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Abstract
Pulmonary fibrosis is characterized by fibroblasts persisting in an activated form, producing excessive fibrous material that
destroys alveolar structure. The second messenger molecule cyclic 3′,5′-adenosine monophosphate (cAMP) has antifibrotic
properties, and prostaglandin E2 (PGE2) can stimulate cAMP production through prostaglandin E (EP)2 and EP4 receptors.
Although EP receptors are attractive therapeutic targets, the effects of long-term exposure to PGE2 have not been characterized.
To determine the effects of long-term exposure of lung fibroblasts to PGE2, human fetal lung (HFL)-1 cells were treated for 24 h
with 100 nM PGE2 or other cAMP-elevating agents. cAMP levels stimulated by acute exposure to PGE2 were measured using a
fluorescent biosensor. Pretreatment for 24 h with PGE2 shifted the concentration-response curve to PGE2 rightward by approx-
imately 22-fold but did not affect responses to the beta-adrenoceptor agonist isoproterenol. Neither isoproterenol nor forskolin
pretreatment altered PGE2 responses, implying that other cAMP-elevating agents do not induce desensitization. Use of EP2- and
EP4-selective agonists and antagonists suggested that PGE2-stimulated cAMP responses in HFL-1 cells are mediated by EP2
receptors. EP2 receptors are resistant to classical mechanisms of agonist-specific receptor desensitization, so we hypothesized that
increased PDE activity mediates the loss of signaling after PGE2 pretreatment. PGE2 treatment upregulated messenger RNA for
PDE3A, PDE3B, PDE4B, and PDE4D and increased overall PDE activity. The PDE4 inhibitor rolipram partially reversed PGE2-
mediated desensitization and PDE4 activity was increased, but rolipram did not alter responses to isoproterenol. The PDE3
inhibitor cilostazol had minimal effect. These results show that long-term exposure to PGE2 causes agonist-specific desensiti-
zation of EP2 receptor-stimulated cAMP signaling through the increased expression of PDE isozymes, most likely of the PDE4
family.
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Abbreviations
AC Adenylyl cyclase
β-AR Beta-adrenoceptor
cAMP Cyclic 3′,5′-adenosine monophosphate
Epac Exchange protein activated by cAMP
EP2R Prostaglandin E2 receptor
GPCR G protein–coupled receptor
PDE Phosphodiesterase
PF Pulmonary fibrosis
PGE2 Prostaglandin E2

PKA Protein kinase A
qRT-PCR Quantitative reverse transcription

polymerase chain reaction
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Introduction

Pulmonary fibrosis (PF) is characterized by continuous scar-
ring of the lungs (Dackor et al. 2011). Previously, PF was
thought to result from an inflammatory response (Liu et al.
2004). However, anti-inflammatory treatments show little to
no effect in slowing the progression of PF and clinical out-
comes were not improved (Ostrom 2014). Current under-
standing of PF has shifted from it being an inflammatory pro-
cess to a focus on tissue damage with defects in subsequent
healing and repair processes and the cellular signaling path-
ways that regulate them (Liu et al. 2004).

The second messenger molecule cyclic 3′,5′-adenosine
monophosphate (cAMP) will (1) slow fibroblast migration
to the site of injury, (2) prevent differentiation of fibroblasts
into myofibroblasts, (3) reduce the amount of collagen 1α(II)
and 5α(I), and (4) increase the activity of certain matrix me-
talloproteinases, which are responsible for degrading ECM
proteins (Yamaguchi et al. 1988; Kohyama et al. 2002a;
Kolodsick et al. 2003; Liu et al. 2004). Thus, cAMP is an
antifibrotic second messenger. cAMP is generated in the cell
when certain agonists bind to their cognate G protein–coupled
receptors (GPCRs) to activate the G protein Gαs, which, in
turn, stimulates adenylyl cyclase (AC) (Liu et al. 2004). Once
activated, AC converts adenosine triphosphate (ATP) into
cAMP, which subsequently binds to protein kinase A (PKA)
and the exchange protein activated by cAMP (Epac) (Liu et al.
2010; Insel et al. 2012). This, in turn, leads to regulation of a
myriad of different proteins and pathways to produce different
downstream responses (Liu et al. 2010). cAMP signaling is
terminated by phosphodiesterase (PDE) enzymes that degrade
cAMP and halt the signaling cascade (Liu et al. 2004).
Although Gα has several different isoforms, only Gαs is re-
sponsible for stimulating cAMP production in the cell, and
hence, the GαS-AC-cAMP pathway is pertinent to the study
of cAMP and its antifibrotic effects (Liu et al. 2004).

Elevating cAMP levels for 24 h via treatment with forskolin,
isoproterenol, prostaglandin E2 (PGE2), butaprost, or beraprost, or
by overexpression of adenylyl cyclase 6 (AC6), inhibits fibroblast
proliferation and collagen synthesis (Liu et al. 2004, 2008, 2010).
Moreover, increasing cAMP levels over 24 h lowers messenger
RNA (mRNA) levels of collagen types 1α(II) and 5α(I) (Liu et al.
2004). Exposure to these cAMP-elevating agents for 24 h also
increases expression of matrix metalloproteinase-2 (Liu et al.
2004). PGE2, acting via prostaglandin E (EP)2 receptors stimulat-
ing cAMP in lung fibroblasts, disrupts calcium signaling and in-
duces an antifibrotic phenotype (Mukherjee et al. 2019).
Activation of cAMP response element–binding (CREB) protein
via phosphorylation inhibits the profibrotic TGF-β signaling path-
way by inhibiting SMAD-mediated transcriptional activation of
fibrotic genes (Liu et al. 2005). cAMP elevation by prostacyclin
receptors inhibits the transcription cofactors YAP/TAZ to oppose
TGF-β–stimulated fibrotic responses (Zmajkovicova et al. 2019).

Thus, cAMP induces diverse antifibrotic effects and approaches
for increasing cAMP levels should be considered for PF therapy.

