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Capture-recapture methods are extensively used in animal 
population estimation and in other fields such as quality con-
trol and epidemiology (Briand et al. 1997; Chao et al. 2001). A 
set of models and their inference procedures have been pro-
posed in the capture-recapture literature for the estimation 
of animal population size from capture-recapture data (Seber 
2002; Williams et al. 2002; Chao & Huggins 2005). These mod-
els have been mainly classified into two groups: closed and 
open populations, but this work focuses on closed population 
models. The closed population models arise when the popu-
lation is assumed to be constant during the period of study, 
such that immigration, emigration, births, and deaths remain 
fixed. The general closed population model in capture-recap-
ture studies (Otis et al. 1978) is denoted by Mtbh, where (t) is 
used to represent time effect, (b) behavioural response, and (h) 
individual inherent heterogeneity to capture. This paper deals 
with estimating the closed population size using a sub-model 

of the type Mth, where individual heterogeneity and time effect 
are considered; there is no behavioral response to the capture 
and the capture probabilities depend on covariates. There are 
various advantages of models incorporating covariates such as: 
(i) the models provide a clear explanation of the sources of het-
erogeneity, and each covariate effect can be assessed; and (ii) if 
all relevant covariates are included, then these models gener-
ally yield better estimators with respect to bias and precision 
(Chao & Huggins 2005).

A broad variety of approaches have been consid-
ered when fitting capture-recapture closed population model 
Mth, including the sample coverage models (Chao et al. 1992), 
martingale methods (Lloyd & Yip 1991), latent class and log-
linear models (Agresti 1994), the use of individual covariates 
in generalized linear models (GLM) (Huggins 1989), finite 
mixture models (Pledger 2000), and robust P-spline approach 
(Stoklosa & Huggins 2012). Pollock et al. (1984) proposed an 
estimation procedure to cope with individual heterogeneity, 
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modelling capture probabilities based on individual categorical 
covariates, such as age group and sex. Huggins (1989, 1991) 
extended the case to continuous covariates, developing a con-
ditional likelihood model in terms of observable characteristics 
of the capture individuals and assuming independence among 
the capture occasions. Moreover, the time effects modelled 
as a function or as factors of covariates, such as the recorded 
air temperature on the capture-recapture occasion, can also 
be measured. For example, Stoklosa & Huggins (2012) and 
King & Brooks (2008) have addressed time dependence in 
capture probabilities using P-splines and Bayesian inference, 
respectively, through environmental (time-dependent) covari-
ates only. The use of estimating equations to model individual 
heterogeneity has also been discussed recently. For example, 
Zhang (2012) and Hwang & Huggins (2005) examined the indi-
vidual heterogeneity effects on the animal population estima-
tion using capture-recapture closed population model Mh by 
not only solving the estimating equations, but by also assuming 
independence of the capture-recapture occasions. Akanda & 
Alpizar-Jara (2014a) proposed a generalized estimating equa-
tions (GEE) approach which accounts for individual heteroge-
neity and dependency among capture occasions, but their ap-
proach mainly focused on the Mbh model. They also showed 
that the performance of the GEE approach is better than the 
mixed effects approach considering the closed population cap-
ture-recapture model, Mh (Akanda & Alpizar-Jara 2014b).

Capture-recapture data may be correlated over cap-
ture time. The estimators in capture-recapture studies may 
be biased, failing to account for this correlation. Some sort 
of dependencies among capture-recapture occasions can be 
considered in the capture-recapture literature through the be-
havioural effect’s model, such as trap happiness and trap shy-
ness (Yang & Chao 2005; Pradel & Sanz-Aguilar 2012). Here a 
closed population capture-recapture model of the type Mth is 
built that allows the modelling of individual and environmental 
characteristics. The performance of the GEE approach (Liang & 
Zeger 1986) in the capture-recapture closed population model, 
Mth, is assessed through a simulation study, and the estimat-
ed population parameters for two different real data sets. A 
logit-link function is assumed to model capture probabilities, 
considering the log of odds (the ratio of the probability of an 
event capturing to the probability of not capturing) as a linear 
function of the explanatory covariates, as in Huggins (1989). 
The GEE approach uses individual observed characteristics to 
model individual heterogeneity, environmental characteristics 
to model time variation, and also accounts for linear correla-
tion among capture-recapture occasions. A quasi-likelihood 
procedure is used to estimate the regression parameters re-
lated with the animal population size and capture probabilities.

