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Abstract 22 

Sexual selection has an undeniable influence in the evolution of the spectacular 23 

diversity of courtship signals in the animal kingdom. A long history of study has 24 

pointed to mechanisms through which sexual selection can act: it can favour signals that 25 

are reliable indicators of species identity or effectively transfer mate quality 26 

information. In some species, these mechanisms have the potential to shape signal 27 

evolution. This is the case in fiddler crabs. Males court females by waving their 28 

sexually dimorphic claw. Females recognise conspecific males by the species-specific 29 

display, whilst intraspecific variants of the display appear to be indicators of male 30 

quality. We investigated which of these mechanisms prevail by using robotics to test 31 

female responses to waves of different heights in the fiddler crab, Austruca mjoebergi. 32 

We reveal that, although the studied species shares a sympatric habitat, females did not 33 

significantly more often approach the species’ average signal. We found evidence that 34 

more conspicuous, higher signals were more likely to attract females, although the 35 

effect was not particularly strong. We discuss our results in the light of other possible 36 

scenarios from which sexual selection can act in the evolution of signals.  37 

 38 

Key words: Sexual selection; Signal diversity; Signal evolution; Directional selection; 39 

Species recognition. 40 

 41 

Significance statement: Sexual selection has strong role in the evolution of courtship 42 

signals. A large body of evidence has revealed that mating preferences may favour 43 

signals that indicate species identity or mate quality. We study which of these 44 

mechanisms is predominant in fiddler crabs. We use robotics to investigate female 45 

preference for a highly conspicuous and diverse characteristic of courtship signals. We 46 

found that, females most likely do not use the signal for species recognition, but instead 47 
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favour signals that stand out and indicate mate quality. Our results advocate that 48 

directional selection is likely to be predominant, but we suggest that a more complex 49 

mosaic of selective forces may influence the evolution of the high interspecific signal 50 

diversity in fiddler crabs.51 
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Introduction 52 

Extravagant courtship traits and displays are widespread throughout the animal 53 

kingdom. The high diversity of these signals spurs the question of how and why they 54 

have evolved. The most common explanation is that the choosing sex has preferences 55 

for particular variants of the species-specific signals. These different preferences can act 56 

as pre-mating barriers between species (e.g. Hebets and Papaj 2005; Boul et al. 2007; 57 

Chen et al. 2012) as well as influencing how conspicuous certain aspects in the 58 

attraction signals become. Thus, distinct sexual selection processes may drive the 59 

evolution of courtship traits in different directions. 60 

 61 

Taxa that have considerable variability in their courtship signals offer a unique 62 

opportunity to examine the reasons behind their evolution (Ord and Martins 2006). One 63 

such group is the fiddler crabs (Crustacea: Ocypodidae). Males have a single enlarged 64 

claw that is used for fighting and courtship displays, which are quickly stimulated by 65 

female presence. The displays consist of conspicuous circular and vertical wave 66 

motions with the claw often raised above eye-level (Figure 1a). Interestingly, this signal 67 

has a great interspecific diversity with each species presenting its own pattern (Perez et 68 

al. 2012; Salmon et al. 1978; Detto et al. 2006). Females use wave patterns for species 69 

recognition, indicating the coevolution between signal design and receiver’s preferences 70 

(Perez and Backwell 2017). Selection towards a stereotyped, or average, signal may 71 

occur if trait variability results in overlaps with heterospecific signals, therefore 72 

jeopardizing effective species recognition (Ryan and Rand 1993; Sætre et al. 1997). In 73 

fact, the vertical displacement of the display proportional to body size is species-74 

specific in sympatric species, and it was previously suggested that wave amplitude is a 75 

cue for species recognition when species distributions overlap (How et al. 2009). Thus, 76 

as the most variable element of the wave between species, the vertical motion of the 77 
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display is a promising target in female choice studies (Perez et al. 2012; Perez in prep). 78 

This aspect of courtship also represents a highly conspicuous facet of the display under 79 

fiddler crab visual ecology (Zeil, Nalbach & Nalbach, 1986; Christy & Salmon, 1991; 80 

Land & Layne, 1995; Zeil & Al-Mutairi, 1996; Murai & Backwell, 2006) and the only 81 

one to be equally perceived from any sender-receiver orientation (Perez et al. 2012; 82 

