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Abstract. In arenas of application including environmental science, economics, and

medicine, it is increasingly common to consider time series of curves or functions.

Many inferential procedures employed in the analysis of such data involve the long run

covariance function or operator, which is analogous to the long run covariance matrix

familiar to finite dimensional time series analysis and econometrics. This function may

be naturally estimated using a smoothed periodogram type estimator evaluated at

frequency zero that relies crucially on the choice of a bandwidth parameter. Motivated

by a number of prior contributions in the finite dimensional setting, we propose a

bandwidth selection method that aims to minimize the estimator’s asymptotic mean

squared normed error (AMSNE) in L2[0, 1]2. As the AMSNE depends on unknown

population quantities including the long run covariance function itself, estimates for these

are plugged in in an initial step after which the estimated AMSNE can be minimized to

produce an empirical optimal bandwidth. We show that the bandwidth produced in this

way is asymptotically consistent with the AMSNE optimal bandwidth, with quantifiable

rates, under mild stationarity and moment conditions. These results and the efficacy of

the proposed methodology are evaluated by means of a comprehensive simulation study,

from which we can offer practical advice on how to select the bandwidth parameter in

this setting.

Key words: bandwidth selection, long run covariance estimation, functional time series

1. Introduction

Functional time series analysis has grown substantially in recent years in order to

provide methodology for studying functional data objects that are obtained sequen-

tially over time. Perhaps the most typical way in which such data arises is when
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long, dense records of a continuous time phenomena are segmented into collections

of curves, e.g. high frequency records of pollution levels that are segmented to form

daily pollution curves, or records of tick-by-tick asset price data that may be used to

construct intraday price or return curves. Other examples include sequentially observed

summary functions that describe physical phenomena, as in functional magnetic reso-

nance imaging, in which functions describing blood flow in the brain are computed over

time. We refer the reader to [Ferraty and Vieu, 2006] and [Hörmann and Kokoszka, 2010]

for an overview of the fields of functional data analysis and functional time series

analysis, and to [Horváth et al., 2014, Panaretos and Tavakoli, 2016, Aue et al., 2014,

Aston and Kirch, 2012a, Aston and Kirch, 2012b, Horváth et al., 2012, Torgovitski, 2016,

Hörmann et al., 2015, Zhang, 2016] for a sample of recent contributions that focus on

inference, and dimension reduction with functional time series data.

Many of the inference and dimension reduction procedures introduced in the above

cited papers are based on the second order properties of the sample mean function

of functional time series, and hence naturally involve the estimation of the long run

covariance function, or corresponding long run covariance operator, of the functional

time series. Long run covariance and spectral density estimation enjoys a vast litera-

ture in the case of finite dimensional time series, beginning with the seminal work of

Bartlett [Bartlett, 1946] and Parzen [Parzen, 1957], and still the most commonly used

techniques resort to smoothing the periodogram by employing a smoothing weight func-

tion and a bandwidth parameter. Data driven bandwidth selection methods in this

setting have received a great deal of attention; see [Andrews, 1991, Bühlmann, 1996,

Newey and West, 1987, Newey and West, 1994, Politis, 2011, Hirukawa, 2010]. Roughly

speaking, the methods proposed in each of these papers aim to select the bandwidth that

minimizes the asymptotic mean squared error (AMSE) of the estimator. Since the AMSE

involves the unknown value of the long run variance and higher order derivatives of the

spectral density, it is proposed that estimates of these quantities be “plugged in” to the
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expression for the AMSE, after which an approximately optimal bandwidth in terms of

minimizing this estimated AMSE can be calculated.

Horváth et al [Horváth et al., 2012], and Panaretos and Tavakoli [Panaretos and Tavakoli, 2012]

define analogous smoothed periodogram type estimates of the long run covariance and spec-

tral density operators for functional time series, however the problem of bandwidth selec-

tion has been only lightly investigated in this setting. Horváth et al [Horváth et al., 2016]

propose an adaptive bandwidth selection algorithm that is designed for the infinite

order “flat-top” weight function of Politis and Romano [Politis and Romano, 1996] as in

[Politis, 2003], however bandwidth selection methodology for finite order weight functions

have not yet been considered. There are a number of benefits to using a finite order weight

function in practice. We refer the reader to [Marron and Wand, 1992] for a discussion of

these reasons in the context of nonparametric regression that also hold true here, but

they include that finite order weight functions (of low enough order) preserve positivity

of the resulting estimate of the long run covariance operator, and that, although higher

order weight functions are asymptotically more efficient, extremely large sample sizes are

needed before they reliably beat their lower order counterparts in practice. Moreover,

due to the infinite dimensional nature of functional data, it is unclear how the asymptotic

properties of long run covariance estimators are affected when they are adjusted to be

positive definite by replacing negative eigenvalues by zero in the diagonalization of the

estimated operator, which is a common practice in the finite dimensional case, and this

lends further motivation to use a positive definite estimate from the outset.

