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ABSTRACT

Sherif Farag: Computational Design of Novel Non-Ribosomal Peptides
(Under the direction of Alexander Tropsha)

Non-ribosomal peptide synthetases (NRPSs) are modular enzymatic machines that catalyze

the ribosome-independent production of structurally complex small peptides, many of which have

important clinical applications as antibiotics, antifungals, and anti-cancer agents. Several groups

have tried to expand natural product diversity by intermixing different NRPS modules to create

synthetic peptides. This approach has not been as successful as anticipated, suggesting that these

modules are not fully interchangeable.

Here, we explored whether inter-modular linkers (IMLs) impact the ability of NRPS modules

to communicate during the synthesis of NRPs. We developed a parser to extract 39,804 IMLs

from both well annotated and putative NRPS biosynthetic gene clusters from 39,232 bacterial

genomes and established the first IMLs database. We analyzed these IMLs and identified a striking

relationship between IMLs and the amino acid substrates of their adjacent modules. More than 92%

of the identified IMLs connect modules that activate a particular pair of substrates, suggesting that

significant specificity is embedded within these sequences. We therefore propose that incorporating

the correct IML is critical when attempting combinatorial biosynthesis of novel NRPS.

In addition to the IMLs database and IML-Parser we have developed the NRP Discovery Pipeline,

which is a set of bioinformatics and cheminformatics tools that will help facilitating early discovery

of novel NRPs. Our pipeline comprises of five modules: (1) NRP comprehensive combinatorial

biosynthesis: A tool that helps generating virtual libraries of NRPs. (2) NRP sequence-based

predictor: A classifier based only on peptide sequences to help triaging peptides with no anti-

bacterial activity. (3) Pep2struc: A tool that helps converting peptide sequences to their 2D structures

form both linear and constrained peptides. (4) NRP structure-based predictor: A second classifier

based on peptide structures to filter out inactive predicted peptides. (5) NRPS Designer: A tool that

iii



helps reprogramming of the bacterial genome by editing its NRP BGC to synthesize the peptide of

interest.

The IMLs database as well as the NRPS-Parser have been made available on the web at

https://nrps-linker.unc.edu. The entire source code of the projects discussed in this dissertation

is hosted in GitHub repository (https://github.com/SWFarag).
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CHAPTER 1

Introduction

1.1 Antibiotic resistant crisis

Antimicrobial resistance is recognized as one of the greatest threats to human health worldwide

(Viswanathan, 2014; Ventola, 2015a; Martens and Demain, 2017). In the U.S. alone, it causes more

than 2 million hospital-acquired infections (HAIs), resulting in 99,000 deaths. For instance, just one

organism, methicillin-resistant Staphylococcus aureus (MRSA), kills more Americans every year

(∼19,000) than HIV/AIDS, Parkinson’s disease, and homicide combined (Klevens et al., 2007). The

rapid emergence of resistant bacteria is occurring worldwide, endangering our progress in healthcare,

food production, and ultimately life expectancy (Golkar et al., 2014). Studies comparing the costs

of infections caused by antibiotic-resistant pathogens (ARPs) versus antibiotic-sensitive pathogens

(ASPs), have shown that the former has led to an annual cost of $21 billion to $34 billion to the US

health care system and an additional 8 million hospital days. (Roberts et al., 2009; Mauldin et al.,

2010; Filice et al., 2010; Spellberg et al., 2011).

The main culprits behind such crisis are the overuse, misuse and inappropriate prescription of

antibiotics (Michael et al., 2014). Moreover, their extensive use in agriculture (Kennedy, 2013; Chang

et al., 2015) and most importantly the lack of new drug development by the pharmaceutical industry

due to reduced economic incentives and challenging regulatory requirements (Piddock, 2012; Bartlett

et al., 2013; Viswanathan, 2014). Furthermore, mergers between pharmaceutical companies have

also substantially reduced the number and diversity of research teams (Piddock, 2012; Bartlett et al.,

2013).



1.2 Managing the antibiotic resistant crisis

The management of antibiotic resistant could be put under three categories:

1. Governmental initiatives and health care policy changes:

(i) Optimizing Therapeutic Regimens: Antibiotics are generally prescribed according to a

fixed regimen that involves a specific dose, dosage frequency, and length of treatment. Thus,

optimizing those parameters according to distinct types of infections would certainly help

reducing the development of resistance. Previously, in order to ensure the complete eradication

of the infecting pathogen from the body of a patient, extended regimens (patient administered a

high dosage over a longer period) were usually recommended (Michael et al., 2014). However,

prolonged antibiotic therapy may be pernicious as it facilitates colonization with antibiotic-

resistant bacteria, which could cause recurrent episodes of infection (Luyt et al., 2014). Thus,

by lowering the antibiotic dose and shortening the course of treatment, the selective pressure

on bacterial organisms and the development of resistance may be reduced (Michael et al.,

2014).

(ii) Improving Diagnosis and Diagnostic Tools: Accurate diagnosis of infectious diseases

and prescribing the most proper and efficient anitbiotic against it, is a highly desired goal.

Doing such not only it protects the patients from being administered multiple antimicrobials

simultaneously in the hope that one will be effective in controlling an unidentified pathogen but

it would also help combating bacterial resistance by protecting the patient’s microbiota from

being subjected to intense and repeated selective pressure, which encourages the development

of antibiotic resistance. Accurate diagnosis of infectious diseases using traditional methods

is a tedious process that involves multiple laboratory-based tests which may take days and

sometimes even weeks to complete. Fortunately, newer diagnostic techniques have emerged

recently, such as real-time multiplex polymerase chain reaction (PCR) and matrix-assisted

laser desorption/ionization time-of-flight mass spectrometry (Bartlett et al., 2013).The new

techniques are capable of detecting the unique nucleic acid or biochemical composition of

the microbe at the point of care, enabling rapid pathogen-specific identification and treatment

(Luyt et al., 2014).
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(iii) Improving Tracking Methodologies: The capabilities of federal and state governments

to detect and respond to urgent or emerging antibiotic-resistant threats is currently limited.

However, the Centers for Disease Control and Prevention (CDC) has recently implemented

the National Health-care Safety Network (NHSN), which is the nation’s most widely used

healthcare-associated infection tracking system. The system is meant for use by health care

facilities to electronically report infections, bacterial resistance and misuse of antibiotics. As

NHSN database grows, this will enable the system to track antibiotic usage and bacterial

resistance and most importantly enabling areas of concern to be addressed effectively.

(iv) Preventing Transmission of Bacterial Infections: ”Prevention Is Better Than Cure”.

Modern medicine is overwhelmingly reactive rather than proactive. As it is always better to

prevent an infection rather than to try to find a cure for it. Patients in hospitals are usually at a

great risk for antibiotic-resistant infections when pathogens are transferred from one patient to

another via the hands of careless health care practitioners (HCPs) or objects used in health care

(Luyt et al., 2014). Therefore, HCPs must firmly comply with the infection-control guidelines

established by the health care facility to prevent transmission of bacterial infections (Ventola,

2015b).

(v) Governmental Legislations: New legislations and incentives have been proposed to en-

courage pharmaceutical companies to re-enter the field of antibiotic drug development; these

include measures to alleviate economic and regulatory obstacles, improve economic viability

and provide supplemental funding for efforts in this area (Piddock, 2012; Gould and Bal, 2013;

Ventola, 2015b).

2. Developing novel antibiotics: Most of our antibiotics are natural products extracted from

bacteria and fungi. There are two main strategies to develop novel antibiotics. (1) Identifying

new species of bacteria and scanning them for novel antimicrobial agents. This is the most

sought strategy. For many years, this strategy was limited due to the fact that ∼99% of the

microorganisms that are a potential source of new antibiotics cannot be grown in a laboratory

environment and therefore remain uncultured (Ling et al., 2015). However, new culturing

techniques such as the isolation chip (iChip) (Kaeberlein et al., 2002; Nichols et al., 2010), that

allows the growth of uncultured organisms by cultivation in their natural environment, have
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paved the way to gain access to yet untapped source of new antibiotics. (2) Re-programming

of bacterial genomes. This is the process of manipulating and editing bacterial biosynthetic

gene clusters (BGCs) in a way to produce novel peptides with anti-microbial activity. The

combinatorial biosynthesis of those BGCs will help speeding up the process of evolution by

many orders of magnitude to compete with the natural evolution of new antibiotics (Nguyen

et al., 2006; Bozhüyük et al., 2017; Farag et al., 2019).

3. Making bacteria sensitive to current antibiotics: This the process of reversing resistant

bacteria to become sensitive and responsive to current known treatments. One way of accom-

plishing that is the use of asRNA which binds to the mRNA of the acquired resistant genes to

inhibit their translation, hence rendering the bacteria to become susceptible again to antibiotics.

(Good and Stach, 2011).

1.3 Non-Ribosomal Peptides

Non-ribosomal peptides (NRPs) are specialized metabolites produced by bacteria and fungi, many of

which have clinical applications as antibiotics (e.g. daptomycin, vancomycin), anticancer agents (e.g.

bleomycin), and immunosuppressants (e.g. cyclosporin). NRPs are synthesized by non-ribosomal

peptide synthetases (NRPSs), which are exceptional mega-enzymes. Each NRPS subunit consists

of multiple modules joined by linkers and each module consists of multiple catalytic domains. The

four catalytic domains that are found on most NRPSs are Adenylation (A) domain, Thiolation or

peptidyl carrier protein (PCP) domain, Condensation (C) domain and the Thioesterase (TE) domain.

The A domain is responsible for selecting the substrate and activating it, a small peptidyl carrier

protein (PCP) domain carries the activated amino acid and propagates the growing peptide chain, and

a condensation (C) domain links amino acids of two adjacent modules via a condensation reaction.

Therefore, all NRPS elongation modules are composed of at least three essential domains in the order

[C-A-PCP]. A termination module contains an additional thioesterase (TE) domain, responsible for

product release, either by hydrolysis or by macro-cyclization. Hence, all the modules work together

to assemble highly complex, bioactive secondary metabolites. (Mootz et al., 2000; Baltz, 2006;

Felnagle et al., 2008).
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1.4 Combinatorial biosynthesis of novel NRPs

Exploiting the modularity of enzymes involved in secondary metabolism, has been proven feasible to

produce novel biosynthetic compounds. Various strategies have been employed so far: a) exchanging

entire NRPS subunits across different biosynthetic gene clusters (BGCs) (Nguyen et al., 2006;

Coëffet-Le Gal et al., 2006; Baltz et al., 2006); b) exchanging modules (Nguyen et al., 2006); c)

exchanging domains (Calcott et al., 2014); d) exchanging sub-domains (Crüsemann et al., 2013);

e) using well-defined exchange units (XUs) and not modules as functional units (Bozhüyük et al.,

2017). Common across all of these strategies is that the adenylation domain (A-domain) is either

swapped or edited in place. Since the A-domain is the one responsible for activating the substrate

that will be incorporated into the final peptide product, swapping or modifying it will potentially

lead to the synthesis of a different peptide. Unfortunately, most of the NRP analogues derived using

these strategies have resulted in either lower yield or no yield relative to the wild type (Stevens et al.,

2005; Calcott et al., 2014; Winn et al., 2016).

1.5 IDLs vs. IMLs

It remained unclear why these strategies were not as successful as anticipated. One possible reason

for the generally poor performance could be due to an incomplete understanding of the linkers role

within NRPS subunits. There are two types of linkers (1) Inter-Domain Linkers (IDLs), which denotes

to regions between domains (Bhaskara et al., 2013) and Inter-Modular Linkers (IMLs), which refer to

the regions between modules. Studies have shown that IDLs can play an essential role in maintaining

cooperative inter-domain interactions, as the composition and length of linkers affect protein stability,

folding, and domain-domain orientation (Robinson and Sauer, 1998; Gokhale and Khosla, 2000).

These studies and others have also provided a mechanistic insight and biochemical evidence of

the importance of linker regions in controlling domain conformation and lends greater weight to

previous observations that suggest careful consideration of these regions should be undertaken when

attempting any combinatorial biosynthesis studies with a NRPS. Hence, understanding the nature of

theses linkers and their properties is substantial for successful combinatorial biosynthesis of novel

BGCs.
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Several methods and algorithms have been developed over the years to predict IDLs (Miyazaki

et al., 2002; Udwary et al., 2002; Suyama and Ohara, 2003; Tanaka et al., 2003). Most of these

methods use secondary structure predictions, amino acid propensity or a combination of the two to

identify IDLs. Studies have also revealed that IDLs tend to have a relatively low secondary structure

conservation and a relatively low hydrophobicity profile (Udwary et al., 2002; Bae et al., 2005).

Overall, IDLs have been more well-studied (Reger et al., 2007; Doekel et al., 2008; Wu et al., 2009;

Yu et al.,2013; Beer et al., 2014) as compared to IMLs (Lott and Lee, 2017; Tarry et al., 2017). When

considering IMLs, the rule of thumb has been to keep them intact and not to remove, edit, or swap

them. The assumption is that interfering with these linkers would prevent module-module association

and therefore diminish product yield (Wriggers et al., 2005; Winn et al., 2016). This of course has

led to a high level of uncertainty about the importance of IMLs, and no IML database currently exists

to facilitate their analysis.

