatial

patterns inside the OD flow data. Wei et al. (2016) introduces a Zero-Grid Ensemble Spatio

Temporal model (ZEST), which integrates a temporal predictor and a spatial predictor

through a fully connected network for the final prediction. Wang et al. (2017) presents an

end-to-end framework, called Deep Supply-Demand (DeepSD), which utilizes multiple data
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sources to improve the prediction performance. All theses methods model the spatial and

temporal representations, respectively, without building a dynamic connection.

To address this issue of dynamic connection, some recent studies use convolutional LSTM

to jointly capture the spatial-temporal dependency. Zhang et al. (2016, 2017) model the city

as an image by dividing the whole area into small grids and employed residual neural network

to capture the temporal closeness, period, and trend properties of traffic flows. Ma et al.

(2017) applies CNN to the image built on the whole city area. Another set of studies utilize

recurrent-neural-network to model the temporal sequential correlations. Yu et al. (2017)

proposes an end-to-end deep Long-short-term memory (LSTM) model to forecast peak-hour

and post-accident traffic situation. Cui et al. (2016) introduces an unidirectional LSTM

(SBU-LSTM) neural network, which considers both forward and backward dependencies

of time sequences for traffic speed prediction. All the methods discussed above explicitly

model spatial and temporal dependencies respectively, but still can not build the connections

between the both sides. To address this issue, some recent studies try convolutional LSTM

to model the spatial-temporal dependency (Xingjian et al., 2015; Ke et al., 2017; Zhou et al.,

2018).

Yao et al. (2018) introduces a mult-view spatial-temporal prediction model, consisting of

both spatial and temporal views to jointly obtain the spatial-temporal relations. The goal of

the paper is to predict taxi demand at each local region within the incoming predicting time

window give the historical information.

At each time interval t, Yao et al. (2018) treats one spot i with its surrounding neighbor-

hood as an S × S image with one channel including the grid-level demand amount, denoted

by Y i
t ∈ RS×S×1. For the spatial-view, a zero-padding local CNN operation takes Y i

t as the

input Y i,0
t and feeds it into K layers, where the transformation at k-th layer is defines as:

Y i,k
t = f(Y i,k−1

t ∗W k
t + bkt ) (2.31)
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where ∗ denotes the convolutional operation and f(x) is the ReLu function max(x, 0). The

output representations Y i,k
t ∈ RS×S×λ after K convolution layers is flattened into a feature

vector sit ∈ RS2λ. Then a fully connected layer reduce the dimension of sit from S2λ to d by

ŝti = f(W fc
t s

i
t + bfct ) (2.32)

The spatial features obtained by local CNN at time t is then concatenated with some external

context features eti to get

gti = sti ⊕ eti (2.33)

gti is then fed into a LSTM model to learn the sequential correlations in temporal dimension:

hti = LSTM(ht−1
i , gti) (2.34)

to make the output of LSTM hti contains both temporal and spatial information. hti is

concatenated with the global-view features mt
i obtained through network embedding to get

the input qti for the final prediction layer, which is defined as:

ŷit+1 = σ(Wfq
t
i + bf ) (2.35)

where Wf and bf are learnable parameters. σ(x) is a Sigmoid function to gurantee the

value range of predictions within [0, 1] as the real demand values are normalized for better

prediction performance. Cheng et al. (2018) also combines CNN and RNN together to obtain

spatial-temporal correlations, while the difference is that it applies CNN to the whole image

instead of using local CNN as Yao et al. (2018) did. Yao et al. (2018) improves Yao et al.

(2018)’s method by designing a periodically shifted attention mechanism to capture the

long-term periodic influence and temporal shifting in time series prediction. Moreover, they

proposed a flow gating mechanism to learn the location similarities by incorporating the

directed traffic flows other than only using the non-directed demand value. When applied to
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OD predictions, most of these CNN-based methods treat each snapshot Ot ∈ RN×N including

all the N2 OD flows as an image. In this case, some nearby OD flows in Ot covered by a

single CNN kernel may not be semantically correlated. On the other hand, two neighboring

OD flows with shared vertexes in the graph can be far from each other in terms of images.

As we mentioned above, many real-world datasets have graph structures, including

social networks, knowledge graphs or some large-scale spatial-temporal traffic systems. The

traditional Convolution Neural Network (CNN) can not be directly applied since CNN can

only capture the spatial information from the perspective of images. However, some graph

vertexes far away from each in the image space may be topologically close and semantically

correlated.

Seo et al. (2018) combines the graph convolutional networks (denoted by CNNG) to

identify spatial structures with recurrent neural network (RNN) to find dynamic patterns.

Two different appraoches have been discussed. The first is to use GCN to extract spatial

representations at each time t as the input for the LSTM model:

xCNNt = CNNG(xt)

it = σ(Wxix
CNN
t +Whiht−1 + wci � ct−1 + bi),

ft = σ(Wxfx
CNN
t +Whfht−1 + wcf � ct−1 + bf ),

ct = ft � ct−1 + it � tanh(Wxcx
CNN
t +Whcht−1 + bc),

ot = σ(Wxox
CNN
t +Whoht−1 + wco � ct + bo),

ht = ot � tanh(ct). (2.36)

where xt ∈ Rn×dx is input matrix. The other replaces the Euclidean 2D convolution by graph
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convolution in convLSTM model proposed by Xingjian et al. (2015):

i = σ(Wxi ∗G xt +Whi ∗G ht−1 + wci � ct−1 + bi),

f = σ(Wxf ∗G xt +Whf ∗G ht−1 + wcf � ct−1 + bf ),

ct = ft � ct−1 + it � tanh(Wxc ∗G xt +Whc ∗G ht−1 + bc),

ot = σ(Wxo ∗G xt +Who ∗G ht−1 + wco � ct + bo),

ht = ot � tanh(ct). (2.37)

where Wxi ∗G xt represents the graph convolution of xt with dhdx filters which are functions

of the graph Laplacian L parametrized by K Chebyshev coefficients.

Yan et al. (2018) proposes a novel model in dynamic skeletons called Spatial-Temporal

Graph Convolutional Networks (ST-GCN) by applying the graph CNN to the spatial-temporal

domain to jointly learn the spatial and temporal features. Specifically, Yan et al. (2018)

extends the concept of neighborhood to also include temporally connected nodes. Manessi

et al. (2017) also uses the idea to combine LSTM and GCN in semi-supervised classification

problems, where graphs are allowed to be dynamic with structures changing during time.

However, none of them are directly applicable to the prediction problem of OD flow data

since both the input and output of GCNs are node-level features. For OD flow prediction

problems, the spatial information in edge space is more important because of the equivalence

between OD flows and graph edges by our definition.
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CHAPTER 3: ANALYSIS OF SECONDARY PHENOTYPES IN
MULTI-GROUP ASSOCIATION STUDIES

3.1 Introduction

To motivate the proposed methodology, we consider a large database with imaging,

genetic, and clinical data from 1737 subjects collected through the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) (http://www.adni-info.org/). The overall design of the

ADNI is a longitudinal study of various biomarkers at baseline and their longitudinal profiles.

ADNI has gone though four phases from ADNI1, GO, 2 to ADNI3 from 2004 until 2016.

ADNI1 began with 204 cognitively normal controls (NC), 362 subjects with mild cognitive

impairment (MCI), and 179 subjects with Alzheimer’s disease (AD), and was extended by

three follow-up phases with different number of subjects in each category. ADNI is a typical

example of multi-group studies. Similar to the case-control design, the multi-group sample is

usually not a random sample from the whole population because of the unequal selection

probabilities between different disease groups. The proportions of AD and MCI in ADNI

are much bigger than their global prevalences in the age-matched general population (Kim

et al., 2015). In this paper, we focus on the brain regions of the left and right hippocampi

of each ADNI subject and a large genetic data set with over 6,000,000 genotyped and

imputed single-nucleotide polymorphisms (SNPs) on all 22 human chromosomes. Since the

hippocampus is critical for learning and memory and is vulnerable to damage in the early

stages of AD (Schuff et al., 2009), the volume and shape of the hippocampi may be effective

phenotypes that facilitate the identification of causal genes and the mechanistic understanding

of pathophysiological processes of AD. Our primary goal is to search for genetic patterns

that are associated with local hippocampal changes, while correcting for the selection bias

associated with ascertainment in multi-group studies.
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In many genetic association studies, some variables of interest are the marker genotype(s),

G, secondary (or intermediate) traits Y , the primary phenotype (multi-group status) D,

clinical variables C, and the ascertainment (sampling) indicator S. For instance, various

imaging measures (e.g., subcortical volumes) have been widely used as secondary traits that

may be directly associated with a specific disease outcome for most brain-related diseases. A

statistical challenge arises from the fact that the main target of interest is the population

model of Y given G, whereas both secondary traits Y and marker genotype(s) G are collected

conditional on the grouping phenotype D. In genetic epidemiology, standard statistical

methods that either ignore ascertainment or naively adjust for ascertainment by conditioning

on the disease status (e.g., meta-analysis of subjects in different subgroups) can lead to

estimation bias, an inflated false-positive rate, and decreased statistical power. Therefore,

it may be critical to adjust for D when one models Y given G in these genetic association

studies.

There is a large literature on the development of statistical methods for eliminating the

selection bias associated with ascertainment in case-control (or two-group) studies. The

simplest method is to fit a regression model to all subjects in a single group (e.g., cases or

controls, or each subgroup in multi-group study). It requires a strong assumption that no

group difference exists in the genetic effects regarding the corresponding secondary traits.

Moreover, dropping a certain number of observations can substantially decrease the estimation

efficiency and statistical power. Another simple method, called LRegD (Potkin et al., 2010),

is to include the case-control status D as an additional covariate in the regression models.

However, LRegD may yield flawed conclusions, since the associations between a secondary

outcome and an exposure of interest in the case and control groups can be quite different

from that in the underlying target population (Tchetgen Tchetgen, 2014). Various weighted

likelihoods, such as the inverse probability weighting (IPW) approach, have been widely used

(Richardson et al., 2007; Monsees et al., 2009; Schifano et al., 2013; Sofer et al., 2017), but

they do not utilize the information collected on the primary outcome D. Lee et al. (1997)
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and Jiang et al. (2006) develop a maximum likelihood estimate of the regression coefficients

assuming that the sampling rates for cases and controls are known. Lin and Zeng (2009)

introduces a retrospective likelihood function by explicitly conditioning on the sampling

scheme. He et al. (2012) uses a Gaussian copula approach, allowing more flexible distributions

of the secondary outcome Y compared to Lin and Zeng (2009). Wei et al. (2013) proposes a

robust estimation method for secondary analysis of case-control data by assuming that the

secondary trait Y follows a homoscedastic regression model given X. Breslow et al. (2000)

applies the semiparametric inference method through building an augmented estimation

equation to improve the efficiency of IPW. Song et al. (2016) introduces a set of counterfactual

estimation functions under an alternative disease status and combines the observed and

counterfactual estimation functions into a set of weighted estimation equations. However, all

these approaches focus on the case-control design.

Our aim is to develop a general regression framework for the analysis of secondary

phenotypes collected in multi-group association studies, called MGLREG. There are two

major contributions.

(I) To the best of our knowledge, we are the first that systematically discusses the secondary

trait analysis in multi-group studies such as ADNI, while allowing the multiple-phase design.

(II) We have developed companion software, called MGLREG, along with its documenta-

tion and released it to the public through https://github.com/BIG-S2/MGLREG.

3.2 Methods

In Section 3.2.1, we introduce the data structure and some notations. In Sections 3.2.2

and 3.2.3, we build the conditional model for Y given D and X and derive its associated

estimation equations for the three-group study, that is, J = 3. Our approach can be easily

extended from the basic J = 3 case to the more general setting of J > 3 (details for general

J discussed in supplements). In Section 3.2.4, we discuss how to extend our regression

framework from continuous secondary outcomes to binary ones. In Section 3.2.5, we further

consider the extension to multiple phases scenario.
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3.2.1 Data Structure and Notation

Suppose that we consider N independent subjects from a multi-group study. For each

subject, given the group status Di ∈ {0, 1, . . . , J − 1}, we denote Si as the ascertainment

(sampling) indicator and observe the secondary phenotype Yi of interest, the clinical factors

Ci, as well as the genotype score Gi for i = 1, . . . , N , where J is a positive integer. For

instance, J = 2 corresponds to the case-control design, whereas J > 2 corresponds to the

multi-group design. Without loss of generality, we focus on continuous secondary traits,

while the group 0 corresponds to the control group. Suppose there are nj subjects in the

j−th group for j = 0, . . . , J − 1 such that N is equal to n0 + n1 + . . .+ nJ−1. An important

assumption is that the prevalence of each subgroup j is known to be p̃j = P (D = j) in the

target population and π̃j = P (D = j|S = 1) = nj/N in the sample for j = 0, 1, . . . , J − 1.

Although the true value of p̃j is required, our method still works for an approximated value

of p̃j. To demonstrate this point, we allow misspecification of p̃j in the simulation studies

and find that our method performs acceptably stable with varied p̃j’s combinations.

3.2.2 Model Setup

The main target of inference is the population mean model for Y given X, denoted as

µ(X) = E(Y |X). We focus on the three-group case with J = 3 from now on, but all

derivations given below are valid when we replace 2 by J − 1. By using the law of conditional

expectations, we have

µ(X) =
2∑
j=0

µ̃(X, D = j)× P (D = j|X), (3.1)

where µ̃(X, D) = E(Y |X, D). A sufficient condition for estimating µ(X) is to estimate

both µ̃(X, D) and P (D|X). Since we observe Y and X conditional on D and S = 1, we

can consistently estimate E(Y |X, D, S = 1) and P (D|X, S = 1) instead of µ̃(X, D) and

P (D|X).

The sampling design of the multi-group study depends on D only and therefore (Y,X) is
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randomly sampled within each group D. Accordingly, we could characterize a relationship

between E(Y |X, D, S = 1) and µ̃(X, D) as:

µ̃(X, D) = E(Y |X, D) = E(Y |X, D, S = 1). (3.2)

It then follows from (3.2) that µ̃(X, D) can be consistently estimated.

Second, we characterize a relationship between P (D|X, S = 1) and P (D|X). Let

Πj(X) = P (D = j|X, S = 1) denote the risk function of D = j at X in the multi-group

sample and Pj(X) = P (D = j|X) be the probability of D given X in the whole population.

For each j = 0, 1, 2 , Πj(X) and Pj(X) satisfy the following relationship:

Πj(X)

Π0(X)
· π̃0

π̃j
=
Pj(X)

P0(X)
· p̃0

p̃j
. (3.3)

We assume that Πj(X) follows a multinomial logistic regression model as follows:

log

{
Πj(X)

Π0(X)

}
= log

{
Pj(X)

P0(X)

}
+ ηj = XTϕj (3.4)

for j = 0, 1, and 2, where ηj = log(p̃0π̃j)− log(p̃jπ̃0). If the ηjs are known and the ratio of

Πj(X) over Π0(X) can be consistently estimated, then the ratio of Pj(X) over P0(X) can

be consistently estimated.

We derive a conditional model of µ̃(X, D) based on (3.2). Specifically, it follows from the

equality
∑2

j=0 P (D = j|X) = 1 and (3.2) that µ̃(X, j) is given by

µ̃(X, j) = µ(X) +
∑
k 6=j

P (D = k|X){µ̃(X, j)− µ̃(X, k)}. (3.5)

Furthermore, we define γ1(X) = µ̃(X, 1)− µ̃(X, 0) and γ2(X) = µ̃(X, 2)− µ̃(X, 0). With
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some algebraic calculations, we can rewrite (3.5) as follows:

µ̃(X, j) = µ(X) +
2∑

k=1

{1(j = k)− P (D = k|X)}γk(X) (3.6)

for j = 0, 1, and 2. The term besides µ(X) on the right-hand side of (3.6) encodes the

selection bias by modeling the group difference of Y given different D statuses with fixed X

(Tchetgen Tchetgen, 2014).

Equation (3.6) has several important implications. If the selection bias is absent, then

we have γ1(X) = γ2(X) = 0 and µ̃(X, i) reduces to µ(X) regardless of the status of D. If

the disease is rare, then both P (D = 1|X) and P (D = 2|X) are close to zero in the whole

population and (3.6) reduces to

µ̃(X, j) = µ(X) +
2∑

k=1

1(j = k)× γk(X). (3.7)

Furthermore, if we set γ1(X) = XTΓ1, γ2(X) = XTΓ2, and µ(X) = XTβ, where Γ1, Γ2,

and β are three vectors of regression coefficients, then model (3.7) reduces to

µ̃(X, j) = XTβ +
2∑

k=1

1(j = k)XTΓk, (3.8)

in which β represents the main effects of X on Y and Γ1 and Γ2 represent the interaction

effects of D and X on Y . However, if the disease is not rare, then the selection bias can be

substantial when µ̃(X, D) varies dramatically across D.

3.2.3 Estimation

Our conditional model consists of three key components including (3.2), (3.4), and (3.6).

We can develop a two-stage estimation procedure to estimate the parameters of interest in

µ(X), {γj(X) : j = 1, 2} and {Pj(X) : j = 1, 2} as follows.