The models with notations considered in this work 
are presented in the next section. Section 3 illustrates the 
methodology with two real data sets. The model section proce-
dures are described in Section 4. A simulation study in Section 
5 is presented to assess the performance of the GEE approach 

in the closed population Mth model. Finally, some concluding 
remarks are given in Section 6.

1. NOTATIONS AND MODELS

Suppose that the total number of individuals in a capture-re-
capture experiment is N over the capture-recapture occasions 
j = 1,2,...,m. Let Yij be the indicator variable, considering 1 if 
the ith individual is trapped on the jth capture occasion and 0 
otherwise. Let  be the number of times where the ith  
individual has been trapped in the capture-recapture closed 
population study. Individual observable covariate xi for the ith 
individual (for example, sex, age, weight, body length, etc.), 
and observable environmental covariate zj, that only depends 
on the jth capture occasion (such as air temperature, humid-
ity, rainfall, etc.) are considered. Suppose the probability (Pij) 
of the  ith individual is trapped on the jth capture occasion is,

 (1)
for i = 1,2,...,N; j = 1,2,...,m  where    is 
the logistic function and

is the design matrix. The design matrix Xi can be generalized to 
construct various closed population models in the capture-re-
capture studies (Akanda & Alpizar-Jara 2014a). The model (1) is 
a restricted model Mth of Huggins (1991) but not equivalent to 
any models of Otis et al. (1978). In Mth type of model, individual 
and time variation is explained by an individual covariate xi and 
an environmental covariate zj respectively. The probability that 
the ith individual does not capture on the jth capture occasion 
is , and  is the variance of 
Yij. Let  where Vi is a variance-covariance matrix 
and Ai is a diagonal matrix of  of 
order m×m. Ri(α) is a correlation structure among 
to explain the average dependence of individuals being cap-
tured from one occasion to another occasion, where α is the 
intraclass correlation coefficient, |α| < 1. In the case of a cap-
ture-recapture experiment, α is the correlation between two 
consecutive capture occasions. The identity matrix in the vari-
ance function of a generalized linear models (GLM) assumes 
independence and this is substituted in a GEE with a correla-
tion matrix, Ri(α) (Hardin & Hilbe 2013). Therefore, the GEE ap-
proach takes into account the dependence among the observa-
tions by specifying the correlation structure. This structure is 
used to estimate the covariance matrix (Zeger & Liang 1986). 
A GEE approach allows various types of correlation structures 
Ri(α) and as a property, this approach provides unbiased es-
timates in analysing the correlated binary data (Diggle et al. 
2013). Some common specifications for corr(Yi) are as follows:
• Independence correlation structure: This correlation struc-

ture assumes that all pairwise correlation coefficients are 
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zero, that is, ; thus, , where 
I  is an identity matrix of order m×m. Correlation coefficient 
is assumed to be zero, hence no estimate of α is obtained.

• Exchangeable correlation structure: This structure assumes 
that all pairwise coefficients of correlation are equal, that 
is, .

• Autoregressive correlation structure: This structure as-
sumes that the coefficients of correlation decay exponen-
tially over capture time, that is, .

• Unstructured or pairwise correlation structure: This cor-
relation structure assumes that all pairwise coefficients of 
correlation are not same, that is, .

Let Di be the matrix of derivatives , where, 
; hence, . If xi and zj were ob-

servable for each individual in the population, the vector of pa-
rameters  for the model (1) can be obtained by 
solving the generalized estimating equations as follows:

 (2)

However, the ultimate purpose is to estimate N, the total num-
ber of unknown individuals in the population. Also, the co-
variates xi and zj are unknown for the individuals that are not 
captured in any capture occasions. Let i = 1,2...,n, be a set of 
captured separate individuals at least once and i = n+1,...,N be 
a set of uncaptured individuals in the capture-recapture occa-
sions. Thus, Yij is considered under the captured individuals (n) 
(i.e., Ti ≥ 1 ) with their corresponding individual covariates as 
detailed by Zhang (2012) and Huggins (1989). Therefore, the 
vector of parameters β of the model (1) can be estimated by 
solving the estimating equations, which is known as general-
ized estimating equations (GEE) in capture-recapture studies 
(Akanda & Alpizar-Jara 2014a):

