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Abstract: This study considers the forecasting of mortality rates in multiple populations. We propose
a model that combines mortality forecasting and functional data analysis (FDA). Under the FDA
framework, the mortality curve of each year is assumed to be a smooth function of age. As with most
of the functional time series forecasting models, we rely on functional principal component analysis
(FPCA) for dimension reduction and further choose a vector error correction model (VECM) to jointly
forecast mortality rates in multiple populations. This model incorporates the merits of existing
models in that it excludes some of the inherent randomness with the nonparametric smoothing from
FDA, and also utilizes the correlation structures between the populations with the use of VECM
in mortality models. A nonparametric bootstrap method is also introduced to construct interval
forecasts. The usefulness of this model is demonstrated through a series of simulation studies
and applications to the age-and sex-specific mortality rates in Switzerland and the Czech Republic.
The point forecast errors of several forecasting methods are compared and interval scores are used
to evaluate and compare the interval forecasts. Our model provides improved forecast accuracy in
most cases.

Keywords: age-and sex-specific mortality rate; bootstrapping prediction interval; vector
autoregressive model; vector error correction model; interval score

1. Introduction

Most countries around the world have seen steady decreases in mortality rates in recent
years, which also come with aging populations. Policy makers from both insurance companies
and government departments seek more accurate modeling and forecasting of the mortality rates.
The renowned Lee–Carter model [1] is a benchmark in mortality modeling. Their model was the first to
decompose mortality rates into one component, age, and the other component, time, using singular
value decomposition. Since then, many extensions have been made based on the Lee–Carter model.
For instance, Booth et al. [2] address the non-linearity problem in the time component. Koissi et al. [3]
propose a bootstrapped confidence interval for forecasts. Renshaw and Haberman [4] introduce the
age-period-cohort model that incorporates the cohort effect in mortality modeling. Other than the
Lee–Carter model, Cairns et al. [5] propose the Cairns–Blake–Dowd (CBD) model that satisfies the
new-data-invariant property. Chan et al. [6] use a vector autoregressive integrated moving average
(VARIMA) model for the joint forecast of CBD model parameters.

Mortality trends in two or more populations may be correlated, especially between
sub-populations in a given population, such as females and males. This calls for a model that
makes predictions in several populations simultaneously. We would also expect that the forecasts
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of similar populations do not diverge over the long run, so coherence between forecasts is a desired
property. Carter and Lee [7] examine how mortality rates of female and male populations can be
forecast together using only one time-varying component. Li and Lee [8] propose a model with a
common factor and a population-specific factor to achieve coherence. Yang and Wang [9] use a vector
error correction model (VECM) to model the time-varying factors in multi-populations. Zhou et al. [10]
argue that the VECM performs better than the original Lee–Carter and vector autoregressive (VAR)
models, and that the assumption of a dominant population is not needed. Danesi et al. [11] compare
several multi-population forecasting models and show that the preferred models are those providing a
balance between model parsimony and flexibility. These mentioned approaches model mortality rates
using raw data without smoothing techniques. In this paper, we propose a model under the functional
data analysis (FDA) framework.

In functional data analysis settings (see Ramsay and Silverman [12] for a comprehensive
Introduction to FDA), it is assumed that there is an underlying smooth function of age as the mortality
rate in each year. Since mortality rates are collected sequentially over time, we use the term functional
time series for the data. Let yt(x) denote the log of the observed mortality rate of age x at year t.
Suppose ft(x) is a underlying smooth function, where x ∈ I represents the age continuum defined on
a finite interval. In practice, we can only observe functional data on a set of grid points and the data
are often contaminated by random noise:

yt(xj) = ft(xj) + ut,j, t = 1, . . . , n, j = 1, . . . , p,

where n denotes the number of years and p denotes the number of discrete data points of age
observed for each function. The errors {ut,j} are independent and identically distributed (iid) random
variables with mean zero and variances σ2

t (xj). Smoothing techniques are thus needed to obtain each
function ft(x) from a set of realizations. Among many others, localized least squares and spline-based
smoothing are two of the approaches frequently used (see, for example, [13,14]). We are not the
first to use the functional data approach to model mortality rates. Hyndman and Ullah [15] propose
a model under the FDA framework, which is robust to outlying years. Chiou and Müller [16] introduce
a time-varying eigenfunction to address the cohort effect. Hyndman et al. [17] propose a product–ratio
model to achieve coherency in the forecasts of multiple populations.

Our proposed method is illustrated in Section 2 and the Appendices. It can be summarized in
four steps:

1) smooth the observed data in each population;
2) reduce the dimension of the functions in each population using functional principal component

analysis (FPCA) separately;
3) fit the first set of principal component scores from all populations with VECM. Then, fit the

second set of principal component scores with another VECM and so on. Produce forecasts using
the fitted VECMs; and

4) produce forecasts of mortality curves.

Yang and Wang [9] and Zhou et al. [10] also use VECM to model the time-varying factor, namely,
the first set of principal component scores. Our model is different in the following three ways. First,
the studied object is in an FDA setting. Nonparametric smoothing techniques are used to eliminate
extraneous variations or noise in the observed data. Second, as with other Lee–Carter based models,
only the first set of principal component scores are used for prediction in [9,10]. For most countries,
the fraction of variance explained is not high enough for one time-varying factor to adequately
explain the mortality change. Our approach uses more than one set of principal component scores,
and we review some of the ways to choose the optimal number of principal component scores. Third,
in their previous papers, only point forecasts are calculated, while we use a bootstrap algorithm for
constructing interval forecasts. Point and interval forecast accuracies are both considered.
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The article is organized as follows: in Section 2, we revisit the existing functional time series
models and put forward a new functional time series method using a VECM. In Section 3, we illustrate
how the forecast results are evaluated. Simulation experiments are shown in Section 4. In Section 5,
real data analyses are conducted using age-and sex-specific mortality rates in Switzerland and the
Czech Republic. Concluding remarks are given in Section 6, along with reflections on how the methods
presented here can be further extended.