• Stage I: Based on (3.4), we can construct a set of estimation equations to estimate the

unknown parameters in Pj(X) in order to obtain its estimate, denoted as P̂j(X).
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• Stage II: We can substitute P̂j(X) in (3.6) and then construct the other set of estimation

equations to estimate the parameters in µ(X), γ1(X), and γ2(X) based on (3.6).

In Stage I, we assume that log{Pj(X)} − log{P0(X)} = f1(X;ϕj, ηj) holds for j = 1, 2,

where fj(·; ·, ·) is a known parametric function. For instance, in (3.4), we set f1(X;ϕj, ηj) =

XTϕj−ηj for each j. Since ηj = log(p̃0π̃j)−log(p̃jπ̃0) is known, we can construct a log pseudo-

likelihood function, denoted as L(ϕ), to estimate unknown parameters ϕ = (ϕT1 ,ϕ
T
2 )T in

{Πj(X)} based onN observations in the sample {(Xi, Di, Si = 1) : i = 1, . . . , N}. Specifically,

the log pseudo-likelihood function L(ϕ) is given by

N∑
i=1

[
2∑
j=1

{1(Di = j)XT
i ϕj} − log{1 +

2∑
j=1

exp(XT
i ϕj)}

]
. (3.9)

We can calculate the maximum pseudo-likelihood estimate, ϕ̂ = (ϕ̂T1 , ϕ̂
T
2 )T = argmaxϕ L(ϕ)

or equivalently, ∂L(ϕ̂)/∂ϕT = 0. Then, we compute

P̂j(X) = exp{fj(X; ϕ̂j , ηj)}/[1 + exp{f1(X; ϕ̂1, η1)}+ exp{f2(X; ϕ̂2, η2)}]

as a consistent estimate of Pj(X) for j = 1 and 2.

In Stage II, we need to assume an explicit form of µ(X), γ1(X), and γ2(X) as follows:

µ(X) = µ(X;β), γ1(X) = g1(X; Γ1), and γ1(X) = g2(X; Γ2), (3.10)

where µ(·, ·), g1(·, ·), and g2(·, ·) are known functions and β, Γ1, and Γ2 are unknown parameter

vectors. Suppose that θ = (βT ,ΓT
1 ,Γ

T
2 )T and µ(·, ·), g1(·, ·), and g2(·, ·) are all in the linear

form as described in last section. In this case, (3.6) can be rewritten as

µ̃(X, D;θ, ϕ̂) = µ(X;β) +
2∑
j=1

{1(D = j)− P̂j(X; ϕ̂)}gj(X; Γj). (3.11)

We construct consistent estimation equations based on N observations {(yi,Xi, Di, Si = 1) :
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i = 1, . . . , N} as follows:

U(θ; ϕ̂) =
N∑
i=1

∂µ̃(Xi, Di;θ, ϕ̂)

∂θT
εi(θ, ϕ̂) = 0, (3.12)

where εi(θ, ϕ̂) = yi − µ̃(Xi, Di;θ, ϕ̂) for i = 1, . . . , N . Let θ̂ be the solution to U(θ; ϕ̂) = 0

such that U(θ̂; ϕ̂) = 0.

The algorithm which jointly solves U(θ̂; ϕ̂) = 0 and ∂L(ϕ̂)/∂ϕT = 0 is denoted as

“MGLReg" throughout the chapter. We can show that

√
n

 θ̂ − θ∗

ϕ̂−ϕ∗

→L N(0,Σ), (3.13)

where →L denotes the convergence in distribution and θ∗ and ϕ∗ are the true value of θ and

ϕ, respectively. Moreover, Σ as a covariance matrix can be approximated by Σ̂, which is

given by

 1
N
∂θU(θ̂, ϕ̂) 1

N
∂ϕU(θ̂, ϕ̂)

0 1
N
∂ϕ2L(ϕ̂)


−1

Ĉov

 U(θ̂,ϕ̂)√
N

∂ϕL(ϕ̂)√
N


 1

N
∂θU(θ̂, ϕ̂) 1

N
∂ϕU(θ̂, ϕ̂)

0 1
N
∂2
ϕL(ϕ̂)


−T

,

(3.14)

where ∂θ = ∂/∂θ and ∂ϕ = ∂/∂ϕ.

We discuss an extension of the Semiparametric Locally Efficient Estimation (“SLEE")

method of Tchetgen Tchetgen (2014). Specifically, the joint density of the observed data in

the multi-group case can be written as

f(Y |X, D)f(X|D)
2∏
j=0

π̃
1(D=j)
j ∝ f(Y |X, D)f ∗(D|X)f ∗(X) (3.15)
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where f ∗(X) ∝ f(X)f(D = 0|X)/f ∗(D = 0|X) and

logit(f ∗(D = j|X)) = logit(Πj(X)) = logit(Pj(X))− log

{
p̃j(1− π̃j)
π̃j(1− p̃j)

}

for j = 1, 2. We can derive the efficient score of (θ,ϕ) as

R(θ,ϕ) =
(
Rθ(θ,ϕ)T , Rϕ(θ,ϕ)T

)
, (3.16)

where Rθ = ∂θµ̃(X, D;θ,ϕ){var(ε(θ, ϕ|X, D))}−1ε(θ,ϕ) and

Rϕ = ∂ϕL(ϕ) + ∂ϕµ̃(X, D;θ,ϕ){var(ε(θ,ϕ|X, D))}−1ε(θ,ϕ).

The SLEE method by solving (3.16) is theoretically more efficient than MRLReg, but it is

computationally much more difficult. However, simulations in the next section demonstrates

that “MRLReg" is competitive in comparison of estimation efficiency compared with “SLEE".

3.2.4 Extension to Binary Secondary Outcome

Our framework can be easily extended to the case when Y is binary. Assume that

µ̃(X, D) = E(Y |X, D) = P (Y = 1|X, D) and µ(X) = P (Y = 1|X) on the logit scale. Let

Odds(X, D) = P (Y = 1|X, D)/P (Y = 0|X, D) and Odds(X) = P (Y = 1|X)/P (Y = 0|X).

Following the derivation of (3.1) in Tchetgen Tchetgen (2014), we can get

Odds(X, D) = exp [log{Odds(X)}+ ν(X, D)− ν(X)] , (3.17)

where ν(X, D) = log(Odds(X, D)/Odds(X, D = 0)) and

ν(X) =
2∑
j=1

exp{ν(X, D = j)}P (D = j|X, Y = 0) + P (D = 0|X, Y = 0).
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If (3.3) holds, we have

log

{
Π∗j(X)

Π∗0(X)

}
= log

{
P ∗j (X)

P ∗j (X)

}
= m(X;ϕj), (3.18)

where Π∗j(X) and P ∗j (X) here correspond to P (D = j|X, Y = 0, S = 1) and P (D =

j|X, Y = 0), respectively. By setting log{Odds(X)} = µ(X;β) and ν(X, D = j) =∑
j 1(D = j)gj(X;γj), we have

logit {P (Y = 1|D,X;θ,ϕ)} = µ(X;β) +
∑
j

1(D = j)gj(X;γj)− ν(X;γ1,γ2,ϕ) (3.19)

with θT = (βT ,γT1 ,γ
T
2 ). Similar to L(ϕ), we solve the log-likelihood function given by

N∑
i=1

(1− Yi)

[
2∑
j=1

{1(Di = j)XT
i ϕj} − log{1 +

2∑
j=1

exp(XT
i ϕj)}

]
. (3.20)

Finally, estimating θ can be done by solving estimation equations based on (3.19).

3.2.5 Extension to Multi-phase Scenario

In this subsection, we extend our regression framework to large-scale multi-group studies

with multiple phases. In practice, some studies (e.g., ADNI) collect data across multiple

phases, while different phases may follow different sampling schemes. We only consider the

case that each subject participates in a single phase, which agrees with the study design of

ADNI. For notational simplicity, we consider a three-group study with two phases.

It is assumed that all subjects from different phases follow the same population-level

models in terms of µ(X) = E(Y |X), µ̃(X, D) = E(Y |X, D), and P (D = j|X), and (3.2)

holds for both phases. Similar to (3.5), we have

µ̃(X, j) = µ(X) +
∑
k 6=j

P (D = k|X){µ̃(X, j)− µ̃(X, k)} (3.21)

for both phases and each j = 0, 1, 2. We still use γ1(X) = XTΓ1, γ2(X) = XTΓ2, and
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µ(X) = XTβ to characterize the group difference and target the model at the population

level. However, it is assumed that different sampling schemes are used for phases 1 and 2.

Let A be the phase from now on, and denote Π
(m)
j (X) = P (D = j|X, A = m,S = 1) for

phase m = 1, 2 and group j = 0, 1, 2. Thus, (3.3) is given by

Π
(m)
j (X)

Π
(m)
0 (X)

· π̃0

π̃j
=
Pj(X)

P0(X)
· p̃

(m)
0

p̃
(m)
j

for m = 1, 2 and j = 0, 1, 2, (3.22)

where p̃(m)
j = P (D = j|S = 1, A = m) corresponds to the proportion of group j in the sample

at phase m. Subsequently, by assuming a multinomial logistic regression model for Pj(X),

we have

log

{
Π

(m)
j (X)

Π
(m)
0 (X)

}
= log

{
Pj(X)

P0(X)

}
+ η

(m)
j = XTϕj + η

(m)
j , (3.23)

where η(m)
j = log(p̃

(m)
0 π̃j)− log(p̃

(m)
j π̃0) for m = 1, 2.

We use a slightly different two-stage estimation procedure to estimate all the parameters

of interest. Specifically, in Stage I, we estimate Pj(X) for the two phases by combining the

observations from both phases. Afterwards, we use the same estimation method in Stage II

to estimate additional parameters in µ(X), γ1(X), and γ2(X). The log pseudo-likelihood

function L(ϕ) in Stage I is given by

N∑
i=1

2∑
m=1

[
2∑
j=1

{1(Di = j)(XT
i ϕj + η

(m)
j )} − log{1 +

2∑
j=1

exp(XT
i ϕj + η

(m)
j )}

]
1(Ai = m).

Under some mild conditions, it can be shown that
√
n(θ̂ − θ∗, ϕ̂−ϕ∗)→L N(0,Σ∗), where

the covariance matrix Σ∗ can be approximated by Σ̂∗, which is given in the supplements.

3.3 Simulation Studies

We carry out Monte Carlo simulations to evaluate the finite sample performance of

five methods including (I) LReg: linear regression without bias correction; (II) LRegD:
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linear regression method adjusted for the group status Xs = (1(D = 1), 1(D = 2))T ; (III)

IPW: inverse probability weighting approach (Richardson et al., 2007); (IV) SPREG: the

retrospective likelihood method in (Lin and Zeng, 2009); (V) MGLReg; and (VI) SLEE: the

semiparametric locally efficient estimation method.

3.3.1 Two-SNP Setup

We consider two parts of the simulation. The first part assumes that group difference

exists in the genetic effects on the secondary trait. The second part assumes an incorrect

specification of the conditional model and a misspecification of the γ1(X), γ2(X) (Lin and

Zeng, 2009; Zhu et al., 2017; Song et al., 2016). In this setup, one SNP has significant effect

on the secondary trait, whereas the other is unrelated.

Setting One The details of the first part are described as follows.

(i) Generate a non-genetic covariate C ∼ N(0, 1) for each subject.

(ii) Generate two SNP-level genetic variables G1, G2 with minor allele frequency (MAF) =

0.3 following a multinomial distribution with frequencies (p2
A, 2pA(1− pA), (1− pA)2)

for (AA,Aa, aa) respectively, with the Hardy-Weinberg equilibrium assumption under

the additive mode of inheritance.

(iii) Generate the primary trait D according to the following multinomial logistic model:

log
{
P (D = j|X)

P (D = 0|X)

}
= XTϕj for j = 1, 2,

where XT = (1, C,G1, G2). Subsequently, we can calculate the two dummy variables

1(D = 1) and 1(D = 2). Moreover, we choose ϕ1 = ϕ2 so that the global prevalence

of groups 0, 1, and 2 are respectively 10%, 15% and 75%. We also consider a rare

disease case with the global prevalence of groups 0, 1 and 2 being 5%, 5% and 90%,

respectively.
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(iv) Generate the secondary phenotype Y for each subject according to (3.6) as follows:

Y = β0 + βT1X +
2∑
j=1

{1(D = j)− Pj(X)}γj(X) + ε, (3.24)

where ε ∼ N(0, δ), βT1 = (1, 2, 0). β0 and δ are equal to the sample mean and variance

of left hippocampi volume from ADNI, respectively. We also set γj(Xi) = XT
i Γj for

j = 1, 2 with Γ1 = (−2,−1,−1,−1)T and Γ2 = (1, 1, 1, 1)T .

(v) Repeat steps (i)-(iv) to generate (Y,X, D) until we obtain a total of N = 500, 000

observations as the whole population. Then, we randomly select 500, 1000, and 500

subjects from the D = 0, D = 1, and D = 2 groups to build a non-random three-group

sample.

Setting Two

(i) Generate XT = (1, C,G1, G2) as setting one.

(ii) Generate the secondary phenotype Y for each subject according to

Y = β0 + βT1X + ε, (3.25)

and we still have ε ∼ N(0, δ), βT1 = (1, 2, 0), and the same (β0, δ) as setting one.

(iii) Simulate the primary trait D using a multinomial model given by

log
{
P (D = j|X, Y )

P (D = 0|X, Y )

}
= (XT , Y )ϕ̃j for j = 1, 2,

and we also vary ϕ̃1, ϕ̃2 to get the global group prevalences to be (10%,15%,75%) and

(5%,5%,90%) for the rare case, respectively.

(iv) Repeat steps 1-3 until the sample size reaches 500, 000 and then sample 500 (D=0),

1000 (D=1) and 500 (D=2) observations from the above large pool of subjects.
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Table 3.1: Estimation biases, variances, and 95% coverage rates of β̂G for pA = 0.3

Setting1 Setting2

Absolute Bias Variance Coverage Absolute Bias Variance Coverage
βG1

= 2 LReg 0.8526 1.06× 10−2 0.012 0.1774 9.22× 10−3 0.572
LRegD 0.5639 2.79× 10−2 0.066 0.8633 7.59× 10−3 0.000
IPW 0.0848 1.94× 10−2 0.945 0.1180 2.14× 10−2 0.945

SPREG 1.2001 1.78× 10−1 0.000 0.0889 1.13× 10−2 0.946
MGLReg (p̃0 = .1, p̃1 = .15) 0.0615 2.69× 10−3 0.969 0.0987 1.49× 10−2 0.946
SLEE (p̃0 = .1, p̃1 = .15) 0.0613 2.63× 10−3 0.970 0.0986 1.48× 10−2 0.948

MGLReg (p̃0 = .05, p̃1 = .15) 0.0633 3.21× 10−3 0.954 0.1014 1.37× 10−2 0.936
SLEE (p̃0 = .05, p̃1 = .15) 0.0631 3.20× 10−3 0.956 0.1006 1.36× 10−2 0.935

MGLReg (p̃0 = .15, p̃1 = .15) 0.0671 2.75× 10−3 0.960 0.1053 1.77× 10−2 0.926
SLEE (p̃0 = .15, p̃1 = .15) 0.661 2.69× 10−3 0.961 0.1048 1.74× 10−2 0.928
MGLReg (p̃0 = .1, p̃1 = .1) 0.1008 6.26× 10−3 0.884 0.1065 1.58× 10−2 0.914
SLEE (p̃0 = .1, p̃1 = .1) 0.0993 6.15× 10−3 0.886 0.1029 1.56× 10−2 0.918

MGLReg (p̃0 = .1, p̃1 = .2) 0.0955 3.15× 10−3 0.854 0.0982 1.10× 10−2 0.956
SLEE (p̃0 = .1, p̃1 = .2) 0.0942 3.07× 10−3 0.886 0.0972 1.04× 10−2 0.960

βG2
= 0 LReg 0.8483 1.08× 10−2 0.000 0.1478 1.11× 10−2 0.776

LRegD 0.9744 2.04× 10−2 0.000 0.3744 6.79× 10−3 0.014
IPW 0.0752 1.73× 10−2 0.944 0.1137 2.55× 10−2 0.950

SPREG 0.7418 1.04× 10−1 0.112 0.0994 1.53× 10−2 0.954
MGLReg (p̃0 = .1, p̃1 = .15) 0.0655 6.80× 10−3 0.954 0.1050 1.99× 10−2 0.952
SLEE (p̃0 = .1, p̃1 = .15) 0.0644 6.55× 10−3 0.954 0.1036 1.92× 10−2 0.952

MGLReg (p̃0 = .05, p̃1 = .15) 0.0868 9.86× 10−3 0.868 0.1050 1.99× 10−2 0.952
SLEE (p̃0 = .05, p̃1 = .15) 0.0851 9.75× 10−3 0.870 0.1036 1.92× 10−2 0.952

MGLReg (p̃0 = .15, p̃1 = .15) 0.0714 5.62× 10−3 0.924 0.1070 1.76× 10−2 0.948
SLEE (p̃0 = .15, p̃1 = .15) 0.0706 5.53× 10−3 0.928 0.1049 1.99× 10−2 0.950
MGLReg (p̃0 = .1, p̃1 = .1) 0.0945 7.53× 10−3 0.846 0.0987 2.61× 10−2 0.930
SLEE (p̃0 = .1, p̃1 = .1) 0.0947 7.38× 10−3 0.848 0.1043 2.54× 10−2 0.932

MGLReg (p̃0 = .1, p̃1 = .2) 0.0938 6.39× 10−3 0.844 0.1023 1.91× 10−2 0.946
SLEE (p̃0 = .1, p̃1 = .2) 0.0897 5.95× 10−3 0.850 0.1019 1.86× 10−2 0.946

Tables 3.1 and 3.2 present the simulation results under the first and second simulation

setups. They include the mean absolute biases and the variances of β̂G and, their 95%

confidence interval coverage rates based on the 1,000 Monte Carlo samples for all six methods.

