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Abstract

This paper investigates the role of school quality in human-capital formation. Specifically, I investi-

gate how the timing of school quality differentially affects long-run outcomes. Using individual-level data

on the universe of public-school students in California, I estimate elementary-, middle-, and high-school

quality using a value-added methodology that accounts for the fact that students sort to schools on

observable characteristics. I then determine the impact of school quality on future K–12 and postsec-

ondary outcomes. I find that high-school quality has the largest impact on postsecondary enrollment,

while elementary- and middle-school quality play a larger role in college readiness. In other words, early

human-capital investments are important for future postsecondary success, but the unique timing of the

college decision process allows for later human-capital investments to also play a significant role. [JEL

Codes: H75, I21, I23, J24]
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1 Introduction

The timing of human-capital investments is an important determinant of their efficacy. Because early

human-capital investments both augment and improve the productivity of later human-capital investments

(Cunha et al., 2006), early interventions have been shown to be the most effective and efficient (Heckman,

Krueger and Friedman, 2003; Heckman, 2006; Doyle et al., 2009). However, the effects of early human-capital

interventions tend to fade out rather quickly with regards to cognitive achievement (Currie and Thomas, 1995;

Bitler, Hoynes and Domina, 2014), although they often reappear when examining long-run outcomes (Garces,

Thomas and Currie, 2002; Ludwig and Miller, 2007; Deming, 2009; Duncan and Magnuson, 2013). Dynamic

complementarities may play a large role in the persistence of early interventions, as evidence suggests that

the benefits of an early educational intervention are larger when followed by access to better-funded public

K–12 schools (Johnson and Jackson, 2017).

Nevertheless, human-capital formation and interventions that occur after pre-school have also been shown

to have lasting effects on long-run outcomes. Elementary- and middle-school students assigned a high-quality

teacher have a lower likelihood of having children as teenagers, a higher likelihood of attending college, and

earn higher salaries. The effects are substantial, as replacing a teacher in the bottom five percent of the

distribution with an average teacher would increase the present value of students’ lifetime income by about

$250,000 (Chetty, Friedman and Rockoff, 2014b).1 Later interventions can matter too. Students given college

advising and mentoring as late as their senior year of high school have been shown to be more likely to enroll

and persist in college (Carrell and Sacerdote, 2013; Castleman and Goodman, 2018; Barr and Castleman,

2019). Effective interventions can also occur in college (Carrell, Page and West, 2010; Barr and Castleman,

2019) or the labor market (Schochet, Burghardt and McConnell, 2008).

This paper investigates how the timing of human-capital investments affects their efficacy within the

context of school quality. Schools are a large contributor to human-capital formation. While teachers

can have important impacts on the long-run outcomes of their students2, there are other factors within

a school that may determine student outcomes as well, such as principals (Clark, Martorell and Rockoff,

2009; Horng, Klasik and Loeb, 2010; Loeb, Kalogrides and Horng, 2010; Grissom and Loeb, 2011; Ladd, 2011;

Béteille, Kalogrides and Loeb, 2012; Branch, Hanushek and Rivkin, 2012; Loeb, Kalogrides and Béteille, 2012;

1Despite these lasting effects, the persistence of teacher-induced learning is low from grade to grade (Jacob, Lefgren and
Sims, 2010). This paradox may be explained by the fact that teachers may have long-term effects that are not initially apparent
on contemporaneous test scores but manifest themselves in the future (Carrell and West, 2010).

2There is a large literature on teacher quality. See, for example, Rockoff (2004); Hanushek et al. (2005); Jacob and Lefgren
(2005); Rivkin, Hanushek and Kain (2005); Hanushek and Rivkin (2006); Kane, Rockoff and Staiger (2008); Kane and Staiger
(2008); Ishii and Rivkin (2009); Rothstein (2009); Carrell and West (2010); Corcoran (2010); Hanushek and Rivkin (2010);
Jacob, Lefgren and Sims (2010); Rothstein (2010); Hanushek (2011); Kinsler (2012); Bacher-Hicks, Kane and Staiger (2014);
Bitler et al. (2014); Chetty, Friedman and Rockoff (2014a,b); Staiger and Kane (2014); Guarino et al. (2015); De Vlieger, Jacob
and Stange (2017); Chetty, Friedman and Rockoff (2017); Rothstein (2017).
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Gates et al., 2014; Grissom, Blissett and Mitani, 2018), counselors (Carrell and Carrell, 2006; Reback, 2010;

Carrell and Hoekstra, 2014), curricula (Altonji, 1995; Yu and Mocan, 2018), and expenditures (Hanushek,

1989; Hanushek, Rivkin and Taylor, 1996; Hanushek, 1997, 2003; Martorell, Stange and McFarlin Jr, 2016;

Lafortune, Rothstein and Schanzenbach, 2018). Additionally, high-quality teachers may sort to schools based

on school or location characteristics (Lankford, Loeb and Wyckoff, 2002; Ladd, 2011), further reinforcing the

role that schools play in providing high-quality instruction to their students. Moreover, while parents have

some limited influence on teacher assignments within a school, they have a much larger influence on which

school their children attend. Thus, it is important to understand how broad measures of school quality affect

longer-run outcomes.

Despite a growing literature on estimating causal school quality (Abdulkadiroğlu et al., 2011; Dobbie and

Fryer Jr, 2011; Pop-Eleches and Urquiola, 2013; Deming et al., 2014; Deming, 2014; Dobbie and Fryer Jr,

2015; Angrist et al., 2016; Dobbie and Fryer Jr, 2016; Abdulkadiroğlu et al., 2017; Angrist et al., 2017;

Hubbard, 2017), it is not clear when attending a high-quality school matters most. Although there are

studies on school quality at the elementary-, middle-, and high-school level, to my knowledge this is the first

paper that compares the long-run effects of school quality across school levels. Using individual-level data on

the universe of California public-school students linked to postsecondary records, I explore how elementary-,

middle-, and high-school quality affect both the extensive and intensive margins of postsecondary outcomes.

The extensive margin, postsecondary enrollment, may be affected by aspects of a school’s quality beyond

the cognitive skills the school teaches (such as non-cognitive skills, information on the college application

process, or a culture of college attendance). The intensive margin, measured by a student’s college readiness

and persistence, is much more likely to be affected by cognitive skills alone. Schools that play a large role in

one margin may not necessarily impact the other, as each school level may impart different skills throughout

a student’s education.

I calculate school quality by extending the value added with drift methodology, as in Chetty, Friedman

and Rockoff (2014a), to schools. The drift methodology, which allows value added to change from year to

year, is particularly suited to the school quality setting, as schools experience faculty and staff turnover that

could lead to changes in quality from year to year. I estimate how school value added on standardized test

scores translates to postsecondary success as well as estimate a school’s total value added on postsecondary

enrollment, which includes both test score and non-test score factors.

Results show that high-school quality has the largest impact on the extensive margin of postsecondary

enrollment. A one standard deviation increase in high-school value added increases postsecondary enroll-

ment by 2.2 percentage points (3.4%) and 4-year enrollment by 2.8 percentage points (10.3%). However,

elementary- and middle- school quality have the largest effects on the intensive margin, such as persistence
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and the need for remedial classes upon enrollment. A one standard deviation increase in elementary-school

value added increases persistence to year two at four-year colleges by 1.2 percentage points (1.4%). A one

standard deviation increase in middle-school value added reduces the need for English and math remediation

by 2.2 percentage points (9.5%) and 3.2 percentage points (14%) respectively. Thus, results indicate that

earlier grades give students the tools to succeed in college while high schools play the largest role in the

postsecondary education decision process.

I then correlate the value-added estimates with observable school characteristics in order to determine

which school inputs are correlated with school quality. Surprisingly, there appears to be little to no pattern

to these inputs and my value-added estimates. One exception is that funding for after-school programs is

correlated with higher value added on postsecondary enrollment, thus, after-school supervision may have

important long-term effects. While I find few patterns in the characteristics of schools and school value

added, I find that high value added schools tend to cluster in populous areas surrounding California’s major

metropolitan areas such as Los Angeles and the Bay Area.

This paper adds numerous important contributions to the literature on human capital broadly and edu-

cation quality specifically. First, this is the first paper to study how school quality differentially contributes

to human-capital formation at various points during a student’s educational career. Second, this paper is

unique in that it links the universe of public-school students in California, which has the largest public-school

population in the United States, to their postsecondary outcomes. California is a particularly relevant state

in which to study postsecondary outcomes because California has a robust postsecondary infrastructure

that includes two-year community colleges, teaching universities, and globally-ranked research universities.

Finally, this paper provides new insights on the relationship between K–12 school quality and measures of

the intensive margin of postsecondary enrollment, which informs us about how schools contribute to college

readiness.

2 Data

My study uses individual-level data on the universe of public-school students in the state of California.

Standardized test score information comes from the California Standards Test (CST). Data from the CST

spans the 2002–2003 to 2012–2013 school years3 and tests students in English language arts (ELA) and

math during grades 2–11. The data also include demographic information on each student, such as sex,

race, economic disadvantage status, limited English proficiency status, and whether or not the student has

3Due to the fact that I use test scores from two grades prior as a control variable, I only calculate value-added estimates for
the years 2004–2005 to 2012–2013.
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a disability. State student IDs can be used to link students to prior test scores across time. Each cohort

consists of about 475,000 students, which makes this the largest ever study on school quality.

Starting in the 7th grade, students have the option of taking different math assessments based on the

math subject in which they are enrolled. This makes calculating school value added in math difficult, because

scores are not directly comparable between the various math subjects within grades. Because all students

take the same ELA exam in each grade, my primary analyses will investigate school quality on the ELA

exam. In appendix section D I present results for math value added in elementary school, where there is

a common test.4 Although studying differences between subjects for all levels of schooling would be ideal,

Master, Loeb and Wyckoff (2017) show that ELA value added persists into future test scores on both ELA

and math exams while math value added only persists to future math scores. Thus, it is likely that school-

induced learning on ELA subject matter imparts long-term skills that are broadly applicable, which may be

important for postsecondary success.

Table D.1 gives summary statistics for the CST data by school level for the test-score value-added sample

and includes all the dependent and independent variables used in the value added analyses. Appendix Table

D.12 shows the limitations that are imposed in order to form the value-added sample, which are similar to

those made in the teacher value added literature. The vast majority of students in the CST data that cannot

be included in the value added estimation are excluded because they lack prior test scores, although in

high school an almost equal number of students are excluded because they attend alternative5 high schools.

For my analyses elementary school includes grades 4–5, middle school includes grades 6–8, and high school

includes grades 9–11.6 I exclude grades 2–3 because they lack sufficient prior test scores in order to estimate

value added.7

4The standard deviation of elementary-school math value added is about twice the size of that for ELA, which is consistent
with prior studies of school and teacher value added. Unsurprisingly, elementary-school math value added has a larger positive
impact on math scores in the next grade than ELA scores (while elementary-school ELA value added impacts future scores in
both subjects similarly). Elementary-school math value added also has a positive impact on the math subject that students
take, as students are more likely to take the hardest math subject when they first track to different math subjects in grade 7
as well as for their final math exam in grade 11. Interestingly, elementary-school math value added has a smaller impact on
the 11th grade math subject than elementary-school ELA value added, although elementary-school math value added explains
a larger proportion of the variation in math subject. With regards to the impact of school value added on postsecondary
outcomes, elementary-school ELA value added has a larger impact on overall postsecondary enrollment, four-year university
enrollment, CSU English remediation, CSU math remediation (surprisingly), CSU persistence, and transfer from a CCC to a
four-year university than math.