2. Forecasting Models

Let us consider the simultaneous prediction of multivariate functional time series. Consider two
populations as an example: f (ω)

t (x), ω = 1, 2 are the smoothed log mortality rates of each population.

According to (A1) in the Appendices, for a sequence of functional time series { f (ω)
t (x)}, each element

can be decomposed as:

f (ω)
t (x) = µ(ω)(x) +

∞

∑
k=1

ξ
(ω)
t,k φ

(ω)
k (x)

= µ(ω)(x) +
K

∑
k=1

ξ
(ω)
t,k φ

(ω)
k (x) + e(ω)

t (x),

where e(ω)
t (x) denotes the model truncation error function that captures the remaining terms.

Thus, with functional principal component (FPC) regression, each series of functions are projected
onto a K(ω)-dimension space.

The functional time series curves are characterized by the corresponding principal component

scores that form a time series of vectors with the dimension K(ω): ξ
(ω)
t =

(
ξ
(ω)
t,1 , ..., ξ

(ω)

t,K(ω)

)>
. To construct

h-step-ahead predictions f̂ (ω)
n+h|n of the curve, we need to construct predictions for the K(ω)-dimension

vectors of the principal component scores; namely, ξ̂
(ω)
n+h|n =

(
ξ̂
(ω)
(n+h|n),1, · · · , ξ̂

(ω)

(n+h|n),K(ω)

)>
, with

techniques from multivariate time series using covariance structures between multiple populations
(see also [18]). The h-step-ahead prediction for f (ω)

n+h|n can then be constructed by forward projection

f̂ (ω)
n+h|n = E

[
f (ω)
n+h| f

(ω)
1 (x), . . . , f (ω)

n (x)
]

= µ̂(ω)(x) + ξ̂
(ω)
(n+h|n),1φ̂

(ω)
1 (x) + · · ·+ ξ̂

(ω)

(n+h|n),K(ω) φ̂
(ω)

K(ω)(x), ω = 1, 2.

In the following material, we consider four methods for modeling and predicting the principal
component scores ξn+h, where h denotes a forecast horizon.

2.1. Univariate Autoregressive Integrated Moving Average Model

The FPC scores can be modeled separately as univariate time series using the autoregressive
integrated moving average (ARIMA(p, d, q)) model:

Φ(B)(1− B)dξ
(ω)
t,k = Θ(B)w(ω)

t,k , k = 1, · · · , K(ω), ω = 1, 2,

where B denotes the lag operator, and ωt,k is the white noise. Φ(B) denotes the autoregressive part and
Θ(B) denotes the moving average part. The orders p, d, q can be determined automatically according
to either the Akaike information criterion or the Bayesian information criterion value [19]. Then,
the maximum likelihood method can be used to estimate the parameters.

This prediction model is efficient in some cases. However, Aue et al. [18] argue that, although the
FPC scores have no instantaneous correlation, there may be autocovariance at lags greater than zero.
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The following model addresses this problem by using a vector time series model for the prediction of
each series of FPC scores.

2.2. Vector Autoregressive Model

2.2.1. Model Structure

Now that each function f (ω)
t (x) is characterized by a K(ω)-dimension vector ξ

(ω)
t , we can model

the ξ
(ω)
t s using a VAR(p) model:

ξ
(ω)
t = υ(ω) + A(ω)

1 ξ
(ω)
t−1 + · · ·+ A(ω)

p ξ
(ω)
t−p + εt,

where A(ω) = {A(ω)
1 , . . . , A(ω)

p } are fixed K(ω) × K(ω) coefficient matrices and {εt} form a sequence
of iid random K(ω)-vectors with a zero mean vector. There are many approaches to estimating the
VAR model parameters in [20] including multivariate least squares estimation, Yule–Walker estimation
and maximum likelihood estimation.

The VAR model seeks to make use of the valuable information hidden in the data that may have
been lost by depending only on univariate models. However, the model does not fully take into
account the common covariance structures between the populations.

2.2.2. Relationship between the Functional Autoregressive and Vector Autoregressive Models

As mentioned in the Introduction, Bosq [21] proposes functional autoregressive (FAR) models
for functional time series data. Although the computations for FAR(p) models are challenging, if not
unfeasible, one exception is FAR(1), which takes the form of:

ft = Ψ( ft−1) + εt, (1)

where Ψ : H → H is a bounded linear operator. However, it can be proven that if a FAR(p) structure is
indeed imposed on ( ft : t ∈ Z), then the empirical principal component scores ξt should approximately
follow a VAR(p) model. Let us consider FAR(1) as an example. Apply 〈·, φ̂k〉 to both sides of Equation (1)
to obtain:

〈 ft, φ̂k〉 = 〈Ψ( ft−1), φ̂k〉+ 〈εt, φ̂k〉

=
∞

∑
k′=1
〈 ft−1, φ̂k′〉〈Ψ(φ̂k′), φ̂k〉+ 〈εt, φ̂k〉

=
d

∑
k′=1
〈 ft−1, φ̂k′〉〈Ψ(φ̂k′), φ̂k〉+ δt,k,

with remainder terms δt,k = dt,k + 〈εt, φ̂k〉, where dt,k = ∑∞
k′=d+1〈 ft−1, φ̂k′〉〈Ψ(φ̂k′), φ̂k〉.