1.6 Objectives

In this study, we endeavored to address these deficiencies by scanning 39,232 bacterial genomes

for potential NRPS BGCs and implementing a NRPS-Parser to extract and analyze all potential

IMLs across this database. Using these data, we have established the first public IMLs database and

investigated whether there is a relationship between IMLs and their adjacent A-domains. Our chief

objective was to develop a better understanding of the role of IMLs in NRPSs in order to enable more

efficient rational design of novel NRPs. Moreover, we implemented the NRP Discovery Pipeline, a

pipeline that entails of five modules, that collectively will help accelerating the early discovery of

novel NRPs with anti-bacterial activity.
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CHAPTER 2

Inter-Modular Linkers play a crucial role in gov-
erning the biosynthesis of non-ribosomal peptides

This chapter is a reproduction, in whole, with permission of a publication in Bioinformatics by

(Farag et al., 2019) at doi: 10.1093/bioinformatics/btz127

2.1 Introduction

As the threat of antibiotic resistance continues to rise and the number of available treatments continues

to decline, the need to develop novel antibiotics is greater than ever. Non-ribosomal peptides

(NRPs) are specialized metabolites produced by bacteria and fungi, many of which have clinical

applications as antibiotics (e.g. daptomycin, vancomycin), anticancer agents (e.g. bleomycin), and

immunosuppressants (e.g. cyclosporin). NRPs are synthesized by non-ribosomal peptide synthetases

(NRPSs), which are exceptional mega-enzymes. Each NRPS protein consists of multiple modules,

which consist of multiple catalytic domains that work together to assemble highly complex, bioactive

secondary metabolites. These modules are joined together by linkers, or strings of amino acids

(Mootz et al., 2000; Baltz, 2006; Felnagle et al., 2008).

Combinatorial biosynthesis of novel NRPs has been a longstanding goal in chemical biology.

Five major strategies have been employed so far: a) exchanging entire NRPS genes across different

biosynthetic gene clusters (BGCs) (Nguyen et al., 2006; Coëffet-Le Gal et al., 2006; Baltz et al.,

2006); b) exchanging modules (Nguyen et al., 2006); c) exchanging domains (Calcott et al., 2014);

d) exchanging sub-domains (Crüsemann et al., 2013); e) using well-defined exchange units (XUs)

and not modules as functional units (Bozhüyük et al., 2017). Common across all of these strategies

is that the adenylation domain (A-domain) is either swapped or edited in place. Since the A-domain

is responsible for activating the substrate that will be incorporated into the final peptide product,



swapping or modifying it will potentially lead to the synthesis of a different peptide. Moreover,

a recent study has shown that in addition to their gate-keeping function, Condensation-domains

(C-domains) also exhibit a module specificity-regulatory role, which helps even further diversification

of NRPs and other natural peptides (Meyer et al., 2016). Unfortunately, most of the NRP analogues

derived using these strategies have resulted in either lower yield or no yield relative to the wild type

(Stevens et al., 2005; Calcott et al., 2014; Winn et al., 2016).

One possible reason for the generally poor performance of these strategies could be due to an

incomplete understanding of the importance of linkers within NRPSs. There are two types of linkers

within NRPS assembly lines: the regions between domains known as Inter-Domain Linkers (IDLs)

(Bhaskara et al., 2013) and the regions between modules known as Inter-Modular Linkers (IMLs).

Studies have shown that IDLs can play an essential role in maintaining cooperative inter-domain

interactions, as the composition and length of linkers affect protein stability, folding, and domain-

domain orientation (Robinson and Sauer, 1998; Gokhale and Khosla, 2000). These and other studies

have provided mechanistic insights and biochemical evidence of the importance of linker regions

in controlling NRPS domain conformation and emphasize the relevance of linkers to combinatorial

biosynthesis outcomes.

Overall, IDLs have been more well-studied (Reger et al., 2007; Doekel et al., 2008; Wu et al.,

2009; Yu et al., 2013; Beer et al., 2014) than IMLs (Lott and Lee, 2017; Tarry et al., 2017). When

considering IMLs, the rule of thumb has been to keep them intact and not to remove, edit, or swap

them. The assumption is that interfering with these linkers would prevent module-module association

and therefore diminish product yield (Winn et al., 2016). This has led to a high level of uncertainty

about the importance of IMLs, and no IML database currently exists to facilitate their analysis.

In this study, we endeavored to address these deficiencies by scanning 39,232 bacterial genomes

for potential NRPS BGCs and implementing a NRPS-Parser to extract and analyze all potential

IMLs across this database. Using these data, we have established the first public IMLs database and

investigated whether there is a relationship between each IML and its adjacent A-domains. Our chief

objective was to develop a better understanding of the role of IMLs in NRPSs in order to enable

more efficient rational design of novel NRPs.
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2.2 Materials and Methods

2.2.1 Study design and dataset

Two major bacterial genome databases were used in this study: NCBI prokaryotic RefSeq genomes

and ENA Ensembl bacterial genomes databases, comprising 70,844 and 41,610 bacterial genomes,

respectively. In addition to that we also used the Minimum Information about a Biosynthetic Gene

Cluster (MIBiG) repository, which contains 408 NRP BGCs (Medema et al., 2015). Due to the large

amount of overlap between the two databases, 39,232 unique bacterial genomes were ultimately

analyzed. We then downloaded the corresponding genomes (GenBank format) from the NCBI

Genomes FTP site ftp://ftp.ncbi.nlm.nih.gov/genomes/ and ran antiSMASH 3.0 (Weber et al., 2015),

a tool that identifies and annotates specialized metabolite BGCs for the extraction of NRPS BGCs.

We then applied our tool, NRPS-Parser, on all identified NRP clusters and extracted all possible

IMLs. Next, we established the first IMLs database. We conducted a comprehensive analysis on all

extracted IMLs in our database and investigated whether there is a relation between the IML and the

activated substrates of adjacent A-domains (Figure 1).

2.2.2 IML NRPS-Parser

After identifying all possible NRP BGCs, a parser dedicated to extracting IMLs within NRPSs was

developed and implemented. The parser extracts linkers in the following pattern: ”A1-linker-A2”

where A1 and A2 refer to the activated amino acid substrates of the A domains from module 1 and

module 2, respectively (Supplementary Figure S1). The linker is defined as the segment of amino

acids connecting these two successive NRPSs modules. All domain borders have been identified

by antiSMASH 3.0 using profile Hidden Markov Models (pHMMs), which are based on multiple

sequence alignments of experimentally characterized signature proteins or protein domains (proteins,

protein subtypes or protein domains that are each exclusively present in a certain type of biosynthetic

gene clusters).
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Figure 2.1: Study design: (A) Two bacterial genome databases and a BCG repository were processed
and integrated: The NCBI prokaryotic RefSeq genomes, ENA Ensembl Bacteria and MIBiG,
respectively. (B) In addition to NRPS clusters from the MIBiG repository, antiSMASH 3.0 was run
on downloaded genomes to identify all potential NRP BGCs. (C) Our NRPS-Parser tool was applied
to extract all possible IMLs. (D) A database of IMLs was established. All identified IMLs were then
analyzed for (i) Selectivity and specificity, (ii) Phylogenetic conservation, and (iii) Properties.
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2.2.3 Web-Server

All extracted IMLs are available on the following web-server (https://nrps-linker.unc.edu). The

web-server has two major functionalities: a) a NRPS-Parser that helps to extract IMLs from uploaded

antiSMASH-predicted NRPS BGCs, with support for both antiSMASH 3.0 and 4.0 outputs (Weber

et al., 2015), and b) a filterable, searchable, and exportable IML database comprised of the 39,804

IMLs extracted in this study. The tool is implemented using Python 2.7 and the Flask micro-web

framework. The web-server is hosted by Carolina-cloudapps, a platform for developing and deploying

web applications managed by the University of North Carolina at Chapel Hill.

2.3 Results

2.3.1 IML extraction

Our overall goal was to investigate whether there is a relationship between NRPS IMLs and their

adjacent A-domains. To do so, we used the well-annotated NRPS clusters from the MIBiG repository.

Furthermore, we applied antiSMASH 3.0 to predict all potential NRPS BGCs from 39,232 genomes

(Supplementary File 1). We then extracted all possible IMLs from the antiSMASH-predicted NRPS

BGCs using our NRPS-Parser, which led to the extraction of 39,804 IMLs (902 from MIBiG NRPS

clusters and 38,902 from predicted NRPS BGCs) (Supplementary File 2, File 3). The IML NRPS-

Parser extracts linkers in the pattern ”A1-linker-A2”, where A1 and A2 refer to the activated amino

acid substrates of the A domains from module 1 and module 2, respectively, and the linker is the

string of amino acids joining these two successive NRPSs modules (Supplementary Figure S1). After

obtaining this collection of IMLs, we then pursued two main questions: (a) How specific are IMLs

with regards to particular pairs of amino-acid-incorporating modules? (b) How well conserved are

IMLs within and across genera?

2.3.2 Analysis of IMLs

The 902 linkers obtained from the well-annotated MIBiG repository were extracted from 75 bacterial

genera covering 196 species, while the 38,902 linkers extracted from the predicted NRPS BGCs

were obtained from 138 bacterial genera covering 1,956 bacterial species. When considering all of
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the extracted IMLs, their average GC nucleotide content was 13% (Supplementary Figure S2), and

their average length was 42 residues. For a deeper analysis of linkers length distribution, please refer

to Figure 4 in the discussion section.

The amino acid characteristics of IMLs were composed, on average, of 44% neutral amino

acids, 33% polar amino acids, and 23% hydrophobic amino acids (Supplementary Figure S3). This

distribution agrees well with previous findings that linker regions tend to be less conserved in

sequence and structure and contain more hydrophilic residues (Udwary et al., 2002; Bae et al., 2005).

However, IMLs were found to exhibit more secondary structures than IDLs (Supplementary Figure

S3). A study by George and Heringa 2002 showed that the largest proportion of IDL residues, 38.3%,

adopts the α-helical secondary structure, while 13.6% are in β-strands, 10.5% are in turns and the

rest, 37.6%, are in coil or bend secondary structures. On the other hand, for IML residues 49% adopt

the α-helical secondary structure, while 22% adopt the β-strands and the remaining 29% are found

to be in coils. This finding demonstrates the difference between IDLs and IMLs while also reflecting

their distinct functional roles in coordinating pairs of modules within NRPSs.

2.3.2.1 Selectivity of unique IMLs toward pairs of modules

In this analysis, pairs of modules are represented by their activated amino acid substrates. For

example, Ser-Ala indicates that module 1 activates serine and module 2 activates alanine. Here, we

investigated whether IMLs act as specific linkers (i.e. bridging particular pairs of modules) or as

universal linkers with no specificity towards their modules. To do so, we first considered the number

of unique module pairs to which a linker could bind. In order to avoid any ascertainment bias, we

performed two preprocessing steps. First, we clustered all the extracted IMLs using clust-fast from

UCLUST (Edgar, 2010). Next, we removed all singletons from the dataset, so as to investigate

whether the same IML tends to bind the same pairs of modules. These preprocessing steps resulted

in 3,916 unique IML clusters. All clusters show less than 80% sequence similarity to each other. The

pairwise centroid similarity distribution is depicted in Supplementary Figure S4.

Among all IML clusters, 92% (3,616) were associated with only a single pair of modules

(Supplementary Figure S5A). For example, there are 427 occurrences of the linker ’SITDAAASQD-

DWVIVHDPE’ in our database, which have been extracted from five different bacterial genera and

are involved in the biosynthesis of 45 distinct NRPs. Each occurrence of this linker, regardless of
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genera or NRP product, links the same Gly-Cys module pair. Thus, a single IML typically bridges the

same module pair. The remaining 8% of the linkers (300) tend to join only a limited number of mod-

ule pairs (ranging between 2 and 13 unique pairs). For example, the linker ’ENTEVLPPIPLAPR’,

extracted from a single strain (Burkholderia pseudomallei 406e), bridges five distinct module pairs

(Supplementary Figure S5B). In addition, our analysis has shown that module pairs are not reversible:

the IMLs between Ser-Ala modules differ from those that link Ala-Ser. Overall, it appears that IMLs

are highly selective linkers in regard to the amino acids incorporated by their flanking modules.

An alternative way to illustrate the high level of IML selectivity is to examine the IMLs of a

single bacterial species in a network. We selected Mycobacterium abscessus to illustrate this method,

since it contains a reasonable number of linkers to depict in a two-dimensional network and its linkers

bridged a range of distinct module pairs. In this network visualization, the IMLs are represented as

nodes, with edges connecting nodes that show at least 80% similarity based on pairwise sequence

alignment using the Needleman Wunch algorithm. We then applied a Louvain community detection

algorithm (Blondel et al., 2008), which detected nine distinct communities, each of which consisted

of linkers that bind specifically a distinct pair of modules (Figure 2, Supplementary Table 1). Similar

results were obtained when we conducted the same analysis on linkers extracted from Burkholderia

pseudomallei (Supplementary Figure S6). These visualizations further supports the conclusion that

module-specific IMLs dominate within NRPS BGCs.

2.3.2.2 Phylogenetic conservation of module-specific IMLs within and across genera

Our analysis so far indicates that IMLs are very selective towards module pairs. Here, we probe

whether pairs of modules tend to be linked by the same IML regardless of the bacterial species

from which they were extracted. We conducted an all-by-all comparison of module pairs vs. genera

(computing the degree of conservation of IMLs linking a specific module pair both within and across

genera) and then built a community network to visualize the phylogenetic distributions of IMLs that

link the same module pair.

All-by-all comparison analysis: The NRPS BGCs from the MIBiG repository contain 116 unique

module pairs. For every module pair we computed the similarity matrix of all its linkers using the

Needleman Wunch algorithm, with an 80% similarity cut-off. Of the 2,854 pairwise comparisons,
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Figure 2.2: Mycobacterium Abscessus Module-Specific IMLs: Community network, where nodes
refer to linkers, and edges are constructed between two linkers, if they share 80% or more sequence
similarity. The graph depicts nine distinct communities. Each community represents all the linkers
that bind a specific pair of modules. For instance, the orange community refers to all linkers that
bind the pair of modules that activate phenylalanine and tyrosine.
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just 10% (285) were able to reach or exceed the 80% similarity cut-off (Supplementary Figure S7A).

