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ABSTRACT 

Erica Won Cloer: Molecular Mechanisms of Patient-Derived KEAP1 Superbinder Mutants 
(Under the direction of Michael Ben Major) 

In 30% of lung cancers, mutations in KEAP1 or NRF2 result in constitutive NRF2 

activity. This promotes tumor progression, resistance to radio- and chemotherapy, and 

predicts poor patient outcome. Over 700 somatic mutations in the KEAP1 tumor suppressor 

gene have been identified in cancer, yet the mechanism and functional consequences of 

these mutations are unknown. This dissertation focuses on determining the phenotype and 

molecular profiles of patient-derived KEAP1 mutations. The objectives were to assign 

function for patient-derived KEAP1 mutations and to investigate the molecular 

mechanism(s) and phenotypes of functional classes of KEAP1 mutations. 

 

Through biochemical characterization of 18 KEAP1 mutations identified in lung 

squamous cell carcinoma, we defined a novel class of KEAP1 ‘superbinder’ mutants. These 

superbinder mutants had increased association with the transcription factor NRF2, yet could 

not fully suppress NRF2-dependent transcription of cytoprotective genes. Cell-based and in 

vitro studies determined that superbinder mutants ubiquitylated NRF2 but were impaired for 

NRF2 proteasomal degradation. Molecular biology techniques were employed to understand 

the mechanism and phenotypic consequences of the KEAP1 superbinder mutants. Through 

these studies, five core characteristics were attributed to the superbinder mutant class. First, 

superbinder residues are highly conserved and are among the most frequently mutated 

residues across a variety of cancer types. Second, KEAP1 superbinders increase NRF2 

association but are not altered in their association with other KEAP1 substrates proteasomal 
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chaperones, or ubiquitin receptors. Third, KEAP1 superbinders may impact KEAP1 tertiary 

structure thus stabilizing its interaction with the NRF2 degron. Fourth, KEAP1 superbinders 

sequester a pool of NRF2 in p62-dependent spherical clusters that are cleared by the cell. 

Furthermore, these clusters are comprised of a KEAP1 core surrounded by the autophagy 

adapter p62, phosphorylated p62 (pS351), polyubiqutin, and occasionally NRF2. Fifth, 

superbinders confer resistance to the DNA-damaging agent bleomycin in lung cancer cell 

lines stably overexpressing KEAP1 superbinder mutants. These studies expand our 

mechanistic understanding of KEAP1 superbinder mutants and provide insight into the 

dynamics and subcellular compartmentalization of the KEAP1-NRF2 complex.
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CHAPTER 1: INTRODUCTION 

1.A. Lung cancer  

Lung cancer is the leading cause of cancer-related mortalities worldwide and 

accounts for more than one million deaths each year (1-14). For 2017, the American Cancer 

Society (ACS) estimates that lung cancer will account for 14% of all newly diagnosed cancer 

cases (1, 4). Tobacco use is the single greatest risk factor associated with the development 

of lung cancer; 90% of all lung cancer cases in the United States can be attributed to 

smoking (4, 5). Environmental carcinogens are produced from cigarette smoke, radon, 

asbestos, or pollution (5, 13, 15). Exposure to these carcinogens results in DNA damage 

and increases the lifetime risk for the development of lung cancer (4-6, 8, 11, 15). Global 

health initiatives have raised awareness of the detrimental effects of smoking, thus 

contributing to declining rates in lung cancer incidence starting from the mid-1980s for men 

and from the mid-2000s for women (1, 5, 6, 8, 15). However, prognosis for lung cancer 

patients remains poor as diagnoses are often made when patients present with advanced 

stages of disease (1, 3, 4, 7, 14, 16-18). The five-year survival rate for patients diagnosed 

with stage IV disease is estimated to be 1% (1).  Conventional treatment for lung cancer 

utilizes a combination of surgical intervention, radiation therapy (RT), and chemotherapy (8, 

19).  

 

1.A.1. Classification of lung cancer subtypes 

There are two main histological subtypes of lung cancer: small cell lung carcinomas 

(SCLC) and non-small cell lung carcinomas (NSCLC) (3, 8). SLCLC comprises 10-15% of all 

lung cancer cases while 80-85% of cases are classified as NSCLC (1, 3, 4, 8, 14, 18). The 
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remaining 5% of lung cancer cases are classified as carcinoid or other (3). NSCLC can be 

further subclassified into three categories: lung adenocarcinomas (LUAD, 40% of all lung 

cancers), squamous cell carcinomas (LUSC, 25% of all lung cancers), and large cell 

carcinomas (abbreviation, 10% of all lung cancers) (1-4, 8, 18). LUAD tumors typically 

localize to the lung periphery, and 10-15% of patients diagnosed with LUAD have no history 

of smoking (1, 3, 4, 8, 18). In contrast, LUSC tumors generally localize to the center of the 

lung and are often associated with a history of smoking (3). LUSC tumors are thought to 

originate from squamous epithelial cells lining the lung airways (1, 3).  

 

1.A.2. The mutational landscape of NSCLC 

Acquired cellular mutations are known to cause cancer and are thought to occur over 

the lifetime of an individual (20, 21). The theory of how mutations accumulate begins with an 

initial ‘gatekeeping’ mutation that enables the first clonal expansion of a subpopulation of 

cells. Subsequent rounds of mutations and clonal expansions over time result in an 

aggressive and malignant tumor (20). It is estimated that for any given solid tumor, 33-66 

genes will harbor mutations (20). Mutations within tumor suppressor genes often inactivate 

gene function, occur throughout the coding sequence, and are typically frameshift mutations 

or deletions (21-23). In contrast, mutations within oncogenes often activate gene function, 

occur at focally enriched regions within the coding sequence, and are primarily missense 

mutations impacting a single amino acid residue (21-23). The advent of next-generation 

sequencing (NGS) platforms has made large-scale genomic studies of patient tumors 

possible (20-23). These studies provide insight into the genetic mechanisms driving cancer 

by defining novel tumor suppressors and oncogenes as well as identifying passenger and 

driver mutations (22, 23).   
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 Analysis of mutational frequency across 27 cancer types, demonstrated that lung 

cancers exhibit some of the highest levels of mutational frequency as compared to other 

types of cancer (23, 24). These elevated mutational rates can be attributed to cigarette 

smoke exposure which causes guanine (G) to thymidine (T) transversions often observed in 

LUAD and LUSC (25). Both LUAD and LUSC harbor significant alterations to common 

tumor suppressors namely: TP53 (50% of LUAD cases; 80% of LUSC cases), 

serine/threonine protein kinase 11, (STK11; 15% of LUAD cases; 19% of LUSC cases), and 

Kelch-like ECH-associated protein (KEAP1; 12% of both LUAD and LUSC) (2, 3, 8, 16, 17, 

25-28). Frequent alterations specifically associated with LUAD are activating mutations in 

the following oncogenes: KRAS (27% of LUAD cases), epidermal growth factor (EGFR; 

17%), and phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform 

(PIK3CA; >10%) (3, 25, 26). In contrast, frequent oncogenic alterations specifically 

associated with LUSC are mutations in the nuclear factor erythroid 2-related factor 2 

(NFE2L2, hereafter NRF2; 19%) and amplifications of PIK3CA (33%) and EGFR (30%) (2, 

3, 8, 16, 17, 25-28).  

 

The identification and characterization of these mutations can lead to earlier tumor 

detection and the development of targeted treatments (20, 21).  Studies regarding the role of 

EGFR in lung cancer exemplify the integration of genomic data with molecular biology 

studies (7, 19, 29-33). The discovery of activating mutations in EGFR led to the 

development of EGFR-specific inhibitors (i.e. erlotinib and afatinib) and antibodies (i.e. 

cetuximab) for the targeted treatment of LUAD tumors; this has led to advances in 

therapeutic options for patients with EGFR-activated LUAD tumors (7, 31-33). Unfortunately, 

there are currently no clinically available targeted therapies for LUSC (7, 8, 12, 28, 29, 31, 

34).  
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1.A.3. KEAP1-NFE2L2 mutations in NSCLC 

In 2012, The Cancer Genome Atlas Consortium (TCGA) performed whole-exome 

sequencing (WES) and RNA-sequencing (RNA-seq) of tumors from patients diagnosed with 

LUAD (183 patients) and LUSC (178 patients) (2, 19). In addition to known tumor 

suppressors (i.e. TP53) and oncogenes (i.e. KRAS), both studies revealed significant and 

mutually exclusive alterations to the tumor suppressor KEAP1 and to the oncogene NFE2L2 

(2, 19). Pathway alterations impacting KEAP1-NRF2 signaling were observed in 12% of 

LUAD cases studied (19). Subsequent studies investigating the co-occurrence of KEAP1 

and NFE2L2 mutations in LUAD determined that 20% of LUAD tumors with mutant KRAS 

also harbor loss-of-function (LOF) mutations in KEAP1 (35). Furthermore, 92% of LUAD 

KEAP1 somatic missense mutations are predicted to abrogate KEAP1 protein function (30). 

Pathway alterations impacting KEAP1-NRF2 signaling were observed in 34% of all LUSC 

cases studied and in 62% of the LUSC classical subtype (2). Given the high percentage of 

TP53 and KEAP1 mutations in LUSC (80% and 30%, respectively), a significant number of 

tumors with KEAP1 mutations may occur in the presence of TP53 mutations (12). 

 

1.B. KEAP1-NRF2 signaling 

1.B.1. Understanding the stress response 

Cells routinely encounter stress through a variety of insults such as chronic exposure 

to environmental pollutants and toxins (i.e. cigarette smoke or radon) or byproducts of 

metabolic processes (i.e. mitochondrial respiration) (36). These processes result in the 

accumulation of reactive intermediates capable of performing oxidation-reduction (redox) 

reactions (37-46). Uncontrolled redox reactions increase levels of oxidative stress and lead 

to the accumulation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) 

within the cell. Common examples of ROS are hydrogen peroxide (H2O2), superoxide anion 

(�O2-), and hydroxyl radical (�OH-) (40, 46-48). Common examples of RNS are nitric oxide 
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(NO) and peroxynitrite (ONOO-) (40, 46, 48). Elevated levels of ROS and RNS result in DNA 

damage by oxidation (38, 39, 46, 49, 50); therefore, regulation of redox levels within the cell 

is critical for cellular homeostasis.  

 

The KEAP1-NRF2 pathway is the primary intracellular defense against oxidative 

stress, and a delicate balance of NRF2 activity is required for homeostasis and effective 

disease prevention (44, 51-60). Low levels of NRF2 activity are associated with increased 

intracellular ROS (36, 54, 57). Inappropriately high levels of ROS and RNS can damage 

DNA and mitochondria, leading to aberrant apoptosis (54, 57, 61) Consequently, cells with 

low levels of NRF2 and elevated ROS are at risk for neurodegeneration, cardiovascular 

disease, and chronic inflammation (Figure 1.1) (54, 57, 58, 62-66). In contrast, high levels of 

NRF2 activity are associated with low basal levels of ROS, conferring a cellular growth 

advantage and enabling them to evade apoptosis (Figure 1.1) (52, 59, 64, 67). Therefore, 

mutations resulting in KEAP1 LOF or NRF2 gain-of-function (GOF) can contribute to cancer 

progression and the development of chemo-resistance (Fig. 1.2) (68).  

 

1.B.2. Mechanism of KEAP1-NRF2 signaling 

Under basal conditions, cytosolic KEAP1 functions as an adapter for the E3 ubiquitin 

ligase Cullin-3 (CUL3).  KEAP1 is a homodimer that binds to two motifs in NRF2: a high 

affinity ETGE motif and a low affinity DLG motif. Binding via these two motifs is essential to 

sterically position seven key lysine residues located between the DLG and ETGE of NRF2 

for ubiquitylation by the KEAP1-CUL3/RBX1 complex. Once ubiquitylated, NRF2 is 

delivered to the ubiquitin proteasome system (UPS) for degradation (Figure 1.2.A). NRF2 is 

dynamically regulated with a protein half-life of 15-20 minutes within most cell types, 

underscoring the essential role of KEAP1 in NRF2 regulation (69, 70).  
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Under conditions of oxidative stress or xenobiotic challenge, reactive cysteine 

residues within KEAP1 are modified leading to a conformational change in KEAP1 structure 

that prevents the degradation of NRF2 (54, 57, 59, 60, 69, 71-78). De novo synthesized 

NRF2 accumulates and translocates to the nucleus where it heterodimerizes with small 

musculoaponeurotic fibrosarcoma (sMAF) proteins, a family of basic region leucine zipper 

(bZIP) transcription factors comprised of three members: MAFF, MAFG, and MAFK (37, 79, 

80). NRF2-sMAF heterodimers bind to antioxidant response elements (ARE)/electrophile 

responsive elements (EpRE) and drive the transcription of over 200 cytoprotective genes 

(Figure 1.2.A) (52, 81). The consensus sequence for ARE binding sites has been defined as  

TGACnnnGC (54, 82). 

 

1.B.3. Functions of NRF2 target genes 

NRF2 transcription regulates the expression of genes that govern 4 distinct 

processes within the cell: 1) antioxidant response, 2) drug detoxification, 3) cellular 

metabolism, and 4) inflammation (Figure 1.2.B) (54, 58, 83).  

 

1.B.3.a. Antioxidant response 

Genes involved in the antioxidant response are thought to be the primary function of 

NRF2-dependent transcription and result in the production of the ROS scavenger Υ-

glutamyl-cysteinyl glycine, more commonly referred to as glutathione (GSH). GSH is 

produced in an ATP-dependent two-step reaction that requires the NRF2 target genes 

glutamate-cysteine ligase catalytic subunit (GCLC) and glutamate-cysteine ligase modifier 

subunit (GCLM). The production of GSH generates reducing equivalents within the cell to 

counter rising levels of oxidants (54, 57, 58, 64, 83) (57). Other NRF2-transcriptionally 

regulated genes with antioxidant function include glutathione peroxidase 2 (GPX2) and 

thioredoxin reductase 1 (TXNRD1) (58, 83, 84).  
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1.B.3.b. Drug detoxification 

Genes involved in cellular detoxification are important for the clearance of xenobiotic 

agents (i.e. drug efflux) from the cell (57, 58, 64, 83). Detoxification involves two classes of 

genes: 1) the receptor-mediated phase I cytochrome P450 monooxygenases (CYP) family 

and 2) the phase II conjugating enzymes (54). Phase I reactions prepare compounds for 

subsequent phase II reactions which utilize catalytic enzymes such as glutathione S-

transferases (GSTs) to conjugate phase I products with GSH or other ligands for removal by 

the cell (54). Another well-known phase II detoxifying enzyme is NAD(P)H quinone 

dehydrogenase 1 (NQO1) (57, 64, 66, 83, 85-87).  

 

1.B.3.c. Cellular Metabolism 

NRF2 transcriptional targets also upregulate a host of genes involved in cellular 

metabolism, specifically genes that alter the utilization of glucose, glutamine, serine, and 

glycine (35, 88-91). Examples of these genes include glucose-6-phosphate 1-

dehydrogenase (G6PD), 1,4,-alpha-glucan-branching enzyme (GBE1), isocitrate 

dehydrogenase 1 (IDH1), and transaldolase (TALDO1) (54, 57-59, 64, 66, 84).  

 

1.B.3.c. Anti-inflammation 

Nuclear NRF2 also regulates cellular inflammation by suppressing the transcription 

of genes involved in the production of pro-inflammatory cytokines interleukin-1 beta (IL1B) 

and interleukin-6 (IL6) (57, 82, 92-94). As such, NRF2 hyperactivation produces an anti-

inflammatory response. A summary of the functions of NRF2 target genes is provided in 

Figure 1.2.B. 
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1.B.4. Outcomes of KEAP1 substrate ubiquitylation 

In addition to NRF2, there are currently eight other validated KEAP1 substrates: 

nuclear factor erythroid-related factor 1 (NFE2L1; hereafter NRF1), mitochondrial 

phosphoglycerate mutase family member 5 (PGAM5), anti-apoptotic proteins B-cell 

CLL/lymphoma 2 (BCL2), B-cell lymphoma extra-large protein (BCL2L1), inhibitor of nuclear 

factor kappa-B kinase subunit beta (IKBKB), p62/sequestosome-1 (p62/SQSTM1; hereafter, 

p62), partner and localizer of BRCA2 (PALB2), and the mini-chromosome maintenance 

complex component 3 (MCM3) (44, 54, 57-60, 64, 69, 77, 94-102). KEAP1-dependent 

ubiquitylation of substrate proteins can result in 3 outcomes: 1) proteasomal degradation, 2) 

autophagic degradation, and 3) alterations to protein function (Figure 1.3).  

 

The first potential outcome of KEAP1 substrate ubiquitylation is proteasomal 

degradation. The UPS is utilized by the cell for rapid turnover of short-lived proteins (i.e. 

NRF2) and requires a series of defined steps: 1) recognition of appropriately ubiquitylated 

substrates (commonly K48-specific polyubiquitin), 2) ATP-dependent substrate unfolding, 3) 

association with proteasomal ubiquitin receptors, and 4) removal of ubiquitin prior to 

proteolysis (103-107). KEAP1 substrates destined for proteasome-mediated degradation 

include: NRF2, NRF1, PGAM5, BCL2, BCL2L1, and IKBKB (Figure 1.3.A) (44, 54, 57-60, 

64, 69, 77, 94-102).  

 

A second potential outcome of KEAP1 substrate ubiquitylation is autophagic 

degradation. Autophagy is a bulk cellular recycling pathway for long-lived proteins (i.e. 

KEAP1) (108-114). The process of autophagy begins with the formation of an isolation 

membrane or phagophore around ubiquitylated proteins; these proteins are typically present 

as aggregates or inclusion bodies and localize to insoluble compartments within the cell 

(112-114). Next, ubiquitin cargo adapters such as p62 or next to BRCA1 (NBR1) recognize 
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and bind to polyubiquitin chains (usually K63-linked) within the aggregates and sequester 

the complex within the phagophore thus forming the autophagosome. The mature 

autophagosome is a double membraned structure indicated by phosphatidylethanolamine 

(PE) conjugated microtubule-associated protein 1A/B-light chain 3A (LC3) along the inner 

membrane (111-116). The autophagosome then fuses with lysosomes to form an 

autolysosome wherein contents are acidified and subsequently degraded (109, 110, 112-

114, 117). KEAP1 substrates destined for autophagic degradation include KEAP1, p62, and 

IKBKB (Figure 1.3.B) (118-119). p62 binds to KEAP1 via a KEAP1-interacting region (KIR) 

containing the DPSTGE motif (96, 116, 119-122). Phosphorylation (p) of the serine residue 

within the KIR motif increases the affinity of p62 for KEAP1, potentially displacing the DLG 

motif of NRF2 (96). KEAP1 then ubiquitylates p62, a step required for correct tethering of 

p62 with LC3, and the KEAP1-p62 complex is degraded by autophagy (115, 116). IKBKB is 

unique in that it contains both DLG and ETGE motifs and can be degraded in a KEAP1-

dependent manner through the proteasomal and autophagy pathways (Figure 1.3) (96, 116, 

122).  

 

The third potential outcome of KEAP1 substrate ubiquitylation is alterations to protein 

function for which there are two examples: PALB2 and MCM3 (Figure 1.3.C) (123-125). 

KEAP1-dependent ubiquitylation of PALB2 blocks the association of PALB2 and BRCA1 to 

suppress homologous recombination during the G1 phase of the cell cycle (124). In contrast 

to PALB2, the function of KEAP1-dependent MCM3 ubiquitylation has not yet been 

elucidated (125, 126).  

 

The identification of additional KEAP1 substrates may support additional outcomes 

for proteins ubiquitylated by KEAP1. An examination of the KEAP1 protein interaction 

revealed enrichment for proteins containing ETGE or ESGE motifs (21/65 proteins studied); 
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however, whether all proteins encoding these motifs represent bona fide KEAP1 substrates 

remains to be determined (126, 127). A comprehensive table of proteins containing KEAP1 

binding motifs is provided in Table S.1.1. 

 

1.C. KEAP1-NRF2 complex formation and structure 

1.C.1. NRF2 protein domains and structure 

NRF2 is a cap‘n’collar (CNC) basic leucine zipper (bZIP) transcription factor 

comprised of 605 amino acids (128, 129). NRF2 contains seven NRF2-ECH homology 

(Neh) domains, each with distinct functions and post-translational modifications. The Neh1 

domain is responsible for NRF2 DNA binding as well as NRF2-sMAF dimerization (54, 130-

136). NRF2-sMAF dimers are transcriptional activators that bind to cis-acting ARE elements 

in the promoters of genes (132). It is worth noting that NRF2-sMAF heterodimerization is 

required for sMAF activation as sMAF proteins lack transactivation domains; as such, sMAF 

homodimers are functional repressors (132).  The CNC, bZIP, nuclear localization signals 

(NLS; 515NLS518), and nuclear export sequence (NES; 552NES563) are localized within the 

Neh1 domain (53, 137). The Neh2 domain is essential for KEAP1 cytosolic regulation of 

NRF2 and contains the two motifs required for KEAP1 association (the 29DLG31 and 

79ETGE82 motifs) as well as the seven lysine (K) residues targeted by KEAP1-dependent 

ubiquitylation (K44, K50, K52, K53, K56, K64, and K68) (Fig. 1.4) (54, 57, 59, 60, 62, 66, 

138-141). The Neh2 domain also contains a S40 residue that is phosphorylated by protein 

kinase C (PKC) (51, 142, 143). PKC phosphorylation at S40 results in KEAP1-NRF2 

dissociation and nuclear localization of NRF2 (51, 142, 143). The Neh3 domain of NRF2 lies 

at the C-terminus of the protein and is proposed to function as a transactivation domain; 

Deletion of a 590VFLVPK595 motif within the Neh3 domain suppresses NRF2 transcriptional 

activity (144). The Neh3 domain contains a 552NES563 that is thought to be sterically blocked 

by NRF2-sMAF dimerization, thus retaining NRF2 in the nucleus (133). The Neh3 domain is 
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also responsible for the association of NRF2 with the chromodomain helicase DNA binding 

protein (CHD6) (144). The Neh4 and Neh5 domains of NRF2 are centrally located within the 

protein and function as transactivation domains. These two domains also bind to the 

transcriptional co-activator cAMP Responsive Element-Binding (CREB) binding protein 

(CBP) (145). Association of both Neh4 and Neh5 with CBP is required for maximal 

activation of NRF2 target genes; mutations disrupting CBP binding and inhibitors of CBP 

suppress NRF2-dependent transcriptional activity in cells (145). There are also putative 

nuclear export sequences (175NES186 and 191NES204) localized within this region of the protein 

(59, 64, 84, 137). The Neh6 domain contains two beta-transducin repeat-containing E3 

ubiquitin protein ligase (BTrCP; hereafter BTRC) degron motifs: 343DSGIS347 and 

382DSAPGS384 (139-141). BTRC associates with the Skp1-Cullin 1 (CUL1) F-box containing 

complex (SCF) to form a ubiquitylation complex that targets proteins for proteasomal 

degradation within the nucleus of cells (139-141). Serine phosphorylation of the DSGIS 

motif by glycogen synthase kinase 3-beta (GSK3B) increases the affinity of the NRF2-Neh6-

BTRC association and results in NRF2 degradation (139-141). BTRC regulation of NRF2 is 

primarily thought to occur in the nucleus of cells (139-141); in contrast, KEAP1 regulation is 

thought to occur in the cytosol of the cells (59, 139-141). The NRF2 Neh7 domain was 

defined in 2013 and binds to the retinoic X receptor alpha (RXRA); NRF2-RXRA association 

blocks NRF2 transcriptional activity (146). A schematic of the functional annotation of 

protein domains and motifs within NRF2 is provided in Figure 1.4.A.   

 

1.C.2. KEAP1 protein domains and structure 

KEAP1 was identified in 1999 via a yeast two hybrid (Y2H) screen utilizing NRF2 

Neh2 as bait (147). KEAP1 is comprised of 624 amino acids and contains a broad complex, 

tramtrack, bric-à-brac (BTB) domain, an intervening region (IVR, also known as the BACK 

domain), and a C-terminal double glycine region (DGR) composed of six KELCH repeat 
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domains (52, 57, 59, 87). Each of these domains is essential to KEAP1 function. The BTB 

domain of KEAP1 is responsible for KEAP1 homodimerization and CUL3 association; both 

of which are required for NRF2 ubiquitylation (54, 57-59, 64, 66). Substitution of an alanine 

(A) residue at serine (S) 104  (S104A) of the BTB domain abolishes KEAP1 dimerization 

(148, 149). Similarly, cysteine (C) 151 (C151), located immediately after the BTB, is critical 

for KEAP1-CUL3 association as covalent modification of this residue blocks KEAP1-CUL3 

interaction (74-76, 150-153). The next domain in KEAP1 is the IVR which serves two 

functions: 1) the stabilization of the CUL3 binding interface and 2) redox sensing via 

cysteine reactivity (84, 86, 87, 154).  First, the BTB and IVR domains together form the true 

CUL3 binding interface (84, 86, 87, 154). The IVR contains a three-box (3-box) motif that 

bears homology to the F-box motif required for adapter binding with other members of the 

CULLIN family (i.e. SCF-CUL1) (84, 86, 154, 155). The 1813-box212 is composed of two alpha 

helices that functionally extend the binding interface between KEAP1 and CUL3 from the 

BTB domain to the IVR thus stabilizing the KEAP1-CUL3 complex (86, 156). Second, the 

IVR domain of KEAP1 is heavily enriched for cysteine residues and functions as a sensor of 

oxidative stress (57, 59, 87, 157). It is worth discussing that KEAP1 is a cysteine-rich 

protein; in total, human KEAP1 contains 27 cysteines, whereas murine KEAP1 contains 25 

cysteines (52, 57, 59, 87, 157). Cysteine reactivity is determined by the acid dissociation 

constant (pKa) of the thiol group (-SH) which in turn is dependent on the adjacent amino 

acid residues (158). Cysteines surrounded by basic residues have a thiol group with 

decreased pKa, rendering the cysteine more susceptible to an electrophilic attack; as such, 

these cysteines are highly reactive to oxidative stress (41, 158-160). The three most well-

characterized cysteine residues in KEAP1 are C151, C273, and C288, two of which localize 

to the IVR domain (57, 66). Adjacent to the IVR is an unstructured linker which contains 

additional reactive cysteine residues, C297, and C299 (41, 159, 160). The DGR domain is 

responsible for NRF2 and other substrate binding as well as for association with the actin 
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cytoskeleton (57, 58, 64, 66, 84) The DGR is comprised of six KELCH repeats that together 

form a six-bladed propeller structure, the interior of which constitutes the NRF2 substrate 

binding pocket (52, 54, 57-59, 64, 66, 86, 94, 156, 161). KEAP1-NRF2 interactions are 

stabilized by a number of residues in the KELCH domain of KEAP1, most notably an 

arginine triad motif, R415, R478, and R483, that is responsible for electrostatic interactions 

with acidic residues in the NRF2 degrons (Figure 1.4.B) (52, 57-59, 64, 66, 86, 87, 156).  