5This includes schools in the following categories: Special Education Schools (Public), County Community, Youth Authority
Facilities (CEA), Opportunity Schools, Juvenile Court Schools, Other County or District Programs, State Special Schools,
Alternative Schools of Choice, Continuation High Schools, District Community Day Schools, Adult Education Centers, and
Regional Occupational Center/Program (ROC/P).

6California’s elementary-school grade spans are somewhat equally split between K-5 and K-6 schools (in 2018–2019 2,545
schools taught grades K-5 and 1,951 schools taught grades K-6). This leads to a fair amount of grades 7–8 middle schools (in
2018–2019 879 middle schools taught grades 6–8 and 332 taught grades 7–8). As the K-5, 6–8, and 9–12 model is the most
common, I elected to use these grade splits. However, this does lead to some “middle schools” that are simply the 6th grade
cohort of an elementary school. A similar problem would have arisen if I elected to use a K-6, 7–8, and 9–12 grade split, as
some “elementary schools” would simply be the 6th grade cohort of a middle school.

7Prior test scores are necessary in order to obtain unbiased estimates when using value added methodologies (Kane and
Staiger, 2008; Deming, 2014).
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Hispanics are the largest racial group in California, followed by whites, Asians, blacks, and other-race8

students. Almost 60% of students in elementary school are socioeconomically disadvantaged9, although this

percentage declines slightly in more advanced school levels. Around a quarter of students are limited English

proficient in elementary school, although this also declines as students age, likely due to the fact that students

are reclassified as English proficient or higher dropout rates for limited English proficient students. About

4% of the sample has some type of disability. As is the case in other value added studies, the value-added

sample is positively selected on prior test scores, as they score anywhere from 0.06 to 0.14 standard deviations

above average on their current test scores.10 Appendix section A gives more information on the data.11

Postsecondary data comes from the National Student Clearinghouse (NSC), the California State Univer-

sity (CSU) system, and the California Community College (CCC) system. The NSC data includes enrollment

and degree receipt data for the cohorts of students that graduated high school between the spring of 2010

and 2017, inclusive.12 The NSC data includes all types of universities in the United States and, in particular,

accounts for the lack of data from the University of California (UC), private California universities, and out

of state universities that the CSU and CCC data do not account for. The CSU files include application and

enrollment files from fall 2001 to spring 2017 and degree receipt files from fall 2001 to spring 2016. The

CCC files include enrollment files from fall 1992 to spring 2017 and degree receipt files from fall 1992 to

spring 2016. Appendix section B explains the details of the match between the K–12 and postsecondary

data. Table D.2 gives an overview of all of the datasets used in this paper.

3 School Value Added

3.1 Model

In this section I describe a model of student learning in order to better describe which factors contribute

to a school’s value added measure. Suppose that the outcome of a student i in grade g of school s in year

t is determined according to equation (1), such that a student’s endowment ιi, contemporaneous learning

ℓig, prior learning ℓik (depreciated by a factor δk), and idiosyncratic school-level shocks θst all contribute.

8The other category includes Native Americans and two or more races.
9Defined by the California Department of Education (CDE) as “a student neither of whose parents have received a high-

school diploma or a student who is eligible for the free or reduced-price lunch program, also known as the National School
Lunch Program (NSLP).”

10Test scores are standardized to have mean zero and standard deviation one at the grade-by-year level on the entire population
of students taking the CST.

11The value-added sample differs from the overall population of students on a few demographic characteristics due to sample
restrictions. The high-school value-added sample is 8% less likely to be male, 37% less likely to be black, 43% less likely to be
limited English proficient, and 57% less likely to have a disability than the students who are excluded from the value-added
sample. Appendix Table D.13 gives a comparison between the included and excluded students.

12The cohorts matched were actually spring 2009 to spring 2016 11th grade students, because we do not observe high-school
graduation data nor the students in 12th grade.
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Assume that students take each grade only once, so that g and t are interchangeable within student.

zisgt = ιi
︸︷︷︸

Endowment

+

g−1
∑

k=0

δk · ℓik
︸ ︷︷ ︸

Prior Learning

+ ℓig
︸︷︷︸

Learning

+ θst
︸︷︷︸

Shocks

+ εisgt
︸︷︷︸

Noise
︸ ︷︷ ︸

risgt

(1)

Assume that the portion of outcome zisgt that is due to learning is modeled by equation (2) such that

teachers τsgt and other school factors ψst (such as principals, counselors, curricula, extracurricular activities,

and peers) contribute to student learning.

ℓig = τsgt
︸︷︷︸

Teachers

+ ψst
︸︷︷︸

School Factors

(2)

While other studies have investigated the impact of τsgt on long-run outcomes, studying school quality

allows ψst to also have an impact. This may be particularly important when studying the effects of education

on postsecondary enrollment, as high schools are much more likely to have counselors dedicated to the

postsecondary decision process and some schools may have better resources on the application process, such

as college fairs or mandatory SAT/ACT testing, than others.

Note that by regressing the test score in grade g on the test score in grade g − 1 it is possible to control

for ιi and
∑g−1

k=0 δk · ℓik, the performance a student would achieve even in the absence of school input. This

leaves us with the residual term risgt, which captures the portion of student performance that is not related

to the student’s prior achievement.

3.2 Methodology

To estimate ℓig, I extend the value-added methodology that allows for drift over time described in Chetty,

Friedman and Rockoff (2014a) to the school level. The value-added methodology accounts for the fact that

schools receive students of varying backgrounds.13 Hence, schools that receive only the lowest-performing

students should not be penalized for the fact that the students they receive will likely have lower outcomes

on average. Instead, they should be evaluated on how much they improve the outcomes of those students,

regardless of the students’ prior achievement. Thus, a school that improves the test scores of the lowest-

performing students would be determined to have a higher value added than a school that made no change

to the test scores of the highest-performing students, even though the latter school’s students may perform

better on average.

A school’s value added is calculated by first removing the portion of each student’s test score that is due

13Value-added methodologies were first pioneered in estimating school and hospital quality (Willms and Raudenbush, 1989;
McClellan and Staiger, 1999, 2000). Meyer (1997) and Everson (2017) provide some background on the methodology.
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to non-school factors. To do so, I regress student test scores zisgt on cubic polynomials in prior test scores

zig, demographic characteristics Xit, and the number of students in a student’s cohort14 Wsgt (defined as

school-by-grade-by-year) as in equation (3). The cubic polynomials in prior test scores account for mean

reversion and the fact that students with low test scores have more room to improve than students with high

test scores. I also include grade fixed effects γg and year fixed effects ψt. The demographic characteristics

Xit contain a linear term for age and fixed effects for sex, ethnicity15, socioeconomic disadvantage, limited

English proficiency, and disability status.

zisgt = zigδg +XitβX +WsgtβW + γg + ψt + risgt (3)

Because there could be idiosyncratic shocks that are uncorrelated with school quality but influence the

performance of all students within a school in each year, such as the proverbial dog barking outside of the

school on the day of the test, the residual term risgt will contain school value added µst, idiosyncratic shocks

θst, and a student-level error term εisgt as in equation (4).

risgt = µst + θst + εisgt (4)

Under the assumptions that εisgt is a mean zero random error term and students do not sort to schools in

each year on unobservable characteristics, the student-level error terms have expected value zero conditional

on school and year, which gives us equation 5.

E[risgt|s, t] = µst + θst (5)

I therefore average the residual risgt to the school-by-year level in order to eliminate the student-level

error term. However, because value added and idiosyncratic shocks are the same for all students at this

level, the average residual will contain both school value added and the school-level idiosyncratic shock as

in equation (6).

r̄st = µst + θst (6)

In order to reduce the variation from the idiosyncratic shocks while retaining the variation in school value

added, I project the average residual in year t onto the residuals in all other years t′ (jackknife projection)

14Due to the inclusion of a school fixed effect (as described in equation (10) of appendix section C) this controls for year-to-year
changes in cohort size within schools.

15Asian, Hispanic, black, and other; white is omitted.
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as in equation (7).

r̄st = r̄st′βr̄t′ + ǫst (7)

The value-added estimates that I use in this paper are the predicted values from equation (7), µ̂st =

r̄st′ β̂r̄t′ . However, I rescale the estimates so that they have mean zero for each school level-by-subject

combination, thus schools with positive value added are above average and vice versa.16 I outline additional

methodological details in appendix section C.

This projection strategy has several advantages. Under the assumptions that school value added is

correlated across years (cov(µstµst′) 6= 0), the school-level common shocks are uncorrelated across years

(cov(θstθst′) = 0), and the school-level common shocks are not correlated with school value added across

years (cov(µstθst′) = 0), the projection will utilize variation from school value added and remove variation

from the common shocks when using school value-added estimates to predict long-run outcomes. In practice,

the finite sample size in the number of years may lead to violations of the last two assumptions regarding

θst, which is why the projection will reduce the variation from the idiosyncratic shocks instead of completely

eliminating it.17 If the common shocks are uncorrelated with long-run outcomes, then this strategy reduces

attenuation bias due to measurement error. If the common shocks are correlated with long-run outcomes,

then this strategy reduces bias that results from the coefficient on estimated school value added measuring

the combined effect of school value added and the common shock. This strategy is also useful because it

prevents the same estimation errors on both the left- and right- hand side of the regression when examining

long-run outcomes, which would be the case if we used the average residual for a set of students to predict

future outcomes for those same students.

3.3 Results

Figure D.1 shows the distributions of school value added. The standard deviation of school value added

ranges from 0.066 for high school to 0.087 for middle school. This tells us, for example, that a one standard

deviation increase in high-school value added increases the average test score of its students by 6.6% of a

student-level standard deviation. The magnitudes are similar in size to those found for the distribution of

school value added using charter school lotteries in Deming (2014) and for the distribution of teacher value

16This rescaling has no impact on the results to follow.
17If the common shocks are truly idiosyncratic, then the last two assumptions regarding θst are likely to hold as the number

of years goes to infinity. Furthermore, to the extent that good or bad events happen continuously at the same schools, these
should be considered part of a school’s value added, which further reinforces that the common shocks are idiosyncratic. As for
the first assumption, schools will experience some faculty and staff turnover, but school value added is likely to be correlated
from year to year as the majority of the personnel will remain in the same school from one year to the next. Empirical evidence
that this is true and that the correlation in school value added decreases as the gap in years increases is presented in Figures
D.2 and D.10.
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added in Chetty, Friedman and Rockoff (2014a).18

The drift methodology, which allows a school’s value added to change from year to year, is only an

improvement over prior value added methodologies if a school’s value added actually varies across time.

To illustrate that this is true in practice, figure D.2 shows the correlation between a school’s value added

estimate in year t and year t′, where the horizontal axis gives the number of years between years t and t′

and the vertical axis gives the correlation. Here we can see the importance of using the drift methodology.

While a school’s value added is highly correlated within a two-year window, the correlation begins to drop

off as the number of years between estimates grows.

3.3.1 Validity Tests

There are three potential concerns regarding the validity of the value-added estimates. The first is that the

estimates may be picking up noise due to sampling error and small sample variability. This would be the

case if test scores are sufficiently noisy that student-level residual test scores, εisgt, do not average out to

zero at each school even when schools have no effect on student performance (Bitler et al., 2019). If this

were the case, we would attribute value added to schools when we were in fact just observing sampling error.

In order to measure how much of the estimated variation in school value added is due to noise, I calculate

school value-added estimates after randomly assigning students to schools. I call these value-added estimates

permuted value added, as I permute the school assignment vector within a grade by year cell. Figure D.3

shows the distributions of permuted value added, and I plot the distributions on the same axes as figure D.1

so that their variability can be directly compared. As can be seen, there is essentially no variation in school

quality when students are randomly assigned to schools in this way. The largest permuted value added

standard deviation relative to the actual value added standard deviation is 0.001 for high school, which is

only 1.5% of the size of the actual value added standard deviation. These results alleviate concerns that the

value-added estimates are merely an artifact of noisy test score measures or small sample variability.

