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Abstract 

 

Identification of winter wheat genotypes that are highly adapted to a wide range of 

environmental conditions is one of the most important wheat research objectives. Multi-

environment trials (METs) under diverse environments is a commonly used practice to evaluate 

mean performance and yield stability. However, locations used and genotypes planted may vary 

from year to year which may cause yield stability analysis to be statistically challenging. In this 

study, we evaluated yield trial data containing 117 eastern soft red winter wheat genotypes that 

were grown in 35 locations in eastern production areas and four growing seasons (2012/2013 to 

2015/2016). We used linear mixed model (LMM) and additive main effect and multiplicative 

interaction (AMMI) approaches to evaluate the mean performance and yield stability for each 

season. Genotype and location effects were highly significant at α = 0.001 for all four seasons and 

location effects had higher variation compared to genotypic effects. For example, the proportional 

variance components for location and genotype effects varied from 58-78% and 4-11% among 

seasons. The first two PC score contribution ranged from 40.7 to 67.3 % to the total genotype-

environment variation for all seasons. Both LMM and AMMI approaches detected that Branson, 

and MO080108-4 were better performers, thus these two methods were consistent.  

Key words: stability analysis, eastern soft red winter wheat, linear mixed model, and additive main 

effect and multiplicative interaction 

 

1. Introduction 

Wheat is the principal food grain produced in the United States. Winter wheat production 

represents 70-80 % of total USA production (ERS, 2017). Among wheat crops, soft red winter 

wheat, accounting for 15-20 % of total production in USA, is grown primarily in states along the 

Mississippi River and in the eastern states. Flour from eastern soft red winter wheat (ESRWW) is 

mainly used for cakes, cookies, and crackers in the USA. To ensure consistent and nutritious food 

supply to the nation, continuous breeding programs aimed at developing varieties with improved 

grain yield, disease resistance, and end use quality are essential in these areas. Identification of 

high-yielding winter wheat cultivars that are widely adapted to diverse environmental conditions 

is highly desired.  

Multi-environments trials (METs) under diverse environments are a commonly used 

practice to evaluate wheat yield stability. For example, uniform eastern and southern red soft 

winter wheat nursery trials are conducted annually by United States Department of Agriculture. 

Under this program, more than 30 ESRWW lines are evaluated annually for yield performance as 

well as many traits to predict their performance. Preferred genotypes for future use are expected 

to have high-yielding and stable performance in diverse locations and/or years (Gauch et al., 2008). 
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To identify the best genotype for a given location, genotype location interaction (GEI) can be used 

as a factor since it is the main component that affecting to the stability of a variety. 

Because of the complex behaviour of GEI, a number of statistical methods have been 

proposed in order to quantify genotypic stability. Several commonly used statistical methods for 

yield stability analysis include Finlay and Wilkinson’s (FW) regression coefficients (Finlay and 

Wilkinson, 1963), linear mixed model (LMM) approaches, genotype main effect and genotype 

environment interaction (GGE) biplot (Yan and Kang, 2003), and additive main effects and 

multiplicative interaction (AMMI) method (Gauch,1992).  

The FW regression method allows us to compare the performance of set of varieties grown 

in different environments by linear regression coefficient and coefficient of determination. 

Because environment index (EI), which is used for yield stability evaluation is defined as the mean 

yield of all varieties for each environment and years. Yield stability is highly dependent on the 

varieties used in the trial.  The AMMI method evaluates stability of crops by integrating both 

analysis of variance (ANOVA) and principal component analysis (PCA) to analyse METs. In this 

model, ANOVA is used to analyse genotype and environment main effects while PCA is for 

interactions between genotypes and environments (Silveria et al., 2012). GGE biplot analysis, 

which is based on PCA, is another effective method to explore the yield trials in different locations. 

It also allows visual examination of the relationships among the test environments, genotypes and 

the genotype environment interactions. Alternatively, statisticians have also applied ANOVA and 

LMM approaches to evaluate yield stability (Smith, 2005).  The LMM approaches provide more 

flexibility to deal with complex models and missing and/or unbalanced data (Nuvunga et al., 2015).  