Both LReg and LRegD perform poorly in correcting the sampling bias for both settings.

Under the first setting, MGLReg and SLEE introduced in this chapter have the smallest

estimation bias. The SLEE performs slightly better than MGLReg, but the difference is

not substantial. The IPW achieves a comparable performance with MGLReg, whereas our

method is more efficient under both settings. The likelihood-based approach SPREG does not

work in the first part, since it highly depends on the correct specification of the conditional

model. For the second part, MGLReg and SLEE provide competitive estimation results with

SPREG, especially in the rare disease case. On the other hand, as we misspecify (p̃0, p̃1),

both MGLReg and SLEE perform acceptably stable under different global prevalence settings.
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Table 3.2: Estimation biases, variances, and 95% coverage rates of β̂G for rare disease case

Setting1 Setting2

Absolute Bias Variance Coverage Absolute Bias Variance Coverage
βG1

= 2 LReg 1.5466 7.14× 10−3 0.000 0.6095 7.49× 10−3 0.102
LRegD 0.7638 2.37× 10−2 0.004 1.0535 6.54× 10−3 0.000
IPW 0.0686 5.68× 10−3 0.832 0.1859 3.25× 10−2 0.640

SPREG 0.1546 1.22× 10−1 0.896 0.1486 9.82× 10−2 0.891
MGLReg (p̃0 = .05, p̃1 = .05) 0.0552 4.86× 10−3 0.916 0.1139 2.14× 10−2 0.928
SLEE (p̃0 = .05, p̃1 = .05) 0.0552 4.85× 10−3 0.920 0.1081 1.92× 10−2 0.930
MGLReg (p̃0 = .05, p̃1 = .1) 0.0726 4.42× 10−3 0.868 0.1313 2.84× 10−2 0.911
SLEE (p̃0 = .05, p̃1 = .1) 0.0720 4.39× 10−3 0.872 0.1308 2.59× 10−2 0.912

MGLReg (p̃0 = .1, p̃1 = .05) 0.0709 3.83× 10−3 0.880 0.1293 2.47× 10−2 0.912
SLEE (p̃0 = .1, p̃1 = .05) 0.0714 3.81× 10−3 0.884 0.1252 2.38× 10−2 0.916

βG2
= 0 LReg 1.0773 1.34× 10−2 0.000 0.3857 8.91× 10−3 0.390

LRegD 1.0959 8.33× 10−3 0.000 0.5367 7.35× 10−3 0.004
IPW 0.0751 7.88× 10−3 0.850 0.1536 3.42× 10−2 0.950

SPREG 0.1376 1.38× 10−1 0.884 0.1349 5.10× 10−2 0.921
MGLReg (p̃0 = .1, p̃1 = .15) 0.0712 6.80× 10−3 0.970 0.1270 2.30× 10−2 0.946
SLEE (p̃0 = .1, p̃1 = .15) 0.0710 6.55× 10−3 0.972 0.1240 2.18× 10−2 0.950

MGLReg (p̃0 = .05, p̃1 = .1) 0.0806 9.94× 10−3 0.926 0.1448 3.37× 10−2 0.938
SLEE (p̃0 = .05, p̃1 = .1) 0.0797 9.70× 10−3 0.932 0.1399 3.18× 10−2 0.940

MGLReg (p̃0 = .1, p̃1 = .05) 0.0795 8.87× 10−3 0.930 0.1432 3.01× 10−2 0.942
SLEE (p̃0 = .1, p̃1 = .05) 0.0793 8.85× 10−3 0.932 0.1429 2.96× 10−2 0.945

More details are given in Tables 3.1 and 3.2. In terms of the computation efficiency, MGLReg

is about 10-times faster than SLEE. Therefore, we choose MGLReg to do the large-scale

ADNI data analysis.

3.3.2 Multiple-SNP Setup

To better mimic the real-world GWAS analysis, we use the same simulation settings as

those for the two-SNP setup except adopting a multiple-SNP setup with in total 500 SNPs

and randomly sampling 10 SNPs as causal SNPs with effect size being 0:5. For details, please

refer to the supplementary document.

Table 3.3 presents the mean absolute biases, the mean estimation variances and their 95%

confidence interval coverage rates based on 100 Monte Carlo samples of both the causal and

non-causal SNPs for all methods. Table 3.3 shows that our method MGLReg can detect more

causal SNPs (higher mean coverage rates) compared to the other methods in both settings,

demonstrating that our method is more robust against biased sampling and less sensitive

to model misspecification. Compared to the two-SNP setup, IPW is more biased especially

for setting two, whereas our method is much more stable. SPREG does not perform well in
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this case even for setting two, which confirms our conclusion that SPREG highly depends on

the correct specification of the conditional model. For SNPs not associated with secondary

phenotype, MGLReg performs similar to others. It means that it does not overestimate the

genetic effects of non-causal SNPs even with higher model complexity.

Table 3.3: Mean estimation biases, variances, and 95% coverage rates of Causal and Non-causal
SNPs

Setting1 Setting2

Absolute Bias Variance Coverage Absolute Bias Variance Coverage
Causal SNPs LReg 0.2996 1.16× 10−2 0.128 0.2032 9.02× 10−3 0.512

LRegD 0.3042 1.02× 10−1 0.220 0.3691 6.38× 10−3 0.000
IPW 0.0693 7.61× 10−3 0.902 0.1772 5.46× 10−2 0.648

SPREG 0.2998 1.17× 10−1 0.132 0.1534 3.57× 10−2 0.904
MGLReg 0.0557 4.83× 10−3 0.944 0.1075 1.14× 10−2 0.956

Non-Causal SNPs LReg 0.0674 7.07× 10−3 0.923 0.1464 1.01× 10−2 0.929
LRegD 0.0576 4.01× 10−3 0.943 0.0961 6.91× 10−2 0.933
IPW 0.0700 7.59× 10−3 0.907 0.1898 5.68× 10−2 0.645

SPREG 0.0693 8.39× 10−3 0.940 0.1302 3.39× 10−2 0.937
MGLReg 0.0549 5.06× 10−3 0.951 0.0896 1.67× 10−2 0.947

3.4 The Alzheimer’s Disease Neuroimaging Initiative Data

We apply the MGLReg method to the ADNI data set. The main goal of this data analysis

is to search for genetic patterns that are associated with local hippocampal changes, while

correcting for the selection bias associated with ascertainment in multi-group studies.

3.4.1 GWAS analysis

The 299 subjects with normal cognition (NC), 553 with MCI and 185 with AD build

the final sample data, where 712 of them are from ADNI 1 with the other 325 from ADNI

2 and GO. The secondary outcome Y used in the experiment are the logarithm of the left

and right hippocampi volumes divided by the whole brain volume. The 6,017,259 SNPs

after quality control are analyzed, and the genetic factor at each individual SNP is coded as

0, 1 and 2. To correct for the population stratification, the top three principal components

(PCs) of the whole-genome data are included as covariates (Price et al., 2006). We also

add a dummy variable for distinguishing ADNI1 from (ADNI2, ADNIGO), since different

imaging protocols were used in ADNI1 and (ADNI2, ADNIGO), which may affect the volume
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segmentation results. We apply two-sample T-test to test the difference between ADNI1 and

(ADNI2, ADNIGO), whose p−value is smaller than 2e− 16. Thus, a significant difference

exists between the distribution of Y for ADNI1 and that for (ADNI2, ADNIGO) according

to the boxplot in the supplements. The details of data description and processing procedures

are discussed in supplementary material.

In this data analysis, D = 0, 1, and 2 represent AD, MCI and NC, respectively. The

global prevalence of AD within people older than 65 is more than 10% (Thies and Bleiler,

2012) while MCI is between 10% and 20% (Kim et al., 2015). We compare four different

combinations of (p̃0, p̃1), (0.1, 0.15), (0.1, 0.2), (0.15, 0.15), and (0.15, 0.2) for our proposed

method, since the prevalences of AD and MCI vary with patients getting old, and the chance

of developing MCI and AD increases as adults age.

3.4.2 Results

Table 3.4 presents the most significant pairs of SNPs combined with the regions of interest

detected by LReg, where significant SNPs are selected according to the 5 × 10−8 p−value

threshold for both the left and right hippocampi. The p-values of these SNPs by MGLReg

with different (p̃0, p̃1) selections are also provided. Those p-values smaller than 5× 10−8 are

marked.

The SNP rs429358, related to gene APOE, is detected as the most significant SNP

for both left and right hippocampi by both LReg and MGLReg. Specifically, rs429358 has

significant genetic effects on the volume size of left hippocampi since its p−value is consistently

smaller than the 5e−8 threshold with different combinations of (p̃0, p̃1). This result agrees

with the previous findings (Shen et al., 2010; Kim et al., 2002; Lu et al., 2011; Kim et al.,

2015). Another significant SNP rs769449, also in APOE region, has competitive significancy

with rs429358 for both left and right hippocampi, which was found to be associated with

cerebrospinal fluid (CSF) tau (Cruchaga et al., 2013) and verbal memory (Arpawong et al.,

2017). Therefore, our results may prove that rs769449 may have potential effects on the

hippocampi volumes. Other significant SNPs detected by LReg are not stably significant
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Table 3.4: Top SNPs and p−values for association tests with the left and right hippocampus
volumes

Left hippocampus

SNPs chr common effect interaction
LReg MGLReg LReg MGLReg

(0.2, 0.15) (0.15, 0.15) (0.2, 0.1) (0.15, 0.1) (0.2, 0.15) (0.15, 0.15) (0.2, 0.1) (0.15, 0.1)

rs429358 19 1.76e-11 3.79e-11 2.00e-10 5.01e-09 3.48e-08 0.797 0.938 0.883 0.766 0.732
rs769449 19 5.21e-10 1.38e-09 5.15e-09 6.09e-08 2.96e-07 0.874 0.718 0.642 0.615 0.554

rs10414043 19 6.34e-10 4.44e-09 1.72e-08 1.68e-07 8.18e-07 0.827 0.700 0.633 0.595 0.542
rs73052335 19 1.39e-09 1.55e-08 5.70e-08 5.45e-07 2.47e-06 0.751 0.643 0.582 0.529 0.484
rs59007384 19 3.77e-08 1.38e-05 4.96e-05 6.56e-04 1.86e-03 0.406 0.771 0.742 0.661 0.655

Right hippocampus

SNPs chr common effect interaction
LReg MGLReg LReg MGLReg

(0.2, 0.15) (0.15, 0.15) (0.2, 0.1) (0.15, 0.1) (0.2, 0.15) (0.15, 0.15) (0.2, 0.1) (0.15, 0.1)

rs429358 19 1.17e-10 3.82e-09 1.77e-08 4.69e-08 3.04e-06 0.089 0.325 0.324 0.223 0.239
rs769449 19 2.37e-09 4.99e-10 1.38e-09 3.24e-08 1.20e-07 0.109 0.286 0.287 0.205 0.221

rs10414043 19 2.35e-09 9.55e-10 2.70e-09 5.70e-08 2.09e-07 0.105 0.297 0.302 0.204 0.221
rs73052335 19 3.76e-09 3.82e-09 1.08e-08 2.01e-07 7.21e-07 0.100 0.260 0.263 0.171 0.185
rs6857 19 5.20e-09 4.31e-07 1.86e-06 3.18e-05 1.33e-04 0.253 0.730 0.701 0.511 0.516

rs283812 19 2.92e-08 2.24e-06 7.29e-06 1.23e-04 3.89e-04 0.116 0.121 0.139 0.124 0.150
rs59007384 19 7.81e-09 1.89e-05 6.51e-05 7.98e-04 2.42e-03 0.106 0.747 0.768 0.653 0.708

when the population rates vary according to the results of our approach. For example,

rs59007384 (associated with gene TOMM40) is related to the progression from MCI status to

AD (Cervantes et al., 2011). The higher group proportion of AD in the sample data may

result in the significant p-value by LReg. However, our method MGLReg indicates that

rs59007384 may not be significantly related with the hippocampi volume sizes in the whole

population, especially the group of normal people.

Figure 3.1 presents the heatmaps of log10(p)−value for SNPs rs429358, rs769449, and

rs59007384 using MGLReg, with p̃0 and p̃1 varying within [0.1, 0.35] and [0.1, 0.65] respectively,

demonstrating a dynamic change of significance over various MCI and AD prevalence rates

in the whole population. We introduce the Significance Prevalence Heatmap (SPH) by using

ellipse contours corresponding to different p−value thresholds to determine the population

prevalence range for the significance of a specific SNP. For instance, if p̃0 + p̃1 is smaller than

0.5, then within the given (p̃0, p̃1) range, rs429358 is significant for the left hippocampi as

p̃0 + 2.625 ∗ p̃1 > 0.4045 and for the right hippocampi as p̃0 + 3.138 ∗ p̃1 > 0.596; rs769449 is
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Figure 3.1: The heatmaps of − log10(p)-value for three selected SNPs by MGLReg with
different global AD and MCI prevalence rates in the whole population

significant for the left hippocampi as p̃0 + 2.70 ∗ p̃1 > 0.478 and for the right hippocampi as

p̃0 + 3.5 ∗ p̃1 > 0.534.

To more clearly show how the global prevalence rate (p̃0, p̃1) influences the genetic effects,

we plot the density curves of the − log10(p)-values of 50 SNPs in the APOE region by LReg

and MGLReg with different (p̃0, p̃1) combinations (Figure 3.2). The curves shift to left as

(p̃0, p̃1) decreases. It indicates that most significant SNPs in this region detected by LReg are

considered unimportant in normal people. Only those SNPs jointly detected by both LReg

and MGLReg with all (p̃0, p̃1) settings have significant population-level genetic effects on the

hippocampi volume size.

Since the genetic measurements were on different platforms, we do an interaction analysis

to test its potential differences and consequences on inference. Specifically, we repeat the

experiment above, but adding an interaction term between phase status and genetic factor

into the covariates set. We include the p-values of testing the interaction term for the top
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Figure 3.2: The density curves of − log10(p)-values of top 50 APOE-region SNPs by each
method for the left and right hippocampus volumes

SNPs in Table 3.4. We observe that the genetic data acquired at the two phases do not have

significant difference based on the p−values. Figures 3.3 and 3.4 present the Manhattan plots

of the GWAS results based on the left and right hippocampi by all the 6,017,259 SNPs to give

a global view of the genetic effects and their variation as the global prevalence rate varies.

3.5 Discussion

The aim of this chapter is to develop a general regression framework based on the

conditional model for the secondary outcome given the multi-group status and covariates

and its relationship with the population regression of interest of the secondary outcome given

covariates. It allows us to reduce the effect of sampling bias on the association between a

certain genetic factor G and secondary trait Y in multi-group studies. Our method shares

a similar idea with the traditional weighted likelihoods method such as IPW in correcting

the weights of subjects in multiple groups, but it outperforms IPW in terms of smaller

estimation bias and type-I error rate. The GWAS experiment clearly demonstrates how the

global prevalence rates influence the effects of covariates on the secondary outcome. Our

MGLReg reduces to standard linear regression when the sample proportions are the same as

the global ones. Our experiment provides more evidence that rs429358 and rs769449 have

whole-population level genetic effects on the volume sizes of left and right hippocampi. On

the other hand, other top SNPs detected by LReg may be caused by the sampling bias by
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Figure 3.3: The Manhattan plots of the − log(p)−values by LReg and MGLReg on all 22
chromosomes for the left and right hippocampus volumes

Figure 3.4: The Manhattan plots of the − log(p)−values by LReg and MGLReg on all 22
chromosomes for the left and right hippocampus volumes

49



our method.
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CHAPTER 4: GRAPH-BASED SEMI-SUPERVISED LEARNING
WITH NONIGNORABLE NONRESPONSES

4.1 Introduction

Graph-based semi-supervised learning problem has been increasingly studied due to more

and more real graph datasets. The problem is to predict all the unlabelled nodes in the graph

based on only a small subset of nodes being observed. A popular method is to use the graph

Laplacian regularization to learn node representations, such as label propagation (Zhu et al.,

2003) and manifold regularization (Belkin et al., 2006). Recently, attention has shifted to the

learning of network embeddings (Mikolov et al., 2013; Perozzi et al., 2014; Tang et al., 2015;

Grover and Leskovec, 2016; Yang et al., 2016; Kipf and Welling, 2016; Defferrard et al., 2016).