In this paper, we propose a bandwidth selection method for estimates of the long run

covariance function based on finite order weight functions that aims to minimize the

estimator’s asymptotic mean squared normed error (AMSNE) in L2[0, 1]2. The method

involves a similar plug-in step in which unknown quantities appearing in the expression

of the AMSNE are estimated using pilot estimates, and the resulting expression is then

minimized to produce an optimal bandwidth estimate. We show under simple stationarity,

moment, and decay conditions on the autocovariance operators of the functional time
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series that the proposed method produces a bandwidth that is asymptotically consistent

with the optimal bandwidth that minimizes AMSNE with a quantifiable convergence rate.

These results and the method itself are thoroughly studied by means of Monte Carlo

simulation applied to a number of data generating processes, from which we provide

practical advice on how to choose this parameter in applied settings.

The rest of the paper is organized as follows. In Section 2, we formally define our

bandwidth selection method and present its consistency properties. The method is

studied and compared to other standard bandwidth choices in Section 3 by means of

a thorough Monte Carlo simulation study. The proofs of all of the results presented in

Section 2 are collected in Section 4.

2. Statement of method and main results

In order to provide a formal definition of the long run covariance function, suppose that

{Xt(u), u ∈ [0, 1]}i∈Z, is a stationary and ergodic functional time series. For example,

Xt(u) could be used to denote the density of pollutants in a given city on day t at intraday

time u, perhaps suitably transformed so that the stationarity assumption is thought to

hold. The long-run covariance function is defined as

C(u, s) =
∞∑

`=−∞

γ`(u, s), where γ`(u, s) = cov(X0(u), X`(s)),

and is a well defined element of L2[0, 1]2 under mild weak dependence and moment

conditions. Via right integration, C defines a Hilbert-Schmidt integral operator on

L2[0, 1] given by

c(f)(u) =

∫ 1

0

C(u, s)f(s)ds,

whose eigenvalues and eigenfunctions are related to the dynamic functional principal

components defined in [Hörmann et al., 2015], and provide asymptotically optimal finite

dimensional representations of the sample mean of dependent functional data.
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It is of interest in many applied settings to estimate C from a finite sample X1, ..., XT .

Given its definition as a bi-infinite sum, a natural estimator of C is

Ĉh,q(u, s) =
∞∑

`=−∞

Wq

(
`

h

)
γ̂`(u, s), (1)

where h is called the bandwidth parameter,

γ̂`(u, s) =



1

T

T−∑̀
j=1

(
Xj(u)− X̄(u)

) (
Xj+`(s)− X̄(s)

)
, ` ≥ 0

1

T

T∑
j=1−`

(
Xj(u)− X̄(u)

) (
Xj+`(s)− X̄(s)

)
, ` < 0,

is an estimator of γ`(u, s), and Wq is a symmetric weight function with bounded support

of order q, which is to say that

Wq(0) = 1, Wq(u) = Wq(−u), Wq(u) = 0 if |u| > m for some m > 0, and Wq is (2)

continuous on [−m,m],

and there exists w satisfying

0 < w = lim
x→0

x−q(Wq(x)− 1) <∞. (3)

The estimator in (1) was introduced in [Horváth et al., 2012] and [Panaretos and Tavakoli, 2012].

Only mild conditions must be assumed on the bandwidth parameter h in order for Ĉh,q

to be a consistent estimator of C in norm, namely that h = h(T )→∞ as T →∞ and

h(T ) = o(T ), however its choice can greatly affect the performance of the estimator in

finite samples, and hence it is desirable to develop a data driven approach based on the

sample at hand to select h in order to minimize the estimation error.

We take as the goal for selecting h to minimize the mean squared error measured by the

norm E‖Ĉh,q − C‖2, where ‖ · ‖ denotes the standard norm in L2[0, 1]2. It is established

in [Berkes et al., 2016] that under mild conditions, which are implied by Assumptions
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2.1 and 2.2 below, that

E‖Ĉh,q − C‖2 =
h

T

(
‖C‖2 +

(∫ 1

0

C(u, u)du

)2)∫ ∞
−∞

W 2
q (x)dx+ h−2q‖wC(q)‖2 (4)

+ o

(
h

T
+ h−2q

)
,

where

C(q)(u, s) =
∞∑

`=−∞

|`|qγ`(u, s),

and the constant w is defined in equation (3). In particular, the first two terms on the

right hand side of (4) represent the asymptotically leading terms in the mean squared

norm of the error of Ĉh,q, which we refer to as the AMSNE. This result suggests choosing

h to minimize the sum of these two terms, which, by a simple calculus, amounts to

choosing h to be

hopt = c0T
1/(1+2q), (5)

where

c0 =
(
q‖C(q)‖2

)1/(1+2q)

((
‖C‖2 +

(∫ 1

0

C(u, u)du

)2
)∫ ∞

−∞
W 2
q (x)dx

)−1/(1+2q)

.