The objective of this study was to evaluate yield stability for each ESRWW genotype in 

the recent four seasons of yield trials by using LMM approach and AMMI method and to determine 

those wheat genotypes that had both high-yielding potential and wide adaption in eastern area of 

USA. The yield trial data used in this study included 117 ESRWW, four growing seasons 

(2012/2013 to 2015/2016), and 35 locations across the eastern region of USA. The results will help 

to identify desirable winter wheat genotypes that are suitable in eastern region of USA. 

  

2. Materials and Methods 

2.1 Materials  

The data set with 117 ESRWW genotypes that were grown in 35 locations, across 19 states 

in eastern region of USA, for four seasons (2012/13–2015/16) was used for this study.  The data 

used in this study were individual genotypic means for each environment and were from Uniform 

Eastern Soft Red Winter Wheat Nursery Report published by United States Department of 

Agriculture.  

 

2.2 Statistical analysis 

First, we obtained genotypic and location means for grain yield and heading date across 

locations, genotypes, and seasons. Due to the large number of genotypes, we present mean trait 

values for only the top 25 genotypes in Table 2. 

 

Due to highly unbalanced data structure across four growing seasons, we conducted 

separate LMM and AMMI analyses for each growing season. In addition, since only individual 
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genotypic means for each location were available, genotype-location interactions could not be 

separated from the model for each growing season. The linear model is as follows:  

𝑌𝑖𝑗 = µ + 𝐺𝑖+𝐸𝑗+Ɛ𝑖𝑗           (1) 

where 𝑌𝑖𝑗  is the mean yield of genotype i in location j, µ is the population mean, 𝐺𝑖 and 

𝐸𝑗 are the genotype and location effects and Ɛ𝑖𝑗 is a residual including GEI that confounded with 

random error. In this study, we treated both genotype and location effects random.  

Using LMM approaches, we calculated variance component, proportional variance 

component, estimated fixed effect, and predicted random effects for genotypes and locations. The 

standard error for each parameter was calculated with 10-fold jackknife resampling technique (Wu 

et al., 2012).  

 

Though genotype-environment interaction in the model (1) could not be separated from the 

residual Ɛ𝑖𝑗, with the following AMMI model, it is possible to partially separate GEI effects (Zobel 

et al., 1988).   

Yij = µ + Gi+Ej + ∑ λk
M
k=1 αik𝛾jk+ρij        (2) 

 Yij, µ, Gi and Ej were defined in equation 1; λk is a singular value of the k axis in the PCA; 

αik and γjk are PC scores related to genotype and environmental factors, respectively; M is the 

number of principal components retained in the model; ρij is the residual  (Silveria et al, 2012).  

We used R (version 3.3.2) statistical software under the RStudio (RStudio, 2016) 

environment to conduct LMM analysis (model 1) with the minque package (Wu, 2014) and AMMI 

analysis (model 2) with the agricolae package (Mendiburu, 2016). 

     

3. Results and Discussion 

3.1 Mean grain yield and heading date 

According to Table 1, 39, 39, 31, and 30 genotypes and 21, 21, 24, and 24 locations were 

used in each season for the study. Genotypic mean across location for each season ranged from 

72.47 to 79.51 bu/ac.  

The top 25 genotypes recoded for highest mean yield and their heading date across all 

environments and years are shown in Table 2. The mean grain yield ranged from 96.44 to 81.2 

bu/ac and their heading date ranged from 123.1 to 138.1 Julian days (Table 2). Hilliard, a check 

cultivar reported as the highest yielding genotype among all tested genotypes and Branson and 

MO080104, the other two check cultivars, showed comparatively higher mean yield of 81.85 and 

82.47 bu/ac (Table 2). Hilliard was also reported as a high yielding variety in many states for state 

yield trials including Tennessee (West et al, 2016) and Wisconsin (Conley, 2016).  As stated by 

Friesen et al (2015), forty-one (41) genotypes show mean grain yield greater than the population 

mean of 78.07 bu/ac (data not shown).  