With matrix notation, we get ξt = Bξt−1 + δt, for t = 2, . . . , n where B ∈ Rd×d. This is a VAR(1)
model for the estimated principal component scores. In fact, it can be proved that the two models
make asymptotically equivalent predictions [18].

2.3. Vector Error Correction Model

The VAR model relies on the assumption of stationarity; however, in many cases, that assumption
does not stand. For instance, age-and sex-specific mortality rates over a number of years show
persistently varying mean functions. The extension we suggest here uses the VECMs to fit pairs
of principal component scores of the two populations. In a VECM, each variable in the vector is
non-stationary, but there is some linear combination between the variables that is stationary in the
long run. Integrated variables with this property are called co-integrated variables, and the process
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involving co-integrated variables is called a co-integration process. For more details on VECMs,
consult [20].

2.3.1. Fitting a Vector Error Correction Model to Principal Component Scores

For the kth principal component score in the two populations, suppose the two are both
first integrated and have a relationship of long-term equilibrium:

ξ
(1)
t,k − βξ

(2)
t,k = δt,k,

where β is a constant and δt,k is a stable process. According to Granger’s Representation Theorem,

the following VECM specifications exist for ξ
(1)
t,k and ξ

(2)
t,k :

∆ξ
(1)
t,k = α1

(
ξ
(1)
t−1,k − βξ

(2)
t−1,k

)
+ γ1,1∆ξ

(1)
t−1,k + γ1,2∆ξ

(2)
t−1,k + ε

(1)
t,k ,

∆ξ
(2)
t,k = α2

(
ξ
(1)
t−1,k − βξ

(2)
t−1,k

)
+ γ2,1∆ξ

(1)
t−1,k + γ2,2∆ξ

(2)
t−1,k + ε

(2)
t,k ,

(2)

where k = 1, . . . , K, and α1, α2, γ1,1, γ1,2, γ2,1, γ2,2 are the coefficients, ε
(1)
t,k and ε

(2)
t,k are innovations.

Note that further lags of ∆ξt,k’s may also be included.

2.3.2. Estimation

Let us consider the VECM(p) without the deterministic term written in a more compact
matrix form:

∆ξk = Πkξ−1,k + Γk∆Ψk + εk,

where

∆ξk = [∆ξ1,k, . . . , ∆ξt,k],

ξ−1,k = [ξ0,k, . . . , ξn−1,k],

Γk = [Γ1,k, . . . , Γp−1,k],

∆Ψk = [∆Ψ0,k, . . . , ∆Ψn−1,k] with ∆Ψt−1,k =

 ∆ξt−1,k
...

∆ξt−p+1,k

 ,

εk = [ε1,k, . . . , εt,k].

With this simple form, least squares, generalized least squares and maximum likelihood estimation
approaches can be applied. The computation of the model with deterministic terms is equally easy,
requiring only minor modifications. Moreover, the asymptotic properties of the parameter estimators
are essentially unchanged. For further details, refer to [20]. There is a sequence of tests to determine
the lag order, such as the likelihood ratio test. Since our purpose is to make predictions, a selection
scheme based on minimizing the forecast mean squared error can be considered.

2.3.3. Expressing a Vector Error Correction Model in a Vector Autoregressive Form

In a matrix notation, the model in Equation (2) can be written as:

∆ξt,k = αβ>ξt−1,k + Γ1∆ξt−1,k + εt,k,
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or

ξt,k − ξt−1,k = αβ>ξt−1,k + Γ1(ξt−1,k − ξt−2,k) + εt,k, (3)

where

α =

[
α1

α2

]
, β> =

(
1 β

)
, Γ1 =

[
γ1,1 γ1,2

γ2,1 γ2,2

]
.

Rearranging the terms in Equation (3) gives the VAR(2) representation:

ξt,k = (IK + Γ1 + αβ>)ξt−1,k − Γ1ξt−2,k + εt,k.

Thus, a VECM(1) can be written in a VAR(2) form. When forecasting the scores, it is quite
convenient to write the VECM process in the VAR form. The optimal h-step-ahead forecast with a
minimal mean squared error is given by the conditional expectation.

2.4. Product–Ratio Model

Coherent forecasting refers to non-divergent forecasting for related populations [8]. It aims to
maintain certain structural relationships between the forecasts of related populations. When we model
two or more populations, joint modeling plays a very important role in terms of achieving coherency.
When modeled separately, forecast functions tend to diverge in the long run. The product–ratio
model forecasts the population functions by modeling and forecasting the ratio and product of the
populations. Coherence is imposed by constraining the forecast ratio function to stationary time
series models. Suppose f (1)(x) and f (2)(x) are the smoothed functions from the two populations to be
modeled together, we compute the products and ratios by:

pt(x) =
√

f (1)t (x) f (2)t (x),

rt(x) =
√

f (1)t (x)
/

f (2)t (x).

The product {pt(x)} and ratio {rt(x)} functions are then decomposed using FPCA and the scores
can be modeled separately with a stationary autoregressive moving average (ARMA)(p, q) [22] in
the product functions or an autoregressive fractionally integrated moving average (ARFIMA)(p, d, q)
process [23,24] in the ratio functions, respectively. With the h-step-ahead forecast values for p̂n+h|n(x)

and r̂n+h|n(x), the h-step-ahead forecast values for f̂ (1)n+h|n(x) and f̂ (2)n+h|n(x) can be derived by

f̂ (1)n+h|n(x) = p̂n+h|n(x)̂rn+h|n(x),

f̂ (2)n+h|n(x) = p̂n+h|n(x)
/

r̂n+h|n(x).