  (3)

The generalized estimating equations (3) is fitted by computing 
an initial estimate of the covariance matrix (Vi) first and the 
vector of regression coefficients (β) applying an ordinary gen-
eralized linear model. The working correlation matrix is then 
updated based on these regression parameters and the vari-
ance-covariance matrix is recalculated. The vector of estimated 
coefficients is updated, and until convergence, these steps are 
repeated (Zeger & Liang 1986). At the convergence process, the 
coefficients of regression are consistent and offer valid standard 
errors even though there is misspecification of the correlation 
structure (Zeger & Liang 1986). Let  be the resulting estimator 
of β and let . Then, the population size can be esti-
mated following the method of Huggins (1989) that is based on 
the Horvitz and Thompson estimator (1952). The population 
size N is estimated by , where,  
is the probability of being trapped at least once given the in-
dividual covariates. The variance of  can be estimated by 

, where  is a con-
ditional information matrix and  is a vector 

with all quantities evaluated at .

2. ILLUSTRATIVE EXAMPLES

2.1. Example: Deer mice data
The first example concerns the captures of deer mice (Peromys-
cus maniculatus). V. Reid collected the data set at East Stuart 
Gulch Colorado associated with covariates age, sex, and weight 
(in grams). A rectangular grid of 9x11 traps was used, with 50-
foot (15.2-m) trap spacing. The data are well known and have 
been analyzed in numerous capture-recapture literature (Otis 
et al. 1978; Huggins 1991; Huggins & Yip 1997; Stanley & Rich-
ards 2005). The data set consists of n = 38 distinct deer mice. 
There are 17 female and 21 male deer mice, of which there are 
11 adults, 3 semi-adults and 24 young ones. The semi-adults 
are recorded as adults in this analysis. The numbers of deer 
mice caught for m = 6 occasions (n1 to n6) are 15, 20, 16, 19, 
25, 25 and . The recorded capture frequencies (f1 to 
f6) are 9, 6, 7, 6, 6 and 4. The average capture frequencies for 
females and males are 3.41 and 2.76, respectively, and for the 
young ones and adults are 3.54 and 2.50, respectively. The av-
erage weight is 14.53 grams and the sample standard deviation 
is 4.84. This data is used to apply the GEE approach in the cap-
ture-recapture model,  using covariates. The following equa-
tion is applicable to the GEE approach for this data,

  (4)

i = 1,2,...,n; j = 1,2,...,m, where, βage, βsex, βwt and βt denote 
the age, sex, weight and time effect respectively. Model pa-
rameters are estimated assuming various correlation struc-
tures among capture-recapture occasions like independence, 
autoregressive, exchangeable, and pairwise correlation struc-
tures. The parameter estimation results are reported in Table 1 
applying the GEE approach in the capture-recapture closed 
population model Mth. The parameter estimation is carried out 
using the R package (R Development Core Team 2016). Odds 
ratio (OR) describes the strength of dependence or association 
between categorical variables. The odds ratio for continuous 
explanatory covariates indicates the effect of changes of one-
unit in the explanatory covariate.

The odds ratios, in these results, indicate that an in-
dividual in the young age group is more likely to be trapped 
than the individual in the adult age group for any given work-
ing correlation structure, keeping all other covariates constant. 
The odds of trapping the individual in the young age group are 
about (1/0.171) 5.85 times higher than the individual in the 
adult age group, but (1/0.146) 6.85 times higher for pairwise 
correlation structure model. The capture probability of males 
is significantly higher than the capture probability of females. 
For example, the capture probability of males is about double 
the capture probability of females. The odds of trapping are 
increased by 15% for one gram increase of weight, but 18% 
for pairwise correlation structure. The probability of trapping 
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increases when changing from one occasion to another occa-
sion. There is a 26% increase in the risk of trapping for changing 
from one occasion to another occasion, but slightly lower for 
pairwise correlation structure model. This finding may suggest 
that deer mice are trap happy, as the probability of trapping 
increases from one occasion to another occasion.

