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Abstract

We consider a simple general equilibrium model with two agents under the
presence of financial market imperfections: agents can borrow to realize their
productive project up to the level of debt whose repayment reaches a fraction
of the project’s value (so-called credit limit). After characterizing the whole set
of equilibria, we investigate the connection between credit limit, (individual and
social) welfare, and efficiency. We also compute the optimal credit limit which
maximizes the social welfare function.

JEL Classifications: D53, E44, G10.
Keywords: General equilibrium, credit limit, welfare, efficiency.

1 Introduction

In an environment where there exists lack of contract enforcement, collateralized debts
arise naturally for the lender to secure her loans. Enterprise Surveys (2018), conducted
by the World Bank and its partners, provide a database of firms in 139 countries.
According to Enterprise Surveys (2018), in the average level, 53.6% of firms need a
loan and 79.1% of loans require collateral. Such collateral requirements are considered
as endogenous borrowing constraints, which depend on the values of the assets and also
the possible losses associated with the reallocation of those assets in case of default.
This source of financial friction has been of great interest to both theoretical and
empirical macroeconomists, mostly in examining the role of collateral constraints in
the dynamics of the business cycles since the seminal papers Kiyotaki and Moore
(1997), Geanakoplos and Zame (2002). Our paper aims to contribute to this literature

∗The authors are very grateful anonymous referees for useful comments and suggestions. They
have helped us to substantially improve our previous version.

†Corresponding author. Emails: ns.pham@montpellier-bs.com, pns.pham@gmail.com. Tel.: +33
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by addressing two basic questions: (1) What are the effects of credit limit on individual
and social welfares? and (2) What is the optimal level of the credit constraint?

For this purpose, we construct a tractable two-agent, two-period general equilibrium
model with financial frictions. Agents differ in initial wealth, productivity, and credit
limit. They have two ways of investing: buying capital (to realize their production
project) or buying financial assets. Agents can borrow and then pay back in the next
period. Following Kiyotaki (1998, 2011), the debtor is required to put her project as
collateral in order to borrow: in case that she does not repay, the creditor can seize
the collateral. Due to the lack of commitment, the creditor can only obtain a fraction
of the value of the project. Anticipating the possibility of default, the creditor limits
the amount of credit so that the debt repayment will not exceed a fraction fi of the
debtor’s project value. This fraction can be interpreted as the credit limit of agent i.1

In general equilibrium models with financial frictions, borrowing constraints may
occasionally bind. This makes the computation of equilibria challenging, especially in
multi-period and/or stochastic models (see Brumm, Kubler and Scheidegger (2017)
for an excellent survey). Thanks to the simplicity of our model, we can completely
characterize the whole set of equilibria. In general, the more productive one (say,
agent 1) will borrow from the unproductive one (say, agent 2). However, the productive
agent’s borrowing constraint is not binding if and only if its credit limit f1 is sufficiently
high. More interestingly, we show that the productive agent will borrow all initial
wealth of the unproductive agent if and only if f1 reaches a middle-level. If f1 is low,
borrowing constraint of agent 1 is binding but she can only borrow a part of initial
wealth of the unproductive agent who still produces in this case. The main difference
between our paper and Kiyotaki (1998) concerns the equilibrium interest rate: in
Kiyotaki (1998), it is constant over time (equals to the rate of return on investment of
productive agents) while it depends on the credit limit f1 and other fundamentals in
our model.

After characterizing all possible equilibria, we examine the effects of the credit limit
on the welfare of agents and equilibrium efficiency.

First, we show that the welfare or consumption of the unproductive agent (lender)
is increasing in credit limit but that of the productive agent (borrower) displays an
inverted U-shape as a function of credit limit f1. Let us explain the economic intuition.
Credit limits influence agents’ production level and borrowing as well as repayment.
When credit limit f1 is low, an increase in this credit limit leads to increases in both
the agent 1’s production level and her repayment with the production level increasing
faster than the repayment. Hence, her consumption and welfare increase. Neverthe-
less, once credit limit reaches a middle level, this agent borrows all initial wealth of
the unproductive agent, and hence cannot increase further her production level. By
contrast, the repayment always increases in the credit limit once the credit constraint
binds. Therefore, the productive agent’s welfare is decreasing in her credit limit once
the latter reaches the middle level.

From the individual welfare analysis, we can derive properties of the social welfare
function defined as a weighted sum of individual welfares. If the lender’s initial wealth

1The reader is referred to Matsuyama (2007), Quadrini (2011), Brunnermeier, Eisenbach and
Sannikov (2013) for more complete reviews on the macroeconomic effects of financial frictions and to
Buera et al. (2015) for the relationship between entrepreneurship and financial frictions.
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is low and/or her weight is sufficiently high, then the social welfare is an increasing
function of the productive agent’s credit limit. Otherwise, the social welfare displays
an inverted U-shape as a function of the credit limit f1.

In our simple economy, we also manage to figure out the optimal level of the credit
limit which maximizes the social welfare function. We find out that this optimal level
is a non-decreasing function of the lender’s productivity, initial wealth and the weight
assigned to the lender’s utility in the social welfare function. Notice that borrowing
constraints may be binding even the credit limit is at the optimal level. Moreover,
the optimal credit limit may not be at the maximum level. However, when the social
welfare function is the aggregate output, which is increasing in credit limit, the optimal
level of the credit limit must be the highest possible.

Our welfare analysis is related to Obiols-Homs (2011). Indeed, Obiols-Homs (2011)
considers a general equilibrium model with an exogenous borrowing limit (consumers
can borrow an amount which is bounded from below by an exogenous parameter).
Obiols-Homs (2011) shows that there is a neighborhood of borrowing limit, in which
the welfare of the borrower decreases when its borrowing limit increases.

There are important differences between our paper and Obiols-Homs (2011). First,
the mechanism of Obiols-Homs (2011) relies on a different role of credit. While credit
is in need of households to smooth their consumption in Obiols-Homs (2011), it is de-
manded by firms who want to finance their productive investment in our mechanism.
Second, borrowing limit of each agent in our model is endogenous while it is exoge-
nous in Obiols-Homs (2011). We show that models with endogenous constraints as in
our model and those with exogenous borrowing limits as in Obiols-Homs (2011) may
trigger important differences not only in terms of equilibrium outcomes but also on
the relationship of credit limit and social welfare. Indeed, if in our model we replace
credit constraints by exogenous borrowing constraints (as in Obiols-Homs (2011)),
then we have that: (1) the equilibrium indeterminacy may arise and (2) both individ-
ual consumptions are increasing in the exogenous credit limits (which implies that an
inverted-U relationship between the credit limit and the borrower’s consumption does
not appear). Third, we can compute all types of equilibrium (thanks to our model’s
tractability) and hence provide a more general picture by explicitly characterizing con-
ditions under which the individual and social welfares increase or decrease in the credit
limit. Furthermore, we complement the analysis of Obiols-Homs (2011) by computing
the optimal level of the credit limit.

Our last avenue of contribution concerns the equilibrium efficiency. We provide
a necessary and sufficient condition for an equilibrium to be Pareto efficient. This
condition is characterized by agents’ credit limit, initial wealth, and productivity. The
economy is more likely to be efficient if the productive agent’s credit limit, initial wealth
and productivity are high. Two points should be mentioned: (1) an equilibrium with
binding borrowing constraints may be efficient or inefficient, and (2) a level of credit
limit may lead to an equilibrium efficiency but does not necessarily maximize the social
welfare.

Our finding on the efficiency of equilibrium outcomes has a link with Theorem 2
in Gottardi and Kubler (2015) who provide a necessary and sufficient condition for
the existence2 of a Pareto-efficient equilibrium in a stochastic exchange economy with

2Gottardi and Kubler (2015) say that Pareto-efficient equilibria exist for an economy if there are
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collateral constraints and without aggregate uncertainty. Although our model is deter-
ministic, we introduce production (any agent can produce by using their technology).
In Theorem 2 in Gottardi and Kubler (2015), the collateral requirements play no role
while the credit limit in our setting role plays a crucial role on the equilibrium effi-
ciency. It should be noticed that we can, furthermore, fully characterize all economies
where efficient or inefficient equilibria arise.

The rest of this paper is organized as follows. Section 2 presents our framework.
In Section 3, we characterize equilibria and then compare outcomes of models with
and without credit constraints. Section 4 investigates the welfare effects of the credit
limit and computes the optimal level of the credit limit while Section 5 studies the
efficiency of equilibrium outcomes. Section 6 concludes. Technical proofs are gathered
in Appendices.