Araujo et al., 2013). 83 

 84 

 85 

Fig. 1 Fiddler crab Austruca mjoebergi (a) real male waving in his natural habitat (b) 86 

robotic males waving in the choice arena being assessed by female inside transparent 87 

cup prior to release 88 

 89 

Intraspecific variation in wave displays is also fundamental to mate choice (Jordão et al. 90 

2007; Pope 2005; Mowles et al. 2018). Previous studies on wave patterns showed that 91 

females of Afruca tangeri and Austruca perplexa approach males based on the height 92 

that the claw is raised during a wave in natural conditions (Oliveira and Custódio 1998; 93 

Murai and Backwell 2006). Although the trait is correlated with claw length and body 94 

size, females can assess the claw displacement in relation to the body, indicating that 95 

females prefer more stimulating signals (Murai and Backwell 2006). High amplitude 96 
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waves require bigger and more energetic movements and can indicate male quality and 97 

potential (Murai and Backwell 2006; Bywater et al., 2018). However, how wave 98 

displays are used for species recognition and mate choice is still unclear as these 99 

functions can potentially conflict (Pfennig 1998). Thus, we suggest that in species that 100 

face high sympatry, females may give priority to species recognition over mate quality 101 

assessment. 102 

 103 

This study takes a broad approach into the investigation of fiddler crab signal evolution 104 

by sexual selection. We aim to determine the predominant mechanism that shapes 105 

courtship signal in fiddler crabs by running our investigations with a well-studied 106 

species, A. mjoebergi (Detto et al. 2006; Reaney et al. 2008; Callander et al. 2012). 107 

Controlled choice experiments, are vital to investigate signal preference with accuracy. 108 

We use robotics to effectively manipulate male signals and explore female preferences 109 

for the highly conspicuous wave element, wave amplitude (i.e. the extent of claw reach 110 

at display apex calculated as a proportion between height above eye level and the total 111 

vertical movement of the claw during a wave; see the diagram in Table 1). Thus, we 112 

investigate the average and range of wave amplitudes in this species to specifically ask 113 

the questions: (1) is wave amplitude a cue for species recognition? A preference for the 114 

average value could indicate stabilizing selection for wave characteristics; (2) are 115 

females attracted to higher amplitude waves in general? Higher amplitude waves might 116 

help females to locate males more clearly or assess their size and potential. 117 

118 
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 Methods 119 

 120 

We studied a population of the fiddler crab Austruca mjoebergi from August to 121 

November in 2013 and 2017 at East Point Reserve, Darwin, Australia (12°24’31.89”S 122 

130°49’49.12”E). Both males and females defend territories around their burrow within 123 

a large, mixed-sex population. When ready to mate, a female will leave her territory and 124 

move through the population of waving males. Males form small clusters (about 2-6 125 

individuals) around the female, and as she moves, males join in or drop out of the 126 

cluster. The female visits one of the males in the cluster by walking towards him and 127 

briefly entering his burrow. She then either leaves the male to continue searching, or she 128 

accepts the male and remains underground in his burrow. The chosen male enters the 129 

burrow and plugs its entrance with sand, where mating occurs.  130 

 131 

Wave amplitudes 132 

We calculated the average and range of A. mjoebergi wave amplitudes: the proportion 133 

of claw elevation above eye level by the total vertical claw movement (see diagram in 134 

Table 1). We recorded 56 waving males under natural conditions from a horizontal 135 

perspective. We then watched the videos to measure their wave displays following the 136 

methodology by Perez and collaborators (2016). The average wave amplitude was 0.26 137 

± 0.12, similar to the one previously reported, 0.29 ± 0.08 (How et al. 2009). This value 138 

overlaps with the wave amplitudes of the two highly sympatric species, Tubuca elegans 139 

(0.16 ± 0.10) and T. signata (0.22 ± 0.05; Booksmythe et al. 2008; How et al. 2009). 140 