2.5. Bootstrap Prediction Interval

The point forecast itself does not provide information about the uncertainty of prediction.
Constructing a prediction interval is an important part of evaluating forecast uncertainty when
the full predictive distribution is hard to specify.

The univariate model proposed by [15], discussed in Section 2.1, computes the variance of the
predicted function by adding up the variance of each component as well as the estimated error variance.
The (1− α)× 100% prediction interval is then constructed under the assumption of normality, where α

denotes the level of significance. The same approach is used in the product–ratio model; however,
when the normality assumption is violated, alternative approaches may be used.
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Bootstrapping is used to construct prediction interval in the functional VECM that we propose.
There are three sources of uncertainties in the prediction. The first is from the smoothing process.
The second is from the remaining terms after the cut-off at K in the principal component regression:
∑n

k=K+1 ξt,kφk(x). If the correct number of dimensions of K is picked, the residuals can be regarded as
independent. The last source of uncertainty is from the prediction of scores. The smoothing errors
are generated under the assumption of normality and the other two kinds of errors are bootstrapped.
All three uncertainties are added up to construct bootstrapped prediction functions. The steps are
summarized in the following algorithm:

1) Smooth the functions with y(ω)
t (xj) = f (ω)

t (xj)+ u(ω)
t (xj), ω = 1, 2, where u(ω)

t is the smoothing
error with mean zero and estimated variance σ̂2

t (xj)
(ω), j = 1, . . . , p.

2) Perform FPCA on the smoothed functions f (1)t and f (2)t separately, and obtain K pairs of principal

component scores ξt,k =
(

ξ
(1)
t,k , ξ

(2)
t,k

)>
.

3) Fit K VECM models to the principal component scores. From the fitted scores ξ̂t,k, for t = 1, . . . , n

and k = 1, . . . , K, obtain the fitted functions f̂t,=
(

f̂ (1)t , f̂ (2)t

)>
.

4) Obtain residuals et from et = ft − f̂t.

5) Express the estimated VECM from step 3 in its VAR form: ξt,k = Â1ξt−1,k + Â2ξt−2,k + εt,k,
t = 1, . . . , n and k = 1, . . . , K. Construct K sets of bootstrap principal component scores time
series ξ∗t,k = Â1ξ∗t−1,k + Â2ξ∗t−2,k + ε∗t,k, where the error term ε∗t,k is re-sampled with replacement
from εt,k.

6) Refit a VECM with ξ∗t,k and make h-step-ahead predictions ξ̂∗n+h|n and hence a predicted

function f̂ ∗n+h|n.

7) Construct a bootstrapped h-step-ahead prediction for the function by

f̂ ∗∗n+h|n(xj) = f̂ ∗n+h|n(xj) + e∗t + u∗t (xj),

where e∗t is a re-sampled version of et from step 4 and u∗t (xj) are generated from a normal
distribution with mean 0 and variance σ2

t,j, where σ2
t,j is re-sampled from {σ̂2

1,j, . . . , σ̂2
n,j} from

step 1).

8) Repeat steps 5 to 7 many times.

9) The (1− α)× 100% point-wise prediction intervals can be constructed by taking the α
2 × 100%

and (1− α
2 )× 100% quantiles of the bootstrapped samples.

Koissi et al. [3] extend the Lee–Carter model with a bootstrap prediction interval. The prediction
interval we suggest in this paper is different from their method. First, we work under a functional
framework. This means that there is extra uncertainty from the smoothing step. Second, in both
approaches, errors caused by dimension reduction are bootstrapped. Third, after dimension reduction,
their paper uses an ARIMA(0, 1, 0) model to fit the time-varying component. There is no need to
consider forecast uncertainty since the parameters of the time series are fixed. In our approach,
parameters are estimated using the data. We adopt similar ideas from the early work of Masarotto [25]
for the bootstrap of the autoregression process. This step can also be further extended to a bootstrap-
after-bootstrap prediction interval [26]. To summarize, we incorporate three sources of uncertainties
in our prediction interval, whereas Koissi et al. [3] only considers one due to the simplicity of the
Lee–Carter model.
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3. Forecast Evaluation

We split the data set into a training set and a testing set. The four models are fitted to the data in
the training set and predictions are made. The data in the testing set is then used for forecast evaluation.
Following the early work by [27], we allocate the first two-thirds of the observations into the training
set and the last one-third into the testing set.

We use an expanding window approach. Suppose the size of the full data set is 60. The first
40 functions are modeled and one to 20-step-ahead forecasts are produced. Then, the first 41 functions
are used to make one to 19-step-ahead forecasts. The process is iterated by increasing the sample size
by one until reaching the end of the data. This produces 20 one-step-ahead forecasts, 19 two-step-ahead
forecasts, . . . and, finally, one 20-step-ahead forecast. The forecast values are compared with the true
values of the last 20 functions. Mean absolute prediction errors (MAPE) and mean squared prediction
errors (MSPE) are used as measures of point forecast accuracy [11]. For each population, MAPE and
MSPE can be calculated as:

MAPE(h) =
1

(21− h)× p

20

∑
η=h

p

∑
j=1

∣∣∣yn+η(xj)− f̂n+η|n+η−h(xj)
∣∣∣,

MSPE(h) =
1

(21− h)× p

20

∑
η=h

p

∑
j=1

[
yn+η(xj)− f̂n+η|n+η−h(xj)

]2
,

(4)

where f̂n+η|n+η−h represents the h-step-ahead prediction using the first n + η − h years fitted in the
model, and yn+η(xj) denotes the true value.