2 A two-agent economy with credit constraints

We consider a two-period economy with two agents. There is no uncertainty and there
is a single good (numéraire) which can be consumed or used to produce. Each agent
i has exogenous wealth (Si units of good) at the initial date and decides how much
good for production and investment in the financial market in order to maximize her
wealth in the next period. Since each agent lives for two periods, this wealth is also
the agent’s consumption.

On the one hand, if agent i wants to realize her productive project, she buys ki
units of physical capital at the initial date to produce F (ki) units of good at the second
date, where Fi is her production function.

On the other hand, she can invest in a financial asset with real return r. Denote
ai the amount that the agent i invests in the financial asset. She can also borrow and
then pay back rai in the next period. In the spirit of Kiyotaki (1998, 2011), we assume
that the debtor is required to put her project as collateral in order to borrow: If she
does not repay, the creditor can seize the collateral. Due to the lack of commitment
(or just because the debtor is not willing to help the creditor take the whole value of
the debtor’s project), the creditor can only obtain a fraction fi of the total value of
the project. Anticipating the possibility of default, the creditor limits the amount of
credit so that the debt repayment will not exceed a fraction fi (called ”credit limit”)
of the debtor’s project value.

To sum up, the maximization problem of agent i can be described as follows:

(Pi) ci = max
(ki,ai)

[Fi(ki)− rai] (1a)

subject to : 0 ≤ ki ≤ Si + ai (1b)

rai ≤ fiFi(ki). (1c)

The better the commitment, the higher value of fi, the larger the set of feasible allo-
cations of the agent i. The setup (1c) is also supported by Enterprise Surveys (2018).
Indeed, the ratio 1/fi of the agent i in our paper seems to represent the agent i’s
value of collateral needed for a loan (% of the loan amount) in Enterprise Surveys

initial distributions for which the competitive equilibrium is Pareto efficient.
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(2018). Following Enterprise Surveys (2018), the average of credit limits fi (data of
133 countries) is closed to 0.555. So, it is natural to make the following assumption.

Assumption 1. fi ∈ [0, 1) for i = 1, 2

Remark 1. In terms of modeling, our model environment can be viewed as a simplified
two-date version of Kiyotaki (1998) with alternative technology. In Kiyotaki (1998), the
time is of infinite horizon, the utility function is logarithmic, and he provides analyses
around the steady state. Our model is simpler but we can characterize the whole set of
equilibrium and provide full comparative statics.

It should be noticed that constraint (1c) is different from condition (3) in Kiyotaki
and Moore (1997). Indeed, the borrower’s repayment is assumed not to exceed the
market value of her land quantity in Kiyotaki and Moore (1997) while being restricted
to be at most the market value of the borrower’s project under our assumption.

Some authors (Buera and Shin, 2013; Moll, 2014) set ki ≤ θwi, where wi ≥ 0 is
the agent i’s wealth and interpret that θ measures the degree of credit frictions (credit
markets are perfect if θ = ∞ while θ = 1 corresponds to financial autarky, where all
capital must be self-financed by entrepreneurs). In our framework, Si plays a similar
role of wealth wi in Buera and Shin (2013), Moll (2014).

Other authors (Kocherlakota, 1992; Obiols-Homs, 2011) consider exogenous bor-
rowing limits by imposing a short sales constraint: ai ≤ B for any i.

As we will show in Appendix A.2, our model and that with exogenous borrowing
limits lead to important differences in terms of equilibrium outcomes.

Definition 1. Let us consider the economy E , characterized by a list of fundamentals
E ≡ (Fi, fi, Si)i=1,2. A list (r, a1, a2, k1, k2) is an equilibrium if the two following con-
ditions are satisfied (1) Agents’ optimality: for each i ∈ {1, 2}, given r, (ai, ki) is a
solution of the problem (Pi), and (2) Financial market clearing: a1 + a2 = 0.

Notice that under standard specifications, the existence of equilibrium is guaran-
teed.3 To simplify the exposition and to get closed-form solutions, the main text will
focus on the linear technology case.

Assumption 2. Assume that Fi(K) = AiK for i = 1, 2.

In Appendix A.3, we present the analyses under Cobb-Douglas production

functions. In this case, although the solutions do not have closed-form (see Proposi-
tion 6), we prove that the main economic insights do not change.

3 Computing equilibrium outcomes

Before computing equilibrium, we study the individual problem (Pi). At optimal, we
have ki = Si+ai. So, Aiki−rai = AiSi+ai(A−r) and two constraints (1c-1b) become
ai ≥ −Si and (r − fiAi)ai ≤ fiAiSi. By consequence, we obtain the following result.

Lemma 1 (individual problem). Assume that Fi(K) = AiK. The solution for agent
i’s maximization problem is described as follows.

3We can prove the equilibrium existence by applying the method in Bosi, Le Van and Pham (2018).
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1. If r > Ai, then agent i does not produce goods and invest all her initial wealth in
the financial market: ki = 0, ai = −Si.

2. If Ai = r, then the solutions for the agent’s problem include all sets (ki, ai) such
that −Si ≤ ai ≤ fiki and ki = ai + Si.

3. If Ai > r > fiAi, then agent i borrows from the financial market and the borrow-
ing constraint is binding.

ki =
r

r − fiAi

Si, ai =
fiAi

r − fiAi

Si. (2)

4. If r ≤ fiAi, there is no solution.4

Given the interest rate r, Lemma 1 draws the relationship between productivity
and identification of the borrower/lender: An agent borrows from the financial market
if and only if her productivity is high enough, in the sense that Ai > r. Moreover, she
borrows the maximum level imposed on her, i.e, the borrowing constraint is binding.

The most interesting case corresponds to point 3 of Lemma 1 according to which
the capital and asset holding of agent i are increasing in her TFP (Ai), initial wealth
Si and credit limit fi but decreasing in the interest rate r. However, the interest rate is
endogenously determined. The following result fully describes the general equilibrium
effects of all fundamentals including credit limits on the agents’ decision and their
consumption.

Proposition 1 (characterization of general equilibrium). Let Assumption 1, 2 be sat-
isfied. Assume that A1 > A2. There are only three different cases (each having a
unique equilibrium and with the productive agent being the borrower).

1. If f1 ≤ A2

A1

S2

S1+S2

, then the borrowing constraint of agent 1 is binding and there
exists a unique equilibrium characterized by:

Interest rate: r = A2

Physical capital: k1 =
A2

A2 − f1A1

S1, k2 = −
f1A1

A2 − f1A1

S1 + S2

Financial asset: a1 =
f1A1

A2 − f1A1

S1, a2 = −
f1A1

A2 − f1A1

S1;

The aggregate output and consumption of each agent are:

Y = A2S2 + A1S1
A2 − f1A2

A2 − f1A1

, c1 = A1S1
A2 − f1A2

A2 − f1A1

, c2 = A2S2.

4Indeed, if r ≤ fiAi, then agent i may choose ai = +∞ and ki = +∞ and have ci = +∞. However,
in the case of Cobb-Douglas technology, we have f ′(∞) = 0, then the feasible set is compact, which
implies that the individual problem always has a solution (see Appendix A.3).
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2. If A2

A1

S2

(S1+S2)
< f1 < S2

S1+S2

, then the borrowing constraint of agent 1 is binding,
and there exists a unique equilibrium characterized by:

Interest rate: r = f1A1

(

1 +
S1

S2

)

Physical capital: k1 = S1 + S2, k2 = 0

Financial asset: a1 = S2, a2 = −S2.

The aggregate output and consumption of each agent are:

Y = A1(S1 + S2), c1 = A1(1− f1)(S1 + S2), c2 = f1A1(S1 + S2).

3. If f1 ≥ S2

S1+S2

, then the borrowing constraint is not binding, and there exists a
unique equilibrium characterized by:

Interest rate: r = A1

Physical capital: k1 = S2 + S1, k2 = 0

Financial asset: a1 = S2; a2 = −S2

The aggregate output and consumption of each agent are:

Y = A1(S1 + S2), c1 = A1S1, c2 = A1S2.

Proof. See Appendix A.1.1.5

Proposition 1 figures out all possible cases and compute equilibrium in each case.
From this, we can explicitly express the equilibrium outcomes in terms of fundamentals.
Before going further, we introduce some notations:

• f ∗∗
1 ≡ S2

S1+S2

. This is the threshold of credit limit above which borrowing con-
straint of agent 1 is not binding. Agent 1’s borrowing constraint is binding if
f1 < f ∗∗

1 .

• f ∗
1 ≡ A2

A1

S2

S1+S2

. We have f ∗
1 < f ∗∗

1 because A1 > A2. This is the threshold of
credit limit above which agent 1’s borrowing constraint is binding and this agent
borrow all initial wealth of agent 2 (i.e. k1 = S1 + S2).