Of these 285 comparisons that were highly similar, 85% were from IMLs obtained from the same

bacterial genus, and 15% were from IMLs obtained from different genera (Supplementary Figure

S7A). Of the remaining 90% (2569) of comparisons that exhibited a low degree of conservation, 60%

were between linkers extracted from different genera (Supplementary Figure S7A). These findings

indicate that module-specific IMLs tend to be more conserved within bacterial genera (Supplementary

Figure S7B), whereas multiple distinct IMLs exist that link the same module pair across different

genera (Supplementary Figure S7C). Furthermore, 83% of the IMLs that come from the same genera,

yet show a low degree of conservation, were extracted from different species (Supplementary Figure

S7D). When we expanded this same analysis to the larger set of predicted NRPS BGCs, very similar

results were obtained (Supplementary Figure S8A). Both analyzed data sets show multiple cases of

highly similar IMLs, if not completely identical, despite being extracted across distinct genera. The

main reason behind such observation, is the horizontal gene transfer phenomena (HGT) which is

the movement of genetic material between unicellular and/or multicellular organisms other than by

the transmission of DNA from parent to offspring (vertical). For example, we found 27 instances

of the IML ’VAL-ESKEEQTFEPIRQAP-ASP’ across 3 different genera Bacillus, Brevibacterium

and Jeotgalibacillus (Supplementary Figure S8B). Another example revealed 427 instances of the

IML ’GLY-SITDAAASQDDWVIVHDPE-CYS’ across 4 different genera Citrobacter, Escherichia,

Klebsiella and Enterobacter (Supplementary Figure S8C).

Community network visualization of Thr-Val IMLs: We constructed a community network vi-

sualization to illustrate the phylogenetic specificity of IMLs. We took all IMLs for Thr-Val pair

obtained across all species and created a graph as described above. After applying the Louvain

community detection algorithm (Blondel et al., 2008) to this data, the nodes were colored based on

the bacterial species they were obtained from. If IMLs were globally conserved across many bacterial

species, we would expect to obtain a single large community network with multi-colored nodes. If

instead IMLs were conserved within a single bacterial species, we would expect multiple distinct

communities to be detected, where nodes within each community would have the same color. The

data indicate that the latter is the case, underscoring the phylogenetic specificity of IMLs (Figure 3).
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2.3.2.3 IMLs as independent building blocks

We next wanted to explore whether IMLs were highly associated with single NRP products, or

whether the same IML was involved in the biosynthesis of distinct NRPs. If the latter was the case,

then IMLs could potentially act as biosynthetic building blocks to generate novel NRPs. To begin

this analysis, we first needed to define the NRP products produced by our extracted NRPS BGCs.

The NRPs from the MIBiG repository were already well-annotated, but that was not the case for the

NRPS BGCs predicted by antiSMASH. In order to carefully identify duplicates among the group

of predicted BGCs, we developed an expedited homology comparison based on cluster-prints. A

cluster-print is a string representation of a BGC where each character (separated by a comma) refers

to a specific NRPS domain and hyphens are used as a delimiter to distinguish between different NRPS

polypeptides. This method permits BGCs to be quickly compared to one another while avoiding

complex sequence comparisons. For example, the cluster-print for tyrocidine, an NRP from Bacillus

brevis, would be [A, T, E, -, C, A, T, C, A, T, C, A, T, E, -, C, A, T, C, A, T, C, A, T, C, A, T, C, A, T,

C, A, T, -, T]. When two BGCs show identical cluster prints, we then compare the sequence of their

predicted activated substrates. For example, for tyrocidine this would be [dPhe - Pro, Phe, dPhe, Asn

- Gln, Tyr, Val, Orn, Leu]. We were thus able to determine how many unique NRPs a single IML was

associated with (Supplementary File 4).

Our analysis has revealed the presence of 2,703 IMLs that were involved in the biosynthesis

of at least two or more distinct NRP products based on their cluster-prints. For instance, the IML

’Gly-LAPAAQGGIVRCARDA-Thr’ was found in 90 distinct NRP products across 3 different species.

When we conducted the same analysis using the well-annotated NRPs from the MIBiG repository,

we similarly observed that some IMLs are involved in generating distinct NRP products. For instance,

the BGCs of syringomycin and syringopeptin, both produced by Pseudomonas syringae, share

multiple identical IMLs. Moreover, we also observed that highly similar linkers with more than

90% similarity are involved in the biosynthesis of distinct NRP products. For example, the IML

’Ile-AGRSSLPPIVPVSR-Nrp’ is involved in the biosynthesis of sessilin (produced by Pseudomonas

sp. CMR12a), while the IML ’Leu-AGRSSLPPILPVSR-Nrp’ is involved in the biosynthesis of
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Figure 2.3: (Thr-Val) IMLs community network: A network of all the linkers that bridge the
Thr-Val module pair. These linkers belong to various distinct communities, despite the fact that they
are all linking the same pair. The coloring of the graph refers to the species from which linkers were
extracted.

tolaasin (produced by Pseudomonas costantinii). These results not only indicate that highly similar

to identical module-specific IMLs can be utilized to generate distinct NRPs, but also validates the

application of our cluster-print approach to detect distinct NRP-generating BGCs and reflect the

major role HGT play in bacterial evolution.

2.4 Discussion

There are two major resources hosting well-identified NRPs:(a) the NORINE database (Caboche et

al., 2008) and (b) the MIBIG repository (Medema et al., 2015). The former includes 1,187 NRPs,

while the latter contains 433 NRPs. However, when it comes to putative NRPS BGCs, our study

comprises a total of 51,810 potential NRPS clusters (Supplementary Table 2), from which 7,441 are

identified as completely assembled NRPS clusters. We defined complete clusters as those possessing

at least three modules and two IMLs. To the best of our knowledge this is the largest number of

putative NRPS BGCs predicted from known genomic databases (39,232 bacterial genomes). Other

17



studies have reported only 6,351 (Dejong et al., 2016) and 1,704 (Cimermancic et al., 2014) NRPS

clusters.

All of the extracted NRPS BGCs were classified into 7,365 unique cluster-prints, each of which

potentially generates a novel NRP (Supplementary Figure S10A). If so, the inclusion of the additional

genomes results in a 27-fold increase in potential NRPs compared to those captured in the MIBiG

repository. This increase likely reflects the fact that the MIBiG repository is based on 243 unique

bacterial strains, while our more complete genome analysis comprised over 31,338 unique bacterial

strains (based on their NCBI taxonomy identity designator) (Supplementary Figure S10B). The large

number of bacterial genomes processed in our study and the many NRPS BGCs identified using

antiSMASH will certainly help the community by revealing potentially novel, not-yet-annotated

NRPS BGCs. We are confident that a similar increase in NRPSs would result from expanding the

scope of this analysis to include fungi and plants.

IMLs could be clustered into three clusters based on their lengths (Figure 4): (1) Linkers with

lengths ranging between 9-120 amino acids. These are typical lengths and they represent 80% of

all IMLs. (2) Linkers with lengths ranging between 160-280 amino acids. These are linkers that

succeed an epimerization domain in a BGC and they represent 19.85% of all linkers. These seem

longer, due to only-recently-annotated domain ”TIGR01720” in TIGRFAMs protein family (Haft

et al., 2001), which is located immediately downstream of the epimerization domain and upstream

of the condensation domain of the successive module. (3) Linkers with length ¿300 amino acids.

These are most certainly outliers and they represent less than 0.15% of all linkers. The genesis of

these outliers is due to the limitation that antiSMASH tool sometimes has in properly defining border

domains in case of new yet undefined and unannotated domains.

The identification of borders between distinct domains is crucial for our analysis. IML is the

linker region between two successive modules. Precisely, the region between the peptidyl carrier

protein domain (PCP or T-domain) of the first module and the condensation domain (C-domain) of

the successive module. Thus, determining where the T-domain ends and the C-domain begins is

vital for extracting the right linker region. Unfortunately, there is a lack of multi-modular crystal

structures for NRPSs. Therefore, we used antiSMASH to predict all potential NRP BGCs, from

which we extracted all our IMLs. antiSMASH depends on pHMMs to predict domains borders
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Figure 2.4: Linkers length distribution: There are three clusters of IMLs based on their lengths:
(red) Linkers with lengths ranging between 9-120 amino acids. (green) Linkers with lengths ranging
between 160-280 amino acids. (black) These are linkers with more than 300 amino acids in length
(outliers).

in a BGC. Hence, the quality of our extracted linker regions is only as good as the antiSMASH

domain border identification algorithm. Fortunately, these pHMMs are constantly being updated and

re-trained, allowing for improved predictive power as new data and new annotated domains are added.

Historically the importance of IMLs compatibility with adjacent modules has not been con-

sidered during NRP biosynthesis strategies. For instance, Nguyen et al. 2006 have applied several

combinatorial biosynthesis strategies to produce a library of daptomycin analogues. Among other

approaches the authors replaced entire modules within NRPS subunits. Here, we will focus on

the module replacement strategy, and the role that the IML considerations might have played in

their results. All the derived peptides are based on daptomycin, a cyclic 13-amino acid lipopeptide
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Figure 2.5: Retrospective analysis of daptomycin analogues biosynthesis: (A) Daptomycin BGC
from Streptomyces roseosporus. (B) NRPS organization of the daptomycin cluster and schematic
showing module exchange strategy. Modules 8 and 11 were swapped for each other, or for the Asn
11 module from A54145 biosynthesis from Streptomyces fradiae. The swapping resulted in the
synthesis of four daptomycin analogues I, II, III, and IV each with 15%, 45%, 19% and 6% yield
relative to the wild-type. The lightning bolts signify IML incompatibility.
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obtained from Streptomyces roseosporus that is a product of three biosynthetic NRPS subunits, dptA,

dptBC and dptD (Figure 5A).

Two strategies were conducted by Nguyen et al. 2006 : (A) Exchange of homologous mod-

ules within the dptBC NRPS subunit. The other one was to undergo an (B) Exchange of single

heterologous modules.

Exchange of homologous modules within dptBC: Here, Nguyen et al. 2006 decided to conduct

two experiments that involve replacing entire modules (C-A-T) within the dptBC NRPS subunit.

Module 8 and module 11, which activate D-Ala8 and D-Ser11, respectively, were replaced. (I) The

D-alanine encoding C-A-T from module 8 was deleted and replaced with the C-A-T from module

11 (change of Ala8 to Ser8). (II) The opposite replacement was also made where the C-A-T from

module 11 was replaced with the C-A-T from module 8 (change of Ser11 to Ala11). The E domains

of each module were left intact in an attempt to preserve the downstream inter-module associations.

Production of the predicted D-Ser8 and D-Ala11 containing daptomycin analogues was observed,

albeit at reduced production levels of approximately 15% and 45% relative to wild-type. The authors

reasoned that the success of synthesizing those daptomycin analogues was due to the fact that both

modules are highly homologous. However, the authors failed to explain why the yields were much

lower than the wild-type and why the yield of (I) was lower relative to (II) (Figure 5B).

We hypothesize that a possible reason for these decreased yields is due to IML incompatibility

after module replacement. In the first experiment a middle module was replaced, giving rise to two

incompatible IMLs (one on each side of the replaced module). In the second experiment, a terminal

module was replaced, causing a single incompatible IML. Thus, the yield was 15% and 45% for the

first and the second experiment, respectively.

Exchange of single heterologous modules: Here, module 11, which is selective towards D-Asn11,

was obtained from the A54145 BGC from Streptomyces fradiae. The extracted module was used to

replace either D-Ala8 or D-Ser11 from dptBC NRPS subunit of the daptomycin BGC. This approach

led to the isolation of two new analogues (D-Asn11 (III) and D-Asn8 (IV)); however, yields were

even further reduced relative to wild type, i.e., 19% and 6%, respectively (Figure 5B).

We again hypothesize that the main reason for such a steep drop in the yield is due to the impact

of incompatible IMLs post module replacement. Moreover, we know from our analysis that IMLs
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are not conserved across species and thus replacing modules across species would further increase

the level of IML incompatibility and would result in a more pronounced effect on the product yield.

Similar analysis was conducted on the findings of Bozhüyük et al. 2017 (Supplementary information

Retrospective analysis). These observations show that the compatibility of the IML with the entire

adjacent A-domain is critical to ensure a proper yield of the NRP product. These data support the

idea that module-specific IMLs are critical to the successful generation of NRPs.

2.5 Conclusion

Using our IML NRPS-Parser, we extracted more than 39k NRPS IMLs and analyzed their association

with their adjacent A domain substrates. This led to the discovery that IMLs are very specific to the A

domain modules that they connect, with more than 92% of the identified IMLs being associated with a

specific pair of modules. We also determined that the same IML could be involved in the biosynthesis

of different NRP products across various bacterial genera (Supplementary File 4). Overall, however,

IMLs that link a particular module pair show a low degree of conservation across bacterial genera.

We also determined that IMLs exhibit more secondary structures (α-helices) than IDLs, however,

they share similar hydrophobic profile. Furthermore, as a proof-of-concept, we retrospectively

analyzed the findings of (Nguyen et al., 2006) and (Bozhüyük et al., 2017) demonstrating that

IMLs incompatibility could dramatically impact biosynthetic yields of daptomycin lipopeptides and

ambactin analogues. Overall, our data indicate a strong relationship between NRPS IMLs and their

adjacent A domains. This finding suggests that, going forward, combinatorial biosynthesis strategies

to generate novel NRPs should consider IMLs in addition to other established parameters (Nguyen

et al., 2006; Coëffet-Le Gal et al., 2006; Baltz et al., 2006; Crüsemann et al., 2013; Calcott et al.,

2014; Meyer et al., 2016; Bozhüyük et al., 2017).

