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ABSTRACT 

Mitchell M. Conover: Methods for Classifying Patient Histories in Secondary Healthcare 
Data 

(Under the direction of Michele Jonsson Funk)  
 

 
 In clinical safety and effectiveness research using secondary health databases, 

patient medical histories are typically assessed using fixed look-back approaches. 

Conventional applications of these approaches exclude patients who are not continuously 

enrolled in the database for the entire look-back period (e.g. one year), and data occurring 

outside this period is ignored. An alternate approach has been suggested which assesses 

all of the available data history, though concerns exist that results may be biased by 

systematic variation in the amount of available database across important study groups. 

We used applied analyses as well as plasmode simulation methods to explore the 

application of short (1-year) and long (3-year) fixed look-backs and all-available data 

approaches in analyses of Medicare fee-for-service (FFS) claims data. We assessed the 

bias and efficiency of effect estimates when we used the different look-backs to 1) assess 

cohort eligibility and to 2) identify and adjust for confounders. In the applied analysis, we 

evaluated the effect of statin initiation (vs. non-use) on incidence of 1) cancer within six 

months (a negative control outcome we expected a priori to be null) and 2) all-cause 

mortality within two years. In the plasmode simulation, exposures (conceptually: statin 

initiation vs. non-initiation) and outcomes (conceptually: inpatient hospitalization) were 

simulated as a function of self-reported interview data obtained from the Medicare Current 

Beneficiary Survey (MCBS, which represented the true underlying confounder of exposure-

outcome associations. We evaluated estimates after applying different look-back 

approaches in the linked claims data. 
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 Compared to short fixed look-back approaches, all-available approaches selected 

cohorts with superior classification and produced less biased estimates. Compared to long 

fixed look-back approaches, all-available approaches selected more inclusive cohorts and 

produced more precise estimates. Though these studies were conducted in a fairly narrow 

(applied) setting, our findings provide real-world evidence that using all-available look-backs 

to classify patient histories is superior to fixed look-back approaches. Our findings provide 

context to investigators seeking to understand the mechanisms through which the different 

look-backs may produce different estimates. 
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CHAPTER 1 
 

STATEMENT OF SPECIFIC AIMS 
 
 

 Clinical research has increasingly relied on secondary health data to evaluate 

medical therapies; however to ensure comparable accuracy of information for all subjects, 

current best practices require investigators to ignore a large portion of information available 

in these rich data sources.1 In order to obtain relevant medical information on study 

subjects, longitudinal studies are routinely restricted to subjects continuously observed 

within the database for some uniform time period before exposure. The result is that 

potentially informative data occurring before this time period are typically discarded.2 For 

many variables (e.g. clinical conditions, medication use, and procedures), absence of data 

within this period is typically interpreted as the variable itself being absent (as opposed to it 

being present but unobserved/missing), even if the information is available in the discarded 

historical data.3,4 This may be a dubious assumption in the setting of electronic health 

records or administrative claims, where clinical conditions and services are only observed 

within specific contexts (e.g. care occurring within a certain facility or care billed to a certain 

payer).5,6  

An alternate approach has been suggested which considers all available database 

history, regardless of whether that history is available for all patients.4,7 Existing literature 

has demonstrated that both differential and non-differential misclassification of study 

confounders can bias effect estimates away from the null8 and can produce spurious 

heterogeneity of effects across levels of the confounder.9,10 There are many relevant 

research questions where investigators may expect the completeness and longitudinal 

breadth of available data to vary systematically between comparator groups (e.g. comparing 
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a new-to-market therapy to an established therapy or comparing users to non-users), 

threatening the validity of effect estimates obtained using all-available data approaches. 

While the information captured in secondary health databases does often vary between 

subjects, they have a number of key advantages that make them useful for clinical research: 

they allow large-sample studies, data can be obtained at (relatively) low-costs, and they are 

considered more representative of patients in routine clinical care than randomized 

controlled trials.11 

Despite the widespread use of methods that clearly favor the principal of 

comparative information-accuracy, methodologists have debated its importance relative to 

other threats to validity, such as covariate misclassification, which may be reduced by using 

all of the available data.4,7,12,13 Only one published study has evaluated use of all-available 

look-backs in real-world data.14 It was not designed to evaluate bias and only compared to 

short fixed look-backs (≤ one year). To date, no research has been published exploring the 

use of all-available look-backs to define study eligibility criteria. Given the mounting 

availability of secondary health data which contains rich but heterogeneous information on 

large patient populations, research exploring how study subjects can be more accurately 

characterized using all available information is clearly needed and could inform 

observational clinical research across a wide range of disciplines. 

Using Medicare Part A, B, and D administrative claims data, the Medicare Current 

Beneficiary Survey (MCBS), and hybrid simulation methods, we used all-available and fixed 

look-back approaches to evaluate the relative effect of statin initiation (vs. non-use) on 

short-term (6-month) incidence of cancer and 2-year all-cause mortality. These specific aims 

were intended to evaluate whether using all-available look-back methods to assess study 

covariates and eligibility criteria can be used to more accurately characterize study 

covariates and eligibility criteria and obtain less biased effect estimates compared to 
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conventional (fixed look-back) methods, in time-to-event cohort studies based on secondary 

health data. 

 

Aim 1: Evaluate different look-back approaches to classify subjects in cohort studies 

using secondary health data. Approach: We identified a cohort of statin users and 

non-users at elevated cardiovascular risk using Medicare FFS administrative claims 

data and used fixed, all-available, and missing-data look-backs to evaluate patient 

histories. We compared the different look-back approaches in terms of the impact on 

bias and efficiency of hazard ratio estimates. We evaluated the effect of statin 

initiation (vs. non-use) on 6-month incidence of any cancer among older adults, a 

negative control outcome we expected a priori to be null. In a parallel analysis, we 

also evaluated the anticipated protective effect of statin initiation on secondary 

prevention of 2-year all-cause mortality, using two meta-analyses as alloyed gold 

standards.15,16  

 

Aim 2: Compare performance of alternative look-back approaches for identifying 

covariates and exclusion criteria in a semi-simulated cohort study where the 

effect of interest is known. Approach: We conducted a plasmode simulation study 

in which we simulated exposures and outcomes as a function of real covariate data 

sampled from MCBS and linked Medicare Part A, B, and D claims.17,18 We layered 

these two data sources on top of one another to reflect the structure/content of 

observable secondary data (claims) that is driven by the theoretically unobservable 

“true” disease states that underlie them (MCBS). We then determined the true bias 

based on the simulated relationship between exposure and outcome. We estimated 

rate ratios, and rate differences before and after adjustment using standardized 

morbidity ratio weighting.19 To explore factors that have the greatest impact on bias 
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and precision, we varied simulation parameters and assumptions in a range of 

scenarios. 

 

This research addresses an important gap in our understanding of widely used 

observational clinical research methods and seeks to maximize the utility of the wealth of 

secondary health data becoming available to investigators. Using the outlined approach, we 

developed and empirically tested novel look-back methods using real-world data. This 

allowed us to capture the nuances and complex interrelatedness of secondary health data, 

which may influence the performance of different look-back approaches. The findings of this 

study seek to inform better practices in clinical research and improve our ability to obtain 

less biased estimates using secondary health data. The data used to conduct clinical 

research are constantly evolving. This study represents an effort to provide investigators 

using secondary health data with needed information on how these data can be leveraged 

to obtain valid and precise answers to causal questions.
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CHAPTER 2 
 

BACKGROUND AND LITERATURE REVIEW 
 
  
2.1 Secondary healthcare databases and clinical research 

Ideally, the benefit and adverse event profiles of drugs, therapies, and devices can 

be evaluated using experimental designs (i.e. randomized controlled trials [RCTs]). 

However, observational research has proven to be an important source of information in a 

variety of cases where experimental data is not available or difficult to obtain. In any design, 

results may be biased by imbalance in confounding variables, which are associated with 

both the exposure and the outcome. While RCTs are able to control for the influence of 

confounding variables experimentally (e.g. by randomly assigning exposures), observational 

studies control for confounding using statistical adjustment.20  

 In the past few decades, there has been a marked increase in the collection, 

aggregation, and availability of secondary healthcare data, or data collected for non-

research purposes during the routine delivery of care (e.g. administrative billing claims, 

electronic health records data [EHR]).1,21 Increasing comprehensiveness and quality of 

secondary healthcare data is facilitated by technological advances and incentivized by 

multiple factors (e.g. increased patient interaction with EHR or claims-based evaluation of 

quality-of-care). In particular, administrative claims data have been shown to be a valid 

source of information to study a range of conditions and improving integrity of the data over 

time will likely expand their reach.3  

Secondary healthcare databases are being increasingly used to conduct clinical 

research, evaluating the safety and effectiveness of drugs, procedures, and devices.11,21-24 

While RCTs are usually preferable to observational studies using secondary healthcare 
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data, databases studies have a number of important advantages, including: 1) their large 

sample size, enabling evaluation of rare outcomes; 2) their ability to reflect real-world clinical 

practice; 3) the relatively low-cost of data acquisition; 4) the relatively short period of time 

required to plan, conduct, and complete analyses; 5) the ability to conduct long-term follow-

up; and 6) the increased representativeness of patient populations compared to trials.11,21-24 

Furthermore, while actively comparing products and services against existing alternatives on 

the market is useful to inform clinical decision-making, RCTs frequently conduct 

comparisons against non-treatment or placebos. Due to the relative ease of implementation, 

database studies are often used to conduct active (head-to-head) comparisons not 

addressed in the RCT literature.  

 However a number of challenges still face those seeking to conduct high quality 

clinical research using secondary healthcare databases. First, different databases 

comprised of the same type of data may vary substantially in the quality and completeness 

of the captured data, resulting in a varying ability to adequately control for confounding 

covariates. Research has demonstrated that nearly identical studies conducted in different 

secondary healthcare databases may reach different conclusions.25 Second, the strength of 

secondary data sources is greatest when research interests align with the original motivation 

of data collection. For example, administrative claims are an excellent source of information 

on medical therapies and drug exposures (i.e. the items being billed) but are less reliable for 

information on diagnoses, especially those that aren’t relevant to the billing of clinical 

care.21,26 In most cases, diagnoses are recorded in administrative claims with high specificity 

but low sensitivity.10 Finally, compared to studies based on other data sources, secondary 

healthcare database studies typically consider a wider range of covariates.11 This can make 

proper model specification complicated, especially in analyses with rare outcomes.27 This 

has led to increasing use of summary confounding measures such as exposure propensity 

scores and disease risk scores.11 
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2.2 New-user designs and look-back periods 

A number of unique methods have been developed for observational studies seeking 

to evaluate the comparative effectiveness of medical products and services. Under the new-

user design, which was popularized by Ray in 2003 and has since become the primary 

method for conducting comparative analyses using secondary healthcare data, medical 

treatment groups being compared can only be comprised of new initiators of the medication, 

since the inclusion of prevalent users has been shown to bias effect estimates.28 One of the 

key advantages of the new-user design is that information on potentially confounding 

covariates is assessed only before initiation. Doing so allows delineation of the temporal 

relationship between confounders, exposures, and outcome, preventing investigators from 

adjusting for intermediates between exposure and outcome, which is known to bias 

estimates.29  

 As a general principal, causal research seeks to standardize measurement and 

ascertainment of study variables as much as possible.30 For example, RCTs blind subjects 

and study personnel to exposures to ensure uniform ascertainment of cases and medical 

history across the exposure groups. Typically, secondary healthcare database studies 

evaluate information about relevant covariates in the period preceding exposure using fixed 

look-back periods.  The study population is restricted to subjects who are continuously 

enrolled in the database for the entire the look-back period and any data preceding the look-

back is ignored. For many important study covariates (e.g. prior diagnoses, procedures, 

drug exposures) absence of affirmative data (e.g. a claim or a diagnosis recorded in the 

EHR) during the look-back is interpreted as the covariate being absent, despite the 

possibility that the covariate is present but not recorded (missing). A schematic depicting a 

simple cohort analysis for a secondary healthcare database study is displayed in Figure 2.1. 

 Multiple studies have investigated the use of look-backs with varying lengths to 

characterize patient histories. Data-driven methods for selecting the look-back period have 
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been explored, however the vast majority of secondary database analyses opt for a look-

back of six months, one year, or two years.31,32 Most investigations of look-back periods 

focus on the look-backs function in identifying prevalent use of exposures, as opposed to 

the classification of covariates.33-35 A recent study evaluated the impact that the length of the 

fixed look-back period had on classification of subjects as new vs. prevalent users of 

antibiotics and asthma medications.riis33 They demonstrated that using short look-backs 

resulted in severe exposure misclassification. However, the continuous enrollment 

requirement imposed to observe long fixed look-backs results in highly restricted study 

populations which has the potential to limit the generalizability of findings.36  

 Some studies have taken the approach of using all available information to classify 

study covariates.37,38 While this has the benefit of improved classification of covariates and 

exposure, the primary concern is that systematic variations in the likelihood of 

misclassification will bias results (a detailed consideration of the misclassification literature 

relating to this issue is included below). However, a recent simulation study conducted by 

Brunelli et al found that using an all-available look-back approach to classify and adjust for a 

study confounder led to better control of confounding in all scenarios.4 While this finding was 

robust to the presence of unmeasured confounding, the results of simulation studies must 

be interpreted with caution, since only a subset of feasible scenarios can be considered. 

Recent work by Nakasian, Rassen & Franklin compared adjusted hazard ratios produced by 

different look-back approaches applied to studies of five different exposure-outcome pairs, 

conducted within a commercial insurance claims database (Optum/United).14 They used all-

available and short fixed look-backs (180 or 365 days) to ascertain and adjust for 

confounders. This study did not estimate the bias in estimates produced by the different 

approaches since it was conducted in an applied setting where the truth was not known. 

Neither Brunelli et al nor Nakasia, Rassan & Franklin considered the role of all-available 

look-backs in defining study eligibility criteria. 
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2.3 Covariate misclassification 

Early literature on misclassification in epidemiologic studies focuses on 

misclassification of an exposure or an outcome. However, unexpectedly large effect 

estimates reported by a number of observational studies in the late 70’s and early 80’s 

raised concern that misclassification of important study confounders may also be an 

important source of bias.39-46 A common theme across these studies was that they all sought 

to evaluate what were expected to be moderate (or null) effects, in the presence of a strong 

but likely misclassified confounding variable (e.g. the effect of coffee drinking on bladder 

cancer confounded by smoking status measured by survey self-report42). Early work 

explored the potential for confounding due to misclassification of disease severity9,47, 

disease stage48, smoking status49, and race50. 

Before proceeding, a basic overview of some ambiguous terminology used in the 

misclassification literature is necessary. Misclassification refers to the presence of error in 

the measurement/assignment of exposures, outcomes, or covariates. Misclassification can 

be further categorized as either differential or non-differential as well as independent or 

dependent. Differential misclassification occurs when measurement error in one variable is 

correlated with the true value of another study variable. Dependent misclassification occurs 

when measurement error in one study variable is correlated with measurement error in 

another study variable. While truly independent and non-differential misclassification implies 

separation from all other study variables, these terms are frequently used to describe 

separation between two variables at a time (e.g. exposure misclassification relative to the 

outcome) or a subset of study variables (e.g. covariate misclassification relative to the 

exposure and the outcome). Notably, interpretations vary between literature describing 

misclassification of outcomes and exposures versus covariates.9,51,52 In this proposal, use of 

the terms non-differential and independent misclassification will refer to complete separation 

from all other study variables, except where explicitly noted.  
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 Misclassification has been represented visually using directed acyclic graphs 

(DAGs).53-57 While DAGs cannot fully capture the complex influence of misclassification on 

causal effect estimates, they can provide some intuition about the effects of adjusting for 

imperfectly measured proxies of confounders. Following a framework proposed by Hernan & 

Cole53 to represent exposure and outcome misclassification, Appendix 2.1 presents DAGs 

demonstrating non-differential, differential, independent, and dependent misclassification of 

a study confounder (Panels A-I). Though they do so imperfectly, these DAGs also seek to 

demonstrate the effects of adjustment under each misclassification scenario. 

2.3.1 Non-differential and independent misclassification of a dichotomous covariate 

A formal interest in evaluating the theory behind covariate misclassification began 

after the publication of Greenland’s seminal work on non-differential confounding of 

dichotomous study covariates.8 Using 2x2 tables, Greenland demonstrated how, unlike non-

differential exposure and outcome misclassification, which in most cases conservatively 

biases estimates towards the null, non-differential covariate misclassification can bias 

estimates in any direction. 7  As a result, covariate misclassification is generally more likely 

than exposure or outcome misclassification to lead to a Type 1 error. More specifically, 

Greenland concluded that adjusting for a dichotomous, independent, non-differentially 

misclassified confounder (as displayed in Appendix 2.1, Panel A and Panel F) results in 

partial confounding control, a finding that has been confirmed by later studies.8,20,58-61 

Greenland’s partial control finding8 is important since it describes a scenario where 

adjustment for the misclassified confounder still yields a less biased estimate and is 

preferred to not adjusting. 

Effect estimates adjusted for the misclassified confounder fall between the crude 

(unadjusted) estimate and the estimate fully adjusted for the perfectly classified confounder. 

The worse the classification scheme, the closer the adjusted estimate will be to the crude 

estimate. Research has demonstrated that the relative bias due to misclassification directly 
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relates to the misclassified covariate’s strength of confounding and inversely to magnitude of 

the effect of interest (i.e. bias is greatest when the effect of interest is small or null and the 

misclassified covariate is a strong confounder).20,49,62 Notably, Marshall & Hastrup20 

demonstrated that if the misclassified covariate is a particularly strong confounder, even a 

small degree of misclassification can result in highly confounded effect estimates.  

There are number of papers which seek to quantify the magnitude of residual 

confounding described by Greenland and obtain corrected estimates.8,49,62-66 However, 

implementing these methods is challenging since they require external information on the 

degree of misclassification that is often not available to researchers conducting 

epidemiologic studies using secondary healthcare data. Greenland later expanded on his 

earlier work, demonstrating that non-differential misclassification of a variable that is not 

actually a confounder may lead to the spurious appearance of confounding, and that 

subsequent adjustment for the non-confounder may induce bias away from the null.67  

Relatively recently, an important condition was added to Greenland’s partial-control 

finding8: non-differential misclassification of a dichotomous study confounder results in 

partial-control for confounding assuming there is no qualitative modification of the effect of 

the confounder on the outcome by exposure status (i.e. the direction of the confounder’s 

association with the outcome does not reverse between the exposure groups).68 This finding 

is important since it challenges the prevailing belief that adjustment for independent, non-

differentially misclassified confounders is always preferred to no adjustment at all. 

2.3.2 Non-differential and independent misclassification of a dichotomous covariate: 

stratum-specific estimates 

Epidemiologic studies typically use inclusion and exclusion criteria to define study 

populations or, alternatively phrased, conduct analyses within strata of relevant covariates 

(e.g. males over 65 with diabetes). Stratification on any misclassified dichotomous covariate 

(not just confounders) has been shown to result in spurious heterogeneity between stratum-
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specific estimates.8,9,47,62 Stratification on confounding (not modifying) variables is widely 

considered sufficient to render an unbiased calculation of causal estimates. However, this is 

not necessarily the case when important study covariates are misclassified, even when 

misclassification is non-differential and independent.9,47,67 In a stratified 2x2 table analysis, 

plausible confounding and misclassification schemes can be specified which lead to 

stratum-specific estimates that are more biased than the crude (Appendix 2.2). As a result, 

epidemiology studies that restrict study populations based on even non-differentially 

misclassified inclusion and exclusion criteria may be biased in any direction. Walker & Lane 

demonstrated that heterogeneity will be most pronounced in situations where sensitivity is 

high and specificity is low or where sensitivity is low and specificity is high.9 In these 

instances, one strata will be extremely confounded, while the other will be nearly 

unconfounded. 

The magnitude of bias due to spurious heterogeneity in stratum-specific effect 

estimates among those classified as having the confounder present depends on the 

specificity of confounder classification and among those without the confounder depends on 

the sensitivity (Appendix 2.2).47 If we conceptualize dichotomous study inclusion criteria as 

the former case and dichotomous study exclusion criteria as the latter case, it follows that 

we would prefer specific inclusion criteria and sensitive exclusion criteria. Methods have 

been developed to quantify the magnitude of the bias within strata58 and to estimate the 

corrected stratum-specific effect estimates.47 However these methods require external 

information on the degree of misclassification that is not available during the conduct of 

typical studies using secondary healthcare data. 

2.3.3  Differential or dependent misclassification of a dichotomous covariate 

Despite the plausibility that many study covariates may be misclassified differentially 

or non-independently, there is relatively little literature exploring the topic. This may be due 

to finding that, even in the simpler case where misclassification is non-differential and 
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independent, effect estimates may be biased in any direction. Greenland’s 1980 paper is 

generally interpreted to imply that the partial-control result cannot be extended to non-

differential or dependent misclassification.8 However, given that observational research can 

rarely assert that misclassification of confounders is fully non-differential or independent, we 

necessarily assume that within some tolerable degree of differentially or dependence, 

adjusting for misclassified confounders results in partial control for confounding. Despite this 

assumption, we found no direct evaluations of when adjustment for differentially or 

dependently misclassified confounders yields partial control for confounding. Some work, 

however, has explored differential misclassification. Walker & Lanes used hypothetical data 

to demonstrate how misclassification of a dichotomous covariate that is differential by 

exposure status can induce substantial spurious heterogeneity in effect estimates across 

strata of the covariate.9  

Using DAGs, misclassified covariates can be conceptualized as descendants (or 

proxies) of true covariates (see Appendix 2.1).53-55 When classification of the proxy is 

differential or dependent relative to exposure or outcome, it acts as a collider on a 

confounding backdoor path (Panels B-D, G-I). Adjusting for a differentially or dependently 

classified proxy leads to partial control of the primary confounding path (EßCàD) but un-

blocks or opens other confounding paths acting through the classification mechanism.54,55,57 

The DAG clearly demonstrates that the causal estimate will be biased regardless of whether 

or not we adjust for differentially or dependently classified proxies. However, non-parametric 

graphical representations cannot establish when adjusting for the proxy will eliminate more 

bias (via the partially closed primary confounding path) than it introduces (via opened 

backdoor paths). Still, if the mechanism determining misclassification can be specified, 

DAGs may suggest other variables that can be adjusted for to close some (if not all) 

backdoor paths opened by adjusting for the proxy. Unfortunately, these determinants of 

misclassification are often immeasurable. 
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By comparing the DAGs presented in Appendix 2.1 Panels A-C, to Panels G-I, we 

can observe that dependent misclassification may be conceptualized as a form of differential 

misclassification wherein some proxy effect (e.g. the effect of a proxy of the exposure on a 

proxy of the outcome) is assumed to be nearly equivalent to the actual effect of interest. In 

both cases, adjusting for misclassified confounders opens biasing backdoor paths. Given 

the close relationship between dependent and differential misclassification, the scope of this 

study will be restricted to differential misclassification. It is likely that patterns of bias control 

under differential misclassification will be similar to those that would be observed under 

dependent misclassification. However, this will require that we assume exposures and 

outcomes are perfectly measured, which may represent a source of residual bias. 

2.3.4  Misclassification of a polytomous or continuous covariate 

In 1984, a simulation study63 asserted that Greenland’s finding8 of partial control for 

confounding when adjusting for an independent, non-differentially misclassified dichotmous 

covariate could be extended to polytomous covariates. This assertion was not challenged 

until 1993, when Brenner demonstrated that that the bias induced by adjusting for an 

independent, non-differential, polytomous confounder can be greater than the bias induced 

by not adjusting for the confounder (i.e. that the partial control finding does not hold for 

polytomous confounders).10  

Misclassification of continuous covariates has been considered by Marshall & 

Hastrup20 and Wacholder.12 Marshall & Hastrup evaluated non-differential, independent 

misclassification of a continuous confounder and found that Greenland’s observation of 

partial control for confounding holds. However, Wacholder’s paper “When measurement 

errors correlate with truth,” explored a unique case where the misclassification of a 

continuous study covariate depends on the true value of that covariate (e.g. heavy smokers 

being more likely to under-report cigarette use). Wacholder’s conclusion that Greenland’s 

partial control finding8 does not hold in these situations has direct applications to studies 
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conducted on secondary healthcare databases. For example, consider a continuous 

covariate defined as the total number of prescriptions filled in a patient’s look-back period. It 

is plausible that patients with low counts could be more likely to pay for prescriptions out of 

pocket while patients with high counts would be more likely to rely on insurance. This would 

result in a greater probability of misclassification among people with low prescription counts 

than people with high prescription counts. Little research is available on differential or 

dependent misclassification of continuous covariates. Figure 2.2 displays a flowchart which 

aggregates literature regarding when Greenland’s partial control finding can be expected to 

hold, for analyses adjusting for a single misclassified study covariate. 

  In epidemiologic studies, it is common practice to dichotomous polytomous or 

continuous covariates. While this practice has been shown to result in residual confounding, 

Greenland’s partial control finding holds if the continuous covariate is correctly classified 

before dichotomization.69 Interestingly, the dichotmous covariate formed by dichotomizing a 

non-differentially misclassified continuous variable may be differentially misclassified.70,71 

However, Gustafson & Le observed plausible scenarios where adjusting for the differentially 

misclassified dichotomous variable produces less biased estimates than adjusting for the 

non-differentially misclassified continuous parent.72 This represents an important (though 

unique) case in the literature where differential misclassification is preferable to non-

differential misclassification. 