PGE2 is associated with inflammation and with repair of
tissue injury (Liu et al. 2004). PGE2 has antifibrotic properties
due to activation of the Gαs-AC-cAMP pathway (Liu et al.
2004). PGE2 activates all EP receptors, of which EP2 and EP4
isoforms couple to the Gαs-AC-cAMP pathway (Bozyk and
Moore 2011). EP receptor subtypes EP2 and EP4 are involved
in antifibrotic activity in fibroblast cells from various organs.
Given the therapeutic potential of targeting these receptors for
PF, understanding the effects of long-term exposure of recep-
tors to PGE2 represents a novel and important basic research
question. Furthermore, PF fibroblast cells are refractory to
PGE2 receptor responses (Bozyk and Moore 2011), presum-
ably diminishing the antifibrotic action of PGE2. Fibroblasts
isolated from patients with chronic obstructive pulmonary dis-
ease also have altered responses to PGE2 as compared to those
from normal subjects (Michalski et al. 2012). Thus, we hy-
pothesize that PGE2 effects are self-limiting because of desen-
sitization caused by prolonged agonist activation of EP recep-
tors. Thus, identifying the EP receptors involved in pulmonary
fibroblast cAMP signaling, establishing whether they desen-
sitize upon prolonged agonist exposure, and identifying the
mechanism involved in any desensitization are all critical for
developing novel therapeutic approaches for PF.

GPCRs that signal via cAMP are desensitized by two pri-
mary mechanisms: GRK/β-arrestin–mediated uncoupling, in-
ternalization, and eventual downregulation of receptors, and/
or increased expression of PDE activity. EP2 receptors have a
short C-terminal tail, lack the residues for GRK phosphoryla-
tion, and thus do not internalize (Desai et al. 2000). Moreover,
later studies established that EP2 receptors are not subject to
other classical mechanisms of GRK/arrestin-mediated desen-
sitization of GPCRs (Penn et al. 2001; Deshpande et al. 2008).
Conversely, EP4 receptors possess classical regulatory sites on
their C-termini and so undergo β-arrestin–mediated internali-
zation (Desai and Ashby 2001). One or both of these EP re-
ceptors may be expressed in human fetal lung (HFL)-1 cells,
so diminished PGE2-stimulated cAMP levels could result
from either decreased receptor activation via receptor desensi-
tization or increased PDE activity or both. In the current study,
we tested whether long-term PGE2 exposure causes desensiti-
zation, identified the specific EP receptor subtypes inducing
this desensitization, and established whether upregulation of
specific PDE isoforms is responsible for the desensitization.

Materials and methods

Cell culture

HFL-1 fibroblasts (ATCC, Manassas, VA, USA) were grown
in Ham’s F12K medium (Thermo Fisher Scientific, Waltham,
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MA, USA) with 10% fetal bovine serum (Atlanta Biologicals,
Flowery Branch, GA, USA) and 1% antibiotic-antimycotic
solution. Cells with a passage number of 13 to 25 were used
and were grown to 70–90% confluency for all studies. Cells
were grown in an incubator at 37 °C and 5% CO2 levels.
Medium was aspirated and cells were washed once with
PBS. After aspiration of PBS, 5 mL of 0.25% trypsin-EDTA
(Thermo Fisher Scientific, Waltham, MA, USA) was added
for 5 min to induce cell detachment. Media was added to the
flask and gently mixed to suspend detached cells, transferred
to tubes, centrifuged at 500g for 5 min, then washed to remove
trypsin. The cell pellet was resuspended in growth medium,
and approximately 9000 sells were plated per well on 96-well
plates. Cells were pretreated with PGE2, other drugs, or vehi-
cle prior to experiments by adding 10× concentration of drug
to growth media. Medium was aspirated after 24 h, and each
well was washed once with warm Dulbecco’s phosphate-
buffered saline before performing cADDis assay for cAMP.

cADDis assay for cAMP

The cADDis assay was purchased from Montana Molecular
(Bozeman, MT, USA). HFL-1 cells were incubated with a
recombinant mammalianized baculovirus (BacMam)
engineered to express a genetically modified protein that is a
fusion of EPAC, a cAMP effector, with the green fluorescent
protein (GFP). This protein serves as a convenient and quan-
titative cAMP sensor. In its unbound form, the protein fluo-
resces, but its fluorescence is quenched upon binding of
cAMP. When seeding the cells in a 96-well plate, the follow-
ing components were added: 138 μL of cells plus media,
40 μL BacMam solution, and 2 μL of trichostatin A (an in-
hibitor of histone deacetylase) (Sigma®, St. Louis, MO,
USA). In the 96-well plate format, approximately 8900 cells
were seeded per well and 2.95 × 108 viral particles per well
were added. Trichostatin A stock concentration was 100 μM,
giving a final concentration of 1 μM in the final volume of
200 μL per well. Transduced HFL-1 cells were incubated for
24 h at 37 °C and 5% CO2 levels. After incubation, medium
was aspirated and replaced with 180 μL per well of 1×
Dulbecco’s phosphate-buffered saline without calcium and
magnesium (Thermo Fisher Scientific, Waltham, MA,
USA). The 96-well plate was then covered with aluminum
foil and incubated at 37 °C for 30 min. The plate was placed
in a SpectraMax M5 plate reader (Molecular Devices, San
Jose, CA, USA), and fluorescence was read from the bottom
of the plate with an excitation wavelength of 494 nm and an
emission wavelength of 522 nm for 5 min. Once variability of
fluorescence was ≤ 5% in all wells, different concentrations of
PGE2 or other agents were added with a multi-pipette and the
changes in fluorescence were measured every 30 s for 30 min.

Data from kinetic studies of fluorescence were normalized
to the original level of fluorescence (ΔF/F0) and then fit to a

single-site decay model using GraphPad Prism 7.0 (GraphPad
Software Inc., San Diego, CA, USA). The plateau of each
decay curve was then used as the maximal response to that
given concentration of drug (Emax), and concentration-
response curves were generated using nonlinear regression
analysis (log [agonist] vs. response, variable slope, four pa-
rameters) using GraphPad Prism 7.0. Concentration-response
curves in multiple conditions were compared using two-way
analysis of variance (2-way ANOVA) with Tukey’s multiple
comparison test, and significance (p value) is reported for the
effect of different conditions. Statistical comparison tests (t
tests, 1-way and 2-way ANOVA) were performed using
GraphPad Prism.