 141 

Preference experiment 142 

Female preference was tested using custom-built robotic crabs that consist of a twin-143 

cam motor, which moves a small metal arm with a plaster mould of A. mjoebergi claw 144 
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attached in a motion that exactly mimics the courtship wave of the species. The motor 145 

was remotely controlled to regulate the exact timing of each wave using custom 146 

designed software (see Reaney et al. 2008; Holman et al. 2014 for further details of the 147 

robotic crabs). The motor was buried under a testing arena with only the metal arm 148 

protruded through the arena floor. For all treatments, we used moulds of the same claw, 149 

each measuring 2.03 cm, considered an attractive size (Clark and Backwell, 2016), and 150 

painted a yellow that matched the natural claw color of this species (see Detto et al. 151 

2006 for claw paint). The choice arena mimics the natural conditions explained above 152 

and is composed of a raised platform covered with a 0.5cm thick layer of mangrove 153 

sediment. The platform was placed in a clearing in the mangroves with a homogenous 154 

background of mangrove trees, maintaining the visual scenario of their natural 155 

environment (Figure 1b). Females are known to respond well to this experimental 156 

setting, which has been used several times in the past to reveal female mate preferences 157 

(Perez and Backwell, 2017). We controlled for any confounding variables in our 158 

experimental design, by being careful to randomize the position that the stimuli were 159 

presented in relation to each other and the surrounding environment.  160 

 161 

The study targeted mate-searching females, which were captured, measured (carapace 162 

width in cm) and housed individually in shaded cups containing 0.4 cm deep seawater 163 

until used in a choice trial. For each trial, the female was placed at the release point on 164 

one end of the test arena, in a small translucent cup that was lifted remotely once the 165 

female had seen three waves of the robotic crabs (Figure 1b) (see Reaney et al. 2008 for 166 

more details). A choice was considered to be made when the female approach within 5 167 

cm of a robotic crab arm. The time until choice was recorded from releasing until 168 

approach to a robotic crab arm. Trials were discarded if the female darted, ran to the 169 

edge of the arena, or remained stationary for >3 minutes. Each female (total 254) was 170 
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tested only once and released after the experiment so they could continue mate-171 

searching. To avoid recaptures, females were collected from non-release areas. 172 

 173 

The wave rate of all stimuli was constant at 16.8 waves/minute, and a female was 174 

placed equidistant from two robotic crab units (each 20 cm away). The absolute height 175 

of the wave can change according to receiver’s distance (How et al. 2008), but intense 176 

courtship only occurs when the resident can recognize the sex of the approaching crab 177 

(from approximately 30 cm; How et al. 2008). Thus, the placement of the female 178 

relative to the robotic males was critical. In addition, most choices are made from the 179 

releasing point. Thus, although the contrast between claw waving and background 180 

changes with female approach, the movement amplitude in relation to body is constant. 181 

In all treatments, females were given a choice between two stimuli presented on robotic 182 

crab units 15 cm apart. We used robots with distinct wave amplitudes to reproduce the 183 

average as well as lower and higher waves that fall within one standard deviation from 184 

the average. Height from the ground at claw starting position (i.e. horizontal from the 185 

ground) was fixed, and angles of claw movement and wave shape were constant. The 186 

data is not vulnerable to noise, as when presented to identical robotic crabs, the choice 187 

is extremely close to 1:1 (choice between a pair of synchronous waving robotic crabs 188 

and average wave amplitude; two-tailed binomial test: 55:68, P = 0.28; Backwell 189 

unpublished data). 190 

 191 

We first investigated whether females use wave amplitude as a cue for species 192 

recognition (i.e. as a pre-mating barrier). We determine whether there is a preference for 193 

the average wave amplitude (0.26) against lower wave amplitude (0.16; Treatment 1, n 194 

= 30) and higher wave amplitude (0.36; Treatment 2, n = 35) (Table 1). Following, we 195 

investigated if preferences were absolute, and therefore whether sexual selection favors 196 
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higher (most conspicuous) wave amplitudes in general. To answer this part of our study, 197 

we ran a series of experiments where the lowest wave amplitude (0.16) was paired 198 

against increasing amplitudes ranging from 0.20 to 0.36 (Treatments 3 to 10). This gave 199 

a series of wave amplitude differences (0.04, n = 30; 0.06, n = 27; 0.08, n = 30; 0.10, n 200 