The top two locations with greater mean yield were Ithaca, NY (93.37 bu/ac) and 

Arlington, (WI) (92.63 bu/ac) (Table 3). Mead was reported with the lowest mean yield of 45.89 

bu/ac among all locations. The season mean yield of genotypes across locations ranged from 72.47 

to 79.51 bu/ac (Table 1), showing comparatively constant values across seasons. Since the breeders 
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selected the high yielding genotypes from new lines reported from these trials in each year, these 

results agreed with the study reported by Friesen et al (2015).  

 

3.2 Variance components and genotypic effects  

Significant location variance (58 – 78%) for four years was detected (Table 4), indicating 

that environmental conditions across different locations played a major role on grain yield. 

Campbell et al. (1976) reported the similar results in their study for Uniform ESRWW Nursery 

data.  Genotypic effect contributed 4-11% of the total variance for different seasons. The results 

agreed with other published results (Dia et al, 2016 and Mohammadi et al, 2015). In 2015, Friesen 

et al also reported less than 10% genotypic variance for spring wheat (Friesen et al, 2015).   

The checks Branson, MO080104, and Hilliard showed highest predicted effects for 

2012/13, 2013/14, and 2015/16 seasons. The genotypic effects for Branson (2012/13), MO080104 

(2013/14), and Hilliard (2015/16) were 5.7, 7.5 and 16 bu/ac, respectively (Table 5). Hilliard, 

Branson, and MO080104 found among genotypes with mean yield higher than 81.2 bu/ac in Table 

2. The lowest effect for yield was -14.5 (reported in OH10-219-65 for 2015/16).  The highest 

location effects for all seasons were 24 (Warsaw in 2012/13), 39 (Battle Ground in 2013/14), 30 

(Urbana in 2014/15), and 29 (Arlington in 2015/16). The lowest (bottom 5) location effects were 

for Missouri, Illinois, Arkansas, Nebraska and Tennessee states more than one time (Table 5). 

Agreeing with Table 5, Table 3 showed Warsaw, Battle Ground, Urbana, and Arlington as high 

yielding locations and the reported mean yields are 80.46, 85.62, 90.42, and 92.63 bu/ac. Mead, 

(NE) (45.89 bu/ac), Marianna, (AK) (50.14 bu/ac), and Columbia, (MO) (53.76bu/ac) reported 

low mean yields among locations.    

 

3.3 Stability analysis 

AMMI biplot is constructed by plotting the first principal component (PC1) scores of the 

genotypes and the environments against their respective scores for the second principal component 

(PC2). Total contribution from PC1 and PC2 scores ranged from 45.8 to 67.3 % to the total GEI 

variance among four seasons (Figure 1a-d). Branson, MO080104 and Hilliard showed high yield 

for all seasons (Figure 2a-d). OH08-180-48, MO080104, MDC07026-F2-19-13-1, and Hilliard 

showed the highest mean yield for each season. Warsaw, Ithaca, Urbana, and Arlington were 

identified as high yielding locations in the present study by AMMI analysis. Low yielding 

locations for the four seasons were Milan, Marianna, Knoxville, and Columbia (Figure 1). 

 Highly stable genotypes located close to 0 in PC1 axis and for season 2012/13 highly 

stable genotypes were MD04W249-11-12, VA08MAS-369 (Figure 2a). Genotypes 0762A1-2-8 

and OH07-263-3 were reported for highest stability in season 2013/14 (Figure 2b).  Genotype TN 

1505 located close to 0% (PC1) showing the highest stability for season 2014/15 (Figure 2c). 

Genotype 04620A1-1-7-4-17 showed highest stability for season 2015/16. Genotypes with high 

mean yield for season 2012/13 are LCS19228, Shirley and KWS008 and for season 2013/14 are 

LCS229, MO080104. MDC07026-F2-19-13-1 and MO121058 showed high mean performance 

for season 2014/15. In 2015/16 season, Hilliard, Branson, DH11SRW8-59 and OH09-207-68 

report high mean performance. Moreover, these high performance varieties can be seen among top 

25 genotypes (Table 2) and genotypes with high predicted effect (Table 5).  