Assay of basal cAMP

HFL-1 cells were washed three times with serum- and
NaHCO3-free DMEM supplemented with 20 mM HEPES,
pH 7.4 (DMEH), then incubated for 30 min at 37 °C.
Medium was aspirated, and 250 μL of trichloroacetic acid
(TCA, 7.5% w/v) was added to each well. cAMP content in
TCA extracts was determined by EIA (Cayman Chemical)
following the manufacturer’s instructions. The amount of
cAMP was normalized to the amount of protein per sample
as determined using a dye-binding protein assay (Bio-Rad).

Real-time quantitative reverse transcription
polymerase chain reaction

After 48-h incubation with the lentivirus, medium was aspi-
rated, cells were washed once in 1× PBS, and buffer RLTwas
added to disrupt cell membranes. Cells were collected and
RNA was isolated using RNeasy columns with a QIAcube
robot (Qiagen). RNA was quantified using the NanoDrop
2000/2000c (Thermo Fisher). Reverse transcription was per-
formed on 400 ng of RNA samples. All steps followed the
SuperScript® III First-Strand Synthesis System for RT-PCR
protocol (Thermo Fisher). The steps included a denaturation
step at 65 °C for 5 min in the RNA/primer mixture, containing
50 ng/μL of random hexamers. Complementary DNA
(cDNA) synthesis mixture was added to the RNA/primer mix-
ture and incubated for 10 min at 25 °C, followed by 50 min at
50 °C. The reaction was terminated at 85 °C for 5 min, then
chilled on ice. Finally, 1 μL of RNase H was added to each
tube followed by incubation for 20 min at 37 °C. cDNA sam-
ples were either used immediately for quantitative reverse
transcription polymerase chain reaction (qRT-PCR) experi-
ments or stored at − 20 °C.

TaqMan® Gene Expression Assays (Thermo Fisher) were
used for qRT-PCR reactions. The ratio of components for each
reaction was as follows: 1 μL 20× TaqMan® Gene Expression
Assay, 10 μL 2× TaqMan® Gene ExpressionMater Mix, 4 μL
cDNA (1 ng to 100 ng), and 5 μL of RNase-free water. The
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thermal cycler settings were as follows: step 1, 50 °C for
2 min; step 2, 95 °C for 10 min; step 3, 95 °C for 15 s; and
step 4, 60 °C for 1 min. Steps 3 and 4 were repeated for a total
of 40 cycles. The housekeeping genes GAPDH, β-actin, and
CDKN1A were used to normalize for differences in RNA
samples. PCR data were analyzed using the 2[−ΔΔCt] method,
where Ct is the cycle threshold.

PDE activity assays

PDE assays were performed according to the methods of
Bauer and Schwabe (1980). Following pretreatments, cells
were washed, scraped from the dishes, and lysed by sonica-
tion. Cell lysates were pre-incubated for 5 min with inhibitors
or vehicle. Assay mix containing [3H] cAMP was added
followed by incubation for 25 min at 37 °C with shaking.
The reaction was stopped by adding 0.2 N HCl, and samples
were placed on ice for at least 10 min. Crotalus atrox snake
venom–derived 5′-nucleotidase was added, and samples were
incubated for 20 min at 37 °C. The assay mixture was then
added to QAE-Sephadex A25 columns, and nucleosides were
eluted with 30 mM ammonium formate. [3H] adenosine for-
mation was quantified by liquid scintillation counting and
taken as total PDE activity. In some experiments, roflumilast
(1 μM) or 3-isobutyl-1-methylxanthine (IBMX) (1 mM) was
included during the PDE assays to assess PDE4 and total PDE
activities, respectively.

Statistics

Statistical comparison tests (one-way and two-way analyses
of variance) were performed with GraphPad Prism 7.0.
Tukey’s multiple comparison test was performed where
appropriate.

Results

To determine whether prolonged exposure of HFL-1 cells to
PGE2 causes desensitization of subsequent PGE2 responses,
cells were pretreated with 1 nM, 10 nM, or 100 nM PGE2 for
24 h. Cells were then washed to remove the pretreatment drug,
and cAMP responses to various concentrations of PGE2 were
measured using the cADDis assay. The change of fluores-
cence caused by each concentration of PGE2 was measured
for 30 min, and the data was fit to a one-site decay model
(Fig. 1a, b). The plateau of each response was then normalized
to the maximal response elicited by forskolin plus IBMX and
plotted to generate a concentration-response curve to PGE2 for
each pretreatment condition. PGE2 stimulated cAMP produc-
tion in vehicle-treated cells with a log EC50 value of −7.40 ±
0.16 (Fig. 1c, Table 1). By contrast, PGE2 responses in cells
pretreated with 1 nM PGE2 required moderately higher

concentrations (log EC50 = − 7.10 ± 0.25) and cells pretreated
with 10 nM PGE2 displayed PGE2 responses that required
even higher concentrations (log EC50 = − 6.79 ± 0.20,
Table 1). Pretreatment with 100 nM PGE2 induced the largest
rightward shift of the PGE2 concentration-response curve to −
6.09 ± 0.15 (Fig. 1c, Table 1). None of the pretreatment con-
ditions produced a significant reduction in Emax. Therefore,
pre-exposure to PGE2 causes reductions in the potency of
PGE2 for increasing cAMP levels.

We assessed basal cAMP levels in cells pretreated with
either vehicle or 100 nM PGE2 for 24 h. Because biosensors
such as cADDis can only display changes in cAMP levels, we
lysed cells after treatment andmeasured cAMP levels using an
EIA. Basal cAMP level in vehicle-treated cells was 57.7 ±
15.4 fmol/mg protein while basal cAMP level in PGE2-
pretreated cells was 57.9 ± 13.8 fmol/mg protein (not signifi-
cant p = 0.815 by Student’s t test, data not shown). Thus,
PGE2 pretreatment does not alter basal levels of cAMP in
the bulk cytosol.