For the interval forecast, coverage rate is a commonly used evaluation standard. However,
coverage rate alone does not take into account the width of the prediction interval. Instead, the interval
score is an appealing method that combines both a measure of the coverage rate and the width of the
prediction interval [28]. If f̂ u

n+h|n and f̂ l
n+h|n are the upper and lower (1− α)× 100% prediction bounds,

and yn+h is the realized value, the interval score at point xj is:

Sα(xj) =
[

f̂ u
n+h|n(xj)− f̂ l

n+h|n(xj)
]

+
2
α

[
f̂ l
n+h|n(xj)− yn+h(xj)

]
1

{
yn+h(xj) < f̂ l

n+h|n(xj)
}

+
2
α

[
yn+h(xj)− f̂ u

n+h|n(xj)
]
1

{
yn+h(xj) > f̂ u

n+h|n(xj)
}

,

(5)

where α is the level of significance, and 1{·} is an indicator function. According to this standard,
the best predicted interval is the one that gives the smallest interval score. In the functional case here,
the point-wise interval scores are computed and the mean over the discretized ages is taken as a score
for the whole curve. Then, the score values are averaged across the forecast horizon to get a mean
interval score at horizon h:

Sα(h) =
1

(21− h)× p

20

∑
η=h

p

∑
j=1

Sα[ f̂ u
n+η|n+η−h(xj), f̂ l

n+η|n+η−h(xj); yn+η(xj)], (6)

where p denotes the number of age groups and h denotes the forecast horizons.

4. Simulation Studies

In this section, we report the results from the prediction of simulated non-stationary functional
time series using the models discussed in Section 2. We generated two series of correlated populations,
each with two orthogonal basis functions. The simulated functions are constructed by

f (ω)
t (x) = ξ

(ω)
t,1 φ

(ω)
1 (x) + ξ

(ω)
t,2 φ

(ω)
2 (x), ω = 1, 2. (7)
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The construction of the basis functions is arbitrary, with the only restriction being that of
orthogonality. The two basis functions for the first population we used are φ

(1)
1 (x) = − cos(πx)

and φ
(1)
2 = sin(πx), and, for the second population, these are φ

(2)
1 (x) = − cos(πx + π/8) and

φ
(2)
2 (x) = sin(πx + π/8), where x ∈ [0, 1]. Here, we are using n = 100 discrete data points for

each function. As shown in Figure 1, the basis functions are scaled so that they have an L2 norm of 1.
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Figure 1. Simulated basis functions for the first and second populations. (a) basis functions for
population 1; (b) basis functions for population 2.

The principal component scores, or coefficients ξt,k, are generated with non-stationary time series
models and centered to have a mean of zero. In Section 4.1, we consider the case with co-integration,
and, in Section 4.2, we consider the case without co-integration.

4.1. With Co-Integration

We first considered the case where there is a co-integration relationship between the scores of the
two populations. Assuming that the principal component scores are first integrated, the two pairs of
scores are generated with the following two models:[

∆ξ
(1)
t,1

∆ξ
(2)
t,1

]
=

[
−0.2 0.4

0.2 −0.4

] [
ξ
(1)
t,1

ξ
(2)
t,1

]
+

[
0.4 0.3
−0.3 −0.4

] [
∆ξ

(1)
t−1,1

∆ξ
(2)
t−1,1

]
+

[
ε
(1)
t,1

ε
(2)
t,1

]
,

[
∆ξ

(1)
t,2

∆ξ
(2)
t,2

]
=

[
−0.4 0.4

0.4 −0.4

] [
ξ
(1)
t,2

ξ
(2)
t,2

]
+

[
0.3 −0.2
−0.2 0.3

] [
∆ξ

(1)
t−1,2

∆ξ
(2)
t−1,2

]
+

[
ε
(1)
t,2

ε
(2)
t,2

]
,

where εt,k are innovations that follow a Gaussian distribution with mean zero and variance σ2
k . To satisfy

the condition of decreasing eigenvalues: λ1 > λ2, we used σ2
1 = 0.1 and σ2

2 = 0.01.

It can easily be seen that the long-term equilibrium for the first pair of scores is −ξ
(1)
t,1 + 2ξ

(2)
t,1 and,

for the second pair of scores, it is −ξ
(1)
t,2 + ξ

(2)
t,2 .
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4.2. Without Co-Integration

When co-integration does not exist, there is no long-term equilibrium between the two sets of
scores, but they are still correlated through the coefficient matrix. We assumed that the first integrated
scores follow a stable VAR(1) model:[

∆ξ
(1)
t,1

∆ξ
(2)
t,1

]
=

[
0.4 −0.3
−0.2 0.4

] [
∆ξ

(1)
t−1,1

∆ξ
(2)
t−1,1

]
+

[
ε
(1)
t,1

ε
(2)
t,1

]
,

[
∆ξ

(1)
t,2

∆ξ
(2)
t,2

]
=

[
0.3 0.1
0.2 0.5

] [
∆ξ

(1)
t−1,2

∆ξ
(2)
t−1,2

]
+

[
ε
(1)
t,2

ε
(2)
t,2

]
.

For a VAR(1) model to be stable, it is required that det(Ip− A1z) = 0 should have all roots outside
the unit circle.

4.3. Results

The principal component scores are generated using the aforementioned two models for
observations t = 1, . . . , 60. Two sets of simulated functions are generated using Equation (7).
We performed an FPCA on the two populations separately. The estimated principal component
scores are then modeled using the univariate model, the VAR model and the VECM.