In complex analyses with many misclassified study covariates, some authors have 

proposed approaches that rely on summary measures of confounding (e.g. propensity 

scores).55,66 Just as summary scores can reduce the dimensionality of confounding, they can 

also be used to reduce the dimensionality of misclassification. This facilitates the 

implementation of misclassification correction methods that don’t easily scale up to analyses 

with highly dimensional confounding. Summary scores modeled as a function of imperfectly 

classified covariates can be considered a misclassified continuous covariate. As a 
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composite measure, differential and dependent misclassification of the component 

covariates will be reflected in the classification of the summary score. Furthermore, omission 

of important latent confounders from the model can also result in differential and dependent 

classification of propensity scores.  

Multiple methods have been proposed to reduce propensity score misclassification. 

Stürmer et al proposed a method wherein the propensity score is calibrated in an external 

validation set where covariates and exposure are well-classified.66,73,74 A second approach, 

proposed by Schneeweiss et al, uses high-dimensional propensity score adjustment and 

automated variable selection methods to adjust for a wide range of variables.75 The method 

seeks to maximize control for true but unobserved study confounders by adjusting for many 

observable proxy variables.55 Finally, Pearl proposed using external information (e.g. 

Bayesian priors or information drawn from external data) on the mechanisms of 

misclassification to construct many different “pseudo” data sets, which resemble possible 

manifestations of the true data. With sufficient sample size and proper specification of 

misclassification mechanisms, propensity scores estimated within these pseudo data can 

theoretically be used to obtain valid causal estimates.55,56 

2.3.5 Simultaneous misclassification of multiple covariates  

Only one study, conducted by Fewell et al. has evaluated the misclassification of 

multiple covariates simultaneously, studying the independent, non-differential 

misclassification of four continuous confounders and the resulting bias on the exposure-

outcome effect estimated using logistic regression.59 Confirming the findings of earlier 

research, Fewell et al observed that bias was greatest when the degree of misclassification 

was high and the confounder was strong. However, Fewell demonstrated that the separate 

biases induced by misclassifying multiple different covariates may act cumulatively on the 

overall bias of the exposure-outcome effect estimate. This is an important finding since it 

challenges the assumption that only misclassification of strong confounders can lead to 
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substantial bias in effect estimates.76,77 Still, they note that when the confounders (not the 

error in their measurement) are correlated with one another and the exposure, the biases 

frequently offset each other. In typical comparative studies conducted using secondary 

healthcare data, it is likely that all variables are measured with some degree of 

misclassification, many of which may be correlated. 

2.3.6 Misclassification of covariates in secondary healthcare data studies 

There are a number of critical gaps in the covariate misclassification literature that 

limit the applicability of findings to modern clinical studies. No research has been completed 

evaluating: 1) the misclassification of multiple covariates used as exclusion criteria 

(stratification variables), or 2) the misclassification of multiple covariates, some of which are 

used as exclusion criteria and others in as adjustment factors. As described by Cox and 

Elwood, “the bias from nondifferential misclassification of several variables in a multiple 

regression analysis, particularly on the stratum-specific odds ratios, may also be difficult to 

predict.”47 

Most existing studies evaluate misclassification in the context of simplified 

hypothetical data (e.g. stratified 2x2 tables), which is not representative of the typical 

methods used in modern clinical research (e.g. propensity score methods, inverse 

probability of treatment weighting). Some studies have explored covariate misclassification 

within the context of simple logistic regression analyses, including Kupper58, Greenland & 

Robins67, Marshall & Hastrup20, Armstrong et al78, and Fewell et al59. All of these studies 

only considered the misclassification of one covariate, with the exception of Fewell et al59 

which considered the misclassification of four covariates simultaneously.  

Using all-available information in secondary data to classify patient histories clearly 

risks differentially misclassifying secondary covariates and exclusion criteria, which may bias 

effect estimates away from the null. The decision to use fixed look-backs as opposed to all-

available look-backs represents a trade-off: a reduction in the overall sensitivity of covariate 
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classification in exchange for non-differential misclassification of covariates by exposure and 

outcome status. However there are a number of plausible reasons to question the value of 

this trade-off in studies using secondary healthcare databases.  

First, database enrollment is not the only determinant of misclassification that may 

be differential. For many covariates (e.g. a diagnosis or procedure of interest) classification 

may depend on the frequency of a patient’s interaction with the healthcare system, which 

could plausibly vary by exposure and outcome status. Second, analyses which only require 

a short fixed look-back could conceivably introduce differential misclassification by outcome 

status. Research has shown that many potentially relevant diagnoses are unlikely to appear 

in claims in periods that are proximal to a patient’s death.5,6 Thus, in claims analyses 

evaluating all-cause mortality, we may expect substantial differential misclassification of 

covariates by outcome status even using fixed look-backs. In fact, if the fixed look-back only 

captures a short period proximal to follow-up (i.e. only the recent medical history), we may 

expect misclassification to be more differential by outcome status (death) using fixed look-

backs than all-available look-backs. Similar misclassification patterns are possible in the 

time periods proximal to hospitalizations for serious clinical conditions. Finally, fixed look-

backs cannot assure that misclassification will be independent of the misclassification of 

other variables. While fully non-differential, independent misclassification of covariates 

would be ideal, fixed look-backs are unable to attain this goal. Furthermore, biases due to 

the differential classification using all-available data histories may be offset by gains in 

sensitivity and specificity of classification. 

Multiple methodologists have debated the importance of the principal of comparative 

information accuracy.12,13,52,67 There is unanimous agreement that whenever differential and 

dependent misclassification can be reduced in the design phase, it should be. However, 

methods which induce non-differential and independent misclassification during the analysis 

stage (e.g. by ignoring some of the available data that is not available in the entire cohort) 
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are more heavily debated. This point is discussed by Wacholder: “Strict adherence to the 

principal of comparable accuracy used to ensure non-differential misclassification in 

choosing controls for case-control studies may not be advisable when it would require 

controls with as much error as cases instead of more accurate controls.”12 While Wacholder 

was describing case-control studies, similar reasoning may be applicable to the use of fixed 

look-backs in cohort studies. 

Even if fixed look-backs could induce fully independent and non-differential 

misclassification of covariates, the literature clearly demonstrates that those are not 

sufficient criteria to ensure bias toward the null.10,20,49,58,59,62,68 One might argue that it is 

easier to anticipate and interpret the bias from independent non-differential misclassification 

of study covariates, since we can expect partial control for confounding and an adjusted 

estimate that lies between the crude and the truth. However, this interpretability does not 

scale up when we use multiple potentially misclassified variables, which have a cumulative 

effect on bias that is difficult to anticipate. Regardless of our choice of look-back, a clear 

understanding of the individual contributions made to the total bias by the misclassification 

of each covariate is likely infeasible. Research is needed which evaluates the net effect of 

multiple interrelated, misclassified covariates on effect estimates.  

After exclusion and exclusion criteria have been implemented, observational cohort 

studies evaluate subject-level covariate information for two different purposes: first, to 

determine which of the covariates should be adjusted for in analyses, and second, to 

actually adjust for selected covariates (e.g. regression, weighting, matching). As pointed out 

by Greenland & Robins, independent, non-differential covariate misclassification can lead to 

spurious associations between the covariate and the outcome.67 This may lead investigators 

to select instrumental variables (i.e. covariates associated with the exposure and not the 

outcome) for adjustment in analyses, which can substantially bias estimates.79,80 Given 

these observations, it would be useful for research to consider the appropriateness of fixed 
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and all-available look-backs for both the selection of adjustment variables and the 

implementation of statistical adjustment. 

2.3.7 Misclassification of covariates in time-to-event studies 

The proposed research does not intend to explore misclassification in time-to-event 

designs. However, given that many clinical studies use time-to-event designs, we provide a 

brief overview here. It is important to consider the influence of not only how covariates are 

classified but when. Some of the earliest wisdom may be drawn from the literature on the 

Will Rogers Phenomenon and the spurious influence of stage migration on evaluations 

cancer survival. Feinstein, Sosin & Wells48 as well as others81,82, described a bias which 

results from an important study inclusion criteria (cancer stage) being identified earlier in 

one exposure group than the other. Increased surveillance drove earlier identification of 

evolving cancer stages in one comparison group, which meant the other group was more 

likely to be at a more clinically advanced stage of disease at study entry. This has direct 

application to time-to-event studies, which may seek to define inclusion and exclusion 

criteria using covariates that are classified differentially over time between the two 

comparator groups (e.g. history of acute myocardial infarction). 

In a series of papers83-85, Prentice et al developed formulas to correct for the 

misclassification of time-varying, normally distributed, continuous covariates in time-to-event 

analyses. However, implementing the methods described by Prentice require external 

information on mechanisms of misclassification and distributions of true covariate values. 

They observed that the parametric form of the function used to estimate the effect estimate 

influences the magnitude of bias due to covariate misclassification. 

2.4 Evidence gaps 

Prior research exploring use of different look-back methods has been limited in 

scope. The published research evaluating use of all-available look-back methods has largely 

been conducted in purely simulated settings. Only one paper has been published to date 
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exploring the use of different look-back approaches in real data, where multiple misclassified 

and interrelated covariates may cumulatively impact the bias of effect estimates.14 This 

study did not evaluate the use of long (e.g. multi-year) fixed look-back periods. The impact 

of different look-backs on the bias and efficiency of effect estimates has only been assessed 

using simulation, which tends not to represent of the complex analytical strategies that are 

commonly applied in clinical research (e.g. time-to-event analyses, propensity score 

adjustment). To date, there is no research evaluating use of all-available look-backs to 

define study eligibility criteria.
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Figure 2.1. Simplified schematic for a secondary healthcare database cohort study 
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Figure 2.2. Decision flow chart demonstrating criteria for partial control in the context of a 
single misclassified covariate 

!
!
!
!
!
!
!
!

Dichotomous 

No 

No 

Is the misclassified 
covariate polytomous? 

Is misclassification of the 
covariate independent of 

misclassification of 
exposure, outcome and 

other covariates? 

Is misclassification 
of the covariate 

independent of its 
true value?  

Partial control 
for confounding 

holds 

Is misclassification 
differential by the true 

value of exposure, 
outcome, and other 

covariates? 

Are covariate-exposure and 
covariate-outcome effects 

monotonic by exposure and 
outcome groups? 

Is the misclassified 
covariate dichotomous or 

continuous? 

Yes 

Yes 

Continuous 

Yes 



	24 

 
 
 
 
 

CHAPTER 3 
 

METHODS 
 
 
3.1 Aim 1 methods 

3.1.1 Overview 

Using Medicare fee-for-service administrative claims data, we selected a cohort of 

statin users and non-users at elevated cardiovascular risk. Within this cohort, we compared 

variations of three different approaches for classifying patient medical histories: short and 

long fixed look-back periods and all-available database history. We compared these multiple 

approaches in terms of the impact on the bias and efficiency of hazard ratio estimates 

evaluating the effect of statin initiation (vs. non-initiation) on 1) 6-month incidence of any 

cancer among older adults, (which we expected a priori to be null) and 2) secondary 

prevention of 2-year all-cause mortality (which we expected a priori be protective based on 

meta-analyses15,16 conducted in a similar population).  

3.1.2 Study population 

In Aim 1, our study population was comprised of 20% sample of fee-for-service 

Medicare Beneficiaries greater than 65 years of age, who were at elevated risk for 

cardiovascular disease. Medicare beneficiaries are an ideal population to evaluate methods 

for studying administrative claims data since all U.S. citizens 65 years and older are eligible 

for the Medicare program and generate observable claims for the routine billing of their 

healthcare services. An important exception is those Medicare beneficiaries who enroll in 

managed-care Medicare Advantage plans (Medicare Part C), who do not routinely generate 

observable claims for their care. As a result, our study population did not include subjects 

who remain enrolled in Medicare Advantage plans throughout the time-period captured by 
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our data. Medicare Advantage plan enrollees tend to be healthier than enrollees with 

traditional Medicare coverage and represent approximately a quarter of all Medicare 

beneficiaries.86 However, the number of enrollees who remain continuously enrolled in 

Medicare Advantage throughout the observed data years (i.e. the beneficiaries who cannot 

enter our study) represents a smaller proportion. We were unable to observe drug claims for 

patients before 2007, when Medicare’s drug coverage plans (Medicare Part D) were 

implemented. Thus, we will only evaluated data beginning in 2007.  

	 Initially, we identified all outpatient visits occurring in the observable claims data 

between 2009 and 2011. Using the Medicare enrollment file, we restricted the population to 

visits that were preceded by a minimum of six months continuous enrollment in Medicare 

Parts A, B, and D. This restriction was intended to ensure that we did not include individuals 

in the study for whom we had too little observable claim history to be informative. Longer 

periods of continuous enrollment (i.e. one, two, and three years) will be required when 

applying the fixed and missing-data look-back approaches. We then excluded visits that had 

pharmaceutical claims indicating statin use in the prior six months. Furthermore, we required 

at least one observable pharmaceutical claim within six months before the index visit to 

ensure that we are actually able to Part D pharmaceutical claims. Given that we were 

studying a cohort of older patients with recent elevated cardiovascular risk and observed 

interaction with the healthcare system, it seemed reasonable to assume that most patients 

should have some observable medication use in their history. Failing to apply this 

requirement would have likely resulted in a large number of statin users being included in 

the study as non-users simply because we were unable to observe their pharmaceutical 

claims.  

We included individuals at elevated cardiovascular risk by mirroring (to the best of 

our ability using claims-based proxy variables) eligibility criteria used by the Heart Protection 

Study.87 This included patients who in the six months before their index visit have a history 
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of myocardial infarction, unstable or stable angina, coronary artery bypass graft, or 

angioplasty; stroke, transient cerebral ischemia, leg artery stenosis, carotid endarterectomy, 

other arterial surgery or angioplasty; or diabetes mellitus. We excluded those individuals 

would not be considered candidates for statin therapy, such as those with a recent history of 

chronic liver disease; acute or chronic kidney disease; inflammatory muscle disease; or 

severe heart failure. We also excluded subjects with a recent history of using cyclosporine, 

fibrates, or high-dose niacin. We also excluded visits which were followed by either the 

cancer or mortality outcome within 14 days, a period which was required to assess exposure 

(i.e. initiation or non-initiation of statins). The eligibility criteria for the source population are 

summarized in Table 3.1. The look-back approaches, which were used to further exclude 

visits preceded by a history of statin use (beyond the 6-month exclusion) and cancer, are 

described in greater detail in section 3.1.4. 

3.1.3 Study design 
The short-term (6-month) eligibility criteria described in Section 3.1.2 were applied 

uniformly for all look-back approaches. For each included outpatient visit, we used various 

look-back approaches to assess two additional eligibility criteria (i.e. exclusions for patients 

with history of statin use or the cancer outcome) and to assess covariates (Figure 3.1). After 

applying exclusions using each look-back, we kept each beneficiary’s first eligible index 

outpatient visit observed in the database, within each exposure group. Thus, beneficiaries 

could enter the cohort up to two times, once for each exposure group.  

For each included visit, we assessed whether a statin claim was observed within the 

subsequent 14 days. Those with statin claims during this period were classified as statin-

initiators and those without as non-initiators. Follow-up for outcomes began at the end of this 

14-day exposure assessment period and patients with either cancer or mortality outcomes 

during this period were excluded. We excluded visits followed by cancer incidence or 

mortality within 14 days. We evaluated a 6-month follow-up period for the cancer outcome 
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and a 2-year follow-up period for the mortality outcome. We estimated the time to either first 

occurrence of an outcome or censoring event. For both analyses, censored people who 

disenrolled from Medicare Part A for any reason (e.g. when a subject switches to a 

Medicare Advantage plan). For the cancer outcome, we also censored when patient 

switched to the opposite exposure group and when a patient died. The methods used to 

account for the competing risk of mortality are described in section 3.1.8. 

3.1.4 Look-back approaches 

We applied look-back periods immediately preceding the index outpatient visit to 1) 

assess baseline covariates and 2) exclude subjects with history of statin use or cancer. The 

different look-back approaches that we evaluated are described in Table 3.2. For the fixed 

look-back approaches, we applied 1-, 2-, and 3-year look-back periods and the cohort was 

restricted to those who are continuously enrolled in Part A, B, and D for this entire look-

back. For the all-available look-back approach, we evaluated covariates using any of the 

available database history preceding the index outpatient visit and only required the 6-month 

continuous enrollment preceding the index visit. We also conducted a sub-analysis where 

we independently varied the length of the look-back period used to assess the different 

study components (i.e. continuous enrollment, prior statin exposure, history of cancer, and 

covariate assessment).  

The study population varied across different look-back approaches we applied since 

they differed with respect to 1) the period of continuous database enrollment they required 

and 2) the length of history considered when excluding patients with prior statin exposure 

and/or cancer history. For the all-available look-back approach, only the minimum 6-month 

continuous enrollment was required while one, two, or three years was required for the fixed 

look-back approaches.  
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3.1.5 Exposures 

For Aim 1, we defined two exposure groups: statin initiators and non-initiators. Statin 

use was assessed using a 14-day period following the index outpatient visit using Medicare 

Part D pharmaceutical claims. We also conducted a sub-analysis comparing initiators of 

high potency statins and initiators of low-potency statins. For the analysis assessing the 

effect of statin initiation on 6-month incidence of cancer, we censored patients who switched 

from one exposure group to the other. For the non-initiator group, we censored patients on 

the day they filled any prescription for statin medication. For the statin initiator group, we 

used the days supplied (which is recorded with each statin claim) to estimate the time period 

for each patient that they could be feasibly consuming medication. When a 14-day period 

passed which was not covered by the days supplied, we will assumed the patient stopped 

taking their statin and censored them (at the end of the 14 days). For analyses assessing 

the effect of statins on 2-year all-cause mortality, we conducted an intent-to-treat analysis 

only, since produces a more conservative estimate (i.e. less likely to produce a non-null 

estimate when none exists). 

3.1.6 Outcomes 

We evaluated the effect of statin use on two outcomes: one which we knew a priori 

should produce a null finding, and a second where we anticipated a protective effect. For the 

known null association, we evaluated time to short-term incidence of any cancer occurring 

within six months of statin initiation. While statins could plausibly impact long-term incidence 

of cancer, there exist no biologically plausible mechanism whereby statin initiation could 

meaningfully increase likelihood of developing a clinically diagnosable cancer within a short, 

6-month period. For this reason, well-designed cancer studies typically do not classify 

cancer events occurring during these induction (time from drug initiation to first cancer cell in 

the body) and latent (time from first cancer cell in the body to a clinically diagnosable 

cancer) periods as outcome.88  



	29 

While the true causal effect of statins on short-term cancer incidence is null, causal 

estimates drawn from administrative claims may be biased by multiple factors. Statin users 

and non-users may differ in their baseline cancer risk and the frequency/intensity of their 

interaction with the health system. Both of these factors may drive differential surveillance 

for outcomes between the two exposure groups. Differential surveillance may also result if 

the two exposure groups vary in their distribution across calendar time, since cancer 

surveillance typically improves over calendar time. Differential surveillance during follow-up 

results in outcome misclassification bias, while differential cancer surveillance during 

baseline (which is an exclusion criteria) results in selection bias. By assessing the effect of 

statins on short-term cancer incidence, we expected to observe the influence of differential 

cancer screening and surveillance between the two exposure groups on known null effect 

estimates. By evaluating the degree to which effect estimates varied from the null, we 

observed variation in the net impact of these biases when using different look-back 

approaches. 

We also evaluated the effect of statins on time-to all-cause mortality within two years. 

While we cannot know true effect in our cohort, we a priori expected there to be a protective 

effect. Two meta-analyses have been conducted evaluating the effect of statins on 5-year 

mortality in an elderly cohort and reported risk ratios of 0.85 (95% CI: 0.78, 0.93)16 and 0.78 

(95% CI: 0.65, 0.89).15 Null or harmful effect estimates served as strong indicators of biased 

results. While surveillance for all-cause mortality is non-differential between exposure 

groups, we expect the statin users to differ from non-users with respect to a number of 

factors that are also associated with outcomes. Because the ability to control for this 

confounding depends identification of confounding covariates, the magnitude of this 

confounding bias may vary across different look-back approaches. We expected similar 

confounding could possibly influence the results of causal estimates for statins and short-

term cancers.  
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For both the short-term cancer and mortality analyses, we censored follow-up at the 

end of the database time or when patients disenrolled from the study database. For the 

cancer analysis, we also censored follow-up if a patient died or switched exposure groups. 

We censored follow-up among statin-initiators when they spent 14 days without medication 

coverage and among non-initiators when they filled a statin prescription. We considered 

mortality as a potential competing risk for the cancer outcome. Thus, in the short-term 

cancer analysis, we conducted sub-analyses accounting for the competing risk of mortality 

by fitting the Fine and Grey subdistribution hazards model89,90, which is described in section 

3.1.8. 

3.1.7 Covariates 

 In Table 3.3, we present a list of candidate covariates that were considered for 

inclusion in adjustment models. Descriptions of the methods used to identify these 

covariates and rationales are described below.  

Baseline covariates included demographics (age, sex, race, geographic region, 

calendar year of index-date), diagnoses (identified using the International Classification of 

Disease 9th edition [ICD-9] diagnosis codes), procedures (identified using CPT codes and 

ICD-9 procedure codes), and medication history (identified using NDC codes). Many of 

these covariates can only be imperfectly ascertained using claims data. However, it was of 

direct interest to explore which look-back approach is able to best identify and control for 

these covariates using the available data. Since imperfect measurement of covariates may 

impact whether they are identified as confounders and included in adjustment models, we 

also considered a set of variables that we a priori consider to be potential/likely confounders 

of the relationship between statin use and cancer or statin use and mortality. These include, 

but are not limited to obesity, hyperlipidemia, hypertension, atherosclerotic disease, cancer 

history, smoking status, alcohol use, healthcare utilization, and any of the covariates used to 

identify patients at elevated cardiovascular risk.91-98 While the cohort will only include 
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patients who meet Heart Protection Study eligibility criteria87 in the 6-month baseline, the 

presence of these criteria in the look-back period preceding this six months will be 

considered as covariates in analysis.  

To evaluate intensity of healthcare utilization, we estimated the rates of outpatient 

visits, inpatient hospitalizations, skilled nursing facility (SNF) admissions, and unique 

prescription fills by dividing the measured frequency by the observed person-time in the 

database before the index-date. For the purposes of this study, using rates to measure 

these covariates is preferable to using simple counts, since for all-available look-back 

approaches the frequency of these covariates will depend on the amount of observable 

database history. Rate estimates for these covariates, on the other hand, should remain 

relatively stable, regardless of which look-back method is applied. 

3.1.8 Analyses 

 We  used multivariate logistic regression models to estimate the propensity score 

(i.e. the probability of statin initiation), conditional on all baseline covariates selected for 

adjustment. We then used standardized mortality ratio weighed (SMRW) Cox proportional 

hazards models to estimate the hazard ratio for each approach.19 Because we used SMRW, 

our estimates reflect the effect of statin-use among the population of statin-users, rather 

than the population in general (assuming that most initiators can be matched). Since a 

single beneficiary in the database may enter the twice (if they have both an eligible initiation 

and non-initiation), we produced confidence intervals using robust variance estimators.99  

We created two propensity score models to estimate standardized mortality ratio 

weights, one model for the 6-month cancer outcome and the other for the 2-year mortality 

outcome. For each outcome, we adjusted for the same set of variables across the different 

look-back approaches. Propensity score models included all variables that were risk factors 

for the corresponding outcome. We defined risk factors as any variable (among those 

described in section 3.1.7) that was 1) present in at least 1.5% of all exposed and 
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unexposed patients across all look-back approaches and also 2) had a significant 

association with the outcome with magnitude > 1.10 among unexposed patients within at 

least one of the look-back approaches. The associations between covariates and outcomes 

were quantified using treatment group specific hazard ratios, estimated using multivariate 

Cox models accounting for competing risk of mortality.  

 In the analysis evaluating the effect of statins on short-term cancer, we conducted 

sub-analyses in which we fit the Fine and Grey subdistribution hazards model (competing 

risk model), which accounts for the competing risk of mortality.89,90 Under this approach, we 

effectively added follow-up time until the end of the study period for those subjects who were 

censored due to mortality. There are no competing risks in the analysis evaluating the 

mortality outcome. 

 In addition to comparing the estimates to one another, we also compared the hazard 

ratios (and 95% confidence intervals) to the expected true results. For the short-term cancer 

analysis, we assumed the truth to be null. For each analysis, we evaluated whether the 95% 

confidence interval of the estimate hazard ratio contains the null. We assessed the relative 

bias of the different approaches based on the distance between its point estimate of the 

hazard ratio and the null. We also compared the approaches in terms of variance and mean 

squared error (MSE). For the analysis evaluating the effect of statins on outcome mortality, 

we used the results of two meta-analyses as alloyed gold standards.15,16 These meta-

analyses only included elderly patients, and evaluated follow-ups of approximately five 

years, estimating risk ratios of 0.85 (95% CI: 0.78, 0.93)15 and 0.78 (95% CI: 0.65, 0.89).15 

Estimated hazard ratios and 95% confidence intervals were compared qualitatively against 

the results of these meta-analyses. Because the true effect estimate for this analysis cannot 

be known with certainty, we could not estimate bias quantitatively. However, it is plausible 

that extremely low, protective effect estimates may be the result of healthy user bias. 