 

1.C.3. Survey of KEAP1-NRF2 structure studies 

Though NRF2 and KEAP1 were discovered in the 1990s, the first crystal structure of 

the human KEAP1 KELCH was not resolved until 2004 (at 1.85 Å) followed by determination 

of the first crystal structure of the NRF2 Neh2 domain in 2006 (at 1.5 Å)(162-164). These 

two findings allowed for co-crystallization studies of the human KEAP1 KELCH domain with 

NRF2 which identified the DLG and ETGE motifs required for KEAP1-NRF2 association (58, 

87, 162-169). The thermodynamic properties of the two motifs provided the basis for the 

proposed ‘hinge and latch’ mechanism of binding to be discussed in the following section. It 

was not until 2010 that electron microscopy studies revealed that dimeric KEAP1 forms a 

forked-stem-dimer or ‘cherry-bob’ structure providing further support for the hinge and latch 

mechanism. In June of 2014, the crystal structure of the BTB domain was determined (69, 

86, 150, 154, 164, 170, 171). Thus far, neither the IVR nor the full-length crystal structure of 

KEAP1 structure has been determined. A timeline of structural studies of KEAP1-NRF2 

complexes is provided in Figure 1.5.  

 

1.D. Dynamics of KEAP1-NRF2 signaling 

1.D.1. Stoichiometry of the KEAP1-NRF2 complex 

The 2:1 stoichiometry of the KEAP1-NRF2 complex was originally determined in 

2006 using nuclear magnetic resonance titration (NMR) and isothermal titration calorimetry 



 14 

(ITC) of the KEAP1 KELCH and NRF2 Neh2 domains (167, 168). Differences in electrostatic 

potentials between the ETGE and DLG motifs formed the basis for the two-site binding 

model (also known as the ‘hinge-and-latch’ model) (87, 165, 168, 169). In this model, the 

high affinity ETGE binds first to one monomer of KEAP1 forming the ‘hinge’ of the system 

followed by subsequent binding of the DLG ‘latch’ (87, 165, 168, 169). The association of 

KEAP1-NRF2 ETGE occurs in a slow, entropy-driven reaction, forming a stable complex 

with a dissociation constant (Kd) of 100 µM (165). In contrast, association of the KEAP1-

NRF2 DLG is both enthalpy- and entropy-driven and occurs as a rapid single-step reaction 

with a Kd of 1 µM. (58, 84, 165-169, 172). The differences in these affinities suggest that 

dimeric KEAP1 could associate with ETGE motifs in 2 molecules of NRF2 resulting in a 

stoichiometry of 2:2 for KEAP1: NRF2 (84). To determine if the 2:2 KEAP1: NRF2 

stoichiometry occurs in cells, biochemical fraction of 5 different cell lines were performed, 

thus defining the “absolute amounts and status” of the CUL3: KEAP1: NRF2 complex to be 

2:2:1 (84). Moreover, these stoichiometric studies concluded that cellular levels of CUL3 and 

KEAP1 protein remain constant even with NRF2 inducer treatment; in contrast, NRF2 

protein levels were determined to be subject to dynamic changes and significant alterations 

in the presence of NRF2 inducers (84).  

 

1.D.2. Conformational cycling of KEAP1 

The prevailing model for KEAP1 dynamics was developed from live cell imaging of 

fluorescent constructs for murine Keap1 and Nrf2 (173). Termed the “cyclic sequential 

attachment and regeneration model of Keap1-mediated degradation of NRF2,” this model 

posits that cytosolic KEAP1 fluctuates between two distinct cellular conformations: open and 

closed (173). Under basal conditions, homodimeric KEAP1 is readily available to scavenge 

newly synthesized molecules of NRF2 (173). First, NRF2 binds KEAP1 via the ETGE motif 

generating the ‘open’ form of the complex. Second, subsequent binding of the NRF2 DLG 
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motif results in the ‘closed’ formation of the complex in which NRF2 is ubiquitylated (173). 

Third, following ubiquitylation, NRF2 is delivered to the proteasome and removed from 

KEAP1 (173). Fourth, removal of ubiquitylated NRF2 ‘regenerates’ free KEAP1 thus 

allowing cycling to proceed again (85). In the presence of NRF2 inducers, cycling is 

impaired resulting in accumulation of the closed complex. Because free KEAP1 is no longer 

available, de novo NRF2 is able to escape KEAP1 regulation resulting in elevated levels of 

NRF2 transcriptional activity (173).  

  

1.E. KEAP1-NRF2 signaling in physiological systems 

1.E.1. Phenotypes of Keap1 and Nfe2l2 mutant mice 

In mice, global deletion of Keap1 causes esophageal hyperkatosis and lethality at 

postnatal days 7-10 (57, 174, 175). The hyperproliferation of the upper gastrointestinal tract 

prevents swallowing, resulting in malnutrition and subsequent death shortly after pups are 

weaned (57, 175). The simultaneous deletion of Nfe2l2-/- and Keap1-/- rescues the 

aforementioned phenotype, suggesting that the hyperkeratosis is driven by elevated NRF2 

transcriptional activity (57, 175). Furthermore, global deletion of Nfe2l2-/- in mice results in 

viable litters (176). The lack of an appreciable phenotype in Nfe2l2-/- mice is presumed to be 

due to compensation from Nfe2l1 as Nfe2l1-/-::Nfe2l2-/- double knockout (KO) mice are lethal 

(175). However, it should be noted that Nfe2l2-/- mice develop phenotypes when challenged 

with carcinogenic models of benzo(a)pyrene [B(a)P] as well as with models of chronic 

obstructive pulmonary disease (COPD) (177-180).  

 

 The development of KEAP1 conditional KO (CKO) mice has enabled a number of 

genetically engineered mouse models (GEMMs) for the investigation of KEAP1 function in 

cancer in vivo (See Table 1 for references). Thus far, there is no evidence to suggest that 

hyperactivation of NRF2 from KEAP1 deletion or mutation alone results in the spontaneous 
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development of tumors. A summary of phenotypes for keap1 and nfe2l2 mutant mice is 

provided in Table 1.  

 

1.E.2. KEAP1-NRF2 dysregulation in disease 

1.E.2.a. Neurodegenerative disorders 

 Neurodegenerative disorders are characterized by elevated levels of oxidative stress 

protein aggregates or inclusion bodies caused by defects in protein homeostasis. Because 

of the essential roles KEAP1-NRF2 signaling plays in both antioxidant response and 

proteostasis, appropriate KEAP1-NRF2 activity is critical for neuronal health and the 

prevention of neurodegenerative disease (44, 60, 65, 181, 182). Indeed, astrocyte-specific 

expression of NRF2 protects neuronal cells from apoptosis in three different murine models 

of neurodegenerative disease: 1) Amyotrophic lateral sclerosis (ALS), 2) Huntington’s 

disease (HD), and 3) Parkinson’s disease (PD) (170, 183, 184). Furthermore, the 

accumulation of Tau proteins and neurofibrillary tangles (NFT) and the formation of Lewy 

bodies are pathological features of Alzheimer’s disease (AD) and Parkinson’s disease (PD), 

respectively (60, 65, 182, 185, 186). Both NFTs and Lewy bodies collect along the actin 

cytoskeleton and colocalize with KEAP1 and p62 suggesting that KEAP1 may play a role in 

either the accumulation or degradation of these aggregates (61, 65, 97, 181, 183, 186, 187). 

 

1.E.2.b. Inflammation 

Oxidative stress and the upregulation of pro-inflammatory cytokines such as IL-6 and 

IL-1B are characteristic of chronic obstructive pulmonary disease (COPD) caused by 

smoking (57, 180, 188). As discussed in section 1.B.3, NRF2 transcriptional activity results 

in the downregulation of both IL-6 and IL1-B suggesting that NRF2 has an anti-inflammatory 

effect. Indeed, Nfe2l2-/- mice exhibit increased inflammation when challenged with two 

models of pulmonary inflammation: 1) elastase-induced emphysema and 2) cigarette 
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smoke-induced emphysema (178, 179). Lung-specific deletion of keap1 was shown to be 

protective against cigarette smoke-induced emphysema suggesting that NRF2 

transcriptional activity is anti-inflammatory (177). 

 

1.F. KEAP1-NRF2 signaling in the development and progression of cancer 

1.F.1. Mechanisms of NRF2 activation in cancer 

 NRF2 activation can occur in cancer via 3 mechanisms:  1) genetic alterations to 

NFE2L2, CUL3, or KEAP1, 2) expression of NRF2-competitive binding proteins that impair 

NRF2 ubiquitylation, and 3) endogenous post-translational modifications that functionally 

inactivate KEAP1. First, alterations to NFE2L2, CUL3, and KEAP1 are well-established to 

occur at the genomic level; these alterations result in enhanced NRF2 expression and 

transcriptional activity (51, 55, 56, 59, 64, 66, 70, 94, 138, 141, 189-198). NFE2L2 is located 

on chromosome 2q31.2. Several mechanisms by which genetic modification of NFE2L2 can 

increase NRF2 transcriptional activity are copy number amplifications, oncogene-induced 

transcription of NRF2 (cMYCERT2, BRAFV619E, and KRASG12D), and GOF somatic mutations in 

the DLG or ETGE motifs required for KEAP1 association (Figure 1.6A) (2, 19, 26, 30, 70, 

94, 195, 197, 199, 200). CUL3 is located on chromosome 2q36.2 and is functionally 

inactivated by homozygous deletion or by LOF mutations, resulting in loss of KEAP1-

dependent NRF2 ubiquitylation and subsequent NRF2 stabilization (Figure 1.6B) (2, 19); 

mutations impacting CUL3 occur in 7% of TCGA-LUSC cases studied (2). KEAP1 is located 

on chromosome 19p13.2 and can be functionally inactivated by homozygous deletion, 

methylation of CpG islands within its promoter region, or by KEAP1 LOF mutations (Figure 

1.6C) (2, 70, 190, 198). Both KEAP1 and CUL3 LOF result in increased NRF2 

transcriptional activity (70, 94, 195, 197, 199, 200). 

 

Second, several groups have identified NRF2 competitive binding proteins that 
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displace the DLG of NRF2 resulting in impaired NRF2 ubiquitylation; the expression of these 

competitive binders in both in vitro and in vivo models of cancer contribute to NRF2 

hyperactivity and confer protection from DNA damaging agents in a NRF2-dependent 

manner (123, 124, 127, 201-204). These competitive binding partners include ETGE-

containing proteins: DPP3, PALB2, and WTX; DPSTGE-containing protein p62; a DLT-

containing protein iASSP; and p21 Cip1/WAF1  (p21), which contains a 154KRR motif 

analogous to the arginine triad motif of KEAP1 (Figure 1.6D) (127, 201-204).  

 

Third, post-translational modifications (PTMs) to KEAP1 that are functionally 

inactivating can occur endogenously in cancer cells deficient for the tumor suppressor 

fumarate hydratase (FH) (205, 206). The loss of FH results in the formation of S-(2-succinyl) 

adducts (2SC) on C151 and C288; these adducts are thought to increase NRF2 

transcriptional activity by modifying KEAP1 structure (Figure 1.6E) (56, 94, 205). 	
 

1.F.2. NRF2 transcriptional target genes in cancer 

A primary focus of the KEAP1-NRF2 field in cancer is to identify a biomarker for 

NRF2 activity. Towards this goal, several groups have examined cell-line based microarray 

datasets as well as publicly available patient tumor data (i.e. TCGA and cBioPortal) to 

develop a NRF2 gene signature for use as a biomarker. The first NRF2 gene signature was 

identified in 2008 by the Biswal group and is composed of 15 genes validated by RT-PCR 

profiling of NRF2 shRNA A549 and H460 lung cancer cell lines (207). More recently, two 

patient-derived signatures of NRF2 activity have been defined: NRF2ACT and NRF2-

regulated metabolic gene signature (NRMGS) (90, 208, 209). NRF2ACT is a 28-gene derived 

from the TCGA-LUSC dataset of 104 patients binned into mutant KEAP1/NFE2L2/CUL3 or 

WT (209). Unfortunately, NRF2ACT exhibited no significant prognostic or predictive value 

(209). The NRMGS was identified using gene expression analyses from A549 cells stably 
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overexpressing mKeap1-pEGFP and A549-derived Nrf2-knockdown cell line, siNrf2-C7 (90, 

208). Gene ontology (GO) analyses on the overlap of genes downregulated in both KEAP1 

overexpressing and siNrf2-C7 identified metabolic genes as being significant, and 

comparison of significantly downregulated genes with TCGA-LUAD data identified a 12 

gene signature (90). NRMGS was determined to be prognostic in studies examining eight 

lung cancer cohorts.  

 

1.F.3. Small molecule compounds targeting KEAP1-NRF2 

1.F.3.a. NRF2 inducers 

NRF2 inducers are thought to have therapeutic applications in the prevention of 

cancer as well as for the treatment of neurodegenerative disorders and chronic inflammation 

(52, 53, 57, 59, 60, 62, 65, 67, 180-182, 188). NRF2 small molecule inducers inactivate 

KEAP1 function either through cysteine-modification of KEAP1 or through dissociation of the 

KEAP1-NRF2 complex resulting in NRF2 stabilization and transcriptional activity (57, 83, 

210). As such, these inducers can be categorized roughly into five classes based on 

cysteine reactivity as determined by site-directed mutagenesis (SDM) and in vivo 

experiments with mice transgenic for KEAP1 cysteine mutants (57, 75, 83, 135). Class I 

inducers are KEAP1 C151-dependent and include compounds 1-[2-cyano-3,12-

dioxooleana-1,9(11)-dien-28-oyl]imidazole (CDDO-Im), bardoxolone (CDDO-Me), 

diethylmaleate (DEM), dimethylfumarate (DMF), nitric oxide (NO), sulforaphane (SFN), and 

tert-butyl hydroquinone (tBHQ) (57, 83). Class II inducers are specific to the C288 residue in 

the IVR of KEAP1 and include 15-deoxy-Δ12,14-prostaglandin J2(15d-PGJ2) (57, 83). Class III 

molecules require KEAP1 C151, C273, and C288 and include (OA-NO2)(4-HNE), (OA-NO2) 

(57, 64, 83). Class IV compounds activate NRF2 through other cysteine residues in KEAP1 

and do not require C151, C273, C288; these class IV compounds include cadmium cation 

(Cd2+), dexamethasone 21-mesylate (Dex-Mes), H2O2, prostaglandin A2 (PGA2), and zinc 
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cation (Zn2+) (52, 57, 83). The primary mechanism of Class V NRF2 inducers is the 

disruption of the KEAP1-NRF2 interaction (57, 64, 83). Examples of Class V NRF2 inducers 

include ML334, tetrahydroisoquinolin-2-carbonyl]cyclohexane-1-carboxylic acid [compound 

(S,R,S)], the R1 competitive monobody, p62-mediated mitophagy inducer (PMI), and the 

antioxidant inflammation modulator (AIM), and omaveloxolone (RTA 408) (81, 83, 210-215). 

Although not assigned to a specific class, the NEDD8-activating enzyme inhibitor (NAE1; 

hereafter, MLN4924) and the CYP450 inhibitor oltipraz are also known to induce NRF2 

activation (206, 216-221). To date, oltipraz is the only NRF2 inducer to be used in phase I 

and II clinical trials for the prevention of lung cancer in individuals who smoke (206, 218, 

219, 222).   

 

1.F.3.b. NRF2 inhibitors 

Hyperactivation of NRF2 in the context of cancer is now appreciated as detrimental 

for survival (55, 58, 59, 64, 89, 92, 191, 192, 194, 223). As such, a current goal of the 

KEAP1-NRF2 field is the development of NRF2-specific inhibitors for the treatment of NRF2-

active cancers (94, 224). NRF2 inhibitors function primarily through disruption of nuclear 

NRF2 transcriptional activity and are historically identified through the use of high 

throughput screening (HTS) using NRF2-ARE transcriptional activity to assay for function. 

Examples of these compounds include all-trans retinoic acid (ATRA), ARE expression 

modulator 1 (AEM1), brusatol, and clobetasol proprionate (CP) (51, 225-227). 
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Figure 1.1. A balance of KEAP1-NRF2 activity is required for effective disease 
prevention.
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Figure 1.1. Balancing KEAP1-NRF2 activity for effective disease prevention. 

KEAP1 directs substrates for degradation via two protein homeostasis pathways: the ubiquitin proteasome system 
(UPS) and autophagy/lysosomal degradation. KEAP1 binds and ubiquitylates NRF2, PGAM5, and IKBKB through 
ET(S)GE motifs for proteasome-mediated degradation. KEAP1 binds p62/SQSTM1 via a KEAP1-interacting region 
(KIR) motif. p62/SQSTM1 is a cargo adaptor protein for the autophagy pathway. KEAP1 ubiquitylation of p62/SQSTM1
is required for p62 function as a cargo adaptor for the autophagy pathway. KEAP1 and IKBKB are also degraded by 
the autophagy pathway.
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Figure 1.2. Overview of KEAP1-NRF2 signaling. 
A. Cartoon illustration of the KEAP1-NRF2 pathway. 
B. Function and examples of NRF2 target genes. Glutamate-cysteine ligase catalytic 
subunit (GCLC), glutamate-cysteine ligase modifier subunit (GCLM), glutathione peroxidase 
2 (GPX2), thioredoxin reductase 1 (TXNRD1), glutathione S-transferases (GSTS), NAD(P)H 
quinone dehydrogenase 1 (NQO1), glucose-6-phosphate dehydrogenase (G6PD), 1,4,-
alpha-glucan branching enzyme (GBE1), interleukin-1 beta (IL1B), and interleukin-6 (IL6). 
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Figure 1.2. Overview of KEAP1-NRF2 signaling.
A. Cartoon illustration of the KEAP1-NRF2 pathway. 

B. Function and examples of NRF2 target genes. Glutamate-Cysteine ligase catalytic subunit (GCLC), Glutamate-

Cysteine Ligase Modifier Subunit (GCLM), Glutathione peroxidase 2 (GPX2), Thioredoxin reductase 1 (TXNRD1), 

Glutathione S-transferases (GSTS), NAD(P)H quinone dehydrogenase 1 (NADPH), Glucose-6-phosphate 

dehydrogenase (G6PD), 1,4,-alpha-glucan branching enzyme (GBE1), Interleukin-1 beta (IL1B), and Interleukin-6 (IL6).
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Figure 1.3. Outcomes of KEAP1 substrate ubiquitylation. 
A. Proteasomal degradation (i.e. NRF2, PGAM5, and IKBKB). 
B. Autophagic degradation (i.e. IKBKB and p62). 
C. Impaired protein function (i.e. PALB2 and MCM3). 
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Figure 1.3. Outcomes of KEAP1 substrate ubiquitylation.
Keap1 ubiquitylation results in 3 outcomes for proteins: proteasomal degradation (A), autophagic degradtion (B), or
impaired protein function (C). Representative substrates are shown for each outcome. 
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Figure 1.4 Overview of NRF2 and KEAP1 protein domains. 
A. Functional annotation of protein domains and motifs within NRF2. 
B. Functional annotation of protein domains and motifs within KEAP1. 
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Figure 1.4 Overview of NRF2 and KEAP1 protein domains.

A. Functional annotation of protein domains and motifs within NRF2. 
B. Functional annotation of protein domains and motifs within KEAP1. 

Ref

Tong et al Molecular and Cellular Biology 2006 KEAP1-DC with ETGE/DLG. 100 ȝ0�IRU�(7*(��DLG is 1 ȝ0� 
Distortion in the IVR linker domains may introduce to displace the weaker-binding DLG motif, disorienting alpha 
helix or the lysine residuces. 
Fukutomi et al Molecular and Cellular Biology 2014 Ka of KEAP1 DC with DLGex (1.9 ȝ0�  and ETGE (Ka = 38 ȝM��
ETGE is enthalpy driven and DLG is enthalpy and entropy driven.
,VR�HW�DO�0ROHFXODU�DQG�&HOOXODU�%LRORJ\�������DEVROXWH�VWDWXV�RI�FRPSOH[�

A. 
343DSGIS347

382DSAPGS387
79ETGE8229DLG31

455CNC 499BASIC

525Leucine
Zipper

S
40

K
44

K
50

K
52

K
53

K
56

K
64

K
68

NTR

(1-15)

Neh2

(16-86)

Neh4

(112-134)

Neh5

(183-201)

Neh7

(209-316)

Neh6

(338-388)

Neh1

(435-562)

Neh3

(562-605)

17DLGex51

KEAP1 binding

ȕTrCP binding
NLS

CBP binding
Transactivation

191NES204

175NES186

DNA binding
sMaf binding

515NLS518

552NES563

NRF2

B. 

BTB

(77-149)

IVR

(184-286)

KELCH 1

(327-372)

KELCH 2

(373-423)

KELCH 3

(424-470)

KELCH 4

(471-517)

KELCH 5

(513-564)

KELCH 6

(565-611)

CTR

(612-624)

C151 1813-box212
C257

C273
C288

C297

C299

301NES310

V334
S363

*R380

N382

*R415 *R483

S508
Q530

S555 S602

NTR

(1-76)

Homodimerization

CUL3 binding
Redox sensing

DGR
(�7�6�*(�6XEVWUDWH�ELQGLQJ

KEAP1

Reactive Cysteines
NRF2 contact residues
*Arginine triad motif

Transactivation
CHD6 binding
590VFLVPK595

5;5Į�ELQGLQJ



 25 

Figure 1.5.Timeline of KEAP1-NRF2 structural studies spanning 1998-2014.  
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Figure 1.6. Mechanisms of NRF2 transcriptional activation. 
A. NFE2L2 is located on chromosome 2q31.2 and can be activated by copy number 
amplification, oncogene-induced increased transcription, or gain-of-function (GOF) 
mutations in the DLG or ETGE motifs required for KEAP1 association. 
B. CUL3 is located on chromosome 2q36.2 and can be functionally inactivated by 
homozygous deletion or by loss-of-function (LOF) mutations. 
C. KEAP1 is located on chromosome 19p13.2 and can be functionally inactivated by 
homozygous deletion, CpG island promoter methylation which blocks KEAP1 transcription, 
or by KEAP1 LOF mutations. 
D. Overexpression of NRF2 competitive inhibitors impair NRF2 degradation. These proteins 
contain NRF2-competitive binding sites (ET(S)GE, DPSTGE, KRR, DLT) that can displace 
NRF2 from KEAP1 thus allowing for increased NRF2 transcriptional activity. 
E. KEAP1 is a cysteine-rich molecule that is highly susceptible to electrophilic attack. 
Formation of S-(2-succinyl) 2SC adducts on cysteine molecules results in conformational 
inactivation of KEAP1and subsequent stabilization of NRF2. 
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Figure 1.6. Mechanisms of NRF2 transcriptional activation.
A. NFE2L2 is located on chromosome 2q31.2 and can be activated by copy number 
amplification, oncogene-induced increased transcription, or gain-of-function (GOF) 
mutations in the DLG or ETGE motifs required for KEAP1 association.
B. CUL3 is located on chromosome 2q36.2 and can be functionally inactivated by 
homozygous deletion or by loss-of-function (LOF) mutations.
C. KEAP1 is located on chromosome 18 and can be functionally inactivated by 
homozygous deletion, CpG island promoter methylation which blocks KEAP1
transcription, or by KEAP1 LOF mutations.
D. At the protein level, there are a number of proteins containing NRF2-competitive
binding sites (ET(S)GE, DPSTGE, KRR, DLT) that can displace NRF2 from KEAP1 thus 
allowing for increased NRF2 transcriptional activity.
E. KEAP1 is a cysteine-rich molecule that is highly susceptible to electrophilic attack. Formation of
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Table 1. Phenotypes of Keap1 and Nfe2l2 mutant mice. 

Genotype Keap1 Nfe2l2 Phenotype Reference 
nfe2l2-/-  WT KO Survives  

Impaired stress response 
Itoh et al 1997 
Biochem Biophys Res 
Commun 

keap1-/- KO WT Lethal at postnatal days 7-10  
Hyperkeratosis of esophagus and forestomach  
Maximal NRF2 activation 

Wakabayashi 2003  
Nature Genetics  

keap1-/-:: nfe2l2-/- KO KO Survives 
Rescues leap1-/-phenotype. 

Wakabayashi 2003  
Nat Genetics 

nfe2l1-/-:: nfe2l2-/- WT KO Lethal at E13.5 
Impaired NRF2 stress response 

Leung et al 2003  
JBC  

keap1-/-:: mafG-/- KO WT Survives 
Rescues keap1-/-phenotype. 

Motohashi et al 2004 
PNAS  

mafF-/-:: 
mafG-/-:: 
mafK-/-  

WT WT Lethal at E13.5 
Impaired NRF2 stress response 

Motohashi et al 2004 
PNAS  
Katsuoka et al 2005  
Mol Cell bio  
 

keap1flox/flox:: 
Alb-Cre 
(keap1-Alb) 

CKO  
(hepatocyte-specific) 

WT Survives 
Slightly elevated NRF2 transcriptional activity 
(liver) 
Increased resistance to acetaminophen at toxic 
doses 

Okawa et al 2006  
Biochem and Biophys 
Res Commun 

keap1flox/- 

(keap1-KD) 
KD WT Survives 

Slightly elevated NRF2 transcriptional activity 
Taguchi et al 2010  
Mol Cell Biol 

keap1flox/flox::K5-Cre CKO  
(squamous epithelium) 

WT Lethal  
Hyperkeratosis of esophagus and forestomach  
Maximal NRF2 activation only in esophagus and 
skin  

Taguchi et al 2010  
Mol Cell Biol 

Pten::keap1-Alb 
 

CKO 
(hepatocyte-specific) 

WT Lethal at 3 weeks  
Hyperactivate NRF2 metabolic target genes 
Hepatomegaly 

Mitsuishi et al 2012 
Cancer Cell 
Taguchi et al 2014  
Mol Cell Biol 

Pten:: 
Keap1-Alb:: 
Nfe2l2+/−  
 

CKO Het Survives longer 
Polycistic fibrosis of liver at 6 months 

Taguchi et al 2014  
Mol Cell Biol 

Keap1flox/flox:: 
Pax8-rtTA:: 
TetO-Cre  
(DOX administration 
to 4-week-old mice) 

CKO  
(adult renal tubule-
specific) 

WT Survives 
Resistant to renal ischemia-reperfusion injury 

Noel et al 2016  
BMC Nephrol 

Keap1flox/flox:: 
Trp53flox/flox:: 
R26tdTomato 

CKO WT Necessitate euthanasia due to lung 
adenocarcinomas of Trp53flox/flox::R26tdTomato 
Mouse model of LUSC 
Increased tumor aggressiveness, metastasis, 
and resistance to radiotherapy 

Jeong et al 2016  
Cancer Discovery 

Keap1−/−:: 
Tg-Keap1C273W&C288E 
 

KO+OE 
KEAP1C273W&C288E 

WT Survives 
Still develop hyperkeratosis seen in keap1-/-

phenotype.  