2.2. Example: House mice data
The second example concerns the captures of house mice (Mus 
musculus). The house mice data are originally collected by Cou-
lombe and are described and analysed in Otis et al. (1978). The 
two covariates sex (female or male) and age (juvenile, semi-
adult or adult) are related to this data. Complete capture in-
formation is given in program CAPTURE (Rexstad & Burnham 
1991). For this data set, a total of 173 individuals are captured. 
Two records in the analysis are excluded because the covari-
ates for the two mice are missing. Therefore, this analysis con-
sists of n = 171 distinct house mice that are captured at least 
once. Juveniles and semi-adults are grouped together into a 
‘young’ class because there are only 8 juveniles. There are 77 
non-adults (45 males, 32 females) and 94 adults (41 males, 
and 53 females). The numbers of house mice catch for m = 
10 occasions (n1 to n10) were 68, 60, 62, 52, 73, 41, 76, 35, 76 
and 38, and . The recorded capture frequencies (f1 
to f10) are 2, 62, 40, 31, 16, 13, 5, 1, 0 and 1. On average, the 
capture frequencies for females and males are 3.72 and 3.08, 
respectively, and for adults and non-adults are 3.81 and 2.90, 
respectively. The methods of Otis et al. (1978) show the way 
to select the model, where the capture probabilities are not 
homogeneous and depend on capture time. Therefore, the Mth 
model is selected for this data to apply the GEE approach in 
capture-recapture studies. According to the model formulation 
of Mth, the following equation is useful for the available data,

  (5)

i = 1,2,...,n; j = 1,2,...,m, where, βage, βsex, and βt, denote the 
age, sex, and time effect respectively. The estimation results 
for this data using the GEE approach are summarized in Table 
2. Note that the age, sex and time are all statistically significant 
covariates at 5% level of significance (P-values are mentioned 
in Table 2).

The odds ratios indicate that the adult age group indi-
viduals are more likely to be trapped than the young age group 
individuals for any given correlation structure, keeping all other 
covariates constant. The odds of trapping increase 46% for the 
individual in adult age group than the individual in young age 
group, but 45% increase for autoregressive and pairwise cor-
relation structures. The capture probability of males is signifi-
cantly lower than for females. According to the odds ratios, the 
odds of capturing females are about (1/.793) 1.26 times higher 
than those of males. The risk of trapping decreases for chang-
ing one occasion on another occasion that is the probabilities 
of capture depend on time which supports the findings of Otis 
et al. (1978). This finding may also suggest that house mice are 
trap shy.

3. MODEL SELECTION
Time correlation plays an important role when analysing data 
sets. Hence, a correlation structure that builds up the most 
parsimonious model in GEE analysis needs to be considered. 
As a property, the GEE approach provides unbiased estimates. 
Hence, one may select the best fitting model by observing the 
relative efficiency of the estimated model coefficients. Quasi-
likelihood information criterion (QIC) is also applicable for the 
selection of best fitting model when GEE approach is used in 
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Table 1. GEE estimates for the deer mice capture-recapture data under various working correlation structures

Independent correlation Exchangeable correlation

Cov. Coff. Std. Err. P-value O.R. Coff. Std. Err. P-value O.R.

age −1.767 0.531 0.001 0.171 −1.775 0.654 0.007 0.170

sex 0.753 0.291 0.010 2.124 0.759 0.358 0.034 2.136

weight 0.143 0.053 0.007 1.154 0.144 0.065 0.028 1.154

time 0.233 0.085 0.006 1.262 0.233 0.080 0.004 1.262

cons. −2.532 0.722 0.000 … −2.539 0.853 0.003 …

Autoregressive correlation Pairwise correlation

age −1.760 0.551 0.001 0.172 −1.926 0.628 0.002 0.146

sex 0.761 0.302 0.012 2.140 0.632 0.341 0.064 1.881

weight 0.142 0.055 0.010 1.153 0.164 0.062 0.009 1.178

time 0.233 0.087 0.007 1.262 0.220 0.070 0.002 1.246

cons. −2.530 0.748 0.001 …. −2.625 0.812 0.001 …
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capture-recapture studies (Akanda 2014a). The QIC is a modi-
fied version of the usual Akaike’s information criteria (AIC), 
which allows comparisons of GEE models and selection of a 
working correlation structure (Pan 2001). The most parsimoni-
ous model and best correlation structure are selected based on 
the smallest value of QIC. The estimation results show that the 
standard errors of various estimated parameters are dissimi-
lar. Table 3 compares the relative efficiencies of the estimated 
parameters for several models with respect to the parameters 
estimated by using independence working correlation structure 
model and QIC for several models for the applied data sets.