We repeated the simulation procedures 150 times. In each simulation, 500 bootstrap samples are
generated to calculate the prediction intervals. We show the MSPE and the mean interval scores at
each forecast horizon in Figure 2. The three models performed almost equally well in the short-term
forecasts. In the long run, however, the functional VECM produced better predictions than the other
two models. This advantage grew bigger as the forecast horizons increased.
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Figure 2. The first row presents the mean squared prediction error (MSPE) and the mean interval
scores for the two populations in a co-integration setting. The second row presents the MSPE and the
mean interval scores for the two populations without the co-integration. (a) 1st population; (b) 2nd
population; (c) 1st population; (d) 2nd population; (e) 1st population; (f) 2nd population; (g) 1st
population; and (h) 2nd population.
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5. Empirical Studies

To show that the proposed model outperformed the existing ones using real data, we applied the
four models illustrated in Section 2 to the sex-and age-specific mortality rates in Switzerland and the
Czech Republic. The observations are yearly mortality curves from ages 0 to 110 years, where the age
is treated as the continuum in the rate function. Female and male curves are available from 1908 to
2014 in [29]. We only used data from 1950 to 2014 for our analysis to avoid the possibly abnormal rates
before 1950 due to war deaths. With the aim of forecasting, we considered the data before 1950 to be
too distant to provide useful information. The data at ages 95 and older are grouped together, in order
to avoid problems associated with erratic rates at these ages.

5.1. Swiss Age-Specific Mortality Rates

Figure 3 shows the smoothed log mortality rates for females and males from 1950 to 2014. We use
a rainbow plot [30], where the red color represents the curves for more distant years and the purple
color represents the curves for more recent years. The curves are smoothed using penalized regression
splines with a monotonically increasing constraint after the age of 65 (see [15,31]). Over a span of
65 years, the mortality rates in general have decreased over all ages, with exceptions in the male
population at around age 20. Female rates have been slightly lower than male rates over the years.
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Figure 3. Smoothed log mortality rates in Switzerland from 1950 to 2014. (a) female population;
(b) male population.

First, we tested the stationarity of our data set. The Monte Carlo test, in which the null hypothesis
is stationarity, was applied to both the male and female populations. We used data from all 65 of
the years in our range and performed 5000 Monte Carlo replications [32]. The p-values for the male
and female populations were 0.0256 and 0.0276, respectively. These small p-values indicated a strong
deviation from stationary functional time series.

The first 45 years of data (from 1950 to 1994) were allocated to the training set, and the last 20 years
of data from (1995 to 2014) were allocated to the testing set. To choose the order K, we further divided
the training set into two groups of 30 and 15 years. The model was fitted to the first 30 years from
(1950 to 1979) and forecasts were made for the next 15 years (from 1980 to 1994). In both the VAR
model and the functional VECM, K is chosen using:

K = argmin
m

{
1

15

15

∑
h=1

95

∑
j=0

[
f̂n′+h|n′(xj; m)− yn′+h(xj)

]2
}

,
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where f̂n′+h|n′(xj; m) denotes the h-step-ahead forecast based on the first n′ = 30 years of data, with m
dimensions retained. yn′+h denotes the true rate at year n′ + h. This selection scheme led to both the
VAR and VECM models with K = 3 basis functions in this case, which explained 91.20%, 4.37% and
1.56% of the variation in the training set, respectively. These add up to 97.13% of the total variances
in the training data being explained. In the univariate and the product–ratio models, order K = 6
is used as in [17,33], where they found that six components would suffice and that having more
than six made no difference to the forecasts. With chosen K values, the four models were fitted using
an expanding window approach (as explained in Section 3). This produced 20 one-step-ahead forecasts,
19 two-step-ahead forecasts. . . and, finally, one 20-step-ahead forecast. These forecasts are compared
with the holdout data from the years 1995 to 2014. We calculated MAPE and MSPE as point forecast
errors using Equation (4).

Table 1 presents the MSPE of the log mortality rates. The smallest errors at each forecast horizon
are highlighted in bold face. For the prediction of the female rates, the proposed functional VECM has
proved to make more accurate point forecasts for all forecast horizons except for the 20-step-ahead
prediction. It should be noted that there is only one error estimate for the 20-step-ahead forecast, so the
error estimate may be quite volatile. The other three approaches are somewhat competitive for the
11-step-ahead forecasts or less. For the longer forecast horizons, the errors of the product–ratio method
increase quickly. For the forecasting of male mortality rates, although the VAR model produces slightly
smaller values of the forecast errors, there is hardly any difference between the four models in the
short term. For long-term predictions, the product–ratio approach performs much better than the
univariate and the VAR models, but the VECM still dominates. In fact, the product–ratio model usually
outperforms the existing models for the male mortality forecasts, while, for the female mortality
forecasts, it is not as accurate. MAPEs of the models followed a similar pattern to the MSPE values
and are not shown here.