Furthermore, since we knew statin use has a protective effect on all-cause mortality, any 
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analysis with a 95% confidence interval that lies entirely above the null can be considered 

erroneous. Evaluating an anticipated null association (short-term cancer) in parallel provided 

added context to our interpretation of findings for the mortality analysis. We also compared 

the variance of the effect estimates produced by each look-back approach. 

3.2 Aim 2 methods 

3.2.1 Overview of the plasmode simulation design 

We used data from the Medicare Current Beneficiary Survey (MCBS) Cost and Use 

module and linked Medicare fee-for-service (FFS) claims to conduct a plasmode simulation 

study, exploring the performance of different look-back approaches when applied to 

longitudinal claims data. In a plasmode simulation study, many cohorts are selected (with 

replacement) from a source dataset and are then layered with simulated components, in this 

case simulated exposures and outcomes. As shown in Figure 3.2 and Table 3.4, the 

exposure (conceptually: statin initiation vs. non-initiation) and outcome (conceptually: 

mortality) were simulated as a function of the MCBS variables, assumed to represent the 

true underlying confounder of the exposure-disease association. We evaluated estimates 

after applying different look-back approaches in the linked claims data to 1) restrict the 

cohort based on continuous enrollment, 2) exclude baseline statin users, and 3) assess and 

adjust for imperfect claims-based proxies of the true confounders measured in MCBS.  

3.2.2 Selection of the source cohort from MCBS data 

We selected the source cohort for the plasmode simulation by identifying all MCBS 

respondents who completed at least one full year of interviews (MCBS Cost and Use 

module) in either 2009, 2010, or 2011 (MCBS round 53 to round 61). Figure 3.3 presents 

the study schematic used to select the select and assess the source data from MCBS and 

linked claims. The MCBS Cost and Use survey is a nationally representative survey of aged 

and disabled Medicare beneficiaries which utilizes a rotating panel design, interviewing 

respondents three times per year (Winter, Summer, Fall) for up to three years. In this study, 
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the same individual was allowed to be included in the source cohort up to three times, once 

for each complete year of MCBS data available. For each of these included observations, 

we set the index date as the date of the Annual Health Status & Functioning (Fall) interview 

within the survey year. In order to imitate the type of beneficiaries that would be included in 

a typical claims analysis, we restricted the cohort to respondents were enrolled in Medicare 

Part A, B, and D at the time of their index Fall interview and who qualified for Medicare due 

to old age or survivors insurance. Finally, we excluded any subject who refused to answer or 

responded “don’t know” to any survey questions used to assess MCBS covariates 

(described below).  

3.2.3 Assessing MCBS covariates used as underling/true confounders 

For each included observation, we used information collected during the Fall 

interview to assess demographics (age, sex [female or non-]), body-mass-index (BMI), any 

history of diabetes, receipt of flu-shot (last winter), and a cancer screening in the last year 

(defined as a mammogram or pap smear in the last year for females and a digital rectal 

prostate exam or a blood test for rectal cancer for males). We classified subjects as frail if 

during their Fall interview they reported that a health condition caused them to avoid, have 

difficulty, or require assistance with the following activities of daily living (ADLs): bathing, 

dressing, eating, walking, using the toilet, or getting in and out of a bed or chair. Using 

MCBS data on prescribed medicine events (which is based on a combined assessment of 

Part D claims and respondent self-report), we assessed use angiotensin converting enzyme 

(ACE) inhibitors and angiotensin receptor blockers (ARBs) in the two rounds leading up to 

the Fall interview. 

For some variables, MCBS data was sufficiently granular to allow us to separately 

assess their presence in two distinct time periods: 1) in a proximal period occurring within 

one year before the index date and 2) in the distal period beginning at least one year before 

the index date. These variables included: history of high cholesterol, high blood pressure, 
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severe cancer (sites: lung, stomach, kidney, brain, throat, head, colon, uterus, ovary, 

cervix), and major adverse cardiovascular event (myocardial infarction/heart attack, 

congestive heart failure, angina pectoris, or stroke/brain hemorrhage).  

3.2.4 Assessing true baseline use of statins 

We classified each included observation as having a history of statin use if there was 

any evidence of statin use identified in any of the available MCBS data or claims before the 

index Fall interview (Figure 3.3). When applying the imperfect look-back approaches to 

select a cohort with no baseline statin use, we evaluated prior use within the claims data 

included in the look-back period. 

3.2.5 Simulation 

We generated 1,500 plasmode datasets by selecting 10,000 observations with 

replacement from the source data and then simulating the exposure and outcome. 

3.2.5.1 Exposure simulation  

For each observation we calculated exposure probability as a logistic function of 1) a 

pre-specified intercept term calibrated to produce a pre-specified exposure prevalence, 2) all 

“true confounders” assessed in MCBS. 

! !"#$%&'! = 1 =  1
1 + !!(!! ! !!∗!!)

  
where: 

β! = intercept term, calibrated to produce a pre-specified exposure prevalence 

β! = a vector of log-ORs for the effect of each MCBS confounder on the likelihood of 

exposure  

!! = a vector of confounders pulled from the MCBS data. 

The log-OR corresponding to each MCBS variable were deliberately selected in 

order to produce unidirectional upwards confounding (making exposure appear less 

protective/more harmful). (Note: In scenarios where different variables are allowed to 
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confound in different directions, residual confounding by different variables tends to offset 

each other, obscuring our ability to understand the total amount of residual confounding 

resulting from imperfect confounder ascertainment). To simulate exposure status, we then 

used the calculated exposure probability of each patient to randomly sample from a 

Bernoulli distribution. As shown in Table 3.5, we varied the intercept term between those 

with and those without true baseline statin use such that those with baseline statin use were 

more likely to fill a statin after the Fall index interview. 

3.2.5.2 Outcome simulation 

Next, we calculated an outcome risk score as an exponential function of 1) a pre-

specified intercept term calibrated to produce a pre-specified outcome prevalence, 2) 

exposure status, and 3) all “true confounders” assessed in MCBS. 

 
!!: ! ! = !(!! ! !!∗!"#$%&'! ! !!∗!!)  

!" 
            !":  ! ! = β!  +  β! ∗ !"#$%&'! +  β! ∗ !! 

where: 

β! = intercept term, calibrated to produce a pre-specified outcome incidence (number of 

events Y over a fixed time period) 

β! = the log-RR (or RD) for the effect of interest 

β! = a vector of log-RRs (RDs) for the independent effects of each MCBS confounder (i) 

on the outcome incidence 

!! = a vector of values for each confounder (i) pulled from the MCBS data. 

For each observation, we calculated two expected number of outcomes, one 

corresponding to each level of exposure. The number of outcomes Y under each exposure 

was assigned using a random number from a Poisson distribution based on these expected 

values. The background rate of the outcome was simulated to be the same among true new 
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users and baseline statin users (Table 3.5). Thus, incorrectly including baseline statin users 

in the study biases estimates towards the null. 

3.2.6 Using look-back approaches (applied in claims data) to assess observable-

proxies of MCBS variables  

Using the Medicare claims linked to the MCBS survey data, we assessed claims-

based variables meant to serve as imperfect proxies for the true variables measured in 

MCBS (i.e. those that informed the simulation). From each of the 1,500 plasmode datasets, 

we selected a distinct cohort for each look-back approach which restricted to patients who 

had 1) the required continuous enrollment (six months for the all-available look-back, one 

year for the 1-year fixed, three years for the 3-year fixed) and 2) no claims-documented 

statin use within that look-back.  

For each observation, we then assessed covariates using the corresponding look-

back approach. We used Part A and B claims to identify diagnoses and care associated with 

diabetes and cancer, cancer screening (mammograms, pap-smears, rectal exams, and 

prostate specific antigen testing), and major cardiovascular events, including myocardial 

infarction, stable/unstable angina, heart failure, and stroke. In addition to Part A and B 

claims, we used durable medical equipment claims to assess claims-based frailty indicators, 

which included: heart failure, ambulatory life support, home oxygen, hospital bed, 

wheelchair, rehabilitation care, weakness or difficulty walking. We assessed Part D 

prescription claims to identify use of anti-hypertensives (angiotensin-II receptor agonist 

antiotensin converting enzyme inhibitors), beta-blockers, and anti-diabetics (biguanides, 

sulfonylurea, insulin, thiazolidinedione, DPP-4 inhibitors). 

3.2.7 Analyses and statistics 

We estimated adjusted rate ratios and rate differences using inverse-probability-of-

treatment weighted (IPTW) logistic and linear regression (respectively). Inverse weights 
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were based on propensity scores modeling exposure as a logistic function of the covariates 

measured each of the different look-back approaches. 

We present summary estimates using the medians from the 1,500 iterations and 

estimated 95% confidence intervals using the 2.5th and 97.5th percentiles of the distribution. 

We used confidence interval width (CIW), calculated as the difference between the log-RR 

confidence limits, to assess the precision of estimates produced using each approach. We 

assessed the bias-precision trade-off using the root-mean-squared-error (rMSE), calculated 

as the square root of the squared bias plus the squared Monte Carlo standard error. For 

each cohort selected using the different look-back approaches, we assessed the proportion 

of the 1,500 iterations where Walker’s equipoise criterion was met (i.e. where greater than 

50% of both exposed and unexposed patients have preference scores between 0.3 and 

0.7).100 

We calculated the bias by contrasting effect estimates with the known/simulated 

truth, which we estimated by comparing simulated counterfactuals within a cohort formed 

with perfect selection based on the true MCBS data on baseline statin use. The net bias in 

IPTW-adjusted estimates represents a summation of two component biases: 1) the residual 

confounding bias caused by misclassification / inadequate ascertainment of true 

confounders, and 2) modification bias resulting from the inclusion of subjects with statin use 

at baseline (who have a diminished effect of interest). We then produced approximate 

estimates of effects isolating each form of bias (Table 3.6). We estimated the effect isolating 

residual confounding bias due to misclassification by adjusting for confounding using IPTW 

models based on the imperfect claims, within a perfectly selected cohort selected using the 

true MCBS data on baseline statin use. We estimated the effect isolating bias caused by 

modification / inclusion of prior statin users by comparing simulated counterfactuals within 

an imperfectly selected cohort, based on claims evidence of baseline statin use. By 
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comparing each of these estimates to the known/simulated truth, we are able to the estimate 

magnitude and variance for each component bias.   

3.2.8 Sub-analyses 

We completed a range of sensitivity analyses that we thought might impact the 

relative performance of the look-back approaches. We explored scenarios where the effect 

of exposure on the outcome was protective, representing a case where the outcome is the 

event the exposure seeks to prevent, and also scenarios where exposure was harmful, 

representing a case where the outcome is an adverse-event. In the primary analysis, we 

allowed the impact of MCBS covariates on simulated exposures and outcomes to vary 

depending on whether they occurred proximally (within the last year) or distally (before the 

last year) relative to the index interview. We conducted two sub-analyses fixing the effect of 

these variables on simulated exposures and outcomes: one in which only proximal 

covariates had an impact and a second in which all covariates (proximal or distal) had the 

same impact. In the primary analyses, we did not trim the propensity score distribution or 

truncate weights. However, we explored results with 1% asymmetric trimming of the 

propensity score distribution (i.e. restricted the cohort to those with propensity scores above 

the 1st percentile among the exposed and below the 99th percentile among the unexposed. 

In order to explore the performance all-available look-backs in scenarios with highly 

differential information inaccuracy, we conducted sub-analyses in which we intentionally left-

truncated data histories differentially by exposure status, outcome status, and both 

simultaneously. For example, in one analyses, we considered all data history up to one year 

among initiators while considering all data up to three years of data among non-initiators. 
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Scenario 1 & 2: Differential information accuracy with respect to exposure status 
 

 Scenario 1: More look-back 
available among initiators 

Scenario 2: Less look-back 
available among initiators 

 Outcome ≥ 1 Outcome = 0 Outcome ≥ 1 Outcome = 0 
Initiators 3 years 3 years 1 year 1 year 
Non-initiators 1 year 1 year 3 years 3 years 

 
Scenario 3 & 4: Differential information accuracy with respect to outcome status 
 

 Scenario 3: More look-back 
available among those with 
outcomes 

Scenario 4: Less look-back 
available among those with 
outcomes 

 Outcome ≥ 1 Outcome = 0 Outcome ≥ 1 Outcome = 0 
Initiators 3 years 1 year 1 year 3 years 
Non-initiators 3 years 1 year 1 year 3 years 

 
 
Scenario 5-8: Differential information accuracy with respect to exposure and outcome status  
 

Scenario 5 & 6: More look-back available among those with outcomes 
 

 Scenario 5: More look-back 
available among initiators 

Scenario 6: Less look-back 
available among initiators 

 Outcome ≥ 1 Outcome = 0 Outcome ≥ 1 Outcome = 0 
Initiators 3 years 1.5 years 0.5 years 1 year 
Non-initiators 1 year 0.5 years 1.5 years 3 years 
 
Scenario 7 & 8: More look-back available among those with no outcomes 
 
 Scenario 7: More look-back 

available among initiators 
Scenario 8: Less look-back 
available among initiators 

 Outcome ≥ 1 Outcome = 0 Outcome ≥ 1 Outcome = 0 
Initiators 1.5 years 3 years 1 year 0.5 years 
Non-initiators 0.5 years 1 year 3 years 1.5 years 
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Table 3.1. Aim 1 inclusion and exclusion criteria, by length of look-back used to apply them 
Look-back Inclusion criteria Exclusion criteria 
Index and 
proximal look-
back (six months 
before index) 

1. Observable Fee-for-Service outpatient 
(Part B) visit between 2007 and 2013 

2. ≥ 65 years or older at time of index 

3. Continuously enrolled in Part A, B, and D 
(all-available only) 

4. Heart Protection Study inclusion criteria 
(any of the following):  

− myocardial infarction, angina, CABG, 
angioplasty, stroke, transient cerebral 
ischema, leg artery stenosis, carotid 
endarterectomy, other arterial surgery, 
diabetes mellitus 

1. No observable Part D 
pharmaceutical claim (doesn’t 
apply to missing data 
approaches)  

2. Heart Protection Study exclusion 
criteria (any of the following):  

− chronic liver disease, acute or 
chronic kidney disease, 
inflammatory muscle disease, 
severe heart failure, 
cyclosporine use, fibrate use, 
or high-dose niacin use 

Entire look-back 
(all-available or 
entire fixed) 

5. Continuously enrolled in Part A, B, and D 
before index (fixed/missing approaches 
only) 

3. Prior statin use 

4. Any cancer in history (cancer 
outcome only) 
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Table 3.2. Overview of look-back approaches as they pertain to continuous enrollment 
requirements, covariate assessment, and rules for missing data 
 All-available look-back Fixed look-back 

Continuous Part A, B, D 
enrollment required 

6 months before index 1 years, 3 years before 
index 

Exclusions for  
1) Prior statin exposure 
2) Any history of cancer 

All-available history before 
index visit 

1 years, 3 years before 
index 

Covariate assessment All-available history before 
index visit 

1 years, 3 years before 
index 
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Table 3.3. Candidate covariates for adjustment in Aim 1 analyses 
Covariate 
category Specific covariates measured 

Demographics Age, sex, race/ethnicity, geographic region, calendar year of index-date 

Diagnoses Obesity, hyperlipidemia, hypertension, atherosclerotic disease, cancer history, 
smoking status, alcohol use, acute myocardial infarction, angina, stroke, 
transient cerebral ischemia, leg artery stenosis, diabetes mellitus, chronic liver 
disease, kidney disease, inflammatory muscle disease 

Procedures Coronary artery bypass graft (CABG), angioplasty, carotid endarterectomy. 
arterial surgery, severe heart failure 

Prescriptions Cyclosporine, fibrates, high-dose niacin 

Utilization Rate of inpatient hospitalizations, rate of emergency department visits, rate of 
prescription fills, and rate of lipid tests 
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Table 3.4. Overview of the plasmode dataset 

 

a We used a multivariate Cox model for 1-year mortality to estimate hazard ratios (HRs) for 
the relationships between true confounders (MCBS) and the outcome. We then used these 
HR estimates to simulate the outcome.  

Elements of the plasmode dataset Real data elements 
assessed using: 

Simulated data elements are a function 
of: 

Baseline 
confounders 
(pre-exposure) 

True confounders MCBS interview data - 

Claims-observed 
proxies 

MCBS-linked Medicare 
Part A/B/D FFS data - 

Exposure initiation (Y/N) - 
Baseline confounders (MCBS) 
         Pre-specified covariate-exposure  
         relationships 

Outcome (Y/N) - 

Baseline confounders (MCBS) 
         Pre-specified covariate-outcome 
         relationshipsa 
 
Simulated exposure 
         Pre-specified exposure-outcome     
         relationship 
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Table 3.5. Variation in the baseline exposure risk, baseline outcome risk score, and effect of 
interest between those with true baseline statin use and those without 
True baseline statin use 
(assessed in MCBS) 

Baseline exposure  
risk 

Baseline outcome  
risk score 

Effect of exposure 
Protective  Harmful  

Baseline statin users 0.33 0.5 0.4 2.5 
True new users 0.66 0.8 1.25 
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Table 3.6. Explanation of plasmode data used for effect estimation and bias calculations 

 
 

 Exclusion of prior 
statin users Confounding adjustment Bias calculation Estimate 

Truth [RRtruth] MCBS data Contrast counterfactuals NA (Unbiased) 

Net [RRnet] 
Misclassification + modification 

Claims-derived 
proxy variables 

IPTW using claims-
derived proxy variables ln(RRnet) - ln(RRtruth) 

Residual confounding due to 
covariate misclassification 
[RRRC] 

“True” MCBS data  IPTW using claims-
derived proxy variables ln(RRRC) - ln(RRtruth) 

Modification due to including  
patients with prior exposure [RRPE] 

Claims-derived 
proxy variables Contrast counterfactuals ln(RRPE) - ln(RRtruth) 
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Figure 3.1. Aim 1 study schematic 
	

 
a For each person, we kept only the first eligible outpatient visit within each exposure group 
(i.e. the first eligible initiation visit and the first eligible non-initiation visit).  
b We excluded any patients who had the cancer outcome or died in the 14-day exposure 
assessment period.

a 

b 
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Figure 3.2. Structure of real and simulated elements in the plasmode dataset (blue arrows 
denote simulated relationships) 
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Figure 3.3. Study schematic demonstrating for selection of source data for the plasmode 
simulation 
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CHAPTER 4 
 

CLASSIFYING MEDICAL HISTORIES IN U.S. MEDICARE BENEFICIARIES USING 
FIXED VS. ALL-AVAILABLE LOOK-BACK APPROACHES 

 
 

4.1 Introduction 

Clinical research is increasingly relying on secondary health data to evaluate the 

safety and effectiveness of medical therapies in real world populations.101-103 To ensure 

comparable accuracy of information across comparator groups, longitudinal studies are 

routinely restricted to those who are continuously observed within the database for some 

uniform time period before exposure.1 Potentially informative data occurring before this time 

period are discarded.2 These fixed (or uniform) look-back periods are frequently used to 

define study eligibility criteria (e.g., no observed history of exposures or outcomes, no recent 

cardiovascular events) and also to capture baseline covariates used to adjust for 

confounding. 

Selecting a fixed look-back period requires investigators to weigh competing 

priorities. A longer period allows for a more thorough characterization of database enrollees 

but also selects narrower, smaller cohorts. In many cases, at least in the US, database 

enrollment depends on a range of complex variables (e.g. employment, socioeconomic 

status, marital status / family structure, health status, age). It is unclear whether enrollment 

restrictions, which inadvertently condition on these characteristics, might impact findings. 

Despite widespread use of methods that clearly favor the principal of comparative 

information-accuracy in epidemiology, methodologists have debated its importance relative 

to other threats to validity, such as covariate misclassification or selection bias, which may 

be reduced by using all of the available data.4,7,12,13,104 Observing all historical (pre-exposure) 



	51 

information available in a database while requiring only minimal baseline continuous 

enrollment has been proposed as a possible compromise which might improve capture of 

relevant medical history and selection of more inclusive, representative cohorts.4,7 The 

common argument against using all-available look-backs is that, for many research 

questions, we might expect the completeness and longitudinal breadth of available data to 

vary informatively between exposure (e.g. when comparing users to non-users) or outcome 

groups, threatening validity of estimates.  

To date, there has been limited research exploring the use of all-available data to 

characterize patient medical histories, primarily using simulations of simplified scenarios.4,104 

Only one paper has been published exploring use of all-available look-backs in actual data 

with multiple interrelated covariates but not addressing the issue of cohort selection.14 Thus, 

we sought to evaluate the application of multiple look-back approaches to select patients 

and classify covariates in an observational cohort study set in the Medicare claims 

database. In this study, we estimate the effects of statin initiation (compared to non-

initiation) after an outpatient office visit on 1) a null outcome (6-month cancer incidence) and 

2) a protective outcome (2-year all-cause mortality). 

4.2 Methods 

4.2.1 Study population 

We used a 20% random sample of Medicare fee-for-service beneficiaries with at 

least 1 month concomitant parts A, B, and D coverage, to identify all outpatient visits 

observed between 2007 to 2012 when the patient could have received a new statin 

prescription. For all look-back approaches, we required a minimum of six months of 

continuous Part A, B, and D enrollment before the potential index visit (see exposure below) 

and at least one Part D claim within this period. During the six months preceding the index 

visit, patients were required to have a diagnosis or procedure code indicative of elevated 

cardiovascular risk and no medications or diagnosis codes indicative of strong 



	52 

contraindications for statin therapy. These eligibility criteria were meant to imitate those of 

the Heart Protection Study.87 

We identified three cohorts by applying different look-back periods to the set of 

potential index visits identified using the 6-month period above. For the all-available 

database history approach, we required no additional continuous enrollment, but excluded 

all visits preceded by any observable statin claims or cancer (other than non-melanoma skin 

cancer) diagnosis/treatment. When applying the conventional one- or 3-year fixed look-back 

periods, we further restricted the cohort to those continuously enrolled throughout the entire 

look-back and then excluded visits with prevalent statin use or cancer history within these 

look-back periods. When beneficiaries had multiple eligible outpatient visits, we selected the 

first eligible visit within each exposure group (i.e. the first eligible initiation visit and the first 

eligible non-initiation visit). A study schematic illustrating the overall study design is 

presented in Figure 4.1. 

4.2.2 Exposure 

We classified each index outpatient visit as either a statin initiation or non-initiation 

by evaluating whether there was a claim for a statin dispensing at a pharmacy in the 

subsequent 14 days.  

4.2.3 Outcomes and follow-up 

In separate analyses, we evaluated the effect of statin initiation on two outcomes 1) 

incident cancer within six months and 2) all-cause mortality within two years. For both, 

follow-up began on the day after the 14-day exposure assessment window (15 days after 

the index outpatient visit). Individuals with either outcome during this 14-day window (≈0.4% 

of visits) were excluded. For both outcomes, we censored follow-up when individuals 

disenrolled from the study database or the end of available data, December 31, 2012. For 

the short-term cancer outcome, we also censored follow-up when patients died or switched 
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exposures. Exposure switching was defined as a statin fill for non-initiators and 14 days 

without medication coverage for initiators. 

4.2.4 Covariates 

We used the index visit claim to assess information on patient demographics (age, 

sex, race, geographic region, and calendar year). Then, using the various look-back 

approaches, we assessed historical claims to classify baseline health behaviors, diagnoses 

and procedures using CPT, HCPCS and ICD-9 codes associated with Part A and B claims 

and baseline medication use using NDC codes associated with Part D claims. We described 

utilization variables as rates (e.g. # outpatient visits per month). 

4.2.5 Statistical analyses 

 Within each cohort, we evaluated covariate imbalance between initiators and non-

initiators using the average standardized mean difference105 and then used multivariate 

logistic regression to estimate a propensity score (i.e. baseline probability of statin initiation 

conditional on baseline covariates)106 corresponding to each index visit in the cohort. 

Propensity score models included all variables that were identified as risk factors for the 

outcome using any look-back approach. A more detailed description of the approach to 

variable selection for the propensity score model is available in Appendix 4.2 and the sets of 

selected variables for each outcome are given in the footnote of Table 4.1. 

In each analysis, we estimated crude and adjusted hazard ratios for the effect of 

interest using Cox proportional hazards models. We used the robust variance to estimate 

confidence intervals to account for beneficiaries who entered the cohort twice (for an 

initiation and non-initiation).99 We adjusted estimates to account for differences in measured 

baseline covariates using standardized mortality ratio weighting (SMRW) with and without 

1% asymmetric trimming of the propensity score.19,66,107 In a sub-analysis of the cancer 

outcome, we accounted for competing risk of mortality by fitting the Fine and Grey 

subdistribution hazards model.89,90 We used the cumulative hazard function to plot 
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cumulative incidence curves estimates of the risk difference (i.e. the difference in cumulative 

incidence at each point in time) over the course of follow-up. 