For the deer mice data, it is revealed that most of the 
estimates obtained under the independence correlation struc-
ture model are more efficient as compared to the other esti-
mates except for capture time. The relative efficiency of cap-
ture time (under independent correlation structure) is 1.063 
in exchangeable correlation structure model and 1.214 in pair-

wise correlation structure model. The QIC suggests that pair-
wise correlation structure model has the lowest QIC (297.81), 
and thus, is chosen as the best fitting model for this data set. 
Under the pairwise correlation structure, the estimated pop-
ulation is 39.17 with standard error 1.13. For the house mice 
data, all the covariates are more efficient under the autoregres-
sive correlation structure as per the relative efficiencies. The 
model selection criterion QIC also suggests that autoregressive 
correlation structure model may be the best choice for this data 
set. The estimated population size is 175.08 with standard error 
2.07 considering the autoregressive correlation structure. Hug-
gins (1989) examined this data set and modelled the individual 
heterogeneity as a function of the age category and sex of the 
individuals. He estimated the population size 176.9 with stan-
dard error 2.01. The continuous-time sample coverage method 
for model Mth (Chao & Lee 1993) yields a population size es-
timate of 172 with an estimated standard error 3.3. All these 

Table 2. GEE estimates for the house mice capture-recapture data under various working correlation structures

Independent correlation Exchangeable correlation

Cov. Coff. Std. Err. P-value O.R. Coff. Std. Err. P-value O.R.

age 0.379 0.105 0.000 1.461 0.379 0.102 0.000 1.461

sex −0.232 0.104 0.026 0.793 −0.232 0.100 0.021 0.793

time −0.041 0.018 0.024 0.960 −0.041 0.018 0.024 0.960

cons. −0.545 0.138 0.000 … −0.544 0.136 0.000 …

Autoregressive correlation Pairwise correlation

age 0.379 0.099 0.000 1.454 0.375 0.101 0.000 1.454

sex −0.230 0.098 0.019 0.794 −0.223 0.099 0.025 0.801

time −0.039 0.017 0.024 0.962 −0.044 0.018 0.016 0.957

cons. −0.551 0.131 0.000 …. −0.529 0.139 0.000 …

Table 3. Quasi-likelihood information criterion (QIC) under various correlation structure models and relative efficiencies of the estimated coefficients under indepen-
dence correlation structure model

Cov. Independence Exchangeable Autoregressive Pairwise

Deer mice data

QIC 298.75 298.73 298.85 297.81

age 1.000 0.812 0.964 0.846

sex 1.000 0.813 0.964 0.853

weight 1.000 0.815 0.964 0.855

time 1.000 1.063 0.977 1.124

House mice data

QIC 2173.59 2173.59 2172.61 2173.49

age 1.000 1.029 1.061 1.040

sex 1.000 1.040 1.061 1.051

time 1.000 1.000 1.059 1.000
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estimation procedures imply that almost none or only a few 
individuals were missed in the capture-recapture experiment. 
Moreover, the GEE estimation results of the two examples 
agree with the results of Otis et al. (1978), but the proposed 
approach accounts for time dependence in addition to the het-
erogeneous capture probabilities.

4. SIMULATION STUDY
A Monte Carlo (MC) simulation study is conducted in capture-
recapture closed population Mth model to assess the perfor-
mance of the GEE approach. The simulation program is written 
in R program (R Development Core Team, 2016) and the analy-
ses are run on Intel(R) Core(TM) i5-3320M CPU computer. The 
number of Monte Carlo replicates (B = 1000), population size 
(N = 100, 200, and 500), mean capture probability (p = 0.3 and 
0.5), number of capture occasions (m = 6 and 10), and coeffi-
cient of correlation (α = -0.5, -0.3, -0.1, 0, 0.1, 0.3, 0.5) are used 
as input factors for the autoregressive correlation structure in 
the simulation study. A correlated capture history Yij is generat-
ed applying the proposed method of Qaqish (2003) and consid-
ering an autoregressive correlation structure. The individual’s 
captured probabilities depended on the sex and weight, and 
also allowed for an environmental covariate for each occasion. 
The simulated individuals are assigned their sex with probability 
0.5 and the weights are normally distributed with mean 15 and 
variance 4. The normal environmental covariates with mean 
2 and variance 1 are used. Estimator performance is assessed 
based on the root mean square error . The 
main simulation results are presented in Table 4 and Table 5.