Almost all existing methods assume that the labelled nodes are randomly selected. However,

the probability of missingness may depend on the unobserved data after conditioning on the

observed data. That is, non-responses may be missing not at random (MNAR). Ignoring

nonignorable nonresponses may be unable to capture the representativeness of remaining

samples, leading to significant estimation bias.

Modeling non-ignorable missingness is challenging because the MNAR mechanism is

usually unknown and may require additional model identifiability assumptions (Chen, 2001;

Qin et al., 2002; Tang et al., 2014). A popular method assigns the inverse of estimated

response probabilities as weights to the observed nodes (Robins et al., 1995; Carpenter et al.,

2006), but these procedures are designed for the missing at random (MAR) mechanism

instead of MNAR. Another method is to impute missing data by using observed data (Rubin,

1976; Schafer and Schenker, 2000; Little and Rubin, 2019). Some more advanced methods

(Zhao et al., 2013; Tang et al., 2014) have been proposed to estimate the non-ignorable

missingness using external data (Kim and Yu, 2011), but such data is often unavailable in
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many applications, making these methods infeasible. Moreover, all these methods are built

on simple regressions and are not directly applied to graphs.

In this chapter, we develop a Graph-based joint model with Nonignorable Missingness

(GNM) by assigning inverse response probability to labelled nodes when estimating the

target classifier or regression. To model the non-ignorable missingness, we propose a deep

learning based exponential tilting model to utilize the strengths of neural networks in function

approximation and representation learning. The main contributions can be summarized as

follows:

• To the best of our knowledge, we are the first to consider the graph-based semi-

supervised learning problem in the presence of non-ignorable nonresponse and try to

solve the problem from the perspective of missing data.

• We propose a novel joint estimation approach by integrating the inverse weighting

framework with a modified loss function based on the imputation of non-response,

which is easy to implement in practice and robust to the normality assumption when

the node response is continuous.

• We use gradient descent (GD) algorithm to learn all the parameters, which works for

traditional regression model as well as for modern deep graphical neural networks.

• We examine the finite sample performance of our methods by using both simulation and

real data experiments, demonstrating the necessity of ’de-biasing’ in acquiring unbiased

prediction results on the testing data under the non-ignorable nonresponse setting.

4.2 Model Description

Let G = (V,E,A) be a weighted graph, where V = {v1, . . . , vN} denotes the vertex set

of size |V | = N , E contains all the edges, and A is an N × N adjacency matrix. The N

vertexes make up the whole population with only a small subset of vertexes being labelled.

We introduce some important notations as follows:
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(i). x = [x1, x2, . . . , xN ]T ∈ RN×p is a fully observed input feature matrix of size N × p

with each xi ∈ Rp being a p× 1 feature vector at vertex vi.

(ii). Y = (y1, y2, . . . , yN)T is a vector of vertex responses, which is partially observed

subject to missingness, and yi can be either categorical or continuous.

(iii). A ∈ RN×N is the adjacency matrix (binary or weighted), which encodes node

similarity and network connectivity. Specifically, aij represents the edge weight between

vertexes vi and vj.

(iv). ri ∈ {0, 1} is a “labeling indicator”, that is yi is observed if and only if ri = 1.

Let R = {1, . . . , n} denote the set of labelled vertexes and Rc = {n+ 1, . . . , N} defines the

subsample of non-respondents for which the vertex label is missing.

(v) G A(x; θg) ∈ RN×q denotes a q × 1 vector of unknown function of x, which can be a

deep neural network incorporating the network connectivity A.

In this chapter, we consider an non-ignorable response mechanism, where the indicator

variable ri depends on yi (which is unobserved when ri = 0). It is assumed that ri follows a

Bernoulli distribution as follows:

ri|(yi, h(xi; θh)) ∼ Bernoulli(πi), (4.1)

where h(xi; θh) is an unknown parametric function of xi and π(yi, h(xi; θh)) = P (ri =

1|yi, h(xi; θh)) is the probability of missingness for yi. Given G A(x; θg), yi and yj are assumed

to be independent and given yi and h(xi; θh), ri and rj are assumed to be independent for

i 6= j. Furthermore, an exponential tilting model is proposed for πi as follows:

π(yi, h(xi; θh)) = π(yi, h(xi; θh);αr, γ, φ) =
exp{αr + γTh(xi; θh) + φyi}

1 + exp{αr + γTh(xi; θh) + φyi}
. (4.2)

Our question of interest is to unbiasedly learn an outcome model Y |x. Without loss of
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generality, when y is continuous, we consider a linear model given by

Y = α + G A(x; θg)β + ε, (4.3)

where ε = (ε1, · · · , εN)T ∼ N(0, σ2I) and ε ⊥ x is the error term with zero unconditional

mean, that is, E(εi) = 0. In this case, dropping out missing data can lead to strongly

biased estimates when r depends on y. The parameter estimates will not be consistent since

E{εi|ri = 1} and E{εiG A(x; θg)i|ri = 1} are not zero. The missing values could not be

imputed even if we would have consistent estimates since

E{yi|ri = 0,G A(x; θg)i;α, β} =
E{yi(1− ri)|G A(x; θg)i;α, β}
1− P (ri = 1|G A(x; θg)i;α, β)

(4.4)

= α + βTG A(x; θg)i −
cov(yi, πi|G A(x; θg)i;α, β)

1− E(πi|G A(x; θg)i;α, β)
6= α + βTG A(x; θg)i.

When y is a K-class discrete variable, we consider an multicategorical logit model as follow:

P (yi = k|G A(x; θg)i;αk, βk) = exp(αk+βTk G A(x; θg)i)/
K∑
j=1

exp(αj+β
T
j G A(x; θg)i) ∀k (4.5)

Therefore, we can define a joint model of (4.2) and (4.3) (or (4.2) and (4.5)), called Graph-

based joint model with Nonignorable Missingness (GNM) to obtain the unbiased estimation

of Y |x.

4.3 Estimation

We examine several important properties, such as identifiability, of GNM and its estimation

algorithm in this section.
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4.3.1 Identifiability

We consider the identifiability property of GNM. Let Y = (yTobs, y
T
mis)

T and J = (R,Rc).

The joint probability density function (pdf) of the observed data is given by

f(yobs, J |x) = f(y1, y2 . . . , yn, r1, . . . , rN |x) =
n∏
i=1

f(yi, ri|x)
N∏

i=n+1

∫
f(yi, ri|x)dyi. (4.6)

Based on the assumptions of ri|(yi, h(xi)) and yi|G A(x; θg)i, (4.6) is equivalent to

∏
i

[P (ri = 1|yi, h(xi; θh))f(yi|GA(x; θg)i)]
ri [1−

∫
P (ri = 1|y, h(xi; θh))f(y|GA(x; θg)i)dy]1−ri .

(4.7)

The GNM model is called identifiable if for different sets of parameters (θh, θg), P (ri =

1|yi, h(xi; θh))f(yi|G A(x; θg)i) are different functions of (yi,x). The identifiability implies that

in a positive probability, the global maximum of (4.7) is unique.

However, identifiability may fail for many neural network models. For example, the

identifiability of parameters in (4.2) is one of the necessary conditions for model identifiability,

which can fail for the Relu network. Specifically, we have

Logit[P (ri = 1|yi, h(zi;βr)); γ] = αr + γRelu(ziβr) + φyi = Logit[P (ri = 1|yi, h(zi; 2βr)); γ/2].

Fortunately, this type of non-identifiability does not create any prediction discrepancy, since

under GNM, the prediction of y given x is exactly the same for different (γ, θh, β, θg) and

(γ′, θ′h, β
′, θ′g) if we have

γTh(x; θh) = γ′Th(x; θ′h), and G A(x; θg)β = G A(x; θ′g)β
′. (4.8)

In consideration of the prediction equivalence, a more useful definition of identifia-

bility is given in the following. Let f(yi|G A(x)i; θy) = f(yi|G A(x; θg)i;α, β) and P (ri =

1|yi, h(zi); θr) = P (ri = 1|yi, h(zi; θh);αr, γ, φ), where θy = (α, β, θg) and θr = (αr, γ, φ, θh)

contain unknown parameters in the outcome model Y |x and the missing data model r|(y, z).
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The D(θy) ⊗ D(θr) denotes the domain of (θy, θr), where ⊗ is the tensor product of two

spaces.

Definition 4.3.1. Under GNM, we call (θy, θr) is equivalent to (θ′y, θ
′
r), denoted by

(θy, θr) ∼ (θ′y, θ
′
r),

if (4.8) holds and α′ = α, α′r = αr and φ′ = φ, where θy = (α, β, θg), θr = (αr, γ, φ, θh),

θ′y = (α′, β′, θ′g), and θ′r = (α′r, γ
′, φ′, θ′h). The equivalence class of an element (θy, θr) is

denoted by [[(θy, θr)]], defined as the set

[[(θy, θr)]] = {(θ′y, θ′r) ∈ D(θy)⊗D(θr)|(θ′y, θ′r) ∼ (θy, θr)},

and the set of all equivalent classes is called the Prediction-Equivalent Quotient (PEQ)

space, denoted by S = D(θy)⊗D(θr)/ ∼ . The GNM model is called identifiable on the PEQ

space iff that

f(y|G A(x)i; θy)P (r = 1|y, h(xi); θr) = f(y|G A(x)i; θ
′
y)P (r = 1|y, h(xi); θ

′
r)

holds for all x, y implies (θy, θr) ∼ (θ′y, θ
′
r).

Different from identifiability on the parameter space, the identifiability on the PEQ

space implies the uniqueness of the prediction given x instead of parameter estimation. It

is applicable to complex architecture that focuses more on prediction than parameter. The

following is an example which is not identifiabile on both parameter space and PEQ space.

Example 1. Let G A(x; θg) = x, h(x; θh) = x, yi ∼ N(µ + xβ, 1), and P (ri = 1|yi) =

[1 + exp(−αr − xγ − φyi)]−1 with unknown real-valued αr, γ, φ, µ and β, and thus

P (ri = 1|yi, h(xi))f(yi|G A(x)i) =
exp[−(yi − µ− xiβ)2/2]√

2π[1 + exp(−αr − φyi − γx)]
. (4.9)
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In this case, two different sets of parameters (αr, γ, φ, µ, β) and (α′r, γ
′, φ′, µ′, β′) produce

equal (4.9) values if αr = −(µ2−µ′2)/2, β′ = β, φ = µ′−µ, γ = β(µ−µ′), α′r = −αr, φ′ = −φ,

and γ = −γ′. The observed likelihood is only identifiable with ignorable missingness, i.e.

φ = φ′ = 0.

Additional conditions are required to ensure the identifiability of GNM on the PEQ space.

Theorem 4.1. Assume three conditions as follows.

(A1) For all θg, there exist (x1, x2) such that G A(x1; θg)i 6= G A(x2; θg)i for each i; β 6= 0

holds.

(A2) For all θg and z, there exists (u1,u2) such that G A([z,u1]; θg)i 6= G A([z,u2]; θg)i for

each i; and β 6= 0 holds.

(A3) For all θh, there exists (z1, z2) such that h(z1; θh) 6= h(z2; θh); and γ 6= 0 holds.

The GNM model (4.2) and (4.5) is identifiable on the PEQ space under Condition (A1).

Suppose that there exists an instrumental variable u in x = [z,u] such that f(yi|G A(x)i)

depends on u, whereas P (ri = 1|yi, h(xi)) does not. Then the GNM model (4.2) and (4.3) is

identifiable on the PEQ space under Conditions (A2) and (A3).

Regularity conditions (A1)∼(A3) are easy to satisfy.

4.3.2 Estimation Approach

It is not easy to directly maximize the full likelihood function (4.6) in practice since

it can be extremely difficult to compute its integration term. On the other hand, the

normality assumption of the error term can be restrictive for GNM consisting of (4.2) and

(4.3). Therefore, we propose a doubly robust (DR) estimation approach to alternatively

obtain the Inverse Probability Weighted Estimator (IPWE) of θy and imputation estimator

of θr (Robins et al., 1995; Bang and Robins, 2005).

Inverse Probability Weighted Estimator (IPWE) of θy

With π(yi, h(xi); θr) estimated by π(yi, h(xi); θ̂r), the Inverse Probability Weighted Esti-
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mator (IPWE) of θy can be obtained by minimizing the weighted cross-entropy loss

L1(θy|θ̂r) = −
∑
i

ri

π(yi, h(xi); θ̂r)

K∑
k=1

1(yi = k)log(P (yi = k|G A(x)i; θy)) (4.10)

when Y |x follows (4.5) or by minimizing the weighted mean squared error (MSE)

L1(θy|θ̂r) =
∑
i

ri

π(yi, h(xi); θ̂r)
{yi − α− βTG A(x; θg)i)}2 (4.11)

when Y is continuous. The estimation equation (4.11) is robust with respect to the normality

assumption. If π(yi, h(xi); θr) is correctly specified, the IPW estimator of θy that solves

∂L1(θy|θ̂r)/∂θy = 0 is consistent and converges to θy according to the following theorem.

Theorem 4.2. If θr is known, then a given estimating function l(yi,G A(x)i; θy) with

Eθy{
∑
i

l(yi,G
A(x)i; θy)} = 0

satisfies

Eθy{
∑
i

ri
π(yi, h(xi); θr)

l(yi,G
A(x)i; θy)} = 0.

Imputation estimator of θr

With the estimated f(Y |G A(x; θ̂g)), we could obtain an estimator of θr by minimizing

L2(θr|θ̂y) = −
∑
ri=1

log(π(yi, h(xi); θr))−
∑
ri=0

log(1− E{π(yi, h(xi); θr)|x; θ̂y}), (4.12)

where π(yi, h(xi); θr) = P (ri = 1|yi, h(xi); θr) and

E{π(yi, h(xi))|x; θ̂y} =

∫
P (ri = 1|y, h(xi); θr)f(y|G A(x)i; θ̂y)dy.

One advantage of our proposed joint estimation approach is that E(π(yi, h(xi); θr)|x) can be

easily approximated by the empirical average of a set of random draws at the nodes with
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Figure 4.1: General Picture of the Joint Estimation Approach

missing y as the imputed responses:

E{π(yi, h(xi); θr)|x; θy} =

∫
P (ri = 1|y, h(xi); θr)f(y|GA(x)i; θy)dy ≈ B−1

∑
b

π(yib, h(xi); θr),

where {yib}Bb=1
iid∼ f(y|G A(x)i; θ̂y). Thus, we can get an unbiased estimate of (4.12) by

replacing the expectation by an empirical mean over samples generated from f(y|G A(x)i; θ̂y)

as follows:

L̃2(θr|θ̂y) = −
∑
ri=1

ln(π(yi, h(xi); θr))−
∑
ri=0

log(1−B−1
∑

yib∼f(y|GA(x)i;θ̂y)

π(yib, h(xi); θr)),

(4.13)

the gradient of which can be expressed as

∇θrL̃2(θr|θ̂y) = −
∑
ri=1

∇θrπi
πi

+
∑
ri=0

B−1
∑

b∇θrπ(yib, h(xi); θr)

1−B−1
∑

b π(yib, h(xi); θr)
. (4.14)

The imputation estimator of θr by minimizing L2(θr|θy) is consistent when f(Y |G A(x; θg)) is

correctly specified.The overall estimation procedure is schematically depicted in Figure 4.1.
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4.3.3 Algorithm

In this subsection, we provide more details of our proposed imputation and IPW estimation

approach about how to jointly estimate θy and θr by alternatively minimizing the conditional

loss functions L1(θy|θ̂r) and L̃2(θr|θ̂y) in practice. Specifically, we update θy and then θr

with θ(e+1)
y = arg minθy L1(θy|θ(e)

r ) and θ(e+1)
r = arg minθr L̃2(θr|θ(e+1)

y ) in order at each epoch,

where θ(e)
r and θ(e+1)

y are the estimates of θr and θy obtained at the e-th and (e+ 1)-th epoch,

respectively. We use the gradient descent (GD) algorithm to learn all the parameters in θr

and θy, while incorporating the network architecture of G A(x; θg) and h(x; θh).

Without specifying the normal assumption when yi is continuous, we replace the random

draw y
(e)
ib in (4.13) by the expectation of β0 + βT1 G A(x; θ

(e)
g )i at the e-th epoch. It can be seen

as an approximation obtained by linearizing π(yi, h(xi)) using a Taylor series expansion and

taking the expectation of the first two terms (Beaumont, 2000):

E{π(yi, h(xi))|x; θ(e)
y } ≈ π(E(yi|x; θ(e)

y ), h(xi)) = π(β0 + βT1 G A(x; θ(e)
g )i, h(xi)).

In this case, it is equivalent to let B = 1 and the sample size, i.e. the total number of nodes

will be fixed at each training epoch. Based on simulations and real experiments below, this

simplification still outperforms the baseline models with a significant improvement in the

prediction accuracy on non-response nodes.

The details of the algorithm are described in five steps as follows:

1. Determine the initial value of the response probability π(0)
i (or θ(0)

r ). For example, we

can let π(0)
i = 1 for all the labelled vertexes (ri = 1).