When the credit limit f1 is in the interval (f ∗
1 , f

∗∗
1 ), agent 1’s borrowing constraint

is binding and all initial wealth of agent 2 is lent to agent 1, so that this agent uses all
physical capital of the economy for production. The higher (resp., lower) the produc-
tivity A1 (resp., A2), the lower the threshold f ∗

1 , and therefore the smaller the interval
(f ∗

1 , f
∗∗
1 ).

5In any case, agent 1 (the agent with higher productivity) borrows, and agent 2 (the one with
lower productivity) lends in the financial market. Therefore borrowing constraint of agent 2 is not
binding. Consequently, f2 is irrelevant to the equilibrium outcomes.
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We now present explicit formulas of equilibrium interest rate and aggregate output:

r = r(f1) ≡















A2 if f1 ≤ f ∗
1

f1A1

(

1 +
S1

S2

)

if f ∗
1 < f1 < f ∗∗

1

A1 if f1 ≥ f ∗∗
1

, (3)

Y = Y (f1) ≡







A2S2 + A1S1
A2 − f1A2

A2 − f1A1

if f1 ≤ f ∗
1

A1(S1 + S2) if f ∗
1 < f1.

(4)

We see that the interest rate r is in [A2, A1] and Y belongs to [A1S1+A2S2, A1(S1+
S2)]. Both r and Y are increasing in the credit limit f1. It is possible to prove that
r ≥ f1A1, and hence agent 1’s consumption cannot be infinity (see Lemma 1).

Our result is related to Kiyotaki (1998) who considers an infinite-horizon model with
two agents (unproductive and productive agents having linear production functions,
as in our model) and logarithmic utility functions. The main difference concerns the
equilibrium interest rate. Although the model in Kiyotaki (1998) is of infinite horizon,
the interest rate is constant over time (it equals the rate of return on investment of
productive agents; this corresponds to the case r = A2 in our model). However, it
depends on the credit limit f1 in our model (see (3)).

Remark 2 (Economy without credit constraints). Consider an economy without credit
constraints (in the sense that constraint (1c) is removed). Under Assumptions 1, 2,
there exists a unique equilibrium determined by: r̄ = A1, k̄1 = S1 + S2, k̄2 = 0, ā1 =
S2, ā2 = −S2. The aggregate output and consumption of each agent are:

Ȳ = A1(S1 + S2), c̄1 = A1S1, c̄2 = A1S2.

Corollary 1 (With versus without credit constraints). Consider the economy with
credit constraints.

1. When the borrowing constraint of the borrower binds, the equilibrium interest rate
is smaller than that in case without borrowing constraints: r ≤ r̄.

2. When the borrowing constraint of the borrower binds, the lender’s consumption
is smaller than that in the case without borrowing constraints: c2 ≤ c̄2.

3. When the borrowing constraint of the borrower binds, her consumption is greater
than that in the case without borrowing constraints: c1 ≥ c̄1.

4. When the borrowing constraint of the borrower binds, the aggregate output in
the case under borrowing constraint is smaller than or equal to that in the case
without borrowing constraint: Y ≤ Ȳ . The equality occurs with higher value of
f1 (i.e., when f1 > f ∗

1 ).

In the following sections, we will explore the equilibrium efficiency and welfare
analyses.
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4 Welfare analysis

This section explores the (individual and social) welfare analyses. Following Proposi-
tion 1, we can provide the explicit formula of the consumption of agent 1 (borrower)

c1 = c1(f1) ≡















A1S1
A2 − f1A2

A2 − f1A1

if f1 ≤ f ∗
1

A1(1− f1)(S1 + S2), if f ∗
1 < f1 < f ∗∗

1

A1S1 if f1 ≥ f ∗∗
1

(5)

and that of agent 2 (lender)

c2 = c2(f1) ≡











A2S2 if f1 ≤ f ∗
1

f1A1(S1 + S2) if f ∗
1 < f1 < f ∗∗

1

A1S2 if f1 ≥ f ∗∗
1 .

(6)

4.1 Individual welfare

According to (6), the consumption of agent 2 (lender) is increasing in f1. However,
the consumption of agent 1 (borrower) is not. Indeed, following (5), if the credit limit
imposed on this agent is sufficiently strict in the sense that f1 ≤ f ∗

1 , her consumption is
an increasing function of f1. For medium values of f1, i.e, f

∗
1 < f1 < f ∗∗

1 , the borrower’s
consumption is decreasing in f1. When f1 is high (f1 > f ∗∗

1 ), the consumption is A1S1

which does not depend on f1.
To understand the mechanism behind this result, let us decompose c1 into two

terms

c1(f1) = Aiki − rai ≡























A1
A2S1

A2 − f1A1

− A2
f1A1S1

A2 − f1A1

if f1 ≤ f ∗
1

A1(S1 + S2)−
f1A1(S1 + S2)

S2

S2, if f ∗
1 < f1 < f ∗∗

1

A1(S1 + S2)− A1S2, if f1 ≥ f ∗∗
1

where the first term in each case is her production A1k1 while the second term is her
repayment ra1. We write c1(f1) because the consumption c1 depends on f1.

Notice that credit limits influence agents’ production level and borrowing as well as
repayment. When the credit limit f1 is strict (f1 ≤ f ∗

1 ), if f1 increases, then the agent

1’s production level A1k1 increases faster than her repayment Ra1:
∂(A1k1)

∂f1
≥ ∂(ra1)

∂f1
.

So, her consumption increases. However, once the credit limit exceeds f ∗
1 , the physical

capital k1 equals S1 + S2 (the aggregate capital of the economy), and the production
level of agent 1 cannot increase anymore when f1 increases.6 On the contrary, the
repayment always increases in f1. As a result, agent 1’s consumption c1 decreases in

6Notice that under Cobb-Douglas production functions, the more productive agent does not borrow
all initial wealths of the less productive agent because the less productive agent still produces (Inada’s
condition holds). However, we can prove that the more productive agent’s production is increasing and
strictly concave in f1. By consequence, our main insight does not change: the agent 1’s consumption
first increases and then decreases when f1 increases (see Appendix A.3 for more details).
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Figure 1: Effects of credit limit f1

f1 ∈ (f ∗
1 , f

∗∗). Last, when f1 is high enough (f1 ≥ f ∗∗
1 ), equilibrium outcomes no

longer depend on f1.
Figure 1 illustrates our result on the non-monotonicity of agent 1’s consumption.

In this figure, parameters are A1 = 1.2, A2 = 1, S1 = S2 = 5. We observe that
c1(0) = c1(f

∗∗
1 ) = A1S1 ≤ c1(f1) for any f1 ∈ (0, f ∗∗

1 ), where the threshold f ∗∗
1 = 0.5.

Our finding is closely related to Obiols-Homs (2011). Indeed, Obiols-Homs (2011)
investigates the effects of exogenous borrowing limit on welfare. He shows that when
borrowing limit belongs to a neighborhood of the benchmark borrowing limit, then
the welfare of borrower is decreasing in borrowing limit. Our added-value to Obiols-
Homs (2011) is that we can compute the whole set of equilibria (thanks to our model’s
simplicity) and hence provide insights on how individual welfare is affected as the level
of financial frictions varies.

The main difference in terms of setup between Obiols-Homs (2011) and our paper
is that Obiols-Homs (2011) considers an exogenous borrowing limit (borrowing con-
straint in Obiols-Homs (2011) is under form ai ≤ a∗) while we take into account credit

constraints. Notice that constraint (1c) can be rewritten as ai ≤ fiFi(ki)
r

(this is a

borrowing constraint but the borrowing limit fiFi(ki)
r

is endogenous).
As we will prove in Appendix A.2, these two setups have different implications.

For example, both individual consumptions are increasing in the model with exogenous
borrowing limits āi. However, in the model with credit constraint (1c), the consumption
of borrower has an inverted U–sharp form and that of lender is increasing in credit
limit. Moreover, in a model with exogenous borrowing limits, multiple equilibria may
arise while in the model with credit constraint (1c), there is a unique equilibrium.

4.2 Social welfare and optimal credit limit

In this section, we study how social welfare depends on the credit limit. Since the
credit limits (fi) are proxies of the financial development, it is interesting to compute
the optimal level of credit limit which maximizes the social welfare.
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Assume that the utility function of agent i is ui(ci). We can define the social welfare

W ≡
2
∑

i=1

γiui(ci) (7)

where γi ≥ 0 is the weight assigned to agent i’s utility. The function W would depend
on credit limits. However, since borrowing constraint of borrower is binding, the welfare
W does not depend on f2. So, we write W = W(f1).

Let us recall that when f1 ≥ f ∗∗
1 , the equilibrium outcomes and the social welfare

do not depend on f1. Therefore, we only investigate the impact of f1 when f1 ≤ f ∗∗
1 .