The performance of the GEE estimator for estimating 
population size ( ) is good in capture-recapture studies, when 
there is no linear correlation (α = 0) among capture-recapture 
occasions and for the high average capture probability 0.5 
(p = 0.5). In such cases, this estimator produces low standard 
error, the absolute value of PRB, the coefficient of variation 
and RMSE. The performance of GEE estimator is poor and it is 
difficult to obtain reliable estimates when the average capture 
probability is low (p = 0.3). The estimated size of population with 
its standard error depend on the number of capture-recapture 
occasions (m), average capture probability (p) and linear corre-
lation (α) among capture-recapture occasions. For a fixed cap-
ture occasion and average capture probability, this estimator 
estimate higher population size with a lower standard error for 
negative linear correlation in comparison for an equal strength 
of positive linear correlation. The simulation results also show 
that the GEE approach underestimate the population size for 
positive linear correlation, and overestimate for negative linear 
correlation among capture-recapture occasions at the higher 
average capture probability (p = 0.5). For a fixed capture-recap-
ture occasion and average capture probability, the estimated 
population size and linear correlation among capture-recapture 
occasions are inversely related. The performance of estimators 
for m = 10 capture-recapture occasions is superior to the per-

formance for  capture-recapture occasions producing lower CV, 
RMSE and the absolute value of PRB. In general, the simulation 
results evidently show that the performance of the GEE estima-
tor to estimate the size of population with its standard error 
varies on the number of capture-recapture occasions, average 
capture probability, and linear correlation among capture-re-
capture occasions.

5. CONCLUSION
Individual heterogeneity in capture probabilities and time 
dependence are fundamentally important for estimating the 
population parameters (such as capture probability, population 
size, etc.) in capture-recapture studies. In studies of this type, 
the strength of linear correlation among responses is unknown, 
and many statistical techniques are used in the capture-recap-
ture studies assuming independence among responses, while 
ignoring time correlation. The GEE approach plays an important 
role in analysing correlated capture-recapture data to get un-
biased estimates. Within-cluster correlations are also used in 
this approach to increase estimator’s efficiency allowing the re-
peated measures information. In this article, the GEE approach 
has been evaluated for adjusting the capture probabilities of 
a heterogeneous population and accounting for correlation 
structures among capture occasions. The estimation results and 
model selection criteria (QIC) show that correlation structure 
depends on data, and hence, the best model should be selected 
on the basis of considering various possible correlation struc-
tures. The GEE estimator performs well for the high capture 
probabilities, but the estimates seem to be unreliable for low 
capture probabilities. Simulation study also shows that the es-
timated population parameters vary on the number of capture-
recapture occasions, average capture probability and the na-
ture of linear correlation among capture-recapture occasions. 
The suggestion of Hwang and Huggins (2005), that estimators 
dealing with heterogeneity in capture probabilities should be 
considered, is in agreement with these analyses. Moreover, the 
correlation structure among the capture-recapture occasions 
should also be considered. Therefore, the results presented 
in these analyses underpin the importance of considering the 
correlation among capture occasions and heterogeneity in cap-
ture probabilities in capture-recapture studies. This approach 
may be extended to open population models to estimate the 
sampling animal population parameters in capture-recapture 
methodology.
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Table 4. Simulation results (1000 repetitions) of m = 6 capture occasions considering autoregressive correlation structure for the GEE approach. Averages of the num-
bers of captured individuals, ( ); the estimated population size, ; standard errors of the estimated population size, ; nominal-based 95% confidence 
intervals (CI), i.e.,  ; percentage relative bias, , where  is estimated by ; percentage coefficient of variation , 
and root mean square error, .