For the 6-month cancer analysis, we anticipated a null effect, since it is implausible 

for any statin exposure to have a causal effect on the incidence of clinically-detectable 

cancer within such a short interval after initiation.108 While this effect should be null, we 

expected estimates to be biased by uncontrolled differences in selection, baseline cancer 

risk and cancer surveillance during follow-up. Thus, we estimated mean squared error 

(MSE) using the equation: MSE = (1 – log-HR)2 + (Standard Errorlog-HR)2. For the analysis 

evaluating the effect of statins on mortality, the results of two meta-analyses served as 

alloyed gold standards.15,16 

4.2.6 Sub-analyses 

 Unlike the primary analysis, which applied the same look-back uniformly for all study 

components (e.g. exclusion of prevalent statin users, assessing confounders for 

adjustment), we conducted a sub-analysis varying each component individually and holding 

the others fixed. This allowed us a more granular exploration of the mechanisms through 

which look-backs might alter findings. We also conducted a sub-analysis with an active 

comparator, i.e. high-potency statins vs. low-potency statins.  

This study was reviewed and approved by University of North Carolina’s institutional 

review board (study: 16-1066). All analyses were conducted in SAS 9.4 (SAS Institute, Cary, 

NC, USA) and figures were produced using SAS 9.4 or R 3.3.1 (R Foundation for Statistical 

Computing; Vienna, Austria). 

4.3 Results 

The all-available cohort (71,347 initiators, 476,832 non-initiators) was slightly smaller 

than the 1-year fixed cohort (86,923 initiators, 559,471 non-initiators) and much larger than 

the 3-year fixed cohort (18,918 initiators, 204,249 non-initiators) (Table 4.1). As 

implemented here, the all-available look-back had a far less restrictive continuous 
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enrollment requirement compared to the 1-year look-back. However, the all-available cohort 

was smaller than the one year because it excluded more patients with identifiable history of 

statin use and/or cancer (Figure 4.2). With respect to the proportions of patients excluded 

for having prior statin use and cancer history, the all-available approach was less restrictive 

than the 3-year approach, but much more restrictive than the 1-year approach (Figure 

A4.3.1). Among non-initiators, cancer incidence during follow-up was elevated in cohorts 

selected using shorter fixed look-backs (1-year: 2.0% vs. 3-year: 1.5%). Cancer incidence in 

the all-available cohort most closely resembled that of the 3-year fixed cohort. For all look-

backs, the inclusion criteria for recently elevated cardiovascular risk was most frequently 

met by the presence of either diabetes or stroke. 

In the all-available cohort, non-initiators had less available Part A/B history (median: 

23 months, IQR: 19-38) compared to initiators (median: 31 months, IQR: 21-47) (Figure 

A4.3.2). The same was also true for Part D database enrollment history among non-initiators 

(median: 20 months, IQR: 14-30) and initiators (median: 27 months, IQR: 18-41). The 

amount of available database history was nearly identical across levels of both the cancer 

and mortality outcomes. 

In Figure 4.3 we present the proportion of the cohort with observable history of statin 

claims (Figure 4.3a) or cancer (Figure 4.3b) when all-available data was considered, 

stratified by the calendar year of the index visit. The corresponding figure for the active 

comparator sub-analyses is available in Figure A4.3.3. Compared to non-initiators, initiators 

in the 1-year look-back cohort were more likely to have identifiable history of statin use; 

however, in the 3-year look-back cohort, the two groups were similar. In the 1-year look-

back cohort, 46% and 30% of initiators and non-initiators (respectively) had identifiable 

baseline statin use when all available data was considered. For both fixed look-back 

approaches, non-initiators were more likely to have identifiable cancer history than initiators. 

Misclassification was less frequent in the cohorts selected using longer look-backs. Due to 
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the left-truncation of the Medicare data in calendar time (in 2007), the all-available approach 

was less informative in earlier calendar years (i.e. since in earlier calendar years less data 

history was available).  

It is important to note that most beneficiaries who entered the study twice entered the 

study as a non-initiator prior to entering as an initiator. The proportion of initiators who had a 

dual-entry in the cohort as a non-initiator did not vary widely by look-back approach, ranging 

from 70% of initiators for the 3-year approach to 75% for the 1-year (Table A4.1.1). 

Compared to non-initiators, initiators were younger, used more preventive health 

services / screening, and were more likely to be diabetic (Table A4.1.2). Broadly speaking, 

the all-available approach tended to identify greater imbalance in measured covariates 

compared to fixed look-back approaches, although in most cases not by much (Figure 4.4,). 

For all look-back approaches, covariates were well balanced (standardized difference <5%) 

after SMR-weighting. Propensity score distributions under each look-back approach are 

presented in Figure A4.3.4 and Figure A4.3.5.  

In analyses of the 6-month cancer outcome, SMRW-adjusted estimates of the 

hazard ratio generated using fixed look-backs ranged from 0.79 (95% CI: 0.73-0.84, MSE: 

1.54) for the 1-year to 1.05 (95% CI: 0.90-1.21, MSE: 0.92) for the 3-year fixed look-back 

(Table 4.1). The SMRW-adjusted HR estimate for the all-available approach (HR: 0.90, 95% 

CI: 0.83-0.98, MSE: 1.22) was more biased than the 3-year approach but more precise. In 

the 6-month cancer analysis, SMRW-adjustment had little impact on estimates, especially in 

the case of the 1-year look-back.  

For the outcome of 2-year all-cause mortality, we observed substantial confounding 

in the crude estimates (Table 4.1). Crude HR estimates were very similar between the look-

backs, spanning from 0.47 to 0.50. Point estimates of the HR were similar for all look-back 

approaches after applying SMRW adjustment. The adjusted estimate produced by the all-

available approach (HR: 0.77, 95% CI: 0.74-0.80) was similar to the estimate produced by 
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the 3-year fixed look-back (HR: 0.82, 95% CI: 0.76-0.88), but was more precise. All results 

were consistent after 1% asymmetric propensity score trimming (data not shown). Results 

from the active comparator sub-analyses are presented in Table A4.1.3. 

 In the sub-analysis independently varying the look-back to define different study 

components, estimates were generally insensitive to look-back choice (Table 4.1). An 

important exception is that in the 6-month cancer analysis, estimates dramatically (and 

significantly) improved when we excluded patients with prior cancer history using the all-

available approach (HR=0.94, 95% CI: 0.84,1.04) or 3-year fixed look-back (HR=0.93, 95% 

CI: 0.84, 1.03) instead of a short 6-month look-back (HR=0.69, 95% CI: 0.65, 0.74). In the 2-

year mortality analysis, estimates were most sensitive to the choice of look-back used to 

exclude prevalent statin users. Using all-available or longer fixed look-backs moved 

estimates towards the null and increased the observed mortality in the cohort. Independent 

variation in the continuous enrollment requirement and assessment of confounders (for 

adjustment in propensity scores) resulted in negligible movement in estimates. 

In Figure 4.5, we present cumulative estimates of the risk difference over the course 

of the 6-month follow-up for each look-back approach. (The corresponding cumulative 

incidence curves are available in Figure A4.3.6 and Figure A4.3.7). Risk differences 

estimated using all-available and 3-year fixed look-backs were generally closer to the 

presumed truth (null) than the estimates produced using 1-year fixed look-backs. 

Throughout most of follow-up, the adjusted 3-year look-back estimate is the closest to the 

true null though, by the end of follow-up, the magnitude of the bias in the all-available 

estimate was comparable. The results of the short-term cancer analysis accounting for the 

competing risk of mortality were identical to the primary analysis (data not shown). Figure 

4.6 presents the cumulative risk difference estimates for the 2-year mortality analysis. 

Throughout follow-up, estimates produced by the different look-back approaches overlapped 

one another nearly perfectly. 
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4.4 Discussion 

For the effects explored in these analyses, differences in estimates produced using 

all-available and 3-year fixed look-backs were small, with substantial overlap in confidence 

intervals (Table 4.1). Point estimates produced by the 3-year look-back were slightly less 

biased than the all-available approach, but less precise. In claims studies, bias is typically of 

greater concern than precision. However, it is still necessary to understand trade-offs in bias 

and precision, since their relative importance will depend on the specific study question and 

population. Generally speaking, the all-available approach tracked closely with the 3-year 

look-back in sub-analyses where we independently varied specific look-back components 

(holding the others fixed).   

Two meta-analyses evaluating the effect of statin use (vs. non-use) on 5-year 

mortality among elderly patients with established cardiovascular risk estimated risk ratios of 

0.85 (95% CI: 0.78, 0.93)16 and 0.78 (95% CI: 0.65, 0.89).15 After SMRW-adjustment and 

trimming, all look-back approaches produced point estimates for 2-year mortality HR that fell 

in the plausible range between the point estimates for the risk ratios estimated by these 

meta-analyses. Two randomized double-blinded trials evaluating effects over shorter follow-

up (two109 and three110 years) produced estimates of 0.76 (95% CI: 0.51, 1.00) and 0.75 

(95% CI: 0.49, 0.99), respectively. Trial estimates may provide a reasonable benchmark. 

However, we cannot use them to assess the bias of the estimates produced in our study 

since we are evaluating statin effectiveness, not efficacy, in a broader, more heterogeneous 

population than was evaluated in the trials. 

In the analyses we present, there were four key aspects of the cohort that were 

affected by the look-back period (Table 4.1 presents results of individually varying each 

component): the continuous enrollment requirement, exclusion of prevalent statin users, 

exclusion of patients with a history of the cancer outcome, and assessment of confounders.  

We discuss the way in which the look-back approaches affected each of these in turn. 
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4.4.1 Imposing continuous enrollment requirements 

We compared statin initiators and non-initiators because it seemed especially 

plausible that these exposure groups would exhibit striking differences in the 

accuracy/availability of database information (e.g., as a function of health services utilization 

and available database history). Indeed, due to our design, we observed less database 

history among non-initiators, with the median Part A/B look-back being about 8 months 

shorter among non-initiators. We did not observe meaningful variation in available database 

history with respect to either the cancer or the mortality outcome. In sub-analyses, 

independently varying the continuous enrollment requirement had little impact on crude or 

adjusted effect estimates (Table 4.1). 

4.4.2 Excluding prevalent statin users 

 Proper exclusion of prevalent statin use is necessary to correctly align time at risk 

after true initiation. A substantial proportion of cohorts selected using short fixed look-backs 

had identifiable prior statin use when all available data was considered. Unrecognized prior 

statin exposure appeared non-differential when using a longer fixed look-back but was more 

common among initiators when using a short fixed look-back. This may indicate that short 

fixed look-backs are prone to including prevalent users (e.g. patients paying out-of-pocket, 

recent/short-term discontinuers). Presumably, these patients were identified and excluded 

by the longer 3-year look-back. Independently varying the look-back for excluding prevalent 

statin users produced changes in estimate in the 2-year mortality analysis but not the 6-

month cancer analysis (since the true effect in the cancer analysis is null) (Table 4.1). 

4.4.3 Excluding prevalent cancer cases 

 Considering all-available data, the short 1-year look-back cohort incorrectly included 

18% and 23% of initiators and non-initiators (respectively) who had observable cancer 

history in the database (Figure 4.3b). A possible explanation for why initiators had less 

unidentified cancer history might be that they were younger and that approximately 70% of 
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initiators entered the cohorts as non-initiators prior to entering as initiators. It may also be 

driven by differential surveillance. Initiators were more likely to have undergone cancer and 

other health screenings. Initiators’ superior cancer surveillance within the fixed look-back 

period may reduce the number of unrecognized cancers in the cohort that can be 

reclassified using data outside the look-back period. Failing to properly exclude patients with 

observable cancer history in the database is more likely to bias estimates of the effect of 

statins on short-term cancers, where the truth is known to be null. We observed this in the 

sub-analysis independently varying exclusion for patients with a history of the cancer 

outcome, producing meaningful improvements in estimates when using longer look-backs 

(e.g. 3-year or all-available approaches) to exclude these patients (Table 4.1). This is the 

most plausible explanation for why the all-available and 3-year fixed analyses of the short-

term cancer outcome produced less biased estimates than the 1-year fixed look-back. 

4.4.4 Assessment and control for confounding 

 To informally evaluate the impact of different look-backs on identifying and adjusting 

for confounding, we can observe change in crude estimates after SMRW adjustment. 

Unfortunately, in the evaluation of the short-term cancer outcome, the only analysis where 

we can reasonably estimate bias and MSE, SMRW adjustment had a nearly negligible 

impact on estimates (Table 4.1). However, in the mortality analysis, where SMRW 

adjustment produced large changes in estimates indicating a more prominent role of 

measurable confounding, we observed substantial overlap in estimates before and after 

adjustment. This may indicate that the information obtained from more distal database 

history captured by longer look-backs is of limited use. This finding is consistent with the 

findings of Nakasian et al. who compared short fixed look-backs to all-available approaches 

in an analysis of a commercial claims database.14 In the sub-analysis independently varying 

the look-back used to assess confounders, the all-available (HR=0.79) and 3-year (0.80) 
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look-back estimates for 2-year mortality were only slightly lower compared to those produce 

by shorter fixed look-backs (1-year: HR=0.83).  

This study has some important limitations. Since this paper explores an applied 

example in real-world data, it is difficult to know the truth or evaluate true bias as earlier 

simulation work has. Single empirical examples have, however, previously been 

successfully used to compare different study designs.111 Also, it is likely that analyses of the 

short-term cancer outcome remains confounded by variables that we could not measure in 

the Medicare data. Minimal change in the cancer estimates before and after adjustment 

indicates a limited ability to control for confounding when using claims data. However, in 

analyses of the mortality outcome, where SMRW adjustment resulted in substantial changes 

in estimates, all look-backs produced similar estimates. Furthermore, we selected a 

population with recently-observed elevated cardiovascular risk in order to assure that 

everyone would have a plausible indication for statin therapy. However, it is possible that 

our estimates remain confounded factors that we measure within the claims data, which 

may lead a physician to withhold statins from an otherwise indicated patient (e.g. frailty). Our 

design allowed the same patient to enter as both a statin initiator and non-initiator, and the 

great majority who did entered first as a non-initiator, i.e., with less available look-back. It is 

unlikely this impacted the relative performance of the different look-backs since the 

frequency of repeated patients in the cohort did not vary widely by look-back approach. 

Furthermore, we adjusted estimates using SMRW (which weights to the treated population), 

preventing us from double-counting patients who were eligible to enter the cohort in both 

exposure groups, since they can only appear once as an initiator. Finally, determinants of 

continuous enrollment, and thus performance of different look-back methods, may vary 

across different study questions, populations, and databases, which may limit the 

generalizability of our findings. 
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Further research exploring these approaches is needed. Formal quantitative bias 

analysis may be a promising method to explore (and/or bound) the impact that differential 

database history might have on the performance of different look-backs.112 Our decision to 

select each beneficiary’s first eligible visit may reduce the benefit of using all-available 

database information and potentially increases differential information accuracy by exposure 

status. Our motivation for using this approach was to provide a conservative evaluation of 

all-available look-backs in a potentially problematic setting. However, further research is 

needed exploring the performance of different look-back approaches when using alternative 

cohort selection strategies (e.g. randomly sampling across person-time). Our study design 

and choice of comparators prevented us from doing so here. 

This applied example contributes further evidence to the growing case for using all-

available look-backs to characterize patients in longitudinal database studies, particularly 

when the alternative option is to use a short fixed look-back (e.g. due to the statistical power 

required to estimate effects or the structure of the database). The case for all-available look-

backs is made stronger by the fact that the comparability of information accuracy in study 

groups being compared can be empirically evaluated (e.g. the amount of available baseline 

data, or the frequency of healthcare interactions), at least to some degree. The look-backs 

did not appear to vary substantially with respect to their ability to control for confounding. 

However, selecting a study population using all-available look-backs produced a cohort with 

less prevalent exposure and cancer reducing bias in analyses where exclusion of patients 

with prior cancers was essential. By not requiring long periods of continuous enrollment, 

cohorts selected using the all-available approach were broader and more clearly defined 

than cohorts selected using fixed look-backs, enhancing the precision and generalizability of 

estimates.



	

	

Table 4.1. Cohort sizes, outcome frequencies, and hazard ratios (crude and SMRW-adjusted) for primary analyses uniformly 
applying the same look-back approach for all components and sub-analyses varying the look-back of each component individually 

 

Look-back parameters Cohort size (N) 
 
 

Outcome 
frequency 

 

Hazard ratio (95% CI) 

Eligibility criteria Model 6-month cancer 2-year mortality 

Con 
Enr. 

BL 
statin 

Can 
Hist 

PS 
varsa NTotal

b NStatin
b %Can %Death Crude SMRW Crude SMRW 

Primary results         

1-year fixed 1yr 1yr 1yr 1yr 646,394 86,923 1.8% 8.4% 0.78 (0.73, 0.84) 0.79 (0.73, 0.84) 0.48 (0.47, 0.50) 0.79 (0.76, 0.82) 

3-year fixed 3yr 3yr 3yr 3yr 223,167 18,918 1.4% 8.5% 1.00 (0.87, 1.16) 1.05 (0.90, 1.21) 0.50 (0.46, 0.53) 0.82 (0.76, 0.88) 

All-available AA AA AA AA 548,179 71,347 1.5% 8.0% 0.85 (0.79, 0.92) 0.90 (0.83, 0.98) 0.47 (0.45, 0.49) 0.77 (0.74, 0.80) 

Varying look-back component         

Continuous 
enrollment 

requirement 

6mo 6mo 6mo 6mo 952,296  163,184  2.7% 7.8% 0.68 (0.66, 0.71) 0.64 (0.61, 0.67) 0.49 (0.48, 0.50) 0.80 (0.78, 0.82) 

1yr 6mo 6mo 6mo 817,987  137,984  2.7% 7.9% 0.69 (0.66, 0.72) 0.65 (0.62, 0.68) 0.50 (0.48, 0.51) 0.80 (0.78, 0.82) 

3yr 6mo 6mo 6mo 440,427  64,604  2.8% 7.8% 0.72 (0.67, 0.77) 0.69 (0.65, 0.74) 0.51 (0.49, 0.53) 0.82 (0.79, 0.85) 

Baseline 
statin use  

3yr 6mo 6mo 6mo 440,427  64,604  2.8% 7.8% 0.72 (0.67, 0.77) 0.69 (0.65, 0.74) 0.51 (0.49, 0.53) 0.82 (0.79, 0.85) 

3yr 1yr 6mo 6mo 372,173  40,687  2.9% 8.3% 0.70 (0.64, 0.76) 0.67 (0.61, 0.72) 0.51 (0.48, 0.53) 0.83 (0.79, 0.87) 

3yr 3yr 6mo 6mo 288,687  23,293  3.1% 8.8% 0.73 (0.66, 0.81) 0.70 (0.63, 0.78) 0.51 (0.48, 0.54) 0.85 (0.79, 0.90) 

3yr AA 6mo 6mo 255,267  19,779  3.1% 9.1% 0.72 (0.65, 0.80) 0.67 (0.60, 0.75) 0.51 (0.48, 0.54) 0.86 (0.80, 0.92) 

Cancer 
history 

3yr 6mo 6mo 6mo 440,427  64,604  2.8% 7.8% 0.72 (0.67, 0.77) 0.69 (0.65, 0.74) 0.51 (0.49, 0.53) 0.82 (0.79, 0.85) 

3yr 6mo 1yr 6mo 404,030  59,987  1.8% 7.8% 0.80 (0.74, 0.86) 0.82 (0.76, 0.89) 0.51 (0.49, 0.53) 0.83 (0.79, 0.86) 

3yr 6mo 3yr 6mo 340,814  51,929  1.3% 7.5% 0.91 (0.83, 1.01) 0.93 (0.84, 1.03) 0.51 (0.48, 0.53) 0.83 (0.79, 0.86) 

3yr 6mo AA 6mo 300,628  47,042  1.2% 7.5% 0.92 (0.83, 1.02) 0.94 (0.84, 1.04) 0.51 (0.49, 0.54) 0.83 (0.79, 0.87) 

Propensity-
score 

variables 

3yr 6mo 6mo 6mo 440,427  64,604  2.8% 7.8% 0.72 (0.67, 0.77) 0.69 (0.65, 0.74) 0.51 (0.49, 0.53) 0.82 (0.79, 0.85) 

3yr 6mo 6mo 1yr 440,427  64,604  2.8% 7.8% 0.72 (0.67, 0.77) 0.68 (0.63, 0.72) 0.51 (0.49, 0.53) 0.83 (0.79, 0.86) 

3yr 6mo 6mo 3yr 440,427  64,604  2.8% 7.8% 0.72 (0.67, 0.77) 0.67 (0.63, 0.72) 0.51 (0.49, 0.53) 0.80 (0.77, 0.83) 
3yr 6mo 6mo AA 440,427  64,604  2.8% 7.8% 0.72 (0.67, 0.77) 0.66 (0.62, 0.71) 0.51 (0.49, 0.53) 0.79 (0.76, 0.83) 

a Variables included in propensity score (PS) models for both the 6-month cancer analysis and the 2-year mortality analysis: sex, age 
(as a continuous linear term, continuous squared term, categorical term with 5-year categories), calendar year, race, inpatient 
stays/month (continuous linear term and categorical term divided by quintile), outpatient visits/month, skilled nursing facility 
admissions/month, unique drugs/month, smoking, substance abuse, anemia, COPD, dementia, hyperlipidemia, venous 
thromboembolism, cancer screening, cardiac stress test, colonoscopy, hs-CRP, sulfonylurea, insulin, home oxygen. Variables only 
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included in PS models for the 6-month cancer analysis: inclusion for diabetes (≤6-months), diabetes (>6-months), stroke (>6-
months), chronic liver disease (>six months), arthritis, rheumatoid arthritis, gastrointestinal bleed, PSA testing, creatinine. Variables 
only included in PS models for the 2-year mortality analysis: inclusion for stroke (≤6-months), chronic kidney disease (> 6-months), 
obesity, angiography, pulmonary circulation disorders, peripheral vascular disease, osteoarthritis, asthma, atrial fibrillation, 
psychiatric disorder, inflammatory bowel, paralysis, sepsis, vertigo, lipid panel, echocardiograph, fecal occult blood testing, ARB, 
diuretics, thiazide, ambulatory life support, weakness, wheelchair. 
b These counts denote unique observations in the dataset. Patients who enter the cohort twice for eligible initiations and non-
initiations are counted twice in the Ntotal statistic (one for each exposure). Since they cannot appear twice in the same exposure 
group, the Nstatin statistic denotes counts of unique patients.
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Figure 4.1. Study schematic 

 
a For each person, we kept only the first eligible outpatient visit within each exposure group 
(i.e. the first eligible initiation visit and the first eligible non-initiation visit).  
b We excluded any patients who had the cancer outcome or died in the 14-day exposure 
assessment period.
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Figure 4.2. Bar chart showing the proportion of distinct beneficiaries excluded for each of 
three eligibility criteria applied using different look-back approaches and the final proportion 
included in final cohorts 

 



	

	67 

Figure 4.3. Proportion of the 1-year fixed and 3-year fixed cohort with observable history in 
the database of A) statin use and B) cancer for the 1-year and 3-year look-back approaches 
	
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a When using the fixed look-back approaches, actual classification is constant over time. 
The upward slope of the curves shown in this figure reflect the diminished power of using 
all-available database history in earlier calendar years, when available historical data in the 
database is sparse.

A	

B	
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Figure 4.4. Average standardized mean difference for selected variables in the analysis of 
6-month cancer, for the crude (white) analysis and SMRW analysis before (black) and after 
(grey) 1% asymmetric trimming 

 
a Positive standardized differences indicate greater mean or proportion observed among 
initiators 
b Dashed grey lines mark standardized differences of -0.05 and 0.05 
c This figure presents all variables which 1) were included in the propensity score model for 
the 6-month cancer analysis, 2) had a crude standardized difference > 0.05 for any look-
back approach, and 3) was prevalent in at least 5% of users or non-users, for any look-back 
approach.
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Figure 4.5. Crude and SMRW-adjusted cumulative risk differences in the 6-month cancer 
analysis using the all-available, 3-year, and 1-year look-back approaches 

	 
a We smoothed the curves using penalized B-splines with 15 knots.
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Figure 4.6. Crude and SMRW-adjusted cumulative risk differences in the 2-year mortality 
analysis using the all-available, 3-year and 1-year look-back approaches 

 
a We smoothed the curves using penalized B-splines with 15 knots.
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CHAPTER 5 

 
PERFORMANCE OF FIXED AND ALL-AVAILABLE LOOK-BACK APPROACHES IN 

LONGITUDINAL DATABASE STUDIES: A PLASMODE SIMULATION 
 
 

5.1 Introduction 

In the last 30 years, there has been a dramatic increase in the utilization of 

secondary health data for research, primarily administrative billing and electronic health 

records databases. However, the quality of information available in secondary healthcare 

databases varies widely and both missing and misclassified data are commonplace.  