The following results (whose proofs are presented in Appendix A.1.2) show the
impact of f1 on the social welfare and the optimal level of f1.

Proposition 2. Assume that ui(ci) =
c1−σ
i

1−σ
if σ ∈ (0, 1), and ui(ci) = ln(ci) if σ = 1.

1. If S2

S1+S2

≤ x2, then W(f1) is increasing in f1, where x2 ≡
γ

1
σ
2

γ
1
σ
1
+γ

1
σ
2

.

2. If A2

A1

S2

S1+S2

< x2 < S2

S1+S2

, then W(f1) is increasing on [0, x2] and decreasing on

(x2,
S2

S1+S2

).

3. If A2

A1

S2

S1+S2

≥ x2, then W(f1) is increasing on (0, A2

A1

S2

S1+S2

) and decreasing on

(A2

A1

S2

S1+S2

, S2

S1+S2

).

So, the optimal level of the credit limit is determined by

f̂1 =











A2

A1

S2

S1+S2

if A2

A1

S2

S1+S2

≥ x2

x2 if A2

A1

S2

S1+S2

< x2 <
S2

S1+S2

S2

S1+S2

if S2

S1+S2

≤ x2.

(8)

Proposition 3. Assume that ui(ci) = ci for any i. Then, we have

1. If γ2 ≥ γ1, then W(f1) is increasing in f1.

2. If γ1 > γ2, then W(f1) is increasing on [0, f ∗
1 ] and decreasing on (f ∗

1 , f
∗∗
1 ), where

recall that f ∗∗
1 ≡ S2

S1+S2

and f ∗
1 ≡ A2

A1

S2

S1+S2

< f ∗∗
1 .

So, the optimal level of f1 is determined by

f̂1 =

{

f ∗
1 if γ1 > γ2

f ∗∗
1 if γ2 ≥ γ1.

(9)

When ui(c1) = ci and γ1 = γ2, the social welfare function is exactly the aggre-
gate output which is proved to be increasing in the credit limit f1. Our interesting
point is that the social welfare function can be increasing or have inverted U-shape
form, depending not only on the form of the social welfare function but also on the
distribution of productivity and endowments of agents ((Ai)i, (Si)i). Even we chose
the same weights γ1 = γ2, Proposition 2 suggests that the social welfare function can
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be increasing or have inverted U-shape form; this happens when the utility function is
strictly concave.

According to (8) and (9), the optimal level of credit limit is a non-decreasing
function of the lender’s productivity, initial wealth and the weight assigned to the
lender’s utility in the social welfare function. Moreover, (8) and (9) leads to interesting
points: (1) the optimal credit limit may be the level which makes borrowing constraint
binding, and (2) the optimal credit limit may not be the maximum level (i.e., f ∗∗

1 ).

5 Efficiency

This section aims to explore the efficiency of equilibrium outcomes. Following Ma-
linvaud (1953), Alvarez and Jermann (2000), Becker, Dubey and Mitra (2014) we
introduce some notions of efficiency.

Definition 2. Consider an economy characterized by production functions and initial
wealths (Fi, Si)i=1,2.

1. (Efficient production plan) A plan (ki)i is said to be efficient if (1) it is feasible
in the sense that

∑

i ki ≤
∑

i Si and (2) there does not exist another feasible
production plan (k′

i)i such that
∑

i Fi(k
′
i) >

∑

i Fi(ki).

2. (Efficient allocation). An allocation (ci)i is said to be efficient if (1) it is feasible
in the sense that

∑

i ci ≤
∑

i Fi(ki) with some feasible plan (ki) and (2) there
does not exist another feasible allocation (c′i)i which Pareto dominates (ci)i.

3. (Constrained efficient allocation). An allocation (ci)i is said to be constrained
efficient if (1) it is efficient and (2) ci ≥ AiSi ∀i = 1, 2.

Notice that AiSi is the consumption of agent i if she cannot participate to the
financial market. Thus, constrained efficiency requires that allocation is efficient and
the well-being of every agent is not less than her autarkic welfare.

Let us consider an equilibrium of our economy E = (Fi, fi, Si) with credit con-
straints. One can prove that (ki)i is an efficient production plan if and only if it is a
solution of the following problem:

(PP ) : F (S) ≡ max
(ki)≥0

∑

i

Fi(ki) (10a)

subject to :
∑

i

ki ≤ S ≡
∑

i

Si. (10b)

The consumption allocation (ci)i is efficient if and only if
∑

i ci = F (S). It is
constrained efficient if and only if

∑

i ci = F (S) and ci ≥ AiSi ∀i.
The simplicity of our framework allows us to easily characterize the efficient pro-

duction plans and Pareto efficient allocations of equilibrium. According to (3, 4, 5, 6),
we obtain the following result.

Proposition 4. Let assumptions in Proposition 1 be satisfied and consider the economy
with credit constraints. The following statements are equivalent:
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1. The production plan of equilibrium is efficient.

2. The consumption allocation of equilibrium is efficient.

3. The consumption allocation of equilibrium is constrained efficient.

4. f1 ≥ f ∗
1 ≡ A2

A1

S2

S1+S2

.

To sum up, consumption allocation or production plan of equilibrium is inefficient
if and only if the credit limit f1 is low (in the sense that f1 < f ∗

1 ≡ A2

A1

S2

S1+S2

). The
higher productivity (A1) and initial wealth (S1) of the most productive agent (agent 1),
the lower the threshold level f ∗

1 ≡ A2

A1

S2

S1+S2

, and the easier we can obtain equilibrium
efficiency.

Comparing Proposition 4 with Proposition 3 and Proposition 2, we see that al-
though relaxing credit limit so that f1 ≥ f ∗

1 helps to achieve an efficient equilibrium,
this level may not be optimal in the sense that it maximizes the social welfare. It is
noticed that when f1 ∈ [f ∗

1 , f
∗∗
1 ), the equilibrium is efficient but agent 1’s borrowing

constraint is binding.
Our result is related to Gottardi and Kubler (2015) who consider an exchange

economy with complete markets and collateral constraints. Theorem 2 in Gottardi
and Kubler (2015) gives a necessary and sufficient condition for the existence of a
Pareto-efficient equilibrium with no aggregate uncertainty.7 This condition is based on
agents’ endowments and Gottardi and Kubler (2015) require the Lucas tree’s dividend
in every state to be sufficiently large so that collateral constraints never bind.

There are some differences between our paper and Gottardi and Kubler (2015).

1. First, our model, on the one hand, is simpler than that of Gottardi and Kubler
(2015) with deterministic and exogenous savings, but is more general on the other
hand thanks to the introduction of productions where every agent may become
entrepreneur.

2. Second, our necessary and sufficient condition (f1 ≥ A2

A1

S2

S1+S2

) is based on the
credit limit f1, productivities, and wealths while in Theorem 2 in Gottardi and
Kubler (2015) credit limits play no role.

3. Third, Theorem 2 in Gottardi and Kubler (2015) only considers the existence of
a Pareto-efficient equilibrium while our Proposition 4 studies all kinds of equi-
librium, including those with binding credit constraint.

6 Concluding remarks

We have constructed a very simple general equilibrium model with two heterogeneous
agents and financial market imperfections which induces interesting results about (in-

7Theorem 2 in Gottardi and Kubler (2015): A necessary and sufficient condition for the exis-

tence of a Pareto-efficient equilibrium with no aggregate uncertainty is (1−β)
∑

h∈H maxs∈S

[

eh(s)+

E
(

∑∞
t=1

βteh(st) | s0 = s
)]

≤ ω, where H is the finite-set of agents, S is the set of states, ω is the

aggregate consumption good, β is the rate of time preference, eh(s) is the endowment of agent h at
state s.
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dividual and social) welfare and efficiency. We have provided conditions under which
relaxing credit limit has negative or positive effect on the individual and social welfares.

Our paper opens several research avenues in the future. One may introduce un-
certainty and market incompleteness and then investigate the impact of this type of
financial frictions on welfare and efficiency. Another line of research is to extend our
analysis in a dynamic framework and investigate the effects of credit limits in the long
run.
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A Appendix

Appendix A.1 presents formal proofs for the linear technology case. Appendix A.2 intro-
duces a model with exogenous borrowing limit and compares it with that in the main text.
Appendix A.3 provides analysis in a model with Cobb-Douglas technology.

A.1 Formal proofs - linear technology

A.1.1 Proof of Proposition 1

From Lemma 1, we see that, at equilibrium Min{A1, A2} ≤ r ≤ Max{A1, A2}. Under the
assumption 1 (A2 < A1), we thus have A2 ≤ r ≤ A1. There are three cases, each having a
unique equilibrium described as follows.