Another concern is that the value-added estimates are the incorrect magnitude. Specifically, the issue

is whether a one unit increase in school value added actually is associated with a one standard deviation

increase in student test scores. In order to test this, I run a bivariate regression of residualized test scores

risgt on the school value-added estimates µst, where the residualized test scores are calculated using equation

(3). This follows the procedure used in Chetty, Friedman and Rockoff (2014a) and Rothstein (2017) and

calculates by how much a school’s estimated value added actually increases the test scores of its students.

We expect the coefficient to equal one, which would indicate that a one unit increase in school value added

18The standard deviations are about a quarter of the size of those found for school value added in Angrist et al. (2017) and
about half the size of those for teacher value added in Kane and Staiger (2008).

10



increases student test scores by one standard deviation on average.

The first row of Table D.3 provides this estimate along with its 95% confidence interval. The coefficient

estimates range from 1.010 to 1.019, which are economically indistinguishable from one. Chetty, Friedman

and Rockoff (2014a) obtain a coefficient estimate of 0.998. This gives evidence that the school value-

added estimates have the correctly-sized effect on student test scores. Furthermore, figure D.4 graphs the

relationship between µsdt and risgt in 20 equally sized bins. Results show that the value-added estimates

and test score residuals have an almost perfectly linear relationship throughout the value added distribution.

The final concern, and potentially most problematic, involves the potential sorting of students to schools

based on unobserved ability. If students with high unobserved ability sort to specific schools, such that

cov(εisgt, µst) 6= 0, then these schools’ estimated value added will be higher than their true value added.

However, this is only an issue if the sorting occurs on unobserved ability. Hence, there is no issue if students

sort to schools on observed ability, because this will be controlled for with the inclusion of prior test scores

and demographic controls. For example, if students with high test scores tend to attend the same schools,

as occurs in practice, then we can still obtain unbiased estimates of school value added as long as prior test

scores are included in the control vector so that E[εisgt|s, t] = 0. In fact, research comparing value-added

estimates to estimates obtained using random assignment to schools (Deming, 2014; Angrist et al., 2017)

or teachers (Kane and Staiger, 2008) shows that once you control for prior test scores, even the inclusion

of demographic characteristics in the control vector is essentially irrelevant because prior test scores are a

sufficient statistic for student ability.

The primary threat to this assumption would be if students or parents changed their level of input into

academic preparation between the student’s prior grade and current grade and students sorted to schools

based on this change in behavior. For example, if all students of parents who received an increase in income

between grades, where the extra income was used to purchase academic assistance, attended the same school,

then the estimated value added of this school would be positively biased. This is due to the fact that the

prior test scores and demographic controls of those students would not control for this change in academic

assistance, so E[εisgt|s, t] > 0. If students whose parents consistently have high income sort to the same

schools there would not be the same issue, because the students’ prior test scores would also reflect their

high socioeconomic status.

The issue in determining to what degree students sort to schools on unobserved ability is that, by

definition, we have no measures of unobserved ability. However we can approximate unobserved ability using

variables in our data that likely would be correlated with ability but that were not included as a control

variable in equation (3). Given the available data, the best possible measure of unobserved student ability

is an additional prior test score. Under the assumption that this omitted variable is the only component of
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εisgt that is correlated with contemporaneous student test scores, we can obtain an estimate of
cov(εisgt,µ̂st)

var(µ̂st)
.

Chetty, Friedman and Rockoff (2014a) call this value forecast bias, which gives an estimate of what proportion

of the variation in school value added is due to sorting on unobserved ability.19

The second row of Table D.3 provides the estimate of forecast bias along with its 95% confidence interval.

Here we expect an estimate of zero, which would give evidence that there is no sorting of students to schools

on unobservable characteristics. The estimates suggest that between 0.9% (middle school) and 3.9% (high

school) of the variance in school value added is due to sorting on unobserved ability, thus selection on

unobservables does not appear to be a large issue.20 Chetty, Friedman and Rockoff (2014a) estimate forecast

bias of 2.2%. Given that the forecast bias estimates are all negative, this would suggest that students who

are unobservably worse tend to attend schools with higher value added. This would result in value-added

estimates that are biased towards zero, thus the value-added estimates are slightly conservative if anything.

Figure D.5 shows that this relationship holds throughout the distribution of school value added.

3.4 Value Added Versus Average Test Scores

Given the evidence shows my value-added estimates likely provide an unbiased measure of school quality,

one might wonder whether the average test scores at a school could provide the same information. After all,

parents interested in the academic performance of a school will most likely look at the average level of test

scores at the school. Figure D.6 plots a school’s value added against average test scores for those students.

This figure shows that average test scores are not sufficient to predict value added. While average test scores

and value added are positively related, as would be expected if value added causally impacted student test

scores, average test scores do not account for the majority of the variation in school value added. In fact,

the slope on the bivariate regression ranges from 0.059 to 0.084, depending on the school level, which would

imply that only up to 8.4% of a school’s increase in average test scores is due to the value added that that

school provides. Furthermore, average test scores explain at most 24% of the variation in school value added.

This indicates that a large proportion of the average test scores at a school is simply due to the type of

students that enroll as opposed to any benefits the school provides.

19Similar to Chetty, Friedman and Rockoff (2014a), I estimate forecast bias using the following steps. First, I obtain the
portion of contemporaneous test scores that projects onto three-grade prior test scores by adding three-grade prior test scores
to equation (3). The projection is equal to the predicted value using only the test score from three grades prior. I then regress
this projection on school value added.

20As with Chetty, Friedman and Rockoff (2014a), the coefficients from this test are statistically different than zero even
though they are not economically different than zero, likely due to the large sample size.
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4 Long-Run Outcomes

While I’ve established the variability and validity of school value added on test scores, test scores have no

inherent meaning unless they have lasting effects that eventually translate to labor-market outcomes. I now

examine whether school value added on test scores affects future K–12 outcomes, as well as the extensive

and intensive margins of postsecondary enrollment. To do so, I run a regression of a student’s outcome yi on

the student’s school’s value added as in equation (8). I run these regressions for each school level separately.

yi = µ̂stβµ + zigδg +XitβX +WsgtβW + γg + ψt + νisgt (8)

In all regressions I also include all of the control variables from equation (3) used in the estimation of

school value added, as they will likely also contribute to postsecondary outcomes. I scale the value-added

estimates by the standard deviation of the estimated value added distribution, σµ̂st
, so that the coefficient

βµ can be interpreted as the effect of a one standard deviation increase in school value added. I cluster

bootstrap the standard errors at the school level to account for the fact that µ̂st is a generated regressor.

Because each student’s postsecondary outcomes do not vary over time but their school’s value added is

allowed to drift over time, the regressions may contain multiple observations for a student with identical

outcome values but differing school value added. For example, a student observed in 6th, 7th, and 8th grade

who enrolls in college will have three distinct middle-school value-added estimates but will have a value of 1

for enrolling in college for all of those observations. In order to assure that all students contribute equally, I

weight each observation by the inverse of the number of observations per student. Thus, a student observed

in 6th, 7th, and 8th grade would have a weight of 1
3 for each observation while a student observed only in

7th and 8th grade would have a weight of 1
2 .

4.1 K–12 Outcomes

First, I explore whether school value added impacts future K–12 performance. The outcomes I examine are

ELA and math test scores one grade later, whether a student enrolled in a public school one grade later,

and whether a student took the most advanced math subject in future grades. Table D.4 shows that school

value added persists to future test scores. In elementary school a one standard deviation increase in school

value added increases ELA test scores in the next grade by 8.8% of a standard deviation. The effects for

middle and high school are also similarly large. The effect sizes at all school levels are close to the effect

sizes on contemporaneous scores, which contrasts with evidence of fade out in other environments (Currie

and Thomas, 1995, 1999; Bitler, Hoynes and Domina, 2014), although part of this may be due to students
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remaining in the same school, because school value added is highly correlated one year apart (as seen in

figure D.2). Interestingly, ELA value added has an even larger effect on future math scores than on future

ELA scores. School value added has an economically insignificant effect on remaining in the public-school

system, which combines the effect of transferring to a private school, dropout, and moving to another state.

Finally, school value added has a positive impact on the math subject that students take, as students are

more likely to take the hardest math subject for their final math exam in grade 11. Appendix table D.14

shows that while elementary-school math value added is more likely to track students to the most difficult

math track in 7th grade, elementary-school ELA value added actually has a larger effect on whether students

eventually take the most difficult math exam by the time they graduate.

4.2 Extensive Margin of College

Much more important than K–12 outcomes, however, is the effect of school value added on postsecondary

enrollment, because attending college has proven to be a worthwhile investment for both the average and

marginal student (Oreopoulos and Petronijevic, 2013). Hoekstra (2009) finds that attending a flagship

university increases the earnings of white men by 20%, while Zimmerman (2014) shows that admission to a

4-year university for the marginal student gives a wage premium of 22% and bachelor’s degree receipt for

the marginal admission increases wages by 90%.

I define postsecondary enrollment as enrolling in any institution in the NSC data within one year of high-

school graduation.21 I code two-year and four-year enrollment as mutually exclusive, so if students enroll

in both a two-year and four-year institution within a year of graduating high school (such as if they take a

summer course at a community college) then I code them as only enrolling in a four-year institution. Table

D.5 gives summary statistics of postsecondary enrollment by school level for the sample of students for whom

I later estimate value added on postsecondary enrollment (in section 4.4). About two-thirds of students enroll

in any postsecondary institution, and about 40% of college attendees enroll in a four-year university. The

vast majority of college enrollees attend a public institution and an in-state California institution, which is

not surprising given the quality and cost of the California public university systems.

Table D.6 shows the results from the regressions of postsecondary enrollment on school value added.

The results show that high-school value added has the largest impact on postsecondary enrollment, as a one

standard deviation increase in value added increases overall enrollment by 2.2 percentage points (3.4%). This

is about 2 percentage points smaller than the effect of 11th grade value added on postsecondary enrollment

21I also include any student who enrolls in a CSU or a CCC within one year of high-school graduation in order to account
for any missing data in the NSC data. The sample consists solely of students who could potentially be matched to the NSC
data, as students who did not enroll in a CSU or CCC and could not be potentially matched to the NSC data may still have
enrolled in a postsecondary institution, such as a UC, but I would not observe this.
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found in Hubbard (2017). High school also has the largest impact on 4-year enrollment, with an effect size of

2.8 percentage points (10.3%). Elementary- and middle-school value added have smaller, but still positive,

effects on overall and 4-year enrollment, although elementary school has a somewhat larger effect on 4-year

enrollment than middle school. High value added elementary and high schools appear to induce students

to enroll in a 4-year university instead of a 2-year community college, which should provide a higher wage

premium (Kane and Rouse, 1995).

As a robustness check, I run horse-race regressions that include school value added from all levels of

schooling for the subset of students that I observe in elementary, middle, and high school. These regressions

take the form of equation 8, but instead of including the value added for a student’s specific school level in

the different years for which the student was enrolled in that level of school, these regressions include the

student’s average value added estimate for elementary, middle, and high school. I also use each student’s

average value of the other control variables to account for the fact that these values may change from grade

to grade. I include interaction terms between the school levels in order to test whether there are benefits to

attending multiple high value added schools in succession. It should be noted that this is a unique sample,

because these are the students that I observe for at least five consecutive grades. For this reason, the sample

size is much smaller than that from the regressions in Table D.6.