In longitudinal database studies, analysts typically characterize patient histories 

using look-back periods, which begin at some date of interest (e.g. the index or exposure 

date in a cohort study) and extends backward through time. In order to assure that all 

histories are classified with comparable accuracy, most studies apply fixed look-back 

periods that are the same length for every patient, ignoring the data outside of this period.1,2 

This approach is motivated by a desire to make covariate misclassification non-differential 

across important study variables (e.g. exposure, outcome, confounders). By doing so, the 

investigator seeks to assert that at least partial control for the confounder has been 

achieved, defined by Greenland as the scenario in which the adjusted estimate is closer to 

the truth than the unadjusted estimate.8  

However, using fixed-look back periods in database studies is an imperfect solution 

to the problem of differential misclassification, since variable classification is affected by a 

range of factors beyond just database enrollment. Plausible mechanisms exist whereby 

using short fixed look-backs may increase differential misclassification (e.g. by outcome, if 

coding and billing practices differ among sicker patients who are more likely to experience 
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the outcome).5,6 Even if fixed look-backs were able to produce non-differential 

misclassification, they are still unable to guarantee partial control for confounding unless a 

range of other criteria are also satisfied.8-10,12,47,67 Furthermore, look-backs require study 

populations be restricted to patients who are continuously enrolled in the database 

throughout the entire look-back period. Such restrictions may compromise the external 

validity of findings since they inadvertently condition on a range of factors that determine 

database enrollment. An alternate approach has been suggested which considers all 

available database history, regardless of whether that history is available for all patients.4,7  

Simulation studies have been conducted which indicate that all-available look-backs 

may be superior to fixed look-backs when classifying a confounder and cohort eligibility 

criterion.4,104 A study conducted in a commercial claims database found that using all-

available look-backs to classify confounders produces similar effects as short (i.e. 180 or 

365-day) fixed look-back approaches across five exposure-outcome pairs.14 However, this 

study was not designed to estimate bias. Furthermore, no literature exists evaluating the 

real-world (i.e. not simulated) performance of different look-back approaches when 

classifying eligibility criteria. The utility of using fixed look-backs depends on how informative 

the data is that they discard; if most predictors of exposure and outcome risk can be 

obtained from data proximal to the index date, fixed look-back periods may be preferable. 

The purpose of this study was to assess bias and precision of estimates produced 

using various look-back approaches applied within administrative claims data. We used 

plasmode simulation, which provided a controlled environment in which bias could be 

estimated, that still reflected the complex, interrelated structure of real-world claims data.17,18  

We produced adjusted rate ratios and rate differences using all available and fixed look-

back approaches to classify 1) a study eligibility criterion and 2) confounders adjusted for in 

analysis. 
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5.2 Methods 

5.2.1 Overview 

Plasmode simulation is a method that combines sampling (with replacement) from 

real-world source data with simulated components.17,18 The source data sampled to produce 

plasmode datasets was the Medicare Current Beneficiary Survey (MCBS) and linked 

Medicare fee-for-service claims.113-115 In the simulation, the MCBS interview data on 

treatment and disease history represent the true underlying health status, acting as 

independent predictors of the simulated exposure (conceptually: statin initiation) and 

outcome (conceptually: inpatient hospitalizations). We analyzed these plasmode datasets by 

applying the look-back approaches to the data available in the linked Medicare claims and 

then estimated bias by comparing to the true (simulated) treatment effect.  

5.2.2 Selection of the source cohort from MCBS data 

The MCBS Cost and Use survey is a nationally representative survey of Medicare 

beneficiaries with a rotating panel design (interviewing respondents three times per year for 

up to three years.113-115 The source cohort for the plasmode simulation included MCBS 

respondents who completed at least one full year of interviews (Cost and Use module) 

between 2009 and 2011. We created an observation for each full year of data, setting the 

index date as the annual Health Status and Functioning (Fall) interview; thus, one 

beneficiary generated could generate up to three observations in the source data. We 

restricted the cohort to respondents who were enrolled in Medicare Part A, B and D at the 

time of their index interview and who had complete MCBS data for all study variables. 

Figure 5.1 presents the study schematic used to select and assess the source data from 

MCBS and linked claims.  

5.2.3 MCBS covariates used as underling/true confounders 

For each observation in the source cohort, we used information collected during the 

Fall interview to assess demographics (age, sex), body-mass-index (BMI), any history of 
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diabetes, and routine cancer screening in the last year. We classified subjects as frail if they 

reported that a health condition caused them to avoid, have difficulty, or require assistance 

with any activity of daily living.116-120 Using MCBS data on prescribed medicine events (which 

is based on a combined assessment of Part D claims and respondent self-report), we 

assessed antihypertensive use in the two rounds leading up to the Fall interview. For certain 

variables, MCBS respondents provide information regarding two distinct time periods: 1) in a 

proximal period occurring within one year before the index date and 2) in the distal period 

beginning at least one year before the index date. These variables include: serious cancer 

(sites: lung, stomach, kidney, brain, throat, head, colon, uterus, ovary, cervix), and major 

adverse cardiovascular events (myocardial infarction/heart attack, congestive heart failure, 

angina pectoris, or stroke/brain hemorrhage). A table displaying detailed definitions for all 

MCBS variables is included in Table A5.2.1. The procedure we used to select which MCBS 

variables were included in the simulation is described in Appendix 5.1. 

5.2.4 Assessing true prior use of statins 

For each observation, we defined prior statin use as any reported exposure in any 

available MCBS or claims data before the Fall interview.  

5.2.5 Simulation 

We generated 1,500 plasmode datasets by selecting 10,000 observations with 

replacement from the source data, then simulating exposures and outcomes (Figure 5.2). 

5.2.5.1 Exposure simulation 

For each observation we calculated exposure probability as a function of 1) an 

intercept term calibrated to produce a pre-specified exposure prevalence, 2) all “true 

confounders” as reflected in MCBS. 

! !"#$%&'! = 1 =  1
1 + !!(!! ! !!∗!!)

  
where: 

β! = intercept term, calibrated to produce a pre-specified exposure prevalence 
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β! = a vector of log-ORs for the independent relative effect of each MCBS confounder (i) 

on the likelihood of exposure (Table A5.2.2) 

!! = a vector of values for each confounder (i) pulled from the MCBS data. 

The log-ORs corresponding to each MCBS variable (β!) were deliberately specified 

to produce unidirectional upwards confounding, making exposure appear less 

protective/more harmful (Table A5.2.2). This prevents multiple biases from balancing one 

another out, which may obscure results. To simulate a binary exposure (statin initiation), we 

drew from a Bernoulli distribution using the exposure probabilities produced by the above 

equation. We varied the intercept term between those with and those without true prior statin 

use such that those with prior statin use were more likely to fill a statin after the index 

interview. 

5.2.5.2 Outcome simulation 

We calculated the expected number of outcomes over a fixed time period as a 

function of 1) an intercept term calibrated to produce a pre-specified outcome incidence, 2) 

exposure status, and 3) all “true confounders” as reflected in MCBS. 

!!: ! ! = !(!! ! !!∗!"#$%&'! ! !!∗!!)  

!" 

            !":  ! ! = β!  +  β! ∗ !"#$%&'! +  β! ∗ !! 
where: 

β! = intercept term, calibrated to produce a pre-specified outcome incidence (number of 

events Y over a fixed time period) 

β! = the log-RR (or RD) for the effect of interest 

β! = a vector of log-RRs (RDs) for the independent effects of each MCBS confounder (i) 

on the outcome incidence (Table A5.2.2) 

!! = a vector of values for each confounder (i) pulled from the MCBS data. 

For each observation, we calculated two expected number of outcomes, one 

corresponding to each level of exposure. The number of outcomes Y under each exposure 



	

	76 

was assigned using a random number from a Poisson distribution based on these expected 

values. The background outcome incidence rate (in absence of exposure) was simulated to 

be the same among those without prior statin exposure as well as prior statin users. 

However, the effect of exposure on outcome incidence was less pronounced among prior 

statin users (RR=0.8 or RD=-0.04) than among true new users (RR=0.4 or RD=-0.08). Thus, 

incorrectly including prior statin users in the study would bias statin treatment effect 

estimates towards the null. A more detailed description of the procedure used to calibrate 

intercept terms and specify β! are included in Appendix 5.1. 

5.2.6 Using look-back approaches to assess observable-proxies in claims data  

Next, we used the linked claims data to assess claims-derived proxies for the true 

confounders/modifiers measured in MCBS. Within each of the 1,500 plasmode datasets, we 

selected a distinct cohort for each look-back approach restricting to respondents who had 1) 

the required continuous enrollment (all-available look-back: 6-months, 1-year fixed: one-

year, and 3-year fixed: three years), and 2) no claims-documented statin use in the look-

back.  

We used Part A and B claims to identify diagnoses and care associated with 

diabetes and cancer, cancer screening (mammograms, pap-smears, rectal exams, and 

prostate specific antigen testing), and major cardiovascular events, including myocardial 

infarction, stable/unstable angina, heart failure, and stroke. In addition to Part A and B 

claims, we used durable medical equipment (e.g. home oxygen, hospital bed or wheelchair) 

to capture proxies for frailty.116 We assessed Part D prescription claims to identify use of 

anti-hypertensives (angiotensin converting enzyme (ACE) inhibitors, angiotensin-II receptor 

blockers (ARB), and anti-diabetics (biguanides, sulfonylurea, insulin, thiazolidinedione, DPP-

4 inhibitors).	
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5.2.7 Analyses and statistics 

Within the cohorts selected with each look-back approach, we used logistic 

regression to model the probability of the simulated treatment conditional on the observed 

claims data (i.e. propensity scores). We used stabilized inverse probability of treatment 

weighting (IPTW) to estimate adjusted rate ratios and rate differences.  

We calculated bias by contrasting effect estimates with the known/simulated truth, 

which we calculated by comparing simulated counterfactuals within a cohort formed with 

perfect selection based on the true MCBS data on prior statin use. We present the median 

bias from the 1,500 plasmode datasets and 95% confidence intervals estimated by drawing 

the 2.5th and 97.5th percentiles of the distribution of the statin effect estimates. We assessed 

the precision of estimates using confidence interval width (CIW), which we calculated as the 

difference between the log-RR confidence limits. We assessed the precision-bias trade-off 

using the root-mean-squared-error (rMSE), which is equal to the square root of the squared 

bias plus the squared Monte Carlo standard error. We also evaluated the proportion of the 

1,500 iterations in which Walker’s equipoise criterion was met (i.e. where greater than 50% 

of both exposed and unexposed patients have preference scores between 0.3 and 0.7).100 

The net bias in IPTW-adjusted estimates represents a summation of two component 

biases: 1) the residual confounding bias caused by misclassification / inadequate 

ascertainment of true confounders (hereafter referred to as residual confounding), and 2) 

modification bias resulting from the inclusion of subjects with prior statin use who have a 

diminished effect of interest (hereafter referred to as prior user bias). We estimated effects 

isolating each form of bias (detailed explanation provided in Table 5.1). We estimated the 

effect isolating residual confounding bias due to misclassification by adjusting for 

confounding using IPTW models based on the imperfect claims, within a perfectly selected 

cohort based on the true MCBS data on prior statin use. We estimated the effect isolating 

bias caused by modification / inclusion of prior statin users by comparing simulated 
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counterfactuals within an imperfectly selected cohort, based on claims evidence of prior 

statin use. Appendix 5.1 highlights some additional considerations for interpreting estimates 

of component bias. 

Sub-analyses 

In order to explore the performance all-available look-backs in scenarios with 

extreme differential information inaccuracy, we conducted sub-analyses in which we 

intentionally left-truncated data histories differentially by exposure status, outcome status, 

and both simultaneously. For example, in one analyses, we considered all data history up to 

one year among initiators while considering all data up to three years of data among non-

initiators. A more detailed description of these and additional sub-analyses we conducted is 

available in Appendix 5.1. 

5.3 Results 

5.3.1 Characteristics of the source (MCBS) cohort  

The source cohort included 5,176 total observations, 3,025 (58.4%) with identifiable 

prior statin use and 2,151 (41.6%) with no prior statin use (Table 5.2). Among patients 

without prior statin use, 71% were female, the mean age was 79.6 years, and the mean BMI 

was 26.3 kg/m2. Approximately 13% had difficulty with at least one activity of daily living and 

10% had a history of a serious (non-skin) cancer. Statin users were more likely to have a 

history of diabetes (30% vs. 17%) and major cardiovascular events (40% vs. 21%), 

compared to patients with no prior statin use. For most variables, the claims-derived proxies 

assessed using any look-back approach led to over-ascertainment of the “true” MCBS 

confounders, except for obesity. 

5.3.2 Characteristics of the plasmode cohorts selected using different look-back 

approaches 

Plasmode cohorts (N=10,000) included a median of 4,155 observations with truly no 

prior statin use (Table A5.2.3). The median sample size of cohorts selected using the all-
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available approach was similar (4,125 people). Cohorts selected using the 1-year look-back 

were 13% larger, including a median 4,661 observations, while the cohorts selected using 

the 3-year look-back were 20% smaller, including a median 3,314 observations. Variation in 

sample size was primarily driven by the continuous enrollment requirement. The all-

available approach’s 6-month requirement excluded only 1% of subjects while the 3-year 

requirement excluded 22%. 

The proportion of patients excluded due to prior statin use did not vary widely 

between the look-back approaches (58% for the all-available and 3-year look-backs, 50% 

for the 1-year) (Table 5.3). However, this translated to dramatic differences in the proportion 

of patients in the cohorts who were prior statin users. In cohorts selected using 1-year look-

backs, 26% of initiators and 10% of non-initiators were prior users. In cohorts selected using 

all-available and 3-year look-backs, prior users comprised 14% and 13% of initiators, 

respectively, and 5% and 4% of non-initiators, respectively. It follows logic that in all cohorts, 

inclusion of prior users is more likely among initiators.  

As shown in Figure 5.3, in cohorts selected using the all-available approach, 

initiators had more observable database enrollment for Medicare Parts A and B than non-

initiators but similar Part D enrollment. Differences were slightly more pronounced by 

outcome status, with those with outcomes having more available database history. 

Regardless of exposure and outcome status, the majority had greater than 3-years of 

cumulative Part A, B, and D enrollment in the database.  

In a propensity-score model fit using the true MCBS confounders, Walker’s equipoise 

criteria was met for ≈60% of both simulated exposure groups. The all-available approach 

which used time-stratified adjustment produced equipoise estimates closest to the truth 

(76% of initiators and 81% of non-initiators). 
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5.3.3 Bias in effect estimates produced using different look-back approaches 

The crude (unadjusted) estimates produced by the different look-back approaches 

ranged from 0.73 to 0.80, compared to the true effect (RR=0.40). IPTW-adjusted estimates, 

meanwhile, ranged from 0.59 to 0.66, indicating that substantial bias remained for all of the 

look-back approaches, even after adjustment. The precision of estimates produced by each 

look-back approach was a function of how many people were selected for inclusion. Thus, 

the more inclusive 1-year look-back consistently produced more precise estimates (log-RR 

CI width = 0.21) than the all-available (0.24) and 3-year (0.25) look-back approaches. For all 

look-back approaches, confidence intervals widened only slightly after incorporating time-

stratified adjustment. 

Net bias in IPTW-adjusted rate ratio estimates (Figure 5.4) were similar across all 

look-back approaches and had substantially overlapping confidence intervals. However, the 

all-available approach using time-stratified adjustment consistently produced the least 

biased point estimate (bias=0.39 [0.28, 0.50]) and the best rMSE (0.399). The 1-year look-

back performed worst in terms of both bias (0.50 [0.39, 0.60]) and rMSE (0.499).  

Isolating the two individual sources of bias (i.e. inadequate confounding adjustment 

and inclusion of prior users) provides a more informative picture. When isolating the residual 

confounding bias, the all-available approach using time-stratified adjustment again 

outperformed the other methods (bias=0.33 [0.21, 0.45]). However, the point estimate for 

the 3-year look-back was, in this case, slightly more biased than the 1-year look-back. The 

fact that the 3-year look-back estimate produced less net bias was due to its superior 

performance eliminating prior users. Isolating the prior user bias, the 1-year look-back was 

significantly more biased (0.13 [0.10, 0.16]) than all other approaches (e.g. time-stratified all-

available: 0.06 [0.04, 0.09]).  
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5.3.4 Sub-analyses 

All findings were nearly identical in parallel simulations of a rate difference effect, 

homogenous on the absolute scale (Figure A5.3.1, Figure A5.3.2). In sub-analyses where 

observable database history was left-truncated informatively by exposure and/or outcome 

status (Figure 5.5), the all-available approach always generated at least partial control for 

confounding. The only exception was that in one sub-analysis with informative left-truncation 

(3-yr[E=1|O=0], 2-yr[E=0|O=0], 1-yr[E=1|O>0], 6-mo[E=1|O=0]) and a harmful effect of the 

simulated exposure, the IPTW adjustment failed to reduce any confounding compared the 

crude (Figure A5.3.3). Results from additional sub-analyses are available in Appendix 5.1. 

5.4 Discussion 

The findings of this plasmode simulation provide a detailed picture of how different 

look-back approaches perform, albeit within a narrow setting. Estimates produced by the 

different look-back approaches did not vary widely; however the all-available approaches 

repeatedly produced the least biased point estimates. Approaches employing time-stratified 

adjustment for confounders were marginally superior to time-fixed adjustment. These 

findings were robust to: 1) variation in the effect of exposure (protective and harmful), 2) 

estimation of multiplicative effects using the rate ratio and absolute effects using the rate 

difference, 3) multiple sources of bias (residual confounding bias due to misclassification, 

prior user bias), 3) simulation of time-stratified and time-fixed confounding, and 4) 

adjustment for time-stratified and time-fixed confounders. All-available approaches produced 

larger and more inclusive cohorts than long-fixed look-backs, and included substantially 

fewer prior statin users than short fixed look-backs. 

We used plasmode simulation, an innovative approach which leverages desirable 

features of both simulation methods (i.e. a known truth and the ability to estimate bias) and 

applied analyses (i.e. complex, interrelated data structures). By design, the MCBS survey 

data represented the true underlying confounders in our simulation. However, the survey 
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data (much of which relies on self-report) is an imperfect indicator of true underlying health 

status which confounds associations. It is likely that for certain covariates the claims data 

may be a more accurate measure of true underlying health status than self-reported survey 

data. It is possible that the higher covariate prevalences we observed in the claims data may 

be the result of under-reporting in the MCBS survey data.  

We conducted a range of sub-analyses in which we informatively left-truncated the 

amount of database enrollment such that information accuracy was extremely differential 

with respect to exposure and/or outcome status. Even though these sub-analyses were 

intentionally extreme, it is notable that the all-available approach never led to confounding-

adjusted estimates that were more biased than the crude, which is one of the primary 

concerns that discourages researchers from using all-available look-backs. It is difficult to 

say whether we can expect this finding to hold in other study settings with different variable 

frequencies and confounding structures or in different databases where enrollment history 

may vary more widely. Regardless, a thorough investigator can assess whether using all-

available look-backs will produce differential information accuracy by considering the 

amount of database history available within relevant sub-groups. 

Our findings are consistent with recently published research demonstrating that in 

real-world settings, using all-available look-back approaches produces similar estimates to 

conventional fixed look-backs. Recent work by Nakasian, Rassen & Franklin compared 

adjusted hazard ratios produced by different look-back approaches applied to five different 

studies conducted within a commercial insurance claims database (Optum/United).14 They 

used all-available and short fixed look-backs (180 or 365 days) to ascertain and adjust for 

confounders. Our study expands on the findings of Nakasian et al. by 1) calculating actual 

bias using simulated counterfactuals (thus allowing us to better evaluate the performance of 

each approach), 2) evaluating longer fixed look-backs, 3) evaluating the use of look-backs to 
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implement eligibility criteria and 4) evaluating the use of time-stratified adjustment for 

confounding.  

In the cohort selected with a one-year fixed look-back, we assessed that 26% of 

initiators actually had prior (unidentified) use of a statin at any point before the index date. 

This proportion is compatible with the results of another study (conducted using MCBS data) 

which found that 20% of new users identified in claims data actually had prior statin use 

within the last year.121 Our findings indicate that even long look-backs may not be 

completely able to eliminate prior users from the cohort. In cohorts selected using the all-

available approach, 14% of assumed “new-users” still had unidentified prior statin 

exposures. In many studies, prior use of the exposure will be much more rare. In these 

cases, the benefit of using an all-available look-back to reduce prior user bias may be less 

pronounced. 

 The marginally superior performance we observed in estimates produced by all-

available look-backs is consistent with results generated from pure simulation studies. 

Brunelli et al. found that all-available look-backs were superior to fixed look-backs when 

ascertaining covariates for adjustment.4 A similar simulation demonstrated the same finding 

when applying all-available look-backs to implement study eligibility criteria.104 While 

informative, the findings produced by these simulations are limited since they aren’t 

designed to capture the complex structure of real-world data or realities encountered in 

actual study settings. For example, our study and others conducted in applied settings 

indicate that the amount of database history does not appear to vary widely between 

exposure groups (especially when using well-chosen active comparators). This may (to 

some degree) alleviate some of the theoretical concerns about differential information 

accuracy biasing estimates produced by the all-available look-back, at least within this study 

setting. 
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Fixed look-backs reduce differential misclassification by selectively ignoring 

information. Sholom Wacholder warned against such approaches in a series of papers 

outlining principals for control selection in case-control designs, “…study designs that 

tolerate errors in one group so that errors are not differential, should be examined carefully. 

Strict adherence to the principle of comparable accuracy used to ensure non-differential 

misclassification in choosing controls for case-control studies may not be advisable when it 

would require controls with as much error as cases instead of more accurate 

controls.”12,13,122  

 There are some important limitations to our findings which should be highlighted. 

Using a simulation design affords a certain degree of control over study parameters (e.g. the 

magnitude and direction of the effect-of-interest); however it is unclear whether or not these 

findings can be generalized to other study settings (e.g. other databases, study 

populations). We evaluated a fairly narrow source population (i.e. MCBS respondents who 

completed a full year of interviews), and findings could vary in other study populations. For 

example, only 1.3% of the source cohort lacked the required 6-month continuous Part A/B/D 

enrollment (Table 5.3, Figure 5.3). It is also important to note that studies have been 

published in which all available and fixed look-back approaches produce meaningfully 

different estimates.123 The fact that this study and the Nakasian et al. study both failed to 

produce meaningfully different estimates may indicate further interrogation is needed to 

identify settings in which all-available approaches are appropriate. 