All 39,804 IMLs extracted in this study (Supplementary Table 2) as well as our parser are

publicly available at https://nrps-linker.unc.edu/. We anticipate this tool will not only facilitate

mining the data we have analyzed here, but will also enable interested researchers to expand their

studies as new genomes (bacterial, fungal, and plant) are obtained. Our study lays the foundation

for future experimental validations of our hypothesis that IMLs play a crucial role in governing the

biosynthesis of NRPs. We expect that additional approaches and tools could be developed that rely
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on this finding and facilitate the design of novel NRPS BGCs using the most appropriate IMLs for

combinatorial biosynthesis of novel NRPs.
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2.6 Supplementary

Figure S1: Inter-Modular Linker: The NRPS-Parser extracts linkers in the following pattern “A1-
linker-A2”. A1 and A2 refer to the activated substrates of the Adenylation domains from module 1
and module 2, respectively. The linker is the segment of amino acids linking these two successive
NRPSs modules.
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Figure S2: GC Context and IML length: (Left) Distribution of GC content across all species.
(Right) Distribution of linker lengths across all species.
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Figure S3: IMLs Hydrophobicity and Secondary Structure Profiles: (Left) On average linkers
were found to be composed of 44% neutral amino acids, 33% polar amino acids and 23% hydrophobic
amino acids. (Right) 49% of all secondary structures were α-helices, while strands and coils
comprised 22% and 29%, respectively.
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Figure S4: Linkers pairwise distribution: Based on sequence similarity (green), based on sequence
identity (blue) and based on gap ratio (red).
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Figure S5: IMLs Selectivity: (A) Clustering the 39,804 extracted IMLs using the cluster-fast
algorithm from UCLUST lead to 12,174 clusters. The removal of singletons resulted in 3,916 unique
IMLs centroids (clusters). Only 8% of all unique IMLs tend to bridge multiple pairs of modules,
while the remaining 92% link specifically just to a single pair of modules (B) An example of an IML,
extracted from Burkholderia pseudomallei 406e linking five distinct pairs of modules.
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Pairs of Modules Community size #BGCs #Unique BGCs

NRP ALA 135 134 10
ALA PHE 130 129 53
NRP NRP 124 241 78
PHE NRP 124 124 52
PHE THR 123 123 24
NRP THR 122 241 78
ALA ALA 122 121 21
THR ALA 90 93 31

Table S1: Mycobacterium Abscessus Module-Specific IMLs: Metadata of the community net-
work, showing the size of each community, number of unique and redundant BGCs from which the
IMLs were extracted.
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Figure S6: Burkholderia pseudomallei module-specific IMLs: Community network, where nodes
refer to linkers, and edges are constructed between two linkers, if they share 80% or more sequence
similarity. The graph depicts seventeen distinct communities. Each community represents all the
linkers that bind a specific pair of modules. For instance, the red community refers to all linkers that
bind the pair of modules that activate glycine and valine, respectively.

30



Figure S7: Phylogenetic conservation of module-specific IMLs within and across genera: (A)
Analysis of all pairwise sequence similarity comparisons of IMLs that link the same pair of modules
retrieved from the MIBiG NRP clusters. Only 10% of all comparisons showed sequence similarity of
over 80%. (B) Multiple sequence alignment of linkers of the same genus linking the pair of modules
(Val-Leu), showing high degree of conservation. (C) Multiple sequence alignment of linkers across
different genera linking the same pair of modules (Hpg-Hpg), showing a relatively high degree of
conservation. (D) Multiple sequence alignment of linkers of the same genus but different species
linking the pair of modules (Leu-Ser), showing low degree of conservation.
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Figure S8: Pairwise similarities of IMLs linking the same pair of modules: (A) Total pairwise
comparisons of linkers (5,827,650) that link the same module pairs retrieved from the 51,810 potential
NRP clusters. Only 24% of all comparisons showed sequence similarty of over 80%, while the
remaining 76% showed a lesser degree of conservation. (B) A sequence logo of 27 IMLs all linking
the same pair of module VAL-ASP, extracted from 3 distinct genera: Bacillus, Brevibacterium and
Jeotgalibacillus. (C) A sequence logo of 427 IMLs all linking the same pair of modules GLY-CYS,
extracted from 4 distinct genera: Citrobacter, Escherichia, Klebsiella and Enterobacter.
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Items Count

Bacterial genomes 39232
Unique Taxonomy-ids 31338
NRP BGCs 51810
Unique NRP BGCs (based on cluster-print) 7326
Inter-modular linker 38902
Unique Inter-modular linker 12905
Unique pairs of modules 398

Table S2: Data Summary: Overview of data analyzed in this study.
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Figure S9: Retrospective analysis of Ambactin analogues biosynthesis: (A) Ambactin BGC from
Xenorhabdus miraniensis. (B) NRPS organization of the Ambactin cluster and schematic showing
XU units exchange strategy. I) Phe-specific XU3 was exchanged against an Alaspecific XU from
the Kolossin NRPS BGC from Photorhabdus luminescens, resulted in no product. II) Phe-specific
XU3 against a Phe-specific XU from the GxpS NRPS, resulted in approximately 88% yield relative
to wild-type. III) Phe-specific XU3 and Lys-specific XU4 was exchanged against the two building
blocks XU3 and XU2 from GxpS, respectively. This resulted in approximately 57% yield relative to
wild-type.
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Figure S10: Our Dataset vs. MIBIG: (A) Venn diagram showing number of unique bacteria
involved in our study (31,338) as compared to number of unique bacteria biosynthesizing NRPs in
the MIBiG repository (243), with only 111 bacteria shared between them. (B) Venn diagram showing
number of unique NRP cluster-prints identified in this study (7,365) as compared to 266 from the
MIBiG repository, with only 132 NRP cluster-prints shared between them.
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CHAPTER 3

NRP Discovery Pipeline

3.1 Introduction

Non-ribosomal peptide synthetases (NRPSs) are large multienzyme machineries that assemble

numerous peptides with large structural and functional diversity. These peptides include more

than 20 marketed drugs, such as anti-bacterials (penicillin, vancomycin), antitumor compounds

(bleomycin), and immunosuppressants (cyclosporine) (Mootz et al., 2000; Keller and Schauwecker,

2003; Süssmuth and Mainz, 2017). Exploiting the modularity of these by reprogramming them ge-

netically, would immediately spur chances to generate analogues of existing drugs or new compound

libraries of otherwise nearly inaccessible compound structures (Nguyen et al., 2006; Coëffet-Le

Gal et al., 2006; Baltz et al., 2006). However, the number of combinatorial possibilities is vast and

extensive. As of early 2019, more than 500 monomers have been annotated and identified. For

instance, with the current number of identified monomers, the number of possible to be generated

peptides with an average length of 15 is ∼ 50015 NRPs (Caboche et al., 2007; Pupin et al., 2016). It

goes without saying that the process of determining the right peptide combination, is very expensive

and time-consuming as it requires a large amount of human overhead and expertise. Thus, with such

a big data and large chemical space, the need for computational approaches is inevitable. Here we

implemented “NRP Discovery Pipeline” a computational approach that leverages the importance of

inter-modular linkers (IMLs) in combinatorial biosynthesis of novel NRPs (Farag et al., 2019) and

uses machine learning techniques, to build rigorous and highly predictive classifiers, to help in the

early discovery of novel NRPs with anti-bacterial activity.



3.1.1 Pipeline Overview

A computational approach that help discovering and guiding rational design of novel NRP(s). The

pipeline entails five major phases:

1. NRP comprehensive combinatorial biosynthesis (CCB): A tool that helps virtual generation

of large libraries of NRPs.

2. NRP sequence-based predictor: A binary statistical model based only on peptide sequences

to filter out all inactive predicted peptides.

3. Pep2struc: A tool that helps converting peptide-sequences to their 2D structures.

4. NRP structure-based predictor: A binary statistical model based on peptide structures to

filter out all inactive predicted peptides.

5. NRPS Designer: A tool that helps re-programming of the bacterial genome to produce the

peptide of interest.
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3.2 Materials and Methods

3.2.1 NRP Comprehensive Combinatorial Biosynthesis (CCB)

3.2.1.1 Objective

Combinatorial biosynthesis of novel NRPs has been a longstanding goal in chemical biology. Farag

et al. (2019) reported and demonstrated a strong relationship between NRPS IMLs and their adjacent

A domains. This finding suggests that, going forward, combinatorial biosynthesis strategies to

generate novel NRPs should consider IMLs in addition to other established parameters (Nguyen

et al., 2006; Coëffet-Le Gal et al., 2006; Baltz et al., 2006; Crüsemann et al., 2013; Calcott et al.,

2014; Meyer et al., 2016; Bozhüyük et al., 2017). NRP-CCB is a tool that allows the generation of

large libraries of valid non-ribosomal peptides (NRPs). An NRP is considered valid, if and only if,

there is an existing IML for every pair of monomers within that generated peptide (Fig 3.1).

Figure 3.1: CCB-peptide validity: (A) A subset of valid IMLs from the IMLs database. (B) An
example of two virtually generated peptides, the first one would be considered valid (green) by the
CCB algorithm while the second one would be considered invalid (red) due to the lack of an IML
between serine and phenylalanine in the IMLs database.
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3.2.1.2 CCB algorithm

The theoretical number of possible sequence combinations is computed by nl, where n refers to the

number of unique monomers and l refers to the length of the sequence. Here we used a pre-compiled

list of monomers retrieved from the NORINE database (Caboche et al., 2007; Pupin et al., 2016). The

list comprised of 539 distinct monomers belonging to various chemical classes including natural &

unnatural amino acids, fatty acids and others. Moreover, our sequence generator constructs sequences

at different lengths ranging between 2 and 14 monomers. Thus theoretically, the generator could

create up to
∑14

i=2 539
i distinct peptides sequences, which is a monumental number of peptides.

However, this is not the case with CCB as it discards all invalid sequences automatically and retains

only the valid ones.

Algorithm 1: CCB Generates a finite set of virtual peptides
Input: A finite set P = {p1, p2, . . . , pn} of pairs, A finite set M = {m1,m2, . . . ,mn} of

monomers, an integer l for length of generated peptide, a boolean for replacement
and a boolean for genus

Output: A finite set of virtually generated peptides
1 allPeptides← getAllPeptides(replacement,M, l, genus)
2 putativePeptides← getPutativePeptides(allPeptides, P )
3 writePeptides(putativePeptides)
4 return putativePeptides

Algorithm 1 generates a finite set of virtual peptides.

Algorithm 2: GETPUTATIVEPEPTIDES retrieves a finite set of putative peptides
Input: A finite set allPeptides = {seq1, seq2, . . . , seqn} of all generated peptides, A finite

set P = {p1, p2, . . . , pn} of pairs
Output: A finite set of putative peptides

1 putativePeptides← ∅
2 foreach s ∈ allPeptides do
3 extractedPairs← pariwise(s)
4 if ∀extractedPairs ∈ P then
5 putativePeptides← putativePeptides+ s

6 return putativePeptides

Algorithm 2 retrieves a finite set of putative peptides, with all their pairs linked with valid IMLs.

39



3.2.1.3 CCB distinct runs

We ran four versions of the CCB algorithm, for every one of them, we generated peptides of distinct

peptide lengths ranging between two and fourteen monomers.

1. No replacement and No genus: No replacement: Here we ran the tool without allowing the

replacement of any of the available monomers during the combinatorial process. No Genus:

We considered all available pairs of modules across all genera.

2. No replacement and genus: No replacement: Here we ran the tool without allowing the

replacement of any of the available monomers during the combinatorial process. Genus: We

considered all available pairs of modules within just a specific genus.

3. Replacement and No genus: Replacement: Here we ran the tool while allowing the replace-

ment of any of the available monomers during the combinatorial process. No Genus: We

considered all available pairs of modules across all genera.

4. Replacement and genus: Replacement: Here we ran the tool without allowing the replace-

ment of any of the available monomers during the combinatorial process. Genus: We consid-

ered all available pairs of modules within just a specific genus.

Finally, we concatenate the outcome of all the runs into a single output data-frame that entails all

valid generated NRPs.

3.2.1.4 Code availability

The CCB algoritm source code is hosted in GitHub repository under https://github.com/SWFarag/CCB.

3.2.1.5 Notes

1. Installation: This script uses Python 3.7.x. If you don’t have Python, I would recommend

downloading it from [Anaconda](https://www.continuum.io/downloads).

Copy or clone this package from Github.

Open the Terminal/Command Line and navigate to where you copied the package:

cd path/to/copied/directory
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2. Linux and MacOS: Install the dependencies by entering:

pip install -r requirements.txt

3. Usage: To run from the command-line, just do:

python CCB.py

Example: Running tool with replacement and with a particular genus

python CCB.py -in path to/IML genus db.csv -o path to output/CCB/ -l 3 -r 1 -g Bacillus

To list all the parameters needed from the command-line, just do:

python CCB.py −−help

4. Questions and Comments: Feel free to direct any questions or comments to the Issues page

of the repository.

5. License: See the LICENSE.md file for license rights and limitations (MIT).
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3.2.2 Sequence Based Model

3.2.2.1 Objective

The NRP-CCB algorithm results in the generation of thousands and even millions of virtual peptides.

Hence, there is a need for a selection step, that help reducing the number of generated peptides to

be conveyed for further steps downstream the pipeline. Here, we propose a binary statistical model

based only on peptide sequences to filter out all inactive predicted peptides.

3.2.2.2 Modeling Strategy

Modeling is a multi-step approach, that starts with curating the original data set, preparing the training

set, generating descriptors and applying the right machine learning algorithm and finally validating

the built models. Figure 3.2. illustrates the complete statistical modeling work-flow (Tropsha, 2010).