1. If A2 = r < A1, Lemma 1 implies that there exists an equilibrium determined by:

k1 =
r

r − f1A1
S1, a1 =

f1A1

r − f1A1
S1

k2 = S2 −
f1A1

r − f1A1
S1, a2 = −

f1A1

r − f1A1
S1

In this case, agent 2 is the lender and agent 1 is the borrower. We see that ra1 = f1A1k1, i.e
the borrowing constraint is satisfied. We need to check the non-negative condition on k1, k2.
It is easy to see that k1 ≥ 0. Then one more condition left to be checked, that is k2 ≥ 0.
This condition is satisfied if and only if

S2 −
f1A1

r − f1A1
S1 ≥ 0 ⇔ f1 ≤

A2

A1

S2

S1 + S2

2. If A2 < r < A1, based on Lemma 1, there exists an equilibrium determined by:

k1 =
r

r − f1A1
S1, k2 = 0, a1 =

f1A1

r − f1A1
S1, a2 = −S2;
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The equilibrium interest rate is given by f1A1

r−f1A1
S1 = S2. So, we can compute r = f1A1

(

1 +

S1

S2

)

. We see that r ∈ (A2, A1) if and only if:

A2 < f1A1

(

1 +
S1

S2

)

< A1 ⇔
A2

A1

S2

S1 + S2
< f1 <

S2

S1 + S2
.

3. If A2 < r = A1, then there exists an equilibrium determined by k2 = 0, a2 = −S2, k1 =
S1 + S2, a1 = S2. In this case, we need to verify the borrowing constraint of the borrower
(agent 1): ra1 ≤ f1A1k1, or A1a1 ≤ f1A1(S1 + S2). This condition is satisfied if and only if

S2 ≤ f1(S1 + S2) ⇔ f1 ≤
S2

S1 + S2

A.1.2 Proof of Proposition 3 and Proposition 2

We consider three kinds of utility functions.

1. ui(ci) = ci for any i. We have

W(f1) = γ1c1 + γ2c2 =







γ1A1S1
A2 − f1A2

A2 − f1A1
+ γ2A2S2 if f1 ≤ f∗

1

γ1A1(S1 + S2) + (γ2 − γ1)f1A1(S1 + S2) if f∗
1 < f1 ≤ f∗∗

1

If f1 ≤ f∗
1 , then W(f1) is an increasing function in f1.

If f∗
1 < f1 ≤ f∗∗

1 , then W(f1) is increasing in f1 if and only if γ1 ≤ γ2, and decreasing
in f1 otherwise.

2. ui(ci) =
c1−σ
i

1−σ
for any i, where σ ∈ (0, 1). In this case, we have

W(f1) =



























γ1

(

A1S1
A2 − f1A2

A2 − f1A1

)1−σ

1− σ
+ γ2

(A2S2)
1−σ

1− σ
if f1 ≤ f∗

1

γ1

(

A1(1− f1)(S1 + S2)
)1−σ

1− σ
+ γ2

(

f1A1(S1 + S2)
)1−σ

1− σ
if f∗

1 < f1 ≤ f∗∗
1

If f1 ≤ f∗
1 , then W(f1) is increasing in f1.

If f∗
1 < f1 ≤ f∗∗

1 , then:

W(f1) = γ1

(

A1(1− f1)(S1 + S2)
)1−σ

1− σ
+ γ2

(

f1A1(S1 + S2)
)1−σ

1− σ

W ′(f1) = [γ2f
−σ
1 − γ1(1− f1)

−σ]
(

A1(S1 + S2)
)1−σ

We consider following sub-cases:

• f∗∗
1 < x2, then W(f1) is an increasing function in f1 for all f1 ∈ (f∗

1 , f
∗∗
1 ).

• f∗
1 > x2, then W(f1) is a decreasing function in f1 for all f1 ∈ (f∗

1 , f
∗∗
1 ).

• f∗
1 < x2 < f∗∗

1 , then W(f1) is increasing in f1 for f1 ∈ (f∗
1 , x2) and decreasing in

f1 for f1 ∈ (x2, f
∗∗
1 ).
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To sum up, we have that:

• If f∗∗
i ≤ x2, then W(f1) is increasing in f1.

• If f∗
1 < x2 ≤ f∗∗

i , then W(f1) is increasing in f1 for f1 ∈ [0, x2] and decreasing in
f1 for f1 ∈ (x2, f

∗∗
i ).

• If f∗
1 ≥ x2, then W(f1) is increasing in f1 for f1 ∈ (0, f∗

1 ) and is decreasing in f1
for f1 ∈ (f∗

1 , f
∗∗
1 )

3. If ui(ci) = ln(ci) for any i. In this case, we have

W(f1) =







γ1ln
(

A1S1
A2 − f1A2

A2 − f1A1

)

+ γ2 ln(A2S2) if f1 ≤ f∗
1

γ1ln
(

A1(1− f1)(S1 + S2)
)

+ γ2ln
(

f1A1(S1 + S2)
)

if f∗
1 < f1 ≤ f∗∗

1

If f1 ≤ f∗
1 , then W(f1) is increasing in f1.

If f∗
1 < f1 ≤ f∗∗

1 , then we have

W ′(f1) =
γ2
f1

−
γ1

(1− f1)
=

γ2 − f1(γ1 + γ2)

f1(1− f1)

Thus, W ′(f1) > 0 if f1 < x2 ≡ x2 and W ′(f1) < 0 if f1 > x2. We consider following
cases:

• f∗∗
1 ≤ x2, then W(f1) is an increasing function for all f1 ∈ (f∗

1 , f
∗∗
1 )

• f∗
1 ≥ x2, then W(f1) is a decreasing function for all f1 ∈ (f∗

1 , f
∗∗
1 )

• f∗
1 < x2 < f∗∗

1 , then W(f1) is an increasing function in (f∗
1 , x2) and decreasing

function in (x2, f
∗∗
1 )

To sum up, we have that:

• If f∗∗
1 ≤ x2, then W(f1) is increasing in f1.

• If f∗
1 < x2 < f∗∗

1 , then W(f1) is increasing in f1 for f1 ∈ [0, γ2] and decreasing
in f1 for f1 ∈ (γ2, f

∗∗
1 ).

• If f∗
1 < x2, then W(f1) is increasing in f1 for f1 ∈ [0, f∗

1 ] and decreasing in f1 for
f1 ∈

(

f∗
1 , f

∗∗
1

)

.

A.2 A model with exogenous borrowing limit

To provide a sharper comparison in terms of equilibrium outcomes between our model and
the setup with exogenous borrowing limit, we replace constraint (1c) by ai ≤ āi. The problem
of agent i now becomes

(Qi) : πi = max
(ki,ai)

[Fi(ki)− rai] subject to: 0 ≤ ki ≤ Si + ai (A.1a)

and ai ≤ āi. (A.1b)

Recall that in the problem (Pi) with credit constraint (1c), the bound of ai depends on
the future value of the investment project and on the interest rate. Consequently, agent i
cannot borrow if her project is not productive. By contrast, under exogenous borrowing limit
setup (the problem (Qi)), agent i can always borrow an amount āi whether she has a project
or not.

Notice that ai ≥ −Si ∀i. At optimal, we must have ki = Si+ai. Then, πi = AiSi+(Ai−
r)ai. Consequently, we obtain the following result which is similar to Lemma 1.
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Lemma 2 (individual problem). The solution of the problem (Qi) is given by the following.

1. If Ai < r, then agent i does not produce goods and invest all her wealth in the financial
market: ki = 0, ai = −Si.

2. If Ai > r, then agent i borrows from the financial market and the borrowing constraint
is binding: ai = āi, ki = Si + āi.

3. If Ai = r, then the solutions for the agent’s problem include all sets (ki, ai) such that
−Si ≤ ai ≤ āi and ki = ai + Si.

Notice that, in each case, the allocation does not depend on the interest rate. This is the
main difference between this model and one with credit constraint.

Proposition 5 (general equilibrium with two agents). Assume that there are two agents
with production function Fi(k) = Aiki ∀i and A1 > A2.

1. If S2 > ā1, then r = A2.

2. If S2 = ā1, then any r ∈ [A2, A1] is an equilibrium interest rate. Equilibrium indeter-
minacy arises.

3. If S2 < ā1, then r = A1. (High borrowing limit ā1.)

Proof. See Appendix A.2.1 below.