Saito et al 2016 
Mol Cell Bio 

Keap1-/-:: 
Nfe2l2flox/flox:: 
K5-Cre  
(NEKO) 

KO WT Survives (poor survival) 
Growth retardation 
Hydronephrosis (NDI) 
Maximal NRF2 activation (excluding esophagus 
and skin)  

Suzuki et al 2017 
Nat Commun 

Keap1flox/flox:: 
Pax8-rtTA:: 
TetO-Cre  
(maternal DOX 
administration during 
pregnancy) 

KO  
(embryonic renal 
tubule-specific) 

WT Survives 
Hydronephrosis (NDI) 
Maximal NRF2 activation in renal tubules 

Suzuki et al 2017  
Nat Commun 

KrasLSL-G12D/+:: 
Tp53flox/flox  
with sgKeap1  
(CRISPR-Cas9 using 
pSECC lentiviral 
vectors) 

KO  WT Lethal at postnatal day 40  
Mouse model of LUAD 
Increased tumor burden and aggressiveness 

Romero et al 2017  
Nature medicine 

Keap1flox/flox  
KrasLSL-G12D/+:: 
Pdx-1-Cre (KC) 
(KC::Keap1) 
 

CKO WT Lethal at postnatal day 40 
Mouse model of pancreatic cancer 
Atrophy of pancreatic parenchyma 
nfe2l2 heterozygous or homozygous cross 
rescues 

Hamada et al 2017  
Journal of American 
Physiology 

Keap1flox/flox  
KrasLSL-G12D/+:: 
p53LSL-R172H/+:: 
Pdx-1-Cre (KPC) 
(KPC::Keap1) 
 

CKO WT Mouse model of pancreatic cancer 
Atrophy of pancreatic parenchyma 
Cross with nfe2l2+/- or nfe2l2-/- rescues 

Hamada et al 2017  
Journal of American 
Physiology 
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CHAPTER 2: CANCER-DERIVED MUTATIONS IN THE KEAP1 UBIQUITIN LIGASE 

IMPAIR NRF2 DEGRADATION BUT NOT UBIQUITINATION 
 
12.A. Overview 
 

NRF2 is a transcription factor that mediates stress responses. Oncogenic mutations 

in NRF2 localize to one of its two binding interfaces with KEAP1, an E3 ubiquitin ligase that 

promotes proteasome-dependent degradation of NRF2. Somatic mutations in KEAP1 occur 

commonly in human cancer, where KEAP1 may function as a tumor suppressor. These 

mutations distribute throughout the KEAP1 protein but little is known about their functional 

impact. In this study, we characterized 18 KEAP1 mutations defined in a lung squamous cell 

carcinoma tumor set. Four mutations behaved as wild-type KEAP1, thus are likely 

passenger events. R554Q, W544C, N469fs, P318fs, and G333C mutations attenuated 

binding and suppression of NRF2 activity. The remaining mutations exhibited hypomorphic 

suppression of NRF2, binding both NRF2 and CUL3. Proteomic analysis revealed that the 

R320Q, R470C, G423V, D422N, G186R, S243C, and V155F mutations augmented the 

binding of KEAP1 and NRF2. Intriguingly, these 'super-binder' mutants exhibited reduced 

degradation of NRF2. Cell-based and in vitro biochemical analyses demonstrated that 

despite its inability to suppress NRF2 activity, the R320Q 'superbinder' mutant maintained 

the ability to ubiquitinate NRF2. These data strengthen the genetic interactions between 

KEAP1 and NRF2 in cancer and provide new insight into KEAP1 mechanics. 

 

 
																																																								
1	The following manuscript has been previously published in the journal of Cancer Research. 
The original citation for the manuscript, figures, and tables contained in this chapter is as 
follows: Hast BE, Cloer EW, et al., Cancer-derived mutations in KEAP1 impair NRF2 
degradation but no ubqituination. Cancer Res, 2014. 74(3): p. 808-817.	
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2.B. Introduction 

In contrast to the mutational clustering seen in oncogenes, where a few residues are 

frequently affected, mutations in tumor suppressor proteins typically lack focal enrichment. 

This creates uncertainty as to the impact of specific mutations on protein function; mutations 

may be phenotypically silent ‘passenger’ events, they may result in a spectrum of 

hypomorphs, or produce a functionally dead protein. Catalogued associations between 

specific cancer genotypes and protein function will instruct many principles of cancer biology 

and oncology, including patient stratification for targeted therapy.   

 

The Cancer Genome Atlas (TCGA) recently reported the characterization of 178 

squamous cell lung carcinomas (SQCC), revealing at least 10 recurrently mutated genes. 

Among these were activating mutations in the NFE2L2 (NRF2) oncogene and presumed 

loss-of-function mutations within the KEAP1 tumor suppressor gene, at 15% and 12% of 

tumors, respectively (1). KEAP1 functions as a substrate recognition module within the 

CUL3-based E3 ubiquitin ligase, which targets the NRF2 transcription factor for proteosomal 

degradation (2). Regardless of tissue origin, nearly all somatic mutations within NRF2 fall to 

either the ETGE or the DLG motif, two regulatory short amino acid sequences within NRF2 

that contact KEAP1 (3). As such, these mutations liberate NRF2 from KEAP1-mediated 

ubiquitination. Comparatively, a survey of cancer genomic data revealed 213 somatic 

mutations dispersed across the full length of the KEAP1 protein, a pattern consistent with 

the mutational spread often seen in tumor suppressor genes. Like many discoveries from 

genomic sequencing efforts, the functional consequences of these KEAP1 mutations are 

largely not known.  

 

The lung SQCC analysis revealed that as expected, KEAP1 mutations and NRF2 

mutations do not co-occur in the same tumor, and that tumors with KEAP1 or NRF2 
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mutations express relatively high levels of NRF2-target mRNAs (1, 4). NRF2 target genes 

include a host of stress response genes, such as heme oxygenase 1 (HMOX1), NADPH 

dehydrogenase quinone 1 (NQO1), and genes involved in glutathione synthesis (5). The 

expression of these genes strengthens the cellular defense system to neutralize reactive 

oxygen species (ROS), clear xenobiotic agents, and reprogram protein degradation 

machinery to restore homeostasis. Recent studies also establish a role for NRF2 in 

modulating anabolic pathways to suit the metabolic demands of cancer cell growth, 

effectively yielding an increase in cancer cell proliferation (6). Although comprehensive data 

are not complete, several studies have reported that NRF2 activity correlates with poor 

prognosis and chemotherapeutic resistance (7-10). 

 

The now established importance of KEAP1-NRF2 in promoting cancer cell growth 

and survival underscores the need to elucidate how cancer evolution leads to pathway 

activation. Several mechanisms are easily recognized from cancer genomic studies: 

activating mutations in NRF2 free it from KEAP1 association (11), copy number 

amplifications of the NRF2 genomic locus increase protein expression, and KEAP1 

promoter hypermethylation decreases its mRNA and protein expression (12, 13). What 

remains uncertain is which somatic mutations within KEAP1 affect its function, to what 

degree do they impact function, and mechanistically how its function is compromised. 

Recent efforts from several groups have identified correlations between cancer genotype 

and phenotype, and these findings may have a significant impact on clinical interventions 

(14-18). With these concepts in mind, we functionally tested and biochemically 

characterized KEAP1 mutations found within lung SQCC. Our data connects cancer-derived 

KEAP1 genotypes with NRF2 phenotype. Unexpectedly, we found that many KEAP1 mutant 

proteins bind and ubiquitinate NRF2, but do not promote its proteosomal degradation or 

suppress its transcriptional activity. 
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2.C. Materials and Methods 

Tissue culture, transfections, and siRNAs  

HEK293T, A549, and H2228 cells were obtained from the American Tissue and 

Culture Collection, which authenticates cells line using short tandem repeat analysis. Cell 

lines were not passaged for more than 6 months after resuscitation. The Keap1−/− MEFs 

were kindly provided by Thomas Kensler and Nobunao Wakabayshi. HEK293T cells were 

grown in Dulbecco's Modified Eagle's Medium, supplemented with 10% FBS and 1% 

GlutaMAX (Life Technologies) in a 37°C humidified incubator with 5% CO2. Keap1−/− mouse 

embryo fibroblasts (MEF) were cultured in IMDM supplemented with 10% FBS. A549 and 

H2228 cells were grown in RPMI supplemented with 10% FBS. Expression constructs were 

transfected in HEK293T cells with Lipofectamine 2000 (Life Technologies). A549 cells and 

Keap1−/−  MEFs were transfected with Fugene HD (Roche). Transfection of siRNA was done 

with Lipofectamine RNAiMAX (Life Technologies). siRNA sequences for CUL3 are as 

follows: (A) 5’-GGU CUC CUG AAU ACC UCU CAU UAU U, (B) 5’-GAA UGU GGA UGU 

CAG UUC ACG UCA A, (C) 5’-GGA UCG CAA AGU AUA CAC AUA UGU A. 

 

Antibodies and buffers employed for Western blot analysis  

Anti-FLAG M2 monoclonal (Sigma), anti-HA monoclonal (Roche), anti-βactin 

polyclonal (Sigma, A2066), anti-βtubulin monoclonal (Sigma, T7816), anti-KEAP1 polyclonal 

(ProteinTech, Chicago IL), anti-GFP (abcam, ab290), anti-NRF2 H300 polyclonal (Santa 

Cruz, Santa Cruz CA), anti-SLK (Bethyl, A300-499A), anti-DPP3 (abcam, ab97437), anti-

MCM3 (Bethyl, A300-123A), anti-WTX (19), anti-IKKβ (Cell Signaling, 2678), anti-

p62/SQSTM (Santa Cruz, sc25575), HMOX1 (abcam, ab13248), anti-CUL3 (Cell Signaling, 

2759), anti-MEK1/2 (Cell Signaling, 8727), anti-histone 3 (Cell Signaling, 4499), anti-GST 

(Cell Signaling, 2622), and anti-VSV polyclonal (Bethyl, A190-131A). 0.1% NP-40 lysis 

buffer: 10% glycerol, 50mM HEPES, 150 mM NaCl, 2mM EDTA, 0.1% NP-40; RIPA buffer: 
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0.1% NP-40, 0.1% SDS, 10% glycerol, 25mM Tris HCl, 0.25% sodium deoxycholate, 

150mM NaCl, 2mM EDTA. 

 

Immunopurification, cell fractionation, and Western blotting 

For FLAG immunopurification, cells were lysed in 0.1% NP-40 lysis buffer. Cell 

lysates were cleared by centrifugation and incubated with FLAG resin (Sigma) before 

washing with lysis buffer and eluting with NuPAGE loading buffer (Life Technologies). For 

immunoprecipitation of endogenous NRF2, cells were lysed in 0.1% NP-40 lysis buffer. Cell 

lysates were cleared by centrifugation, and pre-cleared for 1 hour with Protein A/G resin 

(Pierce). Lysates were then incubated with NRF2 H-300 antibody (Santa Cruz) overnight at 

4 degree Celsius, and then incubated for 1 hour with Protein A/G resin before eluting with 

NuPAGE loading buffer. For siRNA, HEK293T cells were transiently transfected and lysed in 

RIPA buffer 60 hours post transfection. All antibodies and buffers used for Western analysis 

are listed in Supplementary Methods. Cell fractionation was performed using the NE-PER 

Nuclear and Cytoplasmic Extraction Reagent kit (Thermo Scientific). 

 

Plasmids, expression vectors, and site-directed mutagenesis 

Expression constructs for the KEAP1 mutants were generated by PCR-based 

mutagenesis and sequence verified before use; primer sequences for the mutagenesis are 

shown in Table S.2.3. The TCGA tumor sample codes for each mutation are also shown in 

Table S.2.3. The reporter construct for human hNQO1-ARE-luciferase was a kind gift from 

Jeffrey Johnson.  

 

ARE luciferase quantification 

Cells were transfected with expression constructs, FLAG-KEAP1, FLAG-NRF2, 

hNQO1-ARE luciferase, and a control plasmid containing Renilla luciferase driven by a 
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constitutive cytomegalovirus (CMV) promoter. Approximately 24 hours post-transfection, 

NRF2-mediated transcription was measured as the ratio of Firefly to Renilla luciferase 

activity (Promega Dual-Luciferase Reporter Assay System).  

 

NRF2 ubiquitination experiments 

Ubiquitination of NRF2 under denaturing conditions was performed in HEK293T cells 

stably expressing FLAG-KEAP1 wild-type or R320Q, VSV-UB1, FLAG-NRF2, and Venus-

NPM1. Cells were first lysed in denaturing buffer (25mM Tris, 150mM NaCl, 1% SDS, 1mM 

EDTA), then diluted with 0.1% NP-40 buffer, followed by immunoprecipitation of NRF2. For 

in vitro ubiquitination studies, GST-tagged wild-type Keap1 and the R320 mutant were over-

expressed in Hi5 insect cells and purified using a glutathione affinity column. After removal 

of the GST tag, the proteins were further purified by ion exchange chromatography. For the 

in vitro ubiquitination assay, wild-type KEAP1 or the R320Q mutant was mixed with 

recombinant human E1, UbcH5, CUL3-RBX1, ubiquitin and GST-tagged NRF2 NEH2 

domain (GST-NRF2-Neh2) in buffer containing 40 mM Tris-HCl pH 8.0, 5 mM MgCl2, 2 mM 

DTT and 4 mM ATP.  Ubiquitination was carried out at 37 °C and the products were 

analyzed by Western blot with anti-GST antibody. 

 

Immunonstaining 

HEK293T cells were cotransfected with the indicated plasmids and plated on 10 

µg/mL fibronectin-coated coverslips. Cells were fixed in 4% paraformaldehyde in 

cytoskeletal buffer for 15 minutes, and coverslips were mounted to slides using the Prolong 

Gold antifade reagent (Molecular Probes). Images were acquired using a Zeiss LSM5 

Pascal Confocal Laser Scanning Microscope equipped with ×63/1.42 Oil PlanApo objective 

lenses. 

 



	 53 

Affinity purification and mass spectrometry 

For streptavidin and FLAG affinity purification, cells were lysed in 0.1% NP-40 lysis. 

Cell lysates were incubated with streptavidin or FLAG resin and washed 5 times with lysis 

buffer. The precipitated proteins were trypsinized directly on beads using the FASP Protein 

Digestion Kit (Protein Discovery).  

 

Protein identification, filtering, and bioinformatics 

All raw data were converted to mzXML format before a search of the resultant 

spectra using SorcererTM-SEQUEST® (build 4.0.4, Sage N Research) and the 

Transproteomic Pipeline (TPP v4.3.1). Data were searched against the human 

UniProtKB/Swiss-Prot sequence database (Release 2011_08) supplemented with common 

contaminants, i.e. porcine (Swiss-Prot P00761) and bovine (P00760) trypsin, and further 

concatenated with its reversed copy as a decoy (40,494 total sequences). Search 

parameters used were a precursor mass between 400 and 4500 amu, up to 2 missed 

cleavages, precursor-ion tolerance of 3 amu, accurate mass binning within PeptideProphet, 

semi-tryptic digestion, a static carbamidomethyl cysteine modification, variable methionine 

oxidation, and variable phosphorylation of serines, threonines, and tyrosines. False 

discovery rates (FDR) were determined by ProteinProphet and minimum protein probability 

cutoffs resulting in a 1% FDR were selected individually for each experiment. 

PeptideProphet/ProteinProphet results for each APMS experiment were stored in a local 

Prohits database. To determine an interacting protein's abundance relative to WT, prey 

spectral counts were bait normalized by dividing by the bait spectral count, followed by 

calculating the number of standard deviations from WT (similar to a Z-score), where the 

standard deviation was computed for each prey individually. Unfiltered data and spectral 

count normalizations are provided as Supplementary Table S.2.2. 
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2.D. Results 

2.D.1 Connecting cancer-derived KEAP1 mutations with NRF2 activity. 

A search of the literature and public domain revealed 213 somatic mutations in 

KEAP1, observed across 17 cancer types and multiple cell lines (Table S.2.1). Mapping 

these mutations onto the KEAP1 primary amino acid sequence revealed a mostly uniform 

distribution of affected residues (Fig. 1A). The distribution of mutations specifically found in 

squamous cell lung carcinoma further reiterated the lack of a ‘mutation cluster region’ (Fig. 

1A, blue ovals). Of the 18 mutations found in lung SQCC, only two mutations resulted in a 

truncated protein product (N469fs and P318fs). The remaining 16 missense mutations 

included the addition of three new cysteine residues (G333C, W544C, and S243C), which 

might alter KEAP1 reactivity to electrophilic agents. One mutation, V155F occurred in two 

separate tumors, and interestingly, none of the mutations in KEAP1 were in residues that 

directly interface with NRF2 (20). Given the importance of KEAP1-NRF2 signaling in cancer 

and our inability to predict the functional consequences of KEAP1 mutation, we cloned and 

comparatively evaluated each of the 18 lung SQCC mutations. 

 

To test whether cancer-derived mutations in KEAP1 affect NRF2-driven transcription, 

we used an engineered reporter system, wherein the luciferase gene is expressed in a 

NRF2-dependent manner. Ectopic expression of wild-type KEAP1 suppressed NRF2-

dependent luciferase expression in HEK293T cells (Fig. 1B). By comparison, the KEAP1 

mutants displayed variable suppression of NRF2-driven transcription. Specifically, L231V, 

S224Y, P318L and R71L suppressed NRF2 as well as wild-type KEAP1; these genotypes 

represent possible passenger mutations within KEAP1.  By contrast, N469fs, P318fs, and 

G333C exhibited a near-null phenotype. Most surprisingly, of the 18 mutants examined, 11 

retained partial ability to suppress NRF2-driven transcription. To further validate these data, 

we tested the panel in the lung adenocarcinoma cell line A549, which express mutant and 
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inactive KEAP1G333C, and in Keap1 knockout mouse embryo fibroblasts (MEFs). In all three 

cell lines tested, which vary in KEAP1 genotype, we observed a consistent pattern of 

KEAP1-mediated NRF2 suppression (Fig. 1C and D).   

 

At its core, this work sought to isolate and functionally annotate specific KEAP1 

genotypes so that clinical correlations and predictions might be drawn from genome 

sequence data alone. As such, we tested whether the relative activities of each KEAP1 

mutant correlated with the expression of 15 NRF2 target genes within the lung SQCC TCGA 

cohort (1, 4). Comparing luciferase activity (Fig. 1B-D) to the NRF2 transcriptional gene 

signature, we found that mutants that suppress like wild-type KEAP1 associate with 

decreased NRF2 activity, whereas mutants unable to completely suppress NRF2 correlate 

with increased NRF2 target gene expression (p=0.049; two-sided Wilcoxon Rank Sum Test) 

(Fig. S1A). Any attempt to further segregate mutations based on luciferase activity did not 

show a statistically significant correlation in the patient data.  

 

2.D.2. Biochemical characterization of the KEAP1 mutants. 

Next, we sought molecular insight into how specific mutations differentially impacted 

KEAP1 function. First, we determined whether the mutants expressed at levels similar to 

wild-type KEAP1, as non-synonymous mutations often impair protein folding to decrease 

protein stability. Transient expression from plasmid DNA indicates that the majority of 

KEAP1 mutants expressed at levels similar to wild-type protein (Fig. 2A and S1B). Further 

study is required to determine if the reduced expression of mutants R554Q, W544C, 

N469fs, P318fs, G480W, and G333C is due to altered protein or mRNA stability. To extend 

these data, the subcellular localization of KEAP1 and each KEAP1 mutant was evaluated in 

HEK293T cells; all mutants exhibited a localization pattern indistinguishable from wild-type 

KEAP1 (Fig. S1C).  



	 56 

KEAP1 functions as a critical sensor of oxidative stress, wherein multiple cysteine 

residues act as biosensors for ROS and xenobiotic molecules (11, 21, 22). In cells, KEAP1 

is thought to exist as a homodimer, creating a 2:1 stoichiometry with the NRF2 substrate. 

Following cysteine modification, either by reactive oxygen species or electrophilic agents 

like tert-butylhydroquinone (tBHQ), a conformational change within the KEAP1 homodimer 

creates an SDS-resistant form which is readily visualized under denaturing electrophoresis 

(23, 24). When treated with the pathway agonist, all 18 mutants formed an SDS-resistant 

dimer, suggesting that the mutations do not impair dimerization (Fig. 2A). To more rigorously 

test this, FLAG-tagged KEAP1 mutants were transfected into HEK293T cells stably 

expressing wild-type hemagglutinin epitope (HA) tagged KEAP1. FLAG immunopurification 

of the mutant protein, followed by Western blot for the HA-tagged wild-type protein was 

performed to evaluate KEAP1 dimerization (Fig. 2B). Each KEAP1 mutant protein retained 

the ability to dimerize with wild-type KEAP1.  

 

The most likely molecular explanation for how KEAP1 mutations compromise its 

ability to suppress NRF2 is that the mutations impact either the KEAP1-NRF2 association or 

the KEAP1-CUL3 association.  We evaluated whether the KEAP1 mutants maintain their 

ability to interact with endogenous CUL3 (Fig. S2A). Affinity purification and Western blot 

analysis revealed that all of the KEAP1 mutants interact with CUL3 (Fig. 2C). Further 

analysis is needed to determine if the subtle differences in CUL3 binding reflect differential 

affinities or expression variability (Fig 2C, compare lanes 15, 16, 19). Next we determined if 

the KEAP1-NRF2 association was maintained among the mutants. Western blot analysis of 

immunopurified KEAP1 and mutant KEAP1 protein complexes showed that the R554Q, 

W544C, N469fs, P318fs, and G333C mutants failed to bind NRF2 (Fig. 3A and S2B and 

S2C). Surprisingly, however, the remaining 13 KEAP1 mutants retained NRF2 binding. 

Together, these data suggest that with the exception of R554Q, W544C, N469fs, P318fs, 
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and G333C, SQCC-derived KEAP1 mutants maintain their ability to bind both NRF2 and 

CUL3. 

 

Mass spectrometry-based proteomic analysis of KEAP1 revealed 42 high confidence 

associated proteins (4).  To gather a global perspective of how the mutations affect KEAP1 

protein interactions, we performed two experiments.  First, we tested the association of 7 

high confidence interacting proteins by affinity purification and Western blot analysis. The 

data show a distinct pattern among the KEAP1 mutants; those that do not bind NRF2 fail to 

bind several of the known interactors, including SLK, AMER1 (WTX), MCM3, DPP3, and 

IKBKB (IKKb) (Fig. 3A and S2C). Interestingly, all of these proteins contain an ETGE motif 

(4). Two mutations, G480W and S224Y, show decreased binding to SLK, MCM3, and DPP3 

as compared to NRF2 (Fig. 3A, lanes 8, 15). Second, we employed affinity purification and 

shotgun mass spectrometry to define and compare the protein interaction network for wild-

type KEAP1 and the following mutants: R554Q, R320Q, R470C, G480W, G423V, D422N, 

G186R, S243C, and V155F (Fig. 3B and Table S.2.2).  The unbiased proteomic screens 

confirm the Western blot results and further expand the pattern of altered protein 

interactions.  

 

2.D.3. A class of KEAP1 mutants with increased NRF2 binding. 

We were particularly intrigued with a subset of mutants that consistently bound more 

NRF2 than wild-type KEAP1 (Fig. 3A, lanes 3, 5, 6, 9, 14, 16, 19, and Fig. S2C). We 

collectively refer to these mutants as the ‘superbinders’, although relative protein affinity is 

not meant to be inferred. The superbinder mutants include R320Q, R470C, G423V, D422N, 

G186R, S243C and V155F. Increased abundance of NRF2 within each superbinder protein 

complex was confirmed by immunoprecipitation and quantitative Western blot analysis (Fig. 

S3A and S3B). Additionally, label-free mass spectrometry comparing wild-type KEAP1 and 
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two superbinder mutants (R320Q and R470C) showed an increased abundance of NRF2 as 

compared to wild-type KEAP1; based on spectral counts, R320Q and R470C bound 3.3 and 

3.2 fold more NRF2 than wild-type KEAP1, respectively (Fig. 3B and Table S.2.2). For 

comparative purposes, we performed quantitative proteomic analysis on two non-

superbinder mutant proteins: R554Q, which cannot bind NRF2 and G480W, which binds 

NRF2 similarly to wild-type (Fig. 3B).  

 

Despite an increased level of associated NRF2, the superbinder mutants were 

unable to suppress NRF2-mediated transcription of an artificial reporter gene (Fig. 1B-D). To 

confirm this using endogenous metrics of NRF2 activity, HEK293T cells, H2228 cells or 

A549 cells were transiently transfected with wild-type KEAP1 or the superbinder mutants 

before Western blot analysis of NRF2 and the NRF2 target gene HMOX1. Transient 

expression of each superbinder strongly increased the levels of NRF2 and HMOX1 in the 

H2228 and A549 cell lines (Fig. 4A and B). Subcellular fractionation of the HEK293T cells 

further revealed that KEAP1 superbinder expression increased the levels of NRF2 within the 

nuclear compartment (Fig. 4C and S3C). 

 

 2.D.4. KEAP1 ‘superbinder’ mutants facilitate NRF2 ubiquitination but not degradation. 

Our functional and biochemical examination revealed 7 KEAP1 mutations that show 

significantly impaired ability to suppress NRF2, but yet unexpectedly bind more NRF2 than 

wild-type KEAP1. To gain further insight, we evaluated NRF2 protein turnover and 

ubiquitination following KEAP1 superbinder expression. Using a cycloheximide pulse-chase 

approach, NRF2 protein half-life was evaluated in HEK293T cells stably expressing: 1) wild-

type KEAP1, 2) the R320Q superbinder, 3) R470C superbinder, 3) R554Q which does not 

bind NRF2, or 5) G480W which behaves like wild-type. The expression of R320Q or R470C 

dramatically stabilized the NRF2 protein as compared to no exogenous KEAP1, wild-type 
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KEAP1 or G480W (Fig. S3D and Fig. 5A). The increased NRF2 stability occurred as a result 

of binding R320Q or R470C, as unbound NRF2 in the flow-through eluate showed elevated 

levels but dynamic turnover (Fig. 5B, compare flow-through to KEAP1 immunopurification). 

Together, these data suggest that the superbinder mutations within KEAP1 result in the 

stabilization of KEAP1-associated NRF2 and elevated levels of free NRF2, although the free 

NRF2 is still subject to dynamic turnover.  

 

Given the increased NRF2 association and protein stability, we hypothesized that 

R320Q and other superbinder mutants impair NRF2 ubiquitination. To test this, we 

performed two complementary experiments to evaluate NRF2 ubiquitination by wild-type 

KEAP1 or the R320Q superbinder. First, Western blot analysis of immunoprecipitated NRF2, 

after denaturation, showed robust ubiquitination by both wild-type KEAP1 and R320Q (Fig. 

5C). Second, we performed in vitro ubiquitination reactions using purified proteins (Fig. 5D). 

Remarkably, both experimental approaches demonstrate that wild-type KEAP1 and R320Q 

ubiquitinate NRF2. 