Of course, the obvious crux here as pointed out in [Parzen, 1957, Bühlmann, 1996] is

that the quantities involving C(q) and C in (5) are unknown and include what we are

trying to estimate in the first place. However, this motivates the following method to

select h:

“Plug-in” Bandwidth selection method:

(1) Compute pilot estimates of C(p), for p = 0, q:

Ĉ
(p)
h1,q1

(u, s) =
∞∑

`=−∞

Wq1

(
`

h1

)
|`|pγ̂`(u, s), (6)
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that utilize an initial bandwidth choice h1 = h1(T ), and weight function Wq1 of

order q1.

(2) Estimate c0 by

ĉ0(h1, q1) =
(
q‖Ĉ(q)

h1,q1
‖2
)1/(1+2q)

((
‖Ĉh1,q1‖2 +

(∫ 1

0

Ĉh1,q1(u, u)du

)2
)∫ ∞

−∞
W 2
q (x)dx

)−1/(1+2q)

.

(3) Use the bandwidth

ĥopt(h1, q1) = ĉ0(h1, q1)T
1/(1+2q) (7)

in the definition of Ĉh,q in (1).

The above method defines a direct functional analog of the method of Newey and West

[Newey and West, 1994] that intends to adapt the bandwidth to reflect the underlying

dependence of the functional time series. When the data are only weakly correlated, pilot

estimates for ‖Ĉ(q)‖ are expected to be close to zero, resulting in a small bandwidth that

reduces the variance of Ĉ. Under strong dependence, the empirical bandwidth should

be large, and this serves to reduce the estimation bias that dominates in this case. The

multiplication by the power of T ensures that the bandwidth has the optimal asymptotic

rate corresponding to the order of the weight function used in the estimator. Under

the following assumptions, we may derive convergence rates of ĥopt to hopt that imply

consistency of the empirical optimal bandwidth, and also inform the choice of the values

for the order and bandwidth of the pilot estimates.

Assumption 2.1. The sequence {Xt(u), u ∈ [0, 1]}i∈Z is an Lp−m approximable

Bernoulli shift in L2[0, 1], satisfying

• Xt = g(εt, εt−1, ...) for some measurable function g : S∞ 7→ L2[0, 1] and iid random

variables εt −∞ < t <∞, with values in a measurable space S.

• E||X0||4+δ <∞ for some δ > 0, and
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• {Xt(u), u ∈ [0, 1]}i∈Z can be approximated by m-dependent sequences Xt,m =

g(εt, εt−1, ..., εt−m+1, ε
∗
t,m), with ε∗t,m = (ε∗t,m,t−m, ε

∗
t,m,t−m−1, . . .), where the ε∗t,m,k’s

are independent copies of ε0, independent of {εi,−∞ < i <∞}, such that

(E‖X0 −X0,m‖4)1/4 = O(m−ρ), for some ρ > 4.

Assumption 2.2 (r). There exists r ≥ q such that

∞∑
`=−∞

(1 + |`|)q+r‖γ`‖ <∞. (8)

Assumptions 2.1 and 2.2 compare to the assumptions in [Bühlmann, 1996, Politis, 2003,

Politis, 2011, Politis and Romano, 1996] in the scalar case, and roughly define that the

functional time series Xt(u) is weakly dependent with quantifiable rates of decay of

the autocovariance functions. The conditions in Assumption 2.1 and (8) can be easily

verified for the stationary functional time series models available in the literature to date,

which are all based on simple structural equations. These include the functional ARMA

model, see [Bosq, 2000], and nonlinear models such as the functional ARCH and GARCH

models, see [Hörmann et al., 2012] and [Aue et al., 2015], along with transformations of

such processes.

Assumption 2.1 is practically equivalent to the main Assumption in [Berkes et al., 2016],

and is needed in this context in order to bound the size of sums of integrals of functional

versions of cumulants. If a`(t, s) = EX0(t)X`(s), then one can define the fourth order

cumulant function as

Ψ`,r,p(t, s) = E[X0(t)X`(s)Xr(t)Xp(s)]

− a`(t, s)ap−r(t, s)− ar(t, t)ap−`(s, s)− ap(t, s)ar−`(t, s).