= 30; 0.12, n = 21; 0.14, n = 23; 0.16, n = 29; 0.20, n = 30) between the choices 201 

presented in each treatment (Table 1). Finally, we investigate if time until choice 202 

indicates how certain females are of their preferences. Data collection was randomized 203 

between treatments across mating cycles; most of the data (89% of the choices) were 204 

collected in 2017. Given the experimental procedure, it was not possible to record data 205 

blind. 206 

 207 

 208 

Table 1. Frequency distribution of wave amplitudes from a sample of Austruca 209 

mjoebergi males. Wave amplitude is calculated as the proportion of wave height at the 210 

maximum claw elevation relative to eye-level (α) divided by the total claw elevation 211 

(β). Wave amplitudes used in each of the two-choice treatments are presented along 212 

with the difference between the choices and the number of trials in each treatment, N. 213 

Note that Treatments 1 and 6 are comprised of the same dataset used in the two stages 214 
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of the investigation, preferences for average wave amplitude (Treatment 1 to 2), and 215 

higher amplitudes (Treatments 3 to 10)  216 

 217 

Statistical Analyses 218 

To investigate female selection on wave displays, we performed Generalized Linear 219 

Models (GLM) and one Linear Model (LM). First, to test female preference for average 220 

amplitude against lower and higher waves (Treatments 1 and 2), we ran a GLM with 221 

choice (either average or other wave amplitude) as the response variable and treatment 222 

as the explanatory variable with a binomial error distribution and logit link function. In 223 

the second part of the experiment, we investigated if preference favours higher 224 

amplitude displays. We ran a GLM with the response variable as choice for high or low 225 

wave option and increasing wave amplitude differences across the treatments as fixed 226 

factor with a binomial error distribution and logit link function. Following this, we ran 227 

the null GLM where amplitude difference was removed to answer if females selected 228 

for higher displays in general. Lastly, we tested if the time until choice differed 229 

according to choices for higher or lower wave options and amplitude differences. We 230 

transformed the time of response (log10) and regressed it against choice for high or low 231 

wave option and amplitude differences (with an interaction between them). We set the 232 

reference level as the lowest amplitude difference (0.04; Treatment 3). We considered 233 

amplitude differences as a continuous variable due to the increasing contrast between 234 

options presented across the treatments 3 to 10 (from 0.04 to 0.2). We conducted all 235 

statistical analyses on R-3.3.3 (R Core Development Team 2017). 236 

 237 

Ethical Note 238 

This research was approved by the Australian National University Animal Ethics 239 

Committee (permit A2015/54). We limited the handling and the amount of time each 240 
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crab was used to no longer than 5 minutes. No crab was injured during the research, and 241 

all continued their regular activities after release. The work was conducted under a 242 

research permit from the Darwin City Council (permit no. 3648724).  243 

Data Availability 244 

The datasets during and/or analysed during the current study are available from the 245 

corresponding author on reasonable request. 246 

247 
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Results 248 

In the first part of the experiment, we investigated whether females selectively 249 

approached the ‘average’ signal height. We found that females were not more likely to 250 

approach the species-specific average wave height over higher or lower waves (Figure 251 

2). Of the 65 trials in total, 34 (52%) chose the average wave amplitude (17 choices in 252 

Treatment 1; 17 choices in Treatment 2) and 31 (48%) chose the alternative option (13 253 

choices for the lower wave in Treatment 1; 18 choices for the higher wave in Treatment 254 

2) (GLM: Estimate = -0.211, Std. Error = 0.500, P = 0.673).  255 

 256 

 257 

 258 

Fig. 2 Female Austruca mjoebergi responses to high and low wave amplitudes labelled 259 

by colour. The selected options are proportional to sample sizes across each of the 10 260 

treatments indicated by the horizontal axis according to the amplitude differences 261 

between the options indicated between brackets. Binomial tests were performed for 262 

each treatment individually and significance indicated, thus: *=P<0.05 263 

 264 

In the second part of the experiment, we investigated whether females selectively 265 

approach higher amplitude signals (Figure 2). We found that females did not 266 
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significantly approach higher or lower amplitude waves as the amplitude difference 267 

increases (GLM: Estimate = -0.017, Std. Error = 0.051, P = 0.738). However, the 268 

chance that a random female at a random treatment will pick the higher wave over the 269 

lower amplitude wave was significant (GLM: Estimate = 0.364, Std. Error = 0.121, P < 270 