Table D.7 confirms that high-school value added consistently has the largest positive effect on post-

secondary enrollment. This is likely due to the fact that high-school enrollment is so close to the college

decision process, which requires a concentrated effort at a very specific point in time. I find very little

evidence that there are benefits to attending multiple high value added schools in succession, as the inter-

action terms between school levels are an order of magnitude smaller than the direct effect of high-school

value added. Furthermore, many of the interaction terms are negative, which would indicate that there are

actually decreasing returns to attending multiple high value added schools.

4.3 Intensive Margin of College

Next, I explore how school value added on test scores affects CSU and CCC outcomes that are conditional

upon enrollment at one of those institutions. For CSU these outcomes include acceptance (conditional on

application), remediation, STEM major, undecided major, persistence, degree receipt, and STEM degree

receipt. For CCC these outcomes include remediation, persistence, transfer to a four-year university, degree

receipt, and associate’s degree receipt. I measure degree receipt within 6 years for 4-year degrees and within

3 years for 2-year degrees. The need for remedial classes is a negative outcome, because students are paying

college tuition for courses that they had the opportunity to take for free while enrolled in high school. STEM
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major is a positive outcome, because STEM majors earn more than any other major with the exception of

business (Arcidiacono, 2004; Melguizo and Wolniak, 2012; Kinsler and Pavan, 2015) and the premium has

increased over time (Gemici and Wiswall, 2014). Both 2-year and 4-year degrees are positive outcomes

because they provide a wage premium for workers (Kane and Rouse, 1995).

The regressions for CSU outcomes are shown in Table D.8. Interestingly, high value added schools

decrease a student’s likelihood of being accepted conditional on application, although the effect is extremely

small. This is likely due to increases in CSU application on the extensive margin, where students have a

low likelihood of acceptance, that dominate any increases in the probability of acceptance on the intensive

margin. Encouragingly, high value added elementary and middle schools also reduce a student’s need for

remedial classes upon enrolling at a CSU. A middle school with value added one standard deviation above

average decreases the need for remedial ELA and math classes by 2.2 percentage points (9.7%) and 3.2

percentage points (13.9%) respectively. Interestingly, as seen in appendix table D.16, elementary-school

ELA value added has a much larger effect on the need to take remedial math classes than elementary-school

math value added, which suggests that school-induced learning on ELA exams may provide skills in other

subjects, which is consistent with similar findings in Master, Loeb and Wyckoff (2017).

School value added has no effect on whether students become a STEM major, but high value added

schools do reduce the likelihood that students are undecided in their first year of college. This likely focuses

course enrollment and reduces frivolous classes. Elementary school has the strongest effect on whether a

student persists to their second or third year year of college, with middle school also having a significant effect.

A one standard deviation increase in elementary-school value added increases the likelihood of persisting to

year three by 1.4 percentage points (1.9%). There is suggestive evidence that middle-school value added also

increases degree receipt, although the estimates are noisy and insignificant22. Thus, the evidence suggests

that while high school plays the largest role in whether students actually enroll in a postsecondary institution,

as seen in section 4.2, elementary and middle schools develop the skills necessary for students to succeed in

college.

The CCC outcomes are given in Table D.9. Elementary-school value added again reduces the need for

remedial courses. A one standard deviation increase in elementary-school value added decreases the need

for remedial math classes by 0.7 percentage points (3.1%). Persistence to year two at a community college

is a somewhat complicated outcome because the failure to persist could be a good outcome if the student

transferred to a four-year university or bad outcome if the student dropped out of college altogether. In order

to avoid this issue, I code a student as persisting to year two if they persisted to year two at a community

22The sample size for degree receipt is small because I allow students six years to obtain a degree. This is also why I cannot
examine the effect of elementary-school value added on degree receipt, because I don’t have any elementary-school students
who enrolled in college at least six years prior to my final year of data.
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college or transferred to a four-year university. I recode degree receipt and associate’s degree receipt in the

same way. High school has the largest impact on both persistence to year two and transfer to a four-year

university. The impact of high-school value added on transferring to a four-year university is particularly

large, as a one standard deviation increase in high-school value added increases the likelihood of transferring

to a four-year university after enrolling at a CCC by 3 percentage points (8.3%). Thus, high schools not

only have the largest impact on initial four-year enrollment but also have the largest impact on students

transferring into four-year universities. At all school levels attending a high value added school increases both

degree receipt and associate’s degree receipt, although this appears to be driven by transfer to a four-year

university.

4.4 Value Added on Postsecondary Enrollment

The prior sections show that increases in school value added on test scores translate to college enrollment

and readiness. Nevertheless, the results only show the effects of school quality that operate through test

scores. There will likely be other factors within a school, however, that affect the likelihood that students

enroll in a postsecondary institution but wouldn’t affect how well students perform on standardized tests,

such as college counselors or institutional knowledge on the college application process. In order to determine

the contribution of these other factors within a school, I estimate a school’s value added on postsecondary

enrollment directly.

I do so by reestimating equation (3) with an indicator for postsecondary enrollment as the dependent

variable instead of a student’s test score.23 It should be noted that the assumptions to obtain unbiased

estimates of school value added on postsecondary enrollment are stronger than those for school value added

on test scores. Value added on test scores relies upon the assumption that prior test scores and demographic

characteristics are sufficient to predict how a student would perform on the current year’s test, such that

any differences in test scores after controlling for these variables are attributable to schools. Prior research

shows that this is a valid assumption (Kane and Staiger, 2008; Deming, 2014).

Estimating value added on postsecondary enrollment, however, relies upon the assumption that prior

test scores and demographic characteristics are sufficient to predict the likelihood that a student will attend

a postsecondary institution. This assumption may not hold, especially for earlier grades where the prior

test scores are many years removed from the time when a student decides whether to attend college. In

fact, Abdulkadiroğlu et al. (2017) find that the bias of value-added estimates on postsecondary enrollment

is larger than the bias of value-added estimates on test scores at the high-school level. Thus the results for

23Because each student’s enrollment outcome is invariant across grades, I only use observations from 5th grade for elementary
school, 8th grade for middle school, and 11th grade for high school. Results using 4th, 6th, and 9th grade are qualitatively
similar.
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school value added on postsecondary enrollment should be interpreted keeping these caveats in mind.

Figure D.7 shows the distributions of the estimated value added on postsecondary enrollment. As with

the results using value added on test scores, we see that high school has the largest impact on postsecondary

enrollment, as it has the highest variance in value added. A high school that is one standard deviation

above average in the value added that it provides on postsecondary enrollment increases the postsecondary

enrollment of its students by 8.7 percentage points on average. Middle school has the second largest variance

in value added, while elementary school has the smallest. Thus, the closer a student gets to enrolling in

college the bigger the impact the school they attend has on whether they actually end up enrolling. One

notable difference between high school and the other school levels is the long, left tail of low-value added

schools in high school.

5 Value Added Characteristics

5.1 School Characteristics

Finally, I explore what school characteristics are correlated with school value added. While these regressions

are not causal, they provide a description of what high value added schools have in common. This analysis

may therefore provide clues of some effective characteristics that could be explored in a causal framework in

future studies.

I run regressions of school value added on school-level inputs as in equation (9). I cluster the standard

errors at the school level. In the first regression the school characteristics included in Xst are the number of

full-time equivalent (FTE) teachers per student, FTE pupil services staff24 per student, English-learner staff

per student, proportion teachers with three years or less experience, proportion teachers with full credentials,

proportion male teachers, proportion male students, and the interaction between the two, and proportion

minority25 teachers, proportion minority students, and the interaction between the two. In the second

regression I include district expenditure data on instruction, pupil services (counselors, nurses, food service,

etc.), ancillary services (before- and after-school programs), and general administration expenditures. I also

include total enrollment to account for fixed costs. In each regression I drop the top and bottom 2.5% of each

independent variable in order to account for outliers and potential errors in the data that schools report.

µ̂st = Xstβ + εst (9)

24This includes counselors, psychologists, librarian/library/media teachers, social workers, nurses, and
speech/language/hearing specialists.

25Hispanic, black, Native American and two or more races.
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Table D.10 shows the correlations between school value added and school characteristics. The left three

columns give value added on test scores, while the right three columns give value added on postsecondary

enrollment. There is no clear pattern of school characteristics that positively impact school value added

at all levels. The coefficients often switch signs between school levels and rarely have similar magnitudes.

There are a few examples of consistency between two adjacent school levels, however. English learner staff

tend to increase value added in middle and high school, which may give evidence that these resources help

Hispanic and Asian students who struggle with English. Fully-credentialed teachers increase elementary and

middle-school value added, which contrasts with prior studies that show that teacher credentials have no

effect on teacher value added (Kane, Rockoff and Staiger, 2008). Having more minority teachers appears to

be beneficial when there are more minority students enrolled in a school, which suggests that minorities may

benefit from having teachers similar to them.

Table D.11 gives correlations between school value added and district expenditures. As with other school

characteristics, few patterns emerge. The results suggest that instruction expenditures have essentially no

effect on the value added of the school, while pupil services expenditures may in fact have a negative effect on

school value added. Expenditures on ancillary services in elementary school, however, are strongly correlated

with value added on college-going, which suggests that after school programs in a student’s earliest years

may have long-lasting effects. In addition, general administration expenditures have a small, but consistently

positive, effect on value added for both test scores and postsecondary enrollment.

5.2 Spatial Correlations

While I find that few school characteristics are consistently correlated with the value added that a school

provides, it is possible that there is spatial correlation in school value added. Figure D.8 shows the average

school test score value added within each zip code in California. While there is variation in school value

added across the state, a broad pattern emerges in all school levels. In general, high value added schools

tend to be clustered in the dense urban and suburban areas around Los Angeles, the Bay Area, Sacramento,

and San Diego, while low value added schools tend to be located in the rural regions of the Central Valley

and the Inland Empire. Exceptions to this include inner city Los Angeles in the areas around Compton.

Figure D.9 shows the same information for school value added on postsecondary enrollment. Here a similar

pattern emerges, where the schools that increase the likelihood that their students attend a postsecondary

institution the most are located near big cities while the low value added schools tend to be located in rural

areas. The concentration of high value added schools in densely populated areas appears to be even stronger

for value added on postsecondary enrollment than it does for value added on test scores. Interestingly, while
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Los Angeles outperforms the Bay Area on test score value added, the Bay Area outperforms Los Angeles on

postsecondary enrollment value added.

6 Conclusion

Human-capital formation is a lifelong process, but because later investments build off of earlier investments

the human capital accrued during childhood and adolescence may be particularly important. This paper

studies the impact of school quality on human-capital formation during these time periods. I estimate school

quality in elementary, middle, and high school using individual-level data on the universe of public-school

students in California. I measure school quality by extending the value added with drift methodology, as in

Chetty, Friedman and Rockoff (2014a), to schools. I find that there is substantial variation in value added

across schools, with the standard deviations of school value added ranging from 6.6% to 8.7% of a student

test score standard deviation depending on the school level.

I then link these school value-added estimates to individual-level postsecondary enrollment data from the

NSC and individual-level application, enrollment, and degree receipt data from the CSU and CCC systems

in order to study the impact of school value added on postsecondary outcomes. I find that high-school value

added has the largest effect on postsecondary enrollment, while elementary and middle-school value added

have the largest effect on college readiness. All school levels therefore contribute to human-capital formation,

but the different school levels contribute to different aspects of human-capital formation. Early education

provides the skills necessary to succeed later in college, while high-school quality likely has a large impact on

postsecondary enrollment due to its proximity to the college decision process. To my knowledge this paper

is the first to compare the effect of school quality on long-run outcomes across elementary, middle, and high

school.

There are numerous policy implications from my work. The first regards the measurement of school

quality. I find that value-added estimates are a valuable tool for measuring school quality, as they predict

long-run outcomes but are uncorrelated with prior student ability. Average test scores should be avoided

when measuring school quality though, because differences in average test scores are largely due to the

selection of students to schools. However, value added on long-run outcomes should also be used when

possible, because value added on test scores may mask relevant differences in value added on important

long-run outcomes.