2. Let e = 1, where e represents the number of epoch. We update θy based on π(0)
i obtained

from the previous epoch by minimizing the loss function in (4.10) using GD. At the

i-th iteration within the e-th epoch, we update θy as follows:

θ(e,i+1)
y ← θ(e,i)

y − γ0∇θyL1(θy|θ(e−1)
r ), (4.15)
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where γ0 is the learning rate and L1(θy|θ(e−1)
r ) represents the loss function based on

π
(e−1)
i = πi(yi, h(xi); θ

(e−1)
r ). We denote the updated θy as θ(e)

y after M (e) iterations.

3. Impute yi for all the unlabelled nodes ri = 0 using y(e)
i = β

(e)
0 + G A(x; θ

(e)
g )Ti β

(e)
1 for the

continuous case and sampling y(e)
i from distribution P (yi|G A(x)i; θ

(e)
y ) otherwise.

4. We use GD to update θr. Specifically, at the j-th iteration, we have

θ(e,j+1)
r ← θ(e,j)

r − γ1∇θrL̃2(θr|θ(e)
y ) (4.16)

with the initial start θ(e,0)
r equal to θ(e−1)

r , and γ1 is the learning rate. After convergence,

we can get the estimate of θr denoted as θ(e)
r at the end of this training epoch. Then

we update the sampling weight π(e)
i based on P (ri = 1|yi, h(xi); θ

(e)
r ) for all labelled

vertexes.

5. Stop once convergence has been achieved, otherwise let e = e+ 1 and return to step 3.

The convergence criterion is that whether the imputed unlabelled vertexes at epoch e

only slightly differ from those at epoch (e− 1). In other words, the iteration procedure is

stopped if ∑
ri=0

|y(e)
i − y

(e−1)
i |/

∑
i

1(ri = 0) ≤ ε

We let M0 and M1 be the maximal number of allowed internal iterations at each epoch for

updating θy and θr, respectively. For more details, you can refer to the Algorithm 1.

4.4 Experiments

In this section, simulations and one real data analysis are conducted to evaluate the

empirical performance of our proposed methods and a baseline method, which ignores the

non-response (SM). In the real data part, GNM is also compared with the model with a

misspecified ignorable missing mechanism, and some other state-of-art ’de-biasing’ methods.

In the simulation part, we simulate the node response y based on (4.3) and generate the

labelled set by the exponential tilting model (4.2). For the real data analysis, we evaluate all
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the compared models by a semi-supervised document classification on the citation network-

Cora with non-ignorable non-response.

Algorithm 1 Gradient Descent-based Joint Estimation Procedure
Input: x ∈ RN×p; riyi for ∀i; A ∈ RN×N

1: Initialize π(0)
i , θ

(0)
r , θ

(0,0)
y ; e = 0

2: while
∑
ri=0 |y

(e)
i − y(e−1)

i |/
∑
i 1(ri = 0) > ε do

3: e← e+ 1; w0, w1 = 0; L1(θbesty |θ(e−1)
r ), L̃2(θbestr |θ(e)y ) =∞

4: for i← 0 to (M0 − 1) do

5: θ
(e,i+1)
y ← θ

(e,i)
y − γ0∇θyL1(θy |θ(e−1)

r )

6: if L1(θ
(e,i+1)
y |θ(e−1)

r ) < L1(θbesty |θ(e−1)
r ) then

7: θbesty ← θ
(e,i+1)
y

8: else

9: w0 ← w0 + 1

10: if w0 > P0 then

11: break

12: end if

13: end if

14: end for

15: θey ← θ
(e,i)
y

16: for j ← 0 to (M1 − 1) do

17: θ
(e,j+1)
r ← θ

(e,j)
r − γ1∇θr L̃2(θr|θ(e)y )

18: if L̃2(θ
(e,j+1)
r |θ(e)y ) < L̃2(θbestr |θ(e)y ) then

19: θbestr ← θ
(e,j+1)
r

20: else

21: w1 ← w1 + 1

22: if w1 > P1 then

23: break

24: end if

25: end if

26: end for

27: θer ← θ
(e,j)
r

28: end while

In this dissertation, we use GCN (Kipf and Welling, 2016) to learn the latent node

representations G A(x) with the layer-wise propagation defined as

H(l+1) = f(H(l), A) = σ(D̂−
1
2 ÂD̂−

1
2H(l)W (l)), (4.17)
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where Â = A + I, in which I is an identity matrix, and D̂ is the diagonal vertex degree

matrix of Â. The W (l) is a weight matrix for the l-th layer and σ(·) is an non-linear activation

function. H(0) = x is the initial input and G A(x) = H(2) ∈ RN×p̄ is the output of the second

layer-wise propagation. To be fair, we let G A(x) be a 2-layer GCN model for all compared

approaches.

4.4.1 Simulations

We consider a network data generated by |V | = 2708 vertexes together with a binary

adjacency matrix A. x ∈ R2708×1433 denotes the fully observed input features which is a

large-scale sparse matrix. Both A and x are obtained from the Cora dataset. The node

response is simulated from the following model:

yi = β0 + βT1 G A(x)i + εi, (4.18)

where εi ∼ N(0, σ2) and G A(x) is the output of a 2-layer GCN model. We let response

probability π depend on the unobserved vertex response y only , and (4.2) is simplified to

πi ≡ P (ri = 1|yi) =
exp{αr + φyi}

1 + exp{αr + φyi}
. (4.19)

In this case, the instrumental variable u is exactly x itself, and the identifiability automatically

holds according to Theorem 4.1. All β’s in (4.18) are sampled from uniform distribution

U(0, 1). The αr and φ were selected to make the overall missing proportion be approximately

90%. The labelled subset are randomly split into training and validation sets, while the

remaining non-response nodes build the testing set. We train all the compared models for a

maximum of 200 epochs (E = 200) using Adam (Kingma and Ba, 2014) with a learning rate

0.05 and make predictions ŷi for each testing vertex. Training is stopped when validation

loss does not decrease in 15 consecutive iterations. We keep all other model settings used by

(Kipf and Welling, 2016) and fix the unit size of the first hidden layer to be 16.

Table 4.1 summarizes the estimation results under different (p̄, σ) combinations, where
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root mean squared error (RMSE) and Mean absolute percentage error (MAPE) are computed

between the true node response y and prediction ŷ over the 50 runs. We can clearly see

that GNM outperforms SM under all the four settings with much smaller mean RMSEs and

MAPEs. Moreover, GNM is more stable than SM with smaller estimation variance.

p̄ σ Method Metric Mean SD
4 0.5 SM RMSE 1.1925 6.43e-1

MAPE 0.2932 2.01e-1
GNM RMSE 0.6983 1.28e-2

MAPE 0.1995 1.00e-2
1 SM RMSE 1.6185 8.58e-2

MAPE 0.3104 4.73e-2
GNM RMSE 1.2103 4.81e-2

MAPE 0.2263 2.28e-2
16 0.5 SM RMSE 0.7923 9.94e-2

MAPE 0.2014 2.42e-2
GNM RMSE 0.6015 2.17e-2

MAPE 0.1672 1.90e-2
1 SM RMSE 1.4212 2.14e-1

MAPE 0.2129 1.05e-2
GNM RMSE 1.1316 6.04e-2

MAPE 0.1849 4.62e-3

Table 4.1: Mean RMSEs and MAPEs
by GNM and SM based on simulated
data sets

Figure 4.2: Boxplot of RMSEs in real data
analysis

4.4.2 Real Data Analysis

For the real data analysis, we modify the Cora to a binary-class data by merging the

six non-’Neural Network’ classes together. The global prevalence of two new classes are

(0.698, 0.302) with N0 = #{y = 0} = 1890 and N1 = #{y = 1} = 818, respectively.

Two missing mechanisms are considered. A simple setup is the same as (4.19). In this

case, we compare our method with the inverse weighting approach proposed by Rosset et al.

(2005). We let the two functions of x required to estimate π under their framework to be

the constant 1 and the first principle component (PC) score, which is more stable compared

to other functions such as a general xj or
∑

j xj. In a more complicated setup, the labelled
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nodes are generated based on

πi ≡ P (ri = 1|yi, h(xi)) =
exp{αr + γTh(xi) + φyi}

1 + exp{αr + γTh(xi) + φyi}
, (4.20)

where h(xi) = exp(
∑

j xij/a0 − a1) − (
∑

j xij − a2)/a3 with value range being [0, 1]. The

explicit form of h(x) is assumed to be unknown and we use a multi-layer perceptron to

approximate it. The network has two hidden layers with 128 and 64 units. respectively, and

we use the ’tanh’ activation for the final output layer. As a comparison, we also include the

results when the ’non-ignorable’ missingness is over-simplified to the ’ignorable’ one (GIM).

We let nk = #{(yi = k) ∧ (ri = 1)}, and use λ to denotes the size ratio between the two

groups of labelled nodes, i.e. n1/n0.

Accuracy
λ Method Mean SD
1 SM 0.8683 1.98e-2

Rosset 0.8514 5.19e-2
GNM 0.8947 6.47e-3

1.5 SM 0.8458 2.21e-2
Rosset 0.8311 7.09e-2
GNM 0.8908 1.26e-2

2 SM 0.8052 3.26e-2
Rosset 0.8193 6.05e-2
GNM 0.8648 2.54e-2

Table 4.2: Mean Predic-
tion Accuracy for the simple
setup by each method

Figure 4.3: Boxplot Prediction Accuracy for the simple
setup

Results are summarized in Tables 4.2 and 4.3. Reported values represent the average

classification accuracy on testing data by 50 replications with re-sampling allowed. In each

setup, two ’de-biasing’ methods including our approach are compared with SM. We adjust

α and β to make the size of training set be around 120 for each sub-setting. Increasing λ

reduces the number of included y = 0 nodes in the training set, leading to an insufficient

learning power and thus a lower overall classification accuracy. For the simple setup, GNM

significantly outperforms compared models by increasing the baseline prediction accuracy
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Accuracy
λ Method Mean SD
1 SM 0.8663 1.21e-2

GIM 0.8713 1.52e-2
GNM 0.8961 1.18e-2

2 SM 0.8141 2.34e-2
GIM 0.8291 2.79e-2
GNM 0.8669 1.63e-2

Table 4.3: Mean Prediction
Accuracy for the compli-
cated setup by each method

Figure 4.4: Boxplot of Prediction Accuracy for the
complicated setup

by 3.1% - 7.4%. On the other hand, GNM is less sensitive to the sample selection and has

smaller variance compared to the method by Rosset et al. (2005). For the complicated setup,

mis-specifying the ’Non-Ignorable’ missingness as ’Ignorable’ still has big biases even though

achieving some improvement against SM. The mean prediction accuracy by GNM is between

3.7% to 4.8% higher than that by GIM.

In both sub-settings, our method always leads to the smallest estimation variance, which

is less affected by the selection of labelled nodes. For both setups, higher λ value leads

to bigger sampling bias, and subsequently there is more significant improvement in the

prediction accuracy. Figures 4.3 and 4.4 are the boxplots of prediction accuracy obtained

from each method under the two model setups. It may intuitively demonstrates the necessity

of taking into account missing mechanism in order to achieve higher prediction accuracy on

the unlabelled nodes.
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CHAPTER 5: STOD: SPATIAL-TEMPORAL ORIGIN
-DESTINATION PREDICTION MODEL

5.1 Introduction

Our aim is to introduce a hierarchical Spatial-Temporal Origin-Destination (STOD)

prediction model to jointly extract the complex spatial-temporal features of OD data by

using some well-designed CNN-based architectures. Instead of modelling the dynamic OD

networks as a sequence of images and applying standard convolution filters to capture their

spatial information, we introduce a novel Spatial Adjacent Convolution Network (SACN)

that uses irregular convolution filters to cover the most related OD flows for a target one.

The OD flows connected by common starting and/or ending vertexes, which may fall into

different regions in Ot, can be spatially correlated and topologically connected. Moreover,

for most ride-sharing platforms, a passenger is more likely to send a new request from the

location where his last trip ends in. Thus, to learn such sequential dependency, we introduce

a temporal gated CNN (TGCNN) (Yu et al., 2018) and integrate it with SACN by using the

sandwich-structured ST-conv block in order to collectively catch the evolutionary mechanism

of dynamic OD flow systems. A periodically shifted attention mechanism is used to capture

the shift in the long-term temporal periodicity. Then, the combined short-term and long-term

spatial-temporal representations are fed into the final prediction layer to complete the whole

architecture.

To examine the prediction performance of our STOD model, we use a large-scale customer

request data with available OD coordinates obtained from a large ride-sharing platform. The

dataset contains three-month platform orders in the city of Beijing, where N = 50 locations

are selected and in total N2 = 2500 OD flows are generated within every 30 minutes, valued

by the demands amount between each pair of vertexes. We compare our STOD model with
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many state-of-art methods in predicting the OD flows of customer requests. Some methods

are traditional ones, whereas others are based on deep learning.

The main contributions are summarized as follows:

• We propose a latent deep learning model for OD flow prediction problems, which

automatically extracts the spatial-temporal features of OD flow data.

• We design a novel SACN to capture the semantic connections and functional similarities

among correlated OD flows, by modelling each flow network snapshot as a graph

adjacency matrix.

• We use CNN-based architectures to learn the temporal dependency and use the period-

ically shift attention mechanism to capture the shift of the long-term periodicity.

• Experimental results on a real customer demand data set obtained from a ride-sharing

platform demonstrate that STDO outperforms many state-of-art methods in OD flow

prediction, with 6.5% and 7.3% improvement of testing RMSE.

5.2 Definitions and Problem Statement

For a given urban area, we observe a sequence of adjacency matrices representing the OD

flow maps defined on a fixed vertex set V , which indicates the N selected sub-regions from this

area. We let V = {v1, v2, . . . , vN} denote the vertex set with vi being the i-th sub-region. The

shape of each grid vi could be either rectangles, hexagons or irregular sub-regions. We define

the dynamic OD flow maps as {O1,1, . . . , O1,T , . . . , OD,1, . . . , OD,T}, where d ∈ {1, . . . , D}

and t ∈ {1, . . . , T} represent the day and time indexes, respectively. For each snapshot Od,t,

the edge weight oijd,t at row i column j denotes the flow amount from node vi to node vj

at time t of day d. A larger edge weight oijd,t is equivalent to a strong connection between

vertexes vi and vj. The Od,ts’ are asymmetric since all the included OD flows are directed.

Specifically, we have oijd,t = 0 if there is no demand from vi to vj within the t-th time interval

of day d.
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Figure 5.1: A real example of customer demands from ride-sharing platforms to explain OD
flow data from the perspective of dynamic graph adjacency matrices
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We introduce a motivating example to more clearly understand above definitions. Figure

5.1 presents one snapshot of OD flow networks acquired from a real-world customer requests

data set. We divide the Pudong area in the city of Shanghai into many non-overlapping

square grids, from which v1 to v6 are picked out to build the vertex set V as the upper

sub-figure demonstrates. The plotted timestamp covers a time range from 5:00 p.m. to 5:30

p.m., and the corresponding adjacency matrix Od,t in the lower sub-figure include all the 62

OD flows. The element in row i, column j denotes the total number of customer requests

received by the ride-sharing platform within this 30 minutes from an origin node vi to the

destination one vj.

The goal of the prediction problem is to predict the snapshot Od,t+j ∈ RN×N in the future

time window (t+ j) of day d given previously observed data, including both short-term and

long-term historical information. The short-term data consists of the last p1 timestamps from

t+1−p1 to t, denoted by O1 = {Od,t+1−p1 , Od,t+1−p1+1, . . . , Od,t}. The long-term data is made

up of q time series {Od−ϕ,t+j−(p2−1)/2, . . . , Od−ϕ,t+j+(p2−1)/2} of length p2 for each previous

day (d − ϕ), where ϕ = 1, . . . , q, with the predicted time index (t + j) in the middle. We

let O2 = {Od−q,t+j−(p2−1)/2, . . . , Od−q,t+j+(p2−1)/2, . . . , Od−1,t+j−(p2−1)/2, . . . , Od−1,t+j+(p2−1)/2}

denote the entire long-term data. Increasing p1 and p2 leads to the training context size, and

subsequently higher prediction accuracy, but more training time.

We reformulate the sequence of short-term OD networks O1 into a 4D tensor OST ∈

RN×N×p1×1 and concatenate the long-term snapshotsO2 into a 5D tensor OLT ∈ Rq×N×N×p2×1.

The ST and LT here stand for ‘short-term’ and ‘long-term’, respectively. We can formally de-

fine the final prediction problem by using both short-term and long-term historical information

as follows:

od,t+j = F (OST , OLT ), (5.1)

where F (·, ·) represents the STOD model, which captures the network structures of OD flow

data as well as the temporal dependencies in multiple time scales.