 

2.E. Discussion 

With some latitude, we can classify the 18 KEAP1 mutations into three classes.  

First, the L231V, S224Y, P318L and R71L mutations did not impact the KEAP1-NRF2 

association or the suppression of NRF2 activity. These mutations likely represent passenger 

events within KEAP1, at least with respect to NRF2. Second, and not surprisingly, the frame 

shift mutations N469fs and P318fs, as well as G333C, R554Q and W544C did not bind 

NRF2 and did not or weakly suppressed NRF2-mediated transcription. These genotypes 

represent null or near-null alleles.  Third, the remaining nine mutations fell within a 

hypomorphic phenotypic range, with suppression occurring between 30-60% of the wild-type 
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KEAP1. Biochemically, the hypomorphic mutants displayed either reduced NRF2 binding or 

surprisingly, increased binding (the superbinders). 

 

Mutations in tumor suppressor genes often results in complete loss of protein 

expression or the expression of a truncated protein product (25). It is therefore intriguing to 

consider why KEAP1 is rarely lost through genomic deletion, despite being located between 

the SMARCA4 and STK11 tumor suppressor genes on 19p (cBioPortal). A number of 

loosely connected observations raise the possibility that KEAP1 may exert cancer-relevant 

functions that extend beyond regulation of oxidative stress and NRF2. First, we found that 

many KEAP1 mutations result in a hypomorphic phenotype, rather than a genetic null. 

Second, in general, these hypomorphic mutations do not affect the global KEAP1 protein 

interaction network, suggesting that some KEAP1 protein interactions are retained in the 

absence of NRF2 suppression (Fig. 3B and Table S.2.2). Indeed, KEAP1 associated 

proteins regulate a number of disparate cellular processes, including cell cycle, migration, 

and apoptosis (4, 26-34). Third, while the presence and importance of NRF2-independent 

KEAP1 functions remain unknown, we and others have established that several KEAP1 

interacting proteins drive NRF2 activation via a competitive binding mechanism (4, 19, 35-

37). Previously, we found that hypomorphic KEAP1 mutants can be further inactivated by 

the ETGE-containing competitive binding protein, DPP3(4).  Coupled with the observed 

over-expression of DPP3 in lung squamous cell carcinoma, these observations suggest that 

from the perspective of cancer cell fitness, the presence of a hypomorphic KEAP1 mutation 

may be more valuable than a null mutant. 

 

The most surprising and perhaps exciting discovery we observed was the 

identification of the ‘superbinders’—those that do not suppress NRF2-mediated 

transcription, exhibit enhanced binding to NRF2, and facilitate NRF2 ubiquitination. Three 
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points of discussion are appropriate.  First, by what mechanism could the ‘superbinder’ 

mutations affect NRF2 stability? Several possibilities exist, including an increased affinity 

between KEAP1 and NRF2 as a means to suppress substrate turn-over. Analogously, the 

expression of a superbinder variant SH2 domain antagonizes epidermal growth factor 

signaling via competitive inhibition (38). That said, although studies are ongoing, the lack of 

a focal enrichment within the tertiary structure casts some doubt on this possibility (Fig. 5E). 

Cullin ring E3 ubiquitin ligases cycle through an active and inactive state, and this 

neddylation-dependent transitioning is required for substrate turnover. A second possibility 

is that the superbinder mutations simply slow the rate of CUL3 neddylation. Finally, 

proteasome-mediated substrate degradation requires several steps, including recognition, 

unfolding, translocation, and deubiquitination prior to proteolysis (39). The striking 

observation that the enhanced NRF2 binding class of KEAP1 mutants ubiquitinates NRF2 

suggests that the mutations functionally hinder one of the steps prior to proteolysis, but after 

ubiquitination. Here, immediate questions include whether the superbinder mutations affect 

the ubiquitin chain linkage on NRF2 or whether they perturb the interaction of KEAP1 with 

the proteasome. All three of these putative mechanisms to describe the superbinder 

phenotype would inactivate KEAP1 and stabilize NRF2 in a manner consistent with the 

widely accepted “saturation model” (22). Importantly, as the KEAP1 mutants described in 

this study exhibit hypomorphic phenotypes, the superbinders could represent a novel 

mechanism cancer cells employ to enhance cellular fitness without compromising all cellular 

functions of multifunctional proteins.  

 

Second, it is now widely accepted that elevated levels of NRF2 are associated with 

enhanced cell viability in several tumor types (7, 10, 40-42). Although we show that 

‘superbinder’ mutations result in NRF2 transcriptional activation, further studies are required 

to determine whether this KEAP1 mutant class is capable of enhancing cancer cell fitness in 
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vivo, and whether that depends upon prolonged activation of NRF2. Additionally, given 

emerging evidence identifying other putative KEAP1 substrates in cancer-relevant 

pathways, such as IKKb within NF-κB signaling (5, 43), investigating how—if at all—

superbinder mutations impact these proteins could also have clinical significance. Looking at 

the full set of KEAP1 mutant tumors and the expression of 15 NRF2 target genes, a 

marginal but statistically significant difference was observed between phenotypically ‘silent’ 

KEAP1 mutations and mutations which suppress KEAP1-driven NRF2 degradation (Fig. 

S1A). Our attempts to more precisely correlate KEAP1 genotype with the cell-based 

phenotypic scoring failed to reach statistical significance. This is not surprising given the 

multitude of signaling and metabolic inputs that control KEAP1.     

 

Third, from a structural perspective, we noted weak correlation between the tertiary 

position of a mutation and whether the mutation produced a KEAP1 superbinder (Fig. 5E). 

Although speculative, the superbinder mutations appear to be localized at positions that 

might orient the relative position of IVR and KELCH domains; experiments testing this model 

are ongoing. Intriguingly, of the 181 missense mutations reported in KEAP1, 6 directly target 

the R320 superbinder residue, making it the most commonly affected amino acid in KEAP1 

(Fig. 1A).  Beyond the superbinder mutations, mapping all SQCC 19 mutations onto the 

KEAP1 structure failed to reveal a discernible pattern. Likewise, side-chain biochemistry for 

the mutations varies widely, including those within the superbinder class. Cysteine reactivity 

depends upon the local chemical microenvironment, which is largely dictated by the 

surrounding amino acids in a protein tertiary structure. Hence, for a cysteine-dependent 

biosensor like KEAP1, oncogenesis may partially suppress KEAP1 activity by selecting for 

mutations which add cysteines (S243C, G333C, R470C) or which reduce the relative pKa of 

existing cysteines, making them more sensitive to electrophilic attack (44). Clearly, spatial 

constraints preclude the random addition of cysteines as a means to increase the reactivity 
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of KEAP1 to oxidative stress. New cancer-derived cysteines of functional importance would 

occupy specific localizations within the folded protein. By extension of this idea, cancer-

derived mutations that create ‘hyperactive’ cysteines within KEAP1 would be expected to 

produce a hypomorphic phenotype, as we have observed. Further study is needed to 

support these ideas, perhaps through the functional and biochemical characterization of the 

other 213 cancer-derived mutations in KEAP1.  To this end, medium-throughput functional 

analysis is facilitated by Gateway-based cloning, outsourced mutagenesis and a strong 

pathway-specific transcriptional reporter. The resulting data may better enable predictions of 

genotype-phenotype relationships. However, based on the KEAP1 data presented here, it is 

not yet possible to derive functional conclusions from the location of a mutation or the type 

of residue substitution.  

 

In summary, we describe the functional and biochemical characteristics of 18 

mutations in the E3 ligase adaptor protein KEAP1, which were found in patient-derived lung 

cancers.  We show that while most of these mutations maintain similar protein interactions 

to wild-type KEAP1, all but four exhibit hypomorphic or null activity with respect to 

suppression of NRF2-mediated transcription. Intriguingly, a subset of these mutations 

exhibit enhanced binding to NRF2 despite an inability to suppress NRF2 activity. Functional 

analysis of one of these mutants, R320Q, revealed that these mutants are still able to 

ubiquitinate NRF2, but appear to be unable to facilitate its degradation. Further studies are 

required to elucidate the mechanism of this class of KEAP1 mutations, including how they 

interact with the proteasome, as well as whether these mutants enhance viability of cancer 

cells via prolonged activation of NRF2. 
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Figure 2.1. Mutations in KEAP1 positively correlate with increased NRF2 activity.  
A. Probability density function of KEAP1 mutations were approximated using kernel density 
estimation. Lung SQCC mutations examined in this study are annotated above; all 
mutations from the public domain are shown below and in Supplementary Table S.2.1.  
B. HEK293T cells, Keap1 knockout MEFs, and A549 cells were transiently transfected with 
the indicated plasmids along with constitutively expressed Renilla luciferase and the NQO1 
promoter driving Firefly luciferase. Cells were lysed and Firefly luciferase values were 
normalized to the luciferase activity of the Renilla control. Error bars represent SD from the 
mean over 3 biologic replicates (NTR, N-terminal region; BTB, tramtrack and bric-a-brac; 
CTR, C-terminal region; IVR, intervening region). 
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Figure 2.2. SQCC KEAP1 mutants retain the ability to dimerize and interact with the 
CUL3 E3 ubiquitin ligase.  
A. HEK293T cells were transiently transfected with the indicated KEAP1 mutant plasmids, 
and treated with 50 mmol/L tBHQ for 1 hour. Cells were lysed in RIPA buffer and expression 
of FLAG-tagged mutants was analyzed by Western blot for the indicated proteins. The 
vertical dotted line depicts the digital removal of a KEAP1 mutant recently found not to exist. 
The correct mutation, P318fs, is shown in Supplementary Fig. S2.  
B. HEK239T cells stably expressing WT HA-KEAP1 were transiently transfected with the 
indicated FLAG-tagged KEAP1mutants. Cells were lysed in 0.1% NP-40 buffer and 
immunoprecipitation (IP) of the FLAG-tagged protein complexes were analyzed by Western 
blot for the indicated proteins (HA, hemagglutinin).  
C. FLAG-tagged protein complexes were immunopurified from HEK293Tcells transiently 
expressing the indicated KEAP1 mutants and analyzed by Western blot for the indicated 
proteins (NS,nonspecific). 
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Figure 2.3. KEAP1 mutant proteins exhibit differential binding to interacting proteins.  
A. HEK293T cells expressing the indicated KEAP1 mutants were treated with 10 mmol/L 
MG132 for 1 hour, followed by FLAG immunopurification. Protein complexes of the FLAG-
tagged mutants were analyzed by Western blot for the indicated proteins. Red lines indicate 
KEAP1 mutants that were analyzed by mass spectrometry as indicated in B.  
B. APMS experiments were performed via affinity purification of streptavidin-tagged KEAP1 
mutants from stable HEK293T cells followed by mass spectrometry analysis of the bound 
proteins. Colors represent normalized spectral counts—semiquantitative values that reflect 
protein abundance—from the APMS experiments. Proteins displayed are previously 
identified high-confidence KEAP1 interactors.
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Figure 2.4. Expression of KEAP1 superbinder mutants enhances nuclear localization 
of NRF2.  
A. H2228 cells were cotransfected with the indicated FLAG-tagged KEAP1 mutant plasmid 
or negative control Venus-NPM1, and NRF2 plasmid. Cells were lysed in RIPA buffer and 
analyzed by Western blot for the indicated proteins.  
B. A549 cells were transiently transfected with the indicated KEAP1 mutants or Venus-
NPM1, and protein lysates were analyzed as described in A.  
C. HEK293T cells were transiently transfected with the indicated FLAG-tagged KEAP1 
mutants. Cells were fractionated into nuclear and cytoplasmic fractions and lysates were 
analyzed by Western blot for the indicated endogenous (NRF2, MEK1/2, H3) and ectopically 
expressed proteins.
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Figure 2.5. KEAP1 superbinder mutants cannot degrade NRF2 but maintain the ability 
to ubiquitinate NRF2.  
A. HEK293T cells stably expressing the indicated 
FLAG-tagged KEAP1mutantswere transiently transfected with NRF2. Cells were treated with 
50 mg/mLCHX for the indicated time, and cell lysates were analyzed by Western blot for the 
specified proteins.  
B. HEK293T cells stably expressing the indicated FLAG-tagged KEAP1 mutants were 
treated with CHX as described in A. FLAG immunopurification was performed to isolate 
protein complexes containing the indicated KEAP1 mutants. Whole cell lysate (INPUT), 
immunoprecipitated complexes (IP: FLAG), and eluate (UNBOUND FRACTION) were 
analyzed by Western blot for the indicated proteins. Values represent NRF2 quantitation 
relative to FLAG-tagged KEAP1 expression.  
C. HEK293T cells stably expressing either FLAG-tagged wild-type KEAP1 or the R320Q 
mutant were transfected as described in A. Cells were lysed under denaturing conditions 
and then diluted to physiologic pH in 0.1% NP-40 lysis buffer. Immunopurification of NRF2 
was performed, and protein complexes were analyzed by Western blot.  
D. Purified KEAP1 or the R320Q mutant was mixed with recombinant human E1, UbcH5, 
CUL3-RBX1, ubiquitin, and GST-tagged NRF2 NEH2 domain. Ubiquitinated NRF2 was 
detected by Western blot analysis.  
E. The BTB and intervening region (IVR) domains of KEAP1 (green) were modeled by the I-
TASSER server. The BTB domain of the second copy of KEAP1 within the dimer is shown 
in cyan.Superbinder residues are shown in red spheres. R320 is located in a predicted short 
linker connecting the BTB–IVR domain and KELCH domain. 
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Figure S.2.1. SQCC KEAP1 mutant characterization.  
A. Activity of KEAP1 mutants, as based on luciferase activity from Figure 1 B-D, positively 
correlates with NRF2 target gene expression (P=0.049, Kruskal-Wallis test).  
B. HEK293T cells were transiently transfected with the indicated FLAG-tagged KEAP1 
mutants and cell lysates were analyzed by Western blot.  
C. HEK293T cells were transiently transfected with the indicated FLAG-KEAP1 mutants and 
stained for FLAG. Scale, 20 µm. 
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Figure S.2.2. KEAP1 mutants differentially bind to protein interactors.  
A. Multiple CUL3 siRNAs silence CUL3 protein expression. HEK293T cells were transfected 
with 10nM of the indicated siRNAs before Western blot analysis.  
B. Mutant P318fs was originally synthesized incorrectly, hence the dotted vertical line in 
Figures 2, 3A, 4A and B, S1, and S2C). The correct mutant was synthesized and HEK293T 
cells were transfected followed by immunopurification for the tagged mutant protein. Cell 
lysates and purified protein complexes were analyzed by Western blot to assess expression 
of the P318fs mutant, as well as NRF2 association.  
C. HEK293T cells expressing the indicated FLAG-tagged KEAP1 mutants were purified and 
lysates were analyzed by Western blot. 
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Figure S.2.3. KEAP1 superbinder mutants enhance ectopic NRF2 nuclear localization.  
A. HEK293T cells were transfected with the indicated FLAG-tagged KEAP1 construct before 
lysis and quantitative Western blot analysis.  
B. LI-COR-based quantitation of NRF2 and KEAP1 from Figure S3, panel A.  
C. HEK293T cells were transiently co-transfected with the indicated FLAGtagged KEAP1 
mutants and NRF2. Cells were fractionated into a cytoplasmic and nuclear fraction, and cell 
lysates were analyzed by Western blot.  
D. HEK293T cells were transfected with FLAG-tagged NRF2 before treatment with 
cycloheximide for the indicated time, as was done in Fig. 5
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CHAPTER 3: PATIENT-DERIVED KEAP1 SUPERBINDER MUTANTS STABILIZE KEAP1 

STRUCTURE AND SEQUESTER NRF2 in P62-DEPENDENT CLUSTERS 
 

3.A. Overview 

Cancer-derived loss-of-function mutations in the KEAP1 tumor suppressor gene 

stabilize the NRF2 transcription factor, resulting in a pro-survival gene expression program 

that alters cellular metabolism and neutralizes oxidative stress. In a previous study of 

KEAP1 mutations observed in lung cancer, we classified 40% of the mutations as 

‘superbinders’ (superbinders). These mutants bind and ubiquitylate NRF2 but do not 

promote NRF2 degradation. Here, we further investigated the molecular mechanism(s) 

driving the superbinder phenotype. BioID-based quantitative proteomic analysis of the 

R320Q and R470C superbinder mutations revealed increased co-complexed NRF2 without 

significant alteration to other KEAP1-associated proteins, including CUL3, VCP, and several 

ubiquitin receptors within the proteasome lid. Dynamic simulation modeling and limited 

proteolysis analyses suggest that superbinder mutations stabilize residues in KEAP1 that 

contact NRF2. In cells, KEAP1 R320Q and R470C mutants co-localize with NRF2, 

p62/SQSTM1 and polyubiquitin in spherical clusters that rapidly fuse and dissolve; 

localization to these clusters requires p62. Expression of R320Q and R470C in lung cancer 

cells provided resistance to the reactive oxygen species-inducing drug bleomycin. We 

present and discuss a model wherein superbinder mutations alter the conformational 

dynamics of the KEAP1-NRF2 complex to alter the cycling of KEAP1 between open and 

closed conformations, thus inhibiting NRF2 degradation.  
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3.B. Introduction  

The National Cancer Institute projects more than 222,500 new cases of lung cancer, 

with mortalities in excess of 155,870 people for 2017 (1) Lung squamous cell carcinomas 

(LUSC) comprise 25-30% of all lung cancer cases with a 5-year survival rate of less than 5% 

for patients with Stage IV disease, thus demonstrating a clear need for earlier diagnostic 

measures and novel therapeutic treatments (2-4). Comprehensive studies conducted by The 

Cancer Genome Atlas (TCGA) revealed mutations in the Kelch-like ECH associated protein 

1 (KEAP1) and nuclear factor erythroid 2-related factor 2  (NFE2L2/hereafter, NRF2) 

pathway in 34% of LUSC cases studied, underscoring the significance of this pathway in 

lung tumorigenesis (5).  

 

KEAP1 functions as an intracellular sensor of oxidative stress (5-7). Under basal 

conditions, cytosolic KEAP1 exists as a homodimer and associates with the E3 ubiquitin 

ligase complex Cullin-3  (CUL3) and RBX1 via a three-box motif in its broad-complex, 

tramtrack, bric-à-brac (BTB) domain (6-10). Dimeric KEAP1 binds two different motifs within 

NRF2: a high-affinity ETGE and a low-affinity DLG. These motifs associate with KEAP1 via 

an arginine triad motif in the KELCH domains of KEAP1 (11-14). The prevailing theory is 

that the association of both motifs with a KEAP1 homodimer is essential to sterically position 

seven key lysine residues in NRF2 for ubiquitylation via the CUL3 complex (7-11, 13). 

Ubiquitylated NRF2 is then delivered to the proteasome for degradation, though mechanistic 

details of this transition are unresolved. Modifications to one or more of the 27 reactive 

cysteine residues in KEAP1 result in a conformational change that impairs NRF2 

degradation (15-19). Because dimeric KEAP1 is no longer available to degrade NRF2, de 

novo synthesized NRF2 accumulates and translocates to the nucleus (11, 20, 21). Nuclear 

NRF2 heterodimerizes with small Maf proteins and binds to antioxidant response elements 

(ARE)/ electrophile response elements (EpRE) in the promoters of target genes, including 
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the phase II detoxifying enzyme NAD(P)H dehydrogenase [quinone] 1(NQO1), glutathione 

synthesis genes and heme oxygenase 1 (HMOX1) (20-22). 

 

Live-cell imaging studies utilizing fluorescence lifetime imaging (FLIM) coupled with 

Förster resonance transfer (FRET) constructs established that KEAP1 cycles between two 

distinct conformations: open and closed (15). Initially, KEAP1 exists in the cytosol as a 

homodimer with a 1:1 stoichiometry with the CUL3 complex (Fig. 1.1) (15, 23, 24). As NRF2 

protein levels increase, KEAP1 binds the ETGE motif of NRF2 and maintains an open 

conformation (Fig. 1.2) (15). Sequential binding of the low-affinity DLG motif generates the 

closed conformation of the complex in which ubiquitylation of NRF2 is sterically favorable 

(Fig. 1.3) (15). The closed complex delivers ubiquitylated NRF2 to the proteasome for 

degradation, and removal of the ubiquitylated substrate results in regeneration of free and 

open KEAP1, thus enabling cycling to continue (Fig. 1.4) (15). NRF2 inducers modify 

KEAP1 conformation resulting in impaired cycling and accumulation of the closed KEAP1-

NRF2 complex (15). In order to re-establish redox-sensing capabilities, cells must 

regenerate free KEAP1 and remove KEAP1-NRF2 closed complexes; the mechanism of 

how this occurs has yet to be fully elucidated (15, 25, 26).  

 

Due to its essential role in mitigating oxidative stress, a delicate balance of KEAP1-

NRF2 signaling is required to maintain cellular homeostasis. Inappropriately low or high 

NRF2 activity is associated with a variety of disease conditions (5, 16, 27, 28). Diminished 

or absent NRF2 activity is associated with an increased risk for neurodegeneration and 

aging (16, 29, 30). In contrast, prolonged periods of NRF2 hyperactivation correlate with an 

increased risk for tumorigenesis (30-33). In greater than 30% of lung cancers, mutations in 

KEAP1 or NRF2 contribute to constitutive NRF2 activity which correlates with increased 

resistance to chemotherapy and poor patient outcome (5, 10, 30, 31, 34-36). 
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Although over 700 somatic mutations in KEAP1 have been identified in cancer, the 

mechanism and functional consequences of a majority of these mutations remains unknown 

(37). Analysis of 178 LUSC patients directed by the TCGA consortium revealed 18 

mutations in KEAP1 (5). To determine the functional significance of these mutations in 

LUSC, we cloned and profiled the mutants to define their impact on NRF2 function and 

biochemical activity (38) . From these data, we identified three distinct functional classes: 1) 

silent mutations which most likely represent passenger events, 2) hypomorphic mutations, 

and 3) functionally dead proteins (38). Further interrogation of the hypomorphic mutant class 

revealed a subset of seven superbinder mutants which exhibit increased binding to NRF2, 

yet lack the ability to suppress NRF2 transcription (38). Remarkably, cell-based and in vitro 

studies revealed that the KEAP1 R320Q superbinder mutation retains the ability to 

ubiquitylate NRF2 (38).  

 

From our analyses of the LUSC KEAP1 mutations, we estimate that KEAP1 

superbinder mutations represent more than one third of patient-derived LUSC KEAP1 

mutations; thus we pursued studies to examine the mechanism and phenotypic 

consequences of the superbinder mutants. Proximity-based proteomic analyses of KEAP1 

superbinder complexes revealed exclusive enrichment for NRF2 with minimal comparable 

protein-protein interactions with key ubiquitin chaperones and receptors. Simulation data 

and biochemical studies suggest superbinder mutants stabilize KEAP1 tertiary structure, 

particularly at interfacing residues with NRF2. In vivo, superbinder mutants form clusters 

containing polyubiquitin, the autophagy cargo adaptor p62/SQSTM1 (p62), KEAP1, and 

NRF2. Surprisingly, the formation of these clusters is p62-dependent. Overexpression of 

KEAP1 superbinder mutants in lung adenocarcinoma cells protects from DNA-damaging 

agent bleomycin. These studies provide insight into how KEAP1 hypomorphic function 
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mutations sequester NRF2 in p62-dependent clusters thus potentially altering KEAP1-NRF2 

conformational cycling.  

 

3.C. Materials and Methods  

Tissue culture and transfections 

HEK 293T/17 and NCI-H1299 (H1299) cells were obtained from the American Type 

Culture Collection (ATCC, Manassas, VA) and authenticated by ATCC using short tandem 

repeat (STR) profiling. Cell lines were passaged for less than 3 months after resuscitation. 

The Keap1-/- mouse embryonic fibroblasts (MEFs) were derived in collaboration with Luke 

Chen at North Carolina Central University. HEK 293T/17 cells were grown in Dulbecco's 

Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine serum (FBS). Keap1-/- 

MEFs were cultured in DMEM-F12 supplemented with 10% FBS, 1% non-essential amino 

acids, and 1% sodium pyruvate. H1299 cells were grown in RPMI-1640 supplemented with 

10% FBS. All cells were grown in a 37°C humidified incubator with 5% CO2.  Expression 

constructs were transfected into HEK 293T/17 cells (7.50 x 106 cells/well in a 6-well format) 

with Lipofectamine® 2000 (Invitrogen 52887; Carlsbad, CA) according to the manufacturer’s 

protocols. H1299 cells (3.0 x 106 cells/well in a 6-well format) and Keap1-/- MEFs (1.5 x 106 

cells/well in a 6-well format) were transfected with FuGENE® HD (Promega E231A; 

Madison, WI) in accordance with the manufacturer’s protocols. Transfection of siRNAs in 

HEK 293T/17 cells (2.0 x 106 in a 6-well format) was performed with Lipofectamine® 

RNAiMAX (Invitrogen, 56532) for 72 hr unless otherwise stated.  

 

siRNA Seqences 

Control (CNT) siRNA sequences are as follows: (A) 5’ CGU ACG CGG AAU ACU 

UCG ACU UCG A 3’ and (B) 5’ UCG AAG UAU UCC GCG UAC GCU AAG U 3’. siRNA 

sequences for NFE2L2 are as follows: (1) 5’ CCG GGA CAG AGT CAC CAT TTG ATT T 3’,   
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(2) 5’ CCC AGC AAT TCT ACC AGC CTC AAC T 3’, and (3) 5’ GCT ATG TTG GAT GAG 

ATC AGC CTT A 3’. The siRNA sequences for PGAM5 are as follows: (1) 5’ ACG CGC 

GCC AUA GAG ACC ACC GAU A 3’, and (2) 5’ CAC CUG CCA GGC GUC UGC AAA GUC 

A 3’. siRNA sequences for p62/SQSTM1 are as follows: (1) 5’ CAG AUG GAG UCG GAU 

AAC U 3’, (2) 5’ CAG UCU CUG GCG GAG CAG A 3’, and (3) 5’ GGC AGA AUC AGC UUC 

UGG U 3’. siRNA sequences for VCP are as follows: (1) 5’ GGU AGA AGA GGA UGA UCC 

A 3’, (2) 5’ CAG UUA CUA UGG AUG ACU U 3 ‘, and (3) 5’ GGU AGA UAU UGG AAU 

UCC U 3’.  