Second, I find that early childhood education has important long-run consequences. Differences in school

quality as early as elementary school affect students’ college readiness. This is consistent with evidence that

finds that early childhood education programs can improve the long-run outcomes of students.
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Lastly, I find that high-school quality is unlikely to undo the effects of low-quality schools in prior years

when it comes to college readiness. High-school quality has essentially no effect on the college readiness

of students, while both elementary- and middle-school quality have substantial effects. This should be

considered in the wake of college-going interventions that take place in high school. These efforts may need

to be accompanied with academic support, as the students may not succeed in college after enrolling without

additional assistance.

While this paper shows that high value added schools have long-term effects on postsecondary outcomes,

the question remains as to what comprises a high value added school. Prior research on school and teacher

characteristics has been largely inconclusive as to what makes an effective school or teacher, and the correla-

tional results that I present in this paper do not shed much light on the issue. Further research is needed in

order to identify the replicable characteristics of high value added schools, as the evidence shows that these

schools can permanently improve the lives of their students.
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A Data

Table D.12 gives the number of observations in the CST data conditional on a set of restrictions imple-

mented in order to form the value-added sample. The rows are additive, such that the first row contains all

observations, the second row imposes one restriction, the third row imposes two restrictions, etc. The first

row denotes the total number of observations in the CST dataset. The second row keeps students who have

information on test scores, as opposed to just demographic characteristics. The third row keeps only the

first time that a student attempted a grade, and thus drops observations in which a student is repeating a

grade. I impose this restriction because students repeating a grade are tested on material for which they

have already been tested at least once. The fourth row keeps only students at “conventional” schools. This

includes schools in the following categories defined by the CDE: Preschool, Elementary School (Public),

Elementary School in 1 School District (Public), Intermediate/Middle Schools (Public), Junior High Schools

(Public), K–12 Schools (Public), High Schools (Public), and High Schools in 1 School District (Public).26

26This drops students in the following categories: Special Education Schools (Public), County Community, Youth Authority
Facilities (CEA), Opportunity Schools, Juvenile Court Schools, Other County or District Programs, State Special Schools,
Alternative Schools of Choice, Continuation High Schools, District Community Day Schools, Adult Education Centers, and
Regional Occupational Center/Program (ROC/P).
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The fifth row drops any schools that enroll 10 students or fewer in a given year. The sixth row drops students

who are missing a test score in the specific subject for which value added is calculated. The seventh row

drops students who are missing any of the demographic controls. The eighth and ninth rows drop students

who are missing test scores from one grade and two grades prior, respectively. This restriction is the cause of

the vast majority of observations which are excluded from the value-added estimates. The tenth row drops

observations for which peer averages of the control variables could not be calculated. The eleventh row drops

students if fewer than seven observations can be used to estimate value added for their school by year cell,

which insures that all value-added estimates are based on at least seven observations.

Table D.13 gives summary statistics for the students who are excluded from the value-added sample. For

comparison, the table also includes the summary statistics of the value-added sample. Excluded students

are more likely to be male and slightly more likely to be economically disadvantaged, black, two or more

races, or American Indian. The most stark difference between included and excluded students, however, is

in their likelihood of having a disability. Excluded students are over four times more likely to be disabled in

elementary school and over twice as likely to be disabled in high school. This fact carries over to prior test

scores, as excluded students are more likely to have lower prior achievement than students in the value-added

sample.

B CST to Postsecondary Match

Because we lack a unique student identifier common to both the CST and CSU/CCC data, such as a social

security number, I match the CST data to the CSU/CCC data based on students’ name, birth date, and

sex. While there is no common unique student identifier, each dataset does have a unique student identifier

specific to that dataset, which I will call the CST ID, CSU ID, and CCC ID, respectively. The match is

implemented as a sieve, with progressively less strict matches in each sieve level.

For the CCC data, I match on first name, last name, birth date, and sex. I start by dropping all students

in the CST and CCC datasets that are not uniquely identified by these variables, as for all intents and

purposes they constitute the student’s unique identifier. Denote the remaining observations as the master

CST and master CCC datasets, respectively. I then match the master CST and master CCC datasets on

first name, last name, birth date, and sex. Of those matched observations, I drop any observations that were

missing data on any of the match variables. I then drop any students for whom their CST ID matched to

multiple CCC IDs or their CCC ID matched to multiple CST IDs. The remaining matched observations I

denote sieve level 1, which contains one observation per CST ID and CCC ID.

Next I remove all of the sieve level 1 observations from the master CST and master CCC datasets and
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repeat the steps above matching on first name, last name, and birth date. I denote this sieve level 2. For

sieve level 3 I match on first three letters of first name, first three letters of last name, birth date, and sex.

This is due to the fact that from 1993 to 2011 the CCC data only contains the first three letters of a student’s

first and last name. Finally for sieve level 4 I match on first three letters of first name, first three letters of

last name, and birth date.

For the CSU data I implement the same matching procedure. Sieve level 1 matches on first name, last

name, birth date, sex, and middle name. Sieve level 2 matches on first name, last name, birth date, and sex.

Sieve level 3 matches on first name, last name, and birth date.

The NSC data was matched by the NSC using their proprietary match process. This process relies on a

student’s first name, middle initial, last name, and birth date.

Because of data limitations, the number of cohorts than can be matched to the postsecondary data varies

by school level. Given the years available for the CST and CSU/CCC data, 6 cohorts from the elementary-

school value-added sample, 9 cohorts from the middle-school value-added sample, and 11 cohorts from the

high-school value-added sample could potentially be matched to the CSU/CCC data. For the NSC data

6 cohorts from the elementary-school value-added sample, 8 cohorts from the middle-school value-added

sample, and 7 cohorts from the high-school value-added sample could potentially be matched to the NSC

data.

C School Value Added Methodology

I follow the methodology described in Chetty, Friedman and Rockoff (2014a), implementing a few modifi-

cations in order to estimate school-by-year value added instead of teacher-by-year value added. A school’s

value added is calculated by first removing the portion of each student’s test score that is due to non-school

factors. To do so, I regress student test scores zisgt on a vector of prior test scores zig, demographic charac-

teristics Xit, the number of students in a student’s cohort Wsgt, grade fixed effects γg, year fixed effects ψt,

and a school fixed effect αs as in equation (10).

The vector of prior test scores zig contains a cubic polynomial in one-grade-prior same-subject test score

and a cubic polynomial in two-grade-prior same-subject test score. I allow the polynomials in prior scores to

differ by grade by interacting the polynomials with grade fixed effects. The demographic characteristics Xit

contain a linear term for age and fixed effects for sex, ethnicity, socioeconomic disadvantage, limited English

proficiency, and disability status.

zisgt = zigδg +XitβX +WsgtβW + γg + ψt + αs (10)
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I then calculate residual test scores risgt, as shown in equation (11), that contain the component of

student test scores that does not project onto observable student characteristics. Notice that while equation

(10) contains a school fixed effect αs, the residual test scores do not subtract off this predicted school fixed

effect α̂s.

Equation (10) contains a school fixed effect in order to account for potential correlation between school

value added and student characteristics. If school value added is in fact correlated with the types of students

that enroll in the school, then the regression coefficients in equation (10) would be biased in the absence

of a school fixed effect because the omitted variable of school quality would be correlated with both the

dependent and independent variables. The residual risgt does not subtract the predicted school fixed effect,

however, because doing so would leave us with a residual test score that no longer contained school value

added.

risgt = zisgt − (zigδ̂g +Xitβ̂X +Wsgtβ̂W + γ̂g + ψ̂t) (11)

It is helpful to decompose risgt into its corresponding components. Equation (12) shows that residual

test scores are composed of school value added µst, common shocks θst, and an individual level error term

εisgt.

risgt = µst + θst + εisgt (12)

I then average residual test scores risgt to the school-by-year level as in equation (13). Substituting

(12) into equation (13) gives us equation (14), and equation (15) follows from the fact that µst and θst are

constant conditional on school and year.

r̄st =

∑

i∈st risgt

Nst

(13)

=

∑

i∈st(µst + θst + εisgt)

Nst

(14)

= µst + θst +

∑

i∈st εisgt

Nst

(15)

Under the assumptions that εisgt is a mean zero random error term and students do not sort to schools in

each year on unobservable characteristics, the student-level error terms have expected value zero conditional

on school and year, which gives us equation 17.27 Thus the expected value of the average residual test score

27This is due to the fact that E[εisgt|s, t] = E[εisgt] under the assumption that students do not sort to schools in each year
based on εisgt, and E[εisgt] = 0 under the assumption that εisgt is mean zero.
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conditional on school and year is equal to school value added plus the common shock.

E[r̄st|s, t] = µst + θst +

∑

i∈st E[εisgt|s, t]

Nst

(16)

= µst + θst (17)

The issue is that there is no variation in the common shocks θst within each school-by-year cell, so the

average residual test score contains both true school value added as well as a common shock that is unrelated

to school quality. Under the assumptions that school value added is correlated across years, the school-level

common shocks are uncorrelated across years, and the school-level common shocks are not correlated with

school value added across years, however, we can project the average residual in year t onto the average

residuals in all other years from the same school in order to eliminate variation from the common shocks.

Formally, if the assumptions in (18) hold,

cov(µstµst′) 6= 0, cov(θstθst′) = 0, cov(µstθst′) = 0 ∀t′ 6= t (18)

then we can project r̄st onto r̄st′ following equation (19), where r̄st′ is the vector of average residuals r̄st′

∀t′ 6= t, to recover variation in µst.

r̄st = r̄st′βr̄t′ + ǫst (19)

If we have years t = 1, . . . , T then

r̄st′ =

[

r̄s1 r̄s2 . . . r̄st−1 r̄st+1 . . . r̄sT−1 r̄sT

]

(20)

and

βr̄t′ =

[

βr̄1 βr̄2 . . . βr̄t−1 βr̄t+1 . . . βr̄T−1 βr̄T

]′

(21)

However, there is a fundamental tradeoff between the number of independent variables and the number of

observations that can be included in equation (19). For example, if the average residual from 5 years prior to

year t is used, then a regression following (19) can only include schools that have at least 6 consecutive years

of data. Some schools that close or open during the span of the dataset won’t have this many observations,

so they will be dropped from the regression. Thus, while including the average residual from 5 years prior

to year t will increase the information that can be used to identify µst, it will decrease the number of
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observations used to identify βr̄t−1 to the subset of schools that have been open for at least 6 consecutive

years. This subset will contain fewer observations than the number of observations that have a valid r̄st−1,

as this only requires having 2 consecutive years of data. Thus, including r̄st−5 would essentially discard

useful information in identifying βr̄t−1 in order to identify βr̄t−5.

Examining the coefficient vector βr̄t′ is helpful in dealing with this issue. Solving equation (19) using

ordinary least squares (OLS) provides us with the solution vector in (22).

β̂r̄t′ = (r̄′st′ r̄st′)
−1(r̄′st′ r̄st) (22)

First let’s examine (r̄′st′ r̄st′)
−1. The resulting matrix is equal to (23).


























r̄′s1r̄s1 r̄′s1r̄s2 . . . r̄′s1r̄st−1 r̄′s1r̄st+1 . . . r̄′s1r̄sT−1 r̄′s1r̄sT

r̄′s2r̄s1 r̄′s2r̄s2 . . . r̄′s2r̄st−1 r̄′s2r̄st+1 . . . r̄′s2r̄sT−1 r̄′s2r̄sT

...
...

. . .
...

...
...