Assumption 2.1 above could be replaced with the condition that

∞∑
i,j,k=−∞

∣∣∣∣∣
∫∫

Ψi,j,k(t, s)dtds

∣∣∣∣∣<∞,
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which is similar to traditional cumulant summability conditions for scalar time series, see

[Brillinger, 1975], and holds under various mixing conditions. Similar conditions to these

are studied in [Panaretos and Tavakoli, 2012] and [Zhang, 2016].

The following theorem quantifies the convergence rate of the empirical bandwidth in

terms of r in Assumption 2.2 and the bandwidth and order of the pilot estimates.

Theorem 2.1. Under Assumptions 2.1 and 2.2, and if h1 = AT κ, for some constant

A > 0 and κ < 1/(2q + 1), then

ĥopt(h1, q1) = hopt
(
1 +OP (T−β)

)
,

where β = min{1/2− κ(q + 1/2), κα}, and α = min{q1, r}.

Theorem 2.1 quantifies how the convergence rate of the empirical bandwidth is affected

by the choice of the pilot bandwidth and order h1 and q1, and the rate of decay of

the autocovariance functions in norm. The optimal rate of convergence is achieved

by taking κ = 1/(2q + 2α + 1), which depends on the unknown rate of decay of the

autocovariance functions. In the “worst case scenario”, when q = r = 1, then taking

h1 = AT−1/5 achieves a rate of approximation on the order of T−1/5 for the estimated

optimal bandwidth, which compares to the results of [Bühlmann, 1996] in the scalar case.

This would be the rate achieved by following the advice of [Panaretos and Tavakoli, 2012]

to choose pilot estimates.

It also follows from Theorem 2.1 that q1 is a potential limiting factor for the conver-

gence rate of the empirical bandwidth; if it is always chosen to be larger than r in

Assumption 2.2, then the rate of approximation to the optimal bandwidth can achieve

the order of T−r/(2q+2r+1). This observation that was made by Politis and Romano

[Politis and Romano, 1996]. In particular, if r in Assumption 2.2 may be taken to be ar-

bitrarily large with κ = 1/r, then the rate of approximation approaches the parametric rate

of T−1/2. The fact that the order of the pilot weight function may limit the convergence

rate of the estimated bandwidth motivates the idea of choosing the pilot weight function
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to be in the family of infinite order “flat-top” weight functions, which has been thoroughly

explored in [Politis and Romano, 1996, Politis and Romano, 1999, Politis, 2003]. A flat

top weight function W∞ is of the form

W∞(t) =


1, 0 ≤ |t| < k1

k2−|t|
k2−k1 , k1 ≤ |t| < k2

0, |t| ≥ k2

(9)

where k2 > k1. In the case when the autocovariance kernels decay quickly, then using the

flat top kernel for pilot estimation can substantially increase the rate of approximation

of the asymptotically optimal bandwidth. Below, we suppose the rate of decay of the

autocovariance kernels satisfies the following condition.

Assumption 2.3. There exist positive constants D and d such that ‖γ`‖ ≤ De−d|`|.

Assumption 2.3 is satisfied by many functional time series of interest. For example, it

holds when the functional time series Xt(u) satisfies a FAR model of order one in which

the autoregressive operator has norm less than one; see Lemma 3.1 in [Bosq, 2000]. It

also clearly holds for observations with a bounded range of dependence.

Theorem 2.2. If Assumption 2.3 holds, and h1(T ) = A log(T ) for some constant

A > 1/2dk1, where k1 is defined in (9) and Assumption 2.3, then

ĥopt(h1,∞) = hopt

(
1 +OP

(
log(2q+1)/2(T )√

T

))
.

We explore the use of the flat-top weight function as well as other popular weight function

choices to obtain pilot estimates in the simulation study below.

3. Simulation Study

We utilize Monte Carlo methods in order to evaluate the performance of the “plug-in”

bandwidth selection procedure introduced above. The ultimate goal of our simulation
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study is to provide practical, empirically motivated advice on how to choose the bandwidth

parameter h in order to minimize ‖Ĉh,q − C‖2 when using a finite order weight function.

To this end, we consider a number of different weight functions Wq and data generating

processes (DGPs) with varying structures and levels of interdependence.

3.1. Outline. The weight functions that we considered for computing the covariance

estimators are:

WBT =

 1− |x| for |x| ≤ 1;

0 otherwise.
(Bartlett)

WPR =


1− 6x2 + 6|x|3 for 0 ≤ |x| ≤ 1

2
;

2(1− |x|)3 for 1
2
≤ |x| ≤ 1;

0 otherwise.