According to Proposition 5, we can compute individual consumptions and the aggregate

Y =

{

A2S2 +A1S1 + (A1 −A2)ā1 if ā1 < S2

A1S if ā1 ≥ S2

c2 =











A2S2 if ā1 < S2

rā1 if ā1 = S2

A1S2 if ā1 ≥ S2

and c1 =











A1S1 + (A1 −A2)ā1 if ā1 < S2

A1S1 + (A1 − r)ā1 if ā1 = S2

A1S1 if ā1 ≥ S2

where r ∈ [A2, A1].
There are two main differences between the model with exogenous borrowing limits and

that with credit constraints (1c).

• According to Proposition 5, multiple equilibria arises (but it is not totally generic
because it only happens when ā1 = S2). However, our model with credit constraint
(1c) has a unique equilibrium.

• Both individual consumptions are increasing in exogenous borrowing limits ā1. How-
ever, our model with credit constraint (1c), the consumption of borrower has an in-
verted U–sharp form and that of lender is increasing in credit limit. The intuition is
that the borrowing amount that an agent can borrow are exogenous in the problem
(Qi) while it is endogenous and depends on the interest rate r in the problem (Pi) with
credit constraint (1c).

These points suggest that the forms of borrowing constraints (credit constraint or exoge-
nous borrowing limit) matter for the equilibrium analysis.
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A.2.1 Proof of Proposition 5

Since
∑

i ai = 0, Lemma 2 implies that r ∈ [A2, A1].
If r = A2, then r < A1 which implies that a1 = ā1 and k1 = S1 + ā1. By using market

clearing condition, we have a2 = −ā1, and hence k2 = S2 − ā1. Therefore, we need condition
S2 − ā1 ≥ 0.

If r = A1, then r > A2 which implies that k2 = 0, a2 = −S2. By using market clearing
condition, we have a1 = S2, and hence k1 = S1 + S2. We also need a1 ≤ ā1, i.e., S2 ≤ ā1.

If r ∈ (A2, A1), then a1 = ā1 and k1 = S1 + ā1. By using market clearing condition, we
have a2 = −ā1, and hence k2 = S2 − ā1. However, A2 < r implies that k2 = 0. Therefore,
we need condition S2 − ā1 = 0.

It is easy to verify that if S2 − ā1 = 0, then any r ∈ [A2, A1] is an equilibrium interest
rate. In this case, we have

c2 = A2k2 − ra2 = A2S2 + (A2 − r)a2 = rS2 (A.2)

c1 = A1k1 − ra1 = A1S1 + (A1 − r)a1 = A1S1 + (A1 − r)S2. (A.3)

Notice that c1 is decreasing in r.
Multiple equilibria arises but it is not totally generic because we need S2 = ā1.

A.3 A model with Cobb-Douglas technology

In this section, we complement our analysis in the main text by presenting the equilibrium
analysis when technologies have Cobb-Douglas form (all formal proofs in this section are
presented in the online appendix.) Our main insights do not change.

Assume that Fi(k) = Aik
α ∀i, the problem (Pi) becomes:

(P ′C
i ) : ci = max

ki,ai
[Aik

α
i − rai] subject to : 0 ≤ ki ≤ Si + ai (A.4)

and rai ≤ fiAik
α
i (A.5)

A.3.1 Partial equilibrium

Lemma 3. The solutions for the maximization problem of agent i with Cobb-Glass technology
and collateral constrains are described in the following cases:

1. If
(

r

αAiS
α−1

i

)
1

1−α + fi
α

≤ 1, then the borrowing constraint is binding. In this case, we

have k1−α
i − Si

kαi
= fiAi

r
and ai = ki − Si.

2. If
(

r

αAiS
α−1

i

)
1

1−α + fi
α

> 1 then the credit constraint is not binding. In this case, we

have ki =
(

αAi

r

)
1

1−α and ai = ki − Si. Agent i lends if r ≥ αAiS
α−1
i , and borrows if

r < αAiS
α−1
i .

Proof. See Appendix B.1.

From Lemma 3, we see that when the credit limit is sufficiently hight, i.e, fi > α, then
constraint is not binding, the capital use ki of each agent depends on A and α. The more
interesting case is when the credit limit is low, i.e, fi < α, then the credit constraint is binding
when αAiS

α−1
i is high enough. The intuition is that, the higher productive the agent is, the

more he would like to borrow from the financial market. When the productivity is sufficiently
high, the credit constraint binds.
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Assume that αAiS
α−1
i > r (this condition is satisfied if the TFP Ai is high enough).

According to the Lemma 3, the credit constraint is binding if and only if the credit limit is
lower than a critical threshold, f̄ , determined by

f̄ = α
(

1−
( r

αAiS
α−1
i

)
1

1−α

)

f̄ is decreasing in the interest rate r and the initial wealth Si but increasing in the TFP Ai.

A.3.2 General equilibrium

It is easy to obtain the equilibrium when there is no credit constraint.

Lemma 4 (equilibrium without credit constraints). With Cobb-Douglass production function
and no credit constraints, there exists a unique equilibrium determined by:

Interest rate: r = r̄ ≡
α
(

A
1

1−α

1 +A
1

1−α

2

)1−α

(S1 + S2)1−α

Allocation: ki =
(αAi

r

)
1

1−α
=

A
1

1−α

i

A
1

1−α

1 +A
1

1−α

2

(S1 + S2), ai = ki − Si

At equilibrium, agent i borrows if and only if his lowest marginal productivity in autarky
(αAiS

α−1
i ) is greater than the other’s.

The aggregate output and consumption of each agent are:

Y = Ȳ ≡ (S1 + S2)
α
(

(A1)
1

1−α + (A2)
1

1−α

)1−α

c1 = c̄1 ≡

(

S1 + S2

A
1

1−α

1 +A
1

1−α

2

)α

A
1

1−α

1 −
α(A

1

1−α

1 S2 −A
1

1−α

2 S1)

(S1 + S2)1−α
(

A
1

1−α

1 +A
1

1−α

2

)α

c2 = c̄2 ≡

(

S1 + S2

A
1

1−α

1 +A
1

1−α

2

)α

A
1

1−α

2 −
α(A

1

1−α

2 S1 −A
1

1−α

1 S2)

(S1 + S2)1−α
(

A
1

1−α

1 +A
1

1−α

2

)α

Notice that, if fi > α for any i, then credit constraint of each agent does not bind and
hence the equilibrium in the credit-constrained economy coincides with that in the economy
without credit constraints.

Let us denote

r̄i ≡ αAiS
α−1
i

(

1−
fi
α

)1−α
, r̂2 ≡ αA2S

α−1
2

The following result figures out all possible equilibria.

Proposition 6 (general equilibrium with credit constraints). Without loss of generality, we
assume that r̄1 > r̄2. At equilibrium, agent i borrows if and only if his lowest marginal
productivity in autarky (αAiS

α−1
i ) is greater than the other’s. Moreover, we have:

1. If r̄ > r1, or equivalently

A
1

1−α

1 +A
1

1−α

2

A
1

1−α

1

S1

S1 + S2
+

f1
α

> 1 (A.6)

then no credit constraint is binding and the equilibrium coincides with that in the econ-
omy without credit constraints.
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2. If r̄ ≤ r1, or equivalently

A
1

1−α

1 +A
1

1−α

2

A
1

1−α

1

S1

S1 + S2
+

f1
α

≤ 1 (A.7)

then there exists an equilibrium whose interest rate is determined by:

f(r) ≡
(

S1 + S2 −
(αA2

r

)
1

1−α

)1−α

−
S1

(

S1 + S2 −
(αA2

r

)
1

1−α

)α
−

f1A1

r
= 0 (A.8)

The equilibrium allocation is given by

Physical capital: k1−α
1 −

S1

kα1
=

f1A1

r
, k2 =

(αA2

r

)
1

1−α (A.9)

Financial asset: a1 = k1 − S1, a2 = k2 − S2. (A.10)

In this equilibrium, r ∈ (r̂2, r̄) and the credit constraint of agent 1 is binding. The
aggregate output and consumption of each agent are:

Y = A1

[

S1 + S2 −
(αA2

r

)
1

1−α
]α

+A2

(αA2

r

)
α

1−α ,

c1 = A1

[

S1 + S2 −
(αA2

r

)
1

1−α
]α

− r
[

S2 −
(αA2

r

)
1

1−α
]

,

c2 = A2

(αA2

r

)
α

1−α + r
(

S2 −
(αA2

r

)
1

1−α

)

Proof. See Appendix B.2.

With sufficiently high value of f1 (in the sense that (A.6) holds), the credit constraint
is not binding, and we achieve the same equilibrium outcomes as in the case without credit
constraints, which are independent of the value of f1. The credit constraint of agent 1 is
binding if and only if r̄ ≤ r1, i.e. the interest rate of the economy without friction is lower
than the subjective interest rate of agent 1. This happens if (1) f1 is sufficiently low, and/or
(2) agent 1’s relative wealth S1/S2 is low, and/or (3) agent 1’s relative A1/A2 is high.