Two statistical approaches that we used to evaluate ESRWW genotypes are equally 

applicable for the present data. As for an example, in season 2012/13, 2013/14, and 2014/15, LMM 
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approach showed 5.22, 7.49, and 6.44 bu/ac predicted effects for MO080104 keeping among top 

five (Table 5). AMMI also graphed MO080104 in 2012/13, 2013/14, and 2014/15 seasons among 

high yielding genotypes (Figure 2a). Both these two methods have shown comparatively consistent 

results for most genotypes. Since LMM and AMMI derived from same parameters, this 

observation is acceptable (Piepho, 1998). For evaluation of ESRWW genotypes, we can use one 

of these two methods in future.            

 

4. Conclusions 

In this study, we applied both LMM and AMMI methods to analyse soft red winter wheat 

yield trial data including 117 genotypes, four growing seasons (2012/2013 to 2015/2016), and 35 

locations across the eastern region of USA. Results showed that genotype and location effects were 

significant at α = 0.001 for all tested seasons. Location effects showed a higher variation than 

genotypic effects (58-78% vs 4-11%). Check varieties performed well, showing the highest effects 

for three tested seasons. Contribution from the first two PC scores ranged from 40.7% to 67.3 % 

to the total GEI variation among seasons. Warsaw, Ithaca, Urbana and Arlington were high 

yielding locations while Knoxville, Columbia, Marianna and Milan were the lowest yielding 

locations. Branson, OH08-180-48, Hilliard, and DH11SRW8-59 showed higher yield than the 

population mean. The results were consistent between both LMM and AMMI approaches in the 

present study. 
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Table 1. Number of genotypes, locations and mean yield for each season. 

Season Number of genotypes Number of locations Mean yield (bu/ac) 

2012/13 39 21 72.48 

2013/14 39 21 78.86 

2014/15 31 24 72.47 

2015/16 30 24 79.51 
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Table 2. Mean yield of top 25 genotypes across seasons and their heading date. 

 

Genotype 
Yield 

(bu/ac) 

Heading date  

(Julian days) 

Hilliard 96.44 125.23 

DH11SRW8-59 94.12 127.98 

MD09W272-8-4-14-6 88.36 124.60 

KWS 078 87.57 127.04 

OH09-207-68 87.32 124.74 

VA11W-108 86.91 136.39 

MD09W272-8-4-14-8 86.79 124.18 

VA11W-313 86.58 121.67 

KWS023 85.05 136.85 

VA11W-279 84.76 123.10 

MD09W272-8-4-13-3-15 84.66 123.54 

MO110799 84.35 138.07 

P0762A1-2-8 84.07 136.69 

KWS024 83.84 137.74 

LCS321 83.69 136.54 

04620A1-1-7-4-17 83.39 127.45 

LCS229 82.75 135.22 

IL09-3264 82.59 134.62 

P0722A1-1-7-4-17 82.49 136.73 

MO080104 82.47 131.06 

Branson 81.85 130.83 

VA11W-230 81.66 135.75 

MDC07026-F2-19-13-1 81.28 131.83 

AR06050-7-2 81.26 125.09 

IL07-18533-3 81.20 134.59 
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Table 3. Mean yield and heading date for each location across seasons. 

Location Yield (bu/ac) Heading date (Julian days) 