We investigated whether a 24-h pretreatment with PGE2

alters responses mediated by other receptors. cAMP levels
stimulated by the β-adrenoceptor (β-AR) agonist isoprotere-
nol were measured in cells pretreated with 100 nM PGE2 or
vehicle for 24 h. In contrast to the 22-fold rightward shift in
the PGE2 concentration-response curve in PGE2-pretreated
cells, responses mediated by isoproterenol were not right-
shifted by PGE2 pretreatment, with log EC50 values of −
9.05 ± 0.33 and − 9.39 ± 0.60 for vehicle and PGE2 pretreat-
ment, respectively (Fig. 1d). Thus, PGE2 pre-exposure does
not cause desensitization ofβ-AR–mediated cAMP signaling.

To establish if decreased responsiveness to PGE2 occurs
upon pretreatment with other cAMP-elevating agents, the ef-
fects of pretreating cells with either vehicle, 100 nM isopro-
terenol, or 1 μM forskolin (a direct activator of AC) were
assessed. Log EC50 values for PGE2 stimulation were −
7.78 ± 0.52 and − 8.44 ± 0.69 for vehicle and isoproterenol
pretreatment, respectively (Fig. 2a). cAMP responses to iso-
proterenol displayed log EC50 values of − 9.05 ± 0.33 and −
8.65 ± 0.15 for vehicle and isoproterenol, respectively
(Fig. 2b). Thus, pretreatment with isoproterenol induces de-
sensitization of β-AR responses but does not decrease re-
sponses to PGE2. Pretreatment of HFL-1 cells with 1 μM
forskolin for 24 h also did not cause desensitization of PGE2

responses, with log EC50 values of − 7.78 ± 0.52 and − 9.36 ±
3.54 for vehicle and forskolin pretreatment, respectively
(Fig. 3). The small increase in PGE2 potency observed in these
studies may be due to residual forskolin from the pretreatment
phase that could not be washed out.

PGE2 can increase cAMP by activation of EP2 or EP4 re-
ceptors. To assess which of these two EP receptor types me-
diates PGE2-stimulated cAMP responses, we examined the
effect of PF-0441894 (EP2 receptor–specific antagonist) or
GW-627368X (EP4 receptor–specific antagonist) on PGE2-
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stimulated cAMP responses. PF-0441894 (100 nM) shifted
the PGE2 concentration-response curve by nearly 10-fold to
the right, while GW-627368X (100 nM) did not cause a right-
ward shift (Table 2). We also examined the effects of both PF-

0441894 and GW-627368X on PGE2-stimulated cAMP re-
sponses in cells that had been pretreated with PGE2 for 24 h.
After a 24-h pretreatment with either PGE2 or vehicle, cells
were washed and equilibrated for 30 min, and then each an-
tagonist was added. Ten minutes after addition of antagonist,
various concentrations of PGE2 were added and cAMP re-
sponses were measured for 30 min. Unlike our results in
Figs. 1, 2, and 3, PGE2 pretreatment caused a reduction in
PGE2 maximal response in addition to a rightward shift (ve-
hicle 1.06 ± 0.10, PGE2-pretreated 0.60 ± 0.09). Just as in
vehicle-pretreated cells, PF-0441894 shifted PGE2

concentration-response curves to the right (Fig. 4a, Table 2)
but GW-627368X did not (Fig. 4b, Table 2). Based on pub-
lished Ki values, 100 nM PF-0441894 occupies 95% of EP2
receptors while 100 nM GW-627368X occupies just 1.2% of
EP2 receptors (Wilson et al. 2006; af Forselles et al. 2011).
These results suggest that EP2 receptors, but not EP4 recep-
tors, mediate the PGE2-induced increase in cAMP and that
pretreatment with PGE2 for 24 h does not alter this receptor
response profile.

Table 1 Twenty-four-hour pretreatment with PGE2 desensitizes PGE2

responses in a concentration-dependent manner

Pretreatment condition Log EC50

Vehicle − 7.40 ± 0.16

1 nM PGE2 − 7.10 ± 0.25

10 nM PGE2 − 6.79 ± 0.20

100 nM PGE2 − 6.09 ± 0.15

HFL-1 cells were treated with vehicle and 1 nM, 10 nM, or 100 nMPGE2
for 24 h and washed, then acute cAMP responses to PGE2 were measured
using the cADDis assay. Various concentrations of PGE2 ranging from
0.1 to 10 μM were added and responses measured as the change in
fluorescence normalized to the change in fluorescence of maximal re-
sponse stimulated by 1 μM forskolin plus 200 μM IBMX. The log
EC50 was then calculated for PGE2 in each pretreatment condition. Data
are mean ± SEM of n = 3–10

Fig. 1 Twenty-four-hour pretreatment with PGE2 induces desensitization
of cAMP responses to PGE2 but not isoproterenol. HFL-1 cells were
treated with vehicle or 100 nM PGE2 for 24 h and washed, then acute
responses to PGE2 were measured using the cADDis cAMP sensor.
Fluorescent decay curves are shown for three concentrations of PGE2 in
vehicle-pretreated (a) or PGE2-pretreated (b) cells. The plateau from each

decay curve was normalized to the maximal response to 200 mM IBMX
plus 1 μM forskolin and plotted as a concentration-response curve.
Concentration-response curves to PGE2 (c) or isoproterenol (d) are shown
in both vehicle and 100 nM PGE2-pretreated cells. Data are mean ± SEM
of n = 5–10. c Significant (p < 0.0001) and d not significant (p = 0.070)
by 2-way ANOVA
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To understand which EP receptors mediate PGE2-induced
desensitization, the receptor subtype–selective agonists ONO-
AE1-259 (EP2) and ONO-329 (EP4) were tested for their abil-
ities to induce desensitization. Both ONO-AE1-259 and
ONO-AE1-329 increased cAMP levels acutely in HFL-1
cells, but ONO-AE1-259 did so with a log EC50 value of −
8.29 (similar to the potency of PGE2, log EC50 value of −
8.48) while ONO-AE1-329 was far less potent (log EC50 val-
ue of − 7.49, Fig. 5a). Cells were pretreated with vehicle,
100 nM PGE2, 100 nM ONO-AE1-259, or 100 nM ONO-
AE1-329 for 24 h and washed, and then cAMP responses to
PGE2 were measured. ONO-AE1-259 at 100 nM is predicted
to occupy 97% of EP2 receptors but just 4.1% of EP4 receptors
based on published Ki values (Suzawa et al. 2000; Ganesh