(Parzen)

WTH =

 (1 + cos(πx))/2 for |x| ≤ 1;

0 otherwise.
(Tukey-Hanning)

WQS =
25

12π2x2

(
sin(6πx/5)

6πx/5
− cos(6πx/5)

)
(Quadratic spectral)

These weight functions have also been considered in [Andrews, 1991] and [Andrews and Monahan, 1992],

and their corresponding orders are 1, 2, 2, and 2, respective to the above list. In order

to define the DGPs that we considered, let {Wi(t),−∞ < i < ∞, t ∈ [0, 1]} denote

independent and identically distributed standard Brownian motions. We generated data

according to:

MAψ(p) : Xi(t) = Wi(t) +

p∑
j=1

∫
ψ(t, s)Wi−j(s)ds

FARψ(1) : Xi(t) =

∫
ψ(t, s)Xi−1(s)ds+Wi(t)

MA∗φ(p) : Xi(t) = Wi(t) + φ

p∑
j=1

Wi−j(t)

FAR∗φ(1) : Xi(t) = φXi−1(t) +Wi(t)
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We considered the processes MA∗1(0), MA∗0.5(1), MA0.5(4), MAψ1(4), MA∗0.5(8), FAR∗0.5(1)

and FARψ2(1), where ψ1(t, s) = 0.34 exp
1
2
(t2+s2) and ψ2(t, s) = 3

2
min(t, s). The choice of

the constants in the definition of ψ1 and ψ2 is done so that ‖ψ1‖ ≈ ‖ψ2‖ ≈ 0.5.

As an illustration of the estimators Ĉh,q, Figure 1 shows lattice plots of the long-run

covariance function estimators with FAR∗0.5(1) data, using the plug-in bandwidth selection

procedure for T = 100, 300 and 500, as well as the theoretical long-run covariance.

[Figure 1 about here.]

When the kernels ψ1 and ψ2 are used to define a DGP, then it is not tractable to compute

C explicitly. In these cases, C is replaced by the approximation

C∗(t, s) =
104∑
j=1

X̄j(t)X̄j(s), (10)

where

X̄j(t) =
1

104

104∑
i=1

X
(j)
i (t) (11)

and X
(j)
i (t)’s are computed according to data generating process MAψ1(4) or FARψ2(1)

independently for each j. The approximation is reasonably accurate, since C is the

limiting covariance of
√
TX̄(u). We considered sample sizes of T = 100, 300, and 500.

For each finite order weight function Wq described above, we compared five settings in

order to select the bandwidth parameter h:

Setting 1: h = T 1/5

Setting 2: h = T 1/4

Setting 3: h is selected according to the proposed method with Wq1 = Wq, and h1 = T 1/5.

Setting 4: h is selected according to the proposed method with Wq1 = W∞, with k1 = 1/2,

k2 = 1, and h1 = T 1/5.
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Setting 5: h is selected according to the proposed method with Wq1 = W∞, with k1 = 1/2,

k2 = 1, and h1 is chosen according to the adaptive method of Horváth et al

[Horváth et al., 2016].

Namely in Settings 1 and 2, the bandwidth is just a fixed function of the sample size,

while Settings 3,4 and 5 compare the proposed method over several different choices for

the initial weight function and bandwidth.

3.2. Results. For each of 1000 repetitions of the Monte Carlo simulation over all weight

functions, DGPs, and bandwidth selection settings outlined above, we approximate

LT,h = ‖Ĉh,q − C‖2 by a simple Riemann sum approximation. The simulated values of

LT,h are reported for all of the settings considered using box-plots in Figures 2 to 8, which

are color coded to indicate which setting they pertain to, and the legend for the color

coding is given in the top left panel of Figure 2. Based on these results, we draw the

following conclusions:

• When the data are very weakly dependent (MA(0) and MA(1) cases) and the

sample size is small, then the simple fixed bandwidths of h = T 1/5, T 1/4 coupled

with the Q-S weight function performed the best, although the improvements

over the plug-in method are only modest in this case. When the sample size

is very large (T=500), then the plug-in bandwidths exhibited competitive, and

sometimes stronger, performance, although again only modestly better than the

fixed bandwidths.

• When the level of dependency is moderate to high (MA(4), MA(8), and FAR(1)

cases), one of the plug-in bandwidth settings (Settings 3, 4, and 5) coupled with

a Bartlett weight function exhibited the best performance in terms of the median

values LT,h across all T . This interestingly coincides with Theorem 2.1, which

suggests choosing the final order q to be small in order to improve the optimal

bandwidth estimation accuracy. The estimation accuracy improvements are again

only modest when the dependence is moderate, especially compared to taking
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h = T 1/4 and the Q-S weight function, but fairly substantial accuracy gains are

possible when the data is strongly dependent.