0.01). Consequently, there was a tendency for females to approach higher waves in 271 

general, but an increase in amplitude differences did not affect female behaviour.  272 

 273 

Finally, the time taken to approach a signal was similar when females approached 274 

higher (�̅� = 36.14, s.d. = 27.79, n = 132) or lower amplitude waves (�̅� = 43.06, s.d. = 275 

34.29, n = 88) (LM: Estimate= -0.103, Std. Error = 0.204, P = 0.615). Amplitude 276 

differences (LM: Estimate= -0.047, Std. Error = 0.345, P = 0.891) did not have a 277 

significant effect on the time taken to approach. The response time for the higher option 278 

does not significantly differ from the lower option (LM: Estimate = -0.075, Std. Error = 279 

0.205, P = 0.713) or as the amplitude differences between options increased (LM: 280 

Estimate = 0.011, Std. Error = 0.461, P = 0.980). 281 

282 
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Discussion 283 

We show that under a set of scenarios from which sexual selection can act in the 284 

evolution of signals, Austruca mjoebergi females tend to approach higher amplitude 285 

wave displays, although this result is driven by one of the treatments (Amplitude 286 

difference = 0.16). This tendency did not get stronger as the difference in amplitude 287 

between the choices increase. In addition, average wave amplitude was not significantly 288 

preferred even though the studied species shares a highly sympatric habitat.  289 

 290 

The vertical movement is the most conspicuous motion component of wave displays 291 

and is largely responsible for the current variability of courtship in fiddler crabs (Perez 292 

et al. 2012; Perez in prep). Wave amplitude, the claw reach above the eye level relative 293 

to the entire wave movement, is species-specific (How et al. 2009). The variation 294 

around wave amplitude average in Austruca mjoebergi males (0.26 ± 0.12) mainly 295 

overlaps with two sympatric species, Tubuca elegans (0.16 ± 0.10) and T. signata (0.22 296 

± 0.05; Booksmythe et al. 2008; How et al. 2009), which could affect species 297 

recognition. Despite this, females did not significantly more often approach the species-298 

specific average wave heights. Two explanations are possible for this finding. First, 299 

females do not use only one cue, but the combination of the species-specific cues (for 300 

instance wave movement and claw and body colour) to recognize conspecifics in 301 

sympatric populations (Salmon et al. 1978; Detto et al. 2006; Perez and Backwell 302 

2017). Second, preferences for the average may be stronger in populations under high 303 

predation pressures. When females face greater risks of predation, male assessment 304 

must be rapid (Perez et al. 2016). Females of A. mjoebergi are not subject to intense 305 

predation (Bourdiol et al. 2018) and costs of being picky are lower (Magnhagen 1991). 306 

Future studies investigating female preferences in other species will be essential to 307 

validate the findings of the present study.  308 
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 309 

In search for high quality mates, females may pick males that display costly 310 

conspicuous signals with high-energy expenditure (Zahavi 1975). Courtship signal 311 

exaggeration is the most predictable direction of evolution via sexual selection, as it 312 

improves communication efficiency (Tazzyman et al. 2014). Conspicuous signals in 313 

fiddler crabs are predominantly from species with strong sexual selection (How et al. 314 

2009) and the studied species showed exceptionally high waves. Although display 315 

height and crab size are correlated (Murai et al. 2009), the tendency for females to 316 

approach higher amplitude (waves extending above the eye level) show that females can 317 

dissociate wave and claw size. Although we had mostly non-significant results, our 318 

results tend to follow prior findings in other species of general preferences for high 319 

waves (Oliveira and Custódio 1998; deRivera 2005; Murai and Backwell 2006; Murai 320 

et al. 2009), but not to increasingly higher values. Furthermore, the spread of wave 321 

amplitude values around the average shows that this trait is a possible indicator of male 322 

quality. The suggestion that females are attracted to signals that stand-out is still valid 323 

since females are also attracted to leading waves (Backwell et al. 1999). Future 324 

investigations controlling for other aspects of the display movement, such as speed and 325 

lateral sweep, may help to reveal if preference ultimately tends to favour stand-out 326 

signals. Due to experimental restrictions with robotic crabs mechanism, this was not 327 

possible in the present study. 328 

 329 

Understanding the roles of mate preferences in courtship evolution is a daunting task 330 

due to the myriad of study cases in nature and their particularities (Jennions and Petrie 331 