2014). ONO-AE1-329 at 100 nM is predicted to occupy
4.7% of EP2 receptors but 91% of EP4 receptors (Suzawa
et al. 2000). ONO-AE1-259 pretreatment shifted PGE2 re-
sponses rightward by 4.0 ± 1.2-fold (n = 4) compared to vehi-
cle pretreatment, with log EC50 values of − 7.51 ± 0.18 and −
8.00 ± 0.09, respectively (Fig. 5b). This degree of desensitiza-
tion was nearly equivalent to the 8.0 ± 2.2-fold shift induced
by pretreatment with 100 nM PGE2 in the same experiments.
ONO-AE1-329 pretreatment did not induce a change com-
pared to vehicle pretreatment, with PGE2 log EC50 values of
− 8.09 ± 0.17 and − 8.00 ± 0.09, respectively. Together, these
data indicate that EP2 receptors are responsible for desensiti-
zation of PGE2 responses in HFL-1 cells. Our findings are
supported by other studies that report the relative abundance

Fig. 2 Twenty-four-hour
pretreatment with isoproterenol
does not induce desensitization of
PGE2 cAMP responses. HFL-1
cells were treated with 100 nM
isoproterenol for 24 h then
washed, and acute responses to
PGE2 (a) or isoproterenol (b)
were measured. cAMP levels
were measured as a function of
change in fluorescence normal-
ized to the change in fluorescence
of maximal response stimulated
by 1 μM forskolin plus 200 μM
IBMX using the cADDis assay.
Data are mean ± SEM of n = 5. a
Not significant (p = 0.612) and b
significant (p = 0.0318) by 2-way
ANOVA
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of mRNA levels among Gs-coupled GPCRs in HFL-1 cells.
Using qRT-PCR and cAMP measures with PDE inhibitors,
Roberts et al. (2018) determined the relative abundance of
receptors to be IP receptors > EP2 receptors >>> EP4 recep-
tors. RNA-Seq studies of HFL-1 cells reported in the Gene
Expression Omnibus show the relative abundance of mRNA
to be EP2 receptors > IP receptors = EP4 receptors (GEO
accession GSE73555). Thus, while the expression level of
IP receptors is debatable, it is clear that EP2 receptors are
expressed at much higher levels than EP4 receptors in HFL-
1 cells.

cAMP levels are also regulated by phosphodiesterase ac-
tivity, which hydrolyzes cAMP to AMP (Kohyama et al.
2002b), so increases in PDE activity provide another possible
explanation for the desensitization we observed. HFL-1 cells

primarily express PDE3B, PDE4A, PDE4B, PDE4C,
PDE4D, PDE7A, PDE7B, and PDE8A (GEO accession
GSE73555) (Kohyama et al. 2002b). qRT-PCR experiments
were performed to determine whether the expression of any of
these PDE isoforms is altered by PGE2 pretreatment. Cells
were pretreated with 1 μM forskolin, 100 nM isoproterenol,
or 100 nM PGE2 for 24 h, and changes in PDE subtype ex-
pression were quantified by qRT-PCR. Significant upregula-
tion of PDE3A, PDE3B, PDE4B, and PDE4D occurred fol-
lowing pretreatment with each of these cAMP-elevating
agents (Fig. 6). Of these isoforms, PDE3A was selectively
upregulated by PGE2 pretreatment (7.3-fold), with forskolin
and isoproterenol having no effect on PDE3A. PGE2 and
forskolin pretreatment upregulated PDE4B expression (2.6-
and 3.9-fold, respectively), but isoproterenol had no effect
(1.3-fold). PDE4D was upregulated significantly by all three
drugs, but more by PGE2 (22.3-fold) than forskolin or isopro-
terenol (7.9- and 5.0-fold, respectively). While a previous re-
port suggests that a 12-h pretreatment with 1 μM PGE2 can
downregulate expression of both EP2R and EP4R when exog-
enously expressed in Chinese hamster ovary cells (Nishigaki
et al. 1996), we did not observe any change in EP2R mRNA
levels following a 24-h pretreatment with 100 nM PGE2

(Fig. 6a).
PDE activity assays performed in cell lysates from HFL-1

cells pretreated with 100 nM PGE2 confirm that the observed
increase in PDE mRNA translates to increased cAMP hydro-
lyzing activity. We treated cells for various time points from
5 min to 24 h and found significant increases in bulk PDE
activity after 6 h or more of PGE2 treatment as compared to
vehicle (Fig. 6d). We then treated cells with either vehicle,
30 μM forskolin, 100 nM PGE2 or 1 μM isoproterenol for
24 h and examined bulk PDE activity. Forskolin and PGE2,
but not isoproterenol, significantly increased PDE activity

Fig. 3 Twenty-four-hour
pretreatment with forskolin does
not induce desensitization of
PGE2 cAMP responses. HFL-1
cells were treated with 1 μM
forskolin for 24 h then washed,
and acute responses to PGE2 were
measured. cAMP levels were
measured as a function of change
in fluorescence normalized to the
change in fluorescence of maxi-
mal response stimulated by 1 μM
forskolin plus 200 μM IBMX
using the cADDis assay. Data are
mean ± SEM of n = 5. Not sig-
nificant (p = 0.287) by 2-way
ANOVA

Table 2 EP2 receptors mediate PGE2 responses both before and after
desensitization