...

r̄′st−1r̄s1 r̄′st−1r̄s2 . . .
. . . . . . r̄′st−1r̄sT−1 r̄′st−1r̄sT

r̄′st+1r̄s1 r̄′st+1r̄s2 . . .
. . . . . . r̄′st+1r̄sT−1 r̄′st+1r̄sT

...
...

...
...

. . .
...

...

r̄′sT−1r̄s1 r̄′sT−1r̄s2 . . . r̄′sT−1r̄st−1 r̄′sT−1r̄st+1 . . . r̄′sT−1r̄sT−1 r̄′sT−1r̄sT

r̄′sT r̄s1 r̄′sT r̄s2 . . . r̄′sT r̄st−1 r̄′sT r̄st+1 . . . r̄′sT r̄sT−1 r̄′sT r̄sT


























−1

(23)

Under the stationarity assumptions in (24),

E[µst|t] = 0, E[θst + εisgt|t] = 0, cov(µstµst+y) = σµy (24)

we have E[r̄st|t] = 0, which therefore allows us to write the sums of squares r̄′str̄st as variances σ
2
r̄st

and

the cross products r̄′str̄st′ as covariances cov(r̄st, r̄st′). Furthermore, because we assume that the covariance

between the average residual from any two years only depends on the number of years between them, we

can rewrite σ2
r̄st

= σ2
r̄ and cov(r̄st, r̄st′) = σr̄y, where y ≡ |t− t′| indexes the number of years between t and
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t′. This simplifies the matrix in (23) further to (25).


























σ2
r̄ σr̄1 . . . σr̄t−2 σr̄t . . . σr̄T−2 σr̄T−1

σr̄1 σ2
r̄ . . . σr̄t−3 σr̄t−1 . . . σr̄T−3 σr̄T−2

...
...

. . .
...

...
...

...

σr̄t−2 σr̄t−3 . . .
. . . . . . σr̄T−t σr̄T−t+1

σr̄t σr̄t−1 . . .
. . . . . . σr̄T−t−2 σr̄T−t−1

...
...

...
...

. . .
...

...

σr̄T−2 σr̄T−3 . . . σr̄T−t σr̄T−t−2 . . . σ2
r̄ σr̄1

σr̄T−1 σr̄T−2 . . . σr̄T−t+1 σr̄T−t−1 . . . σr̄1 σ2
r̄


























−1

(25)

Next, let’s examine (r̄′st′ r̄st). This matrix is equal to (26).


























r̄′s1r̄st

r̄′s2r̄st
...

r̄′st−1r̄st

r̄′st+1r̄st
...

r̄′sT−1r̄st

r̄′sT r̄st


























(26)

Again, under the stationarity assumptions in (24), we can simplify this matrix to (27).


























σr̄t−1

σr̄t−2

...

σr̄1

σr̄1
...

σr̄T−t−1

σr̄T−t


























(27)

In order to circumvent the tradeoff between the number of independent variables and number of observa-

tions, I calculate the variance σ2
r̄ and covariances σr̄y manually using all observations that can contribute to

34



the calculation. I then plug these values back into the matrices in (25) and (27) and manually perform the

matrix algebra necessary to obtain the coefficient vector βr̄t′ . Note that the matrices in (20) through (27)

will look slightly different for schools that do not have data for all years. Specifically (20) will not contain

values r̄st′ for years t′ for which the school does not have data. This will then follow into the subsequent

matrices. Again, this is the advantage of manually calculating the variances and covariances, as it allows

us to use a flexible set of projection variables tailored to each school depending on data availability while

identifying coefficients using the maximum amount of available variation.

Figure D.10 shows the autocorrelation values σr̄y. For all school levels and subjects the correlation

between residual values r̄st and r̄st′ that are y years apart gradually fades out in an essentially linear fashion.

The autocorrelation between years is highest for middle school and similar for elementary and high school.

It is important to note that due to the inclusion of a constant in equation (10) the residuals risgt will

sum to zero by definition of the first order conditions of OLS. For this reason, school value added can only

be estimated in relative terms. While equation (10) imposes the constraint that
∑N

i=1 risgt = 0, I rescale the

value-added estimates such that
∑T

t=1

∑S

s=1 µ̂st = 0, effectively altering the constraint on the value-added

estimates so that they have mean zero at the school-by-year level instead of at the student level. This

rescaling has no impact on the analyses but simplifies the interpretation of the value-added estimates, as a

school with positive value added is above average and a school with negative value added is below average.

D Elementary-School Math Value Added

Starting in the 7th grade, students have the option of taking different math assessments based on the math

subject in which they are enrolled. This makes calculating school value added in math difficult, because

scores are not directly comparable between the various math subjects within grades. In this section I present

results for math value added in elementary school, where there is a common test.

Figure D.11 shows the distribution of elementary-school math value added. The standard deviation

of elementary-school math value added is 0.134. This tells us that a one standard deviation increase in

elementary-school math value added increases the average test score of its students by 13.4% of a student-

level standard deviation. The standard deviation is about twice the size of that for ELA, which is consistent

with prior studies of school and teacher value added.

Table D.14 explores whether elementary-school math value added impacts future K–12 performance. The

outcomes I look at are ELA and math test scores one grade later, whether a student enrolled in a public

school one grade later, and whether a student took the most advanced math subject in future grades. The

results show that school value added persists to future test scores. A one standard deviation increase in

35



elementary-school math value added increases ELA and math test scores in the next grade by 5.9% and

12.6% of a standard deviation in ELA and math respectively. Elementary-school math value added has

an economically insignificant effect on remaining in the public-school system, which combines the effect of

transferring to a private school, dropout, and moving to another state. Finally, elementary-school math

value added has a positive impact on the math subject that students take, as students are more likely to

take the hardest math subject when they first track to different math subjects in grade 7 as well as for their

final math exam in grade 11.

Table D.15 shows the results from the regression of postsecondary enrollment on elementary-school math

value added. Results show that a one standard deviation increase in elementary-school math value added in-

creases overall enrollment by 0.5 percentage points (0.8%). The impact on 4-year enrollment is 1.6 percentage

points (5.6%). Elementary schools that provide high value added on math appear to induce students to enroll

in a 4-year university instead of a 2-year community college. While elementary-school math value added

appears to induce a similar amount of 2-year to 4-year switches, elementary-school ELA value added has a

larger overall effect on postsecondary enrollment that is over triple the size of the effect of elementary-school

math value added.

The regressions for CSU outcomes are shown in Table D.16. Elementary schools that provide high value

added on math decrease a student’s likelihood of being accepted conditional on application, likely due to

increases in CSU application on the extensive margin, where students have a low likelihood of acceptance,

that dominate any increases in the probability of acceptance on the intensive margin. Elementary-school

math value added has a much smaller, although still negative, effect on the need for remedial classes upon

enrolling at a CSU than elementary-school ELA value added. Interestingly, this also applies to remedial math

classes. An elementary school with math value added one standard deviation above average decreases the

need for remedial ELA and math classes by 0.3 percentage points (1.3% and 1.2% respectively). Elementary-

school math value added has no effect on whether students become a STEM major, but high value added

schools do reduce the likelihood that students are undecided in their first year of college. Unlike elementary-

school ELA value added, elementary-school math value added has essentially no effect on whether a student

persists to their second or third year of college.

The CCC outcomes are given in Table D.17. Elementary-school math value added reduces the need for

remedial CCC courses. A one standard deviation increase in elementary-school math value added decreases

the need for remedial math and ELA classes by 0.6 percentage points (2.7% and 2.6%, respectively). The

effect size is similar to that of elementary-school ELA value added. Elementary-school math value added

has a smaller, although still positive, impact on both persistence to year two and transfer to a four-year

university than elementary-school ELA value added. The same is true for degree receipt and associate’s
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degree receipt.
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Table D.1: K–12 Summary Statistics

Elementary Middle High

School Controls

# of Students in School-Grade 104.1 326.2 549.1
[43.58] [193.1] [233.8]

Demographic Controls

Age in Years 10.22 12.74 15.71
[0.644] [0.921] [0.922]

Male 0.498 0.497 0.495
[0.500] [0.500] [0.500]

Hispanic or Latino 0.524 0.510 0.472
[0.499] [0.500] [0.499]

White 0.273 0.284 0.310
[0.445] [0.451] [0.463]

Asian 0.122 0.125 0.137
[0.327] [0.330] [0.344]

Black or African American 0.0617 0.0632 0.0617
[0.241] [0.243] [0.241]

Other Race 0.0197 0.0188 0.0189
[0.139] [0.136] [0.136]

Economic Disadvantage 0.595 0.567 0.492
[0.491] [0.495] [0.500]

Limited English Proficient Status 0.251 0.161 0.120
[0.433] [0.367] [0.325]

Disabled 0.0410 0.0387 0.0434
[0.198] [0.193] [0.204]

Test Scores

Current Test Score 0.0568 0.0688 0.135
[0.982] [0.979] [0.965]

1 Grade Prior Test Score 0.0801 0.0769 0.156
[0.973] [0.974] [0.961]

2 Grade Prior Test Score 0.102 0.0794 0.157
[0.968] [0.975] [0.964]

Schools 6,036 5,068 1,593
Students 3,407,230 3,903,559 3,819,155
Observations 5,785,167 8,541,805 7,911,067

Values are means and standard deviations [in brackets] of the dependent and indepen-
dent variables used in the test score value added estimation. Only students included in
the test-score value-added sample are included in this table. Data comes from public
schools in the state of California between the 2004–2005 and 2012–2013 school years. El-
ementary school includes grades 4–5, middle school includes grades 6–8, and high school
includes grades 9–11.
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Table D.2: Datasets

Dataset Begin End Description

CST Spring 2003 Spring 2013 CA public-school 2nd-11th graders
NSC Spring 2010 Spring 2017 CA graduates linked to national postsecondary
CSU Application Fall 2001 Spring 2017 Universe of applicants
CSU Enrollment Fall 2001 Spring 2017 Universe of enrolled students
CSU Degree Fall 2001 Spring 2016 Universe of degree recipients
CCC Enrollment Fall 1992 Spring 2017 Universe of enrolled students
CCC Degree Fall 1992 Spring 2016 Universe of degree recipients
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Table D.3: School Test Score Value Added Specification/Forecast Bias Tests

Elementary Middle High

VA Specification Test: Contemporaneous Score 1.012∗∗∗ 1.019∗∗∗ 1.010
(0.004) (0.004) (0.011)

[1.003,1.020] [1.011,1.026] [0.989,1.031]
VA Forecast Bias Test: Prior Score -0.010∗∗∗ -0.009∗∗∗ -0.039∗∗∗

(0.002) (0.003) (0.006)
[-0.015,-0.006] [-0.014,-0.003] [-0.050,-0.027]

Each cell represents a separate regression. The first row contains the coefficient from a bivariate regression of test
score residuals risgt on school value added µ̂st. Statistical inference is conducted under the null hypothesis that the
coefficient equals 1. The second row contains the coefficient from a regression of the projection of test scores onto three
grade prior test scores on school value added µ̂st. Statistical inference is conducted under the null hypothesis that the
coefficient equals 0. Standard errors cluster bootstrapped at the school level are presented in parentheses. The 95%
confidence intervals are presented in brackets.
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Table D.4: K–12 Outcomes on School Test Score Value Added

(1) (2) (3) (4) (5) (6)
Panel A: Elementary School 1 Grade Later CST ELA Score 1 Grade Later CST Math Score Stayed in Public School Highest Math Subject in Grade 7 Highest Math Subject in Grade 11

Elementary School ELA Value Added 0.088∗∗∗ 0.093∗∗∗ -0.001∗∗∗ 0.002 0.020∗∗∗

(0.001) (0.002) (0.000) (0.001) (0.002)