Figure 3.2: Predictive statistical modeling workflow
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3.2.2.3 Data Set

• Training Set: The source is the NORINE NRPS database (Caboche et al., 2007; Pupin et al.,

2016). The database is compiled and annotated thanks to the collaborative effort between the

Bonsai bioinformatics research group of CRIStAL (Centre de Recherche en Informatique, Sig-

nal et Automatique de Lille, ex-LIFL (Laboratoire d’Informatique Fondamentale de Lille) and

Inria (Institut National de Recherche en Informatique et en Automatique) and the NRPS team

from the ProBioGem laboratory (Laboratoire des Procédés Biologiques Génie Enzymatique et

Microbien). It comprises of 1191 non-ribosomal peptides. Only 440 NRPs show antibiotic

activities, while the remaining 751 NRPs show other classes of activities such as anti-cancer,

immunomodulating, protease inhibitor and siderophore.

• Prediction Set: This is the set that would be used for virtual screening. The source of this set

is basically the outcome of the CCB algorithm (section 3.2.1.2).

3.2.2.4 End Point

Every statistical model must have a well defined end point prior model building. An end point is

the feature that the model is trying to predict. In this step we construct a binary classifier to predict

the class activity of the generated peptides. Precisely, we want to predict whether a peptide has

anti-bacterial activity or nor. The model is trained with peptides with known anti-bacterial activities

and the assumption here is that peptide sequences with similar motifs and sequence patterns would

show similar biological activity.

3.2.2.5 Data curation

Data curation is the process of cleaning and correcting the original data, generated by experimental

scientist, prior any modeling step. It may include correcting wrong annotations such as peptide

names associated with the wrong peptide sequences or a data set full of duplicates that if used as

is, will certainly bias the predictive power of the generated model. Last but not least making sure

that all peptides are assigned the right label (class activity). We successfully managed to curate our

training set and retain all 1191 peptide sequences.
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3.2.2.6 Descriptors

Data pre-processing Machine learning models take vectors (arrays of numbers) as input. Thus,

when working with text, the first thing we must do, is to come up with a strategy to convert strings

to numbers, in other words to “vectorize” the text, before feeding it to the model (Le and Mikolov,

2014). In our study, we used “Keras” python library (Chollet et al., 2015) to accomplish this step for

both our training set as well as the prediction set.

• Tokenization: This is a function that allows vectorization of a text corpus, by turning each text

snippet into a dense vector of integers. The integers in the dense vector refer to the index ids

of the corresponding word in the created corpus dictionary. For instance:

corpus size: 539

Example: iC7:0, Tyr, D-Ser, Phe, D-Leu ,Pro, Thr ,Gly

Tokenization: [206, 30, 13, 17, 11, 3, 8, 7]

• Padding: This is a function that ensures that all converted sequences share the same vector

length. The vector length of the converted sequences could be based either on a variable known

as max length which dictates the vector length for all converted sequence or by using the

length of the longest sequence in the data set. In case of using “max length” then sequences

with shorter lengths will be padded with zeros while sequences with longer sequences will be

truncated to the desired length. For instance, if we decided to use the max length approach

with max length = 50 then padding of the above mentioned example will result into the

following vector. max length = 50

Example: iC7:0, Tyr, D-Ser, Phe, D-Leu ,Pro, Thr ,Gly

Tokenization: [206, 30, 13, 17, 11, 3, 8, 7]

Padding: [206, 30, 13, 17, 11, 3, 8, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

3.2.2.7 Modeling approaches

Here, we discuss in details the needed steps towards building a predictive model and how to evaluate

it.
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• Training and test sets: Here we split our data-set randomly into 80% trainingset and 20% test

set. However, the splitting is conducted in a stratified manner, where we ensure that subgroups

(group1: actives, group2: inactives) of our original dataset are each adequately represented

within the training set and test set.

• Machine learning algorithms: Four different machine learning techniques have been applied

to develop our models, (a) Logistic Regression (LR) (Pang et al., 2017), (b) Support vector

machine (SVM) (Hearst et al., 1998) (c) Random forest (RF) (Breiman, 2001) and (d) Deep

neural network (DNN) (LeCun et al., 2015). For the first three we used the python scikit-learn

library (Pedregosa et al., 2011) to develop our models, while for the DNN one we used the

Keras python library with tensorflow backend (Chollet et al., 2015; Abadi et al., 2015, 2016).

• 5 folds cross-validation: This is the process were the training set is subjected to 5-folds

internal cross-validation procedure as detailed in (Tropsha, 2010). Basically, our modeling set

was partitioned into 5 subsets of similar size. Models were then independently developed such

that peptides in 4 of the 5 subsets were used as the modeling set and peptides in the remaining

subset were used as the evaluation set.

• Y-Randomization: This is the process of re-training the models, however, after we first shuffle

the y-labels. Basically, we randomly assign labels to our training set. The rationale behind

this step is to ensure the statistical significance of our originally trained model. At the end, we

compare the outcome of the original model with that of the Y-randomized one, if both models

reveals similar results, that is an indication, that the original model has failed in finding a true

statistical significant correlation between the data-points and their labels and that the outcome

is just based on mere chance. However, if the Y-randomized model resulted in a much worse

outcome compared to the original one, then that is a good sign of statistical significance.

• External validation: Here, we use our trained models to predict the outcome of a hidden test

set with known labels.
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3.2.2.8 Code availability

The sequence based model source code is hosted in GitHub repository under https://github.com/SWFarag/NRP-

structure-classifier.

3.2.2.9 Notes

1. Installation: This script uses Python 3.7.x. If you don’t have Python, I would recommend

downloading it from [Anaconda](https://www.continuum.io/downloads).

Copy or clone this package from Github.

Open the Terminal/Command Line and navigate to where you copied the package:

cd path/to/copied/directory

2. Linux and MacOS: Install the dependencies by entering:

pip install -r requirements.txt

3. Usage: To run conventional machine learning models from the command-line, just do:

python conventional models.py

Example: Running tool with model type=0 [Categorical model]

python deep learning models.py -in path to/sequences.csv -o path to output/ -mt 0

To run deep learning models from the command-line, just do:

python deep learning models.py

Example: Running tool with max length=50 and embedding length=32

python deep learning models.py -in path to/sequences.csv -o path to output/ -ml 50 -el 32

To list all the parameters needed from the command-line, just do:

python conventional models.py −−help python deep learning models.py −−help

4. Questions and Comments: Feel free to direct any questions or comments to the Issues page

of the repository.

5. License: See the LICENSE.md file for license rights and limitations (MIT).
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3.2.3 Pep2Struc

3.2.3.1 Objective

Pep2Struc tool that helps converting peptide-sequences to their 2D structures in the form of SMILES

which stands for ’Simplified Molecular Input Line Entry System’. SMILES is a specification in

form of a line notation for describing the structure of chemical molecules using short ASCII strings

(Weininger, 1988). The tool entails of five steps described as follows:

1. Compiling and curating monomers: The NORINE database (Weininger, 1988) hosts a

pre-compiled list of all possible monomers that are known to be involved in the synthesis of

non-ribosomal peptides (NRPs). The list comprises of 539 distinct monomers belonging to

distinct chemical classes including natural & unnatural amino acids and fatty acids. After

gathering our list of monomers, we iterate through all of them and made sure that they have

the correct smile annotations. Table 3.1 shows a subset of the compiled list demonstrating that

monomers includes not only natural amino acids but also unnatural ones such as the D-isoform

as well as β-substituent.

Table 3.1: A Subset of Monomers

Name Molecular Formula Smile Code Figure

Serine C3H7NO3 NC(CO)C(=O)O Ser

D-Serine C3H7NO3 NC(CO)C(=O)O D-Ser

Phenylserine C9H11NO3 NC(C(=O)O)C(O)c1ccccc1 Ph-Ser

2. Inter-chemical reactions: Here, we define and rank a list of possible and desired chemical

reactions to take place between any pair of monomers within a non-ribosomal peptide sequence.

For instance, since, the vast majority of our monomers are amino acids with few fatty acids,

hence a condensation reaction (Fig 3.3), is ranked first in our list followed by an esterification

reaction (Fig 3.4).
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Figure 3.3: Condensation reaction: A chemical reaction between alanine and phenylealanine amino
acids, that will result in the expulsion a of a water molecule and formation of a peptide bond (amide)

Figure 3.4: Esterification reaction: A chemical reaction between 7-methyloctanoic acid and alanine
amino acid, that will result in the expulsion a of a water molecule and formation of an ester bond.

In order to define a chemical reaction computationally, we used SMIRKS reaction language and

the RDKit python library (Editor RDKit, 2013). SMIRK is a Reaction Transform Language

(Editor Daylight, 2013) which is defined for generic reactions. It is a hybrid of SMILES

(Weininger, 1988) and SMARTS (Editor Daylight, 2012), in order to meet the dual needs for

a generic reaction: expression of a reaction graph and expression of indirect effects. It is a

restricted version of reaction SMARTS involving changes in atom-bond patterns. Here are the

rules for SMIRKS as stated by “Daylight Chemical Information System”:

• “The reactant and product sides of the transformation are required to have the same

numbers and types of mapped atoms and the atom maps must be pairwise. However,

non-mapped atoms may be added or deleted during a transformation”.

• “Stoichiometry is defined to be 1-1 for all atoms in the reactant and product for a

transformation. Hence, if non-unit stoichiometry is desired, reactants or products must

be repeated”.

• “Explicit hydrogens that are used on one side of a transformation must appear explicitly

on the other side of the transformation and must be mapped”.

• “Bond expressions must be valid SMILES (no bond queries allowed)”.
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• “Atomic expressions may be any valid atomic SMARTS expression for nodes where the

bonding (connectivity & bond order) doesn’t change. Otherwise, the atomic expressions

must be valid SMILES”.

3. Intra-chemical reactions: Oftentimes, linear peptides undergo a macro-cyclization step.

Thus, in order to integrate such a chemical step computationally, we defined and ranked a

list of possible and desired chemical reactions to take place within the structure of a single

molecule. Here, we used an edited version of the same SMIRKS reactions defined in 2. The

cyclization step could be classified into one of the following three categories:

• Head and tail cyclization: This is the case when the cyclization occurs between the last

monomer (tail) and the first one (head) and it is known to be the most common sort of

cyclization to occur. Figure 3.5 (A) shows an example of a head to tail cyclization.

• Partial cyclization: This is the case when the cyclization occurs between the last

monomer (tail) and any monomer but the first one. Figure 3.5 (B) shows an example of a

partial-cyclization.

• Double cyclization: This is the case when the cyclization occurs either between any two

monomers’ backbones or between a monomer backbone and a side chain. Figure 3.5 (C)

shows an example of a double-cyclization.
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Figure 3.5: Examples of NRPs with different cyclizations: (A) Tyrodicidin represents a head to
tail cyclization. (B) Daptomycin represents a partial cyclization. (C) Actinomycin represents a
double cyclization.
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4. Protection: Generally, when working with reaction informatics, it is difficult to express a

reaction exactly enough to not end up with extraneous products. Thus, atoms of a molecule,

that are not supposed to take place in a chemical reaction, should be masked and protected,

which in turn will help reducing the number of unwanted products. Fig 3.6 (A) illustrates

a condensation reaction between an acid and a base, where all their atoms are unprotected.

Meaning, the hyroxyl group from the acid could interact with either one of the two available

amines in the base molecule. That would eventually lead to the creation of two products instead

of one [a desired one and an undesired one]. Fig 3.6 (B) Shows the exact same condensation

reaction between an acid and a base, however this time the secondary amine group in the base

molecule is protected, which will lead to the creation of just a single product [desired one].

Figure 3.6: Protection: (A) A condensation reaction between an acid and a base, where all their
atoms are unprotected, leading to the creation of two products instead of one [a desired one and
an undesired one]. (B) A condensation reaction between an acid and a base, however this time the
secondary amine group in the base molecule is protected, which will then lead to the creation of just
a single product [desired one].

5. Execution rules: After we have defined our list of inter and intra chemical reactions, there is

a need to set some execution rules. Those rules must be respected while running the algorithm.

For instance, we need to specify which chemical reaction to be conducted first, the esterification

or condensation reaction? which functional groups should be protected throughout the reaction

and which should be kept unprotected?
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3.2.3.2 Pep2Struc algorithm

Here, we depict the chain of subroutines needed to successfully convert peptides sequences to their

2D structure.

Algorithm 3: PEP2STRUC Generates a finite set of smiles.
Input: A finite set P = {p1, p2, . . . , pn} of peptides, A dictionary

M2SmilesMap = {mo1,mo2, . . . ,mon} which maps monomers to their curated
smile string, A reaction type reaction type ∈ R = {linear, cyclic, partial cyclic}

Output: A finite set of generated smiles
1 convertedPeptides← {}
2 foreach p ∈ peptides do
3 new smiles← convertPeptide(p,M2Smiles, reaction type)
4 convertedPeptides← convertedPeptides+ new smiles

Algorithm 3 Generates a finite set of converted peptides as smiles.

Algorithm 4: CONVERTPEPTIDE converts a sequence of peptide into its 2D structure.
Input: A single peptide peptide, A dictionary M2SmilesMap = {mo1,mo2, . . . ,mon}

which maps monomers to their curated smile string, A reaction type
reaction type ∈ R = {linear, cyclic}

Output: A list of 2D structure(s) in the form of smile(s)
1 new smiles← {}
2 intermediate← {}
3 intermediate← intermediate+M2SmilesMap.get(p[0])
4 for i← 1 to p.length() do
5 reactant1← intermediate.getLastelement()
6 reactant2←M2SmilesMap.get(p[i])
7 new smiles← run Reaction(reactant1, reactant2, reaction type)

Algorithm 4 converts a sequence of peptide into its 2D structure in the form of a smile.

52



Algorithm 5: RUN REACTION

Input: A monomer smile reactant1, A monomer smile reactant2, A reaction type
reaction type ∈ R = {linear, cyclic}

Output: A list of 2D structure(s) in the form of smile(s)
1 if reaction type == linear then
2 reactant1 protected = protect atoms(reactant1)
3 reactant2 protected = protect atoms(reactant2)
4 find pattern(reactant1 protected)
5 find pattern(reactant2 protected)
6 linear Reaction(reactant1 protected, reactant2 protected)

7 else
8 reactant1 protected = protect atoms(reactant1)
9 reactant2 protected = protect atoms(reactant2)

10 find pattern(reactant1 protected)
11 find pattern(reactant2 protected)
12 cyclic Reaction(reactant1, reactant2)

Algorithm 6: PROTECT ATOMS

Input: A molecule molecule
Output: a molecules where all its atoms are protected.