α N 95%CI PRB CV RMSE

0.30 −0.3 100 94.1 104.92 3.07 98.91-110.92 4.92 3.31 5.79

0.30 −0.1 100 90.7 99.88 3.39 93.23-106.53 −0.12 3.18 3.40

0.30 0.0 100 88.6 96.92 3.73 89.61-104.23 −3.08 3.12 4.84

0.30 0.1 100 85.9 93.30 4.18 85.10-101.49 −6.71 3.03 7.90

0.30 0.3 100 79.2 84.24 4.44 75.54-92.94 −15.76 2.74 16.37

0.30 0.5 100 70.6 73.37 4.84 63.88-82.87 −26.63 2.29 27.06

0.50 −0.5 100 99.9 101.62 0.34 100.96-102.28 1.62 1.28 1.66

0.50 −0.3 100 99.8 101.37 0.59 100.22-102.53 1.37 1.26 1.49

0.50 −0.1 100 99.1 100.66 1.03 98.64-102.67 0.66 1.24 1.22

0.50 0.0 100 98.6 100.11 1.29 97.58-102.64 0.11 1.24 1.30

0.50 0.1 100 97.6 99.06 1.60 95.91-102.20 −0.94 1.20 1.86

0.50 0.3 100 94.5 95.63 2.34 91.04-100.21 −4.37 1.10 4.96

0.50 0.5 100 89.3 90.03 3.00 84.15-95.91 −9.97 0.93 10.41

0.30 −0.3 200 188.2 209.51 4.26 201.15-217.87 4.75 2.32 10.42

0.30 −0.1 200 181.6 199.90 4.85 190.40-209.40 −0.05 2.24 4.85

0.30 0.0 200 176.8 193.27 5.27 182.94-203.60 −3.36 2.19 8.55

0.30 0.1 200 171.9 186.19 5.69 175.05-197.33 −6.91 2.11 14.94

0.30 0.3 200 158.8 168.51 6.11 156.54-180.48 −15.75 1.91 32.08

0.30 0.5 200 141.2 146.41 6.72 133.24-159.58 −26.80 1.58 54.01

0.50 −0.5 200 199.9 203.19 0.46 202.28-204.09 1.59 0.90 3.22

0.50 −0.3 200 199.5 202.69 0.87 200.99-204.39 1.35 0.89 2.83

0.50 −0.1 200 198.3 201.38 1.39 198.66-204.10 0.69 0.87 1.96

0.50 0.0 200 197.1 200.06 1.81 196.51-203.61 0.03 0.86 1.82

0.50 0.1 200 195.3 198.05 2.26 193.63-202.47 −0.98 0.84 2.98

0.50 0.3 200 189.4 191.55 3.24 185.20-197.90 −4.23 0.76 9.05

0.50 0.5 200 178.6 179.88 4.44 171.18-188.58 −10.06 0.63 20.60

0.30 −0.3 500 470.5 523.52 6.70 510.39-536.65 4.70 1.47 24.45

0.30 −0.1 500 453.4 498.60 7.74 483.43-513.77 −0.28 1.42 7.87

0.30 0.0 500 442.1 482.75 8.42 466.25-499.25 −3.45 1.38 19.20

0.30 0.1 500 429.8 464.98 8.85 447.63-482.33 −7.00 1.33 36.12

0.30 0.3 500 397.4 421.29 9.90 401.89-440.70 −15.74 1.20 79.33

0.30 0.5 500 352.5 365.01 10.93 343.59-386.43 −27.00 0.99 135.43

0.50 −0.5 500 499.8 507.89 0.78 506.35-509.42 1.58 0.57 7.92

0.50 −0.3 500 498.7 506.66 1.34 504.04-509.27 1.33 0.56 6.79

0.50 −0.1 500 495.6 503.14 2.29 498.65-507.62 0.63 0.55 3.88

0.50 0.0 500 492.9 500.08 2.83 494.54-505.63 0.02 0.54 2.83

0.50 0.1 500 488.3 494.98 3.59 487.95-502.02 −1.00 0.53 6.17

0.50 0.3 500 473.4 478.55 5.24 468.29-488.81 −4.29 0.48 22.08

0.50 0.5 500 446.1 449.17 7.06 435.34-463.00 −10.17 0.39 51.32
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Table 5. Simulation results (1000 repetitions) of m = 10 capture occasions considering autoregressive correlation structure for the GEE approach. Averages of the num-
bers of captured individuals, ( ); the estimated population size, ; standard errors of the estimated population size, ; nominal-based 95% confidence 
intervals (CI), that is, ; percentage relative bias, , where  is estimated by ; percentage coefficient of variation 
, and root mean square error, .