Y Mean 0.056 0.050 0.793 0.081 0.373
Observations 4,782,394 4,779,116 5,776,992 3,587,713 640,149
R2 0.711 0.548 0.784 0.154 0.269

Panel B: Middle School 1 Grade Later CST ELA Score Stayed in Public School Highest Math Subject in Grade 9 Highest Math Subject in Grade 11

Middle School ELA Value Added 0.067∗∗∗ -0.001 -0.001 0.005∗

(0.001) (0.000) (0.002) (0.003)

Y Mean 0.072 0.771 0.062 0.344
Observations 7,010,235 8,528,085 5,758,625 2,900,331
R2 0.741 0.753 0.137 0.310

Panel C: High School 1 Grade Later CST ELA Score Stayed in Public School Highest Math Subject in Grade 11

High School ELA Value Added 0.104∗∗∗ 0.003∗∗ 0.009∗∗∗

(0.001) (0.001) (0.004)

Y Mean 0.084 0.771 0.324
Observations 4,268,621 5,320,860 5,593,418
R2 0.715 0.697 0.337

Each cell is a separate regression of the outcome listed in the column header on school value added. Panels A-C are differentiated by which school level value added is included as an independent variable. Elementary school includes grades 4–5, middle school includes grades 6–8, and high
school includes grades 9–11. Each regression also includes the controls included in the estimation of school value added. Standard errors cluster bootstrapped at the school level are presented in parentheses.
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Table D.5: Postsecondary Summary Statistics

Elementary Middle High

Enrolled at a Postsecondary Institution 0.629 0.630 0.620
[0.483] [0.483] [0.485]

Enrolled at a 2-Year College 0.367 0.373 0.372
[0.482] [0.484] [0.483]

Enrolled at a 4-Year University 0.262 0.258 0.248
[0.440] [0.437] [0.432]

Enrolled at a Public Institution 0.574 0.573 0.560
[0.495] [0.495] [0.496]

Enrolled at a Private Institution 0.055 0.057 0.060
[0.229] [0.232] [0.237]

Enrolled at a CA Institution 0.569 0.571 0.561
[0.495] [0.495] [0.496]

Enrolled at an Out-of-State Institution 0.060 0.059 0.058
[0.238] [0.236] [0.234]

Observations 4,291,249 4,355,400 4,201,902

Values are means and standard deviations [in brackets] of the extensive margins of college.
Only students included in the postsecondary-enrollment value-added sample are included this
table. Data comes from public schools in the state of California between the 2004–2005 and
2012–2013 school years. Elementary school includes grades 4–5, middle school includes grades
6–8, and high school includes grades 9–11.
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Table D.6: Postsecondary Enrollment on School Test Score Value Added

(1) (2) (3)
Panel A: Elementary School Enrolled Enrolled 2-Year Enrolled 4-Year

Elementary School ELA Value Added 0.016∗∗∗ -0.008∗∗∗ 0.024∗∗∗

(0.001) (0.001) (0.001)

Y Mean 0.652 0.369 0.283
Observations 2,701,070 2,701,070 2,701,070
R2 0.114 0.027 0.192

Panel B: Middle School Enrolled Enrolled 2-Year Enrolled 4-Year

Middle School ELA Value Added 0.018∗∗∗ 0.007∗∗∗ 0.011∗∗∗

(0.001) (0.002) (0.002)

Y Mean 0.649 0.373 0.276
Observations 6,358,028 6,358,028 6,358,028
R2 0.119 0.033 0.207

Panel C: High School Enrolled Enrolled 2-Year Enrolled 4-Year

High School ELA Value Added 0.022∗∗∗ -0.006∗∗ 0.028∗∗∗

(0.002) (0.003) (0.003)

Y Mean 0.655 0.382 0.273
Observations 6,077,315 6,077,315 6,077,315
R2 0.125 0.042 0.224

Each cell is a separate regression of the outcome listed in the column header on school value added.
Panels A-C are differentiated by which school level value added is included as an independent variable.
Elementary school includes grades 4–5, middle school includes grades 6–8, and high school includes grades
9–11. Each regression also includes the controls included in the estimation of school value added. Standard
errors cluster bootstrapped at the school level are presented in parentheses.
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Table D.7: Postsecondary Enrollment on Horse Race of School Test Score Value Added

(1) (2) (3)
Enrolled Enrolled 2-Year Enrolled 4-Year

Elementary 0.002∗∗∗ -0.008∗∗∗ 0.010∗∗∗

(0.001) (0.001) (0.001)

Middle 0.005∗∗∗ 0.020∗∗∗ -0.015∗∗∗

(0.001) (0.001) (0.001)

High 0.021∗∗∗ -0.004∗∗∗ 0.025∗∗∗

(0.001) (0.001) (0.001)

Elementary × Middle 0.002∗∗∗ -0.003∗∗∗ 0.005∗∗∗

(0.001) (0.001) (0.001)

Middle × High -0.004∗∗∗ 0.001 -0.005∗∗∗

(0.001) (0.001) (0.001)

Elementary × High -0.003∗∗∗ -0.004∗∗∗ 0.001∗

(0.001) (0.001) (0.001)

Elementary × Middle × High -0.001 -0.001 -0.000
(0.001) (0.001) (0.001)

Y Mean 0.680 0.382 0.299
Observations 1,068,706 1,068,706 1,068,706
R2 0.133 0.051 0.246

Each column is a separate regression of the outcome listed in the column header on school
value added. Elementary school includes grades 4–5, middle school includes grades 6–8, and
high school includes grades 9–11. Each regression also includes the controls included in the
estimation of school value added, averaged across grades. Heteroskedasticity-robust standard
errors are presented in parentheses.
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Table D.8: CSU Outcomes on School Value Added

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Panel A: Elementary School Accepted Eng. Rem. Math Rem. STEM Major Undecided Persist to Year 2 Persist to Year 3

Elementary School ELA Value Added -0.006∗∗∗ -0.021∗∗∗ -0.023∗∗∗ 0.000 -0.019∗∗∗ 0.012∗∗∗ 0.014∗∗∗

(0.001) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Y Mean 0.778 0.227 0.243 0.344 0.206 0.836 0.759
Observations 705,594 287,420 287,420 288,616 288,616 224,291 171,644
R2 0.068 0.195 0.156 0.017 0.019 0.030 0.032

Panel B: Middle School Accepted Eng. Rem. Math Rem. STEM Major Undecided Persist to Year 2 Persist to Year 3 Degree STEM Degree

Middle School ELA Value Added -0.005∗∗∗ -0.022∗∗∗ -0.032∗∗∗ -0.001 -0.018∗∗∗ 0.012∗∗∗ 0.014∗∗∗ 0.008 -0.004
(0.001) (0.002) (0.002) (0.002) (0.003) (0.002) (0.002) (0.006) (0.005)

Y Mean 0.805 0.229 0.226 0.333 0.195 0.853 0.771 0.603 0.194
Observations 1,878,369 831,691 831,688 834,821 834,821 698,690 564,558 52,144 52,144
R2 0.070 0.169 0.127 0.017 0.016 0.026 0.029 0.028 0.014

Panel C: High School Accepted Eng. Rem. Math Rem. STEM Major Undecided Persist to Year 2 Persist to Year 3 Degree STEM Degree

High School ELA Value Added -0.006∗∗∗ -0.000 -0.008∗∗ -0.001 -0.005 0.002 0.002 0.002 -0.000
(0.002) (0.004) (0.004) (0.002) (0.005) (0.002) (0.003) (0.003) (0.002)

Y Mean 0.841 0.233 0.215 0.317 0.187 0.860 0.775 0.627 0.196
Observations 2,410,027 1,207,064 1,207,065 1,212,166 1,212,166 1,114,516 940,304 407,399 407,399
R2 0.059 0.122 0.089 0.018 0.015 0.020 0.024 0.033 0.014

Each cell is a separate regression of the outcome listed in the column header on school value added. Panels A-C are differentiated by which school level value added is included as an independent variable.
Elementary school includes grades 4–5, middle school includes grades 6–8, and high school includes grades 9–11. Each regression also includes the controls included in the estimation of school value added.
Standard errors cluster bootstrapped at the school level are presented in parentheses.
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Table D.9: CCC Outcomes on School Value Added

(1) (2) (3) (4) (5) (6)
Panel A: Elementary School Eng. Rem. Math Rem. Persist to Year 2 Transfered to 4-Year University Degree Associate’s

Elementary School ELA Value Added -0.007∗∗∗ -0.007∗∗∗ 0.012∗∗∗ 0.026∗∗∗ 0.022∗∗∗ 0.024∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.002) (0.002)

Y Mean 0.232 0.223 0.733 0.303 0.389 0.374
Observations 1,226,401 1,226,401 892,405 1,155,703 207,098 207,098
R2 0.139 0.093 0.052 0.161 0.137 0.144

Panel B: Middle School Eng. Rem. Math Rem. Persist to Year 2 Transfered to 4-Year University Degree Associate’s

Middle School ELA Value Added 0.003 -0.000 0.014∗∗∗ 0.010∗∗∗ 0.014∗∗∗ 0.014∗∗∗

(0.003) (0.002) (0.001) (0.002) (0.002) (0.002)

Y Mean 0.253 0.243 0.729 0.343 0.372 0.354
Observations 3,342,562 3,342,562 2,765,280 3,041,407 1,493,125 1,493,125
R2 0.156 0.099 0.054 0.181 0.142 0.152

Panel C: High School Eng. Rem. Math Rem. Persist to Year 2 Transfered to 4-Year University Degree Associate’s

High School ELA Value Added -0.003 -0.004 0.013∗∗∗ 0.030∗∗∗ 0.016∗∗∗ 0.015∗∗∗

(0.004) (0.003) (0.001) (0.002) (0.002) (0.002)

Y Mean 0.269 0.259 0.705 0.362 0.308 0.284
Observations 4,517,170 4,517,170 4,225,586 3,458,398 3,408,606 3,408,606
R2 0.163 0.105 0.056 0.199 0.145 0.166

Each cell is a separate regression of the outcome listed in the column header on school value added. Panels A-C are differentiated by which school level value added is included
as an independent variable. Elementary school includes grades 4–5, middle school includes grades 6–8, and high school includes grades 9–11. Each regression also includes the
controls included in the estimation of school value added. Standard errors cluster bootstrapped at the school level are presented in parentheses.
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Table D.10: School Value Added Characteristics

Test Scores Enrollment

Elementary Middle High Elementary Middle High

FTE Teachers per Student -0.04 1.51 -21.47∗∗∗ -19.19∗∗∗ -13.03∗∗∗ -9.61∗∗

(2.15) (2.17) (4.10) (2.32) (3.50) (3.97)

FTE Pupil Services per Student 5.62 -65.10∗∗∗ 9.59 -1.09 2.69 4.84
(4.56) (5.09) (13.42) (4.65) (8.84) (12.85)

English Learner Staff Per Student -0.31 7.05∗∗∗ 4.45∗∗∗ 1.61∗∗∗ 4.44∗∗ -2.57∗

(0.53) (0.60) (1.54) (0.54) (1.84) (1.40)

Proportion ≤ 3 Years Experience Teachers 0.17 -0.39∗∗∗ -0.33 -0.50∗∗∗ -0.57∗∗∗ 0.47∗

(0.10) (0.11) (0.23) (0.12) (0.19) (0.26)

Proportion Full Credential Teachers 0.82∗∗∗ 1.06∗∗∗ -0.43∗ -0.36∗ -0.01 1.05∗∗∗

(0.17) (0.14) (0.25) (0.21) (0.21) (0.36)

Proportion Male Teachers 1.70 -1.32 7.36∗ 2.77 0.10 9.75∗∗

(2.31) (1.52) (3.93) (2.56) (3.73) (3.97)

Enrollment Proportion Male 0.37 0.70 5.59 0.56 -0.51 7.80∗∗

(0.74) (0.92) (3.66) (0.81) (2.26) (3.85)

Proportion Male Teachers×Enrollment Proportion Male -5.56 -2.27 -15.15∗ -7.02 -1.69 -17.49∗∗

(4.48) (2.96) (7.75) (4.94) (7.26) (7.64)

Proportion Minority Teachers -0.66∗∗ -0.23 -0.92 0.53∗ 0.30 2.43∗∗∗

(0.30) (0.36) (0.66) (0.31) (0.53) (0.57)

Enrollment Proportion Minority -1.20∗∗∗ -0.08 -0.33∗ -2.04∗∗∗ -1.97∗∗∗ -1.41∗∗∗

(0.07) (0.09) (0.18) (0.08) (0.16) (0.17)

Proportion Minority Teachers×Enrollment Proportion Minority 1.60∗∗∗ 0.43 1.64∗∗ 0.51 1.00∗ -1.13∗

(0.33) (0.44) (0.77) (0.35) (0.59) (0.67)

Constant -0.22 -1.01∗∗ -1.11 2.18∗∗∗ 2.10∗ -4.20∗∗

(0.44) (0.50) (1.89) (0.48) (1.18) (2.07)

Observations 22,054 15,734 4,573 20,075 6,105 1,078
R2 .0847 .287 .0348 .219 .235 .201

Each column represents a separate regression of value added on school characteristics. Standard errors clustered at the school level are presented in parentheses.