Pretreatment condition Antagonist Log EC50

Vehicle None − 7.39 ± 0.26

Vehicle 100 nM PF-0441894 − 6.44 ± 0.40

Vehicle 100 nM GW-627368X − 7.92 ± 0.24

100 nM PGE2 pretreatment None − 6.65 ± 0.27

100 nM PGE2 pretreatment 100 nM PF-0441894 − 5.68 ± 1.27

100 nM PGE2 pretreatment 100 nM GW-627368X − 6.55 ± 0.37

HFL-1 cells were treated with vehicle or 100 nM PGE2 for 24 h, washed,
then incubated for 10 min with either 100 nM PF-0441894 (EP2 receptor
antagonist) or 100 nM GW-627368X (EP4 receptor antagonist). cAMP
responses to various concentrations of PGE2 were measured using the
cADDis assay. For each concentration of PGE2, the change in fluores-
cence was normalized to the change in fluorescence of maximal response
stimulated by 1μMforskolin plus 200μMIBMX. The log EC50 was then
calculated for PGE2 in each pretreatment condition. Data are mean ±
SEM of n = 3–10. Plots of these data are shown in Fig. 4
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(Fig. 6c). Inclusion of the PDE4 family inhibitor roflumilast
(1 μM) or the broad-spectrum PDE inhibitor IBMX (1 mM)
significantly reduced PDE activity in vehicle (control) and in
PGE2- and isoproterenol-pretreated cells (Fig. 6d). Therefore,
PGE2 pretreatment significantly upregulates PDE activity
while isoproterenol does not. Much of the upregulated PDE
activity appears sensitive to a PDE4 inhibitor.

We used PDE3- and PDE4-specific inhibitors to examine if
these isozymes are involved in mediating desensitization of
PGE2 cAMP responses. HFL-1 cells were pretreated for 24 h
with 100 nM PGE2, washed, and then incubated with 10 μM
rolipram (a PDE4 family inhibitor), 10 μMcilostazol (a PDE3

family inhibitor), or 10 μM IBMX for 10 min prior to mea-
suring cAMP levels in response to various concentrations of
PGE2. The PDE4-selective inhibitor rolipram was able to re-
verse the desensitization caused by PGE2 pretreatment by
shifting the concentration-response curve leftward by 2.8-fold
(Fig. 7a). The PGE2 log EC50 value in the PGE2-pretreated
condition was − 6.85 ± 0.25 while the log EC50 value in the
presence of 10 μM rolipram was − 7.30 ± 0.11. The addition
of the PDE3-selective inhibitor cilostazol at 10 μM had no
effect, with the PGE2 log EC50 value of − 7.03 ± 0.39 when
10 μM cilostazol was present (Fig. 7b). IBMX, a nonselective
inhibitor of all PDE isozymes except PDE8, induced a small

Fig. 4 PGE2-stimulated cAMP
responses in HFL-1 cells are me-
diated by EP2 not EP4 receptors.
HFL-1 cells were pretreated with
100 nM PGE2 for 24 h. a 10 min
prior to measuring cAMP re-
sponses to PGE2 with addition of
either vehicle or 100 nM PF-
0441894 (EP2-selective antago-
nist). b 10 min prior to measuring
cAMP responses to PGE2 with
addition of either vehicle or
100 nM GW-627368X (EP4-se-
lective antagonist). cAMP levels
were measured as a function of
change in fluorescence normal-
ized to the change in fluorescence
of maximal response stimulated
by 1 μM forskolin plus 200 μM
IBMX using the cADDis assay.
Data are mean ± SEM of n = 6. a
Significant (p < 0.0001) and b not
significant (p = 0.421) by 2-way
ANOVA
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leftward shift that was not statistically significant. The PGE2

log EC50 value in the PGE2-pretreated condition was − 7.00 ±
0.22while the log EC50 value in the presence of 10μM IBMX
was − 7.47 ± 0.62 (Fig. 7c). A lower concentration of IBMX
was used in these studies since higher concentrations stimu-
lated increases in cAMP that nearly saturated the cADDis
biosensor. Rolipram had no effect on isoproterenol responses
in cells pretreated with PGE2, implying that the increased PDE
activity does not regulate β-AR signaling (Fig. 7d). Taken
together, these results are consistent with the idea that PGE2

pretreatment induces expression of PDE4 isozyme(s) that reg-
ulates cAMP signals stimulated by PGE2 but not those stim-
ulated by β-AR.

Discussion

Evidence that PGE2 produces antifibrotic effects is relatively
clear in the literature (Kolodsick et al. 2003;White et al. 2005;
Bozyk and Moore 2011). PGE2 is produced as part of the
normal injury response, to promote lung homeostasis and to
inhibit fibrotic processes and help promote alveolar epithelial
cell regeneration and thus restore airway barrier function
(Wilborn et al. 1995; Bozyk and Moore 2011). The signaling
pathways that PGE2 activates remain attractive targets for
therapies in PF. For example, PGE2 activates EP receptors that
are coupled to the Gs-AC-cAMP pathway that promote an
antifibrotic response (Bozyk and Moore 2011). However,

Fig. 5 PGE2 responses are
desensitized following the 24-h
pretreatment with an EP2R-selec-
tive agonist but not by an EP4R-
selective agonist. a Acute cAMP
responses in HFL-1 cells to vari-
ous concentrations of PGE2,
ONO-AE1-259 (EP2 agonist), or
ONO-AE1-329 were measured. b
HFL-1 cells were treated with
100 nM PGE2, 100 nM ONO-
AE1-259 (EP2 agonist), or
100 nM ONO-AE1-329 (EP4 ag-
onist) for 24 h then washed, and
acute responses to PGE2 were
measured. cAMP levels were
measured as a function of change
in fluorescence normalized to the
change in fluorescence of maxi-
mal response stimulated by 1 μM
forskolin plus 200 μM IBMX
using the cADDis assay. Data are
mean ± SEM of n = 4. ONO-
AE1-259 is not significant (p =
0.264), while ONO-AE1-329 is
significant (p < 0.0001) from
PGE2 by 2-way ANOVA
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some studies demonstrate diminished COX-2 expression in
lung fibroblasts cultured from patients with PF, which would
lead to reduced PGE2 synthesis (Wilborn et al. 1995). Despite
this, PGE2 levels remain elevated in fibrotic lungs, so the