70



… … …
… … …
… … …

SACN

TGCNN

TGCNN

ST-Conv
block

…

…
Attention

Day	𝒅 − 𝒒 Day	𝒅 − (𝒒 − 𝟏) Day	𝒅 − 𝟏 Day	𝒅

…
… … … ST-Conv block

𝒁𝑺𝑻

𝒁𝑳𝑻

Input

FC

𝑶𝒅,𝒕.𝒋

Output

Figure 5.2: The Architecture of STOD model

5.3 STOD Framework

In this section, we describe the details of our proposed Spatial-Temporal Origin-Destination

(STOD) prediction model. It consists of three main components: a novel CNN-based SACN,

a temporal gated CNN (Yu et al., 2018), and a modified periodically shifted attention

mechanism. First, we introduce SACN using irregular CNN filters to capture the spatial

features of network snapshot at each timestamp t, which accounts for the relationships

among neighboring OD flows on the weighted graph structure. Second, we use gated CNN

to learn the temporal dependency, which is computationally efficient especially for a long

time sequence, while achieving competitive results with LSTM. We use a sandwich-structure

ST-Conv block to jointly capture the evolving patterns of dynamic OD flow maps. Moreover,

we modify the periodically shifted attention mechanism proposed by Yao et al. (2018) to catch

the shifting of the long-term periodicity by measuring the similarity between the short-term

and long-term representations. Figure 5.2 shows the architecture of STOD model. In the rest

of this section, we will discuss the details of these main structures of STOD model in order.
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5.3.1 Spatial Adjacent Convolution Network

As we mentioned above, directly applying standard CNN operations to the dynamic

OD flow map Od,t disregards the connections between neighboring OD flows in the network.

For a target OD flow oijd,t, the nearby OD flows in Od,t, such as okld,t, may be unrelated from

the perspective of graph. Let’s consider the 3× 3 receptive filed with oijd,t in the center by

a standard CNN filter. The upper-left, upper-right, lower-left and lower-right OD flows

in the current kernel window provide less information compared to those OD flows out of

the 3× 3 region but sharing common nodes with oijd,t. Moreover, if we change the order of

the N vertexes in Od,t, then the network structure is unchanged, but a different set of OD

flows will be covered by the 3× 3 receptive filed with the central element being oijd,t. Figure

5.3 illustrates why standard CNN cannot capture enough network information by using a

real-world example.

Figure 5.3 depicts the same snapshot of demand flow maps as Figure 5.1 from a ride-

sharing platform. For the OD flows starting from Lu Jia Zui, the central business district

of Shanghai, to Pudong airport, as illustrated in the upper sub-figure, the most related OD

flows should be those with either origin or destination being Pudong airport or Lu Jia Zui

within the past few timestamps. It is reasonable to assume that someone from Zhang Jiang,

the high-tech park of the Pudong district, finishing attending a business meeting at Lu Jia

Zui, may need a ride to the Pudong airport for leaving. Therefore, a certain part of the travel

requests from Lu Jia Zui to Pudong airport in the current time window can be matched with

some historical finished trips from a third-party location to Lu Jia Zui by the same group of

passengers. However, as the lower-left sub-figure illustrates, some of the OD flows covered by

a single CNN filter (the green square) are not significantly correlated with the central flows

from Lu Jia Zui to Pudong airport. The four OD flows in the corners of the kernel window

do not share origin or destination nodes with the central OD flow, and thus they may be

topologically far away from the target one in the graph.

As the lower right sub-figure shows, OD flows with either origin or destination being vi
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Figure 5.3: An empirical example of passenger requests to illustrate how standard CNN fails
to capture the network structure of OD flow data
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Figure 5.4: Working mechanism of spatial adjacent convolution network (SACN) for a target
OD flow from vi to vj

or vj, covered by the red and yellow kernel windows, are considered to be the most related

ones for oijd,t in row i and column j. Kawahara et al. (2017) introduces a novel edge-to-edge

convolutional operator that leverages the topological locality of graph adjacency matrices.

Different from standard CNN filters that pay attention to spatially nearby pixels on the

image space, the edge-to-edge layer utilizes a novel receptive field to cover elements in the

same row or column (the red window) with the target OD flow. However, the OD flows

with destination being vi or origin being vj (the yellow window) may be more semantically

correlated according to the real example we discussed above. A new trip starting from vi is

very likely to follow an old one ending at vi by the same customer.

We propose a novel CNN-based architecture SACN using a global-view receptive field

to include all connected edges in the graph and exclude the topologically unrelated ones.

Formally, we use SACN to extract the latent topological structure inside the OD flow network

Od,t at each timestamp (d, t). For an L-layer SACN architecture, the l-th layer takes M l−1

edge features obtained from the previous (l−1)-th layer as input and feeds theM l-dimensional

output to the next layer. The input of a general SACN layer l is a 3D tensor, Ald,t ∈ RN×N×M l ,

which includes the M l features of each of the N2 OD flows, and the output is another 3D

tensor Al+1
d,t of size N ×N ×M l+1. As illustrated in Figure 5.4, the learned representation of

a target edge is defined as the weighted sum of those from the same row or column in the

adjacency matrix, and those from the row or column in the transposed adjacency matrix.
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The output of the l-th layer-wise SACN propagation for the OD flow from vi to vj, denoted

as Aij,nd,t (l + 1), is written as

F{
M l∑
m=1

N∑
k=1

rkm,n1 (l)Aik,md,t (l) + ckm,n1 (l)Akj,md,t (l) + rkm,n2 (l)Aki,md,t (l) + ckm,n2 (l)Ajk,md,t (l)} (5.2)

where Aij,nd,t (l+1) denotes the n-th output feature by the l-th SACN layer for the OD flow oijd,t in

row i, column j of graph snapshotOd,t for n = 1, . . . ,M l. The {rkm,n1 (l)}, {rkm,n2 (l)}, {ckm,n1 (l)},

{ckm,n2 (l)} ∈ RN×M l×M l+1 include all the related parameters to be learnt for the l-th SACN

layer. The F(·) represents an elementwise activation function, such as ReLU(x) = max(0, x).

The first part of (5.2) works by summing up the feature values of OD flows having either the

same origin or destination with the target OD flow. The second part covers another set of

OD flows that either start at vj or end at vi. Therefore, the receptive field of SACN includes

the two rows and two columns colored by red and yellow as demonstrated by the lower-right

sub-figure in Figure 5.3. Similar to standard CNN architectures, OD flows more related to

the target one are more highly weighted by a multi-layer SACN operator.

For an L-layer SACN model, the output at the final L-th layer, denoted as Aij,nd,t (L+ 1),

is defined as follows:

F{
ML∑
m=1

N∑
k=1

rkm,n1 (L)Aik,md,t (L) + ckm,n1 (L)Akj,md,t (L) + rkm,n2 (L)Aki,md,t (L) + ckm,n2 (L)Ajk,md,t (L)},

(5.3)

where Aij,nd,t (L+1) is the n-th feature map of the final output. Then, the overall spatial represen-

tations captured by an L-layer SACN can be defined as sd,t = [AL+1,1
d,t , AL+1,2

d,t , . . . , AL+1,ML+1

d,t ] ∈

RN×N×ML+1 . For notational simplification, we use A(θ)∗L to represent a L-layer SACN oper-

ator, where θ includes all parameters to be learnt.

5.3.2 Temporal Gated CNNs

Canonical recurrent networks, such as LSTMs, have been widely used to model temporal

dependency by maintaining a hidden activation that is propagated through time. These

75



approaches suffer from the problem of lower training efficiency, gradient instability, and

time-consuming convergence. The high dimension of the spatial representations sd,t captured

by SACN and a potential long temporal sequence length make RNN architectures notori-

ously difficult to train. Recent studies pay more attention to convolutional architectures

for modelling sequential data. Yu et al. (2018) introduced a CNN-based operator with

gate mechanism to learn the intrinsically sequential dependency. The pure convolutional

architecture is more flexible in handling various data structures and the gate mechanism

decides the relevant information to be passed through. Yu et al. (2018) pointed out that this

special design allows parallel and controllable training procedures to increase convergence

speed, A hierarchical feature maps could be generated through a multiple-filter architecture.

The temporal gated CNN (TGCNN) consists of two parts including one being a 3D

convolution kernel applied to the spatial representations of all the N2 OD flows along the

time axis and the other being a gated linear units (GLU) as the gate mechanism. Given

the spatial feature maps of m0 channels or the original OD flow data (m0 = 1) at each of r

successive time intervals, we can generate a 4D tensor of size N ×N × r ×m0.

The temporal gated CNN uses a 3D convolutional kernel of size 1 × 1 × K with zero

padding. Applying the filter each single time shortens the sequence length by (K − 1) with

the first two dimensions of the input array, which correspond to the total number of OD

flows unchanged. The output at each position in the new sequence would be the weighted

sum of K mapped points in the input sequence. Thus, 2m1 temporal gated CNN filters map

a r-length spatial-temporal sequential data y ∈ RN×N×r×m0 in feature depth m0 to a new

sequence [P Q] ∈ RN×N×(r−K+1)×(2m1) of length (r − K + 1). The P and Q, in the same

size with m1 channels, serve as the learned temporal representations and the selection gate,

respectively. Thus, the detailed architecture of a one-layer temporal gated CNN is formally

defined as follows:

G(γ) ∗τ y = P � σ(Q) ∈ RN×N×(r−K+1)×m1 , (5.4)

where � denotes the element-wise Hadamard product and γ denotes the set of parameters
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Figure 5.5: Illustration of temporal gated CNN with kernel size being 1× 1× 2 in capturing
temporal dependency and reducing sequence length

to be learnt. The output Q with an element-wise sigmoid function σ(·) work together as a

gate mechanism to evaluate the importance of each element in P and assign a weight before

being passed to the following layer. A simple graphical example is described in Figure 5.5 to

illustrate how the temporal gated CNN works for modeling the temporal dependency of the

OD flow data.

5.3.3 ST-Conv blocks

Motivated by (Yu et al., 2018), we build a spatial-temporal convolutional block (ST-conv

block) to jointly capture the spatial-temporal features of OD flow data by combining the

proposed SACN with TGCNN. The ST-Conv block has a ’sandwich’-structure architecture

with an L-layer SACN operator in the middle connecting the two TGCNN layers on both sides.

Based on the experiment results of (Yu et al., 2018), we shall conclude that the ’sandwich’

structure can not only jointly capture spatial-temporal representations of the OD flow data,

but also dynamically shorten the sequence length of the input data to dramatically reduce

the training load that the memory needs when SACN extracts spatial patterns.

Both the input and output of a single ST-Conv block are 4D tensors. We let the spatial-
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temporal representation y0 ∈ RN×N×r×c0 of c0 features be the input, which can be the original

OD flow data by setting c0 = 1. The mathematical definition of the ST-Conv block is defined

as

y1 = G1(γ1) ∗τ [A(θ0) ∗L {G0(γ0) ∗τ y0}], (5.5)

where G1(·) and G0(·) are the two temporal gated CNN layers and A(θ)∗L is an L-layer SACN

operator. The (θ0, γ0, γ1) is the set of all parameters to be learnt. The m1 3D convoluitonal

filters of kernel size 1× 1×K0 and 1× 1×K1 are used by the two TGCNN G0(γ0)∗τ and

G1(γ1)∗τ , respectively. The L-layer SACN is applied to each 3D snapshot of size N ×N ×m1

obtained from TGCNN G0(γ0)∗τ , and then fed into the other TGCNN operator G1(γ1)∗τ .

One ST-Conv block shortens the temporal length of input y0 by (K0 + K1 − 2), and the

dimension of the output y1 becomes N ×N × {r − (K0 +K1 − 2)} ×m1. Accordingly, a set

of nST = (r − 1)/(K0 +K1 − 2) ST-Conv blocks reduces the sequential length from r to 1.

We can then flatten the spatial-temporal representation into a 3D tensor of size N ×N ×m1

by squeezing out the temporal dimension.

The short-term spatial-temporal representation zST ∈ RN×N×cST is obtained by continu-

ously applying (p1 − 1)/(K0
ST +K1

ST − 2) ST-Conv blocks to the short-term OD flow data

OST ∈ RN×N×p1×1. The kernel sizes of the two TGCNNs in all ST-Conv blocks are fixed to

be 1× 1×K0
ST and 1× 1×K1

ST , respectively. The cST filters are used by both the L-layer

SACN and the two TGCNNs. The detailed propagation of the n-th ST-Conv block is defined

as

zn+1
ST = G1(γ1

ST ) ∗τ [A(θST ) ∗L {G0(γ0
ST ) ∗τ znST}], (5.6)

where znST is the input obtained from the (n− 1)-th ST-Conv block and zn+1
ST is the output,

which will then be fed into the following (n + 1)-th ST-Conv block. The (θST , γ
0
ST , γ

1
ST )

contains all the related parameters. Specifically, the initial input for the 1-st ST-Conv block

z1
ST is the original OD flow data OST ∈ RN×N×p1×1. The zST = znST+1

ST ∈ RN×N×cST is the

output of the last nST -th ST-Cov block.
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5.3.4 Periodically Shifted Attention Mechanism

In addition to capturing the the spatial-temporal features from short-term OD flow data

OST , we also take into account the long-term temporal periodicity since there exists some

day-wise cycling characteristic hidden in the OD flow data, which is caused by customer’s

travelling schedule and the city’s traffic pattern. Looking back through a big time scope by

directly applying ST-Con blocks to an extremely long OD sequence which includes all time

stmaps in previous few days or weeks is computationally expensive and memory consuming.

Although the replacement of RNN-based architectures by convolutional filters in ST-Conv

blocks, the model training is still inefficient since most time points included in this kind of

long time sequence do not make enough contributions to determine the value of the snapshot

to be predicted. Only a small set of continuous timestamps in each previous day is required

to capture the long-term periodicity. Assuming the predicted time index is (d, t+ j), we pick

p2 time intervals from (t + j − (p2 − 1)/2) to (t + j + (p2 − 1)/2) at each day d − ϕ with

t+ j in the middle for ϕ = 1, . . . , q. The p2 timestamps are used at each day d− ϕ instead

of a single time point (d− ϕ, t+ j) since the long-term periodicity is not strict and may vary

in a small range around t+ j. This slight time shifting is caused by unstable traffic peaks,

holidays and extreme weather conditions among different days.

To capture the shift of the long-term periodicity, we modify the periodically shifted

attention mechanism proposed by Yao et al. (2018), which is originally designed for RNN-

based model, to work for the CNN-bsed ST-Conv blocks here. For each day (d−ϕ), we apply

(p2 − n0
LT )/(2K0

LT − 2) ST-Conv blocks to the day-level p2-length sequential OD flow data

indexed by {od−ϕ,t+j−(p2+1)/2; . . . ; od−ϕ,t+j+(p2+1)/2} to reduce the sequence length from p2 to

n0
LT . We let the two TGCNNs in all the (p2 − n0

LT )/(2K0
LT − 2) ST-Conv blocks have the

same filter size 1× 1×K0
LT . The propagation rule of the n-th ST-Conv blocks is defined as:

zn+1
d−ϕ = G1(γ01

LT ) ∗τ [A(θ0
LT ) ∗L {G0(γ00

LT ) ∗τ znd−ϕ}] (5.7)
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Figure 5.6: The architecture of Periodically Shifted Attention

with znd−ϕ ∈ RN×N×{p2−2(n−1)(K0
LT−1)}×c̃ and zn+1

d−ϕ ∈ RN×N×{p2−2n(K0
LT−1)}×c̃ being the input

and output, respectively. Specifically, z1
d−ϕ is the original OD flow data at day d− ϕ of size

N ×N × p2 × 1. All SACN and TGCNN layers use c̃ convolutional filters and (θ0
LT , γ

00
LT , γ

01
LT )

is the parameter set.

We denote the day-level features of day (d − ϕ) captured by (p2 − n0
LT )/(2K0

LT − 2)

ST-Conv blocks as z̃d−ϕ ∈ RN×N×n0
LT×c̃, where z̃ijd−ϕ,φ ∈ Rc̃×1 denotes the φ-th element along

the time axis for the OD flow from vi to vj. We let zijST ∈ RcST×1 be the learned short-term

representation at the OD flow from vi to vj. Then, a day-level output zijd−ϕ can be obtained

by summing up all the n0
LT z̃

ij
d−ϕ,φ’s by the weights which measure their similarities with zijST :

zijd−ϕ =

n0
LT∑
φ=1

βijd−ϕ,φz̃
ij
d−ϕ,φ, (5.8)

where βijd−ϕ,φ is the weight function of quantifying the similarity between z̃ijd−ϕ,φ and zijST based

on a score function score(z̃ijd−ϕ,φ, z
ij
ST ), which is defined as:

βijd−ϕ,φ =
exp(score(z̃ijd−ϕ,φ, z

ij
ST ))∑

φ′ exp(score(z̃ijd−ϕ,φ′ , z
ij
ST ))

. (5.9)
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Moreover, score(z̃ijd−ϕ,φ, z
ij
ST ) is defined as

vTφ tanh(W1z̃
ij
d−ϕ,φ +W2z

ij
ST + bs), (5.10)

where W1 ∈ Rc̃×c̃,W2 ∈ Rc̃×cST , and vφ ∈ Rc̃×1 are learned projection matrices, and bs is the

added bias term. We let zd−ϕ = (zijd−ϕ) ∈ RN×N×c̃ denote the day-level output including all

the N2 OD flows.

We then concatenate the q zd−ϕ’s along a new additional axis in the third dimension as

z0
LT = Concat1

ϕ=qzd−ϕ (5.11)

to build a new day-wise time series z0
LT ∈ RN×N×q×c̃ of length q.