1 foreach atom ∈ peptides.getAtoms() do
2 a.protect()

Algorithm 5 and 6 protect all atoms and run the chemical reaction.

Algorithm 7: FIND PATTERN

Input: A molecule molecule protected with all its atoms are protected, A SMART pattern
smart pattern

Output: a molecules where all its atoms are protected.
1 pattern matches← {}
2 pattern matches← molecule.matchpattern(smart pattern)
3 foreach match ∈ pattern matches do
4 foreach atom ∈ match do
5 a.unprotect()

Algorithm 7 search for structural patterns to unprotect and to render susceptible for reaction.
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Algorithm 8: LINEAR REACTION

Input: A monomer smile reactant1, A monomer smile reactant2, A reaction type
reaction type = linear

Output: A list of 2D structure(s) in the form of smile(s)
1 amide inter ← SMIRK RXN INTER 1
2 ester inter ← SMIRK RXN INTER 2
3 aromatic condensation inter ← SMIRK RXN INTER 3
4 amine inter ← SMIRK RXN INTER 4
5

6 product = amide inter(reactant1, reactant2)
7 if product not empty then
8 return product
9 product = ester inter(reactant1, reactant2)

10 if product not empty then
11 return product
12 product = aromatic condensation inter(reactant1, reactant2)
13 if product not empty then
14 return product
15 product = amine inter(reactant1, reactant2)
16 if product not empty then
17 return product
18 else
19 return “No reaction′′

Algorithm 9: CYCLIC REACTION

Input: A monomer smile reactant1, A monomer smile reactant2, A reaction type
reaction type = cyclic

Output: A list of 2D structure(s) in the form of smile(s)
1 amide intra← SMIRK RXN INTRA 1
2 ester intra← SMIRK RXN INTRA 2
3

4 product = amide intra(reactant1, reactant2)
5 if product not empty then
6 return product
7 product = ester intra(reactant1, reactant2)
8 if product not empty then
9 return product

10 else
11 return “No reaction′′

Algorithms 8 and 9 depict the two types of reactions namely, linear or cyclic.
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3.2.3.3 Pep2Struc VS CycloPs

CycloPs (Duffy et al., 2011) is a computational approach for generating virtual libraries of cyclized

and constrained peptides. At the first glance CycloPs seems to conduct the exact same functionality

as our Pep2struc tool. However, here are the main differences between the two:

• Unnatural amino acids: Cyclops can only handle natural amino acids and D-amino acids,

while our tool can deal with any sort of generic amino acids including the β-substituent amino

acids.

• Flexibility: Unlike CycloPs, Pep2struc shows more flexibility as it allows its users to upload a

list of newly defined monomers. This feature helps increasing the chemical diversity of the

generated peptides.

• Defined chemical reactions: CycloPs deals only with a single type of chemical reaction,

namely the condensation reaction, which takes place between two amino acids. CycloPs

undergos smile manipulation rather than defining a chemical reaction. Hence, it requires that

smiles of both reactants to be annotated in the exact same way. Moreover, even if it was

possible for CycloPs to upload a new monomer, and the uploaded monomer happened to be

differently annotated, then this would cause CycloPs to either throw an error or to create a

false and an undesired product as illustrated in (Fig 3.7 A). On the other hand, our tool, doesn’t

depend on how the smile of a monomer is annotated, as any annotation will work, as long as it

reflects the correct structure of the molecule. The reason behind that, is due the nature of our

algorithm, as it searches for a specific pattern to conduct a chemical reaction, regardless of

smile annotation rather than just conducting smile manipulation (Fig 3.7 B)

The limitations of Pep2struc tool:

• Updating chemical reactions list: New building blocks from natural products are being

constantly identified and some of them don’t even have amino acids characteristics, hence,

there is a need to regularly update our list of reactions to ensure an adequate chemical reaction

between the former as well as the newly added monomers.
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Figure 3.7: Pep2struc vs. CycloPs: (A) Two condensation reactions conducted by cyclop, using two
different smile annotations for the alanine molecule, that leads to the creation of two distinct products.
(B) Two condensation reactions conducted by Pep2struc, using two different smile annotations for
the alanine molecule, that leads to the creation of just a single product.

• Protection: This is a crucial step for our tool as if not conducted correctly, it would either lead

to some undesired extraneous products or even worse hinder the production of the right ones

(Fig 3.3)

3.2.3.4 Code availability

The Pep2struc source code is hosted in GitHub repository under https://github.com/SWFarag/pep2struc.
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3.2.3.5 Notes

1. Installation: This script uses Python 3.7.x. If you don’t have Python, I would recommend

downloading it from [Anaconda](https://www.continuum.io/downloads).

Copy or clone this package from Github.

Open the Terminal/Command Line and navigate to where you copied the package:

cd path/to/copied/directory

2. Linux and MacOS: Install the dependencies by entering:

pip install -r requirements.txt

3. Usage:

To run pep2struc from the command-line, just do:

python pep2struc.py

Example: Running tool with model type=0 [Categorical model]

ppython python pep2struc.py -in path to/sequences.csv -o path to output/ -t linear

To list all the parameters needed from the command-line, just do:

python pep2struc.py −−help

4. Questions and Comments: Feel free to direct any questions or comments to the Issues page

of the repository.

5. License: See the LICENSE.md file for license rights and limitations (MIT).
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3.2.4 Structure Based Model

3.2.4.1 Objective

The pep2struc tool will result in the conversion of thousands of peptide sequences into their 2D

structures. Hence, with so many virtually synthesized macrocycles there is still a need for an-

other aggressive triaging step. Therefore, we are developing a ’Quantitative Structure Activity

Relatinship’(QSAR) model (Tropsha, 2010; Cherkasov et al., 2014). This is another classifier, how-

ever, this time it is based on peptide 2D structures rather than just their sequences. The developed

models will help filtering out all inactive predicted macrocycles.

3.2.4.2 Modeling Strategy

Modeling is a multi-step approach, that starts with curating the original data set, preparing the

training set, generating descriptors and applying the right machine learning algorithm and finally

validating the built models. Figure 3.8 is a good illustration of predictive QSAR modeling work-flow

that focuses on delivering highly predictive and vigorously validated models. Ultimately, all potential

computational hits would be then confirmed by the experimental validation step (Tropsha, 2010).

Figure 3.8: Predictive QSAR modeling workflow.

58



3.2.4.3 Data Set

We used the same data source as in section 3.2.2.3, which is the 1191 NRPs (Caboche et al., 2007;

Pupin et al., 2016) from the NORINE database.

• Training Set: Since we are trying to build QSAR models, our training set should entail

peptides with known structures and well determined activities. In the original data-set only

440 NRPs show antibiotic activities while the remaining 751 NRPs don’t. However, only 180

and 380 NRPs out of the 440 and 751, have well annotated structures, respectively. This leaves

us with a training set of 560 NRPs.

• prediction Set: Our prediction set comprises of thousands of virtually synthesized peptide

structures which is basically the outcome of the pep2struc algorithm.

3.2.4.4 End Point

We used the same end point mentioned in section 3.2.2.4. The model is trained with NRPs with

known chemical structures and anti-bacterial activities. The hypothesis here is that NRPS with

similar chemical structure would show similar biological activity.

3.2.4.5 Data curation

Despite the importance and the necessity of data curation prior model development, there appear to

be no commonly accepted guidelines or set of procedures for chemical data curation. This was the

case till 2010 when Fourches, et al. published ’Trust, but verify: On the importance of chemical

structure curation in cheminformatics and QSAR modeling research’ (Fourches et al., 2010).

The paper emphasizes on the importance of data curation for molecular modeling and suggests the

very first standardized chemical data curation strategy.

Assuming the input data is a list of canoninical SMILES, data curation could be broken down

into two main steps: (a) Cleaning step, which includes removal of broken smiles, inorganics and

mixtures (Patterson et al., 2003). (b) Standardization and harmonization step, which involves

normalization of specific chemo-types, treatment of tautomeric forms and removal of duplicates

(Young et al., 2008). The last step of molecular curation entails manual inspection of every structure.
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Obviously, this step is very tedious and time consuming and hence, it is only recommended for

small data sets (Few hundreds compounds). These guidelines resonated well at the cheminfotmatics

community and thus it was adopted by some major chemininformatics software providers such

as ChemAxon (Editor ChemAxon, 2011), Molecular Operating environment (MOE) (Chemical

Computing group, 2010), and OpenBabel (O’Boyle et al., 2008). For more details, please refer to

(Fourches et al., 2010; Young et al., 2008).

Training Set curation: As previously stated prior any modeling step, the chemical structures of

the training set must undergo a curation step in order to prepare a QSAR-ready data set. After

applying the above mentioned procedure on our training set which comprises of 560 compounds, we

successfully managed to curate and retain all 560 compounds.

Prediction set curation: A chemical data curation step is not only required prior QSAR modeling

step but also prior any virtual screening step. Thus we applied the same procedure on our prediction

set which comprise of ∼39 thousand compounds.

3.2.4.6 Descriptors

A molecular descriptor is defined as the “final result of a logical and mathematical procedure, which

transforms chemical information encoded within a symbolic representation of a molecule into a

useful number or the result of some standardized experiment” (Todeschini and Consonni, 2000). In

this study we used multiple types of descriptors as listed below:

• Holistic chemical descriptors: Molecular descriptors (represented with explicit hydrogen

atoms) were computed for each compound using Dragon software (version 5.5) (Todeschini and

Consonni, 2000). Descriptors with low variance or missing values were removed. Furthermore,

if the squared correlation coefficient (R2) between values of two descriptors over the entire

data set exceeded 0.95, one of the descriptors was randomly removed. The final descriptor set

used in this study contained 316 descriptors ranged-scaled to the [0, 1] interval.

• Fingerprints descriptors: Fingerprint representations of molecular structure and properties

are a particularly complex form of descriptors. Fingerprints are typically encoded as binary

bit strings whose settings produce, in different ways, a bit “pattern” characteristic of a given

molecule (O’Boyle and Sayle, 2016). Fingerprints are designed to account for different sets of
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molecular descriptors, structural fragments, possible connectivity pathways through a molecule,

or different types of pharmacophores. Here we used the following fingerprints:

– Atom Pair Fingerprint: generates the atom-pair fingerprint for a molecule as an explicit

bit vector (Carhart et al., 1985; Awale and Reymond, 2014).

– Topological-torsion fingerprint: is generated by exhaustively enumerating all linear

fragments of a molecular graph up to a given size and then hashing these fragments into

a fixed-length bitvector (Nilakantan et al., 1987).

– MACCS Keys Fingerprint: MACCS keys are 166 bit structural key descriptors in

which each bit is associated with a SMARTS pattern. basically, The MACCS keys are a

set of questions about a chemical structure. Here are some of the questions: Are there

fewer than 3 oxygens? Is there a S-S bond? Is there a ring of size 4? Is there at least one

F, Cl, Br, or I present? The result of this is a list of binary values either true 1 or false 0.

This list of values for a given chemical structure is called the MACCS key fingerprint for

that structure. (Durant et al., 2002).

3.2.4.7 Modeling approaches

Here, we discuss in details the needed steps towards building a predictive QSAR model and how to

evaluate it.

• Training and test sets: Here we split our data-set randomly into 80% trainingset and 20% test

set. However, the splitting is conducted in a stratified manner, where we ensure that subgroups

(group1: actives, group2: inactives) of our original dataset are each adequately represented

within the training set and test set.

• Machine learning algorithms: Three different machine learning techniques have been ap-

plied to develop our models, (a) Logistic Regression, (b) SVM, and (c) Random forest. For

model development we used the python scikit-learn library.

• 5 folds cross-validation: This is the process were the training set is subjected to 5-folds

internal cross-validation procedure as detailed in (Tropsha, 2010). Basically, our modeling set

was partitioned into 5 subsets of similar size. Models were then independently developed such
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that peptides in 4 of the 5 subsets were used as the modeling set and peptides in the remaining

subset were used as the evaluation set.

• Y-Randomization: This is the process of re-training the models, however, after we first shuffle

the y-labels. Basically, we randomly assign labels to our training set. The rationale behind

this step is to ensure the statistical significance of our originally trained model. At the end, we

compare the outcome of the original model with that of the Y-randomized one, if both models

reveals similar results, that is an indication, that the original model has failed in finding a true

statistical significant correlation between the data-points and their labels and that the outcome

is just based on mere chance. However, if the Y-randomized model resulted in a much worse

outcome compared to the original one, then that is a good sign of statistical significance.

• External validation: Here, we use our trained models to predict the outcome of a hidden test

set with known labels.

3.2.4.8 Code availability

The structure based model source code is hosted in GitHub repository under https://github.com/SWFarag/NRP-

structure-classifier.

3.2.4.9 Notes

1. Installation: This script uses Python 3.7.x. If you don’t have Python, I would recommend

downloading it from [Anaconda](https://www.continuum.io/downloads).

Copy or clone this package from Github.

Open the Terminal/Command Line and navigate to where you copied the package:

cd path/to/copied/directory

2. Linux and MacOS: Install the dependencies by entering:

pip install -r requirements.txt

3. Usage: To run conventional machine learning models from the command-line, just do:

python sb models.py

Example: Running tool with model type=0 [Categorical model]
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ppython sb models.py -in path to/sequences.csv -o path to output/outputFolderName/ -mt 0

To list all the parameters needed from the command-line, just do:

python sb models.py −−help

4. Questions and Comments: Feel free to direct any questions or comments to the Issues page

of the repository.