1997). For this reason, it is important to take broad investigative approaches to 332 

understand variation in sexual choices. The evolution of courtship in fiddler crabs is 333 

likely attributed to an interaction with other selective mechanisms not looked at in this 334 
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study. We encourage prospective research to reveal the magnitude of other selecting 335 

factors that shape display diversity (Cornwallis and Uller 2010). For example, the extent 336 

to which a signal is perceived in relation to the environment is an essential part in the 337 

evolution of signal structure and variability (Hemmi et al. 2006; Klomp et al. 2016; 338 

Ramos and Peters 2017).   339 

 340 

The effectiveness of communication between the receiver and the signaller plays an 341 

essential role in courtship signal evolution (Kirkpatrick 1987; Endler 1992). The 342 

receiver’s sensory system is a fundamental evolutionary force upon courtship signals 343 

(Ryan 1993, 1998) and, therefore, sexual selection favours those signals that can be 344 

perceived by the receiver’s pre-existing perceptual bias (West-Eberhard 1979).  345 

The preference for wave height is compatible with accurate perception of vertical 346 

movements (Zeil et al. 1986; Christy and Salmon 1991; Land and Layne 1995; Zeil and 347 

Al-Mutairi 1996; Murai and Backwell 2006). In their flat visual world, fiddler crabs 348 

have two visual zones, above and below the line of the horizon (Zeil et al. 1986). In the 349 

former, the crabs are sensitive to predator detection (enlarged size or coming from the 350 

sky), and in the latter the crabs are accustomed to movements of congeners (Land and 351 

Layne 1995). Wave displays break the visual horizon line, which initially alerts the 352 

receiver to potential danger, but later can be perceived as a congener’s signal (Zeil and 353 

Al-Mutairi 1996). Thus, males use vertical movements as sensory traps to stimulate the 354 

visual perception of the receiver (Zeil et al. 1986; Oliveira and Custódio 1998; Burford 355 

2000).  356 

 357 

The line of visual horizon can act as a threshold, limiting the perception of sexual 358 

signals. Consequently, the female’s ability to discriminate stimuli may vary, as a signal 359 

may be distinctly perceived according to the relative sizes of the sender and receiver, 360 
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which could favour the intraspecific diversity we found and the non-significant results 361 

in most of our treatments (Hingle et al 2001; Ronald et al. 2012). When species biology 362 

alludes to phenotype-dependent preferences, it is important to account for mate choice 363 

variation to better understand signal diversity (Jennions and Petrie 1997). In stalk-eyed 364 

flies, choices are size-dependant as larger females distinguish eyespan differences more 365 

accurately and prefer larger males, although females prefer males with large eyespan in 366 

general (Hingle et al. 2001). This mechanism may have the power to alter the intensity 367 

and direction of sexual selection on courtship (Jennions and Petrie 1997; Widemo and 368 

Sæther 1999). This is an important aspect that previous studies on fiddler crab female 369 

preference have overlooked (Oliveira and Custódio 1998; deRivera 2005; Murai and 370 

Backwell 2006).  371 

 372 

Finally, recent findings revealed that fiddler crab male morphology is linked to claw 373 

waving displays (Bywater et al. 2018). Thus, the balance between body parts during 374 

display is an essential constraint to wave pattern and reach (Bywater et al. 2018) and, 375 

thus, sexual selection not only acts on the behaviour, but on the morphology that is 376 

correlated with it. Colour association and background contrast could also influence the 377 

patterns and conspicuousness of the signal to the receiver (Detto et al. 2006; McLean et 378 

al. 2014; How et al. 2015). Comparing species signals and the receiver perception 379 

against the myriad of visual backgrounds should reveal a whole new perspective of how 380 

these signals evolved to their present complexity and is another essential and a rich 381 

research avenue (Bian et al. 2018).  382 

383 
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