The impact of f1 on the equilibrium outcomes when the credit constraint binds are
summarized in the following result. The economic insights are in the same direction as in
the case of linear technology.

Corollary 2 (interest rate and output). At equilibrium where the credit constraint is binding,
the equilibrium interest rate r and the aggregate output are increasing functions of f1.

Proof. See Appendix B.3.

Since when the credit constraint of agent 1 binds, r ∈ (r̂2, r̄), we thus have f1 ∈ (f1, f̄1)
in this case, where f1 = f1(r̂2), f̄1 = f1(r̄).

Corollary 3 (consumptions). Consider the case where the credit constraint imposed on the
borrower binds.

1. The lender’s consumption is an increasing function in f1

2. There exist f̃1 the borrower’s consumption is an increasing function in f1 for f1 ∈
(f1, f̃1), and is a decreasing function in f1 for f1 ∈ (f̃1, f̄1)
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Proof. See Appendix B.4.

Corollary 4 (with versus without credit constraints).

1. Interest rate under collateral constraints is smaller than or equal to that in an uncon-
strained economy.

2. The lender’s consumption under collateral constraints is smaller than or equal to that
in an unconstrained economy.

3. There exists f̃1 < f̄1 such that the borrower’s consumption under collateral constraints
is greater than or equal to that in an unconstrained economy at least with f1 ∈ (f̃1 < f̄1)

4. The aggregate output under collateral constraints is smaller than or equal to that in an
unconstrained economy.

Proof. See Appendix B.5.

The following result is a direct consequence of point 4 of Corollary 4.

Corollary 5 (efficiency). The economy with credit constraints is efficient if and only if

A
1

1−α

1 +A
1

1−α

2

A
1

1−α

i

Si

S1 + S2
+

fi
α

≥ 1 ∀i. (A.11)
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B Online appendix: formal proofs - Cobb-Douglas

technology case

B.1 Proof of Lemma 3

Assume that F ′(0) = 0, then at optimum, ki > 0. The Lagrangian function is L = Aik
α
i −

rai+λi(si+ai−ki)+µi(fiAik
α
i − rai). An allocation (ki, ai) is a solution if and only if there

exist λi, µi such that

[ki] : (1 + µifi)αAik
α−1
i = λi

[ai] : (1 + µi)r = λi, µi ≥ 0, and µi(fiAik
α
i − ai) = 0.

These equations imply that:
αAik

α−1
i

r
=

1 + µi

1 + fiµi
≥ 1 (B.1)

Case 1: The credit constraint is binding: fiAik
α
i = rai. In this case, (ki, ai) is the solutions

of the following equations:

k1−α
i −

Si

kαi
=

fiAi

r
(B.2)

ai = ki − Si. (B.3)

We see that the left hand-side of the equation (B.2) is an increasing function in ki. And,
the left-hand side of (B.2) goes to −∞ as ki goes to 0. Hence, the equation (B.2) has a

solution such that 0 < ki ≤
(αAi

r

)
1

1−α if and only if:

αAi

r
− Si

( r

αAi

)
α

1−α
≥

fiAi

r
⇔

( r

αAiS
α−1
i

)
1

1−α
≤ 1−

fi
α
.

From (B.2), we see that: ki − Si =
fiAi

r
kαi > 0. Therefore, in this case, agent i is always a

borrower. We also see that ki ≤
(αAi

r

)
1

1−α implies that
αAik

α−1

i

r
≥ 1, and therefore µi ≥ 0.

Case 2: fiAik
α
i > rai. We see that µi = 0, and hence

αAik
α−1

i

r
= 1, i.e, ki =

(

αAi

r

)
1

1−α . It
remains to check that this value of ki satisfies the condition: fiAik

α
i > ai, i.e.,

r
(

(αAi

r

)
1

1−α − Si

)

< fiAi

(αAi

r

)
α

1−α ⇔
( r

αAiS
α−1
i

)
1

1−α
> 1−

fi
α
.

So, the solution (ki, ai) is given by ki =
(αAi

r

)
1

1−α , ai = ki −Si. In this case, agent i borrows

(i.e ai > 0) if and only if αAiS
α−1
i > r and lends if and only if αAiS

α−1
i ≤ r.

B.2 Proof of Proposition 6

Under our assumption (r̄1 > r̄2), we have that: if f1 > α, then f2 < α. We consider three
cases.
Case 1: f1 < α and f2 < α. Since r̄1 > r̄2, we have

αA1S
α−1
1

(

1−
f1
α

)1−α
> αA2S

α−1
2

(

1−
f2
α

)1−α
⇔
(A2

A1

)
1

1−α
<

S2

S1

1− f1
α

1− f2
α

i



Let (r, a1, a2, k1, k2) be an equilibrium. There exists an agent whose credit constraint is
not binding. According to point 1 in Lemma 3, we have r > min(r̄1, r̄2) = r̄2. So, we will
consider two cases: r̄2 < r ≤ r̄1 and r > r̄1.

Case 1.1: r > r̄1. According to point 1 in Lemma 3, no credit constraint is binding.
Hence, we find the same equilibrium as in the case without credit constraint. However, we
have to check that both credit constraints are satisfied, i.e., rai ≤ fiAik

α
i for i = 1, 2. This

condition is satisfied if and only if:

α
(

A
1

1−α

1 +A
1

1−α

2

)1−α

(S1 + S2)1−α

( A
1

1−α

i

A
1

1−α

1 +A
1

1−α

2

(S1 + S2)− Si

)

≤ fiAi

( A
1

1−α

i

A
1

1−α

1 +A
1

1−α

2

(S1 + S2)
)α

⇔ (1−
fi
α
)

A
1

1−α

i

A
1

1−α

1 +A
1

1−α

2

≤
Si

S1 + S2
.

Condition r > r̄i is equivalent to:

r =
α
(

A
1

1−α

1 +A
1

1−α

2

)1−α

(S1 + S2)1−α
> αAiS

α−1
i

(

1−
fi
α

)1−α
= r̄1 ⇔

Si

S1 + S2
>

A
1

1−α

i

A
1

1−α

1 +A
1

1−α

2

(

1−
fi
α

)

.

Notice that since r̄1 > r̄2, we have
S1

A
1

1−α
1

(

1−
f1
α

)

< S2

A
1

1−α
2

(

1−
f2
α

)

. So, condition S1

A
1

1−α
1

(

1−
f1
α

)

>

S1+S2

A
1

1−α
1

+A
1

1−α
2

implies that S2

A
1

1−α
2

(

1−
f2
α

)

> S1+S2

A
1

1−α
1

+A
1

1−α
2

.

Case 1.2: r̄2 < r ≤ r̄1. According to Lemma 3, agent 1’s credit constraint is binding
and hence agent 2 is lender. We have a1 = k1 − S1, a2 = k2 − S2 and k1−α

1 − S1

kα
1

= f1A1

r
,

k2 =
(

αA2

r

)
1

1−α . The market clearing condition k1 + k2 = S1 + S2 implies that

k1 = S1 + S2 −
(αA2

r

)
1

1−α
, i.e., k1 = k1(r) ≡ S1 + S2 −

(αA2

r

)
1

1−α (B.4)

Since k1−α
1 − S1

kα
1

= f1A1

r
, we have the following equation determining the equilibrium

interest rate

f(r) ≡
(

S1 + S2 −
(αA2

r

)
1

1−α

)1−α

−
S1

(

S1 + S2 −
(αA2

r

)
1

1−α

)α
−

f1A1

r
= 0. (B.5)

Since k1(r) is increasing in r, the function f(r) is increasing in r. We have f(0) = −∞.

Let r∗ be defined by S1 + S2 −
(

αA2

r∗

)
1

1−α = 0. We have f(r∗) = +∞. So, the equation
f(r) = 0 has a unique solution and this solution is in (0, r∗).

We have to now check that (i) r ∈ (r̄2, r̄1], and (ii) µi ≥ 0, i.e., αA1k
α−1
1 ≥ r. Notice that

condition r̄1 > r̄ implies that k1(r̄1) > 0. So, we have r̄2 < r̄1 < r∗.
STEP 1. We firstly prove that r > r̄2. We have

k1(r̄2) = S1 + S2 −
S2

1− f2
α

.

If k1(r̄2) ≤ 0 then k1(r̄2) ≤ 0 < k1(r). This implies that r̄2 < r.
If k1(r̄2) > 0, it is easy to see that f(k1(r̄2)) < 0, and hence r̄2 < r.