Recommendation:

• When estimating C as a part of an inferential procedure, our overall recommenda-

tion is to compare the results using two different estimates: 1) taking h = T 1/4 and

the Q-S weight function, and 2) Using the plug in bandwidth selection procedure

of Setting 4, which employs the flat-top weight function in the pilot estimation

stage, coupled with a final Bartlett weight function estimate. One can expect

only modest improvements in the overall estimation of C when the functional

time series data are close to being uncorrelated compared to this simple fixed

bandwidth approach, however substantial accuracy gains can be achieved by the

proposed method when the data are strongly dependent.

[Figure 2 about here.]

[Figure 3 about here.]

[Figure 4 about here.]

[Figure 5 about here.]

[Figure 6 about here.]

[Figure 7 about here.]

[Figure 8 about here.]

4. Proofs

Throughout these proofs we let ci, i ≥ 0 denote unimportant numerical constants.

Lemma 4.1. If Assumptions 2.1 and 2.2(r) hold, and h = h(T )→∞, then

∣∣∣‖Ĉ(p)
h,q1
‖ − ‖C(p)‖

∣∣∣ = OP

((
h2p+1

T

)1/2

+ h−α

)
, (12)
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for all 0 ≤ p ≤ q, and∣∣∣∣∫ Ĉh,q1(u, u)du−
∫
C(u, u)du

∣∣∣∣ = OP

((
h

T

)1/2

+ h−α

)
, (13)

where α = min{q1, r}.

Proof. We begin by establishing (12). According to the triangle inequality,

∣∣∣‖Ĉ(p)
h,q‖ − ‖C‖

∣∣∣ ≤ ‖Ĉ(p)
h,q − C‖. (14)

Under Assumptions 2.1 and 2.2, we obtain from equation (2.15) in Berkes et al. (2016)

that, in the case when p = 0,

E‖Ĉh,q − C‖2 = O

(
h

T
+ h−2α

)
.

Hence Chebyshev’s inequality implies that

‖Ĉh,q − C‖ = OP

((
h

T

)1/2

+ h−α

)
,

which along with (14) implies (12) in this case. The approximation in (13) follows in

an analogous manner as above which we outline below. According to Jensen’s and

Lyapounov’s inequalities,

∣∣∣∣∫ Ĉh,q(t, t)dt−
∫
C(t, t)dt

∣∣∣∣ ≤ ∫ |Ĉh,q(t, t)− C(t, t)|dt

≤
(∫
|Ĉh,q(t, t)− C(t, t)|2dt

)1/2

.

Moreover,

E

∫
|Ĉh,q(t, t)− C(t, t)|2dt =

∫
var(Ĉh,q(t, t))dt+

∫
(EĈh,q(t, t)− C(t, t))2dt

= O

(
h

T
+ h−2α

)
,
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by Lemma 4.3 and Theorem 2.3 of Berkes et al (2016), which implies (13). Towards

establishing the rest of (12) for 0 < p ≤ r, one has that the integrated mean squared

error of Ĉ
(p)
h,q may be broken into a variance and bias term as follows:

E‖Ĉ(p)
h,q − C

(p)‖2 =

∫∫
var(Ĉ

(p)
h,q(u, s))duds+ ‖EĈ(p)

h,q − C
(p)‖2. (15)

According to the definition of Ĉ
(p)
h,q(u, s),

var(Ĉ
(p)
h,q(u, s)) =

bchc∑
g,`=−bchc

Wq1(g/h)Wq1(`/h)|g|p|`|pcov(γ̂g(u, s), γ̂`(u, s))

≤ c2h2p
bchc∑

g,`=−bchc

Wq1(g/h)Wq1(`/h)cov(γ̂g(u, s), γ̂`(u, s)).

By Lemma 4.3 in [Berkes et al., 2016],

∫∫ bchc∑
g,`=−bchc

Wq1(g/h)Wq1(`/h)cov(γ̂g(u, s), γ̂`(u, s))duds = O

(
h

T

)
,

and therefore ∫∫
var(Ĉ

(p)
h,q(u, s))duds = O

(
h2p+1

T

)
. (16)

Furthermore, since Eγ̂`(u, s) = (1− |`|/n)γ`(u, s),

EĈ
(p)
h,q(u, s)− C

(p)(u, s) =

bchc∑
`=−bchc

Wq1

(
`

h

)
|`|p
(

1− |`|
T

)
γ`(u, s)−

∞∑
`=−∞

|`|pγ`(u, s)

(17)

=

bchc∑
`=−bchc

(
Wq1

(
`

h

)
− 1

)
|`|pγ`(u, s)−

∑
`>bchc

|`|pγ`(u, s)−
bchc∑

`=−bchc

Wq1

(
`

h

)
|`|p+1

T
γ`(u, s)

= G1(u, s)−G2(u, s)−G3(u, s).
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By utilizing the triangle inequality, we get that

‖G1‖ ≤
bchc∑

`=−bchc

(
Wq1

(
`

h

)
− 1

)
|`|p‖γ`‖ (18)

= h−α
bchc∑

`=−bchc

(
|`|
h

)−α(
Wq1

(
`

h

)
− 1

)
|`|p+α‖γ`‖.