Finally, the limited pool of respondents in the source MCBS data limited us to 

simulating cohorts of N=10,000, which is substantially smaller than typical administrative 

claims analyses. This prevented us from simulating rare outcomes and exposures and also 

reduced our power to detect meaningful differences in estimates produced using the 

different approaches. In order to assure collapsibility of simulated effects, we simulated a 

recurring outcome (conceptually, inpatient hospitalizations) and estimate rate ratios. 
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However, our simulation assumed a fixed complete follow-up for all subjects; since rate 

ratios are approximately equal the risk ratio in this setting, these findings should be 

applicable to analyses estimating risk ratios.124 

5.5 Conclusions 

Our findings indicate that all-available look-back approaches may outperform fixed 

look-back approaches in pharmacoepidemiologic studies based on claims data. Our results 

also provide context for investigators seeking to understand differences between estimates 

produced by all-available and fixed look-back approaches. Investigators employing all-

available look-backs should check to ensure the amount of database history does not vary 

dramatically across levels of exposures, outcomes, and confounders. The fact that point 

estimates produced by the all-available look-back approach were marginally less biased 

than fixed look-backs may not necessarily indicate meaningful differences. However, they 

should encourage us to continue to explore and test the performance of all-available 

approaches applied in different databases, study populations, and comparisons. When 

designing a study, the investigator should always take into consideration the relevant time-

periods for different confounding variables and eligibility criteria. When selecting a look-back 

approach, a well-designed study should always consider how much look-back is needed, 

whether differential classification can be identified in the data, and how continuous 

enrollment restrictions will impact external validity.
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Table 5.1. Explanation of plasmode data used for effect estimation and bias calculations 
 Exclusion of prior 

statin users Confounding adjustment Bias calculation Estimate 

Truth [RRtruth] MCBS data Contrast counterfactuals NA (Unbiased) 

Net [RRnet] 
Misclassification + modification 

Claims-derived 
proxy variables 

IPTW using claims-
derived proxy variables ln(RRnet) - ln(RRtruth) 

Residual confounding due to 
covariate misclassification 
[RRRC] 

“True” MCBS data  IPTW using claims-
derived proxy variables ln(RRRC) - ln(RRtruth) 

Modification due to including  
patients with prior exposure [RRPE] 

Claims-derived 
proxy variables Contrast counterfactuals ln(RRPE) - ln(RRtruth) 



	

	

Table 5.2. Characteristics of the 2009-2011 Medicare Current Beneficiary Survey respondents included in the plasmode 
simulation source cohort 

MCBS survey variables 
(true confounders) 

Simulation 
parameters 

  No prior statin 
exposure 

Prior 
exposure  All-avail. 1-year 3-year 

Exposure 
odds ratio 

Outcome 
rate ratio 

(N=2,151)a (N=3,025)a Claims-derived proxy 
variables 

(N=2,188) (N=2,622) (N=2,268) 
Mean S.D. Mean S.D. Mean Mean Mean 

Age (years)b  0.996 1.06 79.6 7.62 78.3 6.98 Age (years)c [mean] 79.4 79.2 79.4 
     Age (squared term)b 1.001 -                
BMI (kg/m^2)b  1.015 0.72 26.3 5.28 27.7 5.26     
     BMI (squared term)b 1.002 1.005                
   N % N %  % % % 
     Overweight (BMI: 25-30) - - 762 35.4% 1,238 40.9% Obesityc 6.1% 3.8% 6.0% 
     Obese (BMI≥30) - - 455 21.2% 844 27.9%        
Sex: femaleb 0.50 0.56 1,531 71.2% 1,914 63.3% Sex: femalec 69.7% 68.9% 69.4% 
Routine cancer screeningb,d 0.50 0.61 1,192 55.4% 1,920 63.5% Any cancer screeningc,d 72.3% 47.0% 66.3% 
        Mammogram 43.5% 27.6% 40.4% 
       Pap smear 23.7% 7.6% 17.5% 
       Prostate check 26.1% 17.9% 24.3% 
Serious (non-skin) cancerb - - 204 9.5% 239 7.9% Cancerc 28.9% 21.7% 27.6% 
     Within prior yearb 4.00 3.75 37 1.7% 33 1.1%        
     Before prior yearb 2.00 1.96 167 7.8% 206 6.8%        
Major CV eventb - - 456 21.2% 1,205 39.8% Any major CV event 36.4% 25.5% 35.9% 
     Within prior yearb 4.00 2.22 111 5.2% 317 10.5% Acute myocardial infarctionc 2.4% 1.2% 2.4% 
     Before prior yearb 2.00 1.77 345 16.0% 888 29.4% Anginac 2.5% 1.3% 2.6% 
                Stable anginac 6.3% 3.7% 6.0% 
           Heart failure (acute)c 17.4% 12.1% 17.2% 
           Strokec 23.2% 14.0% 22.8% 
Ace inhibitor or ARB 0.50 0.5 1,031 47.9% 1,860 61.5% Any ACE inhibitor or ARB 52.0% 47.0% 51.0% 
(prior two interviews)b           ACE Inhibitorc 37.7% 31.4% 36.3% 
           ARBc 22.6% 18.2% 21.5% 
Diabetes (ever)b 2.00 2.00 359 16.7% 908 30.0% Any diabetes indicator 29.6% 26.6% 29.4% 
           Diabetes (diagnosis)c 29.3% 26.4% 29.2% 

 
          Diabetes (complications)c 7.8% 6.4% 7.8% 

 
          Biguanidec 9.4% 8.1% 9.0% 

 
          Sulfonylureac 7.6% 7.1% 7.7% 

 
          Insulinc 3.2% 3.2% 3.3% 

 
          Thiazolidinedionec 3.6% 2.3% 3.0% 

 
          DPP-4 Inhibitorsc 1.9% 1.5% 1.9% 

Frailty (difficulty with any 2.00 3.02 272 12.6% 321 10.6% Any frailty indicator (broad) 55.7% 37.7% 52.7% 
 activity of daily living)b,e       Ambulatory life supportc 28.5% 11.4% 22.7% 
       Difficulty walkingc 23.7% 14.1% 23.4% 

 
  

    
HF Frailtyc 23.4% 16.0% 23.1% 

 
  

    
Rehabc 14.5% 7.8% 14.2% 

 
  

    
Weaknessc 14.4% 8.9% 14.4% 
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MCBS survey variables 
(true confounders) 

Simulation 
parameters 

  No prior statin 
exposure 

Prior 
exposure  All-avail. 1-year 3-year 

Exposure 
odds ratio 

Outcome 
rate ratio 

(N=2,151)a (N=3,025)a Claims-derived proxy 
variables 

(N=2,188) (N=2,622) (N=2,268) 
Mean S.D. Mean S.D. Mean Mean Mean 

 
  

    
Home oxygenc 8.6% 7.1% 8.2% 

 
  

    
Wheelchair 5.4% 2.4% 4.2% 

       Home hospital bed 2.4% 1.4% 2.3% 
a In total, the source data included 5,176 observations from 3,334 beneficiaries. The 2,151 observations with no recorded statin 
use before the index date included 1,456 unique MCBS respondents (an average of 1.48 observations per respondent). The 
3,025 observations with recorded statin use before the index date included 1954 unique respondents (an average of 1.55 
observations per respondent).  
b These “true” confounding variables were used to simulate exposures and outcomes 
c These variables were included in propensity score models. 
d Routine cancer screening (within the last year) was defined as either a mammogram or pap smear among women or a digital 
rectal prostate exam or blood test for rectal cancer among men. 
e Activities of daily living: bathing, dressing, eating, walking, using the toilet, or getting in and out of a bed/chair.
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Table 5.3. Simulation characteristics and overview of results for each look-back approach (median results among 1,500 
iterations) in the primary simulation with a protective effect of exposure and time-stratified confounding (+/- 1-yr) 
  % of cohort in 

equipoisea Exclusions (%)a Prior statin use 
(% of final cohort)a 

Rate ratio 
(true effect = 0.40) 

Rate difference 
(true effect = -0.08) 

 Initiator 
Non-

initiator 
Cont. 
enroll. 

Prior 
statin use Initiator 

Non-
initiator Crude IPTW 

C.I. 
width Crude IPTW 

C.I. 
width 

MCBS 58% 61% 0% 58% 0% 0% 0.70 0.40 (0.36, 0.45) 0.24 0.54 -0.08 (-0.21, 0.03) 0.24 
Time-stratified 
adjustment (+/- 6-mo)             

     All avail. 76% 80% 1% 58% 14% 5% 0.74 0.59 (0.53, 0.67) 0.24 0.50 0.26 (0.14, 0.39) 0.24 
     1-yr 77% 81% 7% 50% 26% 10% 0.80 0.65 (0.58, 0.72) 0.22 0.53 0.30 (0.19, 0.42) 0.23 
     3-yr 78% 82% 22% 58% 13% 4% 0.73 0.60 (0.53, 0.68) 0.26 0.55 0.32 (0.17, 0.47) 0.30 
Time-fixed adjustment             
     All avail. 80% 84% 1% 58% 14% 5% 0.74 0.61 (0.54, 0.69) 0.24 0.50 0.30 (0.18, 0.43) 0.25 
     1-yr 79% 83% 7% 50% 26% 10% 0.80 0.66 (0.59, 0.73) 0.21 0.53 0.32 (0.20, 0.43) 0.23 
     3-yr 81% 85% 22% 58% 13% 4% 0.73 0.63 (0.55, 0.71) 0.25 0.55 0.37 (0.22, 0.53) 0.31 
Sub-analysesb             
     3yr(E=0)|1yr(E=1) 60% 61% 1% 53% 27% 5% 0.78 0.65 (0.57, 0.73) 0.25 0.49 0.29 (0.16, 0.44) 0.27 
     3yr(E=1)|1yr(E=0) 58% 65% 1% 54% 15% 11% 0.76 0.61 (0.54, 0.69) 0.24 0.52 0.29 (0.16, 0.42) 0.25 
     3yr(O=0)|1yr(O>0) 78% 82% 1% 54% 21% 7% 0.84 0.70 (0.63, 0.77) 0.20 0.59 0.35 (0.23, 0.46) 0.23 
     3yr(O>0)/1yr(O=0) 81% 84% 1% 53% 22% 9% 0.70 0.61 (0.54, 0.68) 0.24 0.42 0.25 (0.14, 0.37) 0.23 
     Differential info #1c 54% 55% 1% 53% 16% 11% 0.73 0.56 (0.49, 0.63) 0.25 0.47 0.20 (0.06, 0.34) 0.27 
     Differential info #2d 47% 46% 1% 52% 27% 6% 0.81 0.73 (0.64, 0.84) 0.28 0.52 0.41 (0.26, 0.58) 0.32 
     Differential info #3e 52% 57% 1% 53% 16% 11% 0.80 0.71 (0.62, 0.80) 0.25 0.56 0.40 (0.28, 0.54) 0.26 
     Differential info #4f 55% 58% 1% 52% 28% 6% 0.85 0.65 (0.56, 0.74) 0.28 0.57 0.27 (0.13, 0.43) 0.30 
a These results reflect the results from the simulation of a homogenous rate ratio. However, the values of these statistics were 
nearly identical in simulations of a homogenous rate difference. 
b In the sub-analyses listed below, we restricted the cohort to respondents with at least 3-years continuous enrollment then 
intentionally censored the look-back selectively by exposure and outcome status. 
c Differential Info #1: 3-yr(E=1|O>0), 2-yr(E=1|O=0), 1-yr(E=0|O>0), 6-mo(E=0|O=0) 
d Differential Info #2: 3-yr(E=1|O=0), 2-yr(E=0|O=0), 1-yr(E=1|O>0), 6-mo(E=1|O=0) 
e Differential Info #3: 3-yr(E=0|O>0), 2-yr(E=1|O>0), 1-yr(E=0|O=0), 6-mo(E=0|O>0) 
f Differential Info #4: 3-yr(E=0|O=0), 2-yr(E=0|O>0), 1-yr(E=1|O=0), 6-mo(E=1|O>0)
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Figure 5.1. A schematic illustrating the structure of the plasmode dataset layering 
real-world data (the Medicare Current Beneficiary Survey [MCBS] and linked Medicare 
claims) with simulated exposures and outcomes.  
The source cohort included MCBS respondents from 2009-2011. We simulated exposures 
and outcomes as a function of covariates ascertained from the self-reported MCBS interview 
data (bottom). We then applied each look-back approach using the linked claims data (top) 
to produce adjusted effect estimates. 
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Figure 5.2. A directed acyclic graph demonstrating the relationships between real and 
simulated data components in the plasmode simulation. 
Exposures and outcomes were simulated as a function of covariates assessed in the MCBS 
survey data. The effect of exposure on the outcome was diminished among patients with 
prior statin exposures. We applied look-backs within the MCBS-linked Medicare Part A/B/D 
claims data. 
	

	
 

a The relationships between the covariates assessed in the MCBS data and the simulated 
outcome were based on the observed relationship between those same covariates and 1-
year mortality, evaluated using a multivariate Cox model (these methods are described in 
more detail in Appendix 5.1).
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Figure 5.3. Box-and whisker plots displaying distribution of available Medicare Part A, 
B, and D data history (in months) using the all-available look-back approach, stratified 
by A) exposure and B) outcome status. 
Regardless of exposure or outcome status, a majority of people have greater than three 
years of Part A/B/D history. A) The amount of available database history does not vary 
strongly by exposure status, although initiators have slightly more Part A/B history. B) 
Compared to those without outcomes, those with outcomes appeared to have more Part A/B 
history and slightly more Part D history. 
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Figure 5.4. Forest plot displaying performance of various look-back approaches when 
estimating IPTW-adjusted estimates of the rate ratio in simulations of a multiplicative 
exposure effect. 
Bias estimates are accompanied by 95% confidence intervals (CIs) and corresponding 
estimates of the root-mean-squared-error (rMSE). For each look-back approach, the plot 
includes estimates of the net (total) bias, residual confounding bias due to misclassification 
of covariates, and bias due to inclusion of prior statin users. (Note: the corresponding figure 
for the rate difference analysis is presented in Figure A5.3.1.) 
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Figure 5.5. Forest plot displaying performance of the all-available look-back approach 
in sub-analyses with highly differential information accuracy A) by exposure or 
outcome status, and B) by exposure and outcome status (simultaneously) when 
estimating IPTW-adjusted estimates of the rate ratio in simulations of a multiplicative 
exposure effect. 
E=exposure, O=outcome. Bias estimates are accompanied by 95% confidence intervals (CIs) and 
corresponding estimates of the root-mean-squared-error (rMSE). For each sub-analysis, the plot 
includes estimates of the net (total) bias and residual confounding bias due to misclassification of 
covariates. Partial control for confounding holds in all analyses since the residual confounding bias 
due to misclassification of covariates is closer to zero than the crude (unadjusted) bias. (Note: the 
corresponding figure for the rate ratio analysis is presented in Figure A5.3.2.) 
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CHAPTER 6 
 

CONCLUSIONS AND PUBLIC HEALTH SIGNIFICANCE 
 
 

6.1 Summary of specific aims 

In recent decades, observational analyses of secondary health data have played an 

increasingly prominent role in evaluating the safety and efficacy of medical products and 

procedures. Research conducted using secondary health data has a number of advantages 

over prospective randomized clinical trials: they are less costly, can be completed in less 

time, and include more representative patient populations. However, misclassification of 

study variables remains a key concern for studies of secondary health data. Furthermore, in 

analyses conducted using secondary health data, accuracy of data elements may vary 

systematically with respect to relevant study groups (e.g. by exposure or outcome status). 

Despite these limitations, the growing importance of secondary data analysis is undeniable, 

aided by ongoing emergence of new technologies and methods intended to make it easier 

to collect125,126, securely store/access127-129, link1,130,131, and efficiently conduct 

analyses75,101,102 using aggregated data. It is important that this growth is accompanied by 

rigorous evaluations of the methods used for conducting health research within large 

databases. These evaluations have far-reaching significance, as they can inform the design 

of studies conducted within a wide range of clinical disciplines and data sources.   

In an effort to reduce systematic variation in information accuracy, analyses 

conducted within secondary health databases typically assess patient histories using fixed 

look-back periods. Fixed look-back approaches restrict study populations to people with 

some minimum required period of continuous database enrollment and ignore any data 

outside this period. An alternate approach has been suggested in which all available 
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database history is considered, regardless of whether that history is available for all 

patients.4,7 The primary concern with all-available data approaches is that estimates may be 

biased by the differential misclassification of study variables (e.g. confounders adjusted for 

in analysis, or eligibility criteria used to include/exclude subjects from the study population).  

The current paradigm favoring use of fixed look-backs in large database research is 

more heavily influenced by misclassification theory than by empirical evaluations of real 

data. However, even in theory using fixed-look backs in database studies is an imperfect 

solution to the problem of differential misclassification, since variable classification is 

affected by a range of factors beyond just database enrollment. Furthermore, it is important 

that best practices in database research be informed by evaluations in real-world data. 

Theory alone cannot address, for example, the impact of conditioning study populations on 

continuous database enrollment. Furthermore, the utility of using fixed look-backs instead of 

all-available approaches depends on how informative the data is that they discard. If this 

information is especially informative, it may be worth using an all-available approach and 

tolerating some degree of differential information accuracy. Sholom Wacholder described 

such a trade-off in a series of papers12,13,122 outlining principals for control selection in case-

control studies: 

“…study designs that tolerate errors in one group so that errors are not differential 
should be examined carefully. Strict adherence to the principle of comparable 
accuracy used to ensure non-differential misclassification in choosing controls for 
case-control studies may not be advisable when it would require controls with as 
much error as cases instead of more accurate controls.”12 

 
6.1.1 Summary of specific aim 1 

In an applied example assessing the impact of statin initiation on short-term cancer 

incidence within six months (a negative control) and 2-year mortality, we were able to 

evaluate the impact of fixed and all-available data approaches on both cohort selection and 

confounding adjustment. Existing evaluations of look-back approaches have focused 

primarily on the latter; no existing research explores how different look-back approach affect 



 

	97 

study populations via continuous enrollment restrictions and the classification of eligibility 

criteria.  

Our findings agree with those of other studies conducted within real-world data which 

show that the all-available approach does not produce superior control for confounding 

compared to fixed look-back approaches. However, we did observe meaningful changes in 

estimates when different look-backs were used to define exclusion criteria (i.e. having prior 

exposures or the cancer outcome). The all-available approach and the 3-year fixed 

approach dramatically out-performed the shorter 1-year fixed approach. This finding should 

motivate further research considering the role that look-backs play in selecting cohorts. 

We found that the all-available approach was superior to applying a short (1-year) 

fixed look-back, which failed to exclude a large number of people who had unrecognized 

prior exposures and/or history of the cancer outcome. Point estimates produced by the 

three-year look-back approach were slightly less biased than the all-available approach; 

however, it was substantially less precise as a majority of patients did not meet the 3-year 

continuous enrollment requirement and were excluded. The impact of continuous enrollment 

restrictions and the cost of the resulting loss in precision likely varies across different 

database settings and study populations. Outside of the Medicare database evaluated in 

this study, lengthy continuous enrollment requirements may be even more restrictive, 

particularly when churn in database enrollment is very common (e.g. electronic health 

record databases or administrative claims databases for commercial or employer-

supplemented insurance). By foregoing lengthy continuous enrollment requirements, the all-

available approach selected broader and more clearly defined cohorts, enhancing the 

precision and generalizability of estimates. 

6.1.2 Summary of specific aim 2 

We implemented an innovative method, plasmode simulation17,18, to study the 

performance of different look-back approaches in a setting which 1) reflected the complexity 
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real-world data structures, and 2) allowed the true effect (and thus bias in estimates) to be 

known. We sought to impersonate the relationships between real-world health status that 

confound effect estimates and the proxy variables that can be observed in an administrative 

claims study. To do so, we simulated exposures and outcomes as a function of real-world 

self-report data from the Medicare Current Beneficiary Survey (MCBS), and then proceeded 

to conduct cohort analyses within the linked claims using the various look-back approaches. 

Layering multiple real-world data sources and simulated data elements provided a detailed 

view of how different look-back approaches affect the validity of findings, under a range of 

study conditions. This approach is promising and could be useful to evaluate the impact of 

many study design decisions, particularly those that depend on complex data structures that 

are difficult to imitate in a purely simulated setting.  

In simulations, estimates produced by the different look-back approaches were 

comparable in terms of bias. The all-available approach produced the least biased point-

estimates. For all look-back approaches, including the all-available, estimates were 

marginally improved when covariates definitions were stratified by time (i.e. within the last 

six months and before the last six months). Cohorts selected by the all-available approach 

were larger and more inclusive than cohorts selected by long fixed look-backs. Compared to 

short fixed look-backs, the all-available approach led to cohorts that were better classified, 

including fewer patients who had prior exposures to statins.  Findings were consistent 

across a range of simulated scenarios, including 1) variation in the effect of exposure 

(protective and harmful), 2) estimation of multiplicative effects using the rate ratio and 

absolute effects using the rate difference, 3) multiple sources of bias (residual confounding 

bias due to misclassification, prior user bias), and 3) simulation of time-stratified and time-

fixed confounding.  

The fact that estimates produced by the different look-back approaches largely 

overlapped may be partially due to the limited sample size available in the MCBS data. 
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Furthermore, moderately superior point estimates produced by the all-available approach 

does not necessarily imply meaningfully superior performance. Regardless, the fact that all-

available approaches produce similar estimates to the 3-year look-back is promising. It 

indicates that when we use all-available approaches, the bias caused by systematic 

differences in available database history is either negligible or offset by improvement in 

cohort selection and confounder classification. In the absence of this concern, all-available 

look-backs may be inherently preferable to fixed look-back approaches, since they select 

broader, more representative study populations.  

Our findings may indicate that using all-available look-backs to classify patient 

histories is superior to the widely used fixed look-back approach. However, our evaluation of 

these look-back approaches was conducted within a narrow study setting (i.e. a Medicare 

claims analysis of statin exposures). Further evaluation of look-back approaches within 

other study populations and databases is needed before all-available approaches are 

needed before wide adoption can be justified. However, these findings provide strong real-

world evidence that it is worthwhile for investigators to at least consider estimates produced 

by all-available look-backs in sub-analyses. Furthermore, we provide context to investigators 

seeking to understand the mechanisms through which the different look-backs may produce 

different estimates.



 

	

APPENDIX 2.1: DIRECTED ACYCLIC GRAPHS DEMONSTRATING INDEPENDENT AND NON-DIFFERENTIAL 
MISCLASSIFICATION 

	
	

	
               E = exposure, D = disease, C = confounder, C* = measured C, UC = determinants of measurement error in C 
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E = exposure, E* = measured E, D = disease, D* = measured D, C = confounder, C* = measured C, UC = determinants of 
measurement error in C, UE = determinants of measurement error in E, UD = determinants of measurement error in D 
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E = exposure, E* = measured E, D = disease, D* = measured D, C = confounder, C* = measured C, UC = determinants of 
measurement error in C, UE = determinants of measurement error in E, UD = determinants of measurement error in D
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APPENDIX 2.2: FIGURE DISPLAYING BIAS IN EFFECT ESTIMATES AFTER 
STRATIFICATION ON A MISCLASSIFIED STUDY COVARIATE 

	
 
Figure A2.2.1. Example stratum-specific estimates and adjusted parameters from a 
scenario with non-differential and independent misclassification of a dichotomous study 
confounder (C), relative to the crude and the true effect 

 
a Parameters for the scenario displayed:  

Pr(C)=70% 
Specificity=1 
Sensitivity=0.8 
Pr(E=1|C=0)=40% 
Pr(E=1|C=1)=80% 
Pr(D=1|E=1,C=0) = 10% 
Pr(D=1|E=0,C=0) = 10% 
Pr(D=1|E=1,C=1) = 80% 
Pr(D=1|E=0,C=1) = 80% 
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APPENDIX 4.1: AIM 1 SUPPLEMENTAL TABLES 
 
 
Table A4.1.1. Description of beneficiaries who enter as both an initiator and non-initiator in 
cohorts formed by multiple look-back approaches. 
  All-available 1-year 3-year 
Total beneficiaries 497,203 581,186 210,018 
     Non-initiation only 425,856 494,263 191,100 
     Initiation only 20,371 21,715 5,769 
     Initiation & non-initiation 50,976 65,208 13,149 
          % of non-initiations 11% 12% 6% 
          % of initiations 71% 75% 70% 
     Average date gap (days)a 417 416 296 
    
% of initiators with date gap:    
          ≤ 7 days 1% 1% 1% 
          8-14 days 1% 1% 2% 
          15-30 days 5% 5% 5% 
          31-90 days 11% 11% 11% 
          91-180 days 11% 12% 13% 
          181-365 days 14% 13% 15% 
          > 365 days 29% 32% 23% 
          No dual entry 29% 25% 30% 
a The date gap describes, for a subject who entered the cohort with both an eligible statin 
initiation visit and an eligible non-visit, the absolute value of the time difference between the 
two index visit dates.