 

Plasmids, expression vectors, and site-directed mutagenesis 

Entry clones for KEAP1 R320Q and R470C were generated using pcDNA 3.1 FLAG-

KEAP1 R320Q and R470C constructs as described previously (38). Phusion® High-Fidelity 

DNA Polymerase (NEB M0530; Ipswich, MA) was used to generate the PCR product for the 

TOPO cloning reaction using the pCRTM8/GW/TOPO® TA CloningTM Kit (Thermo Fisher 

Scientific 200517; Waltham, MA). TOPO cloning was performed according to the 

manufacturer’s instructions. Cloning primers were as follows: Forward 5’ ATG CAG CCA 

GAT CCC AGG 3’, and Reverse 5’ TCA ACA GGT ACA GTT CTG CTG GTC 3’. Resulting 

entry vectors were then gateway-cloned into a custom gateway lentiviral vector pHAGE-

CMV-FLAG-BirA-DEST to generate expression constructs for BirA*-KEAP1 R320Q and 

R470C. Clones were sequence verified before use. The Keap1-mCh WT and EGFP-Nrf2 

were a kind gift from Albena Dinkova-Kostova at the University of Dundee. R320Q and 

R470C mutants were generated from PCR-based mutagenesis using the QuikChangeTM XL 

Site-Directed Mutagenesis Kit (Agilent 200517; Santa Clara, CA) according to the 

manufacturer’s instructions. Constructs were sequence verified before use; primer 

sequences for the mutagenesis are as follows:  R320Q_Forward 5’ CCA CTT TGG GCG 

CCT GGC AGG GCA CTG C 3’, R320Q_Reverse 5’ GCA GTG CCC TGC CAG GCG CCC 
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AAA GTG G 3’, R470C_Forward 5’ CTG CAT ACA GCA AGC AGT TGA GCA CTG CCA C 

3’, and R470C_Reverse 5’ GTG GCA GTG CTC AAC TGC TTG CTG TAT GCA G 3’.  

 

Live cell imaging 

HEK 293T/17 cells were co-transfected with mEGFP-Nrf2 and mKeap1-mCH R320 

and imaged the following day. Time-lapse phase-contrast and fluorescence images were 

acquired every 5 min for 10 hr with an Olympus IX70 inverted fluorescence microscope 

enclosed within an environmental chamber controlled for temperature, relative humidity, and 

CO2 and equipped with a 40X/0.6 Ph2 LCPlanFl objective lens and a Hamamatsu ORCA 

C4742-95 charge-coupled device camera. Data acquisition was carried out with Volocity 

(version 5.5.1; PerkinElmer), and image processing was performed with ImageJ and Adobe 

Photoshop CS software. 

 

IncuCyteTM live cell imaging experiments were performed as reported previously with 

minor modifications (39). HEK 293T/17 cells (1.50 x 106 cells/well in 24-well format) were 

plated and transfected the next day with FLAG-KEAP1 WT, R320Q, or R470C (150 ng/well) 

along with mEGFP-Nrf2 or Venus-NRF2 (100 ng/well). Plates were immediately transferred 

into the IncuCyteTM ZOOM (Essen BioScience; Ann Arbor, MI) and housed inside a cell 

incubator at 37°C with 5% CO2. Images were taken every hr for 24 hr with a 20X objective 

from four fields per well and from four technical replicates per condition in the phase and 

green channels (400 ms acquisition). Automated image processing on the fluorescence and 

phase channels was accomplished by applying an appropriate processing definition. Total 

Green Object Integrated Intensity (GCU X µm2/Image) was normalized by cell confluence. 

Data presented represent the average of three biological replicates and are reported as 

mean ± standard error of the mean. 
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Immunopurification and Western blotting  

For FLAG/mCherry immunopurification, HEK 293T/17 cells (7.5 x 106 cells/well in a 

6-well format) or H1299 cells (3.0 x 106/well in a 6-well format) were seeded and transfected 

and/or treated the following day for for up to 24 hr . Cells were washed with DPBS and lysed 

in 255 µl (per well) of 0.1% NP- 40 lysis buffer (0.1% NP-40, 10% glycerol, 50 mM HEPES 

[pH 8.0], 150 mM NaCl, and 2mM EDTA) supplemented with HaltTM Protease Inhibitor 

Cocktail 100X (Thermo Scientific 78429), HaltTM Phosphatase Inhibitor Cocktail 100X 

(Thermo Scientific 78426), and 10 mM N-Ethylmaleimide (NEM) (Thermo Scientific 23030). 

Cells were lysed on ice for 30 mins followed by a 30 min centrifugation at 16,000g at 4°C. 

Cleared lysates were quantified using the Pierce BCA Protein Assay Kit (Thermo Scientific 

23225) and incubated with EZviewTM Red ANTI-FLAGTM M2 Affinity gel (Sigma F2426; St. 

Louis, MO) or 1 µg of mCherry antibody (Abcam; Cambridge, UK) prior to washing 4 times 

with 0.1% NP-40 lysis buffer and eluting with 4X NuPAGETM LDS Sample buffer (Life 

Technologies NP0007; Carlsbad, CA). For immunoprecipitation of mKEAP1-mCh or 

mEGFP-Nrf2, cells were lysed and cleared as described above and pre-cleared for one hr 

with PierceTM Protein A/G Agarose (Thermo Scientific 20421). Lysates were then incubated 

with mCherry antibody or GFP antibody (Abcam) overnight at 4°C. The following day, 

lysates were incubated for 1 hr with PierceTM Protein A/G resin followed by elution with 

NuPAGETM LDS Sample Buffer as described above. For siRNA experiments, HEK 293T/17 

cells were lysed in RIPA buffer (1% NP-40, 0.1% SDS, 10% glycerol, 25 mM Tris-HCl pH [7-

8], 0.25% sodium deoxycholate, 150 mM NaCl, and 2 mM EDTA) supplemented with 

protease and phosphatase inhibitor cocktails and 10 mM NEM 72 hr post-transfection.  

 

Antibodies used for W. blot analysis 

The GFP (ab290), HMOX1 (ab13243), mCherry (ab16745), and PGAM5 (ab126534) 

antibodies were purchased from Abcam (Cambridge, UK). The MCM3 (A300-192A), PALB2 
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(A301-246A), PSMD4 (A303-55A), p62/SQSTM1 A302-856A), and VSV-G (A190-131A) 

antibodies were purchased from Bethyl Laboratories (Montgomery, TX). The BCL2 (2876B), 

CUL3 (2759), IKBKB (2684), K48 linkage-specific polyubiquitin clone D9D5 (8081), LC3A/B 

clone D3U4C XPTM (12741), NBR1 clone D2E6 (9891), NRF1 (8052), p62/SQSTM1 (8025), 

VCP (2648), and VPS34 (4263) were purchased from Cell Signaling Technologies 

(Danvers, MA). The PSMD2 (PA5-27663) antibody was obtained from Invitrogen. The 

phosphor-p62 (SQSTM1) (Ser351) p62/SQSTM1 (PM074) antibody was obtained from MBL 

International (Woburn, MA). The KEAP1 (10503-2-AP) antibody was obtained from 

Proteintech (Rosemont, IL). The anti-hemagglutinin (HA) High Affinity Rat antibody (11 867 

423 001) was purchased from Roche Diagnostics (Mannheim, Germany). The NRF2-H300 

(SC-13032) antibody was purchased from Santa Cruz Biotechnology (Dallas, TX). The Actin 

(A5316), FLAG M2 (F1804), and Beta tubulin (T7816) antibodies were purchased from 

Sigma. The following secondary antibodies were purchased from Jackson Immunoresearch 

(West Grove, PA):  Peroxidase-conjugated IgG Fraction Monoclonal Mouse Anti-Rabbit IgG, 

Light Chain Specific (211-032-171), Peroxidase AffiniPure Goat Anti-Mouse IgG, Light 

Chain Specific (115-035-174), Peroxidase AffiniPure Donkey Anit-Mouse IgG (H+L) (715-

035-150), Peroxidase-conjugated AffiniPure Donkey Anti-Goat IgG (H+L) (705-035-003), 

Peroxidase-conjugated AffiniPure Donkey Anti-Rat IgG (H+L) (712-035-150), and 

Peroxidase-conjugated AffiniPure Donkey Anti-Rabbit IgG (H+L) (711-035-152). Secondary 

antibodies for LI-COR were purchased from LI-COR Biosciences (Lincoln, NE):  IRDye® 

680LT Goat anti Rabbit IgG (925-68021), IRDye® 680LT Goat anti Mouse IgG (925-68020), 

IRDye® 800CW Goat anti Mouse IgG (925-32210), and IRDye® 800CW Goat anti Rabbit IgG 

(925-32211). The following chemicals were purchased from Calbiochem (Darmstadt, 

Germany): MG-132 (474790), and MLN4924 (505477001).  
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Antibodies used for IF analysis  

The LAMP2 antibody (555803) was obtained from BD Biosciences (Franklin, NJ). 

The LC3B (2775) and LC3B D11 XPTM (3868) were obtained from Cell Signaling 

Technology. The polyubiquitinylated conjugates clone FK1 antibody (BML-PW8805) was 

purchased from Enzo Life Sciences (Farmingdale, NY). The following secondary antibodies 

were all purchased from Jackson Immunoresearch Laboratories: Fluorescein (FITC) 

AffiniPure Donkey anti-Mouse IgG (715-095-150), Alexa Fluor® 647 AffiniPure Donkey anti-

Rabbit IgG  (711-605-152), Alexa Fluor® 647 AffiniPure Donkey anti-Mouse IgG (715-505-

150), Rhodamine Red™-X (RRX) AffiniPure donkey anti-mouse IgG (715-295-150). 

 

Small molecule reagents 

The following chemicals were purchased from Cayman Chemicals (Ann Arbor, MI): 

Bleomycin sulfate (13877), cisplatin (13119), CB-5083 (19311), N2,N4-dibenzylquinazoline-

2,4-diamine (DBeQ); 15318), and Eeyarestatin 1 (Eey1; 10012609). Cycloheximide (CHX; 

1010083) was purchased from MP Biomedicals (Santa Ana, CA). The following chemicals 

were purchased from Sigma: Chloroquine (CQ; C6628), L-Sulforaphane (SFN; S6317), and 

tert-Butylhydroquinone (tBHQ; 112941). Bardoxolone methyl (CDDO; S8078) was obtained 

from Selleck Chemicals (Houston, TX). Paclitaxel (TXD01) was obtained from Cytoskeleton, 

Inc. (Denver, CO). 

 

Immunostaining and Confocal Images 

These experiments were performed as reported previously with minor modifications 

(39). Briefly, HEK 293T/17 or H1299 cells were plated on 10 µg/ml fibronectin-coated 

coverslips in the appropriate culture media and allowed to attach overnight. For experiments 

that required exogenous expression of tagged proteins, transfection was performed 24 hr 

post-plating, and cells were stained the following day. Cells were fixed in 4% 
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paraformaldehyde in cytoskeletal buffer (5 mM PIPES [pH 6.0], 137 mM NaCl, 5 mM KCl, 

1.1 mM Na2HPO4, 0.4 mM KH2PO4, 0.4 mM MgCl2, 0.4 mM NaHCO3, 2 mM EGTA, and 50 

mM glucose) for 15 min and permeabilized with 0.1% Triton X-100 in PBS for 5 min. After 

blocking with 1% BSA in PBS, cells were incubated overnight with the primary antibodies 

and then incubated with the appropriate fluorescence-conjugated secondary antibodies for 1 

hr. The following primary antibodies were used:  anti-FLAG (1:1000, Sigma), anti-p62 

(1:150, Cell Signaling Technology), anti-p-S351-p62 (1:300, MBL International), anti-LC3B 

(1:150, Cell Signaling Technology), anti-LAMP2 (1:150, BD Biosciences), and anti-

polyubiquitinylated conjugates FK1 (1:250, Enzo Life Sciences. Secondary antibodies were 

used at the following dilutions: FITC anti-mouse IgG (1:300), Alexa Fluor® 647 anti-Rabbit 

IgG  (1:500), Alexa Fluor® 647 anti-mouse IgG (1:300), RRX anti-mouse IgG (1:2000). DAPI 

staining was performed for nuclear detection. Coverslips were mounted to slides using the 

ProLongTM gold antifade mountant with DAPI (P36935; Thermo Fisher Scientific), and 

images were acquired using a Zeiss LSM 710 confocal laser-scanning microscope equipped 

with 40X/1.3 Oil Plan Neo and 63X/1.4 Oil Plan Apo objective lenses.  

 

Proximity Ligation Assays  

 For detection of KEAP1 and NRF2 interactions, proximity ligation was performed with 

the Duolink® II proximity ligation assay kit according to the protocol provided by the 

manufacturer (Sigma DUO092101). Briefly, HEK 293T/17 cells stably expressing FLAG-

KEAP1 (WT or mutants) were plated on fibronectin-coated coverslips, allowed to attach, 

fixed, and permeabilized as described above. For the PLA experiments in H1299 cells, 

transfections with the desired plasmids were performed after plating cells on coverslips. 

Cells were then incubated in blocking solution in a humidified chamber at 37°C for 30 min, 

followed by overnight co-incubation with rabbit polyclonal antibodies against NRF2 (Santa 

Cruz 1:200) and mouse monoclonal antibody against FLAG (Sigma 1:1000) in antibody 
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diluent solution at 4°C. Cells were washed in buffer A and incubated with PLA probes 

(Sigma Duolink® In Situ PLA® Probe Anti-Rabbit PLUS (DUO92002) and Duolink® In Situ 

PLA® Probe Anti-Mouse MINUS (DUO92004) in antibody diluent (1: %dilution) for 1 hr at 

37°C. They were then washed in buffer A and incubated with ligation solution (1:5 dilution of 

ligation buffer and 1:40 dilution of ligase in pure water) for 30 min at 37°C. After ligation, 

cells were washed in buffer A and subjected to amplification with Detection Reagents Red 

(1:5 dilution amplification stock and 1:80 dilution of polymerase in water) for 100 min at 37 

°C. Amplified samples were washed in buffer B, washed in buffer A, and counterstained for 

microtubules using anti-tubulin-FITC antibodies (Sigma, 1:500 dilution). The coverslips were 

mounted with Duolink® II mounting medium with DAPI for nuclear detection. When 

analyzing PLA preparations in HEK 293T/17 cells, confocal Z-stack images of 10 µm 

thickness were taken with a Z-step of 0.5 µm (about 21 slices) at 512 x 512 pixels, using a 

Zeiss LSM710 spectral confocal laser-scanning microscope equipped with a ×40/1.4 Oil DIc 

M27PlanApo objective lens. ImageJ software was used to project all 21 slices per field into a 

2D image. When analyzing PLA preparations in H1299 cells, a single optical slice was 

captured per field from a depth of 4-5 µm above the substrate to ensure that sampling was 

done from the same level for all preparations. Three channel images were taken for 9 

random fields per condition. Experiments were done in three biological replicates. The 

number of nuclei and PLA dots per image were quantified using BlobFinder software (40). 

PLA dots/nuclei ratio was set to 1 in FLAG-KEAP1 WT-expressing cells (untreated or 

DMSO-treated) and used to calculate PLA dot fold-induction in cells expressing KEAP1 

mutants or following treatment with NRF2 inducers. 

 

KEAP1 ubiquitylation experiments  

Ubiquitylation of KEAP1 under denaturing conditions was performed in HEK 293T/17 

cells transiently transfected with VSV-Ub1 or Venus-NPM1 and SBPHA-KEAP1 WT, -
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R320Q, or -R470C. Cells were lysed in pre-boiled SDS denaturing buffer (25 mM Tris, 150 

mM NaCl, 1% SDS, and 1 mM EDTA) and boiled for 10 min. The cells were then diluted 1:5 

in 0.5% NP-40 buffer (0.5% NP-40, 25 mM Tris-HCl [pH 7-8], and 150 mM NaCl) and 

normalized for protein content. 250 µg of protein was reserved for input, and 500 µg of the 

lysate was immunoprecipitated with FLAG antibody for two hr at 4°C. FLAG beads were 

washed 4X with SDS denaturing buffer diluted 1:10 in 0.5% NP-40 lysis buffer. FLAG beads 

were then eluted with NuPAGETM Lysis Buffer and boiled for 10 min at 70°C.  

 

BioID affinity purification and peptide generation  

HEK 293T/17 cells stably expressing BirA*-KEAP1 WT, R320Q, or R470C were 

treated with 50 µM biotin (Sigma B4639) for 24 hr. Cells were lysed in RIPA buffer 

supplemented with protease and phosphatase inhibitors, 10 mM NEM, and 1 µl Benzonase 

(Sigma E1404), cleared with ultracentrifugation, and protein normalized. Five mg of protein 

was used for streptavidin affinity purification (AP). Streptavidin SepharoseTM High 

Performance beads (GE Healthcare 17-5113-01, Upssala, Sweden) were washed 3 times in 

RIPA buffer prior to AP overnight at 4°C with nutation. Beads were washed once with RIPA 

buffer, twice with TAP lysis buffer (10% glycerol, 50 mM HEPES [pH 8.0], 150 mM NaCl, 2 

mM EDTA, and 0.1% NP-40), and three times with 50 mM ammonium bicarbonate (pH 8.0). 

The precipitated proteins were trypsinized with 1 µg of trypsin (Promega V5111) for 16 hr 

followed by another 0.5 µg of trypsin for 2 hr. Trypsinization was performed directly on 

beads using a modified FASP protocol followed by desalting via a PierceTM C-18 spin 

column (Thermo 89870) and ethyl acetate cleanup.   

 

Mass spectrometry, data filtering, and bioinformatics  

Reverse-phase nano-HPLC coupled with a nanoACQUITY UPLC system (Waters 

Corporation; Milford, MA) were used to separate trypsinized peptides. Trapping and 



	 90 

separation of peptides was performed in a 2 cm column (Pepmap 100, 3 µm particle size, 

100 Å pore size), and a 25 cm EASYspray analytical column (75 µm ID, 2.0 µm C18 particle 

size, 100 Å pore size) at 300 nl/min and 35˚C, respectively. Analysis of a 180 min gradient 

of 2-25% buffer B (0.1% formic acid in acetonitrile) was performed on an Orbitrap Elite mass 

spectrometer (Thermo Scientific). Data acquisition and ion source settings were previously 

published (41). 

 

All raw mass spectrometry data were searched using MaxQuant version 1.5.2.6. 

Search parameters were as follows: UniProtKB/Swiss-Prot human canonical sequence 

database human_sp_072313, static carbamidomethyl cysteine modification, specific trypsin 

digestion with up to two missed cleavages, variable protein N-terminal acetylation and 

methionine oxidation, match between runs, and label free quantification (LFQ) with a 

minimum ratio count of two. Searched files were analyzed using Perseus version 1.5.1.6 for 

data filtering and visualization. Rows were filtered based on a Q value relation <0.01, and 

potential contaminants, decoys, and reverses were removed. LFQ intensities were log2-

transformed and filtered for valid values. Missing values were imputed from a normal 

distribution using a down-shift of 1.8 and a distribution width of 0.4. Minimum protein 

probability cutoffs resulting in a 5% false discovery rate (FDR) were selected for each 

experiment. For volcano plots illustrating BioID/MS data, p-values were determined using a 

two-tailed t-test, and the FDR was calculated using the Benjamini-Hochberg procedure. MS 

data were filtered and normalized for R320Q and R470C (data not shown).  

 

Sequence variability for NRF2 and KEAP1: The protein BLAST server (PMID: 

8743682) was used to find 500 unique sequences for each gene and to analyze the 

sequence conservation for human NRF2 (UniProt ID: Q16236) and KEAP1 (UniProt ID: 

Q14145). All of the identified genes had at least 45% amino acid identity to the query 
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sequence. The PROMALS-3D webserver was used to create a multi-sequence alignment; 

default settings were used <PMID:18287115>. Shannon entropy was calculated for the 

multiple sequence alignments using the Protein Variability Server (PMID:17519246) with the 

default settings. 

 

DMD simulation data 

Five replicate discrete molecular dynamics (DMD) simulations of one million steps 

each for both KEAP1-WT and -R470C were performed in the presence of the NRF2 peptide 

(42). 

 

Limited Proteolysis 

Keap1-/- MEFs were seeded in 6-well plates and allowed to adhere overnight. The 

following day, cells were transfected with FLAG-KEAP1 constructs using FuGene HD 

according to the manufacturer’s protocol. 24 hr post-transfection, cells were washed twice 

with PBS and harvested in PBSt (0.1% Triton X-100 in PBS). Cells were snap frozen in 

liquid nitrogen, thawed, and lysed for one hr at 4°C. Lysates were cleared at 16,000g for 10 

min at 4°C and protein normalized. Lysates were diluted to 1 mg/mL, and 75 µl aliquots 

were taken. 25 µl of trypsin at indicated concentrations were added to each lysate, and 

limited proteolysis was allowed to proceed for 15 minutes on ice. Reactions were quenched 

with 100 µl of complete protease inhibitor and 100 µM PMSF. Samples were diluted with 4X 

LDS Sample buffer and DTT prior to boiling at 70°C for 10 min.  

 

Triton X-100 Solubility Assays 

Harvested cell pellets were lysed for 1 hr at 4˚C in 1% Triton X-100 lysis buffer (1% 

Triton X-100, 10% Glycerol, 25 mM Tris-Hcl pH 7-8 150 mM NACL, 2 mM EDTA)  containing 

10 µl RQ1 DNase (Promega). 45 µl of lysate was removed for ‘total’ sample and remaining 
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lysate was subjected to centrifugation at 20,000g for 15 minutes at 4˚C. Supernatant was 

removed and 45 µl was reserved for the ‘soluble’ fraction to which was added 20 µl of 4X 

LDS-sample buffer with 10 mM DTT. The insoluble fraction was dissolved in 200 µl of 1X 

SDS-sample buffer with DTT. Samples were sonicated with two 10-second pulses at 10% 

intensity using a digital sonifier (Branson) prior to SDS-PAGE. 

 

Cell Viability Assays 

H1299 (3500 cells/well in a 96-well format) were seeded and allowed to adhere 

overnight. Serial drug dilutions were prepared, and cells were treated for 72 hr. PrestoBlueTM 

Cell Viability Reagent (Life Technologies Corporation A13262) was added to wells according 

to the manufacturer’s protocol. Measurements of resazurin conversion as a surrogate for 

mitochondrial respiration were measured by fluorescence on a Perkin Elmer EnspireTM plate 

reader (Perkin Elmer, Waltham, MA). All experiments were performed in technical 

quadruplicate and biological triplicate by two independent researchers. Resulting data were 

plotted and analyzed using GraphPad Prism software version 7.0. 

 

3.D. Results 

3.D.1. The mutational landscape of NRF2 and KEAP1  

Across many cancer types, inactivating mutations in KEAP1 and activating mutations 

in NRF2 are mutually exclusive. Further, KEAP1 mutations lack positional enrichment, 

whereas mutations in NRF2 localize to the KEAP1 binding sites, features that are consistent 

with tumor suppressor and oncogene functions, respectively (5, 37, 38, 43-50). To illustrate 

these patterns, we compiled mutation data from cBioPortal into kernel density estimation 

(KDE) plots (Fig. 2A and 2B and Tables S.3.1 and S.3.2) (37). 448 mutations in NRF2 

localize almost exclusively to the DLG and ETGE motifs which are required for binding to 

KEAP1 (Fig. 2A) (38). In contrast, the 718 mutations identified in KEAP1 lack appreciable 
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focal enrichment (Fig. 2B) (5, 37, 38, 45). Known superbinder mutations also do not localize 

to a specific domain of KEAP1. Two of the amino acid residues in KEAP1 with the highest 

mutational frequencies are R320 and R470, both of which result in a superbinder phenotype 

(Fig. 2B) (38). 

 

We hypothesized that functionally relevant mutations in NRF2 and KEAP1 would 

also be evolutionarily conserved as compared to passenger mutations or non-mutated 

residues. To test this, we examined the correlation between mutational frequency (MF) and 

evolutionary conservation as estimated by Shannon entropy (SE) for a given amino acid 

residue (Fig. 2C-2F) (37, 51, 52). MF versus SE plots for NRF2 and KEAP1 revealed a 

general trend of cancer-derived mutations affecting evolutionarily conserved residues (Fig. 

2C and 2D). For both NRF2 and KEAP1, the difference between SE for non-mutated and 

mutated residues was statistically significant (Fig. 2E and 2F). Although multiple amino acid 

substitutions are observed at the superbinder residues R320 and R470, we chose to further 

characterize R320Q and R470C.  

 

3.D.2. Biochemical characterization of the KEAP1 superbinder mutants 

To explore the mechanism of the superbinder mutants, we examined NRF2 stability 

and KEAP1-NRF2 association. We first probed the dynamics of NRF2 stabilization using 

live-cell imaging. HEK 293T/17 cells transiently overexpressing murine EGFP-Nrf2 (mEGFP-

Nrf2) or human Venus-NRF2 (Venus-NRF2) were monitored every hour for 24 hours, and 

NRF2 stabilization was plotted as a function of green fluorescence intensity. Analysis of 

fluorescent NRF2 intensity confirmed that KEAP1 R320Q and R470C rapidly stabilized 

NRF2 within hours of transfection (Fig. 3A). Moreover, elevated NRF2 protein was sustained 

for up to 24 hours post-transfection (Fig. 3A). NRF2 stabilization in the presence of KEAP1 
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R320Q overexpression was also observed in fixed HEK 293T/17 cells using 

immunofluorescence (IF) (Fig. S1A). 

 

Next, we compared KEAP1-NRF2 association using two complementary 

approaches: immunopurification followed by Western blot (IP/W.blot) and proximity ligation 

assay (PLA). Analysis of IP/W.blot for FLAG-KEAP1 complexes from HEK 293T/17 cells 

demonstrated that with the exception of G423V and G186R, the remaining five superbinder 

mutations express comparably to WT. Furthermore, all superbinder mutants stabilize NRF2 

in the total cell lysate (Fig. 3B lanes 3-9) although not to the same extent as KEAP1 WT 

treated with the proteasome inhibitor MG-132 (Fig. 3B, lanes, 10, 20, and 30). Analysis of 

the immunopurified complex demonstrated increased association of NRF2 with all seven 

superbinder mutants (Fig. 3B, lanes 13-19) and increased NRF2 protein levels in the 

unbound fraction (Fig. 3B, lanes 23-29). Examination of the bound NRF2 suggests that 

there are two distinct classes of superbinders (Fig. 3B). In the first class, R320Q, R470C, 

D422N, and G186R consistently bound more NRF2 than the second superbinder class 

consisting of G423V, S243C, and V155F (Fig. 3B compare lanes 3, 4, 6, 7 with 5, 8, and 9).  

 

To determine localization and to further quantify KEAP1-NRF2 complex formation, 

the proximity ligation assay (PLA) (53, 54)PLA was employed. Consistent with reported 

literature, confocal imaging analysis of the PLA puncta demonstrated KEAP1-NRF2 

complex formation primarily within the cytosol (Fig. 3C) (15, 18, 23-25, 53, 54). 