reason for its limited antifibrotic action in PF is not explained.
It is possible that PGE2 loses its antifibrotic action following
long-term exposure due to attenuated cAMP signaling in lung
fibroblasts (Michalski et al. 2012). Because PF is
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characterized by ongoing airway injury and presumably
chronic elevation of PGE2 (Fastres et al. 2017), the current
study examined how EP receptor signaling is affected by
prolonged agonist exposure. Our findings demonstrate that a
24-h exposure of lung fibroblasts to PGE2 elicits desensitiza-
tion of EP2 receptor responses. Thus, even if PGE2 could be
restored to normal levels or administered as a therapeutic
agent, this desensitization of EP2 receptors would likely inhib-
it its antifibrotic effects.

The data here show that PGE2-induced desensitization of
PGE-stimulated cAMP accumulation occurs primarily
through activation of EP2 receptors and not EP4 receptors.
Studies with both PGE2 receptor subtype–selective antago-
nists and agonists demonstrated that desensitization of
PGE2-stimulated cAMP levels requires activation of EP2 re-
ceptors and provided no evidence for contributions of EP4

Fig. 7 Inhibition of PDE4, but not PDE3, re-sensitizes PGE2-mediated
cAMP responses. HFL-1 cells were pretreated with 100 nM PGE2 for
24 h, prior to measuring cAMP responses to either PGE2 (a–c) or isopro-
terenol (d). Either vehicle, 10 μM rolipram (PDE4 inhibitor, panels a and
d), 10 μM cilostazol (PDE3 inhibitor, panel b), or 10 μM IBMX (broad
PDE isoform inhibitor, panel c) was added 10 min prior to addition of

PGE2 or isoproterenol. cAMP production was measured as a function of
change in fluorescence normalized to the change in fluorescence of max-
imal response stimulated by 1 μM forskolin and 200 μM IBMX using the
cADDis assay. Data are mean ± SEM of n = 3. a Significant (p < 0.0001),
b not significant (p = 0.286), c not significant (p = 0.114), and d not
significant (p = 0.259) by 2-way ANOVA

�Fig. 6 PDE isoform expression and activity is increased by PGE2 but not
isoproterenol pretreatment. a HFL-1 cells were incubated with vehicle,
1 μM forskolin, 100 nMPGE2, or 100 nM isoproterenol for 24 h, then the
expression of PDE isoformmRNAwas assessed by quantitative RT-PCR.
Expression of EP2 receptors was assessed in the same way following
PGE2 pretreatment. b Cells were incubated for the indicated times with
vehicle or 100 nM PGE2, then PDE enzyme activity in cell lysates was
assayed. c Cells were incubated for 24 h with vehicle, 30 μM forskolin,
100 nM PGE2, or 1 μM isoproterenol, then PDE enzyme activity in cell
lysates was assayed. dCells were incubated for 24 hwith vehicle, 100 nM
PGE2, or 1 μM isoproterenol, then PDE enzyme activity in cell lysates
was assayed in the presence of either vehicle (total), roflumilast (1 μM),
or IBMX (1 mM). Data are expressed as the fold change over vehicle-
treated cells (dotted line). Bars show means from n = 3–8 with individual
data points plotted in symbols. *p < 0.05, **p < 0.01, and ***p < 0.0001
by two-way ANOVA (a, d) or one-way ANOVA (b, c) as compared to
vehicle. #p < 0.05 by two-way ANOVA as compared to total activity in
the same condition
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receptors. Whether EP4 receptors are not expressed or rather
are not involved in the desensitization response is not clear
from our studies. Transcripts for EP4 receptors are low but
detectible by qRT-PCR and RNA sequencing. PGE2 itself also
activates EP3 and EP4 receptors, which can have unwanted
profibrotic effects (Bozyk and Moore 2011). More important-
ly, defining the EP receptor subtype responsible for desensiti-
zation allows the future exploration of the molecular signaling
components co-localized with EP2 receptors in the subcellular
compartment in which it resides. This includes PDE isoforms
that might be upregulated by prolonged PGE2 exposure.
Identification of these downstream components co-localized
with EP2 receptors would increase understanding of how these
receptors signal and perhaps provide additional therapeutic
approaches that would overcome the loss of signaling caused
by chronic agonist exposure.

The mechanism by which EP2 receptors desensitize in lung
fibroblasts also has not been studied directly. Since EP2 receptors
do not internalize due to their shorter C-terminus (Desai et al.
2000), we hypothesized that chronic exposure to PGE2 might
drive an increase in expression of one or more of the cAMP-
hydrolyzing PDE isoforms. Data here show that PGE2 pretreat-
ment upregulates the expression of PDE3A, PDE3B, PDE4B,
and PDE4D mRNA. The changes in expression of PDE3A and
PDE4B were highly specific to PGE2 pretreatment, as exposure
to the β-AR agonist isoproterenol had no effects on these iso-
forms. The PDE4 inhibitor rolipram but not the PDE3 inhibitor
cilostazol was able to partially reverse desensitization to PGE2,
suggesting that EP2 receptor cAMP signals are regulated by a
PDE4 isoform in a way thatβ-AR signaling is not. This mode of
regulation has been described in other cells (Bogard et al. 2012;
Agarwal et al. 2017), but further studies are needed to confirm
the precise PDE isoforms that are active in lung fibroblasts.
Previous studies have also implicated PDE4 isoform upregula-
tion following PGE2 treatment.Michalski and co-workers (2012)
pretreated primary human lung fibroblasts and found PGE2 pre-
treatment attenuated cAMP and chemotactic responses in a man-
ner consistent with upregulation of PDE4. They also found this
response was altered in cells isolated from patients with chronic
obstructive pulmonary disease, furthering the therapeutic poten-
tial of PDE inhibition. We attempted to knockdown the expres-
sion of specific PDE isoforms using small interfering RNA
(siRNA) approaches but were unable to confirm protein knock-
down due to either failure of the siRNA or limitations of avail-
able antibodies to detect PDE proteins (data not shown).
Therefore, more work is needed to reveal which specific PDE
isoforms are responsible for the desensitization to PGE2 that we
observed.