5. License: See the LICENSE.md file for license rights and limitations (MIT).
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3.2.5 NRPS Designer

3.2.5.1 Objective

This tool is a NRP bio-synthetic gene cluster (BGC) editor. It has two main functionalities: (1) it

edits an existing NRPS-BGC, (2) it creates a whole new one from scratch. All edits are conducted at

the nucleotides level within the bacterial genome, which leads to a construct that will eventually be

cloned and transformed into a bacteria to produce the peptide of interest (Fig 3.9).

Figure 3.9: NRPS-designer: A scheme showing the role and impact of the NRPS-designer tool.

3.2.5.2 NRPS Designer algorithm

As mentioned above the algorithm works in two modes: (1) Template Based and (2) From Scratch.

The former refers to an algorithm that uses an existing NRPS-BGC as a template and undergo few

edits to it. For instance Figure 3.10 illustrates the use of tyrocidin BGC as a template and performs

couple of edits to its Tyc NRPS subunit. The edits involve exchanging two modules, namely module

five and module eight that activate aspargine and valine, respectively with two modules that activate

lysine and glycine, respectively. Since, we are dealing with a terminal module and a non-terminal

one, which will then cause the rise of three incompatible inter-modular linkers. Thus, we use the

IMLs database to provide us with the corresponding required IMLs to finish editing the template.
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The latter denotes to an algorithm that help building a novel NRPS BGC without the use of any

templates.

Figure 3.10: NRPS-designer template based: A scheme showing the usage of tyrocidin BGC as
a template and applying couple of edits to its Tyc NRPS enzyme, namely exchanging module 5
on TycC that activates alanine to a module that activate lysine. Moreover, exchanging module 8
which activates valine to a module that activates glycine. In addition to exchanging modules also the
corresponding inter-modular linkers are also add to the mix, denoted in red lines.

• NRPS Designer Template Based:

Algorithm 10: NRPS DESIGNER TEMPLATE Create an edited NRPS cluster.
Input: A template peptide sequence templateSeq, A edited peptide sequence editedSeq,

template peptide name templateName, species name speciesName
Output: An edited NRP BGC

1 if IsV alidSequence(editedSeq, speciesName) and IsActive(editedSeq) then
2 newModulesMap←

getNewModules(templateSeq, editedSeq, templatePeptideName, speciesName)

3 novel NRPS ← buildNovelNRPS(newModulesMap)
4 write NRPS FASTA(novel NRPS)
5 return novel NRPS
6 else
7 return “bad sequence′′
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• NRPS Designer From Scratch:

Algorithm 11: NRPS DESIGNER SCRATCH Create a novel NRPS cluster from scratch
Input: A edited peptide sequence editedSeq, species name speciesName
Output: A novel NRP BGC

1 if IsV alidSequence(editedSeq, speciesName) and IsActive(editedSeq) then
2 newModulesMap← getNewModules(editedSeq, speciesName)
3 novel NRPS ← buildNovelNRPS(newModulesMap)
4 write NRPS FASTA(novel NRPS)
5 return novel NRPS
6 else
7 return “bad sequence′′

Algorithm 12: BUILDNOVELNRPS concatenates a set of modules while including their
corresponding inter-modular linkers.

Input: A map of newModulesMap = {M1 : [linkerbefore, linkerafter],M2 :
[linkerbefore, linkerafter], . . . ,Mn : [linkerbefore, linkerafter]}

Output: A novel NRP BGC
1 novel NRPS cluster ← ∅
2 foreach key ∈ newModulesMap.keys() do
3 if not last key then
4 novel NRPS cluster ← key + newModulesMap.get(key)[1]

5 else
6 novel NRPS cluster ← key + newModulesMap.get(key)

7 return novel NRPS cluster

3.2.5.3 Code availability

The NRPS Designer source code is hosted in GitHub repository under https://github.com/SWFarag/NRPS-

designer.

3.2.5.4 Notes

1. Installation: This script uses Python 2.7.x. If you don’t have Python, I would recommend

downloading it from [Anaconda](https://www.continuum.io/downloads).

Copy or clone this package from Github.

Open the Terminal/Command Line and navigate to where you copied the package:

cd path/to/copied/directory
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2. Linux and MacOS: Install the dependencies by entering:

pip install -r requirements.txt

3. Usage: To run from the command-line, just do:

python wsgi.py

4. Questions and Comments: Feel free to direct any questions or comments to the Issues page

of the repository.

5. License: See the LICENSE.md file for license rights and limitations (MIT).
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3.3 Results

3.3.1 Model evaluation

3.3.1.1 Five fold cross validation(5-FCV)

Before discussing the result of the 5 fold cross validation mentioned in section 3.2.2.7, we first

need to define the measures we used to evaluate the performance of the generated models namely

Specificity, Sensitivity, Correct Classification Rate (CCR) and Receiver Operating Characteristic

Curve & Area Under the Curve (ROC-AUC). To calculate these metrics, we need first to define the

following four rates:

TP The true positive rate is the number of peptides with observed antibacterial activity, which are

correctly predicted peptides with antibacterial activity.

TN The true negative rate is the number of peptides with no observed antibacterial activity, which

are correctly predicted as peptides with no antibacterial activity.

FP The false positive rate is the number of peptides with no observed antibacterial activity, which

are incorrectly predicted as peptides with antibacterial activity.

FN The false negative rate is the number of peptides with observed antibacterial activity, which

are incorrectly predicted as peptides with no antibacterial activity.

Specificity The proportion of the number of correctly predicted inactive peptides to the number of

all inactive peptides and is formulated as follows:

Specificity =
TN

TN + FP
(3.1)

Sensitivity The proportion of the number of correctly predicted active peptides to the number of all

active peptides and is calculated as:

Sensitivity =
TP

TP + FN
(3.2)
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Correct Classification Rate (CCR) Also known as balanced accuracy, is defined as the number of

correctly predicted data point to the number of all predicted data points. The following equation

shows, how CCR is calculated

CCR =
Specificity + Sensitivity

2
(3.3)

ROC-AUC The ROC cure is the plot of the True Positive Rate (TPR) (on the y-axis) versus the

False Positive Rate (FPR) (on the x-axis) for every possible classification threshold. As a reminder,

the True Positive Rate answers the question, ”When the actual classification is positive (meaning

antibiotics), how often does the classifier predict positive?” The False Positive Rate answers the

question, ”When the actual classification is negative (meaning not antibiotics), how often does the

classifier incorrectly predict positive?” Both the TPR and the FPR range from 0 to 1.

Naturally, one can use the ROC curve to quantify the performance of a classifier, and assign it

a score. That is the purpose of AUC, which stands for Area Under the Curve. AUC is the definite

integral of the area that is under the ROC curve. The AUC score ranges between 0 (worst classifier)

to 1 (best classifier).

3.3.2 NRPS Comprehensive Combinatorial Biosynthesis (NRPS-CCB)

As demonstrated in section 3.2.1.3, we ran four versions of the CCB algorithm. At each run

we generated peptides of distinct lengths ranging between two and fourteen monomers. (1) The

No replacement and No genus resulted in 395985 peptides, (2) The No replacement and genus

resulted in 14545 peptides, (3) The Replacement and No genus resulted in 6215232 peptides, and

(1) The Replacement and genus resulted in 611507 peptides.

The concatenation of the outcomes across the four runs resulted in a single output dataframe that

entails 6006168 generated NRPs. Table 3.2 demonstrates a subset of the final output.

3.3.3 Sequence Based Model

3.3.3.1 Model evaluation

As mentioned in section 3.2.2.7, we built four binary classifiers using four distinct machine learning

algorithms: (a) DNN, (b) SVM, (c) RF and (d) LG. We evaluated the models based on two criteria:
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Peptides length Genus Replacement[
’aad’, ’cys’, ’gln’, ’glu’] 4 No Genus False[
’aad’, ’cys’, ’gln’, ’gly’] 4 No Genus False[
’gly’, ’pro’, ’thr’, ’val’] 4 Actinokineospora False[
’gly’, ’ser’, ’thr’, ’val’] 4 Actinokineospora False[
’aad’, ’cys’, ’cys’, ’cys’] 4 No Genus True[
’aad’, ’cys’, ’cys’, ’gln’] 4 No Genus True[
’asp’, ’asp’, ’phe’, ’val’] 4 Actinomadura True[
’asp’, ’asp’, ’thr’, ’thr’] 4 Actinomadura True

Table 3.2: A subset of the final outcome of the CCB algorithm: A subset demonstrating two
peptide examples from each of the four runs.

1. AUC levels: We have conducted a five fold cross validation on every algorithm except the

DNN model, hence we ended up with 5 distinct AUC scores (one for each fold) and additionally

computed the average AUC score. We found out that the RF based classifiers not only have

reached an average AUC level as high as 98% but also outperformed the other classifiers by a

margin of almost ∼17% as shown in Figure 3.11. Moreover, in order to ensure the statistical

significance of our models, we applied the y-randomized protocol as explained in section

3.2.4.7. This resulted in a steep drop in all AUC levels confirming a high level of statistical

significance to all our developed models. Figure 3.12 shows an example of the disparity in

AUC levels between a regular RF model and y-randomized one. To see the same effect on the

rest of our developed models, please refer to the Supplementary section (Figure S1 and Figure

S2).

2. Correct Classification Rate: Here, we used our classifiers to predict the labels of a hidden

test set. Across all four classifiers we were able to compute four distinct CCR scores. Figure

3.13 shows that the DNN classifier outperforms all others classifiers by reaching a CCR score

as high as 97%, followed by RF, LG and SVM with a CCR score of 94%, 72% and 67%,

respectively. Figure 3.14 illustrates the steady increase in the model accuracy on both the

training and validation sets versus the constant decline in classification error across both the

training and validation sets throughout the training of the DNN model.
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Figure 3.11: AUC performance: This is a model performance summary based on the AUC levels
achieved by three different classifiers, namely, Random Forest (RF), Support Vector Machine (SVM)
and Logistic Regression (LR)

(a) (b)

Figure 3.12: Regular vs. randomized: The AUC levels of the five fold cross validation in a regular
vs. a randomized random forest based models.

3.3.3.2 Virtual screening

After developing and validating our models, we applied them to screen our prediction set. Figure

3.15 illustrates the results of the virtual screening process using all our four models. It shows that the

deep learning models resulted in the highest number of hits where 2217622 out of 6006168 were
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Figure 3.13: CCR performance: This is a model performance summary based on the CCR levels
achieved by four different classifiers, namely, Deep Neural Network (DNN), Random Forest (RF),
Support Vector Machine (SVM), Logistic Regression (LR)

Figure 3.14: DNN Training and Validation: (Left) The training and validation accuracy of the
DNN model DNN model throughout all five epochs. (Right) The training and validation loss of the
DNN model throughout all five epochs.

predicted as actives while the remaining 3788546 compounds as inactives. On the other hand, for

the rest of the classifiers (RF, LG and SVM) the inactive class strongly dominated the prediction

outcome.
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Figure 3.15: Virtual screening of the Prediction set: 6006168 virtually generated peptides have
been screened against our four classifiers namely, DNN, RF, LG and SVM.

3.3.3.3 Reducing the number of hit list

Despite the fact that our models were capable to classify the vast majority of the peptides as inactives,

the volume of hits (potential antibiotics) that were predicted still lies in the range of millions as in

DNN: 2217622 or thousands as in RF: 11518, which would be a very large number to pass on to the

next step in the pipeline. Hence, in order to further reduce the number of potential hits we conducted

these two extra filtration steps.

1. We kept only the peptides that were predicted as active by our top two classifiers, namely DNN

and RF. This helped reducing the number of hits to just 16675 peptides.

2. We eliminated all peptides that contain the monomer “nrp”, which denotes to an inconclusive

monomer. This step resulted in a further reduction of our active hit list by almost a factor of

two, leading to a final hit list in size of 9000 peptides.
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3.3.4 Pep2Struc: Peptide to Structure

Here we fed our tool the 9000 predicted peptides from phase two to convert them into their 2D

structures. We ran pep2struc twice each with a different mode (linear & cyclic). The linear mode

resulted in 7274 linear peptides, while the cyclic version resulted into 30869 peptides. The fact

that the cyclic mode has led to almost 3.5 times more peptides than the original input, is mainly

due to the improper protection to some of the chemical functional groups while conducting the

reaction. This, of course, would lead sometimes to multiple products including the desired one. It

goes without saying that this is one of the main limitations of the current version of our tool, which

will be certainly addressed in future updates. However, at the time, this was not of a big concern

to us as eventually all converted peptides will be then pushed to phase four to be predicted by our

QSAR models and only those who retain positive activity (potential antiobiotics) will make it to the

last phase of our pipeline.

3.3.5 Structure Based Model

3.3.5.1 Model evaluation

As mentioned in section 3.2.4.7. We applied three distinct binary machine learning algorithms: (a)

RF, (b) LR, and (c) SVM . For each one of them we computed five descriptors (Section 3.2.4.6),

leading to a total of 12 different classifiers. Each one was evaluated based on two criteria:

1. AUC levels: For each classifier, we applied a five fold cross validation, which led to 6 distinct

AUC scores, one for each fold and their average AUC score as well. We found out that the

RF based classifiers not only has reached the highest score with an average AUC level of

96% and outperformed the other classifiers but it did that across all descriptors (Fig 3.16). As

elaborated earlier, in order to ensure the statistical significance of our models, we applied the

y-randomized protocol as explained in Section 3.2.4.7. This resulted in a steep drop in all AUC

levels as demonstrated in the Supplementary section (Fig S3, Fig S4, Fig S5, Fig S6, Fig S7

and Fig S7) confirming a high level of statistical significance to all our developed models.