STEP 2. We will prove that αA1k
α−1
1 ≥ r and r ≤ r̄1.
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We see that αA1k
α−1
1 ≥ r is equivalent to

k1 = S1 + S2 −
(αA2

r

)
1

1−α
<
(αA1

r

)
1

1−α
⇔ r ≤ r̄.

Since r̄1 ≥ r̄, it is sufficient to prove that r ≤ r̄. We will do so by proving that f(r̄) ≥ 0.
One can check that this is equivalent to:

S1

A
1

1−α

1

(

1− f1
α

)

≤
S1 + S2

A
1

1−α

1 +A
1

1−α

2

. (B.6)

We now need to verify that under this condition, there will be an equilibrium mentioned in
the part 2 of Proposition 2. We can do so by verifying budget constraints, first-order and
market clearing conditions.

It should be noticed that r ∈ (r̂2, r̄] in this case.
Case 2: f1 < α < f2. In this case, the credit constraint of agent 2 is non binding, and:

k2 =
(αA2

r

)
1

1−α , a2 = k2 − S2.

Case 2.1. r ≤ r̄1. This condition is satisfied if and only if S1

A
1

1−α
1

(

1−
f1
α

)

> S1+S2

A
1

1−α
1

+A
1

1−α
2

. In

this case, the credit constraint of agent 1 is also not binding, we get the same equilibrium
outcomes as in the unconstrained model.
Case 2.2. r > r̄1. Using similar arguments as Case 1.2, we can find that the condition of
parameters such that there exists an equilibrium in this case is

S1

A
1

1−α

1

(

1− f1
α

)

≤
S1 + S2

A
1

1−α

1 +A
1

1−α

2

.

The equilibrium interest rate r ∈ (r̂2, r̄].
By combining Case 1 and Case 2, we see that:
If S1

A
1

1−α
1

(

1−
f1
α

)

> S1+S2

A
1

1−α
1

+A
1

1−α
2

, no credit constraints bind, and the equilibrium outcomes

coincide with the unconstrained economy.
If S1

A
1

1−α
1

(

1−
f1
α

)

≤ S1+S2

A
1

1−α
1

+A
1

1−α
2

, credit constraint imposed on the borrower binds, and

r ∈ (r̂2, r̄1].
Case 3: f1 > α, f2 > α, then no credit constraint is binding. We obtain the same

general equilibrium outcomes as in the unconstrained economy.
Combine all three cases, we can derive results of Proposition 6.

B.3 Proof of Corollary 2

1. Interes rate. With Cobb-Douglas technology, when the credit constraint binds, and
hence the equilibrium interest rate is determined by:

S2 −
(αA2

r

)
1

1−α =
f1A1

r

[

S1 + S2 −
(αA2

r

)
1

1−α
]α

⇔ f1A1 = r
[

S1 + S2 −
(αA2

r

)
1

1−α

]1−α

− S1r
[

S1 + S2 −
(αA2

r

)
1

1−α

]−α

.
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Denote g(f1, x) ≡ x
[

S1 + S2 −
(

αA2

x

)
1

1−α
]1−α

− S1x
[

S1 + S2 −
(

αA2

x

)
1

1−α
]−α

− f1A1. At
equilibrium, we have g(f1, r) = 0 and we can compute

∂g(f1, r)

∂r
=

αS1

1− α

(αA2

r

)
1

1−α + S2

S1 + S2 −
(αA2

r

)
1

1−α

[

S1 + S2 −
(αA2

r

)
1

1−α

]−α

> 0

∂g(f1, r)

∂f2
= −A1 < 0.

By the implicit theorem,
dr

df1
= −

g′(f1)

g′(r)
> 0, i.e, r is an increasing function in f1.

2. Output. We have: Y = A1

[

S1 + S2 −
(αA2

r

)
1

1−α
]α

+A2

(αA2

r

)
α

1−α . Then:

Y ′(r) =
α

1− α

(αA2

r

)
1

1−α
[

A1

(

S1 + S2 −
(αA2

r

)
1

1−α

)α−1
−A2

]

.

Therefore, we see that

Y ′(r) > 0 ⇔
(

S1 + S2 −
(αA2

r

)
1

1−α

)α−1αA2

r
−A2 > 0

⇔ r <
α
(

(A1)
1

1−α + (A2)
1

1−α

)1−α

(S1 + S2)1−α
⇔ r < r̄.

According to Proposition 6, the interest rate in the case where credit constraints binds
is always smaller than or equal to that in case without credit constraint. We thus conclude
that the output Y is in increasing in r, and as a result, is an increasing function of f1.

B.4 Proof of Corollary 3.

1. We have: c2 = A2

(

αA2

r

)
α

1−α + r
[

S2 −
(

αA2

r

)
1

1−α
]

. Then, c′2(r) = S2

[

1 −
(αA2S

α−1

2

r

)
1

1−α
]

.
Since r̂2 = αA2S

α−1
2 ≤ r at the equilibrium when credit constraint of the borrower binds, we

thus have c′2(r) ≥ 0. As r is an increasing function in f1, we thus see that the the lender’s
consumption is an increasing function in f1.

2. Since c1 = A1

[

S1 + S2 −
(αA2

r

)
1

1−α
]α

− r
[

S2 −
(αA2

r

)
1

1−α
]

, we have

c′1(r) =
α

(1− α)

(αA2

r

)
1

1−α

[A1

r

(

S1 + S2 −
(αA2

r

)
1

1−α

)α−1
− 1
]

− S2. (B.7)

Let P (r) ≡ A1

r

(

S1 + S2 −
(αA2

r

)
1

1−α

)α−1
− 1. It is easy to see that P (r) is a decreasing

function in r. From Proposition 2, we know that when the credit constraint is binding, r ∈
[r̂2, r̄). Hence, P (r) ≥ P (r̄) for any r. We also have P (r̄) = 1

α
−1 > 0. Hence, P (r) > 0 for any

r ∈ [r̂2, r̄). This implies that c′1(r) =
α

(1− α)

(αA2

r

)
1

1−α

[A1

r

(

S1+S2−
(αA2

r

)
1

1−α

)α−1
−1
]

−S2

is a decreasing function in r when r ∈ (r̂2, r̄).
Let us recall that at equilibrium when credit constraint binds we have:

S1

A
1

1−α

1

(

1− f1
α

)

≤
S1 + S2
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1

1−α

1 +A
1
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.
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One can derive from this condition that:
A1

A2

(S2

S1

)1−α

> 1. By consequence, at the point

r = αA2S
α−1
2 , we have

c′1(αA2S
α−1
2 ) =

S2

1− α

(A1

A2

(S2

S1

)1−α
− 1
)

> 0.

As we already proved that Y ′(r̄) = 0, and c′2(r̄) > 0, we have c′1(r̄) = Y ′(r̄)− c′2(r̄) < 0.
Having proved that c′1(r) is a decreasing function in r for r ∈ (r̄2, r̄), c

′
1(r̂2) > 0, and c′1(r̄) < 0,

we conclude that there exist a value r̃ such that c′1(r) is positive if r ∈ (r̄2, r̃) and negative if
r ∈ (r̃, r̄). As a result, c1(r) is increasing in r (or f1) if r ∈ (r̄2, r̃) and is decreasing in r (or
f1) if r ∈ (r̃, r̄).

B.5 Proof of Corollary 4.

1. The proof is straightforward. As already proved in Proposition 2, when the credit con-
straint imposed on the borrower binds, r ∈ (r̂2, r̄], where r̄ is the interest rate in an economy
without financial frictions.

2. As we already proved in Corollary 3, c2(r) is an increasing function in r. We also
proved that r ≤ r̄ when the credit constraint on the borrower binds. Hence c2(r) ≤ c2(r̄),
for any r ∈ (r̂2, r̄]. Since c2(r̄) equals the lender’s consumption in the case without credit
constraint, it follows that the lender’s consumption in case with credit constraints is always
smaller than or equal to that in case without credit constraints.

3. From Corollary 3, we know that when credit constraint imposed on the borrower binds,
there exist r̃ ∈ (r̂2, r̄] such that, c1(r) is decreasing in r for r ∈ [r̃, r̄], and r is sufficiently high.
Since r is an increasing function of f1, we thus conclude that the borrower’s consumption
in a constrained economy could be higher than that in a non-constrained economy if the
collateral is binding but not very strict.

4. As we proved in Corollary 3, Y (r) is an increasing function in r for r ∈ (r̂2, r̄].
Therefore Y (r) ≤ Y (r̄) for any r ∈ (r̂2, r̄].

One can easily check that Y (r̄) equals the equilibrium aggregate output when there is no
credit constraint. Thus, the aggregate output in the case with credit constraints is always
smaller than or equal to that in case without credit constraints.

v
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