Finally, we apply another set of (q − 1)/(2K1
LT − 2) ST-Conv blocks to the day-wise

sequence data generated by (5.11) to capture the long-term spatial-temporal representations.

The detailed formulation for the n-th ST-Conv block is defined as

zn+1
LT = G1(γ11

LT ) ∗τ [A(θ1
LT ) ∗L {G0(γ10

LT ) ∗τ znLT}]. (5.12)

The filter size is 1 × 1 ×K1
LT for all included TGCNNs. The final output of the last (q −

1)/(2K1
LT−2)-th ST-Conv block will be the learned long-term spatial-temporal representation,

which is denoted by zLT ∈ RN×N×cLT , where cLT is the number of feature channels. The

whole mechanism is illustrated in Figure 5.6.

5.3.5 Final prediction layer

We concatenate the short-term and long-term spatial-temporal representations zST and

zLT together along the feature axis as X = zST ⊕ zLT ∈ RN×N×C, where C = cST + cLT . Then,

X is modified to a 2D tensor X̃ ∈ RN2×C by flattening the first two dimensions while keeping

the third one. We apply a fully connected layer to the C feature channels together with an
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element-wise non-linear sigmoid function to get the final predictions for all the N2 OD flows:

Ôd,t+j = sigmoid(WX̃ + b), (5.13)

where W and b are projection matrix and bias term, respectively. The ’sigmoid’ activation

ensures that all predictions fall into (0, 1) since we normalize the original OD flow data to

increase the training stability of the STOD model. The predictions will be denormalized

later to get the actual value.

5.3.6 Optimization

We use L2 loss to build the objective loss function during the training. The loss function

is defined as:

L(ξ) = ||ôd,t+j − od,t+j||2, (5.14)

where ξ contains all the parameters to be learnt by using our STDO model. All the N2

elements in both ôd,t+j and od,t+j here are in the range (0, 1). The model is optimized via

Backpropagation Through Time (BPTT) and Adam (Kingma and Ba, 2014). The whole

architecture of our model is realized using Tensorflow (Abadi et al., 2016) and Keras (Chollet

et al., 2015).

5.4 Experiment

In this section, we compare the proposed STOD model with some state-of-the-art ap-

proaches for traffic flow predictions. All compared methods are classified into traditional

statistical methods and deep-learning based approaches. We use the order data with origin

and destination information collected by a ride-sharing platform in order to examine the

finite sample performance of OD flow predictions for each method.

5.4.1 Dataset Description

We employ a large-scale demand dataset obtained from a ride-sharing platform to do all

the experiments. The dataset contains all customer requests received by the platform from

04/01/2018 to 06/30/2018 in a big city. The main urban area is divided into around 300
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non-overlapping hexagonal sub-regions with radius being 2 km, N = 50 of which with the

largest customer demands are selected to build the vertex set V . In total 2500 OD flows are

generated based on the |V | = 50 sub-regions.

We split the whole dataset into two parts. The data from 04/01/2018 to 06/16/2018 is

used for model training, while the other part from 06/17/2017 to 06/30/2017 (14 days) serves

as the testing set. The first two and half months of OD flow data is further divided in half to

the training and validation sets. The size ratio between the two sets is around 4:1. We let

30 min be the length of each timestamp and the value of the OD flow from vi to vj is the

cumulative number of customer requests. We make predictions for all the 502 OD flows in the

incoming 1st, 2nd, 3rd 30 minutes (i.e. t+ 1, t+ 2, t+ 3) by each compared method, given

the historical data with varied (p1, p2) combinations. For those model settings incorporating

long-term information, we trace back q = 3 days to capture the time periodicity.

5.4.2 Evaluation Metric

To evaluate the performance of each method, we use Rooted Mean Square Error (RMSE)

defined as

RMSE =

√√√√ 1

N2 ∗ |T0|

N∑
i=1

N∑
j=1

∑
(d,t)∈T0

(oijd,t − ô
ij
d,t)

2, (5.15)

where oijd,t and ô
ij
d,t are the true value and prediction at the OD flow from vertex vi to vertex

vj in the t-th timestamp of day d, respectively. The T0 is the set containing all the predicted

time points in the testing data. Therefore, the size of the testing set is N2 ∗ |T0|.

5.4.3 Compared Methods

All state-of-the-art methods to be compared are listed as follows, some of which are

modified to work for the OD flow data. We only consider latent models, that is to say no

external covariates are allowed, while only the historical OD flow data is used to extract the

hidden spatial-temporal features.

• Historical average (HA): HA predicts the demand amount at each OD flow by the

average value of the same (t+ j)-th time index in previous 5 days.
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• Autoregressive integrated moving average (ARIMA): ARIMA is a class of

model that captures a suite of different standard temporal structures in time series

data combining moving average and autoregressive components.

• Support Vector Machine Regression (SVMR): SVMR is an nonparametric ap-

proach for classification and regression relying on kernel functions.

• Latent Space Model for Road Networks (LSM-RN) (Deng et al., 2016): LSM-

RN learns the temporal connections across time based on learned decomposition of the

dynamic demand flow matrices.

• Dense + BiLSTM (Altché and de La Fortelle, 2017): The architecture consists of

two bidirectional LSTM layers (learn from both ’past’ and ’future’) and two dense

layers, which model temporal dependency, but capture little spatial information.

• Spatiotemporal Recurrent Convolutional Networks (SRCN) (Yu et al., 2017):

SRCN treats the dynamic OD flow matrices as a sequence of images in the size N ×N .

The spatial dependencies is captured by CNNs, and the temporal dynamics is learned

by LSTMs

• STOD: Our model.

5.4.4 Experiment Setting

For the deep-learning based approaches, we normalized the original OD flow data in the

training set to (0, 1) using Max-Min normalization, where the upper and lower bounds are

used to denormalize the predictions of testing data to get the actual values. We tune the

hyperparameters of each compared model to obtain the optimal prediction performance. For

fair comparison, a two-layer architecture is used by all the deep-learning based methods to

extract the spatial patterns inside the OD flow data. We set the filter size of all deep learning

layers in both spatial and temporal space to be 64, including the SACNs and TGCNNs in

our STOD model. Each individual training batch contains 10 randomly sampled timestamps
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and all the 502 OD flows in each snapshot. The initial liearning rate is set to be 1e− 4 with

a decay rate 1e− 6. We use early stopping for all the deep learning-based methods where the

training process is terminated when the RMSE over validation set has not been improved for

10 successive epochs.

5.4.5 Results

Comparison with state-of-the-art methods. In this experiment, we set the length of

short-term OD flow sequence to be p1 = 9 (i.e., previous 4.5 hours), q = 3 for long-term data

which covers the three most recent days, and the length of each day-level time series p2 = 5

to capture the periodicity shifting (one hour before and after the predicted time index).

Table 5.1 summarizes the finite sample performance for all the competitive methods and

our STOD model in terms of the prediction RMSE on the testing data. Our model outperforms

all other methods on the testing data with the lowest RMSE (2.44/2.59/2.69), achieving

(6.51%/6.83%/7.24%) improvement over the second best method ’SRCN’. This demonstrates

the advantages of our spatial-temporal architecture and long-term periodicity mechanism in

modelling the dynamic evolution of the OD flow networks. The improvement increases as

the predicting scope increases since our model captures the long-term periodicity. ’Dense

+ BiLSTM’ outperforms traditional approaches by more precisely learning the temporal

dependency using deep learning architecture, but it fails to model the underlying graph

structure of OD flow data. Both ’ARIMA’ and ’LSM-RN’ perform poorly, even much worse

than HA, indicating that they do not capture enough short-term spatial-temporal features to

get the evolution trend of OD flow data.

ACN VS standard local CNN. In this experiment, we will show that our proposed SACN

outperforms standard CNNs in capturing the hidden network structure of the OD flow data.

Given the model setting that N = 50 are used to build the dynamic OD flow matrices,

the number of pixels being covered by SACN at each single snapshot is 50× 4 = 200. For

fair comparison, the largest receptive filed of standard CNN should be no bigger than a

15×15 window, which includes 225 elements each time. Five different kernel sizes are studied,
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Table 5.1: Comparison with State-of-art methods

RMSE
Method 30 min 60 min 90 min
HA 4.02

ARIMA 5.64 6.01 6.49
LSVR 3.53 3.95 4.06

LSM-RN 5.73 6.36 6.74
Dense + BiLSTM 3.08 3.59 3.99

SRCN 2.61 2.78 2.90
STOD 2.44 2.59 2.69

which are 5× 5, 8× 8, 11× 11, 14× 14 and 15× 15, respectively. We replace SCAN in our

model by standard CNN to fairly compare its performance. All hyper-parameters are fixed

but only the kernel size of CNNs being changed. Moreover, we only consider the baseline

short-term mode of STOD model while ignoring the long-term information. As Figure 5.7 (a)

illustrates, standard CNN achieves the best performance with the smallest RMSE = 2.64

on testing data when the filter size being 11 × 11, which is still higher than that using

SACN with RMSE = 2.54. Specifically, RMSE increases when the receptive field is getting

larger than 11× 11 since the since the spatial correlations among the most related OD flows

(sharing common origin or destination nodes) are smoothed with the increase in the filter

size ((8× 2− 1)/64 > (14× 2− 1)/196). This experiment shows that treating the dynamic

demand matrix as an image, and applying standard CNN filters does not capture enough

spatial correlations among related OD flows without considering their topological connections

from the perspective of graphs. For more details, please refer to Figure 5.7 (a).

Comparison with variants of STOD. Table 5.2 shows the finite sample performance

of our proposed model STOD and its different variants. We can see that the complete

model incorporating the long-term information (RMSE = 2.49) outperforms the baseline

setting only using short-term data (RMSE = 2.54). This shows the necessity of modeling the

seasonal temporal patterns. On the other hand, the model using the attention mechanism

(RMSE = 2.44) outperforms the one without using it (RMSE = 2.49). It indicates that the

periodically shifted attention can capture the shifting of the day-wise periodicity and extract
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Figure 5.7: (a) RMSE on testing data with respect to ACN and standard CNN using different
kernel sizes. (b) RMSE on testing data with respect to STOD with different p1 and p2

combinations.

Table 5.2: Evaluation of STOD and its variants

RMSE
Method 30 min 60 min 90 min

ACN + GCNN 2.54 2.71 2.83
ACN + GCNN + long term 2.49 2.63 2.72

ACN + GCNN + Attention 2.44 2.59 2.69

more seasonal patterns to improve prediction accuracy.

Figure 5.7 (b) compares RMSE on testing data by STOD model with different data

settings. Varied combinations of the short-term sequence length p1 and the long-term day-

level sequence length p2 are studied. We can see that the best performance is achieved as

(p1, p2) = (7, 5) with RMSE = 2.41. Specifically, settings with different p1’s under p2 = 5

consistently outperform those under p2 = 7. It may demonstrate that the shift can usually be

captured within a short time range, while a longer time sequence may smooth the significance.

Table 5.3 provides the detailed prediction results for each data setting.

5.5 Discussion

We introduces a hierarchical spatial-temporal architectures STOD for predictions of OD

flow data. Compared to state-of-the-art deep learning based approaches which models the
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Table 5.3: Comparison of STOD under different p1, p2 combinations

p2 (K0
LT , K

1
LT ) p1 (K0

ST , K
1
ST ) RMSE

5 (2, 2) 2.45
7 (2,3) 2.41

5 (2, 2) 9 (3, 3) 2.42
11 (3, 4) 2.43
13 (4, 4) 2.43
5 (2, 2) 2.45
7 (2, 3) 2.44

7 (3, 2) 9 (3, 3) 2.44
11 (3, 4) 2.44
13 (4, 4) 2.49

OD flow matrix as an image, STOD captures the sptial features from the respective of graphs

by using an irregular CNN filters. Our model jointly learns spatial-temporal representations,

and captures the shift of long-term periodicity by an attention-based mechanism. We evaluate

our model on a large-scale customer requests dataset in OD flow format from the ride-

sharing platform, and the experimental results demonstrates that STOD outperforms many

state-of-the-art methods.
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APPENDIX A: APPENDIX FOR CHAPTER 2

A.1 Proofs and Explicit forms

A.1.1 Proof of (3.2)

Since it is assumed that S = 1 is independent of (Y,X) given D, we have P (X, Y, S =

1|D) = P (X, Y |D)P (S = 1|D). Therefore, we have

E(Y |X, D, S = 1) =

∫
yp(y|X, D, S = 1) dy

=

∫
y
p(y,X, D, S = 1)

p(X, D, S = 1)
dy

=

∫
y
p(y,X, S = 1|D)p(D)

p(X, S = 1|D)p(D)
dy

=

∫
y
p(y,X|D)p(S = 1|D)p(D)

p(X|D)p(S = 1|D)p(D)
dy

=

∫
y
p(y,X|D)p(D)

p(X|D)p(D)
dy = E(Y |X, D).

A.1.2 Proof of (3.3)

Since P (D,X, S = 1) = P (X, S = 1|D)P (D) = P (X|D)P (S = 1, D), we have

Πj(X)

Π0(X)
· π̃0

π̃j
=

P (D = j|X, S = 1)P (D = 0|S = 1)

P (D = 0|X, S = 1)P (D = j|S = 1)

=
P (D = j,X, S = 1)P (D = 0, S = 1)

P (D = 0,X, S = 1)P (D = j, S = 1)

=
P (X|D = j)

P (X|D = 0)
=
P (X, D = j)/P (D = j)

P (X, D = 0)/P (D = 0)

=
P (D = j|X)P (X)

P (D = 0|X)P (X)
· P (D = 0)

P (D = j)

=
Pj(X)

P0(X)
· p̃0

p̃j
,

for j = 0, 1, . . . , J − 1.
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A.1.3 Proof of (3.14)

We have

∂θU(θ̂, ϕ̂) = −
N∑
i=1

Ai(1)A
T
i(1), ∂ϕU(θ̂, ϕ̂) = −

N∑
i=1

Ai(1)A
T
i(2), and ∂2

ϕL(ϕ) = −
N∑
i=1

Ai(3),

where AT
i(1) = (XT

i , {1(Di = 1)− P̂1(Xi, ϕ̂)}XT
i , {1(Di = 2)− P̂2(Xi, ϕ̂)}XT

i ),

AT
i(2) = ({XT

i Γ̂1P̂i1(1− P̂i1)−XT
i Γ̂2P̂i1P̂i2}XT

i , {−XT
i Γ̂1P̂i1P̂i2 +XT

i Γ̂2P̂i2(1− P̂i2)}XT
i ),

and Ai(3) =

 Π̂i1(1− Π̂i1)XiX
T
i −Π̂i1Π̂i2XiX

T
i

−Π̂i1Π̂i2XiX
T
i Π̂i2(1− Π̂i2)XiX

T
i

 .

Moreover, Π̂ij and P̂ij denote Π̂j(Xi; ϕ̂), and P̂j(Xi; ϕ̂) for the i-th subject, respectively.

Finally, we have

Ĉov

 1√
N
U(θ̂, ϕ̂)

1√
N
∂ϕL(ϕ̂)

 =
1

N

N∑
i=1

 Ui(θ̂, ϕ̂)− Ū(θ̂, ϕ̂)

∂ψLi(ϕ̂)− ∂ϕL(ϕ̂)


 Ui(θ̂, ϕ̂)− Ū(θ̂, ϕ̂)

∂ϕLi(ϕ̂)− ∂ϕL(ϕ̂)


T

.

Moreover, we have

∂θU(θ̂, ϕ̂) = −
N∑
i=1

Bi(1)B
T
i(1), ∂ϕU(θ̂, ϕ̂) = −

N∑
i=1

Bi(1)B
T
i(2), and ∂2

ϕL(ϕ) = −
2∑

k=1

N∑
i=1

B
(k)
i(3)1(mi = k)

where BT
i(1) = (XT

i , {1(Di = 1)− P̂1(Xi, ϕ̂)}XT
i , {1(Di = 2)− P̂2(Xi, ϕ̂)}XT

i ),

BT
i(2) = ({XT

i Γ̂1P̂i1(1− P̂i1)−XT
i Γ̂2P̂i1P̂i2}XT

i , {−XT
i Γ̂1P̂i1P̂i2 +XT

i Γ̂2P̂i2(1− P̂i2)}XT
i ),

B
(m)
i(3) =

 Π̂
(m)
i1 (1− Π̂

(m)
i1 )XiX

T
i −Π̂

(m)
i1 Π̂

(m)
i2 XiX

T
i

−Π̂
(m)
i1 Π̂

(m)
i2 XiX

T
i Π̂

(m)
i2 (1− Π̂

(m)
i2 )XiX

T
i
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and

Ĉov

 1√
N
U(θ̂, ϕ̂)

1√
N
∂ϕL(ϕ̂)

 =
1

N

N∑
i=1

 Ui(θ̂, ϕ̂)− Ū(θ̂, ϕ̂)

∂ϕLi(ϕ̂)− ∂ϕL(ϕ̂)


 Ui(θ̂, ϕ̂)− Ū(θ̂, ϕ̂)

∂ϕLi(ϕ̂)− ∂ϕL(ϕ̂)


T

.

A.2 D with more than three categories

In this part, we extend the case of three groups to the more general case of J groups.