Quantification of the PLA signal confirmed greater than a two-fold increase in R320Q 

KEAP1-NRF2 complex formation as compared to WT (Fig. 3D). To confirm the increased 

association of NRF2 with KEAP1 superbinders in a more clinically relevant cell line, we 

performed PLA in the lung adenocarcinoma cell line NCI-H1299 (H1299). PLA of KEAP1 

R320Q and R470C with endogenous NRF2 demonstrated increased KEAP1-NRF2 complex 
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formation within the cytosol of the cell as compared to WT (Fig. 3D). Additionally, we 

compared the stabilization of the KEAP1-NRF2 complex in the presence of the superbinders 

with a panel of NRF2 inducers: sulforaphane (SFN), bardoxolone-methyl (CDDO), 

MLN4924, and MG-132 (55, 56). The neddylation inhibitor MLN4924 was the most potent 

NRF2 inducer (Fig. 3E and 3F) (55, 56). Cysteine modifying compounds SFN and CDDO 

also stabilized the KEAP1-NRF2 complex but to a lesser extent when compared to 

MLN4924 (19, 57-59). Moreover, R320Q and R470C stabilized the KEAP1-NRF2 interaction 

comparably to treatment with the proteasomal inhibitor MG-132 (Fig. 3F and 3G) (60). IF 

and WB were used to confirm equivalent expression of the FLAG-KEAP1 constructs as well 

as to assess NRF2 stabilization in H1299 cells (Fig. S1 panels B-D). 

   

3.D.3. Defining protein-protein interactions of KEAP1 superbinders 

Substrates targeted for ubiquitylation are often low abundant proteins or transient 

interactions that are difficult to detect by traditional immunopurification mass spectrometry 

(IP/MS); therefore, we employed an unbiased MS approach to probe for additional KEAP1 

substrates and/or interacting proteins with altered association with the superbinder mutants. 

BioID is a novel technique employing the use of a promiscuous biotin ligase fused to a bait 

protein (61-63). Proteins that associate proximally with the bait will be biotinylated by the 

ligase and can be affinity purified using streptavidin and detected by MS or W.blot analyses 

(Fig. 4A) (61-63). Biotinylated complexes from HEK 293T/17 cells stably overexpressing 

BirA*-KEAP1 WT, R320Q, or R470C were affinity purified using streptavidin, and eluted 

peptides were analyzed using LC-MS/MS. Proteomic analysis revealed NRF2 as the only 

protein significantly increased within KEAP1 R320Q and R470C protein complexes when 

using a FDR of 5% (Fig. 4B and 4C and Tables S.3.3 and S.3.4).  
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To evaluate known KEAP1 substrates, IP/W.blot for all putative substrates was 

performed. IP/W.blot from HEK 293T/17 cells overexpressing FLAG-KEAP1 WT or all seven 

superbinders confirmed that only NRF2 association increased with KEAP1 superbinder 

overexpression (Fig. 4D). Stabilization of PALB2, MCM3, NRF1, IKBKB, PGAM5, or BCL2 in 

the input or in the bound complex was not observed (Fig. 4D) (41, 64-71), NRF1 and 

PGAM5 antibodies were confirmed using siRNAs (Fig. S2). Endogenous NRF1 protein 

levels were undetectable in the lysate but were detectable following MG-132 treatment (Fig. 

4D and Fig. S2).  

 

3.D.4. Probing mechanistic steps in KEAP1 cycling 

Our data indicate that KEAP1 superbinders stabilize NRF2 while maintaining levels 

of NRF2 ubiquitylation, suggesting that superbinders may impair KEAP1 cycling. To test this 

hypothesis, different biochemical steps of the cycling process were systematically 

evaluated. We first confirmed that KEAP1 superbinder mutants can homodimerize by 

overexpressing streptavidin binding peptide and hemagglutinin-tagged KEAP1 (SBPHA-

KEAP1) and FLAG-KEAP1 in Keap1-/- mouse embryonic fibroblasts (MEFs). These 

experiments were conducted in a KEAP1 null cell line to eliminate potential contributions 

from endogenous KEAP1. First of all, IP/W.blot demonstrated that KEAP1 superbinders 

retain the ability to homodimerize (Fig. 5A). Secondly, KEAP1/CUL3 association was 

examined using transient overexpression of FLAG-KEAP1 superbinder mutants in Keap1-/- 

MEFs. IP/W. blot analyses confirmed that KEAP1 superbinder mutants associate with CUL3 

comparably to KEAP1 WT (Fig. 5B). Thirdly, given the previously reported interaction 

between KEAP1 and the proteasomal chaperone HSP90, the interaction between KEAP1 

WT or R320Q and HSP90 was assessed (38, 72). Interactions between HSP90 and KEAP1 

WT or R320Q were not observed (Fig. S3 panel A) (38, 72).  
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A recent report details the mechanism by which p97/Valosin containing protein 

(VCP) and co-factors UFD1/NPL4 and UBXN7 remove ubiquitylated NRF2 from the KEAP1-

CUL3 complex for proteasomal delivery (73). These data were consistent with our 

hypothesis that KEAP1 superbinder mutants impair proteasomal degradation downstream of 

ubiquitylation but prior to proteolysis; consequently, interaction between KEAP1 and VCP 

was examined (73). In both HEK 293T/17 and Keap1-/- MEFs, we observed that KEAP1 WT, 

R320Q, and R470C bind VCP; however, there was no appreciable difference in VCP 

association between KEAP1 WT and the two superbinders (Fig. 5C and 5D). Treatment with 

VCP inhibitors CB-5083, DBeQ, or Eeyrestatin (Eey1) had no effect on VCP, KEAP1, or 

NRF2 protein levels (Fig. 5E, lanes 2-4, and 7-9) or association with KEAP1 WT or R320Q 

(Fig. 5E, lanes 12-14, and 17-19) (74-77). Finally, MG-132 treatment had no impact on VCP 

or KEAP1 levels or association (Fig. 5E, lanes 5, 10, 15, and 20). VCP siRNAs were used to 

validate the VCP antibody (Fig. S3B).  

 

To test KEAP1 association with the proteasome, IP/W. blot for ubiquitin receptors 

PSMD2 and PSMD4 was performed (78-85) . IP/W.blot of FLAG-KEAP1 WT, R320Q, or 

R470C demonstrated no differences in association with either PSMD2 or PSMD4 between 

KEAP1 WT or the superbinders (Fig. 5F, lanes 7-9). Treatment with MG-132 did not lead to 

increased association of KEAP1 WT with either PSMD2 or PSMD4 (Fig. 5F, lane 10).   

 

3.D.5. Assessing KEAP1 superbinder structure 

Modifications to essential cysteines are known to reorganize KEAP1 architecture and 

impair KEAP1 function through conformational changes (19, 27, 59, 86). Mutations 

impacting cysteine reactivity or causing structural deformation of KEAP1 could result in the 

superbinder phenotype. The lack of an available full-length crystal structure for KEAP1 

precluded molecular modeling to determine how R320Q impacts KEAP1 structure; however, 
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molecular modeling and simulations of the KEAP1 KELCH domain could be used to 

investigate how the R470C superbinder mutation may impact KEAP1 structure when 

complexed with NRF2.  

 

Discrete molecular dynamics (DMD) simulation demonstrated that the R470C 

mutation significantly reduced root mean square fluctuations (RMSF) of several residues 

between amino acid residue numbers 500 and 550 (Fig. 6A) (42). A decrease in RMSF 

corresponds to reduced motion, suggesting that the R470C mutation has a stabilizing effect 

on these residues. When mapped to the crystal structure, several decreases in RMSF were 

observed to propagate throughout the KEAP1 KELCH domain and to contact loops with the 

NRF2 degron (Fig. 6B). Examination of potential interactions with R470 revealed two acidic 

residues, D422 and E493 that are capable of forming a salt bridge with R470 (Fig. 6B).  

 

To further confirm the effects of KEAP1 superbinder mutations on KEAP1 tertiary 

structure, low resolution limited trypsin proteolysis was performed (87). Lysates from Keap1-

/- MEFs transiently overexpressing FLAG- KEAP1 WT, R320Q, or R470C were exposed to 

increasing concentrations of trypsin which cleaves at exposed arginine and lysine residues. 

Although the molecular weight banding patterns generated by trypsin were similar between 

WT and the two superbinder mutants, the intensity for bands between 50 and 70 kDa 

differed between KEAP1 WT and the superbinders. The increased intensity observed with 

KEAP1 R320Q and R470C indicated decreased susceptibility to proteolysis, suggesting that 

the structure is less available for trypsin cleavage (Fig. 6C, compare lanes 2-4 with lanes 6-

8 and 10-12) and supporting the DMD simulation theory. 

 

KEAP1 stability and ubiquitylation were also assessed. Cycloheximide (CHX) chase 

experiments under basal and oxidative stress-inducing tert-Butylhydroquinone (tBHQ) 
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conditions confirmed that KEAP1 R320Q does not alter KEAP1-half-life (Fig. S4 panels A 

and B) (88, 89). IP/W.blot for ubiquitylated KEAP1 under native conditions demonstrated 

that KEAP1 superbinder mutants did not alter KEAP1 ubiquitylation under basal or induced 

(tBHQ and MG-132) conditions (Fig. S4Cm lanes 15-16, 19-20, and 23-24) nor did they alter 

KEAP1 K48 or K63 ubiquitin chain formation (Fig. S4D lanes 11-16). KEAP1 K48 

ubiquitylation was further confirmed under near denaturing conditions using an antibody for 

endogenous K48 ubiquitin (Fig. S4D lanes 6-8). 

 

3.D.6. KEAP1 superbinders form p62-dependent insoluble clusters 

The proposed impairment to KEAP1 structure led us to investigate KEAP1 

localization in the presence of the superbinders. We utilized validated fluorescent constructs 

to visualize the KEAP1-NRF2 complex in real time (15). We first tested the localization by 

independently overexpressing murine EGFP-Nrf2 (mEGFP-Nrf2), murine Keap1-mCherry 

(mKeap1-mCh) WT, R320Q, or R470C independently. Consistent with recent reports, in 

both HEK 293T/17 and H1299, overexpression of mEGFP-Nrf2 alone resulted in a primarily 

nuclear subcellular localization with nuclear foci observed in H1299 (Fig. S5, panels A and 

B). In contrast, overexpression of all of the mKeap1-mCh constructs resulted in a diffuse 

cytosolic subcellular localization with increased Keap1 positive clusters observed in H1299 

cells as compared to HEK 293T/17 (Fig. S5 panels, A and B) (15). Next, overexpression of 

mEGFP-Nrf2 in the presence of mKeap1-WT, R320Q, or R470C was examined. A distinct 

increase in Keap1-Nrf2 containing clusters was observed when mEGFP-Nrf2 was 

overexpressed in the presence of the superbinder mutants in both HEK 293T/17 and H1299 

cells (Fig. 7A and Fig. S5 panel C).  

 

Cytoplasmic inclusions are characterized by insoluble protein aggregates; thus, the 

Triton X-100 solubility assay was used to identify the localization of these clusters within the 
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cell ((90). Similar accumulation within the insoluble fraction for all of the FLAG-KEAP1 

constructs was observed (Fig. 7B lanes 12-14). However, NRF2 accumulation within the 

insoluble fraction only occurred in the presence of R320Q and R470C, or with KEAP1 WT 

treated with MG-132 (Fig. 7B lanes 12-14).  

 

In order to visualize the formation of these complexes, mEGFP-Nrf2 and mKeap1-

mCh R320Q were overexpressed in HEK 293T/17 cells for live cell imaging studies. These 

movies revealed that the smaller punctate structures combined to form larger clusters that 

are ultimately cleared by the cell within two hours (Fig. 7C). Moreover, accumulation of 

these aggregates was not cytotoxic as several instances of cells proceeding through 

another round of division following aggregate clearance were observed (Supplemental 

Movie).  

 

Insoluble inclusion bodies and aggregate structures are often a hallmark of 

autophagy, a bulk cellular recycling pathway involved in protein homeostasis (91-94). 

KEAP1 binds the autophagy ubiquitin cargo adaptor p62/SQSTM1 (p62) via a KEAP1-

interaction region (KIR) in p62 and is itself degraded by autophagy (95-98). We 

hypothesized that these clusters could represent autophagic flux of the KEAP1-NRF2 

complexes with superbinder mutants. To evaluate KEAP1 association with components of 

the autophagy pathway, we performed IP/W.blot. Analysis of immunopurified complexes 

revealed that KEAP1 WT, R320Q, and R470C bound the autophagy cargo adapters next to 

BRCA-1 (NBR1), p62 and an autophagy specific phosphorylated form of p62 pS351 (99-

101) (Fig. 7D) Furthermore, KEAP1 WT, R320Q, and R470C bound VPS34, a class III 

phosphatidylinositol (PI) 3-kinase involved in the initial formation of the autophagophore (93, 

94, 102) (Fig. 7D).  

 



	 101 

Upon formation of the autophagophore, p62 and NBR1 bind to and transport 

ubiquitylated substrates from the phagophore to the autophagosome, where the substrates 

are tethered to a lipidated form of light chain 3 (LC3) (93, 103). Lipidated LC3 can be 

detected via W.blot as a faster migrating band, and conversion of LC3 I-II is routinely used 

as a marker of autophagic flux (91, 93, 103). KEAP1 WT, R320Q, and R470C were all 

deficient for binding with LC3 (Fig. 7D lanes 6-8).  

 

Overexpression of KEAP1 WT, R320Q, and R470C did not alter the total protein 

levels of NBR1 or VPS34; however, overexpression of KEAP1 WT, R320Q, and R470C 

resulted in increased p62 and LC3 I to II conversion levels and decreased levels of p62 

pS351 (Fig. 7D, compare lane 1 with lanes 2-4). There were no appreciable differences in 

the effect of KEAP1 WT as compared to R320Q and R470C with any of the autophagy 

proteins (Fig. 7D, compare lane 2 with lanes 3-4).   

 

To identify the proteins contained in the insoluble clusters, IF analysis of mKeap1-

mCh and mEGFP-Nrf2 in H1299 cells was performed, and results confirmed that both 

Keap1 and Nrf2 co-localize in the clusters (Fig. 8A). Moreover, IF analyses of FLAG-NRF2 

and mKeap1-mCh R320Q revealed spherical clusters coated with endogenous poly-

ubiquitin (poly-Ub), p62, and p62 pS351 (Fig. 8B). These clusters co-localized with 

overexpressed EGFP-LC3 but not with endogenous LC3, or lysosomal markers LAMP2 or 

lysotracker under basal conditions or following treatment with the autophagy inhibitor 

chloroquine (CQ) (Fig. S6 panels A-C) (91, 92, 104). Knockdown of p62 via siRNA resulted 

in the absence of Keap1-NRF2 clusters suggesting that cluster formation is p62-dependent 

(Fig. 8C and Fig. S6 panel D). Taken together, these data support the p62-dependent 

formation of spherical clusters that can be graphically represented as containing multiple 
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subunits of p62, p62 pS351, polyUb, and NRF2 on the periphery with a primarily KEAP1 

positive core (Fig. 8D). 

 

3.D.7. KEAP1 superbinder mutants protect against chemotherapies that induce oxidative 
stress 
 

Prolonged NRF2 activation correlates with an increased resistance to chemotherapy 

and radiation treatment (22, 30-32, 35, 105-107). To determine the impact of superbinders 

on cell viability, H1299 cells stably overexpressing mKeap1-mCh WT, R320Q, R470C, or 

mEGFP-Nrf2 were generated and validated (Fig. S7 panel A).  The H1299 stably expressing 

cell lines were then treated with bleomycin which induces DNA-damage via oxidative stress 

(108) cell viability and apoptotis were then assayed by PrestoBlue and Caspase 3/7 Glo 

assays, respectively. Analysis of EC50 values for bleomycin demonstrated that KEAP1 

R470C and R320Q exhibit increased cell viability as compared to KEAP1 WT, and the 

difference in EC50 for KEAP1 WT and R470C was statistically significant at p<0.0001 (Fig. 

9A). KEAP1 R320Q demonstrated a similar effect, though the increased EC50 value for 

R320Q compared to WT was not statistically significant (Fig. 9A) To complement the cell 

viability data, levels of apoptotic induction were quantified using Caspase 3/7 Glo. R470C 

exhibited decreased activation of executioner caspases, which was significantly different 

from WT at p=0.0002 (Fig. 9B). KEAP1 R320Q also exhibited lower levels of activated 

caspases; however, the difference with KEAP1 WT did not reach statistical significance (Fig. 

9B). Intriguingly, the protection conferred by the superbinders was specific to bleomycin as 

similar effects were not observed with either the DNA damaging agent cisplatin or the 

microtubule destabilizer paclitaxel (Fig. S7 panels B and C).  
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3.E. Discussion 

Through biochemical examination, we have defined five main attributes of the 

KEAP1 superbinder class. First, KEAP1 superbinders occur at well-conserved and 

frequently mutated residues within KEAP1. Second, KEAP1 superbinders exclusively exhibit 

increased KEAP1-NRF2 complex formation. Third, KEAP1 superbinders have a stabilizing 

effect on KEAP1 structure that decreases flexibility at key residues interfacing with NRF2. 

Fourth, the superbinder mutants form p62-dependent clusters that are spherical in shape 

and contain p62, p62 pS351, polyUb, and NRF2. Fifth, KEAP1 superbinders show increased 

resistance to bleomycin treatment but not to cisplatin or paclitaxel. 

 

Although expected, the high correlation between mutational frequency and 

conservation appears to indicate biologically functional residues. Within NRF2, 19 of the top 

20 frequently mutated residues (with the exception of R499) localize to the ETGE or DLG 

motif, which are required for KEAP1 association. Similarly, there is enrichment for 

superbinder residues and known KEAP1 inactivating mutations such as G333 and G480 

within the top 20 frequently mutated residues in KEAP1 (38, 46, 47, 109). We hypothesize 

that highly conserved and frequently mutated residues impact protein function and that this 

approach can be used to prioritize mutations for further study. 

 

Unexpectedly, excluding NRF2, results from the unbiased BioID/MS approach and 

targeted interrogation of key protein-protein interactions suggest that the superbinder 

mutants are almost indistinguishable from KEAP1 WT in terms of biochemical interaction 

profiles. We would have predicted that other ETGE-containing substrates similar to NRF2 

would have been predicted to also exhibit increased association with KEAP1 superbinders. 

In fact, appreciable differences were not detected between superbinders and NRF1, which 

contains both the DLG and ETGE motifs (65, 110).  
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To date, the exact mechanism of how ubiquitylated NRF2 is delivered to the 

proteasome has not been described; however, we characterized novel KEAP1 interactions 

with the ubiquitin chaperone VCP and with two proteasomal ubiquitin receptors, PSMD2 and 

PSMD4. The KEAP1-VCP interaction merits further examination as a recent report details 

the roles of VCP and ubiquitin cofactors UFD1/NPL4 and UBXN7 in removing ubiquitylated 

NRF2 from the KEAP1-CUL3 complex (73). In our studies, VCP depletion and inhibition had 

no effect on NRF2 protein levels in the presence of KEAP1 WT or R320Q, suggesting that 

VCP may not play a critical role in HEK 293T/17 or H1299 cells. The interaction between 

KEAP1 superbinders and PSMD2 and PSMD4 indicates that superbinders retain the ability 

to interact with the proteasome, which raises several possibilities for how the superbinders 

may impair NRF2 degradation. First, ubiquitin removal and substrate unfolding may require 

ATP-dependent reactions or additional chaperone proteins that were not identified by the 

BioID approach. Second, the stabilized KEAP1 tertiary structure predicted by our simulation 

modeling and supported by the limited proteolysis may preclude the removal of ubiquitin 

from NRF2 or the dissociation of the E3 complex after the superbinder attempts to present 

ubiquitylated NRF2 to the proteasome for degradation. Decreased flexibility at NRF2 contact 

points is a plausible explanation for the observed superbinder phenotype. It is possible that 

the R470C mutation disrupts salt bridge formation between amino acid residues D422 

and/or E493, resulting in the observed stabilization. This mechanism of action is particularly 

attractive as the KEAP1 D422N mutation also results in a superbinder phenotype (38). 

Intriguingly, patient mutations of KEAP1 E493 have been reported, and we speculate that 

these mutations may also result in a superbinder phenotype. Experiments testing this 

hypothesis are currently ongoing. Alterations to KEAP1 architecture and NRF2 contact 

residues support the hypothesis that superbinders modify KEAP1 structure resulting in 

impaired KEAP1 conformational cycling.  
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The identification of p62-dependent clusters was an unexpected phenotype 

observed with the superbinders. These clusters are not specific to superbinders as they 

were also observed with KEAP1 WT in the H1299 cells; however, superbinder mutations 

increased the accumulation of these clusters regardless of the cell type studied. The exact 

nature of these clusters is intriguing given the unique shape and ordering of proteins within 

the clusters. Confocal imaging established that the clusters are circular and contain KEAP1 

in the center, surrounded by rings of p62, p62 pS351, poly-Ub, and in some instances 

NRF2. Identification of the stoichiometric ratios of these proteins within the cluster would 

help to determine whether the clusters contain multimeric units of KEAP1-NRF2-p62 

complexes. Biochemical isolation of the clusters would be informative for the identification of 

additional proteins as well as post-translational modifications of proteins within the clusters. 

 

Given the dependence on p62 for cluster formation, it is possible that these clusters 

may represent an intermediate between proteasomal and autophagic degradation pathways 

(101, 111-113). In fact, dynamic crosstalk between proteasomal and autophagic degradation 

pathways is critical for cellular homeostasis, and proteotoxic stress has been shown to lead 

to increased autophagic flux (101, 111, 112). A recent report found that KEAP1/CUL3 

ubiquitylates p62 on its ubiquitin-associated domain (UBA) and that this interaction is crucial 

for the recruitment of p62 into the autophagosome (114, 115). Conformationally strained 

KEAP1 due to superbinder mutations may result in decreased or absent p62 ubiquitylation, 

preventing tethering to LC3 for autophagosome formation and maturation 

 

KEAP1 superbinder mutations are known to increase NRF2 transcriptional activity, 

which has been shown to be protective against chemotherapeutic insults (22, 30-32, 35, 

105-107). Surprisingly, of the three cytotoxic drugs tested, KEAP1 superbinder mutations 

only conferred protection against bleomycin treatment, which induces DNA damage in cells 
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through upregulating oxidative stress. This result was initially perplexing given the extensive 

body of literature demonstrating cytoprotective effects from elevated NRF2 transcriptional 

activity (22, 30-32, 35, 105-107); however, this finding raises several interesting points for 

discussion. First, mutations in KEAP1 result in a spectrum of phenotypes: functionally 

silent/WT, hypomorphs, and functionally dead (38). Approximately 25% of the KEAP1 LUSC 

mutations identified from the TCGA studies behaved comparably to KEAP1 WT (38). These 

silent mutations result in high levels of KEAP1 conformational cycling and low levels of 

nuclear NRF2 and NRF2 transcriptional activity (Fig. 9C-I). Hypomorphic mutations 

constitute 50% of KEAP1 LUSC mutations and include the superbinder mutations. These 

hypomorph mutations result in impaired NRF2 degradation and may therefore impair KEAP1 

cycling. As such, these mutations result in moderate levels of nuclear NRF2 and NRF2 

transcriptional activity (Fig. 9C-II). Functionally dead mutations represent 25% of LUSC 

KEAP1 mutations. These KEAP1 mutants are unable to bind NRF2 and do not cycle; 

consequently, they exhibit elevated levels of both cytosolic and nuclear NRF2 with maximal 

NRF2 transcriptional activity (Fig. 9C-III). Second, genes that are transcriptionally 

upregulated in the presence of superbinders may not be the same target genes as those 

upregulated in the presence of functionally dead mutations. Identification of these 

differentially expressed genes may provide further mechanistic understanding of 

superbinder mutations as well as reveal novel targets for clinical intervention. 

 

In summary, through careful biochemical examination, we have defined novel 

interactions for KEAP1 with VCP, PSMD2, and PSMD4. Furthermore, we determined that 

KEAP1 superbinder mutations exclusively impact NRF2 association, appear to stabilize 

KEAP1 tertiary structure, and form p62-dependent spherical clusters containing a KEAP1-

positive core surrounded by unmodified and phosphorylated p62, poly-Ub, and NRF2. 

These superbinder mutants are uniquely resistant to bleomycin treatment. These studies 
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reveal molecular insights into KEAP1 regulation and subcellular localization and suggest 

potential relationships between KEAP1 mutation function and KEAP1 conformational 

cycling. 

 

Supplemental Tables 

1. Curated list of NFE2L2 mutations downloaded from CBioPortal. 

2. Curated list of KEAP1 mutations downloaded from CBioPortal. 

3. Determination of NRF2 Shannon entropy from PROMALS alignment. 

4. Determination of KEAP1 Shannon entropy from PROMALS alignment.  
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Figure 3.1. KEAP1 cycles between open and closed conformations.  
Cartoon schematic of KEAP1 conformational cycling (15). 1) Dimeric KEAP1 is associated 
with the E3 ubiquitin ligase CUL3/RBX1 and is primed to scavenge newly synthesized 
NRF2. As NRF2 levels increase, KEAP1 binds the ETGE motif in the Neh2 domain of NRF2 
to generate the open conformation. 2) Sequential binding of the DLG motif of NRF2 
generates the closed conformation of the KEAP1-NRF2 complex. 3) The closed 
conformation is favorable for NRF2 ubiquitylation by CUL3. 4) Ubiquitylated NRF2 is 
released from the complex and subsequently degraded by the proteasome, allowing cycling 
to proceed again. 
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Figure 1. KEAP1 cycles between open and closed conformations. 

Cartoon schematic of KEAP1 conformational cycling (adapted from REF BAIRD). 1) Dimeric KEAP1 is associated with the E3 ubiquitin ligase 
CUL3/RBX1 and is primed to scavenge newly synthesized NRF2. As NRF2 levels increase, KEAP1 binds the ETGE motif in the Neh2 domain of NRF2 to 
generate the ‘open’ conformation. 2) Sequential binding of the DLG motif of NRF2 generates the ‘closed’ conformation of the KEAP1-NRF2 complex. 
3) The ‘closed’ conformation is favorable for NRF2 ubiquitylation by CUL3. 4) Ubiquitylated NRF2 is released from the complex and subsequently 
degraded by the proteasome thus allowing cycling to proceed again. 
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A. 

Figure 2. Defining the mutational landscape of NFE2L2 and KEAP1.

A. Kernel density estimation (KDE) of 448 NFE2L2 somatic mutations demonstrates focal enrichment of mutations at the DLG and ETGE motifs required for
KEAP1 association. Note that 14 patients exhibited in-frame deletions across the DLG and ETGE, five patients had NFE2L2 intragenic fusion events, and 
one patient had a ZNF385B-NFE2L2 fusion. Data from these patients were not included in the KDE analysis. Data were downloaded from cBioPortal and 
represent NFE2L2 mutations across 59 studies investigating 37 different cancer types (Supplemental Table S1) (cBioPortal Ref).
B. KDE of 718 KEAP1 somatic mutations identified in patient samples reveals elevated mutational frequencies at superbinder residues, R320 and R470. 
Data were downloaded from cBioPortal and represent KEAP1 mutations across 68 studies investigating 33 different cancer types (Supplemental Table S2) 
(CBioPortal Ref).
C. Plot of NFE2L2 mutational frequency versus Shannon Entropy. Shannon entropy was determined using PROMALS alignment, and mutational frequencies 
per residue were determined from cBioPortal data and analyzed in GraphPad Prism 7 (Supplemental Table S3). 
D. Plot of KEAP1 mutational frequency versus Shannon Entropy. Data were analyzed as in C (Supplemental Table S4). 
E. Comparison of Shannon entropy values for all non-mutated residues in NRF2 (n=459) versus non-mutated residues (n=146). Error bars represent the 
standard error of the mean (SEM). The difference is statistically significant at p=0.0033 using an unpaired t-test (GraphPad Prism 7).
F. Comparison of Shannon entropy values for all non-mutated residues (n=306) in KEAP1 versus mutated residues (n=318). Error bars represent the standard 
error of the means (SEM). The difference is statistically significant at p=0.0004 using an unpaired t-test (GraphPad Prism 7).