2. Correct Classification Rate: Here, we used our classifier to predict the labels of a hidden test

set. Across all 12 classifiers we were able to compute twelve distinct CCR scores. Figure 3.17
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Figure 3.16: AUC performance: This is a model performance summary based on the AUC levels
achieved by twelve classifiers, namely, Random Forest (RF), Support Vector Machine (SVM) and
Logistic Regression (LR). For each machine learning algorithm four different descriptors were
computed: (1) Dragon, (2) Atom pair fingerprints, (3) Topological torsion fingerprints, (4) MACCS
keys fingerprints.

shows that the LR based models using atom pair fingerprints achieved the highest CCR score

of 91% outperforming both the RF (90%) and the SVM (70%) based models using the same

descriptor.

3.3.5.2 Virtual screening

After developing and validating our models, we applied them to screen our prediction set. Figure

3.19 illustrates the results of the virtual screening process using nine of our twelve models. It shows

that the LR based classifiers resulted in the highest number of hits where 19222 out of 30869 were

predicted as active while the remaining 11647 compounds as inactive. The remaining classifiers

RF, LR and SVM were also able to predict a large numbers of hits precisely 18108 and 18185,

respectively.
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Figure 3.17: CCR performance: This is a model performance summary based on the CCR levels
achieved by four different classifiers, namely, Deep Neural Network (DNN), Random Forest (RF),
Support Vector Machine (SVM), Logistic Regression (LR). For each machine learning algorithm
four different descriptors were computed: (1) Dragon, (2) Atom pair fingerprints, (3) Topological
torsion fingerprints, (4) MACCS keys fingerprints.

(a) (b)

Figure 3.18: Regular vs. randomized: The AUC levels of the five fold cross validation in a regular
vs. a randomized random forest based models.

3.3.5.3 Reducing the number of hit list

Despite the fact that our models were capable to classify the vast majority of the peptides as inactives,

the volume of hits (potential antibiotics) that were predicted still lies in the range of thousand, which
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Figure 3.19: Virtual screening of the Prediction set: 30869 peptides have been screened against
nine classifiers
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would be a very large number to pass on to the next phase of our pipeline. Hence, in order to further

reduce the number of potential hits we conducted these two extra filtration steps.

1. We kept only the peptides that were predicted as active by 7 of our 9 classifiers. This help

reducing the number of hits drastically to just 490 peptides.

2. A structural similarity search was conducted using RDkit fingerprints between the 490 pre-

dicted active compounds and 3 known families of antibiotics namely: Tyrocidin, Polymyxin

and Bacitracin. For each family we picked the peptide with the highest similarity as depicted

in Figures 3.20 to 3.25.

Three peptides show structure similarity of more that 85% towards a know family of antibiotics

namely Gramicidin (Editor Drug-bank, 2010). Finally, we choose only those 3 peptides to be passed

onto the final phase of our pipeline.

3.3.6 NRPS Designer

The three peptides that have reached this stage of the pipeline were then desgined using our NRPS-

designer tool and three NRPS-cluster constructs were generated in the form of a FASTA format

file.
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Figure 3.20: Candidate 1 (62%) Figure 3.21: Tyrocidin A

Figure 3.22: Candidate 2 (98%) Figure 3.23: Ile-Polymyxin B1

Figure 3.24: Candidate 3 (72%) Figure 3.25: Bacitracin A1
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3.4 Discussion

The NRP Discovery Pipeline is a collection of modules that will push forward early discovery of

novel NRPs. The pipeline comprises of 5 tools, each one of them could be used either individually

(standalone tool) or integrated into a pipeline.

CCB: Running the CCB algorithm resulted in 6006168 new peptides. This number is way below

the theoretical possible number of generated peptides. This is due to the hard condition we applied,

namely, we eliminated all peptides for which the pairs of monomers lacked a valid IML. Therefore,

the number of possibly generated peptides rely heavily on the size of our IML database. We are

certain that with more new species of bacteria and fungi being discovered and their genomes being

sequenced, our IMLs database will keep growing and so would the outcome of the CCB tool.

Sequenced based classifier: All our trained sequence based classifiers showed a relatively high

levels of AUCs when conducting a five fold cross validation (Fig 3.12, Supplementary Fig S1 and Fig

S2). However, when we validated our model using a validation test set only the deep neural network

and random forest models showed a relatively high CCR score, precisely 97% and 94%, respectively,

while LR and SVM models didn’t do better than 72%. The rationale behind the out-performance

of DNN and RF over LR and SVM is due to the non-linear nature of the first two algorithms and

their ability to learn complex nonlinear relationships between highly dimensional data. The disparity

between the aforementioned models, could also be seen when we applied them to conduct virtual

screening step. Figure 3.15 shows that only DNN and RF were able to predict both classes of activity,

while the LR and SVM returned predominantly inactive predictions.

Pep2struc: This tool helps converting simple non-ribosomal peptide sequences into their complex

2D structures. The tool can be used to build the structure of linear peptides as well as cyclic peptides.

For the latter, we had to make a choice between applying only the head-tail cyclization and thus

limiting the ability of our tool in creating other forms of cyclic peptides (partial cyclic and double

cyclic) or allowing all sorts of possible cyclizations. Therfore, in order to ensure that we can capture

all possible cyclic forms of a linear peptide, we decided to relax the protection step in a way that

enables all possible cyclization reactions. The drawback of such a measure, is that the number of

converted peptides will be doubled and sometimes even tripled as compared to the input data. When

80



we applied our tool in cyclic mode on the 9000 peptides, we therefore obtained 30869 peptides which

is almost ∼3.5 times more peptides than the original input data. This was anticipated and was not of

a big concern to us as eventually all converted peptides will be pushed to phase four to be predicted

by our QSAR models. Only those who retain positive activity (potential antiobiotics) will reach the

last phase of our pipeline.

NRPS designer: Here, a construct for the desired peptide will is built and exported as a FASTA

format file. In Section 3.2.5.2, we mentioned that there are two modes for the algorithm, a template

based mode and a from scratch mode. The former approach is more desired as it is more accurate

with no assumptions being made regarding the interactions between the distinct NRPS subunits and

it requires less edits to the template NRPS, leading to a more homogeneous construct. The latter, is

harder to achieve as few questions need to be answered prior building the construct: (1) The desired

peptides will be distributed across how many NRPS subunits? (2) If multiple subunits is considered,

then would all of share the same number of modules or it would differ from one NRPS subunit to

another? These questions are not intuitive to answer. Moreover, the poor understanding of how

NRPS subunit interact with each other makes it even harder to predict their effect on synthesizing the

desired peptide.

3.5 Conclusion

In this study we introduced NRP Discovery Pipeline, which is a cluster of bioinformatics and

cheminformatics tools that will help facilitating early discovery of novel NRPs. Our pipeline

comprises of five modules that will be involved in generating virtual libraries of NRPs, converting

peptide sequences into their 2D structures, developing highly predictive models to predict anti-

bacterial activity of generated peptides and finally editing and designing novel NRP BGCs at the

molecular level. Running our pipeline resulted in 28 novel NRPs, from which we designed 3 peptides

to be validated experimentally. We are certain that our pipeline would help pushing forward the early

discovery of novel NRPs.
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3.6 Supplementary

(a) (b)

(c)

Figure S1: Sequence based model - Logistic regression: (a) The AUC levels of the five fold cross
validation in a regular model. (b) The AUC levels of the five fold cross validation in a randomized
model. (c) Correct classification rate of test set
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(a) (b)

(c)

Figure S2: Sequence based model - Support vector machine: (a) The AUC levels of the five
fold cross validation in a regular model. (b) The AUC levels of the five fold cross validation in a
randomized model. (c) Correct classification rate of test set
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(a) (b)

(c) (d)

(e) (f)

Figure S3: Structure based models with Atom pair fingerprint: The AUC levels of the five fold
cross validation in a regular model vs a randomized model across three machine learning algorithms:
logistic regression, random forest and support vector machine.
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(a) (b)

(c) (d)

(e) (f)

Figure S4: Structure based models with Topological torsion fingerprint: The AUC levels of the
five fold cross validation in a regular model vs a randomized model across three machine learning
algorithms: logistic regression, random forest and support vector machine.
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(a) (b)

(c) (d)

(e) (f)

Figure S5: Structure based models with Morgan circular fingerprint: The AUC levels of the
five fold cross validation in a regular model vs a randomized model across three machine learning
algorithms: logistic regression, random forest and support vector machine.
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(a) (b)

(c) (d)

(e) (f)

Figure S6: Structure based models with RDKit fingerprint: The AUC levels of the five fold cross
validation in a regular model vs a randomized model across three machine learning algorithms:
logistic regression, random forest and support vector machine.
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(a) (b)

(c) (d)

(e) (f)

Figure S7: Structure based models with RDKit MACCSkeys: The AUC levels of the five fold
cross validation in a regular model vs a randomized model across three machine learning algorithms:
logistic regression, random forest and support vector machine.
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(a) (b)

(c) (d)

(e) (f)

Figure S8: Structure based models with Dragon descriptors: The AUC levels of the five fold
cross validation in a regular model vs a randomized model across three machine learning algorithms:
logistic regression, random forest and support vector machine.
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CHAPTER 4

Conclusion and Future Directions

Using our IML-Parser, we extracted more than 39k NRPS IMLs and analyzed their association

with their adjacent A domain substrates. This led to the discovery that IMLs are very specific to the

A domain modules that they connect, with more than 92% of the identified IMLs being associated

with a specific pair of modules. We also determined that the same IML could be involved in the

biosynthesis of different NRP products across various bacterial genera. Overall, however, IMLs that

link a particular module pair show a low degree of conservation across bacterial genera. We also

determined that IMLs exhibit more secondary structures (α-helices) than IDLs, however, they share

similar hydrophobic profile. Furthermore, as a proof-of-concept, we retrospectively analyzed the

findings of Nguyen et al. (2006) and Bozhüyük et al. (2017) demonstrating that IMLs incompatibility

could dramatically impact biosynthetic yields of daptomycin lipopeptides and ambactin analogues.

Overall, our data indicate a strong relationship between NRPS IMLs and their adjacent A domains.

This finding suggests that, going forward, combinatorial biosynthesis strategies to generate novel

NRPs should consider IMLs in addition to other established parameters (Nguyen et al., 2006; Coëffet-

Le Gal et al., 2006; Baltz et al., 2006; Crüsemann et al., 2013; Calcott et al., 2014; Meyer et al.,

2016; Bozhüyük et al., 2017).

Furthermore, we have introduced NRP Discovery Pipeline, which is a set of bioinformatics

and cheminformatics tools that will help facilitating early discovery of novel NRPs. Our pipeline

comprises of five modules: (1) NRP comprehensive combinatorial biosynthesis (CCB): A tool that

helps generating virtual libraries of NRPs. (2) NRP sequence-based predictor: A classifier based only

on peptide sequences to help triaging all peptides with no anti-bacterial activity. (3) Pep2struc: A

tool that helps converting peptide-sequences to their 2D structures form both linear and constrained

peptides. (4) NRP structure-based predictor: A second classifier based on peptide structures to



filter out all inactive predicted peptides. (5) NRPS Designer: A tool that help re-programming of

the bacterial genome by editing its NRP BGC to synthesize the peptide of interest. Running our

pipeline resulted in 28 novel putative NRPs, from which we designed 3 peptides to be validated

experimentally.

All 39,804 IMLs extracted in this study (Supplementary Table 2) as well as our parser are publicly

available at https://nrps-linker.unc.edu/. Moreover, all source code for the NRP Discovery Pipeline is

hosted in GitHub repository under https://github.com/SWFarag/CCB, https://github.com/SWFarag/NRP-

structure-classifier, https://github.com/SWFarag/pep2struc, https://github.com/SWFarag/NRP-structure-

classifier,https://github.com/SWFarag/NRPS-designer.

We anticipate that both the NRPS-Linker tool and the NRP Discovery Pipeline will not only

facilitate mining the data we have analyzed here, but will also enable interested researchers to expand

their studies as new genomes are obtained. Our study lays the foundation for future experimental

validations of our hypothesis that IMLs play a crucial role in governing the biosynthesis of NRPs. We

expect that additional approaches and tools could be developed that rely on this finding and facilitate

the design of novel NRPS BGCs using the most appropriate IMLs for combinatorial biosynthesis of

novel NRPs.

Future directions of this work should include exploring more data and expanding our IMLs

database by scanning more novel yet unidentified NRPs from not only bacteria but also fungi and

marine microbiomes. Additionally, we want to expand our database by including all known NRP

domains and their linkers across all species. With such a large scale database, we would be able to

conduct a comprehensive sequence analysis that indeed would help us gain more insights about the

nature and evolution of these domains and will help us unravel the true relation between them and

their adjacent linkers. Finally, a major step forward would be the development of the NRP Discovery

Hub 1.0, which is a web-accessible platform that will eventually integrate all our tools and databases

to facilitates early discovery of novel NRPs.

Unfortunately, Many important bioinformatics tool are yet not suitable to handle NRPs. This

is mainly due the fact that most of the widely used bioinformatics tools such as Pairwise sequence

alignment (PSA), Multiple sequence alignment (MSA), Basic Local Alignment Search Tool (BLAST),

Sequence Logo and many others are built specifically for peptides that are made only of the 20 natural

amino acids. Thus, in order to leverage their importance in the field of combinatorial biosynthesis
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of novel NRPs, there is a need to tweak and re-adjust most of these algorithms to enable them to

work with NRPs. The same problem could be extended to cheminformatics, where most of its

descriptor generator software are optimized to deal with either small molecules < 500mw(Da) or

large molecules > 10000mw(Da) but not medium size molecules as in case of macro-cycles with a

molecular weight ranging between > 500 and < 10000 (Da). Thus, there is a need to engineer a

set of new descriptors that are tailored specifically to describe constrained peptides (macro-cycles).

Doing such not only will help building precise QSAR models with more predictive power but it will

indeed help the scientific community to push the process of early discovery of novel NRPs forward.
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