According to (3), sup−∞<x<∞ x
−s(Wq1(x)− 1) = O(1) for all 0 ≤ s ≤ q1. It then follows

from Assumption 2.2 that

bchc∑
`=−bchc

(
|`|
h

)−α(
Wq1

(
`

h

)
− 1

)
|`|p+α‖γ`‖ = O(1),

and thus by (18),

‖G1‖ = O(h−α). (19)

By the triangle inequality and Assumption 2.2,

‖G2‖ ≤
∑
`>bchc

|`|p‖γ`‖ (20)

≤ c−rh−r
∑
|`|≥0

|`|r+p‖γ`‖ = O(h−r).

Once again by the triangle inequality and Assumptions 2.2 and (3),

‖G3‖ ≤
bchc∑

`=−bchc

|`|p+1

T
‖γ`‖ (21)

≤ h1−r

T

∞∑
`=−∞

|`|p+r‖γ`‖ = O

(
h1−r

T

)
.

Combining (19)-(20) with (17) and the triangle inequality gives

‖EĈ(p)
h,q − C

(p)‖ = O

(
h−α +

h1−r

T

)
, (22)

where α = min{r, q}. This along with (30) and (15) give (12) for p ≥ 0. �
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Lemma 4.2. Let ĥopt be defined in (7). Then under the conditions of Theorem 2.1,

ĥopt(h1, q1) = hopt (1 +OP (f(T, h1, q1))) , (23)

where

f(T, h1, q1) = max

{∣∣∣∣‖Ĉ(q)
h1,q1
‖ − ‖C(q)‖

∣∣∣∣, ∣∣∣∣‖Ĉh1,q1‖ − ‖C‖∣∣∣∣, ∣∣∣∣∫ Ĉh1,q1(u, u)du−
∫
C(u, u)du

∣∣∣∣} .
and Ĉ

(p)
h1,q1

appearing in the definition of ĥopt are defined in (6).

Proof. Simple algebra yields that

ĥopt(h) = hopt

(
1 +

ĥopt(h)− hopt
hopt

)
,

and, according to the definitions of hopt and ĥopt(h1, q1),

ĥopt(h1, q1)− hopt
hopt

= c1

(∣∣∣∣∣ ‖Ĉ(q)
h1,q1
‖

‖Ĉh1,q1‖2 +
( ∫

Ĉh1,q1(u, u)du
)2
∣∣∣∣∣
1/(2q+1)

(24)

−

∣∣∣∣∣ ‖C(q)‖
‖C‖2 +

( ∫
C(u, u)du

)2
∣∣∣∣∣
1/(2q+1))

.

An application of the mean value theorem applied to the right hand side of (24) yields

that

ĥopt(h1, q1)− hopt
hopt

≤ c1θm

∣∣∣∣∣ ‖Ĉ(q)
h1,q1
‖

‖Ĉh1,q1‖2 +
( ∫

Ĉh1,q1(u, u)du
)2 − ‖C(q)‖

‖C‖2 +
( ∫

C(u, u)du
)2
∣∣∣∣∣,

(25)

where θm = OP (1) due to Lemma 4.1 and the assumption that h = o(T 1/(2q+1)). Simple

algebra along with the triangle inequality and another application of the mean value

theorem shows that
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∣∣∣∣∣ ‖Ĉ(q)
h1,q1
‖

‖Ĉh1,q1‖2 +
( ∫

Ĉh1,q1(u, u)du
)2 − ‖C(q)‖

‖C‖2 +
( ∫

C(u, u)du
)2
∣∣∣∣∣≤ f(T, h1, q1)(1 +OP (1)),

(26)

which with (25) implies the Lemma. �

Proof of Theorem 2.1: By Lemma 4.2, we have that

ĥopt(h1, q1) = hopt (1 +OP (f(T, h1, q1))) .

Furthermore, it follows from Lemma 4.1 that

f(T, h1, q1) = OP

((
h2q+1
1

T

)1/2

+ h−α1

)
,

so that when h1 = AT κ, with A ≥ 0,

f(T, h1, q1) = OP

(
T κ(q+1/2)−1/2 + T−ακ

)
,

= OP (T−β),

where β = min{1/2− κ(q + 1/2), κα} is defined in the statement of the theorem.