 

	

Table A4.1.2. Unadjusted distribution of baseline covariates by exposure group, for each look-back approach 
  All-available 1-year fixed 3-year fixed 
  Initiators Non-   Initiators Non-   Initiators Non-   

Covariate description % % Stdz
Diff % % Stdz

Diff % % Stdz
Diff 

*  In 6-month cancer PS model 
† In 2-year mortality PS model                   

Continuous variables 
Mean  
(SD) 

Mean  
(SD) 

Stdz
Diff 

Mean  
(SD) 

Mean  
(SD) 

Stdz
Diff 

Mean  
(SD) 

Mean  
(SD) 

Stdz
Diff 

Age (years) *† 74.1 (6.7) 76.2 (8.2) -0.27 75.4 (6.6) 77.2 (8.0) -0.25 76.7 (6.2) 78.8 (7.6) -0.30 
Inpatient stays/10 years *† 2.2 (4.5) 2.8 (5.9) -0.12 2.7 (6.4) 3.5 (7.7) -0.12 2.1 (3.9) 2.7 (4.9) -0.12 
Outpatient visits/year *† 7.5 (5.8) 7.1 (5.9) 0.08 9.4 (6.8) 8.7 (6.6) 0.10 8.0 (5.7) 7.8 (5.7) 0.03 
SNF admits/10 years *† 0.3 (1.5) 0.6 (2.6) -0.15 0.4 (2.5) 0.9 (3.7) -0.14 0.3 (1.5) 0.7 (2.2) -0.17 
Unique drugs/year *† 7.1 (5.3) 7.5 (6.2) -0.08 9.0 (5.2) 8.6 (5.4) 0.08 4.9 (2.8) 4.9 (2.9) 0.01 
Demographics          
Sex: female *† 65.9% 68.4% -0.05 66.7% 68.5% -0.04 67.6% 71.3% -0.08 
<70 years *† 34.5% 30.0% 0.10 25.3% 23.4% 0.04 13.6% 13.5% 0.00 
70 to 74 years *† 26.0% 20.3% 0.13 28.2% 21.6% 0.15 33.0% 24.2% 0.20 
75 to 79 years *† 19.1% 17.6% 0.04 21.8% 19.0% 0.07 25.1% 20.7% 0.10 
80 to 84 years *† 12.7% 15.2% -0.07 15.1% 17.0% -0.05 16.9% 18.8% -0.05 
85 to 89 years *† 6.0% 10.5% -0.16 7.5% 11.9% -0.15 8.5% 13.7% -0.17 
90 to 94 years *† 1.5% 4.9% -0.19 1.9% 5.5% -0.19 2.5% 6.8% -0.20 
95 to 99 years *† 0.2% 1.3% -0.13 0.3% 1.5% -0.13 0.4% 1.9% -0.15 
100+ years *†   0.2% -0.05     -0.05     -0.06 
Year: 2007 *† 16.3% 35.4% -0.45             
Year: 2008 *† 23.2% 19.6% 0.09 22.2% 40.4% -0.40       
Year: 2009 *† 18.6% 12.9% 0.16 21.6% 17.9% 0.09       
Year: 2010 *† 14.9% 11.0% 0.12 19.6% 15.0% 0.12 35.7% 54.8% -0.39 
Year: 2011 *† 13.8% 10.5% 0.10 18.7% 13.7% 0.14 33.3% 24.4% 0.20 
Year: 2012 *† 13.2% 10.6% 0.08 17.9% 13.1% 0.13 31.0% 20.8% 0.23 
Race: White *† 76.2% 80.6% -0.11 77.1% 81.9% -0.12 78.4% 81.6% -0.08 
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  All-available 1-year fixed 3-year fixed 
  Initiators Non-   Initiators Non-   Initiators Non-   

Covariate description % % Stdz
Diff % % Stdz

Diff % % Stdz
Diff 

Race: Black *† 10.4% 9.6% 0.03 9.7% 8.7% 0.04 9.1% 8.6% 0.02 
Race: Hispanic *† 5.4% 3.6% 0.08 5.4% 3.6% 0.09 4.9% 3.5% 0.07 
Race: Asian *† 4.7% 3.4% 0.06 4.6% 3.3% 0.07 4.4% 3.7% 0.04 
Race: North American Native *† 0.7% 0.5% 0.02 0.6% 0.5% 0.01 0.7% 0.6% 0.01 
Race: Other *† 2.4% 1.9% 0.03 2.3% 1.8% 0.04 2.4% 1.9% 0.03 
Race: Unknown *† 0.3% 0.3% 0.00 0.2% 0.2% 0.00 0.1% 0.1% -0.01 
Inclusion criteria                   
Incl: AMI 2.7% 1.5% 0.08 2.4% 1.5% 0.06 3.2% 1.4% 0.12 
AMI (6+ mos) 1.8% 1.4% 0.03 0.6% 0.7% -0.01 1.7% 1.9% -0.02 
Incl: Angioplasty 0.4% 0.3% 0.03 0.4% 0.2% 0.03 0.4% 0.2% 0.03 
Angioplasty (6+ mos) 0.5% 0.3% 0.04 0.1% 0.1% 0.01 0.4% 0.3% 0.02 
Incl: CABG 0.5% 0.1% 0.07 0.4% 0.1% 0.07 0.5% 0.1% 0.08 
CABG (6+ mos) 0.4% 0.2% 0.04 0.1% 0.1% 0.01 0.2% 0.2% 0.01 
Incl: Diabetes * 71.3% 58.1% 0.28 71.3% 58.3% 0.28 66.1% 57.7% 0.17 
Diabetes (6+ mos) * 59.7% 38.0% 0.44 55.0% 38.2% 0.34 59.4% 49.3% 0.20 
Incl: Endarterectomy † 3.1% 7.2% -0.19 3.2% 6.9% -0.17 3.6% 7.2% -0.16 
Endarterectomy (6+ mos) 4.9% 2.9% 0.10 1.8% 1.5% 0.02 5.6% 5.6% 0.00 
Incl: PTCA 1.5% 0.4% 0.12 1.4% 0.4% 0.11 1.5% 0.2% 0.13 
PTCA (6+ mos) 1.0% 0.5% 0.06 0.3% 0.2% 0.01 0.7% 0.6% 0.02 
Incl: Stable angina 7.7% 5.9% 0.07 7.7% 5.9% 0.07 8.1% 5.2% 0.12 
Stable angina (6+ mos) 6.9% 4.0% 0.13 2.9% 2.2% 0.04 7.1% 6.1% 0.04 
Incl: Stent 2.0% 0.5% 0.14 1.9% 0.5% 0.13 2.3% 0.4% 0.17 
Stent (6+ mos) 1.2% 0.6% 0.07 0.2% 0.2% 0.02 0.7% 0.6% 0.02 
Incl: Stroke † 29.7% 35.4% -0.12 30.8% 36.4% -0.12 34.8% 36.9% -0.04 
Stroke (6+ mos) * 23.8% 18.0% 0.14 13.3% 12.4% 0.03 29.0% 29.3% -0.01 
Exclusion criteria                   



 

	

107 

  All-available 1-year fixed 3-year fixed 
  Initiators Non-   Initiators Non-   Initiators Non-   

Covariate description % % Stdz
Diff % % Stdz

Diff % % Stdz
Diff 

Acute kidney injury (6+ mos) 2.0% 2.6% -0.04 0.8% 1.5% -0.07 2.6% 4.2% -0.09 
Chronic kidney disease (6+ mos) 
† 3.8% 4.6% -0.04 1.9% 3.6% -0.10 5.3% 7.9% -0.11 
Chronic liver disease (6+ mos) * 5.4% 5.2% 0.01 1.8% 3.1% -0.08 6.3% 7.6% -0.05 
Cyclosporine (6+ mos) 0.8% 0.8% -0.01 0.4% 0.7% -0.04 1.6% 1.9% -0.03 
Fibrate (6+ mos) 1.8% 1.3% 0.04 1.1% 1.4% -0.03 3.0% 2.6% 0.02 
Heart failure (6+ mos) 9.1% 11.7% -0.09 3.7% 8.0% -0.19 10.4% 15.8% -0.16 
Inflammatory muscle (6+ mos) 0.7% 0.9% -0.02 0.2% 0.4% -0.04 0.7% 1.2% -0.05 
Niacin (6+ mos) 0.6% 0.4% 0.04 0.3% 0.4% -0.02 1.0% 0.9% 0.01 
Health behaviors                   
Obesity † 12.6% 8.2% 0.14 7.9% 6.0% 0.07 13.4% 10.8% 0.08 
Smoking *† 14.1% 10.8% 0.10 9.0% 7.8% 0.04 15.8% 13.0% 0.08 
Alcohol use 1.9% 2.2% -0.02 0.9% 1.4% -0.05 2.0% 2.5% -0.04 
Substance abuse *† 9.8% 7.8% 0.07 6.1% 5.4% 0.03 10.1% 8.6% 0.05 
Comorbidities                   
Anemia *† 31.9% 33.3% -0.03 23.8% 28.0% -0.09 37.0% 42.8% -0.12 
Angina 6.2% 3.5% 0.13 3.8% 2.2% 0.09 6.2% 4.0% 0.10 
Angiography † 8.7% 4.0% 0.19 5.3% 2.6% 0.14 8.8% 4.7% 0.16 
Arterial embolism and thrombosis 2.0% 1.4% 0.04 1.1% 0.9% 0.02 2.2% 1.7% 0.03 
Pulmonary circulation disorders † 4.3% 4.3% 0.00 2.8% 3.2% -0.03 5.5% 6.2% -0.03 
Peripheral vascular disease † 28.2% 25.1% 0.07 21.5% 21.3% 0.01 32.5% 32.8% -0.01 
Arthritis * 64.6% 63.7% 0.02 51.4% 55.2% -0.08 72.0% 75.8% -0.09 
Osteoarthritis † 46.6% 45.7% 0.02 34.8% 37.6% -0.06 53.4% 57.3% -0.08 
Osteoporosis 31.7% 32.2% -0.01 22.5% 25.3% -0.07 38.3% 42.6% -0.09 
Rheumatoid arthritis * 10.0% 9.7% 0.01 6.8% 7.7% -0.03 11.5% 12.9% -0.04 
Asthma † 12.7% 11.8% 0.03 8.9% 9.3% -0.01 14.0% 14.6% -0.02 
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  All-available 1-year fixed 3-year fixed 
  Initiators Non-   Initiators Non-   Initiators Non-   

Covariate description % % Stdz
Diff % % Stdz

Diff % % Stdz
Diff 

COPD *† 30.6% 29.8% 0.02 22.8% 24.7% -0.04 33.1% 35.5% -0.05 
Atrial fibrillation † 14.8% 16.4% -0.04 12.2% 14.8% -0.08 17.5% 20.9% -0.09 
Dementia *† 15.1% 20.3% -0.14 11.7% 18.1% -0.18 18.2% 25.5% -0.18 
Depression 7.8% 9.9% -0.07 5.5% 7.8% -0.09 8.8% 12.2% -0.11 
Psychiatric disorder † 27.5% 30.8% -0.07 21.1% 26.9% -0.14 31.9% 38.2% -0.13 
Diabetes (complications) 19.7% 11.9% 0.21 16.1% 11.4% 0.14 19.8% 16.1% 0.10 
Dialysis 0.1% 0.1% 0.00 0.0% 0.0% -0.01 0.1% 0.1% 0.00 
ESRD 0.2% 0.2% -0.02 0.0% 0.1% -0.03 0.2% 0.3% -0.02 
GI bleed * 7.3% 7.0% 0.01 3.2% 4.1% -0.04 7.5% 9.1% -0.06 
Gout 6.3% 5.4% 0.03 4.4% 4.3% 0.01 7.6% 7.6% 0.00 
HIV 0.1% 0.1% 0.00 0.1% 0.1% 0.00 0.1% 0.1% 0.00 
Hyperlipidemia *† 88.1% 65.2% 0.56 83.6% 59.8% 0.55 88.1% 72.5% 0.40 
Lipid abnormality 88.9% 66.3% 0.56 84.5% 60.8% 0.55 88.8% 73.4% 0.40 
Hypertension 90.9% 84.9% 0.19 88.6% 82.7% 0.17 92.1% 89.9% 0.08 
Hyperthyroidism 3.9% 3.5% 0.02 2.2% 2.3% -0.01 4.3% 4.5% -0.01 
Inflammatory bowel † 4.1% 4.1% 0.00 2.2% 2.6% -0.03 4.6% 5.5% -0.04 
Ischemic heart disease 37.4% 29.9% 0.16 33.1% 27.4% 0.12 39.7% 34.4% 0.11 
Paralysis † 4.1% 4.2% -0.01 3.1% 3.4% -0.02 4.7% 5.3% -0.03 
Parkinsons 1.5% 2.8% -0.09 1.4% 2.7% -0.09 1.9% 3.4% -0.10 
Peptic ulcer 5.1% 4.7% 0.02 2.5% 2.9% -0.02 5.3% 6.0% -0.03 
Lupus 0.7% 0.7% -0.01 0.4% 0.5% -0.02 0.7% 1.0% -0.03 
Podiatric 14.9% 15.1% -0.01 10.9% 12.5% -0.05 17.4% 20.8% -0.09 
Psoriasis 2.0% 1.6% 0.03 1.2% 1.2% 0.00 2.2% 2.1% 0.01 
Rheumatic heart disease 6.8% 5.9% 0.04 4.2% 4.0% 0.01 8.0% 7.8% 0.01 
Sepsis † 20.4% 20.2% 0.00 11.4% 14.2% -0.08 23.3% 27.7% -0.10 
Vertigo † 27.0% 23.5% 0.08 17.3% 17.3% 0.00 31.6% 31.1% 0.01 
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  All-available 1-year fixed 3-year fixed 
  Initiators Non-   Initiators Non-   Initiators Non-   

Covariate description % % Stdz
Diff % % Stdz

Diff % % Stdz
Diff 

VTE *† 3.4% 3.7% -0.02 2.2% 2.8% -0.04 4.1% 5.0% -0.04 
Health screening & preventive                   
Apolipoprotein assay 1.4% 0.7% 0.07 1.2% 0.6% 0.06 1.8% 1.1% 0.07 
Lipid panel † 92.6% 76.0% 0.47 86.5% 66.7% 0.48 93.9% 83.8% 0.32 
Bone density 0.5% 0.5% 0.01 0.1% 0.2% -0.01 0.4% 0.4% 0.00 
Cancer screening *† 55.8% 46.0% 0.20 37.9% 34.4% 0.07 59.2% 53.9% 0.11 
Cardiac stress test *† 27.7% 17.8% 0.24 16.0% 11.3% 0.14 29.7% 21.8% 0.18 
Colonoscopy *† 9.1% 7.2% 0.07 3.1% 3.3% -0.01 9.0% 8.8% 0.01 
Echocardiograph † 40.6% 32.6% 0.17 28.2% 24.1% 0.09 47.3% 41.7% 0.11 
Fecal occult blood testing † 7.4% 6.4% 0.04 3.0% 2.6% 0.03 6.8% 5.8% 0.04 
hs-CRP *† 15.7% 12.4% 0.10 10.7% 9.3% 0.04 18.6% 17.2% 0.04 
PSA testing * 25.8% 20.5% 0.13 20.0% 17.0% 0.08 26.2% 22.1% 0.10 
Flu vaccination 57.3% 51.5% 0.12 51.1% 51.2% 0.00 65.8% 67.3% -0.03 
Pnemonia vaccination 19.2% 14.0% 0.14 9.1% 8.0% 0.04 20.7% 18.8% 0.05 
Medications                   
ARB † 23.4% 18.6% 0.12 22.5% 19.0% 0.09 26.3% 23.3% 0.07 
Beta blockers 41.2% 35.8% 0.11 41.4% 37.8% 0.07 45.9% 43.5% 0.05 
Biguanide 35.0% 17.4% 0.41 32.9% 18.3% 0.34 33.7% 21.2% 0.28 
Calcium channel blockers 31.3% 27.4% 0.09 31.2% 28.6% 0.06 36.9% 35.3% 0.03 
Creatinine * 3.5% 2.9% 0.04 1.9% 1.9% 0.00 3.6% 3.9% -0.02 
Diuretics † 41.2% 37.2% 0.08 38.0% 37.2% 0.02 46.7% 46.7% 0.00 
ACE Inhibitor 45.9% 33.6% 0.25 41.9% 33.4% 0.18 48.1% 40.6% 0.15 
Thiazide † 30.7% 24.5% 0.14 26.9% 23.4% 0.08 35.3% 31.3% 0.09 
Sulfonylurea *† 21.2% 12.5% 0.23 19.7% 13.0% 0.18 20.2% 14.9% 0.14 
Thiazolidinedione 11.9% 6.0% 0.21 8.9% 5.9% 0.12 9.2% 7.0% 0.08 
Insulin *† 7.4% 4.4% 0.12 7.8% 5.2% 0.11 7.1% 5.7% 0.06 
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  All-available 1-year fixed 3-year fixed 
  Initiators Non-   Initiators Non-   Initiators Non-   

Covariate description % % Stdz
Diff % % Stdz

Diff % % Stdz
Diff 

DPP-4 Inhibitors 3.8% 1.4% 0.15 4.2% 2.0% 0.13 5.3% 3.0% 0.12 
Frailty indicators                   
Ambulatory life support † 19.6% 22.8% -0.08 12.4% 17.6% -0.15 23.0% 30.0% -0.16 
Difficulty walking 20.5% 23.5% -0.07 14.5% 19.4% -0.13 25.4% 32.2% -0.15 
HF Frailty 18.5% 19.5% -0.02 10.5% 14.2% -0.11 21.2% 25.3% -0.10 
Home hospital bed 1.5% 2.4% -0.07 1.0% 2.0% -0.08 1.6% 3.1% -0.10 
Home oxygen *† 3.7% 4.2% -0.02 3.4% 4.2% -0.04 4.3% 5.3% -0.05 
Weakness † 11.6% 14.3% -0.08 7.9% 11.8% -0.13 15.5% 21.1% -0.15 
Wheelchair † 3.3% 4.5% -0.06 2.1% 3.5% -0.09 3.4% 5.7% -0.11 
Rehab 13.3% 14.3% -0.03 7.6% 9.9% -0.08 15.1% 18.9% -0.10 
Utilization variables 
(categorical)                   
HS = 0 *† 66.9% 66.6% 0.01 80.7% 76.3% 0.11 63.8% 59.1% 0.10 
HS: Non-0 P0-P20 *† 9.0% 6.0% 0.11             
HS: Non-0 P20-P40 *† 8.5% 6.5% 0.08             
HS: Non-0 P40-P60 *† 3.9% 4.6% -0.04       21.7% 21.9% 0.00 
HS: Non-0 P60-P80 *† 7.5% 8.8% -0.05 14.1% 16.4% -0.06 8.4% 10.0% -0.06 
HS: Non-0 P80-P100 *† 4.3% 7.4% -0.13 5.2% 7.3% -0.09 6.1% 9.1% -0.11 
OutptVisits: Non-0 P0-P20 *† 15.4% 20.7% -0.14 15.8% 20.2% -0.12 16.8% 18.1% -0.04 
OutptVisits: Non-0 P20-P40 *† 19.9% 20.0% 0.00 16.6% 17.3% -0.02 19.0% 19.4% -0.01 
OutptVisits: Non-0 P40-P60 *† 20.9% 19.1% 0.04 22.8% 22.2% 0.02 20.8% 20.4% 0.01 
OutptVisits: Non-0 P60-P80 *† 22.3% 20.1% 0.05 20.6% 19.0% 0.04 22.7% 22.1% 0.01 
OutptVisits: Non-0 P80-P100 *† 21.5% 20.1% 0.04 24.2% 21.3% 0.07 20.7% 20.0% 0.02 
SNF = 0 *† 93.9% 90.6% 0.13 96.7% 93.6% 0.14 92.7% 87.6% 0.17 
SNF: Non-0 P0-P20 *† 1.8% 1.7% 0.01             
SNF: Non-0 P20-P40 *† 1.6% 1.8% -0.02             
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  All-available 1-year fixed 3-year fixed 
  Initiators Non-   Initiators Non-   Initiators Non-   

Covariate description % % Stdz
Diff % % Stdz

Diff % % Stdz
Diff 

SNF: Non-0 P40-P60 *† 1.2% 1.9% -0.06             
SNF: Non-0 P60-P80 *† 0.8% 2.0% -0.10 2.7% 4.8% -0.11 5.3% 8.2% -0.12 
SNF: Non-0 P80-P100 *† 0.7% 2.0% -0.11 0.7% 1.6% -0.08 2.0% 4.3% -0.13 
UniqueRx: Non-0 P0-P20 *† 18.5% 20.2% -0.04 11.4% 15.8% -0.13 15.5% 16.2% -0.02 
UniqueRx: Non-0 P20-P40 *† 20.8% 18.6% 0.05 16.1% 16.4% -0.01 20.4% 20.7% -0.01 
UniqueRx: Non-0 P40-P60 *† 22.3% 20.7% 0.04 25.6% 24.5% 0.02 21.0% 20.1% 0.02 
UniqueRx: Non-0 P60-P80 *† 20.8% 19.9% 0.02 25.3% 23.0% 0.06 21.6% 21.7% 0.00 
UniqueRx: Non-0 P80-P100 *† 17.6% 20.6% -0.08 21.6% 20.2% 0.03 21.5% 21.1% 0.01 
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Table A4.1.3. Cohort sizes, outcome frequencies, and hazard ratios (crude and SMRW-adjusted) for active-comparator sub-
analyses 

 Cohort size (N) 
 
 

Outcome 
frequency 

 

Hazard ratio (95% CI) 
 6-month cancer 2-year mortality 

Look-back 
approach NTotal

a NHiPotent
a %Can %Death Crude SMRW Crude SMRW 

1-year fixed 86,923 18,182 1.1% 4.2% 0.90 (0.76-1.06) 0.89 (0.75-1.05) 0.90 (0.82-0.97) 0.93 (0.85-1.01) 
3-year fixed 18,918 3,426 1.0% 3.9% 1.07 (0.74-1.54) 1.09 (0.75-1.59) 1.02 (0.84-1.23) 1.06 (0.87-1.30) 
All-available 71,347 13,607 1.0% 4.0% 1.00 (0.82-1.21) 0.99 (0.81-1.20) 0.94 (0.85-1.03) 0.95 (0.86-1.05) 
a These counts denote unique observations in the dataset. Patients who enter the cohort twice for eligible initiations of both high- and 
low-potency statins are counted twice in the Ntotal statistic (one for each exposure). Since they cannot appear twice in the same 
exposure group, the NHiPotent statistic denotes counts of unique patients. 
b The propensity score models in the active comparator analyses adjusted for the same variables as the primary analysis (see 
footnote in Table 4.1).
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APPENDIX 4.2: PROPENSITY SCORE VARIABLE SELECTION 
 
 
A4.2.1 Methods 

We created two propensity score models, one for the 6-month cancer outcome and 

the other for the 2-year mortality outcome. We adjusted for the same set of variables across 

the different look-back approaches. Propensity score models included all variables that were 

risk factors for the corresponding outcome. We defined risk factors as any variable that was 

1) present in at least 1.5% of all exposed and unexposed patients across all look-back 

approaches and also 2) had a significant association with the outcome with magnitude > 

1.10 among unexposed patients within at least one of the look-back approaches. The 

associations between covariates and outcomes were quantified using treatment group 

specific hazard ratios, estimated using multivariate Cox models accounting for competing 

risk of mortality. 

A4.2.2 Results 

Table A4.1.2 presents the prevalence (by exposure group) of all variables 

considered for inclusion in propensity score models (for each look-back approach) and also 

describes which variables were ultimately included in models. As shown in Figure 4.4, for all 

look-back approaches, non-initiators tended to be older with greater baseline utilization of 

medications and skilled nursing facilities (SNF), more frequent hospital admissions, and 

greater prevalence of dementia.  Initiators, meanwhile, were more likely to have claims for 

routine screenings and surveillance. Also, initiators were more likely to be included in the 

cohort due to a recent history of diabetes (the most chronic / least acute of all the Heart 

Protection Study eligibility criteria). Finally, as expected, initiators are dramatically more 

likely to have a recorded diagnosis of hyperlipidemia. Figure A4.3.4 and Figure A4.3.5 

display propensity score distributions produced using each look-back approach for the 

cancer and mortality outcomes, respectively.
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APPENDIX 4.3: AIM 1 SUPPLEMENTAL FIGURES 
 
 
Figure A4.3.1. Flow chart describing the selection of the source data and cohorts using 
each look-back approach 
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Figure A4.3.2. Box-and-whisker plots displaying the amount of observable Part A, B, and D 
history at baseline using the all-available approach, contrasting A) initiatiors vs. non-
initiators, B) patients with and without cancer outcomes within six months, C) initiators of 
high-potency vs. low-potency statins, D) patients who died within 2-years vs. those who did 
not 
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Figure A4.3.3. Proportion of the 1-year fixed and 3-year fixed cohort with observable history 
in the database of A) statin use and B) cancer for the 1-year and 3-year look-back 
approaches in the active comparator sub-analyses 

 

 

A	

B	
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Figure A4.3.4. Propensity score distributions for 6-month cancer outcome, using different 
look-back approaches 
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Figure A4.3.5. Propensity score distributions for the 2-year mortality outcome, using 
different look-back approaches 
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Figure A4.3.6. Crude cumulative incidence curves and risk difference at six months for 
incident cancer 
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Figure A4.3.7. Standardized mortality ratio weighted cumulative incidence curves and risk 
difference at six months for incident cancer 
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APPENDIX 5.1: SUPPLEMENTAL DESCRIPTION OF AIM 2 METHODS 
 
 
A5.1.1 Origin of parameters (log-RRs) for relationship between MCBS covariates and 

simulated outcomes 

 In the interest of producing a realistic simulation, we used an empirical approach to 

1) select the MCBS covariates used to simulate exposures and outcomes, and 2) to define 

the pre-specified β-coefficients (log-RRs) for the relationship between covariates and the 

outcome. We assessed time to all-cause mortality within one year after the index date (using 

mortality information in Part A/B Medicare claims data), and censored follow-up if a subject 

dis-enrolled from Medicare Part A or B. We then fit a multivariate Cox proportional hazards 

model to estimate hazard ratios (HRs) for the relationships between each MCBS variable 

and mortality within one year. The covariates which had pronounced relationships (HRs) 

with the mortality outcome were selected as “true” confounders in the plasmode simulation. 

Next, we fit a second Cox model containing the narrowed set of MCBS variables. Finally, we 

set the pre-specified β-coefficients (log-RRs) in the outcome simulation to be approximately 

equal to the log-HR for each covariate as estimated by this outcome model.  

We chose to base parameters on the relationship between covariates and mortality 

(as opposed to inpatient hospitalizations) because 1) the covariates which predict mortality 

are more likely to be important across a range of analyses that may seek to apply our 

findings, 2) mortality is well-classified in the data, and 3) identifying mortality incidence does 

not require consideration of competing risks. 

A5.1.2 Generating pre-specified exposure and outcome prevalence by calibrating 

intercept terms in simulation equations 

 In this study, we used simulation to explore the performance of different look-back 

approaches across a range of scenarios. In order to understand how different simulated 

features (e.g. a protective vs. harmful exposure effect) impact the performance of these 
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approaches, we compare scenarios which differ with respect to only that feature. However, 

varying one parameter in a simulation often has unintended consequences which can 

obscure findings. In particular, we wanted to ensure that varying different study parameters 

did not affect the proportion of subjects exposed or the mean outcome rate. To achieve this, 

we allowed the intercept term in exposure and outcome probability equations to vary 

between scenarios such that each generated pre-specified prevalences.  

A5.1.2.1 Calibration of the intercept term in the exposure probability simulation 

equation 

 To calculate the intercept term for each scenario’s exposure probability equation, we 

derived the “calibration equation” below using 1) the exposure probability equation, 2) the 

pre-specified simulation parameters for each scenario, and 3) the distribution of each 

covariate in the source cohort. We applied this equation separately among users who truly 

did have prior statin use and users who were statin naïve.  