0.0

0.2

0.4

0.6

0.8

NFE2L2 AA residues

p=0.0033**E. 
Sh

an
no

n 
En

tr
op

y

Not
mutated

Mutated

0.0

0.2

0.4

0.6

KEAP1 AA residues

p=0.0004***F. 

Sh
an

no
n 

En
tr

op
y

Not
mutated

Mutated

1.0

0 1 2 3 4 5 6 7 8 9 10 11 13
0.0

0.5

Mutation Frequency

D. 

R320

KEAP1

Sh
an

no
n 

En
tr

op
y

R272

R470

R260

G333

V271

M110

G480

R601

D422

G332

G570

G511
A95

G417

D236

G186

Superbinder mutant

0 1 2 3 5 7 10 12 16 19 20 25 26 40 41 46
0.0

0.5

1.0

NFE2L2

Mutation Frequency

C. 

Sh
an

no
n 

En
tr

op
y

R34

E79

D29

G31

E82

T80

G81

L30W24

D77

Q26

D27

R499

I28

KEAP1 Degron

NFE2L2
n=448

DLG ETGE

R499

1íWHUP

Neh2

Neh4 Neh5

Neh7 Neh6 Neh1 Neh3

Mutation Type
FS del

FS ins

IF del

IF ins

Missense

Nonsense

Splice

splice_region

B. 
V155A/F

G186S

S243C
D422N
G423V

R470C/H/S
R320L/M/P/Q/W

Mutation Type

FS del

FS ins

IF del

IF ins

Missense

Nonsense

Splice

splice_region

1íWHUP BTB IVR KELCH 1 KELCH 2 KELCH 3 KELCH 4 KELCH 5 KELCH 6

&íWHUP

KEAP1
n=718



	 110 

Figure 3.2. Defining the mutational landscape of NRF2 and KEAP1. 
A. Kernel density estimation (KDE) of 448 NRF2 somatic mutations demonstrates focal 
enrichment of mutations at the DLG and ETGE motifs, which are required for KEAP1 
association. 14 patients exhibited in-frame deletions across the DLG and/or ETGE; five 
patients had NFE2L2 intragenic fusion events, and one patient had a ZNF385B-NFE2L2 
fusion. Data from these patients were not included in the KDE analysis. Data were 
downloaded from cBioPortal and represent NFE2L2 mutations across 59 studies 
investigating 37 different cancer types (Table S.3.1) (37). 
B. KDE of 718 KEAP1 somatic mutations identified in patient samples reveals elevated 
mutational frequencies at superbinder residues R320 and R470. Data were downloaded 
from cBioPortal and represent KEAP1 mutations across 68 studies investigating 33 different 
cancer types (Table S.3.2) (37). 
C. Plot of NRF2 mutational frequency versus Shannon Entropy. Shannon entropy was 
determined using PROMALS alignment, and mutational frequencies per residue were 
determined from cBioPortal data (Table S.3.3). 
D. Comparison of Shannon entropy values for all non-mutated residues in NRF2 (n=459) 
versus mutated residues (n=146). Error bars represent the standard error of the mean 
(SEM). The difference is statistically significant at p=0.0033 using an unpaired t-test. 
E. Plot of KEAP1 mutational frequency versus Shannon Entropy. Data were analyzed as in 
C (Table S.3.4).  
F. Comparison of Shannon entropy values for all non-mutated residues (n=306) in KEAP1 
versus mutated residues (n=318). Error bars represent the standard error of the means 
(SEM). The difference is statistically significant at p=0.0004 using an unpaired t-test. 
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Figure 3. KEAP1 superbinder mutants stabilize NRF2 and increase KEAP1-NRF2 association. 
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Figure 3.3. KEAP1 superbinder mutants stabilize NRF2 and increase KEAP1-NRF2 
association. 
A. HEK 293T/17 cells were co-transfected with FLAG-KEAP1 WT, R320Q, or R470C and 
either EGFP-Nrf2 or Venus-NRF2 and immediately subjected to image acquisition using the 
IncuCyteTM Zoom. GFP and phase images were acquired every hr at 20x with four 
fields/well. Data were plotted for every three hr, and total green object integrated intensity 
values were normalized by percentage confluence. Each graph represents the average of 
three biological replicates, with four technical replicates per condition for each experiment. 
Error bars represent standard errors of triplicates.  
B. IP/W.blot of HEK 293T/17 transfected with indicated FLAG-KEAP1 constructs. 18 hours 
post-transfection, cells were treated with DMSO or 10 µM MG-132 for six hr prior to harvest. 
Data are representative of a single experiment performed in biological triplicate.  
C. HEK 293T/17 cells stably expressing FLAG-KEAP1 WT or R320Q were subjected to PLA 
using FLAG and NRF2 antibodies for detection of endogenous NRF2 interactions (yellow). 
Images represent maximum intensity projections of Z-stacks acquired using a confocal 
microscope. For clarity, both color and black-and-white images of the PLA dots are 
provided. Nuclei were stained with DAPI (blue), and microtubules were counterstained with 
anti-Tubulin (green). Scale bar = 20 µm.  
D. Fold induction relative to WT of KEAP1-NRF2 interaction in cells expressing R320Q. PLA 
dots were quantified and normalized by cell number prior to calculation of fold induction. 
Data are presented as means ± SDM. *p < 0.001. Data are representative of a single 
experiment performed in biological triplicate. 
E. H1299 cells were transfected with FLAG-KEAP1 WT, R320Q, or R470C. The following 
day, cells were treated with either DMSO (control) or a panel of NRF2 inducers: 10 µM MG-
132, 5 µM MLN4924, 375 nM CDDO, 50 µM tBHQ, or 20 µM SFN for six hours. Cells were 
then fixed and subjected to PLA using FLAG and NRF2 antibodies for detection of KEAP1 
interactions with endogenous NRF2 (yellow). Images represent a single optical slice 
acquired using a confocal microscope as in C. Scale bar = 20 µm.  
F. Fold induction relative to WT of KEAP1-NRF2 interaction in cells expressing untreated 
WT, R320Q, R470C, or NRF2 inducer-treated WT. PLA dots were quantified and normalized 
by cell number prior to calculation of fold induction. Data are presented as means ± SDM. *p 
< 0.001. Data are representative of a single experiment performed in biological triplicate.  
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Figure 3.4. NRF2 is the only KEAP1 substrate to exhibit a superbinder phenotype. 
A. Cartoon schematic of BioID MS approach. N-terminally tagged BirA*-KEAP1 WT, -
R320Q, or -R470C constructs were stably overexpressed in HEK 293T/17 cells. Addition of 
exogenous biotin enabled the biotinylation of proximally associated proteins that were 
affinity captured using streptavidin. Bound complexes were subjected to LC-MS/MS for 
protein identification and analysis.  
B. Volcano plot of BirA*-KEAP1 R320Q versus BirA*-KEAP1 WT. Experiments were 
performed in biological triplicate using HEK 293T/17 cells stably expressing BirA*-KEAP1 
WT or R320Q and treated with 50 µM biotin for 24. Biotinylated proteins were affinity purified 
using streptavidin, and the bound complexes were subjected to LC-MS/MS. Dashed vertical 
lines indicate a 2-fold change cutoff.  The horizontal dashed line indicates a 5% FDR 
threshold determined using the Benjamini-Hochberg procedure. P-values were determined 
using the two-tailed t-test.  
C. Volcano plot of BirA*-KEAP1 R470C versus BirA*-KEAP1 WT. Experiments were 
performed and analyzed as described in B.  
D. IP/W.blot of HEK 293T/17 cells transiently transfected with the indicated FLAG-KEAP1 
constructs. FLAG-KEAP1 complexes were immunopurified and probed for endogenous 
substrate proteins as indicated. Data are representative of a single experiment performed in 
biological triplicate.  
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Figure 5. KEAP1 superbinders R320Q and R470C exhibit similar biochemical interactions to KEAP1 WT.
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Figure 3.5. KEAP1 superbinders R320Q and R470C exhibit similar biochemical 
interactions to KEAP1 WT. 
A. IP/W.blot of Keap1-/- MEFs transiently co-transfected with the indicated FLAG-KEAP1 
and SBPHA-KEAP1 constructs. FLAG-KEAP1 complexes were immunopurified and probed 
for HA-KEAP1 to determine homodizeration. Data are representative of a single experiment 
performed in biological triplicate.  
B. IP/W.blot of Keap1-/- MEFs transiently transfected with the indicated FLAG-KEAP1 
constructs. FLAG-KEAP1 complexes were immunopurified and probed for association with 
endogenous CUL3. Data are representative of a single experiment performed in biological 
triplicate.  
C-D. IP/W.blot of Keap1-/- MEFs or HEK 293T/17 cells transiently transfected with the 
indicated FLAG-KEAP1 constructs. FLAG-KEAP1 complexes were immunopurified and 
probed for association with endogenous VCP. Data are representative of a single 
experiment performed in biological triplicate.  
E. IP/W.blot of HEK 293T/17 cells transiently transfected with the indicated FLAG-KEAP1 
constructs. Cells were treated with the following inhibitors: 1 µM CB-5083, 10 µM DBeQ, 10 
µM Eey1, or 10 µM MG-132 for six. Data are representative of a single experiment 
performed in biological duplicate.  
F. IP/W. blot of HEK 293T/17 cells transiently transfected with the indicated FLAG-KEAP1 
constructs. Cells were treated with 10 µM MG-132 for six hours. FLAG-KEAP1 complexes 
were immunopurified and probed for association with ubiquitin receptors. Data are 
representative of a single experiment performed in biological triplicate. 
 



	 116 

  
Figure 3.6. KEAP1 superbinder mutants stabilize KEAP1 structure. 
A. Plot of the root mean square fluctuations (RMSF) at each residue for KEAP1-WT (grey) 
and -R470C (green). For each system, the mean and standard error of five replicates, each 
with one million steps, was plotted. Magenta circles denote the contact points with NRF2 in 
the crystal structure (PDB ID: 4IFL). The black line corresponds to the difference between 
the means for R470C and WT simulations, and error bars correspond to the 98% confidence 
interval (CI) for the difference between the means. Blue stars indicate statistically significant 
decreases in RMSF (p<0.02).  
B. Cartoon representation of the KEAP1-NRF2 crystal structure colored by the Z-score for 
the RMSF difference between KEAP1 mutant and WT. The bound NRF2 peptide is colored 
magenta. The mutated residue R470 and the potential salt bridge partners are shown as 
sticks (red: acidic resides, blue: basic residues). 
C. W.blot of lysates from imited proteolysis of Keap1-/- MEFs transiently transfected with 
FLAG-KEAP1 constructs and exposed to various concentrations of trypsin for 15 min.  
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Figure 3.7. KEAP1 superbinder mutants form insoluble clusters with NRF2 and 
interact with proteins involved in autophagy. 
A. HEK 293T/17 were transiently co-transfected with EGFP-Nrf2 (green) and Keap1-mCh 
WT, R320Q, or with DAPI to visualize nuclei (blue). Scale bar = 20 µm.  
B. Triton X-100 solubility assay of HEK 293T/17 cells transiently transfected with the 
indicated FLAG-KEAP1 constructs. 16 hours post-transfection, cells were treated with 
DMSO or 10 µM MG-132 for eight hr. Data shown are representative of a single experiment 
performed in biological triplicate. 
C. Time-lapse clearance of HEK 293T/17 co-transfected with EGFP-Nrf2 (green) and 
Keap1-R320Q mCh (red). Image acquisition was started 24-hr post-transfection, and 
images were acquired every four min. Scale bar = 20 µm.  
D. IP/W.blot of HEK 293T/17 cells transfected with the indicated FLAG-KEAP1 constructs. 
FLAG-KEAP1 complexes were immunopurified and probed for the indicated proteins. Data 
shown are representative of a single experiment performed in biological triplicate.   

Figure 7. KEAP1 superbinder mutants form insoluble clusters with NRF2 and interact with proteins involved in autophagy.
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Figure 3.8. KEAP1- and NRF2-positive clusters are positive for endogenous p62 and 
require p62 to form. 
A. H1299 cells were co-transfected with Keap1-mCh WT, R320Q, or R470C (red), and 
EGFP-NRF2 (green). Nuclei were stained with DAPI (blue). Scale bar = 10 µm, confocal 
images.  
B. H1299 cells were co-transfected with Keap1-mCh R320Q (red) and FLAG-NRF2 (green 
or cyan) and stained for endogenous p62 and p62 pS351. Nuclei were stained with DAPI 
(blue). Scale bar = 10 µm, confocal images. 
C. H1299 cells were transfected with either control or p62 siRNA followed by co-transfection 
of Keap1-mCh R320Q (red) and FLAG-NRF2 (cyan).  
Transfected cells were stained for endogenous p62 (green). Scale bar = 20 µM, confocal 
images Nuclei were stained with DAPI (blue). 
D. Cartoon schematic of p62-dependent clusters containing KEAP1, NRF2, p62, and 
polyUb.  
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Figure 3.9. Potential genotype-phenotype correlations of KEAP1 superbinder 
mutants. 
A. EC50 values of H1299 cells stably expressing indicated constructs and treated with 
bleomycin for 72 hr. PrestoBlue measurements were plotted and fit to determine EC50 
values. Each point represents the mean of technical quadruplicates performed in biological 
triplicate by two independent researchers. Error bars represent the standard error of the 
means. P-values were determined using a one-way ANOVA with a Tukey’s multiple 
comparison test.   
B. H1299 cells stably expressing indicated constructs were treated with 1 µM bleomycin for 
72 hours. Caspase 3/7 Glo assay was used to measure levels of apoptosis. Each point 
represents the mean from a single experiment performed in technical quadruplicate. Error 
bars represent the SEM. P-values were determined using a one-way ANOVA with a Tukey’s 
multiple comparison test. 
C. Proposed model correlating KEAP1 cycling dynamics with NRF2 activity and KEAP1 
mutation function. I) Passenger or silent mutations are estimated to represent 25% of the 
mutations identified in LUSC. Functionally silent mutations result in low levels of nuclear 
NRF2 and maintain normal rates of KEAP1 conformational cycling. II) KEAP1 hypomorphs 
are estimated to represent 40-50% of LUSC mutations. We hypothesize that the 
superbinder mutations result in impaired or delayed cycling and form p62-dependent 
clusters that may represent intermediate aggregates between proteasomal and autophagic 
degradation. Consequently, KEAP1 hypomorphs exhibit elevated but not maximal levels of 
nuclear NRF2. III) Functionally dead mutations are unable to bind NRF2 and as such do not 
cycle; consequently, they exhibit maximal levels of nuclear NRF2 activity and provide 
protection against DNA-damaging agents. 
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Figure 3.S.1. Supplemental data for Figure 3.2. 
A. HEK 293T/17 cells stably expressing FLAG-KEAP1 WT or R320Q were transfected with 
EGFP-Nrf2 (mouse) or Venus-NRF2 (human). FLAG antibody immunostaining was 
performed to detect KEAP1 WT or R320Q. Images represent maximum intensity projections 
of Z-stacks. Nuclei were stained with DAPI (blue). Scale bar = 20 µm.  
B-C. H1299 cells were transfected with FLAG-KEAP1 WT, R320Q, or R470C and subjected 
to IF (B) or W.blot (C) analyses with FLAG antibody. Nuclei were stained with DAPI (blue). 
Scale bar = 20 µm; confocal images. 
D. H1299 cells were co-transfected with FLAG-NRF2 and either Keap1-mCh WT, R320Q, or 
R70C. The following day, cells were treated with either DMSO (control) or a panel of NRF2 
inducers (10 µm MG-132, 5 µm MLN4924, 375 nM CDDO, 50 µm tBHQ, or 20 µmM SULF) 
for six hr. Fixed cells were stained with FLAG antibody for detection of NRF2 (cyan). Nuclei 
were stained with DAPI (blue). Scale bar = 50 µm, confocal images. 
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Figure 3.S.2. Validation of antibodies for KEAP1 substrates. 
A. Validation of NRF1 siRNAs. HEK 293T/17 were transfected with 10 nM siRNA for 66 hr. 
Cells were treated with 10 µM MG-132 for six hr, and cleared lysates were analyzed by 
W.blot for the indicated proteins.  
B. Validation of PGAM5 siRNAs. HEK 293T/17 were transfected with 10 nM siRNA and 
treated with 10 µM MG-132 prior to W. blot analysis as described in B. 
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Figure 3.S.3. Supplemental data for Figure 3.5. 
A. IP/W.blot of HEK 293T/17 cells transfected with the indicated FLAG-KEAP1 constructs. 
FLAG-KEAP1 complexes were immunopurified and probed for association with endogenous 
HSP90. Data are representative of a single experiment performed in biological duplicate.  
B. Validation of VCP siRNAs. HEK 293T/17 were transfected with 20 nM siRNA for 72 hr. 
Cleared lysates were analyzed by W.blot for the indicated proteins. 
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Fig. S4. KEAP1 superbinder mutants do not dramatically alter KEAP1 half-life or ubiquitination under basal or induced conditions.
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Figure 3.S.4. KEAP1 superbinder mutants do not dramatically alter KEAP1 half-life 
or ubiquitylation under basal or induced conditions. 
A. Cycloheximide (CHX) chase of HEK 293T/17 cells stably expressing FLAG-KEAP1 
WT or R320Q. Cells were treated with 50 µg/mL CHX for the indicated times. Lysates 
were analyzed by quantitative W.blot for the indicated proteins. Image shown is 
representative of a single experiment performed in biological triplicate.   
B. Cycloheximide (CHX) chase of HEK 293T/17 cells stably expressing FLAG-KEAP1 
WT or R320Q. Cells were treated with 50 µg/mL CHX and 50 µM tBHQ for the indicated 
times. Lysates were analyzed as in (A). Image shown is representative of a single 
experiment performed in biological triplicate.   
C. HEK 293T/17 cells stably expressing FLAG-KEAP1 WT or R320Q were transiently 
transfected with VSV-UB1. 18 hr-post transfection, cells were treated with 50 µM tBHQ 
or 10 µM MG-132 for 2 hr. Immunopurified FLAG-KEAP1 complexes were probed for the 
indicated proteins. 
D. HEK 293T/17 cells stably expressing FLAG-KEAP1 WT or R320Q were transiently 
transfected with HA-UB1 lysine chain-specific constructs as indicated. Immunopurified 
FLAG-KEAP1 complexes were probed for the indicated proteins. 
E. HEK 293T/17 cells were transfected with FLAG-KEAP1 WT, R320Q, or R470C. 24 hr 
following transfection, cells were harvested under near-denaturing conditions. FLAG-
immunopurified KEAP1 complexes were probed for indicated proteins.
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Figure 3.S.5. Supplemental data for Figure 3.7. 
A. H1299 cells stably expressing Keap1-mCh WT, R320Q, R470C, or EGFP-Nrf2 were fixed 
and subjected to IF. Nuclei were stained with DAPI (blue). Scale bar = 20 µm; confocal 
images.  
B. H1299 cells stably expressing Keap1-mCh R470C were transfected with EGFP-Nrf2. 
Scale bar = 20 µm; confocal images. 
C. H1299 cells were co-transfected with EGFP-Nrf2 and Keap1-mCh WT, R320Q, or 
R470C. Keap1-Nrf2 nuclear foci were also occasionally observed (inset). Nuclei were 
stained with DAPI (blue). Scale bar = 20 µm; confocal images. 
 

Fig. S5. Subcellular distribution of Keap1-mCh and EGFP-Nrf2 in HEK 293T/17 and H1299

A. HEK 293T/17 cells were transfected with a single plasmid encoding for expression of Keap1-mCh WT, R320Q, R470C or EGFP-Nrf2. Keap1-mCh WT

R320Q, and R470C exhibit a cytosoli and diffuse distribution; in contrast, EGFP-Nrf2 exhibits a predominant nuclear distribution when expressed alone.

Nuclei were stained with DAPI (blue). Scale bar = 20 ȝm; confocal images.

B. H1299 cells were transfected as in (A).  Keap1 WT, R320Q, and R470C exhibit a predominantly diffuse, cytosolic distribution with appreciable Keap1

clusters that vary in size; in contrast, EGFP-Nrf2 exhibits predominantly nuclear localizatoin with several instances of nuclear foci (inset). Scale bar = 

20 ȝm; confocal images.

C. H1299 cells were co-transfected with EGFP-Nrf2 and Keap1-mCh WT, R320Q, or R470C. Co-expression altered the subcellular distribution of these 

proteins. In the presence of Keap1-mCh WT, EGFP-Nrf2 is mainly diffuse and cytosolic. R320Q and R470C overexpresion resulted in diffuse and cytosolic 

Nrf2 wtih increased formation of Keap1 and Nrf2 positive clusters.Keap1-Nrf2 nuclear foci were also occassionally observed (inset). Nuclei were stained 

with DAPI (blue). Scale bar = 20 ȝm; confocal images.
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Figure 3.S.6. Supplemental data for Figure 8: KEAP1- and NRF2-positive clusters are 
positive for endogenous p62, but not for LC3B or LAMP2. 
A. H1299 cells were co-transfected with Keap1-mCh R320Q (red), FLAG-NRF2 (cyan), and 
GFP-LC3 (green) and stained for FLAG. Keap1-positive and NRF2-positive puncta are 
positive for exogenous EGFP-LC3. Scale bar = 10 µm.  
B. H1299 cells were co-transfected with Keap1-mCh R320Q (red) and FLAG-NRF2 (green 
or cyan), treated with either DMSO or 50 µM chloroquine (CQ) overnight and stained for 
FLAG-NRF2 (cyan/green), endogenous LC3B (green), or endogenous LAMP2 (cyan). 
Keap1-positive and NRF2-positive clusters are negative for endogenous LC3B and LAMP2. 
C. H1299 cells were co-transfected with Keap1-mCh R320Q (red) and FLAG-NRF2 (green) 
and stained with FLAG antibody and Lysotracker AlexaFluor647.   
Nuclei were stained with DAPI (blue). Scale bar = 10µM, confocal images.  
D. Validation of p62 siRNAs. HEK 293T/17 were transfected with 20 nM siRNA for 72 hr. 
Cleared lysates were analyzed by W.blot for the indicated proteins.  
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Figure 3.S.7. Supplemental data for Figure 9.  
A. H1299 cells were co-transfected with Keap1-mCh R320Q and EGFP-Nrf2. Keap1 
complexes were immunopurified using mCherry antibody and probed for indicated proteins.  
B-C. Dose-response curves of H1299 cells stably expressing indicated constructs and 
treated with varying doses of cisplatin (B) or paclitaxel (C) for 72 hr. PrestoBlue 
measurements were used as an indicator of cell viability, and measured values were plotted 
to determine EC50 values. Each point represents the mean of technical quadruplicates 
performed in biological triplicate by two independent researchers. Error bars represent the 
standard error of the means.  
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CHAPTER IV: DISCUSSION 

 

4.A. The identification and mechanism(s) of KEAP1 superbinder mutants 

4.A.1.Summary of findings 

This dissertation discusses a previously described high-throughput platform for 

profiling patient-derived KEAP1 mutants (1). This platform combines two assays for KEAP1 

function: 1) NRF2 transcriptional activity and 2) NRF2 association with KEAP1 as measured 

by IP/W.blot (1, 2). Integration of these two metrics enables the binning of KEAP1 mutations 

into three distinct functional classes: 1) passenger or silent mutations that are functionally 

equivalent to KEAP1 WT, 2) hypomorphic mutations which increase KEAP1-NRF2 protein 

association but cannot suppress NRF2 transcriptional activity, and 3) inactivating mutations 

which result in functionally dead proteins. Further examination of the hypomorphic class 

revealed a subset of six mutants: V155F, G186S, R320Q, D422N, G423V, and R470C. 

These mutants retain the ability to ubiquitylate NRF2 but are deficient in their ability to target 

NRF2 for proteasomal degradation; we have termed these KEAP1 ‘superbinders’. Two of 

these KEAP1 mutants, the R320Q and R470C superbinders, occur at amino acid residues 

determined to be frequently mutated in cancer. Moreover, we estimate that the superbinder 

class of KEAP1 mutations constitutes nearly 40% of the mutations identified in LUSC (1).  

The primary objective of this dissertation was to investigate the mechanism(s) of the class of 

KEAP1 superbinders by interrogating four aspects of these mutants: 1) protein-protein 

interactions, 2) structural analyses, 3) subcellular localization, and 4) response to 

chemotherapeutic insults.  
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KEAP1 protein interaction alterations may result in the superbinder phenotype.  To 

test this hypothesis, unbiased BioID/MS analyses of proximal proteins and targeted 

IP/W.blot of the superbinders were performed. These studies concluded that superbinder 

mutants do not disrupt CUL3 association, KEAP1 homodimerization, or associations with six 

established substrates: PALB2, MCM3, NRF1, IKBKB, PGAM5, and BCL2. Furthermore, as 

compared to WT, superbinders were not altered in their association with three novel 

interactors: the ATPase VCP and two ubiquitin receptors on the proteasome lid, PSMD2 and 

PSMD4. 

 

Conformational changes to KEAP1 impair NRF2 degradation; consequently, 

modifications to KEAP1 tertiary structure may contribute to the superbinder phenotype (3-9). 

Dynamic simulation and limited proteolysis studies of full-length KEAP1 were used to probe 

KEAP1 superbinder structure. Due to the availability of a crystal structure for the KEAP1 

KELCH domain, simulation studies could be performed with the R470 superbinder mutant 

as this mutation lies within the KELCH domain that is required for NRF2 association. These 

studies revealed that mutations at R470 reduced flexibility throughout the KELCH domain, 

potentially through salt bridge formations with acidic residues D422 and E493 in KEAP1. 

Intriguingly, mutations to the D422 residue also result in a superbinder phenotype. 

Moreover, the reduction in KEAP1 flexibility is predicted to impact residues that associate 

with NRF2 and may impair the dissociation of ubiquitylated NRF2 from KEAP1. As a 

complementary approach, limited proteolysis of full-length superbinders R320Q and R470C 

was performed. KEAP1 superbinders were more resistant to trypsin-mediated limited 

proteolysis as compared to KEAP1 WT, providing biochemical data supportive of the 

simulation studies. Taken together, these data suggest that superbinder mutants may 

stabilize KEAP1 structure, particularly at sites contacting the NRF2 degron.  
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Next, we employed live cell imaging of fluorescent constructs and IF analyses to 

examine the mechanism by which KEAP1 superbinder mutants impact subcellular 

localization of the KEAP1-NRF2 complex. These studies revealed that overexpression of 

KEAP1 superbinders induces the formation of p62-dependent circular clusters that contain 

KEAP1, NRF2, p62, an autophagy-specific phosphorylated form of p62 (p62 pS351), and 

polyubiquitin. Moreover, these clusters do not colocalize with markers of autophagy (LC3) or 

lysosomal degradation (LAMP2 and lysotracker).  