α N 95%CI PRB CV RMSE

0.30 −0.3 100 97.2 102.18 1.05 100.12-104.23 2.18 1.71 2.42

0.30 −0.1 100 96.2 100.98 1.48 98.08-103.88 0.98 1.68 1.77

0.30 0.0 100 95.4 100.06 1.70 96.72-103.40 0.06 1.65 1.71

0.30 0.1 100 94.1 98.58 2.06 94.56-102.61 −1.42 1.60 2.50

0.30 0.3 100 90.7 94.60 2.67 89.36-99.83 −5.40 1.47 6.03

0.30 0.5 100 83.9 87.10 3.61 80.02-94.18 −12.90 1.23 13.39

0.50 −0.5 100 98.0 100.11 0.02 100.07-100.15 0.11 0.33 0.11

0.50 −0.3 100 98.0 100.11 0.05 100.00-100.21 0.11 0.33 0.12

0.50 −0.1 100 98.0 100.08 0.18 99.72-100.43 0.08 0.33 0.20

0.50 0.0 100 97.9 100.03 0.28 99.49-100.58 0.03 0.32 0.28

0.50 0.1 100 97.8 99.93 0.43 99.09-100.76 −0.07 0.32 0.43

0.50 0.3 100 97.2 99.29 0.92 97.49-101.09 −0.71 0.31 1.16

0.50 0.5 100 95.0 97.07 1.64 93.86-100.28 −2.93 0.27 3.36

0.30 −0.3 200 196.3 204.24 1.50 201.30-207.17 2.12 1.21 4.49

0.30 −0.1 200 194.3 201.73 2.10 197.62-205.83 0.86 1.17 2.71

0.30 0.0 200 192.7 199.80 2.34 195.22-204.39 −0.10 1.15 2.35

0.30 0.1 200 190.5 197.20 2.90 191.52-202.88 −1.40 1.12 4.03

0.30 0.3 200 183.1 188.79 3.91 181.14-196.45 −5.61 1.02 11.87

0.30 0.5 200 170.1 174.35 5.03 164.49-184.21 −12.83 0.85 26.14

0.50 −0.5 200 198.0 200.22 0.03 200.15-200.28 0.11 0.23 0.22

0.50 −0.3 200 198.0 200.21 0.07 200.07-200.35 0.10 0.23 0.22

0.50 −0.1 200 197.9 200.15 0.24 199.69-200.61 0.08 0.23 0.28

0.50 0.0 200 197.8 200.04 0.40 199.26-200.82 0.02 0.22 0.40

0.50 0.1 200 197.6 199.82 0.63 198.58-201.06 −0.09 0.22 0.66

0.50 0.3 200 196.3 198.52 1.34 195.90-201.14 −0.74 0.21 2.00

0.50 0.5 200 192.0 194.12 2.36 189.49-198.75 −2.94 0.18 6.34

0.30 −0.3 500 493.9 510.55 2.25 506.14-514.97 2.11 0.76 10.79

0.30 −0.1 500 489.0 504.44 3.29 497.99-510.89 0.89 0.74 5.53

0.30 0.0 500 484.7 499.33 3.90 491.68-506.98 −0.13 0.72 3.96

0.30 0.1 500 479.0 492.58 4.70 483.37-501.79 −1.49 0.70 8.78

0.30 0.3 500 460.5 471.31 6.30 458.96-483.66 −5.74 0.63 29.38

0.30 0.5 500 428.1 435.24 7.72 420.11-450.37 −12.95 0.52 65.22

0.50 −0.5 500 498.0 500.53 0.05 500.43-500.63 0.11 0.15 0.53

0.50 −0.3 500 498.0 500.50 0.14 500.23-500.77 0.10 0.14 0.52

0.50 −0.1 500 497.9 500.35 0.40 499.56-501.14 0.07 0.14 0.54

0.50 0.0 500 497.6 500.10 0.59 498.94-501.25 0.02 0.14 0.60

0.50 0.1 500 497.1 499.54 0.96 497.65-501.42 −0.09 0.14 1.07

0.50 0.3 500 493.8 496.24 2.09 492.15-500.32 −0.75 0.13 4.30

0.50 0.5 500 483.2 485.47 3.87 477.89-493.04 −2.91 0.11 15.0
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