Another important remaining question is how PGE2 pre-
treatment leads to the increased expression of a specific PDE
isoform. Pretreatment with the β-AR agonist isoproterenol
had no effect on subsequent PGE2 stimulation of cAMP, im-
plying that this effect is limited to PGE and perhaps a subset of

other cAMP-elevating agents. Pretreatment with forskolin,
which stimulates AC directly to increase cAMP levels
throughout the cell, also induced little desensitization.
Importantly, isoproterenol and forskolin also induced upregu-
lation of fewer PDE genes, providing a possible explanation
for the greater decrease in cAMP accumulation with PGE2
pretreatment than for pretreatment with other cAMP-
elevating agents. These results imply that either cAMP signal-
ing alone is insufficient for inducing desensitization of EP
receptor–stimulated cAMP accumulation or that cAMP sig-
nals are highly compartmentalized. cAMP signaling in a very
specific subcellular compartment may be required for the de-
sensitization mechanism to be activated, and/or EP2 receptors
may localize to different compartments than β-AR. In fact,
EP2 receptors exist in discrete membrane microdomains in
various cell types where they can couple to specific AC iso-
forms, specifically AC2 (Johnstone et al. 2018a). β-AR exists
primarily in a different compartment with different AC iso-
zymes and PDE isoforms. Fibroblasts may interpret the local-
ized EP2 receptor signal differently and respond by upregulat-
ing a specific PDE isoform that selectively regulates cAMP
signaling in that domain. This response would leave signaling
via β-ARs in their own microdomain unaffected, explaining
the results in Figs. 1b and 7d. This hypothesis requires further
study but is consistent with that of previous studies and would
explain the specific desensitization of PGE2 responses ob-
served here. The concept that a single PDE isoform can selec-
tively regulate cAMP signaling in a specific compartment has
been previously demonstrated (Johnstone et al. 2018b).

Several limitations to our study should be noted. First, we
observed significant variability in the EC50 values for PGE2 after
pretreatment with vehicle or PGE2 across different experiments.
This results in some studies having large variability in the EC50

and/or Emax values. This may also explain some of the quantita-
tive differences in the PGE2 responses seen across different fig-
ures. Some of this variability may be due to the difficulty in
washing out PGE2 (or isoproterenol or forskolin in other exper-
iments) after pretreatment before subsequent responses to PGE2
weremeasured. Our experimental protocol required limitedwash
steps because more extensive washing negatively affected cell
attachment and viability. Residual drug from the pretreatments
would be expected to artificially increase potency of subsequent
drug additions, as is particularly noted in Fig. 3 when cells were
pretreated with forskolin. The variability could also come from
differences in expression of the cADDis sensor. Even though we
normalize responses to a maximal stimulus, differences in the
biosensor levels could alter the observed sensitivity.
Nonetheless, the desensitization induced by pretreatment with
PGE2 was highly reproducible in a qualitative sense and consis-
tently different statistically using 2-way ANOVA. Second, our
data do not explainwhyPGE2-induced desensitizationwas great-
er than that with pretreatment with the selective EP2 receptor
agonist ONO-AE1-259 (22-fold vs. 4-fold, respectively), given
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that our data taken together suggest that the desensitization is
mediated selectively by EP2 receptor activation. This observation
leaves open the possibility that other receptors activated by PGE2
but not by ONO-AE1-259 contribute to the induction of desen-
sitization (perhaps EP1 and/or EP3 receptors coupling toGq). The
possibility that EP1 and/or EP3 receptors are involved is dimin-
ished by the fact that transcripts for these receptors are very low
in HFL-1 cells (GEO accession GSE73555). While several
groups have reported that EP2 receptors do not internalize upon
agonist exposure, we did not directly test this in our studies.
Finally, our studies examined responses in a widely utilized cul-
tured human fetal lung fibroblast cell line, and studies in primary
pulmonary fibroblasts from humans as well as in vivo studies in
animal models of lung fibrosis may shed new light on the unre-
solved issues from the present studies.

Given that cAMP has potent antifibrotic effects, any therapy
addressing PF should consider cAMP-elevating agents to combat
fibrosis. While PGE2 has long been an attractive candidate, its
nonspecific activation of all EP receptors could activate unwant-
ed signaling cascades. For this reason, EP2-specific agonists such
as ONO-AE-259 should be considered due to their ability to only
activate EP2-associated signaling pathways. However, EP2-spe-
cific agonists should likely be combined with PDE4-specific
inhibitors so that cAMP elevation is promoted while simulta-
neously inhibiting EP2-mediated desensitization, thus achieving
sustained high levels of cAMP that may be sufficient for reduc-
ing fibrotic activity. Selective and combinatorial inhibition of
PDE isoforms is gaining traction in a wide array of pulmonary
diseases (Zuo et al. 2019).

In conclusion, this study demonstrates that long-term ex-
posure of lung fibroblasts to PGE2 induces agonist-specific
desensitization of cAMP signaling without altering signaling
by β-ARs. Selective agonists and antagonists demonstrate
that the EP2 receptor subtype is responsible for both the
cAMP signal stimulated by PGE2 and the subsequent desen-
sitization. EP2 receptors do not undergo GRK-mediated phos-
phorylation and β-arrestin–mediated internalization, making
this an unlikely mechanism for the observed desensitization.
Increased PDE activity appears responsible for the desensiti-
zation, since PDE3A and PDE4D expression levels were se-
lectively upregulated and bulk PDE activity was increased by
PGE2 pretreatment. The PDE4 inhibitor rolipram reversed the
effect of PGE2 pretreatment. These findings provide potential
new insights into PF pathology and point to new therapeutic
approaches for treating PF.
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