Ithaca 93.37 150.56 

Arlington 92.63 NA 

Logan Co 91.03 124.23 

Urbana 90.42 136.92 

West Lafayette 89.32 138.28 

Griffin 87.93 109.29 

Battle Ground 85.62 134.21 

Raleigh 85.22 111.13 

Champaign 84.31 139.16 

Blacksburg 80.71 129.26 

Warsaw 80.46 122.28 

Napoleon 79.33 142.57 

Clarksville 76.08 132.39 

New Haven 75.96 142.45 

Lafayette 74.57 139.75 

Lexington 74.01 128.84 

Oconto 73.36 NA 

Knoxville 72.91 118.79 

Ingham Co 72.52 NA 

Nairn 71.89 155.14 

Brownstown 71.28 NA 

Harrisburg 69.24 130.69 

Stuttgart 69.01 117.62 

Mason 68.88 148.80 

Schochoh 68.78 113.10 

Winfield 67.43 NA 

Webberville 64.34 153.71 

Plymouth 63.43 115.79 

Custar 63.02 142.97 

Milan 58.20 NA 

Columbia 53.76 133.66 

Marianna 50.14 111.25 

Mead 45.89 151.60 

Clayton NA 105.90 

Windfall NA 131.52 
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Table 4. Proportional variance components from LMM for location and genotype. 

  

Season  

12/13   13/14   14/15   15/16   

            

Location  0.58*  0.78*  0.77*  0.66*  

Genotype   0.04*  0.04*  0.06*  0.11*  

Error  0.38*  0.18*  0.17*  0.22*  

* Significant at 0.001 
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Table 5. The top 5 and bottom 5 (- sign) predicted random effects for genotypes and 

locations for all seasons. 

Season Genotype 
Predicted 

effect 
  Location 

Predicted 

effect 

2012/13 Branson 5.69  Warsaw 23.92 

 OH08-180-48 5.44  Ithaca 23.02 

 Shirley 5.37  West Lafayette 20.51 

 MO080104 5.22  Harrisburg 15.91 

 VA10W-21 5.10  Griffin 15.90 

 NC09-20768 -6.09  Knoxville -20.15 

 AR00255-16-1 -5.74  Columbia -17.65 

 GA04121-11E26 -5.51  Brownstown -17.64 

 ARS07-0525 -5.19  Winfield -12.97 

2013/14 MO080104 7.49  Battle Ground 38.92 

 VA11W-108 7.26  Ithaca 28.75 

 KWS023 5.58  Blacksburg 25.85 

 IL07-19334 5.33  Griffin 22.91 

 Branson 5.23  Clarksville 15.60 

 OH07-264-35 -8.14  Mead -41.18 

 NC08-140 -7.47  Harrisburg -29.04 

 NC10-23663 -7.34  Champaign -19.42 

 MSU Line F0013R -6.25  Columbia -15.59 

2014/15 MDC07026-F2-19-13-1 8.33  Urbana 29.93 

 MO 121058 7.37  Champaign 23.40 

 MO080104 6.44  Arlington 19.70 

 VA11W-106 6.08  Logan Co. 18.49 

 AR05094-4-1 4.53  Lafayette 16.89 

 MD09W272-8-4-13-3 -11.99  Mead -43.19 

 OH07-206-69 -9.35  Columbia -31.90 

 IL02-19463-7 -6.54  Nairn -24.92 

 KY05C-1369-14-6-3 -6.45  Marianna -20.31 

2015/16 Hilliard 15.95  Arlington 29.05 

 DH11SRW8-59 13.69  Urbana 28.54 

 Branson 9.52  Nairn 27.03 

 MD09W272-8-4-14-6 8.36  West Lafayette 26.74 

 KWS 078 7.60  Champaign 24.96 

 OH10-219-65 -14.50  Marianna -31.18 

 KY06C-1195-37-2-5 -13.83  Milan -21.16 

 TN1603 -12.97  Warsaw -18.24 

 Pioneer Brand 25R46 -12.51  Battle Ground -17.12 
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 Figure 1. Principal component (PC1 and PC2) analysis plots for grain yield (bu/ac) of 39 genotypes 

and 21 locations for season 2012/13 (a), 2013/14 (b), 31 genotypes and 24 locations for season 

2014/15 (c) and 30 genotypes and 24 locations for 2015/16 (d). Blue and red letters indicate genotypes 

and locations, respectively.  
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 Figure 2. Genotype and GE interaction biplots for grain yield (bu/ac) of 39 genotypes and 21 

locations for season 2012/13 (a), 2013/14 (b), 31 genotypes and 24 locations for season 2014/15 

(c) and 30 genotypes and 24 locations for 2015/16 (d). Blue and red letters indicate genotypes and 

locations, respectively.  
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