�

Lemma 4.3. If Assumption 2.3 holds, then for all p ≥ 0,

‖EĈ(p)
h,∞ − C

(p)‖ = O(hpe−k1dh),

and ∫
|EĈh,∞(u, u)− C(u, u)|du = O(hpe−k1dh),

where k1 is defined in (9).
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Proof. As in the derivation of (17) above, we have that

EĈ
(p)
h,∞(u, s)− C(p)(u, s) = G1(u, s)−G2(u, s)−G3(u, s), (27)

where

G1(u, s) =

bk2hc∑
`=−bk2hc

(
W∞

(
`

h

)
− 1

)
|`|pγ`(u, s),

G2(u, s) =
∑

`>bk2hc

|`|pγ`(u, s),

and

G3(u, s) =

bk2hc∑
`=−bk2hc

W∞

(
`

h

)
|`|p+1

T
γ`(u, s).

It follows similarly to (21) that ‖G3‖ = O(1/T ). Also, by the triangle inequality and

Assumption 2.3,

‖G2‖ ≤
∑

`>bk2hc

|`|p‖γ`‖ ≤ c3
∑

`>bk2hc

|`|pe−d|`| (28)

= O(hpe−dk2h).

With regards to G1, we have using the definition of W∞ that

‖G1‖ ≤
bk2hc∑

`=−bk2hc

∣∣∣∣∣W∞
(
`

h

)
−1

∣∣∣∣∣|`|p‖γ`‖ (29)

=
∑

k1h≤|`|≤k2h

∣∣∣∣∣W∞
(
`

h

)
−1

∣∣∣∣∣|`|p‖γ`‖
≤ c4

∑
k1h≤|`|≤k2h

|`|pe−d|`| = O(hpe−dk1h),

which completes the proof given (27) and the triangle inequality. The remaining assertion

of the lemma follows from similar calculation, and so we omit the details.

�
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Proof of Theorem 2.2: By Lemma 4.2, we have that

ĥopt(h1,∞) = hopt (1 +OP (f(T, h1,∞))) .

We continue by establishing bounds for the three terms defining f(T, h1,∞). We present

the bound for the first term, and the same bounds for the remaining terms may be

obtained similarly. As in (14),

∣∣∣‖Ĉ(q)
h1,∞‖ − ‖C‖

∣∣∣ ≤ ‖Ĉ(q)
h1,∞ − C‖,

and

E‖Ĉ(q)
h1,∞ − C‖

2 =

∫∫
var(Ĉ

(q)
h1,∞(u, s))duds+ ‖EĈ(q)

h1,∞ − C
(q)‖2.

By the same calculations used to establish (30), we have that∫∫
var(Ĉ

(q)
h1,∞(u, s))duds = O

(
h2q+1
1

T

)
. (30)

Also, it follows from Lemma 4.3 that

‖EĈ(q)
h1,∞ − C

(q)‖ = O(hq1e
−k1dh1).

Therefore by Markov’s inequality,

∣∣∣‖Ĉ(q)
h1,∞‖ − ‖C‖

∣∣∣ = OP

((
h2q+1
1

T

)1/2

+ hq1e
−k1dh1

)
.

The same bounds can be obtained for the remaining two terms in the definition of

f(T, h1,∞), from which it follows that

f(T, h1,∞) = OP

((
h2q+1
1

T

)1/2

+ hq1e
−k1dh1

)
.

We get that for h1 = Alog(T ),

f(T, h1,∞) = OP

(
log(2q+1)/2(T )√

T

)
,
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which completes the proof. �
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[Horváth et al., 2014] Horváth, L., Kokoszka, P., and Rice, G. (2014). Testing stationarity of functional

time series. Journal of Econometrics, 179:66–82.
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Figure 1. Lattice plots of the long run covariance weight function estima-
tors with FAR∗0.5(1) data using the Bartlett kernel with the proposed plug-in
bandwidth for values of T = 100, 300 and 500 along with the theoretical
long run covariance (lower right).
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Figure 2. Results for MA1(0) with estimated bandwidths.
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Figure 3. Results for MA0.5(1) with estimated bandwidths.



28 Figures

0
1

2
3

4
5

Bartlett kernel
L T

,h

T=100 T=300 T=500

0
1

2
3

4
5

Parzen kernel

L T
, h

T=100 T=300 T=500

0
1

2
3

4
5

Tukey−Hanning kernel

L T
, h

T=100 T=300 T=500

0
1

2
3

4
5

Quadratic spectral kernel

L T
, h

T=100 T=300 T=500

Figure 4. Results for MA0.5(4) with estimated bandwidths.
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Figure 5. Results for MA0.5(8) with estimated bandwidths.
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Figure 6. Results for MAψ(4) with estimated bandwidths.
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Figure 7. Results for AR0.5(1) with estimated bandwidths.
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Figure 8. Results for ARψ(1) with estimated bandwidths.
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