 

Hyperactivation of NRF2 in cancer cells is protective against chemotherapeutic insult 

(10-19). To determine the phenotypic consequence of KEAP1 superbinder mutations, we 

compared dose-response curves of cells overexpressing KEAP1 WT or superbinder 

mutants for three chemotherapeutic drugs: cisplatin, paclitaxel, and bleomycin. Of the three 

drugs tested, superbinder mutants conferred resistance only to the oxidative stressor 

bleomycin as measured by cell viability using two complementary assays: 1) PrestoBlue as 

a surrogate for mitochondrial metabolism and 2) the Caspase 3/7 Glo assay which 

measures apoptotic induction.  No differential sensitivity was observed for cisplatin and 

paclitaxel in WT- or superbinder-overexpressing cells.  

  

 The mechanistic studies of the R320Q and R470C superbinder mutants revealed 

five defining traits for the superbinder class. First, superbinder mutants exhibit a high 

correlation between mutational frequency and sequence conservation; two of the three most 

frequently mutated residues within KEAP1 are superbinder mutants. Second, superbinder 

mutants increase NRF2 association without disrupting KEAP1 associations with other 

proteins. Third, superbinder mutants likely stabilize KEAP1 tertiary structure, thus altering 

association with the NRF2 degron. Fourth, overexpression of KEAP1 superbinder mutants 

results in the formation of p62-dependent clusters that contain KEAP1 enclosed by a ring of 
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p62, autophagy-specific phosphorylated p62, polyubiquitin, and occasionally NRF2. Fifth, 

overexpression of KEAP1 superbinder mutants protects lung cancer cells from bleomycin-

induced DNA damage (20).  

 

4.A.2 Proposed future studies of superbinder mutants 

Identification of genotype-phenotype relationships 

The correlation between mutation frequency and sequence conservation is intriguing 

and lends itself to two follow-up studies: 1) biochemical profiling of frequently mutated and 

conserved residues in NRF2 and KEAP1 with unknown biological function, and 2) 

comparative analyses of mutational frequency and conservation for additional tumor 

suppressors and oncogenes. Mutations known to impact protein function appear to be 

enriched in frequently mutated and conserved residues for both NRF2 and KEAP1. Of the 

top 20 frequently mutated and conserved residues in NRF2, 19 are localized to the DLG and 

ETGE motifs required for KEAP1 association (R499 is the lone exception, Figure 3.2A). Our 

lab and others have established that mutations within the DLG and ETGE residues abolish 

KEAP1 association and result in elevated NRF2 transcriptional activity (21-28). The R499 

residue is located within the Neh3 domain of NRF2 which is responsible for DNA binding 

and dimerization (29-31). Future studies to clone this mutation and determine its impact on 

NRF2 subcellular localization, NRF2 transcriptional activity, and association with small MAF 

(sMAF) proteins or KEAP1 are warranted. Based on the location of the mutation, I would 

predict that R499 mutations would have no impact on KEAP1 association; however, these 

mutations could potentially block heterodimerization with sMAF proteins, thus blocking DNA 

binding and suppressing NRF2-dependent transcription. Additionally, 9 of the top 20 

frequently mutated residues in KEAP1 are known to impact KEAP1 function; these 20 

mutations are highly conserved across 500 protein sequences bearing at least 45% identity 

to human KEAP1. These residues include 5 hypomorphs (G480 and 4 superbinders: G186, 
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R320, D422, and R470) and 4 functionally dead mutant residues (G333, G417, R601, and 

R603) (Figure 3.2B) (1, 11, 16-18, 32-35). Cloning and profiling of mutations occurring in the 

remaining 11 top frequently mutated and conserved residues would be predicted to reveal 

residues impacting biological function (1, 11, 16-18, 32-36). The E493 residue is of 

particular interest because DMD simulation studies performed in Chapter 3 of this 

dissertation identified salt bridge formations and electrostatic interactions between E493 and 

the R470C superbinder; furthermore, E493 is the 19th most mutated residue in KEAP1. As 

such, patient-derived E493 mutations would be predicted to phenocopy superbinder 

mutations.  

 

The second future study involves comparing mutational frequency and Shannon 

entropy for other tumor suppressors (i.e. TP53 and PTEN) and oncogenes (i.e. KRAS and 

BRAF). It would be informative to determine whether frequently mutated and highly 

conserved residues in known oncogenes and tumor suppressors impair their function. If 

true, comparison of mutational frequency with Shannon entropy could be used to prioritize 

patient-derived mutations for molecular studies for additional tumor suppressors and 

oncogenes.  

 

KEAP1 structural studies 

Though the exact mechanism by which the KEAP1 superbinder mutants alter KEAP1 

tertiary structure has not yet been elucidated, the limited proteolysis analysis and DMD 

simulations are both suggestive of KEAP1 structure alterations that result in changes to the 

NRF2 interface. Surface plasmon resonance (SPR) of the recombinant NRF2 Neh2 domain 

with the KEAP1 KELCH WT or R470C domain should be considered to determine the 

affinity of the complex. Purification of full-length recombinant KEAP1 is challenging given the 

number of cysteine residues within the protein (6, 37-41). Although we were successful in 
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purifying small amounts of CUL3, NRF2, and KEAP1, SPR analyses proved difficult 

because biotinylation of full-length KEAP1 for SPR chip immobilization impaired its 

association with full-length NRF2 (data not shown). As an alternative to SPR analysis, 

KEAP1-NRF2 affinity estimates were attempted via dissociation of immunopurified KEAP1-

NRF2 complexes using salt and urea titration curves. Surprisingly, the KEAP1 WT-NRF2 or 

KEAP1 superbinder-NRF2 complexes did not fully dissociate even with the addition of 2.5 M 

NaCl or 8 M urea washes (data not shown). These data support an extremely tight 

association between KEAP1-NRF2 that may be near covalent in strength. As a 

complementary approach, KEAP1-NRF2 complexes could be exposed to increasing 

amounts of the reducing agent dithiothreitol (DTT) to determine if increased DTT can 

dissociate KEAP1-NRF2.  

 

Our prevailing theory is that superbinder mutants impair KEAP1 conformational 

cycling (7-9, 42). The rate of KEAP1 conformational cycling within an individual cell can be 

determined using fluorescence lifetime imaging (FLIM) and Förster resonance energy 

transfer (FRET) to calculate FRET efficiency (e-FRET) (8). Although constructs to test this 

hypothesis have been generated and validated, the resources and expertise to perform 

these experiments are not currently available at UNC. As such, we have an ongoing 

collaboration with the Dinkova-Kostova laboratory at the University of Dundee, and we are 

eagerly awaiting results of these studies. The Dinkova-Kostova group originally 

characterized KEAP1 conformational cycling using FLIM-FRET (7). Thus far, our 

collaborators have established that KEAP1 superbinder mutants do not alter fluorescence 

recovery after photobleaching (FRAP) when compared to KEAP1 WT (data not shown). 

However, proteasome inhibition via MG-132 results in statistically significant alterations in 

the mobility of KEAP1 WT and superbinder mutants as measured by FRAP analysis (data 

not shown). These alterations suggest that proteasome inhibition impairs KEAP1-NRF2 
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complex mobility within the cell, which merits further investigation. Future experiments 

testing superbinder mutants should be performed in Keap1-/- MEFs or other KEAP1 

genetically null cell lines in order to exclude contributions from KEAP1 WT-superbinder 

heterodimers.   

 

Additional studies of p62-dependent KEAP1-NRF2 clusters 

One of the more intriguing findings in this dissertation is the accumulation of the p62-

dependent clusters in the presence of the KEAP1 superbinder mutants (discussed in 

Chapter 3). The exact nature and biological significance of these clusters is yet to be 

determined. We observed that cluster formation was cell line-dependent. In HEK 293T/17 

cells, clusters were observed only in the presence of overexpressed KEAP1 superbinders. 

In contrast, lung adenocarcinoma H1299 cells revealed KEAP1-NRF2- positive clusters 

even in the presence of KEAP1 WT, though KEAP1 WT resulted in the formation of fewer 

clusters as compared to KEAP1 superbinders. Because cluster formation requires p62, it is 

possible that H1299 cells have higher levels of endogenous p62 compared to HEK 293T/17 

cells. Western blot analysis of HEK 293T/17 and a panel of lung line lysates would be an 

appropriate experiment to test this hypothesis. These lysates should also be probed for 

differential expression of KEAP1, NRF2, p62 pS351, and LC3I-II. Cell lines expressing 

higher levels of endogenous p62 and NRF2 would be predicted to form clusters in the 

presence of KEAP1 superbinder overexpression.  

 

Given that KEAP1 binds to p62 and that the formation of these clusters is p62-

dependent, we predicted that autophagy was being engaged to clear the clusters. However, 

studies examining the colocalization of these clusters with markers of the autophagosome 

(LC3) or lysosome (LysoTracker or LAMP2) were negative (43-49). Moreover, autophagy 

inducers (wortmannin, serum starvation, and rapamycin) or inhibitors (chloroquine [CQ] and 
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bafilomycin A1) did not impact cluster formation or clearance (data not shown) (44-49). Two 

key experiments for future studies are proposed here. First, the status of KEAP1-dependent 

p62 ubiquitylation and interactions in the presence of the superbinder mutants should be 

determined. P62 was recently reported to be ubiquitylated by the KEAP1-NRF2 complex 

(50-59). Furthermore, ubiquitylation of p62 is essential for p62 association with LC3; this 

interaction enables p62 to transport ubiquitylated cargo to the growing phagophores for 

autophagic clearance (44-47, 49, 51, 53-55, 57-62). It is possible that KEAP1-NRF2 

superbinder complexes are competent for p62 association but are deficient for p62 

ubiquitylation. As such, the KEAP1-NRF2-p62 clusters could represent intermediates 

between impaired proteasome-mediated and autophagic degradation. To conduct these 

experiments, p62 could be immunopurified under denaturing conditions in the presence of 

KEAP1 WT or superbinder overexpression. Immunopurified complexes would then be 

probed for polyubiquitin as well as ubiquitin chain-specific antibodies. It is feasible that 

KEAP1 superbinder mutants alter essential protein-protein interactions of p62. Therefore, 

p62 protein-protein interactions in the presence of KEAP1 WT or superbinders should be 

assessed through unbiased BioID/MS to identify changes in association of proximal proteins 

as well as through targeted IP/W.blot analyses to examine interactions between p62 and 

known interactors such as LC3.  

 

Additional live cell imaging studies with NRF2 inducers or p62 siRNAs could provide 

information concerning the dynamics of the formation and clearance of KEAP1-NRF2-p62 

clusters. High-resolution electron microscopy (EM) with immunogold staining or cryo-

electron microscopy (cryo-EM) may resolve the dimensions and organization of proteins 

within the clusters. Accurate size analysis of the clusters might lead to theories regarding 

the stoichiometric ratios of proteins within these clusters. Given the observed size of the 

clusters, the clusters may contain multiple subunits of KEAP1-NRF2 complexes as well as 
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oligomerized p62. If technically feasible, biochemical fractionation and MS analyses of the 

clusters could reveal stoichiometric ratios, identify additional proteins localized within the 

clusters, and identify post-translational modifications of proteins within the clusters.  

 

Generating cell lines and mice with KEAP1 superbinder mutations  

There are currently no available cell lines expressing superbinder mutations from the 

endogenous KEAP1 promoter. As such, clustered regularly interspaced short palindromic 

repeats (CRISPR)/Cas9 gene editing could be employed to generate a panel of lung cancer 

cell lines expressing the KEAP1 R320Q and R470C superbinder mutations; KEAP1 WT 

isogenic cell lines would serve as controls. These cell lines could be evaluated for 

transformative potential using soft agar assays to measure anchorage-independent growth 

as well as clonogenic potential via colony formation assays.  Genetic models of NRF2 

hyperactivation alone do not result in spontaneous tumor formation; therefore, expression of 

the KEAP1 superbinders may need to be performed in conjunction with oncogenic mutation 

(KRASG12D) or tumor suppressor deletion (TP53-/-) in order to observe a robust phenotype in 

transformative or clonogenic assays. 

 

These cell lines could also be used in xenograft studies to evaluate tumorigenic 

potential and response to treatment in vivo. Generation of mice carrying a floxed allele with 

superbinder mutations would enable experiments testing the consequence of superbinder 

mutations during embryonic development. Mice born with superbinder mutations should 

exhibit moderate levels of NRF2 activation as compared to the lethal Keap1-/- (KO) mice. As 

such, these mice would be expected to survive and would be predicted to behave 

comparably to Keap1flox/-(Keap1-KD) mice, which demonstrate moderate levels of NRF2 

transcriptional activity and survive to adulthood (19). Furthermore, the floxed superbinder 

mice could be genetically crossed with mouse models of LUSC 
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(Keap1flox/flox::Trp53flox/flox::R26tdTomato)  and/or LUAD (KrasLSL-G12D/+::Tp53flox/flox) to test the role 

of superbinder mutations in tumor development in vivo (63-67). The increase in NRF2 

stabilization and transcriptional activity caused by the superbinder mutations should 

increase tumor formation and burden in both the LUSC and LUAD mouse models. 

Moreover, the elevated expression of NRF2 target genes in tumors from mice with 

superbinder mutations should confer resistance to chemotherapy and radiotherapy similarly 

to the bleomycin resistance observed in cell lines overexpressing KEAP1 superbinders, 

which was discussed in Chapter 3.  

 

4.B. Clinical application: Identification of a patient-derived NRF2 Functionally Active 
Mutant Signature (NRF2FAMS) 
 
4.B.1. Rationale 

The American Cancer Society estimated that more than 90,000 patients will be 

diagnosed with NRF2-active cancers in 2017; furthermore, NRF2-active cancers will account 

for more than 45,000 deaths this year (Figure 4.1). Mutations impacting NRF2 activity are 

found in more than 10 organs and are most prevalent in the lung (68-70). Over 30% of 

NSCLC patients harbor mutations in KEAP1, NFE2L2, or CUL3 (32, 68, 71-77). 

Unfortunately, patients with increased NRF2 transcriptional activity are less responsive to 

chemo- and radiotherapy and have a worse prognosis (11, 17, 18, 34, 35, 78-82). Due to 

the prognostic value of identifying patients with KEAP1-NRF2 pathway alterations prior to 

chemo- or radiotherapy, there is a clear need to develop a patient-derived NRF2 target gene 

signature for use as a biomarker. The most established NRF2 signature was developed by 

the Biswal laboratory (Singh_NFE2L2_targets GSEA M2662, hereafter Singh signature) and 

is comprised of 15 genes identified from NRF2-depleted A549 and H460 lung 

adenocarcinoma cells which normally exhibit NRF2 hyperactivation due to inactivating 

mutations in KEAP1(17). Recent studies expanded this signature using patient data sets 
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from the gene expression omnibus (GEO) and The Cancer Genome Atlas (TCGA) (83-86). 

These additional signatures were derived through gene set enrichment analysis (GSEA) by 

segregating patient samples with WT or mutant KEAP1/NFE2L2/CUL3 genes; however, 

these signatures treated functionally silent mutations as mutants, which likely impacted the 

analysis as approximately 20% of all KEAP1 LUSC mutations are predicted as functionally 

silent (1). Grouping mutations with WT function along with functionally inactive or 

hypomorphic mutations to derive a gene signature could result in missed opportunities for 

identifying novel target genes or in a target gene signature that is neither prognostic nor 

predictive (84). As an extension to the work describing KEAP1 superbinder function, a 

secondary goal was to establish a database with functional annotations for patient-derived 

KEAP1/NFE2L2/CUL3 mutations. This was accomplished by utilizing insights gained from 

functional and biochemical characterization of 18 KEAP1 mutations identified in LUSC as 

well as literature-based evidence of mutation function in KEAP1/NFE2L2/CUL3 samples (1). 

 

4.B.2. Approach 

Patient samples from the most recent TCGA-LUSC (n=489) dataset were binned into 

six classes based on RNA-seq and gene expression data: 1) CUL3 homozygous deletions 

or activating mutations (n=9), 2) KEAP1 inactivating mutations or deletions (n=20), 3) 

NFE2L2 gain-of-function (GOF) mutations (n=83), 4) samples containing multiple mutations 

and/or amplifications and/or deletions (n=24), 5) KEAP1/NFE2L2/CUL3 mutations of 

unknown function (n=69), and 6) normal samples, which incorporates known passenger or 

silent mutations (n=330) (Figure 4.2) (1, 10, 12, 16-18, 32, 34, 68, 71, 73, 76, 84, 87-91). 

Using a stringent false discovery rate (FDR) of 5% with median-centered values, 

differentially expressed genes (DEGs) were sorted by fold-change; this revealed 50 genes 

that are significantly upregulated in KEAP1/NFE2L2/CUL3 mutant patient samples (Figure 

4.3). We defined a gene signature using the top 30 DEGs as determined by log2-
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transformed fold-change and termed it the NRF2 Functionally Annotated Mutant Signature 

(NRF2FAMS). 

 

Differential expression analyses of RNA-seq data were performed using the 

bioconductor R LIMMA package with voom transformation (92-94). Transcripts were 

quantified using RNA-seq by expectation maximation (RSEM) and restricted to at least a 

75% or greater RSEM value of 5 (95). Note that all statistical analyses and figures were 

generated using R version 3.2.3 (94, 96).  

 

4.B.3. Summary of findings 

We compared the NRF2FAMS gene set to two well-established gene signature sets: 1) 

15 genes derived from RT-PCR analysis of NRF2-depleted A549 and H460 lung cancer cell 

lines (Singh signature) and 2) 28 genes derived from a TCGA-LUSC dataset of 104 patients 

binned into either normal or mutant for KEAP1/NFE2L2/CUL3 (NRF2ACT signature) (84). 

Only two genes from NRF2FAMS were observed to overlap with the Singh signature (ABCC2 

and NQO1), while 11 genes overlap with the NRF2ACT signature (Figure 4.4) (33, 84). 

Despite being derived from similar TCGA datasets, 70% of the genes identified in NRF2FAMS 

do not overlap with the NRF2ACT gene signature (84, 97). This difference is likely driven by 

two main factors. First, NRF2FAMS was derived from a patient cohort comprised of 489 

TCGA-LUSC samples while NRF2ACT was derived from a patient cohort of 104 TCGA-LUSC 

samples (84). Second, NRF2FAMS was developed based on the inclusion of validated 

functional mutations only, thus underscoring the importance of rigorous classification prior to 

establishing the gene signature and training the dataset. 

 

We next tested the prognostic value of the NRF2FAMS signature in the TCGA-LUSC 

data set. Using hierarchical clustering with pearson’s correlation, patients were classified 
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according to NRF2FAMS expression into two groups: NRF2FAMS high (n=126) or NRF2FAMS low 

(n=363). Kaplan-Meier analysis comparing overall survival (OS) revealed that NRF2FAMS 

high patients have a lower probability of OS as compared to NRF2FAMS low patients (Figure 

4.5). This analysis demonstrated that NRF2FAMS is prognostic of OS with a statistically 

significant p-value of 0.004 as calculated by a log-rank test (survival R package) (Figure 4.5) 

(98, 99).  

 

4.B.4. Proposed studies for NRF2FAMS 

Identify and validate novel NRF2 transcriptional targets 

Differentially expressed genes identified in NRF2-active patient samples compared 

to NRF2-normal samples may represent novel NRF2 target genes. A comprehensive 

comparison of NRF2FAMS to established NRF2 signatures will identify previously unpublished 

NRF2 target genes (13, 84, 100-102). Bioinformatic analyses can be employed to probe for 

ARE consensus sequences in the promoters of candidate genes (17, 67, 89, 101, 103, 104). 

Identification of putative NRF2 target genes can be validated biochemically using assays 

described in Chapter 2 of this dissertation, which include: NRF2 transcriptional activity 

assays, quantitative PCR (qPCR) for well-established NRF2 target genes (i.e. HMOX1 and 

NQO1), and quantitative Western blot analysis of cells treated with NRF2 inducers (tBHQ, 

SF, CDDO, MG-132, or MLN49224) for protein levels of NRF2 and NRF2 target genes (i.e. 

HMOX1, GCLC, and GCLM) (37, 67, 105-108). The identification of novel NRF2 target 

genes may reveal clinically actionable targets.    

 

Determine genotype-phenotype correlations for novel functional mutations 

Class 5 mutations (those of unknown function) can be predicted as functionally 

active or WT based on their expression of NRF2 target genes as defined by NRF2FAMS 

(Figure 4.3). Of these mutations, predicted normal and predicted functionally active 
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mutations could then be cloned and biochemically profiled using NRF2 transcriptional 

activity assays coupled with KEAP1-NRF2 binding. These data will not only aid in the 

validation of the NRF2FAMS gene signature but may reveal additional superbinder or 

functionally inactivating KEAP1 mutations. 

 

Determining the prognostic value of NRF2FAMS in additional data sets 

Gene expression data for large patient cohorts are now readily and publicly available 

(68, 71). Independent validation of the prognostic nature of NRF2FAMS in additional datasets 

should be performed. The following four LUSC data sets contain RNA-seq expression data 

as well as information on recurrence-free survival: Korea (GSE8894, KOR), Canada 

(GSE50081, CAN), Sweden (GSE37745, SWE), and the United States (GSE3141, USA) 

(109-112). Expression data from these groups can be used to bin patients according to their 

NRF2FAMS signature and to generate Kaplan-Meier survival plots (85). These plots can then 

be used to evaluate the prognostic potential of NRF2FAMS with other NRF2 target gene 

signatures (84, 85, 102). This approach can be easily adapted to other tumor types with 

significant genetic alterations in KEAP1-NRF2 (i.e. head and neck squamous cell carcinoma 

(HNSCC) and liver). The prognostic value of NRF2FAMS in a TCGA-LUAD dataset of 510 

patient samples is currently ongoing (68, 71, 76).  

 

Correlation of NRF2 activity with smoking status 

As discussed in Chapter 1, 90% of lung cancers are caused by cigarette smoke 

exposure (10, 69, 70, 78, 109, 110, 113-119). Smoking induces oxidative stress and results 

in the formation of DNA adducts on guanine (G); these G to thymidine (T) transversions are 

considered a hallmark of smoking (113, 114). Seven of the 18 KEAP1 LUSC mutations 

studied in Chapter 2 arise from G to T transversions. Of these 7 mutations, all but 1 

inactivate KEAP1 function. As a class, more than 50% of the KEAP1 hypomorphs exhibit G 



	 153 

to T transversions. These findings suggest that G to T transversions may be a feature of 

KEAP1 inactivating and hypmorphic mutations. As such, further investigation is needed to 

determine if correlations between mutant function and G to T transversions exist in lung 

cancer patients with NRF2FAMS high signatures.   

 

Comparing target gene profiles of KEAP1 mutant classes 

 In Chapter 3, the prevalence and nature of KEAP1 hypomorphic mutations were 

discussed; these mutations occur in 40-50% of LUSC samples and result in a gradient of 

elevated NRF2 transcriptional activity as compared to KEAP1 WT or KEAP1 functionally 

dead mutations (1). This gradient of NRF2 activity between mutant subclasses is suggestive 

of differential activation or expression of NRF2 target genes. Determination of the NRF2 

target genes upregulated with KEAP1 hypomorphs compared to functionally dead KEAP1 

mutations may reveal candidates for targeted therapies for patients with KEAP1 

hypomorphs.  

 

4.C. Perspectives 

 Studies conducted by the TCGA in 2012 raised awareness of KEAP1-NRF2 

mutations in the development and progression of LUSC. In 2012, we curated the literature 

and identified 213 KEAP1 and 68 NRF2 mutations reported across 17 different cancer 

subtypes. Today, cBioPortal reports 853 missense mutations in KEAP1 and 555 missense 

mutations in NRF2 (68, 71). These numbers are constantly increasing and underscore the 

importance of understanding KEAP1-NRF2 regulation in cancer, particularly in lung cancer. 

 This dissertation work began in 2012 and coincided with the surging interest in 

KEAP1-NRF2 signaling as well as with the identification of the 18 KEAP1 mutations 

identified by the TCGA (73). The comprehensive characterization of the 18 KEAP1 mutants 

presented in Chapter 2 revealed the class of superbinder mutants that formed the basis for 
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this dissertation (1). Investigating the mechanism of the superbinder mutants has broadened 

our understanding of the molecular mechanisms and phenotypic consequences of KEAP1 

superbinder mutations. Moreover, superbinder mutants are estimated to occur in 40% of 

LUSC tumors for which there are currently no targeted therapies (73, 120, 121). The 

ultimate goal of gene signature studies such as NRF2FAMS is the identification of clinically 

actionable targets for the development of targeted therapies for LUSC.  
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Figure 4.1. ACS estimates for NRF2-active cancer sites. 
In 2017, ACS estimates that more than 90,000 patients will be diagnosed with NRF2-active 
cancers, impacting more than 10 different organs. Numbers reflect estimates from American 
Cancer Society (ACS) data. 
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Figure 4.1. ACS estimated NRF2-active cancer sites.



	 156 

 

Figure 4.2. Schematic of TCGA-LUSC binning of patient-derived mutations. 
489 patient-derived mutations were binned according to gene mutation and function. 
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Figure 4.2. Schematic of TCGA-LUSC analysis.   
489 patient-derived mutations were binned according to gene mutation and function. 
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Figure 4.3. Identification of genes upregulated in NRF2-active LUSC. 
Heatmap illustrating expression profiles and supervised hierarchical clustering of the top 50 
differentially expressed genes (DEGs) upregulated in NRF2-active (NRF2FAMS high) TCGA-
LUSC samples. 489 patient samples were included in the analysis. 
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Figure 4.3. Identification of genes upregulated in NRF2-active LUSC.   
Heatmaps illustrating expression profiles and supervised hierarchical clustering of
the top 50 differentially expressed genes upregulated in NRF2-activeTCGA-LUSC
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Figure 4.4. Comparison of NRF2 gene signatures. 
A. Comparison of NRF2FAMS with the Singh signature (33). 
B. Comparison of NRF2FAMS with the NRF2ACT signature (84). 
Venn diagrams were created using jvenn (97). 

Figure 4.4. Comparison of NRF2 gene sigantures.
A. Comparison of NRF2FAMS with the Singh signature.
B. Comparison of NRF2FAMS with the NRF2ACT signature. 
All venn diagrams were created using jvenn.
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Figure 4.5. NRF2FAMS is prognostic for overall survival. 
Kaplan-Meier estimate of overall survival for the TCGA-LUSC cohort (n=489 patients). Log-
rank test of the median difference in survival between patients classified as NRF2FAMS high 
and NRF2FAMS low is statistically significant at p=0.004. 
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Figure 4.5. NRF2FAMS is prognostic for overall survival.  
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