Table 1. Mean squared prediction error (MSPE) for Swiss female and male rates (the smallest values
are highlighted in bold).

h
Female Male

UNI VAR PR VECM UNI VAR PR VECM

1 0.081 0.082 0.076 0.074 0.050 0.048 0.049 0.049
2 0.085 0.088 0.079 0.075 0.056 0.052 0.053 0.053
3 0.090 0.094 0.084 0.078 0.065 0.059 0.060 0.060
4 0.096 0.104 0.091 0.082 0.077 0.067 0.070 0.069
5 0.103 0.112 0.098 0.086 0.090 0.078 0.080 0.078
6 0.109 0.119 0.107 0.090 0.107 0.093 0.093 0.089
7 0.117 0.130 0.119 0.096 0.129 0.115 0.109 0.104
8 0.125 0.140 0.130 0.102 0.149 0.136 0.124 0.119
9 0.136 0.151 0.145 0.111 0.171 0.160 0.139 0.129
10 0.145 0.163 0.157 0.116 0.198 0.191 0.160 0.149
11 0.156 0.171 0.173 0.125 0.224 0.223 0.178 0.162
12 0.167 0.186 0.195 0.133 0.261 0.269 0.206 0.184
13 0.174 0.192 0.210 0.137 0.299 0.317 0.232 0.201
14 0.188 0.203 0.238 0.145 0.344 0.361 0.260 0.213
15 0.183 0.209 0.254 0.141 0.396 0.414 0.293 0.228
16 0.197 0.219 0.281 0.152 0.460 0.444 0.332 0.239
17 0.209 0.223 0.327 0.164 0.538 0.556 0.373 0.251
18 0.209 0.233 0.354 0.165 0.649 0.652 0.416 0.263
19 0.197 0.232 0.457 0.162 0.792 0.733 0.502 0.253
20 0.144 0.249 0.493 0.175 0.904 0.753 0.525 0.270

Mean 0.145 0.165 0.203 0.120 0.298 0.286 0.213 0.158
Median 0.145 0.265 0.173 0.120 0.224 0.223 0.178 0.158
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To examine how the models perform in interval forecasts, Equations (5) and (6) are used to
calculate the mean interval scores. We generate 1,000 bootstrap samples in the functional VECM and
VAR. Table 2 shows the mean interval scores. The 80% prediction intervals are produced using the four
different approaches. As explained earlier, smaller mean interval score values indicate better interval
predictions. For the female forecasts, functional VECM makes superior interval predictions at all
forecast steps, while, for the male forecasts, the product–ratio model and VECM are very competitive,
with the latter having a minor advantage for the mean value.

Table 2. Mean interval score (80%) for Swiss female and male rates (the smallest values are highlighted
in bold).

h
Female Male

UNI VAR PR VECM UNI VAR PR VECM

1 1.089 1.042 0.865 0.852 0.871 0.767 0.657 0.715
2 1.114 1.042 0.878 0.864 0.964 0.786 0.699 0.748
3 1.153 1.059 0.909 0.880 1.088 0.852 0.759 0.791
4 1.204 1.102 0.954 0.902 1.243 0.911 0.838 0.839
5 1.254 1.136 0.997 0.926 1.407 1.011 0.909 0.887
6 1.306 1.169 1.046 0.964 1.594 1.134 1.005 0.954
7 1.358 1.234 1.113 0.996 1.789 1.289 1.113 1.059
8 1.413 1.276 1.166 1.026 1.969 1.430 1.190 1.133
9 1.483 1.349 1.241 1.088 2.134 1.587 1.282 1.204
10 1.532 1.426 1.287 1.113 2.326 1.798 1.388 1.338
11 1.608 1.479 1.358 1.170 2.476 2.012 1.475 1.458
12 1.661 1.591 1.437 1.209 2.655 2.303 1.609 1.628
13 1.716 1.647 1.463 1.237 2.819 2.618 1.706 1.767
14 1.766 1.723 1.540 1.281 3.001 2.892 1.793 1.891
15 1.705 1.775 1.571 1.262 3.145 3.082 1.892 1.963
16 1.774 1.790 1.638 1.304 3.309 3.180 1.957 1.986
17 1.852 1.860 1.760 1.352 3.521 3.692 2.041 2.011
18 1.819 1.884 1.767 1.368 3.632 4.148 2.036 2.051
19 1.795 1.986 1.941 1.360 3.683 4.254 2.175 1.974
20 1.679 2.347 2.176 1.398 3.873 3.595 2.375 1.978

Mean 1.514 1.496 1.355 1.128 2.375 2.167 1.445 1.419
Median 1.532 1.479 1.355 1.128 2.375 2.012 1.445 1.419

5.2. Czech Republic Age-Specific Mortality Rates

We have also applied the four models to other countries, such as the Czech Republic, to show that
the proposed functional VECM does not only work in the case of the Swiss mortality rates. The raw
data are grouped and smoothed as was done for the Swiss data. K = 5 is chosen in the VAR and the
VECM, and the proportions of the explained variance are 93.04%, 1.99%, 1.55%, 1.18%, and 0.79%
respectively, which add up to 98.55% of the total variance explained. Figure 4 shows the MSPE and
mean interval scores for the point and interval forecast evaluations. In order to compare with the
VECM model in the literature, we also try fitting only the first set of principal component scores,
shown in the figure by VECM*. Among all five models, functional VECM produces better predictions
in both the point and interval forecasts. Compared to our model that uses five principal component
scores, VECM* produces larger errors, especially in the male forecasts. We consider that an important
fraction of information is lost if only the first set of principal component scores is used.
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Figure 4. Czech Republic: forecast errors for female and male mortality rates (MSPE and interval scores
are presented). (a) MSPE for female data; (b) mean interval score for female data; (c) MSPE for male
data; (d) mean interval score for male data.