β! = -Ln(p!"#-1 – 1) - (β!"#$%#&"&' * µ!"#$%#&"&') - (β!"#$%& * p!"#$%&) 

where: 

β! = calibrated intercept term 

p!"# = pre-specified prevalence of exposure 

β!"#$%#&"&' = a vector of pre-specified log-ORs for the effect of each continuous MCBS 

confounder on the likelihood of exposure  

µ!"#$%#&"&' = a vector of the mean value for each continuous MCBS confounder in the 

source dataset  

β!"#$%& = a vector of pre-specified log-ORs for the effect of each continuous MCBS 

confounder on the likelihood of exposure  

p!"#$%& = a vector of the proportion with each binary MCBS confounder in the source 

dataset. 
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A5.1.2.2 Calibration of the intercept term in the outcome rate simulation equation 

To calculate the intercept term for each scenario’s outcome rate equation, we 

derived the “calibration equation” below using 1) the outcome ate equation, 2) the pre-

specified simulation parameters for each scenario, and 3) the distribution of each covariate 

in the source cohort. we derived the  equation and used it to calculate the intercept term in 

the exposure probability simulation equation. We applied this equation separately among 

users who truly did have prior statin use and users who were statin naïve.  

β! = -Ln(µ!"#$!%&) – β!"# * p!"# - (β!"#$%#&"&' * µ!"#$%#&"&') - (β!"#$%& * p!"#$%&) 

where: 

β! = calibrated intercept term 

µ!"#$!%& = the pre-specified mean outcome rate   

β!"# = the log-RR (or RD) for the effect of interest 

p!"# = pre-specified prevalence of exposure 

β!"#$%#&"&' = a vector of pre-specified log-RRs for the effect of each continuous MCBS 

confounder on the likelihood of exposure  

µ!"#$%#&"&' = a vector of the mean value for each continuous MCBS confounder in the 

source dataset  

β!"#$%& = a vector of pre-specified log-RRs for the effect of each continuous MCBS 

confounder on the likelihood of exposure  

p!"#$%& = a vector of the proportion with each binary MCBS confounder in the source 

dataset.  

A5.1.3 Additional considerations when interpreting estimates of residual confounding 

bias due to inadequate ascertainment of covariates 

Our approach to isolating the residual confounding bias caused by inadequate 

ascertainment of covariates is imperfect. We produce this estimate by using the perfect 
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MCBS covariate to select the cohort, in theory eliminating the component of bias caused by 

inclusion of prior users. Since the prevalence of some confounding variables (e.g. diabetes) 

varies between people with and without prior statin use (Table 5.2), excluding prior users 

may affect the prevalence of confounders. This could increase or decrease the amount of 

confounding in the estimate. However, back-of-the-envelope calculations using the bias 

estimates presented in Figure 5.3 and Figure A5.3.1 reveal that summing estimates of the 

two component biases approximately equals the net bias estimate. Thus, we do not believe 

this has a meaningful impact on findings. 

A5.1.4 Description of sub-analysis using the all-available look-back approach after 

imposing differential information accuracy by outcome and/or exposure status 

In order to explore the performance all-available look-backs in scenarios with highly 

differential information inaccuracy, we conducted sub-analyses in which we intentionally left-

truncated data histories differentially by exposure status, outcome status, and both 

simultaneously. In the tables below, we describe for each scenario the amount of data 

history that we assessed within each sub-group. 

 
Differential information accuracy with respect to exposure status 
 

 3yr(E=1)|1yr(E=0): More look-
back available among initiators 

3yr(E=0)|1yr(E=1): Less look-
back available among initiators 

 Outcome > 0 Outcome = 0 Outcome > 0 Outcome = 0 
Initiators 3 years 3 years 1 year 1 year 
Non-initiators 1 year 1 year 3 years 3 years 

 
Differential information accuracy with respect to outcome status 
 

 3yr(O=1)/1yr(O=0): More look-
back available among those 
with outcomes 

3yr(O=0)|1yr(O=1): Less look-
back available among those 
with no outcomes 

 Outcome > 0 Outcome = 0 Outcome > 0 Outcome = 0 
Initiators 3 years 1 year 1 year 3 years 
Non-initiators 3 years 1 year 1 year 3 years 
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Differential information accuracy with respect to exposure and outcome status  
 

Scenario 1 & 2: More look-back available among those with outcomes 
 

 Diff info #1: More look-back 
available among initiators 

Diff info #2: Less look-back 
available among initiators 

 Outcome > 0 Outcome = 0 Outcome > 0 Outcome = 0 
Initiators 3 years 1.5 years 0.5 years 1 year 
Non-initiators 1 year 0.5 years 1.5 years 3 years 
 
Scenario 3 & 4: More look-back available among those with no outcomes 
 
 Diff info #3: More look-back 

available among initiators 
Diff info #4: Less look-back 
available among initiators 

 Outcome > 0 Outcome = 0 Outcome > 0 Outcome = 0 
Initiators 1.5 years 3 years 1 year 0.5 years 
Non-initiators 0.5 years 1 year 3 years 1.5 years 

 
A5.1.5 Description of additional sub-analyses 

We completed a range of sub-analyses to assess the robustness of our findings 

regarding the relative performance of the look-back approaches. We explored scenarios 

where exposure reduced the outcome rate and scenarios where it increased outcome rate. 

In the primary analysis, we allowed the impact of MCBS covariates on simulated exposures 

and outcomes to vary depending on whether they occurred proximally (within the last year) 

or distally (before the last year) relative to the index interview. We conducted two sub-

analyses in which the effect of these variables on simulated exposures and outcomes was 

fixed: one in which only proximal covariates had an impact and a second in which all 

covariates (proximal or distal) had the same impact. In the primary analyses, we did not trim 

the propensity score distribution or truncate weights. However, we explored results with 2% 

asymmetric trimming of the propensity score distribution (i.e. restricted the cohort to those 

with propensity scores above the 2nd percentile among the exposed and below the 98th 

percentile among the unexposed. 

In all scenarios studied, 2% asymmetric trimming had a negligible impact on 

estimates. However, one exception was that in the sub-analysis with time-fixed confounding 
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(by variables occurring only the prior year), the look-back approaches produced estimates 

with identical bias (0.29) after trimming. Further description of characteristics and results 

from the sub-analyses where we simulated time-fixed confounding are available in Web 

Table 4.
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APPENDIX 5.2: AIM 2 SUPPLEMENTAL TABLES 
 
 
Table A5.2.1. Coding definitions for MCBS survey variables (true confounders in the 
simulation) 
MCBS survey 
variable  MCBS code definition (original MCBS dataset variables in bold) 

Statin use In any interview not occurring after the index interview 
FDB_GNN contains "VASTATIN" 

Sex: female H_SEX = 2 

Age (years)  Age = interview_date – h_dob 

BMI (kg/m^2) HEIGHT_m = (HEIGHTFT * 0.3048) + (HEIGHTIN * 0.0254) 
WEIGHT_kg = WEIGHT * 0.453592 
BMI = (WEIGHT_kg / (HEIGHT_m * HEIGHT_m)); 

Routine cancer 
screening 

Females: (MAMMOGRM = 1) or (PAPSMEAR = 1) 
Males: (DIGTEXAM = 1) or (BLOODTST = 1) 

Serious (non-skin) 
cancer [any] 

(OCCLUNG = 1) or (OCCCOLON = 1) or (OCCUTER = 1) or (OCCOVARY 
= 1) or (OCCSTOM = 1) or (OCCCERVX = 1) or    (OCCKIDNY = 1) or 
(OCCBRAIN = 1) or (OCCTHROA = 1) or (OCCHEAD = 1) 

     Within prior year In any and (D_CANCER = 1) 

     Before prior year In any and (D_CANCER = 0) 

Major cardiovascular 
event [any] 

(OCMYOCAR = 1) or (OCCHD = 1) or (OCCFAIL = 1) or (OCSTROKE = 1)  

     Within prior year (D_MYOCAR = 1) or (D_CHD = 1) or (D_CFAIL = 1) or (D_STROKE = 1) 

     Before prior year In any and not in prior year 

ACE/ARB use  In either the index interview or the two prior Summer/Winter interviews 
ACE-Is: FDB_GNN contains "PRIL" or “PRILO” 
ARBs: FDB_GNN contains "SARTAN" 

Diabetes (ever) (OCBETES = 1) or (OCBETES = 3) or (OCBETES = 4)  

Frailty (ADL) Any subject experiencing difficulty with any activity of daily living (below) 

     Bathing (HPPDBATH = 1) and ((DONTBATH = 1) or (HELPBATH = 1)) 

     Dressing (HPPDDRES = 1) and ((DONTDRES = 1) or (HELPDRES = 1)) 
     Eating (HPPDEAT = 1) and ((DONTEAT = 1) or (HELPEAT = 1)) 

     Getting out of  
     bed/chair 

(HPPDCHAR = 1) and ((DONTCHAR = 1) or (HELPCHAR = 1)) 

     Walking (HPPDWALK = 1) and ((DONTWALK = 1) or (HELPWALK = 1)) 

     Using the toilet (HPPDTOIL = 1) and ((DONTTOIL = 1) or (HELPTOIL = 1)) 



 

	128 

Table A5.2.2. Simulated relationships between covariates assessed in the MCBS survey 
data and exposures/outcomes 

 
Time-stratified 
confounding 

Time-fixed confounding: 
proximal 

Time-fixed confounding: 
any 

MCBS survey variables 
Exposure 

OR 
Outcome 

RR 
Exposure 

OR 
Outcome 

RR 
Exposure 

OR 
Outcome 

RR 
Sex: female 0.50 0.56 0.50 0.54 0.50 0.56 
Age (years) 0.996 1.06 0.996 1.06 0.996 1.06 
Age (squared term) 1.001 - 1.001 - 1.001 - 
BMI (kg/m2) 1.015 0.72 1.015 0.72 1.015 0.71 
BMI (squared term) 1.002 1.005 1.002 1.005 1.002 1.005 
Routine cancer screen 0.50 0.61 0.50 0.61 0.50 0.62 
ACE inhibitor or ARB 0.50 0.50 0.50 0.50 0.50 0.50 
Diabetes (ever) 2.00 2.00 2.00 2.00 2.00 2.00 
Frailty 2.00 3.02 2.00 3.12 2.00 3.11 

Time-varying confounders  
 

 
  

 
Serious (non-skin) cancer       
     ≤ 1 year 4.00 3.75 4.00 3.40 - - 
     >  1 year 2.00 1.96 - - - - 
     ever - - - - 3.00 2.26 
Major CV event       
     ≤ 1 year 4.00 2.22 4.00 1.80 - - 
     > 1 year 2.00 1.77 - - - - 
     ever - - - - 3.00 1.89 
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Table A5.2.3. Frequencies and proportions of study population with exposure and outcome 
frequencies for each look-back approach, after excluding those with prior statin use (median 
results among 1,500 iterations) 

 
Time-stratified 
confounding 

Time-fixed 
confounding: proximal 

Time-fixed 
confounding: any 

 Total Outcomes Total Outcomes Total Outcomes 
 N %a N %a N %a 

Truth 
          Initiator 1,467.0 37.8% 1,457.0 36.0% 1,475.0 38.5% 

    Non-initiator 2,688.0 46.7% 2,697.0 47.7% 2,678.0 46.3% 
    Total 4,155.0 43.6% 4,154.0 43.6% 4,153.0 43.6% 

All-available       
    Initiator 1,538.0 38.9% 1,538.0 37.5% 1,539.0 39.2% 
    Non-initiator 2,587.0 46.2% 2,586.0 47.3% 2,586.0 45.8% 
    Total 4,125.0 43.5% 4,124.0 43.6% 4,125.0 43.4% 

1-year        
    Initiator 1,870.0 40.6% 1,862.0 39.0% 1,872.0 41.1% 
    Non-initiator 2,791.0 46.2% 2,688.0 49.3% 2,787.0 45.7% 
    Total 4,661.0 44.0% 4,550.0 45.1% 4,659.0 43.9% 

3-year        
    Initiator 1,251.0 40.3% 1,246.5 38.8% 1,255.0 40.8% 
    Non-initiator 2,063.0 48.9% 2,071.0 50.0% 2,060.0 48.5% 
    Total 3,314.0 45.6% 3,317.5 45.8% 3,315.0 45.6% 
a This % shows the proportion of subjects who had at least one occurrence of the outcome (O>0).



 

	

Table A5.2.4. Simulation characteristics and overview of results for each look-back approach, for time-stratified and time-fixed 
confounding simulations (median results among 1,500 iterations) 
  % of cohort in 

equipoisea Exclusions (%)a Prior statin use 
(% of final cohort)a 

Rate ratio 
(true effect = 0.40) 

Rate difference 
(true effect = -0.08) 

 Initiator 
Non-

initiator 
Cont. 
enroll. 

Prior 
statin use Initiator 

Non-
initiator Crude IPTW 

C.I. 
width Crude IPTW 

C.I. 
width 

Time-stratified confounding (+/- 1-yr)           
MCBS 58% 61% 0% 58% 0% 0% 0.70 0.40 (0.36, 0.45) 0.24 0.54 -0.08 (-0.21, 0.03) 0.24 
Time-stratified 
adjustment (+/- 6-mo)             

     All avail. 76% 80% 1% 58% 14% 5% 0.74 0.59 (0.53, 0.67) 0.24 0.50 0.26 (0.14, 0.39) 0.24 
     1-yr 77% 81% 7% 50% 26% 10% 0.80 0.65 (0.58, 0.72) 0.22 0.53 0.30 (0.19, 0.42) 0.23 
     3-yr 78% 82% 22% 58% 13% 4% 0.73 0.60 (0.53, 0.68) 0.26 0.55 0.32 (0.17, 0.47) 0.30 
Time-fixed adjustment             
     All avail. 80% 84% 1% 58% 14% 5% 0.74 0.61 (0.54, 0.69) 0.24 0.50 0.30 (0.18, 0.43) 0.25 
     1-yr 79% 83% 7% 50% 26% 10% 0.80 0.66 (0.59, 0.73) 0.21 0.53 0.32 (0.20, 0.43) 0.23 
     3-yr 81% 85% 22% 58% 13% 4% 0.73 0.63 (0.55, 0.71) 0.25 0.55 0.37 (0.22, 0.53) 0.31 
Sub-analysesb             
     3yr(E=0)|1yr(E=1) 60% 61% 1% 53% 27% 5% 0.78 0.65 (0.57, 0.73) 0.25 0.49 0.29 (0.16, 0.44) 0.27 
     3yr(E=1)|1yr(E=0) 58% 65% 1% 54% 15% 11% 0.76 0.61 (0.54, 0.69) 0.24 0.52 0.29 (0.16, 0.42) 0.25 
     3yr(O=0)|1yr(O>0) 78% 82% 1% 54% 21% 7% 0.84 0.70 (0.63, 0.77) 0.20 0.59 0.35 (0.23, 0.46) 0.23 
     3yr(O>0)/1yr(O=0) 81% 84% 1% 53% 22% 9% 0.70 0.61 (0.54, 0.68) 0.24 0.42 0.25 (0.14, 0.37) 0.23 
     Differential info #1c 54% 55% 1% 53% 16% 11% 0.73 0.56 (0.49, 0.63) 0.25 0.47 0.20 (0.06, 0.34) 0.27 
     Differential info #2d 47% 46% 1% 52% 27% 6% 0.81 0.73 (0.64, 0.84) 0.28 0.52 0.41 (0.26, 0.58) 0.32 
     Differential info #3e 52% 57% 1% 53% 16% 11% 0.80 0.71 (0.62, 0.80) 0.25 0.56 0.40 (0.28, 0.54) 0.26 
     Differential info #4f 55% 58% 1% 52% 28% 6% 0.85 0.65 (0.56, 0.74) 0.28 0.57 0.27 (0.13, 0.43) 0.30 
Time-fixed confounding (<1-yr only)           
MCBS 62% 66% 0% 58% 0% 0% 0.63 0.40 (0.35, 0.45) 0.23 0.40 -0.07 (-0.20, 0.03) 0.23 
Time-stratified 
adjustment (+/- 6-mo)             

     All avail. 79% 82% 1% 58% 14% 5% 0.69 0.58 (0.51, 0.65) 0.24 0.40 0.22 (0.11, 0.35) 0.25 
     1-yr 80% 83% 7% 50% 27% 10% 0.73 0.62 (0.56, 0.69) 0.21 0.39 0.24 (0.13, 0.35) 0.23 
     2-yr 79% 82% 13% 55% 16% 6% 0.69 0.59 (0.52, 0.67) 0.24 0.41 0.25 (0.12, 0.38) 0.26 
     3-yr 79% 83% 22% 58% 13% 4% 0.67 0.58 (0.51, 0.66) 0.26 0.41 0.25 (0.11, 0.41) 0.29 
Time-fixed adjustment             
     All avail. 82% 85% 1% 58% 14% 5% 0.69 0.59 (0.53, 0.67) 0.24 0.40 0.25 (0.12, 0.38) 0.26 
     1-yr 82% 85% 7% 50% 27% 10% 0.73 0.62 (0.56, 0.70) 0.22 0.39 0.24 (0.13, 0.35) 0.23 
     2-yr 81% 85% 13% 55% 16% 6% 0.69 0.61 (0.54, 0.69) 0.26 0.41 0.28 (0.15, 0.43) 0.29 
     3-yr 83% 86% 22% 58% 13% 4% 0.67 0.59 (0.52, 0.68) 0.26 0.41 0.28 (0.14, 0.45) 0.31 
Sub-analysesb             
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  % of cohort in 
equipoisea Exclusions (%)a Prior statin use 

(% of final cohort)a 
Rate ratio 

(true effect = 0.40) 
Rate difference 

(true effect = -0.08) 

 Initiator 
Non-

initiator 
Cont. 
enroll. 

Prior 
statin use Initiator 

Non-
initiator Crude IPTW 

C.I. 
width Crude IPTW 

C.I. 
width 

     3yr(E=0)|1yr(E=1) 61% 62% 1% 53% 28% 5% 0.71 0.61 (0.54, 0.69) 0.26 0.36 0.21 (0.07, 0.36) 0.29 
     3yr(E=1)|1yr(E=0) 61% 67% 1% 54% 15% 11% 0.70 0.58 (0.52, 0.66) 0.24 0.40 0.22 (0.11, 0.33) 0.22 
     3yr(O=0)|1yr(O>0) 80% 84% 1% 54% 21% 7% 0.77 0.66 (0.60, 0.73) 0.20 0.45 0.26 (0.16, 0.38) 0.22 
     3yr(O>0)/1yr(O=0) 82% 85% 1% 53% 23% 9% 0.64 0.59 (0.52, 0.67) 0.25 0.30 0.20 (0.09, 0.32) 0.23 
     Differential info #1c 56% 56% 1% 53% 17% 10% 0.67 0.53 (0.47, 0.60) 0.25 0.36 0.14 (0.02, 0.26) 0.24 
     Differential info #2d 46% 46% 1% 52% 27% 6% 0.73 0.70 (0.60, 0.81) 0.30 0.38 0.34 (0.18, 0.52) 0.34 
     Differential info #3e 54% 59% 1% 53% 16% 11% 0.73 0.68 (0.60, 0.77) 0.25 0.43 0.33 (0.22, 0.46) 0.24 
     Differential info #4f 56% 59% 1% 52% 28% 6% 0.75 0.59 (0.51, 0.68) 0.29 0.41 0.16 (0.03, 0.32) 0.29 
Time-fixed confounding (any)           
MCBS 53% 56% 0% 58% 0% 0% 0.72 0.40 (0.35, 0.45) 0.25 0.57 -0.07 (-0.21, 0.04) 0.25 
Time-stratified 
adjustment (+/- 6-mo)             

     All avail. 75% 79% 1% 58% 14% 5% 0.74 0.59 (0.53, 0.67) 0.23 0.50 0.27 (0.15, 0.39) 0.24 
     1-yr 76% 80% 7% 50% 26% 11% 0.82 0.66 (0.59, 0.73) 0.22 0.55 0.32 (0.21, 0.43) 0.22 
     2-yr 76% 80% 13% 55% 16% 6% 0.76 0.62 (0.55, 0.70) 0.24 0.56 0.33 (0.20, 0.46) 0.25 
     3-yr 77% 81% 22% 58% 12% 5% 0.74 0.61 (0.53, 0.68) 0.25 0.56 0.33 (0.19, 0.47) 0.28 
Time-fixed adjustment             
     All avail. 79% 84% 1% 58% 14% 5% 0.74 0.62 (0.55, 0.69) 0.24 0.50 0.31 (0.19, 0.44) 0.25 
     1-yr 79% 82% 7% 50% 26% 11% 0.82 0.67 (0.60, 0.74) 0.21 0.55 0.34 (0.23, 0.45) 0.23 
     2-yr 80% 84% 13% 55% 16% 6% 0.76 0.65 (0.57, 0.73) 0.24 0.56 0.38 (0.24, 0.53) 0.29 
     3-yr 81% 85% 22% 58% 12% 5% 0.74 0.64 (0.56, 0.72) 0.25 0.56 0.39 (0.25, 0.54) 0.30 
Sub-analysesb             
     3yr(E=0)|1yr(E=1) 60% 60% 1% 53% 27% 5% 0.80 0.65 (0.58, 0.72) 0.23 0.51 0.29 (0.16, 0.41) 0.25 
     3yr(E=1)|1yr(E=0) 58% 64% 1% 54% 14% 11% 0.77 0.64 (0.56, 0.72) 0.26 0.54 0.34 (0.20, 0.47) 0.27 
     3yr(O=0)|1yr(O>0) 77% 81% 1% 54% 21% 7% 0.86 0.71 (0.64, 0.78) 0.20 0.62 0.37 (0.26, 0.48) 0.22 
     3yr(O>0)/1yr(O=0) 81% 83% 1% 53% 22% 9% 0.71 0.61 (0.55, 0.69) 0.23 0.43 0.27 (0.16, 0.39) 0.23 
     Differential info #1c 53% 55% 1% 53% 16% 11% 0.74 0.58 (0.51, 0.66) 0.27 0.49 0.25 (0.10, 0.39) 0.29 
     Differential info #2d 47% 46% 1% 52% 26% 6% 0.82 0.73 (0.64, 0.83) 0.26 0.54 0.40 (0.26, 0.54) 0.27 
     Differential info #3e 51% 57% 1% 53% 16% 11% 0.81 0.73 (0.64, 0.83) 0.26 0.58 0.44 (0.31, 0.58) 0.27 
     Differential info #4f 54% 57% 1% 52% 28% 6% 0.85 0.63 (0.56, 0.71) 0.24 0.58 0.26 (0.13, 0.38) 0.25 
a These results reflect the results from the simulation of a homogenous rate ratio. However, the values of these statistics were nearly 
identical in simulations of a homogenous rate difference. 
b In the sub-analyses listed below, we restricted the cohort to respondents with at least 3-years continuous enrollment then 
intentionally censored the look-back selectively by exposure and outcome status. 
c Differential Info #1: 3-yr(E=1|O>0), 2-yr(E=1|O=0), 1-yr(E=0|O>0), 6-mo(E=0|O=0) 
d Differential Info #2: 3-yr(E=1|O=0), 2-yr(E=0|O=0), 1-yr(E=1|O>0), 6-mo(E=1|O=0) 
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e Differential Info #3: 3-yr(E=0|O>0), 2-yr(E=1|O>0), 1-yr(E=0|O=0), 6-mo(E=0|O>0) 
f Differential Info #4: 3-yr(E=0|O=0), 2-yr(E=0|O>0), 1-yr(E=1|O=0), 6-mo(E=1|O>0)
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APPENDIX 5.3: AIM 2 SUPPLEMENTAL FIGURES 
 
	
Figure A5.3.1. Forest plot displaying performance of various look-back approaches 
when estimating IPTW-adjusted estimates of the rate difference in simulations of an 
absolute exposure effect. 
Bias estimates are accompanied by 95% confidence intervals (CIs) and corresponding 
estimates of the root-mean-squared-error (rMSE). For each look-back approach, the plot 
includes estimates of the net (total) bias, residual confounding bias due to misclassification 
of covariates, and bias due to inclusion of prior statin users. (Note: the corresponding figure 
for the rate ratio analysis is presented in Figure 5.3.) 
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Figure A5.3.2. Forest plot displaying performance of the all-available look-back 
approach in sub-analyses with highly differential information accuracy A) by 
exposure or outcome status, and B) by exposure and outcome status 
(simultaneously) when estimating IPTW-adjusted estimates of the rate difference in 
simulations of a multiplicative exposure effect. 
E=exposure, O=outcome. Bias estimates are accompanied by 95% confidence intervals 
(CIs) and corresponding estimates of the root-mean-squared-error (rMSE). For each sub-
analysis, the plot includes estimates of the net (total) bias and residual confounding bias due 
to misclassification of covariates. Partial control for confounding holds in all analyses since 
the residual confounding bias due to misclassification of covariates is closer to zero than the 
crude (unadjusted) bias. (Note: the corresponding figure for the rate ratio analysis is 
presented in Figure 5.4.) 
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Figure A5.3.3. Forest plot displaying performance of the all-available look-back 
approach in four sub-analyses with highly differential information accuracy by both 
exposure and outcome (simultaneously) when estimating IPTW-adjusted estimates of 
the rate ratio in simulations of a harmful multiplicative exposure effect. 
E=exposure, O=outcome. Bias estimates are accompanied by 95% confidence intervals 
(CIs) and corresponding estimates of the root-mean-squared-error (rMSE). For each sub-
analysis, the plot includes estimates of the net (total) bias and residual confounding bias due 
to misclassification of covariates. In the scenario where more database history was available 
among non-initiators (E=0) and people with outcomes (O>0), adjusting for confounding had 
no effect on the estimate. (Note: the corresponding figure simulating a protective effect of 
interest analysis is presented in Figure 5.4b.) 
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