Following the proof of (2), we still have that µ̃(X, i) = E(Y |X, D = i) = E(Y |X, D = i, S =

1) holds for i = 0, 1, . . . , J − 1. Then, we have the relation between µ(X) = E(Y |X) and

µ̃(X, i) = E(Y |X, D = i) as

µ(X) =

J−1∑
i=0

µ̃(X, i) ∗ P (D = i|X) (A.1)

and with
∑J−1

i=0 P (D = i|X) = 1, we still have

µ̃(X, i) = µ(X) +
∑
j 6=i

P (D = j|X)(µ̃(X, i)− µ̃(X, j)) (A.2)

When i > 0, by assuming γi(X) = µ̃(X, i)− µ̃(X, 0), (A.1) can be rewritten as

µ̃(X, i) = µ(X) +
∑
j 6=i

P (D = j|X){µ̃(X, i)− µ̃(X, j)}

= µ(X) + P (D = 0|X){µ̃(X, i)− µ̃(X, 0)}+
∑
j 6=i,0

P (D = j|X){µ̃(X, i)− µ̃(X, j)}

= µ(X) + {1−
∑
k 6=0

P (D = k|X)}{µ̃(X, i)− µ̃(X, 0)}+
∑
j 6=i,0

P (D = j|X){µ̃(X, i)− µ̃(X, j)}

= µ(X) + 1− P (D = 0|X){µ̃(X, i)− µ̃(X, 0)} −
∑
j 6=i,0

P (D = j|X){µ̃(X, j)− µ̃(X, 0)}

= µ(X) +

J−1∑
k=1

Dk −
∑
j 6=0

P (D = j|X)(µ̃{X, j)− µ̃(X, 0)}

= µ(X) +
∑
j 6=0

{1(i = j)− P (D = j|X)}{µ̃(X, j)− µ̃(X, 0)}

= µ(X) +
∑
j 6=0

{1(i = j)− P (D = j|X)}γj(X)
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When i = 0, since
∑J−1

k=1 Dk = 0, (A.1) is equivalent to

µ̃(X, i) = µ(X) +
∑
j 6=0

P (D = j|X){µ̃(X, 0)− µ̃(X, j)}

= µ(X) +
∑
j 6=0

{1(i = j)− P (D = j|X)}{µ̃(X, j)− µ̃(X, 0)}

= µ(X) +
∑
j 6=0

{1(i = j)− P (D = j|X)}γj(X)

Thus, the target model becomes

µ̃(X, i) = µ(X) +
∑
j 6=0

(1(i = j)− P (D = j|X))γj(X). (A.3)

A.3 Simulations with multiple SNPs

The simulation datasets with multiple SNPs were generated according to steps given

below. Moreover, we also consider two settings as the two-SNP case:

A.3.1 Setting One

(i) Generate a non-genetic covariate C ∼ N(0, 1) for each subject.

(ii) Generate Ng = 500 SNP-level genetic variables G = {G1, G2, . . . , G500} with MAF for

each Gi sampled according to uniform distribution U(0.2, 0.3). Then we randomly

select 10 SNPs from set G as causal SNPs, denoted as Gc.

(iii) Generate the primary trait D according to the following multinomial logistic model:

log
(
P (D = j|X)

P (D = 0|X)

)
= XTϕj for j = 1, 2,

whereXT = (1, C,Gc), and we choose ϕ1 = ϕ2 to make the global prevalence of groups

0, 1, and 2 be 10%, 15%, and 75%, respectively.
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(iv) Generate the secondary phenotype Y for each subject according to (A.4) as follows:

Y = β0 + βT1X +
2∑
j=1

{1(D = j)− Pj(X)}γTj X + ε, (A.4)

where each element of γj is randomly sampled from (−0.5, 0.5) and ε ∼ N(0, 1).

(v) Repeat steps (i)-(iv) to generate (Y,X, D) until we obtain a total of N = 500, 000

observations as the whole population. Then, we randomly select 500, 1000, and 500

subjects from the D = 0, D = 1, and D = 2 groups, respectively, in order to build a

non-random three-group sample.

A.3.2 Setting Two

(i) Generate C, G, and Gc as setting one.

(ii) Generate the secondary phenotype Y for each subject according to

Y = β0 + βT1X + ε, (A.5)

where XT = (1, C,Gc). Moreover, we set each component of β corresponding to each

Gi ∈ Gc to be 0.5.

(iii) Simulate the primary trait D by using a multinomial model given by

log
(
P (D = j|C, Y,Gc)

P (D = 0|C, Y,Gc)

)
= (C, Y,Gc)ϕ̃j for j = 1, 2,

We set ϕ̃1 = ϕ̃2 so that the global prevalence of groups 0, 1, and 2 are, respectively,

given by 15%, 15% and 70%.

(iv) Repeat steps 1-3 until the sample size reaches 500, 000 and then sample 500(D = 0),

1000(D = 1) and 500(D = 2) observations from the above large pool of subjects.
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A.4 The Alzheimer’s Disease Neuroimaging Initiative Data

A.4.1 Sample

We used imaging and genetic data from the ADNI database obtained from phases ADNI1,

ADNI2, and ADNIGO. The earliest phase, ADNI1, recruited more than 800 subjects and the

latter two phases, ADNIGO and ADNI2, recruited more than 900 new subjects, and added a

new cohort category, called significant memory concern (SMC). Therefore, ADNI participants

represent four main groups: people with normal cognition (NC), people with early or late

MCI (EMCI or LMCI), people with AD, and people with SMC.

The total number of subjects with baseline demographic information from ADNI1, ADNI2

and ADNIGO is 1737, consisting of 342 ADs, 417 NCs, 310 EMCIs, 562 LMCIs, and 106

SMCs. In ADNI1, we only include the 712 Caucasians from all 818 subjects with genetic data,

among which there are 198 NCs, 352 MCIs, and 162 ADs. Moreover, we used 550 Caucasians

in ADNI2 and ADNIGO, among which there are 82 ADs, 114 NCs, 201 EMCIs, 100 LMCIs,

and 53 SMCs. To match the group information of ADNI1, we dropped the 53 SMC subjects

and combined the EMCI and LMCI groups, leading to a three-group study. 325 subjects

with genetic data finally go to the sample data, including 101 NCs, 201 MCIs and 23 ADs.

A.4.2 MRI Acquisition and Image Preprocessing

All participants enrolled in ADNI1 underwent brain scanning using a variety of 1.5 Tesla

MRI scanners; whereas all participants newly enrolled in ADNIGO and ADNI2 were scanned

using 3T MRI scanners. The parameters of a typical MRI protocol for ADNI1 are as follows:

repetition time (TR) = 2400 ms, inversion time (TI) = 1000 ms, flip angle = 8o, field of view

(FOV) = 24 cm with a 256× 256× 170 acquisition matrix in the x−, y−, and z−dimensions

yielding a voxel size of 1.25 × 1.26 × 1.2 mm3 (Jack Jr et al. (2008)). The parameters of

a typical MRI protocol for ADNI2 and ADNIGo are as follows: 8-channel coil, TR = 400

ms, TE = min full, flip-angle = 11o, slice thickness = 1.2 mm, resolution = 256× 256mm

and FOV = 26 cm. All original and bias-corrected image files are available to the general

scientific community at http://adni.loni.usc.edu/. Based on the bias-corrected T1-weighted
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MRI images, we first interpolated the voxel size to 1× 1× 1mm3 and then used the local

label learning (LLL) (Hao et al. (2014)) approach to carry out left and right hippocampal

segmentation for each subject. Hao et al. (2014) showed that the LLL method leads to better

segmentation results compared with most state-of-the-art label fusion methods.

A.4.3 Genotype Data

The genetic data of ADNI1 was acquired using the Human610-Quad BeadChip, while

the subjects from ADNI-2 were genotyped using the Illumina Human OmniExpress Bead-

Chip (Illumina, Inc., San Diego, CA). The original data of ADNI1 contains 620,901 genetic

markers, including multiple types of genetic variants; whereas ADNI2 has 730,525 genetic

markers. We then performed the following quality control procedures, including (i) call

rate check per subject, (ii) gender check, (iii) sibling pair identification, and (iv) popula-

tion stratification. Furthermore, SNPs were excluded from the imaging genetic analysis

if they could not meet any of the following criteria: (i) call rate per SNP≥ 95%, (ii)

MAF ≥ 5%, and (iii) Hardy-Weinberg equilibrium test of p ≥ 10−6. We applied MACH-

Admix software (http://www.unc.edu/ yunmli/MaCH-Admix/) (Liu et al. (2013)) to per-

form genotype imputation, using 1000G phase I integrated release version 3 haplotypes

(http://www.1000genomes.org) (1000 Genomes Project Consortium, 2012) as a reference

panel. After imputation, we obtained 7,986,566 bi-allelic markers (including SNPs and indels)

in ADNI1 and 8,218,182 markers in ADNI2. Finally, we excluded those with low imputation

accuracy (based on imputation output R2), with MAF smaller than 0.05, or a p-value smaller

than 10−6 in the Hardy-Weinberg equilibrium test, leading to 6,017,259 SNP-based markers

in the final data analysis (Zhu et al., 2017).

A.5 The Boxplots of the log volumes of the left and right hippocampi in ADNI1
and ADNI2, ADNI GO
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Figure A.1: The Boxplots of the log volumes of the left and right hippocampi in ADNI1 and
ADNI2, ADNI GO
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APPENDIX B: APPENDIX FOR CHAPTER 3

B.1 Theorem Proofs

B.1.1 Lemma and proof

The proof of Theorem 4.1 is based on the following lemma. Let supp(·) be the support of

a domain space.

Lemma B.1. Under the model (2), (3), or (2), (5) (main text), suppose that there exists an

instrumental variable ui in each xi = (zTi , u
T
i )T such that f(yi|G A(x)i) depends on ui, whereas

P (ri = 1|yi, h(xi)) does not depend on ui. We let x = [z,u]. Our GNM model is identifiable

on the PEQ space under the following sufficient Conditions (C1)-(C3):

(C1) there exists a set S ⊂ supp(Y, z), such that P (ri = 1|yi, h(zi); θr) 6= 0 for each i and all

(Y, z) ∈ S and θr ∈ D(θr).

(C2) Denote θr1 = (αr1, γ1, φ1, θh1)
T and θr2 = (αr2, γ2, φ2, θh2)

T . P (ri = 1|yi, h(zi); θr1) =

P (ri = 1|yi, h(zi); θr2) for each i and all (Y, z) ∈ S ⇐⇒ γT1 h(zi; θh1) = γT2 h(zi; θh2) holds for

all z and each zi.

(C3) Denote θy1 = (α1, β1, θg1)T and θy2 = (α2, β2, θg2)T . We let x1 = [z,u1] and x2 = [z,u2].

If f(yi|G A(x1)i; θy1)f(yi|G A(x2)i; θy2) = f(yi|G A(x1)i; θy2)f(yi|G A(x2)i; θy1) holds for each i

and all (u1,u2) and (Y, z) ∈ S, then G A(x; θg1)β1 = G A(x; θg2)β2 holds.

Proof: Suppose that the following two equations hold for all (Y, z) ∈ S and (u1,u2):

u1 6= u2, then for each i we have

P (ri = 1|yi, h(zi); θr1)f(yi|G A(x1)i; θy1) = P (ri = 1|yi, h(zi); θr2)f(yi|G A(x1)i; θy2)

P (ri = 1|yi, h(zi); θr2)f(yi|G A(x2)i; θy2) = P (ri = 1|yi, h(zi); θr1)f(yi|G A(x2)i; θy1) (B.1)

Multiplying the two equations gives

P (ri = 1|yi, h(zi); θr1)f(yi|G A(x1)i; θy1)P (ri = 1|yi, h(zi); θr2)f(yi|G A(x2)i; θy2)
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= P (ri = 1|yi, h(zi); θr2)f(yi|G A(x1)i; θy2)P (ri = 1|yi, h(zi); θr1)f(yi|G A(x2)i; θy1)

Together with condition (C1), it follows that

f(yi|G A(x1)i; θy1)f(yi|G A(x2)i; θy2) = f(yi|G A(x1)i; θy2)f(yi|G A(x2)i; θy1)

holds for each i and all (Y, z) ∈ S. Then from condition (C3), we have G A(x; θg1)β1 =

G A(x; θg2)β2 for all x, which implies f(yi|G A(x1)i; θy1) = f(yi|G A(x1)i; θy2) from (3) (main

text). Then, we obtain from (B.1) that

P (ri = 1|yi, h(zi); θr1) = P (ri = 1|yi, h(zi); θr2)

for each i and all (Y, z) ∈ S. Together with condition (C2), we have γT1 h(xi; θh1) = γT2 h(xi; θh2)

holds for all z and each zi. and the identifiability on the PEQ space is obtained.

B.1.2 Proof of Theorem 4.1

Part (i):

Under the model (2) and (5) (main text), we prove the identifiability for the binary case

when y ∈ {1,−1}, while all the derivations can be extended to the more general case. We

need to show that for each i and all (yi,x) ∈ S,

1

1 + exp{−αr1 − γT1 h(xi; θh1)− φ1yi}
1

1 + exp{−yi(α1 + βT1 G A(x; θg1)i)}

=
1

1 + exp{−αr2 − γT2 h(xi; θh2)− φ2yi}
1

1 + exp{−yi(α2 + βT2 G A(x; θg2)i)}
(B.2)

is equivalent to

αr1 = αr2, γ1 = γ2, φ1 = φ2, α1 = α2, β1 = β2, θh1 = θh2, θg1 = θg2
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(B.2) can be rewritten as

e−{αr1+γT1 h(xi;θh1)+φ1yi} + e−yi{α1+βT1 GA(x;θg1)i} + e−(α1yi+αr1)−φ1yi−γT1 h(xi;θh1)−βT1 GA(x;θg1)iyi

= e−{αr2+γT2 h(xi;θh2)+φ2yi} + e−yi{α2+βT2 GA(x;θg2)i} + e−(α2yi+αr2)−φ2yi−γT2 h(xi;θh2)−βT2 GA(x;θg2)iyi

(B.3)

Since (B.3) holds for all (yi,x), and from Condition (A1), the only possible solution to (B.3)

is 
e−{αr1+γT1 h(xi;θh1)+φ1yi} = e−{αr2+γT2 h(xi;θh2)+φ2yi},

e−{α1+βT1 GA(x;θg1)i} = e−{α2+βT2 GA(x;θg2)i},

e−(α1+αr1)−φ1yi−γT1 h(xi;θh1)−βT1 GA(x;θg1)i = e−(α2+αr2)−φ2yi−γT2 h(xi;θh2)−βT2 GA(x;θg2)i

which requires

αr1 = αr2;φ1 = φ2;α1 = α2; βT1 G A(x; θg1)i = βT2 G A(x; θg2)i; γ
T
1 h(xi; θh1) = γT2 h(xi; θh2),

which concludes the identifiability on the PEQ space.

Part (ii):

Under the model (2) and (3) (main text), we prove the identifiability of the parameter

when the responses y are continuous. By using Lemma (B.1), Condition (C1) holds due to

(2) (main text). Condition (C2) holds due to Condition (A3) in Theorem 3.1. We next give

the proof of Condition (C3). We here give the proof of q = 1 which can be extended to the

general case.

If f(yi|G A(x1)i; θy1)f(yi|G A(x2)i; θy2) = f(yi|G A(x1)i; θy2)f(yi|G A(x2)i; θy1) holds for each
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i and all (u1,u2) and (y, z) ∈ S, from (3) (main text), the following equation holds

β2
1 [(G A([z,u1]; θg1))2 − (G A([z,u2]; θg1))2]

− 2(y − α1)β1[G A([z,u1]; θg1)− G A([z,u2]; θg1)]

= β2
2 [(G A([z,u1]; θg2))2 − (G A([z,u2]; θg2))2]

− 2(y − α2)β2[G A([z,u1]; θg2)− G A([z,u2]; θg2)]

for all y. Together with Condition (A2), we have

β1[G A([z,u1]; θg1)− G A([z,u2]; θg1)] = β2[G A([z,u1]; θg2)− G A([z,u2]; θg2)]

and

β1[G A([z,u1]; θg1) + G A([z,u2]; θg1)] = β2[G A([z,u1]; θg2) + G A([z,u2]; θg2)].

It follows that

β1G
A([z,u1]; θg1) = β2G

A([z,u1]; θg2)

and Condition (C3) holds, which concludes the proof.

B.1.3 Proof of Theorem 4.2

To prove the theorem, we use the law of iterated conditional expectation as follows:

Eθy{
∑
i

ri
π(yi, h(xi))

l(yi,G
A(x)i)} = Eθy [E{

∑
i

ri
π(yi, h(xi))

l(yi,G
A(x)i)|Y,x}]

= Eθy{
∑
i

E(ri|Y,x)

π(yi, h(xi))
l(yi,G

A(x)i)}

= Eθy{
π(yi, h(xi))

π(yi, h(xi))
l(yi,G

A(x)i)} (B.4)

= Eθy{l(yi,G A(x)i)}
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where (B.4) holds because

E(ri|Y,x) = E(ri|yi, xi) = E(ri|yi, h(xi)) = P (ri = 1|yi, h(xi)) = π(yi, h(xi))
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