To examine whether or not the differences in the forecast errors are significant, we conduct the
Diebold–Mariano test [34]. We use a null hypothesis where the two prediction methods have the
same forecast accuracy at each forecast horizon, while the three alternative hypotheses used are that
the functional VECM method produces more accurate forecasts than the three other methods. Thus,
a small p-value is expected in favor of the alternatives. A squared error loss function is used and the
p-values for one-sided tests are calculated at each forecast horizon, as shown in Figure 5. The p-values
are hardly greater than zero at most forecast horizons. Almost all are below α = 0.05, denoted by the
horizontal line, with the exception of the 19- and 20-step-ahead forecasts. We conclude that there is
strong evidence that the functional VECM method produces more accurate forecasts than the other
three methods for most of the forecast horizons.
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Figure 5. Czech Republic: p-values for the three tests comparing a functional VECM to the univariate,
VAR, and product–ratio models, respectively (the horizontal line is the default level of significance
α = 0.05). (a) female population; (b) male population.

In summary, we have applied the proposed functional VECM to modeling female and male
mortality rates in Switzerland and the Czech Republic, and proven its advantage in forecasting.

6. Conclusions

We have extended the existing models and introduced a functional VECM for the prediction of
multivariate functional time series. Compared to the current forecasting approaches, the proposed
method performs well in both simulations and in empirical analyses. An algorithm to generate
bootstrap prediction intervals is proposed and the results give superior interval forecasts.
The advantage of our method is the result of several factors: (1) the functional VECM model considers
the covariance between different groups, rather than modeling the populations separately; (2) it can
cope with data where the assumption of stationarity does not hold; (3) the forecast intervals using
the proposed algorithm combine three sources of uncertainties. Bootstrapping is used to avoid the
assumption of the distribution of the data.

We apply the proposed method as well as the existing methods to the male and female mortality
rates in Switzerland and the Czech Republic. The empirical studies provide evidence of the superiority
of the functional VECM approach in both the point and interval forecasts, which are evaluated by
MAPE, MSPE and interval scores, respectively. Diebold–Mariano test results also show significantly
improved forecast accuracy of our model. In most cases, when there is a long-run coherent structure
in the male and female mortality rates, functional VECM is preferable. The long-term equilibrium
constraint in the functional VECM ensures that divergence does not emerge.

While we use two populations for the illustration of the model and in the empirical analysis,
functional VECM can easily be applied to populations with more than two groups. A higher rank of
co-integration order may need to be considered and the Johansen test can then be used to determine
the rank [35].

In this paper, we have focused on comparing our model with others within functional time series
frameworks. There are numerous other mortality models in the literature, and many of them try to deal
with multiple populations. Further research is needed to evaluate our model against the performance
of these models.
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Appendix A. Functional Principal Component Analysis

Let { ft(x), t ∈ Z} be a set of functional time series in L2(I) from a separable Hilbert space H.
H is characterized by the inner product 〈·, ·〉, where 〈 f1, f2〉 =

∫
I f1(x) f2(x)dx. We assume that f (x)

has a continuous mean function µ(x) and covariance function G(w, x):

µ(x) = E[ f (x)],

G(w, x) = Cov[ f (w), f (x)] = E{[ f (w)− µ(w)][ f (x)− µ(x)]},

and thus the covariance operator for any f (x) ∈ H is given by

C(w)( f ) =
∫
I

G(w, x) f (x)dx.

The eigenequation C(w)( f ) = ρ f has solutions with orthonormal eigenfunctions φk(x),
and associated eigenvalues λk for k = 1, 2, ... such that λ1 ≥ λ2 ≥ ... and ∑k λk < ∞.

According to the Karhunen–Loève theorem, the function f (x) can be expanded by:

f (x) = µ(x) +
∞

∑
k=1

ξkφk(x), (A1)

where {φk(x)} are orthogonal basis functions also on L2(I), and the principal component scores {ξk}
are uncorrelated random variables given by the projection of the centered function in the direction of
the kth eigenfunction:

ξk =
∫
I
[ f (x)− µ(x)]φk(x)dx.

The principal component scores also satisfy:

E(ξk) = 0, Var(ξk) = λk.

Appendix B. Functional Principal Component Regression

According to Equation (A1), for a sequence of functional time series { ft(x)}, each element can be
decomposed as:

ft(x) = µ(x) +
∞

∑
k=1

ξt,kφk(x)

= µ(x) +
K

∑
k=1

ξt,kφk(x) + et(x),

where et(x) denotes the model truncation error function that captures the remaining terms. It is
assumed that the scores follow ξk ∼ N(0, λk). Thus, the functions can be characterized by the
K-dimension vector (ξ1, . . . , ξK)

>.
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Assorted approaches for selecting the number of principal components, K, include: (a) ensuring that
a certain fraction of the data variation is explained [36]; (b) cross-validation [14]; (c) bootstrapping [37];
and (d) information criteria [38].

With the smoothed functions { f1(x), . . . , fn(x)}, the mean function µ(x) is estimated by

µ̂(x) =
1
n

n

∑
t=1

ft(x).

The covariance operator for a function g is estimated by

Ĉ(g) =
1
n

n

∑
t=1
〈 ft − µ̂, g〉( ft − µ̂),

where n is the number of observed curves. Sample eigenvalue and eigenfunction pairs λ̂k and
φ̂k(x) can be calculated from the estimated covariance operator using singular value decomposition.
Empirical principal component scores ξt,k are obtained by ξt,k = 〈 ft, φ̂k〉 with numerical integration∫
I [ ft(x)− µ̂(x)]φ̂k(x)dx. These simple estimators are proved to be consistent under weak dependence

when the functions collected are dense and regularly spaced [39,40]. In sparse data settings,
other methods should be applied. For instance, Ref. [38] proposes principal component conditional
expectation using pooled information between the functions to undertake estimations.
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