58



Table D.11: School Value Added Characteristics

Test Scores Enrollment

Elementary Middle High Elementary Middle High

Instruction Expenditures ($1,000s) per Student 0.01 0.01∗∗∗ 0.01 0.01∗∗ 0.01 0.01
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Pupil Services Expenditures ($1,000s) per Student -0.33∗∗∗ -0.17∗∗∗ -0.09∗ -0.51∗∗∗ -0.52∗∗∗ -0.36∗∗∗

(0.03) (0.03) (0.04) (0.05) (0.06) (0.05)

Ancillary Services Expenditures ($1,000s) per Student 0.39∗∗∗ -0.05 0.24∗ 1.15∗∗∗ 0.62∗∗∗ 0.47∗∗∗

(0.12) (0.08) (0.13) (0.43) (0.17) (0.17)

Other Expenditures ($1,000s) per Student 0.03∗∗∗ -0.01∗∗ 0.01 0.01∗ 0.02∗∗ 0.02∗∗∗

(0.00) (0.00) (0.01) (0.00) (0.01) (0.01)

General Administration Expenditures ($1,000s) per Student 0.02∗ 0.02∗∗ -0.01 0.06∗∗∗ 0.07∗∗∗ 0.04∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.02) (0.01)

Total Enrollment (Thousands) -0.01 -0.45∗∗∗ 0.18∗∗∗ -0.23∗∗∗ -0.06 0.16∗∗∗

(0.04) (0.04) (0.03) (0.06) (0.05) (0.03)

Constant 0.19∗∗∗ 0.09∗ -0.21∗∗∗ 0.53∗∗∗ 0.50∗∗∗ 0.16∗∗

(0.05) (0.05) (0.08) (0.06) (0.07) (0.08)

Observations 36,688 26,901 9,708 21,008 12,405 5,858
R2 .024 .0886 .0485 .0491 .0474 .0791

Each column represents a separate regression of value added on school characteristics. Standard errors clustered at the school level are presented in parentheses.
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Table D.12: K–12 Counts

Elementary Middle High

ELA Math ELA ELA

All Students 8,533,348 8,533,348 12,976,007 13,232,134

+ Nonmissing Test Score 8,104,810 8,104,810 12,395,493 12,770,573

+ First Test Score for Grade 7,857,137 7,857,137 11,930,098 12,089,459

+ Conventional School 7,720,543 7,720,543 11,657,560 11,164,330

+ School Size > 10 7,719,862 7,719,862 11,656,772 11,163,636

+ Nonmissing Subject Test Score 7,688,015 7,681,991 11,599,425 11,021,578

+ Nonmissing Demographic Controls 7,380,519 7,375,086 11,184,642 10,664,530

+ Nonmissing 1 Grade Prior Test Score 6,574,347 6,563,929 9,848,334 9,202,521

+ Nonmissing 2 Grade Prior Test Score 5,794,367 5,779,309 8,549,077 7,913,160

+ Nonmissing Peer Controls 5,793,109 5,778,066 8,547,750 7,912,702

+ School VA Sample Size ≥ 7 5,785,167 5,770,100 8,541,805 7,911,067

Values are counts of the number of observations in each sample. Each row is additive, so the restrictions from
all prior rows are also present in the current row. Data comes from public schools in the state of California
between the 2004–2005 and 2012–2013 school years. Elementary school includes grades 4–5, middle school
includes grades 6–8, and high school includes grades 9–11.

60



Table D.13: K–12 Summary Statistics

Elementary Middle High

ELA Math ELA ELA

Included Excluded Included Excluded Included Excluded Included Excluded

School Controls

# of Students in School-Grade 104 107 104 107 326 328 549 492
[43.6] [54.1] [43.6] [54] [193] [220] [234] [332]

Demographic Controls

Age in Years 10.2 10.3 10.2 10.3 12.7 12.8 15.7 15.9
[.644] [.71] [.644] [.71] [.921] [.948] [.922] [.991]

Male .498 .544 .498 .544 .497 .544 .495 .538
[.5] [.498] [.5] [.498] [.5] [.498] [.5] [.499]

Hispanic or Latino .524 .51 .524 .51 .51 .488 .472 .481
[.499] [.5] [.499] [.5] [.5] [.5] [.499] [.5]

White .273 .272 .273 .272 .284 .289 .31 .296
[.445] [.445] [.445] [.445] [.451] [.453] [.463] [.456]

Asian .122 .105 .122 .105 .125 .106 .137 .104
[.327] [.307] [.327] [.306] [.33] [.308] [.344] [.306]

Black or African American .0617 .0938 .0615 .094 .0632 .0983 .0617 .0981
[.241] [.292] [.24] [.292] [.243] [.298] [.241] [.297]

Other Race .0197 .0395 .0196 .0394 .0188 .0372 .0189 .037
[.139] [.195] [.139] [.195] [.136] [.189] [.136] [.189]

Economic Disadvantage .595 .619 .595 .62 .567 .579 .492 .508
[.491] [.486] [.491] [.485] [.495] [.494] [.5] [.5]

Limited English Proficient Status .251 .337 .251 .336 .161 .259 .12 .212
[.433] [.473] [.433] [.472] [.367] [.438] [.325] [.409]

Disabled .041 .163 .0409 .162 .0387 .147 .0434 .101
[.198] [.369] [.198] [.369] [.193] [.354] [.204] [.301]

Test Scores

Current Test Score .0568 -.144 .0541 -.136 .0688 -.155 .135 -.23
[.982] [1.03] [.991] [1.01] [.979] [1.03] [.965] [1.02]

1 Grade Prior Test Score .0801 -.145 .0779 -.141 .0769 -.161 .156 -.182
[.973] [1.03] [.978] [1.02] [.974] [1.03] [.961] [1.02]

2 Grade Prior Test Score .102 -.172 .1 -.171 .0794 -.348 .157 -.374
[.968] [1.02] [.966] [1.02] [.975] [1] [.964] [.962]

Schools 6,036 7,543 6,035 7,543 5,068 7,292 1,593 3,674
Students 3,407,230 1,844,000 3,400,121 1,853,176 3,903,559 2,448,072 3,819,155 2,901,514
Observations 5,785,167 2,856,176 5,770,100 2,871,243 8,541,805 4,527,422 7,911,067 5,405,132

Values are means and standard deviations [in brackets] of the dependent and independent variables used in the value added estimation. The included column
contains students included in the value added estimation, while the excluded column contains students who were excluded from the value added estimation.
Data comes from public schools in the state of California between the 2004–2005 and 2012–2013 school years. Elementary school includes grades 4–5, middle
school includes grades 6–8, and high school includes grades 9–11.
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Table D.14: K–12 Outcomes on School Test Score Value Added

(1) (2) (3) (4) (5) (6)
Panel A: Elementary-School Math 1 Grade Later CST ELA Score 1 Grade Later CST Math Score Stayed in Public School Highest Math Subject in Grade 7 Highest Math Subject in Grade 11

Elementary School Math Value Added 0.059∗∗∗ 0.126∗∗∗ 0.000∗ 0.004∗∗∗ 0.012∗∗∗

(0.002) (0.001) (0.000) (0.001) (0.002)

Y Mean 0.057 0.052 0.793 0.081 0.374
Observations 4,770,271 4,767,070 5,761,968 3,578,272 639,038
R2 0.585 0.648 0.784 0.185 0.318

Each cell is a separate regression of the outcome listed in the column header on school value added. Elementary school includes grades 4–5. Each regression also includes the controls included in the estimation of school value added. Standard errors cluster
bootstrapped at the school level are presented in parentheses.

62



Table D.15: Postsecondary Enrollment on School Test Score Value Added

(1) (2) (3)
Panel A: Elementary-School Math Enrolled Enrolled 2-Year Enrolled 4-Year

Elementary School Math Value Added 0.005∗∗∗ -0.011∗∗∗ 0.016∗∗∗

(0.001) (0.001) (0.001)

Y Mean 0.652 0.369 0.284
Observations 2,693,741 2,693,741 2,693,741
R2 0.116 0.026 0.195

Each cell is a separate regression of the outcome listed in the column header on school value added. Ele-
mentary school includes grades 4–5, middle school includes grades 6–8, and high school includes grades 9–11.
Each regression also includes the controls included in the estimation of school value added. Standard errors
cluster bootstrapped at the school level are presented in parentheses.
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Table D.16: CSU Outcomes on School Value Added

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Panel A: Elementary-School Math Accepted Eng. Rem. Math Rem. STEM Major Undecided Persist to Year 2 Persist to Year 3

Elementary School Math Value Added -0.006∗∗∗ -0.003∗∗ -0.003∗∗ 0.000 -0.011∗∗∗ 0.002 0.004∗∗

(0.001) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Y Mean 0.778 0.227 0.243 0.344 0.206 0.836 0.759
Observations 704,501 287,001 287,001 288,196 288,196 223,982 171,423
R2 0.071 0.153 0.191 0.023 0.018 0.030 0.032

Each cell is a separate regression of the outcome listed in the column header on school value added. Elementary school includes grades 4–5, middle school includes grades 6–8, and high school
includes grades 9–11. Each regression also includes the controls included in the estimation of school value added. Standard errors cluster bootstrapped at the school level are presented in
parentheses.
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Table D.17: CCC Outcomes on School Value Added

(1) (2) (3) (4) (5) (6)
Panel A: Elementary-School Math Eng. Rem. Math Rem. Persist to Year 2 Transfered to 4-Year University Degree Associate’s

Elementary School Math Value Added -0.006∗∗∗ -0.006∗∗∗ 0.004∗∗∗ 0.015∗∗∗ 0.010∗∗∗ 0.011∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.002) (0.002)

Y Mean 0.232 0.223 0.733 0.304 0.389 0.375
Observations 1,223,384 1,223,384 890,338 1,152,925 206,767 206,767
R2 0.124 0.110 0.054 0.165 0.141 0.149

Each cell is a separate regression of the outcome listed in the column header on school value added. Elementary school includes grades 4–5, middle school includes grades 6–8,
and high school includes grades 9–11. Each regression also includes the controls included in the estimation of school value added. Standard errors cluster bootstrapped at the
school level are presented in parentheses.
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